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Optimal Allocation of Resources for Screening of Donated Blood

Shiguang Xie

(ABSTRACT)

Blood products, either whole blood or its components, are vital healthcare commodi-
ties for patients across all age groups, multiple diagnoses, and in a variety of settings.
Meanwhile, blood shortages are common, and are projected to significantly increase
in the near future in both developing and developed countries due to a limited supply
of and increasing demand for blood, lack of resources, infrastructure. Unfortunately,
today there remains a definable risk associated with the transfusion of blood and
blood products. We explored, in depth, the resource allocation problem in reduc-
ing the risks of transfusion-transmitted infections (TTI). We developed models and
algorithms to study the problem of selecting a set of blood screening tests for risk
reduction, which we show to be very efficient in numerical studies with realistic-sized
problems. This analysis also motivates the development of effective lower bounds
with co-infection; our analysis indicates that these algorithms are very efficient and
effective for the general problem. We also incorporate other objective functions and
constraints (i.e., waste) into the analysis. Waste, defined as the fraction of disposed
blood in the “infection-free” blood, is incorporated into the risk-based model as a
constraint. As an important extension, we compared our results of the blood screen-
ing problem in risk model with that of weighted risk objectives, which allows for
different weights for each TTI. We further explored efficient algorithms to study this
extension of the model and analyze how the test composition changes with the dif-
ferent objectives. Finally, in the context of blood screening, the last extension we
investigated is to include a “differential” testing policy, in which an optimal solution
is allowed to contain multiple test sets, each applied to a fraction of the total blood
units. In particular, the decision-maker faces the problem of selecting a collection of
test sets as well as determining the proportion (or fraction) of blood units each test
set will be administered to. We proposed the solution methodology and determined
how the test sets under differential policy relate to those under the “same-for-all”
policy; and how these changes impact the risk, and allow for better budget utilization.
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Chapter 1

Introduction

1.1 Motivation

In both rich and poor nations alike, public resources are inadequate to meet the
increasing demand for healthcare. As a result, policy makers and healthcare providers
are required to deliver healthcare in the most efficient and effective ways using the
limited resources (Brandeau et al., 2004). The field of Operations Research (OR)
offers a set of tools and methodologies that can be utilized to address operational
and strategical decision-making in healthcare, with focus on an optimal allocation
of the scarce resources to activities in the most beneficial way for the whole system.
As such, OR methods have been used for various facets of healthcare planning and
decision-making (Brandeau et al., 2004), and OR has already made, and further will
make, considerable contributions for the effective and efficient delivery of healthcare
services. Our research broadly falls within this area of using OR methods to improve
the delivery of healthcare.

Healthcare is a high-risk, error-prone industry. This research focuses on an important
aspect of healthcare delivery in a variety of clinical contexts, that of improving its
safety, through the use of OR methodology. Specifically, we focus on two important
procedures: blood transfusion and joint (hip and knee) replacement surgery. Both
these procedures can greatly benefit the patients when properly delivered, but have
adverse outcomes otherwise. These contexts have particularly been selected for sev-
eral reasons. First, they represent procedures that have been associated with several
adverse outcomes in the literature (e.g., mortality from joint surgery; transfusion-

1
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transmitted human immunodeficiency virus infection); and more importantly, there
are relevant and readily available data to study the healthcare safety within these
clinical contexts.

Blood products, either whole blood or its components, are vital healthcare commodi-
ties for patients across all age groups, multiple diagnoses, and in a variety of settings.
Most organ transplants, cancer therapies, heart and other surgeries, resuscitation of
trauma victims, as well as care and survival of premature infants, children with se-
vere anemia, and pregnant women with complications would not be possible without
blood transfusion. As a result, there is high and increasing demand for blood world-
wide, and a large number of people (e.g., 40 to 70% of the US population (Hay et al.,
2006)) will need blood transfusion at some point in their lives.

Unfortunately, today there remains a definable risk associated with the transfusion
of blood and blood products. These risks may occur in both the pre-clinical and
clinical dimensions of the transfusion process, from blood collection from a donor
through blood administration to a patient. Transfusion safety is concerned with
identifying and mitigating the hazards associated with delivering transfusion care
to patients. The potential hazards of blood transfusion can be grouped into several
broad categories including infections, immune reactions, human and testing errors,
and we incorporate each of these aspects through a Probabilistic Risk Assessment
framework.

Next, we focus on one of these categories: the risk of transfusion-transmitted infec-
tions. These transfusion-transmitted infectious diseases (TTIs) include the human
immunodeficiency virus (HIV), hepatitis viruses, human T-cell lymphotropic virus
(HTLV), syphilis, West Nile Virus (WNV), Chagas’ Disease, etc. Because blood
products are an essential component of any health system, effective blood screening
under limited budget is critical. However, this is compounded by the facts that (i)
no blood screening test is perfectly reliable (each test has the possibility of providing
false-positive or false-negative results); (ii) most screening tests are expensive and
resources are limited; (iii) co-infections are likely for certain infections (e.g., HIV
and hepatitis viruses B and C) and may impact the decision; (iv) the decision-maker
needs to be also concerned of the “waste” in blood supply resulting from false pos-
itive testing errors, especially as blood shortages are on the rise worldwide. Our
objective is to develop models and algorithms to study the problem of selecting a set
of blood screening tests considering the important aspects outlined here. We also
study an extension of the model by allowing “differential” testing, which provides
flexibility by allowing different test sets to be administered to different portions of
donated blood. These two problems constitute the basis of this dissertation for the
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context of blood transfusion.

For the second clinical context, joint replacement surgeries are known as one of the
most frequent elective procedures used to treat degenerative joint disease (DJD) in
the United States (US). It is a cost-effective, therapeutic strategy for patients with
hip and knee DJD because of its ability to increase mobility, reduce pain, and improve
the quality and years of productive life (Dorr et al., 1990; Matsen, 1996; Ranawat
et al., 1984; Rissanen et al., 1997; Segal et al., 2004; Chang et al., 1996; Liang et al.,
1986). In 2003, approximately 200,000 total hip replacements, 100,000 partial hip
replacements, 36,000 hip replacement revisions, and even more knee replacements
were performed in the US (Zhan et al., 2007). The demand for joint replacement
has remained high even for patients with advancing age. Approximately 60% of
hip replacements were performed on those over 65 years of age. Our objective is to
establish the relationship between mortality and surgeon volume, hospital volume,
and hospital size so as to provide important insights into the factors that affect the
quality of healthcare in this context.

1.2 Research Overview

For the research in blood safety, we first develop and analyze, in Chapter 3, a com-
prehensive risk model so as to quantify the overall risk from transfusion of red blood
cells (RBC) in the United States. In particular, we use Probabilistic Risk Assessment
(PRA), also known as fault tree analysis, which is a quantitative and deductive pro-
cess analysis tool that can be used for risk assessment and management. While PRA
has been commonly used in high-risk industries, such as nuclear power, aviation and
aerospace, to investigate rare events that have potentially devastating outcomes, its
use in healthcare has been limited. Utilizing PRA, we develop a comprehensive risk
model of RBC transfusion by considering the relationship between the various risk
points (events) and an adverse transfusion outcome. We determine the contribution
of each event to an adverse transfusion outcome and identify the “critical points”
that are the major contributors to the overall risk. This analysis then allows us to
identify targeted interventions and evaluate their costs and benefits for risk reduction
within a systematic framework.

In Chapters 4-6, we examine a more specific threat to the safety of blood transfusion:
the risk of transfusion-transmitted infectious diseases (TTIs). New testing technolo-
gies are being developed, offering new options of price and efficacy so as to improve
blood safety, but these technologies typically come at very high costs (Dzik, 2003;
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Jackson et al., 2003). Thus, it is often the case that multiple tests, with varying
degrees of efficacy and costs, are available for screening for the same infection. Then
the questions faced by the decision-maker (Blood Bank or Blood Collection Center,
such as the American Red Cross) include the following: (1) How should the limited
resources be optimally allocated to the screening tests in order to minimize the risk of
a TTI? and (2) How should the results of the selected battery of tests be interpreted,
that is, what is the “decision rule” for concluding that the blood unit is infected by
a certain infection when multiple tests are administered for it and their results are
not in agreement? Furthermore, these questions are interrelated, in that, the risk of
a TTI depends, in a complex way, on both the selected test battery and the decision
rule adopted.

What complicates the problem further is the possibility of co-infections in blood
donors, i.e., a donor being simultaneously infected with multiple TTIs, as some
viruses, such as the HIV, may make the individual more susceptible to acquiring
other viruses. Indeed, co-infections are likely for the HIV and the hepatitis viruses
B and C (HBV, HCV). It is estimated that up to 10% of HCV-positive individuals
test positive for the Hepatitis B surface antigen (HBsAg), and that up to 20% of
HBV-positive individuals are co-infected with HCV (Gordona and Sherman, 2009).
While 15% to 30% of HIV-infected individuals worldwide suffer from chronic HCV
infection, among those HIV-positive individuals that are infected parenterally, such
as haemophiliacs and intravenous drug users, chronic HCV infection can be as high
as 75%. Chronic HBV infection, on the other hand, occurs in 10% of HIV-infected
individuals (Carmo et al., 2000; Lincoln et al., 2003; Soriano et al., 2006). For the
donor pool in the US, which undergoes systematic donor screening1, these numbers
will serve as upper bounds, as a portion of the individuals who are considered to be at
risk for HIV or hepatitis viruses will be eliminated through donor screening. However,
for some developing countries, these co-infectious donors, unfortunately, are not less
likely to be in the donor pool, as donor screening is not rigorous and systematic
(Lancet Editorial, 2005). Blood is collected exclusively from voluntary unpaid donors
in only 39 of 178 countries, and “42% of blood collected from donors in medium and
low Human Development Index countries comes from family replacement or paid
donors, and this blood often contains a higher seroprevalance of TTIs than blood
from voluntary non-remunerated donors” (American Red Cross, 2008). Therefore,
it is important to explicitly model the co-infection possibility in the screening test

1Blood Centers in the US apply various donor screening procedures required by the Food and
Drug Administration (FDA), such as donor questionnaires that are administered pre-donation, the
deferral of men who have had sex with men within the past twelve months, and requiring the
recruitment of voluntary, rather than paid, donors.
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selection problem.

Moreover, in blood screening, there are multiple, often conflicting, measures, that are
important for the decision-maker. For example, reducing the fraction of infection-
free blood falsely discarded (“waste”) is critical as the demand for safe blood is on a
rise worldwide.

The most important metric, risk, is first introduced and investigated separately in
Chapter 4 in the “risk-based” model. We show that for any set of tests, the decision
rule known as the “Believe the Positive” rule is the one that minimizes the risk of a
TTI. This result allows us to formulate the test selection problem as a 0−1 polynomial
programming problem, which selects a set of budget-feasible tests that minimizes the
TTI risk. As stated above, the polynomial risk function arises due to the nonlinear
contribution of each test to the overall risk. We then study a special case of the
problem, which applies if the co-infection probabilities (i.e., the probability that the
blood unit is simultaneously infected by a combination of TTIs) in donated blood
are negligible. For this case, we develop optimal algorithms, which we show to be
very efficient in numerical studies with realistic-sized problems. This analysis also
motivates the development of a near-optimal algorithm and effective lower bounds
for the general case with co-infection possibility; our analysis indicates that these
algorithms are very efficient and effective for the general problem. Finally, we solve
the test selection problem with realistic data from sub-Saharan Africa and discuss
the test composition for various budget allocations.

We then expand our analysis to incorporate other objective functions and constraints
(i.e., waste) into the analysis in Chapter 5. Waste, defined as the fraction of disposed
blood in the “safe” blood, is incorporated into the risk-based model as a constraint.
In addition, we further study the blood screening problem under a framework which
allows for different weights for each TTI combination. Such a framework is more
comprehensive and realistic than the basic risk model analyzed in Chapter 4, because
the severity and social cost associated with the various TTIs could differ greatly,
and this impacts the test composition selected. Our model in Chapter 5 is general
enough to incorporate the metrics commonly used in the medical literature, such as
the social cost, Quality-Adjusted Life Year (QALY), Disability-Adjusted Life Year
(DALY), among others (Marshall et al., 2004; Van Hulst et al., 2010; Custer et al.,
2005b; Zohrabian et al., 2004). Efficient optimal/near-optimal algorithm(s) for the
“weight-based risk” model is explored. We further discuss the impact of introducing
the weight-based model on the optimal test composition in Chapter 5.

Finally, for blood screening, a differential testing extension to RMP model is in-
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vestigated in Chapter 6. By allowing a collection of test sets to be administered to
various proportions of blood units, differential testing provides the decision-maker
with flexibility and an opportunity for further risk reduction.

For the research in joint replacement, we determine the relationship between surgeon
and hospital volume, hospital size and mortality after joint replacement surgery
for elderly patients based on statistical analysis in Chapter 7. This retrospective
study used the 2006 National Inpatient Sample (NIS) dataset from the Agency for
Healthcare Research and Quality’s (AHRQ) Health-care Cost and Utilization Project
(HCUP). Patients over 65 years of age who received an inpatient hip or knee replace-
ment were identified. Demographic, clinical, and utilization variables were identified
and compared across surgical and hospital volume and hospitals of different sizes for
the outcome of mortality. Bivariable comparisons were analyzed using a chi-square
test. A logistic regression model was used to control for variables associated with
mortality. Thresholds for both hip and knee replacement volumes by surgeon and
hospital were empirically determined using linear regression.



Chapter 2

Literature Review

It is widely realized that the developing countries are facing a severe safe blood short-
age for a long period(WHO, 2004). Experience in the developed countries shows
that a pool of healthy, regular, voluntary donors without being rewarded financially
is critical for countries or area to produce adequate safe blood supply. WHO’s in-
vestigation has agreed with the claim that donors who give blood voluntarily are
the safest donors. Only 39 of 178 countries, however, have completely voluntary,
unpaid blood donation according to a survey conducted by WHO(WHO, 2004). The
shortage of donors complicates the situation even more in the developing countries,
where the blood is needed most. It is estimated in (WHO, 2004) that 81 million
units of blood is donated globally every year, of which only 39% comes from devel-
oping countries, resulting a global blood shortfall of around 40 million units annually.
Another issue arises during a blood shortage–possible ramifications during a major
crisis (eg,hurricane, earthquake). Blood shortages normally occur in areas where dis-
asters strike. All ARC blood service regions need to be fully operational to effectively
supply blood during a major crisis, allowing blood to be moved from one part of the
country to another. The current shortage is pushing the system to its limits. Fur-
thermore, the study in Greinacher et al. (2007) of the effect of aging population on
the blood supply and demand poses a challenge of providing adequate safe blood for
both developing countries and developed countries in the near future. As the popu-
lation structure in many industrialized countries currently changing with a shift from
younger to older age groups, it is expected that the blood demand will grow resulted
in the increase of blood transfusion in older population and that the blood supply
will fall out of a decrease of blood donation in younger population(WHO, 2004).
In the study of Greinacher et al. (2007), they found that the increased demand for

7
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blood coincides with a significant reduction in blood donations because of the aging
population. It is concluded from their model that “from 2008 the shortfalls will grow
to 32 to 35 percent of the total demand in 2015 in the area” they studied. It can be
inferred from this study that the blood shortage situation could be worsen because
the demographic trends doubtlessly exist in many other industrialized countries.

Although it is widely claimed that 85 percent or90 percent or nearly all of the pop-
ulation in US will need blood sometime during their lifetime (New York State De-
partment of Health, 2005),(American Red Cross, 2005),(American Red Cross, 2004),
study conducted by Shauna N. Hay et al. concluded that the true rate of transfusion
probably lies in the range of 40.9 to 71 percent(Hay et al., 2006). There are also some
sources claimed that One in 20 Americans will require a blood transfusion at some
point in their lives.). ”A safe, plentiful supply of blood for transfusion is an essential
component of any health system. But too many countries continue to use unsafe
blood for transfusions and thousands of individuals die every year because supplies
are short. In wealthy countries, demand is high and getting higher: one patient in
every ten admitted to hospital needs some sort of blood product. Increasingly com-
plex medical procedures and longer life expectancies are pushing up demand still
further. For developing countries, the demand profile is different, but these nations
are no less dependent on safe supplies. Women and children are the most in need.
70% of blood transfusions in Africa are given to children with malaria; the other
major use for donated blood is to help treat women with post-partum haemorrhage.
The 100 000 annual deaths attributed to this complication are evidence of the scale
of the unmet need.” (Lancet Editorial, 2005)

As of 2008, the World Health Organization (WHO) estimates that more than 85
million units of blood are collected annually (WHO, 2010a). In the US, this number
in 2006 is about 16 million units of blood collected, with around 14.5 million units
transfused to about five million patients (Whitaker et al., 2007). The demand for
blood products is only increasing worldwide. For developed countries, this is due to
the increasingly complex medical procedures, such as autologous bone marrow trans-
plants (Orfinger, 2000), and longer life expectancies. While for developing countries
demand profiles are different, these nations are no less dependent on blood, with
women and children being the most in need. In particular, 70% of blood transfusions
in Africa are given to children with Malaria, followed by women with post-partum
haemorrhage (Lancet Editorial, 2005). Moreover, the need for blood can increase sig-
nificantly because of mass casualty disasters (e.g., hurricane, earthquake), or armed
conflict (Orfinger, 2000).

In addition, our study is highly applicable in most countries and areas, because
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although screening tests with high efficacies do exist, and are used, to some extent, in
developed countries, there still remains a definable risk of TTI in those countries. For
example, in the US, the average risk of a TTI is estimated at 1 in 340,000 (BloodBook,
2010). More importantly, in other parts of the world, the current situation is far
from ideal: “Less than 30% of the countries have a well-organized blood collection
service in place” (American Red Cross, 2008). Limited resources dictate that only
88% of blood donations worldwide are screened for “the basic quality assurance
procedures” (WHO, 2010b), which correspond to the minimal procedures that should
be performed, including screening for HIV, Hepatitis B, Hepatitis C, and Syphilis:
Of those, 89% are in developed countries, 87% are in transitional countries, and
only 48% are in developing countries... For the blood donations collected in the
remaining 41 countries, which account for 22% of the global donations reported to
WHO, the use of these basic quality assurance procedures is still unknown” (WHO,
2010b). Today, there remains a drastic risk associated with TTIs in some developing
countries. For example, a study of transfusion data in the 1990’s indicate that “the
highest TTI risk was realized in Bolivia (233 infections per 10,000 transfusions);
followed by five other countries (Peru, Colombia, Chile, Venezuela, and Guatemala,
with 68 to 103 infections per 10,000 transfusions); and with somewhat lower risks in
Honduras (9 per 10,000), Ecuador (16 per 10,000), and Paraguay (19 per 10,000)”
(Schmunis et al., 1998). In Africa, with blood safety challenged by the HIV/AIDS
and Malaria epidemics, the situation is dire: The proportion of both existing and
new HIV infections attributable to blood transfusion in the sub-Saharan Africa is
estimated at 10%! With 11 million HIV infections having occurred on the continent
to date, the cumulative total of transfusion-associated HIV infections in Africa may
exceed 1 million. As many as 25% of HIV-infected women and children in some areas
of Africa acquired their infection from a blood transfusion (McFarland et al., 2003);
42% of HIV-infected children over the age of 1 year in Kinshasa, Zaire, acquired
infection from a transfusion (McFarland et al., 2003). Up to 150,000 pregnancy-
related deaths worldwide could be avoided each year through access to safe blood
(American Red Cross, 2008). These numbers illustrate the magnitude of the problem,
of providing clean blood to humans.

Although measures of testing accuracy are extensively discussed and widely used in
many applications, they are not well defined and investigated in the existing litera-
ture, especially when various diseases resulting different social costs are considered.
As important metrics of screening testing, Pepe (2004) has presented various mea-
sures of accuracy for a single test, their applications in the testing literature, and how
they related to each other. For example, true positive fraction, known as sensitivity
in the single disease setting, represents the fraction of existing abnormalities that are
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correctly identified as such. Sensitivity (TPF) is widely used in biomedical research
(Beutel, 2000), epidemiology (Walter and Irwig, 1988), and engineering application
(Ozekici and Pliska, 1991; Raz and Kaspi, 1991) and accepted as an important mea-
sures of tests. In this research, we extend the concept of TPF to the multiple test in
the blood screening setting. To illustrate the impact of different objective, we also
compare the optimal test composition with respect to the TPF with that with respect
to the risk, a more meaningful measure in the multiple testing of blood screening by
definition. Our objective in this research, however, is three-fold: firstly, we would
like to investigate how the various objective functions, extended from the measures
of accuracy in single test setting, can be used in the blood screening scheme impact
the optimal test composition, and eventually affect the quality and efficient usage
of blood. Secondly, we noticed that the accurate estimation of prevalence, test per-
formance and even cost, in the realistic setting could be difficult and expensive to
do. As an extension of study in (Bish et al., 2010), we would like to discuss the
uncertainty in these estimations and their impact on the screening scheme. Thirdly,
we will extend the (infection) risk study in (Bish et al., 2010) to a generalized risk
study by introducing the social costs for each disease and illustrate how the test
composition in screening scheme could differ.

Resource allocation problems have long been studied by Operations Researchers (see,
for instance, Brandeau 2004, for a review and references). A commonly used formu-
lation that is somewhat related to our problem is the traditional knapsack problem,
which selects, from a set of candidates, each with a known benefit (reward or rev-
enue) and cost, an optimal set that is budget-feasible and that maximizes the total
benefit (see Brandeau, 2004). However, our problem has major differences with the
traditional knapsack problem. In our setting, candidate tests do not have constant
returns to scale in the objective function, which is the “risk” of a TTI for blood
classified as safe (i.e., the conditional probability that the blood unit is infected with
at least one TTI, when the selected test set and the adopted decision rule indicate
otherwise). A test’s contribution to this risk depends not only on the efficacy of the
test itself, but on the efficacies of the entire set of tests selected and the decision rule
adopted. As we shall see, this complicates the problem considerably. Nevertheless,
we further explored the efficient and effective near-optimal algorithm developed in
(Bish et al., 2010) and investigated the impact of different objectives with budget
and waste constraints on the optimal test composition.

Other relevant work includes studies that examine the relationship between screening
and mortality reduction (or similar performance measures) for a certain disease.
Many such studies are cost-effectiveness analyses, through the use of either Markov
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processes (e.g., Jackson et al., 2003), simulation models (e.g., Lefrere et al., 1998),
or empirical studies (e.g., Lander et al., 2009). The cost-effectiveness analysis is for
comparison of specific interventions with each other. As such, it does not provide
an optimization methodology, and most of these studies focus on one (or a limited
number of) disease(s) and test options (AuBuchon et al., 2003). Our problem is
also broadly related to the optimal allocation of screening inspection effort in a
production setting under false positive and negative possibilities (see, for instance,
Lindsay and Bishop, 1964; Ozekici and Pliska, 1991; Raz, 1986; Raz and Kaspi,
1991; and the references therein). However, there are important differences due
to the unique characteristics of blood screening. Most production-related papers
consider the objective to be the minimization of the total inspection cost, subject to a
constraint on the percent defectives, whereas in blood screening, the decision-maker is
mainly concerned with the minimization of a TTI risk, subject to a budget constraint
(A social cost-based model is also introduced in this research later, providing an even
more comparative study.). In addition, inspection plans are mostly modeled as a
sequential process in a multi-stage production system, whereas in blood screening,
the tests are to be administered simultaneously, due to the very short life-time of
blood products and the relatively longer durations of shipment of the blood units
to a test laboratory and of test administration. Furthermore, in our setting, there
is possibility of co-infections in donated blood (which are created, hence detected,
sequentially in production).

Data uncertainty issues are also extensively studied in the literature, including the
estimation errors of disease prevalence in donor population from different countries
or regions, and the metrics of test performances in the absence of a gold standard.
The differences between the prevalence in different populations are investigated in
the literature, for example, voluntary donor population and the injection drug users
(IDU) population (Arora et al., 2010). The 3.5-year retrospective study on seropreva-
lence of HIV, HBV, HCV, and syphilis conducted at the blood transfusion centre of
Maharaja Agrasen Medical College concluded a significantly higher prevalence in
replacement donors as compared to voluntary donors.

We also understand the great differences of prevalence in all infectious disease be-
tween different countries, or regions. For instance, the HIV/AIDS adult prevalence
rate ranges from 26.10% in Swaziland(ranked #1), to 0.60% in United States(ranked
#70), to 0.10% in Egypt(ranked #163) according to (Central Intelligence Agency,
2005). Another example would be the prevalence of HBV infection. The preva-
lence of chronic HBV infection is low (<2%) in the general population in Northern
and Western Europe, North America, Australia, New Zealand, Mexico, and south-
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ern South America; intermediate (2%-7%) in South, Central, and Southwest Asia,
Israel, Japan, Eastern and Southern Europe, Russia, most areas surrounding the
Amazon River basin, Honduras, and Guatemala; high (≥8%) in all of Africa; South-
east Asia, including China, Korea, Indonesia, and the Philippines, the Middle East,
except Israel, South and Western Pacific islands, the interior Amazon River basin,
and certain parts of the Caribbean (Haiti and the Dominican Republic)(Center for
Disease Control and Prevention, 2010).

Meanwhile, it is important to realize the uncertainty of the prevalence data for a
country/region. Prevalences based on the the reported cases of surveys of large
groups of people are easily underestimated because many infections are undiagnosed
or unreported. Different levels of healthcare quality in different countries/regions,
different methods of gathering prevalence data, different study methodology may
aggravate the bias (Grassly et al., 2004; Joseph et al., 1995; Shin et al., 2001; Walter
and Irwig, 1988).

Take HIV prevalence as an example. Two main methods of data collection are
commonly used in HIV surveillance: repeated seroprevalence surveys in the gen-
eral population or in particular high-risk groups, such as sex workers or injecting
drug users (IDU), and sentinel surveillance. Sentinel surveillance uses blood samples
that have been drawn for other purposes (eg. screening for syphilis among pregnant
women attending antenatal-care services). WHO and UNAIDS proposed the HIV
sentinel surveillance as the primary approach to monitoring the prevalence of HIV in
1998. Not only antenatal-care are well-attended in many countries; but they also are
considered reliable indicators of trends in prevalence. It is commonly recognized that
HIV prevalence among pregnant women attending antenatal clinics is generally very
similar to prevalence in the adult population as a whole (The World Bank Group,
2010; United Nations Development Group, 2003). However, small adjustments are
often needed according to the findings of separate surveys of the general population,
for example to adjust for underreporting in the most rural areas, or for large dif-
ferences between male and female rates of infection.(Walker et al., 2001; Rodriguez
and Hayes, 2002) UNAIDS has recommended two prevalence indicators to monitor
the HIV epidemic: HIV prevalence in pregnant women attending antenatal-care, the
main indicator for generalized epidemics, and HIV prevalence in sub-populations at
high-risk such as IDUs or patients with structured treatment interruptions(STIs),
which is particularly important in concentrated epidemics. (Zaba and Slaymaker,
2002) Although other population groups such as family planning (FP) and volun-
tary HIV counseling and testing(VCT) attenders and blood donors (BD) can also
be adopted for prevalence study, they are currently not widely used , therefore, are
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less internationally comparable. In a paper by WHO (Rodriguez and Hayes, 2002),
the advantages and limitations of HIV prevalence estimates obtained from each of
the data sources mentioned above and the extent to which they can be generalized
to broader populations were discussed in detail.

Although usually not considered the main source of national prevalence estimates,
population based surveys are also useful because they tell us how prevalence varies
according to gender, race or other characteristics. One of the major disadvantages
of population based surveys is that such survey usually are much more complicated
and expensive than antenatal surveys. Nevertheless, population based surveys are
becoming more popular recently, and their influence on national HIV prevalence
estimates is increasing as well. Thirty countries in sub-Saharan Africa, Asia and
the Caribbean conducted national population based surveys between 2001 and 2007
and revised their HIV prevalence estimates based on the results of these surveys, for
instance, India in 2007.

No matter which approach adopted, the uncertainty of these estimates are unavoid-
able. Because the groups looked at by surveys can never be entirely representative
of the wider population, and because no computer model is perfect. Therefore, an
estimate is often accompanied by a range or ’plausibility bound’, and the wider the
range, the greater the uncertainty. The size of a plausibility bound is affected by the
quality of the data and the number of steps and assumptions used to arrive at the
estimate.

In addition to many studies of estimation error of disease prevalence, there has been
a lot of effort to better control the estimation errors of test specificity and sensitiv-
ity (Shin et al., 2001; Joseph et al., 1995; Walter and Irwig, 1988). To determine
the performance of a new diagnostic test, it is the routine to compare the result of
new test with a “perfect” reference test (i.e. a gold standard). Although claimed
to be ”perfect”, a reference test is usually less than perfect in reality. Enoe et al.
(2000) presented a series of methods for estimating the accuracy of a diagnostic test
comparing to an imperfect reference test with known misclassifications. Available
methods of estimation is also presented in (Enoe et al., 2000) when the sensitivity
and specificity of both tests are unknown. Some available statistical methods, are
also discussed in (Enoe et al., 2000) when no reference test is available, such as max-
imum likelihood estimation and Bayesian inference. Same setting is also discussed
in (Joseph et al., 1995), where a Bayesian approach is proposed.



Chapter 3

Probabilistic Risk Assessment and
Cost/ Benefits of Risk Reduction
Strategies

3.1 Introduction

Modern blood transfusion therapy started in 1901, with the discovery of the major
blood groups by Landsteiner; and for over 50 years, the United States (US) has had
an organized blood collection system. Approximately 10-14 million red blood cell
(RBC) units and 1.5 million platelet transfusions are administered in the US annu-
ally (Despotis et al., 2008). These transfusions are provided to patients across all age
groups, multiple diagnoses, and in a variety of settings. Unfortunately, today there
remains definable risk associated with the transfusion of blood and blood products.
These risks may occur in both the pre-clinical and clinical dimensions of the trans-
fusion process, from blood collection from a donor through blood administration to
a patient.

Transfusion safety is concerned with identifying and mitigating the hazards associ-
ated with delivering transfusion care to patients. The potential hazards of blood
transfusion can be grouped into several broad categories including infections, im-
mune reactions, human and testing errors (Kleinman et al., 2003a). In the last
several decades, tremendous concern about blood safety has arisen both from the lay
public and among professionals. As a result, dramatic improvements in transfusion
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safety and a reduction of transfusion related human immunodeficiency virus (HIV
1-2) and hepatitis C virus (HCV), the two most substantial transfusion-transmitted
infections of the 20th century, have occurred (Dzik, 2003). However, progress in other
areas of transfusion safety has lagged behind. In particular, the clinical processes of
blood product transfusion continue with highly variable practices and human errors
that may contribute, albeit rarely, to adverse outcomes. These event types occur
infrequently and randomly. As a result, it is extremely difficult to identify these
events and understand their individual impact on an adverse outcome in transfusion
without a comprehensive quantitative model that draws upon data that encompasses
multiple institutions. Previous research regarding transfusion risks has been limited
by descriptive studies that investigate one or another type of risk, focusing on a
small number of cases and without considering the interactions among these risks
and their relationship, if any, to human errors [see Dodd (1994), Despotis et al.
(2008), Goodnough (2003), Goodnough et al. (2003), Greenwaldt (1997), and Klein-
man et al. (2003a) for reviews, as well as the references therein]. The result is what
seems to be an endless array of mandated screening tests and procedures focused on
the collection of blood to reduce what are already very low frequency risk events to
even lower occurrence rates.

In this chapter, we develop and analyze a comprehensive logical model designed to
quantify the risk from transfusion of RBC in the United States. In particular, we use
an engineering methodology known as Probabilistic Risk Assessment (PRA) or fault
tree analysis, which is a quantitative and deductive process analysis tool that can
be used for risk assessment and management. While PRA has been commonly used
in high-risk industries, such as nuclear power, aviation and aerospace, to investigate
rare events that have potentially devastating outcomes [see, for instance, Kumamoto
and Henley (2000)], its use in healthcare has been limited [see Stockwell and Slonim
(2006) for related discussion].

Utilizing PRA, we develop a comprehensive risk model of RBC transfusion by con-
sidering the relationship between the various risk points (events) and an adverse
transfusion outcome. We determine the contribution of each event to an adverse
transfusion outcome and identify the “critical points” that are the major contribu-
tors to the overall risk. This analysis then allows us to identify targeted interventions
and evaluate their costs and benefits for risk reduction within a systematic frame-
work.

Our work brings to public attention unnecessary testing that does little to minimize
overall transfusion risks, as we find that none of the viral infections for transfusion
that the lay public fears, including HIV 1-2, and the hepatitis B and C viruses,
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contribute significantly to transfusion risk. While most leading causes of transfusion
risks (i.e., febrile non-hemolytic reactions, allergic reactions, and RBC alloimmu-
nization) result in clinically mild outcomes, the severe transfusion risks are caused
mostly by circulatory overload and bacterial infection. In addition, acute reactions,
caused by errors in various stages of the blood transfusion process, also contribute
significantly to transfusion risk. Our study shows that interventions targeted at
reducing the erroneous administration of blood will have a higher impact on the
adverse outcome risk from RBC transfusion than aggressive screening that can fur-
ther reduce the prevalence of viral infections, including HIV 1-2, hepatitis B and
hepatitis C, in donated blood. Furthermore, there are error reduction programs for
administration of blood, such as training/process improvement programs, or tech-
nology investments, such as barcode identification systems for compatibility testing
and administration, that have been shown to be quite effective in various pilot stud-
ies; and such programs will be more cost-effective than a more aggressive screening
of donated blood. Consequently, attention and resources that are focused on the
blood administration process, rather than the blood screening process, will provide
the highest risk reduction in RBC transfusion in the US, especially when limited re-
sources are an important factor in the selection of transfusion safety programs. Thus,
our study provides guidelines to improve the safety of RBC transfusion in the United
States, which, we hope, future transfusion safety researchers and practitioners will
find valuable. These are the main contributions of this study.

The remainder of this Chapter is organized as follows. In Section 3.2, we provide
the details of our PRA models. Then Section 3.3 discusses the quantitative results
obtained from the PRA analysis, including estimates of an adverse outcome risk from
RBC transfusion in the US, and identifies the critical risk points in the transfusion
process. Motivated by these critical risk points, in Section 3.4, we compare various
risk-reduction strategies that are aimed at various processes of transfusion, including
blood screening and blood administration, and analyze their costs and effectiveness
in reducing the transfusion risk. Finally, in Section 3.5 we provide our conclusions
and suggestions for improving transfusion safety, and present ideas for future research
in this area. To facilitate the exposition, some mathematical derivations, tables, and
data related discussions are relegated to the Appendix.
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3.2 The Blood Transfusion Risk Analysis Model

3.2.1 Study Scope

We focus on the RBC transfusion risk in the United States and consider all broad
categories of transfusion risk, including infections, immune reactions, human and
testing errors (Kleinman et al., 2003a), as detailed in Section 3.2.2. We utilize the
probabilistic risk assessment (PRA) methodology, and construct two PRA models of
transfusion risk: (i) the “overall risk” model, which includes both the mild outcomes
and the severe outcomes, as transfusion risk; and (ii) the “severe risk” model, which
only includes risks that result in a severe outcome (e.g., mortality, major injury
or other serious long-term consequences, a life threatening incident). The findings
from both models, taken together, can be valuable in reducing the risk of an adverse
transfusion outcome and in improving the health outcome of transfusion in general.

Possible events that may lead to an adverse transfusion outcome, their causes, and
relationships used in the PRAmodels are carefully derived from the medical literature
by capitalizing on the various types of information available for blood transfusion
practices. In addition, the data for the PRA models come from a synthesis of many
peer reviewed studies published in the medical literature that provide estimates of
RBC transfusion risks in the United States.

Our agenda in the remainder of this section is as follows. In Section 3.2.2, we detail
the transfusion-transmitted infections and transfusion reactions that we include in
our models; in Section 3.2.3, we present the PRA models; and in Section 3.2.5, we
discuss the sources of the risk estimates for each transfusion infection and reaction
considered.

3.2.2 Transfusion Risks

Our model considers all broad categories of RBC transfusion risks, as detailed below.

Transfusion Infections

As of 2007, infectious disease testing of donated blood in the US includes the routine
use of conventional serologic tests for antigens or antibodies to human immunodefi-
ciency virus (HIV), type 1 and type 2 (HIV-1 and HIV-2); hepatitis B virus (HBV);
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hepatitis C Virus (HCV); human t-cell lymphotropic viruses (HTLV), type 1 and
type 2 (HTLV-1 and HTLV-2); and syphilis. In addition, mini-pool nucleic acid am-
plification testing (MP-NAT) is used for HIV-1, HCV, and West Nile virus (WNV)
(in pools of 16 samples obtained from multiple donors). Finally, Enzyme-linked
immunoassay (ELISA) test is performed for trypanosoma cruzi (Chagas disease)
(American Red Cross, 2008). Nevertheless, viral infection is still possible due to
“window-period transmissions,” which are the main contributors of transmission of
these diseases in transfusion (Kleinman et al., 2003a), as well as a chronic carrier
state, viral variants not detectable by screening assays, or laboratory error. When
the only significant transfusion risk comes from window-period transmissions, math-
ematical models known as the incidence/window-period models (Glynn et al., 2002;
Kleinman et al., 1997) become appropriate to estimate the viral infection risks. These
mathematical models typically take into account the window period, and incidence
rate in repeat donors and first-time donors, together with their estimated weights in
the population1. Our data for viral infection risks in transfusion come mainly from
incidence/window-period models published in the literature, see Appendix A.3 for
details. The medical literature indicates that the following types of infections can
be transmitted in transfusion (see Appendix A.3 for a detailed discussion of each of
these infections), all of which we include in our PRA models.

(I) Viral Infections:

• Retroviruses: HIV 1-2 and HTLV 1-2,

• Hepatitis viruses: Hep-A (HAV), Hep-B (HBV), Hep-C (HCV), Non-A-E Hep-
atitis Virus (Non-A-E HV),

• West Nile virus (WNV),

• Cytomegalovirus (CMV).

(II) Bacterial Infections:

• Sepsis,

• Treponema pallidum (syphilis).

1As such, these mathematical models do not consider human errors occurring during the blood
collection process (i.e., processing, labeling, and storage of blood). Nevertheless, given the new
technology implemented at many blood collection centers (e.g., American Red Cross), such human
errors can be considered to have a small influence on the risk of viral infections.
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(III) Protozoal Infections:

• Plasmodium (malaria),

• Babesiosis,

• Chagas disease,

• Toxoplasmosis.

Transfusion Reactions

Transfusion-related reactions the medical literature indicates include the following
(see Appendix A.3 for a detailed discussion of each reaction), all of which we include
in our PRA models:

• Hemolytic reaction (acute or delayed),

• Febrile nonhemolytic reaction,

• Allergic reaction,

• Anaphylaxis,

• Transfusion-associated Graft-versus-host disease (TA-GvHD),

• RBC alloimmunization,

• Transfusion-related acute lung injury (TRALI),

• Circulatory (volume) overload.

3.2.3 The PRA Model

We next discuss the development of the PRA models, one for the overall risk (both
minor and severe outcome) and the other for the severe risk of RBC transfusion.
Each fault tree consists of a set of “basic events,” each of which represents the
lowest-level events and, as such, needs no further development (e.g., HIV risk); a
“top event,” which represents the primary undesired event of interest (e.g., a mild or
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a severe transfusion outcome for the overall risk model; a major transfusion outcome
for the severe risk model); and a set of “intermediate events,” which are all connected
through logical operators. The following logical operators are used in our fault trees:

• AND gate indicates that the output event occurs if and only if all the input
events occur.

• OR Gate indicates that the output event occurs if and only if at least one of
the input events occurs.

• Inhibit Gate indicates that the output event occurs if and only if all input events
occur and an additional conditional event occurs, that is, it is equivalent to an
AND gate with a conditional event.

In what follows, we detail the development of the overall risk PRA model; the se-
vere risk PRA model is similar. In the PRA model, each transfusion-transmittable
infection and each transfusion reaction discussed in Section 2.2 are connected to the
top event by an “OR” gate, i.e., an adverse transfusion outcome will occur if the
screening tests fail to detect at least one of the infections in donated RBC, or if one
of these reactions occurs during or after transfusion, see Figure 1 for the PRA model.
As such, our risk estimates of transfusion-transmitted infections are slightly conser-
vative, because not every unit of infected blood will cause a transfusion-transmitted
infection. For example, for HIV infected blood that is used in transfusion, the risk of
a transfusion-transmitted infection is 80-90% (e.g., Dodd et al., 2002); in addition,
not every unit of donated blood will be used in transfusion.

Of particular importance to our study, in terms of intervention design, are the acute
hemolytic reactions, which are mainly caused by the erroneous administration of
blood, i.e., by the transfusion of ABO-incompatible RBCs (e.g., transfusing a B+
blood group to an A+ blood group individual). This error remains the leading cause
of fatal transfusion reactions. As such, we model this error and its consequences in
detail in our PRA model, as we describe next.

Modeling of Acute Hemolytic Reactions in PRA

Acute hemolytic reactions are mainly caused by the transfusion of ABO-incompatible
RBCs. There are also other, less common, causes that may cause acute hemolytic
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reactions, which have not been well understood in the medical literature; for com-
pleteness in our analysis, we include those causes in our model, and refer to them as
“other types of incompatibility.”

Let events A, E, and I respectively denote the events of an acute hemolytic re-
action, erroneous administration of blood, and ABO incompatibility. Throughout,
we denote the complement of an event by the superscript c. We attribute all ABO
incompatibility to the erroneous administration of RBCs, as is done in the relevant
literature (e.g., Linden et al., 2000). Only a portion of these erroneous adminis-
tration incidents will lead to ABO incompatibility, as a “wrong” blood group may
still be compatible with the patient’s blood group (see Table A.2 in Appendix A.1
for the relationship between blood groups in terms of compatibility), that is, I ⊆ E.
Furthermore, only a portion of the ABO incompatibility incidences will lead to acute
hemolytic reactions 2; and only a portion of these acute hemolytic reactions will be
symptomatic (asymptotic acute hemolytic reactions can only be detected through
lab tests; and hence, in the absence of those tests, they will be missed). As discussed
above, an acute hemolytic reaction remains possible even without ABO incompat-
ibility (event I), due to unexplained causes, which we refer to as “other types of
incompatibility” (event Ic); see Figure 3.3 for a depiction of these relationships, and
the acute hemolytic reaction sub-tree in Figure 3.2 for the modeling of these events
and relationships in the fault tree.

Erroneous administration of blood (event E) can occur due to either non-blood
bank errors (e.g., identification error, phlebotomy error, incorrect order sent), blood
bank errors (e.g., testing wrong sample, technical testing error, wrong unit issued,
clerical/transcription testing error, wrong unit tagged, clerical error recorded on
wrong slip), or compound errors that occur both at the blood bank and outside the
blood bank (e.g., wrong unit issued & identification error, wrong unit tagged & not
detected) (Linden et al., 2000). Hence, if we let events BE, NE, and CE respectively
denote the blood bank error alone, non-blood bank error alone, and compound error
(which are all mutually exclusive by definition), then E = BE ∪NE ∪ CE, see the
acute hemolytic reaction sub-tree in Figure 3.2.

2We assume that if ABO incompatibility incidences lead to adverse effects, then these hemolytic
reactions will be acute. We did not find any study that relates ABO incompatibility to a delayed
hemolytic reaction.
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Figure 3.1: The PRA model of the overall RBC transfusion risk
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Figure 3.2: Acute Hemolytic Reaction Sub-tree
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Figure 3.3: The relationship between events A, E, and I

3.2.4 Risk Estimates in the PRA Model

Risk estimates for transfusion infections and reactions are most often calculated based
on transfusion of a single unit, rather than considering the total number of units
transfused to a patient. While this is a reasonable assumption for some risks (e.g.,
infection risks), it is somewhat problematic for others (e.g., risks that are dependent
entirely on recipient characteristics, such as volume overload). Nevertheless, in our
study we use the risk per unit of RBC transfused, mainly due to data availability
and also because these risks can then be compared with other risks that are to be
expressed on a per unit basis. Similar approaches have been commonly used in
the previous literature to study the risks associated with blood transfusion (e.g.,
Kleinman et al., 2003a) and the references therein). The analytic focus is on the
RBC transfusion in the US. As such, the data estimates, detailed below, come from
published literature that is associated with the RBC transfusion in the US.

In summary, the rate of transfusion-transmitted infectious diseases are determined
by incidence/window-period models commonly used in the literature; the rate of
transfusion reactions come from mostly descriptive studies available in the medical
literature (see Appendix A.3 for the specific data sources), with the exception of
acute hemolytic reactions, which are mainly caused by the erroneous administration
of blood. As such, the study of the risk of this particular transfusion reaction is
especially important, because its rate can be significantly reduced by interventions



25

targeted at reducing system and/or human errors. In the following, we first discuss
how we estimate this risk, and then provide a summary of the risks of all basic events
in our fault tree.

Estimating the Acute Hemolytic Reaction Risk in PRA

Our objective is to estimate the relevant risks in the acute hemolytic reaction sub-tree
in the PRA model. We have,

Pr (A) = Pr ((A ∩ I) ∪ (A ∩ Ic)) = Pr (A ∩ I) + Pr (A ∩ Ic) , (3.1)

where Pr (A ∩ I) = Pr (A) Pr (A|I). As we want to link the event of an acute
hemolytic reaction to the event of an erroneous administration of blood, and since
I ⊆ E, we can rewrite this probability as follows:

Pr (A ∩ I) = Pr (I) Pr (A|I) = Pr (E) Pr (I|E) Pr (A|I) , (3.2)

where Pr (E) = Pr (BE) + Pr (NE) + Pr (CE) (since events BE, NE, and CE are
mutually exclusive).

To estimate these probabilities, we use the dataset in Linden et al. (2000), which is
the largest study on the erroneous administration of RBC in the US. In particular,
Linden et al. (2000) collect data on RBC transfusions in the State of New York
from 1990 through 1999, corresponding to a total of 9,000,000 transfusions, and
report the number of erroneous administration of RBC, along with the underlying
reasons for each case (i.e., in terms of events BE, NE, or CE) (see Table A.3 in
Appendix A.2 for a summary of the Linden et al. (2000) data). In order to adjust for
the underreporting of erroneous administration cases with no ABO-incompatibility,
Linden et al. suggest using the compatible-to-incompatible ratio, Pr(Ic|E)

Pr(I|E)
(> 1), as

an “adjustment factor,” i.e., adjusting up the number of ABO-compatible cases with
erroneous administration by multiplying it with the adjustment factor.

To determine the adjustment factor, we use the blood incident data in the US (see
Table A.1 in Appendix A.1) to calculate the probability that the transfused unit
will be compatible with the patient’s blood group given erroneous administration,
and find that Pr (Ic|E) = 0.5661, leading to an adjustment factor of 0.5661

0.4339
= 1.30.

(All details are included in Appendix A.2.) Our analysis leads to Pr (E) = 1
16,500

with Pr (BE|E) Pr (E) = 0.29 × 1
16,500

= 1.758 × 10−5, Pr (NE) = 0.56 × 1
16,500

=

3.394× 10−5, and Pr (CE) = 0.15× 1
16,500

= 9.091× 10−6.
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Linden et al. (2000) further report that 117 (out of the 237 ABO-incompatible
cases reported) have led to acute hemolytic reactions (either symptomatic or asymp-
tomatic). The remaining 111 incidents have led to no adverse effect. Using this data,
and noting again that I ⊆ E, we can calculate the required probabilities for our fault
tree as follows:

Pr (A|E) = Pr (A|I ∩ E) Pr (I|E) =
117

237
× Pr (I|E) = 0.2142. (3.3)

Substituting (3.3) in (3.2), we have

Pr (A ∩ I) = Pr (I) Pr (A|I)
= Pr (E) Pr (I|E) Pr (A|I)

=
1

16, 500
× 0.4339× 117

237

= 1.298× 10−5.

The overall risk of acute hemolytic reaction, Pr(A), is estimated at 1 in 18,000 in
Klein et al. (2007). Then, from (3.1),

Pr (A ∩ Ic) = Pr (A)− Pr (A ∩ I)

=
1

18, 000
− 1.298× 10−5

= 4.258× 10−5.

3.2.5 Summary of Risk Estimates in the PRA Models

A summary of the risk estimates in the overall risk PRA model are provided in
Table 3.1.

Serious/Life Threatening Risks Table 3.2 presents the serious outcome risk for transfusion-
related infections and reactions (events that are reported in Table 3.1 as having ex-
tremely low to nonexistent risk are not included)3. Observe that we combine several

3Transfusion infections and reactions that are extremely unlikely to lead to a severe risk are not
included.
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Table 3.1: Summary of Risk Estimates in the PRA Models

Type of Infection/Reaction Risk of Infection/Reaction Data Source
Viral Infection

HIV 1 & 2 1 in 2,000,000-3,000,000 (Klein et al., 2007)
HTLV 1 & 2 1 in 1,923,000 (Klein et al., 2007; Kleinman

et al., 2003a)

Hepatitis Virus
HAV 1 in 10,000,000 (Dodd, 1994)
HBV 1 in 100,000-200,000 (Klein et al., 2007)

1 in 205,000-488,000 (Dodd et al., 2002)
Hence an interval of
1 in 50,000 - 400,000

is considered
HCV 1 in 1,000,000-2,000,000 (Klein et al., 2007)

Non-A-E HV† Probably N/E (Kleinman et al., 2003a)
WNV† Extremely low to N/E (Stramer, 2007)
CMV‡ Extremely low to N/E (Kleinman et al., 2003a)

Bacterial Infection
Sepsis 1 in 75,100 (Stramer, 2007)

Treponema pallidum (syphilis)† Extremely low to N/E (Kleinman et al., 2003a)
Protozoal Infection
Plasmodium (malaria) 1 in 4,000,000 (Klein et al., 2007)

Chagas disease† Extremely low to N/E (Kleinman et al., 2003a)
Babesiosis 1 in 10,000,000 (Kleinman et al., 2003a)

Toxoplasmosis† Extremely low to N/E (Despotis et al., 2008)
Transfusion-related Reactions

Hemolytic reaction
Acute hemolytic reaction due to 1.298× 10−5 [see Section 3.2.4 and Ap-

pendix A.3]
ABO incompatibility

Acute hemolytic reaction due to 4.258× 10−5 [see Section 3.2.4 and Ap-
pendix A.3]

other types of incompatibility
Delayed hemolytic reaction 1 in 4,000 to 9,000 (Klein et al., 2007; Pineda

et al., 1999)
Febrile non-hemolytic reaction 1 in 300 (Klein et al., 2007)

Allergic reaction 1 in 330 to 1,000 (Despotis et al., 2008)
Anaphylaxis 1 in 20,000 - 50,000 (Klein et al., 2007)
TA-GvHD Extremely low to N/E (Klein et al., 2007)

RBC alloimmunization 62.1 in 100,000 (Kleinman et al., 2003a)
TRALI 1.4 to 20 in 100,000 (Klein et al., 2007)

Circulatory overload 1 in 200 to 10,000 (Klein et al., 2007)
†The risks of these infections are estimated to be extremely low to nonexistent (N/E) in the United
States. For completeness, we still keep them in our fault tree and assign them a negligible risk.
‡The true risk remains unknown depending on patient group and type of blood product, but it is
reasonable to conclude that it is extremely low, as discussed in Appendix A.3.

events, including allergic reactions, anapylaxis, and TA-GvHD, into one event we re-
fer to as “MISC”: The combined mortality rate due to the events included in MISC
is derived, via mathematical models, as 0.5 to 10 per million (Despotis et al., 2008).
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Table 3.2: Summary of Serious Outcome Risks

Serious Outcome Risk Note Source
Transfusion Infection

Viral Infection
HIV 1 & 2 1 in 2,000,000 - 3,000,000 all infected cases may suffer serious

long-term complications
(Klein et al., 2007)

HBV 1 in 2,000,000 - 16,000,000 1 in 40 of transfusion-transmitted HBV
infections lead to the serious outcome
of a chronic carrier state

(Klein et al., 2007;
Kleinman et al., 2003a)

HCV 1 in 5,000,000 -10,000,000 20% develop significant liver disease (Alter and Seeff, 2000;
Busch, 2001; Kleinman
et al., 2003a)

Bacterial Infection 2-100 in 1,000,000 (Despotis et al., 2008)
Protozoal Infection

Plasmodium (malaria) 1 in 36,363,636 fatality rate of 11% (Kleinman et al.,
2003a)

Transfusion Reaction
TRALI 0.4 in 1,000,000 (Despotis et al., 2008)

Circulatory overload 1 in 200 to 10,000 (Klein et al., 2007)
Acute hemolytic reaction 0.8-1.2 in 1,000,000 results of published studies and FDA

adverse-event reporting
(Despotis et al., 2008)

MISC (allergic reaction, 0.5-10 in 1,000,000 (Despotis et al., 2008)
anaphylaxis, TA-GvHD)

3.3 Risk Assessment

Minimal cut sets and importance measures of events play an important role in the
reliability analysis of fault trees. A minimal cut set is a minimal set of basic events
whose failure ensures the failure of the system (i.e., causes the top event to occur)
(e.g., Ross, 2007). Due to the special structure of our fault tree (i.e., with each basic
event directly leading to the top event, with the exception of blood bank errors,
non-blood bank errors, and compound errors), each basic event (with the exception
of blood bank errors, non-blood bank errors, and compound errors) constitutes a
minimal cut set on its own. Nevertheless, for completeness, we report the minimal
cut sets and their risk.

