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(ABSTRACT)

To simulate the edge perception ability of human eyes and detect

scene edges from an image, context information and world constraints

must be employed in the edge detection process. To accomplish this,

two Bayesian decision theoretic frameworks for context dependent

edge detection are developed around the local facet edge detector.

The first approach uses all the context in the neighborhood of a

pixel. The second approach uses the context of the whole image. The

mechanism of the context edge detector then assigns a pixel the most

probable edge state which is consistent with its assumed edge context.

We also demonstrate how world constraints can aid the edge

detection process with a lighting compensation and a curvature con-

straint scheme. The context information and world constraints can

also be used to evaluate the performance of different edge detectors.

A general edge coherence measure, a robust edge thinness measure,

and a general edge correctness measure are developed.



Upon comparing the performance of the edge detectors with the

context free second directional derivative zero—crossing edge operator,

we find that the context dependent edge detector is superior; the

world constrained context free edge detectors can also improve the

edge result.

Finally, some simple edge detection schemes based on morpho-

logic ope·rations are discussed and evaluated. Although their perfor-

mances are not as good as the other edge operators described in this

dissertation, they are acceptable in the images which have reason-

ably high signal—to-noise ratio. These morphological edge operations

can be realized most efiiciently in machine vision systems that have

special hardware designed for morphologic operations.
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I. INTRODUCTION

I-1. Introduction

Edges in a scene are the consequence of changes in some physical

properties of surfaces of the scene, such as illumination (shadows, for

example), geometry (orientation or depth) and reflectance. As there

is a direct relationship between the edges and physical properties of a

scene, much of the scene information can be recovered from an edge

image. Thus, edge detection plays a key step in the early processing of

a computer vision system. Edge detection converts a greyscale image

into a binary form with direction orientation which preserves most

of the useful image information. The rest of the vision processes can

deal with the simpler form instead of dealing with greyscale image

directly.

Image edges occur in places of significant intensity changes on

the image. There are many kinds of intensity changes in an image.

The most common type of edges are the edges which cause jumps

in intensity value. They correspond to local extrema in intensity

derivative. We call these edges step edges. The usual aim of edge

detection is to locate edges belonging to boundaries of objects of

interest. While the human eye performs this task easily, the detection

of edges is a complex task to achieve. The difliculties in edge detection

1
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are mostly caused by noise, blurring and quantizing effects. This

results in a situation in which not all image edges correspond to scene

edges. And on the other hand, not all the scene edges correspond to

image edges. When people perform edge detection on a given image,

they can detect edges selectively. Some of the minor image edges

which do not correspond to main scene edges will be ignored and

some of the major scene edges will be detected, even though they

do not correspond perfectly to image edges. In this way people can

incorporate a lot of world knowledge and context information in their

edge detection process.

A lot of different approaches for edge detection have been pro-

posed in the past decade. Most of these operators can detect image

edges. Although they perform reasonably well on simple noise free

images, they tend to fail on the images which are degraded by noise.

This is because that as the noise of an image increases, the corre-

spondence between image edges and scene edges becomes weaker and

weaker. Thus, an edge detector which can perform well on noisy

images is most desirable.

Although it is possible to derive an edge detection algorithm

and argue that it is mathmatically optimal under certain ideal image

models, the edge detection problem for real scenes has not yet been

completely solved. The reason is that there is still no acceptable
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complete model of the image intensity surface patterns correspond

to scene edges. People only select some particular image intensity

surface patterns (for example, step or ramp function) and look for

an edge operator which can optimally detect these particular image

intensity surface patterns. Thus, there is no guarantee that the oper-

ator derived from these incomplete patterns can optimally identify all

kinds of image intensity changes corresponding to edges of real scenes.

In other worlds, any operator which is optimal for image edges is not

necessarily optimal for scene edges. However, the edges in the real

scene domain are not difficult to define, and they are less ambiguous

than the edges defined in the image domain. The ambiguity with

image edges is mainly caused by the unknown factors involved in the

many to one physics governing image acquisition.

The solution to edge detection on noisy images should not be im-

age smoothing, because image smoothing alone tends to blur edges.

The best solution, we believe, is to incorporate world knowledge and

edge context information with the edge detection process. Just as in

written English one can expect to find certain frequent letter combi-

nations, such as ity,”
”est”, ”ion”,

”ent”, so certain patterns of edge

distributions in a neighborhood of image positions are likely to occur

in the ’context’ of others. The former phenomenon has been used to

improve character recognition accuracy in text reading machines. We
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shall demonstrate that the latter can be used to improve accuracy in

detecting edges of an image.

In this dissertation, we suggest edge detection schemes which in-

corporate world knowledge and context information to detect scene

edges instead of image edges. In chapter II, we suggest an edge de-

tection scheme based on a local facet image model and a Bayesian

decision theoretic framework which uses context information to aid

in the detection of edges. Although we incorporate the context ap-

proach with only the facet edge detector, the context approach can

be extended to be incorporated with any kind of edge detector and

should increases the performance of that edge detector.

The local facet model regards the discrete pixel intensity function

within a local neighborhood as a sampling of a continuous underlying

function. We assume some parametric form for the underlying func-

tion and estimate the parameters for the functions around each local

neighborhood centered on each pixel position and detect edges based

on the estimated parameters.

We formulate the simplest edge detection problem as a decision

making problem and prove that under certain approximations the

edge detection process can be done independently by local neighbor-

hood. This simplest edge detection scheme does not always provide
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a good result since it is just a local operator. In view of this fact, we

incorporate neighborhood edge context into the edge detecting pro-

cess so that we can detect connected edge segments instead of edge

points alone.

In the first part of chapter II, we introduce neighborhood context

information into the edge detection process by assuming that only

certain spatial configurations of edge states and edge directions in

any neighborhood are likely to occur and assign such patterns equal

prior probability. We then assign a pixel the most probable edge state

which is consistent with the allowable neighborhood patterns. We set

up some of the possible edge patterns in a 3 X 3 neighborhood and

for each application we select the most appropriate patterns to work

with. The purpose of this part is to show how well the mechanism

we introduce can use context information effectively. And it also

provides an appropriate way of edge detection on the images for

which neighborhood edge context is known.

In the second part of chapter II, we introduce a general scheme

which generates edge patterns for each neighborhood by a dynamic

programming technique. No neighborhood edge context patterns need

to be provided in advance. The scheme can take care of any size

neighborhood and it selects the edge context pattern automatically.

The general context approach described here is related to the
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dynamic programming idea of Montanari (1971) and Martelli (1976)

of linking together edge segments. However, we are able to handle

multiple boundaries simultaneously and naturally, whereas dynamic

programming, as they employed it, can only link one boundary at

a time and is basically a postprocessing process whose performance

heavily depends on the starting points for linking which are provided

for the preprocessing.

In chapter III, we formulate a scheme which for each pixel makes

use of the full context of the whole image to detect edges. Thus, the

edge detection is no longer a local process. It uses the whole image

to assign an edge state of a pixel. We also introduce a clever way of

achieving local and global context balance. We introduce a way of

making use of strong context information and paying less attention

to the weak context constraints, so that we can avoid the possibility

of incorrectly guided by the weak and ambiguous context.

In chapter IV, we introduce the method of using world constraints

to help the edge detection process. Two schemes are described, the

first constraint is based on non—uniform lighting compensation; the

second constraint is based on the fact that most of the main scene

edges are located at the boundary of two large enough scene surfaces.

Chapter V introduces a general edge evaluator which makes use

of local edge context and world constraint to evaluate the performance
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of different edge detectors. It can evaluate edge detectors based on

the local edge coherence of the edge image and besides, it can also

evaluate edge position correctness of the given image and its edge

detection result. This is the first time a general edge position cor-

rectness evaluation scheme has been proposed. In chapter VI, some

morphologic edge detection schemes are proposed which can be real-

ized most efliciently in the machine vision systems which have special

hardware designed for morphologic operations (Sternberg,1983I-2.

