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Abstract

Ionomeric polymers are a promising class of intelligent material which exhibit elec-

tromechanical coupling similar to that of piezoelectric bimorphs. Ionomeric polymers are

much more compliant than piezoelectric ceramics or polymers and have been shown to pro-

duce actuation strain on the order of 2% at operating voltages between 1 V and 3 V (Akle

et al., 2004). Their high compliance is advantageous in low force sensing configurations

because ionic polymers have a very little impact on the dynamics of the measured sys-

tem. Here we present a variational approach to the dynamic modeling of structures which

incorporate ionic polymer materials. The modeling approach requires a priori knowledge

of three empirically determined material properties: elastic modulus, dielectric permittiv-

ity, and effective strain coefficient. Previous work by Newbury and Leo has demonstrated

that these three parameters are strongly frequency dependent in the range between less

than 1 Hz to frequencies greater than 1 kHz. Combining the frequency-dependent material

paramaters with the variational method produces a second-order matrix representation of

the structure. The frequency dependence of the material parameters is incorporated using

a complex-property approach similar to the techniques for modeling viscoelastic materials.

Three structural models are developed to demonstrate this method. First a cantilever beam

model is developed and the material properties of a typical polymer are experimentally de-

termined. These properties are then used to simulate both actuation and sensing response

of the transducer. The simulations compare very well to the experimental results. This val-

idates the variational method for modeling ionic polymer structures. Next, a plate model

is developed in cylindrical coordinates and simulations are performed using a variety of

boundary conditions. Finally a plate model is developed in cartesian coordinates. Methods
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for applying non-homogenious boundary conditions are then developed and applied to the

cartesian coordinate model. Simulations are then compared with experimental data. Again

the simulations closely match the experiments validating the modeling method for plate

models in 2 dimensions.
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Chapter 1

Introduction

Ionomeric polymers are a promising class of intelligent material which exhibit electrome-

chanical coupling similar to that of piezoelectric bimorphs. Ionomeric polymers are much

more compliant than piezoelectric ceramics or polymers and have been shown to produce

very high actuation strain at low excitation voltages. Their high compliance potentially

makes them very good sensors for structural applications. Much of the ongoing ionic poly-

mer research focuses on improvement of the materials and manufacturing methods. One

of the recent advancements has been the production of materials which do not require hy-

dration. These transducers are stable in room temperature atmospheric conditions. To

assist in developing applications for ionomeric materials this work focuses on the modeling

of structures which contain ionomeric transduceres.

1.1 Ionomeric Material Characteristics

Ionomeric polymer transducers, also called ionic polymer metal composites (IPMC), con-

sist of an ion-selective membrane sandwiched between two conductive metal electrodes.

The ion-selective membrane is infused with mobile cations (positively charged ions). These

cations move towards the cathode (negatively charged electrode) upon application of an

electric field (Nemat-Nasser and Thomas, 2001). The migration of cations causes a swelling

of the material near the cathode and a contraction of the material near the anode resulting

in a bending response towards the anode. The inverse operation also takes place. When

an IPMC is mechanically deformed in bending the positive and negative strain at opposing

sides of the neutral axis cause a charge imbalance and the mobile cations migrate to achieve
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electrostatic equilibrium. This phenomena can be applied to sensor technology. Ionomeric

materials exhibit several characteristics which are potentially advantageous for both actu-

ator and sensor development. Table 1.1 compares ionic polymer materials to two potential

competitors. Ionic polymers are highly compliant as compared to either PVDF or PZT.

This is an advantage in sensor configurations because the sensors would have less impact on

the system. They also achieve extremely high actuation strain at very small electric fields.

This suggests that they could be used as large displacement, low voltage actuators.

Table 1.1: Comparison of Properties for Several Active Materials

Material Modulus Strain Excitation (V)

Ionic Polymer 200 MPa > 5% 1-3V

PVDF 1GPa 0.1% 100 V

PZT 70GPa 0.1% 100-1000V

The majority of research concerning IPMC’s has been performed using hydrated

materials. Hydrated materials are those which use water as the solvent. A few years

ago, according to Tadokoro and Oguro, two of the most important advancements that

needed to be made in order for IPMC’s to become viable sensors and actuators were the

stabilization of the materials and development of modeling methods (Tadokoro et al., 2001).

The development of a system level modeling method is the subject of this research project,

but applications for these materials are only now becoming viable because of recent work

which has addressed the stabilization of the material.

The solvent (water) is the limiting factor in the environmental stability and longevity

of these hydrated samples. Water evaporates under normal atmospheric conditions and also

disassociates into hydrogen and oxygen when the applied electric field reaches the electrolysis

limit of about 1.2 V. Bennett and Leo also showed the actuation limit of a typical hydrated

transducer to be about 1000 cycles. They have greatly improved the stability of IPMC’s by

replacing water with ionic liquids, which are salts that remain liquid at room temperature.

In a study which used 1-ethyl-3-methylimidazolium trifluromethanesulfonate (EMI-Tf) the

actuation limit of a transducer was extended to nearly 250,000 cycles (Bennett and Leo,

2004). The primary drawback of ionic liquid materials as compared to early hydrated

materials is speed. Ionic liquid materials have been shown to be slower than their water
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hydrated counterparts.

1.2 Review of Recent Modeling Methods

1.2.1 Physical models of Ionomeric Materials

A relatively recent model of ionomeric materials suggested that fluid transport was the

primary mechanism responsible the bending response exhibited by ionic polymer devices

(Tadokoro et al., 2000). According to the authors, when electric potential is applied across

the polymer thickness mobile cations are move towards the cathode or negative electrode. As

the cations move across the thickness they carry with them water (water was the solvent in

the materials studied) molecules. They believed that the depletion of water near the anode

caused a contraction of the material and likewise the material swelled near the cathode.

This was the mechanism of actuation in their model.

Another model proposed at about the same time suggested that electrostatic forces,

rather than hydraulic pressures were responsible for the bending and sensing response

(Nemat-Nasser and Li, 2000). The basic idea was that application of an electric field

caused the mobile cations to move to the cathode. The abundance of cations result in an

expansion at the cathode, and a contraction at the anode. It is this expansion and contrac-

tion at opposing sides of the device’s neutral plane which causes the transducer to bend

toward the anode. Also, under an applied load the mechanical contraction and expansion

at opposing sides of the neutral plane causes ion migration resulting in net charge at the

electrodes. Their model resulted in a set of coupled linearized differential equations based

on physical properties of the of the polymer chain, solvent, and counter ion. They manu-

factured a hydrated sample and performed both sensing and actuation experiments, which

were compared to simulations. Their comparisons were fairly good. As an example they

applied a sinusoidal voltage and the resulting time domain response compared favorably to

the model predictions. They matched the amplitude of the response very well; however,

there was a phase shift of about 45 degrees between the model and experiment. They also

compared sensing response to a step displacement applied at the actuator tip for several

actuator lengths. Their experimental results exhibit quite a bit of scatter but the average

of the data does appear to be follow the predicted curve.
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1.2.2 Empirical and Semi-Empirical Models of Ionomeric Materials

Many of the first models of ionic polymer materials were empirical models. One of these

models proposed that tip response to an applied step voltage could be modeled as a sum

of exponentials (Kanno et al., 1994). They performed experiments and performed a least

squares curve fit to the time domain results. This was performed with many different input

levels. The result of this analysis was that the coefficients of the exponential did not vary

linearly with input voltage.

Another empirical model developed by Newbury and Leo was useful for predicting

both actuating and sensing response (Newbury and Leo, 2002).
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Z11 Z12

Z21 Z22











i(ω)

u̇(ω)






, (1.1)

where the applied voltage v, applied force f , resulting current i, and tip velocity u̇ are all

functions of frequency ω. The parameter Z11 is the electrical impedance with u̇ set to zero,

Z22 is the mechanical impedance with the current set to zero (open circuit), and Z12 and

Z21 are parameters associated with the electromechanical coupling. Several experiments

were then performed to determine these parameters. A step velocity was applied at the

tip while measuring force and short circuit voltage which were used to show a relationship

between Z11 and Z12. Then the electrical impedance was measured with a blocked tip to

determine Z11. A force was then applied under open circuit electrical boundary conditions

to determine Z22. Finally, Z21 was determined from an experiment using a step current

input and blocked boundary conditions. A numerical optimization algorithm was employed

to fit Zero, pole, gain models to the parameters. Next they validated the models with a

series of experiments that were not used in the curve fitting. They achieved very good

results that validated the model. However, the model did not include the geometry of the

transducer in the analysis and therefore could not be used to simulate a transducer of a

different geometry.

To remedy the scalability issue of their first model Newbury and Leo developed a

model which incorporated transducer geometry and some widely accepted physical phenom-

ena (Newbury and Leo, 2003a). It begins with an equivalent circuit of the form shown in

Figure 1.1. The left side of the circuit represents the electrical impedance of the transducer

while the right side of the model represents the mechanical impedance. The electromechani-
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cal coupling is represented by the transformer in the middle. The components Zp, Zm1, and

Zm2 were considered to be dependent on both intrinsic material properties and transducer

geometry.

