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(ABSTRACT)

Interference between the modes of an optical fiber generates specific mode (intensity) pattems

which get modulated by disturbances in the optical fiber system. Mode-mode interference has been

analyzed from first principles and a model based on differential phase modulation presented.

Mode·mode interference effects such as intensity modulation of the mode pattems are directly re-
lated to differential phase modulation between modes which arises due to the difference between

the propagation constants of the constituent modes. Practical implementation of modal methods

involves selective launching of modes and processing of the output pattern to demodulate the in-

formation.

Axial strain has been chosen as the modulating mechanism in experirnents designed to quantify

mode-mode interference effects. Quasi-statically varying strain as well as vibrational strain was used

to study ’dc’ and ’ac’ mechanisms. Specific mode combinations have been excited and their radi-

ation patterns identified. Mode pattern changes have been described. Experimental observations

and results correlate very well with analysis.
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1.0 Introduction

The optical über was developed as a means of propagating light through a waveguide primarily for

information transmission. This lightwave medium is a fascinating marriage of waveguide and optical

sciences.

Of basic interest in über optics technology is the analysis of the propagation rnechanisms of light

in an optical waveguide. The über is modelled as a cylindrical circular dielectric waveguide for

electromagnetic analysis. The principle of guidance is total internal reüection at the interface of the

core and the cladding, the concentric regions of the über which have slightly differing refractive in-

dices. The üeld distributions, propagation mechanisms, intensity and polarization of Light guided in

such übers are major considerations in this analysis.

1. 1 Optical Fiber Sensing
l

Optical ßber communications technology uses the über as a low-loss, wideband medium for infor-

mation transmission and seeks minimization of the über response to external perturbations and
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factors. On the contrary, optical fiber sensing is based on these very effects of external factors on

lightwave propagation.

Fiber optic sensors exploit the effects of perturbations and external factors on the light in the fiber.

Specifically, the intensity, phase and polarization are available for alteration and the detection of

these changes is the basis for fiber optic sensors. Phase modulated sensors are unparalleled in sen-

sitivity. Conventional phase modulation schemes employ various mechanisms to modulate the

phase of the lightwave using the parameter to be measured. Comparing the varying phase to a ref-

erence phase i.e. demodulating the phase information generates a sensor output signal. This is il-

lustrated in the classic Mach-Zehnder interferometer in Figure I on page 52. In this scheme, a

single source feeds Light into two different single-mode fibers, i.e. the sensing arm and the reference

arm of the interferometer. A change in phase in the sensing arm can be demodulated and related

to the external cause of the phase change. At optical frequencies, this demodulation is achieved by

measuring the intensity of the interference field and detecting changes. In the Mach-Zehnder

interferometer, the field magnitudes change in time and space because of the phase change and thus

cause a change in the interference pattern.

1.2 Moda] Domain Scnsing

It is well established that there exist in the waveguide various modes of electromagnetic wave

· propagation not unlike the modes of metal waveguides. Modal analysis is a standard technique in

waveguide theory. Mode effects like modal noise and intermodal dispersion lead to a decrease in

communications system performance.

The modal field structure can be used to extract information regarding any change in the fiber I
characteristics. We define modal domain sensing as any sensing technique that is based on the in-

IIntroduction 2 I
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terference between modes or mode combinations. The modulation of the phase of one mode with
respect to that of another as a reference is used as a sensor signal. One way of implementing this

method is to use some unique combination of modes that display modulation characteristics suit-

able for sensing. Information could then be extracted from this (differential) mode-mode interfer-

ence phenomenon.

Practical problems like fading and phase fluctuations in the reference arm plague dual-beam

interferometry. These problems are due to the different environments around the two optical Iibers.

Single-beam interferometers using some kind of ”self-referencing" can eliminate these common-

mode problems. Modal domain sensors are, by definition, such single iiber sensors and they could

be used as "self-referenced interferometers/’

This report examines the theoretical and experimental aspects of mode—mode interference and mode

modulation. Chapters 2 and 3 describe optical waveguide and mode theory. Only relevant matter

is described and results easily available in the literature are quoted without proof. Chapter 3 also
describes some specific mode combinations important to the experiments described later. Chapter

4 reviews mode-mode interference concepts and proposes a mathematical model for some exper-

imentally observed effects. Chapters 5 and 6 report the experiments performed as well as the results

and discussion. Chapter 7 concludes the report. Figures are included and references cited at the end

of the report.
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2.0 Optical Waveguide Tl1e0ry

A typical optical liber is shown in Figure 2 on page 53. The liber has a circular cross-section and

is typically made of glass (fused silica). There is a central core surrounded by a cladding. The

refractive index of the core is slightly higher than that of the cladding. The liber is covered by a

protective polymer coating. Typical dimensions for t-he core/cladding/jacket diameters are

9/125/250 u and 50/125/250 u for single·mode and multi-mode optical libers respectively. As the

names suggest, a single·mode optical liber supports only one mode while a multi·mode liber sup-

ports numerous modes. Modes are explained in detail in Chapter 3.

The refractive index prolile (RIP) for the core and cladding regions is also used to characterize an

optical liber. We shall deal only with the step-index type. Based on the refractive indices of the

core and cladding (nl and nz), the wavelength of operation (X) and the core radius (cz), we can define

the V-parameter for an optical liber as

V = — ng .

The range of single-mode operation is V < 2.405 and that of multi-mode is typically V > > 5

We texrn the intermediate 2.405 < V < 5 range as that of few-mode operation. Most of the matter

Optical Waveguide Theory 4
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discussed in this report addresses few-mode optical übers. In this chapter, we shall model the op-

tical über as a waveguide and set up the waveguide electromagnetic equations.

An optical über can be treated as a circular dielectric cylindrical waveguide for the purpose of

electromagnetic analysis. It is best to formulate the general wave equations and then apply them to

dielectrics and circular dielectric waveguides. This approach is similar to the ones employed in

microwave waveguide analysis.

2.1 Waveguide Equations for Dielectric Cylindcrs

We reproduce here the dilferential form of Maxwell’s equations for instantaneous üeld quantities.

V X Erz) = —0:
“D

V x H(z) = + J(t) (2.1.1)
V- B = 0
V- D = pv

Henceforth, this analysis uses the complex phasor notation where the instantaneous üeld quantities

are related to the complex phasors by the relation

E(Z) = Re [E exp(jcot)]. (2.1.2)

This relation is equivalent to three scalar equations for the three spatial components of the vectors.

\Ve shall be dealing with linear, isotropic, homogeneous and source-free perfect dielectrics to obtain

ideal solutions. In general, graded-index optical übers are not homogeneous and special math-

ematical techniques are required to obtain solutions in such cases. We shall be considering step-

index optical übers. This is r10t very restrictive since this work relates directly to few-mode übers

Optical Waveguidc Theory 5



which are typically step-index. The field quantities can be considered to be time-harmonic without

loss of generality. For such a case, we can write the Maxwell’s equations in complex notation as

under:

V x E = —jp(0H
V x H = j(06E 2.1.3

V- B = 0 < )

V·D = 0

where 1,1, the permeability, and 6 , the permittivity, are constants.

For optical materials, we also have the index of refraction rz given by

n = /6, = X/8/EO. (2.1.4)

Since we are analyzing cylindrical waveguides, it is convenient to use cylindrical coordinates as

_ shown in Figure 3 on page 54. We expect to deal with wave propagation down the cylindrical

waveguide. So we align our z-axis along the axis of the cylinder and seek solutions for wave prop-

agation along the z-axis.

