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Abstract: Construction is a highly hazardous industry typified by several complex features in dy-
namic work environments that have the possibility of causing harm or ill health to construction
workers. The constant monitoring of workers’ unsafe behaviors and work conditions is considered
not only a proactive but also an active method of removing safety and health hazards and prevent-
ing potential accidents on construction sites. The integration of sensor technologies and artificial
intelligence for computer vision can be used to create a robust management strategy and enhance
the analysis of safety and health data needed to generate insights and take action to protect workers
on construction sites. This study presents the development and validation of a framework that
implements the use of unmanned aerial systems (UASs) and deep learning (DL) for the collection
and analysis of safety activity metrics for improving construction safety performance. The developed
framework was validated using a pilot case study. Digital images of construction safety activities
were collected on active construction sites using a UAS, and the performance of two different ob-
ject detection deep-learning algorithms/models (Faster R-CNN and YOLOv3) for safety hardhat
detection were compared. The dataset included 7041 preprocessed and augmented images with
a 75/25 training and testing split. From the case study results, Faster R-CNN showed a higher
precision of 93.1% than YOLOv3 (89.8%). The findings of this study show the impact and potential
benefits of using UASs and DL in computer vision applications for managing safety and health on
construction sites.

Keywords: activity monitoring; construction site; deep learning; safety and health; UAS

1. Introduction

The construction industry is one of the most dangerous industries worldwide and the
constant exposure of workers to hazardous and complex construction work environments
makes them susceptible to various illnesses, injuries, and fatalities [1]. This has remained a
serious issue despite efforts by industry associations and regulatory bodies and extensive
research to address this problem [2,3]. According to the Occupational Safety and Health
Administration (OSHA), about 20% (1061) of worker fatalities in private industry in the year
2019 were in construction, and this accounted for one in five worker deaths for the year [4].
Based on the information from the U.S. Bureau of Labor Statistics, the construction industry
has 30% more nonfatal occupational injuries and illnesses than the average industry [4].
The need to reduce nonfatal and fatal injuries is of utmost importance, and an integrated
application of cutting-edge sensing technologies and data analysis techniques to tackle this
challenge is explored in this conference extension study.
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Unsafe behavior and conditions are considered major causes of accidents, and sev-
eral studies have shown that they account for more than 90% of accidents experienced
on construction job sites [1,5]. Thus, the uninterrupted monitoring of workers’ unsafe
behaviors and conditions has been recognized as a proactive and active method of mit-
igating/removing safety and health hazards and preventing accidents on construction
sites [6]. Traditional methods for monitoring and analyzing activities on construction sites
such as site inspection and observations are expensive, slow, labor-intensive, and prone to
inaccurate information due to human error [2,5]. Hence, there is a need for an alternative
approach such as the deployment of advanced technologies and techniques like computer
vision. Through this method, unsafe behaviors and conditions can be identified and an-
alyzed using a detailed set of information obtained from images and videos containing
work conditions and workers’ actions [1,5,7].

Computer vision is a subfield of artificial intelligence (AI) that deals with how com-
puters can obtain a high-level understanding from videos and digital images. Computer
vision techniques have proven to be efficient in retrieving relevant data from construction
sites such as the rapid and convenient detection and tracking of workers, materials, and
equipment. For example, Du et al. [8] proposed a system that can detect hardhats in a video
sequence using computer vision techniques. Fang et al. [9] also developed a computer
vision-based method to determine if workers are wearing a harness when workers are
performing a task at height. Although prior research studies have been conducted on the
use of various computer vision techniques for health and safety monitoring and analysis
in construction including object detection/tracking and action recognition [5], there are
still some drawbacks related to the lack of a fully automatic computer vision-based system.
In addition, deep learning (DL) provides a robust opportunity for data analytics that will
enable automatic hazard identification [1].

Computer vision research consists of two main steps: data collection and data analy-
sis [10]. Data collection involves the gathering of visual input data such as 2D/3D images,
time-lapse images, or videos using sensing devices like stationary cameras, stereo vision
cameras, or RGB-D sensors on construction sites. The quality of the collected data is im-
portant for effective data analysis. Poor lighting, occlusions, or a cluttered background
can decrease the quality of the data collected. As a result, multiple cameras are required
to be positioned at strategic places to capture appropriate images. However, it is still
impossible to capture the entire construction site using these arrangements, indicating that
these modes of data collection have limitations [5,10]. Unmanned aerial systems (UASs)
or drones, on the other hand, have been used in several industries for surveillance and
monitoring by attaching high-definition cameras and sensors to them [11]. UASs are used
in the construction industry for progress monitoring in real time and are also employed by
security agencies and the military for search and rescue operations, as well as in the agri-
cultural sector for crop monitoring and weed management [12]. UASs can help overcome
the limitations of still cameras.