At the basic event level, we determine the importance of each basic event, k K , which
is the conditional probability that the top event (i.e., an adverse transfusion outcome)
is a result of event k, given that the top event occurs, i.e., Pr (eventkoccurs|topeventoccurs).
This measure is also known as the criticality importance measure of the event, and
is commonly used in risk assessment of fault trees (e.g., Haimes, 1998).
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3.3.1 Overall Transfusion Risk (Major and Minor Risks)

Part a of Tables A.5 and A.6 (in Appendix A.4) respectively report the importance
measures and the minimal cut sets for the overall transfusion risk model in the “base
case” (i.e., using the mid-point when the risk is of interval form). Using the lower and
upper bounds of the risk intervals, we find that the overall risk of RBC transfusion
lies in the interval [539.9, 1233.3] per 100,000 units of RBC transfused, with a point
estimate of 600.8 for the base case.

Specifically, this risk is mainly due to febrile non-hemolytic reactions, with a point
estimate of 333 in 100,000 units of RBC transfused, mild allergic reactions, with a
point estimate of 150.38, and RBC alloimmunization, with a point estimate of 62.10,
followed by circulatory overload, delayed hemolytic reaction, and TRALI, with a
combined point estimate of 45.69 (Table A.6). Acute hemolytic reactions also con-
tribute significantly, with a point estimate of 5.36 in 100,000 RBC units transfused.
In other words, given that a transfusion hazard has occurred, 50% of the time it is in
the form of a febrile non-hemolytic reaction, 25% of the time it is an allergic reaction,
and 10% of the time RBC alloimmunization. The somewhat more serious risks, of
TRALI, circulatory overload, and delayed or acute hemolytic reactions, represent
around 9.9% of the cause of an adverse transfusion event. Interestingly, our analyses
indicated that none of the viral infections that the lay public fears of transfusion
(e.g., HIV and HCV) is a major source of transfusion risk.

3.3.2 The Severe Outcome Risk (Major Risk)

Part b of Tables A.5 and A.6 (in Appendix A.4) respectively report the importance
measures and the minimal cut sets for the severe risk model in the “base case”
(i.e., using the mid-point when the risk is of interval form). The range for severe
transfusion risk in the US is [10.4327, 511.2] per 100,000 units of RBC transfused,
with a point estimate of 25.4527 for the “base case.”

Specifically, the critical factors leading to mortality or other severe outcome in RBC
transfusion included circulatory overload, with a point estimate of 19.61 in 100,000
RBC units transfused, and bacterial infection, with a point estimate of 5.10. This is
followed by MISC (allergic reaction, anapylaxis, TA-GvHD), with a point estimate
of 0.53, and acute hemolytic reaction, with a point estimate of 0.10. Alternatively
stated, given that a serious transfusion hazard has occurred, 77% of the time it is
due to circulatory overload, 20% due to bacterial infection, and 2% due to MISC.
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Acute hemolytic reactions, which are mainly caused by erroneous administration
of blood, also contributed significantly to severe outcomes of transfusion. Given
that a serious transfusion hazard has occurred, 0.39% of the time it is due to an
acute hemolytic reaction. On the other hand, the two most dreaded transfusion-
transmitted infections, HIV and HCV, do not contribute significantly to the severe
outcome risk.

3.4 Risk Reduction Policies: Cost-benefit Analy-

ses

Importance measures assist with identifying the basic level events that have the high-
est risks of occurrence for the outcome of interest so that improvement actions can
be targeted at these events, provided there is room for improvement. To give an
example, consider the overall risk model, where the main contributor to the overall
risk is the febrile non-hemolytic reaction, with a point estimate of 333 per 100,000
units transfused. However, while this does help, from an analytic perspective in
understanding what patients are suffering from, it is not particularly helpful from
a clinical perspective because clinicians already recognize how common this adverse
event is, what needs to be done to improve its occurrence, and how unlikely it is to
cause the type of safety problems that leads to significant adverse occurrences. On
the other hand, as discussed below in detail, much can be done to reduce the erro-
neous administration rate of blood, and there is also some room for further improving
the safety of blood. In fact, there is huge public pressure on the decision-makers to
allocate the majority of the available resources into the blood safety area; and so far
this has been the case. “Enormous resources (financial, intellectual, technological,
and governmental) have been invested in improving the purity, potency, and safety
of blood that is collected, tested, packaged, and labeled as suitable for transfusion.
[These include] increased scrutiny of donors, highly sensitive screening testing, NAT
[technology], the wide spread application of good manufacturing practices However,
overall transfusion safety, largely the province of hospitals, has received far less atten-
tion.” (Dzik, 2003). Consequently, in what follows, we focus our discussion on these
two particular areas that have potential for improvement: blood administration and
donated blood screening processes.

We first quantify the improvement potential in each of these areas using our PRA
models. Table 3.3 provides the resulting overall risk and severe outcome risk from
transfusion if (i) hepatitis B virus were eliminated, (ii) HIV 1-2 and hepatitis C
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virus were eliminated, (iii) HIV 1-2, hepatitis B virus, and hepatitis C virus were
eliminated, and (iv) erroneous administrations (in terms of giving the wrong blood
unit to the patient) were eliminated.

As Table 3.3 demonstrates, eliminating erroneous transmissions leads to a higher
potential reduction, both in the overall risk and severe outcome risk of transfusion,
than the combined effects of eliminating HIV 1-2, HBV, and HCV risks. These
numbers demonstrate the “potential” for improvement if it were possible to totally
eliminate these risks. While this may not be currently feasible, known solutions and
FDA-approved technology already exist for reducing these risks, as we discuss below.

Table 3.3: The Effect of the Elimination of Various Risks on the Overall Risk and
Severe Outcome Risk of Transfusion

Scenario Overall risk per
100,000 units trans-
fused

Severe outcome risk
per 100,000 units
transfused

Current 600.8000 25.4527
HBV risk eliminated 600.3550 25.4277
HIV 1-2 and HCV risks elimi-
nated

600.6935 25.3994

HIV 1-2, HBV, and HCV risks
eliminated

600.2498 25.3744

All erroneous transmissions
eliminated

599.5380 25.3527

The current blood testing scheme utilizes the MP-NAT technology (in addition to
antibodies) for HIV and HCV screening; the MP-NAT pools 16 blood samples to-
gether. While pooling reduces costs, it also slightly reduces the sensitivity of the test
because of its diluting effect on virus-containing units. It is, however, possible to
replace the MP-NAT for HIV and HCV with single-donation NAT (SD-NAT) (e.g.,
Jackson et al., 2003), increasing costs, but also increasing the sensitivity of the test.
On the other hand, for the blood administration process, the decision-maker can
invest in new technology and/or process improvement programs at blood collection
centers or hospitals so as to bring down the rate of the erroneous administration of
blood (some specific examples of such interventions are discussed below). Suppose
the decision-maker is interested in comparing the following scenarios:

1. The current testing scheme: MP-NAT for HIV and HCV (in addition to anti-
bodies for HIV and HCV).

2. A less aggressive testing scheme: Replace MP-NAT for HIV and HCV with
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HIV p24 antigen (and continue to include the antibodies for HIV and HCV) -
this was the FDA approved testing scheme before MP-NAT was licensed.

3. A more aggressive testing scheme: Replace MP-NAT for HIV and HCV with
SD-NAT (and continue to include the antibodies for HIV and HCV).

4. A less aggressive error reduction strategy: Perform improvement actions so that
a 10-fold reduction in the erroneous administration risk (over the current erro-
neous administration risk of 1 in 16,500 [Linden et al. (2000)]) can be achieved.

5. A more aggressive error reduction strategy: Perform improvement actions so
that a 50-fold reduction in the erroneous administration risk (over the current
erroneous administration risk of 1 in 16,500 [Linden et al. (2000)]) can be
achieved.

Scenario 1 is the current scenario studied. For the other scenarios, we rerun the PRA
models with modified risks4, see Table 3.4 for results.

Recent studies indicate that drastic reductions in the erroneous administration risk
are indeed possible through investments in technology, training, or process improve-
ment programs (see Dzik, 2003, 2005) for detailed discussion]. For example, Davies
et al. (2006) and Turner et al. (2003) study the benefits of a barcode patient identifica-
tion system involving hand-held computers for blood sample collection, compatibility
testing, and the administration of blood in cardiac surgery and hematology outpa-
tient and inpatient clinics in the United Kingdom. After the new technology was
introduced and staff was trained, significant improvements were realized in checking
that the blood group and unit number on the blood pack matched the compatibil-
ity label (from 8% to 100%), and in the correct verbal identification of the patients
(from 11.8% to 100%); similar improvements were found in other related measures.
Saxena et al. (2004) describes how quality improvement efforts that involve nurse
training and auditing in the Los Angeles County and University of Southern Califor-
nia Medical Center led to 100-percent compliance for all transfusion processes over a
period of nine months; during this period no mistransfusions or blood administration
near-misses have been reported.

Finally, we note that similar analysis is possible using other methods. For example,
Jackson et al. (2003) analyzes the cost-effectiveness of NAT for HIV, HCV, and

4For Scenario 2, the HIV risk is estimated at 1 in 1.2 million and HCV risk at 1 in 230,000; for
Scenario 3, the HIV risk is estimated at 1 in 2.8 million and HCV risk at 1 in 2.3 million (Jackson
et al., 2003).
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Table 3.4: A Cost-benefit Analyses of Different Interventions for Blood Screening
and Administration

Scenario Overall risk per
100,000 units
transfused

Severe outcome
risk per 100,000
units transfused

Estimated additional cost
(over the current system)

Scenario 1-current 600.8 25.5
Scenario 2 - less aggres-
sive testing

601.2 26.3 $ 117.8 million†

Scenario 3 - more ag-
gressive testing

600.5 25.5 $273 million‡

Scenario 4 - less ag-
gressive error reduction
program

599.6 25.4 e.g., training/process improve-
ment programs - the cost of
physician and nurse training,
other educational efforts, and
continued monitoring(Saxena
et al., 2004)

Scenario 5 - more ag-
gressive error reduction
program

599.5 25.4 e.g., barcode patient identifica-
tion system for blood sample
collection, compatibility test-
ing, and the administration of
blood - the investment cost for
a 1500-bed hospital is $0.75
million (Turner et al., 2003).

†We assume that (i) each unit of the HIV p24 antigen testing costs $4 (Jackson et al., 2003), (ii)
a whole-blood donation yields, on average, 1.5 units transfused (Jackson et al., 2003), and (iii) the
annual blood donation in the US is 14 million units (Despotis et al., 2008). Then the total HIV p24
antigen testing costs around $37.2 million. The total cost of MP-NAT for HIV and HCV is estimated
as $155 million(Jackson et al., 2003).
‡Based on the assumption that the total cost of SD-NAT for HIV and HCV is $428 million (Jackson
et al., 2003).

HBV (in terms of improvement to quality-adjusted life years (QALYs)5) using a
Markov Decision Model (MDM), see Schaefer et al. (2004) for an in-depth treatment
of MDMs for medical treatment problems. While MDMs allow for more details to
the model, this comes at the expense of a huge increase in tractability. As the
problem size increases, MDMs become increasingly more difficult to solve exactly.
Therefore, it becomes computationally prohibitive to analyze all transfusion risks
and their interactions or multiplicative effects on the patient’s outcome, as we do
here using PRA.

5We note that similar analysis using QALYs (instead of the probability of a transfusion hazard,
as we do here) is also possible with fault trees, which form the basis of the PRA.
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3.5 Conclusions

In this chapter, we develop a comprehensive risk model of RBC transfusion using
the PRA methodology. Using our model, we quantify the current risk (both overall
and severe transfusion risks), to the patient, coming from RBC transfusion in the
United States, and identify the main “critical points” in the transfusion process.
This analysis allows us to identify targeted interventions and evaluate their costs
and benefits for risk reduction within a systematic framework.

Our work brings to public attention unnecessary testing that does little to minimize
overall transfusion risks, as we find that none of the viral infections for transfusion
that the lay public fears, including HIV 1-2, and the hepatitis B and C viruses,
contribute significantly to transfusion risk. While most leading causes of transfusion
risks (i.e., febrile non-hemolytic reactions, allergic reactions, and RBC alloimmu-
nization) result in clinically mild outcomes, the severe transfusion risks are caused
mostly by circulatory overload and bacterial infection. In addition, acute reactions,
caused by errors in various stages of the blood transfusion process, also contribute
significantly to transfusion risk. Our study indicates that attention and resources
that are focused on the blood administration process, rather than the blood screen-
ing process, will provide the highest risk reduction in RBC transfusion in the US,
especially when limited resources are an important factor in the selection of trans-
fusion safety programs. Blood transfusion processes are already heavily regulated.
Hence, the real “win” from a clinical perspective in improving blood transfusion
safety may not be in further implementing health policy decisions that lead to more
regulation, but be focused on the fundamentals of patient care like the elimination
of adverse events (through the elimination of erroneous administration of blood), as
our analysis suggests, as well as the elimination of other events like febrile reactions
or circulatory overload, which have till now been considered an element of quality,
but nonetheless affect the safe delivery of transfusions.

While we focus our attention for improvement actions to two main transfusion pro-
cesses, of blood screening and administration, it is an important future research
direction to use our model, risk estimates, and risk points for prioritizing inter-
ventions that focus on yet other transfusion processes. In particular, system level
improvements can be classified into three separate operational areas. First, there
is the guidance provided in law, which establishes minimal requirements for health-
care providers and institutions based upon licensure standards. Second, there are
standards, regulations and certification, which provides the next level of oversight.
Within transfusion care, there are standards from the College of American Patholo-
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gists (CAP), the Centers for Medicare and Medicaid Services (CMS) and the Joint
Commission. These standards provide the guiding principles to assure the safe and
effective delivery of blood to patients. Certification of institutions and providers
helps to demonstrate that expectations exceed the thresholds established in law. Fi-
nally, there are informal mechanisms for ensuring best practices and evidence based
medicine. These approaches usually include comparative benchmarking. Taken to-
gether, these options provide a menu of interventions to improve transfusion care.
The PRA performed in this body of work helps to inform interventions at each of
these levels.

While the performance measures and concepts we use may be unfamiliar to the
average clinician, they are important to consider since they can help provide an
understanding of what needs to be done at various levels of the healthcare system
to improve transfusion care, as we discuss above. In addition, it is important for
clinicians to know the highest risk events so that providers are reminded on how to
improve them in providing transfusion care.

This work is not without limitations. Modeling exercises like PRA only represent
a view of reality through a particular lens. If the lens is incorrect or misaligned,
the reality will be distorted. Second, while the risks identified here can assist in
informing licensing, regulatory and certification standards, they represent only one
piece of information that can assist in this arena and broader representation through
other data sources and experts need to inform decision making.

While recognizing these important limitations, this work also has significant strengths.
First, the PRA performed here represents the integration of the current estimates
of blood transfusion risks. Second, the model provides an analysis of the current
landscape of transfusion safety in the US based upon the prevailing evidence base
in the peer reviewed literature. Third, the model can be easily updated as risks
are eliminated and new risks are identified, thereby providing a methodology that
produces a working document that can be regularly updated as the evidence base
matures. Finally, the model provides an opportunity to apply a method used in other
industries to an important category of low frequency, high risk events in healthcare
and serves as the template for performing analyses on other healthcare problems like
wrong site surgeries, patient falls, and healthcare associated infections.

Probabilistic risk assessment is an important tool with implications for transfusion
safety as well as healthcare safety in general. It provides another method for visual-
izing and analyzing the risks related to the transfusion of blood and blood products,
and can be integrated with other elements and tools to determine the best way to
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advance transfusion care and safety in the US.



Chapter 4

Risk-based Optimization:
Modeling, Algorithms, & Results

4.1 Introduction and Motivation

Blood products, either whole blood or its components, are vital healthcare commodi-
ties for patients across all age groups, with multiple diagnoses, and in a variety of
settings. Major surgeries and cancer therapies require blood products. Furthermore,
trauma victims, certain premature infants, children with severe anemia, and pregnant
women with complications rely on blood products. As a result, there is high demand
for blood worldwide, and a large number of people will need blood transfusion at
some point in their lives (e.g., 40 to 70% of the US population, Hay et al., 2006).
As of 2008, the World Health Organization (WHO) estimates that more than 85
million units of blood are collected annually (WHO, 2010a). In the US, this number
in 2006 was about 16 million units of blood collected, with around 14.5 million units
transfused to about five million patients (Whitaker et al., 2007). Furthermore, the
demand for blood products is only increasing worldwide. For developed countries,
this is due to the increasingly complex medical procedures, such as autologous bone
marrow transplants, and longer life expectancies (Orfinger, 2000). While for devel-
oping countries demand profiles are different; these nations are no less dependent
on blood, with women and children being the most in need. In particular, 70% of
blood transfusions in Africa are given to children with Malaria, followed by women
with post-partum haemorrhage (Lancet Editorial, 2005). Moreover, the need for
blood can increase significantly because of mass casualty disasters (e.g., hurricane,
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earthquake) or armed conflict (Orfinger, 2000).

There are many “transfusion-transmitted infections” (TTIs), i.e., diseases that can be
transmitted through the use of blood products, including Human Immunodeficiency
Virus (HIV), Hepatitis Viruses, with the major ones being B and C (HBV, HCV),
Human T-cell Lymphotropic Virus (HTLV), Syphilis, West Nile Virus (WNV), and
Chagas’ Disease. Because blood products are an essential component of any health
system, effective blood screening is required. However, no blood screening test is per-
fectly reliable (each test has the possibility of providing false-positive or false-negative
results), most screening tests are expensive, and resources are limited. Furthermore,
new testing technologies are always being developed, offering new options of price
and efficacy (Dzik, 2003; Jackson et al., 2003). Thus, it is often the case that mul-
tiple tests, with varying degrees of efficacy and costs, are available for screening for
the same infection. Then the questions are: (1) how should the limited resources
be optimally allocated to the screening tests in order to minimize the risk of a TTI?
and (2) how should the results of the selected battery of tests be interpreted, that
is, what is the “decision rule” for concluding that the blood unit is infected by a
certain infection when multiple tests are administered for it and their results are not
in agreement? Furthermore, these questions are interrelated, in that, the risk of a
TTI depends, in a complex way, on both the selected test battery and the decision
rule adopted. These questions are the focus of this chapter.

What complicates the problem further is the possibility of co-infections in blood
donors, i.e., a donor being simultaneously infected with multiple TTIs, as some
viruses, such as the HIV, may make the individual more susceptible to acquiring other
viruses. Indeed, co-infections are likely for the HIV, HBV, and HCV. 15% to 30% of
HIV-infected individuals worldwide suffer from chronic HCV infection, and among
those HIV-positive individuals that are infected parenterally, such as haemophiliacs
and intravenous drug users, chronic HCV infection can be as high as 75%. Chronic
HBV infection, on the other hand, occurs in 10% of HIV-infected individuals (Carmo
et al., 2000; Lincoln et al., 2003; Soriano et al., 2006). Furthermore, it is estimated
that up to 10% of HCV-positive individuals test positive for HBV (Gordona and
Sherman, 2009). For the donor pool in the US, which undergoes systematic donor
screening1, these numbers will serve as upper bounds, as a portion of the individuals
who are considered to be at risk for HIV, HBV, or HCV will be eliminated through
donor screening. However, for some developing countries, these co-infectious donors,

1Blood Centers in the US apply various donor screening procedures, such as donor questionnaires
that are administered pre-donation and requiring the recruitment of voluntary, rather than paid,
donors.
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unfortunately, are not less likely to be in the donor pool, as donor screening is not
rigorous and systematic (Lancet Editorial, 2005). Blood is collected exclusively from
voluntary unpaid donors in only 39 of 178 countries, and “42% of blood collected from
donors in medium and low Human Development Index countries comes from family
replacement or paid donors, and this blood often contains a higher seroprevalance
of TTIs than blood from voluntary non-remunerated donors” (American Red Cross,
2008). Therefore, it is important to explicitly model the co-infection possibility in
the screening test selection problem.

Resource allocation problems have long been studied by Operations Researchers (see,
for instance, Brandeau, 2004, for a review and references). A commonly used formu-
lation that is somewhat related to our problem is the traditional knapsack problem,
which selects, from a set of candidates, each with a known reward and cost, the op-
timal set that is budget-feasible and that maximizes the total reward (see Brandeau,
2004). Our problem, due to its unique characteristics, exhibits major differences
from the well-studied linear knapsack problem. In particular, in our setting, candi-
date tests do not have constant returns to scale in the objective function, which is
the “risk” of a TTI for blood classified as infection-free (i.e., the conditional proba-
bility that the blood unit is infected with at least one TTI, when the selected test set
and the adopted decision rule indicate otherwise). A test’s contribution to this risk
depends not only on the efficacy of the test itself, but on the efficacies of the entire
set of tests selected and the decision rule adopted. Thus, our problem, even with the
decision rule fixed a priori, falls into the general class of nonlinear knapsack problems
with a nonseparable objective function, a problem considerably more difficult than
other knapsack problems, and has received very limited attention in the literature
(see Bretthauer and Shetty, 2002 for a review). These characteristics complicate
the problem considerably. Nevertheless, our analysis provides efficient optimal al-
gorithms for a special case of the problem, and efficient and effective near-optimal
algorithms for the general problem.

Other relevant work includes studies that examine the relationship between screen-
ing and mortality reduction (or similar performance measures) for a certain disease.
Many such studies are cost-effectiveness analyses (Busch et al., 2009; Leiby, 2001;
Sendi et al., 2003), through Markov processes (e.g., Jackson et al., 2003; Schwartz
et al., 1990; Van Hulst et al., 2009), simulation models (e.g., Custer et al., 2005a;
Lefrere et al., 1998), decision trees (e.g., Marshall et al., 2004), or empirical stud-
ies (e.g., Lander et al., 2009). The cost-effectiveness analysis is for comparison of
specific interventions with each other. As such, it does not provide an optimization
methodology, and most of these studies focus on one (or a limited number of) dis-
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ease(s) and test options (AuBuchon et al., 2003). Furthermore, cost-effectiveness
analysis typically relies on quite restrictive assumptions, including that the inter-
ventions are perfectly divisible, have constant returns to scale, and are independent
(Brandeau, 2004; Sendi et al., 2003; Van Hulst et al., 2010). Our work overcomes
these limitations by providing an optimization methodology and by eliminating these
assumptions.

In addition to medical and biomedical contexts (e.g., Beutel, 2000; Walter and Irwig,
1988), test efficacy parameters (i.e., false positive and false negative probabilities)
are relevant in various engineering applications and statistical hypothesis testing
(e.g., Ozekici and Pliska, 1991; Pepe, 2004; Raz and Kaspi, 1991), but are used
within different models and frameworks. To give an example, false positives and
false negatives are possible in screening and inspection in production, and as such,
our problem can be seen as broadly related to the optimal allocation of screening
and inspection effort in a production setting (e.g., Lindsay and Bishop, 1964; Ozekici
and Pliska, 1991; Raz, 1986; Raz and Kaspi, 1991, and the references therein). Most
production-based models minimize the total inspection cost, subject to a constraint
on the percent defective, and inspection is typically modeled as a sequential process
within a multi-stage production system. Another example broadly related to our
problem is the Series-parallel Redundancy Allocation Problem (e.g., Chern, 1992;
Hsieh, 2002; You and Chen, 2005), which will be discussed in some detail in Section
4.2.2. However, blood screening has unique characteristics, which imply different
objectives, constraints, and operational characteristics, differentiating our setting
from those. In particular, in blood screening, the most important objective is the
minimization of a TTI risk, subject to a budget constraint. In addition, in blood
screening, the tests are to be administered concurrently, due to the short life-time of
blood products compared to the relatively longer durations required to ship blood
units to a testing laboratory and for test administration; and there is possibility of
co-infections in donated blood (which are created, hence detected, sequentially in
production).

Our study is timely, because even in developed countries, where tests with high effica-
cies are used, there still remains a definable risk of TTI. For example, in the US, the
average risk of a TTI is estimated at 1 in 340,000 (BloodBook). More importantly,
in other parts of the world, the current situation is far from ideal. “Less than 30%
of the countries have a well-organized blood collection service in place” (American
Red Cross, 2008). Limited resources dictate that only 88% of blood donations world-
wide are screened for “the basic quality assurance procedures” recommended by the
WHO (WHO, 2010b), which correspond to the minimal procedures that should be
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performed, including screening for HIV, HBV, HCV, and Syphilis; and this number
is only 48% in developing countries. “For the blood donations collected in the re-
maining 41 countries, which account for 22% of the global donations reported to the
WHO, the use of these basic quality assurance procedures is still unknown” (WHO,
2010b). Today, there remains a drastic risk associated with TTIs in some develop-
ing countries. For example, a study of transfusion data in the 1990’s indicate that
“the highest TTI risk was realized in Bolivia (233 infections per 10,000 transfusions);
followed by five other countries (Peru, Colombia, Chile, Venezuela, and Guatemala,
with 68 to 103 infections per 10,000 transfusions); and with somewhat lower risks in
Honduras (9 per 10,000), Ecuador (16 per 10,000), and Paraguay (19 per 10,000)”
(Schmunis et al., 1998). In Africa, with blood safety challenged by the HIV/AIDS
and Malaria epidemics, the situation is dire: the proportion of both existing and
new HIV infections attributable to blood transfusion in the sub-Saharan Africa is
estimated at 10%. With 11 million HIV infections having occurred on the continent
to date, the cumulative total of transfusion-associated HIV infections in Africa may
exceed 1 million. As many as 25% of HIV-infected women and children in some areas
of Africa acquired their infection from a blood transfusion; and 42% of HIV-infected
children over the age of 1 year in Kinshasa, Zaire, acquired infection from a blood
transfusion (McFarland et al., 2003). Up to 150,000 pregnancy-related deaths world-
wide could be avoided each year through access to safe blood (American Red Cross,
2008). These numbers illustrate the importance of providing safe blood.

Our contributions, to this important problem in healthcare, include the following.

• Our modeling of the test selection problem does not rely on the restrictive
assumptions made in cost-effectiveness analysis, which include that the inter-
ventions are perfectly divisible, have constant returns to scale, and are inde-
pendent. Rather, we work with the actual risk function, which we express as
a function of the test composition and the decision rule. This allows us to ex-
plicitly consider (i) the nonlinear contribution of each test to the overall TTI
risk, and (ii) that this contribution depends not only on the efficacy of the test
itself, but on the efficacies of the entire set of tests selected and the decision
rule adopted. Furthermore, to our knowledge, our mathematical formulation
is the first to integrate the decision rule with the test selection decision, and
to model the co-infection possibility (which is likely for HIV, HBV, and HCV,
as discussed above) in donors. Finally, these realistic and important aspects of
the problem are modeled within an optimization framework, rather than rely
on a cost-effectiveness analysis.
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• From a theoretical perspective, we show that the “Believe the Positive” decision
rule minimizes the risk of a TTI. This result allows us to formulate the test
selection problem as a 0-1 polynomial programming problem, which selects a set
of budget-feasible tests that minimizes the TTI risk. We then study a special
case, the mono-infection setting, which applies if the co-infection probabilities
in donated blood are negligible. For this case, we develop optimal algorithms.
This analysis also motivates the development of an effective heuristic and lower
bounds for the general case with co-infection possibility.

• Finally, we provide a case study on sub-Saharan Africa, Ghana, Thailand, and
the United States, which represent regions with quite different TTI prevalence
rates and blood screening policies. Our case study generates important policy
insights. Specifically, we show that an optimization-based approach for the
test selection that explicitly considers a region’s particular prevalence rates
can significantly reduce risk, especially for low budgets. Furthermore, for low
testing budgets it might be better not to follow the WHO guidelines (which
do not depend on prevalence rates), especially when there are high co-infection
rates. Furthermore, we find that waste (i.e., blood discarded through false-
positive test results) can be quite sensitive to the test set selected. Thus, waste
should be a consideration in future research.

The remainder of the chapter is organized as follows. In Section 4.2, we introduce the
notation and provide a mathematical formulation of the decision problem. In Section
4.3, we analyze the problem and provide equivalent mathematical programming for-
mulations, lower bounds, and optimal algorithms (for the mono-infection setting) as
well as a heuristic algorithm (for the general problem). Section 4.4 provides a sum-
mary of our extensive numerical study on the proposed heuristic, details the case
studies of several regions, including the sub-Saharan Africa, Ghana, Thailand, and
the US, and generates important policy insights. Finally, in Section 4.5, we provide
our conclusions and suggest directions for future research.

4.2 The Notation and the Model

In the US, per FDA requirements, each blood donation must undergo screening tests
for a set of transfusion-transmitted infections (TTIs). Depending on the outcomes of



43

the selected tests, the blood unit (i.e., all blood collected from the particular donor2)
will be used or discarded. Consequently, the decision-maker (e.g., the American
Red Cross) faces the problem of (i) selecting a set of tests, from a set of FDA-
approved screening tests, to test each unit of blood for a set of FDA-recommended
TTIs, and (ii) constructing a “decision rule” with which to classify each blood unit
as “infection-free” (from all diseases considered) versus “infected” (by at least one
disease) using the outcomes of the selected battery of tests.

Each screening test applies to a specific disease and provides binary results, with
a “+” result indicating that the blood sample is reactive to the particular disease
under the test (i.e., the test suggests that the blood unit is infected), and a “–” re-
sult indicating otherwise. Tests do not have perfect efficacy, and are characterized in
terms of their “specificity” (probability of true negative) and “sensitivity” (probabil-
ity of true positive). False positive and false negative test results are possible due to
various reasons, including technical errors (e.g., lab errors due to misinterpretation,
mislabeling), biological factors, such as the presence of antibodies, other diseases, or
immunizations cross-reacting with test agents, “immunological window periods” (i.e.,
the period of early infectivity when an immunologic test is non-reactive, e.g., Bihl
et al. (2007)), or simply due to imperfect level of knowledge (e.g., poorly-understood
cross-reactions in healthy individuals); for a thorough discussion, see Dow (2000);
Moore et al. (2007); Sayre et al. (1996). Sensitivity and specificity estimates are
required for each FDA-approved test; we refer the interested reader to Pepe (2004)
for a detailed discussion on how these parameters are typically estimated in practice.

If the decision-maker chooses to administer only one test for some disease i, then her
decision rule for disease i is trivial: with a “+” test result, she classifies the blood unit
as infected with disease i; and with a “–” result, she classifies it as free of disease i. If
multiple tests are administered for the same disease, however, different decision rules
are possible. For example, under the well-known “Believe the Positive” decision rule,
the blood unit is classified as infected for disease i if at least one test in the selected
battery for disease i returns a “+” result; equivalently, it is classified as free of disease
i only if all tests in the battery come out “–” for disease i. On the other hand, under
the “Believe the Negative” decision rule, the blood unit is classified as free of the
disease if at least one test result in the battery is “–”. Under the “Majority-based”
decision rule, an odd number of tests are administered for each disease and the blood
unit is classified according to the outcome provided by the majority of the tests (see

2While the amount of blood drawn per donor varies from 200 to 550 milliliters depending on
the country, 450-500 milliliters is typical, which we refer to as a “blood unit.” Blood samples for
testing are collected from the donor at the time of donation.
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Pepe, 2004, Chapter 9, for a detailed discussion and further references). Overall,
the decision-maker will classify the blood unit as infection-free (hence keep it for
possible transfusion) only if she concludes, based on the outcomes of all tests she
administers and the decision rule she adopts, that the blood unit is free of each and
every one of the diseases; otherwise, the blood unit will be discarded. Finally, all
selected tests need to be administered simultaneously on the blood sample due to the
long time requirements of the tests (including the transportation time to the testing
laboratory) and the relatively short life-span of donated blood (Hillyer, 2001). As a
result, the testing sequence is irrelevant in our setting.

In this setting, of a set of imperfectly reliable tests to select from to detect a set of
diseases, the objective of the decision-maker is to minimize the risk of a transfusion-
transmitted infection, i.e., the conditional probability that the blood unit classified as
infection-free is in fact infected by some disease(s): this is the single most important
objective for Blood Centers, which are very conservative about risk, and applies when
the transfusion-transmission of any disease in the disease set is highly undesirable
due to the major consequences to the patient. (This is the case for all TTIs that are
in the WHO or FDA list of infections recommended for testing.) The decision-maker
is resource-constrained, which we model in the form of a budget constraint on the
total cost of test administration for a unit of blood.

Finally, another important consideration in blood screening is the fraction of blood
units that are falsely rejected (“waste”). Reducing waste is essential, as blood short-
ages are common, and are projected to significantly increase in the near future in both
developing and developed countries (Greinacher et al., 2007; WHO, 2004). Thus, one
might also include a constraint in the optimization model to ensure that the fraction
of wasted blood is below a certain threshold. We leave the consideration of waste
for future research, and simply report the fraction of wasted blood in our numerical
studies.

In what follows, we first present the notation, followed by the mathematical formu-
lation of the decision problem.

4.2.1 Notation

Throughout,
−→
X = (Xi) denotes a vector, X denotes the complement of event X,

and |X| denotes the cardinality (size) of set X. Let
−→
1i , i = 1, · · · , n, denote a 1× n

unit row vector, with a “1” in the ith place, and “0”’s elsewhere; and
−→
0 and

−→
1
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respectively denote vectors of all “0”’s and all “1”’s. Let Ψ denote the set of diseases
recommended for screening, Ωi denote the set of tests available to the decision-maker
for disease i ∈ Ψ, with Ωi

∩
Ωj = ∅, for ∀i, j ∈ Ψ, i ̸= j, and Ω ≡ ∪i∈ΨΩi, and d(j)

denote the disease test j, j ∈ Ω, applies to. Let n ≡| Ψ |, mi ≡| Ωi |, i = 1, · · · , n,
and m ≡

∑n
i=1 mi.

Let
−→
Λ = (Λi)i=1,··· ,n denote the disease prevalence vector for a random unit of blood,

consisting of binary elements, with a “1” in the ith place indicating that the blood unit
is infected with disease i ∈ Ψ, and a “0” indicating otherwise. Thus, the sample space

of
−→
Λ , which we denote by S (

−→
Λ ), contains 2n vectors, which collectively represent all

prevalence possibilities for n diseases. We denote the joint probability mass function

of the random vector
−→
Λ by p−→

Λ
(
−→
λ ) ≡ Pr(

−→
Λ =

−→
λ ), for

−→
λ ∈ S (

−→
Λ ).

The decision-maker needs to make the following decisions:

Decision variables:

S : the set of tests to administer, where S ⊆ Ω and S ≡ ∪i∈ΨSi, with Si ⊆ Ωi denoting the set
of tests that apply to disease i ∈ Ψ.

D(S) : the decision rule (among all possible decision rules for test set S, given by the decision rule
set D(S) ∈ D(S)) adopted by the decision-maker for classifying the blood unit as free of all
diseases when test set S is administered, S ⊆ Ω.

Consider all blood units as post-screen blood that becomes available for transfusion
in the special case where no test is selected (or selected test set is ∅). Consider a
random unit of blood to be tested. We define the following events and parameters.

Events:

Ai+ : the event that the random blood unit is infected by disease i ∈ Ψ.

T
d(j)
j + : the event that test j provides a positive result for disease d(j), j ∈ Ω.

T − (S,D(S)) : the event that the random blood unit is classified as free of all diseases based on
decision rule D(S) ∈ D(S) and administered test set S ∈ Ω.

Parameters:

Pr(T
d(j)
j − | Ad(j)−) : specificity (true negative probability) of test j ∈ Ω.

Pr(T
d(j)
j + | Ad(j)+) : sensitivity (true positive probability) of test j ∈ Ω.

Qj = Pr(T
d(j)
j − | Ad(j)+)/Pr(T

d(j)
j − | Ad(j)−), j ∈ Ω. (Denote Qj = 1−Qj .)

cj : the unit cost of administering test j ∈ Ω.
B : the total budget available per blood unit for administering the screening tests.
α : maximum allowable fraction on waste (the fraction of infection-free blood

falsely discarded), also referred to as the waste tolerance limit.
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w(
−→
λ ),
−→
λ ∈ S (

−→
Λ) : the weight corresponding to disease prevalence vector

−→
λ in the weighted risk

model.

By definition, Qj, j ∈ Ω, represents the ratio of false negative probability to true
negative probability. Therefore, tests with smaller Qj values are desirable from
a risk minimization perspective, as our mathematical programming formulation in
Proposition 1 indicates. We assume, without loss of generality, that Qj ≤ 1, j ∈ Ω,
that is, each test has a higher true negative probability than false negative probability.
This follows because any test not satisfying this assumption can be transformed into
one that satisfies it by interpreting its result in the opposite way. Moreover, not
surprisingly, this assumption already holds for all FDA-approved tests.

Because the number of blood units screened is not a decision variable (all donated
blood needs to be screened), the test administration cost may be of any functional
form (e.g., nonlinear in blood units). One needs to simply calculate the aggregate
cost for each test j ∈ Ω (based on the estimated number of blood units to be screened
during a period) and express it per unit, cj.

Test sensitivity and specificity parameters, also known as classification probabilities,
are commonly reported (by the medical literature, the FDA, and drug companies)
by conditioning on the presence or absence of the corresponding disease only (Pepe,
2004), which we follow here. The implicit assumption being made is that test per-
formance depends only on the specific disease it is being tested for, and not on other
patient characteristics, such as other medical conditions the patient may have (which
may cross-react with the test agents), demographics (e.g., age, gender), disease man-
ifestation (e.g., severity, histology); see Pepe (2004), Chapter 3 for discussion and
references. In the context of blood screening, with high co-infection rates among the
HIV, HBV, and HCV, as discussed in Section 5.1, an important question that has re-
ceived considerable attention is whether, among HIV, HBV, and HCV, the presence
of one of them affects test outcomes for the others. However, the literature is mixed
on the results. While most studies have not found any such correlation in various
patient groups, a number of studies have indicated some correlation, e.g., Bonacini
et al. (1999, 2001); Jafa et al. (2007); Richard et al. (1993); Zacharias et al. (2004). In
summary, data on these effects are scarce, with conflicting findings, and hence, robust
conclusions are difficult to make. Consequently, this assumption, which we formally
state below, can be considered reasonable under the current medical knowledge.

Assumption (A1): The outcome of test j for disease d(j) depends only on the preva-
lence of disease d(j) in the blood unit, and not on the prevalence of the other diseases,
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that is, for j ∈ Ω,

Pr(T
d(j)
j + |

−→
Λ ) = Pr(T

d(j)
j + | Λd(j)) and Pr(T

d(j)
j − |

−→
Λ ) = Pr(T

d(j)
j − | Λd(j)).

Because a small number of trials have suggested higher false positive fractions for
specific HIV tests for individuals co-infected with hepatitis viruses (e.g., Jafa et al.,
2007, for the Oral HIV antibody test), we briefly discuss the impact of this possibility
on our results. If this indeed were the case, then our model (detailed in the next
section) would overestimate the TTI risk of a given test composition in donor popu-
lations with high co-infection rates by underestimating the benefits of the HIV tests,
as they would have the added benefit of potentially removing some hepatitis-infected
blood from the pool (of HIV “–” but hepatitis “+” donors). However, because HIV
is the most prevalent disease in donor populations with high co-infection rates for
HIV and the hepatitis viruses, HIV tests already get first priority in our optimiza-
tion in such regions (e.g., sub-Saharan Africa, see Section 4.4). Consequently, we
conjecture that the relaxation of (A1) would not have much impact on our optimal
test composition.

Remark 1 While we define test specificity and sensitivity for the case where each
selected test is administered once to the blood unit, it is possible to generalize these
parameters to settings where “repeat testing” (of the same test) is done for blood
units with initial “+” results. [Some US Blood Centers routinely repeat any test with
an initial “+” result twice; the final outcome of this test is considered “+” only if at
least one of the repeat tests comes out “+” (Hillyer, 2001)]. The specificity and sen-
sitivity of repeat tests need not be the same as those of the initial test (due to various
reasons, including lab errors, such as misinterpretation of the test result). In this
case, the sensitivity and specificity parameters of the test under repeat testing policy
can be derived using the original sensitivity and specificity, along with sensitivity and
specificity conditional on prior testing results, which are reported for several tests,
e.g., Schwartz et al. (1990) and references.

4.2.2 The Decision Problem

The decision problem can be formulated as follows.

Risk-based Minimization Problem (RMP):

R∗ ≡ MinimizeS∈Ω,D(S)∈D(S) R (S,D(S)) ≡ Pr

(∪
i∈Ψ

Ai+ | T − (S,D (S))

)
(4.1)
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subject to
∑
j∈S

cj ≤ B. (4.2)

Thus, among all test sets that satisfy the budget constraint in (4.2), the objective
function in (4.1) selects an optimal test set and a decision rule, denoted respectively
by S∗ (with S∗ = ∪i∈ΨS

∗
i ) and D∗(S∗), that minimizes the conditional probability

that the blood unit is infected by at least one disease, given that it is classified
as “infection-free” under the selected test set and decision rule. We denote the
corresponding optimal risk as R∗. Note that while RMP considers the disease set
as recommended for screening, a constraint on FDA-required diseases can easily be
incorporated into the formulation.

In addition to Assumption (A1), we make the following assumption to analyze
RMP.

Assumption (A2): Test outcomes are conditionally and jointly independent given
the prevalence vector, that is, for test j ∈ Ω and S ′ ⊆ Ω \ {j}, for any two mutually
exclusive sets {k1, . . . , kf} and {l1, . . . , lg} such that {k1, . . . , kf}

∪
{l1, . . . , lg} = S ′,

Pr
(
T

d(j)
j + |

−→
Λ , T

d(k1)
k1

+, . . . , T
d(kf )

kf
+, T

d(l1)
l1
−, . . . , T d(lg)

lg
−
)

= Pr
(
T

d(j)
j + |

−→
Λ
)
,

Pr
(
T

d(j)
j − |

−→
Λ , T

d(k1)
k1

+, . . . , T
d(kf )

kf
+, T

d(l1)
l1
−, . . . , T d(lg)

lg
−
)

= Pr
(
T

d(j)
j − |

−→
Λ
)
.

Assumption (A2) is common in the medical literature, and holds reasonably well
for tests that measure different markers in the blood (see Pepe (2004), Chapters 3
and 7). However, it may be violated for tests that measure similar disease markers
(e.g., HIV antibodies), whose outcomes are likely to be positively correlated. Relaxing
(A2) requires extensive data on joint sensitivity and specificity of related tests, which
is not completely provided (and understood) in the medical literature. Furthermore,
this assumption plays a critical role in our analysis, by allowing the reduction of the
general problem to a polynomial programming problem, see Proposition 1 below.
Consequently, we keep Assumption (A2) and briefly discuss its possible impact on
our results. Under (A2), our model overestimates the benefit of adding similar tests
(e.g., HIV antibody tests of different brands) to the composition. While such a
selection would likely not be optimal for low to moderate budgets, which is often
the case in practice, it could be for high budgets under (A2), which is where we
expect the relaxation of (A2) to have an impact. [As a note, the current screening
test composition policy of the American Red Cross includes multiple HIV tests that
measure different markers (an antibody test and a nucleic acid test) (American Red
Cross, 2008).]
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Even under Assumptions (A1) and (A2), and even when the decision rule is fixed
a priori, RMP remains a difficult knapsack-type problem. In particular, it falls
into the class of nonlinear knapsack problems with a nonseparable objective func-
tion, a problem considerably more difficult than other knapsack problems, and has
received very limited attention in the literature (see Bretthauer and Shetty, 2002,
for a review). Indeed, a special case of our problem, with the decision rule fixed
as the BP rule and with each disease having one test available to choose from (i.e.,
mi = 1, i ∈ Ψ), reduces to the Series-parallel Redundancy Allocation Problem, which
is shown to be NP-hard (Chern, 1992), see Appendix B.2.

4.3 Equivalent Formulations, Lower Bounds, and

Algorithms

We first show that for any set of tests, the Believe the Positive (BP) decision rule,
which classifies the blood unit as infected if at least one test outcome in the battery
is “+”, is the one that minimizes the risk.

Property 1 For any test set S and decision rule D(S) ⊆ D(S), we have

Pr

∪
i∈Ψ

Ai+

∣∣∣∣∣∣
∩
j∈S

T
d(j)
j −

 ≤ Pr

{∪
i∈Ψ

Ai+ |T − (S,D (S))

}
.

Proof. See Appendix B.3.

As noted in Pepe (2004), the BP rule is “useful if each test detects some subjects
that are not detected with the others,” which is typically the case in donated blood
testing. Furthermore, this is the rule used in practice, where the decision-makers are
highly concerned about risk.

Remark 2 While the structure of the optimal decision rule (the BP rule) in our risk
minimization setting is simple and independent of the test parameters, this need not
be the case for other relevant metrics in blood screening. For example, we show in Xie

et al. (2011) that for a weighted risk function, given by
∑

−→
λ ∈S (

−→
Λ)\

−→
0
w(
−→
λ ) Pr

(−→
Λ =

−→
λ , T − (S,D(S))

)
,

with w(
−→
λ ) denoting the weight (e.g., social cost, burden on the individual) of preva-

lence vector
−→
λ , the BP rule is no longer optimal, and the structure of the optimal

decision rule remains an open question.
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With Property 1, we can, without loss of optimality, study RMP under the BP rule.
Consequently, to simplify the exposition, we drop the decision rule variable from the
notation. For Si ⊆ Ωi, i ∈ Ψ, define T i−(Si) ≡ ∩j∈Si

T i
j− and T i+(Si) ≡ ∪j∈Si

T i
j+.

Then, noting that S =
∪

i∈Ψ Si, we can express T−(S) and T+(S), which respectively
correspond to the events that the blood unit is classified as infection-free versus
infected (by at least one disease), as:

T − (S) = ∩i∈Ψ T i − (Si) and T + (S) = ∪i∈Ψ T i + (Si).

With Property 1, RMP can be reformulated as a 0-1 “polynomial programming
problem,” which refers to a family of nonlinear programming problems having a
polynomial objective function and binary variables (e.g., Li and Sun (2006), Chapters
10 and 11). We do this by defining a binary decision variable, Ij, for each available
test j ∈ Ω, which equals 1 if test j is in the selected test composition (set S), and

0, otherwise. Also recall, from Section 4.2.1, that
−→
Λ = (Λi)i=1,··· ,n is the random

disease prevalence vector for unit blood, expressed as a binary vector, with its joint

pmf denoted by p−→
Λ
(
−→
λ ),
−→
λ ∈ S (

−→
Λ).

Proposition 1 RMP is equivalent to the following 0-1 polynomial programming
problem:

RMP: MinimizeIj ,j∈Ω

∑
−→
λ∈S

(−→
Λ
)
\−→0

p−→
Λ

(−→
λ
) ∏

i∈Ψ:λi=1

∏
j∈Ωi

{
1−QjIj

} (4.3)

subject to
∑
j∈Ω

cjIj ≤ B, (4.4)

Ij binary, j ∈ Ω. (4.5)

Given the optimal solution to (4.3)-(4.5), denoted by {I∗j , j ∈ Ω}, let S∗ = {j : I∗j =

1, j ∈ Ω}. Then, the optimal risk is given by R∗ = Pr
(∪

i∈Ψ Ai |T − (S∗)
)
.

Proof. See Appendix B.4.

RMP is a difficult mathematical programming problem with a nonlinear objective

function, which contains
m∑
k=2

(
m
k

)
= 2m − (m + 1) polynomial terms, ranging from
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two-degree to m-degree polynomials, along with m one-degree terms. A standard
approach for converting 0-1 polynomial programming problems into 0-1 linear (in-
teger) programming problems, as described in Glover and Woolsey (1974), involves
linearizing the objective function by introducing a new decision variable to represent
each and every one of the polynomial terms.3 As such, instead of the m binary vari-
ables, Ij, j ∈ Ω, that the original formulation contains, the linearization procedure

will lead to 2m−1 binary variables, along with a large number,
m∑
k=2

(k + 1)
(
m
k

)
, of ad-

ditional constraints, producing a large-size integer programming problem, especially
for practical problem sizes where the number of candidate tests, m, is typically in
the order of 50-80 (FDA, 2010). (For a special case of RMP, however, the size of
such a linearized formulation becomes manageable, and we discuss its efficiency in
Section 4.3.1.) Furthermore, we show, in the next section, that exploiting the special
structure and properties of RMP allows us to develop highly effective algorithms for
it. Consequently, in the remainder of the chapter, we pursue this avenue and study
structural properties of RMP.