Related literature review

One conventional approach to the problem of edge detection uses

parallel enhancement/thresholding algorithms. These algorithms use

spatial operators to enhance the original image to form an edge en-

hancement strength map. A threshold is then applied to the edge

strength map to determine the presence or absence of edge pixels.

Spatial operators can be differential operators or template match-

ing operators(see Rosenfeld et. al,1982). Differential operators im-

plement a discrete gradient like function. The strength of the en-

hancement map at pixel (r,c) is the magnitude of the gradient at

(r,c). The direction ( or angle ) of the gradient is also obtained at any

pixel (r,c). This type of operation is typified by Sobel edge detection.

(Duda et.al.,1973)
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Template matching operators produce a discrete differentiation

in a set of specific directions using a set of templates. The strength

of the enhancement map at (r,c) is the maximum output value from

these templates. The direction value is that direction associated with

the mask which has the largest response. These types of operators

include the Prewitt operator, the Kirsch operator and the Robinson

3-level and 5-level operators. Both approaches are extremely widely

used, and are quite old in concept ( Prewitt, 1970; Kirsch, 1971; and

Robinson, 1978). However, the existing masks for these approaches

appear rather ad hoc, and their theory is still being developed (

Foglein, 1983).

There are a number of edge detectors that involve fitting a func-

tion to the image surface. They make the decision as to the presence

of an edge using an estimate of its location from the best-fitting sur-

face that approximates the real image surface. These methods usually

involve an initial parametric Ht of the image surface in terms of some

set of basis functions.

One of the earliest examples of this method was the Prewitt op-

erator (Prewitt, 1970), which used a quadratic set of basis functions.

Another early work is the Hueckel edge detector (Hueckel, 1971,1973).

lt uses a basis function with circular support, and tries to fit a sin-

gle step edge to each circular area. The basis functions are chosen
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to approximate the Fourier transform of the circular region. Brooks

(1977) understood the surface iitting requirement in explaining some

of the classical edge operators. Hummel (1979) suggested the use

of Karhunen-Loeve principal components for the basis functions re-

quired by the edge detector. Morgenthaler’s (1980,1981) edge detector

used a hybrid local model consisting of step edge superimposed on a

low-order polynominal function.

Haralick (1980) proposed a litting of the image by small planar

surfaces or ’facets’. Edges are marked at pixels which belong to two

such facets when the parameters of the two surfaces are inconsistent.

The test for consistency is based on the goodness of Ht of each surface

within its neighborhood by a X2 statistic. In subsequent work on

edge detection, Haralick, (1982,1984)) does a least squares lit to a

bivariate cubic polynominal in the pixel’s central neighborhood and

determines directional derivatives from the fitting coefficients. Instead

of computing an isotropic form of the second derivative, Haralick

computes the second directional derivative in the direction of the

gradient. If a pixel contains a high enough negatively sloped zero

crossing of the second directional derivative taken in the direction of

the gradient, then the pixel is called an edge pixel.

Recently, some edge detectors attempt to enhance edges by fil-

tering. The filters are designed using frequency domain techniques to
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optimally discriminate step edges from the background. Modestino

and Fries (1977) suggested a procedure for detecting edges in noisy

pictures using a Winer filtering approach. Their algorithm is derived

from a minimum mean squared error estimate of noisy edges, with

an a priori assumption that a modified Laplacian operator is the best

edge detecting filter. Shanmugan et al (1979) proposed the use of a

two-dimensional linear operator that approximates the Laplacian of

a Gaussian. Their criteria of optimality was that the band-limited

filter maximize the proportion of total output energy confined to a

fixed interval when it is convolved with a step edge. Marr and Hil-

dreth (1980) determined edges by first smoothing the image with a

Gaussian filter and then taking the Laplacian of the resulting image.

A context dependent edge detection using relaxation labeling

scheme was proposed by Zucker et. al. (1977). They associated each

pixel’s relative edge strength in each direction to a probability by a

suitable normalization of the edge strength. The possibility of no

edge is also included. Then in a relaxation procedure they permit the

probabilities of the directional edges for neighboring pixels to support

or weaken each other according to the consistency between them. The

process comes to near convergence after a few iterations and results in

edge pixels having a high probability in their edge direction and non-

edge pixels having a high probability for the no edge label. However,
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the Zucker scheme does not have a true probability imterpolation.
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II. CONTEXT DEPENDENT EDGE DETECTION

In this chapter, we formulate the edge detection problem based

on a Bayesian model and give a general solution to it. Section II-1

gives the notation conventions of this chapter. Section II-2 introduces

the context-free second derivative zero crossing operator. In section

II-3 we introduce the context into the edge detection process and

discuss how a table look-up scheme can be used to realize context

dependent edge detection. Besides, we show how to obtain the joint

probability terms from an equal probability assumption for legal edge

neighborhood configurations. In section II-4, a general context edge

operator based on a dynamic programming technique is introduced.

Section II-5 provides some experimental results with the context edge

operators we compare and show the effectiveness of the context edge

detector over the context-free second directional derivative zero cross-

ing edge operator.

II-1. Notation

A. Notation Conventions

1. Zr: designates row size of an image.

2. Zc: designates column size of an image.
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3. R: designates the row index set of an image.

R= {1,...,Zr}

4. C: designates the column index set of an image.

G= {1,...,Zc}

5. (r,c): designates a 2-dimensional image position.

(r, c) E R >< C.

6. N(r,c): the set of 3 x 3 neighbors of (r,c), including (r,c).

7. n: designates one image position in a 3 x 3 neighborhood:

the central pixel is designated by n=0 and the other positions

are designated n=1 to n=8 in a fixed order.

8. 6;: designates the edge state at position i: it can be either

’edge’ or ’no-edge’.

9. 0;: designates the edge direction (direction of extremum

in first directional derivative) at position i.

10. E: designates the two dimensional sequence of edge states

of all the image positions.

E = (6(r,c)|(r,c) E R >< C)
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11. Ü: designates the two dimensional sequence of edge

directions of all the image positions.

Ü = (Ü(r, c)|(r, c) 6 R >< C)

12. 6N: designates the 9-tuple of edge states of a 3 x 3

neighborhood of image positions.

6N = (6„|n 6 {0,...,8})

13. ÜN: designates the 9-tuple of edge directions of a 3 x 3

neighborhood of image positions.

ÜN = (Ü„|n 6 {O,. . . ,8})

14. E edge: designates all the allowable 3 x 3 neighboring

edge patterns under the condition that the central pixel of

the pattern is edge.

15. E no-edge: designates all the allowable 3 x 3 neighboring

edge patterns under the condition that the central pixel of

the pattern is non—edge.

16. P(edge): designates the a priori probability P(6 = edge)

and assumes it is independent of image positions.
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17. K: designates the two dimensional sequence of ten-

dimensional vectors of the cubic facet coeiiicients for all

image positions.

K = @(13 c)|(r, c) E R X C')

18. @,,2 designates the ten-dimensional cubic facet coefücients

at image position n within a neighborhood.

IE'; = (k1n1k2n1 •
· · 1 k10n„)

B. Superscript Conventions When a parameter has a superscript

star, it designates true value. Parameters without superscripts

are either assigned values or estimated values.

1. 6*, 0*, k*: true values

2. 6,0: assigned values

3. k: estimated value

II-2. The context-free second derivative zero crossing edge

operator

In this section, we introduce how the facet model and directional

derivative can be used to obtain the edge state and edge direction of
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a pixel and formulate a context free edge detector model based on the

Bayesian decision theoretic framework.

