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SUMMARY

In this paper an attempt is made to evaluate the performance of a
few algorithms for unconstrained minimization of mnonlinear functions
that exploit sparsity of the Hessians of such functions. The evaluation
is centered around large scale, gecmetrically nenlinear problems of
structural analysis in general. In particular, the snap?through re-
sponse of finite element models of a shallow elastic arch under a concen—
trated load at the crown is considered. The sensitivity of these algori-
thms to varying degrees of refinement of these finite element models as
well as to the sparsity pattern of the Hessian of the potential surface
in question are examined. The paper concludes by making recommendations
on the choice of an algorithm based on the scale of the problem and the
degree and type of noniinearity.
I. INTRODUCTION

Nonlirear analysis of structures has been of increasing interest to
engineers by virtue of their interest in minimizing human and property
damage resulting from the catastropic failure of such structures under
crash, blast or seismic conditions. Complexities of the structural
configuration and its equally complex large deflection response in the

presence of material inelasticity make finite element modeling of such
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structures a very natural and plausible recourse.

Two distinct solution approaches exist for the prediction of the
nonlinear response of finite element models of structures: (i) the
vector approach and (ii) the scalar approach. In the former, the mathe-
matical model is derived on the basis of the principle of virtual work
and reduces to a system of nonlinear second-order differential equations
in time. In the latter approach, a scalar or a potential function
associated with the energy of the model is introduced, minimization of
which yields the desired stable equilibrium configuration.

In both approaches a temporal finite difference scheme is utilized
to effectively eliminate time as a variable. As a result, in the vector
approach the equations of motion are reduced to 2 system of nonlinear
algebraic equations in the unknown nodal parameters of the finite ele-
ment model. 1In the scalarAapproach, which is of relevance to this
paper, the problem is reduced to a well-known problem in mathematical
programming namely the unconstrained minimization of a nonlinear func;
tion of several variables.

II. THE BFGS ALGORITHM

The scalar approach has been used for nonlinear structural analysis
by several investigators [1]-[5]. Quite recently, this approach was
successfully used for analyzing the dynamic response of a finite element
model of a twin-engine, low-wing airplane section subjected to a verti-
cal impact velocity crash condition [6]. Of interest was the prediction
of the time of occurrence of the initial peak and the magnitude of the
acceleration of the oécupant inside the substructure. The finite ele-
ment model of Fig. 1 used for this analysis involved a total of 336

degrees of freedom, 105 nodes, 209 elements (including 96 membranes, 77



frame elements and 36 stringer elements). For unconstrained minimiza-
tion of the potential function the formulation used the well known
Broyden-Fletcher-Goldfarb-Shanno (BFGS) variable metric algorithm [7] _
which dispenses with the exact line search while using an inverse
Hessian update formula which, in the case of a quadratic functional,
guarantees convergence of the approximating matrix to the inverse of the
actual Hessian.

Let f(x) be the potential function, where x is the vector of gener-
alized displacements. The BFGS algorithm starts with an approximation
X4 tp_ﬁ and an approximation EO to the inverse Hessian matrix of f(zj‘at
50. BFGS has the important property that successive inverse Hessian
approximations are symmetric and positive definite if EO has these
properties. At the ith iteration, a search direction_gi is defined by

By 7~ Ei'g‘i - (1)
where Ei is the current inverse Hessian approximation and g, is the
gradient of f(x) at_ii. The next iterate is then

Eipp T Ey TRy (2)
where ti i1s chosen to decrease or ﬁinimize a certain norm of the func-
tion or its gradient. The rationale for choosing ti 1s somewhat tech-
nical and the choice of £s is a subject of active research. A good

scheme, with rigorous mathematical justification, is described in [7].