Observe that RMP finds the optimal test composition, which is then applied to
all donated blood. An interesting question, both from a theoretical and a public
policy perspective, is whether allowing for “differential policies” (with multiple test
compositions, each applied to a certain fraction of the total blood) (i) are easy to
obtain through an LP-relaxation of the formulation given above, and (ii) provide
benefits over the current “same-for-all” policy. The following remark answers the
first question, and we suggest this interesting extension as a future research direction.

Remark 3 An LP-relaxation of RMP in (4.3)-(4.5) (obtained by allowing frac-
tional values in [0, 1] for the binary test variables Ij, j ∈ Ω) will not be valid, as the
objective function in (4.3), with fractional Ij, j ∈ Ω variables, will no longer corre-
spond to the risk. (This follows from the proof of Proposition 1, which shows that
the objective function in (4.3) is valid only with binary decision variables.)

3Specifically, the objective function of RMP can be linearized by replacing each polynomial
term involving

∏
j∈S Ij , for S ⊆ Ω, with a new decision variable, Y , and by adding a new set of

constraints, {Y ≤ Ij , j ∈ S, Y ≥
∑

j∈S Ij − (|S| − 1)}. This is to ensure that Y = 1 if and only if∩
j∈S {Ij = 1} (Glover and Woolsey, 1974).
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4.3.1 RMP with Mono-infections Only

We first analyze a special case of RMP, which we refer to as RMP0, where the
possibility of co-infections in the blood unit is negligible. Mathematically speaking,

we assume Pr(
−→
Λ =

−→
λ ) = 0, for

−→
λ ∈ S (

−→
Λ ) :

∑
i∈Ψ λi > 1. While this mono-

infection setting deserves analysis in its own right (as the donor selection procedures
in developed countries make the co-infection possibility unlikely), this analysis also
motivates the development of near-optimal algorithms for the general case with co-
infections. We use the superscript 0 to denote the optimal solution and its risk in
this setting.

Corollary 1 For the mono-infection setting, RMP reduces to the following:

RMP0: MinimizeIj ,j∈Ω

∑
i∈Ψ

p−→
Λ
(
−→
λ : λi = 1)

1−
∑
j∈Ωi

IjQj +
∑
j∈Ωi

∑
k∈Ωi,k>j

IjIkQjQk

−
∑
j∈Ωi

∑
k∈Ωi,k>j

∑
l∈Ωi,l>k

IjIkIlQjQkQl + · · ·+ (−1)|Ωi|
∏
j∈Ωi

IjQj

 (4.6)

subject to (4.4), (4.5).

Given the optimal solution to RMP0, denoted by {I∗0j , j ∈ Ω}, let S∗0 = {j : I∗0j =

1, j ∈ Ω}. Then, the optimal risk is given by R∗0 = Pr
(∪

i∈Ψ Ai+ |T − (S∗0)
)
.

Proof. Follows directly from Proposition 1, when the no co-infection assumption is

imposed, i.e., Pr
(−→
Λ =

−→
λ
)
= 0, for

−→
λ ∈ S (

−→
Λ ) :

∑
i∈Ψ λi > 1.

The objective function in (4.6) is now additively separable in the diseases. The
objective function corresponding to each disease i, i ∈ Ψ, will now have a single

one-degree term, along with
mi∑
k=2

(
mi

k

)
= 2mi − (mi + 1) polynomials, ranging from

two-degree to mi-degree polynomials. Diseases will still be interacting, however,
through the common budget constraint. Then, for each disease i ∈ Ψ, were we
given its own budget allocation, Bi, then RMP0 would decompose into n separate
optimization problems, and as we show below in Lemma 1, each disease i’s problem,
RMP0-i(Bi), could be transformed into the linear knapsack problem, for which
efficient pseudo-polynomial algorithms are known (e.g., Martello and Toth, 1990).

Observe also that for a given budget allocation vector, this special case (of mono-
infections only) now requires only

∑
i∈Ψ(2

mi − 1) binary variables, rather than the
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2m− 1 binary variables that the original problem, RMP, calls for (with co-infection
possibility). This reduction in the number of binary variables can be huge for
practical-sized problems. For example, if n = 10,m = 50, and with 5 tests available
for each disease, we now have 10 × (25 − 1) = 310 binary variables instead of the
250−1 = 1.12×1015. We pursue this decomposition idea formally in the next section.

Optimal Algorithms for RMP0

In what follows, we discuss three optimal algorithms or reformulations for RMP0

(with mono-infections only) and show that a specific reformulation of RMP0, which
we refer to as the Testset-based formulation (TS-B), provides superior performance
over the other approaches (in terms of computational times). We further utilize the
TS-B in the development of a near-optimal algorithm for the general co-infection
problem in Section 4.3.2.

A Shortest Path-based Approach
We first show that, for a given budget allocation vector to RMP0, each disease’s
problem can be formulated as a linear knapsack problem. This result then motivates
an optimal Shortest Path-based Algorithm, whose arc costs are derived by solving a
series of linear knapsack problems.

Lemma 1 The optimal solution to RMP0-i(Bi), i ∈ Ψ, corresponding to a given
budget allocation Bi, can be determined by solving the following integer programming
problem:

RMP0-i(Bi): R
∗0′
i (Bi) ≡ MinimizeIj ,j∈Ωi

∑
j∈Ωi

ln {Qj} Ij

subject to
∑
j∈Ωi

cj Ij ≤ Bi,

Ij binary, j ∈ Ωi.

Given the optimal solution to RMP0-i(Bi), denoted by {I∗0j , j ∈ Ωi}, let S∗0
i = {j :

I∗0j = 1, j ∈ Ωi}. Then, the optimal risk is given by R∗0
i (Bi) ≡ 1

1+
Pr(Ai−)
Pr(Ai+)

exp{R∗0′
i (Bi)}

.

Proof. See Appendix B.5.
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Now we are ready to formulate RMP0 as a Shortest Path Problem. For this, we
first multiply all test costs and the budget by a common factor so that they are all
integral. For simplicity in exposition, in what follows, we keep the notation the same.
We have the following result.

Proposition 2 RMP0 can be formulated as a Shortest Path (SP) Problem on a
“disease-expanded” network, whose arc costs are determined by solving a series of
knapsack problems. The SP network consists of a source node, B, a sink node, 0,
and n− 1 copies of nodes 0, 1, 2, · · · , B, with the ith copy denoted as x(i), x ∈ Z+

B ≡
{0, 1, 2, · · · , B}. The arc set consists of {(B, x(1)) , x ∈ Z+

B}∪{(x(i), y(i+ 1)) , x, y ∈
Z+

B , x ≥ y, i = 1, 2, · · · , n− 2} ∪ {(x(n− 1), 0) , x ∈ Z+
B}, with arc costs given by

a(B,x(1)) = R∗0
1 (B − x(1)) , x ∈ Z+

B ,

a(x(i),y(i+1)) = R∗0
i+1(x− y), x, y ∈ Z+

B , x ≥ y, i = 1, 2, · · · , n− 2,

a(x(n−1),0) = R∗0
n (x(n− 1)), x ∈ Z+

B ,

where R∗0
i (Bi) is the optimal objective value to RMP0-i(Bi) with budget Bi, as

defined in Lemma 1, for i ∈ Ψ, Bi ∈ Z+
B .

Proof. Follows directly from Lemma 1.

Proposition 2 allows the use of efficient algorithms developed for the SP problem
(e.g., Dreyfus, 1969), in conjunction with algorithms developed for the linear knap-
sack problem (for calculating the arc costs), for solving RMP0 to optimality. Nev-
ertheless, while the development of the SP-based Algorithm is interesting from a
theoretical perspective, the size of the SP network becomes very large for practical-
sized problems. Consequently, we next propose a reformulation of RMP0, which
performs very well in our numerical studies.

The Testset-based (TS-B) Reformulation
We reformulateRMP by replacing the binary test variables, Ij, j ∈ Ω, in the original
formulation (in Corollary 1) with binary variables, I iq1,q2,··· ,qk , ∀{q1, q2, · · · , qk} ⊆
Ωi, i ∈ Ψ (we let I i∅ and I iΩi

respectively denote the binary variables corresponding to
the empty set and set Ωi), and add a set of constraints that ensure that I iq1,q2,··· ,qk = 1
if and only if {Iq1 = 1, · · · , Iqk = 1, Ip = 0, ∀p ∈ Ωi \ {q1, q2, · · · , qk}}.
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Proposition 3 RMP0 is equivalent to the following integer programming problem:

TS-B: Minimize
∑
i∈Ψ

p−→
Λ
(λ : λi = 1)


∑
j∈Ωi

QjI
i
j +

∑
j∈Ωi

∑
k∈Ωi,k>j

QjQkI
i
jk+∑

j∈Ωi

∑
k∈Ωi,k>i

∑
l∈Ωi,l>k

QjQkQlI
i
jkl + · · ·+

∏
j∈Ωi

QjI
i
Ωi

+ Ii∅



subject to
∑
i∈Ψ


∑
j∈Ωi

cjI
i
j +

∑
j∈Ωi

∑
k∈Ωi,k>j

(cj + ck) I
i
jk+∑

j∈Ωi

∑
k∈Ωi,k>j

∑
l∈Ωi,l>k

(cj + ck + cl) I
i
jkl + · · ·+

( ∑
j∈Ωi

cj

)
IiΩi

 ≤ B

∑
j∈Ωi

Iij +
∑
j∈Ωi

∑
k∈Ωi,k>j

Iijk+
∑
j∈Ωi

∑
k∈Ωi,k>j

∑
l∈Ωi,l>k

Iijkl + · · ·+ IiΩi
+ Ii∅ = 1, ∀i ∈ Ψ

I iq1,q2,··· ,qk binary, ∀{q1, q2, · · · , qk} ⊆ Ωi, i ∈ Ψ.

Proof. Follows by applying the definition of the TS-B decision variables to the
formulation in Corollary 1.

Finally, as the third approach, we use the standard linearization approach (ST-LIN)
detailed in Glover and Woolsey (1974) (and discussed above), commonly used for lin-
earizing the objective function of 0-1 polynomial programming problems. While both
ST-LIN and TS-B reformulations yield a comparable number of decision variables
for the mono-infection setting, TS-B yields a significantly smaller number of con-
straints for realistic problem sizes, involving 10 − 14 (= n) diseases and 50 − 82
(= m) tests. For example, for scenarios with 10 (14) diseases and 50 (82) tests,
ST-LIN yielded 510 (1, 186) decision variables and 2, 031 (5, 127) constraints, while
TS-B yielded 520 (1, 200) variables but only 11 (15) constraints. This resulted in a
huge increase in the CPU times for ST-LIN in our numerical studies. In particular,
while all these problem instances were easily solved within 0.06 seconds under TS-
B, ST-LIN required significantly longer CPU times, over 1, 000 seconds in several
cases. In this chapter, all computational runs are performed on Dell DM051 with
Intel Pentium(R) D CPU 2.80GHz, and the mathematical programming problems
are solved in IBM ILOG OPL IDE.

In summary, our extensive numerical study suggests the superior performance (in
terms of computational times) of the TS-B reformulation in solving mono-infection
problems over both the ST-LIN and SP-based approaches. Consequently, we do
not explore other approaches proposed in the literature for converting polynomial
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programming problems to linear problems (e.g., Adams and Sherali, 1990; Chang and
Chang, 2000; Sherali and Tuncbilek, 1992), and consider the TS-B reformulation
when we study the co-infection setting in the next section.

4.3.2 RMP with Co-infections: Lower Bounds and Near-
Optimal Algorithms

We now turn our attention to the general case of RMP with possible co-infections
in donated blood. As stated in Section 5.1, co-infection rates can be significant,
especially in developing countries that have high prevalence rates for major TTIs,
and that have not established rigorous and systematic screening procedures for blood
donors. RMP, for the general case, is a difficult optimization problem, as discussed
in Section 4.2.2. Thus, in what follows, we first develop two lower bounds on its
optimal risk. We then develop a near-optimal algorithm for it, which is motivated
by our analysis of the mono-infection case.

Proposition 4 (i) R∗ ≥ LB1, where LB1 is the optimal solution to:

Problem LB1: LB1 ≡ Pr

(∪
i∈Ψ

Ai+

)
× Minimize S⊆Ω

∏
j∈S

Qj

 (4.7)

subject to
∑
j∈S

cj ≤ B.

(ii) In RMP, set Pr
(−→
Λ =

−→
λ
)

= 0, ∀
−→
λ ∈ S (

−→
Λ) :

∑
i∈Ψ

λi > 1, and solve the

resulting instance of the mono-infection problem optimally (by one of the algorithms
prescribed in Section 4.3.1), whose optimal solution we denote by R∗0. Then, LB2 ≡
R∗0 ≤ R∗.

Proof. See Appendix B.6.

For RMP, we propose the Co-infection Reallocation (CR) Heuristic, which is based
on the idea of approximating the co-infection problem as a mono-infection problem.
This is done by reallocating the probability of each co-infection prevalence vector to
the corresponding mono-infection prevalence vectors in proportion to their original
mono-prevalence probabilities, see Figure 4.1 for an example. Different probability
reallocation rules are possible. In our numerical study, this specific rule dominated
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the other rules considered in all scenarios tested. Recall that p−→
Λ
(
−→
λ ),
−→
λ ∈ S (

−→
Λ ),

is the joint pmf of the prevalence vector in the co-infection setting.

The CR Heuristic:

STEP 0: Set pH−→
Λ

(−→
λ
)
= p−→

Λ
(
−→
λ ), for

−→
λ ∈ S

(−→
Λ
)
.

STEP 1: REPEAT for each
−→
λ ′ ∈ S

(−→
Λ
)
:
∑

j∈Ψ λ′
j > 1 and p−→

Λ

(−→
λ
)
> 0:

• For each i ∈ Ψ : λ′
i = 1:

pH−→
Λ

(−→
1 i

)
← pH−→

Λ

(−→
1 i

)
+ p−→

Λ

(−→
λ ′
)
×

 p−→
Λ
(
−→
1i )∑

j∈Ψ,λ′
j=1 p−→Λ (

−→
1j )

 ,

• pH−→
Λ
(
−→
λ ′)← 0.

STEP 2: Solve the resulting mono-infection problem (with pH−→
Λ

(−→
λ
)
,
−→
λ ∈ S

(−→
Λ
)
)

to optimality using the TS-B formulation and obtain its optimal test set, SH .

STEP 3: Determine the risk to the original co-infection problem for test set SH

(i.e., R(SH)) under the original joint pmf, p−→
Λ

(−→
λ
)
,
−→
λ ∈ S

(−→
Λ
)
.

Figure 4.1: Example of the co-infection probability reallocation rule

4.4 A Numerical Study for the Co-infection Set-

ting

Our objectives in this section are two-fold: (i) to study the effectiveness of the CR
Heuristic for the test selection problem with co-infections, and (ii) to obtain insights
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on the impact of problem parameters on the test composition. In what follows, we
summarize the findings from our extensive numerical studies and provide details of
a case study.

4.4.1 Effectiveness of the CR Heuristic and the Lower Bounds

Using small problem instances (n = 3-4 and m = 10-15), for which we could deter-
mine the optimal solution through enumeration, we studied the effectiveness of the
CR Heuristic solution and the lower bounds. To extend the problem size over which
enumeration is feasible, we use a simple, yet powerful, property of an optimal solu-
tion to Problem RMP, which leads to a significant reduction in the number of test
sets that must be considered when using enumeration to find the optimal solution.

Property 2 Set S ⊂ Ω is said to be a “dominant set” only if (i)
∑

j∈S cj ≤ B
and (ii)

∑
j∈S cj + ck > B for any k ∈ Ω \ S. The optimal solution to RMP must

correspond to a dominant set.

Proof. Since Qj ≤ 1 for all j ∈ Ω (see Section 4.2.1), selecting an additional test
weakly lowers the risk. Hence, it trivially follows that for any test set S ⊂ Ω such
that

∑
j∈S cj ≤ B, none of its proper subsets S ′ ⊂ S, S ′ ̸= S can have R(S ′) < R(S),

and the result follows.

For these small problem instances, the CR Heuristic generated the optimal solution
in 96% of the problem instances and the average percent deviation of the heuristic
risk from the optimal risk was 0.16% (and no more than 0.52%). For developed
countries with relatively larger testing budgets, the risk of a TTI is very low, and
a deviation of 0.52% translates into a minuscule risk difference between the optimal
solution and the heuristic solution. The lower bound, based on LB1 and LB2 of
Proposition 4 (LB ≡ max{LB1, LB2})4, had an average percent deviation from the
optimal risk of 18.787% and a maximum deviation of 37.244%. We find that the
performance of the LB was the worst at low budget levels. We then extended this
study to large problem instances, representative of realistic problem sizes (n = 10
and m = 50), for which we compared the heuristic risk with the lower bounds. For
these large problem instances, the average deviation of the heuristic risk from the
lower bound was 2.27% for realistic co-infection rates. The heuristic run-times were
less than 0.1 seconds for all scenarios.

4In our numerical study, LB2 outperformed LB1 in all but very small budget scenarios.
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Next we present a case-study using realistic data from sub-Saharan Africa, and then
compare some of these results against other regions, including Ghana, Thailand, and
the United States.

4.4.2 A Case Study of the Sub-Saharan Africa Region

We first apply the CR Heuristic to a case study based on sub-Saharan Africa, where
an estimated 22.4 million people have HIV infections (around two thirds of the global
total). The HIV prevalence in sub-Saharan Africa varies, by country, from 2% to
26% (UNAIDS, 2008); we use 15% in this study. Besides HIV, the WHO recommends
screening for HBV, HCV, and Syphilis (along with other diseases based on local
conditions) (WHO, 2011), while the FDA adds HTLV, WNV, and Chagas’ Disease
(FDA, 2011) to the WHO recommendations. HBV, HCV, and HTLV prevalence
rates for this region are estimated at 10%, 3%, and 3%, respectively (Kiire, 1996;
Madhava et al., 2002; Proietti et al., 2005). Prevalence rates are difficult to estimate
for the WNV, as most WNV infections occur in the form of outbreaks (Mostashari
et al., 2001); we use 1% as an approximation for the prevalence rate, based on a study
of WNV antibodies (Petersen, 2009). Syphilis and Chagas’ Disease are omitted from
the case study due to a lack of data. The HIV-infected population has a co-infection
rate for HBV and HCV of 10% and 15%, respectively (Carmo et al., 2000; Lincoln
et al., 2003), while the HCV-infected population has a co-infection rate for HBV
of 10%, which is within the worldwide range of 9%-30% (see Adewole et al., 2009;
Christian et al., 2010; Forbi et al., 2007; Gordona and Sherman, 2009; Otegbayo et al.,
2008; Soriano et al., 2006). We ignore the triple co-infection rate of HIV-HBV-HCV.
Table 4.1 displays the mono- and co-infection prevalence rates.

Table 4.1: Prevalence rates (%) in different regions

Sub-Saharan Africa Ghana Thailand US
Mono-HIV 11.250 3.000 0.601 0.008
Mono-HBV 8.200 14.351 2.196 0.067
Mono-HCV 0.450 1.641 0.243 0.291
Mono-HTLV 3.000 2.000 0.001 0.010
Mono-WNV 1.000 1.000 0.001 0.010
HIV-HBV 1.500 0.400 0.063 0.001
HIV-HCV 2.250 0.600 0.056 0.001
HCV-HBV 0.300 0.249 0.251 0.008

Table 4.1 also displays the prevalence rates for three other regions, which we use later
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to study the impact of prevalence rates on test selection. For Ghana we use prevalence
rates for HIV, HBV, HCV, and HTLV of 4%, 15%, 2.49%, and 2%, respectively
(Van Hulst et al., 2009; Lal et al., 1994). To the best of our knowledge, there does
not exist accurate and conclusive estimation on the prevalence of WNV in Ghana;
we therefore use the same 1% estimate for sub-Saharan Africa in general. Likewise,
we use the same co-infection rates as for sub-Saharan Africa. For Thailand we use
prevalence rates for HIV, HBV, and HCV of 0.72%, 2.51%, and 0.39%, respectively
(Van Hulst et al., 2009). There is little in the literature on the prevalence of HTLV
or WNV in Thailand, but they are reported to be extremely low (Choudhury, 2010;
Vrielinka and Reesink, 2004); thus we use a low prevalence rate of 0.001%. The HIV-
infected population has estimated co-infection rates for HBV and HCV of 8.7%, and
7.8%, respectively (Sungkanuparph et al., 2004), and we use a co-infection rate for
HCV with HBV of 10%. For the US, we use prevalence rates for HIV, HBV, HCV,
and HTLV of 0.010%, 0.076%, 0.299%, and 0.0096%, respectively (Dodd et al., 2002;
Eble et al., 1993). The prevalence of WNV is reported in the ranges of 0.001% to
0.02% (Biggerstaff and Petersen, 2002; Choudhury, 2010; ORD, 2011), and we use
0.01% as the estimate. For co-infection rates, among HIV-positive individuals studied
from Western Europe and the US, HBV and HCV infections have been found in 6-
14% and 9-27%, respectively (Alter, 2006). We use 6% and 9% as co-infection rates
for HBV and HCV in the HIV-infected population, respectively, and a co-infection
rate for HCV with HBV of 10%.

In this study, we allow test selection from all FDA-approved tests. We approximate
the efficacy of each test using the data provided by the FDA (FDA, 2010). The
administration cost data are approximated according to the study by Jackson et al.,
2003 (actual costs are usually confidential). Consequently, the number of tests we
consider for HBV, HIV, HCV, WNV, and HTLV are 6, 16, 7, 2, and 2, respectively.
These tests represent a wide range of cost and efficacy (see Table 6.1). For example,
the HIV test #10 costs $13 and has a specificity of 1 and a sensitivity of only 0.805,
compared to HIV test #16, which costs $18 and has a specificity and sensitivity of
0.9967 and 0.9900, respectively, while HIV test #14 costs $4 and has a specificity
and sensitivity of 0.9880 and 0.9920, respectively.

Table 4.3 displays the test set selected by the CR Heuristic for budgets from $2-
60, along with the associated risk, the lower bound on the optimal risk (LB =
max{LB1, LB2}), and the waste, i.e., the percent of blood falsely rejected by screen-

ing, i.e., Pr
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j |
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}
. For brevity, Table 4.3 only shows the budget

in $5 increments after a budget of $20. We note that every $1 increment in the
budget caused the selected test set to change until a budget of $45. After this, the
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Table 4.2: Efficacies and administration costs for FDA-approved blood screening
tests

TTI Test Specificity Sensitivity Qj Cost($) TTI Test Specificity Sensitivity Qj Cost($)
HBV 1 0.9839 0.9900 0.0102 3 HIV 17 0.9940 0.9970 0.0030 17

2 0.9982 0.9600 0.0401 3 18 0.9983 0.9915 0.0085 5
3 0.9980 0.9970 0.0030 4 19 0.9983 0.9984 0.0016 5
4 0.9685 0.9882 0.0122 2 20 0.9977 0.9976 0.0024 5
5 0.9380 0.8810 0.1269 5 21 0.9978 0.9972 0.0028 5
6 0.9940 0.9810 0.0191 8 22 0.9960 0.9820 0.0181 4

HIV 7 0.9960 0.9970 0.0030 5 HCV 23 0.9979 0.6330 0.3678 4
8 0.9790 0.9400 0.0613 15 24 0.9880 0.9640 0.0364 3
9 0.9080 0.8560 0.1586 10 25 0.9984 0.9949 0.0051 5
10 1.0000 0.8050 0.1950 13 26 1.0000 0.6330 0.3670 10
11 0.9640 0.6530 0.3600 8 27 0.9380 0.8560 0.1535 15
12 0.9930 0.9670 0.0332 18 28 0.9967 0.9900 0.0100 18
13 0.9991 0.9975 0.0025 5 29 0.9730 0.9910 0.0092 16
14 0.9880 0.9920 0.0081 4 WNV 30 0.9986 0.8690 0.1312 5
15 0.9900 0.9950 0.0051 4 31 0.9890 0.9860 0.0142 4
16 0.9967 0.9900 0.0100 18 HTLV 32 0.9963 0.9976 0.0024 4

33 0.9989 0.9948 0.0052 5

largest budget increment without a change in the tests selected was $3. Hence, the
test selection problem is quite dynamic and budget sensitive. Without screening, the
TTI risk is 27.950% in this region.5 We observe that the heuristic risk is very close to
the lower bound: the average deviation of the heuristic risk from the lower bound is
0.637%, with a maximum deviation of 11.496%, which occurred at the lowest budget
level where the lower bound is not tight. We can see that the waste generated at each
budget allocation is also quite dynamic; for instance, the waste jumps from 1.564%
at a $12 budget to 5.620% at a $13 budget.

When the testing budgets are low, the cost of testing and the TTI prevalence rates
are the dominant factors in the test selection. For instance, HBV test #4 is the only
test affordable when the budget is $2. A $1 increase replaces this test with HBV test
#1, which has better efficacy; this slightly decreases risk and halves the waste. At
a budget of $4, HIV test #15 is affordable, and as HIV is the most prevalent TTI
in this region, this HIV test replaces the HBV test #1, even though these two tests
have similar efficacies. Another $1 increase in the budget replaces #15 with HIV test
#19, which has better efficacy. Interestingly, when the budget increases to $6, HIV
test #15 regains its place in the solution, as test #19 is removed to accommodate

5“In 2007, the WHO’s Global Database on Blood Safety indicated that “there were at least
400,000 blood donations in Africa (in 44 of 46 countries reporting) that were not tested for HIV,
HBV and HCV”(Walkley, 2009).
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Table 4.3: The test composition generated by theCR Heuristic under varying budget
allocations for the sub-Saharan Africa case study

Budget($) HBV HIV HCV WNV HTLV Risk(%) Lower Bound (%) Waste(%)
2 4 20.053 17.985 3.150
3 1 20.035 17.970 1.610
4 15 15.311 14.992 1.000
5 19 15.259 14.953 0.170
6 4 15 6.028 6.010 4.119
7 4 19 5.971 5.962 3.315
8 3 15 5.932 5.917 1.198
9 4 15 24 5.476 5.475 5.269
10 4 15 32 2.211 2.191 4.473
11 4 19 32 2.149 2.139 3.672
12 3 15 32 2.107 2.091 1.564
13 4 15 24 32 1.613 1.612 5.620
14 4 15 31 32 0.885 0.864 5.524
15 4 19 31 32 0.821 0.811 4.732
16 3 15 31 32 0.778 0.761 2.646
17 4 15 24 31 32 0.270 0.269 6.658
18 4 19 24 31 32 0.216 0.216 5.875
19 3 15 24 31 32 0.166 0.165 3.815
20 3 19 24 31 32 0.112 0.112 3.008
25 3,4 14,15 24 31 32 0.053 0.053 7.962
30 3,4 14,15 24,25 31 32 0.031 0.031 8.110
35 3,4 14,15 24,25 31 32 0.014 0.014 8.238
40 3,4 14,15 24,25 30,31 32,33 0.004 0.004 8.339
45 1,3,4 13,19 24,25 30,31 32,33 0.003 0.003 8.037
50 1,3,4 13,19 23,24,25 30,31 32,33 0.003 0.003 8.230
55 1,2,3,4 14,15,19 23,24,25 30,31 32,33 0.003 0.003 10.319
60 1,2,3,4 13,14,15,19 23,24,25 30,31 32,33 0.003 0.003 10.400

HBV test #4. The $6 budget is the first that allows testing for two TTIs, greatly
reducing risk to around 6%. This switching to higher efficacy tests continues until
the budget reaches $9, which allows, for the first time, a test for a third TTI (HCV
in this case). At $10, the test for HCV is dropped, and one for HTLV is added;
HCV and HTLV have the same prevalence rates in our case study data, but the
HTLV test has better efficacy. In addition, HCV has a low mono-prevalence rate;
therefore, many HCV infections are removed using HBV and HIV testing. Further
improvement in risk is achieved as the budget increases to $17, which, for the first
time, allows one test for each of the diseases considered, HIV, HBV, HCV, WNV,
and HTLV. At $40, an additional $20 (to increase the budget to $60) decreases the
overall risk by only 0.001% as more and more tests are administered.

Not surprisingly, we notice significant improvement in risk when increased budget
levels allow 1) a test for a previously untested disease to enter the set, or 2) switching
from a test for a less prevalent disease to one for a more prevalent disease. The
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improvement from switching between tests for the same disease is relatively small,
because of the existence of inexpensive tests with relatively high efficacies.6 We
again note the impact of co-infections; as another example, there are intervals (e.g.,
for budgets in $14-16) for which a $4 WNV test (#31) is used instead of a HCV test,
despite the higher prevalence of HCV. This is partially because the WNV test has
slightly better efficacy, but this selection is mainly driven by the low mono-infection
rate for HCV (of 0.45%); many HCV infections are eliminated by the already-selected
tests for HBV and HIV.

Finally, to obtain further insight, we study the impact of test sensitivity and speci-
ficity parameters on the test composition, and of the BP decision rule on risk and
waste. Proposition 1 shows that optimal test sets are selected based on the test per-
formance measure Qj and cost cj, ∀j ∈ Ω. In Table 6.1, we report the characteristics
of each test as a point estimate. However, test specificity and sensitivity are usually
estimated in terms of a confidence interval.7 For instance, HIV test #21 has an
estimated specificity at 99.90% with a 95% confidence interval of [99.78%, 99.96%]
and sensitivity at 100.00% with a 95% confidence interval of [99.72%, 100%]. Fig-
ure 4.2(a) plots each HIV test’s Q-value, Q(UB) (with the test number displayed on
top of each bar), clustered by cost. We see that for tests that cost $4-5, the Q-values
are quite similar. Figure 4.2(b) further details the Q-value intervals, obtained from
the 95% confidence intervals for sensitivity and specificity, for those tests in the cost
cluster of $4-5. These results indicate that small changes in the estimated parame-
ters could change the optimal test set (which we have also observed in our numerical
analysis).

From Property 1, the BP rule is the risk minimizing rule and is also the one used
by the US Blood Centers, which are rightly very conservative about risk. However,
this primary focus on risk leads to increased levels of waste. Consequently, we now
consider another decision rule, the Believe the Negative (BN) rule, which places the
primary emphasis on waste reduction. This follows because under the BN rule, the
blood unit is classified as free of a particular disease if at least one test result in
the battery is “–”. To understand the impact of the BP and BN rules on risk and
waste, we consider the HIV with the 15% prevalence rate as in sub-Saharan Africa,

6To understand the impact of test selection for one disease, see the discussion on Table 5.7, where
we observe a tremendous difference when different tests are selected when the same guidelines are
enforced.

7Specifically, Table 6.1 reports the upper bounds on the Qj measure (Qj(UB)), derived from
the lower bounds of the 95% confidence interval for test sensitivity and specificity. Recalling that
tests with smaller Qj values are desirable from a risk minimization perspective, this provides us
with conservative estimates on test performances.
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Figure 4.2: (a) The Q(UB) parameter for HIV tests grouped by cost (the test number
is displayed on top of each bar), (b) the interval for the Q parameter, derived from
the 95% confidence intervals for sensitivity and specificity, for tests in the $4-5 cost
range, with Q(Mid) denoting the mid-point of the interval

and the three HIV tests, # 14, 15, and 19, which were often part of the selected test
composition for this region. Observe that when a single test is selected, the BP and
BN rules will result in the same levels of risk and waste. Hence, in Table 4.4.2, we
report the risk and waste levels under the BP and BN rules for two and three-test
combinations in this set. We observe that the BP rule achieves significantly lower
levels of risk than the BN rule for each possible test composition. In addition, the
risk under the BN is increasing as more tests are selected. Thus, the use of the BN
rule cannot be justified in blood screening, where safety is of utmost importance.
On the other hand, the waste under the BP rule is relatively higher than that for
the BN (as expected); to decrease waste we believe methodologies not based on the
decision rule should be considered.
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Table 4.4: Comparison of risk and waste levels under the BP and BN decision rules

Selected BP BN
Test Set Risk (per million) Waste (%) Risk (per million) Waste (%)
{14, 15} 7.217 2.1880 2,282.1 0.01200
{14, 19} 2.290 1.3680 1,689.0 0.00204
{15, 19} 1.429 1.1683 1,162.0 0.00170
{14, 15, 19} 0.011 2.3543 2,559.2 0.00002

4.4.3 Extension of the Study to Ghana, Thailand, and the
United States

To understand the impact of regional characteristics (prevalence and co-infection
rates) on the test composition selected by the CR Heuristic, which we will refer to
as the RMP model, we extend our case study to Ghana, Thailand, and the United
States. Each of these countries face quite different TTI prevalence rates in their
donor populations, see Table 4.1. In particular, prevalence rates for HIV, HBV,
and HCV are high in Ghana (but lower than the sub-Saharan numbers in general),
intermediate in Thailand, and relatively low in the United States (Van Hulst et al.,
2009). We again restrict our study to HIV, HBV, HCV, HTLV, and WNV.

While selecting one test per each TTI recommended for screening in the WHO and
FDA guidelines, we can find a test set that minimizes risk (Min-Risk), comprised of
the test with the minimum Q-value for each TTI (Tests #3, 19, and 25 for the WHO,
and 3, 19, 25, 31, and 32 for the FDA), and another that minimizes the required
budget (Min-Cost) (Tests #4, 7, and 24 for the WHO, and 4, 7, 24, 31, and 32
for the FDA). These test sets are independent of prevalence and co-infection rates.
The first part of Table 5.7 shows the required budget for each of these test sets,
as well as their resultant risk and waste for sub-Saharan Africa, Ghana, Thailand,
and the United States. In addition, in sub-Saharan Africa, blood is collected in two
different ways (Busch et al., 2009). A majority (70-80%) of the blood is collected
from “replacement donors,” who are usually related to or a friend of the patient
requiring transfusion, at the point of use in emergency situations (Lackritz et al.,
1992). This method is inexpensive, as it does not involve donor recruitment expenses,
the capital investment and infrastructure that the dedicated blood centers require
(Owusu-Ofori et al., 2010), nor testing costs, as usually not even the basic HIV,
HBV, and HCV tests are performed (Lara et al., 2007). Around 20-30% of the
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blood is collected through a “voluntary donors” system utilizing dedicated collection
centers that perform (to the extent possible) screening for HIV, HBV, and HCV
(Van Hulst et al., 2010), following the WHO recommendations. These centers only
exist in major cities, and their affordability and sustainability is a critical issue faced
by most countries of sub-Saharan Africa (Busch et al., 2009; Field and Allain, 2007).
Thus, per the existing practice, for sub-Saharan Africa and Ghana we also include
the risk and waste generated from a 30% WHO testing scheme (30% Testing), where
only 30% of the blood is tested using the given test set, and the remaining 70% is
untested.

The second part of Table 5.7 reports the test set selected by the RMP model,
given budget constraints that span the range of required budgets for the various
testing schemes displayed in the first part of the table. For these solutions we do
not enforce either the WHO or FDA guidelines, but we have identified the solutions
that do conform with those guidelines in the table. While we do not display the tests
selected for each region at each budget level, we note that only the test set selected,
not the prevalence, determines the waste. Thus, by examining the waste values for
a particular budget level, we can determine if different test sets are selected for the
different regions; this happens often.

As Table 5.7 illustrates, the RMP model can achieve significant risk improvements.
Consider the WHOMin-Risk test set, which requires a budget of $14. At that budget
level the RMP solution does better in every region. In sub-Saharan Africa this is
done by selecting a test for HBV, HIV, HTLV, and WNV, while neglecting a test
for the WHO-recommended disease HCV, see Table 4.3. For this region, at a $13
budget, the RMP model does adhere to the WHO guidelines, and produces a lower
risk than the WHO Min-Risk test set. It does this by selecting less expensive tests
for the WHO-recommended diseases (tests #4, 15, and 24), which allows a fourth
test for HTLV (test #32). A similar strategy is used in Ghana at the $14 budget
level, where the RMP selects tests #1, 15, 24, and 32. Thailand has similar results,
but instead of adding a test for a disease not recommended by the WHO, it uses
two tests for HBV (the tests selected for Thailand are #1, 4, 15, and 25) to reduce
the overall risk. For the US, the RMP test set does not conform to the WHO
guidelines (selecting tests #4, 24, 25, and 31). Similarly, for the $22 budget required
for the FDA Min-Risk test set, the RMP model does better, while still conforming
to the FDA guidelines for every region except Thailand. It does this by choosing
multiple, less expensive tests for particular TTIs, based on the prevalence and co-
infection levels. It is also interesting to compare the existing scheme in sub-Saharan
Africa and Ghana, in which only around 30% of the blood donations undergo regular
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Table 4.5: Comparison of risk and waste for test sets that meet the WHO/FDA
requirements and test sets that are generated by the RMP model (CR Heuristic)
for different regions

Sub-Saharan Africa Ghana Thailand US
Guideline Budget($) Risk(%) Waste (%) Risk(%) Waste(%) Risk(%) Waste(%) Risk(%) Waste(%)

WHO Min-Risk 14 5.316 0.529 3.829 0.529 0.011 0.529 0.021 0.529
- 30% Testing 4 21.160 0.159 17.417 0.159

WHO Min-Cost 9 5.659 4.695 4.109 4.695 0.050 4.695 0.031 4.695
- 30% Testing 3 21.263 1.409 17.501 1.409

FDA Min-Risk 22 0.092 1.987 0.098 1.987 0.009 1.987 0.002 1.987
FDA Min-Cost 17 0.474 6.092 0.400 6.092 0.048 6.092 0.012 6.092
The RMP Model 3 20.035 1.610 9.857 1.610 0.952 1.610 0.107 1.200

4 15.311 1.000 9.743 0.200 0.933 0.200 0.107 1.200
5 15.259 0.170 7.542 4.312 0.660 4.312 0.039 4.312
6 6.028 4.119 5.928 4.119 0.287 4.119 0.039 2.791
7 5.971 3.315 5.894 2.594 0.282 2.594 0.030 3.305
8 5.932 1.198 5.773 1.198 0.264 1.198 0.030 1.767
9 5.476 * 5.269 4.062 * 5.269 0.042 * 5.269 0.030 5.365
10 2.211 4.473 3.570 4.473 0.038 * 3.763 0.029 4.465
11 2.149 3.672 3.534 2.954 0.021 * 2.384 0.020 4.369
12 2.107 1.564 3.408 1.564 0.015 * 6.794 0.020 2.848
13 1.613 * 5.620 1.609 * 5.620 0.013 * 6.013 0.020 1.456
14 0.885 5.524 1.572 * 4.119 0.007 * 5.813 0.019 5.516
15 0.821 4.732 1.442 * 2.745 0.005 * 5.023 0.011 4.722
16 0.778 2.646 1.390 7.139 0.004 * 3.662 0.011 3.207
17 0.270 † 6.658 0.349 † 6.658 0.004 * 2.131 0.010 1.820
18 0.216 † 5.875 0.312 † 5.174 0.003 * 6.163 0.009 5.866
19 0.166 † 3.815 0.178 † 3.815 0.003 * 4.818 0.003 † 5.675
20 0.112 † 3.008 0.125 † 8.161 0.003 * 3.305 0.002 † 4.175
21 0.079 † 7.391 0.111 † 7.391 0.002 * 8.060 0.002 † 2.802
22 0.078 † 6.063 0.058 † 7.194 0.002 * 6.742 0.001 † 6.807

WHO/FDA Min-Risk: The lowest risk test set that meets the WHO/FDA requirements
WHO/FDA Min-Cost: The lowest cost test set that meets the WHO/FDA requirements
30% Testing: Partial (30%) fulfillment of the WHO requirements, 70% no testing
*: The RMP model generated test set that meets the WHO requirements
†: The RMP model generated test set that meets the WHO and FDA requirements

testing according to the WHO guidelines (see the 30% testing scheme for the WHO-
compliant Min-Risk and Min-Cost test sets in Table 5.7) with a testing scheme that
includes all blood donations, but at the same budget level. At the corresponding
30% testing budget levels, the all-unit testing scheme can afford to use only one test,
but performs better than partial testing. We note that at the Min-Cost budget level
we have often found alternative test sets that were compliant with guidelines and
had slightly smaller risks.

In summary, this case study highlights the importance of generating region-specific
test composition for blood screening that explicitly takes into account the prevalence
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and co-infection rates of the TTIs. We also see that following the WHO and FDA
guidelines is no guarantee of an optimal testing regime - sometimes it is better to
deviate from the recommendations. Test selection is complex, and always choosing
the risk-minimizing test for each disease does not insure an overall risk-minimizing
solution for a given budget level. Furthermore, while the cheap, low-efficacy tests
included in the test sets generated here (for relatively low budgets) may not be the
ones currently used in developed countries with significantly lower TTI prevalence
rates, our study shows that they can be very beneficial for high-prevalence countries
with very limited budgets. This underscores the need for developing a wide array
of tests, with different costs and efficacies, for the same TTI. These results also
illustrate the sensitivity of the selected test set to the prevalence rates. While this
is a complex relationship, our numerical study suggests certain relationships that
were often satisfied. One important finding from our study was that for two TTIs
with non-negligible co-infection rates, their mono-infection rates often determined
which disease was tested for under a limited budget. In particular, we observed that
prevalence rates could change without impacting the test set as long as the mono-
infection prevalence ordering of the diseases was not altered. This, again, highlights
the importance of splitting the disease prevalence rates into mono- and co-infection
rates, as they impact the test composition differently.

4.5 Conclusions and Future Research Directions

The contributions in this work focus on a novel analytical modeling and algorith-
mic approach to the problem of selecting the optimal composition of blood screening
tests, each with a different efficacy and administration cost, along with a decision rule
with which to interpret the test results, so as to minimize the risk of TTI for blood
deemed as infection-free under a resource constraint. We develop optimal algorithms
for a special case of the problem where prevalence of co-infections are negligible, and
a near-optimal algorithm and lower bounds for the general problem. Our numerical
study indicates that the heuristic algorithm is very effective for realistic problem
sizes. We use the heuristic algorithm to generate the test composition for realistic
data from sub-Saharan Africa, Ghana, Thailand, and the United States. This case
study highlights the importance of generating region-specific test compositions for
blood screening, explicitly taking into account the regional mono and co-infection
prevalence rates, rather than following static guidelines, especially when these guide-
lines allow for a wide range of possible selections. Indeed, the test compositions
generated by our model depend critically on the TTI mono- and co-prevalence rates
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in that region, outperforming the static WHO/FDA guidelines. This indicates that it
is not always optimal to follow the WHO or FDA guidelines, even with budget levels
that allow this. Our study also underscores the need for developing a wide array of
tests, with different costs and efficacies, for the same TTI, as the tests selected for
the various regions may vary significantly with the prevalence rates and budget avail-
ability. In addition, our study of sub-Saharan Africa shows that an all-unit testing
scheme, even with fewer tests per blood unit, outperforms a partial testing scheme at
the same budget level, and is certainly more equitable. With certain modifications,
such modeling and algorithmic approaches can be applied in the context of other
resource allocation problems in health care.

Several variations and extensions of this work are studied in the following chapters
of this dissertation. An important direction is to incorporate the waste consideration
(i.e., fraction of blood units that are falsely rejected) into the model, perhaps as a
constraint. As discussed above, this is important, as the supply of blood products
is not sufficient to satisfy the demand worldwide, and this gap is increasing. We
considered that the transmission of each TTI in the FDA list of diseases is equally
undesirable from the decision-maker’s perspective. While all these TTIs have major
consequences to the patient if transmitted, their costs to the society (including cost
of treatment, cost of disability or deteriorating health condition of the patient) might
be different. Therefore, it is important to understand how the algorithms and the
resulting test compositions change when the social cost aspect is considered. This is
further investigated in the next chapter. Another important direction that worth to
study in the future is to relax Assumptions (A1) and (A2), which, as discussed in
this chapter, may be violated (especially (A2)) for certain tests and diseases.

We assume that the disease prevalence probabilities are known with certainty. This
is rarely the case in practice, and additional resources need to be allocated to the
collection of region-specific epidemiology data so as to obtain reliable prevalence
estimates. Moreover, in blood collection, it is important that this prevalence data
represents the donor population, rather than the general population. Similarly, test
performance parameters (sensitivity and specificity) are not known with certainty, as
we model here, and are typically estimated through resource-extensive clinical trials.
Consequently, one faces the problem of how much of the limited resources to allocate
to data collection and how much to blood screening, and this is a interesting, yet
challenging, problem that we hope future research will address.

The relatively short life-time of blood products, compared to testing times, require
blood to go through the various screening tests in parallel. One can also explore the
benefits of a sequential testing scheme (in which whether or not the blood sample
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needs to go through additional testing is determined dynamically by the current test
outcomes), with the hope that if such benefits are found to be significant, then this
will perhaps motivate biomedical researchers to investigate new technologies that
would allow sequential testing of blood. Finally, differential screening, which allows
different test compositions to be used for, perhaps in the different regions of the
country, remains an interesting future research direction.



Chapter 5

Safety and Waste Considerations
in Donated Blood Screening

5.1 Introduction and Motivation

In this chapter, we extend the problem of selecting an effective set of screening tests
for donated blood in Chapter 4. The decision-maker (e.g., the American Red Cross,
which supplies approximately 40% of the blood in the US) needs to allocate limited
resources (e.g., budget) to screening tests so as to minimize the TTI risk, while ensur-
ing that the fraction of blood wasted is below a certain threshold. Resource allocation
problems, in general, have long been studied (see, for instance, Brandeau, 2004, for
a review and references). A commonly used formulation that is somewhat related to
our problem is the traditional knapsack problem, which selects, from a set of candi-
dates, each with a known benefit (reward or revenue) and cost, an optimal set that
is budget-feasible and that maximizes the total benefit (see Brandeau, 2004). This
test selection problem has major differences with the traditional knapsack problem.
Candidate tests do not exhibit constant returns to scale in the objective function,
which is the “risk” (or “weighted risk”) of a TTI for blood classified as infection-free
(i.e., the conditional probability that the blood unit is infected with at least one TTI,
when the administered test set indicates otherwise). A test’s contribution to this risk
depends not only on the efficacy of the test itself, but on the efficacies of the entire
set of tests selected. This, along with the need to consider other, often conflicting,
constraints, such as a constraint on the fraction of infection-free blood falsely dis-
carded (waste), complicates the problem considerably. Nevertheless, we expand the

71
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algorithm developed in Chapter 4 (for the test selection problem without the waste
constraint) to this problem with the additional constraint and different objective
functions, and show that it remains quite effective and efficient for this new formu-
lation. More importantly, this solution approach allows us to study the relationship
among the different metrics essential in blood screening: TTI risk, blood wasted,
and weighted TTI risk; the latter allows us to consider the different costs/impacts
of the various TTI’s to the society or to the individual. The weighted risk model is
general, and can incorporate various metrics that are commonly adopted in the med-
ical literature to represent the impact of the various TTI’s, such as their social costs,
quality-adjusted life years, disability-adjusted life years, and so on. This analysis
allows us to derive insights and guidelines on how these metrics impact the selected
test set as well as the quality and efficiency of blood usage.

Our work generates important insights and findings that should be considered in
decision-making. Specifically, our contributions, to this important problem of select-
ing a screening test set for donated blood, consist of the following.

• While the primary objective of the decision-maker in blood screening is to
reduce the TTI risk, the waste metric, which has been ignored in many cost-
effectiveness studies on blood screening (e.g., Jackson et al., 2003; Custer et al.,
2005b; Van Hulst et al., 2010), needs to be explicitly considered in the model,
as multiple budget-feasible test sets are often available, with comparable risks
but quite different waste fractions.1 This is driven by the fact that a wide range
of blood screening tests (with varying levels of specificity, sensitivity, and cost)
are typically available in the market; and as such, a number of test portfolios,
consisting of tests with quite different characteristics, can often be constructed
for a certain budget constraint. Interestingly, however, a reduction in risk does
not necessarily come at the expense of an increase in waste, as there is no
direct relationship between these metrics. This underscores the importance of
incorporating the waste metric into the mathematical formulation.

• We study three objective functions that are relevant to the problem under
study: minimization of the TTI risk (Problem RMP), minimization of the
weighted TTI risk (ProblemW-RMP), and minimization of the weighted total
TTI risk (Problem WT-RMP), where the weights for each TTI represent the
costs/burdens of the TTI to the society and/or the individual. We show that

1Schwartz et al. (1990) is a notable exception and considers both risk and waste for HIV through
a Markov model, which allows for comparison of strategies for a single disease only, but not within
an optimization framework.
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W-RMP is more structurally difficult to solve than RMP and WT-RMP,
but that WT-RMP can be used to approximate W-RMP. Our study gener-
ates insights on the relationship among these different metrics. We observe that
the test sets generated by WT-RMP and RMP and their corresponding met-
rics differ significantly, especially when the prevalence and weight of the TTIs
are not aligned (such as the Ghana example). This, once again, highlights the
importance of generating region-specific test set for blood screening that ex-
plicitly takes into account the mono- and co-infection rates and weights of the
TTIs. It also demonstrates the difficulty of making this important decision, as
the objectives of reducing risk versus weighted risks sometimes conflicts, and a
trade-off between risk, weighted risks, waste, and budget needs to be made by
the decision-maker. Our optimization-based models provide tools to support
and potentially improve this decision-making process.

The remainder of this chapter is organized as follows. In Section 5.2, we introduce
the problem setting, the notation, and the assumptions used throughout the chapter.
The relationship among the various measures of accuracy, commonly used for medical
tests, and their implications for the screening test selection problem are discussed
in Section 5.3. Mathematical formulations for the decision problem under various
objectives, along with solution approaches and numerical studies, are detailed in
Section 5.4. Finally, in Section 5.5, we conclude with a summary of our findings and
suggest future research directions.

5.2 The Problem Setting, Notation, and Assump-

tions

Consider a Blood Center collecting blood from donors. In the US, per requirements
by the Food and Drug Administration (FDA), each blood donation must undergo
screening for a set of TTIs. Similarly, the World Health Organization (WHO) rec-
ommends screening for a set of TTIs. It is often the case that a number of screening
tests, each with different performance characteristics and cost, are available for each
TTI. Then, given these requirements/recommendations and the variety of the tests
available, it is the Blood Center’s responsibility to decide which particular screening
test to administer for each TTI. Depending on the outcomes of the selected tests,
the blood unit (i.e., all blood collected from the particular donor) will either be
made available for transfusion or discarded. Consequently, the decision-maker faces
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the problem of selecting a set of screening tests, from a set of commercially avail-
able tests, to administer to each unit of donated blood to test for a set of TTIs
(“diseases”) so as to minimize the overall TTI risk in blood transfusion.

Each screening test applies to a specific disease and provides binary results, with
a “+” result indicating that the blood unit is infected, and a “–” result indicating
otherwise. Tests do not have perfect efficacy, and are characterized in terms of their
“specificity” (the conditional probability that the test provides a true “–” result,
given that the blood unit is not infected by the disease) and “sensitivity” (the con-
ditional probability that the test provides a true “+” result, given that the blood
unit is infected by the disease), e.g., Pepe (2004). False positive and false negative
test results are possible due to various reasons, as discussed in detail in Dow (2000);
Johnson (1996); Moore et al. (2007); see also Chapter 4 for additional references.
The sensitivity and specificity of each test are known by the decision-maker; these
estimates are required for each FDA-approved test. Finally, all selected tests need to
be administered concurrently on the blood sample due to the long time requirements
of the tests (including the transportation time to a testing laboratory), compared to
the relatively shorter life-span of donated blood (Hillyer, 2001).