N:1

RDCV

i
��

Zm1

Zm2Zp

f

f+

-

V ��i

w

w

Figure 1.1: Equivalent Electrical Circuit

Some initial experiments showed that the material was weakly coupled resulting

in an electrical impedance that is not dependent on mechanical boundary conditions and

a mechanical impedance which is not dependent on electrical boundary conditions. This

simplified the analysis and resulted in a set of linear equations which were very similar to

Equation 1.1. This set of linear equations is






v(ω)

f(ω)






=





Zp

1+Zp/Rdc
N Zm1

1+Zp/Rdc

N Zm1

1+Zp/Rdc
Zm1 + Zm2











i(ω)

u̇(ω)






. (1.2)

Frequency domain models of the parameters Zp, Zm1, and Zm2 were then fit to experimental

data while considering their geometry dependence. This resulted in a model which could

be used to predict the response of transducers of different geometry.

An additional contribution of this model which greatly influenced this research

project was the direct determination of quasi-piezoelectric properties from these experi-

mental results. In order to more easily compare ionic polymer materials to other electro

mechanically coupled materials the authors determined the equivalent frequency dependent

modulus, dielectric permittivity, and strain coefficients which would result in the actuation

and sensing response modeled by Equation 1.2.

The model developed by Newbury and Leo was expanded by Franklin to include the

effect of passive layers added to the ionomeric cantilever beam (Franklin, 2003). This model

development essentially involved computing a composite stiffness which accounted for both

the relative thickness of the layers as well as the different material properties. The greatest
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contribution of Franklins work to this thesis is an improved method for determining the vis-

coelastic parameters of the modulus. In Newbury’s method a cantilever beam configuration

was used and the load cell was moved a measurable distance. In the low frequency range

studied by Newbury this was adequate; however, Franklin found that at higher frequencies

the load cell began acting like an accelerometer and only measuring its own accelerations

instead of the load applied to the specemin. To remove the accelerometor affect a sliding

pinned test configuration was employed. In this way the clamped end of beam was moved a

known distance while a stationary load cell measured the force at the tip. The mechanical

stiffness in this configuration was found to be

K(s) =
1

∑n
k=1

1
Mks2+Kk

{

Y (s)I
n∑

k=1

Φk,xxx

Mks2 + Kk

}

, (1.3)

where Φk,xxx is the third spatial derivative of the sliding-pinned mode shape, Mk = ρbhLf ,

and Kk(s) = Y (s)ILfβ4
k. βk is the weighted natural frequency corresponding to a sliding-

pinned beam(Blevins, 1995). This is a much improved method of measuring the mechanical

stiffness and was employed in this research.

In addition to the physical model Tadokoro also developed a semi-empirical model

which included three stages (Tadokoro et al., 2001). The first of these steps was an electrical

stage. The input to this stage is voltage and the output of the stage is current so it

is essentially electrical impedance. Where it differs from other methods of modeling the

electrical impedance is that the input voltage and subsequent current are not constants

throughout the beam. The transducer is broken up into several elements and the resistivity

of the electrode as well as the base polymer are considered. In Figure 1.2 several elements

of this model are shown. The electrode is considered entirely resistive while the polymer is

modeled with resistors and capacitors resulting in frequency dependence.

The next stage dubbed the stress generation stage is very similar to many other

models of electro mechanically coupled materials. In this stage stress is related to mechanical

strain and current through the equation

σ = D(s)ǫ − e
ω2

ns

s2 + 2ζωns + ω2
n

i (1.4)

where D is the stiffness matrix, e is the stress generation matrix and the terms ωn and ζ are

parameters giving frequency dependence to the coupling. The final stage is the mechanical

stage where mass and stiffness matrices are developed along with a proportional damping
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Top Electrode

Bottom Electrode

Base 
Membrane

Figure 1.2: Tadokoro’s Electrical Impedance Model

matrix. The disadvantage of this method is that solving for each part separately rather

than coupling the equation does not allow the system to be used to model both sensing

and actuation. This model is very good for predicting actuator behavior but is incapable

of making sensor predictions.

Other Active Material Models

The previous models were all developed specifically with ionomeric materials in mind; how-

ever, we can learn quite a bit from methods used to model other electro mechanically coupled

materials. One such method which was extremely influential in this work was developed by

Hagood to model piezoelectric actuator structure interaction (Chang and Hagood, 1994).

Hagood began with a constitutive equation of the form






D′

T ′






=




ǫ
S

e

−e c
E











E′

S′






, (1.5)

where D is the electric displacement vector, T is the stress vector, E is the electric potential

vector, S is the strain vector , ǫ
S is the permitivity matrix at constant strain, c

E is the

stiffness matrix at constant electric potential, and e is the coupling matrix. They then

defined kinetic and potential energy functions and applied the variational principal resulting

in mass, stiffness, and damping matrices which were put into state space and used for control

system design. They then performed experiments where they used their control system to

actively damp vibrations. Their results were quite good and highlighted the fact that

their model was not only good for predicting actuator behavior but also how the actuators

interacted with other structures. A more complete explanation of the variational method
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and how it is applied to structures containing ionomeric materials is the subject of this

research and will be discussed more completely in the remaining chapters.

1.3 Motivation

As mentioned previously one of the steps that must be taken in order to make ionomeric ma-

terials a viable alternative in transducer design is to develop design methods. This research

was begun in answer to that need. Several applications come to mind that could benefit

from a system level modeling method. First of all this research is supported by an interest

in developing deformable mirrors based on ionomeric material. Mirrors manufactured from

ionic polymers would be much lighter and potentially cheaper to manufacture than tradi-

tional glass mirrors. However, the primary advantage of ionic polymers over traditional

glass is their ability to deform in a controllable manner. This controlled deformation can

be used to change the focal length of the mirror, actively damp vibrations, compensate for

lower manufacturing tolerances, and possibly compensate for atmospheric aberrations. The

ability of a control system to achieve these desired results will be greatly improved with a

good system model which will be developed in this research. In addition to deformable mir-

rors other applications have been proposed which can benefit from a good modeling method.

For instance, optimal sensor placement could be determined by modeling the polymers as

part of a greater structure.

1.4 Research Goals and Contributions

The overall goals of this project and how they will contribute to the scientific and engineering

community are listed below.

• Develop a verified model for sensing and actuation. A unified modeling method will

be developed which will allow one set of equations or methods to be used to predict

both sensing and actuating responses of a system incorporating some ionic polymer

components.

• Refine methods for determination of material properties. The modeling method should

be scalable. In other words a design engineer should be able to perform experiments

with a small less costly ionic polymer system and empirically determine material

8



properties which can be applied to a larger more complex system. In this work existing

material characterization methods have been expanded to and shown to be valid at

higher frequencies than previous work.

• Maintain one modeling methodology for multiple system configurations. The method

developed here is applicable to many system configurations. Developments will be

performed in different coordinate systems and boundary conditions, and passive com-

ponents can be modeled easily.

1.5 Overview

The modeling methods developed in this research consists of a series of steps. Though

complete application of the method requires one to define the structure and purpose from

which material properties, boundary conditions, shape functions and loading conditions can

be derived we will begin the model development in Chapter 2 assuming that we can define

shape functions for our structure. Potential and kinetic energy as well as external work

functions will be derived conceptually without actually defining the system. We will then

apply the variational approach resulting in a set off linear differential equations which can

be solved to determine deformation due to an electrical excitation and charge output due

to a mechanical excitation.

In Chapter 3 we will apply the method to a cantilever beam. Here we will demon-

strate the application of boundary conditions and subsequent shape functions. The model

will be completely developed following the steps outlined in Chapter 2. We will then char-

acterize the frequency dependent material properties and validate the modeling method for

both actuation and sensing applications.

Chapter four will be dedicated to thin ionic polymer plates which must be modeled

in two dimensions. First a plate model will be developed in cylindrical coordinates and

some of the interesting results that can be derived from the model will be discussed. Then

a plate model will be developed in cartesian coordinates. Experiments will be performed

on a square plate manufactured from the same material which is characterized in Chapter

2. These experiments will result in frequency response functions and operational deflection

shapes which are then compared with simulations based on the model. These comparisons

will show that the model is valid for plate structures.

9



Chapter 2

Modeling Methodology

In this chapter we will demonstrate the variational principal. The required steps are out-

lined in Figure 2.1. Here we will assume that material properties, boundary and loading

conditions, as well as shape functions have already been defined. We will begin the de-

velopment with the work and energy functions. The next two chapters will focus on the

modeling of specific applications by demonstrating the selection of shape functions based

on the boundary conditions as well as the characterization of materials.