Next the inverse Hessian approximation is updated by

‘ t t t
= -5 - J5 58
H,=0 ) B (1 )t (3)_
ys y's y s
where s = x. , - x, and y = - L8 (4)

The iterative scheme is begun with the vector of the unknown gen-

eralized displacements being the null vector and the inverse Hessian



approximation being the identity matrix. Although overall a very power-
ful algorithm, in spite of its sluggishness in the first load or time
step, its storage requirements (upper or lower half of the symmetrix
matrix requiring n(n+l)/2 storage locations) does not make it very cost-
effective with incremental techniques like the pseudo force technique
often referred to as a one step Newton-Raphson technique. For instance,
for comparable models of the aircraft substructure shown in Fig. 1 a
time and cost comparisons of the analyses on a CYBER 175 machine using
the BFGS algorithm and the pseudo force technique revealed that the BFGS
algorithm was superior to the pseudo force technique in terms of CPU
time by a factor of 2 or better while costing 227 more for every 0.01
second of response [6]. This is presumably because of higher in-core
storage requirements of the BFGS algorithm. It needs to be pointed out
however, that the pseudo force technique utilized a model with an opti-
mized bandwidth with a Cholesky decompesition scheme for solutions of
the incrementally linearized equations. The performance of the BFGS
algorithm on the other hand is insensitive to bandwidth optimization and

cannot therefore exploit this property of most finite element models.

III. ALGORITEMS FOR NONLINEAR SYSTEMS THAT EXPLOIT SPARSITY

Past experiments using minimization algorithms for structural
analysis reveal that at least for small scale problems the energy mini-
mization technique is better suited than most other incremental techmiques
for solving highly nonlinear problems [5]. Like the seéond—order mini-
mization algorithms most incremental techniques use some variants of the
Newton-Ralphscn technique, but whereas the minimization algorithns at-

tempt to optimize their move in the Quasi-Newton direction most incre-



mental techniques are usually locked into taking a full step in the
predicted Newton or Quasi-Newton directien. 4As will be appareat from
this paper a full step in the Newton direction is not always the best
strategy.

Extension of the minimization algorithms to large scale probleﬁs
centers on reducing the storage requirements of the second order Quasi-
Newton methods (BFGS, DFP [8], etc.) or improving the efficiency of the
first order conjugate gradient techniques. In the past few years the
mathematicians and computer scientists have been attacking the problem
areas which inhibit the extension of the minimization algorithms to
large scale problems. lTwo alternatives are presently available: (a)
the preconditioned conjugate gradient technique or {b) the variable
metric methods that exploit sparsity and utilize singular perturbation
theory or scaling to eliminate ill-conditioning {9]. In che present
paper we iook at some of the variable metric methods that expleit spar-
sity.

a. Schubert's Algorithm

The first attempts at exploiting sparsity in the matrix updating
process appear to have been those of Schubert [10] who proposed a modi-
fication of the Broyden's method [11] for solving sparse nonlinear

systemns of equations

F(x) = 0. {5)

The iterates are computed by

E:\'.E'i - E(_}_‘:_i)’ _ (6)
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where_§i is the current approximation to the Jacobian matrix of F(x).

Ei is updated row by row according to
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wherelgik) is the kth row of gi and ﬁi is obtained from By by setting
(k)

. . Note
i

to zero those coordinates corresponding to known zeros in B
that ﬁi is dependent on k also.

However, the method has the drawback that it cannot retain symmetry
of the resulting matrix even when starting with a symmetric, positive
definite one. Not only does this place slightly increased demands on
storage, but it also requires special sparse linear equation solvers
that can accomodate matrices that are not symmetric and positive defi-
nite. OQur experiments with Schubert's sparse update algorithm indicate
that the technique is not suitable for nonlinear problems of structural
analysis wherein the Hessians are symmetric, banded and mostly positive
definite.

b. Curtis, Powell, Reid Strategy (CPR) and Powell, Toint Strategy (PT)
Because of sparsity the full Newton method wherein the Hessian
matrix is evaluated at each iteration does appear to be a viable alter-
nate especially if sparsity and or symmetry can be exploited not only in

the solution of the resulting linear systems of equations but in the
estimation of the relatively few nonzero entries in the Hessian matrix.
Such a technique was propesed by Curtis, Powell and Reid [12} and will
be referred to as the CPR strategy. The method divides the columns qf
the Hessian into groups, so that in each group the row numbers of the
unknown elements of the column vectors are all different. After the for-
mation of the first group other groups are formed successively by apply-
ing the same strategy to columns nct included in the previous groups.