In this setting, given a set of imperfectly reliable tests to select from to detect a set
of diseases, the primary objective of the decision-maker is to minimize the “risk” (or
weighted risks) of a transfusion-transmitted infection, i.e., the conditional probability
that the blood unit classified as “infection-free” is, in fact, infected by some disease(s).
The decision-maker is resource-constrained and also wants to limit the amount of
infection-free blood falsely discarded (“waste”): We model these constraints in the
form of a budget constraint on the total test administration cost per unit blood, and
a maximum allowable waste constraint on the fraction of falsely discarded blood.

In practice the decision-maker also needs to adopt a “decision rule,” which prescribes
when to classify the blood unit as “infection-free” for a particular disease versus
“infected,” when the selected test set contains multiple tests for the same disease.
The “Believe the Positive (BP)” rule is a commonly adopted decision rule in blood
screening due to its conservative nature for classifying the blood unit as infection-
free, which fits well with the objective of minimizing the TTI risk. Indeed, we show
that the BP rule is the optimal decision rule for minimization of the TTI risk under
a budget constraint in Chapter 4. In general, the BP rule is not necessarily optimal
for general objective functions, such as the weighted risk objective functions studied
in this chapter, as we elaborate in Section 5.2.2, where we also show that the form
of the optimal decision rule may be quite complex in the weighted risk setting, as it
is a function of problem parameters. Consequently, due to the primary emphasis, in
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this setting, on risk reduction, we consider that the decision-maker adopts the BP
rule in all the objective functions studied. In other words, we do not include it as a
decision variable in the optimization problems.

Our notation and assumptions follow that of Chapter 4. We include important
notations used in Chapter 4 along with the newly added notations as follows.

Decision variable:
S ⊆ Ω: the set of tests to administer, where S ≡ ∪i∈ΨSi, with Si ⊆ Ωi denoting the
set of tests that apply to disease i ∈ Ψ. (Note that Si is allowed to be ∅.)

Consider a random unit of blood to be tested. We define the following events and
parameters:

Events:

• Ai+ = {Λi = 1}, i ∈ Ψ: the event that the blood unit is infected by disease i
(Ai− = Ai+).

• T
d(j)
j +, j ∈ Ω: the event that test j provides a “+” result for disease d(j)

(T
d(j)
j − = T

d(j)
j +).

• T − (S), S ⊆ Ω: the event that the blood unit is classified as free of all diseases
based on the administered test set S and under the BP rule (T+(S) = T−(S)).
When S = ∅, T −(∅) = Φ; equivalently, T +(∅) = ∅. We will also adopt the no-

tation that when S = ∅, Pr

(∪
j∈S

T
d(j)
j +

)
= 0; equivalently, Pr

(∩
j∈S

T
d(j)
j −

)
=

1. These expressions will be used subsequently.

Parameters:

• “Specificity” of test j = Pr(T
d(j)
j − | Ad(j)−), j ∈ Ω: the probability that test

j provides a “–” result for disease d(j) when the blood unit is not infected by
disease d(j), also known as the “true negative probability.”

• “Sensitivity” of test j = Pr(T
d(j)
j + | Ad(j)+), j ∈ Ω: the probability that test j

provides a “+” result for disease d(j) when the blood unit is infected by disease
d(j), also known as the “true positive probability.”
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• Qj ≡
Pr
(
T

d(j)
j −|Ad(j)+

)
Pr
(
T

d(j)
j −|Ad(j)−

) (≤ 1) 2 (Q̄j ≡ 1−Qj), j ∈ Ω.

• cj, j ∈ Ω: unit cost of administering test j.

• B: total budget available per blood unit for administering the screening tests.

• α: maximum allowable fraction on waste (the fraction of infection-free blood
falsely discarded), also referred to as the “waste tolerance limit.”

• w(
−→
λ ),
−→
λ ∈ S (

−→
Λ ): the weight corresponding to disease prevalence vector

−→
λ

in the weighted risk model.

By definition, Qj, j ∈ Ω, represents the ratio of false negative probability to true
negative probability. Therefore, tests with smaller Qj values are desirable from a
risk minimization perspective (see (5.7) in Proposition 5).

Observe that we choose to express both the test administration cost (cj, j ∈ Ω)
and the total budget available (B) on a per unit basis. This is without loss of
generality under the “same-for-all” policies, where the same set of screening tests is
administered to all donated blood. Since the number of blood units screened is not
a decision variable in our model (all donated blood needs to be screened), the test
administration cost may be of any functional form (e.g., nonlinear in blood units).
We simply need to calculate the aggregate testing cost for each test j ∈ Ω (based on
the estimated number of blood units to be screened during a period) and express it
on a per unit basis.

5.2.1 Model Formulations

With waste constraint introduced to the problem in Chapter 4, the mathematical
formulation for the Risk Minimization Problem (RMP) under budget and waste
constraints is redefined in this chapter as follows:

2This assumption, that Qj ≤ 1, j ∈ Ω, is without loss of generality, because any test not
satisfying this assumption can be transformed into one that satisfies it by interpreting its result
in the opposite way. Moreover, not surprisingly, this assumption, which states that each test has
a higher true negative probability than false negative probability, already holds for all the FDA-
approved tests.
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Risk Minimization Problem (RMP):

Risk∗ ≡ MinimizeS⊆Ω Risk(S) = Pr

(∪
i∈Ψ

Ai+ | T − (S)

)
(5.1)

subject to
∑
j∈S

cj ≤ B (5.2)

Waste = Pr

(
T + (S)|

∩
i∈Ψ

Ai−

)
≤ α. (5.3)

Thus, among all test sets that satisfy the budget and waste constraints in (5.2)
and (5.3), the objective function in (5.1) selects the test set, denoted by S∗ (with
S∗ = ∪i∈ΨS

∗
i ), that minimizes the conditional probability that the blood unit is

infected by at least one disease, given that it is classified as infection-free under the
given test set. We denote the corresponding optimal risk as Risk∗.

In RMP, we assume all infections (and their combinations) are equally undesirable.
In reality, different infections have different impacts on society and individuals, in
terms of costs of treatment, disability, loss of productivity, etc. These costs/burdens
depend on the specific TTI as well as the characteristics of the transfusion recipients
in the particular region. For example, in Ghana, transfusion recipients are mostly
children (with malaria and anemia) and laboring women, whereas in the developed
world, they are the elderly (Cobain et al., 2007; Van Hulst et al., 2009). Measures
such as Quality-Adjusted Life Years (QALY), Disability-Adjusted Life Years (DALY)
are commonly used in cost-effectiveness analysis to represent the overall burden of
the disease (Marshall et al., 2004; Van Hulst et al., 2010). Therefore, from a public
policy perspective, it is important to consider the different impacts of the TTIs in the
test selection decision. Consequently, we introduce the Weighted Risk Minimization
Problem (W-RMP).

Weighted Risk Minimization Problem (W-RMP):

W -Risk∗ ≡ MinimizeS⊆Ω W -Risk(S) =
∑

−→
λ∈S (

−→
Λ)\−→0

w(
−→
λ ) Pr(

−→
Λ =

−→
λ |T − (S)) (5.4)

subject to (5.2) and (5.3).

Observe that when the disease weights are equal for all disease combination vectors,
objective function (5.4) in W-RMP reduces to that of RMP, (5.1). Also observe
that the objective function of RMP represents the risk per randomly selected blood



78

unit, while the objective function of W-RMP represents the corresponding cost (or
other related measure, such as QALY or DALY, as discussed above) per randomly
selected blood unit. Thus, they both represent the risk or cost to a randomly selected
transfusion recipient.

We also study another relevant objective function in the weighted risk setting, which
represents the total cost (or other related measure) to the society of all the infec-
tious blood units in the “safe” blood pool (i.e., all blood units that are classified as
infection-free, hence, that are made available for transfusion). We refer to this last
model as the Weighted Total Risk Minimization Problem (WT-RMP).

Weighted Total Risk Minimization Problem (WT-RMP):

WT -Risk∗ ≡ MinimizeS⊆Ω WT -Risk(S) =
∑

−→
λ∈S (

−→
Λ)\−→0

w(
−→
λ ) Pr(

−→
Λ =

−→
λ , T − (S)) (5.5)

subject to (5.2) and (5.3).

Example 1 below demonstrates the differences among the three objective functions.

Example 1 Suppose N = 120 units of blood, of which 10 units are infected with
either Disease 1 or Disease 2, are undergoing screening (see Figure 5.1). Suppose
that the societal costs for these two diseases are $10,000 and $1,000, respectively.
Among the 110 units of the disease-free blood, suppose that 98 units have passed the
screening tests; and among the 10 units of the infected blood, two have been falsely
classified as disease-free blood: one unit infected by Disease 1, and the other infected
by Disease 2. In this example, the objective function values for RMP, W-RMP,
and WT-RMP can be respectively calculated as:

Risk = 2
98+2

= 2%, W -Risk =
(

1
100
× 10, 000

)
+
(

1
100
× 1, 000

)
= $110, and WT -Risk =

( 1
120
×10, 000)+( 1

120
×1, 000) = $11,000

120
= $91.67. Also, Waste = 12

110
in this example.

In the weighted risk setting, W -Risk would serve as a more appropriate objective
function than WT -Risk due to three main reasons: (i) W -Risk is a direct extension
of Risk in the weighted risk setting (see (5.1) and (5.4)); (ii) the Waste level corre-
sponding to the optimal solution obtained from W-RMP would be relatively lower
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Figure 5.1: The Decision Tree Corresponding to Example 1 (with Numbers in Boxes)

than that of WT-RMP, where discarding more blood would always be preferred;
and (iii) W -Risk is more selective on the tests, as it takes into consideration not only
the test’s performance, but also the weight of its corresponding TTI. In other words,
in order to reduce W -Risk, the test needs to perform well and its corresponding
TTI needs to have a considerable weight, see the discussion on Example 5. How-
ever, although the test sets generated by W-RMP and WT-RMP could differ on
occasions (see Example 5), we observe, in our numerical studies, that W-RMP and
WT-RMP generate similar test sets in most cases; see Section 5.4.3. Consequently,
WT -Risk provides a good approximation for W -Risk, as we elaborate subsequently.

Assumptions: We make two assumptions to analyze RMP, W-RMP, and WT-
RMP. Both assumptions are common in the medical literature (see, for instance,
Pepe 2004)3.

(A1) The outcome of test j for disease d(j) depends only on the prevalence of disease
d(j) in the blood unit, and not on the prevalence of the other diseases in the
disease set, that is, for j ∈ Ω,

Pr(T
d(j)
j x |

−→
Λ ) = Pr(T

d(j)
j x | Λd(j)), for x ∈ {+,−}.

3For detailed discussions on the validity and impact of assumptions, see Section 4.2.1 in Chap-
ter 4.
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(A2) Test outcomes are conditionally and jointly independent given the prevalence
vector, that is, for any test j1 ∈ Ω and S ′ ⊆ Ω| {j1},

Pr(T
d(j1)
j1

x |
−→
Λ , T

d(j)
j y, ∀j ∈ S ′) = Pr(T

d(j1)
j1 x |

−→
Λ ), for x, y ∈ {+,−}.

5.2.2 The Decision Rule

In this section, we consider the BP rule for the weighted risk objectives, and show,
through counter-examples, that it need not be the optimal decision rule in the
weighted risk setting. Throughout this section, we let T − (D(S)) denote event
T − (S) under decision rule D. We also represent the relevant metrics in terms of
two parameters, D and S.

Example 2 Consider two diseases, each with a corresponding test (Test i for Disease
i, i = 1, 2) in the selected test set. Suppose that Q2 < 1. (Recall that we assume,
without loss of generality, that Qj ≤ 1, j ∈ Ω. For all existing FDA-approved tests,
this, in fact, is satisfied as an inequality, that is, Qj < 1, j ∈ Ω.)

In the following, we show that when p−→
Λ
(1, 0) > 0, that is, when the mono-prevalence

rate of Disease 1 is nonzero in a particular population, and when the diseases have
different weights, then a decision rule, D′, which classifies the blood unit as infection-
free only if Test 1 result is negative and Test 2 result is positive, dominates the BP
rule. That is, under decision rule D′, T −(D′ ({1, 2})) = T 1

1 −
∩
T 2
2+, whereas under

the BP, T − (BP ({1, 2})) = T 1
1 −

∩
T 2
2−.

For this purpose, we first consider the disease vector
−→
λ = (1, 0) and show that

Pr
{
A1+, A2 − |T 1−, T 2−

}
> Pr

{
A1+, A2 − |T 1−, T 2+

}
. (5.6)

This follows because, by Bayes’ rule, the inequality in (5.6) can be equivalently written
as:

Pr {A1+, A2−}Pr {T 1−, T 2 − |A1+, A2−}
Pr {T 1−, T 2−}

>
Pr {A1+, A2−}Pr {T 1−, T 2 + |A1+, A2−}

Pr {T 1−, T 2+}

⇔ Pr {T 2 − |A2−}
Pr {T 1−, T 2−}

>
Pr {T 2 + |A2−}
Pr {T 1−, T 2+}

⇔ Pr {T 1−, T 2−}
Pr {T 2 − |A2−}

<
Pr {T 1−, T 2+}
Pr {T 2 + |A2−}

⇔

∑
−→
λ∈S

(−→
Λ
)Pr

{−→
Λ =

−→
λ
}
Pr
{
T 1−, T 2 − |

−→
Λ =

−→
λ
}

Pr {T 2 − |A2−}
<

∑
−→
λ∈S

(−→
Λ
)Pr

{−→
Λ =

−→
λ
}
Pr
{
T 1−, T 2 + |

−→
Λ =

−→
λ
}

Pr {T 2 + |A2−}
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⇔
∑

−→
λ∈S

(−→
Λ
)Pr

{−→
Λ =

−→
λ
} Pr

{
T 1 − |

−→
Λ =

−→
λ
}
Pr
{
T 2 − |

−→
Λ =

−→
λ
}

Pr {T 2 − |A2−}
<

∑
−→
λ∈S

(−→
Λ
)Pr

{−→
Λ =

−→
λ
} Pr

{
T 1 − |

−→
Λ =

−→
λ
}
Pr
{
T 2 + |

−→
Λ =

−→
λ
}

Pr {T 2 + |A2−}

⇔
∑

{−→
λ :λ2=0

}Pr
{−→
Λ =

−→
λ
}
Pr
{
T 1 − |−→Λ =

−→
λ
}
+

∑
{−→
λ :λ2=1

}Pr
{−→
Λ =

−→
λ
}
Pr
{
T 1 − |−→Λ =

−→
λ
}Pr

{
T 2 − |A2+

}
Pr {T 2 − |A2−}

<
∑

{−→
λ :λ2=0

}Pr
{−→
Λ =

−→
λ
}
Pr
{
T 1 − |

−→
Λ =

−→
λ
}
+

∑
{−→
λ :λ2=1

}Pr
{−→
Λ =

−→
λ
}
Pr
{
T 1 − |

−→
Λ =

−→
λ
}Pr

{
T 2 + |A2+

}
Pr {T 2 + |A2−}

.

This inequality holds if

Pr {T 2 − |A2+}
Pr {T 2 − |A2−}

< 1 <
Pr {T 2 + |A2+}
Pr {T 2 + |A2−}

⇔ Pr
{
T 2 − |A2+

}
< Pr

{
T 2 − |A2−

}
⇔ Q2 < 1.

Thus, decision rule D′ dominates the BP rule for disease vector
−→
λ = (1, 0). While the

BP rule serves as a better decision rule for disease vectors
−→
λ = (0, 1) and

−→
λ = (1, 1),

that is,

Pr
{
A1−, A2 + |T 1−, T 2−

}
< Pr

{
A1−, A2 + |T 1−, T 2+

}
and

Pr
{
A1+, A2 + |T 1−, T 2−

}
< Pr

{
A1+, A2 + |T 1−, T 2+

}
,

it follows that for a sufficiently large weight for the
−→
λ = (1, 0) vector, decision rule

D′ dominates the BP rule for the W -Risk ({1, 2}) measure.

Recall that the BP rule is optimal for RMP, which is a special case of W-RMP,
when the weights for all disease combination vectors are equal. Observe that Exam-
ple 2 does not contradict with this result, as it no longer serves as a counter-example
when the disease weights are equal.

Thus, Example 2 demonstrates the sub-optimality of the BP rule for W -Risk, but

only when the weight of one of the mono-prevalence vectors,
−→
λ = (1, 0), is sufficiently

large. While our analysis of W-RMP and WT-RMP does not require any restric-

tions on the weights, w
(−→
λ
)
,
−→
λ ∈ S

(−→
Λ
)
, in reality the disease vector weights

will have certain relationships. In particular, the weight for any disease vector
−→
λ

should be greater than the weight for any vector
−→
λ ′ that represents a subset of the
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diseases in
−→
λ . This implies, for the two-disease setting considered in Example 2, that

w(1, 1) > max {w(1, 0), w(0, 1)}; the weight corresponding to a co-infection vector
is larger than the weights of each of the mono-infection vectors. Then, motivated
by Example 2, the next question is whether one can construct a realistic numerical

example in which the weight of
−→
λ = (1, 0) is sufficiently large to make the BP rule

sub-optimal, while still being in the acceptable range (w(1, 0) < w(1, 1)). Example 3
shows that this is indeed possible.

Example 3 Suppose there are two diseases, Diseases 1 and 2, that are recommended
for screening in a particular region. Diseases 1 and 2 have respective mono-prevalence
rates of 1% and 14%, and a co-infection rate of 0.01%, see Figure 5.2. Disease 1 has
a weight of $10, 000 (= w(1, 0)), while Disease 2 has a weight of $20 (= w(0, 1)). Sup-

pose that the weight corresponding to the co-infection vector
−→
λ = (1, 1) is additive,

that is, w(1, 1) = w(1, 0) +w(0, 1) = $10, 020. Consider two tests, Test 1 [specificity
=Pr (T 1

1 − |A1−) =0.8, sensitivity=Pr (T 1
1 + |A1+)=0.8] for Disease 1, and Test 2

[specificity=Pr (T 2
2 − |A2−)=0.99, sensitivity=Pr (T 2

2 + |A2+)=0.99] for Disease 2.

Consider two decision rules: BP and D′, where the latter classifies the blood unit as

infection-free only if T1− and T2+ (see Example 2). Then, Pr
(−→
λ , T − (D(S))

)
can

be calculated for the four possible
−→
λ vectors under both the BP rule and D′ rule. In

what follows, we detail the calculations for the
−→
λ = (0, 0) vector; other calculations

are similar, see Table 5.1 for all results.

Pr
(
A1−, A2−, T − (BP ({1, 2}))

)
= Pr

(
A1−, A2−, T 1

1−, T 2
2−
)

= Pr
(
A1−, A2−

)
Pr
(
T 1
1 − |A1−

)
Pr
(
T 2
2 − |A2−

)
(by (A1))

= 0.8499× 0.8× 0.99 = 0.6731,

Pr
(
A1−, A2−, T −

(
D′ ({1, 2})

))
= Pr

(
A1−, A2−, T 1

1−, T 2
2+
)

= Pr
(
A1−, A2−

)
Pr
(
T 1
1 − |A1−

)
Pr
(
T 2
2 + |A2−

)
(by (A1))

= 0.8499× 0.8× 0.01 = 0.0068.
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Figure 5.2: A Venn Diagram Representation of the Prevalence Rates in Example 3

Then, from Table 5.1,

Pr (T − (BP ({1, 2}))) =
∑

−→
λ∈S

(−→
Λ
)Pr

(−→
λ , T 1

1−, T 2
2−
)
= 0.6762,

Risk (BP ({1, 2})) =
∑

−→
λ∈S

(−→
Λ
)
\−→0

Pr
(−→
λ |T 1

1−, T 2
2−
)
=

0.0011 + 0.0020 + 2× 10−7

0.6762
= 0.0046,

W -Risk (BP ({1, 2})) =
∑

−→
λ∈S

(−→
Λ
)
\−→0

w(
−→
λ ) Pr

(−→
Λ =

−→
λ |T 1

1−, T 2
2−
)

=

(
$20×

0.0011

0.6762

)
+

(
$10, 000×

0.0020

0.6762

)
+

(
$10, 020×

2× 10−7

0.6762

)
= $29.3165.

Pr
(
T −

(
D′ ({1, 2})

))
=

∑
−→
λ∈S

(−→
Λ
)Pr

(−→
λ , T 1

1−, T 2
2+
)
= 0.1177,

Risk
(
D′ ({1, 2})

)
=

∑
−→
λ∈S

(−→
Λ
)
\−→0

Pr
(−→
λ |T 1

1−, T 2
2+
)
=

0.1109 + 2× 10−5 + 1.98× 10−5

0.1177
= 0.9422,

W -Risk
(
D′ ({1, 2})

)
=

∑
−→
λ∈S

(−→
Λ
)
\−→0

w(
−→
λ ) Pr

(−→
Λ =

−→
λ |T 1

1−, T 2
2+
)

=

(
$20×

0.1109

0.1177

)
+

(
$10, 000×

2× 10−5

0.1177

)
+

(
$10, 020×

1.98× 10−5

0.1177

)
= $22.2224 < $29.3165.

Thus, the D′ rule attains a lower W-Risk, but a significantly higher Risk and Waste,
than the BP rule.

As discussed above, the sub-optimality of the BP rule for the W -Risk objective fol-
lows because switching from the BP rule to D′ increases Pr (A1−, A2+, T − (D(S)))
from 0.0011 to 0.1109 (see Table 5.1). While this also reduces both Pr (A1+, A2−, T − (D(S)))
and Pr (A1+, A2+, T − (D(S))), w(1, 0) is much higher than w(0, 1), and hence the
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Table 5.1: Risk and W -Risk under the Different Decision Rules of Example 3

−→
λ w

(−→
λ
)
($) Pr

(−→
λ , T − (D(S))

)
BP decision rule D′ decision rule

(T − (BP ({1, 2})) = T 1
1−, T 2

2−) (T − (D′ ({1, 2})) = T 1
1−, T 2

2+)

(0,0) 0 Pr
(
A1−, A2−, T − (D(S))

)
0.8499× 0.8× 0.99 = 0.6731 0.8499× 0.8× 0.01 = 0.0068

(0,1) 20 Pr
(
A1−, A2+, T − (D(S))

)
0.14× 0.8× 0.01 = 0.0011 0.14× 0.8× 0.99 = 0.1109

(1,0) 10,000 Pr
(
A1+, A2−, T − (D(S))

)
0.0020 2× 10−5

(1,1) 10,020 Pr
(
A1+, A2+, T − (D(S))

)
2× 10−7 1.98× 10−5

Pr (T − (D(S))) 0.6762 0.1177
Risk(D(S)) 0.0046 0.9422
W -Risk(D(S)) 29.3165 22.2224
Waste(D(S)) 1− 0.8× 0.99 = 0.208 1− 0.8× 0.01 = 0.992

result follows. However, observe that D′ is quite a wasteful decision rule, with around
99% of infection-free blood incorrectly discarded, and produces a high level of Risk
(94.22%) in this example.

Remark 4 For W-RMP:

(i) The optimal decision rule depends on the weights, w(
−→
λ ). Consequently, there

does not exist a “static” decision rule that is optimal for the W-Risk objective.
Rather, the optimal decision rule depends on problem parameters (as illustrated
in Examples 2 and 3).

(ii) Observe, from Example 3, that a necessary condition for the sub-optimality
of the BP rule for W-Risk is a positive weight differential between the mono-
prevalence disease vectors, that is, w(1, 0) ̸= w(0, 1). In fact, the BP rule is
optimal for the W-Risk objective for the special case of the two-disease setting
with w(1, 0) = w(0, 1), i.e., the diseases have equal weights.

(iii) However, when the number of diseases is larger than 2 (n > 2), the optimality
of the BP rule for W -Risk in the equal-weight setting no longer holds.4

The following example illustrates that the BP decision rule need not be optimal for
WT-RMP either.

4One can easily construct such a counter-example by assigning a sufficiently large weight to−→
λ = {1, 0, 0}, as a relationship similar to that in Example 2 follows in the three-disease setting,
that is, Pr

{
A1+, A2−, A3 − |T 1−, T 2−, T 3−

}
> Pr

{
A1+, A2−, A3 − |T 1−, T 2+, T 3+

}
.
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Example 4 For any test set S ⊆ Ω, consider the objective of minimizing the weighted
total risk over all possible decision rules, D(S), with the waste constraint (5.12) re-
laxed. Then, for any decision rule D(S) ∈ D(S), it follows that∑

−→
λ ∈S (

−→
Λ)\−→0

w(
−→
λ ) Pr(

−→
Λ =

−→
λ , ∅) ≤

∑
−→
λ ∈S (

−→
Λ)\−→0

w(
−→
λ ) Pr

(−→
Λ =

−→
λ , T − (D(S))

)
.

Thus, the decision rule that minimizes the weighted total risk (in the absence of a
waste constraint) is to classify all blood as infected.

While the inclusion of a waste constraint is likely to change this (unreasonable)
decision rule, this example still demonstrates that the BP rule is not necessarily
optimal for WT-RMP.

Nevertheless, the BP rule is the one used by the US Blood Centers due to their
primary focus on safety; and incorporating the decision rule as a decision variable
further complicates the optimization problem. Consequently, in this chapter, we
adopt the BP decision rule throughout. Overall, the decision-maker will classify the
blood unit as infection-free (hence make it available for use) only if the results of the
tests and the BP rule indicate that the blood unit is free of all diseases tested for;
otherwise, the blood unit will be discarded.

In the next section, we study how the different blood screening metrics relate to each
other.

5.3 Some Properties of Risk, Waste, andWeighted

Risks

Since the main focus in blood screening is on the three metrics, Risk, Waste, and
the weighted risks, we first link the Risk and Waste metrics to the measures of
accuracy used in the medical literature for diagnostic tests with binary outcomes.
These are referred to as “classification probabilities” and “predictive values” in the
medical literature, see Table 5.2.

Classification probabilities and predictive values are valuable in different contexts.
Classification probabilities, namely the false positive fraction (FPF≡ Pr {T + |A−})
and true positive fraction (TPF≡ Pr {T + |A+}), are useful in evaluating the diag-
nostic accuracy of a test, and are commonly used in medical and biomedical research
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(e.g., Beutel, 2000; Walter and Irwig, 1988) as well as in engineering applications and
statistical hypothesis testing (e.g., Ozekici and Pliska, 1991; Raz and Kaspi, 1991).5

On the other hand, predictive values are valuable in clinical contexts, where the main
focus is on how well the test result predicts the true disease status. Observe that,
unlike the classification probabilities, the predictive values depend not only on the
test performance, but also on the prevalence of the disease. As such, they cannot be
used to describe the inherent accuracy of the test (which is where the classification
probabilities are helpful), but they reflect the confidence on the test results. Obvi-
ously, there is a direct relationship between the classification probabilities and the
predictive values.

Since in blood screening there are multiple TTIs that need to be detected via a set
of tests, we first extend the classification probabilities and predictive values to the
multi-disease multi-test setting. Considering the BP decision rule and recalling that
infection-free blood refers to blood that is free of all TTIs, while infected blood refers
to blood that is infected by at least one TTI, the metrics in Table 5.2 follow. Thus,
through focus on both Risk and Waste, the decision-maker in the blood screening
setting is concerned with both predictive metrics and classification metrics.

Table 5.2: Measures of Accuracy for Binary Diagnostic Tests

Metrics Single-disease single-test Multi-disease multi-test setting
setting (Pepe, 2004) under the BP rule

(I) Classification Probabilities

• False Positive Fraction (FPF) Pr {T + |A−} Pr

{ ∪
j∈S

T
d(j)
j + |

∩
i∈Ψ

Ai−
}

≡ Waste

• True Positive Fraction (TPF) Pr {T + |A+} Pr

{ ∪
j∈S

T
d(j)
j + |

∪
i∈Ψ

Ai+

}
(II) Predictive Values

• Positive Predictive Value (PPV)† Pr {A+ |T+} Pr

{ ∪
i∈Ψ

Ai + |
∪

j∈S
T

d(j)
j +

}

• Negative Predictive Value (NPV) Pr {A− |T−} Pr

{ ∩
i∈Ψ

Ai − |
∩

j∈S
T

d(j)
j −

}
≡ 1-Risk

†For completeness, we define PPV as 0 when S = ∅.

5For example, in engineering applications, the terms TPF and FPF are referred to as the “hit
rate” and “false alarm rate,” respectively, while in the context of statistical hypothesis testing, they
are referred to as “statistical power” and “significance level,” respectively, see Pepe (2004), Chapter
2, for detailed discussion. While it is also common, especially in engineering and computer science
applications, to consider only the overall probability of misclassification, given by Pr(A+)(1 −
TPF )+Pr(A−)FPF , this measure is not considered to be an adequate summary of the diagnostic
accuracy of the test, as both TPF and FPF need to be known to assess its diagnostic accuracy.
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In what follows, we first provide equivalent representations of these metrics in the
multi-disease multi-test setting, in terms of test specificity and sensitivity parameters,
which are known by the decision-maker. We will use these expressions subsequently
when we reformulate and analyze the test selection problem.

Proposition 5 For a given test set S ⊆ Ω, the Risk, Weighted Total Risk, and
Waste metrics in the multi-disease multi-test setting have the following equivalent
representations under the Believe the Positive rule:

Risk(S) = 1−
1

1 + 1

Pr

( ∩
i∈Ψ

Ai−
) ∑

−→
λ∈S

(−→
Λ
)
\−→0

{
Pr
(−→
Λ =

−→
λ
) ∏

i∈Ψ:λi=1

∏
j∈Si

Qj

} , (5.7)

Waste(S) = 1−
∏
j∈S

Pr
(
T

d(j)
j − |Ad(j)−

)
, (5.8)

WT -Risk (S) =
∑

−→
λ∈S

(−→
Λ
)
\−→0

w
(−→
Λ
)
Pr
(−→
Λ =

−→
λ
) ∏

j∈S

Pr
(
T

d(j)
j − |

−→
Λ =

−→
λ
) , (5.9)

where Pr
(
T

d(j)
j − |Λ⃗ = λ⃗

)
=

 Pr
(
T

d(j)
j − |Ad(j)−

)
, if Λd(j) = 0

Pr
(
T

d(j)
j − |Ad(j)+

)
, if Λd(j) = 1

.

Proof. For any S ⊆ Ω, we have:

Risk(S) = Pr

∪
i∈Ψ

Ai + |
∩
j∈S

T
d(j)
j −



= 1−
Pr

( ∩
i∈Ψ

Ai−,
∩

j∈S
T

d(j)
j −

)

Pr

( ∩
i∈Ψ

Ai−,
∩

j∈S
T

d(j)
j −

)
+ Pr

( ∪
i∈Ψ

Ai+,
∩

j∈S
T

d(j)
j −

)

= 1−
1

1 +

∑
−→
λ∈S(

−→
Λ)\−→0

Pr
(−→
Λ=

−→
λ
)
Pr

( ∩
j∈S

T
d(j)
j −|−→Λ=

−→
λ

)

Pr

( ∩
i∈Ψ

Ai−
)

Pr

( ∩
j∈S

T
d(j)
j −|

∩
i∈Ψ

Ai−
)

.

Then, it follows, by definition of Qj and Assumption (A1), that:

Risk(S) = 1−
1

1 + 1

Pr

( ∩
i∈Ψ

Ai−
) ∑

−→
λ∈S

(−→
Λ
)
\−→0

{
Pr
(−→
Λ =

−→
λ
) ∏

i∈Ψ:λi=1

∏
j∈Si

Qj

} .
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For the second part, we have:

Waste(S) = Pr

∪
j∈S

T
d(j)
j + |

∩
i∈Ψ

Ai−

 = 1− Pr

∩
j∈S

T
d(j)
j − |

∩
i∈Ψ

Ai−


= 1−

∏
j∈S

Pr
(
T

d(j)
j − |Ad(j)−

)
(by (A1)).

Finally, for the last part, from (5.5), we can write:

WT -Risk (S) =
∑

−→
λ∈S

(−→
Λ
)
\−→0

w
(−→
Λ
)
Pr

−→
Λ =

−→
λ ,
∩
j∈S

T
d(j)
j −



=
∑

−→
λ∈S

(−→
Λ
)
\−→0

w
(−→
Λ
)
Pr
(−→
Λ =

−→
λ
)
Pr

∩
j∈S

T
d(j)
j − |

−→
Λ =

−→
λ


=

∑
−→
λ∈S

(−→
Λ
)
\−→0

w
(−→
Λ
)
Pr
(−→
Λ =

−→
λ
) ∏

j∈S

Pr
(
T

d(j)
j − |

−→
Λ =

−→
λ
)

(by (A2)).

This completes the proof.

We say that a metric, Γ, is monotone decreasing (increasing)6 in the test set if for
any S ⊆ S ′ ⊆ Ω, we have Γ(S) ≥ Γ(S ′) (Γ(S) ≤ Γ(S ′)).

Corollary 2 Risk and WT -Risk are monotone decreasing, while Waste is mono-
tone increasing in the test set.

Proof. The results directly follow from the expressions in Proposition 5.

On the other hand, the weighted risk, W -Risk, is not monotone in the test set, as
the following counter-example demonstrates.

Example 5 Consider again the problem instance in Example 3. Under the BP rule,

we have that W -Risk({1}) =
(
$20× 0.1120

0.7939

)
+
(
$10, 000× 0.0020

0.7939

)
+
(
$10, 020× 2×10−5

0.7939

)
=

$28.2646 (see Table 5.3), while W -Risk ({1, 2}) = $29.3165 from Example 3. Thus,
W -Risk({1, 2}) > W -Risk({1}).

This example also serves as an instance where the test sets generated by W-RMP
and WT-RMP differ: WT -Risk is reduced by adding Test 2.

6Throughout, we use the terms “decreasing” and “increasing” in the weak sense, to correspond
to “nonincreasing” and “nondecreasing,” respectively.
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Table 5.3: W -Risk for the Two Test Sets under the BP rule in Example 3

−→
λ w(

−→
λ )($) Pr

(−→
λ , T − (S)

)
Test Set = {1} Test Set = {1, 2}

(0,0) 0 Pr
(
A1−, A2−, T − (S)

)
0.8499× 0.8 = 0.6799 0.8499× 0.8× 0.99 = 0.6731

(0,1) 20 Pr
(
A1−, A2+, T − (S)

)
0.14× 0.8 = 0.1120 0.14× 0.8× 0.01 = 0.0011

(1,0) 10,000 Pr
(
A1+, A2−, T − (S)

)
0.0020 0.0020

(1,1) 10,020 Pr
(
A1+, A2+, T − (S)

)
2× 10−5 2× 10−7

Pr (T − (S)) 0.7939 0.6762
Risk(S) 0.1436 0.0046
WT -Risk(S) 22.4404 19.8244
W -Risk(S) 28.2646 29.3165
Waste(S) 1− 0.8 = 0.200 1− 0.8× 0.99 = 0.208

This counter-intuitive result holds because expanding the current test set (with Test
1 only) to include a second good test (Test 2) for the highly prevalent Disease 2 will
lower Pr (A1−, A2+, T − (S)), while having little impact on Pr (A1+, A2−, T − (S)),
see Table 5.3. Thus, the proportion of blood units classified as infection-free, Pr (T − (S)),
significantly reduces with the inclusion of Test 2 in the test set (from 0.7939 to
0.6762). Hence, while the blood units having Disease 2 are largely eliminated by
Test 2, the term Pr (A1+, A2 − |T − (S)) still increases, because Pr (T − (S)) is re-
duced from 0.7939 to 0.6732. Then, the counter-example follows because the term
Pr (A1+, A2 − |T − (S)) has a much higher weight than Pr (A1−, A2 + |T − (S)) in
the expression for W -Risk.

This example illustrates one of the major differences between the two objective func-
tions, WT -Risk and W -Risk, in the weighted risk setting. Recall that WT -Risk is
monotone decreasing in the test set (Corollary 2), that is, as long as a test’s perfor-
mance is good (Qj ≤ 1, j ∈ Ω, which is without loss of generality in this setting),
adding it to the test set reduces WT -Risk (but this decision is constrained by budget
and waste constraints). As opposed to this, a test’s good performance is not sufficient
to reduce W -Risk. In addition to the test performance, one needs to consider the
weight (or severity) of the TTI for which the test is administered. Thus, W-RMP is
more selective than WT-RMP. We study the relationship between W-RMP and
WT-RMP numerically in Section 5.4.3.

Next, we study the relationship between Risk and Waste, and expand this study to
the weighted risks in Section 5.4.

Example 6 Consider the single-disease single-test setting. In this setting, Waste (=
1−specificity) depends only on the specificity of the test, while the Risk minimizing
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test set only depends on the ratio, Q = Pr(T−|A+)
Pr(T−|A−)

= 1−sensitivity
specificity

, see Proposition 5.

Let Pr{A−}
Pr{A+} = 3, which does not impact the trend of change in this example. In the

following four scenarios, we vary the test specificity and sensitivity parameters in
steps of 0.05.

Scenario 1. Specificity, Pr {T − |A−}, decreases from 0.95 to 0.50, while sensitiv-
ity, Pr {T + |A+}, increases from 0.50 to 0.95.

Scenario 2. Specificity, Pr {T − |A−}, decreases from 0.95 to 0.50, while sensitiv-
ity, Pr {T + |A+}, remains constant at 0.50.

Scenario 3. Specificity, Pr {T − |A−}, decreases from 0.95 to 0.50, while sensitiv-
ity, Pr {T + |A+}, decreases from 0.95 to 0.50.

Scenario 4. Specificity, Pr {T − |A−}, decreases from 0.95 to 0.50, while Q =
Pr(T−|A+)
Pr(T−|A−)

remains constant at 10
19
.

Figure 5.3 plots the values of Risk and Waste corresponding to each scenario. In
the figure, the x-axis represents the different instances in each scenario obtained by
varying the test sensitivity and specificity parameters, as indicated above. These
results highlight the following:

(i) A reduction in risk does not necessarily come at the expense of an increase in
waste (see Scenarios 2 and 3 in Figure 5.3).

(ii) The same level of risk may be attained by multiple test sets, each of which
leading to quite different levels of waste (e.g., see Scenario 4 in Figure 5.3).

Thus, it is essential to consider both of these metrics in the formulation, as we do in
this work, since both are important in the context of blood screening.

In the following section, we propose effective algorithms for the test selection problem.
These algorithms allow us to study the relationship between Risk, weighted risks,
and Waste in the general setting.
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Figure 5.3: The Risk and Waste Metrics in Example 6 (Single-Disease Single-Test
Setting)

5.4 Solution Methodologies, Lower Bounds, and

Numerical Studies

This section is organized as follows. In Sections 5.4.1 and 5.4.2, we provide reformu-
lations of RMP and WT-RMP, which lead to effective solution methodologies and
lower bounds. Then, in Section 5.4.3, we present and discuss our numerical study.

5.4.1 Problem Reformulations

Proposition 5, together with Proposition 1 in Chapter 4, allows us to reformulate
RMP as a 0-1 polynomial programming problem. In addition, we are able to trans-
formWT-RMP into a 0-1 polynomial programming problem, as the following result
indicates.

Proposition 6 (a) RMP is equivalent to the following 0-1 polynomial programming
problem:

RMP: Minimizexj ,j∈Ω

∑
−→
λ∈S

(−→
Λ
)
\−→0

p−→
Λ

(−→
λ
) ∏

i∈Ψ:λi=1

∏
j∈Ωi

{
1−Qjxj

} (5.10)
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subject to
∑
j∈Ω

cjxj ≤ B (5.11)

∑
j∈Ω

ln
(
Pr
(
T

d(j)
j − |Ad(j)−

))
xj ≥ ln (1− α) (5.12)

xj binary, j ∈ Ω. (5.13)

Given an optimal solution to (5.10)-(5.13), denoted by {x∗
j , j ∈ Ω}, let S∗ = {j :

x∗
j = 1, j ∈ Ω}. Then, the optimal risk is given by Risk∗ = Pr

(∪
i∈Ψ

Ai+

∣∣∣∣∣ ∩j∈S∗
T

d(j)
j −

)
.

(b) WT-RMP is equivalent to the following 0-1 polynomial programming problem:

Minimizexj ,j∈Ω

∑
−→
λ∈S

(−→
Λ
)
\−→0

w
(−→
λ
)
Pr
(−→
Λ =

−→
λ
)∏

j∈Ω

(
1− xj Pr

(
T

d(j)
j + |−→Λ =

−→
λ
)) (5.14)

subject to (5.11), (5.12), (5.13),

where Pr
(
T

d(j)
j + |Λ⃗ = λ⃗

)
=

 Pr
(
T

d(j)
j + |Ad(j)−

)
, if Λd(j) = 0

Pr
(
T

d(j)
j + |Ad(j)+

)
, if Λd(j) = 1

.

Given an optimal solution to (5.14),(5.11)-(5.13), denoted by
{
x∗∗
j , j ∈ Ω

}
, let S∗∗ ={

j : x∗∗
j = 1, j ∈ Ω

}
. Then, the optimal weighted total risk is given by WT -Risk∗ =

Pr

( ∪
j∈S∗∗

T
d(j)
j + |

∪
i∈Ψ

Ai+

)
.

(c) In the single-disease multi-test setting, both RMP and WT-RMP reduce to the
two-dimensional linear knapsack problem, which is extensively studied in the litera-
ture (e.g., Lodi et al., 2002; Caprara and Monaci, 2004).

Proof. The equivalence of the objective function in (5.10) to (5.1) is shown in Chap-
ter 4, Proposition 1. Then it suffices to show that the waste constraint in (5.3) can
be linearized as in (5.12). Using Eq. (5.8) in Proposition 5, we can write:

1−
∏
j∈S

Pr
(
T

d(j)
j − |Ad(j)−

)
≤ α

⇔
∑
j∈S

ln Pr
(
T

d(j)
j − |Ad(j)−

)
≥ ln (1− α)⇔

∑
j∈Ω

ln
(
Pr
(
T

d(j)
j − |Ad(j)−

))
xj ≥ ln (1− α) .

Part (b) follows as (5.9) can be equivalently written as (5.14). Then, part (c) follows
as a special case of parts (a) and (b).
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On the other hand, because the W -Risk objective function cannot be expressed
in product form (which was the case for Risk and WT -Risk, see Proposition 5),
W-RMP cannot be formulated as a 0-1 polynomial programming, and remains a
difficult-to-solve problem. Consequently, in Section 5.4.3, we study the effectiveness
of its approximation as WT-RMP.

An interesting question, both from a theoretical and a public policy perspective,
is whether allowing for “fractional” policies (with multiple test sets, each applied
to a certain fraction of the blood to be tested) (i) are easy to obtain through LP-
relaxations of the formulations in Proposition 6, and (ii) provide benefits over the
current “same-for-all” policy. Chapter 4 addresses the first question and shows that
the LP-relaxation of RMP is not valid, as the objective function in (5.10), with
fractional xj values, no longer represents the Risk for a fractional policy. (A similar
result applies to WT-RMP.) Hence, a study into fractional policies remains an im-
portant future research direction.

5.4.2 Solution Methodologies and Lower Bounds

In Chapter 4, we investigate the effectiveness of various approaches for linearizing
RMP (with only the budget constraint included). For this purpose, we consider a
special case of RMP under the mono-infection setting, which we refer to as RMP0,
where the possibility of co-infections in the blood unit is negligible, that is, the
probability of the random blood unit being infected by more than one disease in
set Ψ is considered zero for all disease combinations. Mathematically speaking,

we assume Pr(
−→
Λ =

−→
λ ) = 0, for

−→
λ ∈ S (

−→
Λ ) :

∑
i∈Ψ

λi > 1. While this mono-

infection setting deserves analysis in its own right (as the donor selection procedures
in developed countries make the co-infection possibility in the donor population
unlikely), this analysis also motivates the development of near-optimal algorithms
for the general case with co-infections. We use the superscript 0 to denote the mono-
infection setting.

In the following, we first briefly outline the reformulation and solution approach pro-
posed in Chapter 4 for RMP with the budget constraint only, because a variation of
that approach proves to be quite effective for the models considered in this chapter,
namely RMP and WT-RMP, under both budget and waste constraints. Specif-
ically, the numerical studies in Chapter 4 indicate that for RMP0, a testset-based
(TS-based) formulation consistently dominates, in terms of computational times, a
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standard linearization approach, where the latter involves introducing a binary vari-
able for each polynomial term (i.e., terms involving the product of binary variables,
xj, j ∈ Ω) along with a set of constraints (Glover and Woolsey, 1974). In particular,
in the TS-based reformulation approach, we reformulate RMP0 and WT-RMP0

by replacing the binary test variables, xj, j ∈ Ω, in the original formulation (in
Proposition 6) with binary variables, xi

q1,q2,··· ,qk , ∀{q1, q2, · · · , qk} ⊆ Ωi, i ∈ Ψ (we let
xi
∅ and xi

Ωi
respectively denote the binary variables corresponding to the empty set

and set Ωi), and add a set of constraints that ensure that xi
q1,q2,··· ,qk = 1 if and only

if {xq1 = 1, · · · , xqk = 1, xp = 0,∀p ∈ Ωi \ {q1, q2, · · · , qk}} (see the Appendix). Our
extensive numerical study for RMP0 and WT-RMP0 indicates that the dominance
of the TS-based formulation over the standard linearization approach continues to
hold in our setting.

While the TS-based formulation provides an optimal solution for the mono-infection
setting, namely for RMP0 and WT-RMP0, it is not necessarily optimal for the
general case with co-infections. Therefore, we use the Co-infection Reallocation
(CR) Heuristic, developed and shown to be very effective in Chapter 4 for RMP
(with only the budget constraint), to solve both RMP and WT-RMP (with both
budget and waste constraints). The CR Heuristic is based on approximating the
co-infection setting as a mono-infection setting and solving it optimally as a mono-
infection problem (see Chapter 4 for details). In particular, we use the TS-based
reformulation to solve RMP0 and WT-RMP0 to optimality and embed the TS-
based formulation into the CR Heuristic for RMP and WT-RMP.

In Chapter 4, we show that the optimal objective function value of RMP0 (in the
mono-infection setting) provides an effective lower bound for the optimal objective
function value of RMP (in the general co-infection setting), that is, Risk∗ ≥ Risk∗0.
The following proposition gives a similar lower bound for WT-RMP.

Proposition 7 In WT-RMP, set Pr
(−→
Λ =

−→
λ
)

= 0,∀
−→
λ ∈ S

(−→
Λ
)

:
∑
i∈Ψ

λi >

1, and solve the resulting instance of the mono-infection problem WT-RMP0 to
optimality, and denote its optimal objective function value by WT -Risk∗0. Then,
WT -Risk∗0 ≤ WT -Risk∗.

Proof. Let S 1
(−→
Λ
)

denote the subset of the sample space of the random vector

−→
Λ having only a single infection, that is, S 1

(−→
Λ
)
=

{
−→
Λ ∈ S

(−→
Λ
)
:
∑
i∈Ψ

λi = 1

}
.
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From Eq (5.14) in Proposition 6, the objective function of WT-RMP can be written
as:

∑
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)
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)) , (5.15)

where (5.15) is the objective function of WT-RMP0. Hence, the result follows.

5.4.3 A Numerical Study - The Sub-Saharan Africa and
Ghana Cases

Our objectives in this section are three-fold: (i) to investigate the impact of minimiz-
ing risk versus weighted risks (W -Risk and WT -Risk) on the test set, (ii) to study
the impact of waste and budget on risk and weighted risk, and (iii) to study the po-
tential benefits of our optimization-based approach over the existing FDA or WHO
guidelines so as to provide insights to decision-makers. We study these research
questions through an extensive numerical study, and discuss our findings through
the sub-Saharan Africa and Ghana case studies, described in detail in Chapter 4.
(Our other numerical studies provide similar findings.)

In sub-Saharan Africa, 32 (out of the 45) countries are among the world’s poorest
(Busch et al., 2009), and sub-Saharan Africa is more heavily affected by HIV and
AIDS than any other region of the world. While the prevalence rate for HIV is also
high in Ghana, it is lower than sub-Saharan Africa in general. In addition, HBV and
HCV prevalence rates are both higher in Ghana than sub-Saharan Africa. Further-
more, due to a lack of budget and infrastructure in place for effective blood screening,
the current blood screening practices are far from ideal in both regions, as further
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discussed in Section 5.4.3. Thus, both regions face high TTI prevalence rates, but
under quite a different infection structure. However, the WHO recommendations
offer the same guidelines for blood screening, independent of the regional infection
characteristics. Consequently, a blood screening program guided by the WHO recom-
mendations would lead to similar blood testing composition in both regions (subject
to their own budget constraints and infrastructure). Thus, a case study of these two
regions provides us with an excellent vehicle to understand the impact of the various
relevant objectives in blood screening (risk versus weighted risks), and the potential
benefits of our optimization-based approach, which explicitly takes into consideration
the regional infection characteristics, over static guidelines.

The current WHO guidelines call for screening blood for HIV, HBV, HCV, and
syphilis, while the FDA adds HTLV, WNV, and Chagas’ Disease to this list. Con-
sequently, in our numerical study, we consider HIV, HBV, HCV, HTLV, and WNV.
Syphilis and Chagas’ Disease are omitted from the case study due to a lack of reliable
data on test performance or disease prevalence. We explicitly model the co-infection
possibility among HIV, HBV, and HCV, as these three infections have significant
co-infection rates (Carmo et al., 2000; Lincoln et al., 2003; Gordona and Sherman,
2009; Soriano et al., 2006). In particular, it is estimated that the HIV-infected popu-
lation has a co-infection rate for HBV and HCV of around 10% and 15%, respectively
(Carmo et al., 2000; Lincoln et al., 2003), while the HCV-infected population has a
co-infection rate for HBV of around 10% (Adewole et al., 2009; Christian et al., 2010).
The co-infection rates in the case studies are calculated using these proportions. We
ignore the triple co-infection rate of the HIV, HBV, and HCV due to a lack of data.
Table 5.4 provides a summary of the mono- and co-infection prevalence rates for the
TTIs considered for sub-Saharan Africa and Ghana. On the test side, we include
the same 33 of the FDA-approved tests, whose efficacy and unit administration cost
data are available (FDA, 2010; Jackson et al., 2003), see Table 6.1 in Chapter 4.