A. The Facet Model

The facet model states that any analysis made on the basis of

pixel values in some neighborhood has its final authoritative inter-

pretation relative to the underlying gray-tone intensity surface of

which the neighborhood pixel values are observed noisy samples. To

estimate the continuous intensity surface, we use a functional form

consisting of a cubic polynomial in the two variables row and col-

umn. For greater numerical accuracy this can be calculated in terms

of linear combinations of the tensor products of discrete orthogonal

polynomials of up to degree three (Haralick, 1981). This form is of-

ten used in statistical regression problems (Draper and Smith, 1981).

In this paper, the fitting cubic polynomial f in each neighborhood is

represented as

f(r, c) = kl + kgr + kgc +
k4·r2

+ kärc -4- k6c2 -4- k7r3

+]CgT2C +ICQTC2where

kl, kg, . . . ,kl0 are the estimated coefficients of the facet

surface fit f to one neighborhood on the image.
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B. The Directional Derivative

In two dimensions, the rate of change of a function f depends

on direction. In this section we discuss the relationship between the

directional derivatives and the coeiiicients from the polynomial Ht.

(Haralick et al., 1983).

The directional derivative of f at the point (r,c) in the direction

a is denoted by ff! (r, c), it is deHned by

8 8
f¢Q(r, c) = äilsin oz + —%£lcos oe (II — 2)

The direction angle oz in our convention is the clockwise angle

from the column axis. We denote the second directional derivative of

f at the point (r,c) in the direction oz by fZ(r, c) and it follows that

2 2
fg(r, c) = a +2sinozcos cx

ö“f(¤ c) 2+TF—cos oz (II — 3)

Taking f to be the cubic polynomial model represented as (II-1),

we can easily obtain ff! (r, c) at the central position of a neighborhood

as
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and when kg + kg > 0 the angle cx can be obtained by

sinoz =l//cg
+ kg

k
cos a = — (II — 5)

l/kg + kg

At any point (r,c), the second directional derivative in the direc-

tion oz is given by

fg (r, c) = (6k·,· sinz oz + 4kg sin cx cos a + 2kg cosz o4)r

+(6klo cos2 oz + 4kg sin a cos oz + 2kg sinz cx)c

+(2k4 sing 04 + 2kg sin oz cos a + 2ko cosz cu) (II — 6)

We wish to only consider points (r,c) on the line in direction oz.

Hence, let r = psina and c = pcos cu. Then we have

fg(p) = 6[k7 sin3 a + kg sin2 cz cos oz + kg sin cu cosz a + klo cos3 o4]p

-|-2[kil sin2 oz + kg, sin oz cos oz + kg cosz oz] (II — 7)

where p is the distance along the direction oz between (r,c) and

(0,0)-

C. The Context-free Digital Edge
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We know that edge refers to places in the image where there

appears to be a jump in brightness value or a local extremum in

brightness value derivative. Since the image can be considered as

a discrete array of brightness values and there exists no definition

of derivative for a discrete array of brightness values, the way to

interpret jumps in value and jumps in derivative is to fit a continuous

function f, e.g. the bivariate cubic represented as (II-1), to the discrete

array of values in each neighborhood. Sharp discontinuities will reveal

themselves in high values for estimates of the first partial derivatives.

With regard to context-free edge detection, we define an edge

to occur in a pixel if and only if there are some points in the pixel’s

area having a negatively sloped zero crossing of the second directional

derivative taken in the direction of a non-zero gradient at the pixel’s

center. This places edges at spatial peaks of gradient values (Har-

alick,1984), a concept which is the basis of the non-maximal edge

surpression algorithms (Rosenfeld,1982) which are sometimes used

after edge detection to thin the detected edges.

D. The Edge Detecting Problem and a Context-free Solution

According to the Bayesian framework for decision making (Har-

alick, 1983), the edge detecting problem can be formulated as one of
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determining edge image E which maximizes the expected gain

ZG(E, E*)P<E*)K. Q) (H — 8)
E•

where G(E, E*) is the gain realized when edge image E is as-

signed and the true edge image is E"' : P(E"‘|K, Q) is the conditional

probability that E* is the true edge image given the cubic facet data

K computed from all the observed gray-tone intensity image data and

prior information Q about legal edge configurations.

Thelgain function we use here computes the gain realized when

the assigned image is E and the true image is E* as the sum of the

gains realized on a pixel by pixel basis. That is,
\

G(E„ E*) = Z Z] Q<6„.6:„) Q1 — Q)
rER c€C'

In the case that the gain function is defined by (II-9), after direct

substitution and some mathematical manipulations (II-8) becomes

Z Z ZQ<6„, 6:.,)P<6:„|K. Q) (H — w)
r€R c€C'

6;.,

Thus for each (1*, c), the edge detecting problem becomes one of

iinding that value of 6,,, which maximizes

ZQ<¤„.6:.)P(6:.|K„ Q) (H — 11)
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We use the zero-one gain function for each pixel. When the

assigned edge value and true edge value for a pixel are identical, then

the gain is one. If they are different the gain is zero. This gain

function is quite simple and yet suitable for edge detection. With the

zero-one gain function, the maximization of (II-11) becomes: for each

pixel (1*, c) independently assign the edge state
’edge’

if

P(6:6 =' edg6'|K, Q) > P(6:6 =' no — edgc'|K, Q) (II — 12)

and assign the edge state ’no-edge’ otherwise.

There are a couple of conditional independence assumptions

which can make the above probabilities only depend on the local

neighborhood of (1*, c). These assumptions must be considered ap-

proximations rather than idealizations and they motivate the use of

the neighborhood which under some conditions can be as good as the

entire image. The first conditional independence assumption amounts

to limited influence. It says that the true facet parameters at a pixel

(1*, c) only influence the estimated facet data values for pixels in the

neighborhood of (1*, c) and do not influence the estimated facet pa-

rameters for pixels outside the neighborhood of (1*, c). Hence

P(l~2:j = (M) ¢ N(¤ <=)|&I„) = P(&;j = (M) $5 N(¤ ¢)) (N — 13)

The second conditional independence assumption amounts to

noise independence. It states that given the true facet parameters @:6
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at pixel (1*, 6), the probability of jointly observing facet parameters for

the neighborhood of (1*,6), {kij : (1,j) 6 N(1*, 6)}, and for the mutu-

ally exclusive image region outside of N(1*, 6), {kij : (1, j) 6 N(1*, 6)},

is equal to the conditional probability of {kij : (1, j) 6 N(1*, 6)} given

kjc times the conditional probability of {kij : (1, j) 6 N(1*, 6)} given

k:c, that is

P(k«j = (M) 6 N(¤¤), kim = (L m) 6 N(¤¤)|k$„) =

P(k„ = (M) 6 N(1, ¤)|kI„)P(kzm = (1, m) 6 N(1, ¤)IkZ„) (I! — 14)

By Appendix 1, the two conditional independence assumptions

imply

P(@i‘„|K) = P(5i‘„|k«j = (M) 6 N(¤¤)) (U — 15)

In the context free decision making process, the neighborhood

N(1*, 6) just contains the single pixel (1*,6) and the edge detecting

process becomes one in which a pixel is assigned an edge state ’edge’

if

P(@I„ =' ¢dg¢’Ikm) >
P(€’$„ ='1w — ¢dg¢’|k„) (11 — 16)

A detail discussion about the context free local facet second derivative

zero-crossing edge operator is given by Haralick (1984) and the way

the conditional probability P(6fc|k„) can be computed is discussed

in Appendix2.
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Let

fÄi(T;¢) = A/>+ B

where

A = 6[1;7s3 + 1;,.6*20 + 1;;,.6*06 + k10C'3]

B = 2[k4S2 + k5SG +
k6C2]

and S = sin 0*; C = cos 0*. Then from appendix 2 we have ;

„„ „, P(k;,k§|6*,0*)P(A,B|6*,0*)
P k . . . k = ——————————(6 *6 l 2* * ‘°) 21rP(kg,...,1;,.,)