Variational

Approach

Deformation & 

Charge

Structure & Purpose

Material

Properties

Boundary 

Conditions

Shape 

Functions

Loading 

Conditions

Potential & Kinetic 

Energy

Electrical and 

Mechanical Work

Ms, Ks, , C Bf, Bv Vectors

Figure 2.1: Modeling Method Flow Chart
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2.1 Hamilton’s Principal

We begin with Hamilton’s Principle, which states

∫ t2

t1

δT − δV + δWextdt = 0 δ|t2t1 = 0, (2.1)

where δT is the variation in kinetic energy, δV is the variation in potential energy, and

δWext is the variation in external work. The kinetic energy external work are defined by

the volume integrals

T =

∫

Vol

1

2
ρU̇

′

U̇ dVol Wext =

∫

Vol

fU + V q dVol, (2.2)

where ρ can vary spatially, f can vary spatially and temporally, and in the most general form

U is a 3 element vector whose elements define the mechanical displacements as functions of

space and time. V is the electric potential applied on each electrode.

The potential energy (V) is derived by assuming that the electromechanical coupling

mechanism is the same in sensing as in actuation. The symmetry of Equation 1.2 reflects

this assumption. For our current purposes we will use the inverse relationship and for

convenience we drop the frequency dependence in the notation, but it will be reintroduced

later. This results in two constitutive equations,

T = c
DS − hD

E = −h
′S + ǫ

T−1

D
(2.3)

where the stress vector (T ) and strain vector (S) consists of 6 elements, and the electric

displacement vector (D) consists of 3 elements. The components of these vectors are gener-

ally function of the spatial variables (x, y, and z in cartesian coordinates) and time, but for

simplicity this will not be shown. (cD) denotes the 6x6 stiffness matrix with the superscript

D indicating it is under constant electric displacement , the electromechanical coupling (h)

is a 6x3 matrix defined as cD d ǫ
T−1

, the dielectric permittivity (ǫT ) is a 3x3 symmetric

matrix, where the superscript T indicates it was determined under constant stress, and the

strain coefficient matrix d is a 6x3 matrix.

Volumetric potential energy (v) is then related to stress, strain, electric potential,

and electric displacement through the differential form of the first law of thermodynamics,
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which neglecting thermal work is

dv = T ′dS + E′dD. (2.4)

Substituting the first the expression for stress of equation (2.3) into the first law and inte-

grating with respect to strain results in

v =
1

2
S′

c
DS − D′

h
′S + C1(D), (2.5)

Because D′
h
′S is a scalar we can transpose it for convenience. Then to determine the

function C1(D) we differentiate with respect to D

dv

dD
= −S′

h +
dC1

dD
= E′ = −S′

h + D′
ǫ
T−1

(2.6)

or
dC1

dD
= D′

ǫ
T−1

(2.7)

Finally, we have the volumetric potential energy function

v =
1

2
S′

c
DS − D′

h
′S +

1

2
D′

ǫ
T−1

D. (2.8)

Integrating over the volume results in the total potential energy function

V =

∫

Vol

1

2
S′

c
DS − S′

hD +
1

2
D′

ǫ
T−1

D dVol. (2.9)

The kinetic energy and work functions of Equation 2.2 are in terms of displacement, but

strain (S) is related to displacement vector U through a differential operator Lu,

S = LuU, (2.10)

So the potential energy is

V =

∫

Vol

1

2
(LuU)′cDLuU

︸ ︷︷ ︸

Strain Energy

− (LuU)′hD
︸ ︷︷ ︸

Coupling Energy

+
1

2
D′

ǫ
T−1

D
︸ ︷︷ ︸

Dielectric Potential

dVol. (2.11)

2.2 Assumed Shape Functions

Next we apply separation of variables and write mechanical and electrical displacements as

an infinite series

U(X, t) =
∞∑

n=1

Φun(X)An(t) D(X) =
∞∑

n=1

ΦDn(X)qn(t), (2.12)
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where Φun and ΦDn are the nth mechanical and electrical shape functions respectively.

These shape functions must satisfy the kinematic boundary conditions.. If they are or-

thogonal to each computations can be significantly reduced; however orthogonality is not a

requirement. These summations are then truncated to a finite sum and written in matrix

form

U(X, t) = Φu
′(X)A(t) D(X) = ΦD

′(X)q(t). (2.13)

Substituting the expression for U into the kinetic energy term in Equation 2.2 results in

T =

∫

Vol

1

2
ρȦ

′

ΦuΦu
′Ȧ dVol, (2.14)

When we substitute the displacements into the potential energy we get

V =

∫

Vol

1

2
A′(LuΦ′

u)′cDLuΦuA − A′(LuΦu
′)′hΦD

′q +
1

2
q′ΦDǫ

T−1

ΦD
′q dVol. (2.15)

And the external work is

Wext =

∫

Vol

fΦu
′A + V q dVol (2.16)

2.3 Variational Principal

The variation in kinetic energy is

δT =

∫

Vol

1

2
ρδ(Ȧ)′ΦuΦu

′Ȧ +
1

2
ρȦ

′

ΦuΦu
′δ(Ȧ)dVol. (2.17)

However, Ȧ
′

ΦuΦu
′δ(Ȧ) is a scalar so it can be transposed resulting in

δT =

∫

Vol

ρδȦ
′

ΦuΦu
′Ȧ dVol. (2.18)

After integrating by parts from t1 to t2, and applying the previously stated condition that

the variations are zero at t1 and t2, we have

δT = δA′

[∫

Vol

−ρΦu
′Φu dVol

]

Ä. (2.19)

Applying a similar symmetry relationship we find the variation in strain energy to be

δVse = δA′

[∫

Vol

(LuΦ̄u
′

)′cLuΦ̄u
′

dVol

]

A. (2.20)
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The variation in coupling potential energy is

δVcouple = −δA′

{∫

Vol

(LuΦu
′)′hΦD

′ dVol

}

q − δq′
{∫

Vol

ΦDh′(LuΦu
′) dVol

}

A. (2.21)

The variation in dielectric potential energy is

δVdielectric = δq′
{∫

Vol

ΦDǫ−1ΦD
′ dVol

}

q. (2.22)

The variation in external work is

δWext = δA′Φuf ′ + δq′V ′, (2.23)

where Φu is evaluated at the location of the applied force. Next we define the mass, stiffness

matrices, the coupling vector, and the inverse of the capacitance as the following integrals,

Ms =
∫

Vol
ρΦuΦu

′ dVol Ks =
∫

Vol
(LuΦu

′)′cLuΦu
′ dVol

Ψ = −
∫

Vol
(LuΦu

′)′hΦD
′ dVol C−1 =

∫

Vol
ΦDǫ−1ΦD

′ dVol

, (2.24)

Applying Hamilton’s Principle yields

δA′

(

−MsÄ − KsA − Ψq + Φuf ′

)

+ δq′
(
−Ψ′A − C−1q + V ′

)
= 0 , (2.25)

where Φu is evaluated at the point of force application. For arbitrary variations the terms

in parenthesis must be equal to zero for the equality to be satisfied. The resulting equations

are placed in matrix form




Ms 0

0 0











Ä

q̈






+




Ks Ψ

Ψ′ C−1











A

q






=







Φuf ′

V ′






. (2.26)

At this point the model appears to be very different from Hagood’s as the matrix is

symmetric. This is because we chose both generalized coordinates to be the displacement

terms while Hagood chose one forcing term and one displacement term resulting in a skew-

symmetric matrix. The other major difference is the method we chose to solve the equations.

Hagood placed the equations in state space form before solving them. Our method allows

the introduction of the frequency dependent material properties thus the elements of the

matrices given in Equation 2.24 are rewritten to include the frequency dependence,

Ms =
∫

Vol
ρΦuΦu

′ dVol Ks(jω) =
∫

Vol
(LuΦu

′)′c(jω)LuΦu
′ dVol

Ψ(jω) = −
∫

Vol
(LuΦu)′h(jω)ΦD

′ dVol C−1(jω) =
∫

Vol
ΦDǫ−1(jω)ΦD

′ dVol

, (2.27)
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and the second order differential equation given by Equation 2.26 is transformed to the

frequency domain by assuming harmonic forcing functions f and V .




−Msω

2 + Ks(jω) Ψ(jω)

Ψ′(jω) C
−1(jω)











A(jω)

q(jω)






=







Φuf ′(jω)

V (jω)′






, (2.28)

We then evaluate the matrix for each frequency of interest and then solve for the generalized

coordinates through matrix inversion. Once the generalized coordinates are solved for they

can be substituted back into Equation (2.13) resulting in the displacements.

