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Abstract—Malicious software (malware) with decentralized
communication infrastructure, such as peer-to-peer botnets, is
difficult to detect. In this paper, we describe a traffic-sanitization
method for identifying malware-triggered outbound connections
from a personal computer. Our solution correlates user activities
with the content of outbound traffic. Our key observation is
that user-initiated outbound traffic typically has corresponding
human inputs, i.e., keystroke or mouse clicks. Our analysis on the
causal relations between user inputs and packet payload enables
the efficient enforcement of the inter-packet dependency at the
application level.

We formalize our approach within the framework of protocol-
state machine. We define new application-level traffic-sanitization
policies that enforce the inter-packet dependencies. The depen-
dency is derived from the transitions among protocol states that
involve both user actions and network events. We refer to our
methodology as storytelling security.

We demonstrate a concrete realization of our methodology in
the context of peer-to-peer file-sharing application, describe its
use in blocking traffic of P2P bots on a host. We implement
and evaluate our prototype in Windows operating system in
both online and offline deployment settings. Our experimental
evaluation along with case studies of real-world P2P applica-
tions demonstrates the feasibility of verifying the inter-packet
dependencies. Our deep packet inspection incurs overhead on
the outbound network flow. Our solution can also be used as an
offline collect-and-analyze forensic tool.

I. INTRODUCTION

Personal computers have been and continue to be targets
of many clandestine cyber crimes. Modern attackers aim to
remotely control infected machines and conceal their tracks.
Because they are able to infect a large number of distributed
computers (e.g., the recently taken-down Mariposa botnet has
estimated 12 million victims [12]), the malicious activities
such as denial-of-service attacks launched from individual
hosts may not be obvious to the conventional statistics based
detection. Botnet victims are usually distributed across the
globe, e.g., Mariposa botnet reached into 190 countries [12]).
For botnets with a centralized command-and-control (C&C)
architecture, Internet-wide (as opposed to local area network)
detection of suspicious network-traffic patterns can be effective
in identifying an unusually large traffic volume to specific
domains or IP addresses.

In comparison, botnets (and malware in general) based on
peer-to-peer (P2P) communication architecture is much harder
to detect than those run with centralized servers. For example,
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Peacomm uses P2P network to search for new commands
and executables. Each Peacomm bot’s binary comes with a
hardcoded list of peers. The malware is delivered as a trojan,
as it is disguised as video attachment to email. Once it gets
executed on the victim machine, it publishes itself to the
network by contacting its peers. The bot searches for some
keys that are hardcoded. The search returns a value that is
decoded into a URL, which hosts the new executables that bots
can download. This search-and-download process is repeated,
each time with a new search key. Keys are generated based
on the current date and a random number from 0 to 31 [7].
A Peacomm peer is identified with a hash value as well as IP
address and port number. The size of peer list varies but is
usually around one hundred. Upon execution, the bot actively
sends heartbeat messages at high port numbers. Other P2P
botnets include Storm and Nugache [5], [20].

Naive statistical approaches of Internet-wide detection can
be easily circumvented by attackers through the use of tech-
niques such as fast IP flux [9] or domain flux, where IPs
or domain names of command servers change frequently.
The scale and the distributed and dynamic nature of data
also increase the difficulty of accurate detection. Recently,
researchers proposed a method for localizing botnet members
based on specific communication characteristics underlying
types of P2P botnets [17]. Despite the progress of network-
based detection techniques, there is an urgent need for pro-
viding host-based security mechanisms that can provide a
robust line of defense. The host-based protection requires
sophisticated techniques beyond the existing signature-based
solutions found in most commercial security products for PCs.

In this paper, we describe a host-based network security
approach for monitoring outbound P2P traffic and detecting
suspicious malware activities originated from the host. Specif-
ically, our solution is capable of examining the payload of
outbound packets and perform content-based correlation with
user inputs (namely keyboard and mouse inputs), in order to
identify the network activities not initiated by the user.

Our ultimate goal is to devise an intelligent agent that
is capable of performing complex inference to distinguish
suspicious traffic from legitimate ones. Such an agent com-
prehensively observes activities of a host across the operating
system and applications and makes real-time decisions. Our
key observation is that user-initiated outbound traffic typically
has corresponding human inputs. Our goal is to block traffic
that is not associated with legitimate user inputs, which is
referred to by us as user-intention based traffic sanitization.
For P2P traffic, however, one of the main technical challenges
for correlating user inputs with outbound network connections



is that some connections are automatically generated by P2P
clients. These traffic should be properly examined without
creating false alerts.

We identify the inter-packet dependency in the application-
layer traffic. Inter-packet dependency is defined by us as
the causal relations among a sequence of packets observed,
and how their payloads are related to their order of arrival.
For example, in typical P2P applications search keywords
(specifically their hash values) appear in the payload of
outbound search requests; subsequently, file hashes returned
from the peers in response to the user’s query appear in the
subsequent outgoing request at downloading. The correct inter-
packet dependency can be obtained according to the protocol
specifications of the (legitimate) application specifications. In
this paper, we do not consider unknown protocols. Traffic
of unknown protocol type can be used to infer protocol
specification, as recently demonstrated by Wang et al [29].

