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I. INTROWCTION 

A. History of Blood Fl.ow Analysis 

Prior to the nineteenth century the models developed to represent 

the human cardiovascular system were pri.Jlarily descriptive in nature. 

The Harvey model, developed circa 1600, was the first correct physio-

logical description of the circulation. OVer the next three hundred 

years only incremental changes were ma.de to illlprove description of the 

pulmonary and capillary systeas. A theoretical model for the cardio-

vascular syste• began to eaerge during the nineteenth century. In 

1840 Poiseuille conducted experiments on viscous fluids flowing in 

rigid tubes which later led to the Ha.gen-Poiseuille equation used 

today. In 1755 Ehler postulated the governing equations for fluid flow 

in a flexible tube which were not solved in the blood flow context 

until 1956. Then in 1958 W011ersley published a wave propagation model 

for blood flow in arteries of constant cross section which reasonably 

predicted flow quantities in short vascular segments [1].* 
In the late 1960's Anliker, Rockwell and Ogden [2] developed a 

one-dinlensiona.l, nonlinear analysis of large a.mplitude waves propagat-

ing in tapering elastic arteries. Their nonlinear analysis sillulated 

the experiaentally observed phenomena by predicting the pronounced. 

steepening of wave fronts and peaking of pulses which propagate down 

the arterial tree. Their study also indicated that nonlinear effects 

aust be accounted for in order to correctly interpret sma.11 changes in 

*Nullbers in brackets correspond to references in Eibliography. 

1 
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the flow and pressure pulses, Anliker's success in predicting changes 

in the pulses aay be partly attributed. to his direct incorporation of 

vessel wall properties in the wave speed expression. 

Anliker•s model also proposed relationships for local changes in 

cross sectional area, friction expressions and outflow expressions for 

regions above and below the femoral artery, Each expression was based 

on experilllental data from various other authors and then scaled down 

or up to fit a standard case. 'Ihe friction expressions are question-

able because of the asSW1ption of quasi-steady flow and the outflow 

expressions are questionable because they prescribe steady, continuous 

leakage across the vessel wall in place of outflow at discrete locations 

along the artery. 'Ihe empirical expressions in Anliker's model contain 

room for illproveaent since the assumptions are gross approxilla.tions of 

the real situation. 

B. Current Approaches 

'!he arterial side of the cardiovascular system may be divided into 

three fluid flow regilles as followsa a) the arteries which are best 

described by viscous unsteady flow, b) the arterioles which may possibly 

be described by rheolgical aodela, c) the capillaries which are best 

described by plug flow. Arterial blood flow studies may be further 

categorized into three groups which ares a) linearized, two-dillensional 

governing equations whose solutions are periodic, b) nonlinear, one-

di.Jaensional governing equations, c) analog computer •odels [J]. 
Womersley made extensive contributions to the model based on two-

dimensional, linearized governing equations. 'Ihe blood was assumed to 
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be Newtonian am incompressible, flowing in axisymmetric, laminar 

fashion. The vessel was modeled as cylindrical, infinitely long and 

under a steady pressure. Womersley arrived at closed form solutions 

in tenns of Bessel functions periodic in time. His model predicts 

that waves damp out as they propagate down the vessel which does not 

agree with observed phenomena. However, the model predicts instan-

taneous flow velocities based on the pressure gradient at a point in 

the flow field [4]. 

The second category of blood flow models is based on the one-

dimensional, nonlinear governing equations. Assumptions used for the 

blood and the vessel remain unchanged. This model has proven amenable 

for study of leakage effects, entrance effects, variations in shear or 

viscosity of the blood and the study of pulsatile flow development. The 

governing equations are solved numerically using the method of character-

istics where the flow situation is constnicted by tracing one wavelet as 

it propagates in the time and space planes. This model predicts that 

wave velocity decreases with increasing pressure which contradicts 

experimental observations. Nevertheless, the model does predict flow 

quantities over short segments of the arterial tree [3]. 
Analog computer solutions to blood flow models generally use the 

one-dimensional equations. Use of the analog computer facilitates 

input of reco:r.Ued uressure gradients and allows the blood viscosity to 

change such that it remains proportional to the average velocity. 

Analog solutions compare favorably with Womersley's modified model for 

wave reflections. 'Ille analog model nroduces relations for changes in 

instantaneous pressure and velocity and yields flow and pressure 
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waveforms similar to those observed experimentally [3] • 
Mathematical modeling of the cardiovascular system has been done 

only for the arterial side. Difficulties involved in modeling the 

venous system include the elliptical shape of the veins, their tendency 

to collapse intennittently, and the unsteady nature of the blood flow 

driven by the skeletal muscles and al:rlominal muscle pump. Modeling of 

the arterial system has been limited to the artery and capillary levels. 

'Ihe arterioles, which contribute the largest portion of resistance in 

the system and damp out the pulsations caused by the heart [5], have 

been al.inost entirely neglected. 'Ihe behavior of the blood is markedly 

non-Newtonian at this level and thus far best described as a Bingha.Jll 

plastic ( 6) • Description of leakage from the arterial tree has been 

limited to continuous functions while in reality the leakage occurs 

at discrete locations over regular intervals. 

Review of the literature illustrates a need for a blood flow 

model based on the two-dimensional, nonlinear, unsteady governing 

equations. ~e solutions would provide a standard for comparing the 

linearized and the one-dimensional models presently appearing in the 

11 tera.ture. 

c. Approach and Goal 

In the pa.st, the cardiovascular systeJn was studied in order to 

increase understanding of the physiological processes taking place. 

Increased understanding led to improved treatm~nts and new diagnostic 

techniques. The fluid mechanical behav10~ of :he cardiovascular 

system is being studied to better understand "the control mechanisms 
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responsible for 11aintain1ng and re~la ting blood flow" (2] • 'Ihe 

physiology and fluid aechanics are coupled such that changes in the 

fluid aechanica.l variables or parameters could be used as diagnostic 

indicators of changing health. In recent years, the development of 

more capable digital computers and non-invasive flow and pressure 

measurement devices is Jlla.king it possible to study the human circu-

lation under al.Jlost natural conditions without the anesthetics or 

trawna related to surgery. Further improvements are necessary in 

both instrumentation and 111.thematical modeling of the cardiovascular 

system before the models can be used as reliable diagnostic tools. 

'Ihe present study is a direct extension of Anliker's work to 

two space variables. A blood flow model is derived based on the 

unsteady, axisymlletric, nonlinear partial differential equations for 

pulsatile flow in a flexible tube. 'Ihe working fluid, blood, is 

assumed to be viscous, incoapressible and homogeneous flowing in 

laainar fashion. 'Ihe vessel is assumed circular in cross section 

and tapering with increasing distance from the heart. 

