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I. INTRODUCTION

A, History of Blood Flow Amalysis

Prior to the nineteenth century the models developed to represent
the human cardiovascular system were primarily descriptive in nature.
The Harvey model, developed circa 1600, was the first correct physio-
logical description of the circulation, Over the next three hundred
Years only incremental changes were made to improve description of the
pulmonary and capillary systems. A theoretical model for the cardio-
vascular system began to emerge during the nineteenth century. In
1840 Poiseuille conducted experiments on viscous fluids flowing in
rigid tubes which later led to the Hagen-Poiseuille equation used
today. In 1755 Euler postulated the governing equations for fluid flow
in a flexible tube which were not solved in the blood flow context
until 1956, Then in 1958 Womersley published a wave propagation model
for blood flow in arteries of constant cross section which reasonably
predicted flow quantities in short vascular segments [1].*

In the late 1960°'s Anliker, Rockwell and Ogden [2] developed a
one-dimensional, nonlinear analysis of large amplitude waves propagat-
ing in tapering elastic arteries., Their nonlinear analysis simulated
the experimentally observed phenomena by predicting the pronounced
steepening of wave fronts and peaking of pulses which propagate down
the arterial tree. Their study also indicated that nonlinear effects

must be accounted for in order to correctly interpret small changes in

*Numbers 1n brackets correspond to references in Bibliography.



the flow and pressure pulses, Anliker's success in predicting changes
in the pulses may be partly attributed to his direct incorporation of
vessel wall properties in the wave speed expression.

Anliker's model also proposed relationships for local changes in
cross sectional area, friction expressions and outflow expressions for
regions above and below the femoral artery, KEach expression was based
on experimental data from varlous other authors and then scaled down
or up to fit a standard case, The friction expressions are question-
able because of the assumption of quasi-steady flow and the outflow
expressions are questionable because they prescribe steady, continuous
leakage across the vessel wall in place of outflow at discrete locations
along the artery., The empirical expressions in Anliker's model contain
room for improvement since the assumptions are gross approximations of

the real situation,

B, Current Approaches

The arterial side of the cardiovascular system may be divided into
three fluid flow regimes as followss a) the arteries which are best
described by viscous unsteady flow, b) the arterioles which may possibly
be described by rheolgical models, c) the capillaries which are best
described by plug flow, Arterial blood flow studies may be further
categorized into three groups which ares a) linearized, two-dimensional
governing equations whose solutions are periodic, b) nonlinear, one-
dimensional governing equations, c) analog computer models Eﬂ.

Womersley made extensive contributions to the model based on two-

dimensional, linearized governing equations. The blood was assumed to



be Newtonlan and incompressible, flowing in axisymmetric, laminar
fashion, The vessel was modeled as cylindrical, infinitely long and
under a steady pressure. Womersley arrived at closed form solutions
in temms of Bessel functions periodic in time. His model predicts
that waves damp out as they propagate down the vessel which does not
agree with observed phenomena, However, the model predicts instan-
taneous flow velocities based on the pressure gradient at a point in
the flow field [4],

The second category of blood flow models 1s based on the one-
dimensional, nonlinear governing equations, Assumptions used for the
blood and the vessel remain unchanged. This model has proven amenable
for study of leakage effects, entrance effects, variations in shear or
viscosity of the blood and the study of pulsatile flow development, The
governing equations are solved numerically using the method of character-
istics where the flow situation is constructed by tracing one wavelet as
1t propagates in the time and space planes, This model predicts that
wave velocity decreases with increasing pressure which contradicts
experimental observations. Nevertheless, the model does predict flow
quantities over short segments of the arterial tree Eﬂ.

Analog computer solutions to blood flow models generally use the
one~dimensional equations. Use of the analog computer facilitates
input of recorded pressure gradients and allows the blood viscosity to
change such that it remains proportional to the average velocity.

Analog solutions compare favorably with Womersley's modified model for
wave reflections., The analog model produces relations for changes in

instantaneous pressure and velocity and ylelds flow and pressure



waveforms similar to those observed experimentally Eﬂ.

Mathematical modeling of the cardiovascular system has been done
only for the arterial side. Difficulties involved in modeling the
venous system include the elliptical shape of the veins, their tendency
to collapse intermittently, and the unsteady nature of the blood flow
driven by the skeletal muscles and abdominal muscle pump. Modeling of
the arterial system has been limited to the artery and capillary levels.,
The arterioles, which contribute the largest portion of resistance in
the system and damp out the pulsations caused by the heart Cﬂ, have
been almost entirely neglected. The behavior of the blood is markedly
non-Newtonian at this level and thus far best described as a Bingham
plastic [6]. Description of leakage from the arterial tree has been
limited to continuous functions while in reality the leakage occurs
at discrete locations over regular intervals,

Review of the literature 1llustrates a need for a blood flow
model based on the two~dimensional, nonlinear, unsteady governing
equations, The solutions would provide a standard for comparing the
linearized and the one-dimensional models presently appearing in the

literature,

C. Approach and Goal

In the past, the cardiovascular system was studied in order to
increase understanding of the physiological processes taking place,
Increased understanding led to improved treatments and new diagnostic
techniques. The fluid mechanical behavior of the cardiovascular

system is being studied to better understand '"the control mechanisms



responsible for maintaining and regulating blood flow" [2]., The
physiology and fluid mechanics are coupled such that changes in the
fluid mechanical variables or parameters could be used as diagnostic
indicators of changing health, In recent years, the development of
more capable digital computers and non-invaéive flow and pressure
measurement devices is making it possible to study the human circu-
lation under almost natural conditions without the anesthetics or
trauma related to surgery. Further improvements are necessary in
both instrumentation and mathematical modeling of the cardiovascular
system before the models can be used as reliable diagnostic tools,

The present study is a direct extension of Anliker's work to
two space variables, A blood flow model is derived based on the
unsteady, axisymmetric, nonlinear partial differential equations for
pulsatile flow in a flexible tube. The working fluid, blood, is
assumed to be viscous, incompressible and homogeneous flowing in
laminar fashion, The vessel is assumed circular in cross section
and tapering with increasing distance from the heart.

The purpose of this study 1is to solve a simplified version of
the governing equations in order to demonstrate an approach to solving
the equations for a general blood flow situation. The simplified
version is solved numerically using the central finite difference
form of the governing equations and the Alternating Direction-~
Implicit method.