«•·P(k4,...,k10|A,B)P(6*) (II — 17)

with the conditional distribution for kg, kg given 6* =' edge', 0* being

a normal distribution

0 02q 0
N H H H' II — 1( («;;;;)» C; ;;;;;;+;;) ) < *>

and the conditional distribution of kg, kg given 6* =' no — edge' ,0*

being a a normal distribution

0 02q 0 ,N<H<;)»**<; ;;;;+;;)**> <**—**>
where

cos 0* sin 0*
H —

(—sin0* cos0*)
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The conditional probability P(A, B|6* =' edgc' ,0*) is

0;; 0 0 , 02,4 0 _~CCO)» TCO OO—)T*C*6 OO,. TT T0
and the conditional probability P(A, B|6* =' no — edgc', 0*) is

0 63* 0 , 63,, 0~CCO)» TCO OO·~)T*CrO OO. <TT—TT>
where all the variables T, A, B,o2, . . ., are defined in Appendix2. In

the context free case, we assign an edge if

P(E*
=I edgc', 0*|k2, . . . , k]_g)d0*

oa

> P(6* =' no — edge'0’°“|lc2, . . . , k10)d0* (II — 22)
O1

Equation (H-22) takes into account both the requirement of a

large enough estimated gradient and the negatively sloped zero cross-

ing of second directional derivative taken in the direction of the gra-

dient. It takes into account the distribution differences of (II-18),

(II- 19), (II-20) and (II-21). A gradient effect only edge detector would

assign an edge if

P(6* =' cdgc'|k2,lc3) > P(6* =' no — edge'|l<:2,lc3).

Such an edge detector only uses the distribution differences of

(II-18) and (II—19) as the basis for its decision.
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II-3. A context dependent edge detection

In this section, we derive the algorithm for context dependent

edge detecting process based on the Bayesian model described in

section II-2. We illustrate how to implement the approach using an

equal probability dictionary based scheme.

A. The context dependent solution

In the neighborhood context decision making process, all the

observed data in the neighborhood is used to help assign edge values

for the center pixel in the neighborhood. By combining (II-12) and

(11-15), the edge detecting solution is now: for each pixel (r, c) assign

it edge state ’edge’ if

P(6:c =' 6 N(r, c))

> P(z·::c =' no — cdgc'|@,j : (1S, j) 6 N(r.c)) (II — 23)

and otherwise assign it edge state ’no—edge’.

In order to simplify notation, we make everything relative to each

neighborhood. Let

P(65|K~) = P(<—¢I.|&.j = (M) 6 N(n ¢)) (H — 24)

where for example in a 3 x 3 neighborhood kN = (_]g„|n 6 {0, ...,8})

and the indexes number the pixel positions
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1 2 3
4 0 5
6 7 8

The technique we discussed, however, is not limited to a 3 X

3 neighborhood. Now the solution to the edge detecting problem

becomes for each center pixel position assign 60 as
’edge’

if

P(6§', =' edge'|KN) > P(6§ =' no — edge'|KN) (II — 25)

Now by the definition of conditional probability,

,„ „„ P 6* 0*P<6„)K„) = ij ij (H — 26)
6;„ 6; ,...,6; N

We make two conditional independence assumptions on the measure-

ment process. The iirst assumption states that the description process

is local. When the pixel n in the neighborhood is being examined, no

observed characteristics from any other pixel but pixel n affect the

observed data of position n. Hence

s
P(KNI€N¤0IV) = H P(E„|$iv,9Xr) (U — 27)

n=O

The second assumption states that the observed facet measurements

[cm of pixel n depends only upon the true facet parameters associated

with pixel n and does not depend upon any true edge data of the

other pixels. Hence

P(&„I&Ü,,€'iv,9iv) = P(&„IEÄ,@Ä,8Ä) H 6 {0, · · · ,8} (U — 28)
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Under these assumptions, we have ( see Appendix 3 )

6
P(K~I€iv»97v) = H P(l2„|$Z»9l°i) (U — 29)

n=o

Thus (II-26) becomes

6

0; ;;,0;,...,;;,0; n:1

(II - 30)

The conditional probability term P(knlsä, 0;) ties the local facet

measurement with the true edge state and direction. The joint prob-

ability term
P(6’}‘V,0}"V)

takes context into account it represents the

prior knowledge contextual constraints of true edge state and orien-

tations for a neighborhood.

The context we use in what follows, is a 3 x 3 sized neighborhood.

The mathematics for a larger sized neighborhood is similar.

B. The equal probability of legal edge patterns assumptiou

In each 3 X 3 neighborhood only certain patterns of edge state

and edge gradient direction combinations are likely to occur. Thus,

all the possible edge patterns in a neighborhood can be divided into

an allowable set and a non-allowable set. The allowable context edge
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patterns are further divided into two sets, one is the set in which the

center pixel has edge state ’edge’. We denote this set as Eedge. The

other one is the set in which the center pixel has edge state ’no-edge’.

We denote this set as Eno — edge. The equal probability assump-

tion states that all the allowable patterns in the same set have an

equal non-zero probability. Those which are non-allowable have zero

probability. Thus, each allowable pattern in Eedge has probability

. Similarly, each allowable pattern in Eno — edge has prob-

ability . Where #Eedge designates the total number of

allowable patterns in the set Eedge and #Eno — edge designates the

total number of allowable patterns in the set Eno — edge. This equal

probability assumption on allowable context patterns is the equal

probability of ignorance assumptions that Haralick (1983) uses with

context and corresponds to the way Jayner ( ) suggests for selecting

priors.

An example of the possible allowable edge patterns in a 3 x 3

neighborhood are shown in Figure II-1. Each pattern is labeled either

Edge pattern {set, number) or Non-edge pattern (set, number} to

specify the type of class, the set and the number it belongs to. The

collection of allowable context edge patterns must be selected from

the groups shown in Figure II-1 according to the prior knowledge

about the contextual characteristics of the image being processed.
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Thus, the context edge patterns are dependent on what are the prior

expectations of what configurations are likely to be focused in region

of the pixel. Depending on the kinds of higher level vision control

processer, these configurations can be the same for all the image or

be different region by region.
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Edge pattern (1,1) — (1,4)

Edge pattern (2,1) — (2,8)

Edge pattern (3,1) - (3,8)

Edge pattern (4,1) - (4,4)
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No-edge pattern (1,1)

No-edge pattern (2,1) - (2,4)

No-edge pattern (3,1) - (3,4)

Figure II-1. Examples of some allowable edge and non-edge context

patterns.
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From equation (II-30) we know that the prior probability used in

the edge detection process is the joint probability P(6;,, We now

illustrate how to obtain this term from the context edge patterns by

showing two examples: one for Edge pattern {2,1) which belongs to

Eedge; one for Non-edge pattern (3,2} which belongs to Eno — edge.

Since the joint probability P(6;V,0;V) of an Edge pattern (2,1}

can be written explicitly as

P(@3;; 93;) = P(€5,;,3 =' ßdgß'; @3,4,6,6,;,8
=’

rw - edgeß

,,„ 90° ,, 45° 135° ,,,
00 = 270,,;01 = 225,,;% = 315,,;02,4,6,6,7,6) (II ‘ 31)

Where 0;,4,5,6,7,6 means that 9;,0;,9;,9;, 9;,0; can vary freely

in angle range from 0° to 360° and they are not necessarily equal.

