
On Transferability of Adversarial Examples on

Machine-Learning-Based Malware Classifiers

Yang Hu

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Science

Wenjing Lou, Chair

Yimin Chen

Chang-Tien Lu

May 4, 2022

Falls Church, Virginia

Keywords: malware detection, adversarial example attack, transferability, machine learning

Copyright 2022, Yang Hu

On Transferability of Adversarial Examples on

Machine-Learning-Based Malware Classifiers

Yang Hu

(ABSTRACT)

The use of Machine Learning for malware detection is essential to counter the massive growth

in malware types compared with the traditional signature-based detection system. However,

machine learning models could also be extremely vulnerable and sensible to transferable ad-

versarial example (AE) attacks. The transfer AE attack does not require extra information

from the victim model such as gradient information. Researchers explore mainly 2 lines of

transfer-based adversarial example attacks: ensemble models and ensemble samples.

Although comprehensive innovations and progress have been achieved in transfer AE at-

tacks, few works have investigated how these techniques perform in malware data. Besides,

generating adversarial examples on an android APK file is not as easy and convenient as

it is on image data since the generated AE of malware should also remain its functionality

and executability after perturbation. Therefore, it is urgent to validate whether previous

methodologies could still have their effect on malware considering the differences compared

to image data.

In this thesis, we first have a thorough literature review for the AE attacks on malware

data and general transfer AE attacks. Then we design our algorithm for the transfer AE

attack. We formulate the optimization problem based on the intuition that the contribu-

tion evenness of features towards the final prediction result is highly correlated to the AE

transferability. We then solve the optimization problem by gradient descent and evaluate it

through extensive experiments. Implementing and experimenting with the state-of-the-art

AE algorithms and transferability enhancement techniques, we analyze and summarize the

weaknesses and strengths of each method.

On Transferability of Adversarial Examples on

Machine-Learning-Based Malware Classifiers

Yang Hu

(GENERAL AUDIENCE ABSTRACT)

Machine learning models have been widely applied to malware detection systems in recent

years due to the massive growth in malware types. However, these models are vulnerable

to adversarial attacks. Malicious attackers can add some small imperceptible perturbations

to the original testing samples and mislead the classification results at a very low cost.

Research on adversarial attacks would help us gain a better understanding of the attacker’s

side and inspire defenses against them. Among all adversarial attacks, the transfer-based

adversarial example attack is one of the most devastating attacks since it does not require

extra information from the targeted victim model such as gradient information or query

from the model. Although plenty of researchers has explored the transfer AE attack lately,

few works focus on malware (e.g., Android) data. Compared with image data, perturbing

malware is more complicated and challenging since the generated adversarial examples of

malware need to remain functionality and executability. To validate how transfer AE attack

methods perform on malware, we implement the state-of-the-art (SOTA) works in this thesis

and experiment with them on real Android data. Besides, we develop a new transfer-based

AE attack method based on the contribution of each feature for generating AE. We then do

comprehensive evaluations and draw comparisons between SOTA works and our proposed

method.

Acknowledgments

I would like to thank a lot of people for helping me with this research project, without

whom I would not have been able to complete this thesis. Firstly, I would like to express my

sincere gratitude to my mentor Dr. Wenjing Lou for her continued guidance, feedback, and

encouragement throughout my whole time at Virginia Tech. I am deeply honored to work

with such a professional and brilliant researcher. I would like to sincerely thank Dr. Yimin

Chen, who is also my committee member for the thesis. Without his help, expertise, and

encouragement, it has not been possible for me to achieve my educational goals. I would also

like to thank Dr. Chang-Tien Lu for serving on my thesis committee, and for his brilliant

suggestions and comments. I would also thank to all my friends and colleagues in the CNSR

lab. Their insights and advice were influential and essential throughout the thesis writing

process.

This thesis and project would not have been possible without the support of the US National

Science Foundation under grant CNS-1837519, the Office of Naval Research under grant

N00014-19-1-2621, and the Virginia Commonwealth Cyber Initiative (CCI).

Personally, I want to thank my parents for always believing in me and supporting my dreams.

Through their love, support, and encouragement, I’ve grown and developed.

iv

Contents

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Motivation . 1

1.2 Research Challenges . 3

1.3 Contributions . 4

1.4 Organization of the Thesis . 4

2 Related Work 6

2.1 Adversarial Example Attacks on Malware Classifiers 7

2.1.1 AE attacks on static victim models 7

2.1.2 AE attacks on dynamic victim models 9

2.2 Transfer Adversarial Example Attacks on Malware Classifiers 10

2.2.1 Transfer AE attacks . 10

v

2.2.2 Transfer AE attack on malware classifiers 11

3 Background of Transfer Adversarial Example Attacks on Malware Classi-

fiers 13

3.1 Machine learning models and Notation . 13

3.2 Machine-learning-based Malware Classifiers 14

3.2.1 Dataset and Data Processing . 14

3.2.2 Constraints in Generating Malware Adversarial Examples 17

3.2.3 Static Malware Classifiers . 18

3.2.4 Dynamics Malware Classifiers . 18

3.3 Adversarial Example Attacks . 19

3.3.1 Popular AE Attacks . 20

3.3.2 Existing Transfer AE Attacks . 22

4 Adversary and System Model 25

4.1 Adversary Model . 25

4.2 System model . 27

4.2.1 General transfer AE attack process 27

4.2.2 Victim model . 28

4.2.3 Substitute model . 30

5 Methodology 31

vi

5.1 Research Objective . 32

5.2 Intuitions . 32

5.3 System Overview . 33

5.4 Adversarial Perturbations with Even Distribution 34

5.4.1 Evenness score . 34

5.4.2 Formulating the objective function 35

5.4.3 Solving the objective function . 37

5.4.3.1 Finding the constant c . 37

5.4.3.2 Box constraint . 37

5.4.3.3 Linf and L1 adjustment . 38

5.4.4 Summary . 39

6 Performance Evaluation 41

6.1 Dataset . 42

6.2 Performance Metrics . 42

6.2.1 Success rate . 42

6.2.2 Transferability . 43

6.3 Training the victim and substitute model . 43

6.4 Baseline Methods . 44

6.4.1 FGSM attack . 44

vii

6.4.1.1 Results . 45

6.4.2 Ensemble-Sample . 46

6.4.2.1 Results . 46

6.4.3 Ensemble-Model . 47

6.4.3.1 Results . 47

6.5 Experimental Results of Our Proposed Method 48

6.6 Discussions . 52

7 Conclusions and Future Work 54

7.1 Conclusions . 54

7.2 Future Work . 56

7.2.1 Different adversary models . 56

7.2.2 Explainable machine learning . 56

7.2.3 Evenness score definition . 57

7.2.4 Different datasets . 57

Bibliography 58

viii

List of Figures

3.1 APK file . 15

3.2 The static malware detection scheme. 18

3.3 The dynamic malware detection scheme. 19

3.4 A sample of ’Panda’ is perturbed and predicted as ’Gibbon’ under AE at-

tacks [24]. 20

4.1 Transfer AE attacks. 28

5.1 Overview of our transfer adversarial example attack. 33

6.1 Evenness scores as the adversarial step increases. 50

6.2 The best average evenness score as ϵ increases. 51

ix

List of Tables

3.1 Notations adopted in this thesis. 14

3.2 Overview of the feature sets. 16

4.1 Targeted v.s. Untargeted Attacks. Denote victim model by y = f(x), y =

1, · · · , n, clean sample by x, and AE by x′. Therefore, we have f(x) = c. . . 26

4.2 Categorization of attack capability. Denote victim model by y = f(x), y =

1, · · · , n, clean sample by x, and AE by x′. Therefore, we have f(x) = c. . . 27

6.1 FGSM method attack transferability on neural network 46

6.2 Attack performance of Ensemble-sample attack (FGSM) on deep neural network 46

6.3 Attack performance of Ensemble-Model method (FGSM) on different victim

models, Part I . 47

6.4 Attack performance of Ensemble-Model method (FGSM) on different victim

models, Part II . 47

6.5 Our method attack transferability on neural networks 49

x

6.6 Correlation between transferability rate and evenness score. Each result is

obtained from 100 testing samples. 51

xi

Chapter 1

Introduction

1.1 Motivation

Recent years have seen groundbreaking advancements in machine learning (ML) in both

academia and industry. These achievements have driven the wide applicability of machine

learning across many application scenarios as well. Particularly, machine learning has been

widely used in security domains such as network intrusion detection and malware detection.

Compared with the traditional signature-based detection methods, machine-learning-based

detection systems not only exhibit high detection accuracy but also show the capability of

detecting unseen and/or zero-day attacks due to their big-data-driven nature.Meanwhile,

studies show that these systems achieve high detection accuracy even when the attackers use

code concealing techniques to evade the detection systems [8, 13, 16].

Although there is no doubt that learning-based detection systems outperform their prede-

cessors and have become the mainstream for many security applications, they suffer from

the same vulnerabilities that most machine learning models do.Adversarial examples attack

1

1.1. Motivation 2

(AE attack) is one of the most devastating attacks on machine learning models because it

is difficult to defend against. It was first proposed in [24]. By adding small (negligible)

perturbations to a testing sample, the trained model will misclassify it to the attacker’s tar-

geted class. For example, the attacker would be able to modify a piece of malware slightly

so that it would be classified as “benign software” with a high probability. Considering that

we heavily rely on security applications to protect our data and infrastructure, adversarial

example attack thus poses an urgent threat to us.

What’s worse, researchers have shown that an attacker is able to generate adversarial ex-

amples without knowing the victim model by using a ‘substitute mode’ and achieves a high

attack success rate as well. This is the so-called “black-box transfer attack” [39, 41]. In effect,

such an attack shows that the adversarial examples generated from one machine learning

model, e.g., the substitute model, are also effective for another model, e.g., the victim model,

provided they are somehow related. One example is that the substitute model and the victim

model are obtained from the same training set with different training algorithms or settings.

We refer to such a feature of adversarial examples as ‘transferability’. A higher transferabil-

ity corresponds to that a high portion of generated adversarial models from the substitute

model are effective for the victim model. The feasibility of the black-box transfer attack

greatly lowers the assumptions on the attacker, making the adversarial example attack a

practical one on real-world machine learning models.

Therefore, it is necessary and important for us to better understand the adversarial example

attack on security applications so as to keep improving the robustness of these applications.

One research gap is that while adversarial example attack has been studied in the computer

vision domain extensively, it is surprisingly quite under-researched in security/cybersecurity

sectors. Without a doubt, it is even more urgent to investigate the performance of adversarial

example attacks on security applications due to their peculiarity and criticality. Therefore,

1.2. Research Challenges 3

in this thesis, we strive to look into the adversarial example attack on security applications

by focusing on investigating the transferability of adversarial examples on malware detection

systems. We believe the research findings here would help advance our understanding of the

attack itself and defenses against it.

1.2 Research Challenges

As mentioned above, the goal of the transfer AE attack is to increase the probability that the

adversarial examples generated from a substitute model are effective for the victim model as

well. This leads to the main research challenge for transfer AE attack, i.e., the victim model

could be totally unknown to the attacker. Such an adversary model is referred to as the

“black-box model”. Note that typically in order to generate an effective adversarial example

for a specific victim model, the attacker needs to have access to the victim model (i.e., a

typical AE attack adopts the “white-box” adversary model). To solve such a challenge, the

generated adversarial examples in the transfer AE attack need to be effective for a range of

similar victim models rather than a specific one.

Generating adversarial attack perturbation is not as natural as it is in the malware domain.