We hypothesize that the inter-packet dependency can be
identified and enforced at the application-layer traffic for
security purposes. Traffic that does not follow the pre-defined
inter-packet dependency can be identified and flagged. We
perform a case study on eMule traffic demonstrating the
feasibility of our hypothesis. We formally describe our models
and present our prototype implementation and experimental
evaluation.

Intuitively, this causal relation in network flows of a host
build a logical story around the observed network events and
user actions. Thus, we refer to our approach as storytelling
security. The storytelling approach is powerful, and is useful
beyond the specific P2P traffic studied. For example, similar
analysis can be applied to file-system behaviors such as file-
system access, as well as other application-level traffic such as
HTTP flows of browser. In general, our approach is a specific
form of the anomaly detection, which is field pioneered by
Denning [4]. What distinguishes our work from existing ones
is that i) we uniquely integrate user behaviors in our inference,
and ii) we focus on application semantics that provides a rich
and concrete context for the analysis.

In order to realize user-intention based traffic sanitization,
we also need to interpret the semantic meanings of user inputs,
specifically to understand the implication associated with user
actions. For example, it is straightforward to observe a mouse
click by the user and learn its timestamp, coordinates, and the
process to which it is fed at the kernel level. In comparison,
application-specific information associated with a user action
provides more concrete and useful. In this paper, we formally
define the semantic gap of user intention and describe the
associated technical challenges.

Our Contributions Our technical contributions are sum-
marized as follows.

o We describe a new security methodology — referred to
as the storytelling security — for inspecting outbound
network traffic of applications. The analysis can be used
as a forensic tool for diagnosing personal computers for
abnormalities caused by malicious software or corrupted
applications. We formalize our storytelling-security ap-
proach in the context of protocol-state machine (PSM).
The uniqueness of our model is that we integrate dynamic

user actions in constructing protocol-state machine and
enforcing traffic-sanitization policies.

o We give a concrete realization of our storytelling-security
approach in the context of P2P application. We describe
the architecture and implementation of a host-based tool
for monitoring and analyzing user-input events and traffic
associated with a P2P file-sharing application in Windows
operating system.

o We evaluate the performance of our tool in two deploy-
ment scenarios: real-time and off-line traffic sanitization.
Our experiments show that both types of deployment are
feasible. The overhead in the real-time analysis decreases
the throughput of outbound traffic, indicating the tradeoff
between security and usability. Our offline analysis incurs
very low computational overhead. Our evaluation results
suggest that our solution is better used as a diagnostic
and forensic tool that either runs as needed in a diagnos-
tic session or runs in the offline collection-and-analyze
mode.

The rest of this paper is organized as follows. The defini-
tions and models used in our work are given in Section II.
Section III presents an overview of our solution and describes
details of our approach. We present our prototype implemen-
tation in section IV and describe the experimental evaluation
in section V. Finally, we discussed related work in section VI
and conclude the paper in section VIIL.

II. DEFINITIONS AND MODELS

In this section, we describe an abstract resource manage-
ment model to represent typical operations of a peer-to-peer
(P2P) client. This simplified model allows us to better present
and explain our traffic sanitization solution in Section III.
Then, we give our security model, including our attack model
and security assumptions.

A. An Abstract Model for a P2P Client

For a typical file-sharing P2P client on a host, its operations
include setup, publish, search and download, and mainte-
nance.

e Setup All resources including peers and resources (i.e.,
data objects) in a peer-to-peer network are identifiable
by a unique hash value. The hash value associated with
a peer — PeerID is computed and assigned to it when it
joins the peer-to-peer network. For practical purposes, the
PeerID can be generated by P2P file-sharing software.

e Publish A data owner generates hash values — ObjectID
— for data objects to be shared. The process of publish-
ing is to announce to neighboring nodes the ownership
of certain objects. An ObjectID is computed based on
corresponding file’s meta information.

e Search and download ObjectIDs are used for search-
ing objects in peer-to-peer networks. Each P2P node
maintains a distributed hashtable (DHT) that is used
for searching and routing purposes. The table contains
the ObjectIDs of neighboring nodes that are close ac-
cording to certain virtual distance measure in the P2P
overlay network. We refer readers for P2P literature such



as Tapestry [31], Chord [26], and Kad [13] for more
distance-computation information.

e Maintenance A P2P client periodically sends to its neigh-
bors in DHT heartbeat messages to inform its availability,
which is used to keep an updated distributed hashtable.

For traffic sanitization, we focus on analyzing operations
that involve network activities, such as search and download.
We consider two common types of explicit user actions on a
P2P client that may trigger network activities as follows.

o Searching for a data object: User enters one or more
keywords to a textbox via the external keyboard device.
Upon receiving the keywords, the P2P client computes
the hash values {hy, ..., h,} for each of the n keywords.
It queries its neighbors (in the DHT) for the requested
ObjectIDs. Specifically, the P2P client sends outbound
packets with the ObjectIDs {hy, ..., h,} included in the
payload. The P2P client receives from the neighboring
nodes a list of file information (file names and their
corresponding ObjectIDs) as well as the information of
owners (IP addresses and PeerIDs). A schematic drawing
of the search process is in Figure 1.

e Downloading a file: The user selects one or more files
to download via explicit mouse clicks. The P2P client
sends outbound requests to corresponding peers and re-
trieves files from one or more peers (for example, in the
BitTorrent protocol pieces of a file may be retrieved from
multiple peers).