The results obtained from this study stem from two sources:

a) test case proarams of only the stream *unction equation or the

vorticity equation, b) a combined program in which both the stream



function and the vorticity equations are integrated, The first
category of results is from cases in which the initial conditions
for both the stream function and the vorticity are zero and
Poiseuille flow is imposed at the proximal end of the vessel,
Results from both sources show that the stream function and vor-
ticity converge to the exact solution so that the effect of the
initial conditions is damped out and does not alter the steady
state solution. The second category of results is from cases in
which the initial conditions are chosen indentical to the anticipated
steady state solution and pulsating Poiseullle flow is introduced
into the nonlinear coefficients of the vorticity equation, The
results demonstrate the effect of the pulsating input only in the

vorticity solution,



II, GOVERNING EQUATIONS

A, Physical Model

Information and auxiliary relations must be introduced to justify
the assumptions made in deriving a mathematical model for the cardio-
vascular system. Human blood is a suspension of red blood cells, white
blood cells, platelets, hormones, ions, nutrients and proteins in a
fluid plasma. The blood is chemically about eighty percent water Bﬂ
which allows the assumption of incompressibility to be valid. A
healthy human being has a hemotocrit of forty-five percent [}], meaning
that blood cells occupy forty-five percent of his total blocd volume.
Such a large percentage of particles in suspension affects the behavior
of the fluid, However, at the arterial level the ratio of character-
istic dimensions of the blood vessel diameter to a red blood cell is
about three thousand to one (3,000:1), This ratio is large enough to
permit the blood to be considered homogeneous and allow the assumption
that it behaves as a Newtonian fluld with an apparent viscosity several
times higher than the viscosity of the plasma alone, Womersley and
Anliker have verified these assumptions by favorable comparison of
their models with experimental data.

The arteries are distensible elastic vessels that taper geometri-
cally and change their elastlic properties with increasing distance from
the heart., The vessels are constrained longitudinally but upon
chemical or nervous stimulus become free to expand radially to accom~

modate changes in relative volume uv to four times normal cavacity ﬁﬂ.



The model proposed by Anliker assumes the blood to be viscous and
incompressible and the vessel as a circular, tapering elastic tube,
Viscosity effects are modeled by algebraic friction expressions for
laminar or turbulent flow but are restricted by the assumption of
quasi-steady flow. Branching of the arteries and the consequent
leakage, or mean normal outflow at each discrete branch, is modeled by
continuous, distributed functions above and below the femoral artery,
Any local area changes are expressed as exponential functions depend-~
ing on pressure and distance from the heart.

Anliker's approach to quantifying the physical properties of the
vessel is new in that the properties are introduced directly through
the wave speed, The information that wave speed is a linear function
with respect to pressure is attributed to M, B, Histrand [2] and that
it is a linear function with respect to distance from the heart is

attributed to D. A, McDonald [2]. The wave speed expression is then

given by [2]

c=(c, +c,p) (L+ny) . 2.1

Since Anliker's model is one-dimensional, the pressure in Equation
2.1 1s a spatial average pressure at a particular cross section. Thus,
in a two-dimensional analysis the pressure in the wave speed expression

is modified to be the mean pressure given by

R
sz ZLPY‘AI" ' 22
RZ



The blood vessel is free to expand and contract radially upon
stimulus, The axial range of an expansion or contraction in a vessel
is termed the transition region and is illustrated in Figure 1.
Because of the change in cross sectional area across the transition
region and the necessity of maintaining a particular volume flow
rate, the pressure and wave speed must also undergo related changes
across the transition region. For slight changes in area over long
distances, the wave speed changes only perceptibly. But large changes
in area over short distances cause the wave speed to change considerably.
Proper incorporation of an exponential function into Equation 2.1
yields the changes experienced over a transition region and is given

as

C:(Co‘*CnP)(l*nX) 23

l__£ﬁ+wm )

where b and m are arbitrary constants used to adjust the extent of

the transition region,
Anliker developed two relations for wave speed; one was Equation
2.1 which arose from experimental observations and the other came from

his analysis by the method of characteristics given as Bﬂ

e S 2.4
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Figure 1. Illustration of distensible vessel and related quantities
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He combined Equations 2,1 and 2,4, then integrated the resulting
differential equation to produce an equation for the local changes
in cross sectional area in terms of pressure, wave speed and distance

from the heart, The equation is (2]

o g+ 2=
S=mR*=wR, 2[ pr.= f"”c‘] . 25

where p, and Ro are constants at x = 0, Figure 1 illustrates the

quantities used in Eguation 2.5.

B, Mathematical Model

The mathematical model is derived on the basis of the relations
just introduced for the behavior of the blood and for the geometric
changes occuring in the blood vessel. Fluid flow is considered
axisymmetric, laminar and periodic in time with the blood modeled as
a Newtonian, incompressible fluid, The blood vessel is assumed to be
a distensible, circular cylinder tapering with increasing distance
from the heart. Figure 2 illustrates a schematic of the blood vessel
with the coordinate system and related quantities used in deriving

the governing equations.

Expressed in cylindrical coordinates, the continuity equation 1is

W Ww,u=0 26
d)(+()r+\" )



Fiqure 2. Tllustration of coordingte systems and variables
'9 .

<t



13

and the momentum equations are

and

Boundary conditions for the flow situation depicted in Figure 1

and 2 are the following:

a) at the center of the vessel where r = 0,

(&):0
ot
v =0 29
(QP.) =0
or
b) at the vessel wall where r = R,
U = O
4R v
U = 2<
1t ' Gose 210
B = tan (IR
* (()x)

c) at the proximal end of the vessel where x = 0,

w- 9%,
v =

P

where q, is periodic in time,

YAl
unknown

H
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d) at the distal end of the vessel where x = L,

 _ =0
o 2
p = constant

The problem as posed thus far involves two strongly coupled, second
order, nonlinear partial differential equations. Conditions at the
boundaries are somewhat less than ideal sinces a) pressure is
unknown at the proximal end, b) radial fluid veloeity at the wall
depends on elastic wall properties and on wall displacement changes
with respect to time, ¢) the inside radius of the vessel is not
known precisely because of the changes in the thickness of the
wall as the vessel expands and contracts.