From (2.1.3), we have the well-known Helmholtz equation describing electromagnetic wave phe-

nomena.

vz}; + 1621; = 0 1
2

_
2 (2.1.5)

k = (0116 = 271/}. .

A general solution to the wave equation is given by 1

E(r ,1) = E0(r) exp[j((01 —· k . r)] ug
k = kük
1 = ><¤„ + yu) + Zu; = wp (2.1.6)

uk = unit vector in the direction of propagation
ue = unit vector in the direction of the E held

Optical Wavcguide Theory 61
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In general, we expect to have field solutions which are functions of p, rp and z. There should be

a27rperiodicity in (0 since it is the azimuthal angle. We also expect fields to propagate in the + z

direction. It is worthwhile to investigate this on a mathematical basis.

A11 cartesian components of the field satisfy (2.1.5). For any cartesian scalar component (or the

cylindrical z-component) 111 , we can expand V2 as [1]

. 2 2+ + @2 + 1220 = 0. (2.1.7)p Op Op p2 ö(p2 6722

Separating the variables,

11/ = *1/0R(P)‘p(<P)Z(Z)· (2-1-8)

From (2.1.7) and (2.1.8), we get [1]

2 2 k2 = 0_ (Zig)pR Up dp p2<l> drpz Z dzz

Note that this equation is valid for all p, (p and z. The third term in (2.1.9) is independent of

p and (0. Using that to write it as a constant and multiplying the equation by p2, we have the sec-

ond term independent of p and z, and so we can write

d2Z Z _ h2Z
61/22

2 = - v2<D (2.1.10)
dw

/1 = some constant > 0
v = some constant.

Since we are seeking solutions of waves propagating along the + z-axis, we write using convention,

Z = epjhz, and_ (2.1.11)
CD = 6/Vip.

Optical Waveguide Theory 7



Defining

kl = kl — kl (2.1.12)

we have from (2.1.9) and (2.1.10)

ö ( dR ) 2 2 _
p-? p-- -1- (1<p) —v R—0 2.1.13pp dp [ ] ( 1

Possible solutions to the above Bessel’s equation of order v are Bessel functions. Thus we write

R = Z.,(1«1>). and
. _ . (2.1.14)

tySincewe expected propagation in the -1- z direction, we compare (2.1.14) with (2.1.6) to get

/1 = k· ud
. . . (2.1.15)

= longitudinal propagation constant.

From (2.1.12) and Figure 4 on page 55, we have 1< as the transverse propagational constant.

Since we must have 27T azimuthal symmetry v must be an integer. Accordingly, we change notation

to n to reflect this fact. So the axial field component (z-component) can be written as

F,. (2.1.16)

We have determined the nature of the field solutions to the waveguide equations. In following

sections, we apply these to step-index optical fibers.

Optical Waveguide Theory 8
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2.2 Circnlarly Polarized Field Components [
In this section, we develop an alternative representation of the transverse field based on the

formalism in Ref [2]. In the practical world, only the intensity and polarization of the field at the

fiber endface can be observed either as near-field or far-field patterns. Both of these depend on the
transverse components of thefield.We

have, in general, elliptical polarization of the transverse field and can represent it as acombi-nation

of circularly polarized components. This makes for better physical interpretation than de-
termining the x,y,z or p, q>,z components.

We define [2]

Ei = (2.2.1)

For E+, we have left-handed circular polarization (LHCP) and for E-, we have right-handed cir-
cular polarization (RHCP) [l]. Similarly,

H, = (2.2.2) [The real fields of E are [[
Re [E;] = IE; [[uxcos(cot — hz + Ö;) +uysin(cot — hz + 6;)]

(2 7 3) [
where E; = [Ei [e/6*. im „

[
Note that the RHCP and LHCP components are orthogonal in the power sensebecauseE;

x H; = 0.(2.2.4)We

define for easier

writingOpticalWaveguidc Theory 9
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I
vi = ux-+'?juy_ (2.2.5)

We must keep in mind that these are not unit vectors. Now, we write

E = Ep + Ew + EZ
= E+ + E- + EZ (2.2.6)
= E+v+ + E-v- + Ezuz.

We thus get the following relations

Ex :1: jEy

-. E °E
(2.2.7)

Ex = E+ + E-
jEy = E+ — E-.

From this representation, we can easily determine the state of polarization. Comparing

IE I + and IE- I, we know if the field is LHP or RHP. The magnitudes also indicate the ellipticity
of the polarization ellipse and the phases 5+ and 5- indicate the orientation. Since polarization
plays an important part in fltering information from observation of the fiber output patterns, this
representation will be helpful later.

2.3 Field Solutions in Step-index Optical Fibers

The generalized field solutions obtained in section 2.1 can be used in Maxwell’s equationswithspecific
boundary conditions to analyze the step-index opticalfiber.We

can translate the vector operator V as

[2]OpticalWaveguide Theory 10



Ö Ö Öux Öx uy Öy + UZ Öz
V = uxVx + uyVy + u2Vz

= v+V+ -1- v_V_ + uzV_,.
.. 1 *where Vi — -5vi . V (2_3_1)

= L + / _@
2 Öp P co

= i[L + L]
2 Öx Öy 1

Since we have from (2.1.16) that the axial field component is of the form

F,, = t„,, = c,,Z„(Kp>e~’"‘1"/”Z*/°°’· (2.3.2)

let us take .

EZ = AF„ and 2 3 3Hz = BF„. ( I I 1

If we write Maxwe1l’s equations (2.1.3) in terms of the circularly polarized components using (2.3.1)

and substitute (2.3.3), we get the following relations [2].

EZ = AF,,
H2 = BF„

E+ = + couB)F„+l

H+
l -E_ — — (?;—)(_;/1A — coy,1B)F„_1 p
H_{

To simplify the above, we multiply by andsetJ1 ,

. Optical Waveguide Theory 1 1



= —L‘°B 2 3 5*(1 j/IA . ( . . )

Then we have [2]

Ei = t (1 :1: (1)AF,,ltl
.h 2

_ 2EZ _ AFH (2.3.6)

l (wu
Z (Kp)€jn(p+jcoz—j/12

71 fl '

These can be used to describe fields in both the core and cladding. Of course, they can be finally

accepted only if the conditions at the boundaxy can be satisfied. Using the suffix 1 for the core and

2 for the cladding, we first note the following.

gl ;é 82
l·l1 = H2 = li
kl ¢ kl.

The solutions describe time-harmonic fields propagating along + z axis. Irnposing phase synchro-

nisrn at the interface

hl = kl cos Gl = k2 cos 92 = hg = h, (2.3.7)

where Ol and 92 are the angles of the equivalent light ray with the interface in the core and the

cladding. We thus

haveh=klcos9lSkl.Also,Optical

Waveguide Theory I2E



kz = kl cos (·)l Gl 2 92,
andk2=klcos9CSklcos9lSh

9lSGCThus,for total internal reflection at the core-claddding interface (Gl S G2),

k2 S h S kl
Kl 2 0
K2 S 0 (2.3.8)

1
K1,2 = i

_Forthe sign of the radical above, we will use the convention that Re [K] > 0 [l]. In the case that

K becomes imaginary, we introduce a little loss in k and take

limk = k' — 'k"k" —» 0 J

to apply this convention. Thus, for imaginary K2, K2 = — jq where q = X//k22 —- 7i: is real. In

general,

Al ¢ A2 and
IK] I I K2 I

Now, we can apply the boundary conditions of the step—index optical fiber to our solutions.