P2P Client
1. Inputs
Peer hash:
AE....DF......
User DF...Gll..
Internet
3. Peer
looku
2.hash
lfl l k 4. Prepare packets
Input-hash lists
Fig. 1. A schematic drawing of how user inputs are transformed into

outbound search requests in a P2P file-sharing client.

A P2P client may perform network operations without
explicit user actions or permissions, such as sending heartbeat
messages for maintaining DHT or uploading files in the user’s
shared folder to other peers upon requests. These automatic
operations make our traffic sanitization challenging, because
there is no causal relation between user actions and these
network events. Whitelists can be used to filter some of the
traffic, which we describe in Section III.

B. Attack Model and Security Assumptions

We consider stealthy malware that is aware of P2P file
sharing applications installed in the host and secretly sending
outbound P2P traffic with the same format. The malware
can corrupt the P2P application. Thus, the P2P file sharing
application is not assumed to be trusted. Malware may run

as a user-level application — Type-0 malware according to the
stealthy malware taxonomy [21]. Malware is active in making
outside connections for command & control, attacks, or exfil-
trating. Exfiltration refers to exporting stolen information such
as sensitive personal data or proprietary corporate information
as in Hydraqg malware.

We assume that the kernel as well as the components in our
sanitization framework along with its files are not corrupted
by the malware. This trust assumption on secure kernel can
be relaxed by utilizing trusted computing infrastructure such
as Trusted Platform Module (TPM) [28], [27]. TPM is avail-
able on most commodity PCs through a standard attestation
procedure [22]. TPM provides the guarantee of load-time
code integrity. System integrity can also be achieved through
the use of virtual machine monitor (VMM). At the VMM-
level, it is technically complex to interpret the semantics of
application-specific guest OS data and inputs as demonstrated
in [11]. Our analysis would not be efficient in VMM-based
systems, due to the technical difficulties in accessing and
reconstructing dynamic application-level data. TPM does not
provide detection ability for run-time compromises such as
buffer overflow attacks [6]. This issue is still an open research
problem in the security community with some recent promis-
ing development [14], [15], [16].

In this work, we assume the packets belonging to a specific
(P2P) application can be identified on a host. This assumption
can be realized by several means, for example, to associate net-
work flows with their corresponding process information (such
as PID and process name) using constant netstat queries.
Because the P2P application is not trusted, our deep packet
inspection is necessary for filtering out malware-triggered
traffic disguised as legitimate P2P traffic. This method can
be generalized to host-wide monitoring. This topic is subject
of our future work. Our analysis works only for unencrypted
traffic.

III. OVERVIEW OF OUR ARCHITECTURE

In this section, we first define protocol-state machine, and
describe how they are used to realize storytelling security.
Then, we briefly explain the technical challenges associated
with inferring user intention. Finally, we present our architec-
ture for user-intention based P2P traffic sanitization.

A. A Protocol-State Machine for P2P Application

To detect malware’s network activities, we enforce the
properties and data dependencies of the protocol states of an
application. Our techniques inspect the network traffic and
system events of a host. We aim to identify the causal relations
between user intention and network events. We assume that
all the traffic belonging to a specific application have been
identified, as explained in Section II-B. We define protocol-
state machine (PSM) in Definition 3.1 following Wang et
al [29].

Definition 3.1: The protocol state machine is a finite state
automaton illustrating all possible states in the protocol and
conditions for the transitions among states.



Given the specification of a protocol, protocol-state machine
can be obtained. PSM is useful for network security, in
particular anomaly detection. For example, malformed packets
(e.g., TCP packet with both SYN and FIN bits set) can be
identified and rejected. Recent work [29] also demonstrated
the feasibility of using statistical methods to infer probabilistic
protocol-state machine from unencrypted traffic, when speci-
fications are unknown.

Our analysis on PSM has a unique flavor, as we focus
on the states and their transitions that have two properties:
i) generating outbound network traffic and ii) transitions
triggered by user inputs. Figure 2 illustrates the PSM of a
typical P2P application. Some state transitions are implicit and
happen without any external inputs, e.g., from init state
to waiting for user inputs. For the simplicity of
description, we do not consider file uploading, which can be
easily included to our work. Our PSM model described in this
paper is a simplified abstraction of real-world applications. En-
forcing the protocol state machine may be complex in general,
especially for modern applications that support asynchronous
user-interaction architecture such as AJAX.

B. Traffic Types and Analysis Complexity

Based on the protocol-state machine in Figure 2, we dis-
tinguish four types of outgoing packets in P2P applications:
Type I: heartbeat, Type II: keyword-search request, Type III:
peer-connection request, and Type IV: file-download request.
Different sanitization policies are applied to different types of
traffic. In this work, we focus on inspecting Types II, III, IV
traffic, because they are directly or indirectly triggered by user
actions. Types I traffic does not involve explicit user actions,
which is discussed in Section III-C.

Sophisticated sanitization policies can be generated based
on evaluating the current protocol state with respect to the
previous states. Each state is associated with some informa-
tion, e.g., user inputs, incoming or outgoing traffic. Inter-state
comparison and analysis based on the state information incurs
overhead.