In the computer vision domain, the attacker could add perturbation in continuous space

and only need to guarantee the pixel values would still be in [0, 1] interval after adding

them up. However, the attacker should worry about the executability and the functionality

after adding the perturbation to the original malware sample. The generated AEs should

successfully evade the malware classifier and still have their malicious functionality.

Machine learning-based malware detection systems are varied, from SVM, and LR, to DNN,

which would very likely result in different decision boundaries. Also, machine learning models

always have the tendency on overfitting in the iterative training process. Some features would

1.3. Contributions 4

be overemphasized in over-training while others would be ignored due to under-training.

They all result in AEs generated from the substitute model being very likely to “overfit” to

this one and fail on the victim target one, i.e., low transferability[15, 49, 51].

1.3 Contributions

We summarize our contributions in this thesis as follows.

1. We put forward a new method applying Evenness Score for improving AE transferabil-

ity on the malware domain. We formulate the optimization problem and utilize the

gradient descent to solve it.

2. We fill the gap in how previous works perform as transfer attacks. We investigate the

effectiveness of ensemble model(EM) and ensemble sample(ES) techniques from CV

and transplant them to the malware domain.

3. We implement and evaluate our proposed method on the real Android APK dataset

Drebin. In the thesis, we do comprehensive experiments to validate our method. We

discuss in which scenarios our techniques work well or not and compare the transferabil-

ity results with other state-of-the-art AE transferability enhancement algorithms(ES

and EM).

1.4 Organization of the Thesis

Chapter 2 introduces existing related research on the adversarial example attack on malware

classifier, including adversarial example attacks on static victim models and on dynamic

1.4. Organization of the Thesis 5

victim models. Then, we also investigate the most related works about the transfer AE

attack on the malware domain in this chapter.

Chapter 3 provides the background details about machine learning models, malware classi-

fiers, the dataset we used in the thesis, and popular adversarial example attacks.

In Chapter 4, we discuss the adversarial model and the system model. The adversarial

model consists of the attacker’s goal, attacker’s capability, and the attacker’s strategies. The

system model presents the general transfer AE attack process and the details about each

component.

In Chapter 5, we develop our methodology for transfer AE attack. We introduce our intuition

and build the evenness-score-based optimization algorithm. We present the details of our

algorithm in this chapter.

In Chapter 6, we provide a thorough evaluation of our algorithm on a real Android dataset.

Considering different substitute models and the victim models, we verify the effectiveness

and the robustness of our algorithm compared with the state-of-the-art techniques.

Lastly, in Chapter 7, we conclude this thesis by summarizing the experimental results and

discussing the future works.

Chapter 2

Related Work

In this chapter, we focus on the two lines of research that are closely related to this thesis:

adversarial example (AE) attacks on machine-learning-based malware classifier/detection

systems and AE transferability in computer vision and malware. To begin with, we survey

current AE attacks on the two primary types of malware classifiers: static classifier and

dynamic classifier. Next, we will go through the research on AE transferability in computer

vision and malware as well to understand the current status.

6

2.1. Adversarial Example Attacks on Malware Classifiers 7

2.1 Adversarial Example Attacks on Malware Classi-

fiers

Depending on the feature representation of the victim malware detection system, adversarial

example attacks in the malware domain can be divided into two categories: attacks on static

victim models and attacks on dynamic victim models.

2.1.1 AE attacks on static victim models

Static malware classifiers usually analyze and examine the application and related objects

without executing the software. Statics malware classifiers exclude the potential threats

overhead and only need a small run-time.

For Android data, the static analysis program will first try to resolute the APK file, which

is the Android application installation package. A typical APK file will include Android-

Manifest.xml, smali files, etc... Useful features could be obtained from those files for an

software to be examined. Static based malware classifiers often analyze the permission

of applications[2, 4, 28, 44, 45, 57], analyze API calls [1, 20, 26, 36, 54] or network ad-

dresses [8, 34, 65] and construct machine learning detectors based on these static features

before they are actually executed. Static analysis is an important and preliminary step for

malware detection. It is crucial for keeping malware from spreading on large-scale systems.

Since the adversarial example attacks have been well-explored in the computer vision domain

in recent years, some researchers have also studied how this new attack perform on machine

learning-based malware detection system. Most of the existing AE attacks on the malware

detection system are designed for the static-based malware classifier. In [25], Grosse et

al. were the first to launch adversarial examples attack on the static malware detectors.

2.1. Adversarial Example Attacks on Malware Classifiers 8

It attacks the different DNN Android malware classifiers using the gradient perturbation

method (FGSM)[23]. In their work, the perturbation could only be added in the Manifest

file so as to not interfere with other features in the features set as many as possible. In

this way, the modified malware still retains its semantics. The attack success rate is about

50% to 84% according to DNN models with different model architectures and parameter

settings. Many related researchers follow this work in the way of additive techniques but

use different gradient information. Biggio et al.[9] try to evade the malicious PDF detection

system using a gradient-based approach by adding new features. Based on the analysis

of API calls, Rosenberg et al. [43] proposed a black-box attack against machine learning-

based malware detectors on Windows operating system. The attack algorithm added non-

operational system calls (extracted from harmless software) iteratively to the binary code.

In [27], Hu et al. implemented the grey-box AE attack on the RNN-based malware detectors

by additive API calls. Recently, Anderson et al. [6] used reinforcement learning to evade the

malware detection system by choosing from a predefined list of transformations that preserve

semantics. Several gradient-based AE attacks[31, 32] are designed typically for the MalCov

arthitecures[5] for PE files. Except for the gradient information, in [64], Xu et al. utilized the

heuristics algorithms to find the optimal manipulation of PDFs while maintaining necessary

syntax.

However, none of the above works have explored the AE transferability property on malware

data. Compared with their research, our attack is mainly focused on the transferability prop-

erty of AE on Android malware. We also examine the factors of different substitute models

and the victim targeted models contributing towards the attack performance. Besides, we

adapt the popular transfer AE attacks from the computer vision domain to the malware

domain and compare them with our work from comprehensive aspects.

2.1. Adversarial Example Attacks on Malware Classifiers 9

2.1.2 AE attacks on dynamic victim models

The dynamics analysis technique for malware detection is more complicated and time-

consuming compared with the static method. By running the software in a live environ-

ment, often a secure sandbox or test environment, the detectors can keep a record of ex-

ecuted and loaded code as well as any changes made to internal files, directories, and set-

tings. Typical dynamic analysis for android malware detection often need to examine system

calls [10, 11, 55, 61], API calls [60, 63], network traffic [7, 21, 22], and CPU data [3, 46, 47].

To our best knowledge, few works have explored the AE attacks on dynamics classifiers since

perturbing dynamics gathering features is much more challenging than static features[50].

In [49], Song et al. proposed a grey-box-based framework to generate AEs for PE malware

classifiers and Anti-Virus engines regardless of statics or dynamics detectors based on rein-

forcement learning. They pre-define Macro/Micro features sets and iteratively change the

modification from the Macro feature set to the Micro set to gradually minimize the pertur-

bation range. In this thesis, we only consider the static classifiers and may leave the AE

attack on dynamics detectors for future works.

Most of the above research is based on the white-box adversary model and therefore cannot

be applied to the scenarios we are looking into. Besides, the methods in [27, 49] proposed the

grey-box AE attack framework without requiring white-box access. However, their methods

need to query the targeted victim models frequently to adjust the perturbation in rounds.

By contrast, our attack does not require for that and we focus on trade-offs between the

transferability of generated AEs and the attackers’ capability.

2.2. Transfer Adversarial Example Attacks on Malware Classifiers 10

2.2 Transfer Adversarial Example Attacks on Malware

Classifiers

2.2.1 Transfer AE attacks

It has been proved that machine learning models could be extremely vulnerable to adversarial

example attacks. Researchers in the community have been looking into how to synthesize

powerful adversarial samples so that they could be served as the spur for the development of

effective defenses. There are generally two lines of AE attacks studies: the white-box attack

and the black/grey box attack, which assume the attackers have perfect knowledge or are

unspecific about the victim models, respectively. Under the black/grey-box assumptions,

these researches are more practical and meaningful in the real world. Besides, in black or

grey-box settings, transfer-based AE attacks have gained increasing interests recently due

to their high practical applicability, where attackers craft adversarial samples based on local

source models and directly harness the resultant adversarial examples to fool the remote

black-box victims [59].

The transferability of AEs was first discovered by Goodfellow et al. in [23]. They had the

observation that the adversarial examples would have higher transferability in the case that

the intersecting or overlapping boundaries are often learned by 2 models. Later, in [39, 41]

researchers found that even if the very different model structures among SVMs, logistic re-

gression models, or neural networks, adversarial examples would successfully transferable

evade these different machine learning models. Current prevailing methods to improve AE

transferability can be split into 2 genres. One is inspired by the data augmentation tech-

niques. Works in [19, 59, 62] develop direction to enhance the generated AE transferability

by ensembling multiple samples together. Instead of only using the original images to gener-

2.2. Transfer Adversarial Example Attacks on Malware Classifiers 11

ate adversarial examples, they apply data augmentation to the input images in iterations as

the input to generate the AE at the base FGSM[23] algorithms. Another genre increases the

AE transferability by utilizing the comprehensive gradients information from ensembles of

models technique[18, 35, 56]. In their works, they concluded that the ensembled model would

provide a lower-variance model since it achieved a smoother and stabler decision boundary.

However, although many researchers have recognized the importance of the transferability

property of AE, none of the works have examined how these techniques perform in the

malware domain. Compared with computer vision data, there are more limitations and

restrictions when adding perturbation on malware data since it needs to remain functionality

and execution. In this thesis, we implement the 2 works[19, 35] in the two lines to verify

the effectiveness of the ensemble model and the ensemble sample technique respectively on

malware data and compare them with our attack.

2.2.2 Transfer AE attack on malware classifiers

It has been well-recognized that the property of AEs’ transferability should be taken more

seriously. However, to the best of our knowledge, there is little research on how the above

transfer attacks perform in malware classifiers not to mention proposing novel transfer AE

attacks in this domain. To our best knowledge, [15, 49, 51] explore the success rate of the

transfer AE attack a little bit and only show poor performance compared with that in the

CV domain. Besides, their works never investigate the previous transferability enhancement

techniques. In this thesis, we will demonstrate the limitations of previous transfer attacks

on malware classifiers and more importantly propose our novel transfer attack which uti-

lizes evenly-distributed adversarial perturbations to improve the transferability on unknown

victim model(s). We compare our algorithm with SOTA transfer AE attacks in different

2.2. Transfer Adversarial Example Attacks on Malware Classifiers 12

situations and experimental settings. We evaluate and conclude the results in chapter 6 and

chapter 7. We hope our work on the transfer AE attack in the malware domain could shed

the light on the better defense and security in the malware detection research community.

Chapter 3

Background of Transfer Adversarial

Example Attacks on Malware

Classifiers

In this chapter, we mainly focus on introducing the background of transfer AE attacks on

malware classifiers. In particular, we will touch on ML-based malware classifiers, AE attacks

on ML models, and transfer AE attacks.

3.1 Machine learning models and Notation

Here we fix the notations we use throughout this thesis and list them in the following

table. As the table 3.1 shows, we use the Dtrain to indicate the training set used by the

targeted victim model and the attacker’s substitute model. We assume that the victim

and the attacker use the same training set in our experimental setting in the following

chapters. Dv and Dtest represent the validation and testing set respectively. We use f(·) as a

13

3.2. Machine-learning-based Malware Classifiers 14

Table 3.1: Notations adopted in this thesis.