There has been a recent popularity in the application of UASs for the visual moni-
toring of construction activities and other processes associated with civil infrastructure
systems [13]. According to recent studies, UASs are mainly used in the construction
industry for monitoring the progress of work, job site logistics, inspecting construction
components for structural integrity, and maintenance assessments [14]. UASs can be very
useful for safety managers because they provide numerous advantages, including the
ability to move faster than humans, reach dangerous and inaccessible areas of job sites,
and be fitted with video cameras, wireless sensors, radar, or communication hardware for
the collection and transmission of different types of data in real time [15,16]. In order to
provide accurate performance information about the condition of a construction job site,
there is a need for versatile UASs with the capacity to collect visual data in form of images
and videos (e.g., digital: RGB; thermal: T; depth: D; digital + depth: RGB + D) from the
most appropriate locations and viewpoints on the job site [13].
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The analysis of the location and behavior of construction workers using job site images
has been identified as a means of generating valuable information for safety management
and productivity analysis [17]. For the recognition of different object classes, monitoring
systems primarily rely on artificial intelligence (AI) through the application of supervised
learning. Although several conscious efforts are currently being made to automate the
monitoring of construction sites, a thorough understanding of how that system will function
as a whole is still challenging [18]. The possibility of automating visual monitoring tasks
has increased due to the use of deep learning (DL), otherwise referred to as deep structured
learning or hierarchical learning. More specifically, the convolutional neural networks
(CNN), a class of DL networks, have been found to be very useful for analyzing visual
imagery and surmounting the challenges of the manual observation and recording of
hazards on construction sites [1]. This study presents an extension of the initial effort by
Awolusi et al. [19] and provides a comprehensive report of the characterization of safety and
health hazards for computer vision applications, as well as the development and validation
of a framework that integrates UASs and DL for safety and health activity monitoring on
construction sites.

In this study, existing literature and reports are first reviewed to characterize the
common safety and health hazards on construction sites and the different types of sensors
used for imagery data collection such as 2D and 3D data sensing devices. Thereafter,
various DL algorithms that can be used to analyze imagery data are reviewed. Based
on the reviews, an integrated framework that leverages the use of a UAS and DL is
developed for monitoring job site activities, generating critical insights, and disseminating
useful information for the improvement of safety performance on construction sites. The
framework is then validated using a pilot case study by obtaining imagery data of worker
safety and health activities from active construction sites using a UAS and analyzing the
data using two different DL algorithms.

The fundamental focus of this research Is to provide an approach for the use of UASs
and DL for construction safety and health monitoring. The UASs are used to collect a wide
range of data overcoming the limitation of still cameras, while DL is used to analyze the
data to proactively monitor safety and health activities and generate useful information
for hazard control and accident prevention on construction sites. This study contributes
to knowledge in a number of ways. First, the study provides a matrix showing the char-
acterization of common safety and health hazards on construction sites to aid computer
vision applications. Second, it provides a validated framework for the effective integration
of a UAS and DL for safety, health monitoring, and accident prevention on construction
sites. Third, it provides a comparison of the performances of two DL object detection
algorithms/models for safety hard hat detection. The findings of the study demonstrate
the potential impact of deploying UASs and DL in computer vision applications for safety
and health management in construction.

2. Literature Review

The construction industry still ranks as one of the riskiest industries in which a high
number and rate of occupational illnesses, injuries, and fatalities are recorded annually. A
significant amount of research has been conducted in order to improve safety monitoring
and eliminate hazards on construction sites. A few of these studies have proposed the use
of innovative technology such as UASs, wearable sensing devices (WSDs), the Internet of
Things (IoT), and artificial intelligence, among others. Having this array of technologies
indicates a need to understand the different hazards and metrics that can be measured,
the sensor technologies for data collection, and the AI or DL models/algorithms for data
analysis. This section contains a review of the different safety and health hazards on
construction sites, UAS applications and sensors that can be used for safety and health
monitoring, and computer vision and DL applications in construction.
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2.1. Safety and Health Hazards on Construction Sites

Construction workers, in general, have a high chance of being hurt on the job site.
The construction industry is much different from other industrial sectors due to its com-
plex combination of heterogeneous elements typified by hazardous work environments,
materials, equipment, project types, and different categories and levels of fieldworkers
and management employees. This level of intricacies makes construction one of the most
precarious industries with a disproportionately high rate of injuries, illnesses, and fatal-
ities [20,21]. According to Hamid et al. [20], two major hazards (i.e., physical or safety
hazards and health hazards) exist on construction sites.

Physical safety hazards are usually associated with the process of work (manual han-
dling, excavation) or equipment/tools used (scaffolds, power access equipment, ladder,
roof work, plant, and machinery) or climatic conditions (snow, rain, high temperatures).
Based on the information provided by the Bureau of Labor and Statistics, the Occupation
Safety and Health Administration (OSHA) identified four major safety hazards on con-
struction sites called the “OSHA Fatal Four”, which are falls, caught-in or -between, struck
by, and electrocution. These hazards according to OSHA account for an overwhelmingly
high percentage of construction site injuries and fatalities annually.

A hazard that has a risk of physical injury can cause direct injury to workers on the job
site and if severe can cause death. However, a hazard that has a risk of ill health is sometimes
only noticed after a long-term period and can cause sickness or death after a certain period.
These other categories are referred to as health hazards, which include chemical hazards
(solvents, adhesives, paints, toxic dust, etc.), physical hazards (noise, radiation, heat, etc.),
biological hazards (infectious diseases), and ergonomic risk factors (heavy lifting, repetitive
motions, vibration). The American Industrial Hygiene Association (AIHA) in 2019 also
developed a “focus four” for health hazards, which are manual material handling, high
noise levels, high temperatures, and air contaminants [22]. According to AIHA, these
health hazards present the highest level of health risk to construction workers, and a few
studies have identified them as hazards that can cause ill health to workers [20,21]. It is,
therefore, important to identify and reduce the risk of these hazards on construction sites.

Monitoring construction activities, including unsafe worker behaviors and unsafe
working conditions, is important to proactively eliminate potential hazards and prevent
accidents on construction job sites [5]. According to Zhang et al. [23], the occurrence and
evolution process of construction safety risk is a random process that results in accidents
when the safety threshold is exceeded. Based on the accident root causes tracing model
(ARCTM) proposed by Abdelhamid et al. [24], accidents occur due to three root causes (fail-
ing to identify unsafe conditions, ignoring identified unsafe conditions, and acting unsafely
irrespective of the initial conditions), indicating that common hazards on construction sites
are generally caused either by unsafe (worker) behaviors or unsafe (working) conditions.