The number of such groups for banded matrices of typical finite element



models 1s usually a very small number by comparison with the number of
degrees of freedom of the model. After an initial caleculation of the
gradient vector only as many more gradient evaluations as the number of
groups are needed to evaluate all the nonzero elements of the Hessian
using one-sided finite difference approximation. Thus using forward
diffefences

gy _ &y (xthye )-g (x)

k& Bx2 hl

B (%)

where 2 is the &~th coordinate vector and hz is a suitable step size.

Each step size may be adjusted such that the greatest ratio of roundoff

ta truncation error for any column of the Heséian falls within a speci-
fied range. However, such an adjustment of the step sizes would necessi-
tate a significantly large number of gradient evaluations thereby ren-
dering the (PR strategy perhaps altogether ineffective. Hence to econo-
miza.on the number of gradient evaluations the step sizes are not allowed
to leave the range

[max(EIle, nhul)’ hu£] ‘ (10}
where £ is the greatest relative roundoff in a single operation, n is
the relative machine precision and hui is an upper bound on hg. Unfor-
tunately, the CPR strategy does not account for symmetry of the Hessian
matrix in the formation of the groups. Powell and Toint in their recent
paper [13] have proposed two new strategies which not only account for
sparsity but also symmetry in the formation of the groups thereby reduc-
ing the number of gradient evaluations for estimating the Hessian even
further. One of Ehese strategies known as the substitution method is

extremely well suited for banded matrices.



The substitution method described by Powell and Toint in [13] is
obtained by applying the CPR strategy to the lower triangular part, L of
the symmetric Hessianm, B. Corresponding to m free elements in L, m
equations (9) for the gradient components in the last row of L are
selected. Because the last rows of L and B have the same sparsity pat-
tern the last row of B is defined. The elements Bkn’ k = a-m,...n-1 of
the last column of B are defined by symmetry. Now the unknown elements
in the next to last (n-l)th rows of L and B have the same sparsity
pattern. Therefore, these elements can be calculated from the selected
equations (9) for the gradient components in the (n-1)th row of L. The
elements of B in the (n-1)th column are then found by symmetry. A
continuation of this process then enables the calculation of all the
elements of B.

Most nonlinear finite element codes which employ the full or the
modified Newton-Ralphson techmique obtain the effective stiffness matrix
(sum of [X%],[K!] and sometimes even [K*]) by an assembly of the stiff-
ness matrices of all the elements of the structure. In fact the rather
high CPU time requirement of the pseudo force technique by comparison
with that of BFGS (see footnote for Tables 1 and 2) may in part be due
to this expensive assembly process e;en after accounting for symmetry of
the stiffness matrices. Therefore, we suspect that Powell-Toint's or
for that matter even the CPR strategy of estimating the sparse Hessians
using one-sided finite difference apﬁroximation will be extremely cost-
effective by compariscn with the conventional process of assembly of the
individual element stiffness matrices especially.in structures invelving
a large number of higher order 3-D elements with material inelasticity

requiring very costly numerical integrations for evaluating the entries



of element stiffness matrices.
c. Toint's Algorithm for Sparse Systems

Toint has recently proposed an algorithm [14], [15] which finds
updating formulas for symmetric matrices that preserve known sparsity
conditions. The update is obtained by calculating the smallest correc-
tion matrix in the Frobenius norm subject to some linear constraints
which include the sparsity conditions. Precisely, let A be a given sym-
metric matrix with sparsity conditions

Aij =0, (i,j) ¢ I (1L

where I is some set of indices. The updating problem is to find a cor-

rection matrix E such that

A* = A + E, (12)
A¥" = px, (13)
A*x = y for given vectors x,y, (14)

50, (L, e1, (15)

Define the vectors x(i) by
0 (1,3) £ 1
x(1), = J _ (16)
g, (i,j) 1
and the matrix Q by
Qy = x D x@)y + =il an
Let A be the solution of the linear system (which has the same sparsity
pattern as A)
QA =y - Ax ; (18)

Then Toint proves that the correction matrix E is given by

Q,- (i,j) e 1
Eij = (19)
\_Aixj + iji’ {(i,3) ¢ 1.