Dtrain, Dv, Dtest Training, validation, and testing dataset.
f(·) A general machine learning model

fs(·), ft(·) Substitute model and the targeted victim model.
x, x′ The feature vector of a malware and the corresponding AE.
y Ground truth label of x or x′.

general machine learning model, with the subscript fs(·) and ft(·) indicating the substitute

model used by the attacker and the victim model the attacker target. Since the attacker

will generate the perturbation on the original malware sample and try to evade the victim

model, we use the notation x representing the original malware sample and x′ indicating the

corresponding adversarial example after adding the perturbation. The ground truth label of

sample x is y.

3.2 Machine-learning-based Malware Classifiers

3.2.1 Dataset and Data Processing

Drebin. Drebin is one of the most popular datasets used for evaluating malware classifiers

[8]. The dataset includes SHA256 values of 129,013 android applications, of which 123,453

are benign and 5,560 are malicious. Based on the given SHA256 value, we collect the APK

files from the APK markets, including VirusTotal for the malware APKs and GooglePlay

store or AppChina for benign APKs.

Data Processing Since machine learning models only take numerical values as input, we

need to extract numerical features from the original APK file. Here we also follow the

work in [8], which is an effective static analysis method. An APK file must contain 2 files:

AndroidManifest.xml and classes.dex. Additional XML files and resource files are defined

3.2. Machine-learning-based Malware Classifiers 15

Figure 3.1: APK file

by the owner of this APK and used for application layout and multi-media contents. Most

Android malware classifier researches[25, 33] follows work in [8] only analyze classes.dex file

and AndroidManifest.xml file. We follow them and briefly introduce the 2 files below.

• AndroidManifest.xml is the most basic entry file of the APK file. It carries all the

essential and overall information about Android applications, such as the name of

the Java package, a description of components, the list of hardware components and

permissions requested by the application to work (e.g., Internet access).

• Class.dex compiled all the source code files of the Android application. The Classes.dex

may include some suspicious API calls which would visit or request sensitive data such

as contact information or personal resources. It also includes restricted API calls

related to the system for which the function requires permission (such as if it can use

the Internet service). Furthermore, this file may contain references to some network

3.2. Machine-learning-based Malware Classifiers 16

addresses to which applications can connect.

Table 3.2: Overview of the feature sets.

manifest dexcode
S1 Hardware components S5 Restricted API calls
S2 Requested permissions S6 Used permission
S3 Application components S7 Suspicious API calls
S4 Filtered intents S8 Network addresses

Feature Extraction We follow work in Drebin[8] framework to statically analyze Android

applications. Drebin constructs a features space based on the 2 files above and it extracts

and splits features into 8 categories, as listed in table 3.2. Subsets S1 to S4 are extracted

from AndroidManifest.xml and S5 to S8 are extracted from Class.dex file. Specifically, the S1

set consists of the APK requests for hardware components such as the camera, touchscreen,

or the GPS module of the smartphone. S2 set includes all the permissions the APK asks to

access security-relevant resources such as requesting and sending premium SMS messages.

S3 set contains the features that are related to the application components (e.g., activities,

receivers, service, etc.). S4 collects all the features related to Inter-process and intra-process

communication on Android. S5 contains features related to sensitive system API calls that

will not work without permissions from users or root privileges. S6 set involves all the

features that correspond to the used permissions. S7 set includes all the features that can be

related to API calls leading to sensitive data or resources on a smartphone. S8 set contains

network addresses as features including IP addresses, hostnames, and URLs found in the

disassembled code.

An APK file z ∈ Z then will be mapped in to a feature vector x ∈ X through a mapping

function Z −→ X, where x = (x1, ..., xd)T ∈ X = {0, 1}d. Each dimension of x indicates

whether this feature exists in the APK file z. A feature vector extracted and encoded from

an APK would present in this way:

3.2. Machine-learning-based Malware Classifiers 17

3.2.2 Constraints in Generating Malware Adversarial Examples

Now we can train machine learning models based on our APKs gathered from the SHA256

value of Drebin and the above preparation. As an attacker, we need to generate a new feature

vector δ + x based on the original malware input vector x to evade the victim model. Given

a malware, the attacker also wants to maintain the integrity and the malicious functionality

of the original application after modification. We only consider the simple feature addition

strategy:

• ’0’ to ’1’: The attacker can flip the value in the input vector from ’0’ to ’1’, meaning

injecting features in the original APK file, such as adding more permission requests in

AndroidManifest.xml or another system call in Class.dex file.

The ’0’ to ’1’ change is a much safer manipulation compared with the ’1’ to ’0’ change.

Normally, adding more features to the original sample at AndroidManifest.xml would not

affect its functionality(eg, more permission requests). Also, when the ’0’ to ’1’ change comes

to the Class.dex file, it is also safe to add some dead code that has never been called or

executed.

3.2. Machine-learning-based Malware Classifiers 18

3.2.3 Static Malware Classifiers

A typical static malware classifier is depicted in Figure 3.2. The static analysis would classify

the file based on various features directly extracted from the executable. Disassembly is one

of the methods, which is used for extracting various features from the executables. Typical

features used for malware static analysis including API calls, suspicious network addresses,

OPCODES, byte sequence, or PE header[31]. Then the encoded feature vectors would be

sent to the machine learning model for training or testing.

Figure 3.2: The static malware detection scheme.

3.2.4 Dynamics Malware Classifiers

A typical dynamics malware analysis needs to execute the malware in an isolated environment

for analysis, as depicted in Figure 3.3. This could be a debugger or sandbox environment.

The typical procedure used for Dynamics analysis includes:

• analyzing by utilizing sandbox

• Monitoring the system calls

3.3. Adversarial Example Attacks 19

• Monitoring the file changes

• Monitoring network activities

• Processing the monitoring

Then we will obtain specific features from the original dataset and then classify them using

ML algorithms.

Figure 3.3: The dynamic malware detection scheme.

3.3 Adversarial Example Attacks

AE attacks refer to the family of adversarial attacks on machine learning models where they

are being attacked in the testing phase. As an example shown in Figure 3.4, by adding some

perturbations that cannot be detected by the human eyes (such perturbations will not affect

3.3. Adversarial Example Attacks 20

Figure 3.4: A sample of ’Panda’ is perturbed and predicted as ’Gibbon’ under AE at-
tacks [24].

human recognition, the attacker can be easy to fool the model) and cause the machine to

make the wrong decision.

3.3.1 Popular AE Attacks

For simplicity, we only introduce the four most popular AE attacks in the literature.

1. L-BFGS [53]. Szegedy et al. demonstrated for the first time that a neural network

can be misled into misclassification by adding small perturbations to images that are

imperceptible to humans. They first tried to solve the equations that would allow the

neural network to misclassify at the smallest perturbation. But because the complexity

of the problem was too high, they turned to solve the simplified problem, that is,

finding the smallest addition to the loss function, which turned the problem into a

convex optimization process.

minimize
δ

c||δ||+ Jθ(x + δ, y∗),

subject to x + δ ∈ [0, 1],

where Jθ is the loss function of the victim model and y∗ is the targeted label. To find

3.3. Adversarial Example Attacks 21

a suitable constant c, the L-BFGS algorithm finds an approximation of c by linearly

searching all cases where c > 0. Experiments show that the generated AEs can also

generalize to and transfer from different machine learning models or different training

sets.

2. FGSM [24]. The linear search method used in the L-BFGS method is expensive and

impractical. Goodfellow et al. proposed a fast method called FGSM. They performed

only one gradient update in the direction of the gradient sign at each pixel. Their

perturbation form is:

x′ = x + ϵsign(∇xJθ(x, y)),

where ϵ is the magnitude of the perturbation.

3. JSMA [40]. Papernot et al. calculated the Jacobian matrix of the original sample x as

follows:

Jf (x) =
∂f(x)

∂x
= [

∂fj(x)

xi

]i∗j,

f represents the second layer to the last layer of neural network (logit used in the last

layer at the beginning, and then modified to softmax). In this way, they found that

the input features of the sample x have the most significant impact on the output.

Then, a small designed perturbation can cause a large change in the output, so that a

small feature change can mislead the neural network. Furthermore, this work define 2

adversarial saliency maps to pick out the features pixels that are created during each

iteration.

However, this method is time-consuming since computing the Jacobian matrix is slow.

4. C&W [12]. Carlini and Wagner proposed an optimization-based adversarial example

attack C&W that can generate adversarial examples under the L0, L2, and Linf norm

3.3. Adversarial Example Attacks 22

constraints. Similar to L-BFGS, the optimization objective function is expressed as:

minimize
δ

D(x, x + δ) + c ∗ f(x + δ),

subject to x + δ ∈ [0, 1].

D represents the different distance norm L0, L2, and Linf . f(x + δ) is a self-defined

adversarial loss for easy solution. C&W attack can successfully attack the defensive

distillation networks and also is effective against most existing defense methods.

3.3.2 Existing Transfer AE Attacks

As mentioned above, many works have explored the transferability of the AE attack. In the

transfer AE attack, the attacker can train a substitute model by himself first. He will attack

his own model and generate adversarial samples from it. Then the generated AE would be

used to attack the targeted victim model. Since there is no difference between attackers

and ordinary users and it requires mostly zero knowledge about the targeted victim model,

the transfer AE attack poses the greatest threat against model security. There are mainly 2

directions to enhance the AE transferability. We introduce them here.

Ensemble-Sample Transfer Attacks. Ensemble-sample transfer attack is basically based

on the data augmentation idea. It ensembles multiple samples together at first or in the

middle process of generating AE to enhance the transferability of generated AE. In work[19]

Yinpeng Dong et al. put forward the Translation-Invariant Attack. In particular, the pro-

posed method generates the adversarial examples by utilizing a set of different translated

samples from the original sample rather than optimizing it from a single point:

3.3. Adversarial Example Attacks 23

argmin
δ

∑
i,j

wi,jJθ(Ti,j(x + δ), y∗),

subject to D(x, x + δ)<ϵ

x + δ ∈ [0, 1],

where Tij(x) is a translation operation that shifts the image x along two dimensions of i and

j pixels respectively. Using this method, the generated adversarial examples would be more

likely to successfully evade another model since they are less sensitive to the discriminative

regions of the attacker’s substitute model.

There are other works that have a similar idea using ensemble samples to enhance transfer-

ability such as adding Gaussian noise in Variance-reduce attack [58], random zoom, or filling

in Input-diversity attack [62]. We will examine the performance of the ensemble sample

technique in the malware domain in our thesis.

Ensemble-Model Transfer Attacks Improving the transferability of adversarial samples

is nothing more than hoping that the adversarial samples generated for one model will also

work on a different model. Therefore, the most direct idea is to integrate multiple models

to generate transferable adversarial samples.

This approach was first mentioned by Yanpei Liu et al. [35]. Given a set of models {fn(x)}

and a set of weights {an}, the attackers use the the ensemble model F (x) =
∑n

i=1 aifi(x)

which is the weighted average of the set of models. The basic idea is to generate adver-

sarial examples from F (x). The ensemble-based approach solves the following optimization

problem:

3.3. Adversarial Example Attacks 24

argmin
δ

− log((
n∑

i=1

aifi(x + δ)) · 1y∗) + λD(x, x + δ),

subject to x + δ ∈ [0, 1],

where ai is the ensemble weight,
∑n

i=1 ai = 1, and y∗ is the target label which the attacker

want to mislead. This ensemble method has quickly become a basic operation enhancing AE

transferability, and following research also put forward more complicated methods based on

this one. We will also implement it and evaluate how the ensemble model performs in the

malware detection domain in the later chapter.