Consider a path on a protocol-state machine of length k. A
path represents a traversal of certain protocol states following
allowed transitions. The length of the path is the number of
states in the traversal. Denote n; as the size of data items
associated with the i-th state on the path (i € [1, k]). Policies
that involve linear-correlation based analysis on this path
of length k incur computation complexity O(IT¥_;n;) (i.e.,
O(ning...ny). We define linear correlation as the analysis
that involves comparing each data item in its linear form
— only linear transformation of data items is used, e.g.,
y = ax + b. Our architecture provides the support for general
traffic-sanitization policies. We demonstrate a simple policy
that compares two sets of hash values (representing PeerIDs
and ObjectIDs): one set is generated from user inputs and
incoming traffic, and the other set appears in outgoing packets.
Further details can be found in Section V-B.

C. Technical Challenges of Storytelling Security

One technical challenge in our approach is how to capture
user intention on a computer. In our work, we collect the

input events from keyboard and mouse devices to represent
user intention. To predict legitimate P2P traffic based on
observed user inputs, a straightforward solution is to compare
the timestamps of input events and outbound packets. In that
case, outbound packets are allowed only when they happen
shortly after some user inputs. However, this simple approach
is coarse grained, and easy for malware to circumvent. We
perform payload inspection with policies, which is more fine-
grained than temporal-based comparison such as in [3].

User-input events collected at the kernel level are usually
transformed by the destination applications. As a result, events
such as mouse clicks have specific meanings or semantics in
their destination application. For example, in a browser a user
clicks on a hyperlink; the semantics of the mouse-click event
includes the content of the hyperlink. Computation on user
inputs is another type of semantic transformation. For example,
in P2P file-sharing application, a search keyword (e.g., Harry
Potter) is entered by a user, the hashes of which (e.g., H(Harry)
and H(Potter)), is used to form a P2P search request for the
corresponding files. We define the semantic gap of inputs in
Definition 3.2.

Definition 3.2: The semantic gap of inputs refers to the
differences in the meanings of user-input events at the kernel
level and the application level. It captures the lack of semantic
information of user-input events collected within the kernel.

Our analysis is independent of the P2P application, thus
it is robust against compromised P2P applications. Yet, the
problem of semantic gap exists for mouse clicks. To tackle
the problem in our specific P2P file-sharing context, we use
the protocol-state machine to carefully propagate the trust
from the data of init state to the data of subsequent
states. The trust chain is extended — a piece of information
is trusted if and only if it is either entered by the user or
directly or indirectly caused by the user actions. Specifically,
we assume that the initial keyboard inputs to the application
are search keywords and trusted; to eliminate the need for
interpreting semantic meanings of mouse-click events during
the file-selection-and-download phase, we extract legitimate
PeerIDs and ObjectIDs from the legitimate incoming traffic.
More details are explained in the next section.

To realize P2P traffic sanitization, we collect two types
of data flows: user activities and outbound traffic, and then
perform a content-based analysis according to pre-defined
policies. Figure 3 shows the architecture of our system,
which has two main components correlation engine and traffic
monitor as described next. We explain our correlation engine
in the next section. The traffic monitor is described in the
following section.

D. Correlation Engine and Traffic-Sanitization Policies

The correlation engine performs the input-traffic correlation
on two data streams — user-input data and network packets.
We monitor both incoming and outbound packets of a specific
application at the transport layer on a host. We focus on
inspecting traffic of Types II, III, and IV. Type I (heartbeat)
messages are sent automatically without direct or indirect user
actions, and thus are not considered. They can be filtered
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their interactions with the host’s network stack.

based on a whitelist, for example, a host can only send Type-I
heartbeat messages to the remote peers specified by a white
list. The whitelist prevents a host from initiating connection
to any arbitrary remote peer. Yet, the host can request objects
from previous unknown peers if and only if that peer’s ID
appears in the incoming-hash list, which indicates that the peer
(namely its PeerID) has the requested object. The incoming-
hash list is populated as a result of previous object search
requests. Thus, the dependency and the causal relation between
the peer ID and previous search response/request are verified.
We formalize our policy in Step 3 below.

A schematic drawing of the detailed workflow regarding

our traffic sanitization is shown in Figure 4. The detailed
operations including the specific traffic-sanitization policies
that we use are explained below.

1) Step la of Figure 4. Our user-input monitor runs at the

kernel level and intercepts all user’s keyboard events.
It records the content, timestamp, and application in-
formation, e.g., {eMule.exe,4327,20:12:34,”w’ } where
4327 is the process ID and 20:12:34 is the timestamp
of the event. Keys entered at the kernel level may need
pre-processing. For example, a user may backspace to
delete typos; our input monitor records every key press
including backspace. Thus, we need to sanitize and
reconstruct user inputs before they are analyzed.
In Step 2a, the input monitor passes user inputs for
application-specific transformation, namely to generate
corresponding hash values. The hash values are stored in
a data structure that supports fast search, e.g., hashmap.
The data structure referred to by us as input-hash list is
accessed by the Analyzer described later.