In order to simplify analysis of the problem it is reformulated
in terms of the stream function and vorticity., The stream function

is defined by

W

|

u= T: br 2.‘3

oo oL W 214
Y X )

and the vorticity is given as

_ U duw
W_W_F. 215
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These substitutions for the components of velocity completely satisfy
the continuity equation leaving the momentum equations in terms of

vorticity and the stream functlon unsolved. The system of governing

equations is reduced to

VY= —wr 2.16
and
rm...ﬂ.b_‘;l!_b_w.yﬂ.&:
3t ar M X Ar voox
217
Dr w1 w o w o, Y.
¥ ror 2 ax?
Boundary conditions on this system are the followings
a)atr=0,
Y=0
218
w=0
b) at r = R,
(éi’ =0
r
£
Y = Qe —j Rudx 2.19
2w 4]
U= R + Vs
c)at x = 0, ot coso
Y. rg
ZTTQ;I 220
w=0
d) at x = L,
Us = 2.2
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Noting the conditions imposed on the radial velocity component,

Equation 2,14 leads to the condition that

Consequently, flow near the distal end of the vessel approaches
Poiseuille flow., If the radius is allowed to become a constant
function of the axial coordinate beyond the point x = L, Poiseuille
flow occurs a short distance away at x = L + L,, Allowing L2 =0
and placing the Poiseuille solution at x = L requires use of the
condition that

(M) _ 0. 223
X /LR

Figure 3 illustrates the loeation of quantities used to specialize
boundary conditions in the vessel,

The last major step in deriving the governing equations involves
redefining the coordinates, the stream function and the vorticity in

terms of non-~dimensional quantities, The transformed variables are

)

n= 1_
; )

z = X i 224
R _23
U 3: -E-LU'

ct

T— = -?zj;



—

L. "']

R= Ry I R= constant

Figure 3. Distal end of vessel
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where Un and Rm are the mean velocity and mean radius, The dimension-
less vorticity is g and the dimensionless stream function is f, with

R being the local radius of the vessel and F a parameter depending

on the nature of the flow, The dimensionless coordinates are n, 2z

and T, These substitutions into the governing equations result in
considerable expansion containing terms that allow for changes in

wa?e speed, vessel diameter and local outflow., The purpose in deriv-
ing the transformed equations is to funnel these changes into the
nonlinear coefficients of the governing equations., As a result, this
leaves the boundary conditions normalized to constants, The transformed

equation for the stream function is
[lenR]E, s i+n{2Rx<sz~0£
z 5
2 2
v 2R, -RR“]FN 1G-3R,) R
F-
(2R - 2 RRu- 2R [F - [2nR, (1-2R [,
F—
+(Z (1+2Rx)1fi . 2z2R, -EQQ,,(—ZR,‘] &
F

2
X

+ [l-ER] -tiz = nS, 215
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The transformed equation for vorticity is

o +[_r11_ + 8nR{ -n R\Zxx—nRQ‘% +nRR.RE

FRERE + FRE{(- -2Re
' * EREf(1-2Rfa + ( zR)EF;F

nR g, 1, +OR-RIE, , SRR

-I1ZR} - (22R/ -2RR - 2R JF, -R(1-2RIF,
F F

- W_E? FT +3R;$n

;RE%%{Bn& +hne R F 5

F Fz ®
-(I—ZR,()_F_'?_IH - (I"inH:z - U"‘ZR;()F;_‘ _'E_
F h F N

+Qx¥nﬂ% + [QEEJHT - [nRRx:l Gnz * [Zz IZ,:'

'ilz[zxx ‘22;(1"2(!"1:27()_1:2 —éQx(‘“Z'R*) + Z-.QQTRE_
S

__g _\z_ng (\—QRQF,J 9, +[R(\-22Q] 9,, = O. 2.26
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The boundary conditions for this system of equations are:

@) atn=0, PO =0 227
(20 =0 228
b) at n =1,
£ =] 229
A
ot = 2.30
(5” Z.l
c) at z = 0, .
flo,n) = Zn*-n 23]
g(O,n) = -8n
d)atz =1,
(b.f) = 0
02/, 2.32

0

"

n
) LN

Derivation of the mathematical model including both the nonlinear and

2
(61
two-dimensional characteristics of blood flowing in a distensible
vessel is complete, It is emphasized that numerical results obtained
from this study do not include the many details contributed by other
authors but merely show that meaningful results are obtainable from

a more generalized model than is currently appearing in the literature.

C. Simplified Model

Poiseuille flow in a rigid tube is a simplified version of the
governing equations derived thus far. The techniques used in solving
the system of governing differential equations is tested on this

simple application since the numerics should not be much worse for
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the general case 1n which all the secondary changes appear only in the
nonlinear coefficients, For Poiseuille flow, the radius R is a
constant in time and space and the parameter F is a constant for
steady flow or contains a cosine function in the unsteady case, The

simplified steady state version of the vorticity equation is

Snn + [,’%-\- Br_“i&]gh - [—‘!-\-1 + %Qz] 3
T [Saz ~KE£,9s - REgJ =0, 233

and the stream function is reduced to
- | —_
-Phl'l _rT'Pn + "FZ_Z = r\a . 2.34

Fquation 2,34 can be made artificially parabolic by introducing a

derivative with respect to time as

fon ‘—,lq“Pn +tag -7

T

= Ha. 235

The derivative with respect to time is used as a relaxation varameter
since as time increases, the derivative tends toward zero, This
derivative with respect to time has no relation to real time but is

merely used as an iteration toel in the numerical solution.
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The solutions for Poiseuille flow are

+ 2 Zntont | 236

and
9:-—8” . 2.37

The Alternating Direction~-Implicit numerical method is applied to

the simplified form of the governing equations,



IITI, NUMERICAL SOLUTION

A, Choice of Numeriecal Method

The governing partial differential equations for blood flow in
large arteries, Equations 2.25 and 2.26, are written in terms of the
dimensionless stream function and the dimensionless vorticity. The
differential equation for vortieity is parabolic with respect to time
and elliptic with respect to space while the differential equation
for the stream function is elliptic with respect to space. A choice
between the explicit and implicit numerical methods depends upon the
form in which the time dependent term is written in the finite dif-
ference equation, For this study the implicit method is used since
convergence and stability of the solution is insured [9]. In addi-
tion, the implicit method allows greater freedom in the choice of
time and spatial step sizes tut requires more complex calculations
at each time step.