Chapter 4

Adversary and System Model

To better illustrate our research, we introduce our adversary model and the corresponding

system model in this chapter. The adversary model covers the attacker’s goal, knowledge,

and capability in the investigated attack while the system model focuses on how the victim

model works and how the attacker launches transfer AE attacks on the victim model.

4.1 Adversary Model

Attackers’ Goal. Here we assume the attacker’s goal is to increase the transferability of

adversarial example attacks (AE attacks) on malware classifiers. First of all, AE attacks

can be divided into two categories: targeted attacks and untargeted attacks. The goal of

targeted attacks is to force the prediction of a specific AE to a targeted class while the goal

of untargeted attacks is to force the prediction to be any other classes except the correct

one. We illustrate the difference between the two categories in Table 4.1 as well. Secondly,

our attacker focuses on the transferability of AE attacks. In this thesis, since the malware

detection system only has 2 classes (benign and malware), the targeted attack is equivalent

25

4.1. Adversary Model 26

Table 4.1: Targeted v.s. Untargeted Attacks. Denote victim model by y = f(x), y =
1, · · · , n, clean sample by x, and AE by x′. Therefore, we have f(x) = c.

Targeted attacks f(x′) = t, t ̸= c is the targeted class.
Untargeted attacks f(x′) ̸= c, f(x) = c

to the untargeted attack. We define transferability as the probability that AEs which are

crafted from one white-box model (i.e., the attacker knows the white-box model) can be

applied to other black-box models (i.e., the attacker does not know the black-box models).

A higher probability corresponds to a ‘higher’ transferability, which indicates that the AEs

are more powerful (i.e., they can be applied to unknown models).

Attackers’ Capability. Here the attacker’s capability refers to how much information

she knows about the victim model. From the attacker’s viewpoint, there are four pieces of

information about the victim model that are important for AE attacks. In specific, they are

the training dataset denoted by D, the feature representation of a sample denoted by X, the

model architecture denoted by f̂ , and finally, the model parameters denoted by ŵ. Depending

on the amount of information the attacker has, we can divide the investigated transferability

attacks into three categories: white-box attacks, grey-box attacks, and black-box attacks. A

white-box attacker knows everything about the victim model, i.e., {D,X, f̂ , ŵ}, a black-box

attacker knows nothing about the victim model, and finally a grey-box attacker knows a

subset of {D,X, f̂ , ŵ}. We illustrate the difference between the two categories in Table 4.2

as well. In this thesis, we adopt a grey-box attack in which the attacker knows X and a

subset of D while she does not know f̂ and ŵ. We believe that our grey-box assumption

is realistic in that an attacker should be able to obtain some training samples and X while

much more challenging to obtain f̂ and ŵ.

Attackers’ Strategy. As described above, transferability attacks under the grey-box ad-

versary model consist of two steps. In Step One, the attacker builds a substitute model for

4.2. System model 27

Table 4.2: Categorization of attack capability. Denote victim model by y = f(x), y =
1, · · · , n, clean sample by x, and AE by x′. Therefore, we have f(x) = c.

Attack Category Attacker’s Information Difficulty Level

White-box attacks D,X, f̂ , ŵ Low
Grey-box attacks X and a subset of D Medium
Black-box attacks None Difficult

the victim model using any resources she has under her disposal including X and a subset

of D. The substitute model is expected to be ‘similar’ to the victim model. Note that the

substitute model is a white-box model to the attacker as she builds it by herself. In Step

Two, for a given clean sample X, the attacker generates the corresponding AE X ′ with

respect to the substitute model, i.e., X ′ is a successful AE on the substitute model. In Step

Three, the attacker applies X ′ to the victim model to see if X ′ works on the victim model

or not. The higher probability that X ′ works on the victim model, the higher transferability

our attack has.

4.2 System model

4.2.1 General transfer AE attack process

In this thesis, we aim at generating adversarial examples with higher transferability to launch

powerful attacks in the grey-box scenario. We assume that the attacker has zero information

except for the feature representation X and the training data D of the targeted victim

model. The attacker first builds a substitute model fs(x) using the feature representation

X and the training data D. Assume that the attackers have a set of testing samples that

have been classified as malware by the victim model. Then the adversarial examples of

these testing samples would be generated on this substitute model fs(x). In such a case, the

4.2. System model 28

Figure 4.1: Transfer AE attacks.

victim model is a grey box for the attacker while the substitute model is a white-box one.

Then the generated adversarial examples are evaluated on the victim model again to see if

they can successfully evade the victim model. Note that the attacker’s goal is to improve

the probability that AEs generated from the substitute model could also evade the targeted

victim model successfully.

Figure 4.1 illustrates the process of transfer AE attack. Rather than generating the adver-

sarial examples directly on the targeted victim model, the attacker trains the substitute and

generates AE from it for attacking the targeted victim model. The following content in this

chapter will introduce the details about the targeted victim model and the substitute model

discussed in this thesis.

4.2.2 Victim model

We assume our targeted victim model is a malware classifier built from APKs collected

from the Androzoo repository. In this thesis, we investigate four different types of malware

classifiers as follows.

4.2. System model 29

1. Support vector machine is a linear two-class classification model. The support

vector machine is trying to enlarge the interval between the two classes defined in the

feature space. The basic idea is to find the optimal separating hyperplane so that it

can separate points in different classes as far as possible and at the same time maintain

the classification accuracy.

2. Logistics regression models the probabilities for binary classification problems. It

uses a linear combination of featuresf(x) = ωTx + b and the logistic function g(z) =

1
1+e−z to map the real value from the linear function f(x) to the logistic function g(z)

range [0, 1], corresponding the probabilities to be predicted. It essentially adapts the

linear regression formula to allow it to act as a classifier.

3. Ridge regression has the same formulation of the classification model. The only

difference is that it adds the L2 regularization on the cost function of the original

logistics regression method:

FRR(ω) = FLR(ω) + λ||ω||, (4.1)

where FLR is the loss function of the logistics regression, ω is the parameters of the

model to be optimized and λ is the hyperparameter set by the model owner. By adding

this L2 regularization on the loss function, ridge regression could reduce parameters

overfitting effects caused by unbalanced contribution of parameters. Variables with

minor contributions have their coefficients close to zero. However, all the variables are

incorporated into the model. This is useful when all variables need to be incorporated

into the model according to domain knowledge.

4. Deep learning is also a popular machine learning classification model applied to

malware detection. It simulates how biological neurons interact with the real world. A

4.2. System model 30

deep neural network consists of multilayer networks and multiple activation functions

in each layer. These neurons are good at extracting hierarchy feature representations

from the raw input vectors in a non-linear way. It has great capability in dealing with

huge training data and complicated input features compared with traditional machine

learning methods.

4.2.3 Substitute model

Under the grey-box adversary model adopted in this thesis, we build different types of

substitute models in order to generate AEs against the targeted victim model. In our setting,

we assume that the attacker could also use SVM, LR, RR, and DNN as the substitute

model, which is just introduced above. Aside from that, we also examine the ensemble model

as the substitute model:

• Ensemble model is one special kind of learning model by combining multiple learning

models together as one single model, which is discussed in chapter 3. By incorporat-

ing different models and training them together, the trained ensemble model normally

would have greater generalization capability and tend to have a more stable classifi-

cation performance. Here for the above 4 machine learning models, we will choose

3 different models as one ensemble model as the attacker’s substitute and leave out

one model as the victim model each time to evaluate how the adversarial examples

generated from the ensemble model perform in the following experiments.

Chapter 5

Methodology

In this chapter, we will formally introduce our transfer adversarial example attack on malware

classifiers. First, we introduce the intuitions and the workflow for our proposed attack. Then

we focus on the design of the attack in detail.

31

5.1. Research Objective 32

5.1 Research Objective

In this chapter, we introduce our attack method to generate high-transferability AEs under

grey-box settings. Our method is based on the intuition that if the adversarial perturbations

on a clean sample are distributed evenly across the feature vector, the corresponding AE is

more likely to incur a higher transferability. Therefore, we aim to improve the transferability

of AEs in our attack by optimizing the distribution of the adversarial perturbations.

5.2 Intuitions

Our intuition can be further explained as follows. Machine learning models, particularly deep

learning models, tend to be overfitted as a result of iterative training [30], which makes a

trained model very sensitive to a small portion of ‘important’ features. In other words, small

perturbations over these features could lead to a significant change in the output layer, thus

making a trained model vulnerable to AE attacks. In [16, 30, 37], the authors showed that

machine learning models were more robust against sparse attacks if the feature importance

for model prediction was distributed more evenly across the features. We use I(xi) to denote

the importance of xi, i = 1, 2, · · · , n (xi is the i-th features in x). If variance(I(x)) is smaller,

the corresponding ML model is likely to be more robust. On the contrary, assuming that

different ML models have different sets of important features for their predictions (even under

the same feature presentation X), it is intuitive that an AE with more evenly-distributed

perturbations has a higher probability to be effective in an unknown model when compared

to an AE with less evenly-distributed perturbations. In other words, even the distribution

of perturbations across different features can improve the transferability of AE attacks.

Assigning the contribution to each feature more evenly could be viewed as the resistance

5.3. System Overview 33

against AE overfitting effect on one specific model. We will introduce our mathematical

formulation below.

5.3 System Overview

Figure 5.1: Overview of our transfer adversarial example attack.

Figure 5.1 illustrates the overview of our transfer attack, which consists of the five main

steps as follows.

1. Data pre-processing. As introduced before, we process the original Android apk files

into the same vector representation proposed in [8]. The resulted vector x has a size

of nd × 1.

2. Substitute model training. We train a substitute model (denoted by fs(x)) from a

subset of D. Here D is the training set of the targeted victim model ft(x).

5.4. Adversarial Perturbations with Even Distribution 34

3. AE generation. We use AE algorithms such as L-BFGS and FGSM to generate AEs

targeting fs(x). Note that fs(x) is a white-box model to the attacker.

4. Evenness optimizer. We solve a formulated objective function which is to find evenly-

distributed adversarial perturbations on x. Once found, we applied them to x and

obtain the final AE, i.e., x′.

5. Transferability evaluation. We feed the generated x′ to ft(x), i.e., the targeted victim

model, to check if x′ is classified to a targeted class t by ft(x) or not, i.e., ft(x
′) = t.

If ft(x
′) = t, our transfer attack succeeds. Vice versa.

5.4 Adversarial Perturbations with Even Distribution

5.4.1 Evenness score

The uniqueness of our transfer attack is that we aim to generate AEs with high evenness

scores such that they are more likely to incur a high transferability. Our definition of evenness

score can be easily illustrated in two steps. Recall that we denote a machine learning model

and its input feature vector by y = f(x) and x, respectively.

1. Step One, we use explainable machine learning techniques [37, 48] to compute the

importance of each feature in x on the prediction result, i.e., f(x). As a result, we

obtain the contribution vector r of which ri corresponds to the importance of xi on

f(x).

2. Step Two, we compute an Evenness Score, ε, using the following equation.

ε =
||r||1

nd||r||∞
. (5.1)

5.4. Adversarial Perturbations with Even Distribution 35

Here r = {ri}i∈[1,nd],
∑nd

i=1 ri = 1,m is the number of features in x.

Based on the definition, we can draw two properties about the evenness score ε.