'Ihe purpose of this study is to solve a simplified. version of 

the governing equations in order to demonstrate an approach to solving 

the equations for a general blood flow situation. 'Ihe simplified 

version is solved numerically using the central finite difference 

form of the governing equations and the Alternating Direction-

ImpU.ci t 11ethod. 

'Ihe results obtained from this study stem from two sourcess 

a) test case pro~rams of only the stream -f::'unc+- ion equation or the 

vorticity equation, b) a cOlllbined program in which both the stream 
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function and the vorticity equations are integrated. The first 

category of results is from cases in which the initial conditions 

for both the stream function and the vorticity are zero and 

Poiseuille flow is imposed at the proximal end of the vessel. 

Results from both sources show that the stream function and vor-

ticity converge to the exact solution so that the effect of the 

initial conditions is damped out and does not alter the steady 

state solution. The second category of results is from cases in 

which the initial conditions are chosen indentical to the anticipated 

steady state solution and pulsating Poiseuille flow is introduced 

into the nonlinear coefficients of the vorticity equation. The 

results demonstrate the effect of the pulsating input only in the 

vorticity solution. 



II. GOVERNING EQUATIONS 

A. Physical Model 

Information and auxiliary relations must be introduced to justify 

the assumptions made in deriving a mathematical model for the cardio-

vascular system, Human blood is a suspension of red blood cells, white 

blood cells, platelets, honnones, ions, nutrients and proteins in a 

fluid plasma, '!he blood is chemically about eighty percent water [7] 

which allows the assumption of incompressibility to be valid. A 

healthy human being has a hemotocrit of forty-five percent (5], meaning 

that blood cells occupy forty-five percent of his total blood volume. 

Such a large percentage of particles in suspension affects the behavior 

of the fluid, However, at the arterial level the ratio of character-

istic dimensions of the blood vessel diameter to a red blood cell is 

about three thousand to one (J,00011). '!his ratio is large enough to 

permit the blood to be considered homogeneous and allow the assumption 

that it behaves as a Newtonian fluid with an apparent viscosity several 

times higher than the viscosity of the plasma alone, Womersley and 

Anliker have verified these assumptions by favorable comparison of 

their models with experimental data, 

'!he arteries are distensible elastic vessels that taper geometri-

cally and change their elastic properties with increasing distance from 

the heart. '!he vessels are constrained longitudinally but upon 

chemical or nervous stimulus become free to exnand radially to accom-

modate changes in relative volume un to four times normal caoacity [8]. 

? 
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'lhe aodel proposed. by Anliker assumes the blood to be viscous and 

incompressible and the vessel as a circular, tapering elastic tube. 

Viscosity effects are modeled by algebraic friction expressions for 

laminar or turbulent flow hit are restricted by the assumption of 

quasi-steady flow. Branching of the arteries and the consequent 

leakage, or mean normal outflow at each discrete branch, is modeled by 

continuous, distributed functions above and below the femoral artery. 

Any local area changes are expressed as exponential functions depend-

ing on pressure and distance fro11 the heart. 

An.liker's approach to quantifying the physical properties of the 

vessel is new in that the properties are introduced. directly through 

the wave speed. 'lhe inforaation that wave speed is a linear function 

with respect to pressure is attrihtted to M. B. Histrand [2] and that 

it is a linear function w1 th respect to distance from the heart is 

attrihtted to D. A. McDonald [2]. 'lhe wave speed expression is then 

given by [2] 

2. I 

Since Anliker's model is one-dimensional, the pressure in Equation 

2.1 is a spatial average pressure at a particular cross section. 'lhus, 

in a two-dimensional analysis the pressure in the wave speed expression 

ls modified to be the mean pressure given by 

Pm= 2.2 
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'!he blood vessel is free to expand and contract radially upon 

stimulus. '!he axial range of an expansion or contraction in a vessel 

is termed the transition region and is illustrated in Figure 1. 

Because of the change in cross sectional area across the transition 

region and the necessity of maintaining a particular volume flow 

rate, the pressure and wave speed must also undergo related changes 

across the transition region. For slight changes in area over long 

distances, the wave speed changes only perceptibly. But large changes 

in area over short distances cause the wave speed to change considerably. 

Proper incorporation of an exponential function into Equation 2.1 

yields the changes experienced over a transition region and is given 

as 

c =(co +c, p)( 1-+ nx) 
1 -~+b)"" - .e 

) 

where b and • are arbitrary constants used to adjust the extent of 

the transition region. 

2.3 

Anliker developed two relations for wave speeds one was Equation 

2.1 which arose from experimental observations and the other ca11e from 

his analysis by the method of characteristics ~iven as [2] 

c s 2.4 
P(~S) op t 
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He combined. Equations 2.1 and 2.4, then integrated. the resulting 

differential equation to produce an equation for the local changes 

in cross sectional area in terms of pressure, wave speed and distance 

from the heart. '!be equation is [2] 

where p0 and R0 are constants at x • 0, Figure 1 illustrates the 

quantities used in Equation 2.5. 

B. Mathematical Model 

2.5 

'fhe mathematical model is derived on the basis of the relations 

just introduced for the behavior of the blood and for the geometric 

changes occuring in the blood vessel. Fluid flow is considered. 

axis)'Jlllletric, 18.Jllinar and periodic in ti.Jle with the blood modeled as 

a Newtonian, incompressible fluid. 'Ihe blood vessel is assumed to be 

a distensible, circular cylinder tapering with increasing distance 

from the heart. Figure 2 illustrates a schematic of the blood vessel 

with the coordinate system and related quantities used in deriving 

the governing equations. 

Expressed. in cylindrical coo:rdinates, the continuity equation is 

0 
' 

2.b 
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and the 1110lllentum equations are 

and 

Boundary conditions for the flow situation depicted in Figure 1 

and 2 are the followings 

a) at the center of the vessel where r • O, 

(~) ::0 

lT = 0 2.9 

(~) = 0 

b) at the vessel wall where r • R, 

u = 0 
~R I.) = -
~t 

+ ll's 
cose 2.10 

c) at the proximal end of the vessel where x • 0, 

u. == ~2 
1r "-o 

v = 0 2.1 l 
p = unknown 

where q0 is periodic in ti111e, 



14 

d) at the distal end of the vessel where x • L, 

L ~o 
bt 2.\2 
p =constant 

'!he problem as posed thus far involves two strongly coupled, second 

order, nonlinear partial differential equations. Conditions at the 

boundaries are somewhat less than ideal sincea a) pressure is 

unknown at the pro.xilltal end, b) radial fluid velocity at the wall 

depends on elastic wall properties and on wall displacement changes 

with respect to time, c) the inside radius of the vessel is not 

known precisely because of the changes in the thickness of the 

wall as the vessel expands and contracts. 