Consider the general form of a simple parabolic differential

equation written explicitly in one direction as

X éf' + K’ F o+ K 3 =0. 3.
an oT

& F
dnt
The central finite difference form of Equation 3.1 is

K-f" K+| K+?
- ZF F ‘K-H

(An) 240

23
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XZ Fj\(-rl N X3 _ F-K-H._ F K O 32

where the j subscript refers to spatial increments in the n direction
and the k superscript refers to time increments. Collecting terms

with like j subscripts and like k supercripts gives

N T " zs-_z,__u__]p“*'
[(Aﬂ)z 2\ ] 3= [ 2 (An)z. AT J

33

l 5 FKH x F K
+ -+ ! it = T 0y 7 ~J_ .
[(An)1 Zan AT

In this manner a single differential equation is shown to contain the
solution at the forward (k + 1) time step and yields equation of the
form

K41 K+t

+BFY 4 CF, =CDF | 34

-\ J J J

A,

Given the grid of points M x M as shown in Figure 4, the left
hand side of Equation 3,4 is limited to three stations at the forward
time step while the right hand side is a known value from the previous
time step., Writing out Equation 3.4 at each station results in a set

of M~2 linear algebraic equations during each time step., These
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Figure 4. Tllustration of grid MxM
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equations form a tridiagonal matrix of coefficients whose terms appear
only above the main diagonal, Each boundary point on the grid is
defined by the boundary conditlions leaving a system of M-2 equations

and M-2 unknowns to be solved at each time step,

B, Alternating Direction-Implicit Method

The governing partial differential equations for vorticity and
the stream function are parabolic with respect to time or may be made
artifiecially parabolic for relaxation purposes, Both Equations 2,33
and 2,34 contain derivatives with respect to the axial and the radial
coordinates, Numerical solution of this set of equations is accom-
plished by operation on each separate equation with the Alternating
Direction-Implicit (ADI) method.

The ADI method uses a differential equation twice during any
full time step. The general form of a parabolic partial differential

equation is

X| %EL+XL%+Y33—E +X4%—F; +KS%§-_ + K‘,F +X7:D. 35

Since the ADI method is designed tc integrate in one direction at a

time, Equation 3.5 must be rewritten for the first one-half time step

as

2
_§T1E1+Q(AE+°<2F +°‘5‘%:‘E:O, 36
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and for the second one-half time step as

%;E; "’5'??5 + B F + B, - A_ = 0. 3.7

For the first one-half time step the difference equation is
written in the normal direction by combining derivatives with respect
to the axial coordinate and time in the f term and remainder term,
Writing out Equation 3.6 in finite difference form and combining like
J subscripted terms and like k superscripted terms results in an
equation of the form

AF: i+ BEY 4 CEY = cDX 38

J+| J )

as previously discussed in Equation 3.4, The coefficients of
Equation 3.8 are given by Equation 3.3. These coefficients are
computed at each station and form the tridiagonal matrix mentioned
earlier, The solution of this set of linear algebraic equations

is valid at the one-half time step. This solution is then used as
an input for the second one~half time step in which the differential
equation is written in the axial direction, Coefficients of Equation
3.8 are again computed at each station resulting in a second tri-
diagonal matrix, The solution of the second set of linear algebraic
equations is valid at the full time step. In this manner, each of
the two-dimensional parabolic governing differential equations is

integrated in one direction during the first one-half time step, then
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integrated in the other direction during the second one-half time

step.

The difference equations used in the computer programs are

written in the central difference form for the first and second

rartial derivatives with respect to space and in the implicit form

for the derivative with respect to time as followss

A

e,

z

>
-

02t

OF
dnr

SF
3T

T

F;'.u,& - F’c-ud'
202 ’

Py 2R+ 39
@=* ’

F_i,\',+| - FC,;—\
Zan !

"—L,Jn —ZF’-‘,“J' + r.;“',-t

(anyz g
F‘K+|_FK

AT

The i subscript refers to spatial increments in the z direction, the

j subscript refers to spatial increments in the n direction and the

k superscript refers to increments in time,

Since the present study

involves solving two coupled, second order par-ial differential
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equations, the ADI method is used on each one separately in such a

manner that the set of governing equations is solved iteratively,

C. MNumerical Scheme

The computer program was written in Fortran IV language for use
on the IBM 360 computer., A general outline of the steps used in
solving the governing equations is the following. The equation for
vorticity, Equation 2.33, is first integrated in the normal direction
during a real one-half time step and then the stream function, Equation
2435, is integrated in both directions. Since Equation 2,35 is
artificially parabolic, the time term is used as a relaxation para-
meter, The program iterates on the stream function iﬁtegrations in
order to satisfy the boundary condition at the wall given in Equation
2,29, The vorticity equation is then integrated in the axial direc-
tion during a second real one-half time step and the program
iterates on the stream function integrations once again, Time is
incremented and the entire process is repeated for the next time
step.

A flow chart of the entire numerical scheme is shown in Figure 5,
In greater detail, the program operates in sections of which the
bookkeeping portion first reads in data, defines constants and step
sizes and sets up the grid used in the numerical calculations, Next,
the stream function and vorticity matrices are initialized to some
known condition., Since the vorticity depends on changes in the stream

function the problem solution is carried out with the following scheme,
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Recall that the boundary conditions at the wall, Eguations 2,29
and 2,30, completely define the stream function but leave the vorticity

unspecified, The boundary condition at the wall for the vorticity is
defined by separating the vorticity into two parts, This separation
can be accomplished because Equation 2.33 is a linearized form of the
general case, The vorticity is separated into a homogeneous and a

particular part and then integrated in the normal direction using the

following equations and boundary conditions, Let

9 - A 9“0m°geneows + 9?5,-1"@[3,. N 310

where A is a constant at each station., Then the homogeneous part of

the vorticity is 8y which satisfies the equation

%3#2 + %%3: + X2 9w =0 , 3.

where
gu (@ =0, 312
qu) =1, 313

and the particular part is 8p which satisfies

2
Vo e s ogg veg=0 g

where
gp0) = 0O, 3.15

(3;>()\ = 0. 316
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The condition along the axis is completely satisfied by Equations 3,12

and 3,15 while the condition at the wall becomes

9(|)=A 317

5

from Equations 3,13 and 3.16, The numerical solution of the homogeneous
and particular parts of the vorticity are used as inputs to the stream
function integrations,