Since

P(0;,4,6,6,7,6;60,1,6 =' edge];

,,, 90° ,,„ 45° ,,, 135°
6;,4,6,6,7,6 =' ne “ edge';00 = 2700,01 = 225,,;0s = 315,,)

= P(0;,4,6,6,7,6l6;,4,6,6,7,6
=’

'LO _ edge,)

=•=P(6; 4 5 6 7 6 =' no — edge',6; 6 =' edge',0; =
900

,
1 1 1 1 11,„

45° 135° ,,,
01 = 225,,,0; = 3155IGä =' edge')P(66 =' edge')

We assume that given a group of non-edge pixels the conditional prob-

ability of their gradient directions are independent. And in general
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the conditional probability density of edge direction is uniform for

non-edge pixels. Thus we give all the possible gf equal conditional

probability. The prior probability for edge state = ’edge’ is a constant

P(edge). Thus, we can simplify the joint probability to

6:6* 6*)-iN°N —
21:* #Eedge

ge

1 P(edge)= -— II — 32
(21:*)6 * #E'edge ( )

Similarly, the joint probability of a Non-edge pattern (3,2}

can be written explicitly as

=, =, no — edge,,

,,, 180° ,, 135° ,, 90° „„
93,5 = 0,, 60s =

315,,¤06,1
= 270,,690;,2,4)

= P(9d,1,2,4led,1,2,4
=,

"·e “ edge,)

P(€1,2,4
=,

ne ’ edge,>e;,6,6,1,s
=,

edge,»

,„ 180° ,, 135° ,, 90° ,,
93,5 = 0,, ,96 = 315,,,96,7 = 2,m,,|€6 =, no — edge,)

P(6§
=,

no — edge,)

= H
P(0',‘|6°,‘ =, no — edge,)-————(1 — P(edge))_ °

‘
#Eno — edge

•E{0,1,2,4}

= L * (I] _ gg)
(27;)* #Eno — edge
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Following the same procedures we can obtain the joint probabilities

P(e’°;,,9}"V) for all the edge patterns illustrated in Figure II-1. In

summary, the joint probability for an edge pattern can be assigned

according to the following rule:

,„ „, 1 P(pattern)
P(€N*0N) =

*wherepattern can be either Eedge or Eno — edge.

In the context dependent case, we assign an edge if

6

Z
1’[(9;,

,c;,)€Eedgc ¤=O

6
> Z

1’[
P(&„I3I.„9ä)P(3?v,97v) (H — 34)

(9;, ,c;,)€Eno—edge ¤=0

II-4. A General Context Dependent Edge Detection

The context dependent edge detection scheme we discussed in

section II-3 is based on a dictionary of the allowable edge patterns in

a 3 X 3 neighborhood. In order to further improve the performance

of the context operator, it is important to have the Hexibility of in-

creasing the neighborhood size of the context edge patterns. However,

increasing the size of context neighborhood will greatly increase the
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number of possible edge patterns. The huge number of edge pat-

terns prohibit the dictionary-based scheme to be carried out within

a reasonable computation and storage expense. To reduce the un-

managable amount of computation cost and avoid the need of prior

information about context edge patterns, a dynamic programming

scheme which generates the most feasible edge patterns in a given

neighborhood and use only these patterns for edge detection is devel-

oped as a solution. The idea is to consider only the most feasible edge

patterns of each neighborhood in the edge detecting process. This is

a more general and computational effecient edge detecting process.

As we mentioned before, the dictionary-based context edge detec-

tion process is based on the consistency between the given edge neigh-

borhood and the predetermined allowable edge pattern set Eedge and

non-edge pattern set Erw — edge. We assign an edge if equation(II-34}

holds.

In this section we discuss how to determine the sets Erw — edge

and Eedge automatically neighborhood by neighborhood for any size

of context support. The number of patterns produced by this scheme

in either Eedge or Erw — edge are independent of the selected context

neighborhood size and are less than the average number of patterns

in Eedge and Erw — edge of the 3X3 dictionary based context edge

detection( Lee, 1985).
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We rewrite the joint probability term P(6")§,-, 0;,) in equation (II-

34) by P(pattern;) = P(6:,,0Q°.‘, Vn 6 pattern;) where pattern; can

either belong to Eedge or Eno — edge and the number of pixels of

pattern; and the number of pixels of pattern, for i yé j may not be

identical. We first consider the case that pattern; 6 Eedge. In this

case, P(pattern;) can be written as P(6; =' edge’,0;°‘,; n 6 pattern;).

In our development, the pixels explicitly specified by pattern; consists

of only pixels which have edge state ’edge’. Let pattern; have k-I-1

pixels which are addressed by n, where n 6 {0,. . . ,k}. The term

P(pattern;) can be decomposed into the following form

P(6; =' edge', 0;; n 6 pattern;) =

P(0}°Q|6; =' edge',n 6 {0,.. . , k},0:‘„,m 6 {0,..., k — 1})=•=

P(Ü5,€:, =' edge',n 6 {1,... ,k}|6§ =' edge')=•=

P(6Q°‘, =' edge,) (II — 35)

By assuming that all the patterns belong to Eedge have equal prob-

ability, we have

P(0§ 6* =' edge' n 6 {1 . . . k}|6(°§ =' edge') = (II — 36)7 fl, 7 7 7 #Ecdg6

where #Eedge designates the total number of patterns in Eedge.
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In an edge line it is reasonable to assume that the edge angle of

a pixel depends only on the edge angle of its immediate adjacent edge

pixel and the relative position between them. Thus

P(0f“|z-:Q°‘, =' edge',n 6 {0,...,]c},0,,°‘„,m 6 {0,... ,·£ — 1}) =

P(9:|6; =' edge',n 6 {0,. . .,lc},0f‘_1)

Due to the low cumulative curvature requirement of an edge curve in

a small neighborhood, it is reasonable to assume that the conditional

probability P(0§‘|6:, =' edge', n 6 {0,. . . , lo}, 9: — 1) has maximal

value when the edge direction at the immediate adjacent neighbor

agrees with that at the center. And the expected edge direction of

the center pixel based on its position relationship with respect to the

adjacent neighbor agrees with the center edge direction. To satisfy

these requirements, we approximate the probability by

f(92‘,92‘-1) = P(9?I6Z“.
=’ ¢dg¢’,¤ G {0„---,/¤},92‘-1) =

. .. .. vr Mvr . „.+;,7) =f(9«,9,-1) (U—37)

where d is defined as

cos oz — ß) + 1d(¢¥,ß) =7
and M is the adjacent edge position index with respect to the center

pixel according to the following order
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3 2 1
4 0 8
5 6 7

The range of function d is the closed interval [ 0, 1 The reason

why we select this nonlinear function for edge coherence probability

is that as 04 approaches ß the function has less penality (higher value)

than the absolute difference between these two angles. Conversely, it

gives more penality when the angle difference is large. Thus the angle

quantization effect due to the rectangular grid layout of the pixels

will tend to be minimized. By combining (II-35), (II-36) and (II-37)

we have

k .. .. P(¤dg¢)P(pa.ttern;) =
[ll)

f(G„,G„_l)] =•= (II — 38)

where for the purpose of notational convenience we define f(G5, Gil)

as 1 although Gil does not exist.

Note that for different patterns of Eedge set, the number of the

edge pixels, thus k value, may be different. In order to take care of

the difference in k on different patterns, we normalize P(pattem.,) to

single pixel basis. That is we define the normalized probability as

'° „. . Th P(@dg¤=)P„(p¤t¢¢m¢) = [Ill f
(9„,3„-1)] * (U — 39)
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Similarly, in the case that pattern., 6 Eno — edge, P(pa.tternj) can be

written as

1 — P d
P(pattern.j) = (II — 40)

(21r) =•= #Eno — edge

We assume that given a group of non-edge pixels the conditional prob-

ability of their gradient directions are uniform and independent. We

also assume that the conditional probability density of edge direction

is uniform for non-edge pixels. That is

=•=
=•= I I 1

P(0„|e„ = no- edge) = E- Vu 6 {0,...,k}

Similar as in the pattern; 6 Eedge case, the normalized P(patternj)

ca.n be expressed as

(1 — P(edge))
P tt · = ———————i II — 41”(pa er"?)