Unsafe behavior has been defined as unacceptable practices with the potential to
contribute to future accidents and injuries [25]. Examples of unsafe behaviors or acts
that are commonly observed on construction sites include non-compliance with PPE use,
improper lifting, and working or standing too close to heavy construction equipment [26].
Monitoring and changing the behaviors of workers engaging in unsafe acts can help to solve
safety problems. On the other hand, an unsafe condition is one in which the physical layout
of a workplace or work area, as well as the status of tools, equipment, and materials, violates
current safety requirements [24]. Unsafe conditions may be present or develop after the
task has commenced and might not be noticed by the worker. Examples of unsafe condition
hazards on construction sites include unshored trenches, poor housekeeping, and working
in poor physical conditions. Workers cannot always detect unsafe conditions, which is why
management relies on safety supervisors to identify and reduce hazards in the processes,
equipment, and materials they define. Constant lookout for unsafe conditions and prompt
resolution of them can help reduce hazards and prevent accidents on construction sites.
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2.2. UASs for Safety and Health Monitoring

An unmanned aerial system (UAS), commonly called a drone, is an aircraft or a flying
robot that can be remotely controlled by humans or fly autonomously using embedded
software-controlled flight plans that work with onboard sensors and a global positioning
system (GPS) [27]. The increased use of UASs has brought about major advances in the
field of remote sensing technology, resulting in the rapid development and proliferation of
unmanned aerial imagery technology [28]. The use of UASs is growing in popularity in the
construction industry due to the numerous advantages they offer, such as their ability to
access unreachable or dangerous areas, use different types of sensors to collect and provide
useful information to users like safety managers to facilitate safety monitoring, and timely
interventions on construction sites [29]. In a study conducted by Sebastian et al. [30], UASs
were compared to hand-held cameras on the construction site, and it was discovered that
UASs were preferable due to their ability to capture various angles and heights, providing
detailed coverage of the current status on site. Construction has witnessed different appli-
cations of UASs ranging from progress monitoring [13,31] to surveying [31,32], structural
inspection [33,34], and safety monitoring [15,35]. Using UASs to capture visual data in
some of these applications in construction could lead to remarkable time and cost savings.
UASs have a broad range of construction safety applications predominantly in the aspects
of construction worker behaviors and site conditions monitoring such as workers’ body
positions and the use of appropriate personal protective equipment (PPE), exposed edges
or gaps, operations around boom vehicles or cranes, and boom vehicles or cranes close to
overhead power lines on the construction site [29].

The features and characteristics of different UASs can vary based on their application
and adaptation to the specific tasks they are meant to perform. Since UASs are commonly
used for many civilian operations, their classification must consider their different charac-
teristics. UASs are classified as low-altitude platforms (LAP) [36] or high-altitude platforms
(HAP) [37] depending on their operating platform. A LAP is a semi-stationary aerial
communications platform that operates at less than 10 km altitude [12]. Vertical takeoff and
landing (VTOL) vehicles, aircraft, and balloons are the three main types of UASs that fall
under this group. A HAP, on the other hand, operates at a very high altitude (above 10 km),
and vehicles using this platform can fly at speeds of up to 100 km/h to stay in the upper
stratosphere for extended periods [12]. Table 1 summarizes the various types of UASs used
in construction, as well as their endurance and altitude ratings.

Table 1. Common UASs Used in Construction.

UAS Type Endurance/Altitude Applicable Environment

Quadrotor Helicopter Less than 1 h/LAP Indoor/Outdoor
Fixed Wing Aircraft, UAS Up to 50 min/up to 1640 ft Outdoor

Quadrotor, UAS Up to 25 min/up to 656 ft Indoor/Outdoor
Multi Rotor UAS 20 min/LAP Indoor/Outdoor
Parrot AR.Drone 12 min/164 ft Indoor/Outdoor

MikroKopter L4-ME Quadcopter Up to 20 min/up to 810 ft Indoor/Outdoor

The most common types of UASs in this HAP category are airships, aircraft, and
balloons. Fixed-wing UASs generate lift with their wings, whereas rotary-wing UASs
use an engine to propel them forward. Fixed-wing UASs can fly at high speeds for long
periods with a simple structure [38]. Although rotary-wing UASs can hover, take off, and
land vertically, they have slower speeds and a shorter range of flight than their fixed-wing
counterparts. Interest in Quadrotor UASs has also grown due to their low cost and ability
to perform vertical takeoff and landing [39]. DJI Phantom, 3DR IRIS, and Parrot AR are the
most widely used UAS models [32]. According to Li et al. [40], the design of these different
types of UASs impacts energy efficiency, which is a critical performance criterion for their
communication and applications.
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A few research studies have investigated the use of UASs for safety inspections. To
demonstrate their use, all of the studies used videos and images of job sites taken with
a UAS, primarily for hazard recognition [34]. Irizarry et al. [15] used a camera-equipped
aerial quadcopter that can be piloted remotely with a smartphone to communicate the
real-time feed of a job site to the safety managers to perform a usability investigation
and a heuristic evaluation. According to the study, real-time imagery, the ability to travel
to all areas of the job site, and voice interaction are just a few of the features that will
make the drone suitable for use in other construction sectors. Similarly, De Melo et al. [35]
investigated a UAS’s ability to capture visual data from a job site to determine compliance
with safety regulations using a case study methodology. Cameras are the most common
sensors used in UASs for construction applications. For the inspection of construction
projects, aerial photographs or videos are first captured using cameras, after which they
will be processed or used to create three-dimensional models of the projects. Other types of
sensors or sensing technologies that can be used with UASs include LiDAR, Microsoft®

Kinect, RFID reader, GPS, noise sensors, thermistors, radar, and infrared. A comparison of
common image-sensing devices used with UASs for construction applications is presented
in Table 2.