In order to simplify analysis of the problem it is reformulated 

in terms of the stream function and vorticity. 'Ihe stream function 

is defined by 

o'l> 
U= r ?>r 2.\3 

v--:: -I ~ \() -r 6~ 
) 

2.14 

and the vorticity is given as 

2.15 
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'Ihese substitutions for the components of velocity completely satisfy 

the continuity equation leaving the momentum equations in tenns of 

vorticity and the stream function unsolved. '!he system of governing 

equations is reduced to 

\il. ltJ = -url'", Z.16 
and 

r~ + .a1'.MM b~ bur + g[. ~ -·-
~t ~r b>t ~~ ?ir r ~ 'I-

2.17 

;)r ~1ur + l_.M[ _w + forJ. 6r 1 r br ri ~~2. 

Boundary conditions on this system are the followings 

a) at r = O, 

lt-' = 0 
Z.IS 

UT= 0 
b) at r .,. R, 

(pt):: 0 

Y= ~ 
~ 

-j R u-dy: 2.1g 
2rr 0 

lf = Q& + v; 
c) at x = O, ~t cose 

~= r 1 g.o 
'Zrr R; 2.20 

w- = 0 
d) at x • L, 

Lfs = 0 2.21 
\.fr :: 0 
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Noting the conditions imposed on the radial velocity component, 

Equation 2.14 leads to the condition that 

0. Z.22 

Consequently, flow near the distal end of the vessel approaches 

Poiseuille flow. If the radius is allowed to becoae a constant 

function of the axial coordinate beyond the point x a L, Poiseuille 

flow occurs a short distance away at x • L + 12• Allowing 12 = 0 

and placing the Poiseuille solution at x • 1 requires use of the 

condition that 

2.23 

Figure 3 illustrates the location of quantities used to specialize 

boundary conditions in the vessel, 

'Ihe last major step in deriving the governing equations involves 

redefining the coordinates, the stream function and the vorticity in 

terms of non-dimensional quantities, '!he tra.nsfomed variables are 

n r 
12 .p 4J 

L F 
e - 2.24 R -Q3 

3 = - ur , 
tUm i:: 

T = RWI 
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where Um and a. are the mean velocity and mean radius. 'Ihe dimension-

less vorticity is g arxi the dimensionless stream function is f, with 

R being the local radius of the vessel and F a parameter depending 

on the nature of the flow. '!he dimensionless coordinates are n, z 

and T. 'Ihese substitutions into the governing equations result in 

considerable expansion containing terms that allow for changes in 

wave speed, vessel diameter and local outflow. 'lhe purpose in deriv-

ing the transformed equations is to funnel these changes into the 

nonlinear coefficients of the governing equations. As a result, this 

leaves the boundary conditions noraa.lized to constants. 'lhe transformed 

equation for the stream function is 

+(hR/ - r IZ.R"x -2Rxl ?] t - [znRx. (1-<:R")J~h~ 

+ [z (1+2 R.x.Y-Fi- + ZrR: - rRR".,_ - 2R"] ~2 
F 

+ [1- i! R,... r +H Z.ZS 
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'!he transformed equation for vorticity is 

t.£ RER>J~n +ERE fi(l-lR'f.'t~ + (!-lRic.) l="! t R Rnl ~, F 

- n R~tJJ 9n - [ *'- + "Ri< (t-1:Q~) ~ + 3R I<,.,. 

- ( I - t R]<) ~ + t1 - (I -l Rx)~ - ( 1--i R;c) ~ .Ph 
J:" h F 

+ ei<fn }] ~ + [ Rl20 9r - [ n R.R"] s., r + [zc fl/" 

-i RR)('J( - 2R)( t Q (1-l=R.~)l='i: - ~R~ ( \-i:f4) + l Rl2TRl 
~ 

- ~ R~ (HR,.)f~ 3~ + [1<(1-tR~] 9a = 0. 2.26 
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'!be boundary conditions for this system of equations ares 

a) at n • O, 

b) at n • 1, 

c) at z • O, 

d) at z • 1, 

+c~,o) = o 
9 (2,0) = 0 

tfa.)) = I 

/.Df) - 0 
\dn l,I -

f(o,n)= Zn-z.-n+ 

9 (O,n) : - 8 n 

(of) - o 
~~ l,tt -

f~) - 0 \ai 1,n 

2.'27 
2.28 

z.2g 

2.30 

2.31 

2.32. 

Derivation of the mathematical model including both the nonlinear and 

two-dimensional characteristics of blood flowing in a distensible 

vessel is complete. It is eapha.sized that numerical results obtained 

from this study do not include the many details contributed by other 

authors but merely show that aeaningful results are obtainable from 

a more generalized model than is currently appearing in the literature. 

C. Simplified Model 

Poiseuille flow in a rigid tube is a simplified version of the 

governing equations derived thus far. '!be techniques used in solving 

the system of governing differential equations is tested on this 

siJlple application since the numerics should not be much worse for 
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the general case in which all the secondary changes appear only in the 

nonlinear coefficients. For Poiseuille flow, the radius R is a 

constant in time and space and the para.meter F is a constant for 

steady flow or contains a cosine function in the unsteady case. The 

simplified steady state version of the vorticity equation is 

-[..l + ~~c] Q nl. n7. J 

o, 2.33 

and the stream function is reduced to 

2.34 

El}uation 2.)4 can be made artificially parabolic by introducing a 

derivative with respect to time as 

2.35 

The derivative with respect to time is used as a relaxation parameter 

since as time increases, the derivative tends toward zero. 'Ibis 

derivative with respect to time has no relation to real time but is 

merely used as an iteration tool in the numerical solution. 



22 

'!he solutions for Poiseuille flow are 

+ :::. Zn7.- n4 

' 
and 

9 = -811 . 

'!he Alternating Direction-llllplicit numerical method is applied to 

the simplified form of the governing equations. 

Z.'3b 

2.37 



III. NUMERICAL SOWTION 

A. Choice of Nuaerical Method 

'Ihe governing partial differential equations for blood flow in 

large arteries, Equations 2.25 and 2.26, are written in terms of the 

dimensionless stream function and the dimensionless vorticity. 'Ihe 

differential equation for vorticity is parabolic with respect to tillle 

and elliptic with respect to space while the differential equation 

for the stream function is elliptic with respect to space. A choice 

between the explicit and illplicit nW11erical aethods depends upon the 

form in which the time dependent term is written in the finite dif-

ference equation, For this study the illlplicit method is used since 

convergence and stability of the solution is insured [9]. In addi-

tion, the implicit method allows greater freedom in the choice of 

time and spatial step sizes but requires more complex calculations 

at each time step. 