(21r) =•= #En.o —— edge ( )

Since we can normalize the conditional probability term of equation

(II-34) into single pixel basis as

k Fi?
[H P(E„|eI“„9Ii)]
n=O

the normalized version of equation (II-34) becomes assign 60 as an

edge pixel if

II I I „„ 1 „„
edge Id„)f(9„» d„-1)]

pattern;€Eedge népatterng
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*
P(edge)
#Eedge

> Z [ H 1%.16; ='nopattcrn;EEno—cdgcnépatterng

qllirlidäcddge
(II _ 42)

where #pattern; and #patternj are the numbers of pixels which are

’edge’ in pattern, and ’no-edge’ in patternj, respectively. To perform

the edge detection scheme we have to determine the sets Eedge and

Eno — edge. As we mentioned before the number of patterns in Eedge

and Eno — edge are kept as small as possible and are independent

of the neighborhood size. Thus, we only pick up some edge patterns

which maximize the term

[ H
P(&„I€$. =' ¢dg¢',3l§)f(92,92-1)]

#’°°°"”‘
(U — 43)

rsépattern;

and put them in the set Eedge. For example, we only pick up the

pattern among all the possible single edge curve patterns which max-

imizes (Il-43) as one of the patterns in Eedge. The set Eedge can

include one single edge curve pattern, one edge junction (two edge

curves merge at the center point) pattern, one edge corner pattern,

and one crossing edge curve (two edge line meet at the center point)

pattern.

To find the patterns which maximize (II-43), a dynamic pro-

gramming based technique is introduced. The dynamic programming
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technique determines four optimal edge curves (possibly merging into

three or two edge curves) in four directions emanating from the cen-

ter pixel. The four optimal edge curves are the optimal edge curves

starting from the center pixel toward the upward , downward, left and

right boundaries of the selected neighborhood, respectively. Figure

II-2 shows an example of these curves in a 9 X 9 neighborhood.

Consecutive edge pixels in any optimal edge curve must be 8-

connected. Under this constraint, both the optimal edge curves to-

ward the upward and downward boundaries may in some special cases

coincide with the optimal edge curves toward the left or right bound-

aries. That is, curve (1) could coincide with curve (3) or

curveSimilarly,curve (2) could also coincide with curve (3) orcurveWhen

determining the allowable edge pattern set Eedge, the can-

didates for the edge patterns belonging to Eedge are all of the possible

combinations of the four optimal edge curves emanating from the cen-

ter pixel. The patterns selected among these candidate patterns for

the edge detecting process are in accordance with prior knowledge

about the image being processed. The prior knowledge includes the

belief about: the existence of a single edge curve, two crossing edge

curves meeting at the center pixel, edge corners or edge junctions

(three edge curves meeting at the center pixel) in a neighborhood.

For example, if the single edge curve pattern is chosen, the pattern
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uword boundor==Il m E---
IIIIIII

,3

I-I.]-IIIIHQQII-IIIQ
..IIIIE!!L‘EQ 5
IIIIHIIII 5
IIIHIIIII 5
II.w.----

dounword boundory

Figure II-2. Optimal edge line in a QX9 neighborhood.

between ( curve[1) U curve(2) ) and ( curve{3) U curve(4) ) of Figure

II-2 and which maximizes (II-43) is put into the set Eedge. Similarly,

if the edge corner pattern is chosen, the pattern which has highest

probability among ( curve{1) U curve(4) ), ( curve{1) U curve{3) ), (

curve(2) U curve{4} ) and ( curve{2) U curve(3} ) is included in Eedge.

The same process holds for two crossing edge lines and edge junction
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cases as well. Furthermore, to reduce the possible bias caused by

using context alone, we also put the pattern which has only center

pixel in it and has edge state ’edge’ as a pattern of Eedge.

Now, we show how we construct the set Eno — edge. The process

of construction goes through ten 3X3 non-edge neighborhood patterns

(see Figure II-3) and picks up among them four patterns. In general,

a local neighborhood of an image should be smooth. If the center

pixel in a neighborhood has true edge state ’no-edge’, it is most prob-

able that the pixels belonging to the eight-connected neighborhood

surround this pixel are also non-edge pixels. Therefore, the pattern

which has all non-edge pixels in a 3 X 3 neighborhood surround a cen-

ter non-edge pixel is included in the allowable pattern set Eno — edge.

(see FigureIn

order to take care of the possibility of non-smooth neighbor-

hoods such as the non-edge pixels immediately adjacent to an edge

curve, the pattern among the four patterns of Figure II-3{b) which

maximizes (II-43) is put in the set Eno — edge. The patterns of Figure

II-3(b} are the patterns which include six 4-connected non-edge pixels

around the center pixel ina 3 X 3 neighborhood. That is, we take

. care of the cases of a non-edge pixel either vertically or horizontally

adjacent to an edge line. Similarly, we put in the set Eno — edge the

_ pattern which maximizes (II-43) among all the patterns belonging to
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Figure II-3(c). Finally, we introduce the context free effect into the

edge detecting process by including the pattern which has a single

non-edge center pixel as a pattern of Erw — edge. The inclusion of

the context free pattern reduces the possibility of bias caused by the

context effect alone. It is noted that no matter how large the context

neighborhood is selected, the non-edge pattern set only includes the

patterns}we described above. All the pixels within the patterns which

are specified by
’X’

are considered as ’don’t care’ pixels. The ’don’t

care’ pixel can be either ’edge’ or ’no-edge’. Since the set Erw — edge

has onlyl four patterns. It requires little computational and storage

efforts when performing the edge detection process.

As we mentioned before the edge pattern which maximizes the

term[

H P(E„|@$. =' ¢dg¢',9Z)f(9Ä»9ä-1)l#’°°°‘'”‘
népattern;

is the optimal edge pattern and shall be put in the set Eedge.

We now describe how we can use a dynamic programming tech-

nique to find the optimal edge curves starting from the center pixel

toward the upward, downward, left and right boundaries of the se-

lected neighborhood.

The dynamic programming scheme we use to find the optimal

edge curve is subjected to the constraint that the consecutive edge
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0 0 0
0 0 0
0 0 0

(8)

0 0 0 X X X 0 0 X X 0 0
0 0 0 0 0 0 0 0 X X 00X

X X 0 0 0 0 0 X X U0(b10

X X 0 0 X X X 0 X 0 U
0 0 X X 0 0 X 0 0 0 0 X
X 0 0 X X 0 U 0 X 0 X

X(8)

X X X
X U X
X X X

(d)

Figure II-3. The non—edge neighborhood patterns.
’0’

designates

non—edge pixel,’x’ designates ’don’t care’.
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pixels in any optimal edge line must be 8-connected neighbors. Let

2:0 be the center edge pixel which is the starting point of the optimal

edge curve. Let x1 be the successive edge pixel of :1:0 and 2:2 be the

successive edge pixel of :1:1, etc. Then the constraint is

llßk — $k+1H S \/E

Since logarithm is an increasing function, the optimal edge line which

maximizes the probability of (II-43) is the same as the optimal edge

line which maximizes

='népattcrn
For a given neighborhood, the #pattern value is a constant, Therefore

the cost function we use for optimization can be simply

E l¤2[P(&„|@ä
=’népattern

Let’s order the pixels belonging to the edge line and designate them

as 2:0,2:1, . . . ,2:1. Thus, for a selected neighborhood of size (2l + 1)

by (2l —+— 1), ::0 represents the starting pixel which is the center of

the neighborhood; 2:1 represents the first layer pixel belonging to the

set of 8-connected neighbors of 2:0; 2:2 represents the second layer

pixel belonging to the set of pixels in one side of boundary of the

neighborhood. Thus, the optimal curve generating problem becomes
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finding 0:;,*5 6 {1,. . . , I} such that the following term is maximized:

1
Zl¤g[P(&„|$ä =' ¢dg¢’,9Z)f(@,92-1)] (U — 44)
{:1

Let’s define

h«(¤¤1-1,¤=«) =l<>s1[P(E„|@„"?. =' 92-1)]

Then (11-44) becomes

1
$6)

{:1

We also define

TT}

ym(=vm) =

xhggßidItis easy to verify that

gm(¤¤m) = g¤¤jj[gm—1(¤=m—1) + hm(=¤m—1,¤¤m)] (U ·· 45)

and

gO(a:0) = =' edge',0;o)] (II — 46)

we can then carry out the maximization by a dynamic programming

process. The solution for (11-43) is finally

rrggx gi ($1)
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where

yz(=¤z) = rgjflgz-1(wz—1)+ hz(:¤z-1,2:1)]

Let the coordinate of 2:0 be (r0, c0), then in the case of an 8—connected

edge line starting from the center pixel ending at the upward bound-

ary. We have the domain of the adjacent edge candidates in layer i,

iE {1,...,]} be

III; 6 {(r0 -2:,Cg —1I),...,(r0 —i,c0),...,(r0 — k,c0 +])} (II—47)

Similar situations hold for the cases of edge curves toward the bottom,

left or right boundaries. A standard dynamic programming scheme

can be employed to solve the maximization problem defined by (II-46)

under the constraint of (II-47).