Table 2. Comparison of Image Sensing Devices.

Device Data Type Sensing Range UAS Mountable Sample Use Case

Stationary camera 2D images Long No Worker detection [41]
360 cameras 2D images Long Yes Bridge inspection [42]

Portable camera 2D images Long No Object identification [43]

Flash LADAR 3D images Short (<10 m) No Resource detection and
tracking [44]

Stereo vision camera 2D and 3D images Long (more accurate
<10 m) Yes Structural health

monitoring [45]
RGB-D sensors 3D images Short (<5 m) Yes Crack identification [46]

Thermal inferred
cameras 2D images Long Yes Building envelope

inspection [47]

3D laser scanner 3D images Long Yes Infrastructure
inspection [48]

Although the use of UASs for safety planning and monitoring offers several potential
benefits, a few drawbacks have also been identified [34]. For instance, different aviation
administrations around the world control the flying of UASs in their respective countries,
and the regulations they set for such operations must be followed when using UASs for
safety-related data collection on construction sites. Wind, rain, and snow have an adverse
effect on UASs and will also render UAS operations impossible [34]. Safety and health
monitoring using UASs suffer shortcomings associated with their limited energy, short
flying time, and processing capabilities [12] but still serve as a great tool for safety managers
compared to conventional methods.

2.3. Application of Computer Vision and Deep Learning for Safety and Health Monitoring

The computer science fields have witnessed a widespread application of machine
learning (ML), a subset of AI operations with applications ranging from speech recogni-
tion to natural language processing, robot control, and computer vision [1]. Computer
vision (CV) gives computers the ability to record, understand and interpret valuable visual
information contained in image and video data and then uses contextual information pro-
vided by humans to turn that data into insights used for decision-making [49]. Customary
machine learning methods are restricted in their ability to process data in its raw form
because designing a function extractor requires a large amount of engineering and domain
knowledge [50]. On the other hand, deep learning (DL), which is a subset of machine
learning that is built around artificial neural networks (ANNs), relies on computational
models influenced by the workings of the human brain [49].
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Unlike traditional CV techniques, DL makes it possible for computer vision engineers
to achieve higher accuracy in tasks like image recognition, semantic segmentation, object
detection, and simultaneous localization and mapping (SLAM). Although the use of DL has
increased recently in different industrial sectors including construction, a fully automatic
computer vision-based system for construction safety and health monitoring has not been
developed. For instance, while people who are not wearing their PPE can be identified,
those who are not complying with this requirement and whether the PPE is being used
properly (e.g., the hook of a safety harness not being attached to the rail) still cannot be
determined. DL can provide data analytics for the automatic and real-time identification
of hazards. As opposed to the traditional CV techniques, which use a pre-programmed
neural network, DL applications are trained to leverage the existing large volumes of data
that can be generated, requiring less expert analysis and fine-tuning. Unlike the traditional
CV algorithms, which are more domain-specific, DL algorithms are more adaptable and
versatile because DL models such as the convolutional neural network (CNN) models and
frameworks can be re-trained using a custom dataset for any use case [49,51,52]. Figure 1
illustrates the difference between the traditional CV workflow and DL workflow as an
example of an object (i.e., PPE) detection application for safety compliance on construc-
tion sites.
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Other DL models that can be used for computer vision are the “Boltzmann family”,
which includes deep belief networks (DBNs), deep Boltzmann machines (DBMs), and
stacked (denoising) autoencoders (SdAs) [53,54]. DBNs and DBMs are DL models that
use the restricted Boltzmann machine (RBM) as a learning module and thus belong to the
“Boltzmann family”. The restricted Boltzmann machine (RBM) is a generative stochastic
neural network. DBNs have guided connections to the lower layers and undirected connec-
tions at the top two layers, forming an RBM. Both layers of the network have undirected
connections in DBMs [54–56]. In the same way that DBNs use RBMs as a part, stacked au-
toencoders use the autoencoder as their main building block [54]. Image recognition, object
detection, behavior and movement recognition, face recognition, human pose prediction,
image retrieval, and semantic segmentation are only a few of the visual comprehension
tasks that these DL models have been used for [54,56–58]. Feature learning is a pecu-
liar capability of CNNs; it enables them to automatically learn features from a dataset.
CNNs are also transformation invariant, which is useful in computer vision. In contrast to
DBNs/DBMs and SdAs, which can run unsupervised, CNNs rely heavily on the presence
of labeled data. Both CNNs and DBNs/DBMs are computationally intensive when it comes
to training, while SdAs can be trained in real-time under some conditions [54].
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2.4. Convolutional Neural Networks in Computer Vision

In recent years, the growth of CNNs has had a huge impact on the field of computer
vision, as it has been able to outperform other deep neural networks in areas like image
recognition, object detection, and segmentation [1,49]. Convolutional layers, pooling layers,
and connected layers are the three major types of neural layers in a CNN and each layer
has a distinct function [54]. Learning time can be sped up by using convolutional layers.
A CNN convolves the entire picture as well as the intermediate feature maps, resulting
in a variety of feature maps. It has been proposed as a replacement for completely linked
layers in many works [54]. Pooling layers are responsible for reducing the input volume’s
spatial dimensions (width and height) in preparation for the next convolutional layer. The
most widely used techniques are average pooling and full pooling. Since the reduction
in size results in a simultaneous loss of information, the process performed by this layer
is also known as subsampling or downsampling. The depth dimension of the volume is
unaffected by the pooling layer. It is advantageous to the network because it prevents
overfitting [59]. Fully connected layers in the neural network are used to perform high-level
reasoning. All activation in the previous layer is completely connected to neurons in a
fully connected layer. The 2D feature maps are gradually transformed into a 1D feature
vector by completely connected layers. The resulting vector could be fed into a variety of
classification categories. Two deep convolutional networks (Faster R-CNN and YOLOv3)
commonly used for object detection are described as follows.

