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SYSTEMATICS OF BOND LENGTH AND RADII VARIATIONS IN 

FLUORIDE AND SILICATE MOLECULES AND CRYSTALS 

by 

Jeffrey Scott Nicoll 

(ABSTRACT) 

Molecular orbital calculations completed on fluoride molecules containing main 

group cations have generated bond lengths, R, that match to within ~0.04A those 

observed for cation containing coordinated polyhedra in crystals. The calculated 

bond lengths and those observed for crystals can be ranked with the expression R = 

Kp-°?, where p = s/r, s is the Pauling strength of the bond, r is the row number of 

the cation and K = 1.34. A similar scaling was observed with K values of 1.39, 1.49 

and 1.83 respectively for oxide, nitride and sulfide molecules and crystals. Also, the 

parameter p = —0.22 (= =) is the same as that observed for the oxides, nitrides and 

sulfides. Furthermore, crystal XY bond lengths, where X represents main~group and 

transition metal atoms, and Y represents a variety of anions including O, S, N, F, 

Se and others, agree with XY bond lengths observed in chemically similar molecules 

to within ~ 0.04A. There is no difference in correlation between bonds including 

main-group metal atoms and bonds including transition metal atoms. 

Bonded radii for the fluoride ion determined for the molecules increases linearly 

with bond length, with the variation in bond length being shared equally between the 

bonded radius of the cation and the anion. Promolecule radii of the metal atom cal- 

culated for molecules correlate with metal atom bonded and crystal radii, suggesting 

that the electron density distribution in hydrofluoride molecules has a largely atomic 

component. 

The bonded radii of Si and O obtained from total electron density maps observed 
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for coesite and danburite (4-coordinate Si) and stishovite (6-coordinate Si) match 

those calculated for the monosilicic acid H4SiO, molecule with its four S,—-equivalent 

SiO bond lengths set successively at values ranging from 1.5 to 1.9A. These results 

also demonstrate that for a given bond length, the bonded radii of Si and O are largely 

independent of their coordination numbers and that the radii of both atoms are nearly 

the same in both the monosilicic acid molecule and the silicate crystals. The O atoms 

in danburite are observed to exhibit several distinct bonded radii, ranging between 

0.94 and 1.23A, rather than a single one with each oxide ion exhibiting a different 

radius along each of the nonequivalent bonds with B, Si and Ca. Promolecule radii 

calculated for the coordinated polyhedra in danburite agree, to within 0.002A, with 

procrystal independent atom model radii obtained in a structure analysis. 
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Chapter 1 

BOND LENGTH CORRELATIONS 

Introduction 

In 1982, Gibbs suggested that a molecule might serve as a useful basis for modeling 

the bond length and angle variations of a silicate mineral. This suggestion was based 

on the observation that the separations and angles between the Si and O atoms in 

the coordinated polyhedra of a number of siloxane molecules are not unlike those in 

quartz (Gibbs et al., 1972; Tossell and Gibbs, 1978; Newton and Gibbs, 1980; Gibbs 

et al., 1981; Gibbs and Boisen, 1986; Gibbs et al., 1987a). He also suggested that 

such models might provide important insight into the forces that govern bond length 

and angle variations and electron density distributions of the silica polymorphs and 

silicates in general. The development of such models has since yielded a theoretical 

basis for the correlation first observed by Smith (1953) between SiO bond length and 

bond strength sum for melilite and later established for a variety of oxide bond lengths 

by Baur (1970) and a number of correlations established by Brown and Shannon 

(1973) between bond strength and bond length. They have also provided a basis for 

a correlation proposed between SiO bond length and SiOSi angle (Cruickshank, 1961, 

Brown et al., 1969; Newton and Gibbs, 1980; Boisen et al., 1990). 

Since that time, molecular orbital (MO) calculations, completed on a variety of 

molecules with 4— and 6-coordinated first and second row metal atoms, have gener- 

ated bond lengths and angles that match those observed, to within a few percent, 

for chemically similar oxide, sulfide and nitride molecules and crystals (Geisinger and 

Gibbs, 1981; Julian and Gibbs, 1985, 1988; Gibbs and Boisen, 1986; Gibbs et al., 

1987b; Bartelmehs et al., 1989; Buterakos et al., 1992). The close correspondence be- 

tween observed and calculated bond length data for chemically similar molecules and



crystals suggests that the force field that governs bond length and angle variations in 

a wide range of insulating materials is short ranged and, in large part, independent 

of the long ranged forces exerted on the coordinated polyhedra by the other atoms of 

a structure. It also indicates that the force constants and minimum energy SiO bond 

lengths and Si0Si and OSiO angles calculated for a molecule like HgSi,07 can be 

viewed as similar to those of a Si,O7 group in a silicate and that they can be used to 

construct a force field. In fact, a potential energy function based in large part on such 

a force field has been used to generate the structures, the volume compressibilities, 

the elastic constants and the Poisson ratios for the silicates quartz and cristobalite 

(Lasaga and Gibbs, (1987; 1988; 1991), Stixrude and Bukowinski (1988); Gibbs et al., 

(1988), Tsuneyuki et al., (1988), Chelikowsky et al., (1990), Purton et al., (1993) and 

Boisen and Gibbs (1993)). It has also been used to generate the zero pressure struc- 

ture of coesite, reproducing both the observed SiO bond lengths to within ~0.01A 

and the correlation observed between SiO bond length and SiOSi angle (Stixrude 

and Bukowinski, 1988; Boisen and Gibbs, 1993). It was also found that when the 

structures of quartz, cristobalite and coesite are optimized with the potential energy 

function, assuming triclinic Pl space group symmetry, that the resulting structures 

exhibit the space group symmetries observed for these three minerals (Boisen and 

Gibbs, 1993). The success of these calculations not only provides support for the 

assertion that the nature of the bonding in the Si,O7 group in HgSi2O7 is similar to 

that of the group in the silica polymorphs, but it also indicates that the force field of 

the group plays an important role in governing the properties and the observed space 

group symmetries adopted by the silica polymorphs. 