The stream function, Equation 2,34, is also a linear form of the
general case and can be separated into two particular parts and inte-
grated in the normal direction using the following equations and

boundary conditions, Let
4)= lxil '+-pz ) 3]8

where A is the same constant used in Equation 3,10, Then the first

particular part of the stream function is f1 which satisfies

Vi, , = 319
R T

wher
= (0} =0, 3.20

(%)n:' =0. 3.2

The second particular part is f2 which satisfies

é):f‘_zzJ, q‘%&a 4o b, = Nge 322



where j_‘z ( O) =0 1 323
(&) -0. | 324
dn/n=t

The boundary condition at the axis is completely satisfied by

Equations 3.20 and 3.23. The boundary condition at the wall is

PN = ARG +5,EN =1 315

also given by Equation 2,29, This condition is satisfied at each

station along the wall by computing the value of A as

A -1- KGN 326
f @)

Calculation of the constant A allows for complete definition of the
total vorticity and the total stream function from Equations 3,10
and 3,18, The stream function is then integrated in the axial direc-

tion using the equation

ﬁ i{ o P ye-ng =0 327
PO r O 37" ’

and the boundary conditions

£(0) = AL (0) + £ (0) ) 328
(Af> = 0. 3.2
32 /2=
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The value of A at each station is the boundary condition for the
vorticity at the wall as given in Equation 3.17 and alsoc for the stream
function as given in Equation 3.,25. Thus the boundary condition for

vorticity at the wall may be written as

qle.) = {-HGEY _ ap . 330
NER

Since a partial derivative with respect to time was included in the
stream function, Equation 2,35, 1t is used as a relaxation parameter,
The program iterates on the stream function integrations in both
coordinate directlons until the f1 and f2 matrices converge., During
each iteration the value of A(z) is calculated at each station and
compared to that of the previous iteration, The iterations halt
after A(z) reaches a preset level of accuracy. Upon completion of
the iterations, the matrices for the vorticity and the stream
functions are valid at the one-half time step.

The vorticity equation is then integrated in the axial direction

inputting the matrices from the one-half time step and using the

following equation

2
_63% +oa’%§_ +hq t oy =0, 33l

and the boundary conditions
3(0) = any desired in Fu+1 332

((%%)iﬂ =0. | 32



35

Solution of Equation 3,31 results in a matrix of the vorticity

valid at the full time step.

The stream functlion is then integrated in the normal direction
inputting matrices from Equations 3,31 and 3.27 and using the

equation

Ve ﬁ,cgéf + x, ¥ + - nq =0, 334
anz dn

and the boundary conditions

f©) =0 335

(5_4:) =0. 336
ah n=t

The numerical solutions to Equations 3.31 and 3,34 are then used as
the input for the integration of the stream function in the axial

direction. The egquation and boundary conditions used in the axial

integration are

bzg + Q‘A‘E + °<)_«Q + 0(3 “\'\% =0 ) 337

—

d 22 o2

and the boundary conditions

£() = dny desired input 3.38

(_A_{?) = O. 339
oz 2 =)
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Since the updated vorticity matrix is used as an input in solving
Equation 3,34 and 3.37, the stream function is also updated by
iteration on the integrations in both cocordinate directions until
convergence is reached, Upon completion of this loop the matrices

for vorticity and the stream function are valid at the full time step.
The program increments time and the process is repeated for a finite
number of time steps until the vorticity matrix converges to the exact

solution at a preset level of accuracy,



IV, RESULTS AND CONCLUSIONS

The main result of this study is a blood flow model based on the
two-dimensional, nonlinear, unsteady Navier-Stokes equations, The
model allows for variations in wave speed, changes in vessel diameter
and local outflow. A simplified version of this general model 1s used
to test the numerical scheme, since the general equations contain
secondary conditions only in the nonlinear coefficients,

NMumerical results obtained from this study stem from two sources:
a) test case programs of only the stream function equation or vorticity
equation and b) a combined program in which both the stream function
and vorticity are integrated, The first category of results are cases
in which the initial condittons for the stream function and vorticity
are zero and Poiseuille flow is imposed at the proximal emd of the
vessel,

Figure 6 illustrates results from the vorticity test program with
zero initial conditions using nondimensional time steps of 0,16 and a
Reynolds number of 100, 1In solving the vorticity equation, the matrix
illustrates a tendency to oscillate about the correct solution, In
this steady state case, a simple arithmetic average of the matrix at
the previous time step with the matrix at the forward time step allows
quick convergence by smoothing out the oscillations, The solution
converges rapldly near the axls with the rate of convergence decreas-
ing as it approaches the vessel wall, The graphs of the three selected
points in the matrix converge to the exact solution,

Figure 7 illustrates results from the stream function test pro-

gram with zero initial conditions using nondimensional time steps of

»
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0.16 and a Reynolds mumber of 100, Again the solution converges very
rapidly near the axis with the rate of convergence decreasing as it
approaches the wall, Graphs of the three selected points converge to
within 2.4 percent of the exact solution,.

Figures 8 and 9 illustrate results from the combined program with
both the stream function and the vorticity initialized to zero,
Poiseuille flow is imposed at the proximal end of the vessel with non-
- dimensional time steps of 0,16 and a Reynolds number of 100, The
vorticity matrix is averaged as described previously. The values of
A(z) exhibit oscillations due to changes in the f, matrix. A simple
arithmetic average of the f2 matrix at the previous and’foruard itera-~
tion steps removes the oscillations in A(z) and allows quicker conver=-
gence, Figure 8 shows that the vorticity converges to the exact
solution very quickly at points near the axis similar to results of
the test case, The solution near the wall converges less rapidly to
within five percent accuracy. Figure 9 shows the stream function for
the first loop of iterations during the first time step, Iterations
at subsequent time steps exhibit even faster convergence. The three
selected points in the matrix converge to within one percent of the
exact solution,

The second category of results is from cases in which the initial
conditions are chosen identical to the anticipated steady state solu=~
tion. Pulsating Poiseuille flow is introduced into the nonlinear
coefficients of the vorticity equation with nondimensional time steps

of 0,01, a Reynolds nmumber of 100, and the product of frequency and

time equal to 0.16, Figure 10 illustrates the vorticity during the
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first quarter period. The effect of the pulsating input is seen by
comparison with the exact steady state solution. The vorticity matrix
exhibits oscillations as noted previously, but an arithmetic average
over time is not justifiable for the unsteady case., Therefore, large
oscillations in the solution occur at and near the vessel wall,

Figure 11 illustrates the stream function during the first quarter
period, The stream function matrix exhibits oscillations about the
exact steady state solution,