2) Step 1b and 2b. A Traffic collector intercepts all the
outbound traffic (i.e., requests) as well as incoming
packets, specifically all incoming and outgoing Type II
and Type III traffic as defined in Section III-B. It extracts
the payload from packets for further inspection. We
maintain two lists of hash values: outgoing-hash list and
incoming-hash list. Outgoing-hash list is a data structure
consisting of the hash values appearing in outbound
packets of the P2P file-sharing application.

The incoming-hash list contains the trusted hash values
that are allowed to appear in the outbound traffic. The
content of outbound packets depends on the preceding
inbound traffic, which is captured in the list.

The incoming-hash list is a data structure consisting of



the hash values appearing in the payload of incoming
packets. The incoming-hash list contains either i) the
ObjectlDs of requested files, and ii) the PeerIDs of
those who have the requested objects. In our work,
the enforcement of inter-packet dependency is embodied
and realized by the comparison of the lists of hash
values (See Step 3 below). Timestamp and process
information corresponding to each hash value are ob-
tained and stored. We performed a case study on eMule
traffic, a popular P2P file-sharing application, to confirm
our hypothesis that the inter-packet dependency in the
application traffic can be identified and enforced with
proper sanitization. The details of the case study is not
shown due to page limit.
Extracting data from packets makes use of the knowl-
edge of the packet format with no hidden data fields .
We ensure that packets are well formed according to the
protocol specification, and obtain the fields correspond-
ing to the hash-values in both requests and responses
messages. These hash values are then carefully com-
pared according to sanitization policies in Step 3 next.
3) Step 3. Analyzer takes the processed input data in input-
hash list and packet payload in outgoing-hash list and
incoming-hash list, and applies pre-defined sanitization
policies that compare the two types of data flows.
The policies are generated based on the protocol-state
machine of the application.
In general, there is a tradeoff between the security and
efficiency — more complex rules impose higher compu-
tation and data-storage overhead. Our traffic-sanitization
policy specifies that i) the comparison is between hash
values h,h’ associated with the same process ID, i.e.,
PID;, = PIDy; ii) each hash value (PeerID or Ob-
jectID) in the outgoing-hash list H,,; should previously
appear in the input-hash list H,g., or the incoming-
hash list H;,; and iii) the timestamps 7} and T}, of
two comparable hash values h, h’ should differ within a
threshold 7, which is formalized as follows.

Vh € Hyye, 30 € Hyy, or Hyger, such that
h= h/,T}L - Th/ S T,PIDh = PID}L/.

For those hash values that fail the above verifica-
tion, their corresponding outgoing packet information is
logged and reported.

Our design shows how static protocol-specification infor-
mation can be used to dynamically enforce system properties
of a host. Our architecture is general and can be used to
support complex policies on application-level traffic. Our
model provides a concrete embodiment of the storytelling-
security approach in the context of P2P application — our
security analysis tells a story about the user’s interaction with
the application. Our prototype implementation and evaluation
are presented in the next two sections.

'Hidden data fields in payload may be used for covert channels. The general
discussion of covert channels is omitted due to page limit.
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Fig. 4. An illustration of the workflow in our traffic sanitization framework
as a concrete example of our storytelling-security approach.

E. Traffic Monitor With CompareView

Our scheme requires outgoing network packets to flow
through two verification checkpoints. One checkpoint at the
transport layer of the network stack of a host is for causal
relation verification (as described in Section III-D above). The
other is for traffic-integrity verification, which is explained
here. A schematic drawing is shown in Figure 3.

We inspect every outgoing packet of a P2P application.
Thus, we need to guarantee that no malicious bot packet by-
passes our cause-relationship verification. However, malware
may attempt to hide its traffic by circumventing or bypassing
our transportation-layer checkpoint. Malware may disable the
checkpoint all together. For the traffic-integrity verification,
we examine every single outgoing network segment for its
provenance proof. The goal is that no packet can circumvent
our traffic integrity verification.

To prevent these attacks and ensure the completeness of
collected traffic, we utilize an existing host-based traffic-
monitoring approach called CompareView [25]. It forces all
outbound traffic to pass through a transport-layer entry point,
and identifies those that do not — referred to as provenance
verification by [25]. The entry point can be used to deploy so-
phisticated personal firewalls that enforce application-specific
policies. This entry point is where we deploy our sanitization
policies for real-time traffic inspection.

Specifically, there are two kernel modules in CompareView,
Sign and Verify modules. They extend the host’s existing
network stack. This traffic-monitor architecture is shown in
Figure 3. The two kernel modules share a secret cryptographic
key. The key is used to ensure the integrity of outbound
network packets. All legitimate outgoing packets first pass
through the Sign module, and then through the Verify module.
The Sign module signs every outbound packet, and sends a
short provenance proof to the Verify module on the same host,
which later verifies the proof with a shared key. The proof
indicates the provenance or origin of an outbound packet, i.e.,
the packet passed through the transport-layer entry point [25].
If a packet’s proof is missing or cannot be verified, then it is



labeled as suspicious. This packet bypasses the Sign modules,
and likely is generated by stealthy malware. The proof can be
realized with keyed-hash such as HMAC.

Real-time analysis is more difficult to realize that off-line
analysis, as data from multiple sources needs to be pulled
together. For efficiency and scalability considerations, our
approach is more suitable for intrusion detection systems (IDS)
as opposed to intrusion prevention systems (IPS). In IPS, the
analysis results have to be applied to block malicious traffic
at real time.