In this study, MO calculations are completed to learn whether the minimum en- 

ergy bond lengths calculated for a number of fluoride molecules match those observed



for the coordinated polyhedra in fluoride crystals. 

Molecular Orbital Calculations 

The MO calculations were completed on Hn ,X"tFm fluoride molecules with m 

= 3-, 4-, 5- and 6-coordinated first and second row main group metal atoms, X. In 

the calculations, (1) 6-31G* basis sets were used on the metal atoms and the fluorine 

atom and a 31G basis set was used on H and (2) ideal geometries (trigonal planar, 

tetrahedral, trigonal bipyramidal and octahedral fluoride coordinated polyhedra) were 

assumed with all of the XF bond lengths clamped at one value and with all the HF 

bond lengths clamped at another. The minimum energy R(XF) and R(FH) bond 

lengths and the XFH angles were obtained using unrestricted Roothaan—Hartree- 

Fock self consistent field (SCF) strategies and a quasi-Newton method as employed 

in GAUSSIANS6 (Frisch et al., 1984). 

Discussion 

The theoretical minimum energy bond lengths, R,(XF), calculated for the fluoride 

molecules (Table 1) are compared in Figure 1 with observed bond lengths, R,(XF), 

generated from the crystal radii derived by Shannon (1976). A linear regression 

analysis of this data yields a slope of 1.13 and intercept of — 0.20. An R? value of 

0.991 indicates that more than 99% of the variation in R,(XF) can be explained in 

terms of a linear dependence on R,(XF). The calculated bond lengths agree with 

those observed for fluoride crystals by Shannon (1976) to within ~0.04A. 

Calculations on oxide, sulfide, and nitride molecules by Gibbs et al. (1987b), 

Bartelmehs et al. (1989) and Buterakos et al. (1992), respectively, have established 

correlations between bond length, R, and the bonding parameter, p = s/r where 

s is the Pauling bond strength and r is the row number of the X cation. These 

studies also establish similar correlations between p and R calculated for chemically



Table 1. Observed and theoretical bond lengths, R,(XF) and R,(XF), and crystal 
(Shannon, 1976), bonded, and promolecule radii, r.(X), rp(X), and rp(X), for the 
metal atom. 
  

  

Hm—-nX"* Fin XF R.(XF) R,(XF) r.(X) rp(X) rp(X) 

H3LiF, LiF 1.88 1.81 0.73 0.70 0.72 
Hs LiF, LiF 2.05 1.96 0.90 0.75 0.77 
HBeF3 BeF 1.45 1.46 0.30 0.52 0.53 
H2BeF4 BeF 1.56 1.54 0.41 0.54 0.55 
H4BeFe BeF 1.74! 1.73 0.59? 0.60 0.61 
BF; BF 1.30 1.30 0.15 0.44 0.45 
HBF, BF 1.40 1.39 0.25 0.46 0.47 
H3BFe¢ BF 1.564 1.59 0.411 0.52 0.57 
CF, CF 1.44? 1.30 0.29? 0.42 0.49 

H2CF, CF 1.453 1.52 0.30% 0.56 0.67 
HNF. NF 1.423 1.50 0.273 0.69 0.72 
H3NaF4 NaF 2.28 2.13 1.13 0.99 1.01 
H,4NaF; NaF 2.29 2.18 1.14 1.00 1.03 
Hs NaF, NaF 2.31 2.22 1.16 1.02 1.04 
H2MgF4 MgF 1.86 1.85 0.71 0.83 0.85 
H3MgF; MgF 1.95 1.92 0.80 0.86 0.87 
H4MgFe MgF 2.01 1.96 0.86 0.87 0.89 
HAIF4 AIF 1.68 1.68 0.53 0.73 0.75 
H2AlFs AIF 1.77 1.75 0.62 0.75 0.77 
H3AlFe AIF 1.82 1.80 0.675 0.77 0.79 
SiF4 SiF 1.55 1.56 0.40 0.65 0.68 

H2SiF, SiF 1.69 1.68 0.54 0.69 0.72 
PF; PF 1.58 1.55 0.43 0.62 0.65 
HPF, PF 1.673 1.61 0.521 0.64 0.68 
SF¢ SF 1.58! 1.55 0.43! 0.60 0.68                   

1 Denotes radii calculated from bond length-bond strength curves 

2 Denotes radii from Pauling 

3 Denotes radii from Ahrens 

similar molecules. In an examination of how p relates to R,(XF), In[R,(XF)] was 

plotted against In(p) (Fig. 2a). A linear regression analysis of the data set shows 

that more than 98% of the variation of In[R,(X)] can be explained in terms of a lin- 

ear dependence on In(p). Using the estimates of the slope and intercept of the line, 

the expression R(XF)=1.34p-°-? can be derived which reproduces the observed bond 

lengths to within ~0.06A. Similarly, p correlates with the bond length data, R,(XF), 

obtained in MO calculations on fluoride molecules containing first and second row 

4



  

        

2.25 7 r 
4 L. 