2.4.1. Faster R-CNN

Faster R-CNN introduces a region proposal network (RPN) that can generate high-
quality region proposals and be used to detect and classify objects based on the region
proposals and share full-image convolutional features with the RPN. It is an object detection
method proposed by [60] in 2015. On a graphics processing unit (GPU), the Faster R-CNN
has a frame rate of 5 frames per second, which makes it a viable object detection system in
terms of both speed and precision.

The Faster R-CNN approach consists of three phases. First, the characteristics of a
photograph are extracted, and then to create a convolutional feature map, the network
uses the CNN method to process the whole image with many convolutional layers and
max-pooling layers [9]. The second module is a deep, fully convolutional network that
proposes regions based on the features [60]. Judging whether a person is wearing a
hardhat only based on the feature maps is challenging because the image usually contains
numerous superfluous things and persons always appear very little in a whole image. As a
result, the foreground regions, which may include humans, must be distinguished from
background regions before excluding the latter. For recognizing non-hardhat-use (NHU),
only foreground regions are used. The third module uses proposed regions and extracted
fractures to determine if the proposed region is a worker wearing a hardhat or not [60].

Faster R-CNN has three major advantages over other methods used for hardhat detec-
tion in previous studies: (i) it is robust in dealing with different complexity of construction
site environments; (ii) it can fulfill the need for a practical engineering approach due to its
high precision; and (iii) real-time monitoring and detection of hard hats can be achieved
due to its short processing time [9,61,62].

2.4.2. YOLOv3

The You Only Look Once (YOLO) algorithm is a cutting-edge real-time object detection
system that uses CNN principles [63,64]. YOLO divides the input image into a S × S
grid [64,65]. Each grid cell predicts only one object and a fixed number of boundary boxes.
It predicts boundary boxes (B), including position information of the bounding box for
each grid cell, with one box confidence score for each box [61]. Then, regardless of the
number of boxes B, it detects only one object. Finally, it forecasts conditional class (C)
probabilities (one per class for the likeliness of the object class). Each boundary box is made
up of five elements: (center point coordinates x, y, width w, height h) and a box confidence
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score [63,66]. The confidence score reflects the box’s likelihood of containing an object and
the accuracy of the boundary box.

YOLOv3 improved on YOLO by adding batch normalization, high-resolution clas-
sifiers, convolutions with anchor boxes, multi-scale training, and joint classification and
detection. YOLOv3 is inspired by Faster R-anchor CNN’s box. To obtain good priors,
it abandons the manually selected anchor box and performs k-means clustering on the
dimensions of bounding boxes [67]. This method is used by YOLOv3 to obtain 9 cluster
centers, which can better cover the characteristics of the train set’s ground truth. YOLOv3
has acquired image features at different scales and greatly improved the detection of small
targets as a result of predictions on multiple-scale feature maps [27]. YOLOv3 assigns
several anchor boxes to each scale feature map based on the length and width of the anchor
boxes, combining the anchor box and multi-scale prediction idea. YOLOv3 uses the Dark-
net53 network as the backbone. YOLOv3 is an advanced CNN architecture with a mean AP
(Accuracy precision) metric that is comparable to other similar architectures such as Faster
R-CNN, SSD513, RetinaNet, and DSSD [68] but with a faster prediction rate. Luo et al. [69]
found that YOLOv3 is effective at detecting multiple workers on construction sites.

3. Materials and Methods

This section describes the research method implemented for this study. This study was
conducted using a combination of tasks as depicted in Figure 2 below. The entire process
illustrated in Figure 2 can be summarized into four stages which include (i) identifying
research problems and knowledge gaps; (ii) reviewing background concepts; (iii) devel-
oping and validating the framework; and (iv) documenting the conclusion of the study.
The study began with a review of fatality statistics in the construction industry and the
current methods of safety and health activity monitoring on construction sites to identify
the research gaps and needs. Thereafter, UAS applications and their limitations along with
the use of DL models were reviewed to identify their existing and potential applications
for construction safety and health monitoring. This was followed in stage 2 by a detailed
review of the concepts highlighted in state 1.
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Based on the reviews conducted in stage 2, the safety and health hazards on construc-
tion sites were characterized in stage 3 by determining and mapping the different attributes
of the hazards (including their source categories, metrics that can be measured, etc.) with
computer vision applications comprising of data capturing sensors, data types/features,
and deep learning models to be used for analysis. Following that, an integrated framework
for the monitoring of safety and health hazards of construction sites using UAS and DL was
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developed, and a case study of hardhat detection on construction sites was implemented to
test the framework. The results of the case study were analyzed, and the findings were dis-
cussed and compared to those obtained from the existing studies, after which conclusions
were made in the final stage with accompanying recommendations for future studies.