2.4 Chapter Summary

In this chapter we have shown the development of a potential energy function which is valid

for an electro mechanically coupled dielectric material. We then wrote the kenetic and

potential energy functions as well as the external work in terms of generalized displacement

coordinates. The variational method and Hamilton’s principal yielded a second order matrix

differential equation. The differential equation was then transformed into the frequency

domain and the frequency dependence of the material properties was reintroduced.
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Chapter 3

Cantilever Beam Example and

Material Characterization

In the previous chapter we developed a variational model of a general ionic polymer-based

structure. In this chapter we will demonstrate the method as applied to an Euler Bernouli

cantilever beam. We will evaluate the second row of Figure 2.1 including loading and bound-

ary conditions, and the shape functions. A very important section of this chapter provides

a method of characterizing the material properties. After these properties are determined

simulations of both actuation and sensing response are compared to experimental results

and the modeling method is shown to be valid.

3.1 Assumptions and Simplifications

The model geometry is shown in Figure 3.1. Several assumptions which are reasonable for

this geometry can be applied to simplify the generalized formulation. First, we only consider

mechanical and electrical displacements in the X3 direction. While there may be some small

displacements in other directions they are considered negligible. This assumption reduces

the displacement vectors to scalers (U = U3, D = D3). An additional result of this is that

the permittivity matrix (ǫ) is reduced to the scaler ǫ33. The cantilever is long and slender
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U3

Figure 3.1: Transducer geometry

so we apply Euler-Bernouli small deflection assumptions, therefore,

Lu = z







∂2

∂X2
1

−ν ∂2

∂X2
1

−ν ∂2

∂X2
1







and c
D =

Y

(1 + ν)(1 − 2ν)








1 − ν ν ν

ν 1 − ν ν

ν ν 1 − ν








(3.1)

where Y is simply the tensile modulus. We have assumed that the mode shapes of an

uncoupled beam are good approximations for our shape functions. These mode shapes can

be found, in most vibration texts such as those by Inman (Inman, 2001) or Blevins (Blevins,

1995), to be

Φun = cosh (βnX1) − cos(βnX1) − σn [sinh(βnX1) − sin(βnX1)] , (3.2)

where βn and σn are also listed in vibration texts. There is only one electrode on each side

of the polymer so V (X) = V . Electric displacement is constant and all the charge is present

on the surface resulting in

ΦD upper =
1

bLt
and ΦD lower =

−1

bLt
. (3.3)

The shape functions of Equation 3.2 are orthogonal to each other, therefore carrying out

the integrations shown in Equation 2.24 results in diagonal Ms and Ks matrices. Because

the voltage is constant over the single electrode, the Ψ vector is a column vector, and C
−1

is a scalar. The elements are

Mnn = ρbhtLf

Knn = 1
12Y bh3

t Lfβ4
n

Ψn1 = −h13
h2

t

2Lt

∫ Lf

0 Xn,xx(x) dx

C−1 = ht

ǫT
33

bLt

(3.4)
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Finally, the matrices of Equation 2.28 is developed for for each frequency of interest and

the generalized coordinates are solved for through matrix inversion as in Equation (3.5)







A(jω)

q(jω)






=




−Msω

2 + Ks(jω) Ψ(jω)

Ψ′(jω) C−1(jω)





−1 





Φuf ′(jω)

V ′(jω)






. (3.5)

3.2 Actuator and Sensor Equations

Our choice of the symmetric form allows a direct determination of the generalized coordi-

nates related to displacements. This allows us to determine the operational deflections for

an actuator due to a voltage input. Once the generalized coordinates are determined the

displacement at any point is found by substituting A(jω) back into Equation (2.13).

To use this method to model sensors we assume that there is a single electrode

and the force is only applied at one point which reduces the charge and voltage and force

vectors to a single element each. The symmetric configuration allows charge to be used as a

sensor output given a force input by setting the voltage to zero. This is reasonable because

signal conditioning circuits measure short circuit charge. If voltage is the desired sensing

parameter then by assuming that the instrumentation has a high impedance input we can

set the charge coordinate q in Equation (2.28) to zero and solve for the electric potential

due to the force. This results in

V (jω)

f(jω)
= Ψ′(−Msω

2 + Ks(jω))−1Φ′

u. (3.6)

The sensor equations can also be determined for a displacement input by multiplying by

the previously developed equations by the transducer stiffness

V (jω)

U(jω)
=

V (jω)

f(jω)

f(jω)

U(jω)

q(jω)

U(jω)
=

q(jω)

f(jω)

f(jω)

U(jω)
(3.7)

This transfer function multiplication is again performed frequency by frequency re-

sulting in the new transfer functions.

3.3 Material Characterization

The modeling method demonstrated in the previous sections is dependent on a priori knowl-

edge of three material properties. These properties include the elastic modulus, which has
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been shown to include viscoelastic effects, the dielectric permittivity, which is not purely

capacitative like a piezoelectric device, and the strain coefficient, which again is frequency

dependent (Newbury and Leo, 2003b).

The material parameters are extracted from three transfer functions experimentally

determined by testing cantilever beam samples. Newbury showed that the coupling in ionic

polymer materials is low enough that the electrical impedance is not affected by mechanical

boundary conditions nor is mechanical impedance affected by electrical boundary conditions

(Newbury and Leo, 2003b). This is contrary to many other electro-mechanically coupled

materials such a piezoceramics. Because of this low coupling the mechanical stiffness is only

a function of transducer geometry, mass, and elastic modulus. The dielectric permittivity is

the capacitance, but normalized to transducer geometry. Again, because of the low coupling

the electrical impedance is only a function of transducer geometry and dielectric permit-

tivity. Therefore, dielectric permittivity can be determined from voltage-current transfer

functions (electrical impedance). Finally, the strain coefficient is determined from free de-

flection tests. Free deflection is a function of all three parameters so accurate estimates

of the modulus and permittivity are essential to obtain accurate estimates of the strain

coefficient.

3.3.1 Experimental Setup

A cantilever beam transducer of dimensions 38mm × 3 mm × 0.3 mm is manufactured using

a multi step process. A Li+ cation is the mobile ion and EmI-Tf ionic liquid is the solvent.

The electrode is created with RuO2 and NafionTM . The outer electrode is gold leaf, which

is hot pressed onto the sample. This method of manufacture was recently developed by

Akle, Bennett, and Leo, and has been shown to result in high strain air-stable actuators

and sensors (Akle et al., 2004). This sample is used for both material characterization and

validation of the modeling method.

The mechanical stiffness of the sample is obtained by measuring the frequency re-

sponse between a force input and a displacement output. The test configuration is depicted

in Figure 3.2. A random signal is generated by SigLab model 20-42 signal analyzer and am-

plified to excite the Bruel & Kjaer Type 4810 shaker. The displacement is measured using

a Polytec OFV-303 laser vibrometer. Force is measured using a Transducer Techniques 10

gram strain gage load cell. This sliding-pinned beam configuration was previously found to
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Figure 3.2: Modulus and electrical impedance test setup

reduce the effect of load cell dynamics on the measurement. Additionally, the first bending

mode does not appear in the transfer function when force is measured at the pinned end

thus increasing the frequency range for which resonant effects do not affect the measure-

ment (Franklin, 2003). The Fourier analyzer averaged fifty measurements and calculated

the frequency response. On both sides of the polymer clamp are electrical contacts. To ver-

ify that electrical boundary conditions do not affect the mechanical impedance tests were

performed both with the contacts shorted as well as with the contacts left open.

To measure electrical impedance a random 200 mVrms signal is generated and ap-

plied to the contacts within the polymer clamp. The applied voltage and current are

recorded and twenty averages are used to determine the impedance transfer function. To

demonstrate that mechanical boundary conditions do not affect the electrical impedance

the measurement was performed with the tip blocked as in Figure 3.2, and with the tip free

as shown in Figure 3.3.

Tip deflection measurements are also performed with the experimental setup shown

in Figure 3.3. In addition to measuring deflections at the tip, the deflection at seventeen

additional points along the length are measured to determine the operational deflection

shapes. To ensure the measurements are taken at known distances and the boundary

conditions remained the same for each measurement the clamp is attached to a graduated
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Figure 3.3: Free deflection test setup

slide and advanced forward a known distance resulting in the laser striking a point closer to

the root of the beam. Measurements are taken in 2 mm increments until the distance from

the root became 6mm at which point the measurements were taken in 1mm increments.

Shaker

Laser 
Vibrometer

Voltage

current

Figure 3.4: Displacement sensing test setup

The sensing properties of the transducer are investigated by displacing the tip of

the cantilever beam and measuring the voltage across the beam as shown in Figure 3.4.