2.00 - c 

r 
fey 4 i ~< 1 
“> 1.75 4 E 
- 1 C 

| r 

1.50 4 P 
q — 

1.25 a TTTTrrirrryprrirrrrirrpirrrrre gs PRerrrrerree Tid t 

1.25 1.50 1.75 2.00 2.25 

R,(XF) 

Figure 1. A scatter diagram of average XF bond length, R,(XF), where X is a row 
1 or 2 main group cation, plotted against the theoretical XF bond length, R,(XF), 
calculated from molecular orbital methods. The R,(XF) match the R,(XF) to 

within ~0.04A. | 

cations. A scatter diagram of In[R,(XF)| vs. In(p) is displayed in Figure 2b. A linear 

regression of this data yields an R? value of 99.0 and the expression R(XF)=1.33p-°” 

which also reproduces the theoretical bond lengths to within ~ 0.06A. These two for- 

mulas relating observed and theoretical bond length data for crystals and molecules, 

respectively, are statistically identical, indicating that the forces that govern bond 

length variations in fluoride molecules and crystals can be viewed as similar. Fur- 

thermore, the exponent derived for the fluorides (—0.22) is statistically identical with 

those derived for oxides (—0.22), sulfides (—0.21), and nitrides (—0.22). As these 

2 values are statistically identical, a p = —0.22(% 2) is accepted for each of these 
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materials. These results indicate that for a given p-value, the relative change of a 

bond length in a nitride, oxide, fluoride and sulfide molecule or crystal relative to p 

is virtually the same (Gibbs and Boisen, 1986). 
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Figure 2(a-b). Scatter diagrams plotting the natural log of the XF bond length 

against the natural log of the bonding parameter, p. (2a) In[R,(XF)] and (2b) 
In[R,(XF)] plotted against In(p). The slopes of these curves are statistically identical 
and yield the equation R(XF)=1.34p"°-?*. This equation produces XF bond lengths 
that match observed XF bond lengths to within ~ 0.06A, on average. 

One question that remains is whether the bond lengths for oxide, nitride, flu- 

oride and sulfide molecules with non—main group metal cations also match those 

observed for crystals. To answer this question, the bond lengths for more than 170 

molecules were plotted against those observed for crystals (Fig. 3). Those observed 

for molecules with transition metal cations agree with those observed for crystals to 
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Figure 3. Scatter diagrams plotting observed XF bond lengths in molecules against 
XY bond lengths observed in crystals, where X is a main group or transition metal 

atom and Y is O, S, N, F, Se, and others. Data containing main group metal atoms 
are plotted as small solid circles while those containing transition metal atoms are 
plotted as open triangles. Note that bonds containing transition metal atoms seem 
to correlate about as well as those containing main group cations. 

within ~0.03A, whereas those recorded for molecules with main group metal cations 

agree to within ~0.04A. The bond length data used to prepare the plot were observed 

for free polyatomic molecules that comprise a wide range of chemically different main 

and non~main group metal containing oxide, sulfide, fluoride, nitride and selenide 

coordinated polyhedra (Landolt-Boinstein, 1976; 1987). Clearly, the agreement be- 

tween the two data sets is equally good, regardless of the type of cation that is bonded 

to an anion. This agreement explains in part why Slater (1964) was successful in de- 

Tiving a universal set of atomic radii that reproduces bond lengths observed for more 
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than 1200 molecules and chemically similar ionic, covalent, intermetallic and metal- 

lic crystals with an average deviation of 0.12A. These radii were found to hold for 

covalently, metallically and ionically bonded materials equally well and to correlate 

remarkably well with the radial charge densities of the outermost shells of the atoms. 

However, the reproduction of bond length data with Slater’s (1964) atomic radii is 

less precise than that of the Shannon (1976) radii because no attempt was made by 

Slater to correct his radii for such factors as coordination number, oxidation number 

and spin state.



Chapter 2 

BONDED AND PROMOLECULE RADII 

Introduction 

Ever since Bragg (1920) first proposed that the bond lengths of crystals can be 

estimated by summing the radii of the two atoms comprising a bond, successively 

more elaborate sets of radii have been derived and used (1) to predict bond lengths, 

(2) to predict whether one atom in a crystal can be replaced by another, (3) to 

rationalize structural types in terms of structural field maps and (4) to serve as a 

basis for correlating and rationalizing structural and physical properties (For a good 

history of radii, see Pauling, 1960; Slater, 1965; Shannon and Prewitt, 1969; Shannon, 

1976). Despite the considerable success that modern crystal (and ionic) radii have 

had in reproducing the average bond length for a given coordinated polyhedron, such 

radii are not in general realistic indicators of the true sizes of ions, particularly as 

they relate to the electron distribution of the bonded atoms in either a molecule or a 

crystal (Shannon and Prewitt, 1969; Gibbs et al., 1992). Gourary and Adrian (1960) 

and Slater (1965) have argued that a set of more realistic radii referred to as bonded 

radii by Bader et al., (1971) can be derived from the electron density distribution of 

either a molecule or crystal by measuring the distance along the bond path between 

the nuclei of a pair of bonded atoms and the point of minimum electron density along 

the bond path. As the electrons and nuclei of the atoms of a bonded system strive 

to adopt an arrangement wherein the total energy of the resulting configuration is 

minimized, the bonded radius, r,, of an atom in the direction of a given bond can be 

regarded as a minimum energy feature. In the promolecule model, the positions of the 

nuclei are fixed and the total electron density distribution is simply a superposition of 

spherically averaged electron density distributions of atoms. Like the bonded radius,



the promolecule radius, rp, of an atom is determined by measuring the distance 

between the nucleus and the point of minimum electron density along the bond path. 