In our notation, A = Ei’ the current approximation to the Hessian matrix
* = = = - = - =
of Flx) at x;, A% =By gs X = 0By X "X ¥ T gyug -8y < VEG )

- Vf(gi). ‘More details of this algorithm may be found in reference

[14].

To solve the minimization problem starting with an initial guess Xy
for the vector of unknowns and an initial guess for the Hessian EO’ a
direction of travel_gi is generated by a constrained minimization of 3z
local quadratic approximation of the potential function f{(x). The
function is then minimized along this direction by a cubic line search

to obtain a new starting peint x ., .. Next, the Hessian is updated at

i+1
this new point and the iteration is repeated. Presummably to minimize
storage requirements Toint propeses the solution of the constrained
minimization of the quadratic function by a Levenberg-Marquardt proced-
ure [15] which is similar to a conjugate gradieﬁt scheme. The updating
procedure alsc involves the solution of a sparse linear system of equa-
tions with the same sparsity pattern as the Hessian; Again, presumably

for the same reasons as before, Toint proposes the sclutiom of this

system also by a conjugate gradient scheme.

d. Proposed Quasi«Newton Algorithm using Toint's Sparse Updates

Our rather limited experiments indicate that the performance of
Toint's algorithm as descfibed in the previous section is rather dis-
appointing for large nonlinear systems. This may be brought on by three
sources: (i) the constrained minimization of the local quadratic approxi-
mation to the potential fumctienm, {(ii) the use of the conjugate gradient
scheme for the solution of sparse linear system of equations and (iii)
the use of a rather expensive cubic line search. To overcome these ap-

‘parent limitations the following remedies which have proven to be ex-

tremely effective are proposed.



It is proposed to use a Quasi-Newton algorithm similar to Broyden's
algorithm [11] which begins with an initial guess X4 for the vector x of

unknown generalized displacements and the initial Hessian approximation

B,

direction of travel 2 is then obtained by the solution of the sparse

calculated by the CPR (or PT) strategy. At the ith iteration, a new

linear system of equations

_ -1
‘Ri - -Ei .&i (20)

where_gi is the ith approximation to the Hessian matrix and_&i the
gradient vector at Xy Incidently, this is egquivalent to obtaining_p_i
by an unconstrained minimization of the quadratic approximation of tﬂé
function at x,. p, in Eq. (20) is obtaimed by a triple factorization of
the matrix‘gi using a highly optimized scheme ocutlined by Bathe and
Wilson [16] for sparse linear systems of equations.

A simple modification of Newton's method then gives

Xivl ~ Xy FOEBy (21)
where tss whose derivation may be found in reference [11], is a scalar
chosen to reduce the norm of the gradient vector and prevent divergence.
The Hessian B, . at x, . is obtained by the application of Toint's
update scheme. The ensuing sparse linear system of equations is solved
again by using the same triple factorization scheme of Bathe and Wilson.

Because of poor approximationms to the Hessian a value of ti in Eq.
(21) may be nonexistent or intolerably small in which case a Hessian is
calculated at the pOint_ﬁi by the CPR (or PT) strategy and the process
continued from there on. It is clear that because of triple factoriza-

tion the storage requirements for the Hessian are twice those of Toint's

algorithm.
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IV. NUMERICAL EXPERIMENTS WITH ALGORITHMS THAT EXPLOIT SPARSITY

For evaluating the performances of these various algorithms
consider the problem of the snap-through buckling of a shallow elastic
arch under a concentrated load at the crown as shown in Fig. 2. This
problem is regarded as being a highly nonlinear problem. Figure 2 also
illustrates the‘snap-through response predictions using energy minimiza-
tion and pseudo force technique for the 29 degree of freedom model. As
a point of reference the square symbols present a first order self-
correcting solution from [17].
a. Finite Element Models of the Arch