• ε is maximized and εmax = 1 if and only if ri = 1
nd
, i = 1, 2, · · · , nd, i.e., all features

have the same importance. That is, εmax = ||r||1
nd||r||∞

= 1
nd· 1

nd

= 1. In this case, every

feature contributes to the final prediction equally.

• ε is minimized and εmin = 1
nd

if and only if rk = 1, ri = 0, i ̸= k, i.e., only one of the

m features has non-zero importance value. That is, εmin = ||r||1
nd||r||∞

= 1
nd·1

= 1
nd

. In this

case, f(x) depends solely on xk and is free from all the other features. As a result,

f(x) is highly sensitive to small changes in xk.

Our intuition to boost our transfer attack is to minimize the variance of {I(x′
1), I(x′

2), ..., I(x′
nd

)}

of the generated x′s, which makes x′s become more likely to succeed in attacking the targeted

victim model ft(·).

5.4.2 Formulating the objective function

Next, we formulate the objective function to generate AEs with optimal ε. Intuitively, AEs

can be generated by solving the following objective function:

maximize
δ

ε(x + δ),

subject to fs(x + δ) = t,

x + δ ∈ Fm.

(5.2)

Here ε(·) is the even score function, x is the feature representation of an input malware, δ

is the adversarial perturbations for x, fs(·) is the substitute model from the attacker, t is

5.4. Adversarial Perturbations with Even Distribution 36

the targeted class, and Fm denotes all valid input feature vectors. The resulted AE x′ is

x′ = x + δ. The above objective function is to find AE x′ from x so that x′ is classified to

a targeted class t while its evenness score ε(x′) is maximized. Typically, as the attacker, we

aim to generate x′ which is still a malware but classified by fs(·) as a benign application.

Since usually fs(x) = 1 corresponds to a malware and vice versa, a typical t is t = 0. Note

that the ft(·) is the black-box model for the attacker, so he can only optimize the above

functions on fs(·).

Due to the nonlinear property of fs(x + δ) = t, Equation 5.2 is not solvable. We follow the

approach in [12] and replace fs(x + δ) = t by g(x + δ) ≤ 0 where g(x) is defined as:

g(x) = max{0.5−fs(x), 0}. (5.3)

Then the formulation of our optimization problem 5.2 is stated as follow:

minimize
δ

− ε(x + δ),

subject to g(x + δ) ≤ 0,

x + δ ∈ F nd .

(5.4)

Moreover, we further modify the objective function as follows by Lagrangian relaxation:

minimize
δ

− ε(x + δ) + cg(x + δ),

subject to x + δ ∈ F nd ,

(5.5)

where c ≤ 0 is a penalty constant and a hyper-parameter. Different c can lead to quite

different δ thus x′. In practice, we conduct a grid search to find a better c. Intuitively,

there exist some c where Equation 5.4 and 5.5 have the same solution. Since we remove

5.4. Adversarial Perturbations with Even Distribution 37

the constraint in formula 5.4, the minimum of objective in formula 5.4 could be smaller.

Then we add a penal term in formula 5.5 to penalize the original objective function. There

exists a c such that the optimal solution to objective 5.5 equal to the optimal solution of the

objective 5.4 with the constraints.

5.4.3 Solving the objective function

Here we focus on solving Equation 5.5 covering how to find c and handle the constraints.

5.4.3.1 Finding the constant c

As mentioned above, we use a grid search to find a proper c for Equation 5.5. Specifically,

we start from 0.01 to 1000. For each c, we then use stochastic gradient descent (SGD) to

obtain δp, i.e., the optimal δ. Note that it is possible that we cannot obtain δp for some

x when solving Equation 5.5. If c exceeds the threshold we set(1000 here) and still cannot

meet the requirements, we will abort search and show no result for this sample x. We simply

report such cases as failure. Also, the more precise solution could be found by reducing the

interval range between different c.

5.4.3.2 Box constraint

As introduced in Chapter 3, xi for an Android apk corresponds to whether or not a specific

permission or API call is declared in the corresponding AndroidManifest.xml file. As a result,

xi is either 0 (i.e., not declared) or 1 (i.e., declared). So we replace the constraint in formula

5.5 as:

x + δ ∈ {0, 1}nd , (5.6)

5.4. Adversarial Perturbations with Even Distribution 38

which is called as “box constrait”. Following [12], we set another form constrait in Equa-

tion 5.5:

δi =
1

2
(tanh(wi) + 1)− xi, (5.7)

where wi is the replacement variable for the ith dimension of optimization variable δi. Since

0<1
2
(<tanh(wi) + 1)<1, the new modified vector δi + xi would always fall into valid range.

Instead of optimizing δ directly, we modify the input vector x on variable w of function tanh

and valid the box constraints automatically.

5.4.3.3 Linf and L1 adjustment

.

Based on optimization formulation and evenness score function defined above, now we have

the optimization objective:

minimize cg(x + δ)− ||r||1
nd · ||r||∞

. (5.8)

We notice that directly solving Equation 5.8 does not generate AEs well. One possible

reason is that it is hard to implement the gradient search on one component in Evenness

score ||r||∞ directly. Since the norm infinity ||r||∞ only cares about the only one dimension

with the largest value, it penalizes only one dimension at one time. However, there is the

possibility that the value of rj could increase when we penalize ri at one time. It is possible

that only a few dimensions could be modified and they just change back and forth, without

any optimization progress in gradient descent. Also, we normalize the ||r||1 each iteration

to make it always equal to 1 to further simplify the optimization formulation. We want the

direction of the gradient descent toward the decrease of all dimensions with a ”large value”.

5.4. Adversarial Perturbations with Even Distribution 39

As a remedy, we modify Equation 5.8 as follows.

minimize
δ

g(x + δ) +

∑
i[ri − λ]

nd

. (5.9)

Here λ is a hyper-parameter used to penalize all ri ≥ λ, thus avoiding only penalizing one

dimension at one iteration. We also introduce a decay factor, γ ≤ 1, to λ, i.e., λk+1 = λγ
k

so that the algorithm could optimize more ri gradually and smoothly. k denotes the k-th

iteration round.

5.4.4 Summary

Algorithm 1 The Proposed Algorithm

Input: training dataset Dtrain, validation dataset Dv, testing set Dtest, maximum threshold
cmax, minimum threshold cmin, penalizer λ, decay factor γ, malware example x̂ to be
modified

Output: adversarial example x̂′

1: fs(·)← train model(Dtrain, Dv, Dtest) # Train the substitute model
2: x̂′ ← x̂
3: c← cmin

4: while c < cmax do
5: r ← contribution compute(fs(·), x̂′) #Compute the evenness score
6: δ ← gradient descent(fs(·), x̂′, λ, r) # Optimization step based on Equation 5.9
7: x̂′ ← x̂ + δ
8: if fs(x̂

′) == 0 then
9: break # Successfully evade the substitute model
10: end if
11: λ← λγ

12: end while
13: return x̂′

We summarize how to generate an AE in our transfer attack and illustrate it in Algorithm 1.

Given one input feature vector x̂ and its label ŷ, our attack first generates the corresponding

AE x̂′ and evaluates it through the following steps.

5.4. Adversarial Perturbations with Even Distribution 40

1. Solve the optimization problem in equation 5.2 by Algorithm as described in details in

section 5.4 .

2. First check if the generated AE successfully evades the substitute model. If successful,

the attacker sends it to the targeted victim model. Otherwise, the generated AE would

be viewed as the failed one and be dropped.

3. Then check the if the success AE could also evade the victim model as well. Transfer

AE attack succeeds if it works.

4. Continue with the next malware AE generation.

Chapter 6

Performance Evaluation

In this chapter, we want to figure out how the proposed transfer AE attack works on bench-

mark datasets. To do that, we first introduce how we deal with data set including dataset

splitting and feature selection. Then we introduce the experimental settings for evaluating

our algorithm and validating the experimental results properly. Finally, we compare the

results of our method with several baseline methods.

41

6.1. Dataset 42

6.1 Dataset

Dataset splitting As mentioned in Chapter 3, we obtain 5,560 malware examples and

123,453 benign examples from Drebin repository. To train a machine learning model, we

split all the malware and benign samples into three sets: a training set (60%), a validation

set (20%), and a testing set (20%). The training set and validation set are purely used for

model training. After all the models are trained, we further select 100 pieces of malware

in the testing set randomly, which are classified as malware by the victim model and the

substitute model.

Feature selection. In Drebin, each sample has roughly 545,000 different features in

total(nd = 545, 000). We further leave out features with low frequencies and select 10,000(nd =

10, 000) features at top frequencies in our dataset as the input vector for machine learning

models.

6.2 Performance Metrics

Reflecting on the adversarial model we discussed in Chapter 4, the attacker trains a substitute

model and generates adversarial examples on it while aiming to evade the victim model.

Therefore, we use two evaluation indicators to evaluate the attacks on the substitute model

and the victim model, respectively.

6.2.1 Success rate

Assuming the attacker try to generate adversarial examples on the substitute model and test

on the victim model, attack success rate is defined as follow:

6.3. Training the victim and substitute model 43

SR =
Ns

N
, (6.1)

where Ns is the number of generated adversarial examples that successfully evade the substi-

tute model. Success rate evaluates the attack algorithm’s strength on the substitute model.

6.2.2 Transferability

After generating adversarial examples on the substitute model, the attacker wants to examine

how these generated adversarial examples perform on the victim model. It is evaluated by

the transferability:

TSR =
Nv

Ns

, (6.2)

where Nv is the number of generated adversarial examples evade the attacker’s substitute

model fs(·) and also successfully evade the targeted victim model fv(·).

6.3 Training the victim and substitute model

According to the adversarial model introduced in Chapter 4, we need to train two models

for each experiment: the victim model and the attacker’s substitute model. Note that the

attacker’s knowledge is formed as the quadruple {D,X, f̂ , ŵ}. For the training set D, We

train the victim model and the substitute model using the full training set of Drebin. In our

experiments, we assume the attacker and the victim use the same feature representation X.

For each experiment, we choose one victim model and one attacker’s model from {Support

6.4. Baseline Methods 44

Vector Machine, Logistics Regression, Ridge Regression, Neural Network, Ensemble Model}.

The details for each model are introduced in Chapter 4.

6.4 Baseline Methods

We choose the most popular adversarial example attack, i.e., Fast Gradient Sign Attack

attack(FGSM), as the baseline method [24]. Then we modify the basic FGSM attack with the

transferability enhance techniques, i.e., ensemble-sample and ensemble-model, introduced

in Chapter 3. Note that ensemble-model and ensemble-sample techniques have only been

studied in the computer vision domain before while there are some different restrictions in

the malware domain. We have covered how to adapt the two techniques to malware data in

Chapter 3. We will compare the transferability performance results of these algorithms as

follow:

6.4.1 FGSM attack

FGSM attack is one of the earliest yet effective adversarial example attacks. As our first

baseline, we train the neural network with 3 layers and 100 neurons at each layer as the only

victim model. Then we train different substitute models including SVM, LR, RR, and neuron

networks with 2 layers and 100 neurons at each layer. Note that we have a modification

restriction set mentioned in Chapter 3. We gradually increase the percentage of modifiable

features in the modification restriction set ϵ from 0.01 to 0.50. For each substitute model

and the victim model, we end the training process when the validation accuracy no longer

improves.

6.4. Baseline Methods 45

6.4.1.1 Results

Table 6.1 shows the experimental results of the FGSM attack. As the modification restriction

gets looser (ϵ gets higher), the attack transferability increases. This means that if the attacker

is able to modify more features of a given malware, the generated adversarial example can

successfully evade the malware detection system with a higher probability. However, the

transferability tends to stop increasing after ϵ hits a certain level.