As observed in this study and elsewhere (Gibbs et al., 1992), bonded (and pro- 

molecule) radii differ from crystal (and ionic) radii in several important ways: (1) 

Each cation and anion typically has several different bonded (or promolecule) radii, 

a different one in the direction of each of its nonequivalent bonds while they each 

have a single crystal radius for a given chemical environment and condition and (2) 

Cations and anions each have a given crystal radius for a given coordination number, 

all other things being equal (such as valence, spin state, etc.), whereas for a given 

coordination number, bonded (and promolecule) radii increase in a regular way with 

bond length. 

Bonded radii are determined from the total electron density maps of the molecules 

to learn whether the radius of the fluoride ion varies in a regular way with bond length 

as observed for the nitride, oxide and sulfide ions. Radii observed for the atoms in 

rock salt, bromellite and several silicates will be compared with theoretical bonded 

radii generated with molecular orbital methods and promolecule radii calculated for 

the coordinated polyhedra of these minerals. 

Systematics of Bonded and Promolecule Radii Variations 

In accordance with the above observation (2), the bonded radius of the 6-coord- 

inate chloride ion in rock salt is observed to increase from 1.64A for a bond length 

R(NaCl) = 2.82A to 1.70A in sylvite with R(KCl) = 3.15A while the ionic radius 

of the chloride ion is assumed to be constant (1.81A) and independent of bond 

length (Slater, 1965). Similarly, the bonded radius of the 2-coordinate oxide ion in 

coesite is observed to increase from 0.92A to 0.97A for SiO bond lengths of 1.595A 

and 1.621A respectively, while the crystal radius of the oxide ion is assumed to be 
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constant (1.21A) and independent of bond length (Gibbs et al., 1992). In addition, 

sets of bonded radii calculated from electron density distributions for a large number 

of minimum energy oxide, sulfide and nitride molecules show that the bonded radii 

of the anions in these molecules increase in a regular way with bond length. In these 

calculations, sets of bonded radii for first and second row main group cations were 

obtained (Gibbs and Boisen, 1986; Bartelmehs et al. 1989; Buterakos et al. 1992). 

In all cases, it was observed that the bonded radii of the anions, r,(Y), where Y is 

O, S, or N increase in a regular manner with increasing bond length, R,(XY). It was 

also observed that the radii of the anions decrease with the row number, r, of the 

main group cation, X, to which it is bonded. From these relationships the following 

expressions were derived: 

rp(O)=(0.35—0.10r) + 1/2R,(XO), 

rp(N)=(0.38—0.12r) + 1/2R,(XN), 

ry(S)=(0.59—0.13r) + 1/2R,(XS). 

The coefficient of 1/2 for R,(XY) is interpreted as indicating that the variation in 

bond length is shared equally between the bonded radius of the cation and the anion. 

In an examination of whether the bonded radius of the fluoride ion varies in a sim- 

ilar way, electron density maps (see Appendix B) were calculated for 25 Hn»_nX”*Fm 

fluoride molecules containing 3—, 4—, 5—, and 6— coordinated first and second row 

main group cations, X. The calculations were completed using a FORTRAN77 pro- 

gram entitled EDEN and the density matrices provided by GAUSSIAN86 Roothaan- 

Hartree-Fock SCF single-point calculations at the minimum energy molecular geome- 

tries. In the determination of the bonded radii, it is assumed that the radius of the 

atom in the direction of a neighboring atom is the distance from the center of the atom 
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to the point of minimum electron density along the line connecting the two atoms. 

The minimum was located analytically using a strategy based on the quasi-Newton 

method (Gibbs et al, 1992) in which a quartic polynomial was fit to the data. The re- 

sulting radii for the fluoride ion, r,(F) (Table 1), are plotted against R,(XF) in Figure 

4. A regression analysis of r,(F) against R,(XF) yields the following expression: 

rp(F)=(0.40—0.07r) + 1/2R,(XF). 

This equation is similar to that derived for the oxide, sulfide and nitride molecules 

and suggests that variation in XF bond length is shared, as observed for the oxide, 

nitride and the sulfide anions, equally by the bonded radius of the anion and the 

cation. 

A comparison of the bonded radii for the oxide, fluoride, nitride and sulfide 

molecules shows that the radius of a given cation X in a sulfide molecule is, on 

average, ~0.1A larger than it is in either an oxide or a fluoride molecule and ~0.05A 

larger than it is in a nitride molecule. An examination of the minimum energy bond 

lengths for these molecules shows, for a given X-cation, that R(XS) is slightly longer 

than R(XN) which in turn is slightly longer than R(XO) and R(XF). In other words, 

an X cation is larger when it is bonded to sulfur (longer bond), it has an intermediate 

value when bonded to nitrogen and it is smallest when bonded to either oxygen or 

fluorine (shorter bonds). 

Modern crystal and ionic radii such as those derived for the oxides and fluo- 

rides reproduce average bond lengths for coordinated polyhedra with a precision of 

~ 0.02A when coordination number, spin state, and oxidation state are taken into 

account (Shannon and Prewitt, 1969; Shannon, 1976). Despite the fact that these 

radii are relative, they correlate well with the bonded radii for the cations calculated 

for the oxide molecules (Gibbs and Boisen, 1986) and the fluoride molecules studied 
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Figure 4. Scatter diagrams plotting the bonded radius of the fluorine anion, rp(F), 
when bonded to tetrahedrally coordinated row 1 and 2 main group metal atoms. 

The open circles represent data from row 1 and the solid circles represent data from 

row 2. 

here. Similarly, the crystal radii derived for sulfides correlate equally well with the 

bonded radii calculated for sulfide molecules (Bartelmehs et al., 1989). In addition, 

Cahen (1988) has found that averaged bonded radii derived from plots of total valence 

electron densities also correlate with sulfide crystal radii. He also made the important 

observation that a model based on such bonded radii provides a better understanding 

of the ease with which Cu can be leached from the enargite Cu3AsS, structure than 

can be provided by a model based on either ionic or crystal radii. 