A random signal is output from the Fourier analyzer and applied to a Ling Dynamic Sys-

tems V203 shaker. The displacement is measured using the laser vibrometer. The voltage

response to the displacement input is measured using fifty averages.
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3.3.2 Material Parameter Estimation

Measured mechanical stiffness data is shown in Figure 3.5. The data includes a test with

both open circuit and shorted electrical boundary conditions. The variation between the

open circuit and short circuit test is negligible. This validates the assumption that the

difference between the short circuit and open circuit modulus is negligible even at higher

frequencies.
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Figure 3.5: Mechanical stiffness measurements and curve fit

The elastic modulus is determined from the mechanical stiffness measurements by

modeling the stiffness using Golla-Hughes McTavish (GHM) model for the viscoelasticity,

Y (s) = Y∞

{

1 + α
s2 + 2ζ̂ω̂s

s2 + 2ζ̂ω̂s + ω̂2

}

, (3.8)

where Y∞ is the static modulus, s is the Laplace variable, and α, ζ̂, and ω̂ are parameters

related to the material loss (McTavish and Hughes, 1993). The static modulus is found by
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determining the low frequency asymptote (K∞) of the stiffness frequency response. At low

frequency the dynamics of the beam are negligible so the static modulus derived from the

static stiffness of the sliding-pinned beam is (Gere and Timoshenko, 1997)

Y∞ =
K∞L3

f

3I
(3.9)

To determine the remaining GHM parameters, consider that the dynamic beam stiffness

which was stated in Equation 1.3, but is repeated here for convenience.

K(s) =
1

∑n
k=1

1
Mks2+Kk

{

Y (s)I
n∑

k=1

Φk,xxx

Mks2 + Kk

}

,

where Φk,xxx is the third spatial derivative of the sliding-pinned mode shape, Mk = ρbhLf ,

and Kk(s) = Y (s)ILfβ4
k. βk is the weighted natural frequency corresponding to a sliding-

pinned beam(Blevins, 1995). Simulations are then performed using reasonable initial guesses

for α, ζ̂, and ω̂ of Equation 3.8. A constrained optimization routine is then employed, to

achieve the best fit to the experimental data.

Figure 3.5 shows the curve fit achieved for this study. The curve fit slightly under

predicts the damping shown in the experiment, however the error is very small as indicated

in Table 3.1. Additionally, the experiment suggests there is a third peak in the frequency

band studied. However, the third peak occurs at a much lower frequency than would

be expected and has been determined to be an artifact created by a load cell resonance.

Damped natural frequencies and damping ratios were determined from both the experiment

and simulation using circle fitting (Inman, 2001). The results are summarized in Table 3.1.

Table 3.1: Comparison of Resonance and Damping Parameters

Parameter Resonance 1 Resonance 2

ωd Experimental (Hz) 89.85 306.7

ωd Simulation (Hz) 89.53 307.9

Error (%) 0.1 0.39

ζ Experimental (%) 5.04 7.28

ζ Simulation (%) 4.36 4.49

Difference (%) 0.68 2.79
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Figure 3.6: Electrical impedance measurements

The electrical impedance measurements also support the assumption that the effect

of boundary conditions on impedance is negligible. Two measurements as well as a curve fit

are shown in Figure 3.6. There is some variation in the measurements at higher frequency,

but it is on the order of 1%, and has been considered negligible. It is also interesting that

the impedance is capacitative at lower frequency as indicated by the decrease in magnitude

that occurs with frequency. However, there is a high frequency asymptote in the impedance

so at high frequency the material is similar to a resistor.

To extract the dielectric permittivity the capacitance is determined from the mea-

sured electrical impedance

C(jω) =
1

jωZcap(jω)
, (3.10)

where Zcap(jω) is the measured electrical impedance as shown in Figure 3.6. The equivalent

dielectric permittivity is found by normalizing capacitance to transducer geometry

ǫ(jω) =
C(jω)ht

bLt
. (3.11)
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Substituting Equation 3.10 into the expression for permittivity results in

ǫ(jω) =
ht

bLtjωZcap(jω)
. (3.12)

The experimental data is processed as shown above and then a transfer function is fit to

the result.
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Figure 3.7: Free deflection at the actuator tip

After fitting models of modulus and permittivity to the data transfer functions for

the strain coefficient are created and adjusted in models of free deflection until a good

fit is achieved. Experimental data as well as a simulation are shown in Figure 3.7. The

simulation agrees with the measured data reasonably well though the first anti-resonance

occurs at a slightly different frequency than the simulation predicts. Also the simulated

second resonance appears to be slightly more damped than the actual system. This is

attributed to small inaccuracies in the modulus characterization.

25



3.3.3 Identified Material Properties

The results of the material characterization are summarized in Figure 3.8. The magnitude

of the modulus begins to increase at about 80 Hz so additional damping is expected above

this point. The strain coefficient transfer function consists of one zero and three poles. This

results in roll off which increases at less than 1 Hz. The dielectric permittivity rolls off at

a nearly constant rate through the frequency range studied. For convenience the transfer

functions are listed below their respective plots.
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Figure 3.8: Complex Material Parameters 0.1Hz - 500Hz

3.4 Model Validation

To validate both the material model as well as the modeling method we simulated the free

deflection at additional spatial points along the beam and compared the simulated transfer

functions to experimental data. There are several features of these simulations that are

interesting. First, we expect the frequency of the peaks to match as well at any point

along the beam as they did in the simulation of the actuator tip. This is because these

peaks are related to mechanical resonance or natural frequencies which are not affected by
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measurement location. The simulations should reflect this. Also, because the peaks are

related to the mechanical resonance the shape of these peaks is an indicator of how well

the elastic modulus has been modeled. The phase drop near the peaks is a result of the

mechanical resonance, but the phase response in regions away from the peaks is an indicator

of how well the permittivity and strain coefficient have been modeled.
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Figure 3.9: Free Deflection at three points along the actuator

The simulations are in very good agreement with the experiments. As an example,

the comparison for the free deflection at three points along the actuator is shown in Figure

3.9. There is slight variation in the resonant frequencies and damping, which is attributed to

under prediction of the damping in the stiffness curve fit. Also, the antiresonance associated

with the tip deflection occurs at a slightly lower frequency (40 Hz rather than 50Hz) than

the model predicts. This can be attributed to some uncertainty in the position of the mea-

surement as the anti-resonant frequencies are dependent on the location of the measurement

unlike the resonances which occur at the same frequency regardless of the measurement lo-

cation. Finally, the phase comparisons are very encouraging. There is almost no error in
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the phase plots except near the first anti-resonance. Overall, these discrepancies are very

small as is summarized in Table 3.2. Notice that the phase is approximately a multiple of

90 degrees at frequencies away from the resonances. This is expected because the phase of

the permittivity is approximately 90 degrees over the frequency band studied. This leads

us to the conclusion that the permittivity has been modeled well.

Table 3.2: Resonance Parameters for Free Deflection

Parameter Peak 1 Peak 2 Peak 3

ωd Experimental (Hz) 16.4 102.9 289.8

ωd Simulation (Hz) 16.4 104.5 308.4

Error (%) 0.003 1.5 6.4

ζ Experimental (%) 3.81 5.46 5.12

ζ Simulation (%) 0.95 5.78 5.54

Difference (%) 2.86 0.32 0.42

To show that the structural mode shapes are valid shape functions for the system,

the first three transfer functions at 18 points along the beam are measured. The opera-

tional deflection shapes are then determined at the three resonances of the beam. Unlike

a mechanical response the transfer functions are primarily real at the resonances because

of the 90 degree phase in the permittivity. This allowed us to determine the real part of

the transfer function at each point and compute the deflection shape. In Figure 3.10 the

experimentally determine deflectionshape are normalized and plotted with (∗), the model

prediction is also normalized and shown with (+), and the shape functions are shown with

a solid line.

There is excellent agreement between all three curves with the exception of some

error near the root of the beam in the third mode. This is possibly because the boundary

condition is not a perfectly clamped condition. If some rotation is allowed a slightly higher

deflection would be expected. The effect is more pronounced in the third mode because the

strain near the root is highest at the third mode.

The final study is to compare the measured sensing response to the model predictions.

The voltage output of the transducer due to a mechanical displacement imposed on the

tip is measured. The transfer function is calculated and is plotted with along with the

28



0 5 10 15 20 25 30
−3

−2

−1

0

1

2

3

N
or

m
al

iz
ed

 D
ef

le
ct

io
n

Spatial Coordinate (mm)

First Mode

Second Mode

Third Mode

Figure 3.10: Comparison of deflection shape to structural mode-shapes

experimental results in Figure 3.11. The general shape of the transfer function is modeled

very well. There is some disagreement below approximately 2 Hz. However, this error

is attributed to ac coupling the signals in the experiment. The model also slightly under

predicts the response near transfer function near the peaks. This is possibly due to some

error in the modulus measurement or error in the position of the shaker attachment.

3.5 Chapter Summary

The work demonstrated in this chapter makes several major contributions to the modeling

of ionomeric polymers. First, it demonstrates a method of modeling both actuation and

sensing response of ionic polymer devices over a larger frequency range than previous work.