Consider the general form of a simple parabolic differential 

equation written explicitly in one direction as 

0. 3.1 

'Ihe central finite difference form of Equation 3,1 is 

F J<.i'l - 2 J= ~t'l F .K+I 
J+I J + j -I 

(6n)L 
+ + 

23 
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v. r l<.+-1 v 
Dz t-j -+ D3 0 ) 

3.2 

where the j subscript refers to spatial incre•ents in the n direction 

and the k superscript refers to time increaents. Collecting teI'llls 

with like j subscripts and like k supercripts gives 

L 
O J K+I + _, + _, Fj+I 

(6n)1. 2An 
K - ¥ - F· ?> _J 

6T 

F ~+I 
J 

3.3 

In this manner a single differential equation is shown to contain the 

sol~tion at the forward (k + 1) time step and yields equation of the 

f onn 

A K-t-1 l(.+-1 K+I r. + Bl=" . .,. er +1 = J-1 J J 
CD _K: 

J 3.4 

Given the grid of points M x M as shown in Figure 4, the left 

hand side of Equation J.4 is limited to three stations at the forward 

time step while the right hand side is a known value from the previous 

tiJne step. Writing out Fiquation J.4 at each station results in a set 

of M-2 linear algebraic equations during ea.ch time step. 'Jbese 
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equations fol'!ll a tridiagonal matrix of coefficients whose teI'Jlls appear 

only above the ma.in diagonal. Ea.ch boundary point on the grid is 

defined by the boundary conditions leaving a systea of M-2 equations 

and M-2 unknowns to be solved at each time step. 

B. Alternating Direction-Implicit Method 

'lbe governing partial differential equations for vorticity and 

the streaa function are parabolic with respect to time or may be made 

artificially parabolic for relaxation purposes. Both Equations 2.33 

and 2.34 contain derivatives with respect to the axial and the radial 

coordinates. Numerical solution of this set of equations is accom-

plished by operation on ea.eh separate equation with the Alternating 

Direction-Implicit (ADI) method. 

'Ihe ADI method uses a differential equation twice during any 

full tiae step. 'Ihe general form of a parabolic partial differential 

equation is 

Since the ADI method is designed to integrate in one direction at a 

time, Equation 3.5 must be rewritten for the first one-half time step 

as 

3.b 
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and for the second one-half time step as 

+ (3
3 

- ~F :. 0. oT 

For the first one-half tille step the difference equation is 

3.7 

written in the normal direction by combining derivatives with respect 

to the axial coordinate and tille in the f term and remainder tem. 

Writing out Equation 3.6 in finite difference fo?"ll and combining like 

j subscripted terms and like k superscripted terms results in an 

equation of the form 

AF 1e.+1 gr~"'' 
j-1 -+ ,.... J = CD .K 

J 

as previously discussed in Equation J.4. 'nle coefficients of 

Equation J.8 are given by Equation 3.3. 'Ibese coefficients are 

computed at each station and form the tridiagonal matrix mentioned 

earlier. 'nle solution of this set of linear algebraic equations 

is valid at the one-half tillle step. 'nlis solution is then used as 

3.8 

an input for the second one-half time step in which the differential 

equation is written in the axial direction. Coefficients of Equation 

J.8 are again computed at each station resulting in a second tri-

diagonal matrix. '!be solution of the second set of linear algebraic 

equations is valid at the full tille step. In this aa.nner, ea.ch of 

the two-d.iaensional parabolic governing differential equations is 

integrated in one direction during the first one-half time step, then 
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integrated in the other direction during the second one-half tille 

step. 

'Ihe difference equations used in the co•puter programs are 

written in the central difference fo?'ll for the first and second 

partial derivatives with respect to space and in the iltplicit form 

for the derivative with respect to time as follows1 

1E 
aT 

= 

= 

= 

= 

= 

Fe. .... , . - r:_, . 
-. 'J .. 'J 

- 21="·. + r. . •.J ,...l_,JJ 

i:-\ , j ti - F ~ I j - I 

2An 

c~n) 2. 

r l<.+1 - r ~ 
6T 

' 

, 

> 

3.9 

'Ihe i subscript refers to spatial increments in the z direction, the 

j subscript refers to spatial increments in the n direction and the 

k superscript refers to increaents in time. Since the present study 

involves solving two coupled, second order pa.r:ial differential 
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equations, the ADI method is used on each one separately in such a 

manner that the set of governing equations is solved iteratively. 

c. Nuaerical Scheme 

'Ihe computer program was written in Fortran IV language for use 

on the IBM )60 computer. A general outline of the steps used in 

solving the governing equations is the following. 'Ihe equation for 

vorticity, Equation 2.33, is first integrated in the nonaal direction 

during a real one-half ti.lie step and then the strea.11 function, Equation 

2.35, is integrated in both directions. Since Equation 2.35 is 

artificially parabolic, the time tel'll is used as a relamtion para.-

meter. 'Ihe prog:raa iterates on the stream function integrations in 

order to satisfy the boundary condition at the wall given in Equation 

2.29. 'Ihe vorticity equation is then integrated in the axial direc-

tion during a second real one-half time step and the program 

iterates on the streaa function integrations once again. Time is 

incremented and the entire process is repeated for the next time 

step. 

A flow cha.rt of the entire numerical scheae is shown in Figure 5. 

In greater detail, the program operates in sections of which the 

bookkeeping portion first reads in data, defines constants and step 

sizes and sets up the grid used in the numerical calculations. Next, 

the stream function and vorticity matrices are initialized to some 

known condition. Since the vorticity depends on changes in the streaa 

function the problem solution is carried out with the followi~ scheme. 
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Recall that the bournary conditions at the wall, Equations 2.29 
and 2.30, completely define the stream function but leave the vorticity 

unspecified. 'Ihe boundary condition at the wall for the vorticity is 

defined by separating the vorticity into two parts. 'Ibis separation 

can be accomplished because Equation 2.33 is a linearized form of the 

general case. The vorticity is separated into a homogeneous and a 

"J)articular part and then integrated in the nonRa.l direction using the 

following equations and boundary conditions. Let 

9 = AS Momo9cra:oi.c.s + 9 Port,C:.&4.lar 3.10 

where A is a constant at each station. 'Ihen the homogeneous part of 

the vorticity is gH which satisfies the equation 

where 
9H (O) = 0 J 

9 H (I) ~ I I 

=0 

and the particular pa.rt is gp which satisfies 

where 9P (O) = 0' 

gr<n= o. 

3.11 

3.12 
3.13 

3.14-

3.15 

3.lb 
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'Ihe condition along the axis is completely satisfied by Equations J.12 

and J.15 while the condition at the wall becomes 

3.17 

from Equations J.13 and 3.16. 'Ihe numerical solution of the hoaogeneous 

and particular parts of the vorticity are used as inputs to the stream 

function integrations. 