1. The fields must be finite in the core at p = 0. This limits our choice of the Bessel function

and thus we have

Z„(Klp) = J„(Klp), where (2 38)J,,= Bessel function of the first kind . I

i2.The fields in the cladding that we are interested in are evanescent fields. Because theguidingmechanism
is total internal reflection, the field should satisfy radiation conditions and

decayOpticalWaveguide Theory I3
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exponentially far away from the core. Such behaviour can be described by the H,[21, the Hankel

function of the second kind. Note that if we had a different convention for imaginaxy

K i.e. K = jq, then we would use H§,‘1 the Hankel function of the first kind as in [3]. As in [6],

we could also use K,,, the modified Bessel function of the second kind which is related to HQ)

by

HWWethus have for the cladding

(2,3-9)

3. The tangential components of the fields in (p and z must be continuous at p = cz. Using (2.3.6)

and (2.3.7), we equate the z component to get [2]

A = A]u.]„(14)
2 vH,,(v) l i

(2.3.10)where u = Kla, and
V = Kza.

Using (2.2.7), (2.3.10), (2.3.6) and (2.3.7) and equating the <p components, we get [2]

(1 + ¤)(J+ — H+) = · (1 — ¤)(J- · H-)
ki ki
7 (J+ · J-) + ¤(J+ + J-) = 7 (H+ — H-) + ¤(H+ — H-),
/1 h

_] i (2.3.11)
where Ji =Ä¤J„(¤)

Hi =
[—[n:E1(v)·
vH,,(v)

We also have '

142 — v2 = (2;-¥—)2(n? — = V2. (2.3.12)

Optical Waveguide Theory 14
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Equations (2.3.11) gives us a characteristic equation which we can solve to detemiine the

eigenvalues u and v of this boundary value problem. These are related to actual fiber characteristics

by (2.3.12). The solutions can be used in our generalized field solutions that we summarize below.

In the core, are

Ei = =¤ <1 i ¤>AJ„..1<·<1p>ä1”*”*°‘”1‘”"/**2
ki1 *1 2 “ 1°/1 h

i (coli 1 :1: ot Ei

2 . . _ .EZ jhz
_h (2.3.13)

Hz =(01,1.
ll = Kld
V = K2C1

K? = kg — 29
G = rogß

jh/1 °

For the cladding we can use the above with the following trarisforrnations

J,,(1<1¤) —· H,,(1<2p)„ p = M — 1, rr, rz + 1
K1 “' K2
ll —* V 2.3.14kl

**Au.]„(u)Q A.v[{„(v)

For the evanescent fields arising from total internal reflection, we have v = —jq where q is real .

For this we can write [1] i

H„( —jq);j”+ légew , for large q. (2.3.15)«/TW

Optical Waveguide Theory 15
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To analyze the intensity distribution of the mode fields at the fiber endface, we neglect end re-
flections and assume the fields to be the same as if the fiber were an infinite cylinder. This is valid
for dielectric cylinders [2]. The intensity distribution is thus the time average of the z-component

of the Poynting vector. Thus,

Re [E X if}- U,

= Re ]:(E+v+ + E-v-) x (Hlvl + Hivi)]/2 (2716)

= Im [6,.Hl — E-H’L}.

For p < a we substitute (2.3.13) and get

*
2hA kS. ={<1+ + ¤]J,%+.<»<.p>]

2 (2.3.17)
k+11- ¤)[<;ä·) ’ ¤j]J,i—1(1<1P)·

Having determined the nature of the field solutions, we will try to solve the characteristic equation

to get unique solutions in the following sections.

1

1
1
I

Optical Waveguide Theory 16
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3.0 Modes 111 Opt1ca1 F1bers

In this chapter, we look into a different aspect of optical waveguide theory. Having obtained the

nature of the solutions, we determine the actual solutions. There are infinite solutions and each is

called a mode, the term being one used conventionally ir1 waveguide theory. Modes are a math-

. ematical conceptualization that helps us define, visualize and exploit the waveguide properties.

They also have physical correlations. This analysis is largely based on that in Ref [2] and so explicit

references will not be made at all places.

The two equations in (2.3.11) can be used together to formulate the characteristic equation of the

step-index optical liber. Such analysis has been presented by many authors [2, 3, 4, 61 and we re-

produce here the f1na1 result in one of the many forms from [2].

1 1 gl E2(A—B)(6A—6B)=n2 ——— ————1 2 H2 V2 u2 V2
A :

J’„<¤)
Öl") (3.0.1)

B = H ,,(u)
v[{„(v)

u = K10
V = Kza.

Modes in Optical Fibers 17
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This eigenvalue equation contains all the information of the boundary conditions and the fields.
Solutions to this equation will determine the eigenvalues u and v and these can be used in (2.3.13)

to obtain the actual fields.

As is obvious, for a given a, 61, 62_ and k (or X), we can select any n and have infinite solutions.

Each solution determines u, v and thus generates an unique field configuration. Each such field

pattern is called a mode. Many such modes can exist simultaneously.

Replacing n by — n does not change the characteristic equation and opens up a range of degenerate

modes corresponding to the solutions. These will however differ in that they will have an opposite

sense of rotation because of the e/"fl) term in the field solutions. The solution for a particular choice

of n can be associated with another mode number m assigned consecutively in order of appearance

to the modes with the same n. This shall be explained later.

In optical fibers, we have total internal reflection as the guiding mechanism. For this, a propagating

mode has a finite field in the core and an evanescent field in the cladding (K2 is imaginary).

3.1 Mode Nomenclature

Each different mode arises as a solution to the characteristic equation of the optical waveguide. This

section describes the modes and their nomenclature.

We use n, the order of the Bessel functions as one of the means of classifying or naming the modes.

This is called the azimuzhal mode number. It is significant since it appears in the index of e/**1) and

thus it gets its name. As previously mentioned, n has to be an integer since e/**27* = e° only for in-

teger n. If we observe the projection of the E vector on the transverse plane, then we can see that
for n = 0, there is no azirnuthal or rotational coefiicient in E and H. The wave vector uk is radial

Modes in Optical Fibers 18
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and the equivalent ray for the wave passes through the axis and is always in a meridional plane.

Less obvious is the fact that for higher n, the equivalent ray (along uk) never crosses the axis and

the equivalent rays are skew [6].

Case 1: n = 0 [3]

For such cases, we get from (2.4.1)

If the first term is zero, we have field solutions with (E, = 0) and the E vector is in the transverse

plane. These modes are termed transverse electric or TED modes with the subscript 71 = 0. Corre-

spondingly, if the second term is zero, we have (HZ = O) and the H vector is in the transverse plane

and these are termed TMD modes. As noted before, these modes correspond to meridional rays.

[Case 2: n > 0[2]
i

The characteristic equation can be rewritten as a quadratic equation as under.

A = Pgl

P2: Ä 2B2+,,2 Ä - Ä Ä : 82 @-*2)
6] 2 2 2 2U V U 8lV

E = (61 + 62)/2, A6 = (61 — 62)/2.

For rz > 0, we have hybrid modes where EZ ¢ O, HZ === 0 [2]. Field solutions for such modes become

more complex and approximations have to be made for analysis. Note that the quadratic equation

above is really two equations because of the 1 sign. lf we select the + ve sign, then we get modes

which are conventionally termed EH,, modes. On the other hand, the —ve sign generates what are

called the HE,, modes. Physical significance of these names arises from considerations of the

transverse fields. The HE fields are more H·lil<e and the EH fields are more E-like, which is to say

that the transverse fields are dominated by the H or the E fields respectively. The same equation

Modes in Optical Fibers 19



I

I

can be used for n = 0 and as can be expected, the EHD modes are the TED modes and the HED modes

are the T/wo modes,.