IV. SYSTEM IMPLEMENTATION

In this section, we describe our prototype implementation in
Windows operating system, including the detailed realization
of traffic sanitization and input-traffic correlation. We also
present a simple P2P client and the specific filtering rules that
we use for evaluation.

A. Implementation Details

We implement a prototype of the P2P traffic sanitiza-
tion framework by expanding the TCP/IP network stack in
Windows XP. We describe our implementations of the main
components input monitor, traffic monitor, and analyzer in our
prototypes next.

Input monitor uses Inputhook.dll to record all the user inputs
with timestamps and application information (e.g., process ID
and name). All the collected data is stored in kernel file and
protected by kernel. Monitoring keyboard inputs is realized
using existing windows hook mechanism, such as input hook.
Deliminators are used to process each record and to produce
a list of words input from the user. Our prototype does not
require the logging of mouse events.

The collected user inputs are stored character-by-character.
We reproduce meaningful words from these raw inputs. This
transformation is done by grouping the characters based on
certain deliminators such as 0x20 (space), 0x0d (enter), and
0x08 (backspace). This process yields the search keywords
that user enters. The input monitor computes hash values on
the collected search keywords. This input-hash list is stored in
the memory, which can be accessed by the analyzer (described
below). The list represents the trusted values that we use to
infer legitimate traffic.

Traffic monitor and analyzer intercept and filter outbound
traffic sending from the application layer. It can capture all
outbound traffic and detect stealthy traffic that bypass our
sanitization. We realize it by hooking on the Windows TDI
(Transport Device Interface) driver’s tdi_send(), tdi_receive()
function. TDI is the interface in Windows OS that imposes
the transport-layer access to applications. We use a TDI
hook for the traffic-monitoring purpose. Our traffic monitor
uses a special packet identifier (namely string kwhv) as a
filter to capture traffic sent by our simulator (described in
Section IV-B). It extracts the payload (namely hash values)
from the outgoing packet. The hash value is passed down to the
causal-relation analyzer for further investigation. Timestamp
is recorded for each outgoing packet. Similarly, the incoming-
hash list can be maintained.

Our prototype expands the TDI hook to realize an analyzer
that enforces a simple traffic-sanitization policy — whether or
not the outbound packet contains a hash value in the input-
hash list and the incoming-hash list. In our implementation,
we use the debug view to display the verification results.

Our prototype is implemented as an online tool for real-time
detection. We also implement an offline collection-and-analyze
version, which can be used as a forensic tool to diagnose
computers in both personal or enterprise environments when
needed.

Our prototype is implemented on top of TDIFW, which is
a lightweight personal firewall for Windows operating system.
A screenshot of the output of our tool is shown in Figure 5.

B. A Simple P2P-Client Simulator

To test the functionality of our traffic-sanitization prototype
at real time, we implemented a simple peer-to-peer file sharing
simulator in C++. This program simulates basic functions
of peer-to-peer file-sharing software, including i) generating
hashes based on user inputs, ii) sending keyword-search re-
quests, iii) receiving search responses, and iv) generating file-
search requests. Our traffic-sanitization prototype is used to
inspect the outbound traffic in Steps ii) and iv).

i) Hash-value generation. We use MD5 that outputs 128-bit
hash value for a keyword entered or for a peer. MDS is used in
many P2P file-sharing applications including eMule. When a
user launches a keyword search in our simulator, the simulator
calls the hash function to generate corresponding hash value
of each keyword.

ii) Submitting keyword-search requests. The simulator pre-
pares and sends outgoing search requests based on the hash
values in UDP packets. The packets are sent to a remote sink.
To identify the outgoing packets sent by our simulator, we put
a unique string kwhv at the beginning of our packet headers
as shown in Figure 5. A more general approach is to use the
native Windows API (e.g., [PHelper) that allows one to obtain
the process ID and name information associated with a packet
based on destination IP and port number.

iii) Receiving search responses. To be able to simulate the
incoming traffic, we store the file-location information in each
peer’s file in a special folder on the localhost, including status,
keyword hash, file name, file hash, and file size. The status
field means the peer is active or not. Keyword hash is the
hash value computed from the search keywords. File name, file
hash, and file size are the name, hash value, and size of the file,
respectively. Our client searches the hash values in this pre-
defined folder for possible matches. Each result corresponds
to a file whose hash value matches the keyword. The results
are displayed to the user.

iv) Generating file-search requests. A user selects a file in
the list of the search results. The client prepares an outgoing
UDP packet with the hash value corresponding to the requested
file. The packets are sent to a remote sink.

At the real-time detection, our traffic-sanitization tool ana-
lyzes the network flow generated by the simulator as follows.
Our tool populates the input-hash list with the keywords
entered via the keyboard in Step i). Similarly, it populates



the incoming-hash list with the hash values of keyword-search
results returned in Step iii). The outgoing-hash list is populated
by parsing and extracting the hash values in Steps ii) and
iv). The traffic-sanitization policy of the simulator is that the
payload (namely hash value) in an outgoing packet should
appear either in the input-hash list or the incoming-hash list.
In addition, a delay threshold can be specified to constrain the
interval between the timestamps of the two events and hash
values being compared. The purpose is to prevent stale hash
values from being replayed.