'Ihe stream function, Equation 2.34. is also a linear form of the 

general case and can be separated into two particular parts and inte-

grated in the normal direction using the following equations and 

boundary conditions. Let 

-+ .+ 2 3.18 

where A is the same constant used in Equation 3.10. 'Ihen the first 

particular part of the stream function is f 1 which satisfies 

where t', (O) = 0, 3.2{) 

(~)n:I :.0. 3.2/ 

'Ihe second particular part is f 2 which satisfies 

' 
3.'Z2 
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where 

'!be boundary condition at the axis is completely satisfied by 

Equations 3.20 and 3.23. '!be boundary condition at the wall is 

also given by Equation 2.29. 'Ibis condition is satisfied at each 

station along the wall by computing the value of A as 

ACr:) = 1- +2(~,1) 
+, (l,I) 

3.23 

3.'24 

3.'l5 

'3,1..b 

Calculation of the constant A allows for complete definition of the 

total vorticity and the total stream function from Equations 3.10 

and 3.18. The stream function is then integrated in the axial direc-

tion using the equation 

3.27 

and the boundary conditions 

3.28 

(of) :: o. 
6: i =I 



The value of A at each station is the boundary condition for the 

vorticity at the wall as given in Equation J.17 and also for the stream 

function as given in F.quation 3.25. Thus the boundary condition for 

vorticity at the wall may be written as 

i - -f:~(r.,I) 
.f, (?;I I) 

A (i.) • 3.30 

Since a partial derivative with respect to time was included in the 

stream function, Equation 2.35, it is used as a relaxation parameter. 

The program iterates on the stream function integrations in both 

coordinate directions until the f 1 and f 2 matrices converge. During 

each iteration the value of A(z) is calculated at each station and 

compared to that of the previous iteration. The iterations halt 

after A(z) reaches a preset level of accuracy. Upon completion of 

the iterations, the matrices for the vorticity and the stream 

functions are valid at the one-half time step. 

The vorticity equation is then integrated in the axial direction 

inputting the matrices from the one-half time step and using the 

following equation 

and the boundary conditions 

9(0) =an~ d£.s°ired input) 

(~t.=0 

3.31 

'3.32 

3.33 
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Solution of EXiuation 3.31 results in a matrix of the vorticity 

valid at the full time step. 

'!he stream function is then integrated in the normal direction 

inputting matrices from Equations 3.31 and 3.27 and using the 

equation 

and the boundary conditions 

t(o) = O 

/~~) = 0 
l~ n~1 . 

3.'34 

3.35 

3.3b 

'!he numerical solutions to Equations 3.31 and 3.34 are then used as 

the input for the integration of the stream function in the axial 

direction. '!he equation and boundary conditions used in the axial 

integration are 

-~z.r + rv
1 

\" '"' D o -r ----. ~rt -t c<i... + -+ o(3 - n~ ::::; ' 
6 P· o~ 

'3.37 

and the boundary conditions 

+Co) = dn9 dtsired input , 3.38 

0. 3.39 



Since the updated vorticity matrix is used as an input in solving 

Equation J.J4 and 3.37, the stream function is also updated by 

iteration on the integrations in both coordinate directions until 

convergence is reached. Upon completion of this loop the ma.trices 

for vorticity and the stream function are valid at the full ti.me step. 

'!he program increments ti.me and the process is repeated for a finite 

number of time steps until the vorticity matrix converges to the exact 

solution at a preset level of accuracy. 



IV. RESULTS AND CCNCWSIONS 

'!he main result of this study is a blood flow model based on the 

two-dimensional, nonlinear, unsteady Navier-Stokes equations. '!he 

model allows for variations in wave speed, changes in vessel diameter 

and local outflow. A simplified version of this general model is used 

to test the numerical scheme, since the general equations contain 

secondary conditions only in the nonlinear coefficients. 

Numerical results obtained from this study stem from two sources1 

a) test case programs of only the stream :function equation or vorticity 

equation and b) a combined progra.111 in which both the stream function 

and vorticity are integrated. 'Ihe first category of results are cases 

in which the initial condittons for the stream :function and vorticity 

are zero and Poiseuille flow is imposed at the proximal em of the 

vessel. 

Figure 6 illustrates results from the vorticity test program with 

zero initial conditions using nondimensional time steps of 0.16 and a 

Reynolds number of 100. In solving the vorticity equation, the matrix 

illustrates a tendency to oscillate about the correct solution. In 

this steady state case, a silllple arithmetic average of the matrix at 

the previous time step with the matrix at the forward time step allows 

quick convergence by smoothing out the oscillations. '!he solution 

converges rapidly near the axis with the rate of convergence decreas-

ing as it approaches the vessel wall. '!he granhs of the three selected 

points in the matrix converge to the e:xact solution. 

Figure ? illustrates results from the stream function test pro-

gram with zero initial conditions using nondimensiona.l time steps of 
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0.16 and a Reynolds number of 100. Again the solution converges very 

rapidly near the axis with the rate of convergence decreasing as it 

approaches the wall. Graphs of the three selected points converge to 

within 2.4 percent of the exact solution. 

Figures 8 am 9 illustrate results from the com1ined program with 

both the stream function and the vorticity initialized to zero. 

Poiseuille flow is imposed at the proximal end of the vessel with non-

dimensional time steps of 0.16 am a Reynolds number of 100. The 

vorticity matrix is averaged as described previously. The values of 

A(z) exhibit oscillations due to changes in the f 2 matrix. A simple 

arithmetic average of the f 2 matrix at the previous and forward itera-

tion steps removes the oscillations in A(z) and allows quicker conver-

gence. Figure 8 shows that the vorticity converges to the e:xa.ct 

solution very quickly at points near the axis similar to results of 

the test case. The solution near the wall converges less rapidly to 

within five percent accuracy. Figure 9 shows the stream function for 

the first loop of iterations during the first time step. Iterations 

at subsequent time steps exhibit even faster convergence. The three 

selected points in the matrix converge to within one percent of the 

e:xa.ct solution. 

The second category of results is from cases in which the initial 

conditions are chosen identical to the anticipated steady state solu-

tion. Pulsating Poiseuille flow is introduced into the nonlinear 

coefficients of the vorticity equation with nondimensional time steps 

of 0.01, a Reynolds number of 100, and the product of frequency and 

time equal to 0.16. Figure 10 illustrates the vorticity during the 
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first quarter period. The effect of the pulsating input is seen by 

comparison with the exact steady state solution. The vorticity matrix 

exhibits oscillations as noted previously, but an arithmetic average 

over time is not justifiable for the unsteady case. Therefore, large 

oscillations in the solution occur at and near the vessel wall. 

Figure 11 illustrates the stream function during the first quarter 

period. The stream function matrix exhibits oscillations about the 

exact steady state solution. 