In addition to the above data, WT-RMP andW-RMP also require weights, w(
−→
λ ),

−→
λ ∈ S (

−→
λ ), for each possible disease prevalence vector. In this study, we consider

the weight to be the social cost of an infection over the life-time of the infected
individual, which is estimated in the literature for the HBV, HIV, HCV, HTLV, and
WNV as $15,079, $274,437, $11,161, $10,000, and $7,300, respectively (Custer et al.,
2005b; Marshall et al., 2004; Stiguma et al., 2000; Zohrabian et al., 2004). We assume

that the social costs of co-infections are additive, that is, w(
−→
λ ) =

∑
i∈Ψ:λi=1

w(λi),

−→
λ ∈ S (

−→
Λ ).
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Table 5.4: Prevalence Rates of the TTIs (%) in Sub-Saharan Africa and Ghana

Sub-Saharan Africa Ghana
Mono-HIV 11.250 (UNAIDS, 2008) 3.000 (Van Hulst et al., 2009)
Mono-HBV 8.200 (Kiire, 1996) 14.351 (Van Hulst et al., 2009)
Mono-HCV 0.450 (Madhava et al., 2002) 1.641 (Van Hulst et al., 2009)
Mono-HTLV 3.000 (Proietti et al., 2005) 2.000 (Lal et al., 1994)
Mono-WNV 1.000* 1.000*
HIV-HBV 1.500 0.400
HIV-HCV 2.250 0.600
HCV-HBV 0.300 0.249
*: Since most WNV cases occur in the form of outbreaks, there does not exist accurate and conclusive estimates on
the prevalence of WNV in these regions. We therefore use 1% for sub-Saharan Africa in general, based on a study
of WNV antibodies (Petersen, 2009).

In the following, we discuss the findings from this case study. The results of our
other numerical studies are similar. All runs are performed in Dell DM051 with Intel
Pentium(R) D CPU 2.80GHz using IBM ILOG Cplex Optimizer.

W-RMP versus WT-RMP (Small Problem Sizes)

Recall that W-RMP does not lend itself to linearization, as discussed in Sec-
tion 5.4.1. Therefore, in our numerical studies, we solve W-RMP for small problem
instances through complete enumeration, and compare its optimal solution with
the optimal solution to WT-RMP. In particular, we consider only a subset of
the tests7 in Table 6.1 under a range of budgets ($5-30) and waste tolerance lim-
its (α = 0.02 − 0.04 and α = 1, indicating no waste tolerance limit) for each of
sub-Saharan Africa and Ghana. We find that the optimal test sets generated by W-
RMP and WT-RMP are exactly the same in all 208 scenarios considered (in both
the sub-Saharan Africa and Ghana case studies). This suggests that WT-RMP
provides a very good approximation for W-RMP. Consequently, we drop W-RMP
from further consideration in our realistic-sized problems in the remainder of this
section, and focus on RMP and WT-RMP only.

Next, we study the effectiveness of the CR Heuristic for RMP and WT-RMP in
sub-Saharan Africa considering all 33 tests in Table 6.1.

7The subset of the tests we consider are very cost-effective, and are often the ones selected by
RMP and WT-RMP. Specifically, we consider ten tests, with two tests per disease: Tests 1,3 for
HBV, 13,19 for HIV, 24,25 for HCV, 30,31 for WNV, and 32,33 for HTLV.
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Figure 5.4: The Deviation of the CR Heuristic Solution from the Lower Bound for
WT-RMP in the Sub-Saharan Africa Case Study - No Waste Tolerance Limit

Effectiveness of the CR Heuristic in the Co-infection Setting (Realistic
Problem Sizes - Sub-Saharan Africa)

Recall that in the mono-infection setting RMP0 and WT-RMP0 can be solved to
optimality quite efficiently using our TS-based reformulation. The CR Heuristic is
shown to be very effective for RMP in the co-infection setting, see Chapter 4. In
this section, we investigate the effectiveness of the CR Heuristic for WT-RMP by
comparing its solution with the lower bound obtained by WT-RMP0 (see Proposi-
tion 7) for the sub-Saharan case study with all 33 tests in Table 6.1. We consider a
range of budgets ($5-50) and relax the constraint on waste. In our numerical studies,
the heuristic solution generated in the co-infection setting (by WT-RMP) is quite
close to the lower bound (generated by WT-RMP0), with an average deviation of
11.31% and a maximum deviation of 22.63%. Consequently, we conclude that the
CR Heuristic performs very well for WT-RMP.

Our analysis also indicates that both the optimal and heuristic test sets, respectively
obtained for the mono-infection and co-infection settings, behave in a similar way for
each parameter we study, namely the waste constraint, budget, and risk minimization
versus weighted total risk minimization objectives.
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The Optimization-based Approach versus the Current Practice

We first provide an overview of the current practice in sub-Saharan Africa, where 20-
30% of blood is collected through Blood Centers that perform limited screening for
HIV, HBV, and HCV (Van Hulst et al., 2010), following the WHO recommendations.
This is done in city-based centers, whose affordability and sustainability remains a
critical issue for most countries of sub-Saharan Africa (Busch et al., 2009; Field
and Allain, 2007). The remaining 70-80% of blood is collected from “replacement
donors,” who donate blood for a specific patient at the point of use (Busch et al.,
2009; Lackritz et al., 1992). This blood is often not tested (Lara et al., 2007).
This method is much cheaper, as it does not involve donor recruitment expenses,
capital investment and infrastructures for dedicated blood centers, nor testing costs
(Owusu-Ofori et al., 2010). To model the current practice in sub-Saharan Africa,
we consider, similar to Chapter 4, a testing scheme in which only 30% of the blood
is tested following the WHO guidelines to the extent possible (i.e., constrained by
budget availability), and the remaining 70% is untested. We refer to this as the 30%
scheme.

There are multiple test sets that comply with the WHO (or FDA) guidelines by
selecting one test per each TTI recommended for screening. From these, we can find
a test set that minimizes Risk (Min-Risk) by selecting the test with the minimum
Q-value for each TTI (Tests 3, 19, and 25 for the WHO, and 3, 19, 25, 31, and 32
for the FDA), and another that minimizes the required budget (Min-Cost) (Tests
4, 7, and 24 for the WHO, and 4, 7, 24, 31, and 32 for the FDA). As opposed to
the selection criteria in an optimization-based model, such as RMP or WT-RMP,
these test sets are derived directly from the guidelines, and therefore, are independent
of regional mono- and co-infection prevalence rates.

The first part of Table 5.7 shows the required budget for each of these test sets
under the different schemes, as well as their resultant risk, weighted risks, and waste
for sub-Saharan Africa and Ghana. We also report the metrics for the 30% WHO
testing scheme. The second and third parts of Table 5.7 report the test sets selected
by RMP and WT-RMP model, given budget constraints that span the range
of required budgets for the various testing schemes displayed in the first part of
the table. To compare the optimization models with the current practice, for these
solutions we do not enforce either the WHO or FDA guidelines, but we have identified
the solutions that do conform with those guidelines in the table. We can make the
following conclusions from our case study.

First, as Chapter 4 points out,RMPmodel can achieve significant risk improvements
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over the current practice by choosing multiple, less expensive tests for particular
TTIs, based on their prevalence and co-infection levels. In addition, we observe sig-
nificant reduction in W -Risk and WT -Risk by using the optimization-based model,
WT-RMP. This is achieved by selecting tests with higher efficacies for infections
having higher prevalences and/or higher weights. Interestingly, even the test set
generated by RMP provides significantly lower values of W -Risk and WT -Risk,
despite the fact that it does not consider any disease weight data. This implies that
tests with higher efficacies alone would provide significant improvement in W -Risk
and WT -Risk.

In Chapter 4, we conclude that following the WHO and FDA guidelines is no guar-
antee of an optimal testing regime - sometimes it is better to deviate from the rec-
ommendations. This case study further extends this conclusion to WT-RMP and
weighted risks. In the test sets generated by WT-RMP in sub-Saharan Africa, for
example, the model chooses to fulfill the WHO guidelines only when the budget is as
large as $17. This deviation can be explained by the relatively lower mono-infection
prevalence rate of HBV and its high co-infection rate with HIV: A portion of the
HBV-infected individuals, who are also co-infected with the HIV, will be eliminated
from the blood pool simply by HIV tests. In Ghana, however, the WHO guidelines
are fulfilled at a budget level as low as $9, because HBV is the most prevalent TTI
in this region. This underscores the need to consider the regional infection charac-
teristics while constructing risk minimizing test sets.

HBV is the most prevalent TTI in Ghana, while HIV, which has a much higher
weight than HBV, is the most prevalent TTI in sub-Saharan Africa (see Table 5.4).
The different infection structures in Ghana and sub-Saharan Africa lead to signifi-
cantly different test sets and weighted risk values in these regions. First, we discuss
this impact on the RMP-generated test sets and their corresponding metrics. For
example, when budget increases from $3 to $4, Risk, W -Risk, and WT -Risk are
all largely reduced in sub-Saharan Africa by administering a cheap test for HIV.8 In
Ghana, however, a similar improvement on weighted risk is not achieved until the
budget reaches $6, because RMP gives the first priority to HBV tests due to its high
prevalence. Secondly, we observe this impact in WT-RMP as well. In sub-Saharan
Africa, a test set that minimizes WT -Risk also reduces Risk, as HIV is not only the
most prevalent infection, but also is the one having the highest weight. In Ghana,
however, sometimes Risk is sacrificed for the purpose of WT -Risk minimization.
For example, when the budget increases from $3 to $4, WT -Risk is reduced, but
at a cost of increased Risk, by switching from Test 4 for HBV to Test 15 for HIV.

8The cheapest HIV test costs $4, see Table 6.1.
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We observe that the test sets generated by WT-RMP and RMP and their corre-
sponding metrics differ significantly9, especially when the prevalence and weight of
the TTIs are not aligned (such as the Ghana example). This, once again, highlights
the importance of generating region-specific test set for blood screening that explic-
itly takes into account the mono- and co-infection rates and weights of the TTIs. It
also demonstrates the difficulty of making this important decision, as the objectives
of reducing risk versus weighted risks sometimes conflicts, and a trade-off between
risk, weighted risks, waste, and budget needs to be made by the decision-maker.
Our optimization-based models provide tools to support and potentially improve
this decision-making process.

It is also interesting to compare the existing schemes in sub-Saharan Africa and
Ghana, in which only around 30% of the blood donations undergo regular testing ac-
cording to the WHO guidelines (see the 30% testing scheme for the WHO-compliant
Min-Risk and Min-Cost test sets in Table 5.7), with a testing scheme that includes
all blood donations, but at the same budget level. At the corresponding 30% test-
ing budget levels, the all-unit testing scheme can afford to use only one test, but
performs better than partial testing in terms of risk. However, when the budget is
extremely limited (B ≤ $3), we find that the 30% scheme performs slightly better
than WT-RMP model. The reason is that fractional testing schemes provide addi-
tional flexibility, which leads to the improvement of the objectives. This motivates
further future research on fractional testing schemes.

Impact of Waste and Budget on Risk and WT-Risk (Realistic Problem
Sizes - sub-Saharan Africa)

Finally, to study the impact of waste and budget constraints on Risk and WT -Risk,
we restrict the focus to sub-Saharan Africa and vary both the maximum allowable
waste fraction (α) and budget (B) in both mono-infection and co-infection settings,
see Tables 5.5-5.6 for the generated test sets and their corresponding Risk, Waste,
WT -Risk, and W -Risk in the co-infection setting; the results for the mono-infection
setting are similar.

First, for a given level of α, Risk decreases in a convex manner as budget increases,
see, for example, Figure 5.5 (a), which depicts the risk-budget curve for the co-

9While we do not display the tests selected for each region at each budget level, we note that
only the test set selected, not the prevalence, determines the waste. Thus, by examining the waste
values for a particular budget level, one can determine if different test sets are selected for the
different regions; this happens often.
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Figure 5.5: (a) Risk versus Budget (Co-infection Setting with α = 0.06) (b) Risk
versus Waste (Co-infection Setting with B = $30)

infection setting with α = 0.06 (see also Tables 5.5-5.6). This is not surprising; the
first $5-$10 spent on blood screening brings the highest risk reduction, after which
the additional budget exhibits diminishing returns in Risk. On the other hand, for
a given budget, reducing the waste tolerance limit, α, often leads to another test
set with a comparable risk, but a much lower waste, see, for example, Figure 5.5
(b), which plots the risk-waste curve for B = $30. Indeed, we find that it is often
the case that there are multiple, budget-feasible test sets available, with comparable
risks and quite different waste fractions, highlighting the importance of a risk-waste
sensitivity analysis, as is done here. Only when the waste tolerance limit reduces to
a very low level (α ≤ 0.04, see Tables 5.5-5.6), does the risk change considerably, as
expected.

We observe that the weighted total risk exhibits a similar behavior to risk, in that
it reduces drastically with budget at first, after which additional budget provides di-
minishing returns (see Figure 5.4). As stated in Proposition 2, waste is monotonically
increasing in the test set. However, it is not necessarily monotonically increasing as
more budget becomes available, as Figure 5.4 depicts.

5.5 Conclusions and Future Research Directions

In this chapter, we study an important problem faced by Blood Centers, of selecting
screening tests for donated blood. This decision has a significant impact on health
care quality in both developed and developing countries. We construct mathematical
models of this decision problem, considering the various objective functions (mini-
mization of the TTI risk and minimization of the weighted TTI risk) and constraints



103

(on budget and wasted blood) relevant in practice. Our work generates insights on
the relationship among these different metrics, and on how they impact the test set.
It also underscores the importance of considering these different metrics in decision-
making through an optimization-based decision support system, as we find that the
optimal test portfolio may have a complex structure, which we illustrate through
examples.

There are numerous avenues that are worthy of future research effort. In this re-
search, we adopt the Believe the Positive (BP) rule, which is a commonly adopted
decision rule in blood screening (Pepe, 2004), in our models. While this decision
rule has been shown to be the optimal rule for the risk minimization problem under
a budget constraint [see Chapter 4], this is not necessarily so for the variations we
consider in this chapter. Consequently, it is worthwhile to determine an optimal de-
cision rule for each of the models we consider, and study how the test set generated
by our models, considering the BP rule, and the corresponding risk, deviate from
the “optimal” test set (under an optimal decision rule) and the corresponding risk.
The focus on the BP rule is important, as it is the one that makes sense from a risk
minimization point of view, but it is also important to understand its impact on the
test set and the risk.

Our analysis relies on an assumption (Assumption (A2)), which states that test
outcomes are conditionally and jointly independent given disease prevalence vector
of the blood unit. However, as we discuss above, this assumption may be violated
for tests that measure similar disease markers, as they will have similar immunolog-
ical window periods, and hence, will have correlated outcomes. Consequently, it is
important in future research to relax this assumption and study its impact on the
test set.

Our treatment of the weighted risk minimization model relies on a heuristic algo-
rithm. While our numerical studies indicate that this algorithm is very effective, as it
generates solutions close to a lower bound, it is still an important future research di-
rection to derive either exact algorithms that are also efficient, or heuristic algorithms
with provable worst-case ratios for this important problem. This is a worthwhile re-
search effort to pursue, as the weighted risk minimization problem is general enough
to be able to incorporate a wide variety of metrics, including QALY, DALY, or social
costs, commonly used in cost-effectiveness studies on blood screening.

Finally, on a broader, health policy, level, no data is perfectly accurate, and the
decision-maker needs to allocate her limited resources among surveillance efforts (i.e.,
gathering more accurate data on disease prevalence rates and test performance) and
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blood screening. While the former provides the decision-maker with better informa-
tion, possibly leading to a test set that better represents reality, the latter actually
reduces risk in blood. As a future direction, it is worthwhile to explore this trade-off
to devise effective resource allocation schemes among these efforts. This is a problem
we continue to study.
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Table 5.5: The Test Sets Generated byRMP andWT-RMP under Varying Budget
Allocations and Waste Tolerance Limits (α) for the Sub-Saharan Africa Case Study
-1

Budget($) Model HBV HIV HCV WNV HTLV Risk(%) WT-Risk($) W-Risk($) Waste(%)
α = 1*

5 RMP 19 15.259 1748.2 2059.6 0.170
WT-RMP 19 15.259 1748.2 2059.6 0.170

10 RMP 4 15 32 2.211 339.5 482.4 4.473
WT-RMP 4 15 32 2.211 339.5 482.4 4.473

15 RMP 4 19 31 32 0.821 122.0 176.3 4.732
WT-RMP 4 19 31 32 0.821 122.0 176.3 4.732

20 RMP 3 19 24 31 32 0.112 55.7 79.5 3.008
WT-RMP 3 14,15 31 32 0.686 55.4 79.5 3.815

25 RMP 3,4 14,15 24 31 32 0.053 4.7 7.1 7.962
WT-RMP 1,4 15,19 24 31 32 0.054 3.8 5.8 8.317

30 RMP 3,4 14,15 24,25 31 32 0.031 3.0 4.5 8.110
WT-RMP 1,4 15,19 24,25 31 32 0.031 2.2 3.3 8.463

35 RMP 3,4 14,15 24,25 30,31 32 0.014 1.9 2.8 8.238
WT-RMP 1,4 15,19 24,25 30,31 32 0.014 1.0 1.6 8.592

40 RMP 3,4 14,15 24,25 30,31 32,33 0.004 1.4 2.1 8.339
WT-RMP 1,4 15,19 24,25 30,31 32,33 0.004 0.5 0.8 8.692

45 RMP 1,3,4 13,19 24,25 30,31 32,33 0.003 0.3 0.4 8.037
WT-RMP 3,4 14,15,19 24,25 30,31 32,33 0.003 0.2 0.3 8.495

50 RMP 1,3,4 13,19 23,24,25 30,31 32,33 0.003 0.3 0.4 8.230
WT-RMP 1,3,4 14,15,19 24,25 30,31 32,33 0.003 0.2 0.3 9.968

α = .08
5 RMP 19 15.259 1748.2 2059.6 0.170

WT-RMP 19 15.259 1748.2 2059.6 0.170
10 RMP 4 15 32 2.211 339.5 482.4 4.473

WT-RMP 4 15 32 2.211 339.5 482.4 4.473
15 RMP 4 19 31 32 0.821 122.0 176.3 4.732

WT-RMP 4 19 31 32 0.821 122.0 176.3 4.732
20 RMP 3 19 24 31 32 0.112 55.7 79.5 3.008

WT-RMP 3 14,15 31 32 0.686 55.4 79.5 3.815
25 RMP 3,4 14,15 24 31 32 0.053 4.7 7.1 7.962

WT-RMP 2,4 15,19 24 31 32 0.064 4.3 6.4 6.984
30 RMP 1,2,4 15,19 25 31 32 0.033 2.3 3.4 7.518

WT-RMP 3,4 13,19 25 31 32 0.034 2.2 3.3 5.160
35 RMP 1,2,4 15,19 25 30,31 32 0.016 1.1 1.7 7.648

WT-RMP 3,4 13,19 25 30,31 32 0.017 1.1 1.6 5.293
40 RMP 1,2,4 15,19 25 30,31 32,33 0.006 0.6 1.0 7.749

WT-RMP 3,4 13,19 25 30,31 32,33 0.007 0.6 0.9 5.397
45 RMP 2,3,4 13,19 24,25 30,31 32,33 0.003 0.3 0.4 6.701

WT-RMP 2,3,4 13,19 24,25 30,31 32,33 0.003 0.3 0.4 6.701
50 RMP 1,2,3 13,19 23,24,25 30,31 32,33 0.003 0.3 0.4 5.416

WT-RMP 2,3,4 7,15,19 24,25 30,31 32,33 0.003 0.2 0.3 7.920
α = .06

5 RMP 19 15.259 1748.2 2059.6 0.170
WT-RMP 19 15.259 1748.2 2059.6 0.170

10 RMP 4 15 32 2.211 339.5 482.4 4.473
WT-RMP 4 15 32 2.211 339.5 482.4 4.473

15 RMP 4 19 31 32 0.821 122.0 176.3 4.732
WT-RMP 4 19 31 32 0.821 122.0 176.3 4.732

20 RMP 3 19 24 31 32 0.112 55.7 79.5 3.008
WT-RMP 3 14,15 31 32 0.686 55.4 79.5 3.815

25 RMP 1,3 19 25 31 32 0.058 49.9 71.8 3.565
WT-RMP 3 14,15 25 31 32 0.072 6.9 10.0 3.969

30 RMP 1,3 13,19 25 31 32 0.033 2.3 3.3 3.652
WT-RMP 3,4 13,19 25 31 32 0.034 2.2 3.3 5.160

35 RMP 1,3 13,19 25 30,31 32 0.016 1.1 1.6 3.787
WT-RMP 3,4 13,19 25 30,31 32 0.017 1.1 1.6 5.293

40 RMP 1,3 13,19 25 30,31 32,33 0.006 0.6 0.8 3.893
WT-RMP 3,4 13,19 25 30,31 32,33 0.007 0.6 0.9 5.397

45 RMP 1,3 13,19 24,25 30,31 32,33 0.003 0.3 0.5 5.046
WT-RMP 1,3 13,19 24,25 30,31 32,33 0.003 0.3 0.5 5.046

50 RMP 1,2,3 13,19 23,24,25 30,31 32,33 0.003 0.3 0.4 5.416
WT-RMP 1,3 13,15,19 24,25 30,31 32,33 0.003 0.2 0.3 5.996

*: In all scenarios with α = 1, WT-RMP0 (mono-infection setting) generated exactly the same test set as WT-
RMP.
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Table 5.6: The Test Sets Generated byRMP andWT-RMP under Varying Budget
Allocations and Waste Tolerance Limits (α) for the Sub-Saharan Africa Case Study
-2

Budget($) Model HBV HIV HCV WNV HTLV Risk(%) WT-Risk($) W-Risk($) Waste(%)
α = .05

5 RMP 19 15.259 1748.2 2059.6 0.170
WT-RMP 19 15.259 1748.2 2059.6 0.170

10 RMP 4 15 32 2.211 339.5 482.4 4.473
WT-RMP 4 15 32 2.211 339.5 482.4 4.473

15 RMP 4 19 31 32 0.821 122.0 176.3 4.732
WT-RMP 4 19 31 32 0.821 122.0 176.3 4.732

20 RMP 3 19 24 31 32 0.112 55.7 79.5 3.008
WT-RMP 3 14,15 31 32 0.686 55.4 79.5 3.815

25 RMP 1,3 19 25 31 32 0.058 49.9 71.8 3.565
WT-RMP 3 14,15 25 31 32 0.072 6.9 10.0 3.969

30 RMP 1,3 13,19 25 31 32 0.033 2.3 3.3 3.652
WT-RMP 1,3 13,19 25 31 32 0.034 2.3 3.3 3.652

35 RMP 1,3 13,19 25 30,31 32 0.016 1.1 1.6 3.787
WT-RMP 1,3 13,19 25 30,31 32 0.017 1.1 1.6 3.787

40 RMP 1,3 13,19 25 30,31 32,33 0.006 0.6 0.8 3.893
WT-RMP 1,3 13,19 25 30,31 32,33 0.007 0.6 0.8 3.893

45 RMP 2,3 13,19 24,25 30,31 32,33 0.004 0.5 0.7 3.666
WT-RMP 1,3 13,19 23,25 30,31 32,33 0.005 0.4 0.6 4.095

50 RMP 3,6 13,19 24,25 30,31 32,33 0.003 0.4 0.5 4.071
WT-RMP 1,3 7,13,19 23,25 30,31 32,33 0.004 0.3 0.4 4.478

α = .04
5 RMP 19 15.259 1748.2 2059.6 0.170

WT-RMP 19 15.259 1748.2 2059.6 0.170
10 RMP 1 15 24 5.455 472.3 644.0 3.763

WT-RMP 2,4 19 5.976 414.7 561.4 3.489
15 RMP 2 15 31 32 1.207 286.4 403.3 2.627

WT-RMP 1 19 24 32 1.561 159.4 225.3 3.315
20 RMP 3 19 24 31 32 0.112 55.7 79.5 3.008

WT-RMP 3 14,15 31 32 0.686 55.4 79.5 3.815
25 RMP 1,3 19 25 31 32 0.058 49.9 71.8 3.565

WT-RMP 3 14,15 25 31 32 0.072 6.9 10.0 3.969
30 RMP 1,3 13,19 25 31 32 0.033 2.3 3.3 3.652

WT-RMP 1,3 13,19 25 31 32 0.034 2.3 3.3 3.652
35 RMP 1,3 13,19 25 30,31 32 0.016 1.1 1.6 3.787

WT-RMP 1,3 13,19 25 30,31 32 0.017 1.1 1.6 3.787
40 RMP 1,3 13,19 25 30,31 32,33 0.006 0.6 0.8 3.893

WT-RMP 1,3 13,19 25 30,31 32,33 0.007 0.6 0.8 3.893
45 RMP 2,3 13,19 24,25 30,31 32,33 0.004 0.5 0.7 3.666

WT-RMP 2,3 13,19 24,25 30,31 32,33 0.004 0.5 0.7 3.666
50 RMP 2,3 13,19 23,24,25 30,31 32,33 0.004 0.4 0.6 3.868

WT-RMP 2,3 7,15,19 23,25 30,31 32,33 0.006 0.4 0.6 3.973
α = .02

5 RMP 19 15.259 1748.2 2059.6 0.170
WT-RMP 19 15.259 1748.2 2059.6 0.170

10 RMP 3 19 5.875 431.4 565.6 0.370
WT-RMP 3 19 6.004 431.4 565.6 0.370

15 RMP 2 19 24 32 1.867 198.3 275.3 1.910
WT-RMP 2 19 24 32 1.927 198.3 275.3 1.910

20 RMP 2,3 13 31 32 0.698 142.9 200.8 1.928
WT-RMP 3 19 31 32 0.858 113.8 159.7 1.830

25 RMP 3 19 25 31 32 0.092 54.4 76.9 1.987
WT-RMP 3 13,19 31 32 0.827 55.2 77.6 1.919

30 RMP 2,3 19 25 31 33 0.071 51.5 72.8 1.908
WT-RMP 3 13,19 25 31 33 0.083 6.5 9.2 1.820

35 RMP 2,3 13,19 31 33 0.046 52.1 73.2 1.997
WT-RMP 2,3 13,19 25 31 33 0.047 3.0 4.3 1.997

40 RMP 2,3 13,19 31 33 0.046 52.1 73.2 1.997
WT-RMP 2,3 13,19 25 31 33 0.047 3.0 4.3 1.997

45 RMP 2,3 13,19 31 33 0.046 52.1 73.2 1.997
WT-RMP 2,3 13,19 25 31 33 0.047 3.0 4.3 1.997

50 RMP 2,3 13,19 31 33 0.046 52.1 73.2 1.997
WT-RMP 2,3 13,19 25 31 33 0.047 3.0 4.3 1.997
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Table 5.7: Comparison of Risk and Waste for Test Sets that Meet the WHO/FDA
Requirements versus Test Sets Generated byRMP andWT-RMP for Sub-Saharan
Africa and Ghana

Sub-Saharan Africa Ghana
Guideline B($) Risk(%) W-Risk ($) WT-Risk($) Waste (%) Risk(%) W-Risk ($) WT-Risk($) Waste(%)

Min-Risk1 14 5.316 489.6 370.6 0.529 3.829 334.1 265.2 0.529
- 30% 4 21.160 30,476.0 30,440.3 0.159 17.417 9,734.5 9,713.8 0.159

Min-Cost1 9 5.659 1,177.3 856.9 4.695 4.109 536.2 409.1 4.695
- 30% 3 21.263 30,682.3 30,586.2 1.409 17.501 9,795.1 9,757.0 1.409

Min-Risk2 22 0.092 76.9 54.4 1.987 0.098 29.2 22.0 1.987
Min-Cost2 17 0.474 804.0 546.6 6.092 0.400 240.1 173.7 6.092
RMP 3 20.035 41,871.4 37,119.4 1.610 9.857 12,225.5 10,242.7 1.610

4 15.311 2,227.1 1,875.8 1.000 9.743 12,212.4 10,365.3 0.200
5 15.259 2,059.6 1,748.2 0.170 7.542 10,345.3 8,218.4 4.312
6 6.028 748.5 550.3 4.119 5.928 620.9 485.8 4.119
7 5.971 580.9 430.4 3.315 5.894 615.6 489.1 2.594
8 5.932 733.3 554.9 1.198 5.773 596.7 480.3 1.198
9 5.476* 647.2 467.3 5.269 4.062* 401.2 304.1 5.269
10 2.211 482.4 339.5 4.473 3.57 453.5 344.8 4.473
11 2.149 307.8 218.3 3.672 3.534 448.0 345.9 2.954
12 2.107 466.2 337.8 1.564 3.408 428.4 335.1 1.564
13 1.613* 375.3 259.4 5.620 1.609* 224.8 165.5 5.620
14 0.885 353.3 242.7 5.524 1.572* 219.3 164.0 4.119
15 0.821 176.3 122.0 4.732 1.442* 199.6 151.2 2.745
16 0.778 336.8 238.1 2.646 1.39 191.7 138.5 7.139
17 0.270† 244.0 164.5 6.658 0.349† 99.7 71.7 6.658
18 0.216† 95.3 64.8 5.875 0.312† 94.0 68.7 5.174
19 0.166† 228.2 158.4 3.815 0.178† 74.0 54.7 3.815
20 0.112† 79.5 55.7 3.008 0.125† 65.8 46.5 8.161
21 0.079† 74.6 49.8 7.391 0.111† 28.6 20.4 7.391
22 0.078† 74.4 50.4 6.063 0.058† 58.1 41.4 7.194

WT-RMP 3 20.053 41,874.7 36,549.5 3.150 9.857 12,225.5 10,242.7 1.610
4 15.311 2,227.1 1,875.8 1.000 20.060 2,827.1 2,687.4 1.000
5 15.259 2,059.6 1,748.2 0.170 20.048 2,787.6 2,671.7 0.170
6 6.028 748.5 550.3 4.119 5.928 620.9 485.8 4.119
7 5.971 580.9 430.4 3.315 5.914 578.9 456.6 3.315
8 5.971 580.9 430.4 3.315 5.914 578.9 456.6 3.315
9 5.971 580.9 430.4 3.315 4.062 401.2 304.1* 5.269
10 2.211 482.4 339.5 4.473 4.050 365.5 279.3* 4.475
11 2.149 307.8 218.3 3.672 4.050 365.5 279.3* 4.475
12 2.149 307.8 218.3 3.672 3.891 341.2 268.2* 1.565
13 2.045 291.6 212.9 0.738 1.609 224.8 165.5* 5.620
14 2.121 228.6 158.8 5.620 1.595 188.1 139.7* 4.828
15 0.821 176.3 122.0 4.732 1.559 182.6 137.6* 3.315
16 0.798 172.6 121.4 3.217 1.429 162.9 124.4* 1.929
17 1.536 162.3 110.7* 6.752 0.349 99.7 71.7† 6.658
18 0.216 95.3 64.8† 5.875 0.336 62.5 45.3† 5.875
19 0.193 91.8 63.4† 4.379 0.298 56.9 41.9† 4.379
20 0.686 79.5 55.4 3.815 0.165 36.7 27.4† 3.008
21 0.192 27.9 18.6† 7.778 0.111 28.6 20.4† 7.391
22 0.169 24.4 16.5† 6.311 0.111 28.6 20.4† 7.391

Min-Risk1, Min-Risk2: The lowest risk test set that meets the WHO and FDA requirements, respectively.
Min-Cost1, Min-Cost2: The lowest cost test set that meets the WHO and FDA requirements, respectively.
- 30%: Partial (30%) fulfillment of the WHO requirements, 70% no testing.
*: The RMP or WT-RMP model generated test set that meets the WHO requirements.
†: The RMP or WT-RMP model generated test set that meets the WHO and FDA requirements.



Chapter 6

Differential Blood Screening

6.1 Introduction and Motivation

In this chapter, we now consider a “differential” testing extension to the problem
studied in the previous chapters, in which an optimal solution is allowed to contain
multiple test sets, each applied to a fraction of the total blood units. Such fractional
strategies provide important flexibility, and as such, has the potential to further
reduce the TTI risk over the “same-for-all” class of policies currently in use in the
US. In particular, the decision-maker faces the problem of selecting a collection of
test sets as well as determining the proportion (or fraction) of blood units each test
set will be administered to. From a theoretical as well as a public policy perspective,
the research objectives are to understand how the test sets under differential policies
differ from those under the same-for-all policies; and how this flexibility impacts the
TTI risk.

The remainder of the chapter is organized as follows. In Section 6.2, we introduce
the notation and provide a mathematical formulation of the decision problem. In
Section 6.3, we provide an equivalent mathematical programming formulation, which
allows us to characterize important structural properties of an optimal differential
testing scheme. These properties further allow us, in Section 6.4, to devise a simple
greedy algorithm, which generates the set of optimal solutions for a range of budgets.
However, the number of parameters that need to be calculated a priori for the greedy
algorithm increases exponentially in the number of tests available in the market.
Consequently, in Section 6.5, we further refine the greedy algorithm by utilizing the
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optimal solution for the non-differential testing problem (RMP). This significantly
reduces the number of test sets to be considered (hence, the number of parameters
to be calculated a priori) for the differential testing problem. We illustrate this in
Section 6.6 through a case study. Finally, in Section 6.7, we provide our conclusions
and suggest directions for future research.

6.2 The Problem Setting, Notation, and Assump-

tions

In this chapter, we consider a Blood Center collecting blood from donors. In the US,
per requirements by the Food and Drug Administration (FDA), each blood donation
must undergo screening for a set of TTIs. Similarly, the World Health Organization
(WHO) recommends screening for a set of TTIs. It is often the case that a number
of screening tests are available for each TTI. Each screening test provides binary
results, with a “+” result indicating that the blood unit is infected, and a “–”
result indicating otherwise. Tests do not have perfect efficacy, and may provide false
positive or false negative results (e.g., Dow (2000); Johnson (1996); Moore et al.
(2007); see also Chapter 4 for additional references). All selected tests need to be
administered concurrently on the blood sample due to the long time requirements
of the tests (including the transportation time to a testing laboratory), compared to
the relatively shorter life-span of donated blood (Hillyer, 2001).

Given these requirements/recommendations and the variety of the tests available, it
is the Blood Center’s responsibility to decide which particular screening test(s) to
administer for each TTI. Depending on the outcomes of the selected tests, the blood
unit (i.e., all blood collected from the particular donor) will either be made available
for transfusion or discarded. Consequently, the decision-maker faces the problem
of selecting a collection of test tests, from a set of commercially available tests, as
well as determining the proportion of blood units each test will be administered to
detect a set of TTIs (“diseases”) so as to minimize the overall TTI risk in blood
transfusion. The TTI risk is the conditional probability that the blood unit classi-
fied as “infection-free” is, in fact, infected by some disease(s). The decision-maker is
resource-constrained: We model this in the form of a budget constraint on the total
test administration cost per unit blood. Then, in order to minimize the risk, the
decision-maker needs to decide (i) which test set(s) to administer; (ii) what fraction
of blood units each selected test set is to be administered to.
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Consider a random unit of blood to be tested. We define the following events and
parameters.

Events:

S : the set of tests to administer, where S ⊆ Ω.

Ai+ : the event that the random blood unit is infected by disease i ∈ Ψ (Ai− ≡ Ai+).

T + (Sk) : the event that test set Sk provides a positive result (T − (Sk) ≡ T + (Sk)).

For notational convenience, we label all subsets of set Ω as S0, S1, . . . , Sk, . . . , Sf ,
where f = 2|Ω| − 1, S0 = ∅, and Sf = Ω, with T − (S0) = universal event and
T + (S0) = ∅.

Parameters:

Pr {T − (Sk)} : the probability that test set Sk provides a negative result for
a random blood unit, k = 0, 1, . . . , f .

Pr

{∩
i∈Ψ

Ai−, T − (Sk)

}
: the probability that the random blood unit is not infected

with any disease and that test set Sk provides a negative re-
sult, k = 0, 1, . . . , f .

The decision variables in the differential testing problem comprise of proportions
associated with each possible test set, which can be interpreted as the proportion of
the blood units that will be screened with the particular test set.

Decision variables:

pk : proportion of blood tested with test set Sk, k = 0, 1, . . . , f .
Let p⃗ = (pi)i=0,1,...,f = (p0, p1, . . . , pk, . . . , pf ) denote the vector of proportions.

Next, we provide a mathematical representation of the decision problem, which de-
termines the vector p⃗ so as to minimize the TTI risk. The TTI risk refers to the
conditional probability that a randomly selected blood unit is infected, given that it
is classified as infection-free by the selected test set. Then, the problem of minimizing
risk under differential testing (equivalently, maximizing 1-risk) can be formulated as
follows:
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Differential Testing Risk Minimization Problem (DF-RMP):

Maximizep⃗ (1−Risk) =

f∑
k=0

pk Pr

{∩
i∈Ψ

Ai−, T − (Sk)

}
f∑

k=0

pk Pr {T − (Sk)}
(6.1)

subject to

f∑
k=0

pk

(∑
j∈Sk

cj

)
≤ B (6.2)

f∑
k=0

pk = 1 (6.3)

pk ≥ 0, k = 0, 1, . . . , f.

Let p⃗∗ denote the optimal solution to DF-RMP. If p∗k > 0, we say that test set Sk

belongs to the optimal solution.

From the objective function ofDF-RMP, (6.1), we observe that for any two test sets,

Sk1 and Sk2 , if
Pr

{ ∩
i∈Ψ

Ai−,T−(Sk1
)

}
Pr{T−(Sk1

)} =
Pr

{ ∩
i∈Ψ

Ai−,T−(Sk2
)

}
Pr{T−(Sk2

)} and
∑

j∈Sk1
cj =

∑
j∈Sk2

cj,

then these test sets are interchangeable in the optimal solution to DF-RMP. There-
fore, if either of these test sets is part of an optimal solution, then there exist multi-
ple optimal solutions, which correspond to various combinations of sets Sk1 and Sk2 ,
yielding the same total proportion, p∗k1 + p∗k2 . While, in case of multiple optima it is
possible to generate all of these optimal solutions, in what follows we assume that
there exist no such identical test sets, so the optimal solution is unique (Assumption
(A3)). We also assume that Risk is decreasing in the test set. This assumption
holds for all FDA-approved tests, and is also without loss of generality, as discussed
in Chapter 4. These two assumptions mainly serve to simplify the subsequent pre-
sentation of the structural properties of the optimal solution to DF-RMP.

Note the use of the objective function in (6.1), rather than the expression,

f∑
k=0

pk Pr

{∪
i∈Ω

Ai + |T − (Sk)

}
.
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This is because the expression in (6.1) is the one that corresponds to the TTI risk
under the differential testing scheme, and we demonstrate this idea in the following
example.

Example 7 Consider a single infection, with N units of blood to be tested for this
infection. Consider a differential testing scheme, given by p⃗ = (p1, p2), and let
N1 ≡ N×p1 and N2 ≡ N×p2 respectively denote the number of blood units tested with
sets S1 and S2. Figure 6.1 depicts the decision tree and the outcomes corresponding
to this testing scheme.

Figure 6.1: The Decision Tree Corresponding to the Differential Testing Scheme with
Two Sets

Thus, the risk under this differential testing scheme is given by

Risk =
Np1 Pr (A+)Pr (T − (S1)|A+) +Np2 Pr (A+)Pr (T − (S2)|A+){
Np1 Pr (A+)Pr (T − (S1)|A+) +Np1 Pr (A−) Pr (T − (S1)|A−)
+Np2 Pr (A+)Pr (T − (S2)|A+) +Np2 Pr (A−) Pr (T − (S2)|A−)

}
=

p1 Pr (T − (S1), A+) + p2 Pr (T − (S2), A+)

p1 {Pr (T − (S1), A+) + Pr (T − (S1), A−)}+ p2 {Pr (T − (S2), A+) + Pr (T − (S2), A−)}
.
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In general, for multiple diseases, the above expression can be written as:

Risk =

f∑
k=0

pk Pr

{∪
i∈Ψ

Ai+, T − (Sk)

}
f∑

k=0

pk Pr {T − (Sk)}
,

which corresponds to the objective function in DF-RMP.

In the next section, we study an equivalent formulation of DF-RMP, which enables
us to establish several important structural properties of an optimal solution to DF-
RMP. These structural properties will allow us to construct an efficient algorithm
that generates the optimal testing scheme under differential testing.

6.3 An Equivalent Formulation and Structural Prop-

erties

DF-RMP is a Linear Fractional Programming Problem (LFP). General Linear Frac-
tional Programming Problems have been extensively studied in the literature, see Ba-
jalinov (2003) for an overview. The most relevant result to our study is the Charnes &
Cooper’s Transformation (Charnes and Cooper, 1962), which allows any LFP with a
bounded set of feasible solutions to be converted into a linear programming problem.
Applying this transformation technique, DF-RMP can be equivalently formulated
as follows (see Appendix D.1 for the derivation):

DF-RMP2 – Primal (DF-RMP2(P))
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Maximizex⃗

f∑
k=0

xk Pr

{∩
i∈Ψ

Ai−, T − (Sk)

}

subject to

f∑
k=0

xk

(∑
j∈Sk

cj −B

)
≤ 0 ← w1

f∑
k=0

xk Pr {T − (Sk)} = 1 ← w2

xk ≥ 0, k = 0, 1, . . . , f,

where xk ≡ pkt, k = 0, 1, . . . , f , and t ≡ 1
f∑

k=0
pk Pr{T−(Sk)}

.

Observe that an optimal solution, −→x ∗, to DF-RMP2(P) uniquely determines an

optimal solution, −→p ∗, to DF-RMP, where p∗k =
x∗
k

t
, k = 0, 1, . . . , f , and vice versa.

That is, there is one-to-one correspondence between −→x ∗ and −→p ∗. Letting w1 and w2

denote the corresponding dual variables to DF-RMP2(P), its dual problem can be
formulated as follows:

DF-RMP2 – Dual (DF-RMP2(D))

Minimize w2

subject to

w2 ≥
Pr
{∩

i∈Ψ Ai−, T − (Sk)
}

Pr {T − (Sk)}
+

(
B −

∑
j∈Sk

cj

)
Pr {T − (Sk)}

w1, ∀k ← xk (6.4)

w1 ≥ 0

w2 unrestricted.

To simplify the notation, denote the intercept of Constraint (6.4) for k, k = 0, 1, . . . , f ,
Pr{∩i∈Ψ Ai−,T−(Sk)}

Pr{T−(Sk)}
, as Risk (Sk), which also equals to 1−Risk(Sk) (see Chapter 4).

From Problem Dual, we first make the following observations on the structure of
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the optimal solution to the original Problem DF-RMP for some extreme cases of
the problem. Although these observations are quite intuitive, we provide them for
the sake of completeness.

Observations:

(i) If B = 0, then p∗0(0) = 1, p∗k(0) = 0,∀k ̸= 0 (from primal feasibility of DF-
RMP).

(ii) If B ≥
∑
j∈Ω

cj (⇔ B ≥
∑
j∈Sk

cj, k = 0, 1, . . . , f), then the optimal solution to

the dual problem is w∗
1 = 0, w∗

2 = maxSk,k=0,...,f

{
Risk (Sk)

}
. Recall that

Qj < 1, j ∈ Ω. Therefore, p∗f = 1 (corresponding to set Ω) and p∗k = 0, ∀k ̸= f ,
similar to our results for the original RMP (see Chapter 4).

(iii) If 0 < B < minj∈Ω cj (⇔ 0 < B <
∑
j∈Sk

cj, k = 1, 2, . . . , f), then Constraint

(6.4) for k = 0 becomes one of the binding constraints, as it is the only con-
straint having a positive coefficient of w1. The other binding constraint is given
byk : arg max

Sk,k=1,...,f

Risk (Sk)−Risk (S0)

B (Pr {T − (S0)})−1 −

(
B −

∑
j∈Sk

cj

)
(Pr {T − (Sk)})−1

 .

For the general case, the following two propositions partially characterize the struc-
ture of the optimal solution to the original Problem DF-RMP.

Proposition 8 If 0 < B <
∑
j∈Ω

cj, then Constraint (6.2) in DF-RMP is always

binding in an optimal solution, that is,
∑f

k=0 p
∗
k

( ∑
j∈Sk

cj

)
= B.

Proof. We prove the result by contradiction. Consider an optimal solution to
DF-RMP given by p⃗∗, and suppose, to the contrary, that Constraint (6.2) is not
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binding, that is,
∑f

k=0 p
∗
k

( ∑
j∈Sk

cj

)
< B. Multiplying each side of this inequal-

ity by t (> 0) and noting that x∗
k = p∗kt, k = 0, 1, . . . , f , by definition, we have

that
∑f

k=0 x
∗
k

(∑
j∈Sk

cj −B
)
< 0. Then, by complementary slackness conditions,

w∗
1 = 0. Since Risk (Ω) > Risk (Sk) ,∀Sk ̸= Ω (Qj < 1, ∀j), the feasible region

of DF-RMP2(D) for w2 becomes w2 ≥ Risk (Ω). This, in turn, implies that
w∗

2 = Risk (Ω) > Risk (Sk) ,∀Sk ̸= Ω. Hence, complementary slackness conditions
imply that x∗

f ≥ 0 and x∗
k = 0,∀k ̸= f . Since x∗

k = p∗kt by definition and t > 0,
the signs of p∗k and x∗

k will be the same for ∀k = 0, . . . , f . Therefore, the optimal
solution to DF-RMP will be given by p∗f = 1 and p∗k = 0,∀k ̸= f by (6.3). However,
this implies that

∑
j∈Ω

cj < B from (6.2), which contradicts with the assumption that

0 < B <
∑
j∈Ω

cj. This completes the proof.

Proposition 9 Let K+ ≡ {k : p∗k > 0, k = 0, 1, . . . , f}, that is, K+ is the set of
indices of all test sets for which p∗k > 0 in an optimal solution. We have:
(i) |K+| ≤ 2.
(ii) If K+ = {k}, then

∑
j∈Sk

cj = B.

(iii) If K+ = {k1, k2}, then it must be true that B >
∑

j∈Sk1

cj and B <
∑

j∈Sk2

cj, or

vice versa.

Proof. The proof of Part (i) follows because the number of basic variables in any
basic feasible solution to Problem DF-RMP2(P) is two, and that the signs of
p∗k and x∗

k will be the same for ∀k = 0, . . . , f . Therefore, the number of posi-
tive p∗k in an optimal solution to DF-RMP is at most two. Part (ii) follows di-
rectly from Proposition 8. To prove Part (iii), by definition of set K+ and from
(6.3), we have 0 < p∗k1 < 1 and p∗k2 = 1 − p∗k1 > 0. By Proposition 8, we have
p∗k1

∑
j∈Sk1

cj+p∗k2
∑

j∈Sk2

cj = B. Suppose that
∑

j∈Sk1

cj =
∑

j∈Sk2

cj = B. Then, by assump-

tion, (A3), we must have
Pr

{ ∩
i∈Ψ

Ai−,T−(Sk1
)

}
Pr{T−(Sk1

)} ̸=
Pr

{ ∩
i∈Ψ

Ai−,T−(Sk2
)

}
Pr{T−(Sk2

)} . Without loss of

generality, suppose
Pr

{ ∩
i∈Ψ

Ai−,T−(Sk1
)

}
Pr{T−(Sk1

)} <
Pr

{ ∩
i∈Ψ

Ai−,T−(Sk2
)

}
Pr{T−(Sk2

)} . Thus, from (6.1), the

objective function value can be further increased by increasing pk2 to 1 and decreas-
ing pk1 to 0, which contradicts with the fact that K+ = {k1, k2}. Therefore, we must
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have B >
∑

j∈Sk1

cj and B <
∑

j∈Sk2

cj, or vice versa. This completes the proof.

Thus, the optimal solution to DF-RMP consists of at most two test sets, each with
a fraction that sum to 1.

6.4 Optimal Algorithms to DF-RMP

We first note that DF-RMP, as an LFP, can be solved by a variation of the Simplex
Method revised by Martos (1960, 1964). However, the Simplex Method provides an
optimal solution at a given budget level, and the decision-maker needs to perform
extensive sensitivity analysis to capture the optimal solutions and their corresponding
risks for a range of budget levels, which is valuable information for public policy
makers for allocating the blood screening budget. In addition, it is also important to
provide the decision-maker with a “sense” of how the optimal testing scheme changes
as the budget level varies. In this section, we study further structural properties of
an optimal solution to DF-RMP to understand how the optimal solution changes
with the budget. This analysis also provides us with a simple greedy algorithm
that generates the optimal solution to DF-RMP for a range of budget levels, and
that identifies all points of “switch” (in terms of budget levels) from a differential
testing scheme (with two tests) to a single-testing scheme. Since differential testing
scheme, even with two tests involved, might pose practical challenges as discussed in
Section 6.1, such information is important for the decision-maker.

While we do not use Martos’ Simplex Algorithm to solve the DF-RMP, we utilize
the properties of LFPs derived in the literature to establish the optimality of our
greedy algorithm. In particular, the following result, which extends the extreme
point property of linear programming problems to LFPs, is critical for establishing
the optimality of the greedy algorithm.

Lemma 2 (Bajalinov (2003), Theorem 4.3) If the feasible set S in an LFP is
bounded, then its objective function attains its maximal value over S in an extreme
point of S .

Next we provide various properties that we use subsequently. The next result studies
how the optimal solution to DF-RMP changes as the RHS of Constraint (6.2)
(budget B) increases.
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Corollary 3 Consider an optimal solution to DF-RMP corresponding to a budget
level B, with basic variables p∗k1 and p∗k2. If the budget increases from B to B + δ,
then the values of the current basic variables in the new optimal solution are given
by p∗

′

k1
= p∗k1 −

1∑
j∈Sk2

cj−
∑

j∈Sk1

cj
δ and p∗

′

k2
= p∗k2+

1∑
j∈Sk2

cj−
∑

j∈Sk1

cj
δ.

Proof. From the Simplex Method and Constraints (6.2)-(6.3), we have(
p∗k1
p∗k2

)
=

( ∑
j∈Sk1

cj
∑

j∈Sk2

cj

1 1

)−1(
B
1

)
.

When budget increases by δ, we have(
p∗

′

k1

p∗
′

k2

)
=

( ∑
j∈Sk1

cj
∑

j∈Sk2

cj

1 1

)−1(
B + δ
1

)

=


1∑

j∈Sk1

cj−
∑

j∈Sk2

cj
−

∑
j∈Sk2

cj∑
j∈Sk1

cj−
∑

j∈Sk2

cj

− 1∑
j∈Sk1

cj−
∑

j∈Sk2

cj

∑
j∈Sk1

cj∑
j∈Sk1

cj−
∑

j∈Sk2

cj


(

B + δ
1

)

=

 p∗k1 −
1∑

j∈Sk2

cj−
∑

j∈Sk1

cj
δ

p∗k2+
1∑

j∈Sk2

cj−
∑

j∈Sk1

cj
δ

 ,

and the result follows.

Proposition 9 and Corollary 3 indicate important properties of an optimal solution
to Problem DF-RMP, leading to the following results.