3.1. Construction Safety and Health Hazards Characterization for Computer Vision Applications

For the characterization, incident statistics reports, OSHA publications, and existing
research studies on construction safety and health hazards were reviewed to identify the
common hazards and their attributes, such as their source categories (unsafe behavior
or conditions), metrics to be measured, etc. The different UAS sensors used to collect or
capture the data type of each hazard based on their metrics were identified. Thereafter,
the types of deep learning techniques (such as RNN, CNN for object detection and action
recognition, etc.) used to analyze the captured data in terms of detecting and measuring
the appropriate metrics were identified. These different components were mapped based
on existing applications of computing vision as reported in published studies. The steps
adopted for the characterization are depicted in Figure 3.
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3.2. Development of the Framework

Based on the reviews conducted and the characterization of construction safety and
health hazards for computer vision applications, an integrated framework that leverages the
use of UAS and DL for the continuous monitoring of safety and health activity for worker
safety performance improvement on construction sites was developed. It is expected that
this framework will be used to automate data collection (using UASs) and analysis (using
DL) to identify unsafe worker behaviors and site conditions in order to provide real-time
feedback for accident prevention on construction sites.

3.3. Pilot Case Study to Implement the Framework

A pilot case study was conducted to implement the integrated UAS-DL framework.
A DJI Mavis 2 Pro UAS (with 1 CMOS, 20 megapixels cameras; 4K UHD and 10-bit D-log
video; 31 min flight time, and; 907 g weight) was flown over different active construction
sites in Texas, United States to capture quality images and videos of workers engaging in
different work processes and activities such as foundation work, scaffolding, trenching, etc.
The images and videos were collected over several months to capture a sizable amount of
data that reflects different construction tasks/activities at different phases. The case study
scenario used was safety hardhat (helmet) detection.

The study employed the Faster R-CNN and YOLOv3 architecture using the open-
source TensorFlow framework and Keras backend. Keras is a high-level network API
written in Python that uses the TensorFlow framework for implementation. Google
Colab, a web-based notebook that allows writing and execution of arbitrary Python
code through the browser, was used to execute the codes, and NVIDIA T4 Tensor Core
GPU available on Google colab was used for the model training. The primary envi-
ronment consists of Python3, Tensorflow, pip, OpenCV, and Keras, which was run on
Google Colab and operated from an Intel Core i7-8565U 1.8 GHz CPU and Intel HD
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Graphics GPU with a 16 GB RAM hardware. To reduce training time and save com-
puter resources, the generated dataset combined the COCO dataset with the pre-trained
faster_rcnn_resnet152_v1_640×640_coco17 for one of the models and pre-trained YOLOv3
for the other model to learn the safety helmet’s features.

An off-the-shelf dataset available on the Roboflow website (https://public.roboflow.
com/object-detection/hard-hat-workers/1, accessed on 17 April 2021) with sample images
shown in Figure 4 was used to train the model. The dataset consisted of 7041 preprocessed
and augmented images with a 75/25 training and testing split. The training set was used
to train the model to determine the parameter of the model, while the testing set was used
to evaluate the generalization ability of the final model [70]. The number of classes was
set to 2, “Helmet” and “Head”. Figure 5 shows the flow chart used for developing the
models. The images captured (using DJI Mavis 2 Pro by DJI, Shenzhen, China) from the
active construction sites (Figure 6) were also used to validate the model. Due to the limited
computational power of the machine used, the dataset images were resized several times
in order to train the model.
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3.3.1. Training Using Faster R-CNN

The training was done using TensorFlow 2.0 on Google Colab. During the training, the
TensorFlow board was used to capture the overall loss values. After the model had been
trained, it was validated with images captured by the UAS and some construction images
from the dataset. To test the model, 1766 images were inputted into it, and the images
detected were output. Confidence score predicted labels, and bounding boxes surrounding
the predicted part in the images were shown in the images.

3.3.2. Training Using YOLOv3

The model for training was made by combining the configuration (cfg) file and weights
file of YOLOv3. An h5 model file was generated, which had 252 layers. The model layers
include 23 adding layers, 72 batch normalization layers, 75 2D convolutional layers, 72 leaky
rectified linear unit (ReLu) layers, five 2D zero-padding layers, two concatenate and up-
sampling layers, and a YOLO loss layer. The data after all epochs before unfreezing all
layers and three epochs after unfreezing all layers in training was stored as a new model.
For better training, reducing the learning rate of a change in validation loss was not less
than 0.1. To avoid overfitting, early stopping of a change in validation loss is nil for the last
1000 epochs used.

3.3.3. Metrics for Performance

Precision and recall are two metrics often used to assess the trained model’s reliability
and performance. The ratio of true positive (TP) to true positive and false positive (TP +
FP) is known as precision. The number of helmets detected is TP + FP. The ratio of true
positive (TP) to true positive and false negative (TP + FN) is known as recall. The exact
number of helmets is represented by TP + FN.

Precision =
TP

TP + TF
(1)

Recall =
TP

TP + FN
(2)
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4. Results and Discussion

This section presents the results of the study, their analysis, and discussion of findings.
First, a matrix containing the characterization of safety and health hazards for computer
vision applications in construction is presented. This is followed by the presentation of
the UAS-DL framework developed and the validation of the framework using a pilot
case study.

4.1. Matrix of Construction Hazards Characterization for Computer Vision Applications

Table 3, first presented in Awolusi et al. [19], shows a matrix of the characterization of
the common safety and health hazards for computer vision applications in construction.
This matrix shows the analysis (or breakdown) of common hazards and their attributes
including source categories (i.e., unsafe behavior or conditions), measurable metrics, the
different UAS sensors for data capture/collection, the data type, and the DL techniques
that can be used to analyze the captured data. For instance, the potential for a struck-by
hazard, when a pedestrian worker is close to a piece of heavy equipment (which could be
an unsafe behavior or condition), can be averted when a UAS (fitted with HD camera and
GPS sensors) detects and captures the location and proximity of the equipment and worker.
The UAS sensor then provides the data in the form of 2D or 3D images or videos, which
are then analyzed by a CNN through object detection and object tracking to provide useful
information and feedback in real time for accident prevention. Kim et al. [71] evaluated this
concept of UAS application in their investigation and obtained a promising level of accuracy.
Similarly, a health hazard like improper lifting causing an awkward worker body posture
or orientation can be detected by a UAS with an HD camera sensor which produces 2D or
3D images or videos processed using CNN for object detection and action recognition.