While previous model were useful for both sensing and actuating devices they were not

validated above the first resonant frequency. Second, it demonstrates that the variational

principle can be used to model ionic polymers. Earlier work showed that the method
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Figure 3.11: Comparison experimental sensing response to the model

could be applied to purely dielectric materials such as piezo-ceramics, but this work showed

that the potential energy function can be used along with frequency dependent properties

to model the behavior ionic polymers. Finally, because the modeling method is useful

for a larger frequency range than previous methods, characterization techniques originally

developed by Newbury and Franklin have been expanded to higher frequencies as well.
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Chapter 4

Plate Modeling and Experimental

Validation

The previous chapter demonstrated the modeling method as applied to a beam, which can

be modeled in a single dimension. In this chapter the same method will be applied to

a plate structure, which requires modeling in two dimensions. We will also expand the

potential energy function to include the effect of pre-stress and non-homogeneous boundary

conditions. Experiments will be performed on a square plate which is nearly pinned at the

corners, then a model will be developed which includes tension and rotational springs at

the boundary to compensate for the non-ideal boundary conditions.

4.1 Plate Model in Cylindrical Coordinates

We begin our development of plate models by assuming that like the beam model both

mechanical and electric displacements are limited to the direction normal (see Figure 4.1)

to the plate resulting in

U = U3 D = D3. (4.1)

We then assume that the structure is under plane strain. This reduces the strain vector

to three elements and the compliance to a 3 × 3 matrix (Blevins, 1995). These results are
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Figure 4.1: Geometry of Plate in Cylindrical Coordinates

summarized below.

Lu = z
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∂
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c =
Y

1 − ν2








1 ν 0

ν 1 0

0 0 1−ν
2








(4.2)

A set of shape functions that satisfy the boundary conditions are the structural mode

shapes. They are

Φnk(rθ) =

(

Jn

(αkr

a

)

−
Jn(αk)

In(αk)
In

(αkr

a

))

cos(nθ) (4.3)

where n corresponds to the number of nodal lines in the structural mode shape and αk

are the weighted natural frequencies, which are determined by solving the transcendental

equation associated with the particular boundary conditions (Blevins, 1995). Table 4.1

shows the transcendental equations for both simply supported and clamped edge boundary

conditions and summarizes the weighted natural frequencies used in this analysis.

We assume the charge to be uniformly distributed on the surfaces so the electrical

shape functions are

Φu
D = 1

πa2 Φl
D = −1

πa2
(4.4)
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Table 4.1: Weighted Natural Frequencies for Circular Plate

Simply Supported Clamped Edge

Jn+1(α)
Jn(α) + In+1(α)

In(α) = 2α
1−ν

Jn+1(α)
Jn(α) + In+1(α)

In(α) = 0

n α n α

0 2.2831 0 3.1962

0 5.4722 0 6.3064

0 8.2639 0 9.4395

1 3.7604 1 4.6109

1 6.9784 1 7.7993

where a is the radius of the plate. This analysis again results in the set of matrix equations




−Msω

2 + Ks(jω) Ψ(jω)

Ψ′(jω) C−1(jω)











A(jω)

q(jω)






=







Φu
′f ′(jω)

V (jω)′






,

where the elements are still defined as in equation 2.27

Ms =
∫

Vol
ρΦu

′Φu dVol Ks(jω) =
∫

Vol
(LuΦu)′c(jω)LuΦu dVol

Ψ(jω) = −
∫

Vol
(LuΦu)′h(jω)ΦD dVol C−1(jω) =

∫

Vol
ΦD

′ǫ−1(jω)ΦD dVol

,

except that the integration is carried out in cylindrical coordinates.

4.1.1 Simulations of Ionic Polymer Disks

A set of circular disk simulations are shown in Figure 4.2. The material properties identified

in Chapter 3 were applied to three possible configurations for a circular disk. They all three

had an active component with a diameter of 34 mm and thickness of 270 µm. The simply

supported and clamped edge models models included only active components. While in the

passive material model, the same active component was modeled but it was encapsulated

between two layers of 6 µm Mylar. They Mylar extended to a diameter of 36 mm and was

modeled in a clamped configuration.

There are several advantages to simulations such as these. First, it may be desired

to encapsulate the material to protect it from the environment and this method allows
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Figure 4.2: Effects of boundary conditions on center point deflection

estimation of the performance loss due to the encapsulation. Second, though the model

indicates that the pinned boundary conditions result in displacements four orders of mag-

nitude higher than the clamped boundary conditions applying the pinned conditions may

be impractical. This simulation demonstrates a method of achieving displacements that are

nearly equal to the displacements achieved with pinned boundary conditions.

Additionally we can simulate deflection shapes for each of the models. Figure 4.3

shows the deflection shapes of all three models at their respective resonance frequencies

as well as the difference between pinned model and the model with a clamped passive

material. All four plots are show the x and y range associated with the passive material

model; however, the pinned and clamped BC simulations have zero deflection outside the

boundary diameter. As expected the pinned shape has the largest deflection at every point

including the center point, which was shown in Figure 4.2. The difference between the
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Figure 4.3: Effects of boundary conditions resonant deflection shapes

pinned model and the model including the passive material is still rather large (about a

factor of 3), but it is a substantial improvement on the simulation with a clamped boundary.

The second deflection shape is possibly more interesting. Figure 4.4 shows a com-

parison of the pinned model and the model including the passive material at their respective

2nd resonance frequency. This is promising because the simulation predicts that the shape

of the disk with a clamped passive material is very similar to the shape of a pinned disk.

Figure 4.2 showed that the frequencies of these resonances was very close as well; there-

fore, these simulations show that we can design systems with clamped boundaries that will

exhibit responses very similar to a system with a simply supported boundary.

The next section will focus on a plate model in Cartesian coordinates and will include

an extensive model validation which demonstrates the validity of this method and suggests

that the simulations just shown can be used for pre-prototype predictions.
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Figure 4.4: Comparison of 2nd resonant shapes

4.2 Cartesian Coordinates

The previous section demonstrated a plate model developed in cylindrical coordinates. Here

we will develop a plate model in Cartesian coordinates. This model will be further extended

to include the effects of an initial tension and a non-homogeneous boundary condition.

We will then present some experimental results and comparisons to the simulations which

provide very strong evidence that this modeling method is valid for plate structures made

from ionomeric materials.

4.2.1 Expanded Potential Energy Function

The original potential energy function shown in Equation 2.2 has been expanded to allow

modeling of a plate with a uniform tension (τ) and rotational springs at four corners. The

potential energy associated with a uniform initial tension is uniform through the thickness

and can then be treated like the potential energy due to a uniform tension in a membrane.

The volumetric potential energy in a membrane is

Vmembrane =
1

2
τS′

mSm, (4.5)
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where Sm is the strain at the neutral axis, and τ is the uniform tension per unit width. The

potential energy stored in a torsional spring is

Vts =
1

2
Ktsθ

′θ, (4.6)

where Kts is a torsional spring constant and θ is the angle of rotation at the spring location.

The membrane potential energy is evaluated over the entire area of the plate while the

potential energy in the spring is evaluated over the boundary (Ω). In this case the boundary

is four discrete points at the corners. The expanded potential energy function is then

V =

∫

Vol

1

2
S′cS − S′hD +

1

2
D′

ǫ
−1D dVol +

∫

Area

1

2
τS′

mSm dArea +

∫

Ω

1

2
Ktsθ

′θ dΩ (4.7)

4.2.2 Assumptions and Development

Y,2

X,1

Z,3

b

a
ht

Figure 4.5: Square plate geometry used used in simulations

As in both the beam and circular plate developments we begin by making assump-

tions which simplify the generalized formulation. First we assume plane strain and isotropic

materials so the stiffness matrix and the differential operator relating bending strain to dis-
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placement are (Blevins, 1995)

c = Y
1−ν2








1 ν 0

ν 1 0

0 0 1−ν
2








Lu =







z ∂2

∂x2

z ∂2

∂y2

2z ∂2

∂x∂y







, (4.8)

where Y is the tensile elastic modulus and ν is the poissons ratio which was assumed to be

0.5. Both the rotation at the boundaries and membrane strain are related to displacement

through the gradient operator (Meirovitch, 1997)

Lts = Lm =







∂
∂x

∂
∂y






. (4.9)

As in the beam example, we assume both electrical and mechanical displacements to be only

normal to the plate or in the 3 direction as shown in Figure 4.5. Therefore, the mechanical

and electrical displacement vectors are

U = U3 D = D3 (4.10)

A set of shape functions which which fit the geometric boundary conditions contains two

generalized coordinates per mode. This set of function is (Reed, 1965)

φu mn = Amncos
(mπx

a

)

sin
(nπy

b

)

+ Bmncos
(mπy

b

)

sin
(nπx

a

)

, (4.11)

where m is an index running from zero to infinity which was truncated at four, and n runs

from one to infinity, but was truncated at five. The length and width parameters a and b are

shown in Figure 4.5. The set of shape function have two indicies so to take advantage of the

matrix manipulations associated with the analysis we transformed the indexing on m and

n resulting in fifty element vector of generalized coordinates for mechanical displacement.