Corollary 4 Suppose that an optimal solution to DF-RMP with budget B consists
of two basic variables that are strictly positive, p∗k1 > 0 and p∗k2 > 0. Also sup-
pose, without loss of generality, that

∑
j∈Sk2

cj >
∑

j∈Sk1

cj. Then, from Proposition 9,

Corollary 3, and Constraint (6.3), we have that:

(i) p∗k1 =

∑
j∈Sk2

cj−B∑
j∈Sk2

cj−
∑

j∈Sk1

cj
and p∗k2 =

B−
∑

j∈Sk1

cj∑
j∈Sk2

cj−
∑

j∈Sk1

cj
.
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(ii) As the budget increases beyond B, p∗k1 will decrease, while p∗k2 will increase, up
to a budget level B′ =

∑
j∈Sk2

cj, where p∗k1 = 0 and p∗k2 = 1.

(iii) As the budget further increases beyond B′, the current basis {k1, k2} will no
longer be optimal. In particular, variable k2 will leave the basis and a new
variable will enter the optimal basis.

From Corollaries 3-4, we observe that there exist optimal solutions with |K+| = 1,
that is, p∗k = 1 for some test set k at certain budget levels. We define these single-
testing points as follows.

Definition 1 A break point is the budget level, between 0 and
∑
j∈Ω

cj, at which the

optimal solution to DF-RMP is integral (that is, |K+| = 1). We let BP (s), s ∈ Z+,
denote the sth break point and kP (s) denote the index of the optimal test set at BP (s).
(By definition, at B = BP (s), p

∗
kP (s) = 1.)

Observe that BP (1) = 0, with kP (1) = 0. That is, at budget level 0, the optimal
solution is p∗0 = 1, with no tests administered. We now provide a greedy algorithm
that generates all break points for the range of budgets between 0 and

∑
j∈Ω

cj.

The Greedy Algorithm for Generating Break Points
1: s = 1, k1(s) = 0, B(s) = 0
2: while B(s) <

∑
j∈Ω

cj do

3: k2 =

k : arg maxSk,k=1,...,f :
∑

j∈Sk

cj>
∑

j∈Sk1(s)

cj

Risk(Sk)−Risk(Sk1(s)) ∑
j∈Sk

cj−
∑

j∈Sk1(s)

cj

(Pr{T−(Sk)})−1


4: s = s+ 1, B(s) =

∑
j∈Sk2

cj, k1(s) = k2

5: end while

The following proposition guarantees that the greedy algorithm identifies every break
point and its corresponding k1(s), which are critical for constructing the set of opti-
mal solutions for DF-RMP.
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Proposition 10 B(s) is a break point if and only if it is identified by the greedy
algorithm.

Proof. The proof follows by induction. The first break point trivially occurs at a
budget level of 0, that is, B(1) = BP (1). Next, suppose that break point B(s) is
determined by the greedy algorithm, that is, BP (s) = B(s), with kP (s) = k1(s).
We need to prove that for the next break point, we have BP (s+ 1) = B(s+ 1) and
kP (s+1) = k1(s+1). By definition of a break point, which corresponds to an integral
solution, and by Corollary 3, this is equivalent to proving that if K+ = {k1(s)} when
budget is B(s), then, for any arbitrarily small δ > 0, K+ = {k1(s), k1(s+ 1)} when
budget is increased to B(s) + δ.

Since B(s) is a break point, p∗k1(s)(B(s)) = 1, p∗k(B(s)) = 0, ∀k ̸= k1(s). Suppose

K+ (B(s) + δ) = {k1(s), k2} for some k2 ∈ {0, 1, . . . , f} | {k1(s)}. From Corollary 3,
if budget is increased to B(s)+δ, then p∗k1(s)(B(s)+δ) = 1− 1∑

j∈Sk2

cj−
∑

j∈Sk1(s)

cj
δ. Then,

from Constraint (6.3), we must have p∗k2(B(s) + δ) = 1∑
j∈Sk2

cj−
∑

j∈Sk1(s)

cj
δ. Substituting

this solution into (6.1), we obtain

R(k2, δ) ≡

Pr

{∩
i∈Ψ

Ai−, T − (Sk1(s))

}
−

Pr

{ ∩
i∈Ψ

Ai−,T−(Sk1(s)
)

}
−Pr

{ ∩
i∈Ψ

Ai−,T−(Sk2
)

}
∑

j∈Sk2

cj−
∑

j∈Sk1(s)

cj
δ

Pr
{
T − (Sk1(s))

}
− Pr{T−(Sk1(s)

)}−Pr{T−(Sk2
)}∑

j∈Sk2

cj−
∑

j∈Sk1(s)

cj
δ

.

From Corollary 4, test set k ∈ {0, 1, . . . , f} such that
∑
j∈Sk

cj >
∑

j∈Sk1(s)

cj that max-

imizes the first derivative of R(k, δ) at δ = 0 is the one that also maximizes the
objective function in DF-RMP, (6.1), under budget B + δ. Therefore, we have

k2 =

k = 0, 1, . . . , f and
∑
j∈Sk

cj >
∑

j∈Sk1(s)

cj : arg max
∂R (k, δ)

∂δ

∣∣∣
δ=0



⇔ k2 = k1(s+1) =


k : arg max

Sk,k=1,...,f :
∑

j∈Sk

cj>
∑

j∈Sk1(s)

cj

Risk (Sk)−Risk
(
Sk1(s)

)( ∑
j∈Sk

cj −
∑

j∈Sk1(s)

cj

)(
Pr

{ ∩
j∈Sk

T
d(j)
j −

})−1


.
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This completes the proof.

The next result characterizes the optimal solution to DF-RMP at the non-break
point budget levels. Denote the optimal solution to DF-RMP under budget B as
−→p ∗(B) = (p∗i (B))i=0,1,...,f .

Corollary 5 The optimal solution to DF-RMP for a given budget level B, B(s) <
B < B(s+ 1), for some s ∈ Z+, is given as follows.

p∗k1(s)(B) =

∑
j∈Sk1(s+1)

cj −B∑
j∈Sk1(s+1)

cj −
∑

j∈Sk1(s)

cj
, p∗k1(s+1)(B) =

B −
∑

j∈Sk1(s)

cj∑
j∈Sk1(s+1)

cj −
∑

j∈Sk1(s)

cj
,

p∗k(0) = 0, ∀k ̸= k1(s), k1(s+ 1).

Proof. This result follows directly from Proposition 10 and Corollary 3.

The following example illustrates how the duality theory can be used to interpret
Proposition 10, providing an alternative explanation for it.

Example 8 Consider four constraints in Problem DF-RMP2(D) when budget is
B(s), denoted as k0, k1, k2, k

′
2, corresponding to primal variables xk0 , xk1 , xk2 , xk′2

, re-
spectively, see Figure 6.3. Note that

∑
j∈Sk0

cj < B(s) =
∑

j∈Sk1

cj, B(s) <
∑

j∈Sk2

cj, and

B(s) <
∑

j∈Sk′2

cj, following from the signs of slope

(
B(s)−

∑
j∈Sk

cj

)

Pr

{ ∩
j∈Sk

T
d(j)
j −

} in (6.4). The ar-

rows in Figure 6.3 indicate the feasible region. When budget is B(s), we know that
K+ = {k1}, and the (multiple) optimal solutions of Problem Dual lie on the line
between points Y and Z, see Figure 6.3 (a).

As the budget increases to B(s) + δ, the slope of constraint k1,

B(s)+δ−
∑

j∈Sk1

cj


Pr

 ∩
j∈Sk1

T
d(j)
j −


,

becomes positive. Hence, the new optimal solution to Problem Dual becomes point Y ′,
see Figure 6.3 (b), and the primal solution becomes K+ = {k1, k2}, as the intersection
of constraints k2 and k1 corresponds to the largest value of w1 than the intersection
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Figure 6.2: An Illustration of Proposition 10

of constraint k1 with any other constraint k satisfying
∑
j∈Sk

cj <
∑

j∈Sk2

cj. Observe that

the value of w1 at the intersection of constraints k and k1 is given by

w1(k) ≡
Risk (Sk)−Risk (Sk1)( ∑

j∈Sk

cj −
∑

j∈Sk1

cj

)(
Pr

{ ∩
j∈Sk

T
d(j)
j −

})−1 .

Therefore, k2 = {k : arg maxw1(k)}, which is in line with Proposition 10.

The greedy algorithm provides a highly efficient way to generate a set of optimal
solutions to DF-RMP for a range of budget levels. However, both Martos’ Simplex
Algorithm (for general LFPs) and the greedy algorithm proposed here for our specific

LFP requires all parameters in the objective function, Pr

{∩
i∈Ψ

Ai−, T − (Sk)

}
and

Pr {T − (Sk)}, to be calculated a priori, one for each potential test set. However,
for n tests, there are 2n test subsets, leading to an exponential increase in the num-
ber of parameters to be determined as the problem size increases. Since in reality
there will be a large number of tests available in the market (e.g., currently there are
around 40 FDA-approved blood screening tests in the US), such an approach may
not be practical. Consequently, in the following section, we further refine the greedy
algorithm by utilizing the solution to the non-differential testing problem (RMP).
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6.5 Relationship between Problems RMP and DF-

RMP

Parameters in DF-RMP, Pr

{∩
i∈Ψ

Ai−, T − (Sk)

}
and Pr {T − (Sk)}, are often not

readily available in the medical literature, which reports tests in terms of their speci-
ficity and sensitivity, defined as follows. Let d(j) denote the disease test j applies
to, j ∈ Ω.

Test Efficacy Parameters:

Pr(T
d(j)
j − | Ad(j)−) : specificity (true negative probability) of test j ∈ Ω.

Pr(T
d(j)
j + | Ad(j)+) : sensitivity (true positive probability) of test j ∈ Ω.

Qj = Pr(T
d(j)
j − | Ad(j)+)/Pr(T

d(j)
j − | Ad(j)−), j ∈ Ω. In this chapter, we

assume, without loss of generality, that all tests have Qj < 1,∀j ∈
Ω.

Thus, the first step is to relate our parameters in DF-RMP to the test efficacy
parameters readily available in the medical literature. For this, we utilize the fol-
lowing two assumptions, common in the medical literature (see, for instance, Pepe
2004)1 and also used in Chapter 4 for the study of the non-differential testing prob-
lem (RMP).

Let
−→
Λ = (Λi)i=1,··· ,n denote the disease prevalence vector for a random unit of blood,

consisting of binary elements, with a “1” in the ith place indicating that the blood
unit is infected with disease i ∈ Ψ, and a “0” indicating otherwise. Thus, the sam-

ple space of
−→
Λ , which we denote by S (

−→
Λ), contains 2n vectors, which collectively

represent all prevalence possibilities for n diseases. We denote the joint probability

mass function of the random vector
−→
Λ by p−→

Λ
(
−→
λ ) ≡ Pr(

−→
Λ =

−→
λ ), for

−→
λ ∈ S (

−→
Λ).

Assumptions:

(A1) The outcome of test j for disease d(j) depends only on the prevalence of disease
d(j) in the blood unit, and not on the prevalence of the other diseases in the

1For detailed discussions on the validity and impact of assumptions, see Section 4.2.1 in Chap-
ter 4.
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disease set, that is, for j ∈ Ω,

Pr(T
d(j)
j x |

−→
Λ ) = Pr(T

d(j)
j x | Λd(j)), for x ∈ {+,−}.

(A2) Test outcomes are conditionally and jointly independent given the prevalence
vector, that is, for any test j1 ∈ Ω and S ′ ⊆ Ω| {j1},

Pr(T
d(j1)
j1

x |
−→
Λ , T

d(j)
j y, ∀j ∈ S ′) = Pr(T

d(j1)
j1 x |

−→
Λ ), for x, y ∈ {+,−}.

To reiterate, these assumptions are not needed for the main results in this chapter
to hold. We mainly use them to calculate the parameters needed in the optimization
model from data widely available in the medical literature. Further, the optimal
solutions obtained for Problem RMP in Chapter 4 rely on these assumptions, which
we use to generate the optimal solution under differential testing.

In practice, the decision-maker also needs to adopt a “decision rule,” which prescribes
when to classify the blood unit as “infection-free” for a particular disease versus
“infected,” when the selected test set contains multiple tests for the same disease.
However, the decision rule was not discussed in this chapter, as it only impacts the
parameter calculations in DF-RMP, and not the problem structure. The “Believe
the Positive (BP)” rule, which classifies the blood unit as infected if at least one
test outcome in the battery is “+”, is a commonly adopted decision rule in blood
screening due to its conservative nature for the non-differential testing problem. The
BP rule is proven to be optimal (in Chapter 4) for minimizing the TTI risk, which
is also the objective in the context of this chapter. Therefore, in this chapter, we
adopt the BP rule to calculate the parameters needed for the optimization model.
Recall, from Chapter 4, that RMP under BP rule is defined as follows.

Risk-based Minimization Problem (RMP):

MaximizeS∈Ω1− Pr

(∩
i∈Ψ

Ai− |
∩
j∈S

T
d(j)
j −

)

subject to
∑
j∈S

cj ≤ B.

Observe that RMP is equivalent to DF-RMP, with pk restricted to binary, k =
0, 1, . . . , f . Hence, RMP provides an upper bound on the optimal risk (equivalently,
a lower bound on the optimal objective function value) to DF-RMP.
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Remark 5 Under Assumptions (A2) and (A3) and the BP rule, we have the fol-
lowing expressions (see Chapter 4 for the derivations):

• T − (S) =
∩
j∈S

T
d(j)
j − (by the BP rule).

• Pr

(∩
i∈Ψ

Ai− |
∩
j∈S

T
d(j)
j −

)
=

Pr

( ∩
i∈Ψ

Ai−,
∩

j∈S
T

d(j)
j −

)

Pr

( ∩
j∈S

T
d(j)
j −

) (by Bayes’ Theorem).

• Pr

(∩
i∈Ψ

Ai−,
∩
j∈S

T
d(j)
j −

)
= Pr

(∩
i∈Ψ

Ai−
) ∏

j∈S
Pr
(
T

d(j)
j − |Ad(j)−

)
.

• Pr

(∩
j∈S

T
d(j)
j −

)
=

∑
−→
λ ∈S (

−→
Λ)

{
Pr
(−→
Λ =

−→
λ
) ∏

j∈S
Pr
(
T

d(j)
j − |

−→
Λ =

−→
λ
)}

Corollary 6 Suppose the optimal test set for DF-RMP under budget B is S∗
k1
, that

is, K+ = {k1}. Then, the optimal test set for RMP is also S∗
k1
.

Proof. Follows directly from the fact that RMP is equivalent to DF-RMP, with
binary restrictions on variables pk, k = 0, 1, . . . , f .

Let DF (B) and NDF (B) respectively denote the indices of all test sets that are
part of an optimal solution to DF-RMP and RMP for any budget level in [0, B].
Then, from Proposition 10, DF (B) = {kP (s), s ∈ Z+}.

Proposition 11 For any budget range [0, B], we have that DF (B) ⊆ NDF (B).

Proof. Follows directly from Corollary 6.

As discussed above, DF-RMP utilizes 2|Ω| decision variables, each of which requires
two objective function coefficients to be calculated a priori. Proposition 11 indicates
that a portion of these decision variables can be eliminated without loss of optimality.
Our numerical study in the next section suggests that Proposition 11 can be very
powerful, and leads to a significant reduction of decision variables in DF-RMP.



126

6.6 A Numerical Study - The Sub-Saharan Africa

Case

Here we use sub-Saharan Africa case study first introduced in Chapter 4 to demon-
strate our models and analysis. The TTIs included in this study are HIV, HBV,
HCV, HTLV, and WNV. These include the major diseases recommended for screen-
ing by the WHO (WHO, 2011) and/or the FDA (FDA, 2011) except for Syphilis and
Chagas’ Disease, which are omitted from the case study due to a lack of data. The
HIV prevalence in sub-Saharan Africa varies, by country, from 2% to 26% (UNAIDS,
2008); we use 15% in this study. HBV, HCV, and HTLV prevalence rates for this
region are estimated at 10%, 3%, and 3%, respectively (Kiire, 1996; Madhava et al.,
2002; Proietti et al., 2005). Prevalence rates are difficult to estimate for the WNV,
as most WNV infections occur in the form of outbreaks (Mostashari et al., 2001);
we use 1% as an approximation for the prevalence rate, based on a study of WNV
antibodies (Petersen, 2009). The HIV-infected population has a co-infection rate for
HBV and HCV of 10% and 15%, respectively (Carmo et al., 2000; Lincoln et al.,
2003), while the HCV-infected population has a co-infection rate for HBV of 10%,
which is within the worldwide range of 9%-30% (see Adewole et al., 2009; Christian
et al., 2010; Forbi et al., 2007; Gordona and Sherman, 2009; Otegbayo et al., 2008;
Soriano et al., 2006). We ignore the triple co-infection rate of HIV-HBV-HCV. To
screen for these TTIs, we can select from 33 FDA-approved tests, whose efficacy and
unit administration cost data are available (FDA, 2010; Jackson et al., 2003), see
Table 6.1.

In the following, we discuss the findings from this case study. The results of our
other numerical studies are similar.

6.6.1 Effectiveness of CR Heuristics for Problem RMP

By Proposition 11 and Corollary 6, we can find the optimal solutions under varying
budget level B for DF-RMP by considering only the optimal test sets under budget
level 0-B for RMP. However, RMP, first introduced in Chapter 4 remains to be a
very difficult problem to solve to optimality. Chapter 4 proposed a highly effective
heuristic, CR Heuristic, to give near-optimal test sets. The effectiveness of CR
Heuristic in terms of deviation in objective function values are investigated in the
numerical studies in Chapter 4.
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Table 6.1: Efficacies and administration costs for FDA-approved blood screening
tests

TTI Test Specificity Sensitivity Qj Cost($) TTI Test Specificity Sensitivity Qj Cost($)
HBV 1 0.9839 0.9900 0.0102 3 HIV 17 0.9940 0.9970 0.0030 17

2 0.9982 0.9600 0.0401 3 18 0.9983 0.9915 0.0085 5
3 0.9980 0.9970 0.0030 4 19 0.9983 0.9984 0.0016 5
4 0.9685 0.9882 0.0122 2 20 0.9977 0.9976 0.0024 5
5 0.9380 0.8810 0.1269 5 21 0.9978 0.9972 0.0028 5
6 0.9940 0.9810 0.0191 8 22 0.9960 0.9820 0.0181 4

HIV 7 0.9960 0.9970 0.0030 5 HCV 23 0.9979 0.6330 0.3678 4
8 0.9790 0.9400 0.0613 15 24 0.9880 0.9640 0.0364 3
9 0.9080 0.8560 0.1586 10 25 0.9984 0.9949 0.0051 5
10 1.0000 0.8050 0.1950 13 26 1.0000 0.6330 0.3670 10
11 0.9640 0.6530 0.3600 8 27 0.9380 0.8560 0.1535 15
12 0.9930 0.9670 0.0332 18 28 0.9967 0.9900 0.0100 18
13 0.9991 0.9975 0.0025 5 29 0.9730 0.9910 0.0092 16
14 0.9880 0.9920 0.0081 4 WNV 30 0.9986 0.8690 0.1312 5
15 0.9900 0.9950 0.0051 4 31 0.9890 0.9860 0.0142 4
16 0.9967 0.9900 0.0100 18 HTLV 32 0.9963 0.9976 0.0024 4

33 0.9989 0.9948 0.0052 5

Therefore, in this section of our numerical studies, we further study the difference in
test sets by solvingRMP for small problem instances through complete enumeration,
and comparing its optimal solution with the solution given by CR Heuristic. In
particular, we consider only a subset of the tests2 in Table 6.1 under a range of
budgets ($5-30) for each of sub-Saharan Africa and Ghana.

We find that the optimal test sets generated by RMP and test sets given by CR
Heuristic are exactly the same in all 52 scenarios considered (in both the sub-Saharan
Africa and Ghana case studies). This suggests that CR Heuristic provides a very
good approximation for the optimal test sets in RMP. Consequently, we consider
the test sets generated by CR Heuristic as the optimal test sets for RMP in our
realistic-sized problems in the remainder of this section.

6.6.2 The Differential Testing Scheme versus Current Prac-
tice

In this section, we consider only the test sets generated by CR Heuristic for RMP
(given as “Non-Differential Testing” in Table 6.3) to find the optimal solution under

2The subset of the tests we consider are very cost-effective, and are often the ones selected by
RMP and WT-RMP. Specifically, we consider ten tests, with two tests per disease: Tests 1,3 for
HBV, 13,19 for HIV, 24,25 for HCV, 30,31 for WNV, and 32,33 for HTLV.
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differential testing scheme in DF-RMP. By greedy algorithm and Corollary 5, we
can find the optimal solutions for “Differential Testing” scheme, given in Table 6.3.
In addition, we provide the results of the current practice, including the test sets and
corresponding risks, in Table 6.2.

Table 6.2: Results for WHO/FDA-compliant Test Sets and Partial Fulfilment of
Guidelines

Guidelines 30% Testing†
HBV HIV HCV WNV HTLV Risk (%) Cost ($) Risk (%) Cost ($)

Min-Risk1 3 19 25 5.316 14 22.406 4.2
Min-Cost1 4 15 24 5.476 9 22.639 2.7
Min-Risk2 3 19 25 31 32 0.092 22 21.473 6.6
Min-Cost2 4 15 24 30 32 0.474 17 21.897 5.1
Min-Risk1, Min-Risk2: The lowest risk test set that meets the WHO and FDA requirements, respectively.
Min-Cost1, Min-Cost2: The lowest cost test set that meets the WHO and FDA requirements, respectively.
†: Partial (30%) fulfillment of the WHO/FDA requirements, 70% no testing. The cost of 30% Testing is
30% of the cost to follow its corresponding guidelines.

Table 6.2 shows the selected test sets when different guideline enforced and its re-
sultant risk and cost. In 30% Testing column, we present the resultant risk of the
partial fulfillment of WHO or FDA requirements, with fractional solutions denoted as
p0 = 0.7, pS = 0.3, where S is the scenario of the guidelines enforced. Note that 30%
Testing scheme costs only 30% of the complete fulfillment of the guidelines. Table 6.3
report the test sets obtained by CR Heuristic in RMP, optimal solutions allowing
differential testing by solving DF-RMP, and their resultant risks and costs. In Ta-
ble 6.3, the costs of the test sets generated by non-differential testing scheme are the
same as the budget level in this case study, except a few cases when B = 1, 46, 50.
Meanwhile, the budget constraint is always binding in differential testing scheme,
see Proposition 8.

From the greedy algorithm, we know that the optimal solution in DF-RMP is
determined by the risk reduction per dollar, while Qj, j ∈ Ω of a test and the
prevalence of its corresponding infection determines risk reduction. Take B = 2
in Table 6.3 as an example in this case study. Although HIV is the most prevalent
disease in this case study and #15 is a very cost-effective test for HIV that are
often chosen in RMP, DF-RMP chooses an integral solution of implementing Test
#4 for HBV as oppose to a partial fulfillment of Test #15. The reason is clear
when we consider the risk reduction per dollar by each of these two tests. From
Table 6.3, Test #4 yields 27.950%−20.053%

2
= 3.95% per dollar, while Test #15 yields

only 27.950%−15.311%
4

= 3.16%. This important relationship expands to the case of
test set with multiple tests and is formulated in the greedy algorithm proposed in
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Table 6.3: The Optimal Solutions Given by Differential and Non-differential Testing
Scheme under Varying Budget Allocations

RMP (Non-Differential) DF-RMP (Differential)
Budget($) S∗ HBV HIV HCV WNV HTLV Risk (%) −→p ∗ Risk (%)

0 S0 27.950 p∗0 = 1 27.950
1 S0 27.950 p∗0 = 0.50,p∗1 = 0.50 24.269
2 S1 4 20.053 p∗1 = 1 20.053
3 S2 1 20.035 p∗1 = 0.75, p∗5 = 0.25 16.978
4 S3 15 15.311 p∗1 = 0.50, p∗5 = 0.50 13.641
5 S4 19 15.259 p∗1 = 0.25, p∗5 = 0.75 10.005
6 S5 4 15 6.028 p∗5 = 1 6.028
7 S6 4 19 5.971 p∗5 = 0.75, p∗9 = 0.25 5.105
8 S7 3 15 5.932 p∗5 = 0.50, p∗9 = 0.50 4.161
9 S8 4 15 24 5.476 p∗5 = 0.25, p∗9 = 0.75 3.197
10 S9 4 15 32 2.211 p∗9 = 1 2.211
11 S10 4 19 32 2.149 p∗9 = 0.75, p∗13 = 0.25 1.886
12 S11 3 15 32 2.107 p∗9 = 0.50, p∗13 = 0.50 1.556
13 S12 4 15 24 32 1.613 p∗9 = 0.25, p∗13 = 0.75 1.223
14 S13 4 15 31 32 0.885 p∗13 = 1 0.885
15 S14 4 19 31 32 0.821 p∗13 = 0.67, p∗16 = 0.33 0.682
16 S15 3 15 31 32 0.778 p∗13 = 0.33, p∗16 = 0.67 0.478
17 S16 4 15 24 31 32 0.270 p∗16 = 1 0.270
18 S17 4 19 24 31 32 0.216 p∗17 = 1 0.216
19 S18 3 15 24 31 32 0.166 p∗17 = 0.50, p∗19 = 0.50 0.163
20 S19 3 19 24 31 32 0.112 p∗19 = 1 0.112
21 S20 1,4 19 24 31 32 0.079 p∗20 = 1 0.079
22 S21 3,4 19 24 31 32 0.078 p∗20 = 0.50, p∗22 = 0.50 0.069
23 S22 1,4 19 25 31 32 0.059 p∗22 = 1 0.059
24 S23 1,4 14,15 24 31 32 0.054 p∗22 = 0.67, p∗25 = 0.33 0.051
25 S24 3,4 14,15 24 31 32 0.053 p∗22 = 0.33, p∗25 = 0.67 0.043
26 S25 1,4 14,15 25 31 32 0.035 p∗25 = 1 0.035
27 S26 3,4 14,15 25 31 32 0.034 p∗25 = 0.80, p∗30 = 0.20 0.031
28 S27 3,4 15,19 25 31 32 0.033 p∗25 = 0.60, p∗30 = 0.40 0.028
29 S28 1,4 14,15 24,25 31 32 0.032 p∗25 = 0.40, p∗30 = 0.60 0.025
30 S29 3,4 14,15 24,25 31 32 0.031 p∗25 = 0.20, p∗30 = 0.80 0.021
31 S30 1,4 14,15 25 30,31 32 0.018 p∗30 = 1 0.018
32 S31 3,4 14,15 25 30,31 32 0.017 p∗30 = 0.80, p∗35 = 0.20 0.016
33 S32 3,4 15,19 25 30,31 32 0.016 p∗30 = 0.60, p∗35 = 0.40 0.014
34 S33 1,4 14,15 24,25 30,31 32 0.015 p∗30 = 0.40, p∗35 = 0.60 0.012
35 S34 3,4 14,15 24,25 30,31 32 0.014 p∗30 = 0.20, p∗35 = 0.80 0.010
36 S35 1,4 14,15 25 30,31 32,33 0.008 p∗35 = 1 0.008
37 S36 3,4 14,15 25 30,31 32,33 0.007 p∗35 = 0.67, p∗38 = 0.33 0.007
38 S37 3,4 15,19 25 30,31 32,33 0.006 p∗35 = 0.33, p∗38 = 0.67 0.006
39 S38 1,4 14,15 24,25 30,31 32,33 0.005 p∗38 = 1 0.005
40 S39 3,4 14,15 24,25 30,31 32,33 0.004 p∗39 = 1 0.004
41 S40 3,4 15,19 24,25 30,31 32,33 0.003 p∗40 = 1 0.003
42 S41 1,3 15,19 24,25 30,31 32,33 0.003 p∗40 = 0.50, p∗42 = 0.50 0.003
43 S42 1,2,4 15,19 24,25 30,31 32,33 0.003 p∗42 = 1 0.003
44 S43 1,2,4 13,19 24,25 30,31 32,33 0.003 p∗43 = 1 0.003
45 S44 1,3,4 13,19 24,25 30,31 32,33 0.003 p∗44 = 1 0.003
46 S44 1,3,4 13,19 24,25 30,31 32,33 0.003 p∗44 = 0.67, p∗46 = 0.33 0.003
47 S45 1,2,4 14,15,19 24,25 30,31 32,33 0.003 p∗44 = 0.33, p∗46 = 0.67 0.003
48 S46 1,3,4 14,15,19 24,25 30,31 32,33 0.003 p∗46 = 1 0.003
49 S47 1,3,4 13,19 23,24,25 30,31 32,33 0.003 p∗47 = 1 0.003
50 S47 1,3,4 13,19 23,24,25 30,31 32,33 0.003 p∗47 = 0.50, p∗48 = 0.50 0.003
51 S48 1,2,4 14,15,19 23,24,25 30,31 32,33 0.003 p∗48 = 1 0.003

Section 6.3.

We first observe that test sets obtained fromRMP in Non-Differential Testing would
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achieve significant reduction in risk by comparing the risk between Guidelines and
RMP at the same budget level. The policy implication of this deviation is detailed in
Chapter 5. In addition, by comparing the test sets and solutions of RMP and DF-
RMP, we find that the solution given in these two models are the same at certain
budget levels, B = 0, 2, 6, 10, 14, . . ., which are highlighted in gray in Table 6.3.
However, on the budget levels in between, B = 1, 3, 4, 5, 7, 8, 9, . . ., DF-RMP adopts
fractional solutions and thus achieves significant risk reduction at these budget levels,
see also Figure 6.3. In most cases of this case study, where DF-RMP has a lower
resultant risk, the budget constraint of RMP is binding in the optimal test set, e.g.,
B = 3, 4, 5, 7, 8, . . .. For these cases, the risk reductions are achieved by allowing
fractional solutions in DF-RMP. In a few cases where the budget constraint of
RMP is not binding, that is, B = 1, 46, 50, the extra dollar per unit of the solutions
obtained in DF-RMP also contributes the risk reduction. For example, there does
not exist feasible solution in RMP when B = 1, while DF-RMP gives fractional
results where budget constraint is still binding.

It is also interesting to compare the existing scheme in sub-Saharan Africa, in which
only around 30% of the blood donations undergo regular testing (see the 30% Testing
scheme for the WHO-compliant Min-Risk and Min-Cost in Table 6.2). We approxi-
mate the cost of 30% Testing to be 30% of the cost to follow the complete guidelines.
For example, to follow the WHO guidelines of the Min-Risk scheme would cost $14
with the resultant risk to be 5.316%. In this case, 30% Testing would incur a cost of
0.3 × $14 = $4.2 and risk of 22.406%. At this budget level, RMP model is able to
reduce the risk to 15.311%. Furthermore, DF-RMP model with differential testing,
if implemented, is able to further reduce the risk to 12.939%3. Similar reduction
in risk with different enforced guideline is observed by allowing differential testing,
especially when the budget level is low, see Figure 6.3.

6.7 Conclusions and Future Directions

In this chapter, we continue the path of the constructed risk optimization model
and consider a differential testing scheme to the problem of risk minimization, in
which an optimal solution is allowed to contain multiple test sets, each applied to
a fraction of the total blood units. We formulate the differential testing problem of
risk minimization under budget constraint and propose the equivalent formulations
of the problem. In addition, we discuss the structural properties of the formulated

3Optimal solution of DF-RMP is calculated to be p∗1 = 6−4.2
6−2 = 0.45, p∗5 = 4.2−2

6−2 = 0.55
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Figure 6.3: Differential Testing Scheme versus Non-Differential Testing Scheme (Bud-
get B in $1− 50)

problem, based upon which we propose a simple greedy algorithm and prove that
it is capable of finding the optimal solutions to the differential testing problem for
a range of budget levels. We provide a numerical study on the effectiveness of the
proposed algorithm and the results of both the optimization approach and current
practice in sub-Saharan Africa. The numerical results show that flexibility in policy
implementation by allowing a differential testing scheme further reduce risk over the
“same-for-all” policy, which is currently in use in the US. The results also provide
important policy implications on the implementation of blood screening schemes.

Several variations and extensions of this work are worthy of future research. An
important direction is to incorporate the waste consideration (i.e., fraction of blood
units that are falsely rejected) into the model for differential testing. Waste has been
added to the non-differential testing as a constraint in Chapter 5. As another impor-
tant measure for the performance of test set, waste will have a significant impact on
both the solution methodology and the optimal solutions. Another important direc-
tion is to consider other important measures, such as weighted risk that considered
in Chapter 5. It is important to understand how the algorithms and the resulting
optimal solutions change when the social cost aspect is considered.



Chapter 7

Mortality Associated with Hip and
Knee Replacement Volumes in
Elderly Patients

7.1 Introduction

Both hospital and surgeon procedure volumes have been associated with lower rates
of mortality and complications for several surgical procedures. (Dudley et al., 2000;
Hannan et al., 1989, 1995, 1997, 1998; Jollis et al., 1997) This ’volume-outcome re-
lationship’ has also been investigated in joint replacement surgery. (Browne et al.,
2009; Katz et al., 2001) The results for hospital volume and outcome in joint replace-
ment appear to be inconsistent and inconclusive depending on the specified outcome
and population. A direct relationship between surgeon volume and outcome does
exist for these procedures. (Browne et al., 2009; Katz et al., 2001) However, em-
piric thresholds on procedure volume for a given outcome have not been determined.
There is nothing in the literature to support or refute a hospital size-outcome rela-
tionship in joint replacement surgery. The outcomes of joint replacement patients,
particularly for elderly patients with significant comorbid conditions, may depend as
heavily on the healthcare team’s performance as the surgeon’s performance. Hence,
smaller hospitals that are resource constrained may impact both the hospital person-
nel’s and surgeon’s ability to be successful in achieving optimal outcomes for elderly
patients. Therefore, we examined the relationships between surgeon volume, hospital
context (small, medium, large hospitals), hospital volume and mortality for elderly

132
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patients undergoing joint replacement surgery in the US with the hope that it could
inform effective practices for elderly patients.

7.2 Methods

7.2.1 Data Source

Data were obtained from the healthcare Cost and Utilization Project’s (HCUP) Na-
tionwide Inpatient Sample (NIS) of the Agency for Health-care Research and Quality
(AHRQ). (Agency for Healthcare Research and Quality, 2010a) This dataset is the
largest, all-payer, inpatient database in the US. During the study period of 2006, the
NIS contains data from 5 to 8 million hospital discharges from approximately 1,000
hospitals sampled to approximate a 20-percent stratified sample of US community
hospitals. These hospitals are heterogeneous with respect to geographic location,
bed size, and the populations they serve. Participating hospitals provided discharge
data including demographics, health status, co-morbidity, utilization, and hospital
characteristics. Data were subjected to various reliability and validity checks be-
fore being incorporated into the database. In particular, the NIS dataset includes
discharge-level variables such as age, gender, ethnicity, primary payer, disposition,
diagnoses and procedures, utilization, and hospital characteristics. Coding for NIS
is in accordance with the International Classification of Diseases, Ninth Revision,
Clinical Modification (ICD-9-CM).

7.2.2 Inclusion Criteria

Elderly patients (> 65 years) who were surgically treated with hip or knee replace-
ments were identified using the ICD-9 procedure codes for hip (00.70; 00.71; 00.72;
00.73; 00.74; 00.75; 00.76; 00.77; 00.85; 00.86; 00.87; 81.51; 81.52; 81.53; 81.69) and
knee replacements (00.80; 00.81; 00.82; 00.83; 00.84; 81.54; 81.55).

7.2.3 Study Definitions and Outcomes

In-hospital mortality was the dependent variable of interest for this study. The pri-
mary predictor variables were hospital volume, surgeon volume and hospital bed
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size. Individual hospitals and surgeons were identified by unique identifiers present
as discrete variables within the dataset. Categorical groups were identified for both
hospital and surgeon volume and defined as low, medium and high volume at signif-
icant changes in slope of the mortality curves.

• Hospital Volume: Hospital volume was defined as the annual number of joint
replacement procedures performed in the hospital.

• Surgeon Volume: Surgeon volume was defined as the annual number of joint
replacement procedures performed by the surgeon.

• Hospital Size: As determined by the NIS, hospital bed size was included in
the analysis in the following manner depending on the location and teaching
status of the hospital.(Agency for Healthcare Research and Quality, 2010b)
Small rural hospitals are defined by having < 49 beds. Small urban hospitals
have < 99 beds. If the urban hospital is a teaching hospital, it is considered
’small’ if it has < 299 beds. Medium rural hospitals have 50-99 beds. Medium,
urban, hospitals have 100-199 beds if non-teaching and 300-499 if a teaching
hospital. Large, rural hospitals have >100 beds, large urban hospitals have >
200 beds if non-teaching, and >500 beds if teaching.

Potential confounders, including patient and hospital characteristics such as gender,
age, race, hospital control and location were also identified and investigated for their
associations with the outcomes of interest.

7.2.4 Analytic Sequence

After identifying the patients who underwent the specified procedures, bivariable
analyses were performed using chi square tests to identify the patient and institu-
tional level characteristics associated with mortality. A linear regression analysis was
used to identify the empiric volume-mortality thresholds in each of the groups. To
further adjust for the patient and hospital characteristics associated with mortality, a
logistic regression model was performed. The odds ratios for mortality are reported.
Data are reported as point estimates with their associated confidence intervals (CI).
Reference groups were selected by identifying the category within a variable that
had the lowest value. A p-value of < 0.05 was used as the significance level for all
analyses and SAS was used to perform all of the analytics.
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7.3 Results

7.3.1 Population and Institutional (Demographics) Results

We identified 49,609 and 65,161 elderly patients surgically treated with hip and knee
replacements, respectively. Table 1 provides a comparison of the patient, hospital,
utilization and volume characteristics for hip and knee replacements and their as-
sociation with mortality. Males had higher mortality rates after joint replacement
procedures than females (1.67% vs.1.15% for hip and 0.23% vs. 0.12% for knee,
p<.001). Age was significantly associated with mortality for both hip and knee re-
placements (Table 7.1-7.3); and a linear trend existed between increasing age and
mortality (Cochran Armitage Test for Trend <.001). Figure 7.1 further demonstrates
the trend established by the Cochran Armitage Test by showing the mortality in dif-
ferent age groups. The LOS was also associated with mortality with a bimodal
relationship characterized by significantly higher mortality rates for patients with
LOS < 3 days and again at > 5 days. There were no statistically significant re-
sults observed between Payer, Region, Ownership, Location or Teaching status and
mortality after joint replacement.

7.3.2 Volume-Outcome Results

Table 7.1-7.3 also describes the relationship between hospital size, hospital volume,
surgeon volume and mortality for elderly patients hospitalized after joint replace-
ment. Hospital bedsize was not an independent predictor for mortality for either hip
or knee replacements (all p=NS). Hospital volume was independently associated with
mortality after hip replacement (low-volume and medium-volume groups had mortal-
ity rates of 1.73% and 1.33%, respectively, compared to 0.94% for high-volume groups
(p-value <.001). Hospital volume was not associated with mortality for knee replace-
ments (Table 7.1-7.3). Surgeon volume was independently associated with mortality
for both hip and knee replacements with the highest mortality rates being identified
in the low (1.95%) and moderate (0.56%) surgeon volume for hip replacements and
the lowest surgeon volume for knee replacements (0.12%). Table 7.2 describes the
relationship when hospital volume and surgeon volume when considered together.
For surgeons with low hip replacement procedure volumes there was a significant
relationship with mortality in hospitals of all sizes (Table 7.2). However, there were
no significant relationships for hip replacement mortality once the surgeons reached
medium volumes, regardless of hospital size (Table 7.2). Mortality differences did
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Figure 7.1: Mortality for Hip and Knee Replacements by Age Groups
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Table 7.1: Population and Institutional Characteristics

Baseline Mortality after Odds Ratio p-value Mortality after Odds Ratio p-value
Characteristics Hip Replacement (95% CI) Knee Replacement (95% CI)

N (%) N (%)

Patient
Characteristics

Gender
Male 271 (1.67) 1.45 (1.24,1.70) <.001 55 (0.23) 1.93 (1.32,2.84) <.001
Female 384 (1.15) Reference 50 (0.12) Reference

Race/ethnicity
White 412 (1.29) Reference 73 (0.18) Reference
Black 27 (1.98) 1.55 (1.05,2.30) 0.03 2 (0.08) 0.46 (0.11,1.86) 0.26

Hispanic 28 (2.04) 1.60 (1.09,2.36) 0.02 5 (0.16) 0.91 (0.37 2.25) 0.84
Asian or 7 (1.85) 1.45 (0.68,3.08) 0.33 0 (0.00) N/A N/A

Pacific Islander
Native American 2 (2.25) 1.76 (0.43, 7.19) 0.42 0 (0.00) N/A N/A

Other 16 (2.49) 1.96 (1.18,3.25) 0.008 0 (0.00) N/A N/A

Age
65-70 25 (0.25) Reference 15 (0.07) Reference
71-75 62 (0.65) 2.64 (1.66,4.20) <.001 24 (0.13) 1.97 (1.03,3.76) 0.04
76-80 98 (0.92) 3.75 (2.42,5.83) <.001 32 (0.22) 3.23 (1.75,5.98) <.001
81-85 151 (1.53) 6.27 (4.10,9.58) <.001 20 (0.26) 3.90 (1.99,7.61) <.001
>86 319 (3.37) 14.19 (9.37,21.2) <.001 14 (0.57) 8.57 (4.13,17.8) <.001

Hospital
Characteristics

Hospital Ownership
Government or private, 368 (1.29) 1.10 (0.76,1.58) 0.62 58 (0.16) 1.09 (0.65,1.84) 0.73

collapsed category
Government, 44 (1.23) 1.04 (0.66,1.65) 0.86 11 (0.22) 1.47 (0.70,3.10) 0.31

nonfederal, public
Private, 135 (1.32) 1.12 (0.76,1.65) 0.86 19 (0.15) Reference

non-profit voluntary
Private, invest-own 76 (1.67) 1.43 (0.94,2.17) 0.09 11 (0.16) 1.11 (0.53,2.32) 0.79

Private, 32 (1.17) Reference 6 (0.15) 1.01 (0.40,2.54) 0.98
collapsed category

Location and teaching
status
Rural 86 (1.33) 1.02 (0.80,1.31) 0.85 17 (0.20) 1.31 (0.74,2.32) 0.35

Urban nonteaching 306 (1.33) 1.03 (0.87,1.21) 0.76 49 (0.16) 1.04 (0.68,1.58) 0.87
Urban teaching 263 (1.30) Reference 39 (0.15) Reference

not exist for knee replacement procedures regardless of surgeon or hospital volumes
Table 7.2).

7.3.3 Volume-Outcome Threshold Results

Figure 7.2 demonstrates the relationship of hospital (Panel A) and surgeon (Panel
B) volume after hip replacements with mortality. Mortality for hip replacements
decreases dramatically for the first 50 cases of hospital volume and continues to
decrease up to 200 cases before reaching a plateau after 200 cases (Figure 7.2, Panel
A). Linear regression for the low volume group had a coefficient of -1.29E-04 with an
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Table 7.3: Population and Institutional Characteristics (Continued)

Baseline Mortality after Odds Ratio p-value Mortality after Odds Ratio p-value
Characteristics Hip Replacement (95% CI) Knee Replacement (95% CI)

N (%) N (%)

Utilization
Length of Stay (Days)

0 9 (40.91) 150.3 (62.1,364) <.001 3 (8.82) 407 (101,1645) <.001
1 34 (14.78) 37.7 (24.8,58.4) <.001 7 (0.71) 30.1 (10.6,86.1) <.001
2 50 (2.75) 6.13 (4.22,8.90) <.001 15 (0.33) 14.0 (5.71,34.4) <.001
3 64 (0.46) Reference 7 (0.02) Reference
4 58 (0.49) 1.07 (0.75,1.52) 0.72 9 (0.05) 2.20 (0.82,5.92) 0.1078
5 63 (0.90) 1.96 (1.38,2.78) <.001 7 (0.12) 4.87 (1.71,13.9) <.001

6-10 165 (1.44) 3.17 (2.37,4.23) <.001 23 (0.38) 16.1 (6.88,37.42) <.001
11-50 207 (6.38) 14.8 (11.1,19.6) <.001 32 (3.40) 148 (65,336) <.001
>50 5 (13.89) 35.0 (13.2,92.9) <.001 2 (18.18) 934 (170,5121) <.001

Charges (Dollars)
<=10000 1 (0.65) 0.96 (0.13,6.92) 0.97 0 (0.00) N/A N/A

10000-20000 49 (1.37) 2.05 (1.44,2.92) <.001 4 (0.08) 1.89 (0.57,6.28) 0.29
20000-30000 107 (0.87) 1.29 (0.97,1.72) 0.08 9 (0.05) 1.12 (0.43,2.90) 0.82
30000-40000 84 (0.67) Reference 8 (0.04) Reference
40000-50000 63 (0.83) 1.24 (0.89,1.72) 0.2 15 (0.15) 3.32 (1.41,7.84) 0.004

>50000 337 (2.67) 4.04 (3.18,5.14) <.001 68 (0.51) 11.4 (5.49,23.78) <.001

Payer
Medicare 598 (1.33) 1.25 (0.90,1.74) 0.18 94 (0.16) 1.18 (0.57,2.43) 0.65
Medicaid 6 (2.16) 2.06 (0.86,4.91) 0.1 1 (0.17) 1.26 (0.16,10.08) 0.83

Private Insurance 38 (1.06) Reference 8 (0.14) Reference
Self-pay 2 (1.35) 1.28 (0.31,5.34) 0.74 0 (0.00) N/A N/A

No Charge 1 (6.67) 6.66 (0.85,51.91) 0.04 0 (0.00) N/A N/A
Other 6 (1.52) 1.43 (0.60,3.41) 0.41 2 (0.36) 2.59 (0.55,12.22) 0.21

Region
Northeast 128 (1.56) 1.45 (1.13,1.86) 0.004 13 (0.15) 1.11 (0.56,2.18) 0.77
Midwest 143 (1.15) 1.06 (0.83,1.36) 0.63 23 (0.13) Reference
South 267 (1.47) 1.36 (1.09,1.69) 0.006 47 (0.19) 1.44 (0.87,2.36) 0.15
West 117 (1.08) Reference 22 (0.16) 1.19 (0.66,2.14) 0.55

Volumes/Bedsize
Hospital Volume

Low 190 (1.73) 1.86 (1.48,2.35) <.001 17 (0.26) 1.78 (1.04,3.02) 0.03
Medium 345 (1.33) 1.43 (1.16,1.76) <.001 19 (0.17) 1.14 (0.69,1.90) 0.61
High 120 (0.94) Reference 69 (0.15) Reference

Surgeon Volume
Low 358 (1.95) 8.02 (4.51,14.27) <.001 47 (0.23) 1.91 (1.01,3.59) 0.04

Medium 42 (0.56) 2.29 (1.20,4.34) 0.01 12 (0.13) 1.05 (0.47,2.33) 0.91
High 12 (0.25) Reference 12 (0.12) Reference

Hospital Bedsize
Small 86 (1.23) Reference 12(0.12) Reference

Medium 188 (1.47) 1.20 (0.93,1.55) 0.16 27 (0.16) 1.30 (0.66,2.57) 0.45
Large 381 (1.28) 1.04 (0.82,1.32) 0.73 66 (0.17) 1.37 (0.74,2.54) 0.31

R-Square 0.299, for the medium volume group the coefficient was 5.46E-05 with an
R-Square 0.406, and for the high volume group the coefficient was 3.01E-06 with an
R-Square 0.002. Mortality for hip replacements by surgeon volume demonstrated a
similar relationship (Figure 7.2, Panel B). There was higher mortality for low volume
surgeons with < 20 procedures annually. As surgical volume increased to medium
volumes (21-50 annual procedures) and high volumes (>50), mortality continued to
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decrease. Linear regression results for the low volume group had a coefficient -1.39E-
03 with an R-Square 1, for the medium volume group the coefficient was -2.06E-03
with an R-Square 0.822, and for the high volume group the coefficient was 3.78E-
05 with an R-Square 0.735. Figure 7.3 demonstrates the relationship of hospital
(Panel A) and surgeon (Panel B) volume after knee replacements. Mortality for
knee replacements decreased dramatically for the first 50 cases of hospital volume
and continued to decrease up to 100 cases before reaching a plateau after 100 cases
(Figure 7.3, Panel A). . Linear regression results for the low volume group had a
coefficient of -7.27E-05 with an R-Square 0.954, for the medium volume group the
coefficient was -3.00E-05 with an R-Square 0.825, and for the high volume group the
coefficient was 1.36E-06 with an R-Square 0.006. Mortality for knee replacements by
surgeon volume demonstrated a similar relationship (Figure 7.3, Panel B). There was
higher mortality for low volume surgeons with < 40 procedures annually. As surgical
volume increased to medium volumes (41-80 annual procedures) and high volume
( > 80 annual procedures), the mortality rate continued to decrease. There were
significant changes in the slopes of the line fit plots between low, medium and high
volume groups. The linear regression results for the low volume knee replacement
group had a coefficient -6.56E-05 with an R-Square 0.299, for the medium volume
group a coefficient -6.70E-07 with an R-Square 0.00049, and for the high volume
group a coefficient -1.77E-05 with an R-Square 0.793.

7.3.4 Logistic Regression Results

The logistic regression results for both hip and knee replacement mortality are pre-
sented in Table 7.4. After adjustment, the patient variables of age, race, and gender
remained statistically significant for hip replacement mortality. In addition, charges,
region and surgeon volume were independently associated with mortality after hip
replacement. For knee replacements, only gender, age, and charges were found to be
independently associated with mortality after adjustment and there was no statistical
significance for either surgeon or hospital volume.

7.4 Discussion

Joint replacement is one of the most frequent elective procedures used to treat DJD
in the US. Joint replacement research has focused largely on technological advances
to optimize performance and minimize risk. There has been additional interest in
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Figure 7.2: Linear Regression Results for Different Volume Groups for Hip Replace-
ment by Hospital (Panel A) and Surgeon (Panel B)
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Figure 7.3: Linear Regression Results for Different Volume Groups for Knee Replace-
ment by Hospital (Panel A) and Surgeon (Panel B)
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Table 7.4: Results of Logistic Regression Analyses for Morality after Joint Replace-
ment

Hip Replacement Effects Point Estimates (Odds Ratios)
Patient Characteristic Gender *1.663 (1.377, 2.008)

Race/ethnicity *0.868 (0.797, 0.946)
Age *0.904 (0.892, 0.915)

Hospital Characteristic Control/Owners of hospital 0.910 (0.816, 1.015)
Location and Teaching Status 0.884 (0.718, 1.087)

Utilization Charge *0.731 (0.677, 0.789)
Payer 0.942 (0.820, 1.082)
Region *1.286 (1.158, 1.428)

Volume & Bedsize Hospital Volume 1.000 (0.999, 1.001)
Surgeon Volume *1.020 (1.013, 1.028)
Hospital Bedsize 0.988 (0.857, 1.139)

Knee Replacement Effects Point Estimates (Odds Ratios)
Patient Characteristic Gender *2.013 (1.288, 3.146)

Race/ethnicity 1.453 (0.975, 2.164)
Age *0.917 (0.886, 0.949)

Hospital Characteristic Control/Owners of hospital 1.258 (0.964, 1.643)
Location and Teaching Status 1.502 (0.930, 2.425)

Utilization Charge *0.478 (0.383, 0.595)
Payer 0.932 (0.691, 1.255)
Region 0.973 (0.746, 1.268)

Volume & Bedsize Hospital Volume 0.999 (0.998, 1.001)
Surgeon Volume 1.004 (0.998, 1.009)
Hospital Bedsize 1.049 (0.747, 1.475)

* denotes a statistical significance

improving care delivery to optimize patient outcomes. One delivery strategy is to di-
rect patients toward hospitals and surgeons with particularly favorable results, which
requires a quantitative study on the characteristics of such hospitals and surgeons.
In particular, the association between surgical volumes and better patient outcomes
has been investigated and verified for a wide range of surgeries and outcomes.