In conclusion, the following recommendations are made concerning
further extension of this study:s a) modifications in the numerical
scheme must be made in order to eliminate the oscillations that appear
in both the steady state and pulsating cases, b) the computer program
should be modified to accommodate backflow in order that a full period
of oscillation can be computed, c) the program could be modified to

accommodate flow profiles other than Poiseuille,
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VI. APPENDIX

THE COMPUTER PROGRAM
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OO G

OO0

IMPLICIT REAL*8 {A-H, 0-Z7)

DIMENSION W(ll)aG(llrll)yGHS(llyll)vGPS(ll:ll),GOLD(llrll)v
lF(11,11),Fl(11,11)yF2(111i1),FS(11,11),ANEW(II).GS(11,11),

<cF20LD(11,11)
COMMON/PECS/21(11),A2(11),43(11)

¥x%FFF BOOK KEFPING ks

READ(54110) DTAUsDTAF,REHIENC,JEND
110 FORMAT(3F1044,5Xy214)

DTIME=DTAU/2.D0

DTIMF=DTAF/2.00

GRIDX=IEND-1

DELX=1.00C/GRIDX

GRIDY=JEND-1

DELY=1.CDC/GRIDY

K=JEND-1

K2=JEND-2

L=1END-1

L2=IEND-2

TIME = 0.tDO

OGMEGAT=0.L0

DOMGAT=0.160C

WRITE(€,119)

115 FBRMAT(/8X,4HDTAU,4X,4HUTAF,QX,ZHRE,6X,%HDELX,4X94HDELY74X,4HIENﬁ,

12Xy 4HJEND 92Xy 6GHDOMGAT)
WRITE(65120) DTAUSDTAFsRESDELXyDELY 2 1END
120 FURMAT(5Xy5F84392X91492X914,F842/)
*%x%k%k INITIALIZE THE F AND © MATRICES xkix

DO 129 J=1,JEND

s JEND, DOMGAT




DO 129 1I=1,1END

YJ=J-1

G(Iy4J)=—8.D0%YJ*DELY
F(l,J)=(2.DG*((YJ$DELY)**2))—((YJ*DELY)**é)
FZ2{I,4)=F(1,4)

F20LD(I,J)=F(1,J)

129 CONTINUE

Fok k%

133

1

141

131

132
233

* INTEGRATE G IN THE N DIRECTICN TO GET GHS(IyJ) AND GPS{IyJ) ks

GOLDC==7.2DC

DG 1 I=1,1ICND

DO 1 J=14JEND

GOLDA(I4J)=G({1,J)

ACLD=(.00

DO 132 I=2,1

DO 141 J=2,K

YJ=J~-1

WlJ)=G(1,J)
Al(J)=(1.CO/(YJ*DELY)’+((QE/(YJ*DELY))*((F(I+19J)*F(I‘le))/
1(2.D0%DELX)))*DCUS{CGMEGAT)
AZ(J)='((1‘DO/((YJ*DELY)**Z))+(RE/DTIME)+((RE/((YJ*DELY)**Z))*
1((F(I+1,J)°F(I—11J))/(Z.EO*UELX)))*DCQS(UMEGAT)—(RE*DTAN(CMEGAT)))
A3{J)=C.DC

01=0.,0D0C

E1=0.0D0

WEND=1.00

CALL PEQSC(W:DI1ElyHEND,ﬁELY,GELX,DTIME,K,JEND)

DO 132 J=1,JEND

GHS(I,d)=W(J)

CONTINUE

DO 232 I=2,L

6%




DG 241 J=2,K
YJ=J-1
W{J)=G(I,J)
Al(J)=(1-DO/(YJ*DELY))+((RE/(YJ*DELY))*((F(I+1,J)~F(I~1:J))/
1(2.DO*DELX) ) )*DCOS{OMEGAT)
A2(J)=—((1.EGI((YJ*GELY)**Z))+(RE/DTIM£)+((RE/((YJ*DELY)**Z))*
1((F(I+1,J)-F(I*l:J))/(Z.DO*DELX)))*DCBS(GMEGAT)—(RE*DTAN(OMEGAT)))
241 AB(J)=((G(I+17J)—2.DO*G(I,J)+G(I~19J))/(DELX*DELX))—((RE/(YJ*
lDELY))*((F(I9J+1)-F(I:J—l))/(Z.GO*DELY))*((G(I+1aJ)—G(I-l'J))/
Z(Z.DO*EELX)))*DCOS(DMEGAT)+(RE*H(J)/DTINE)
D1=0.060¢
E1=0.0C0
WEND=0.0D0
231 CALL PEQSC(NyDIrEl,HEND,DELY,DELX,DTIME,K,JEND)
B0 232 J=1,JEND
GPS(I,Jd)=W(J)
232 CONTINUE

¥Huxk INTEGRATE F IN THE N DIRECTION TC GET F1{I,J) AND F2(I,J) ##kss

ITNG=0
33 DO 32 I=2,L
DO 41 J=2,K
M=JEND-J+1
YJ=M-1
W(J)=F(I,M)
Al(J)=+1.00/(YJIJ*DELY)
A2(J)=-1.0D0/DTIMF
41 A3(J)=—({YI*DELY)*GHS(I,M))
A=((AI(Z)*DTIMF)/(2.0DO*DELY))—(GTIMF/(DELY*DELY))
B=((Z.DU*DTIMF)/(DELY*DELY))-(AZ(Z)*DTIMF)
C=-((DTIMF/(DELY*DELY))+((Al(2)*DTIMF)/(2.DO*DtLY)))

0s




31

32
333

16

341

331

CO=(A3(2))*CTIMF
DERIV=0.D0

D1=(B+4.0C*C)/(3.D0%C~-A)
E1=(CE+2.CG*DELY*C*DERIV)/(A*B.DO*C)

WEND=0.0DC

CALL PEQSG(R,DI,E1,kEND,EELY:DELX,DTIMFyKyJEND)
DO 32 J=1,JEND

M=JEND-J+1

F1(I,J)=6(M)

CONTINUE

DO 16 I=1,1END

CO 16 J=1,4JEND

F20LD(IJ)=F2(1,4)

0O 332 I=241L

0O 341 J=2,K

M=JEND-J+1

YJ=M-1

WlJ)=F(1,M)

Al(J)=+1.D0/(YJ*DELY)