The arch is modeled as an assemblage of straight frame elements.
The deformation model for the assemblage is synthesized from deformation
states of each element of the structure. These states are expressed in
terms of generalized displacements of the nodes of the structure at
which the elements interface. The axial and transverse displacement
fields within each element are a linear and a cubic function respec—
tively of the local spatial coordinates. The fields maintain interele-
ment continuity of the essential derivatives thereby providing a Galer-
kin model of the system. The deformation model uses the co-rotational or
the rigid-convected formulation thereby permitting arbitrarily large
rotations of the element. The co-rotational formulation decomposes the
total displacements into a rigid body motion and a strain producing
compenent. To allow large rigid body rotations the transformations
between the local and global co-ordinate system are accomplished using
Euler angles which are independent by virtue of the fact that the rota-
tions are performed in a prescribed order.

The load response curve of the arch is not a single-valued functioen

12



of the lead but is a composite of stable and unstable branches. Using
straight-forward load incrementaztion with the potential energy of the
system as the function to be minimized it is possible to locate only the
stable equilibrium configurations. Using displacement incrementation,
however, with the function to be minimized being the strain energy of
the structure, the entire load response curve can be easily obtained.
The gradient of the strain energy is evaluated analytically. Details of
this evaluation may be found in reference [18].

To evaluate sensitivity of the minimization algorithms to the scale
of the problem consider three different models with the degrees of

freedom, N, taking on the values of 29, 89 and 179 respectively.

b. Performance of the Various Minimization Algorithms

The numerical results presented in Table 1 pertain to the following
different variations of the Toint and our proposed Quasi-Newton algor-
ithmAusing Toint's sparse updates.

(1) TCNA (Toint's Constrained Newton Algorithm) designates Toint's
algorithm wherein the Hessian is evaluated by the CPR (PT) strategy at
each iteration.

(ii) TCUNA (Toint's Constrained Updated Newton Algorithm) desig-
nates Toint's algorithm wherein the Hessian is evaluated every pth
iteration (p = 4) but updated on all other iterations using Toint's
sparse updating formula. |

(iii) NA (Newton Algorithm) designates Newton's method, Egqs. (20},
(21}, wherein the Hessian is evaluated by the CPR (PT) strategy and
factored at each iteratiom by the triple factorization scheme of Bathe
and Wilson [16].

(iv) TUNA (Toint's Updated Newton Algorithm) designates a Quasi-



Newton algerithm with initial approximation to the Hessian evaluated by
the CPR (PT) strategy and updated on all other iterations using Toint's
sparse updating formula. In places where Broyden's line search [11]
failure occurs Hessian evaluation by the CPR (PT) strategy is activated.

(v) MNA (Modified Newton Algorithm) designates NA algorithm wherein
the Hessian is calculated by the CPR (PT) strategy only initially and
held constant on all other iterations.

In Tables 1 and 2, NZUH denotes the nonzero entries in the upper
half of the Hessian matrix. The CPU time for each case is ncrmalized
with respect to the CPU time required for the same preoblem using the
BFGS algorithm. For the model with N = 29 additional nmormalization with
respect to the pseudo force technique [19] is also presented since this
. was the only model for which the CPU time was readily available from
previous studies. The Hessian is divided into 9 groups by the CPR
strateéy and 6 groups by the PT strategy for all the three models with
the regular sparsity pattern as illustrated in Fig. 3 for the 29 degree-
of—freedom model. This implied that only 9 gradient evaluations were
required by the CPR strategy and 6 by the PT strategy to evaluate all
the nonzero entries in the upper half of the Hessian matrix using a
forward difference approximation. The entire response involved a total

of 12 displacement steps with a displacement step of one inch.

c. Sensitivity of the Various Algorithms to the Sparsity Patterm

To evaluate the sénsitivity to changes in sparsity pattern of some
of the more promising algorithms considered previously the spar-
sity pattern of Fig., 3 was disturbed by a rathar arbitrary disturbance
of the node numbering scheme c¢f the finite element models. Figure &