Table 3. Characterization of Common Construction Safety and Health Hazards [19].

Hazards Unsafe
Behavior

Unsafe
Condition Metrics UAS

Sensors Data Type DL
Techniques Source

Sa
fe

ty
H

az
ar

ds

Falls from height 3 3 Body posture HD camera 2D images,
videos

CNN—Object
detection [9,72]

Caught-in or
-between 3 3

Proximity
detection HD camera 2D images,

videos
CNN—Object

detection [71]

Struck-by object 3 3
Proximity
detection,

Location tracking

HD camera,
GPS

2D images,
3D images,

videos

CNN—Object
detection and
object tracking

[71]

Electrocution 3 3
Proximity
detection,

location tracking

HD cameras,
GPS

2D images,
3D images,

videos

CNN—Object
detection and
object tracking

[71]

Slips and trips 3 3
Body posture,
body speed HD camera

2D images,
3D images,

videos

CNN—Object
detection and

action
recognition

[17,73]

Cave in 3 3 Location tracking HD camera,
GPS

2D images,
3D images,

videos

CNN—Object
detection and
object tracking

[6]

Not using PPE 3 Object detection HD camera 2D images
videos

CNN—Object
detection

[9,61]

H
ea

lt
h

H
az

ar
ds

Loud Noise 3 Noise level Acoustic
sensor

Audio
recording RNN—LSTM [12,22,73]

High
temperatures 3

Body
temperature

Thermal
cameras

2D images,
thermal
images,
videos

CNN—Object
detection [12,22]

Fire and
explosion 3

Smoke and fire
detection

Thermal
cameras

Thermal
images,
videos

[12,22]

Improper lifting 3
Body posture

and
orientation

HD camera
2D images,
3D images,

videos

CNN—Object
detection and

action
recognition

[17,22]

CNN—Convolution Neural Network, RNN—Recurrent Neural Network, LSTM—Long Short-Term Memory.
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4.2. Framework for Safety and Health Activity Monitoring Using UASs and DL

This integrated framework utilizes UASs and DL for the continuous monitoring of
safety and health activity to improve worker safety performance on construction sites. It
is expected to be deployed to automate the collection of safety and health activity data
(using UASs) and analysis the analysis of the data (using DL) to detect hazards and identify
unsafe worker behaviors and site conditions for the provision of real-time feedback for
accident prevention on construction sites. The framework has four major phases illustrated
in Figure 7 and described as follows.
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4.2.1. Phase 1: Goal Definition and Action Plan

In this phase, the safety and health performance goals and objectives, along with
the categories of measurement and metrics, are defined by the safety manager and other
stakeholders in the organization. Thereafter, an action plan is initiated, first by studying
the work processes on the construction project to identify the different possible hazards
associated with different operations and tasks. The hazards are then characterized into
different categories, such as safety hazards and health hazards, unsafe behaviors, and un-
safe conditions, and the respective measurable metrics. The procedure will be championed
by a team made up of the organization’s safety personnel. The different types of hazards
on the construction project such as workers not wearing hard hats, workers standing too
close to trenches, inappropriate lifting, and standing on the haul road near heavy equip-
ment are among the activities and hazards that must be identified by all stakeholders of
the organization.

4.2.2. Phase 2: Data Collection (Using a UAS)

In this phase, the construction site activities are monitored using a UAS equipped with
appropriate sensors to identify critical hazards including unsafe behaviors and conditions.
A flight protocol such as the one proposed by Kim et al. [18] consisting of three steps
(pre-flight step, flight step, and post-flight step) can be used to plan the flight path. Flight
mission plans, including targeted sites (points of interest) and takeoff and landing locations,
are determined based on the pre-flight discussion. The flight team determines the UAS to
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be used and examines the UAS conditions before flights once the flight parameters and
pertinent information have been identified. The flight operator will communicate with
observers, project engineers, and safety supervisors while the UAS collects or captures
visual data. More than one flight might be required during this phase depending on the
need impacted by site variables such as the size of the project, the number and nature of
activities taking place, etc. After all the flights have been completed, the acquired images
and videos will be processed and transmitted to external storage. The UAS can be flown
manually or preprogrammed with a flight path with scheduled flying times.

4.2.3. Phase 3: Data Analysis (Using DL)

This is the phase at which the developed DL model is deployed to analyze the collected
data for hazard detection. The developed DL model could be object detection, action
recognition, pose estimation, or a combination of these and other computer vision tasks
depending on the types of hazards on the construction site. Depending on the type of
model to be trained, the data needed to train the model are acquired from appropriate
sources. To achieve homogeneity, the collected data are cleaned and preprocessed. After
the model is trained, tested, and its accuracy, speed, and efficiency are assessed, the model
is deployed for the identification and analysis of hazards on the construction site.

4.2.4. Phase 4: Decision Making and Improvement Implementation

This is the final stage at which decisions are made by the management of the organiza-
tion for improvements based on the results of the data analysis. The report generated from
the monitoring process (i.e., data collection and analysis) will include hazards that should
be mitigated or eliminated and unsafe behaviors and conditions that should be corrected,
together with recommendations for immediate intervention and modification. Appropriate
plans are made by the safety personnel to implement the corrective measures by providing
real-time alerts to workers and training to eliminate unsafe behaviors and correct unsafe
working conditions on the construction site.