The scheme we describe in this section is related to the dynamic

programming scheme of Montanari (1971) and the heuristic search

scheme of Martelli (1976). However, both Montanari’s and Martelli’s

scheme are postprocessing schemes for linking edge segments. They

heavily depends on the initial point selected for linking process and

they can only take care of a single edge line passing through the

selected edge point. The dynamic programming scheme in this section

does not depend on the selection of initial point and can take care of

not only single edge lines but also edge corners, edge junctions and

two crossing edge lines.
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The heuristic search scheme proposed by Martelli is just a brute

force depth-iirst search. If the edge consistent cost function is pair-

wise, a dynamic programming scheme can give a more efficient solu-

tion. Besides, the solution found by dynamic programming is optimal

while the solution found by heuristic search can be suboptimal.
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II-5. Experimental results

To understand the performance of the context dependent edge

detectors we first examine the behavior of the dictionary look up

3 X 3 neighborhood context edge operator on three well structured

simulated images so that we can see how the mechanism we employed

can use context information effectively. We then apply the general

dynamic programming context edge operator on three noisy object

images and compare its performance with the context free operator

to see how the context scheme can achieve better object identification.

The first simulated image is a checkerboard of size 100 x 100 pixels

with a check size of 20 x 20 pixels. The dark checks have gray

tone intensity 75 and the light checks have gray tone intensity 175.

To this perfect checkerboard, we add independent Gaussian noise

having mean zero and standard deviation 35. The perfect and noisy

checkerboards are shown in Figure II—4.

In order to compare the performance of different edge operators,

we use the conditional probability of assigned edge on state ’edge’

given the true edge states ’edge’ of an image, P(E'|E""), and the

conditional probability of true edge states ’edge’ given assigned edge

states
’edge’

of an image P(E"’|E' The adjustable parameters of

each edge operator are chosen to equalize these two conditional prob-

abilities. The quality of the edge operator is determined by the value
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of P(E'
|E’°‘)

= P(E"‘|E'). Although this performance measure is not

in general applicable on all kinds of images, it is well suitful for the

simulated checkerboard image.

We apply context dependent edge detectors and the context free

second directional derivative zero-crossing edge operator (Haralick,

1984) on the noisy checkerboard and compare the performance in

terms of
P(E'|E’°‘)

and P(E"‘|E'). In both cases, the image is first

fitted by cubic polynomials with neighborhood size 5 x 5. Table II-1

lists the test results of these edge operators. The results show that

the conditional probabilities are improved from 82.47 percent to 96.10

percent by the context dependent edge operator.

Figure II-5 shows the edge images of these edge operators. A vi-

sual evaluation also leaves the impression that the context dependent

edge detector produces much better edge continuity and has less noise

than the context free detector.

As described in section II-2 the edge detecting scheme takes

into consideration both edge gradient and zero crossing of second-

directional derivative and treat both effect equally. Therefore, it can

detect a low gradient edge pixel if the pixel has high evidence of a zero

crossing of second derivative. It is also noted that the context free

second directional derivative zero-crossing edge operator is basically a
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Table II-1. P(E'|E") and P(E'*|E') values of context free second

directional derivative edge operator and context operators on a noisy

checkerboard image with 5 x 5 cubic facet window size.

prob \ operator context free operator context operator

P(E' |E*) 0.8247 0.9610

P{E’°‘|E') 0.8247 0.9610
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gradient based operator. It detects an edge pixel if the pixel has both

high gradient and zero-crossing of second derivative in the direction

of gradient. If the pixel does not have enough gradient strength, it

will not be classiiied as an edge pixel even though it has zero-crossing

of second derivative. The combined gradient and second derivative

edge detecting scheme can detect non-obvious edges which have less

than average gradient and which are actually edge pixels.

In order to see the effect of context, a context free edge image

generated by equation (II-22) is shown in Figure II-6. From this figure,

we can see that the context free edge image has fewer edges than the

context dependent edge image. The context dependent operator,

then, produces a strong clean edge image with little noise compared

with the context free edge image.

Unlike most of the previous reported edge operators, the con-

text edge operator does not use a pure thresholding scheme. The

adjustable parameter A which is the ratio between the standard

deviation of cubic facet parameter kg between edge and non-edge

pixels. From equation (II-18) and (II-19) we know that increas-

ing /\ will increase both mean and variance of the probability

P(kg,k3|e"‘ =' cdgc',0’°‘) and simultaneously decrease the variance

of P(kg,k3|6"‘ =' no — edge',0"‘). Thus, increasing A may increase

the total number of edges and also may decrease the total number of
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edges depending on the distributions of the conditional probabilities.

Then this scheme avoids the drawback of a pure thresholding which

assigns pixels falling above the threshold as edge pixels while those

below the threshold as non-edge pixels. Since the gradient of edge

boundaries are often relative, a gradient which is higher than the av-

erage gradient of a homogeneous area of an image may be much lower

that the average gradient in a textured area of the same image.

As we mentioned before, the edge operator based on combined

gradient and second derivative can detect non-obvious edges in a

homogeneous image area which have less than average gradient values.

To see this effect, we generate a bar image of size 40 x 60 pixels. There

are six vertical bars on this image. Each bar has length 40 pixels and

width 10 pixels. The gray tone intensities of the bars are, from left

to right, 216, 125, 64, 27, 8, and 4 respectively. We then add a signal

dependent zero mean Gaussian noise to the image. The standard

deviation of the noise is, from left bar to right bar, 36, 21, 10, 4, 0

and 0 respectively.

By applying the context free second directional derivative zero-

crossing edge operator on the noisy image with cubic facet neighbor-

hood size 5 x 5, we find that no satisfactory result can be obtained.

Figure II-7(a) shows the noisy bar image and (b) - (e) show the results

of the context free edge operator with different threshold values. The
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results illustrate that large threshold values tend to miss edge bound-

aries in the right portion of the image, while small threshold values

introduce lots of noise in the left portion of the image. We then apply

the combined gradient and second derivative context dependent edge

operator on the same image. The result shows (see Figure II-7(f°))

that we have a superior edge image to the images of Figure II-7(b) -

(e).

In order to see the performance of the edge detectors in the non-

vertical and non-horizontal edge features, we rotate the noisy checker-

board image of Figure II-4 by 45 degrees and apply both context free

second directional derivative zero-crossing edge operator and the con-

text dependent edge operator on this rotated checkerboard image (see

Figure II-8).

We also set up two more edge pattern sets and two more non-

edge pattern sets for the context dependent edge operator so that it

can better take care of the diagonal edge features. These patterns are

named as Edge pattern (5,1) through Edge pattern (6,4) and Non-

edge pattern (4,1) through Non-edge pattern (5,4). A diagram of these

patterns is shown in Figure II-9. The test results of both operators

with 5 x 5 cubic facet window size are listed in terms of the conditional

probabilities
P(E'|E’°‘)

and P(E"‘|E') in Table II-2. Due to the effect

that we use a square neighborhood for cubic polynominal fitting,
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the performance of both edge detectors on the rotated checkerboard

are worse than the normally oriented checkerboard. The conditional

probability P(E" |E*) is raised by the context dependent edge operator

from 63.45 percent to 87.41 percent. Figure II-10 shows the edge

images of both context free and context dependent operators. The

superior performance of the context dependent operator can be easily

verified by visual evaluation.