C. Synthesized malware traffic

We write a proof-of-concept malware that is capable of in-
jecting well-formed UDP packets to outbound traffic. The mal-
ware payload contains arbitrary data. Our traffic-sanitization
tool is able to detect the malware activities, because they do
not correlate to the required hash values.

A legitimate application may be compromised by malware,
where the malware calls the application’s APIs to send its traf-
fic, for example malicious Firefox extensions (e.g., FormSpy)
that function as spyware. In this case, the malware packet
has the same format as the application’s. In addition, the
malware traffic and the legitimate application traffic share the
same port and belong to the same process (and with the same
PID). In our test, the malware payload contains the unique
string kwhv for identification, similar to the regular traffic
sent by our simulator. Alternatively, malware may be stand-
alone application running on a unique port. Thus, the traffic
monitor needs to intercept network activities at all open ports
to ensure the completeness.

V. PERFORMANCE EVALUATION

In this section, we describe the evaluation experiments that
aim to evaluate the efficiency of our solutions. We ran our
experiments on Windows XP Professional with SP3 installed
in a virtual machine with Intel Core 2 Duo CPU 2.50GHz, 512
MB memory. The computer was connected to the department
wireless network through 802.11g protocol.

In our feasibility study (not shown), we manually inspected
traffic from eMule peer-to-peer application. The results con-
firmed our hypothesis of the inter-packet dependencies and
the causal relation between user’s input activities and traffic
payloads.

A. Performance of Real-Time Packet Inspection

We conducted series of experiments to evaluate network per-
formance of our solution under the simulation environments.
We ran the experiments on different scenarios to investigate the
overhead of our solution. We vary the sizes of packets and the
number of hash values, respectively, to evaluate their impact
on the efficiency of our solution. We ran each experiment
six times with the same hash values and packet sizes, and
computed average results. The 128-bit hash values used in
all of our experiments are randomly generated with MDS5
algorithm.

We focus on evaluating the overhead of our hash-
comparison based deep-packet inspection on the network

throughput. We utilize a network performance measurement
tool Iperf to collect performance data. We vary the packet
payload from 2-Kbit to 60-Kbit consisting of random bytes.
We prepared lists of randomly-generated input hashes that
simulate hash values computed from user inputs. The numbers
of values on the input-hash lists are 50, 100, 150, 200, 250, and
300. Because the hash values in the input list and in packets
are random and have no correlation, the run time represents
the worst case scenarios — none of the hash values matches
between the input-hash list and payload. We also compare
the throughput with the original CompareView framework that
performs provenance verification on packets, but without any
payload inspection.

Figure 6 shows our results with TCP packets. Throughputs
decrease as the number of hash values increase, which is
expected. This fact is because the comparison of long strings
takes longer time. Packet size has a small impact on the
throughput. Larger packets yield higher throughput as ex-
pected, because of better amortized overhead. Clearly, deep-
packet inspection slows down the network flow significantly
in our experiments. Our results are not optimized. Fast string-
comparison algorithms such as Boyer-Moore algorithm [1]
that have been used for virus scan and genome-sequence
comparison can be applied to improve the performance.

For run-time evaluation, we wrote a program that sends
UDP packets with random-generated hash values. For each
experiment, we sent 1,000 UDP packets for 6 times and
computed the average time needed to send all packets. Again,
the run time corresponds to the worst case scenarios with
all mismatches. We compare our performance with Compare-
View and vanilla TDIFW — the latter involves no security
mechanism. Our results are shown in Figure 7. TDIFW sends
packets much faster than other settings. The run time of deep-
packet inspection experiments is slightly slower than that of
CompareView, but comparable. Larger packets take longer to
transmit as expected. The increase of run time with the number
of hash values is not monotonic.

B. Performance of Off-line Packet Inspection

Real-time execution of our traffic-sanitization analysis in-
curs overhead that may slow down outbound network flow
from a host, as shown in Figures 6 and 7. The delay is mainly
from two sources: i) computation overhead due to comparison,
and ii) the synchronization delay between input-data stream
and packet stream. In order to isolate the computation over-
head associated with comparing hash values, we performed an
off-line packet-inspection analysis as follows.

We evaluated the efficiency of our solution when executed
offline, as opposed to real-time traffic inspection. We stored
hash-value lists and UDP packets in the memory. The payload
of each packet contains a 128-bit MD5 hash and some header
bits. The list represents the input-hash list. We ran a Python
script to measure the run time for comparison. We define hit
rate as the percentage of packets that contain matching hash
values with the input-hash list. For example, 50% hit rate
means that half of the packets contain hash values that appear
in the input-hash list. The worst-case scenario corresponds to
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Fig. 5. A screenshot of the output from our kernel monitor. kwhy is the unique string that we use for identifying outgoing packets belonging to our simulator.
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Fig. 6. Comparing the network throughputs of CompareView alone and our
content sanitization with input-hash lists of various sizes. E.g., Hash250 indi-
cates that there are 250 hash values on the input-hash list. The CompareView
series of experiments do not involve any payload inspection.