We also continue to assume that the charge is concentrated at the surfaces and the

charge on the top electrode is equal and opposite to the charge on the bottom electrode.

Φu
D = 1

ab Φl
D = −1

ab
(4.12)

The variational principal again results in the matrix representation of a set of linear

equations which was given by equation 2.28 and is repeated here for convenience.



−Msω

2 + Ks(jω) Ψ(jω)

Ψ′(jω) C−1(jω)











A(jω)

q(jω)






=







Φu
′f ′(jω)

V (jω)′






,
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where the components Ms, C
−1, and Ψ are defined as before and reiterated here, however

because the Amn terms of the shape functions are not necessarily orthogonal to the Bmn

term the Ms is not necessarily diagonal.

Ms =
∫

Vol
ρΦu

′Φu dVol

Ψ(jω) = −
∫

Vol
(LuΦu)′h(jω)ΦD dVol C−1(jω) =

∫

Vol
ΦD

′ǫ−1(jω)ΦD dVol

(4.13)

The additional potential energy terms used in this development result in the stiffness matrix

Ks(jω) =

∫

Vol
(LuΦu)′c(jω)LuΦu dVol +

∫

Area
τ(LmΦu)′LmΦu dArea

+
∑4

n=1 Ktsn(LtsΦu)′c(jω)LtsΦu,
(4.14)

which allows a different torsional spring constant Kts n at each corner.

4.2.3 Experimental Setup

A set of experiments were performed to validate the modeling approach. A square test plate

was cut from the same material used in the experiments performed on the cantilever beam

in the previous chapter. It was cut to be 34 mm by 34 mm; however, as shown in Figure

4.6 tabs were left on the four corners to limit the effect of the clamp on the response of the

plate.

34 mm

34mm

Figure 4.6: Experimental specimen geometry

The actual specimen is also shown in Figure 4.6. The dimensions are not exactly 34

mm × 34 mm. The two dimensions average 33.5 mm × 34.5 mm. Additionally the sample
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is not completely flat. This is due to our manufacturing method. To conserve the costly

ionic liquid the sample was rolled up in a vial while the ionic liquid was infused into the

base polymer. While we made every effort to achieve a flat uniform sample, in the end there

was some surface non-uniformity. These non-uniformities may result in localized stiffness

and mass.

Next a fixture was designed and built to test the sample. This fixture which is

shown in Figure 4.7 is capable of performing experiments on a square plate with dimensions

ranging from 25 mm to 125 mm. Clamps with fixed electrodes are attached to sliders at

the four corners and pointers on the sliders indicate the width of the plate. Though in this

study a single electrode was used the fixture was built to allow a separate control channel

at each quadrant of the plate. The electrical resistance of the sample electrode is very low

(<< 1Ω/cm) so applying a voltage at one of the clamps should have been adequate though

we applied the voltage at all four clamps to ensure a uniform voltage and subsequent charge

distribution.

Figure 4.7: Experimental test fixture
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The laser vibrometer remained stationary and the fixture was moved to take mea-

surements at many locations to resolve the deflection shapes spatially. A set of cross hairs

are attached to the fixture and these cross hairs are placed grid paper so that the mea-

surements can be taken at prescribed locations. The structure is substantially more stiff

Laser 
Vibrometer

Laser 
Controller

Fourier 
Analyzer

Power Amplifier

Test Fixture

Figure 4.8: Experimental test setup

mechanically than the cantilever beam sample so a larger input voltage was required to get

an acceptable signal to noise ratio. The input signal was set to 0.5 Vrms, which is about

twice the voltage used during the materials characterization experiments. Once acceptably

clean signals were achieved we proceeded to measure the frequency response to a random

electrical excitation at 41 of the 81 possible points on a 4 mm spaced grid. The Fourier

analyzer averaged 50 measurements. Four such measurements are shown in Figure 4.9. The

location of these points is indicated at the center as well as the location of all 41 measure-

ments. Because the specimen, loading, and boundary conditions are nearly symmetric we

expect to see symmetric operating shapes. This expectation was found to be mostly correct.

The measurement at x =4 mm y =4 mm is very similar to the measurement at x =-4 mm
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y =4 mm. The antiresonance at about 120 Hz does not appear in the measurement at x =-4

mm y =4 mm; however at higher frequencies they match fairly well and while the phase

plots are different the difference is 360 degrees.
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Figure 4.9: Measurement points

4.2.4 Experimental Results and Model Validation

Our initial comparison between the experimental data and a simulation was a frequency

response for the center of the plate The first simulation for a center point response did

not compare well with the experimental results. Figure 4.10 shows that the low frequency

response was much higher in the simulation and the resonances occurred about 23 Hz while

the experiment indicates that the first resonance is at about 70 Hz. From the start it

was acknowledged that the corner pinned boundary condition would be difficult to achieve

experimentally, so to better match the experimental data torsional springs were modeled
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at the corners using the additional potential energy term introduced at the beginning of

this chapter. The spring constant were used as a model updating parameter. They were

adjusted until the simulations matched the experiment better. However, this method alone

proved inadequate because the effect of the torsional spring is limited. Once the spring

constant gets high enough the deflection shapes have no slope at the corner points and

further increase of the spring constant has no effect. That limit is shown in Figure 4.10 and

is labeled Torsional Spring. The first resonance frequency was only increased to about 45

Hz, which is still a large error.
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Figure 4.10: Effect of model updating at the center point

Next, we hypothesized that when the polymer was clamped into the test fixture

some initial tension was likely induced so we included a uniform initial tension in the model

and adjusted that until the first resonance frequencies matched. With an initial tension

of 26 N/m we were able to match the first resonance frequency, but the magnitude of the

peak was greatly exaggerated. The exaggeration is most likely because with the tension
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this high the stiffness is dominated by the tension and the viscoelasticity of the material

is insignificant. The shape of the frequency response at higher frequencies is also greatly

affected by the initial tension. The frequencies of the next few resonances are much higher

in the simulation than the experiments and the magnitudes are much lower.
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Figure 4.11: Comparison of experiment and simulation at the center point

A much better fit was achieved using a combination of the boundary stiffness and

initial tension. The best fit is compared to the experimental data in Figure 4.11. This

fit was achieved with an initial tension of 9 N/m and torsional spring constants of 5 mN-

m/rad. The model does a good job of predicting the first, third and fourth resonance

frequencies and the shape of the curve matches well with the exception of a mode which is

close in frequency to the first resonance. This mode is likely because of asymmetries in the

boundary conditions or the material. Also the low frequency magnitude of the simulations

is lower than the model predicts. It has been shown that the electrical impedance changes

with input voltage (Kothera and Leo, 2005). This may account for the discrepancy because
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the material parameters were identified at 250 mVrms while the plate experiments were

performed at 500 mVrms.

In addition to the center point comparison, Figure 4.12 shows a comparison of ex-

perimental data and a simulation at the position x = 4 mm y =4 mm. Again the simulation

slightly under predicts the low frequency magnitude, but the resonances are in good agree-

ment and more importantly the overall shape compares well. The experiment still shows

a small resonance at about 108 Hz which does not appear in the model, but beyond that

there is good agreement. There appears to be disagreement in the phase plot after the first

anti-resonance, but the phase differential is 360 degrees so shapes are not affected. The

discrepancy is likely because that anti-resonance is a non-minimum phase zero.
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Figure 4.12: Comparison of experiment and simulation at (x=4mm,y=4mm)

The previous frequency response functions were both on lines between two of the

boundary conditions, which suggests they are likely lines of symmetry. Referring back to

Figure 4.9, the only measurement points not on a horizontal, vertical, or diagonal line are
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very near the edges of the plate. A comparison of the experimental data and the simulation

at point x =16 mm y = 8 mm is shown in figure 4.13. The resonance at about 108 Hz

is more pronounced at this point which is consistent with our belief that it was due to an

asymmetry in either the boundary conditions or the material. The shape of the third and

fourth peaks still compares very well with the experiments, and with the exception of the

phase drop due to that second mode the shape of the phase plot is an exceptional match.
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Figure 4.13: Comparison of experiment and simulation at (x=16mm,y=12mm)

Comparisons were also performed between measured deflection shapes and those

computed by simulations. The first mode which occurs at about 70 Hz is shown in Figure

4.14. The general trend of the shapes match very well. The maximum simulated displace-

ment is displacement is 13.72 µm while the maximum measured displacement was 12.52

µm. Additionally the maximum displacement in the simulation occurred, as expected for

the first mode, at the center point while the experimental data shows the maximum to be

at x =4 mm y =0 mm. This is due to the noticeable dip in the region near the center of

the experimental results. This could also be because of assymetric boundary conditions;
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however, we attempted to reproduce this result by applying different spring constants at

each corner, but were unsuccessful. The more likely cause by the non-uniformity in the

material. It could be a localized mass or stiffness. The displacement at the edges of the

simulation is also a slightly more than the displacement near the edge in the test specimen;

however, they are close and it is encouraging that in both the experiment and the simulation

the displacement along the long edge is higher than the displacement along the short edge.
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Figure 4.14: Comparison of simulated and experimental deflection at 70 Hz