Besides ϵ, the transferability is also limited to the substitute model the attacker uses. As

the table suggests, the NN(2,100) achieves the fastest-growing transferability performance

while the other three machine learning models (SVM, LR, and RR) grow much slower to

achieve their maximum transferability value. Using NN(2,100) as the substitute model gets

much better transferability in the lower ϵ range (0.01 to 0.03 in this experiment). This is

due to the very similar structure between the substitute model NN(2,100) and the victim

model NN(3,100).

We also validate that previous research[17] which indicates that lower-complexity models

(with stronger regularization) provide better surrogate models. As the ϵ increases, the other

3 linear models also achieve higher than 90% transferability due to their great generalization

capability. SVM normally is designed to generate more complex decision boundaries[42] than

the more complicated models such as LR and RR. It can be seen that LR and RR always

outperform SVM in all ϵ settings. We cannot differentiate the transferability performance

of LR and RR in this experiment. The only difference between the two substitute models is

that RR has regularization in the objective function, therefore providing a simpler model.

We tried different RR regularization values but cannot sway the experimental results. We

guess it is because adding the regularization cannot affect the decision boundaries of the

linear models easily due to the data and feature distribution we use.

6.4. Baseline Methods 46

Table 6.1: FGSM method attack transferability on neural network

Different Substitute models
Victim model(NN(3,100))

ϵ = 0.01 ϵ = 0.02 ϵ = 0.03 ϵ = 0.04 ϵ = 0.05 ϵ = 0.06 ϵ = 0.10 ϵ = 0.20 ϵ = 0.50
SVM 4% 27% 73% 91% 91% 91% 91% 91% 91%
LR 5% 46% 84% 96% 96% 96% 96% 96% 96%
RR 5% 46% 84% 96% 96% 96% 96% 96% 96%

NN(2,100) 27% 68% 93% 94% 94% 94% 94% 94% 94%

6.4.2 Ensemble-Sample

As introduced in Chapter 3, ensemble-sample (ES) is one of the popular techniques in the

computer vision domain. It uses multiple samples adapted from the original one to generate

the AE for higher transferability. In this experiment, we design a similar experiment as the

previous one 6.1 to examine whether it also works well in the malware detection domain.

Table 6.2: Attack performance of Ensemble-sample attack (FGSM) on deep neural network

Different Substitute models
Victim model(NN(3,100))

ϵ = 0.01 ϵ = 0.02 ϵ = 0.03 ϵ = 0.04 ϵ = 0.05 ϵ = 0.06 ϵ = 0.10 ϵ = 0.20 ϵ = 0.50
SVM 4% 28% 74% 92% 92% 92% 92% 92% 92%
LR 5% 46% 84% 96% 96% 96% 96% 96% 96%
RR 5% 46% 84% 96% 96% 96% 96% 96% 96%

NN(2,100) 28% 68% 93% 94% 94% 94% 94% 94% 94%

6.4.2.1 Results

Table 6.2 shows the experimental results of FGSM method enhanced by ensemble-sample

technique. Compared with Table 6.4.1, we can see that ensemble-sample only has minor

improvements for a few settings in the Table such as SVM(ϵ = 0.02 to ϵ = 0.50) and

NN(2,200)(ϵ = 0.01). Ensemble-sample in this experiment performs relatively poorly in

improving the adversarial example transferability.

6.4. Baseline Methods 47

6.4.3 Ensemble-Model

Ensemble-model (EM) is another major technique in the computer vision domain to improve

AE transferability. In this experiment, we investigate how the ensemble-model method

performs in the malware domain. Furthermore, we designed different victim models and

the corresponding substitute models with the ensemble-model technique to evaluate the

relationship between AE attack transferability and models complexity of the victim model

and substitute model.

6.4.3.1 Results

Table 6.3: Attack performance of Ensemble-Model method (FGSM) on different victim
models, Part I

Different
Victim models

Corresponding
attacker’s
EM

Modification restrictions

ϵ = 0.01 ϵ = 0.02 ϵ = 0.03 ϵ = 0.04 ϵ = 0.05 ϵ = 0.06
SVM NN-LR-RR 8% 9% 16% 16% 17% 17%
LR SVM-NN-RR 6% 9% 13% 21% 24% 24%
RR SVM-NN-LR 3% 5% 11% 11% 12% 12%
NN SVM-LR-RR 6% 44% 83% 95% 96% 96%

Table 6.4: Attack performance of Ensemble-Model method (FGSM) on different victim
models, Part II

Different
Victim models

Corresponding
attacker’s
EM

Modification restrictions

ϵ = 0.01 ϵ = 0.02 ϵ = 0.03 ϵ = 0.04 ϵ = 0.05 ϵ = 0.06
SVM SVM-NN-LR-RR 8% 9% 16% 17% 19% 19%
LR SVM-NN-LR-RR 1% 5% 23% 30% 39% 40%
RR SVM-NN-LR-RR 2% 3% 16% 21% 30% 30%
NN SVM-NN-LR-RR 0% 1% 6% 17% 55% 55%

For the first objective, we examine the basic experiment as previous experiments did use

NN(3,100) as the victim model and SVM-LR-RR as the ensemble substitute model. The

6.5. Experimental Results of Our Proposed Method 48

last row in Table 6.3 shows the results. Generating AEs on the substitute ensemble model

could slightly surpass baseline FGSM and ensemble-sample FGSM as ϵ gets higher but

perform even poorly at a small ϵ value (0.01 to 0.03).

To further investigate how the transferability is affected by model complexity, we ensembled

one more model NN(3,100) (the same structure as the victim model) in the original SVM-

LR-RR model as the new substitute model. The last row of Table 6.4 states the results

that the transferability gets even lower in every ϵ setting. The reason is that the substitute

model becomes more complicated after ensembling one NN. Generating AE on a complicated

model but attacking a rather simple model would result in lower transferability. It is also

consistent with the argument we made before in baseline FGSM experimental results.

We have more interesting findings by using different victim models and doing similar control

experiments like the above one NN(3,100) as the substitute model. For the other 3 linear

models as the victim model, after ensembling one more model with the same victim model

structure, the upper bound of transferability performance would increase otherwise. We

speculate the reason is that the substitute ensemble model compared with the simple linear

victim model is already complicated(with NN included). The benefit of ensembling the

similar model into the substitute model would be much more significant for enhancing AE

transferability.

6.5 Experimental Results of Our Proposed Method

We show the experimental findings from our method as follows. In this experiment, we

still use the same settings in the FGSM experiment 6.4.1 and the ensemble-sample experi-

ment 6.4.2.

6.5. Experimental Results of Our Proposed Method 49

What is the relationship between ϵ and Transferability?

Table 6.5: Our method attack transferability on neural networks

Different Substitute models
Victim model(NN(3,100))

ϵ = 0.01 ϵ = 0.02 ϵ = 0.03 ϵ = 0.04 ϵ = 0.05 ϵ = 0.06 ϵ = 0.10 ϵ = 0.20 ϵ = 0.50
SVM 0% 24% 47% 68% 76% 81% 90% 95% 95%
LR 1% 33% 58% 75% 88% 92% 97% 97% 98%
RR 1% 33% 58% 75% 88% 92% 97% 97% 98%

NN(2,100) 14% 43% 72% 89% 95% 96% 98% 98% 98%

As the results show, the transferability of our method performs poorly at small ϵ compared

with previous baseline experiments. However, the results increase as ϵ increases finally will

exceed the maximum value the previous base methods could get. When the ϵ is up to certain

values according to different substitute models, the transferability performance will reach the

peak, which excels FGSM baseline 2% to 4% and ensemble-model baseline (NN(2,100) as the

substitute model) 2%. It is obvious that the more modifiable features, the higher evenness

score our method could optimize, thus the higher transferability results the attacker could

get.

Is the optimization problem solved?

To further validate how our method works and whether the evenness score gets optimized,

we examine the average evenness score change as the adversarial steps increase in the gra-

dient descent process. We plot the average evenness score over 100 testing samples when

proceeding with optimization in different ϵ settings from 0.01 to 0.5 in Figure 6.1. When the

ϵ in small values, average evenness scores remain constant as the adversarial steps increase

since the optimization space is limited. As the ϵ gets large, the substitute model NN has

the fastest growth rate in evenness score. The LR is slightly higher than RR while the SVM

is the slowest one. The reason behind this phenomenon is that the NN has more nonlinear

relationships in model space and could get overfitted more easily. Therefore, it has more

potential to be optimized even in small ϵ. Also, since LR has no regularization penalty as

in RR, it will get overfitted more easily than RR.

6.5. Experimental Results of Our Proposed Method 50

0 10 20 30 40 50 60 70 80
Adversarial steps (= 0.01)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ev
en

ne
ss

 S
co

re NN
SVM
RR
LR

(a) ϵ = 0.01

0 10 20 30 40 50
Adversarial steps (= 0.02)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ev
en

ne
ss

 S
co

re NN
SVM
RR
LR

(b) ϵ = 0.02

0 10 20 30 40 50 60 70 80
Adversarial steps (= 0.03)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ev
en

ne
ss

 S
co

re NN
SVM
RR
LR

(c) ϵ = 0.03

0 10 20 30 40 50 60 70 80
Adversarial steps (= 0.04)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ev
en

ne
ss

 S
co

re NN
SVM
RR
LR

(d) ϵ = 0.04

0 10 20 30 40 50 60 70 80
Adversarial steps (= 0.05)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ev
en

ne
ss

 S
co

re NN
SVM
RR
LR

(e) ϵ = 0.05

0 10 20 30 40 50 60 70 80
Adversarial steps (= 0.06)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ev
en

ne
ss

 S
co

re NN
SVM
RR
LR

(f) ϵ = 0.06

0 10 20 30 40 50 60 70 80
Adversarial steps (= 0.10)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ev
en

ne
ss

 S
co

re NN
SVM
RR
LR

(g) ϵ = 0.10

0 10 20 30 40 50 60 70 80
Adversarial steps (= 0.20)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ev
en

ne
ss

 S
co

re NN
SVM
RR
LR

(h) ϵ = 0.20

0 10 20 30 40 50 60 70 80
Adversarial steps (= 0.50)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ev
en

ne
ss

 S
co

re NN
SVM
RR
LR

(i) ϵ = 0.5

Figure 6.1: Evenness scores as the adversarial step increases.

6.5. Experimental Results of Our Proposed Method 51

0.0 0.2 0.4 0.6 0.8 1.0
Epsino

0.0

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e

Ev
en

ne
ss

 S
co

re
NN
SVM
RR
LR

Figure 6.2: The best average evenness score as ϵ increases.

Even though the model non-linearity affects evenness score optimization space, it would be

a minor factor if the ϵ value is large enough in this experiment. From Figure 6.1, we could

observe that the evenness scores are very close in all models finally.

Figure 6.2 plots the upper limit of evenness score per sample averaged over 100 testing

samples the algorithm could achieve as the ϵ increases. It also indicates the larger modifiable

feature space would enlarge the evenness score optimization space.

What is the relationship between Evenness Score and Transferability?