A2(J)=-1.CDC/DTIMF
ﬂ3(J)=(W(J)/DTIMF)+((F(I-lyMJ-Z.DO*F(IyM)+F(I+11M))/(DELX*DELX))
1-((YJ*DELY)*GPS({I,M))
A=((AI(Z)*DTIMF)/(Z.ODO*EELY))-(DTIMF/(DELY*DELY))
B=((Z.DG*DTIMF)/(DELY*DELY))—(AZ(Z)*DTIMF)
C=~((DTIMF/(DELY*DELY))+I(Al(Z)*DTIMF)/(Z.DO*D&LY)))
CO={A3(2))*DTIMF

DERIV=0.D0

D1=(B+4.00%C)/(3.D0*C~-A)
E1=(CD+2.DD*DELY*C*DERIV)/(A—B.DD*C)

WEND=0.0DO

CALL PEQSD(H,DI,El,WEND,BELY,DELX,DTIMF,KyJEND)
DO 332 J=1,JEND

159




C
c
C

C
C
C

leEaKe]

=JEND-J+1
F2(19J)=Ce5D0*W(M) + O« 5DO¥F2CLE(144)
332 COUNTINUFE

¥xhkx EVALUATE A #oksokdk

DG 335 I=2,4L
335 ANEW(I)=(1.DO-F2(IyJEND))/FI(IyJEND)
ANEWC=ANEW(10)

¥ Akx ADD MATRICES TGO DEFINE FUNCTIONS FS AND GS COMPLETELY soksok

DO 500 I=2,L
DO 500 J=1,JEND
FSUIyJ)=(ANEW(I)*FI(T4J))+F2(144)
GS(I9J)=(ANEW(I)*GHS(I4J))+GPS(1,4)
500 CONTINUE
CO 501 J=1,JEND
FS({15J)=F(1,J)
FSUIENDs J)=(4.D0%FS(LyJ)=FS(L25J))/3.00
GS(1yd)=€C(1,J)
GSUIEND3J)=(4.D0%GS{L,J)=GS(LZyJd))/3.0C
501 CONTINUE

Fx&%k INTEGRATE F IN THE Z DIRECTION TO GET FlIyJd) sk

53 DO 52 J=2,K
DO 61 I=2,1
YJ=J-1
N=TEND-I+1
WII)=FS({N,J)
Al(I)=C.0D0

49




A2{(1)=-1.CD0/DTIMF
61 A3(I)=H(I)/DTIMF+(FS(N:J-I)—Z.DO*FS(N:J)+FS(N1J+1))/(DELY*DELY)
1*(FS(N:J+1)~FS(N:J-1))/(YJ*DELY*DELY*Z.DO)*((YJ*DELY)*GS(NvJ))
A=((Al(2)*DTIMF)/(2.0DG*DELX))—(DTIMF/(DELX*DELX))
B=(Z.DG*DTIMF/(DELX*DELX))—(A2(2)*DTIMF)
C=—((DTIﬁF/(DELX*DELX))+((Al(2)*DTIMF)/(2.DG*DELX)))
CO=A3(2)*DTIMF
DERIV=0.D00
D1={(B+4.0C*C)/(3.D0%C-A)
E1=(CO+2.CO*DELX*C*DERIV)/(A-3.D0%C)
NEND=((2.D0*((YJ*DELY)**2))-((YJ*DELY)**4))
51 CALL PEQSC(H,DI,EI,HEND,DELX'DELYyDTIMFvaIEND)
DO 52 I=1,1END
N=IEND-I+1
FUIyJ)=W(N)
52 CONTINUE
DO 55 I=2,1END
FUIy1)=FS(1I,41)
FLI2JEND)=FS({I4JEND)
55 CONTINUE
c
Cw#xxx%x CHECK COUNVERGENCE AT THE HALF TIMe STEP #Hkxxkxk
C
ANEWB=CABS(ANEWC)
IF{ANEWB.LE.0.01D0O) GO TO 7%
CNVGL=DABS((ANEWC—ACLD)/ANEWC)
AOLD=ANEWC
ITNO=TITNO+1
IF{CNVG1-0.01D0) 821,821,333
79 AOLD=ANEWC
ITNC=ITNO+1
821 ITNU=¢C

119




TIME=TIME+DTIME
WRITE(649337) (ANEW(I),I=2,L1)

337 FORMAT(/1XyTHANEW IS45X,SD11.3/)
WRITE(6,813) CNVG1

€13 FORMAT(5X,8HCNVGL = ,D11.3)

Fx¥xE INTEGRATE G IN THE Z DIRECTICN *kxxx

e NeNe]

453 DO 452 J=24K
YJd=J-1
DO 461 I=2,L
N=IEND-1+1
WI)=GS(N,J)
Al(I)=4((RE/(YJ*DELY))*((F(NaJ+1)~F(NyJ-1))/(Z.BO*DELY)))*
1CCOS(CMEGAT)
AZUT)==0(1.D0/( (YJ*DELY)*%2) )4+(RE /OTIME)=((RE/Z({YJ*DELY ) %%2) ) *
1((F(N+lvd)—F(N-1,J))/(Z.DO*DELX)))*DCCS(GMEGAT)—(RE*DTAN(GMEGAT)))
461 AB(I)=((GS(N1J+l)—2.DO*GS(N:J)+GS(N,J—1))/(DELY*DELY))+
1(RE*H(I)IETIME)+((I.DOI(YJ*DELY))~((RE/(YJ*DELY))*((F(N+1,J)*
ZF(N—le))/(Z.DO*DELX)))*DCGS(GMEGAT))*((GS(N,J+1)-GS(N,J—1))
3/(2.D0%DELY))
A=((Al(?)*DTIﬁE)/(Z.ODG*DELX))—(DTIME/(DELX*DELX))
8=((Z.DO*ETIME)/(DELX*DELX))—(AZ(Z)*DTIME)
C=—((9TIME/(DELX*DELX))+((Al(ZI*DTIME)/(Z.DU*DELX)))
COD=(A3(2) )*CTIME
DERIV=C.DO
D1=(B+4.,00%C)/(3.D0%C—A)
E1={iD42.,CO*DELX*C*DERIV)/(A-3.00%C)
WEND=-8,DC*YJ*DELY
451 CALL PEQSC(W,Dl;ElsWEND,DELXyGELY,DTIMEyLoIENG)
DO 452 I=1,1END
N=1END-I+1




e NeoNe

452

460

6381

814

815

FAkg

633

641

G(IyJ)=w(N)
CONTINUE

DO 460 I=1,1END

GlIy1)=0.0DC

GUIyJEND)I=2.D0%G(I4K)-G(I,K2)