We defined oz in (2.3.5) as a ratio involving the magnitudes of the fields E and H and can expect field

dominance to be related to r1. Without proof we write from [2]

- .....¤_. L. - .i.“ A —B(3.1.3)
IGI < I, for HE modes
[DI] > [I for EH modes

Thus, for EH modes, the axial component of the H-field is larger and the transverse component

of the E-field is dominant.

The reader may recall that n can be replaced by — n and we would still satisfy all equations. This

suggests a degenerate orthogonal mode with an opposite sense of rotation. lf n < 0, then ot is pos-

itive for HE modes and negative for EH modes. There are other aspects of the rotational terms

presented in 3.3 and the interested reader is referred to Ref [2] for a quantum mechanical interpre-

tation.

3.2 Mode Cutojf Conditions

We need to have an evanescent wave in the cladding for guidance so as to prevent the radiation of

power away from the core. A mode will not be bound to the core if the cladding field is not II
evanescent. It would be detached from the core-clad boundary and radiate power away from the I
core. We term the mode to be cut off and not supported in such cases. This condition is charac— I

I
terized by K2 = 0. Modes have a second subscript, the radia] mode number m assigned in order of I
appearance as IKZI is made greater than zero. Remember that K2 is imaginary for bound modes. I

I

I
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We shall see later that m influences the number of radial maxima in the intensity pattern of the

mode. The cutoff conditions for different modes are given below [3].

T1]/{Om, TEOC, ./0(u) = 0
HElm J1(V) = O
EH„„,,22 2 1 J„(u) = 0, u ¢ 0 ' (3'2'I)
HE„„„,~ 2 2 1>

The above conditions defme u = uC at cutoff. For u > uc, the mode is supported. So as u increases,

more and more modes begin to be supported. We can relate this to the fiber parameters. At cutoff,

we can use (2.1.12) to write

uC = Kld = aN/kg — P1? = a\/k? — kg
T? 2 (3.2.2)

= ak\/21, — 212 VC.

For a mode to be supported we need

V > VC = uC. (3.2.3)

The uc parameter can be written in general for all modes except the HE,,,„, fl 2 2 modes where

knowledge of the ratio 21,/rr, is needed. We assume for our applications, 21,/212 = 1.002. Then we

have the cutoff conditions on V for some lower order modes as under.

Mode uC

HE,, 0.0

TM,,,, TE,,, 2.405

HE2, 2.42 ]

HE,2, EH,, 3.83

ÄHE,, 3.86 ,
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The propagational constant h varies from kl to kl as a mode goes from cutoff to far-from-cutoff.
The actual value of the propagation constant can be got by solving the characteristic equation. This

can be done only by numerical methods.

The relation between h and V for a 9/ 125, NA= 0.1, V= 4.46 at 633 nm optical fiber was plotted

by solving the equation numerically From above, we can see that only the first seven modes are

supported for V < 5. This is depicted as a plot of /1 with V in Figure 6 on page 57.

The nomialized propagation constant b is defined as

6 = (3.2.4)

The plot of h v/s V can be used to represent the relation of b v/s V. Since the fiber is weakly

guiding, this b-V relation holds true for all optical fiber waveguides that satisfy the weakly guiding

approximation (nl Q ng) [5].

3.3 Mode Field Expressions

Using the equations we have developed till now, we can, if desired, obtain the field expressions for

any mode. The exact solutions are very complex.

If Ui are the roots of J„il = 0, then, far from cutoff, taking q = lv] Q V, we have in a first-order

approximation,

_ _ g _ (2n :1: 3)€
ui Ut {1 (TlV)(l+[l—8g]V . (3.3.1)

Using
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-5**% Amihi = X/(kl — Kl) E/(1 1 — € (3.3.2)
El V

the individual mode parameters can be obtained now that we know u and h. We shall not be
looking into the particular solutions. Extensive tabulations of exact mode expressions are available

in [6]. However, since we are particularly interested in some EH and HE modes, we reproduce the
following approximate expressions for fields far from cutoff derivable from (3.3.1) [2]. For EH„„,

modes,

E+E-
E (Asui/7281Hi

EIN/61/H) Ei-

For the HE„,„ modes, we have [2]

E- ;[2
„.Hi

E zlzjel/[.1Ei.

Note the duality between the HE and EH modes and the swapping of rotational charactersitics.

Since A6 is small, the E+ and E- fields are dominant in the EH and HE modes respectively. This

gives us another distinction between the two types of modes. For n > 0, the dominant polarization

(E+ for EH and E- for HE) rotates opposite to the <p component in HE modes whereas that of the

EH modes rotates in the same direction. The rotational behaviour of the EHp_[_„, and [1’Epi[_„, is

thus similar. The propagational constants of these modes depend upon ui which differ only in the
second order for our approximation [2]. Thus, these modes are near-degenerate because of the

propagational constants being almost the same.

For weakly guiding fibers, A6 is very small and the modes can be considered degenerate. This result
is very significant since such modes can be combined to form sets of linearly polarized modes [5].
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The small difference in the propagational constants can however have some very interesting effects
on the mode combination patterns as we shall see in the next chapter.

ln the following sections, we shall consider the intensity patterns resulting from mode combina-

tions.

3.4 Mode Combimztions

The different modes in an optical über interfere with each other to form combinations. Note that
only if the E-üelds have components along the same direction will there be constructive or de-

° structive mixing. Thus, the components that are polarized orthogonally like the LCP and RCP

do not interfere in the real sense. The intensities simply add up. Only like polarized components

can exhibit destructive interference causing interesting patterns.

The radiation patterns of the mode patterns can be observed in the near-üeld or far-üeld zones.

At the über output endface, the mode üelds and intensity pattern will be affected by the truncation

of the ideal inünite cylinder. If we neglect the reüection and truncation effects, the radiation pat-

terns can be related directly to the mode patterns like an aperture üeld radiation. Near and far-üeld

observations of the radiaiton patters have been reported in the literature [2,4]. We shall consider the

relation later. At this point, we note that, close to the axis, the radiation pattern has a deünite cor-

relation with the mode pattern.

We shall consider approximate cases of EH,„-,_„, and HE,,+,_„, modes with their degenerate counter-

parts. The reason for analysing these combinations is the convenient grouping arising from the

near-degeneracy for k= p. For [/<,p[ > l, we can describe the behaviour of the EH modes as (ig-
noring magnitudes),
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‘1 ‘ 1

EHk-1,,,, ;E., ;J,,(brp/a)e’("‘°+“" "EZ+“/l
:E_ E 0
;E_:E

;0+ _ + _ h (3.4.1)
HEp+ 1,,,, ;E_ ;1,,(Up/a)e~^·"“’ °°’ HZ)

:E+ ä' 0

:E_ E 0,

where xy is the random carrier phase. The behaviour of H in all these cases is

Hi = A: jEi. (3.4.2)

Using (2.3.16), the intensity is given by

SZ = (1/4) Re [j(E+ H; — E-Hi)]. (3.4.3)

Remember that U is the mth root of J,(x) = 0 . For each of the above modes (and for all modes

with radial number m), the intensity pattern is circularly symmetric with m maxima. If the two

degenerate modes are combined this will still be the case because the two circular components are

orthogonal in power and there will be a simple addition of intensities. Other ’cross-polarized’

combinations have interesting effects.