- illustrates a typical disturbed sparsity pattern for a model with N =



29. This disturbed sparsity pattern required that the Hessian be
divided into 18 groups requiring 18 gradient evaluations by the CPR
strategy and 12 groups requiring 12 gradient evaluations by the PT
strategy for evaluating all the non-zero entries in the upper half of
the Hessian matrix. The results for this sparsity pattern are presented

in Table 2,

V. CONCLUSIONS

The performance of the Toint's Algorithms (TCNA, TCUNA) is rather
disappointing and it appears that they may not be suited well for highly
nonlinear large scale problems. Toint's original sparse updating
algorithm (SUA in reference [15]) was tried and found to be considerably
worse than both TCNA and TCUNA. 1t needs to be pointed out, however,
that the code used for the evaluation of Toint's algorithm was experi-
mental and the conclusions may, therefore, be rather premature. Results
indicate that, especially for the larger models, the modified Newton
method (MUA) requires small displacement steps to be able to yield a
complete response in a reasonable amcount of CPU time and even so it is
no match for any of the other techniques considered. Judging from the
trends it would appear that for extremely large scale geometrically
nonlinear problems Newton's method (NA) using Hessian evaluations by the
CPR (or PT) strategy will be superior to the Quasi-Newton algorithm
using Toint's updates with occasional Hessian evaluaticn by the CPR (or
PT) strategy (TUNA) unless the sparsity is extremely poor. HNote that
generally Hessian evaiuation by the PT strategy is superior to the CPR
strategy, but PT may be worse as Table 2 shows. CPR and PT produce dif-
ferent Hessian approximations, hence different search directions, and

which direction is best depends cn the problem and point X, - For pro-

1z



blems involving three dimensional isoparametric elements with material

inelasticity wherein the Hessian evaluation is likely to be extremely

expensive in spite of using the Powell-Toint strategies, the TUNA al-

gorithm may be expected to have a significant advantage. In conclusion

as Toint correctly points out in his paper [15] "a more sophisticated

procedure using sparse update seems still to be desirable in order to

use all the information in an optimal way",

VI.
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[ Algorithm Model 1 Model 2 Model 3

N=29, NZUH=134 | N=89, NZUH=434 [N=179, NZUH-884

CPR PT CPR PT CPR PT

1. TCNA 1.213 - 1.243 - 5.843" -
2. TCUNA 1.228 - 1.729 - 4.378" -
3. NA 1.007 | 0.583 0.532 10.414 0.158 | 0.114
4. TUNA 0.593 | 0.577 0.469 [0.400 0.200 | 0.147

+
5. MUA 1.022 - 10.433" - ~ -

*%
TABLE 1. NORMALIZED++ CPU TIMES WITH REGULAR SPARSITY

T .

Extrapolated value. Not carried to conclusion because of exces-—
give time requirements.

* v ‘ 3

Because of convergence difficulties the size of the displacement

step was chosen to be 0.5".

T+ . . . ;
Running time have been normalized with respect to the running

time for the model using the BFGS algorithm.

&k :
To obtain approximate CPU times for the N = 29 model normalized

with respect to the Pseudo Force Technique, divide the corresponding

entries in this column by a factor of 5.



Algorithm Model 1 Model 2 Model 3
N=29, NZUH=188 N=89, NZUH=596 N=179, NZUH=1208
_ CPR PT CER PT cer | pT
1. NA 1.532 1.158 0.894[0.648 0.264 | 0.179
2. TUNA 0.742 ‘ 0.698 0.582(0.504 0.286 0.315J

e
1

TABLE 2. NORMALIZED CPU TIMES ' WITH DISTURBED SPARSITY

T . .
lRurm:r.ug times have been normalized with respect to the running
time for the model using the BFGS algorithm.



Figure No.
1

2

Note:

Figure Legend

Title
Finite Element Model of an Aircraft Substructure
Snap-Through Response of a Shallow Arch, N = 29
Regular Sparsity (Upper Half Shown)

Disturbed Sparsity (Upper Half Shown)

A figure should be included in the body of the text immediately after

its very first citation.
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