The next shape comparison was at 108 Hz which is the frequency of the second

resonance that appeared in the experiment, but did not show up in the model. An ideal

square plate has repeated modes at each frequency due to symmetry. Because of this it was

assumed that the second mode would be similar to the first mode, but the experimental

results, which are shown in Figure 4.15 indicate a completely different shape. In fact the

shape is very similar to the shape seen at the third resonance. Though there was no peak

in the simulated transfer functions we looked at the simulated shape at that frequency. The

general shape was similar to the experiment though it was more symmetric. The magnitudes

were also much less than the experiment, but that is expected since a peak did not appear

in the transfer function. The shapes were both very similar to the shapes which occurred

at the third resonance. Figure 4.16 shows a comparison of the simulation and experiment

at 180 Hz. The experimental shape looks very much like the second shape only rotated 45

degrees about the z axis. This explains why the second shape did not resemble the first
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Figure 4.15: Comparison of simulated and experimental deflection at 108 Hz

shape.
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Figure 4.16: Comparison of simulated and experimental deflection at 180 Hz

The fourth deflection shapes are compared in Figure 4.17. The magnitude of the

center section is a little larger than the simulation, but the overall shape matches very

well. The discrepancy in the center is common to all the shapes and indicates that there is

some local phenomenon such as mass or stiffness that has not been included in the model.

This will not be a great problem as manufacturing methods are improved resulting in more

48



uniform materials.
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Figure 4.17: Comparison of simulated and experimental deflection at 265 Hz

4.3 Chapter Summary

In this chapter we first demonstrated a plate model developed in cylindrical coordinates

and some of the predictions that can be obtained from the simulations. Then we expanded

the potential energy function originally discussed in Chapter 2 and applied this expanded

potential energy function to a plate model in cartesian coordinates. The potential energy

due to pre-stress that is uniform through the thickness can be modeled like the potential

energy of a pre-tensioned membrane. Non-homogeneous boundary conditions were handled

in this model by including torsional springs in the system. These techniques were applied

to model a non-ideal system. The resulting simulations matched the experimental results

very well and showed that the variational method developed in this work is valid for plate

type structures.
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Chapter 5

Conclusions

This thesis has demonstrated a variational approach to modeling structures containing

ionomeric components. The three primary research goals were accomplished and are reit-

erated below with some additional discussion.

5.1 Accomplishments and Contributions

• Development of a variational modeling method for multiple system configurations. In

Chapter 2 we demonstrated the variational method as it applied to an as yet unde-

fined structure. Energy functions were defined by operations which are applied to

shape functions associated with the structure and boundary conditions. The energy

functions were then substituted into Hamilton’s Principal resulting in a set of second

order differential equations which were written in matrix form and transformed into

the frequency domain. Solution of the differential equation resulted methods for com-

puting the deformation and charge response as a function of applied voltage or force.

This method is applicable to any system. The difficulty with applying the method to

very complex structures will be in defining a set of shape functions which satisfy the

geometric boundary conditions.

• Develop reciprocal modeling methods. The method demonstrated in Chapter 2 results

in a frequency domain matrix equation which when solved results in general coordi-

nates related to both mechanical and electrical displacements. Therefore, the model

as developed is capable of taking either mechanical or electrical inputs and return-
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ing either mechanical or electrical outputs. This allows a design engineer to use the

model to assist in designing either actuation or sensing systems based on ionomeric

materials.

• Refinement of methods to characterize the material properties. Though the formu-

lation took a slightly different direction the main difference between this work and

that performed by Hagood is the materials we have investigated. Hagood applied the

variational method to structures containing piezoelectric components, which at low

to medium frequencies exhibit little to no frequency dependence. More importantly

piezoelectric are purely dielectric materials unlike ionic polymers which exhibit resis-

tive as well as capacitive properties. Because of the strong frequency dependence in

the material it is important to have a good estimation of material properties as inputs

to the modeling method. Previous work by Newbury, Franklin, and Leo demonstrated

methods for determining these properties. Newbury demonstrated that his methods

were valid for frequencies below the first resonance of a cantilever beam (Newbury and

Leo, 2003a). Franklin then extended Newbury’s method for determining the elastic

modulus to higher frequencies but continued to apply some assumptions that were

valid only at low frequencies to determine the permittivity and strain coefficients.

Here we have reiterated Franklin’s method of determining the viscoelastic parameters

which define the modulus. Then we determined the permittivity without making any

low frequency assumptions. Finally, we showed how a cantilever beam model can

be used to determine the strain coefficient. This method of determining the strain

coefficient also does not make any low frequency assumptions; however, it requires

good estimation of both the elastic modulus and permittivity in order to achieve an

accurate estimation of the strain coefficient parameters.

In addition to achieving these three main goals related to modeling methods this

thesis presented an extensive model validation study. In Chapter 3 we showed an excellent

agreement between measured and simulated frequency response functions up to 500 Hz.

We also showed very good agreement between simulated deflection shapes and shapes that

were measured experimentally. These shapes also corresponded very well with the shape

functions that were chosen. A very important result presented in Chapter 3 is the correlation

between simulated and experimental sensing response functions. This result validates the
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energy approach as the modeling method and shows that the potential energy function we

have used can be applied to materials which are not entirely dielectric. Chapter 4 showed

a validation very similar to the validation of Chapter 3. We were only concerned with

mechanical response in the chapter so the validation did not include any sensing results,

but the frequency responses and deflection shapes were in very good agreement with the

exception of some asymmetries that will become less dominate as the size of the structure

is increased.

It has been shown that good estimates of the material properties are essential. In

Chapter 3 we attributed some small error in the damping estimates of the model to inac-

curacies in the viscoelastic parameter identification. The resulting errors were acceptable;

however, further refinement of the model may require less uncertainty in the parameter

estimation.

The method was demonstrated on three representative structures. First we devel-

oped a cantilever beam model, which was initially applied to materials characterization,

but is potentially an excellent sensor configuration. Next, we developed a plate model in

cylindrical coordinates. We applied exactly the same methodology to the structure in two

dimensions as we applied to the beam model. The shape functions and differential opera-

tors which related strain to displacement were different but the method remained the same.

Different boundary conditions can be applied using two methods. First, any homogeneous

boundary conditions should be reflected in the shape functions; however, in the case of the

square plate we demonstrated the application of a non homogeneous boundary condition.

This was applied by choosing shape functions which would not violate the boundary con-

ditions and then modified the potential energy function to include the outside influence of

the non homogeneous boundary condition.

5.2 Recommendations for further improvement of this work

The work presented here is fairly complete; however, there are several areas of research

which may improve upon the results presented here. These research suggestions are as

follows:

• Improve viscoelastic parameter identification. In this work the frequency dependent

elastic modulus was identified from stiffness measurements of a sliding pinned beam.
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The results were actually very good; however, measurements performed in pure tension

may be advisable for two reasons. First, the mass properties of the beam dominate

the response at higher frequencies in bending so inaccuracies in in the modulus may

be overshadowed by the beam dynamics in the curve fit. Second, while the testing

method developed by Franklin was an improvement on the cantilever beam configura-

tion developed by Newbury the form of the stiffness transfer function does not allow

the separation of the modulus from the beam dynamics. Ideally we would have a

transfer function of the form

K(ω) = Y (ω)C2(ω) (5.1)

where K(ω) is the measured stiffness Y (ω) is still the frequency dependent modulus,

and C2(ω) represents the dynamics of the test specimen. In this way we could separate

the elastic modulus from the dynamics and get a better idea of what the form of the

transfer function should be just as we did when determining the permitivity.

• Investigate methods for transforming the solution back into the time domain. Meth-

ods exist which involve separating the loss terms from the GHM parameters in the

modulus and writing them as additional degrees of freedom in the mass and stiffness

matrices (McTavish and Hughes, 1993). The application of these methods to the per-

mitivity and strain coefficient parameters would allow a time domain representation

of the equations. Resonant frequencies and damping could then be determined using

eigenvalue methods such as are commonly employed in vibration problems (Inman,

2001). Additionally, a time domain representation would allow implementation of

optimal control methods.

• Perform validation experiments on structures which include passive materials. While

this method is easily applicable to structures with passive components this study did

not include any validation of models which includes passive components. It is possible

though unlikely that some unforeseen coupling could occur between the ionomeric

components and the passive components. A set of successful validation experiments

would help convince the engineering community that this modeling method fits their

needs.

• Investigate the behavior of multiple input system. In this study experiments only
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involved a single electrical input. It is possible that in a multiple electrical input

system there could be some coupling between electrodes which would require a more

complex electrical shape function. A study could be performed to determine the if this

coupling is present and if it has a significant impact on the accuracy of the simulations.
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