CONTINUE

TIME=TIME+OTIME

‘CMULT=DCCS(CMEGAT)

OMEGAT=0OMEGAT+DUOMGAT

WRITE(696E1) TIMELDMULT

FURMAT(//5Xy THTIME = 1F8.595X 9 8BHUMULT = ,D11.3/)
WRITE(64814)

FORMAT(2X347FTHIS IS THE G(IyJ) MATRIX AT THE FULL TIME STEP/)
WRITE(64815) ((G(IyJ)sI=1,1IEND)yJI=1,JEND)
FORMAT(2X,11D11.3)

**% INTEGRATE F IN N DIRECTION #xk%%

ITNO=C

FOLD=0.DO

DO &0¢ I=2,1L

DO 641 J=2,K

M=JEND=-J+1

WlJ)=F(I,M)

YJd=M—1

AL{J)=+1.D0/(YJI*DELY)

A2(J)=-1.0D0/DTIMF
A3(J)=(W(J)/DTI”F)*((F(I‘lyM)‘Z.DO*F(IvM)*F(I*l,M))/(DELX*DELX))
1-((YJ*DELY) %G (I,M))
A=((AI(Z)*ﬁTIMF)/(Z-GDO*DELY))T(ETIMF/(DELY*DELY))
ﬁ=(Z-DO*DTIMF/‘DELY*DELY))—(AZ(Z)*DTIMF’
C=—((DTIMF/(UELY*DELY))+‘(Al(Z)*01IMF)/(Z.CO*D&LY’))
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CD=(A3{2) )*DTIMF
DERIV=C.L.DGC
Cl=(B+4.00%C)/(3.D0%C~-A)
E1=(CD+2.D0%DELY*C*DERIV)/(A-3,D0%C)
WEND=0.0DO
CALL PEQSG(H,Sl,El,NEND,DELYyDELX:DTIMF,KyJEND)
CO 600 J=14JEND
M=JERND=-J+1
FS(IyJd)=W(M)
600 CONTINUE
0O 601 J=1,JEND
FS({14J)=F(1,4)
FSUIENDsJ)=(4<DOXFSILyJ)-FS(L2,d))/3.00
601 CONTINUE
C
Cx3xxs INTEGRATE FS IN THE Z DIRECTION  Zakks
C
DG 752 J=2,K
DG 761 I=1,1£ND
YJd=J-1
N=TEND-I+1
WII)=FS{N,yJ)
Al{I)=C.0DO
A2(1)==1.0DC/DTIMF
761 A3(1)=N(I)/DT!MF+(FS(N;J‘1)—2.DO*FS(N,J)+FS(N,J+1))/(DELY*UELY)
1—(FS(NQJ+1)-FS(N3J‘1))/(YJ*DELY*DELY*Z.DO)—((YJ*DELY)*G(Nrd’)
A=((A1(2)*DTIMF)/(Z.ODO*DELX))-(DTIMF/(DELX*DELX))
B=(Z.DO*DTIMF/(DELX*DELX))‘(AZ(Z)*DTIMF)
C=-((DTIHF/(DELX*DELX))+((AI(Z)*DTIMF)/(Z-DO*DELX)))
CD=A3(2)*DTIMF
DERIV=0.D0
D1=(B+4,DC*C)/{3.00%C-4)




OO

El=(CD+2.EG*DELX*C*DEQIV)/(A‘B.CG*C’
WEND=FS(1,J)
CALL PEQSQ(H,DI,ElyHENDyQELX,DELY,QTIMFyL,IEND)
DO 752 I=1,1END
N=1END-T+1
FIUI,J)=W(N)

752 CUNTINUE

HEFAK CHECK CCNVERGENCE AT THE FULL TIME STEP s##xsx

ITNO=ITNG+1
FNEW=F(10,10)
CNVF=DABS((FNEW—FCOLD)/FNEW)
FOLD=FNEW
WRITE(6913) CNVF,ITNO
13 FORMAT(/5X,7THCNVF = 1D011.348X,19HITERATIGN NUMBER = 114)
IF(CNVF.GE.C.01D0) GO TO 633
WRITE(64683)

683 FORMAT(1Xy47HTHIS IS THE FOI,J) MATRIX AT THE FULL TIMF STEPR/)

WRI Ti(ﬁ:ég‘i) ((F(I'J) 1I=1|IENE)1J=19JEAE)

684 FORMAT(2X411D11.3)
GNEW=G(10,10C)
CNVGV=DABS ( (GNEW—GGLDC)/GNEW)
GOLDC=-7.2D0
WRITE(€4,14) CNVGV

14 FORMAT(/5Xy8HCNVGY = vD11.3)

IF(OMEGAT.LE.6.28D0) GO TU 133
STGP
END
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SUBROUTINE PEQSG(H,DI,EI,%END:DELN:DELZ,DTIME,KL:IJEND)
IMPLICIT REAL*8 (A-H, C-Z)
DIMENSION W(11),40(11),E(11)
COMMON/PEGS/AL(11)9A2(11)4A3(11)
AMBDA = DTIME/(DELN*DELN)
D(1)=D1
£(l)=E1
WIKL+1)=WEND
DU 40 I=2,KL
A=((ALUI)*DTIME)/(2.0D0%DELN) )-AMBDA
B8=(2.000%AMBDA)—(A2(I)%DTIME)
C=—(AMBCA+((AL{I)*DTIME)/(2.CC*DELN)))
CD=A3(I)*CTIME
ClI)==C/{A*D(I-1)4B)

40 E(I)=(CO-A%*E(I-1))/(A%D(I-1)+8)
DO 50 I=1,KL

N=TJEND-1I

50 WIN) = DIN)*W(N+1) + E(N)
RETURN
END

8%
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PULSATILE BLOOD FLOW IN THE ARTERIES
by
Gloria Adame Bennett

(ABSTRACT)

The present study develops the unsteady, nonlinear, two-
dimensional partial differential equations for pulsatile flow in a
flexible tube. The fluid is assumed to be a Newtonian, incompressible
liquid similar to blood. The vessel is modeled as circular in cross
section and tapering with increasing distance from the heart, The
governing equations are solved numerically using a finite difference
form of the Navier-Stokes equations and the Alternating Direction
Implicit method, The purpose of this study is to solve a simplified
version of the general equations in order to demonstrate the feasi-

bility of solving this type of system numerically,
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