Not only do crystal radii correlate well with bonded radii, but Feth et al. (1993) 

found that they correlate equal well with promolecule radii. In the above study, 
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promolecule electron density distributions were calculated for ideal tetrahedral and 

octahedral coordinated polyhedra containing main group and non—main group cations 

from the first four rows of the periodic table with bond lengths set equal to the 

crystal radius sum of the cation and anion. The high correlations that obtain between 

the resulting promolecule radii and the crystal radii for oxides and sulfides and the 

ionic radii for nitrides shows that Shannon and Prewitt (1969), Shannon (1976) and 

Shannon (1981) did an excellent job ordering their radii one relative to another as 

did Baur (1987) in ordering his nitride ionic radii. 

In the formation of a crystal like rock salt, the assertion is often made that Na 

loses an electron to become Na* while Cl gains the electron to become Cl~. With 

this exchange of electrons, it is generally accepted that the resulting Cl~ anion is 

significantly larger than the Cl atom. With the loss of an electron, the resulting 

Nat cation is assumed to be smaller than the atom with the separation between the 

two atoms remaining essentially unchanged. On the other hand, Slater (1965) has 

concluded from valence shell orbital overlap considerations and a covalent model that 

the atoms in an alkali halide like rock salt are more nearly neutral than a fully ionic 

model would indicate. He continued by concluding that it would be likely that the 

difference in a total electron density distribution generated by the superposition of 

atomic electron densities and one generated by the superposition of ionic densities 

would be small and subtle. Moreover, he believed that it would be very difficult to 

distinguish one from the other by examining the resulting electron density map. In 

other words, the electron density distribution of a typical ionic material like rock salt 

would appear to have a large amount of atomic character. 

In an examination of the experimental electron density maps recorded for rock 

salt, Witte and Wolfel (1955) reported bonded radii of 1.17A for Nat and 1.64A 
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Figure 5. Scatter diagrams plotting the independent atom model (IAM) procrystal 
radii against the promolecule radii derived from calculations on only the coordinated 

polyhedra in danburite. Structural data for danburite was obtained from Downs 
(1992). 

for Cl-. A generation of the total electron density for a small Na,3Cl,4 block of 

the rock salt structure, assuming the superposition of spherically averaged atomic 

distributions of Na and Cl yield promolecule radii, r,, for Na and Cl of 1.166A and 

1.654A, respectively. The promolecule electron density distribution of rock salt decays 

rapidly with distance from the nucleus of each atom such that the density is less than 

0.01 e/bohr® at a distance of only ~1.6A(Gibbs et al., 1992). Because of this rapid 

drop in density, the promolecule radii for Na and Cl calculated for a separation of 

2.82A(the NaCl separation in rock salt) were found to be largely independent of 

coordination number of the Na atom with rp(t Na) = 1.168A in a NaCl, molecule 
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and r,("!Na) = 1.165A in a NaCl, coordinated polyhedron. 

Promolecule electron density maps calculated for the BeO4, SiO4, CaO7, SiOg 

coordinated polyhedra observed for bromellite, danburite and stishovite yield pro- 

molecule radii for Be, Si, Ca and O that match the bonded radii obtained from 

experimental electron density maps to within 0.01A (Feth et al., 1993). In addition, 

procrystal IAM radii obtained for the atoms in danburite (Downs, 1992) agree to 

withinff 0.002A with promolecule radii calculated for the atoms comprising the coor- 

dinated polyhedra of the mineral (Fig. 5). A procrystal is a model of a crystal whose 

electron density distribution, like that of a promolecule, consists of a superposition 

of spherically averaged electron density distribution of atoms, each located at its ob- 

served position in the crystal. Procrystal radii are obtained in the same way that 

promolecule radii are determined for such a distribution. Collectively, when consid- 

ered with the agreement that obtains between the bonded and promolecule radii for 

rock salt, these results support arguments by Slater (1965) that the electron density 

distributions in such crystals can be viewed as having a relatively large atomic com- 

ponent, regardless of bond type. It also indicates that promolecule radii calculated for 

the atoms of a coordinated polyhedron isolated from a crystal closely match procrys- 

tal radii calculated for the crystal. This result suggests, as argued for the Na and Cl 

atoms in rock salt, that the electron density of the atoms in danburite decay rapidly 

with distance. Gibbs et al. (1992) also observed that promolecule radii calculated for 

the oxide, nitride and sulfide molecules optimized by Gibbs et al. (1987b), Buterakos 

et al. (1992) and Bartelmehs et al. (1989), respectively, yield promolecule radii that 

are highly correlated with the bonded radii calculated for the atoms in these same 

molecules (data plotted as open circles in Fig. 6). To learn whether the bonded radii 

calculated for the fluoride molecules show a similar correlation, promolecule radii 
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were calculated for the X—cations comprising the fluoride molecules. The resulting 

promolecule radii are plotted as solid circles in Figure 6 against the bonded radii of 

the X-atoms calculated for the fluoride molecules. The resulting radii match those 

obtained for the oxide, nitride and sulfide molecules reasonably well. It is noteworthy 

that the fluoride data fall closer, on average, to the line than the remaining data, a 

result that probably reflects the fact that the radii for the fluorides were determined 

analytically whereas those obtained for the oxides, sulfides and nitrides were obtained 

using graphical methods. Nonetheless, the strong correlation that obtains between 

the bonded and promolecule radii indicates, as observed above, that the electron den- 

sity distributions of the molecules used to prepare the plot can be viewed as having 

either large atomic components or the property that atoms and their ions possess 

similar bonded radii. 