0% hit rate, whereas in the best case the hit rate is 100%. The
runtime of comparison with different numbers of hash values
and UDP packets are evaluated. Figure 8 shows our results
with varying hit rates.
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experiment is between an input-hash list of size n and m
number of outbound packets (i.e., outgoing-hash list of size
m). The comparison complexity is bounded by O(nm). The
complexity can be generalized as shown in Section III-B.



The offline evaluation results show that the comparison-based
payload inspection can be efficiently executed once the data
is collected. Compared to the real-time traffic inspection, the
offline analysis is much faster. It does not affect the network
throughput of the host, and incurs no delay due to data-stream
synchronization.

The disadvantage of offline evaluation is the storage over-
head. To mitigate the problem, periodic data shedding can be
scheduled to erase older entries. Another solution is to use our
tool for a short-term (e.g., for 24 hours) for diagnostics and
forensics purposes, a process conceptually similar to periodic
virus scanning on a host.

VI. RELATED WORK

User-intention based security has not been extensively stud-
ied in the computer-security literature as a general approach
to protect a host and detect malware activities. However,
there are several notable exceptions [8], [24]. Gummadi et
al. [8] proposed a bot-detection solution on a personal com-
puter that used hardware-assisted certification mechanism to
distinguish human-generated traffic from malware-generated
activities. Their solution requires a trusted proxy server to
certify keystroke events entered by the user. Shirley and
Evans [24] proposed to generate and enforce access-control
policies for file systems based on user intentions that are in-
ferred from the context of a transaction on a host. Cui et al [3]
proposed BINDER that is a framework for detecting extrusion
or exfiltration by measuring the delay between timestamps
of user inputs and network packets. These solutions are for
anomaly detection that is similar to ours.

The main feature that distinguishes our work from the above
user-behavior inspired approaches is that our analysis is appli-
cation specific, which enables more fine-grained and semantic-
aware inspection on the network traffic. We uniquely leverage
the protocol-state machine for security and our sanitization
policies allow more sophisticated enforcement of the causal
relations between user actions and network events.

Data-loss prevention (DLP) is a term used by computer-
security industry to refer technologies that prevent sensitive
data from leaked out of a computer or network. Network-based
DLP solutions typically inspect outbound network packets for
sensitive data and compute the correlation coefficients between
the two types of contents. For example, a recent solution
was proposed to compute the Pearson Correlation Coefficient
(PCC) between artificially injected user inputs with outbound
traffic to detect any keylogger on a host [18]. That approach
is robust to linear transformation of the exported data, and
will not be effective if strong encryption algorithm is used on
the stolen data. The PCC-based analysis is complementary to
our PSM-based policies and can be combined to provide more
scalable application-specific traffic sanitization (See also our
future work in the next section).

Analyzing and characterizing peer-to-peer traffic has been
traditionally studied for identification peer-to-peer traffic with
or without masqueraded techniques [2], [23]. For example,
Collins and Reiter [2] proposed to identifying peer-to-peer file
sharing traffic by observed service behaviors. Sen, Spatscheck,

and Wang [23] applied application signatures on real-time
detection of peer-to-peer traffic from large-scale traffic. The
uniqueness of our approach is the human-behavior inspired
network analysis on a host and its concrete realization based
on the protocol-state machine.

Yen and Reiter [30] described an effective and elegant
network-level traffic inspection solution for distinguishing
malicious P2P bots from legitimate P2P file-sharing clients.
Their analysis — based on properties such as volume, peer
churn, and interstitial time distribution can be deployed at
the router level. In comparison, we aim to construct a host-
based tool for protecting and diagnosing personal computers.
Our solution is able to utilize process, kernel, and payload
information to provide a fine-grained control over the traffic.
One specific difference between human-driven P2P traffic and
machine-driven P2P traffic that was studied by [30] is the
periodicity of activities — a higher self correlation indicates the
likelihood of programmed bot. In comparison, our anomaly-
detection approach does not target any specific malware-
behavior characteristics.

VII. CONCLUSIONS

In this paper, our goal is to identify human-generated
outbound traffic from what malware generates. We proposed
a novel storytelling-security approach that verifies the de-
pendencies among critical system events associated with an
application. The analysis is based on the protocol-state ma-
chine, the data items associated with each state, and the
transitions among the states. We gave a concrete example of
using the storytelling-security methodology in sanitizing P2P
traffic of a host. The policies are generated based on observing
the causal relations between user actions and network events
of a P2P application. This deep packet analysis allows the
detection of suspicious outbound traffic that violates the causal
relations, and is useful for detecting P2P-based malware. We
implemented a prototype of our solution in Windows operating
system and performed extensive analysis to evaluate its online
and offline efficiency. Our experimental results showed that
the offline performance provides fast analysis without creating
any bottleneck on the network stack. Thus, our deep-packet
inspection tool is better used as an intrusion-detection system
as opposed to a real-time intrusion-protection system.

For future work, we plan to use statistical measures such
as Pearson correlation coefficient to analysis the input-traffic
correlation, which will allow us to perform the analysis in
a much larger scale. We will also investigate the tradeoff
between precision and efficiency. Another intriguing topic is
to generalize our approach to the analysis and enforcement
of composable protocol-state machines, which will allow us
to represent the user’s simultaneous interactions with multiple
applications.
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