Despite the lack of a widely accepted definition on what constitutes a ”high-quality”
provider or hospital, significant efforts have attempted to associate procedure volume
with various patient outcomes across a wide range of surgeries and specific conditions
(Stone et al., 1992; Thiemann et al., 1999; Ward, 1999) including coronary artery
bypass surgery, (Grumbach et al., 1995; Showstack et al., 1987) coronary angio-
plasty,(Hannan et al., 1997; Jollis et al., 1997, 1994; Kimmel et al., 1995) carotid en-
darterectomy,(Hannan et al., 1998) abdominal aortic resection,(Manheim et al., 1998)
cancer surgery,(Begg et al., 1998) complex gastrointestinal surgery,(Gordon et al.,
1998; Imperato et al., 1996) liver transplantation,(Edwards et al., 1999) cataract
surgery(Ninn-Pedersen and Stenevi, 1996) and shoulder arthroplasty. (Hammond
et al., 2003) Each of these studies consistently links better outcomes with a higher
hospital or surgeon volume. A systematic review on orthopedics, Shervin et al. (2007)
suggested the need for additional studies in the various subspecialties and popula-
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tions of orthopedic surgery to establish a conclusive association between hospital or
surgeon volume and specific patient outcomes (Shervin et al., 2007). Using the 2006
National Inpatient Sample (NIS), we determined the effectiveness of surgeon and
hospital volume, and hospital size on mortality after joint replacement surgery for
elderly patients. This research contributes to the literature by specifying the pro-
cedures (hip and knee replacements), the population (elderly patients >65 years),
the outcome (mortality), and the volume characteristic (bedsize, hospital and sur-
geon volume). This level of specification is particularly important for evaluating
effectiveness so that results can be compared across studies. While we were unable
to demonstrate significant relationships for hospital size and mortality, we did find
significant relationships for hip and knee replacements and hospital volumes and for
the first time defined empiric threshold limits, based on the data, for these proce-
dures where mortality rates changed significantly at different hospital and surgeon
volumes.

Using Medicare claims data, Katz and colleagues investigated the volumes of pri-
mary and revision total hip replacements. (Katz et al., 2004, 2007) Their findings,
especially for revision hip replacement, are limited because of small sample sizes,
which are overcome by our use of the NIS. The authors observed that for revision
hip replacements, surgeon, but not hospital volume was associated with mortality.
The authors claimed a trend across all volume strata with higher volumes being
associated with better outcomes. Their analyses failed to reveal volume thresholds
that distinguished patient outcomes and also concluded that in high-volume centers
with > 100 cases annually, surgeon volume was not associated with outcome. Unfor-
tunately, mortality changes in different subgroups may be subtle and undetectable
when the sample size is limited and the subgroups have insufficient volumes of pro-
cedures. Hence, we used nationally represented data to assure adequate power for
detecting subgroup differences related to the context of care in small, medium and
large volume hospitals. Browne investigated both surgeon and hospital volume in hip
fracture patients using 14-years worth of data extracted from a nationwide database
of US hospitals.(Browne et al., 2009) However, their subjective, threshold definitions
for hospital and surgeon volumes as low, medium, and high limited the interpreta-
tion of their findings. They also failed to find statistical differences between medium
volume providers and either high or low volume providers perhaps because of these
nonspecific definitions.

In contrast to the robust literature examining outcomes after primary hip arthro-
plasty, the relationship between hospital and surgeon volume and outcomes following
knee replacement has received little study. A few studies have suggested that low-



145

volume hospitals are associated with higher mortality and complications after total
knee replacement.(Stone et al., 1992; Thiemann et al., 1999; Katz et al., 2004, 2007)
However, the failure to adjust for relevant patient and hospital characteristics, (Stone
et al., 1992) and to consider the surgeons’ volumes Stone et al. (1992); Thiemann
et al. (1999) have limited the conclusions of these studies. Katz et al. (2004) pointed
out that the mortality in volume ”appeared to be a threshold effect”, which we cap-
tured in our analysis by introducing the empirical thresholds on both hospital volume
and surgeon volume for both hip and knee replacements. Their analysis also sug-
gested that the mortality was associated with hospital volume but not with surgeon
volume and ascribed the observations in mortality to the fact that they ”may reflect
hospital factors such as the quality and intensity of anesthesia care, nursing, and
other services.” Our analysis focused on the elderly population demonstrates that
neither hospital nor surgeon volume was found to be associated with patient out-
come following knee replacement. We specifically attempted to capture the context
of care, including anesthesia and nursing care, through the use of hospital bedsize
and volume limits.

A few studies have attempted to address whether other factors are more important
than volume for certain surgeries. (Ko et al., 2002) More than 30 different inde-
pendent variables, including demographic factors (eg, age, gender, race, ethnicity,
and socioeconomic status), burden of morbid and comorbid disease (prevalence and
severity), and provider variables (eg, hospital size, location, teaching status, hospital
and surgeon volume) were investigated for their association with mortality following
colon cancer resection. The findings of Clifford and colleagues suggested that volume
variables, although statistically significant, have a relatively smaller effect on out-
come compared with other factors.(Ko et al., 2002) In our analysis, we introduced
a number of patient and hospital level factors as potential confounders. We found
some important relationships among independent variables including gender, race,
age, region and charges for hip replacements and gender, age, and charges for knee
replacements remained important.

While this study has significant strengths, namely the use of a nationwide database
to identify the relationships between mortality, surgeon and hospital volume, there
are also some important limitations. First, as in most administrative datasets, out-
come definitions depend upon the available data or what can be derived from existing
data elements. We attempted to use an important and well-defined outcome (hospi-
tal mortality) and previously described methods for our analyses; nonetheless, one
must recognize the inherent imprecision of variables that arises from a misinterpre-
tation bias at the level of data entry. Second, the surgeon-volume relationship is
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just one of many variables that determine overall quality of care. Many other fac-
tors such as emergent surgery, surgeon accessibility, patient location and preferences
may contribute to the overall quality of care. Finally, there has been controversy
on the method of volume classification leading to contradictory conclusions on the
relationships between volume and outcome. Our method resolves this problem by
determining the empiric thresholds based on the trend in the data for the volume-
mortality relationship. Although inpatient mortality is widely accepted as an impor-
tant outcome measure, we recognize that there are other important outcomes that
may be important for patients undergoing these procedures including quality of life
that need to be taken into consideration when evaluating these procedures in the
future.

7.5 Conclusion

Total joint replacement is frequently used to improve the mobility and quality of life
for many patients. Elderly patients, in particular, may be at increased risk because
of their comorbid conditions and potential for complications. By defining empiric
surgeon and hospital volume thresholds for mortality, these patients may be able to
be served in a way that best meets their needs.



Chapter 8

Conclusion

This dissertation focuses on improving the safety of healthcare delivery through the
use of OR methodology in two clinical contexts: blood transfusion and joint (hip
and knee) replacement surgery. Various OR methodologies, including the probabilis-
tic risk assessment, optimization, and statistical analysis, are involved in different
contexts of this research as the decision support tools to better serve the purpose of
improving the safety and efficiency of healthcare delivery.

The first part of this dissertation consists of the development and analysis of a com-
prehensive risk model for RBC transfusion using the probabilistic risk assessment
methodology. Using this model, one can quantify the current risk (both overall and
severe transfusion risks), to the patient, coming from RBC transfusion in the United
States, and identify the main “critical points” in the transfusion process. This anal-
ysis also has the potential to identify targeted interventions and evaluate their costs
and benefits for risk reduction within a systematic framework. We have successfully
identified the leading causes of transfusion risks, such as febrile non-hemolytic reac-
tions, allergic reactions, and RBC alloimmunization, which usually result in clinically
mild outcomes. We also find that the severe transfusion risks are caused mostly by
circulatory overload and bacterial infection. This finding suggests that blood trans-
fusion processes are already heavily regulated, therefore, attention and resources that
are focused on the blood administration process instead will provide the highest risk
reduction in RBC transfusion in the US, especially when limited resources are an
important factor in the selection of transfusion safety programs. The result of this
study implies that the improvement of health policy decisions should be focused on
the fundamentals of patient care like the elimination of adverse events (through the
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elimination of erroneous administration of blood) as well as other events like febrile
reactions or circulatory overload, which have till now been realized to significantly
affect the safety of transfusions. The contributions of this PRA analysis are four-
folded. First, the PRA framework provides the integration of the current estimates
of blood transfusion risks. Second, the model provides an overview analysis of the
current landscape of transfusion safety in the US based upon the prevailing evidence
base in the literature. Third, the model is readily available for what-if analysis or
update as risks are eliminated and new risks are identified as new threats discov-
ered, thereby providing a methodology that produces a working document that can
be regularly updated as the evidence base matures. Finally, the model provides an
opportunity to apply a method used in other areas or industries to an important
category of low frequency, high risk events and serves as the template for performing
analyses on other healthcare problems like wrong site surgeries, patient falls, and
healthcare associated infections. Therefore, we conclude that probabilistic risk as-
sessment is an important and useful tool with implications for transfusion safety as
well as healthcare safety in general.

The contributions of this research in the context of resource allocation in blood
screening, detailed in Chapters 4-6, focus on presenting a novel analytical modeling
and algorithmic approach to a series of resource allocation problem in the design
of blood screening schemes: selecting the optimal composition of blood screening
tests; determining the appropriate performance metrics and their implications in the
effectiveness of screening schemes; discussing the impact of decision rules for different
objective functions; determining the optimal solution with respect to the differential
testing scheme.

In Chapter 4, we first propose a model for selecting the optimal composition of blood
screening tests in order to minimize the risk, along with the notations and assump-
tions that are used throughout the dissertation. We develop optimal algorithms for
a special case of the problem, and a near-optimal algorithm and lower bounds based
on that for the general problem. Our numerical study indicates that the heuristic
algorithm is very effective for realistic problem sizes. We compare the test composi-
tions generated by the heuristic algorithm for realistic data from sub-Saharan Africa,
Ghana, Thailand, and the United States in the numerical study, which highlights
the importance of generating region-specific test compositions for blood screening,
explicitly taking into account the regional mono and co-infection prevalence rates,
rather than following static guidelines, especially when these guidelines allow for a
wide range of possible selections. In addition, our study of sub-Saharan Africa shows
that an all-unit testing scheme, even with fewer tests per blood unit, outperforms a
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partial testing scheme at the same budget level, and is certainly more equitable.

In Chapter 5, one of the extensions we incorporated is to introduce waste consid-
eration (i.e., fraction of blood units that are falsely rejected) into the model as a
constraint. This is an important extension as the supply of blood products is not
sufficient to satisfy the demand worldwide, and this gap is increasing. We extend
mathematical models of the decision problem studied in previous chapters, by consid-
ering the various objective functions (minimization of the TTI risk and minimization
of the weighted TTI risk) and constraints (on budget and wasted blood) relevant in
practice. Our work generates insights on the relationship among these different
metrics, and on how they impact the test set. It also underscores the importance
of considering these different metrics in decision-making through an optimization-
based decision support system, as we find that the optimal test portfolio may have a
complex structure, which we illustrate through examples. In the numerical study of
this chapter, we further discuss the deviation between optimization-based approach
and the current practice under different objective functions, and its implications on
the policy making, especially when the prevalences of TTIs vary in regions.

In Chapter 6, we continue the blood testing study by considering a differential testing
scheme for the problem of risk minimization, in which an optimal solution is allowed
to contain multiple test sets, each applied to a fraction of the total blood units.
We formulate the differential testing problem of risk minimization under budget
constraint and propose the equivalent formulations of the problem. In addition,
we discuss the structural properties of the formulated problem, based upon which
we propose a simple greedy algorithm and prove that it is capable of finding the
optimal solutions to the differential testing problem for a range of budget levels.
We provide a numerical study on the effectiveness of the proposed algorithm and the
results of both the optimization approach and current practice in sub-Saharan Africa.
The numerical results show that flexibility in policy implementation by allowing a
differential testing scheme further reduce risk over the “same-for-all” policy. The
results also provide important policy implications on the implementation of blood
screening schemes.

Finally, we studied the relationship between hospital and surgeon volume and out-
comes following knee replacement in the context of joint replacement. In contrast
to the robust literature examining outcomes after primary hip arthroplasty, this re-
lationship has received little study. We successfully adjusted for relevant patient
and hospital characteristics and took into account the surgeons’ volumes for the es-
tablishment of association between volume and mortality. In our analysis, we also
introduced a number of patient and hospital level factors as potential confounders.
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We found some important relationships among independent variables including gen-
der, race, age, region and charges for hip replacements and gender, age, and charges
for knee replacements remained important. We captured, for the first time in the
peer-reviewed literature, the threshold effect of the relationship between mortality
and volume in our analysis by introducing the empirical thresholds on both hospital
volume and surgeon volume for both hip and knee replacements. This empirical
threshold effect and the method used in this work serve an insightful example and
tool that can be useful for the study of the outcomes of other procedures. Our analy-
sis focused on the elderly population demonstrates that neither hospital nor surgeon
volume was found to be associated with patient outcome following knee replacement.
We specifically attempted to capture the context of care, including anesthesia and
nursing care, through the use of hospital bedsize and volume limits. Total joint re-
placement is frequently used to improve the mobility and quality of life for many
patients. Elderly patients, in particular, may be at increased risk because of their
comorbid conditions and potential for complications. By defining empiric surgeon
and hospital volume thresholds for mortality using the method introduced in our
work, these patients may be able to be served in a way that best meets their needs.
In addition, analyses and methods in this work also provide a useful tool on other
procedures in the context of volume-outcome analysis.



Bibliography

Adams, W. P., H. D. Sherali. 1990. Linearization strategies for a class of zero-one
mixed integer programming problems. Operations Research 38 217–226.

Adewole, O. O., E. Anteyi, Z. Ajuwon, I. Wada, F. Elegba, P. Ahmed, Y. Betiku,
A. Okpe, S. Eze, T. Ogbeche, G. E. Erhabor. 2009. Hepatitis B and C Virus
co-infection in Nigerian patients with HIV infection. The Journal of Infection in
Developing Countries 3(5) 369.

Agency for Healthcare Research and Quality. 2010a. Healthcare cost and utilization
project (HCUP). Http://www.ahrq.gov/data/hcup/, Accessed on July 2010.

Agency for Healthcare Research and Quality. 2010b. Overview of the Nationwide
Inpatient Sample (NIS). http://www.hcup-us.ahrq.gov/nisoverview.jsp, Accessed
on July 2010.

Alter, H. J., D. W. Bradley. 1995. Non-A, non-B Hepatitis unrelated to Hepatitis C
Virus (non-ABC). Semin Liver Disease 15 110–120.

Alter, H. J., L. B. Seeff. 2000. Recovery, persistence, and sequelae in HCV infection:
A perspective on long-term outcome. Semin Liver Disease 20 17–35.

Alter, M. J. 2006. Epidemiology of viral Hepatitis and HIV co-infection. Journal of
Hepatology 44 S6–S9.

American Red Cross. 2004. North Central Blood Services, St. Paul (MN): The ser-
vices. Http://www.yourbloodcenter.org/ Questions.htm. Accessed on April 2010.

American Red Cross. 2005. Carmel Area Chapter. Carmel: The Chapter.
http://www.arccarmel.org/index.php?pr=Blood Drives, Accessed on April 2010.

American Red Cross. 2008. Arm to arm, 2nd ed.

151



152

Arora, D., B. Arora, A. Khetarpal. 2010. Seroprevalence of HIV, HBV, HCV and
Syphilis in blood donors in Southern Haryana. Indian J Pathol Microbiol 53
308–309.

AuBuchon, J. P., J. D. Birkmeyer, M. P. Busch. 2003. Cost-effectiveness of expanded
Human Immunodeficiency Virus-testing protocols for donated blood. Transfusion
37(1) 45–51.

Bajalinov, E. 2003. Linear-Fractional Programming: Theory, Methods, Applications
and Software. Boston: Kluwer Academic Publishers.

Begg, C. B., L. D. Cramer, W. J. Hoskins, M. F. Brennan. 1998. Impact of Hospital
Volume on Operative Mortality for Major Cancer Surgery. JAMA 280(20) 1747–
1751.

Beutel, J. 2000. Handbook of Medical Imaging: Medical Image Processing and Anal-
ysis . 6th ed. Bellingham, Wash:SPIE Press.

Bierbaum, B. E., J.J. Callaghan, J.O. Galante. 1999. An Analysis of Blood Man-
agement in Patients Having a Total Hip or Knee arthroplasty. J Bone Joint Surg
Am 81A 2–10.

Biggerstaff, B. J., L. R. Petersen. 2002. Estimated risk of West Nile Virus trans-
mission through blood transfusion during an epidemic in Queens, New York City.
Transfusion 42(8) 1019–1026.

Biggerstaff, B. J., L. R. Petersen. 2003. Estimated risk of transmission of the West
Nile Virus through blood transfusion in the US. Transfusion 43 1007–1017.

Bihl, F., D. Castelli, F. Marincola, R. Y. Dodd, C. Brander. 2007. Transfusion-
transmitted infections. Journal of Translational Medicine 5 25.

Bish, D. R., E. K. Bish, S. R. Xie, A. D. Slonim. 2010. Optimal Selection of Screening
Assays for Infectious Agents in Donated Blood. Accepted in IIE Transactions on
Healthcare Systems Engineering .

BloodBook. 2010. Blood transfusion risks - Regional differences in blood transmitted
diseases. http://www.bloodbook.com/trans-risk.html, Accessed on April 2010.

Bonacini, M., S. Govindarajan, L. M. Blatt, P. Schmid, A. Conrad, K. L. Lindsay.
1999. Patients co-infected with Human Immunodeficiency Virus and Hepatitis C
Virus demonstrate higher levels of Hepatic HCV RNA. Journal of Viral Hepatitis
6(3) 203–208.



153

Bonacini, M., H.J. Lin, F.B. Hollinger. 2001. Effect of coexisting HIV-1 infection on
the diagnosis and evaluation of Hepatitis C Virus. Journal of Acquired Immune
Deficiency Syndromes 26(4) 340.

Brandeau, M. L. 2004. Allocating Resources to Control Infectious Diseases, in Op-
erations Research and Health Care: A Handbook of Methods and Applications .
Kluwer’s International Series, Boston, MA.

Brandeau, M. L., F. Sainfort, W. P. Pierskalla. 2004. Health Care Delivery: Cur-
rent Problems and Future Challenges, in Operations Research and Health Care:
A Handbook of Methods and Applications. Kluwer’s International Series, 1-14,
Boston, MA.

Brecher, M. E., R. Leger, J. Linden, S. Roseff. 2003. Technical manual of the american
association of blood banks, 15th ed. Tech. rep., AABB, Bethesda, MD.

Bretthauer, K. M., B. Shetty. 2002. The nonlinear knapsack problem - Algorithms
and applications. European Journal of Operational Research 138 459–472.

Brower, W. A., O. V. Nainan, X. Han. 2000. Duration of Viremia in Hepatitis A
Virus Infection. J Infect Dis 182 12–17.

Browne, J. A., R. Pietrobon, S. A. Olson. 2009. Hip Fracture Outcomes: Does
Surgeon or Hospital Volume Really Matter? J Trauma 66(13) 809–814.

Busch, M., M. Walderhaug, B. Custer, J. P. Allain, R. Reddy, B. McDonough. 2009.
Risk assessment and cost-effectiveness/utility analysis. Biologicals 37 78–87.

Busch, M. P. 2001. Insights into the Epidemiology, Natural History, and Pathogen-
esis of Hepatitis C Infection from Studies of Infected Donors and Blood-product
Recipients. Trans Clin Biol 8 200–206.

Caprara, A., M. Monaci. 2004. On the two-dimensional knapsack problem. Opera-
tions Research Letters 32(1) 5–14.

Carmo, R. A., A. A. Lima, C. A. Andrade, J. G. Oliveira, M. S. Oliveira, L. Q.
Santi, H. N. Bicalho, S. M. Silva. 2000. Epidemiological study of Hepatitis C
Virus (HCV)/HIV coinfection in Brazil. Int Conf AIDS 13.

Center for Disease Control and Prevention. 2010. Travelers’ Health - Yel-
low Book. http://wwwnc.cdc.gov/travel/content/yellowbook/home-2010.aspx, Ac-
cessed on July 2010.



154

Central Intelligence Agency. 2005. CIA world factbook 2005 - HIV/AIDS
adult prevalence rate. https://www.cia.gov/library/publications/the-world-
factbook/rankorder/2155rank.html, Accessed on July 2010.

Chang, C., C. Chang. 2000. A linearization method for mixed 0-1 polynomial pro-
grams. Computers & Operations Research 27(10) 1005–1016.

Chang, R. W., J. M. Pellisier, G. B. Hazen. 1996. A Cost-effectiveness Analysis of
Total Hip Arthroplasty for Osteoarthritis of the Hip. JAMA 275(11) 858–865.

Charnes, A., W. W. Cooper. 1962. Programming with Linear Fractional Functionals.
Naval Research Logistics Quarterly 9(3-4) 181–186.

Chern, M-S. 1992. On the computational complexity of reliability redundancy allo-
cation in a series system. Operations Research Letters 11(5) 309–315.

Choudhury, N. 2010. Transfusion transmitted infections: How many more? Asian
Journal of Transfusion Science 4 71–72.

Christian, B., J. Okuma, C. Hawkins. 2010. Prevalence of Hepatitis B and C co-
infection and response to antiretroviral therapy among HIV-infected patients in
an urban setting in Tanzania. 17th Conference on Retroviruses & Opportunistic
Infections (CROI 2010) Feb 16-19 694.

Cobain, T. J., E. C. Vamvakas, A. Wells, K. Titlestad. 2007. A survey of the demo-
graphics of blood use. Transfusion Medicine 17 1–15.

Custer, B., M. Busch, A. A. Marfin, L. R. Petersen. 2005a. The cost-effectiveness
of screening the U.S. blood supply for the West Nile Virus. Annals of Internal
Medicine 143 486–492.

Custer, B., M. P. Busch, A. A. Marfin, L. R. Petersen. 2005b. The cost-effectiveness
of screening the U.S. blood supply for West Nile Virus. Annals of Internal Medicine
143 486–492.

Davies, A., J. Staves, J. Kay, A. Casbard, M.F. Murphy. 2006. End-to-end Elec-
tronic Control of the Hospital Transfusion Process to Increase the Safety of Blood
Transfusion: Strengths and Weaknesses. Transfusion 46 352–364.

Despotis, G., C. Eby, D. M. Lublin. 2008. A review of transfusion risks and optimal
management of perioperative bleeding with cardiac surgery. Transfusion 48 1S–
30S.



155

Dodd, R. Y. 1994. Blood Supply: Risks Perceptions, and Prospects for the Future,
chap. Adverse Consequences of Blood Transfusion: Quantitative Risk Estimates.
American Association of Blood Banks, 1–24.

Dodd, R. Y., E. P. Notari, S. L. Stramer. 2002. Current prevalence and incidence of
infectious disease markers and estimated window-period risk in the American Red
Cross blood donor population. Transfusion 42 975–979.

Dorr, L. D., M. Luckett, J. P. Conaty. 1990. Total hip arthroplasties in patients
younger than 45 years a nine- to ten-year follow-up study. Clin Orthop Relat Res
260 215–219.

Dow, B. C. 2000. ‘Noise’ in microbiological screening assays. Transfusion Medicine
10(2) 97–106.

Dreyfus, S. E. 1969. An appraisal of some shortest-path algorithms. Operations
Research 17(3) 395–412.

Dudley, A. R., K. L. Johansen, R. Brand, D. J. Rennie, A. Milstein. 2000. Selec-
tive Referral to High-volume Hospitals: Estimating Potentially Avoidable Deaths.
JAMA 283(9) 1159–1166.

Dzik, W. H. 2003. Emily Cooley lecture 2002: Transfusion safety in the hospital.
Transfusion 43(9) 1190–1199.

Dzik, W. H. 2005. Technology for enhanced transfusion safety. American Society of
Hematology 1 476–482.

Eble, B. E., M. P. Busch, A. M. Guiltinan, H. Khayam-Bashi, E. L. Murphy. 1993.
Determination of Human T Lymphotropic Virus type by polymerase chain reaction
and correlation with risk factors in northern California blood donors. Journal Of
Infectious Diseases 167(4) 954–957.

Edwards, E. B., J. P. Roberts, M. A. McBride, J. A. Schulak, L. G. Hunsicker. 1999.
The Effect of the Volume of Procedures at Transplantation Centers on Mortality
after Liver Transplantation. N Engl J Med 341(27) 2049–2053.

Enoe, C., M. P. Georgiadisb, W. O. Johnsonc. 2000. Estimation of Sensitivity and
Specificity of Diagnostic Tests and Disease Prevalence when the True Disease State
is Unknown. Preventive Veterinary Medicine 45 61–81.



156

FDA. 2010. Complete list of donor screening assays for infectious
agents and HIV diagnostic assays. Food and Drug Administration,
http://www.fda.gov/BiologicsBloodVaccines/BloodBloodProducts/ApprovedProducts/
LicensedProductsBLAs/BloodDonorScreening/InfectiousDisease/ucm080466.htm,
Accessed on April 2010.

FDA. 2011. Food and Drug Administration,
http://www.fda.gov/BiologicsBloodVaccines /BloodBloodProd-
ucts/ApprovedProducts/LicensedProductsBLAs/BloodDonorScreening /Infec-
tiousDisease/default.htm, Accessed on January 2011.

Field, S. P., J. P. Allain. 2007. Transfusion in sub-Saharan Africa - Does a Western
model fit? Journal of Clinical Pathology 60 1073–1075.

Forbi, J. C., S. Gabadi, R. Alabi, H. O. Iperepolu, C. R. Pam, P. E. Entonu, S. M.
Agwale. 2007. The role of triple infection with Hepatitis B Virus, Hepatitis C
Virus, and Human Immunodeficiency Virus (HIV) type-1 on CD4+ lymphocyte
levels in the highly HIV infected population of North-Central Nigeria. Memorias
do Instituto Oswaldo Cruz 102(4) 535–537.

Garey, M. R., D. S. Johnson. 1979. Computers and intractability: A guide to the
theory of NP-completeness . San Francisco: W.H. Freeman.

Glover, F., E. Woolsey. 1974. Technical note - converting the 0-1 polynomial pro-
gramming problem to a 0-1 linear program. Operations Research 22(1) 180–182.

Glynn, S. A., S. Kleinman, D. J. Wright. 2002. International application of the
incidence rate/window period model. Transfusion 42 966–972.

Goodnough, L. T. 2003. Risk of blood transfusion. Critical Care Medicine 31(12
Suppl) 680–686.

Goodnough, L. T., A. Shander, M. E. Brecher. 2003. Transfusion medicine: looking
to the future. Lancet 361 161–169.

Gordon, T. A., H. M. Bowman, J. M. Tielsch, E. B. Bass, G. P. Burleyson, J. L.
Cameron. 1998. Statewide Regionalization of Pancreaticoduodenectomy and its
Effect on Inhospital Mortality. Ann Surg 228(1) 71–78.

Gordona, S. C., K. E. Sherman. 2009. Treatment of HBV / HCV coinfection: Re-
leasing the enemy within. Gastroenterology 136(2) 393–396.



157

Grassly, N. C., M. Morgan, N. Walker, G Garnett, K. A. Stanecki, J. Stover,
T. Brown, P. D. Ghys. 2004. Uncertainty in Estimates of HIV/AIDS: The Es-
timation and Application of Plausibility Bounds. Sexually Transmitted Infections
80(suppl I) i31–i38.

Greenwaldt, T. J. 1997. A short history of transfusion medicine. Transfusion 37
550–563.

Greinacher, A., K. Fendrich, U. Alpen, W. Hoffmann. 2007. Impact of demographic
changes on the blood supply: Mecklenburg-West Pomerania as a model region for
Europe. Transfusion 47(3) 395–401.

Grumbach, K., G. M. Anderson, H. S. Luft, L. L. Roos, R. Brook. 1995. Regional-
ization of Cardiac Surgery in the United States and Canada. Geographic Access,
Choice, and Outcomes. JAMA 274(16) 1282–1288.

Guerrero, I. C., B. C. Weniger, M. G. Schultz. 1983. Transfusion malaria in the
United States, 1972-1981. Ann Intern Med 99 221–226.

Haimes, Y. Y. 1998. Risk modeling, assessment, and management . John Wiley &
Sons, Inc, New York, NY.

Hammond, J. W., W. S. Queale, T. K. Kim, E. G. McFarland. 2003. Surgeon
Experience and Clinical and Economic Outcomes for Shoulder Arthroplasty. J
Bone Joint Surg Am 85-A(12) 2318–2324.

Hannan, E. L., J. F. O’Donnell, H. Jr Kilburn H, H. R. Bernard, A. Yazici. 1989.
Investigation of the Relationship between Volume and Mortality for Surgical Pro-
cedures Performed in New York State Hospitals. JAMA 262(4) 503–510.

Hannan, E. L., A. J. Popp, B. Tranmer, P. Fuestel, J. Waldman, D. Shah. 1998. Re-
lationship between Provider Volume and Mortality for Carotid Endarterectomies
in New York State. Stroke 29(11) 2292–2297.

Hannan, E. L., M. Racz, T. J. Ryan, et al. 1997. Coronary Angioplasty Volume-
outcome Relationships for Hospitals and Cardiologists. JAMA 277(11) 892–898.

Hannan, E. L., A. L. Siu, D. Kumar, H. Jr. Kilburn, M. R. Chassin. 1995. The
Decline in Coronary Artery Bypass Graft Surgery Mortality in New York State.
The Role of Surgeon Volume. JAMA 273(3) 209–213.



158

Hay, S. N., L. Scanga, M. E. Brecher. 2006. Life, death, and the risk of transfusion:
A University hospital experience. Transfusion 46(9) 1491–1493.

Hillyer, C. D. 2001. Handbook of Transfusion Medicine. Academic Press, San Diego,
CA.

Hsieh, Y-C. 2002. A linear approximation for redundant reliability problems with
multiple component choices. Computers & Industrial Engineering 44 91–103.

Imperato, P. J., R. P. Nenner, H. A. Starr, T. O. Will, C. R. Rosenberg, M. B.
Dearie. 1996. The Effects of Regionalization on Clinical Outcomes for a High Risk
Surgical Procedure: a Study of the Whipple Procedure in New York State. Am J
Med Qual 11(4) 193–197.

Jackson, B. R., M. P. Busch, S. L. Stramer, J. P. AuBuchon. 2003. The cost-
effectiveness of NAT for HIV, HCV, and HBV in whole-blood donations. Trans-
fusion 43 721–729.

Jafa, K., P. Patel, D. A. MacKellar, P. S. Sullivan, K. P. Delaney, T. L. Sides, A. P.
Newman, S. M. Paul, E. M. Cadoff, E. G. Martin. 2007. Investigation of false
positive results with an Oral Fluid Rapid HIV-1/2 antibody test. PLoS One 2(1)
185.

Johnson, C. 1996. Whose antibodies are they anyway? Factors known to
cause false positive HIV antibody test results. http://www.virusmyth.com
/aids/hiv/cjtestfp.htm, Accessed on April 2010.

Jollis, J. G., E. D. Peterson, E. R. DeLong, D. B. Mark, S. R. Collins, L. H.
Muhlbaier, D. B. Pryor. 1994. The Relation between the Volume of Coronary
Angioplasty Procedures at Hospitals Treating Medicare Beneficiaries and Short-
term Mortality. N Engl J Med 331(24) 1625–1629.

Jollis, J. G., E. D. Peterson, C. L. Nelson, et al. 1997. Relationship between Physician
and Hospital Coronary Angioplasty Volume and Outcome in Elderly Patients.
Circulation 95(11) 2485–2491.

Joseph, L., T. W. Gyorkos, L. Coupal. 1995. Bayesian Estimation of Disease Preva-
lence and the Parameters of Diagnostic Tests in the Absence of a Gold Standard.
American Journal of Epidemiology 141(3) 263–272.



159

Katz, J. N., J. Barrett, N. N. Mahomed, J. A. Baron, R. J. Wright, E. Losina. 2004.
Association between Hospital and Surgeon Procedure Volume and the Outcomes
of Total Knee Replacement. J Bone Joint Surg Am 86-A(9) 1909–1916.

Katz, J. N., E. Losina, J. Barrett, et al. 2001. Association between Hospital and
Surgeon Procedure Volume and Outcomes of Total Hip Replacement in the United
States Medicare Population. J Bone Joint Surg Am 83-A(11) 1622–1629.

Katz, J. N., N. N. Mahomed, J. A. Baron, et al. 2007. Association of Hospital
and Surgeon Procedure Volume with Patient-centered Outcomes of Total Knee
Replacement in a Population-based Cohort of Patients Age 65 Years and Older.
Arthritis Rheum 56(2) 568–574.

Kiire, C. F. 1996. The epidemiology and prophylaxis of Hepatitis B in sub-Saharan
Africa: A view from tropical and subtropical Africa. Gut 38 S5–12.

Kimmel, S. E., J. A. Berlin, W. K. Laskey. 1995. The Relationship between Coronary
Angioplasty Procedure Volume and Major Complications. JAMA 274(14) 1137–
1142.

Klein, H. G., D. R. Spahn, J. L. Carson. 2007. Red blood cell transfusion in clinical
practice. Lancet 370 415–426.

Kleinman, S. H., M. Busch. 2001. Hepatitis B Virus amplified and back in the blood
safety spotlight. Transfusion 41 1081–1085.

Kleinman, S. H., M. P. Busch, J. J. Korelitz. 1997. The incidence/window period
model and its use to assess the risk of transfusion-transmitted HIV and HCV
infection. Transfus Med Rev 11 155–172.

Kleinman, S. H., P. Chan, P. Robillard. 2003a. Risks associated with transfusion of
cellular blood components in Canada. Transfus Med Rev 17 120–162.

Kleinman, S. H., M. C. Kuhns, D. S. Todd, S. A. Glynn, A. McNamara, A. DiMarco,
M. P. Busch. 2003b. Frequency of HBV DNA detection in US blood donors posi-
tive for Anti-HBC: Implications for transfusion transmission and donor screening.
Transfusion 43(6) 696–704.

Ko, C. Y., J. T. Chang, S. Chaudhry, G. Kominski. 2002. Are High-volume Surgeons
and Hospitals the Most Important Predictors of Inhospital Outcome for Colon
Cancer Resection? Surgery 132(2) 268–273.



160

Kumamoto, H., E. J. Henley. 2000. Probabilistic risk assessment and management
for engineers and scientists, 2nd ed . Wiley-IEEE Press, New York.

Lackritz, E., C. Campbell, T. Ruebush. 1992. Effect of blood transfusion on survival
among children in a Kenyan hospital. Lancet 340 524–528.

Lal, R. B., S. M. Owen, J. Mingle, P. H. Levine, A. Manns. 1994. Presence of
Human T Lymphotropic Virus types I and II in Ghana, West Africa. AIDS Res
Hum Retroviruses Dec 10(12) 1747–1750.

Lancet Editorial. 2005. Blood supply and demand. The Lancet 365(9478) 2151.

Lander, J. J., G. L. Gitnick, L. H. Gelb, R. D. Aach. 2009. Anticore antibody
screening of transfused blood. Vox Sanguinis 34(2) 77–80.

Lara, A. M., J. Kandulu, L. Chisuwo, A. Kashoti, C. Mundy, I. Bates. 2007. Labara-
tory costs of a hospital-based blood transfusion service in Malawi. Journal of
Clinical Pathology 58 56–60.

Laupacis, A., J. Brown, B. Costello. 2001. Prevention of posttransfusion CMV in the
era of universal leukoreduction: A consensus statement. Transfusion 41 560–569.

Lefrere, J. J., J. Coste, C. Defer, P. Loiseau, E. Portelette, M. Mariotti, J. Lerable,
P. Rouger, J. M. Pawlotsky. 1998. Screening blood donations for viral genomes:
Multicenter study of real-time simulation using pooled samples on the model of
Hepatitis C Virus RNA detection. Transfusion 38(10) 915–923.

Leiby, D. A. 2001. Blood Safety in the New Millenium, chap. Parasites and other
emergent infectious agents. American Association of Blood Banks, Bethesda, MD,
55–78.

Li, D., X. Sun. 2006. Nonlinear Integer Programming . New York: Springer.

Liang, M. H., K. E. Cullen, M. G. Larson, et al. 1986. Cost-effectiveness of Total
Joint Arthroplasty in Osteoarthritis. Arthritis Rheum 29(8) 937–943.

Lincoln, D., K. Petoumenos, G. J. Dore. 2003. HIV/HBV and HIV/HCV coinfection,
and outcomes following highly active antiretroviral therapy. HIV Medicine 4 241–
249.

Linden, J. V., K. Wagner, A. E. Voytovich. 2000. Transfusion errors in New York
State: an analysis of 10 years’ experience. Transfusion 40 1207–1213.



161

Lindsay, G. F., A. B. Bishop. 1964. Allocation of screening inspection effort - A
dynamic-programming approach. Management Science 10 342–352.

Lodi, A., S. Martello, M. Monaci. 2002. Two-dimensional packing problems: A
survey. European Journal of Operational Research 141(2) 241–252.

Madhava, V., C. Burgess, E. Drucker. 2002. Epidemiology of chronic Hepatitis C
Virus infection in sub-Saharan Africa. The Lancet Infectious Disease 2 293–302.

Manheim, L. M., M. W. Sohn, J. Feinglass, M. Ujiki, M. A. Parker, W. H. Pearce.
1998. Hospital Vascular Surgery Volume and Procedure Mortality Rates in Cali-
fornia, 1982-1994. J Vasc Surg 28(1) 45–56; discussion 56–58.

Marshall, D. A., S. H. Kleinman, J. B. Wong, J. P. AuBuchon, D. T. Grima, N. A.
Kulin, M. C. Weinstein. 2004. Cost-effectiveness of Nucleic Acid Test screening of
volunteer blood donations for Hepatitis B, Hepatitis C and Human Immunodefi-
ciency Virus in the United States. Vox Sanguinis 86 28–40.

Martello, S., P. Toth. 1990. Problems: Algorithms and Computer Implementation.
John Wiley and Sons.

Martos, B. 1960. Hyperbolic programming. Publ. Math. Inst., Hungarian Academy
of Sciences 5 386–406.

Martos, B. 1964. Hyperbolic programming. Naval Research Logistics Quarterly 11(2)
135–155.

Matsen, F. A. 1996. Early Effectiveness of Shoulder Arthroplasty for Patients who
Have Primary Glenohumeral Degenerative Joint Disease. J Bone Joint Surg Am
78(2) 260–264.

Mayer, K. 1982. Safety in transfusion practices , chap. A different view of transfusion
safety–type and screen, transfusion of Coombs incompatible cells, and fatal trans-
fusion induced graft versus host disease. Skokie: College of American Pathologists.

McFarland, W., D. Mvere, W. Shandera, A. Reingold. 2003. Epidemiology and
prevention of transfusion-associated Human Immunodeficiency Virus transmission
in Sub-Saharan Africa. Vox Sanguinis 72(2) 85–92.

Moore, M. C., D. R. Howell, J. A. Barbara. 2007. Donors whose blood reacts falsely
positive in transfusion microbiology screening assays need not be lost to transfu-
sion. Transfusion Medicine 17 55–59.



162

Mostashari, F., M. L. Bunning, P. T. Kitsutani, D. A. Singer, D. Nash, M. J. Cooper,
N. Katz, K. A. Liljebjelke, B. J. Biggerstaff, A. D. Fine, M. C. Layton, S. M.
Mullin, A. J. Johnson, D. A. Martin, E. B. Hayes, G. L. Campbell. 2001. Epi-
demic West Nile Encephalitis, New York, 1999: Results of a household-based
seroepidemiological survey. Lancet 358 261–264.

Mungai, M., G. Tegtmeier, M. Chamberland, M. Parise. 2001. Transfusion- trans-
mitted malaria in the United States from 1963 through 1999. N Engl J Med 344
1973–1978.

New York State Department of Health. 2005. State Health Commissioner Nov-
ello urges New Yorkers to donate blood to reverse critical shortage: “you can
make a difference by donating blood today”. http:// www.health.state.ny.us
/press/releases/2005 /2005-07-11 low blood supply.htm.

Ninn-Pedersen, K., U. Stenevi. 1996. Cataract Surgery in a Swedish Population:
Observations and Complications. J Cataract Refract Surg 22(10) 1498–1505.

ORD. 2011. Office of Rare Diseases (ORD) of the National Institutes
of Health (NIH). West Nile fever: Rare Disease. Accessed on January
2011, from http://www.wrongdiagnosis.com/w/west nile fever /prevalence.htm?
ktrack=kcplink.

Orfinger, B. 2000. Red Cross calls national blood shortage a disas-
ter. http://www.redcross.org/news/inthnews/00/7-12a-00.html, Accessed on July
2010.

Otegbayo, J. A., B. O. Taiwo, T. S. Akingbola, G. N. Odaibo, K. S. Adedapo,
S. Penugonda, I. F. Adewole, D. O. Olaleye, R. Murphy, P. Kanki. 2008. Prevalence
of Hepatitis B and C seropositivity in a Nigerian cohort of HIV-infected patients.
Annals of Hepatology 7(2) 152–156.

Owusu-Ofori, S., K. Asenso-Mensah, P. Boateng, F. Sarkodie, J. P. Allain. 2010.
Fostering repeat donations in Ghana. Biologicals 38 47–52.

Ozekici, S., S. Pliska. 1991. Optimal scheduling of inspections: A delayed Markov
model with false positive and negatives. Operations Research 39(2) 261–273.

Pepe, M. S. 2004. The Statistical Evaluation of Medical Tests for Classification and
Prediction. Oxford University Press, Oxford.

Petersen, L. R. 2009. West Nile Encephalitis Virus Infection. New York: Springer.



163

Pineda, A. A., E. C. Vamvakas, L. D. Gorden. 1999. Trends in the incidence of
delayed hemolytic and delayed serologic transfusion reactions. Transfusion 39
1097–1103.

Popovsky, M. A., S. B. Moore. 1985. Diagnostic and pathogenetic considerations in
transfusion-related acute lung injury. Transfusion 25 573–577.

Popovsky, M. A., S. B. Moore, M. R. Wick. 1985. A blood bank consultation service:
Principles and practice. Mayo Clin Proc 60 312–314.

Popovsky, M. A., H. F. Taswell. 1985. Circulatory overload: An underdiagnosed
consequence of transfusion. Transfusion 25 469.

Preiksaitis, J. K. 2000. The cytomegalovirus “safe” blood product: Is leukoreduction
equivalent to antibody screening? . Transfus Med Rev 14 112–136.

Proietti, F. A., A. B. F. Carneiro-Proietti, B. C. Catalan-Soares, E. L. Murphy. 2005.
Global epidemiology of HTLV-I infection and associated diseases. Oncogene 24
6058–6068.

Ranawat, C. S., R. E. Atkinson, E. A. Salvati, P. D. Wilson. 1984. Conventional
Total Hip Arthroplasty for Degenerative Joint Disease in Patients between the
Ages of Forty and Sixty Years. J Bone Joint Surg Am 66(5) 745–752.

Raz, T. 1986. A survey of models for allocating inspection effort in multistage
production systems. Journal of Quality Technology 18(4) 239–247.

Raz, T., M. Kaspi. 1991. Location and sequencing of imperfect inspection opera-
tions in serial multi-stage production systems. International Journal of Production
Research 29(8) 1645–1659.

Richard, L., J.L. Pellegrin, P. Barbeau, G. Brossard, B. Leng, HJA Fleury. 1993.
HIV-1 and HCV co-infected patients: Detection of active viral expression using a
nested polymerase chain reaction. Molecular and Cellular Probes 7(5) 405–410.

Rissanen, P., S. Aro, H. Sintonen, K. Asikainen, P. Slatis, P. Paavolainen. 1997.
Costs and Cost-effectiveness in Hip and Knee Replacements: a Prospective Study.
International Journal of Technology Assessment in Health Care 13(4) 574–588.

Rodriguez, M. P., R. Hayes. 2002. Reducing HIV prevalence among young people:
A review of the UNGASS prevalence goal and how it should be monitored.
http://www.who.int/hiv/pub/epidemiology/en/reducing prev young people.pdf,
Accessed on July 2010.



164

Ross, S. M. 2007. Introduction to probability models . Amsterdam: Academic Press.

Saxena, S., L. Ramer, I. A. Shulman. 2004. A comprehensive assessment program to
improve blood-administering practices using the FOCUS-PDCA model. Transfu-
sion 44 1350–1356.

Sayre, K. R., R. Y. Dodd, G. Tegtmeier, L. Layug, S. S. Alexander, M. P. Busch.
1996. False-positive Human Immunodeficiency Virus type 1 Western blot tests in
non-infected blood donors. Transfusion 36(1) 45–52.

Schaefer, A. J., M. D. Bailey, S. M. Shechter, M. S. Roberts. 2004. Operations Re-
search and Health Care, chap. Modeling medical treatment using markov decision
processes. Kluwer’s International Series, 593–612.

Schmunis, G. A., F. Zicker, F. Pinheiro, D. Brandling-Bennett. 1998. Risk for
transfusion-transmitted infectious diseases in Central and South America. Emerg-
ing Infectious Diseases 4(1).

Schreiber, G. B., M. P. Busch, S. H. Kleinman. 1996. The risk of transfusion-
transmitted viral infection. N Engl J Med 334 1685–1690.

Schwartz, J. S., B. P. Kinosian, W. P. Pierskalla, H. Lee. 1990. Strategies for screening
blood for Human Immunodeficiency Virus antibody. Journal of the American
Medical Association (JAMA) 264(13) 1704–1710.

Segal, L., S. E. Day, A. B. Chapman, R. H. Osborne. 2004. Can We Reduce Disease
Burden from Osteoarthritis? The Medical journal of Australia 180(5 Suppl) S11–
S17.

Sendi, P., M. J. Al, A. Gafni, S. Birch. 2003. Optimizing a portfolio of healthcare
programs in the presence of uncertainty and constrained resources. Social Science
& Medicine 57(9) 2207–2215.

Sherali, H. D., C. H. Tuncbilek. 1992. A global optimization algorithm for polynomial
programming problems using a Reformulation-Linearization Technique. Journal
of Global Optimization 2 101–112.

Shervin, N., H. E. Rubash, J. N. Katz. 2007. Orthopaedic Procedure Volume and
Patient Outcomes: a Systematic Literature Review. Clin Orthop Relat Res 457
35–41.



165

Shin, H. C., B. C. Kim, S. G. Park. 2001. Estimation of Disease Prevalence from a
Screening Program. Biometrical Journal 43(7) 835–843.

Showstack, J. A., K. E. Rosenfeld, D. W. Garnick, H. S. Luft, R. W. Schaffarzick,
J. Fowles. 1987. Association of Volume with Outcome of Coronary Artery bypass
Graft Surgery. Scheduled vs Nonscheduled Operations. Journal of the American
Medical Association (JAMA) 257(6) 785–789.

Soriano, V., P. Barreiro, M. Nunez. 2006. Management of chronic Hepatitis B and
C in HIV-coinfected patients. Journal of Antimicrobial Chemotherapy 57(5) 815–
818.

Stiguma, H., P. Magnusa, H. H. Samdalb, E. Norda. 2000. Human T-cell Lym-
photropic Virus testing of blood donors in Norway: a cost-effect model. Interna-
tional Journal of Epidemiology 29 1076–1084.

Stockwell, D. C., A. D. Slonim. 2006. Quality and Safety in the Intensive Care Unit.
Journal of Intensive Care Medicine 21 199–210.

Stone, V. E., G. R. Seage 3rd, T. Hertz, A. M. Epstein. 1992. The Relation be-
tween Hospital Experience and Mortality for Patients with AIDS. Journal of the
American Medical Association (JAMA) 268(19) 2655–2661.

Stramer, S. L. 2007. Current risks of transfusion-transmitted agents: A review. Arch
Pathol Lab Med 131 702–707.

Sungkanuparph, S., A. Vibhagool, W. Manosuthi, S. Kiertiburanakul, K. Ata-
masirikul, A. Aumkhyan, A. Thakkinstian. 2004. Prevalence of Hepatitis B Virus
and Hepatitis C Virus co-infection with Human Immunodeficiency Virus in Thai
patients: A tertiary-care-based study. Journal of The Medical Association of Thai-
land 87(11) 1349–1354.

The World Bank Group. 2010. HIV Prevalence Among Women Aged
15-24. Available from The World Bank Group: Millennium Develop-
ment Goals: http://ddp-ext.worldbank.org /ext/GMIS/gdmis.do?siteId=2 &con-
tentId=Content t18 &menuId=LNAV01HOME1. Accessed on July 2010.

Thiemann, D. R., J. Coresh, W. J. Oetgen, N. R. Powe. 1999. The Association be-
tween Hospital Volume and Survival after Acute Myocardial Infarction in Elderly
Patients. N Engl J Med 340(21) 1640–1648.



166

Turner, C. L., A. C. Casbard, M. F.Murphy. 2003. Barcode technology: its role in
increasing the safety of blood transfusion. Transfusion 43 1200–1209.

UNAIDS. 2008. Report on the global AIDS epidemic, technical report,
http://www.unaids.org/en/knowledgecentre/hivdata/globalreport/2008/2008 global report.asp.

United Nations Development Group. 2003. Indicators for Monitoring the Millennium
Development Goals . New York: The United Nations.

Van Hulst, M., G. A. A. Hubben, W. C. S. Kwamena, C. Promwong, P. Permpikul,
L. Fongsatikul, D. M. Glynn, C. T. S. Sibinga, M. J. Postma. 2009. Web interface
supported transmission risk assessment and cost-effectiveness analysis of postdona-
tion screening: A global model applied to Ghana, Thailand, and the Netherlands.
Transfusion 49 2729–2742.

Van Hulst, M., C. T. S. Sibinga, M. J. Postma. 2010. Health economics of blood
transfusion safety - Focus on sub-Saharan Africa. Biologicals 38 53–58.