Bond Length and Radii Variations in Silicates 

A similar study of experimental electron density distributions indicates that the 

bonded radii of Si and O in several silicates are independent of coordination number 

for a given bond length but increase with SiO bond length as observed for the cations 

in the rock salt structure. In this study, the bonded radii for ‘”Si and 70 were 

calculated for the monosilicic acid molecule, H,SiO,, for a range of SiO bond lengths 

from 1.50A to 1.80A and compared with those obtained from experimental electron 

density maps determined for two silicate crystals (coesite and danburite) that have 

4—coordinate Si and 2-coordinate O and one (stishovite) that has 6-coordinate Si 

and 3-coordinate O. If the radii are independent of coordination number for a given 

bond length, then the bonded radii calculated for the silicate molecule are expected 

to match those observed for the three crystals. 

For the calculation, the geometry of H,SiO, was optimized assuming 5S, point 
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Figure 6. Plot of the bonded radii of the main group cations and anions versus 
promolecule radii derived from calculations on oxide, sulfide, nitride and fluoride 

molecules. Data for the oxides, sulfides and nitrides are plotted as open circles while 

data for the fluorides are plotted as solid ones. 

symmetry and a 6-31G™ basis set (Gibbs et al., 1981; Boisen and Gibbs, 1986). 

Additional SCF calculations were completed for the resulting molecule with the SiO 

bond length set at a range of values that include those reported for the three silicate 

crystals. Using the density matrices provided by each calculation and the software 

EDEN, bonded radii for both Si and O were calculated for each molecule. The 

resulting radii vary linearly with R(SiO) as evinced by Figure 7 with r,(O) increasing 

with R(SiO) about three times more rapidly than 7,(Si). The bonded radii provided 

by the structural analyses of the three silicate crystals are plotted in Figure 7 as 

solid circles. Those determined by the mapping of the experimental electron density 
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distribution of stishovite fall on the curve while those determined for the silicate 

tetrahedra in coesite and danburite scatter about the curve departing at most by 

~0.02A. The agreement between the bonded radii calculated for the molecule and 

those obtained experimentally provide support for the assertion that the electron 

density distribution in molecules like H,SiO, and HgSi,O; are similar to those in a 

silicate crystal. 

Discussion 

Molecular orbital calculations completed on molecular models of blocks of crystals 

have provided evidence that the forces that govern bond lengths can be viewed as if 

largely short ranged. This viewpoint is almost certainly true, otherwise, it would be 

unlikely that one could derive single sets of radii that would generate the average bond 

lengths for the coordinated polyhedra for a wide variety of oxide, nitride, fluoride and 

sulfide crystals to within ~0.02A, based only on such parameters as coordination 

number, spin state, and oxidation state. Because such sets of radii do indeed exist, 

the separation between a pair of bonded atoms in such crystals can be viewed as 

largely independent of any other forces exerted on the pair by the other parts of 

the structure. Because of the short ranged character of these forces, a knowledge of 

the wave functions and the charge density distribution of a molecule, provided by 

molecular orbital calculations, can improve our understanding of such properties for 

representative parts of a chemically similar crystal. By completing such calculations, 

the results can be transferred to the crystal and used to improve our understanding 

of its crystal chemistry. 

As observed by O’Keeffe and Hyde (1985) at The Castle Hot Springs Confer- 

ence on Structure and Bonding, the divorce between crystal chemistry and molecular 

chemistry in the early thirties was a mistake in that it left both sciences the poorer. 
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Figure 7. Scatter plots of the bonded radii of Si and O, r,(Si) and rp(O) respec- 
tively, in monosilicic acid, H4SiO4 versus SiO bond lengths, R(SiO) over a range 

from 1.50Ato 1.90A. These data are plotted as solid circles. Also plotted on these di- 
agrams are the bonded radii of Si and O for coesite (open triangles), stishovite (open 
diamonds) and danburite (open squares). Notice how well data from stishovite falls 
on the plot, though stishovite has 6-coordinated Si and 3-coordinated O. Data for 

coesite and stishovite were obtained from Buterakos (1990) and data for danburite 

were obtained from Downs and Swope (1992). 

The insights provided into bond length and angle variations and charge density dis- 

tributions calculated for molecules with molecular orbital methods and the successful 

transference of the results to crystals provides support for the statement that the 

structures of molecules, their properties and their similarities with crystals should 

be included as a chapter in any course on crystal chemistry. In addition, in studies 

20



using molecules as models for bonding in silicates, molecular orbital methods have 

been used to probe and clarify the similarities of the binding forces in molecules and 

chemically similar coordination polyhedra in silicate crystals. There is no doubt that 

the results of these studies have improved our understanding of silicate crystal chem- 

istry. As discussed in the introduction, the methods have not only generated the 

bond length and angle variations exhibited by crystals, but they have also provided 

a theoretical underpinnings for a number of empirically established correlations. The 

methods also show that calculations for a large number of oxide, nitride and sul- 

fide molecules yield bond lengths that match those observed in chemically similar 

crystals. In addition, the calculations undertaken in this study show that the bond 

lengths in fluoride molecules match those in crystals as well. They also show that 

the bonded radii of the cations and the fluoride ion in these molecules increase in 

a regular way with both length. It is also observed that bonded radii can be easily 

derived from electron density distributions calculated for molecules. However, unlike 

ionic and crystal radii, bonded radii seem to depend both on the atom to which they 

are bonded and the length of the bond. For a given bond length, they also seem to 

be independent of their coordination numbers. Also, individual atoms are observed 

to exhibit several different radii, depending on their chemical environments, rather 

than a single radius. 