In conclusion, the following recommendations are made concerning 

further extension of this studya a) modifications in the numerical 

scheme must be made in order to eliminate the oscillations that appear 

in both the steady state and pulsating cases, b) the computer program 

should be modified. to accoJlllllodate backflow in order that a full period 

of oscillation can be computed, c) the program could be modified to 

accommodate flow profiles other than Poiseuille. 
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c 

IMPLICIT REAL*8 (A-H, 0-Z) 
DIMENSION W(ll),G(ll,11),GHS(ll,11),GPS(ll,ll),GOLO(ll,ll), 

lf{ll,ll),Fl(ll,ll),F2(11,ll),FS(ll,11),ANEW(ll),GS(ll,11) 1 2F20LO(ll,ll) 
COMMON/PECS/Al(ll),A2(11),A3(11) 

C ***** SOOK KEEPING ***** c 

c 

READ(5,110) DTAU,DTAF,RE,IEND,JEND 
110 FORMAT(3Fl0.4,5X,214) 

DTIME=DTAU/2.DO 
DTIMF=DTAF/2.DO 
GRIDX=IEND-1 
DELX=l.OOC/GRIDX 
GRIDY=JEND-1 
OELY=l.ODC/GRIDY 
K=JEN0-1 
K2=JEND-2 
L=IEND-1 
l2=IEN0-2 
TIME = o.Ooo 
OMEGAT=O.DO 
DOMGAT=C.l6CC 
WRITE(c,119) 

119 FORMAT(/aX,4HDTAU 1 4X,4HDTAF,4X,2HRE,6X,4HDELX,4X,4HDELY,4X,4HIEND, 
12X,4HJEND,2X,6HOOMGAT) 

WRITE(6,120) OTAU,OTAF,RE,OELX,DELY,IE~C,JENO,OOMGAT 
120 FURMAT(5X,5f8.3,2X,I4,2X,I4,FB.2/) 

C***** INITIALIZE THE F AND G MATRICES ***** c 
DO 129 J=l,JEND 

& 



c 

DO 12S I=l,IENO 
YJ=J-1 
G{I,Jl=-8.DO*YJ*DELY 
f(1,J)=(2.DC*((YJ*DELY)**2))-{(YJ*DELY)**4) 
F2( I,J)=f( I,J) 
f20LD(l,J}=f(J,J) 

129 CONTINUE: 

C***** INTEGRATE GIN THEN OIRECTICN TO GET GHS(l,J) ANO GPS(l,J) ***** c 
G OLDC=-7. 2DC 

133 DO l I=l,IEND 
DO 1 J=l,JENU 

1 GOLD(J,J)=GCI,J) 
AOLO=O.DO 
DO 132 1=2,L 
DO 141 J=Z,K 
YJ=J-1 
wfJ)=G(I,J) 
Al(J}=(l.CO/(YJ*DELY))+((RE/(YJ*DELYl)*{(f(I+l,J}-f(l-1,J))/ 

1(2.DO*OELX)))*DCOS(GMEGAT) 
A2(J)=-((1.00/((YJ*DELY)**2))+(RE/DTIME)+((RE/((YJ*DELY)**2))* 

l((f(I+l,J)-f(I-1,J))/(2.DO*DELX)) )*DCOS(OMEGAT)-(RE*DTAN(OMEGAT))) 141 A3{J)=C.OC 
Dl=0.000 
El=0.000 
WEND=l.DO 

131 CALL PEQSO(W,Ol,El,WEND,DELY,OELX,DTIME,K,JENO) 
DO 132 J=l,JEND 
GHS(I,J)=W(J) 

132 CONTINUE 
233 DO 232 1=2,L 

$ 



c 

DO 241 J=2,K 
YJ=J-1 
W(J)=G(I,J) 
Al(J)=(l.DO/(YJ*OELY})+((RE/lYJ*DELY))*((F(I+l,J)-f(I-1,J}J/ 

1(2.DO*OELX)))*DCOS{OMEGAT) 
A2(J)=-((l.OO/((YJ*DELYJ**2))+(RE/OTIME)+((RE/((YJ•DELY)**2))* 

l((f(l+l,J)-F(I-1,J))/(2.DO*DELX})}*DCOS(OMEGAT)-(RE*DTAN(OHEGAT))) 
241 A3(J)=((G(I+l,J)-2.00*G(I 1 J)+G(l-1 1 J))/(DELX*DELX)}-((RE/(YJ* 

lDELY)l*((f(I,J+l}-f(l,J-1))/(2.DO*DELY))*((G(I+l,J)-G(I-l,J))/ 
2(2.DO*DELX)))*DCOS(OMEGAT)+(RE*W(J)/DTIME) 

Dl=O.OOC 

231 

232 

El=O.ODO 
WEND=0.00 
CALL PEQSC{W,Dl,El,WEND,OELY,DELX,DTIME,K,JENO) 
DO 232 J=l,JEND 
GPS(I,J}=W(J) 
CONTINUE 

C***** INTEGRATE F IN THE N DIRECTION TO GET Fl(J,J) AND f2(I,J) ***** c 
ITNO=O 

33 DO 32 I=2,L 
DO 41 J=2,K 
M=JENO-J+l 
YJ=M-1 
W{J)=f(l,M) 
Al(J)=+l.DO/(YJ*OELY) 
A2(J)=-l.OOO/DTIMF 

41 A3(J)=-((lJ*DELY)*GHS(I,M)) 
A=((Al(2)*DTIMF)/(2.0DO*DELY))-(0TIMF/CDELY*DELY)) 
B=((2.DO*DTIMf)/(OELY*DELY))-(A2(2)*DTIMF} 
C=-((OTIMF/(0ELY*DELY)J+((A1{2)*DTI~F)/(2.DO*DfLY))) 

"" 0 



CD=(A3(2))*DTIMF 
DERIV=O.DO 
Dl={B+4.DC*C)/(3.00*C-A) 
El=(C[+2.DO*DELY*C*OERIV)/(A-3.DO*C) 
wEND=o.ooo 

31 CALL PEQSO(~,Ol,El,~ENO,DELY,DELX,OTIMF,K,JENO) 
DO 32 J=l,JEND 
M=JENO-J+l 
Fl( I,J)=\•HM) 

32 CONTINUE 
333 00 16 I=l,IEND 

CO 16 J=l,Jt.NO 
16 f20LO(I,J)=f2(l,J) 