Assuming that the magnitudes are the same and J,,’E.J,, = J , we write for EH,,_1_,„ -1- HE_p_ ,1,,, ,

SZ’—E(l/4)[J)äJ£ + 2./k./p cos{(k ·+— p)(p — D}]
gf cos2{[(k + pyp — D]/2} (3-4-**)

D = — /l[l)Z

'“andfor we getModes in Optical Fibers 25 1
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+ J3 + cos Dcos{(k + p)(p}]
gf cos2{(k + p)6I2) cos2{D/2} + sin2{(k + p)(p/2} Sinzwrz) (3-4-5)

D = (1/2){(hE ‘ hnlz — W}-

There is an occurrence of nodal lines since the intensity goes to zero at specific values of tp . In fact,

there are 2p such nodes at regular intervals. For the latter case, there can also be situations where

the nodes vanish. This effect will be discussed in more detail for specific cases in Chapter 4. Note

that for a fixed point on the pattern, say, <p = 0, we have from (3.4.4) and (3.4.5),

sz = J2 66s2(1>I2). (3.4.6)

D can be evaluated if the difference between the propagation constants is known. (3.3.3).

3.5 Mode Patterns

The radiation field of an aperture is, in general, a very complex problem. The correlation of the

far-field pattems back to the fields at the aperture may not be unique. Besides, the mode fields at

the aperture are affected by the truncation of the waveguide and reflections from the endface. Ob-

servation of the near—field pattem neccesitates the physical proxirnity of measuring equipment (a

lens) and this distorts the field itself. However, for non-exact solutions close to the axis, we can

ignore many of these non—idealities. We will not attempt to obtain the complicated radiaton fields

of the already complex mode fields. We outline a brief qualitative discussion here.

The radiation fields are obtained by considering the fields at the fiber endface as radiating elements.
i

Far from cutoff, there is a principal maximum at a half-angle 9,,,,,,,E sin"[(k,/ko) sin (3,] , where 9,

is the angle at which a plane wave composing the mode field strikes the glass-air interface. The I
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most important result is that for a radial mode number m , there are m ·— l maxima between

9 = 0 and 9 = GMMI . For m = 1, there are not any maxima within the main pattern. Close to the

axis, the radiation pattern for these modes are similar to the near-field patterns and the mode pat-

terns [2,4]. Far from the axis, there will be a train of maxima and rninima arising from the diffraction

effects. In all cases except the HEIM modes, there is a null in the forward direction. The HEIM modes

however, have a maximum in the forward direction. As a mode nears cutoff, the principal maxima

move closer to the axis to fill up the null in the center. Remember that all individual mode inten-

sities are circularly symmetric. The symmetry of mode patterns is preserved in the radiation pattern

for the low-order modes.

Based on results in the previous section, we can qualitatively study the mode patterns and their

behaviour.

1) EHII + HEZI (including degeneracies)
The intensity pattern for this combination can be studied more conveniently by studying

EHII + HE-2I. The general case with the degenerate cases is similar. The intensity pattern

is

sz = J2cos2{(3(p — DI)/2) (3.5.1)

The random phase in D = (/2E — h„)z — xy doesn’t really affect the intensity behaviour and

it can be chosen to be zero for convenience. For a fixed z, say 2 = 6Nrt, we have a three

lobed intensity pattem. This is illustrated in Figure 8 on page 59. Considering all the

modes we get a little more complex behaviour since the three lobed pattern appears peri-

odically in z whenever cos D or sin D becomes zero. I

2) EHII + HEII
In this case,

sz = J2 cos2[(2(p —D2)/2} (3.6.1)
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The above observations hold for this case too. The difference, however is that we have a
four lobed pattern as illustrated in Figure 9 on page 60. In both the cases, as z is varied,

we should see a rotation of the pattem since the nodal lines will apppear at different points.

3) T/Em + HE;)
In this case, we would have a two lobed pattern depicted in Figure 7 on page 58described

by

sz = J2 cos2{(p - D3/2} (3.6.3)

Since m = 1 in these cases, there is one radial maximum in the intensity. The intensity is zero at

the core-cladding interface. of the particular cases are also illustrated. Note the circular polarization

varying in azimuth (different for the HE and EH modes). The TE and TM modes have no degen-

erate counterparts since n = 0. One sided arrow-heads are rotating E-vectors while two—sided ones

are linearly polarized. Nodal lines appear just as predicted in the previous section. The phase factor

D, in all the above cases depends directly on the propagation constant difference which can be got

from Figure 6 on page 57. The modulation of intensity due to the change in D or z will be ex-

amined closely in Chapter 4.

Identification of mode patterns can be done by comparison with photographs in the literature. A

simple representation of far-field pattems is given in Figure 10 on page 61. The hatched lines in-

dicate intensity and solid lines, whether circular or radial, indicate null intensities. The radial

maxima and nodal lines are clearly represented. These do not, however represcnt the mode fields

directly. Note the presence of a null in the forward direction except in the HE,„, cases.

To set up such field patterns in an optical fiber, it is essential that the respective modes be excited.

Different modes and patterns can be excited by launching light at different angles to the axis. An-
i

other technique is to employ spatial filtenng at the input to create suitable diffraction field patterns

that maximize excitation of specific modes. These methods are discussed extensively in Ref [2].
\Ve shall analyze the effects of mode modulation on mode combinations in the next chapter.Modes in Optical Fibers 28



4.0 Mode-Mode Interference

In the previous chapters, we modelled the optical waveguide and analyzed the modal field solutions

for Lightwave propagation. As mentioned before, modal domain sensors utilize mode mode inter-

ference as a sensing mechanism. In this chapter, we shall present a theoretical basis for the mode
I

modulation effects that we have seen experimentally.

First, we consider phase modulation in optical fibers since all interference phenomena involve phase

effects.

4. l Phase modulation in optical fibers

W'e have a general field solution for the transverse field of a propagating mode as

E = E , gf/12Ip (D) .,,2+ W (4.1.1)= IE(0.(1>>I@J J ug-

The phase (D of the wave is given

byM0de—M0dcInterference .29TT
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(D = hz + wg (4.1.2)

where h is the longitudinal propagation constant and wg is the initial phase <I>(Z) Izig. This phase

<I> is not be confused with the azimuthal angle ep . The initial phase wg is included for generality and

we will drop it for initial calculations where it is not significant. We will insert it again as a random

phase term later on.

Due to a given disturbance S (strain in our experiments), the phase <I> is modulated as under.

A<I> = h(Az) -1- L(Ah)
dz dh (4.1.3)= h -— S .+ L —— S.45

45Thefirst term in (4.1.3) depends essentially on the geometry of the fiber and the perturbing pa-

rameter.

For the specific case of axial (longitudinal) strain, 62 , we write

A :Z g’L _ _ (4.1.4)
L = length of interaction.

The Variation of h with respect to the strain depends on the electro-optic and dimensional effects.

We can expand Ah as [8]

- jh dh IAh (dn )Arz -1- (——dD)AD
where rz = refractive index (4.1.5)

h = longitudinal propagation constant
D = diameter of the core. 1

1
The change in the refractive index due to strain is given by [8] 1
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3 .Ansz.
= axial strain (4.1.6)

11 = Poisson's ratio
P11, Pzz = Photoelastic constants.