4.3. Training and Testing Results

The results of the model training using Faster R-CNN and YOLOv3 are presented as
follows. The two models were trained using the same datasets.

4.3.1. Faster R-CNN

Figure 8 illustrates the pace at which the algorithm updates and learns the values of
the parameter estimates. The tensor board was used to capture the loss functions during the
training process. Figure 9a shows that the total loss values fall gradually at the beginning of
the training and gradually converge towards the end. The disparities between the true and
predicted values are the loss function values. The model’s training process is represented
by changes in the loss function. The lower the values, the better the model has been
trained. The loss function has an impact on the training process because it signals when it
is finished. Figure 9a–c demonstrate the differences in the local loss, regularization loss,
and classification loss. The classification and localization loss values decline dramatically at
the start of the training and then gradually as the training progresses until about 1500 steps.
The convergence of the loss function shows that the training has been completed.

The trained model had a precision of 95% and a recall of 80%, indicating that the model
performs well in detecting safety helmets. The probability of detecting safety helmets is
depicted in Figures 10 and 11 below.
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However, several inaccuracies were found in the output images (Figure 11), indicating
that the detection model had some flaws. The safety helmets were detected in wide
photographs and close-up images; however, there were some false detections in images
with low light intensity and images with shapes similar to those of a safety helmet. The
helmets were not detected in several of the photographs when only a little section of the
helmet was seen.

4.3.2. YOLOv3

A batch size of 4 was used for the training. The Adam optimizer, with an initial
learning rate of 0.001, was used for training. An early stoppage was used, with the
first training stopped after 1100 iterations, and the second one after 4200 iterations as
shown in Figure 12 below. The training progress of the network was monitored using loss
and accuracy.
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Some detection errors were also found in the output images, indicating that the
detection model had some flaws. The safety helmets could be detected in wide photographs
and close-up images (Figure 13); however, there were some false detections in images with
low light intensity and UAS images taken from a far distance as shown in Figure 14.
The helmets were not detected in several of the photographs when only a little section
of the helmet was seen and where people were small due to the distance at which the
images were taken. These errors are major because images taken using UASs were not
included in the training data set. Images taken using UASs were taken from different
angles and had different resolutions compared to images taken using still cameras. The
objects sometimes appeared very small. UAS images need to be included in future model
training for better detection.
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4.3.3. Summary of Performance

A confusion matrix was used to understand the performances of the trained models,
in which human interpretations and model predictions were counted and marked on a
table. The precisions of the models’ performances were assessed. For this, true positive
(TP), true negative (TN), false positive (FP), and false negative (FN) values of each class
were counted and tabulated. Faster R-CNN showed a higher accuracy than YOLOv3 as
seen in Table 4 below. This result is in line with a previous study by Fang et al. [9], who
found that Faster R-CNN had a higher precision compared to the other model tested in
their study.
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Table 4. Classification Report for Test Dataset.

TP FP FN Precision (%) Recall (%)

Faster
R-CNN

YOLO
v3

Faster
R-CNN

YOLO
v3

Faster
R-CNN

YOLO
v3

Faster
R-CNN

YOLO
v3

Faster
R-CNN

YOLO
v3

Helmet 3478 3201 254 371 381 386 93.1 89.8 90.1 89.2
Head 1563 1358 158 161 181 169 90.1 89.4 89.6 88.9

5. Conclusions

The proactive and active monitoring of hazards in high-risk work environments like
construction sites is important to ensure the safety of all workers. Leveraging technologies
such as UASs and DL for proactive and active safety and health monitoring and analysis can
be very effective in reducing the prevalence of fatal and non-fatal injuries on construction
sites. Objective and accurate data collection and analysis can be accomplished with this class
of technologies to give real-time feedback for enhancing safety and health management on
construction sites. In this study, a review of the safety and health hazards that construction
workers are exposed to was conducted. They were characterized and mapped to the metrics
that can be measured and the DL models that can be used to analyze them. Thereafter, a
framework for construction safety and health activity analysis and monitoring using UASs
and DL was developed, and a pilot case study was conducted to validate the framework.

This study advances knowledge in a variety of ways. First, the findings of this study
provide useful information through which UASs and DL can be effectively deployed to
monitor worker safety and health activities for accident prevention on construction sites.
The matrix of characterized safety and health hazards provided in this study is expected to
facilitate computer vision applications and can be adapted and applied to various types or
scales of construction work processes. The framework developed provides an approach for
safety and health monitoring and accident prevention on construction sites. The study also
presents a comparison of the performances of two DL object detection algorithms/models
for safety hard hat detection. The findings of this investigation show the potential benefits
of using UASs and DL in computer vision applications for managing safety and health in
the construction industry.

In terms of the limitation of the study, adding more UAS-captured data (i.e., images)
to the training dataset could have further increased the precision of the detection. Further
improvements or modifications to the models used or exploring other algorithms could
increase the precision of the detection of images taken from high altitudes and images where
the detection targets were very small. The pilot case study conducted is also limited in that
only one safety issue scenario was used for the validation. Also, the validation did not
cover real-time UAS monitoring for decision-making and implementation of improvements,
which should be the subject of future studies following this investigation.

Future studies should explore the use of data containing more UAS-captured images
for model training. The whole framework should also be implemented on an active project
so that all the components can be validated to determine the framework’s effectiveness and
identify areas of improvement. Additional DL models can be developed and tested as part
of the framework, and the integration of the framework with the Internet of Things (IoT) for
real-time data collection, analysis, and improvement implementation should be explored.
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