DO 332 I=2,L 
00 341 J=2,K 
M=JEND-J+l 
YJ=M-1 
W(J)=F{J,M} 
Al(J)=+l.DO/(VJ*DELY) 
A2(JJ=-l.CDC/DTIMF 

341 A3{J)=(W(J)/DTIMF)+{(F(I-l,MJ-2.DO*F{l,M)+f(l+l,M))/(DELX*DELX)) 
1-((YJ*DELY)*GPS(I,M)} 

A=((Al(2)*0TIMF)/(2.0DO*DELY))-{OT1MF/(DELY*DELY)) 
B=((2.00*DTIMF}/(DELY*DELY))-{A2(2)*0TIMF) 
C =- { ( D TI M FI ( DE l Y* DEL Y )) + ( ( A 1 ( 2 ) *D T I M f ) I ( 2 • 0 0 *DE LY )) ) 
CO=(A3(2)J*DTIMF 
DERIV=0.00 
01=(8+4.DO*C)/{3.DO*C-A) 
El=(C0+2.00*DELY*C*DERIV)/(A-3.DO*C) 
WEND=o.ooo 

331 CALL PEQSO(W,Ol,El,WENO,DELY,DELX,OTIMF,K,JENO) 
DO 332 J=l,JEND 

\.I\ .... 



c 

M=JEND-J+l 
f2(I,J)=0.5DO*W(M) + 0.5DO*F2CLO{I,J) 

332 CONTINUE 

C***** EVALUATE A ***** c 

c 

DO 335 1=2,L 
335 ANEW(l)=(l.DO-F2(1,JEND))/fl(I,JEND) 

ANEWC=ANEW(l0) 

C***** ADD MATRICES TO DEFINE FUNCTIONS FS AND GS COMPLETELY ***** c 

c 

DO 500 I=2,L 
DO 500 J=l,JENO 
FS(l,J)=(ANEW(I)*fl(I,J))+f2(I,JJ 
GS(l,J)=(ANEW{l)*GHS(I,J))+GPS(J,J) 

500 CONTINUE 
DO 501 J=l,JEND 
FS(l,J)=f(l,J) 
FS(IENO,J)=(4.00*FS(L,J)-fS(l2,J))/3.DO 
GS(l,J)=G(l,J) 
GSCIENO,J)=(4.00*GS(L,Jl-GS(L2,J))/3.DC 

501 CONTINUE 

C***** INTEGRATE F IN THE Z DIRECTION TO GET F(I,J) ***** c 
53 DO 52 J=2,K 

DO 61 1=2,l 
YJ=J-1 
N=IENO-I+l 
W(l)=FS(N,J) 
Al( I l=C.000 

'iG 



c 

A2(I)=-l.ODO/OTIMF 
61 A3(1)=W(l)/DTIMF+(FS{N,J-l}-2.0D*FS(N,J)+FS(N,J+l))/(DELY*DELY) 

l-(FS(N,J+l)-FS(N,J-l)J/(YJ•OELY*OELY*2.00)-((YJ*DELY}*GS(N,J)) 
A=((Al(2)*0TIMF)/(2.0DO*DELX))-(DTIMF/(DELX*DELX)) 
B=(2.DO*DTIMF/(DELX*DELX))-(A2(2)*0TIMF) 
C=-( ( DTI MF/( OELX*DELX)) +( {Al ( 2) *DTIMF) l (2 .OO*DELX J)) 
CO=A3 ( 2 H<OT IMF 
DERIV=O.DO 
01=(8+4.DC*C)/(3.DO*C-A) 
El=(C0+2.00*DELX*C*DERIV)/(A-3.DO*CJ 
WEND=((2.DO*{(YJ*DELY)**2))-{(YJ*DELY)**4)) 

51 CALL PEQSO(W,Dl,El,WEND,OELX,DELY,OTIMF,L,IENO) 
00 52 I=l,IEND 
N=IEND-I+l 
F{l,J)=W(N) 

52 CONTINUE 
DO 55 1=2,IEND 
FCl,l}=fSlI,ll 
F(l,JEND)=FS(I,JEND) 

55 CONTINUE 

C***** CHECK CONVERGENCE AT THE HALF TIME STEP ***** c 
ANEWB=CABS(ANEWC) 
IF(ANEkR.LE.0.0100) GO TO 79 
CNVGl=DABS((ANEWC-AOLO)/ANEWCJ 
AOLD=ANEwC 
ITNO=ITNO+l 
IF{CNVGl-0.0100)821,821,333 

79 AOLO=ANEWC 
ITNO=ITNO+l 

821 ITNO=O 

Vt 
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c 

TIME=TI~E+OTIME 

WRITE(6,337) (ANE~(IJ,I=2,L) 
337 FORMAT(/1X,7HANEW 1s,sx,go11.3/) 

WRITE(6,813) CNVGl 
813 FORMAT(5X,8HCNVG1 = ,Oll.3) 

C***** INTEGRATE G IN THE l DIRECTICN ***** c 
453 DO 452 J=2,K 

YJ=J-1 
DO 461 1=2,L 
N=IENO-I+l 
W(I)=GS(N,J) 
Al(l}=+((RE/(YJ*DELY)J*((F(N,J+l)-F(N,J-1))/(2.00*DELY)))* 

lOCOS(CMEGAT) 
A2(I)=-((1.DO/{(YJ*DELYl**2))+(RE /OTIME)-((RE/((YJ*DELY>**2})* 

l{(f(N+l,J)-F(N-1,J))/{2.DO*DELX)))*OCOS(OMEGAT)-(RE*OTAN(OMEGAT))) 
461 A3(l)=((GS(N,J+l)-2.DO*GS(N,J)+GS(N,J-1))/(DELY*DELY))+ 

l(RE*W(l)/CTIME)+((l.00/(YJ*DELY)J-( (RE/(YJ*DELY))*((F(N+l,J)-
2F(N-l,J))/(2.DO*DELX)))*DCOS{CMEGAT))*((GS(N,J+l)-GS(N,J-1}) 
3/(2.DO*DELY)) 

A=((Al(2)*DTIME)/(2.0DO*DELXJ)-(0TIME/(DELX*DELXJ) 
B=((2.DO*CTIME)/(0ELX*DELX))-(A2(2)*0TIME} 
C=-((DTIME/IDELX*DELX))+{(Al{2)*0TIME)/(2.DO*DELX})) 
CO=(A3(2))*0TIME 
DERIV=C.00 
01=(8+4.00*C)/(3.00*C-A) 
El=(CD+2.CO*DELX*C*OERIV)/(A-3.DO*C) 
WEND=-8.DC*YJ*DELY 

451 CALL PEQSG(W,Ol,El,WENO,OELX,DELY,OTIME,L,IEND) 
00 452 I=l,IEND 
N=IEND-I+l 

"$ 



G(l,J)=k(N) 
452 CONTINUE 

DO 460 I=l,IEND 
G(l,1)=0.0DO 
G(I,JEND)=2.00*GfI,K)-G(I,K2) 