Typically, for optical übers, Hz E nz = nw and so we write

d/1 27:
dn ^0 ( 1 )

For the second term, we get [8]

AD = 116zD
1111 = 1/7 db (4.1.8)

where b = normalized propagational constant

The variation of b with V for weakly guiding fibers is shown in Figure 6 on page 57. We can thus

write for the strain induced phase change per unit strain per unit length,

Am _ _ M _ _ 1/7,; db
2hDz dy

(4.1.9)= h _ B dbkA + /1 dV
where A, B = constant for all modes

For V = 4.5, db/dV;·“ 0.25 (from -- Figure id " unknown --refid=bV3). Taking typical values

u = 0.25, D = 91im, and /1 = 1.45 x 107 m‘*, we get

A = 0.13
{/3 Y6 = L}; = 1.407 X 10** m‘7.

2D

Thus we have for the above specified fiber
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äg 1.45 X 107 — 2.1 X 106 + 2.4 X 103 m"; 1.24 X 107m_2. (4.1.10)

Though the third term is very small, we should be careful because we are going to consider differ-
ential phase effects and do not know before hand if the third term contribution is negligible. Having

analyzed the phase modulation mechanisms due to strain, we now develop the theory of modal

domain sensing based on differential phase modulation.

4.2 Dwererztial Phase Modulation

For two different modes, we have two phases <D, and <D2. The differential phase <I>„ = <I>, — <I>2 is

the phase of one with respect to that of the other. Usually, a phase modulation results in the var-

iation of both the phases as well as the differential phase. We can thus write

A(Dl2 = {@1 + M>1) — (@2 + M32)} ‘ @11 (421)

4.2.1 Axial strain

Substituting (4.1.9) in (4.2.1), we get the following expression for the differential phase per unit

strain per unit length.

A(Dl2 1 db 1 dbM-=0.87h—— -1- - ————.-EZL (1

1.407 X 1077i
hlhz
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From Figure 6 on page 57 , we can say hä 1.45 x 107 m". Thus, it is obvious that the second term

in (4.2.2) can be neglected.

It is significant that the differential phase modulation due to strain depends only on the difference

of the propagational constants. We thus write for two modes having propagation constants

hl and hi with hll = hl — hl,

A<I>ll = 0.87(Az)hll (4.2.3)

where hll = hl — hl is typically obtained from a numerical solution of of the characteristic equation.

The intensity of the output depends on the terms described in (2.3.16). For more sensitivity, the

mode combination that we select must preferably have a large differential phase coefficient hll that

converts efficiently to intensity modulation in such a manner that we can detect it easily. Note that

A<I>——Ä—Q- = 0.87hll S 0.87/<0(nl — nl). (4.2.4)z

The phase modulation for a dual beam interferometer is the absolute phase change A<D given by

(4.1.9) and (4.1.10). So, the maximum sensitivity of a modal domain scheme can be related to that

of a conventional dual-beam interferometer. For the same physical characteristics of the fiber and

setup, we get

A<I> dal d ° 4 _
S = @(10 3)_ (4_25)A<I>(MZI> 1.24 X 10

This upper limit may not be attainable since the choice of mode combinations depends on the

feasibility of exciting the relevent modes. Moreover, the differential phase modulation has to be

demodulated to extract the information. This could either be simple intensity measurement or
7

might need processing. To use this effect in a sensor, this demodulation must preferably be as

simple as possible.
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The sensitivity is deünitely less than the absolute phase sensitivity of a über optic sensor. The ad-

vantages are the simplicity and ruggedness of a single über sensor with all its advantages of stability,

cornrnon·mode rejection etc. We shall look at the effect of the differential modulation for particular

cases.

4.3 Mode Pattern /1/lodalation

The HE,, -1- TM,,, combination has been used in the past [12] to sense acoustic waves perturbing

an optical über coil in water. The mode pattern in this case consists of two lobes.

We have observed some interesting rotational effects in a three-lobed mode pattem later identiüed

later as arising from the EH,, + HE2, mode combination. Such effects can been predicted by

analysis of mode combinations and radiation patterns.

In a general case, if linearly polarized light is used to launch the modes, one would expect coupling

of power to both the circular polaxization components of the üelds. However, for illustration

purposes, let’s consider the combination EH,, + HE-2,. The intensity is given by (3.4.4) as under.

12 = J2 cos2[(3<„0 — h,2z + W)/2.] (4.3.1)

xy is a random carrier phase and can be adjusted or allowed to come to any desired value. If it is

zero, we can then see that for z = 6N1t//1,2, N = 0,1,2.., we have a circular pattem with three nodal

lines at (p = (2p + 1)1t/3,p = 0,1,2. At z = (6N -1- l)n//1,2, we have the three nodal lines shifted to

(0 = 2pn/3, p = 0,1,2. Thus, we see this interesting rotation effect ansing due to /1,2 , the difference

in the propagation constants.

Mode—Mode lnterfcrcnce 34



Now, if we consider the general case of both the polarizations being launched, we have the com-

bination EH,, + EH-,, + HE}, + HE-}, . The intensity in this case is given by (3.4.6) [2] and we

reproduce it here.

12 = J2{ c¤s2(2„1p/2) c0S2(D/2) + S1¤2(31p/2) sim2(D/2).}

There is still rotation of nodal lines but it is more complex. The polarization states in the four lobes
are different from before. Taking xy = 0, we get three nodal lines whenever cos /1,22 or sin /1,22 be-

comes zero.

If the optical fiber is subjected to an a phase modulating disturbance such as axial strain of 62, then,

as seen before, only the /2,2 term is responsible for the differential phase modulation. This /1,2 appears

conveniently in the mode intensity pattern. Let us see how this affects the intensity.

Fixing a point P(p, 0) on the output pattem, we get

z = J2 2 12 2Z
2

COS; / )
(4.3.2)

= J cos (/1,22 —— 111)/2.

I Another interesting approach to the problem is to consider two carriers with different phase mod-

ulation.

E, = EO cos(coCz + A9, + xy)
E2 = EO cos(coCt + AO2).

The interference signal when detected by a square law detector (since a photodiode current relates
to intensity) can be described as

am = IA! (4.3.3)

Thus, it is reasonable to expect that mode combinations should display the differential phase
modulation as an ir1tensity modulation due to mode-mode interfcrence.
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4.3.1 Axial Strain

For axial strain 6,, A2 = 6,L. The initial value of z, 2, only creates an olfset and without loss of

generality, we can write from (4.3.2)

1, = 12 c6S2((1«,,6,L — (1)/2}. (4.3.4)

Again, xy is a random term and the response can be optimized by launching conditions. Taking

xy = 0 since it is only an offset, we have for A2 = Kt (linear ramped strain),

1, = J2 (4.3.5)

The intensity is maximum for t = 0 and minimum for t = rt/K/1,,. The period T for this sinusoidal

Variation is given by

T = 2 Kh"/ *2 _ (4.3.6)where K = rate of stram.

I

4.3.2 Generalized Axial Strain

Strain could be any function of time, in general. We can split any function into its sinusoidal

components. So we assume a sinusoidal Variation of strain. Thus, 2 is given by

2(t) = 2 + L6,(t) = 2 -+— Leo sin co! (4.3.7)= 2 + 20 sin cot.

The initial z can be ignored since it can be adjusted to any desired point by straining the liber

suitably. So we have the general intensity expression of (4.3.2) with D = (1,220 sin cut — xy. For

av = 0.
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_ 2 2IZ J cos·(D/2) (4.3.8)D = /11220 since! — 11;

We can write

cos2(D/2) = (1/2){l + cos[/11220 since! — vl} (4 3 9)
= (1/2)[l + cos(/11220 sin (oz) cos 01 + sin(/1120 sin 031) sin xp].

i i

The transcendental arguments give rise to a an infinite series with Bessel coeflicients.