Table 6.6: Correlation between transferability rate and evenness score. Each result is ob-
tained from 100 testing samples.

coefficients value p-value

SVM
Pearson 0.68 1e-5
Spearman Rank 0.65 1e-5
Kendall’s Tau 0.48 1e-5

LR
Pearson 0.75 1e-5
Spearman Rank 0.72 1e-5
Kendall’s Tau 0.51 1e-5

RR
Pearson 0.75 1e-5
Spearman Rank 0.72 1e-5
Kendall’s Tau 0.51 1e-5

NN(2,200)
Pearson 0.82 1e-5
Spearman Rank 0.94 1e-5
Kendall’s Tau 0.81 1e-5

6.6. Discussions 52

Here we investigate the relationship between Evenness Score and the transferability to further

examine our intuition. In order to evaluate and investigate the statistical significance of the

correlation between the evenness score and the transferability, we compute the associated

correlation values with three metrics respectively: Pearson value, Spearman Rank value and

Kendall’s Tau value. They are shown in Table 6.6. We observed that the hypothesis that the

evenness score and the transferability have no correlation failed. We obtained the test value

from the transferability and the average evenness score of 100 testing samples in different ϵ

settings (0.01 to 0.5). All the p-values are smaller than 10−5, which confirms 99% statistical

significance.

6.6 Discussions

In this section, we first set up several baseline experiments from baseline FGSM, and FGSM

enhanced by ES and EM to evaluate how previous techniques work in improving malware

AE transferability. Then we implement our evenness score-based algorithm in different

modifiable feature settings and compare the results with the previous baseline experimental

results.

Our algorithm outperforms ES and EM in large ϵ settings due to the larger evenness score

optimization space. ES and EM could only slightly enhance the transferability compared

with the baseline FGSM method in our experiments. We only use one dataset and did

limited experiments in this thesis. Due to the complexity of malware feature properties

and malware detection systems, we speculate that this property could be generalized in the

malware domain. We could leave more general malware settings in future work.

From the attacker’s side, when choosing the substitute model, a model with simple complex-

ity would provide AEs with better transferability. If the modifiable feature set is guaranteed

6.6. Discussions 53

large, evenness-score-based AE generation would have more advantages than baseline FGSM,

ES, or EM. To further improve the transferability, the attacker could even combine these

techniques together: ES, EM, and evenness score. We don’t implement it here due to time

and space limits and also leave it to future work.

To defend against the transfer AE attack, firstly the defender could use a relatively simple

model as the victim model. It would result in AEs tending to be generated from a more

complicated substitute model and make it harder to evade the victim one. But it could be

the tradeoff between security in the AE transfer attack and malware detection performance.

Since the attacker could enhance the transferability in a large modifiable feature set, the

model owner could extract more malware features that are not allowed to modify as the

model input vector to keep the number of modifiable features at a small value. Also, another

direction is that the model owner could design smooth factors in the model training process

to force the model to attribute each feature of each sample more evenly. In this way, the

attacker could only have limited space to optimize the evenness score.

Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis first investigates the performance of AE attacks on machine learning-based mal-

ware detection systems. Specifically, we focus on the transferability property of AE in the

malware domain. That is, from the attacker’s side, how is the attack success rate of AEs

generated from the substitute model performed on the targeted victim model. In this work,

we consider the challenging and threatening scenario, the grey box attack, which indicates

that the attacker would have limited knowledge about the victim model including the model

architecture, the model parameters, and even the query results for AE samples.

Previous research only had limited works on AE transferability in the malware domain and

showed poor performance on this property. To shed the light on it, we first investigate

how previous transfer AE attacks work on malware classifiers. Furthermore, we survey

the popular techniques in the computer vision domain to enhance the AE transferability

and transplant and adapt them for malware data. Our results fill the gap and show that

54

7.1. Conclusions 55

previous techniques ES and EM could only have a minor improvement in transferability and

only work in limited settings in our experiments.

We then propose a novel formulation for transfer AE attacks based on the contribution

of each feature for an input sample towards the model prediction result. We define the

evenness score and speculate that if an AE generated from the substitute model with a

higher evenness score, it would have more chance to evade the target victim model. We

propose the optimization problem to maximize the evenness score, and at the same time,

successfully evade the substitute model. We adjust our optimization formulation to a simpler

form according to Lagrangian relaxation and intend to implement the gradient descent to

find the optimal solution.

We design comprehensive experiments to examine how our method performs. Experimental

results indicate that the methodology we designed has excellent performance when the mod-

ifiable features set on malware data is large. In comparison, ES and EM would outperform

our algorithm on a relative small modifiable features set. We then further analyze and spec-

ulate the reasons behind this. We explain and conclude in which scenarios our algorithm or

baseline techniques would have better performance on transfer AE attacks. To validate our

intuition, we assess the statistical significance of the relationship between the evenness score

and the AE transferability on 3 different metrics: Pearson value, Spearman Rank value, and

Kendall’s Tau value. Results indicate a high correlation between the evenness score and

attack transferability of AEs.

This thesis discusses the difference in the transfer AE attack between malware data and the

computer vision domain in detail. We examine how previous transferability enhancement

techniques work in the malware domain. We also put forward a new optimization-based

method based on evenness score. In experiments, we further verify the high correlation be-

tween the evenness score and AE transferability. According to me, maximizing the evenness

7.2. Future Work 56

score keeps the generated AE from overfitting to the substitute model. By perturbing the

original malware sample more even, the generated AE could have a higher capability of gen-

eralization. It is normal to add smoother in the model to keep it from overfitting[14]. On

the contrary, perturbing the AE more even is like trying to add the smoother on the AE to

keep it from overfitting, from the attackers’ side.

7.2 Future Work

Although comprehensive experiments have been done, there are still several potential exten-

sions for this work.

7.2.1 Different adversary models

In this work, we assume the adversarial model is the grey-box attack model. However, there

is still one strong assumption. We assume that the attacker uses the same training data the

victim model uses. In the real scenario, it could be impossible. In future work, we should

set different levels of the attackers’ knowledge. The attacker could know a portion of the

training data from 0% to 100%. Also, since different malware detection systems could use

very different feature engineering methods, the AE transfer attack could be implemented in

this situation where the attacker has no knowledge about the features used in the victim

model.

7.2.2 Explainable machine learning

In our experiments, we directly use the gradient of each sample as the feature weights con-

tributing to the prediction results. However, it could be more complicated and more precise

7.2. Future Work 57

to define the contribution weights. Explainable machine learning[29, 38, 52] techniques use

more information rather than pure gradient to locate and quantize the accurate feature at-

tribution of each sample. However, since we use gradient descent to solve the optimization

problem, using such techniques could also make the optimization problem more complicated

and time-consuming. Heuristic algorithms could be the potential way for it.

7.2.3 Evenness score definition

In this work, we only use a very naive formulation to define how even the feature weights

distribute. There could be a more appropriate definition for our problem. The definition

of the evenness score should have 2 requirements: it should reflect the even level of feature

weights and also be easy to be solved by gradient descent optimization.

7.2.4 Different datasets

Although our algorithm has been verified on the malware data, we expect that it should

apply to more general scenarios such as image domain or network traffic data. Since the

image domain does not have as many limitations as it is in malware, more experiments can

be done to examine its effectiveness.

Bibliography

[1] Yousra Aafer, Wenliang Du, and Heng Yin. Droidapiminer: Mining api-level features

for robust malware detection in android. In International conference on security and

privacy in communication systems, pages 86–103. Springer, 2013.

[2] Shubair Abdulla and Altyeb Altaher. Intelligent approach for android malware detec-

tion. KSII Transactions on Internet and Information Systems (TIIS), 9(8):2964–2983,

2015.

[3] Mohammed S Alam and Son T Vuong. Random forest classification for detecting an-

droid malware. In 2013 IEEE international conference on green computing and commu-

nications and IEEE Internet of Things and IEEE cyber, physical and social computing,

pages 663–669. IEEE, 2013.

[4] Shaikh Bushra Almin and Madhumita Chatterjee. A novel approach to detect android

malware. Procedia Computer Science, 45:407–417, 2015.

[5] Hyrum S Anderson and Phil Roth. Ember: an open dataset for training static pe

malware machine learning models. arXiv preprint arXiv:1804.04637, 2018.

[6] Hyrum S Anderson, Anant Kharkar, Bobby Filar, David Evans, and Phil Roth. Learning

to evade static pe machine learning malware models via reinforcement learning. arXiv

preprint arXiv:1801.08917, 2018.

58

BIBLIOGRAPHY 59

[7] Anshul Arora, Shree Garg, and Sateesh K Peddoju. Malware detection using network

traffic analysis in android based mobile devices. In 2014 Eighth International Conference

on Next Generation Mobile Apps, Services and Technologies, pages 66–71. IEEE, 2014.

[8] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck, and

CERT Siemens. Drebin: Effective and explainable detection of android malware in your

pocket. In Ndss, volume 14, pages 23–26, 2014.

[9] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel

Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine learning at

test time. In Joint European conference on machine learning and knowledge discovery

in databases, pages 387–402. Springer, 2013.

[10] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. Crowdroid: behavior-based

malware detection system for android. In Proceedings of the 1st ACM workshop on

Security and privacy in smartphones and mobile devices, pages 15–26, 2011.

[11] Gerardo Canfora, Eric Medvet, Francesco Mercaldo, and Corrado Aaron Visaggio. De-

tecting android malware using sequences of system calls. In Proceedings of the 3rd

International Workshop on Software Development Lifecycle for Mobile, pages 13–20,

2015.

[12] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural net-

works. In 2017 ieee symposium on security and privacy (sp), pages 39–57. IEEE, 2017.

[13] Sen Chen, Minhui Xue, Zhushou Tang, Lihua Xu, and Haojin Zhu. Stormdroid: A

streaminglized machine learning-based system for detecting android malware. In Pro-

ceedings of the 11th ACM on Asia Conference on Computer and Communications Se-

curity, pages 377–388, 2016.

BIBLIOGRAPHY 60

[14] Tianlong Chen, Zhenyu Zhang, Sijia Liu, Shiyu Chang, and Zhangyang Wang. Ro-

bust overfitting may be mitigated by properly learned smoothening. In International

Conference on Learning Representations, 2020.

[15] Xiao Chen, Chaoran Li, Derui Wang, Sheng Wen, Jun Zhang, Surya Nepal, Yang Xiang,

and Kui Ren. Android hiv: A study of repackaging malware for evading machine-

learning detection. IEEE Transactions on Information Forensics and Security, 15:987–

1001, 2019.

[16] Ambra Demontis, Marco Melis, Battista Biggio, Davide Maiorca, Daniel Arp, Konrad

Rieck, Igino Corona, Giorgio Giacinto, and Fabio Roli. Yes, machine learning can

be more secure! a case study on android malware detection. IEEE Transactions on

Dependable and Secure Computing, 16(4):711–724, 2017.

[17] Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Battista Biggio, Alina

Oprea, Cristina Nita-Rotaru, and Fabio Roli. Why do adversarial attacks transfer?

explaining transferability of evasion and poisoning attacks. In 28th USENIX security

symposium (USENIX security 19), pages 321–338, 2019.

[18] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and

Jianguo Li. Boosting adversarial attacks with momentum. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 9185–9193, 2018.

[19] Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. Evading defenses to transferable

adversarial examples by translation-invariant attacks. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 4312–4321, 2019.

[20] Chun-I Fan, Han-Wei Hsiao, Chun-Han Chou, and Yi-Fan Tseng. Malware detection

systems based on api log data mining. In 2015 IEEE 39th annual computer software

and applications conference, volume 3, pages 255–260. IEEE, 2015.

BIBLIOGRAPHY 61

[21] Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, Fairuz Amalina, Shahaboddin Shamshir-

band, et al. A study of machine learning classifiers for anomaly-based mobile botnet

detection. Malaysian Journal of Computer Science, 26(4):251–265, 2013.