460 CONTINUE 
TIME=TIME+DTIME 
OMULT=DCOSCOMEGAT) 
OMEGAT=OMEGAT+OOMGAT 
WRITE(6,681) TIME,D~ULT 

681 FUkMAT(//5X,7HTIME = ,F8.5,5X,8HDMULT = ,Oll.3/) 
WRITE(6,814) 

814 FORMAT(2X,47hTHIS IS THE G(I,J) MATRIX AT THE FULL TIME STEP/) 
WRITE(6,Bl5) ((G(I,JJ,I=l,IENO),J=l,JEND) 

815 FORMAT(2X,11Dll.3) 
c 
C ***** INTEGRATE F IN N DIRECTION ***** c 

~,,.,_,, . .,.,,,,....., ....... ___ ,... ____ _ 

I TNO=C 
FOLD=O. DO 

633 00 60G 1=2,L 
DO 641 J=2,K 
M=JfND-J+l 
W(J)=FtI,M) 
YJ=M-1 
Al(J)=+l.DO/(YJ*OELY) 
A2(J)=-l.CDO/OTIMF 

641 A3(J)=(W(J)/DTIMF)+((f(l-l,M)-2.DO*F(I,M)+F(l+l,M))/(DELX*OELX}) 
1-{(YJ*DELY)*G (1 1 M)) 
A=((AlC2)*0TIHF)/(2.0DO*DElY))~{DlIMF/(DELY*OELY)l 
B=(2.DO*DTIMF/(DELY*DELY))-(A2(2)*DTIMF) 
C =- ( .( D T I M f I ( U ELY* DE LY ) ) + ( ( A 1 ( 2 ) '*' 0 T I MF ) I ( 2 • D 0 *DE l Y ) ) ) 

""' ""' 



c 

CO=(A3{2))*DTIMF 
DERIV=c.oo 
01=(8+4.DO*C)/(3.DO*C-A) 
El=(CD+2.DO*OELY*C*OERIV}/(A-3.00*C) 
WEND=0.000 
CALL PEQSO(h,Ol,El,WENO,DELY,OELX,OTIMF,K,JEND) 
DO 600 J=l,JEND 
M=JEND-J+l 
FS(I,J)=W(~) 

600 CONTINUE 
DO 601 J=l,JEND 
FS(l,J)=F(l,J) 
FS(IENO,J)=(4.DO*FSCL,J)-FS(L2,J))/3.0C 

601 LONTINUE 

C***** INTEGRATE FS IN THE l DIRECTION ***** c 
DO 752 J=2,J< 
DO 761 I=l,IEND 
YJ=J-1 
N=IENO-I+l 
W(l}=FS(N,J) 
Al( I )=C.ODO 
A2(1)=-1.0DO/DTIMF 

761 A3(l)=W{l)/DTIMF+(FS(N,J-l)-2.DO*FS(N,J)+FS(N,J+l))/(DELY*DELY) 
l-CFS(N,J+l)-FSCN,J-1))/(YJ*DELY*DELY*2.DO)-l(YJ*DELY)*GlN,J)) 

A=({Al(2l*DTIMF)/(2.0DO*DELX))-(DTIMF/(0ElX*DELX)) 
B=(2.DO*OTIMF/(DELX*OELX))-(A2(2)*DTIMF) 
C=-((DTIMF/(DELX*DELX)}-t-((Al(2)*DTIMF)/{2.DO*DELX))} 
CO:A3( 2)*DTIMF 
DERil/=O.DO 
Dl=(B+4.00*C)/(3.DO*C-A) 

~··~"''!"-~--~,·""I'•---------------------------------------------------------------------
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c 

El=(C0+2.DO*DELX*C*DERIV)/(A-3.DO*C) 
WEND=FS(l,J) 
CALL PEQSO(W,Ol,El,WEND,OELX,OELY,DTIMF,L,IENO) 
DO 752 1=1,IENO 
N=IENO-I+l 
F(I,J)=W(N) 

752 CUNTINUE 

C ***** CHECK CCNVERGENCE AT THE FULL TIME STEP ***** c 
ITNO=ITNO+l 
FNEW=F(l0,10) 
CNVF=DABS((FNEW-FOLC)/FNE~) 
FOLD=FNEW 
WRITE(6,13) CNVF,ITNO 

13 FORMAT(/5X,7HCNVF = ,Oll.3,8X,19HITERATION NUMBER = ,14) 
IFlCNVF.GE.0.0100) GO TO 633 
WRITE(6,683) 

683 FORMAT(lX,47HTHIS IS THE f(J,J) MATRIX AT THE FULL TIME STEP/) 
WRITE(6,684) ((f(l,J),I=l,JEND),J=l,JENC) 

684 FORMAT(2X 1 11Dll.3) 
GNEW=G(l0,10) 
CNVGV=DABS((GNEW-GGLOC)/GNEh) 
GOLDC=-7.200 
wRITE(6,l4) CNVGV 

14 FORMAT(/5X,8HCNVGV = ,Oll.3) 
IF(OMEGAT.LE.6.2800) GO TO 133 
STOP 
ENO 

!111!1!'£""'-"'-':"~''""'""l!lll!l!ll'l!lllftlllllllll•lllll•lllllll!!ll•-----------------------------------------------------------
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SUBROUTINE PEQSO(W,01,El,WENO,DELN,DELZ,OTIME,KL,IJEND) 
IMPLICIT REAL*8 (A-H, 0-Z) 
DIMENSION W(ll),0(11),E(ll) 
COMMON/PEQS/Al(ll),A2(11),A3(11) 
AMBDA = DTI~E/(DELN*DELN) 
D(l)=Dl 
f( U=El 
w( KL+U=Wfi\iD 
DO 40 1=2,Kl 
A=((Al(I)*OTIME)/(2.0DO*DELN))-AMBDA 
8=(2.0DO*~MBOA)-{~2(I)*OTIME) 
C=-(AMBDA+((Al(l)*DTIME)/(2.DO*OELN)J) 
CO=A3(I)*DTIME 
0(1)=-C/(A*D(l-1)+8) 

4 0 f: (I ) = ( C 0-A * E ( I-1 l ) I ( A *D ( I -1) + S) 
DO 50 I=l,Kl 
N=IJENO-I 

50 ~(N) = D(N)•W(N+l) + E(N) 
RETURN 
END 

~ 
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PULSATILE BLOOD FLOW IN THE ARTERIES 

by 

Gloria Adame Bennett 

(ABSTRACT) 

The present study develops the unsteady, nonlinear, two-

dillensional partial differential equations for pulsatile flow in a 

flexible tube. 'Ihe fluid is assuaed to be a Newtonian, incompressible 

liquid slllila.r to blood. 'lhe vessel is modeled as circular in cross 

section and tapering with increasing distance froa the heart. The 

governing equations are solved numerically using a finite difference 

fora of the Na.vier-Stokes equations and the Alternating Direction 

!Jlplicit method. The purpose of this study is to solve a sillplified 

version of the general equations in order to deaonstrate the feasi-

bility of solving this type of syste1t numerically. 
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