_ ooCOS</1124) S¤O<O¢> = /0011220) + 22/2X</11220) COS 2/<<O¢
OO 1 (4.3.10)

sir1(/11220 sin ost) = 2 Z0

Thus,

[1 COS ‘„|]

I2 = + 2J1(/11220) sin 01 sin co! (4.3.11)
+ 2./2(/11220) cos r11 cos 2cot.....]/2

1 Thus, to obtain the original signal we need to adjust the relative carrier phase to rc/2. This is pos-

sible by adjusting the launching conditions. There could be a random variation in this which could

decrease the sensitivity or cause fading as reported in [1 l]. The argument of the Bessel functions,

hl2Z0 = hl2€OL 4.3.12= /112Az. ( )

In our experirnents with EH11 + HE21,

_ 4 -4111,216OL — (1.2 X 10 )(1 X 10 )(0.16) 1213131C; 0.19

For 0.19, except for J1, all Bessel functions are near zero. JU; 1. Ielowever, for longer lengths of
interaction, the relative magnitudes might be different. For our case,
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[Z = A sin xy sin col (4.3.14)

We have analyzed a specific mode combination. The results we have obtained by direct analysis

agree with the the generalized results of analysis for two general modes done in the past [10,11].

The main points are,

• The prediction of multiples of the fundamental frequency
• The dependence of the magnitudes of the harmonics on the modulation, strain and length. The

response is very clear, for small strain.
• The occurrence of the random caxrier phase which needs to be adjusted or tuned for suitable

output

4.3.3 Other Effects : Triple Transit

In the previous sections, we reviewed phase modulation and differential phase modulation in optical

fibers. We applied this to mode-mode interference and saw its effect on mode pattern intensity.

The modulation of intensity due to modulation in the phase could arise from other effects also.

Particularly, there could be interference between a mode and its reflected component making its

third transit through the sensing region [11]. We could call this the triple transit echo. Single fiber

interferometers can be based on this triple transit echo and can be irnproved by maximizing the

reflections at the endfaces. Due to a mode (or a mode combination) travelling the region of inter-

action thrice, we can get interference between a modulated mode

E ejA<I>1

t

1

and its triply travelledcounterpart[
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Then we get intensity modulation as

1 = RI 20([2 Pw) °°S (4.3.15)
where D = A<D — xp

Note the doubling of the phase term. The magnitude of this effect is reduced due to reflection loss

and attenuation and can be neglected [11].
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5.0 Experiment

Most of the work reported in this thesis was initiated by experimental observations. As is typical

with a scientific study, experiment and theory go hand in hand irrespective of which occurs first.

In this case, some experiments were motivated after a hypothesis was formulated about the mode

interference and mode pattern phenomena. The term modal domain was coined for work involving

mode modulation and interference phenomena.

The primary perturbation mechanism in these experiments is strain. The choice of strain has three

reasons.

• Strain causes changes in the length L, longitudinal propagational constant /1 and thus, the

phase (D of an optical fiber.
• Strain sensing is of major importance in structural applications, especially in aerospace, space

and materials research.
• It is convenient to set up methods of straining an optical fiber.

The experiments are classified in the following manner.
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1. Quasi-static ramped axial strain: This involved the application of axial strain without any

bending effects. This strain is also quasi-static in the sense that it could be applied as a "DC

strain" or quasi—statically varyirrg strain using a direct über tension mechanism.

2. Vibrational strain: This involved the application of strain via the vibration of a cantilever beam

to which the optical über was bonded.

The basic set-up is illustrated in Figure 11 on page 62. The primary effect used in the experiments

is the redistribution of the far-üeld radiation (intensity) pattern of optical über due to strain. The

optical über we used was designed for single-mode operation at 1300 nm. Measurements with a

Photon Kinetics FOA-2000 Fiber Analyzer indicate a 9/125 ir, 0.1 NA über with a second mode

cutoff wavelength of 1215 nm. Test results are shown in Figure 13 on page 64. At the operating

wavelength of 633 nm, it had V ä 4.5 . Referring to section 3.2, this indicates that it can support
E

(for rz,/rr., = 1.004) the frst seven modes HE,,_ TE,,,_ TM,,,_ HE2,_ EH,,_ HE}, and HE,} .
E

The light source used was a Hughes 322lH-PC He-Ne laser with 1 m\V linearly polarized output

at 633 nm. Note that mode-mode interference techniques are possible only with coherent and

stable light sources. The über was mounted on a tensile testing machine so that axial strain could

be applied. Another part of the über was bonded to a cantilever beam so that it could be subjected

to vibrating strain at the fundamental frequency of the beam. This is shown in Figure 12 on page

63. The detector was an in-house detector-ampliüer based on a llamamatsu Silicon photodiode.

The detector output was fed into a Nicolet Explorer (204-A plug-in, 2081 option) digital storage

oscilloscope which was interfaced to an IBM PC/XT on a IEEE-488 bus using a' Metrabyte

IEE—488 interface card. For frequency analysis, the data was uploaded to the IBM 3090 mainframe.

Plots shown in this report were plotted on a Versatec electrostatic plotter using the SAS/GRAPII

graphics package. The IMSL Fortran subroutines FFTRC were used for Fourier analysis. The

characteristic equation for optical übers was solved numerically on the same computer.
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5.1 Mode Pattern Observations

The mode patterns were obtained by adjustment of the launch conditions and were obsewed on a

screen/card in the far-üeld of the output end. A simple spring loaded xyz-tilt was used to position

the über endface suitably. It was found that the tilt angle was a very crucial parameter and the

higher order mode combinations were launched most efüciently when the über was tilted at a small

angle.

For zero tilt, the HE,, mode was dominant. Other combinations observed were the two—lobed

HE,, + TM,,,, the three lobed EH,, + HE}, and the four lobed EH,, + HE}, This identification was

based on results, sketches and pictures in the literature [2,7]. The problem of identifying modes

based on observations in the far-üeld and analysis within the über is by no means a unique one nor

a trivial one. But, we feel that such methods of identification are justified.

A very interesting phenomenon was the proximity of the three lobed and four lobed patterns as

regards to adjustments of the tilt. These pattems would flip into the other one due to disturbances

and maybe when strain was applied. When the experimental readings were taken, we could not

observe the patterns at the same time. But later on, the author repeated the experiments and ob-

tained the same results (the period in Figure 14 on page 65). The mode pattern was three-lobed

when the results were taken again and this pattem manifested very distinct rotation at times whereas

it was a complex redistribution rather than rotation at the other times. The highs and lows of the

intensity pattem as the über was strained could be associated with the dark and bright areas of the

pattem as it changed. (The amplifier had a negative gain). I

Thus, it seems that our results pertain to the three lobed pattem. This confirms with observations l
made by colleagues [13]. The regulaxity of the output signal was directly related to the purity
oflaunchof the mode combination.

1
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We have worked with the four-lobed pattem also but it is not clear if the pattem shifted to other
pattems. This uncertainty is not unique to this combination. Because of modal coupling, there is

a redistribution of power in the modes and this affects the mode pattem nature. In all cases, the

mode pattern had some non-idealities and results varied (sensor performance) depending on ad-

justments to the set-up.

Mode launching techniques have been studied in the past [2,7]. Simple methods like ours based on

tilt of launch as well as more sophisticated techniques based on polarization and spatial ültering

have been reported.