For example, the oxide ions in danburite each exhibit several different bonded 

radii that range between ~0.94 and ~1.23A (Downs and Swope, 1992). Three of the 

oxide ions are bonded to three different cations, ”B, ‘”Si and "4Ca at ~1.47, ~1.62 

and ~2.44A, respectively. In the direction of the BO bonds, the oxide ions exhibits 

a radius of ~1.00A, in the direction of the SiO bonds, a radius of ~0.94A while in 

the direction of the CaO bonds, a radius 1.23A. Of the two remaining nonequivalent 
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oxide ions, one is bonded to two equivalent 7”B atoms and a "//Ca atom and has 

a radius of 1.18A in the direction of the CaO bond and a radius of 0.97A in the 

direction of the two BO bonds. The remaining oxide ion is bonded to two equivalent 

1V’Si atoms and exhibits a single radius of 0.94A. The cations in danburite also show 

variable radii but the variability is much smaller. In the derivation of ionic and crystal 

radii, it is assumed that such radii are spherical. However, the results presented here 

indicate that electron density distributions measured for an atom in the directions 

of nonequivalent bonds are aspherical and yield several different radii rather than a 

single one. This result and those presented above confirm proposals made by Johnson 

(1973), O’Keeffe (1981), Cahen (1988) and Gibbs et al. (1992) that cations and anions 

in molecules and crystals have variable radii rather than a single radius for a given 

chemical environment. 

Finally, an examination of the total electron density distribution observed for 

danburite indicates that its CaO bonds have a large component of ionic structure 

which is consistent with bonds involving Ca?* cations (Downs and Swope, 1992). If, 

as is generally believed, that Ca?+ cations are indeed smaller than Ca atoms, then 

the promolecule radii calculated for the Ca atom of a CaO, coordinated polyhedra 

and the procrystal (IAM) radii calculated for danburite should be larger than the 

observed bonded radii. But, as noted above, the bonded and the promolecule radii 

for the Ca atom in danburite agree with one another to within ~0.01A, a result that 

indicates that the radius of an atom changes little, for a given bond length, upon a 

losing its valence electrons in forming a cation. The close agreement between bonded 

and promolecule radii is not restricted to the Ca atom in danburite, but it also obtains 

for the atoms in a wide variety of molecules and crystals with a wide range of bond 

types. On the basis of these results, it is evident that the bonded radius of an atom 
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remains unchanged with a loss of its electrons for a given bond length. Results such 

as these that involve a synthesis of experimental and calculated data for molecules 

and crystals surely enrich our understanding of the properties of ions, their sizes 

and size variations with bond length for molecules and crystals as well as enrich our 

understanding of the crystal chemistry of a solid state material that contains such 

ions. 
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Appendix A 

REVIEW OF ELECTRON DENSITIES 

Introduction 

The purpose of this appendix is to outline a procedure by which total electron 

density maps, and details of their features, can be calculated for molecules. As the 

total electron density distribution, p(r), of a molecule with an optimized geometry 

is a Minimum energy feature, that is, it represents a ground state electron density 

distribution, features of p(r), such as the (3,-1) critical points (cp’s) and the bonded 

radii thus derived should be minimum energy features as well. To this purpose, a 

FORTRAN IV program, entitled EDEN, was written that, given the results of a 

GAUSSIAN single point calculation, calculates: 1) the total electron density within 

any plane specified by the user, 2) the minimum electron density along the vector 

between two bonded atoms, and, using this as the (3,-1) cp, 3) the bonded radii of 

all atoms in the molecule along all internuclear vectors. By Bader’s (1971) definition, 

the bonded radius of an atom is the distance from the (3,-3) cp (the nuclear position) 

to the (3,-1) cp (the minimum along the bond path). In general, the (3,-1) cp is not 

constrained to lie on the internuclear vector. However, for simple molecules modelling 

single polyhedra, or several polyhedra linked at the corners, the assumption that the 

(3,-1) cp lies along the internuclear vector is probably a valid one. 

Molecular Orbital Theory 

For an electron with a spatial wave function y,(r), the electron density for that 

atom is simply the probability distribution function, |%,(r)|?. The total electron 

density, p(r), for an N-electron system is found by summing the probability density 

functions over all N electrons. Since two electrons occupy each spatial wave state, 

this can be more easily written as 
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p(t) = 20 \va(r)/. (1) 

There are, however, no feasible numerical methods for calculating the molecular 

orbitals. Therefore, each spatial wave function is, in turn, written as a linear com- 

bination of a set of K known basis functions, called the basis set. This expansion is 

written as 
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The coefficients, C,,,, are called the molecular orbital coefficients, and the ¢, are 

the basis functions, or atomic orbitals. The problem of determining the Hartree-Fock 

molecular orbitals now becomes one of determining the molecular orbital coefficients. 

We can derive a computational form of the equation for p(r) by inserting the molecular 

orbital expansion into equation (1), 
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The P,, are the elements of the density matriz, P, and can be written in terms 

of the molecular orbital coefficients as follows, 
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Pw = 2) CuaC ra (4) 

In matrix form, P is written as P = CC*. C is the matrix of molecular orbital 

coefficients and is expressed as follows 

on on “os CK 
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The columns of C are the molecular orbital coefficients of the molecular orbitals 

(ie. 1 = Ciid11+Code+---+Cxidx). Since the C,, are real valued when gaussian 

basis functions are used, the density matrix is written as 

P=CC’ (6) 