[22] Shree Garg, Sateesh K Peddoju, and Anil K Sarje. Network-based detection of android

malicious apps. International Journal of Information Security, 16(4):385–400, 2017.

[23] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing

adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[24] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing

adversarial examples. ICLR’15, 2015.

[25] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and Patrick

McDaniel. Adversarial perturbations against deep neural networks for malware classi-

fication. arXiv preprint arXiv:1606.04435, 2016.

[26] Shifu Hou, Yanfang Ye, Yangqiu Song, and Melih Abdulhayoglu. Hindroid: An intelli-

gent android malware detection system based on structured heterogeneous information

network. In Proceedings of the 23rd ACM SIGKDD international conference on knowl-

edge discovery and data mining, pages 1507–1515, 2017.

[27] Weiwei Hu and Ying Tan. Black-box attacks against rnn based malware detection algo-

rithms. In Workshops at the Thirty-Second AAAI Conference on Artificial Intelligence,

2018.

[28] Yang Huan, Yu-qing ZHANG, Yu-pu HU, and Qi-xu LIU. Android malware detection

method based on permission sequential pattern mining algorithm. Journal on Commu-

nications, 34(Z1):106, 2013.

BIBLIOGRAPHY 62

[29] Beomsu Kim, Junghoon Seo, and Taegyun Jeon. Bridging adversarial robustness and

gradient interpretability. arXiv preprint arXiv:1903.11626, 2019.

[30] Aleksander Ko lcz and Choon Hui Teo. Feature weighting for improved classifier robust-

ness. In CEAS’09: sixth conference on email and anti-spam. Citeseer, 2009.

[31] Bojan Kolosnjaji, Ambra Demontis, Battista Biggio, Davide Maiorca, Giorgio Giacinto,

Claudia Eckert, and Fabio Roli. Adversarial malware binaries: Evading deep learning for

malware detection in executables. In 2018 26th European signal processing conference

(EUSIPCO), pages 533–537. IEEE, 2018.

[32] Felix Kreuk, Assi Barak, Shir Aviv-Reuven, Moran Baruch, Benny Pinkas, and Joseph

Keshet. Deceiving end-to-end deep learning malware detectors using adversarial exam-

ples. arXiv preprint arXiv:1802.04528, 2018.

[33] Deqiang Li and Qianmu Li. Adversarial deep ensemble: Evasion attacks and defenses

for malware detection. IEEE Transactions on Information Forensics and Security, 15:

3886–3900, 2020.

[34] Dongfang Li, Zhaoguo Wang, and Yibo Xue. Deepdetector: Android malware detection

using deep neural network. In 2018 International Conference on Advances in Computing

and Communication Engineering (ICACCE), pages 184–188. IEEE, 2018.

[35] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable ad-

versarial examples and black-box attacks. arXiv preprint arXiv:1611.02770, 2016.

[36] Davide Maiorca, Francesco Mercaldo, Giorgio Giacinto, Corrado Aaron Visaggio, and

Fabio Martinelli. R-packdroid: Api package-based characterization and detection of

mobile ransomware. In Proceedings of the symposium on applied computing, pages 1718–

1723, 2017.

BIBLIOGRAPHY 63

[37] Marco Melis, Michele Scalas, Ambra Demontis, Davide Maiorca, Battista Biggio, Gior-

gio Giacinto, and Fabio Roli. Do gradient-based explanations tell anything about ad-

versarial robustness to android malware? International Journal of Machine Learning

and Cybernetics, 13(1):217–232, 2022.

[38] Grégoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek, and

Klaus-Robert Müller. Explaining nonlinear classification decisions with deep taylor

decomposition. Pattern recognition, 65:211–222, 2017.

[39] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine

learning: from phenomena to black-box attacks using adversarial samples. arXiv

preprint arXiv:1605.07277, 2016.

[40] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and

Ananthram Swami. The limitations of deep learning in adversarial settings. In 2016

IEEE European symposium on security and privacy (EuroS&P), pages 372–387. IEEE,

2016.

[41] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and

Ananthram Swami. Practical black-box attacks against machine learning. In Proceedings

of the 2017 ACM on Asia conference on computer and communications security, pages

506–519, 2017.

[42] NLMM Pochet and JAK Suykens. Support vector machines versus logistic regression:

improving prospective performance in clinical decision-making. Ultrasound in Obstetrics

and Gynecology: The Official Journal of the International Society of Ultrasound in

Obstetrics and Gynecology, 27(6):607–608, 2006.

[43] Ishai Rosenberg, Asaf Shabtai, Lior Rokach, and Yuval Elovici. Generic black-box end-

to-end attack against state of the art api call based malware classifiers. In International

BIBLIOGRAPHY 64

Symposium on Research in Attacks, Intrusions, and Defenses, pages 490–510. Springer,

2018.

[44] Borja Sanz, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero, Pablo Garcia Bringas,

and Gonzalo Álvarez. Puma: Permission usage to detect malware in android. In In-

ternational Joint Conference CISIS’12-ICEUTE 12-SOCO 12 Special Sessions, pages

289–298. Springer, 2013.

[45] Bhaskar Pratim Sarma, Ninghui Li, Chris Gates, Rahul Potharaju, Cristina Nita-

Rotaru, and Ian Molloy. Android permissions: a perspective combining risks and

benefits. In Proceedings of the 17th ACM symposium on Access Control Models and

Technologies, pages 13–22, 2012.

[46] Asaf Shabtai, Yuval Fledel, Yuval Elovici, and Yuval Shahar. Using the kbta method for

inferring computer and network security alerts from time-stamped, raw system metrics.

Journal in computer virology, 6(3):239–259, 2010.

[47] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael Weiss. “andro-

maly”: a behavioral malware detection framework for android devices. Journal of

Intelligent Information Systems, 38(1):161–190, 2012.

[48] Avanti Shrikumar, Peyton Greenside, Anna Shcherbina, and Anshul Kundaje. Not just

a black box: Learning important features through propagating activation differences.

arXiv preprint arXiv:1605.01713, 2016.

[49] Wei Song, Xuezixiang Li, Sadia Afroz, Deepali Garg, Dmitry Kuznetsov, and Heng

Yin. Mab-malware: A reinforcement learning framework for attacking static malware

classifiers. arXiv preprint arXiv:2003.03100, 2020.

[50] Jack W Stokes, De Wang, Mady Marinescu, Marc Marino, and Brian Bussone. Attack

BIBLIOGRAPHY 65

and defense of dynamic analysis-based, adversarial neural malware detection models.

In MILCOM 2018-2018 IEEE Military Communications Conference (MILCOM), pages

1–8. IEEE, 2018.

[51] Octavian Suciu, Scott E Coull, and Jeffrey Johns. Exploring adversarial examples in

malware detection. In 2019 IEEE Security and Privacy Workshops (SPW), pages 8–14.

IEEE, 2019.

[52] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep

networks. In International conference on machine learning, pages 3319–3328. PMLR,

2017.

[53] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian

Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In International

Conference on Learning Representations, 2014. URL http://arxiv.org/abs/1312.

6199.

[54] Guanhong Tao, Zibin Zheng, Ziying Guo, and Michael R Lyu. Malpat: Mining patterns

of malicious and benign android apps via permission-related apis. IEEE Transactions

on Reliability, 67(1):355–369, 2017.

[55] Ke Tian, Danfeng Yao, Barbara G Ryder, Gang Tan, and Guojun Peng. Detection of

repackaged android malware with code-heterogeneity features. IEEE Transactions on

Dependable and Secure Computing, 17(1):64–77, 2017.

[56] Florian Tramèr, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick McDaniel.

The space of transferable adversarial examples. arXiv preprint arXiv:1704.03453, 2017.

[57] Wei Wang, Xing Wang, Dawei Feng, Jiqiang Liu, Zhen Han, and Xiangliang Zhang.

Exploring permission-induced risk in android applications for malicious application de-

http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199

BIBLIOGRAPHY 66

tection. IEEE Transactions on Information Forensics and Security, 9(11):1869–1882,

2014.

[58] Lei Wu, Zhanxing Zhu, Cheng Tai, et al. Understanding and enhancing the transfer-

ability of adversarial examples. arXiv preprint arXiv:1802.09707, 2018.

[59] Weibin Wu, Yuxin Su, Michael R Lyu, and Irwin King. Improving the transferability of

adversarial samples with adversarial transformations. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 9024–9033, 2021.

[60] Wen-Chieh Wu and Shih-Hao Hung. Droiddolphin: a dynamic android malware de-

tection framework using big data and machine learning. In Proceedings of the 2014

Conference on Research in Adaptive and Convergent Systems, pages 247–252, 2014.

[61] Xi Xiao, Xianni Xiao, Yong Jiang, Xuejiao Liu, and Runguo Ye. Identifying android

malware with system call co-occurrence matrices. Transactions on Emerging Telecom-

munications Technologies, 27(5):675–684, 2016.

[62] Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren, and

Alan L Yuille. Improving transferability of adversarial examples with input diversity. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 2730–2739, 2019.

[63] Shiting Xu, Xinyu Ma, Yuandong Liu, and Qiang Sheng. Malicious application dynamic

detection in real-time api analysis. In 2016 IEEE International Conference on Internet

of Things (iThings) and IEEE Green Computing and Communications (GreenCom)

and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data

(SmartData), pages 788–794. IEEE, 2016.

BIBLIOGRAPHY 67

[64] Weilin Xu, Yanjun Qi, and David Evans. Automatically evading classifiers. In Proceed-

ings of the 2016 network and distributed systems symposium, volume 10, 2016.

[65] Hui-Juan Zhu, Zhu-Hong You, Ze-Xuan Zhu, Wei-Lei Shi, Xing Chen, and Li Cheng.

Droiddet: effective and robust detection of android malware using static analysis along

with rotation forest model. Neurocomputing, 272:638–646, 2018.

	Titlepage
	Abstract
	General Audience Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation
	Research Challenges
	Contributions
	Organization of the Thesis

	Related Work
	Adversarial Example Attacks on Malware Classifiers
	AE attacks on static victim models
	AE attacks on dynamic victim models

	Transfer Adversarial Example Attacks on Malware Classifiers
	Transfer AE attacks
	Transfer AE attack on malware classifiers

	Background of Transfer Adversarial Example Attacks on Malware Classifiers
	Machine learning models and Notation
	Machine-learning-based Malware Classifiers
	Dataset and Data Processing
	Constraints in Generating Malware Adversarial Examples
	Static Malware Classifiers
	Dynamics Malware Classifiers

	Adversarial Example Attacks
	Popular AE Attacks
	Existing Transfer AE Attacks

	Adversary and System Model
	Adversary Model
	System model
	General transfer AE attack process
	Victim model
	Substitute model

	Methodology
	Research Objective
	Intuitions
	System Overview
	Adversarial Perturbations with Even Distribution
	Evenness score
	Formulating the objective function
	Solving the objective function
	Finding the constant c
	Box constraint
	Linf and L1 adjustment

	Summary

	Performance Evaluation
	Dataset
	Performance Metrics
	Success rate
	Transferability

	Training the victim and substitute model
	Baseline Methods
	FGSM attack
	Results

	Ensemble-Sample
	Results

	Ensemble-Model
	Results

	Experimental Results of Our Proposed Method
	Discussions

	Conclusions and Future Work
	Conclusions
	Future Work
	Different adversary models
	Explainable machine learning
	Evenness score definition
	Different datasets

	Bibliography