The detector was set up in such a way that it sampled the intensity of a small part of the pattem,

usually a spot on one of the lobes. A small aperture was placed in front to achieve this local in-

tensity monitoring. Thus we could monitor intensity changes at a point due to mode pattem

modulation. The experiments themselves are described in the following sections.

5.2 Quasi-Static Ramped Axial Strairz

The motivation for this experiment was to apply strain axially without any bending effects. It was

felt that this could quantify the mode pattem modulation due to axial (or longitudinal) strain

causing a change in length. The optical über was mounted in a tensile testing machine, the J .J .

Lloyd T20,000. Special grips were used to prevent the slipping of über. The length of interaction

was 190 mm. Force and displacement could be monitored simultaneously. Besides static strain, a

very slowly varying, quasi—static strain could also be applied by setting a fixed displacement rate.

This rate could be maintained accurately because the load torque on the motor due to the über

was negligible.
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Initially, the spatial filter was set at p E a/2 on a nodal line. Two tests were conducted.
1

1. The über was tensed with the application of different displacement rates 0.5 mm/min and 1.0

mm/min.

2. The über was tensed and released in the at the same rate to retrace the strain condition.

The displacement rates were low enough to simulate a quasi-static strain condition. Because of the

way the experiment was set up, the resulting displacement created axial strain without any major

bending effect of the sensing region. There was however increased pressure on the über at the grips,

but we feel that the strain effect was dominant.

Figure 14 on page 65 shows the intensity detected by the photodiode for a displacement rate of 0.5

mm/min.

From (4.3.6), for a rate K, the ’beat’ half-period of the intensity TW, = rz//1,2/{ . For HE2, + E./{,1,

we have from Figure 6 on page 57 that /112 = 1.2 x 10". Thus

Tpp = rr/(l2000)(0.5 mm/min)
= 31.4 s

From experiment, we get t = 26 s.

For the 190 mm length, the time axis could be related to strain. We get the strain rate as 4.386 x
l0‘$ /sec. Thus the intensity can be easily related to strain. The dynamic range for strain sensing is 1

around 1140 um/m. The smallest change detectable can be crudely measured from the stored

waveform as being 15 dB below the maximum strain. This gives us the approximate strain sensi- 21tivity as 3.8 x l0‘5. ‘
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To check the retraceability of the system, we released the über exactly as above till it reached the

initial point. This output is shown in Figure 15 on page 66. This process was repeated to confirm

the effect.

To confirm the intensity modulation as being related to the displacement, we used a rate of 1

mm/min. The two intensity outputs are shown in Figure 16 on page 67. Note the relationship to

the displacement rate which is doubled in the latter.

5.3 Vibrati01zalStrairz

In the same setup, we also bonded a part of the fiber to a cantilever beam. The beam was a steel

blade (length = 16 cm, thickness = 0.65 mm) clamped at one end. The liber was bonded to the

surface as a loop so that it was not dangling. Thus, the distance of the fiber from the neutral axis
was 0.325 mm. The cantilever was set into Vibrations by starting off an initial displacement of 1 cm

from the neutral axis at the tip. The cumulative strain on the fiber is given by [8]

E = 3da/2L2, (5.2.1)

where d = displacement and a = distance from neutral axis. Thus our initial strain at t= 0 is 1.9

x 10‘° and much less after the Vibration begins to to damp.

The cantilever vibration was tested for two cases. The first was when the intensity was at a maxi-

mum (point A) in Figure 14 on page 65. The second was when the intensity was at a mean point

(point B in Figure 14 on page 65). Just by observation of the intensity output from the quasi-static
_ case, we expect that the second case B would have greater response and linearity than the first one.

The time and frequency plots of the two cases are shown in Figure 17 on page 68 and Figure 18
on page 69. Note the higher magnitudes in the second case. The frequency spectrum from the
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second case shows only a fundamental component at 16 Hz. The first case has distortion with the 1
presence of multiple frequencies. Also note that the fundamental has a lowenmagnitude than the

second multiple.

We shall discuss these results in the next chapter.
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6.0 Results And Discussion

We can summarize the report as under. Chapters 2 and 3 presented optical waveguide theory with

emphasis on mode field properties. The combinations of modes and the resulting pattems were

discussed. Specifically, the EH(,(+,)_,„ + HEU,-„_,„ combination was analyzed in detail. Chapter 4

addressed mode-mode interference. Phase modulation and differential phase modulations were de-

scribed. Unique to this problem were the differential phase modulation mechanisms and their effect

on intensity. Mechanisms of information demodulation were studied.

The experiments conducted are significant in the fact that they create axial strain without bending.

Quasi-static ramped axial strain was applied. The sinusoidal behaviour of the intensity was as de-

scribed by (4.2.3) was observed and experimentally verified. The retraceability test indicates the

potential use of the mechanism in varying strain sensor schemes. Since the intensity behaviour was

observed to be dependent on displacement and rate, we can connect the intensity and phase mod-

ulation effects. Thus, this experiment substantiates the mode-mode interference technique.

The theoretical and observed value of the beat-periods are in good agreement. lt confirms our Ä
model of mode-mode interference based on differential phase modulation.

l
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The occurrence of multiple harmonics for Varying strain as indicated by the analysis is confirmed.
Note that the first cantilever test has more magnitude in the second multiple. This could be due to

the random phase effect lending dominance to the even multiples term in (4.3.11). The Variation

of response magnitude and linearity with the bias point is very interesting. The results are what one
would expect by observation of the transfer function. Since the experiments verify the effect of strain
on the output, application of strain could be used as a control mechanism to tune the sensitivity

of a system.

The mode combination that we have used can be easily launched. But it might be possible to ob-

tain the advantages of modal domain techniques with other combinations. Breaking the degeneracy

of the two HE], modes to obtain differential modulation as in [9] could also be treated as a mode-

mode interference scheme.

The only new demand from the system is the selective launching of modes and filtering of the

output pattern. All this could be achieved by precise alignment of input positioners and filters at

the output. Precise, fixed arrangements to couple light into selected modes or from sections of the

output pattern, if implemented, could provide more stability to the mechanism. We are confirming
our analytical results with experimental results. It must be kept in mind that this is valid only if

our identification of the modes was right. This area needs more investigation since it is crucial for

further work. To use the analysis, the mode combination has to be identified to some reasonable

degree.

Modal domain methods are 2 to 4 orders less sensitive than absolute phase methods. However,
there is an advantage of simplicity, common-mode rejection, no need of couplers or mirrors and

thus offer ruggedness and simplicity of implementation. There is no doubt that this method can

be used with advantage. The simplicity of the scheme has been demonstrated in sensing schemes
to detect Vibration [13] and stress waves in graphite-epoxy composites[14].l
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7.0 Conclusion

In conclusion, we outline what we have achieved here.

• Mode-mode interference ir1 optical fibers has been explained starting from first principles. A

model for mode-mode interference phenomena has been proposed based on differential phase

modulation. The differential phase modulation is solely due to the difference in the propa-

gation constants of the modes.

• The specific case of quasi-static ramped strain and varying strain has been discussed in detail

for the EH + HE combination. Mechanisms of modulation have been investigated and a

quantitative treatment of strain sensing has been presented. This was made possible by the

numerical solution of the characteristic equation.

• The problem of mode pattern generation and identification has been addressed. Mode
I

launching and radiation mechanisms are areas of potential interest that need to be studied :
I

further. I
I I

I

I
I

I

I
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• A suitable experiment for the testing of modal methods has been devised and implemented.

Experimental observations agree very well with the theoretical results thus coniirming themodel.
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