Vrielinka, H., H. W. Reesink. 2004. HTLV-I/II prevalence in different geographic
locations. Transfusion Medicine Reviews 18(1) 46–57.

Walker, N., J. M. Garcia Calleja, L. Heaton, E. Asamoah-Obei, G. Poumerol, S. Laz-
zari, P. D. Ghys, B. Schwartlander, K. A. Stanecki. 2001. Epidemiological analysis
of the quality of HIV serosurveillance in the world: How well do we track the
epidemic? AIDS 15 1545–1554.

Walkley, A. 2009. HIV transmission via transfusions in Africa remains
high. http://www.mediaglobal.org/article/2010-01-04/ hiv-transmission-via -
transfusions -in-africa-remains -high, Accessed on April 2010.

Walter, S. D., L. M. Irwig. 1988. Estimation of test error rates, disease prevalence,
and relative risk from misclassified data: A review. Journal of Clinical Epidemi-
ology 41 923–937.

Ward, M. M. 1999. Hospital Experience and Mortality in Patients with Systemic
Lupus Erythematosus. Arthritis Rheum 42(5) 891–898.

Whitaker, B. I., J. Green, M. R. King, L. L. Leibeg, S. M. Mathew, K. S. Schlumpf,
G. B. Schreiber. 2007. The United States Department of Health and Human
Services 2007 National Blood Collection and Utilization Survey Report.



167

WHO. 2004. Developing countries face safe blood shortage. Bulletin of World Health
Organization [online] 82(7) 558–558.

WHO. 2010a. 10 facts on blood transfusion. World Health Organization,
http://www.who.int/features/factfiles/blood transfusion/en/index.html, Accessed
on April 2010.

WHO. 2010b. WHO global database on blood safety and blood safety indicators.
World Health Organization, http://www.who.int/bloodsafety/global database/en/,
Accessed on April 2010.

WHO. 2011. Screening donated blood for transfusion-transmissible infections -
Recommendations, World Health Organization. http://www.who.int/bloodsafety/
ScreeningDonatedBloodforTransfusion.pdf, Accessed on January 2011.

Williamson, L. M., R. M. Warwick. 1995. Transfusion-associated graft-versus-host
disease and its prevention. Blood Rev 9 251–261.

Xie, R. S., D. R. Bish, E. K. Bish, A. D. Slonim, S. L. Stramer. 2011. Safety and
waste considerations in donated blood screening. Submitted and under review .

You, P-S., T-C. Chen. 2005. An efficient heuristic for series-parallel redundant reli-
ability problems. Computers & Operations Research 32 2117–2127.

Zaba, B., E. Slaymaker. 2002. Biological monitoring and surveillance of healthy
adults in countries with generalised HIV epidemics. UNAIDS Meeting on Second
Generation Surveillance, Barcelona.

Zacharias, N. M., I. D. Athanassaki, H. Sangi-Haghpeykar, M. O. Gardner. 2004.
High false-positive rate of Human Immunodeficiency Virus rapid serum screening
in a predominantly Hispanic prenatal population. Journal of Perinatology 24(12)
743–747.

Zhan, C., R. Kaczmarek, N. Loyo-Berrios, J. Sangl, R. A. Bright. 2007. Incidence
and Short-term Outcomes of Primary and Revision Hip Replacement in the United
States. J Bone Joint Surg Am 89(3) 526–533.

Zohrabian, A., M. I. Meltzer, R. Ratard, K. Billah, N. A. Molinari, K. Roy R.,
D. Scott II, L. R. Petersen. 2004. West Nile Virus economic impact, Louisiana,
2002. Emerg Infect Dis 10 1736–1744.



Appendix A

Appendix for Chapter 3

A.1 ABO-incompatibility and Erroneous Blood Ad-

ministration

The incidence of major blood groups in the United States and their ABO compati-
bility relationship are given in Table A.1 and A.2(American Red Cross, 2008).

Table A.1: Incidence of Major Blood Groups in the United States

O Rh A Rh B Rh O Rh A Rh AB Rh B Rh AB Rh
Positive Positive Positive Negative Negative Positive Negative Negative

Percentage 40% 32% 11% 7% 5% 3% 1.5% 0.5%

Table A.2: The Relationship between Blood Groups in Terms of ABO Compatibility

The patient can receive
O− O+ B− B+ A− A+ AB− AB+

If the AB+ O O O O O O O O
AB− O X O X O X O X

patient’s A+ O O X X O O X X
A− O X X X O X X X

blood B+ O O O O X X X X
B− O X O X X X X X

group is O+ O O X X X X X X
O− O X X X X X X X

†O means the situation will not lead to ABO-incompatibility, X means it will.

We make two assumptions: (1) Erroneous blood administration rates are similar
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among the different blood groups, and (2) the blood group distribution of blood
donors and transfusion patients follow that of the general population given in Table
A.1.

As defined in Chapter 3, I denotes the event of ABO incompatibility in case of an
erroneous administration of blood. Also define events RX+ and RX− as the events
that the recipient is of blood groupX+ andX−, respectively, forX ∈ {A,B,AB,O}.
Then, we can derive the probability that a randomly selected unit will be compatible
with a randomly selected recipient as follows:

Pr (Ic|E) = Pr (Ic|RAB+)Pr (RAB+) + Pr (Ic|RAB−) Pr (RAB−) + · · ·+ Pr (Ic|RO−) Pr (RO−)
= (0.07× 0.03) + (0.4× 0.03) + · · ·+ (0.07× 0.005) + · · ·+ (0.005× 0.005) + · · ·+ (0.07× 0.07)

= 0.5661

Thus, given error (i.e., units are randomly chosen), ABO-incompatibility happens
with probability 0.4339, that is, Pr (I|E) = 0.4339.

A.2 Frequency of Erroneous Administration

Table A.3: Frequency of Erroneous Administration of RBCs in the State of New
York

Number Frequency
ABO-incompatible (I) 237 1/38,000
Reported ABO compatible 221 1/41,000
Adjusted ABO compatible 308 1/29,000
Total number of erroneous 462 1/19,000
administration of RBC
Adjusted total number of 545 1/16,500
erroneous administration of RBC

A.3 Risk Estimates in the PRA Models

Viral Infections

As mentioned above, when the only significant transfusion risk comes from window-
period transmissions, mathematical models known as the incidence/window-period
models (Glynn et al., 2002; Kleinman et al., 1997) become appropriate to estimate
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Table A.4: Event Probabilities in the Acute Hemolytic Reaction Sub-tree

Event description Probability
Pr (E) Erroneous Administration of RBC 1/16, 500
Pr (BE) Blood Bank Error Alone 1.758× 10−5

Pr (NE) Nonblood Bank Error Alone 3.394× 10−5

Pr (CE) Compound Error 9.9091× 10−6

Pr (A|E) Acute Hemolytic Reaction given 0.214
Erroneous Administration

Pr (A ∩ I) Acute Hemolytic Reaction and 1.298× 10−5

ABO Incompatibility
Pr (A ∩ Ic) Acute Hemolytic Reaction and 4.257× 10−5

ABO Compatibility
Pr (I|E) ABO Incompatibility given 0.4339

Erroneous Administration

the viral infection risks. These mathematical models typically take into account the
window period, and incidence rate in repeat donors and first-time donors, together
with their estimated weights in the population.

Retroviruses

Human Immunodeficiency Virus - HIV

Although transmission risks have been estimated at 80-90% for HIV and HCV even
in the presence of the virus, most of these models assume a worst-case scenario of
100% transmission risk. In a 2007 publication, (Klein et al., 2007) estimated this
risk to be 1 in 2,000,000 to 3,000,000 per unit transfused in the US. The research by
Dodd et al. (2002)1 provides a similar estimate, of 1 in 2,135,000. Dodd et al. (2002)
also provide a similar conclusion about HIV risk, at 1 in 2,100,000, in their review.
Thus, we will consider this risk to be in the interval, 1 in 2,000,000 to 3,000,000. All
transfusion-transmitted HIV cases may suffer serious long-term complications based
on the chronicity of HIV infection and the potential for the infected recipient to
either develop disease or require long-term antiretroviral therapy. Thus, we will also
consider the severe outcome risk related to HIV transmission as 1 in 2,000,000 to
3,000,000.

Human T-Lymphotropic Virus - HTLV

The HTLV virus group includes two retroviruses (HTLV-1 and HTLV-2) that can
cause human disease. Schreiber et al. (1996) use the incidence/window-period model,

1Based on observed incidence (of 1 in 1,525,000 for HIV-1) calculated for repeat donors (80%
of total donors) and an adjusted rate (of three times higher) for first-time donors (20% of total
donors).
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applied to US blood donor data between 1991 and 1993, and estimate the risk of
HTLV transfusion to be 1 in 641,000. This is mainly due to the 51-day window
period before the development of the HTLV antibody. This number is also adopted
in the review paper by Klein et al. (2007). Since only 1/3 of cellular units transmit
HTLV infection (Kleinman et al., 2003a), this translates into an approximate risk of
1 in 1,923,000.

Hepatitis Viruses

Hepatitis A Virus (HAV)

In a transfusion, HAV can only be transmitted during the brief several week period
of asymptomatic HAV viremia (Brower et al., 2000). In Dodd (1994), the transfusion
risk of HAV is estimated as 1 in 10,000,000 units. We will use this estimate in our
study.

Hepatitis B virus HBV

The overall HBV risk from transfusion is the sum of the window-period transmis-
sion (i.e., before infected donors develop a positive HBsAg level) and transmission
by chronic carriers who have undetectable levels of HBsAg. The first risk, from
window-period transmission, is estimated to be 1 in 82,000 units in a Canadian
study (Kleinman et al., 2003a)2. For the second risk (i.e., transmission from chronic
carriers with undetectable HBsAg on blood donor screening assays), there are two
US studies, both of which assume that HBV chronic carriers who are HBsAg nega-
tive, yet still capable of transmitting HBV, will test positive for anti-HBC and have
HBV DNA that is detectable by very sensitive HBV NAT techniques (Kleinman and
Busch, 2001; Kleinman et al., 2003a). The resulting estimate is 1 in 49,000 units. An
American Red Cross study in 2003 suggests a similar rate of potentially infectious
units in their donor population (Kleinman et al., 2003b). Therefore, the overall risk
of HBV transmission can range from approximately 1 in 31,000 (if all chronic carriers
transmit) to 1 in 82,000 (if no chronic carrier transmits). Klein et al. (2007) report
this risk as 1 in 100,000 to 200,000 units. The corresponding estimate in Dodd et al.
(2002)3 is slightly lower, at 1 in 205,000 to 488,000. Because the estimates found
in the literature lie within a wide range, in our study we will consider this risk to
belong to the interval of 1 in 50,000 to 400,000. Data suggest that 1 in 40 transfusion-

2This estimate is obtained for a window period of 59 days and after adjusting for the fact that
measuring HBsAg incidence will underestimate the true HBV incidence. This is because HBsAg is
usually a transient marker, and disappears several months after infection.

3After the observed incidence of HBsAg is multiplied by a factor of 2.38, to adjust for the
transient nature of the HBsAg marker, as noted above.
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transmitted HBV infections will lead to the serious outcome of a chronic carrier state
(with or without severe liver disease) (Kleinman et al., 2003b). Consequently, we
will consider the severe outcome risk related to HBV transmission as 1 in 2,000,000
to 16,000,000.

Hepatitis C Virus (HCV)

The estimate for transfusion-transmitted HCV infection in the US is reported in
Klein et al. (2007) as 1 in 1,000,000 to 2,000,000 units. Furthermore, Dodd et al.
(2002) report a similar estimate, 1 in 1,935,000, using the incidence/window-period
model4. Despotis et al. (2008) also report a similar estimate, of 1 in 1,800,000, in
their review. Thus, it is reasonable to use the interval estimate in Klein et al. (2007)
in our study.

It is estimated that 20% of HCV infected individuals resolve their infection, 60%
develop chronic infection without severe liver disease, and 20% develop significant
liver disease such as cirrhosis (e.g., Alter and Seeff, 2000; Busch, 2001; Kleinman
et al., 2003a). Then, based on the transfusion-transmission risk of HCV of 1 in
1,000,000 to 2,000,000, the risk of a severe outcome is calculated as 1 in 5,000,000 to
10,000,000 units.

Non-A-E Hepatitis Virus

Studies indicate that approximately 20% of acute community-acquired hepatitis cases
in the US cannot be attributed to A-E hepatitis viruses or other known causes; these
transmission cases are likely due to a viral agent that is not yet discovered (Alter and
Bradley, 1995). However, cases of chronic hepatitis are infrequently associated with
this agent (Kleinman et al., 2003a). Based on these and other studies (including
a retrospective evaluation of a 1970 US study, see Kleinman et al. (2003a), it is
concluded that this risk is extremely low or nonexistent in the US. As a result, a
very small probability, of 10−9, is assigned to this event (and other such negligible
events, as discussed below) in our study.

West Nile Virus (WNV)

The WNV epidemic in 2002 in the US saw over 3,300 reported human cases of WNV
disease, with over 2,300 reported cases of WNV encephalitis and meningitis. The
first documented cases of transfusion transmission of WNV through voluntary blood
donation also occurred (Biggerstaff and Petersen, 2003). Since the risk was highly

4Based on observed incidence (of 1 in 390,000) calculated for repeat donors (80% of total donors)
and an adjusted rate (of three times higher) for first-time donors (20% of total donors).
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geographically and temporally variable, computation of geographically localized esti-
mates has been recommended (Biggerstaff and Petersen, 2003). In response to these
documented cases, routine blood screening of WNV (a combination of MP NAT
during the ”non-season” and a more sensitive ID NAT in epidemic locations during
epidemic times) started in July 2003 in the US (Stramer, 2007). This testing scheme
has been so effective that no transfusion-transmitted WNV has been observed in the
US after that date (Stramer, 2007). Consequently, it is reasonable to treat this risk
as extremely low to nonexistent in our study.

Cytomegalovirus - CMV

It is mostly in immunosuppressed patients that a Cytomegalovirus (CMV) transmis-
sion leads to important consequences, such as acute, severe clinical diseases man-
ifested by pneumonia, hepatitis, and other symptoms that can even lead to death
(Laupacis et al., 2001; Preiksaitis, 2000). Although the true risk of CMV transmis-
sion remains unknown, it is reasonable to infer, from the conclusion in Kleinman
et al. (2003a), that the risk of significant CMV clinical disease from transfusion of
cellular blood components in the United States is extremely low to nonexistent.

Bacterial Infection

Sepsis

The American Red Cross reports a risk from a septic transfusion reaction from
a culture-negative apheresis unit (predominantly due to skin flora) at 1 in 75,100
(Stramer, 2007). In addition, in their review, Despotis et al. (2008) give a similar
estimate of this risk, at 1 in 75,000. Thus, 1 in 75,100 would be an appropriate
estimation of the transfusion risk of sepsis.

Treponema Pallidum (Syphilis)

The storage of RBCs at refrigerator temperature prevents the growth of many bac-
terial species. This, together with the routine testing of donated blood for serologic
evidence of syphilis, has eliminated the syphilis cases. There have been only two cases
of syphilis since 1950, and no incidence was reported since 1978 (Kleinman et al.,
2003a). Thus, it is safe to conclude that the current risk of transfusion-transmitted
syphilis in the United States is extremely low to nonexistent.

Protozoal Infection

Plasmodium (Malaria)

Although rare in North America, transfusion-transmitted malaria is common in some
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parts of the world (Despotis et al., 2008). In the US, there has been 2-3 transfusion-
transmitted malaria cases per year over the 40-year period from 1958 through 1998,
resulting in an occurrence rate of 1 case per 4,000,000 red cells transfused during this
period (Guerrero et al., 1983; Mungai et al., 2001). The same estimate is also given
in Klein et al. (2007). Furthermore, the overall fatality rate of malaria is estimated
as 11% (Kleinman et al., 2003a). Hence, for a transfusion risk of 1 in 4,000,000, its
mortality rate is 1 in 36,363,636 units.

Babesiosis

After malaria, babesiosis is the second most commonly reported transfusion-transmitted
parasitic infection in the US (Kleinman et al., 2003a). There have been slightly over
40 cases reported in the US in the last two decades (Leiby, 2001). Hence, the clinical
case reporting data suggests an incidence of approximately 1 per 10,000,000 red cell
units transfused in the US. The fatality rate of babesiosis is estimated to be very low;
most transfusion-transmitted babesiosis infections will result in mild clinical disease
(Kleinman et al., 2003a).

Chagas Disease

Chagas disease is caused by a protozoan parasite, Trypanosome cruzi, which estab-
lishes a chronic, asymptomatic carrier state in most infected persons (Kleinman et al.,
2003a). Although large numbers of transfusion-transmitted cases have been docu-
mented in Mexico and Central and South America, only 6 cases of acute transfusion-
transmitted Chagas disease have been reported in North America since the mid-1980s
(Kleinman et al., 2003a). However, the numbers of infections are expected to be on
the rise as a result of immigration from Mexico and Central and South America
(American Red Cross, 2008). As such, the risk is higher in regions that face high
immigration rates. Given these, we conclude that the risk of Chagas disease from
transfusion of cellular blood components in the United States is extremely low to
nonexistent for the time being, but this is likely to change in the future.

Toxoplasmosis

We were not able to find a clinical study that estimates the risk of transfusion-
transmitted toxoplasmosis in the US. However, Despotis et al. (2008) state that
toxoplasmosis is rarely transmitted via transfusion in the US. Therefore, we conclude
that the risk is extremely low to nonexistent.

Transfusion Reactions

Hemolytic Reaction
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The overall risk of a hemolytic reaction (acute or delayed) is estimated at 1 in 6,000
units (Klein et al., 2007). In what follows, we discuss the risk for each type of
hemolytic reaction.

Acute Hemolytic Reaction

The frequency of acute hemolytic reactions is reported at 1 in 18,000, with a mortality
rate between 1 in 600,000 and 1 in 1,800,000 per unit transfused (Klein et al., 2007;
Linden et al., 2000; Mayer, 1982). Results of published studies and FDA adverse-
event reporting suggest a similar mortality rate of hemolytic reactions, at around
0.8-1.2 per one million units transfused (Despotis et al., 2008).

Other Types of Incompatibility

Acute hemolytic reactions occur due to causes other than ABO incompatibility, and
the nature of these causes is not well understood in the medical literature. In our
model, we refer to these unknown causes of acute hemolytic reactions as ”other types
of incompatibility,” and estimate the probability that an acute hemolytic reaction
occurs due to other types of incompatibility, Pr(A∩ Ic), by deducting the risk of an
acute hemolytic reaction due to ABO incompatibility from the total risk of an acute
hemolytic reaction, as detailed in Chapter 3.

Delayed Hemolytic Reaction

Since the risk of a hemolytic reaction is 1 in 6,000 units of red blood cells transfused
and the risk of acute hemolytic reaction is 1 in 18,000 units (Klein et al., 2007), the
risk of delayed hemolytic reactions can be inferred as 1/6, 000−1/18, 000 = 1/9, 000,
assuming that the two incidents are mutually exclusive, that is, the probability that
a patient will have both acute hemolytic reaction and delayed hemolytic reaction is
extremely low.

It is also stated, in Pineda et al. (1999), that delayed hemolytic reactions caused by
RBC alloantibodies occur in 1 in 4,000 to 6,000 units. As a result, we will consider
an interval of this risk, from 1 in 4,000 to 9,000 units.

Febrile Non-hemolytic Reaction

Klein et al. (2007) provide the estimated risk of febrile reaction as 1 in 300, which
we will use in our study.

Allergic Reaction

Allergic reactions can occur in 0.1 to 0.3 percent of the transfused units (Brecher
et al., 2003). This estimate is also consistent with that in Kleinman et al. (2003a).
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More significant allergic reactions are analyzed below, as “anaphylaxis.”

Anaphylaxis

The transfusion risk of anaphylaxis in the United States is reported as 1 in 20,000
to 50,000 in Klein et al. (2007). In addition, Despotis et al. (2008) provide the same
estimate for this risk in their review. Hence we conclude that it is reasonable to use
the estimate of 1 in 20,000 to 50,000 units. This interval is also consistent with that
in Kleinman et al. (2003a).

Transfusion-associated Graft-versus-host Disease (TA-GvHD)

TA-GvHD leads to a combination of symptoms, including fever, skin rash, diarrhea,
liver dysfunction, and bone marrow failure, typically occurring 7 to 10 days after
transfusion (Williamson and Warwick, 1995). The risk in the United States is stated
as uncommon in Klein et al. (2007), although 90% of the time it could be fatal.
Thus, we consider this risk to be extremely low to nonexistent in our analysis.

RBC Alloimmunization

The risk of RBC alloimmunization in transfusion is stated at a rate of about 62.1 in
100,000 transfused red cell units (Kleinman et al., 2003a).

Transfusion-related Acute Lung Injury (TRALI)

TRALI is a serious blood transfusion complication, characterized by acute respira-
tory distress, noncardiogenic bilateral pulmonary edema, and hypoxemia that occur
within 1 to 6 hours (more usually within 1-2 hours) after transfusion of plasma-
containing blood components.

The incidence of TRALI is reported as 2 per 10,000 transfused units (or 16 per
10,000 transfused patients) in a study by Popovsky and Moore (1985); Popovsky
et al. (1985). The study is conducted in hospitals associated with the Mayo Clinic
from June 1982 to October 1984, and all cases of acute respiratory distress that
occurred within 4 hours of transfusion are reported. Many reviews, including Klein
et al. (2007), use this estimate. Kleinman et al. (2003a) state that the rate of
TRALI from red cell transfusion has reduced since 1980. For example, the point
estimate for TRALI risk in Canada, calculated from the data collected by Health
Canada (1998), is 1.4 per 100,000 red cell units transfused. However, it is also
stated that underrecognition and/or underreporting of TRALI could be a problem
mainly because of the lack of a uniformly applied set of criteria for the diagnosis of
TRALI. Many mild cases of TRALI may go unrecognized or may be misdiagnosed.
Consequently, we will consider an interval for this risk, ranging from 1.4 to 20 in
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100,000 units. Furthermore, a recent study estimates the fatality rate from TRALI
as 0.4 per 1 million RBC units (Despotis et al., 2008).

Circulatory (Volume) Overload

The risk of circulatory (volume) overload results from the incapacity of the heart to
adequately pump the additional blood volume (introduced by transfusion) through
the circulation. As a result, congestive heart failure and acute pulmonary edema
occur. The risk estimates in the literature vary from 141 (Popovsky and Taswell,
1985) to 6,220 (Bierbaum et al., 1999) per 100,000 recipients in different studies
reviewed in Kleinman et al. (2003a). As stated above, this risk is expressed per
recipient and it is difficult to convert this risk into per unit transfused. Hence, we
will use this risk as is in our study. Furthermore, since the range reported in the
literature is wide, we will consider an interval of this risk, from 1 in 200 to 10,000.

A.4 Importance Measures and Minimal Cut Sets

in PRA Models

Table A.5: Importance Measures for the Overall Transfusion/Severe Outcome Risk

a. Importance Measures for the Overall Transfusion Risk - Base Case
Event Importance measure Event Importance measure
Febrile nonhemolytic reaction 0.552557 Sepsis 0.002207
Allergic reaction 0.249274 Blood bank error alone 0.001264
RBC alloimmunisation 0.102941 HBV 0.000737
Circulatory overload 0.032503 Compound error 0.000654
Delayed hemolytic reaction 0.025503 HCV 0.000111
TRALI 0.017737 HTLV-1 & 2 0.000086
Acute hemolytic reaction and
other types of incompatibility

0.007107 HIV-1 & 2 0.000066

Anaphylaxis 0.004736 Plasmodium 0.000041
Acute hemolytic reaction when
error

0.004359 HAV 0.000017

Nonblood bank error alone 0.002441 Babesiosis 0.000017
b. Importance Measures for the Severe Outcome Risk - Base Case

Event Importance measure Event Importance measure
Circulatory Overload 0.632592 TRALI 0.00129
Acute Hemolytic Reaction 0.179249 HIV 0.00129
Bacterial Infection 0.164537 HCV 0.00043
MISC 0.016938 Malaria 0.000089
HBV 0.003585
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Table A.6: Minimal Cut Sets for the Overall Transfusion/Severe Outcome Risk

a. Minimal Cut Sets for the Overall Transfusion Risk - Base Case
Cut Sets Events of the Cut Set Risk

1 Febrile nonhemolytic reaction 3.330000E-03
2 Allergic reaction 1.503759E-03
3 RBC alloimmunization 6.210000E-04
4 Circulatory overload 1.960784E-04
5 Delayed hemolytic reaction 1.538462E-04
6 TRALI 1.070000E-04
7 Acute hemolytic reaction, other types of in-

compatibility
4.287400E-05

8 Anaphylaxis 2.857143E-05
9 Sepsis 1.331558E-05
10 Nonblood bank error alone, acute hemolytic

reaction when error
1.472630E-05

11 Blood bank error alone, acute hemolytic reac-
tion when error

7.626117E-06

12 Compound error, acute hemolytic reaction
when error

9.090909E-06

13 HBV 4.444444E-06
14 HCV 3.9445454E-07
15 HTLV-1 &2 5.200000E-07
16 HIV-1 & 2 4.000000E-07
17 Plasmodium (malaria) 2.500000E-07
18 Babesiosis 1.000000E-07
19 HAV 1.000000E-07
b. Minimal Cut Sets for the Severe Outcome Risk - Base Case

Cut Sets Events of the Cut Set Risk
1 Circulatory overload 1.96078E-04
2 Bacterial infection 5.10000E-05
3 MISC 5.25000E-06
4 Acute hemolytic reaction 1.00000E-06
5 TRALI 4.00000E-07
6 HIV 4.00000E-07
7 HBV 3.33333E-06
8 HCV 1.33333E-07
9 Malaria 2.75000E-08
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Appendix for Chapter 4

B.1 Proof of Proposition 5
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Waste

Waste(S) ≡ Pr
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j − |

∩
i∈Ψ

Ai−

)
.

By Assumption (A1), an equivalent representation of waste can be written as:

Waste(S) = 1−
∏
j∈S

Pr
(
T

d(j)
j − |Ad(j)−

)
.

TPF

TPF (S) ≡ Pr

(∪
j∈S

T
d(j)
j + |

∪
i∈Ψ

Ai+

)

= 1−

∑
−→
λ ∈S (

−→
Λ)\

−→
0

Pr

(
−→
Λ =

−→
λ ,
∩
j∈S

T
d(j)
j −

)

Pr

(∪
i∈Ψ

Ai+

) .

By Assumption (A1), an equivalent representation of TPF can be written as:

TPF (S) = 1− 1

Pr

(∪
i∈Ψ

Ai+

) ∑
−→
λ ∈S (

−→
Λ)\

−→
0

{
Pr
(−→
Λ =

−→
λ
)∏

j∈S

Pr
(
T

d(j)
j − |−→Λ =

−→
λ
)}

.
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PPV

PPV (S) ≡ 1− Pr

(∩
i∈Ψ

Ai − |
∪
j∈S

T
d(j)
j +

)

= 1−
Pr

(∩
i∈Ψ

Ai−
)
− Pr

(∩
i∈Ψ

Ai−,
∩
j∈S

T
d(j)
j −

)

1− Pr

(∩
j∈S

T
d(j)
j −

)

= 1−
Pr

(∩
i∈Ψ

Ai−
)
−
∏
j∈S

Pr
(
T

d(j)
j − |Ad(j)−

)
1− Pr

(∩
j∈S

T
d(j)
j −

)

By Assumption (A1), an equivalent representation of PPV can be written as:

PPV (S) = 1−
Pr

(∩
i∈Ψ

Ai−
)
−
∏
j∈S

Pr
(
T

d(j)
j − |Ad(j)−

)
1−

∑
−→
λ ∈S (

−→
Λ)

{
Pr
(−→
Λ =

−→
λ
) ∏

j∈S
Pr
(
T

d(j)
j − |

−→
Λ =

−→
λ
)} .

B.2 Proof of RMP NP-Hardness

The proof follows by the “restriction technique” (Garey and Johnson, 1979), that
is, we show that a special case of our general problem given in (4.1) and (4.2), after
considering Assumptions (A1) and (A2), reduces to the Series-parallel Redundancy
Allocation Problem (RAP), which is shown to be NP-hard (Chern, 1992). The RAP
is given in the following:

Maximize R′ =

n∏
j=1

(
1− q

xj+1
j

)

subject to
n∑

j=1

cjxj ≤ b
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0 ≤ xj ≤ uj , xj integer, j = 1, · · · , n,

where n (> 0) is the number of stages, cj (≥ 0) is the cost of component j, 0 ≤ qj ≤ 1
is the unreliability of each component in stage j, and uj ∈ Z+ is some positive integer
upper bound, which equals 1 in our setting.

As our budget constraint is in the same functional form as the above constraint, we
focus on equivalence of the objective functions of RAP and a special case of our
general problem (RMP). The objective function of RAP can be written as

R′ = 1−
n∑

j=1

q
xj+1
j +

n∑
j=1

∑
k>j

q
xj+1
j qxk+1

k − · · ·+ (−1)n
n∏

j=1

q
xj+1
j

= 1−
n∑

j=1

qjq
xj

j +
n∑

j=1

∑
k>j

(qjqk) q
xj

j qxk
k − · · ·+ (−1)n

(
n∏

j=1

qj

)
n∏

j=1

q
xj

j .

The objective function of RMP in (4.1), considering (A1) and (A2), is equivalent
to the following (see Appendix B.4):

R =
1

Pr

{ ∩
i∈Ψ

Ai−
} ∑

−→
λ ∈S

(−→
Λ
)
\−→0

Pr
{−→
Λ =

−→
λ
} ∏

i∈Ψ:λi=1

∏
j∈Si

Qj

 .

Now consider a special case of RMP, with only one test available for each disease,
i.e., mi = 1, i ∈ Ψ. As defined in Chapter 4, n is the number of diseases the decision-
maker is considering of testing for, and Qj is the test efficacy parameter for each test
j ∈ Ω. To simplify the notation, refer to the single test that applies to disease j as
test j, j = 1, · · · , n. For this special case, the objective function of RMP reduces to
the following:

R =
∑

{−→λ :λj=1,λk=0,∀k ̸=j}

Pr
{−→
Λ =

−→
λ
}

Pr

{∩
i∈Ψ

Ai−
}Q

xj

j +
∑

{−→λ :λj=1,λk=1,λl=0,∀l ̸=j,k}

Pr
{−→
Λ =

−→
λ
}

Pr

{∩
i∈Ψ

Ai−
}Q

xj

j Qxk
k

+ · · ·+
∑

{−→λ :λj=1,∀j}

Pr
{−→
Λ =

−→
λ
}

Pr

{∩
i∈Ψ

Ai−
}∏

j∈Ω

Q
xj

j .
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Functions 1−R′ and R are mathematically equivalent, and the result follows.

B.3 Proof of Property 1

For any S =
∪

i∈Ψ Si (⊆ Ω), define
−→
Y (S\{k}) as the random vector of results of tests

in S\{k}, ∀k ∈ Si, i ∈ Ψ. We first show that, ∀k ∈ S,

Pr

{∩
i∈Ψ

Ai−
∣∣∣−→Y (S\{k}) , T d(k)

k −

}
≥ Pr

{∩
i∈Ψ

Ai−
∣∣∣−→Y (S\{k}), T d(k)

k +

}
(B.1)

⇔ Pr

∩
i∈Ψ

Ai−,
−→
Y (S\{k}), T d(k)

k −

Pr
{−→
Y (S\{k}), T d(k)

k +
}

≥ Pr

∩
i∈Ψ

Ai−,
−→
Y (S\{k}), T d(k)

k +

Pr
{−→
Y (S\{k}), T d(k)

k −
}
.

To simplify the notation, in what follows we drop the disease index of the tests.

Since Pr
{−→
Y (S\{k})

}
= Pr

{−→
Y (S\{k}), Tk−

}
+ Pr

{−→
Y (S\{k}), Tk+

}
, an equiva-

lent statement of (B.1) is given as

Pr

∩
i∈Ψ

Ai,
−→
Y (S\{k}), Tk−

(Pr{−→Y (S\{k})
}
− Pr

{−→
Y (S\{k}), Tk−

})
≥ Pr

∩
i∈Ψ

Ai−,
−→
Y (S\{k}), Tk+

Pr
{−→
Y (S\{k}), Tk−

}

⇔ Pr

Tk −

∣∣∣∣∣∣
∩
i∈Ψ

Ai−,
−→
Y (S\{k})

 ≥ Pr
{
Tk −

∣∣∣−→Y (S\{k})
}

⇐⇒ Pr

Tk −

∣∣∣∣∣∣
∩
i∈Ψ

Ai−

 ≥ Pr
{
Tk −

∣∣∣−→Y (S\{k})
}
, by (A2). (B.2)

Pr

Tk−,
−→
Y (S\{k}),

∪
i∈Ψ

Ai+

 =
∑

−→
λ∈S

(−→
Λ
)
\−→0

Pr
{−→
Y (S\{k}),−→Λ =

−→
λ
}
Pr
{
Tk

∣∣∣−→Y (S\{k}),−→Λ =
−→
λ
}

=
∑

−→
λ∈S

(−→
Λ
)
\−→0

Pr
{−→
Y (S\{k}),

−→
Λ =

−→
λ
}
Pr
{
Tk −

∣∣∣−→Λ =
−→
λ
}
(by (A2))

≤
∑

−→
λ∈S

(−→
Λ
)
\−→0

Pr
{−→
Y (S\{k}),

−→
Λ =

−→
λ
}
Pr
{
Tk −

∣∣∣Ad(k)−
}
(Qj ≤ 1,∀j ∈ Ω, see Section 5.2).

Then, reintroducing the disease index for the tests, we can write
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Pr

T
d(k)
k −,

−→
Y (S\{k}),

∪
i∈Ψ

Ai+

 ≤ Pr

−→
Y (S\{k}),

∪
i∈Ψ

Ai+

Pr
{
T

d(k)
k −

∣∣∣Ad(k)−
}
. (B.3)

Therefore, the right hand side of Eq.(B.2) can be written as

Pr
{
T

d(k)
k −

∣∣∣−→Y (S\{k})
}

=

Pr

{
T

d(k)
k −,

−→
Y (S\{k}),

∪
i∈Ψ

Ai+

}
+ Pr

{
T

d(k)
k −,

−→
Y (S\{k}),

∩
i∈Ψ

Ai−
}

Pr
{−→
Y (S\{k})

}

≤
Pr

{
−→
Y (S\{k}),

∪
i∈Ψ

Ai+

}
Pr
{
T

d(k)
k −

∣∣Ad(k)−
}
+ Pr

{
−→
Y (S\{k}),

∩
i∈Ψ

Ai−
}

Pr
{
T

d(k)
k −

∣∣Ad(k)−
}

Pr
{−→
Y (S\{k})

} by Eq. (B.3)

= Pr
{
T

d(k)
k −

∣∣∣Ad(k)−
}

= Pr

T
d(k)
k −

∣∣∣∣∣∣
∩
i∈Ψ

Ai−

 , by (A1),

and Eq. (B.2) follows, which shows that the decision rule of classifying the blood unit

as infection-free under test results
(−→
Y (S\{k}), T d(k)

k −
)
is better (in terms of risk)

than a rule that classifies it as infection-free under test results
(−→
Y (S\{k}), T d(k)

k +
)
.

Then, applying this procedure iteratively for all tests in S\{k} with a “+” result in
the decision rule will eventually achieve the lowest risk, and this corresponds to a
decision rule that requires a “–” result for each test in set S for classifying the blood
unit as infection-free, i.e., the BP rule.

B.4 Proof of Proposition 1

From Property 1, under the BP rule, the objective function in Eq. (4.1) reduces to

R (S) = Pr

∪
i∈Ψ

Ai+

∣∣∣∣∣∣
∩
j∈S

T
d(j)
j −

 = 1−
Pr

{ ∩
i∈Ψ

Ai−,
∩
j∈S

T
d(j)
j −

}

Pr

{ ∩
j∈S

T
d(j)
j −

} ,
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which is equivalent to maximizing

Pr

{ ∩
i∈Ψ

Ai−,
∩
j∈S

T
d(j)
j −

}

Pr

{ ∩
i∈Ψ

Ai−,
∩
j∈S

T
d(j)
j −

}
+ Pr

{ ∪
i∈Ψ

Ai+,
∩
j∈S

T
d(j)
j −

} =
1

1 +

∑
−→
λ∈S(−→Λ)\−→0

Pr

{
−→
Λ=

−→
λ ,
∩

j∈S
T

d(j)
j −

}

Pr

{ ∩
i∈Ψ

Ai−,
∩

j∈S
T

d(j)
j −

}
,

which then is equivalent to minimizing

∑
−→
λ ∈S

(−→
Λ
)
\−→0

Pr
{−→
Λ =

−→
λ
}
Pr

{ ∩
j∈S

T
d(j)
j −

∣∣∣−→Λ =
−→
λ

}

Pr

{ ∩
i∈Ψ

Ai−
}
Pr

{ ∩
j∈S

T
d(j)
j −

∣∣∣∣ ∩
i∈Ψ

Ai−

} .

By definition of Qj and Assumptions (A1),(A2), the objective function reduces to

1

Pr

{ ∩
i∈Ψ

Ai−
} ∑

−→
λ ∈S

(−→
Λ
)
\−→0

Pr
{−→
Λ =

−→
λ
} ∏

i∈Ψ:λi=1

∏
j∈Si

Qj

 .

Introducing the binary decision variables Ij ≡
{

1, if test j is selected
0, otherwise , ∀j ∈ Ω,

we have ∏
i∈Ψ:λi=1

∏
j∈Si

Qj=
∏

i∈Ψ:λi=1

∏
j∈Ωi

{1− (1−Qj) Ij},

and the result in Eq. (4.3) follows since Qj = 1−Qj, j ∈ Ψ. Then Eq. (4.3) follows
by combining similar terms.
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B.5 Proof of Lemma 1

For RMP0 − i, i ∈ Ψ, the risk corresponding to any set Si ⊆ Ωi can be written as

R0
i (Si) = Pr

Ai +

∣∣∣∣∣∣
∩
j∈Si

T
d(j)
j −


=

Pr
(
Ai+

) ∏
j∈Si

Pr
(
T
d(j)
j −

∣∣Ai+
)

Pr (Ai+)
∏
j∈Si

Pr
(
T
d(j)
j − |Ai+

)
+ Pr (Ai−)

∏
j∈Si

Pr
(
T
d(j)
j − |Ai−

) (by (A2))

=
1

1 + Pr(Ai−)
Pr(Ai+)

∏
j∈Si

Pr
(
T

d(j)
j −|Ai−

)
Pr
(
T

d(j)
j −|Ai+

) .

Thus, minimizing R0
i (Si) over all Si ⊆ Ωi is equivalent to minimizing

∏
j∈Si

Pr
(
T
d(j)
j −

∣∣Ai+
)

Pr
(
T
d(j)
j − |Ai−

) =
∏
j∈Si

Qj , over Si ⊆ Ωi,

which, after linearizing the objective function, becomes equivalent to minimizing∑
j∈Si

ln (Qj), over Si ⊆ Ωi, and the result follows.

B.6 Proof of Proposition 4

Before we provide the proof for part (i), we introduce the following lemma.

Lemma 3 For any S ⊆ Ω,

Pr

∩
j∈S

T
d(j)
j −

 ≤∏
j∈S

Pr
(
T
d(j)
j −

∣∣∣Ad(j)−
)
.

Proof.

Pr

∩
j∈S

T
d(j)
j −

 = Pr

∩
i∈Ψ

Ai−

Pr

∩
j∈S

T
d(j)
j −

∣∣∣∣∣∣
∩
i∈Ψ

Ai−

+ Pr

∩
i∈Ψ

Ai−

Pr

∩
j∈S

T
d(j)
j −

∣∣∣∣∣∣
∩
i∈Ψ

Ai−

 ,

(B.4)
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where

Pr

∩
j∈S

T
d(j)
j −

∣∣∣∣∣∣
∩
i∈Ψ

Ai−

 =

∑
−→
λ∈S (

−→
Λ)\−→0

Pr

( ∩
j∈S

T
d(j)
j −,

−→
Λ =

−→
λ

)

Pr

( ∪
i∈Ψ

Ai+

) =

∑
−→
λ∈S (

−→
Λ)\−→0

{
Pr
(−→
Λ =

−→
λ
)
Pr

( ∩
j∈S

T
d(j)
j −

∣∣∣−→Λ =
−→
λ

)}

Pr

( ∪
i∈Ψ

Ai+

) .

Observe that S (
−→
Λ )\−→0 denotes the realizations of the random vector

−→
Λ in which

the blood unit is infected by at least one disease. By Assumption (A2) and Qj ≤
1, ∀j ∈ Ω, we have, for

−→
λ ∈ S

(−→
Λ
)
\−→0 , j ∈ Ω,

Pr
(
T
d(j)
j −

∣∣∣−→Λ =
−→
λ
)

=

 Pr
(
T
d(j)
j −

∣∣Ad(j)−
)
, if Λd(j) = 0

Pr
(
T
d(j)
j −

∣∣Ad(j)+
)
, if Λd(j) = 1

≤ Pr
(
T
d(j)
j −

∣∣∣Ad(j)−
)
.

Then, for
−→
λ ∈ S

(−→
Λ
)
\−→0 , Pr

( ∩
j∈S

T
d(j)
j −

∣∣∣−→Λ =
−→
λ

)
≤
∏
j∈S

Pr
(
T
d(j)
j −

∣∣Ad(j)−
)
.

Hence, it follows that,

Pr

∩
j∈S

T
d(j)
j −

∣∣∣∣∣∩
i∈Ψ

Ai−

 ≤

∏
j∈S

Pr
(
T
d(j)
j −

∣∣Ad(j)−
) ∑

−→
λ ∈S (

−→
Λ)\−→0

Pr
(−→
Λ =

−→
λ
)

Pr

( ∪
i∈Ψ

Ai+

)
=

∏
j∈S

Pr
(
T
d(j)
j −

∣∣∣Ad(j)−
)

(B.5)

= Pr

∩
j∈S

T
d(j)
j −

∣∣∣∣∣∩
i∈Ψ

Ai−

 . (B.6)

Then the result follows by first substituting (B.6) into (B.4), and then using the
equivalence between (B.5) and (B.6).
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Proof of Proposition 4, part (i):
For any S ⊆ Ω,

Pr

(∪
i∈Ψ

Ai+

∣∣∣∣∣∩
j∈S

T
d(j)
j −

)
=

Pr

(∪
i∈Ψ

Ai+,
∩
j∈S

T
d(j)
j −

)

Pr

(∩
j∈S

T
d(j)
j −

) ≥
Pr

(∪
i∈Ψ

Ai+,
∩
j∈S

T
d(j)
j −

)
∏
j∈S

Pr
(
T

d(j)
j − |Ad(j)−

) (by Lemma 3)

=

∑
−→
λ ∈S (

−→
Λ)\−→0

{
Pr
(−→
Λ =

−→
λ
)
Pr

(∩
j∈S

T
d(j)
j −

∣∣∣−→Λ =
−→
λ

)}
∏
j∈S

Pr
(
T

d(j)
j − |Ad(j)−

) .

Note that, for
−→
Λ ∈ S (

−→
Λ)\−→0 ,

Pr

∩
j∈S

T
d(j)
j −

∣∣∣−→Λ =
−→
λ

 =
∏
j∈S

Pr
(
T
d(j)
j −

∣∣Λd(j) = λd(j)

)
(by (A1) and (A2)),

where, Qj ≤ 1,∀j ∈ Ω,

Pr
(
T
d(j)
j −

∣∣Λd(j) = λd(j)

)
=

 Pr
(
T
d(j)
j −

∣∣Ad(j)−
)
, if Λd(j) = 0

Pr
(
T
d(j)
j −

∣∣Ad(j)+
)
, if Λd(j) = 1

≥ Pr
(
T
d(j)
j −

∣∣∣Ad(j)+
)
.

Then,

Pr

∪
i∈Ψ

Ai+

∣∣∣∣∣∣
∩
j∈S

T
d(j)
j −

 ≥

∏
j∈S

Pr
(
T

d(j)
j −

∣∣Ad(j)+
) ∑

−→
λ∈S (

−→
Λ)\−→0

{
Pr
(−→
Λ =

−→
λ
)}

∏
j∈S

Pr
(
T

d(j)
j −

∣∣Ad(j)−
) = Pr

∪
i∈Ψ

Ai+

∏
j∈S

Qj .

Note that Property 2 also applies to Problem (LB), that is, the optimal solution to
Problem LB must also belong to set ΩD. Then, the result follows because for any
S ∈ ΩD, R(S) ≥ LB(S) ≥ LB∗. This completes the proof.

Proof of Proposition 4, part (ii)

Let S 1(
−→
Λ ) denote the sample space of the random vector

−→
Λ with only a single
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infection, i.e., S 1(
−→
Λ ) = {

−→
Λ ∈ S (

−→
Λ) :

∑
i∈Ψ

λi = 1}. Recall that I∗j , j ∈ Ω, denotes

the optimal solution to RMP. Then, from Proposition 1 Eq. (4.3), the objective
function of RMP can be written as

∑
−→
λ∈S

(−→
Λ
)
\−→0

p−→
Λ

(−→
λ
) ∏

i∈Ψ:λi=1

∏
j∈Ωi

{
1−QjIj

}
=

∑
−→
λ∈S 1(

−→
Λ)

p−→
Λ

(−→
λ
) ∏

i∈Ψ:λi=1

∏
j∈Ωi

{
1−QjIj

}+
∑

−→
λ∈S

(−→
Λ
)
\
{−→

0 ∪S 1(
−→
Λ)
}
p−→

Λ

(−→
λ
) ∏

i∈Ψ:λi=1

∏
j∈Ωi

{
1−QjIj

}
≥

∑
−→
λ∈S 1(

−→
Λ)

p−→
Λ

(−→
λ
) ∏

i∈Ψ:λi=1

∏
j∈Ωi

{
1−QjIj

}
≥ MinimizeIj ,j∈Ω

∑
−→
λ∈S 1(

−→
Λ)

p−→
Λ

(−→
λ
) ∏

i∈Ψ:λi=1

∏
j∈Ωi

{
1−QjIj

}, (Qj = 1−Qj ≤ 1, ∀j ∈ Ω,) (B.7)

where (B.7) is the objective function of RMP0; hence the result follows.
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Appendix for Chapter 5

C.1 TestSet-based Formulations of RMP0 andWT-

RMP0

Proposition 3 (Bish et al., 2010) establishes the equivalence of RMP0 to the follow-
ing integer programming problem:

TS-based formulation for RMP0:

Minimize
∑
i∈Ψ

p−→
Λ

(−→
λ : λi = 1

)
∑
j∈Ωi

Qjx
i
j +

∑
j∈Ωi

∑
k∈Ωi,k>j

QjQkx
i
jk+∑

j∈Ωi

∑
k∈Ωi,k>i

∑
l∈Ωi,l>k

QjQkQlx
i
jkl + · · ·+

∏
j∈Ωi

Qjx
i
Ωi

+ xi∅



subject to
∑
i∈Ψ


∑
j∈Ωi

cjx
i
j +

∑
j∈Ωi

∑
k∈Ωi,k>j

(cj + ck)x
i
jk+∑

j∈Ωi

∑
k∈Ωi,k>j

∑
l∈Ωi,l>k

(cj + ck + cl)x
i
jkl + · · ·+

( ∑
j∈Ωi

cj

)
xi

Ωi

 ≤ B

(C.1)

∑
i∈Ψ


∑
j∈Ωi

pjx
i
j +

∑
j∈Ωi

∑
k∈Ωi,k>j

(pj + pk)x
i
jk+∑

j∈Ωi

∑
k∈Ωi,k>j

∑
l∈Ωi,l>k

(pj + pk + pl)x
i
jkl + · · ·+

( ∑
j∈Ωi

pj

)
xi

Ωi

 ≥ ln(1− α) (C.2)

∑
j∈Ωi

xij +
∑
j∈Ωi

∑
k∈Ωi,k>j

xijk+
∑
j∈Ωi

∑
k∈Ωi,k>j

∑
l∈Ωi,l>k

xijkl + · · ·+ xi
Ωi

+ xi0 = 1, ∀i ∈ Ψ (C.3)
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xi
q1,q2,...,qk

binary, {q1, q2, . . . , qk} ⊆ Ωi \ ∅, i ∈ Ψ (C.4)

xi
0 binary, i ∈ Ψ, (C.5)

where pj = ln
(
Pr
(
T

d(j)
j − |Ad(j)−

))
, ∀j ∈ Ω.

Similarly, we reformulate WT-RMP0 following the TestSet-based formulation.

TS-based formulation for WT-RMP0:

Minimize
∑
i∈Ψ

w
(−→
λ : λi = 1

)
p−→
Λ

(−→
λ : λi = 1

)


∑
j∈Ωi

Pr{T d(j)
j − |

−→
Λ =

−→
λ }xi

j+∑
j∈Ωi

∑
k∈Ω,k>j

Pr{T d(j)
j − |−→Λ =

−→
λ }Pr{T d(k)

k − |−→Λ =
−→
λ }xi

jk + · · ·

+
∏

j∈Ωi

Pr{T d(j)
j − |

−→
Λ =

−→
λ }xi

Ωi
+ xi

0



subject to (C.1), (C.2), (C.3), (C.4), (C.5).



Appendix D

Appendix for Chapter 6

D.1 Charnes & Cooper’s Transformation of DF-

RMP

Consider the LFP of DF-RMP in (6.1)-(6.3). In what follows, we convert it into
a linear programming problem by applying the Charnes & Cooper’s Transformation
(Charnes and Cooper, 1962). Denote t = 1

f∑
k=0

pk Pr

{ ∩
j∈Sk

T
d(j)
j −

} . Then, an equivalent

formulation of DF-RMP follows:

Maximizep⃗,t (1−R) = t

f∑
k=0

pk Pr

{∩
i∈Ψ

Ai−,
∩
j∈Sk

T
d(j)
j −

}

subject to

f∑
k=0

pk

(∑
j∈Sk

cj

)
≤ B

f∑
k=0

pk = 1

t

f∑
k=0

pk Pr

{∩
j∈Sk

T
d(j)
j −

}
= 1

t ≥ 0

pk ≥ 0, k = 0, 1, . . . , f.
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Multiplying all constraints by t and letting xk ≡ pkt, we obtain the following linear
programming problem.

Maximizex⃗,t (1−R) =

f∑
k=0

xk Pr

{∩
i∈Ψ

Ai−,
∩
j∈Sk

T
d(j)
j −

}

subject to

f∑
k=0

xk

(∑
j∈Sk

cj

)
−Bt ≤ 0

f∑
k=0

xk = t (D.1)

f∑
k=0

xk Pr

{∩
j∈Sk

T
d(j)
j −

}
= 1

t ≥ 0

xk ≥ 0, k = 0, 1, . . . , f.

By replacing t with
∑f

k=0 xk using (D.1), this problem is then converted to the linear
programming problem given in DF-RMP2 Primal.