Using equation (6), the expression for p(r) can be written as 

p(r) = OPS 

= 6'(CC')S (7) 

where ®@ is the vector of the K atomic orbital basis functions. This form of the 

equation is convenient as it can be easily programmed. Furthermore, the molecular 

orbital coefficients and the density matrix are provided by GAUSSIAN output and 

since the basis set is known prior to any molecular orbital coefficients, ® can be easily 

constructed. 
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Appendix B 

CALCULATED AND PROMOLECULE ELECTRON DENSITY MAPS 
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Figure B1. (a) Total electron density map for HBeF'3 and (b) promolecule electron 
density map for BeF3. The contour interval is 0.0001, 0.0002, 0.0004, ...,e/b®. The 

maps are 6.0 X 4.0A. 
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Figure B2. (a) Total electron density map and (b) promolecule electron density 
map for BF3. The contour interval is 0.0001, 0.0002, 0.0004, ...,e/b?. The maps 

are 6.0 X 4.0A. 
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Figure B3. (a) Total electron density map and (b) promolecule electron density 
map for H3LiF4. The contour interval is 0.0001, 0.0002, 0.0004, ...,e/b?. The maps 

are 6.0 X 4.0A. , 
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Figure B4. (a) Total electron density map and (b) promolecule electron density 
map for H2BeF4. The contour interval is 0.0001, 0.0002, 0.0004, ...,e/b?. The 

maps are 6.0 X 4.0A. 
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Figure B5. (a) Total electron density map and (b) promolecule electron density 
map for HBF,. The contour interval is 0.0001, 0.0002, 0.0004, ... ie/b>. The maps 

are 6.0 X 4.0A. 
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Figure B6. (a) Total electron density map and (b) promolecule electron density 
map for CF,4. The contour interval is 0.0001, 0.0002, 0.0004, ...,e/b?. The maps 
are 6.0 X 4.0A. 

37



 
 

 
 

   
 

  

¢ $ 

G 

  
 
 

  
  

  
 
 

 





  

      

  

        

Figure BQ. (a) Total electron density map and (b) promolecule electron density 
map for HAIF4. The contour interval is 0.0001, 0.0002, 0.0004, ...,e/b?. The maps 

are 6.0 X 4.0A. 
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Figure B10. (a) Total electron density map and (b) promolecule electron density 
map for SiF4. The contour interval is 0.0001, 0.0002, 0.0004, ...,e/b?. The maps 

are 6.0 X 4.0A. 
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Figure B11. (a) Total electron density map for H,NaFs and (b) promolecule 
electron density map for NaF;. The contour interval is 0.0001, 0.0002, 0.0004, 

...,e/b3. The maps are 6.0 X 5.0A. 
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Figure B12. (a) Total electron density map for H3MgFs and (b) promolecule 
electron density map for MgFs. The contour interval is 0.0001, 0.0002, 0.0004, 

...,¢/b3. The maps are 6.0 X 5.0A. 
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Figure B13. (a) Total electron density map for H2AlF; and (b) promolecule 
electron density map for AlF;. The contour interval is 0.0001, 0.0002, 0.0004, 

...,¢/b3. The maps are 6.0 X 5.0A. 
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Figure B14. (a) Total electron density map and (b) promolecule electron density 
map for PF;. The contour interval is 0.0001, 0.0002, 0.0004, ...,e/b”. The maps 

are 6.0 X 5.0A. 
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Figure B15. (a) Total electron density map for HsLiF., and (b) promolecule elec- 
tron density map for LiFg. The contour interval is 0.0001, 0.0002, 0.0004, ...,e/b’. 

The maps are 6.0 X 6.0A. 
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Figure B16. (a) Total electron density map for H4BeFg and (b) promolecule 
electron density map for BeFg. The contour interval is 0.0001, 0.0002, 0.0004, 

...,e/b3. The maps are 6.0 X 6.0A. 
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Figure B17. (a) Total electron density map for H3BF¢ and (b) promolecule elec- 

tron density map for BFg. The contour interval is 0.0001, 0.0002, 0.0004, ...,e/b°. 

The maps are 6.0 X 6.0A. 
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Figure B18. (a) Total electron density map for H2CF and (b) promolecule elec: 

tron density map for CFg. The contour interval is 0.0001, 0.0002, 0.0004, ...,e/b”. 

The maps are 6.0 X 6.0A. 
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Figure B19. (a) Total electron density map for HNF¢ and (b) promolecule electron 
density map for NFg. The contour interval is 0.0001, 0.0002, 0.0004, ...,e/b”. The 

maps are 6.0 X 6.0A. 
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Figure B21. (a) Total electron density map for H4BeFg and (b) promolecule 
electron density map for BeFg. The contour interval is 0.0001, 0.0002, 0.0004, 

...,e/b3. The maps are 6.0 X 6.0A. 
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Figure B22. (a) Total electron density map for H3AlFg and (b) promolecule 
electron density map for AlFg. The contour interval is 0.0001, 0.0002, 0.0004, 

...,¢/b3, The maps are 6.0 X 6.0A. 
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Figure B23. (a) Total electron density map for H2SiF'g and (b) promolecule elec- 
tron density map for SiFg. The contour interval is 0.0001, 0.0002, 0.0004, ...,e/b~. 

The maps are 6.0 X 6.0A. 
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Figure B24. (a) Total electron density map for HPF and (b) promolecule electron 
density map for PFg. The contour interval is 0.0001, 0.0002, 0.0004, ...,e/b?. The 

maps are 6.0 X 6.0A. 
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Figure B25. (a) Total electron density map and (b) promolecule electron density 
map for SFg. The contour interval is 0.0001, 0.0002, 0.0004, ...,e/b°. The maps 

are 6.0 X 6.0A. 
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Figure B26. (a) Total electron density map and (b) promolecule electron density 
map for H4Si04. The contour interval is 0.0001, 0.0002, 0.0004, ... ,e/b?. The maps 

are 6.0 X 4.0A. 
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