In order to see the performance of context operator and context

free operator under different noise level, we add zero mean Gaussian

noise of standard deviation 10, 20, 30, 45, 55, and 70 on the perfect

checkerboard image (see Figure II—4), respectively. We then apply

both context and context free second derivative zero crossing operator

on these images. The adjustable parameters of each operator are

chosen to equalize the two conditional probabilities as possible. The

result edge images of both operstors are shown in Figure II-11. And

the edge probabilities of each edge image are listed in Table II-3, and

II-4. Also the average edge probabilities are ploted as curves and

shown in Figure II-12.

It is interesting to see that according to the edge probability

measure when the noise has standard deviation 10, the context edge

operator performs worse than the context free operator. As the noise

increases the context operator has higher probability than the context
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Figure II-9. The additional edge and non-edge context patterns used

in the rotated checkerboard edge detection.
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Figure II—12. The average probability (P E E äp E E ) curves of

the context operator and context free operator on the checkerboard

image with signal to noise ratio of 10, 5, 3.3, 2.2, 1.8, and 1.43,

respectively.
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Table ll-3. P(E'|E’°‘) and P(E"“|E') values of context free second

directional derivative edge operator on noisy checkerboard images

with different noise levels.

noise \ prob P(E'°‘|E') P(E'|E"')

SNR = 10 0.9935 0.9935

SNR = 5 0.9487 0.9673

SNR = 3.3 0.8246 0.8246

SNR = 2.2 0.7078 0.7078

SNR = 1.8 0.6234 0.6234

SNR = 1.43 0.4967 0.4935

Table II-4. P(E'|E"°‘) and P(E"‘|E') values of context edge operator

on noisy checkerboard images with different noise levels.

noise \ prob P(E°’°‘|E') P(E°'|E°’°‘)

SNR = 10 1.0000 0.8888

SNR = 5 0.9807 1.0000

SNR = 3.3 0.9610 0.9610

SNR = 2.2 0.9019 0.8961

SNR = 1.8 0.8092 0.8039

SNR = 1.43 0.6493 0.6493
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free operator. The difference between the edge probability increases

as 0,, $ 45 and then the difference decreases as 0,, > 45. We can also

explain the reason why the context operator has less edge probability

than the context free operator when 0,, = 10. The ideal edge image

we used for the probability measurement includes all the saddle points

of the checkerboard as edge points and the allowable edge context for

the context operator does not include the pattern of two edge lines

cross the center edge pixel. Therefore, the context operator only

detect the edges other than the saddle points. Although the context

operator can perfectly detect all the edge points other than the saddle

points(see Figure II-11 and Table II-3), the edge probability measure

is bad. However, this result is caused by the inconsistency between

ideal edge image and the selected edge context. Nothing is wrong

with the context operator.

To see the performance of the general context edge operator

and compare its performance with the local context edge operator

and the context free second derivative zero-crossing edge operator,

we first apply it on the noisy checkerboard image of Signal to Noise

Ratio 2.22. The edge probability results are listed in Table II-5.

It is noted that the general context edge operator has better

performance than the context free edge operator. It rises the edge

probability of the context free edge operator from 70 percent to 81
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Table H-5. P(E' [E
'°‘)

and P(E
"‘
|E' ) values of the general context edge

operator, the local context edge operator, and the context free second

derivative zero-crossing edge operator apply on a noisy checkerboard

images of SNR 2.22.

operator \ prob P(E*|E’) P(E’|E*)

General Context 0.8116 0.8116

Local Context 0.9019 0.8961

Context Free 0.7078 0.7078
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percent. The general context edge operator has worse performance

compared with the local context edge operator. This is because that

the general context edge operator uses context in a general way while

the local context edge operator picks up edge context which specifi-

cally {its the image under processed. However, the local context edge

operator depends heavily on the prior information about the local

edge context which is not generally available.

Finally, we apply the general context edge detector on three noisy

object images. The object images are simulated range images with

image size 128 by 128 pixels on which we add zero mean Gaussian

noise of standard deviation 30. The images are shown in Figures II-

13{a), II-14{a} and II—15{a). On these images we {irst apply a cubic

polynominal {itting with neighborhood size 5 X 5 and then apply both

context free second directional derivative zero crossing edge operator

and the dynamic programming based context dependent edge detec-

tor. The window for context pattern is also 5 X 5. The result of

the context free edge operator on these images are shown in Figure

II-13(b), II-14{b} and II-15(b). And the result of the general context

edge operator on these images are shown in Figure II-13(c), II-14(c)

and II-15(c). It can be easily verified that on all of these images

the context edge operator better. The edge images of the context

edge operator have better connectivity and much less noisy than the
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context free edge operator.









III. FULL CONTEXT EDGE DETECTION

III-1. Algorithms

In chapter II, we introduced a context dependent edge detection

scheme. The context we used in chapter II is basically the edge data

in the neighborhood of the pixel under consideration. Any pixels

outside this neighborhood have nothing to do with the edge detection

of the current pixel. In this chapter we introduce a context dependent

edge detection scheme which uses all the edge data in the image as

the context to help the edge detection process of any pixel.

According to chapter II, the edge detection problem can be for-

mulated as a Baysian decision problem. The solution to this problem

under the zero-one gain function is: for each pixel position (r,c) of

the image independently assign the edge state 6,,, as ’edge’ if

P(6:c =' edge']K) > P(6:c =' no — edge'|K) (III — 1)

and assign the edge state 6:,, as ’no-edge’,otherwise.

The context information appearing in equation (III-1} is K which

is the cubic facet parameters of the whole image. Thus, we have the

most desirable kind of edge labeling process which gives each pixel

the highest probability edge state label given the entire context of the

image.

75
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To explain the way we organize for the entire context of the

image, let’s select any pixel in the image. Now consider all the row

monotonically increasing paths which begin at any border pixel of

the image above the selected pixel, go through the selected pixel, and

end at some border pixel of the image below the selected pixel. Each

such path represents a context for the pixel. Corresponding to each

path and the observed pixel data on the path, there is an associated

probability of edge state for the given pixel. Among all the paths

there is some best
’edge’

path whose associated edge state=’edge’

probability is higher than the probability of every other path. In

general it is not necessary that the edge state of the pixels in an

edge path should be ’edge’. In the following derivations we allow

pixels which have edge state=’no-edge’ in a edge path. However, the

derivations are general enough so that by a minor modification, we

can require all the pixels in an edge path have edge state=’edge’.

Similarly, for each pixel there is some best ’no-edge’ path passing

through it whose associated edge state=’no-edge’ probability is higher

than the probability of every other path.

In considering the difference between the edge and no-edge con-

text, we do not use the best ’no-edge’ path alone for the non-edge

context. For a given pixel (r,c), a row monotonically increasing path

has to pass through one of the pixels (r-1,c-1),(r-1,c),(r-1,c+1),and
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(1*,c-1) before entering the pixel (r,c) and it has to go through one

of the pixels among (r+1,c-1),(r+1,c),(r+1,c+1), and (r,c+1) when

leaving (r,c). Thus, for each entering and leaving pixel pair there ex-

ists a best non-edge path. The non-edge context we use for the edge

detection is the average no-edge probability of these 16 best paths.

Hence, Equation (III-1} implies that we will assign a pixel edge state

’edge’ if the edge probability of the best ’edge’ path is higher than

the average no-edge probability of the best ’no-edge’ paths. And we

will assign a pixel ’no-edge’ otherwise.

We begin our description by reviewing some of the definitions

defined in Ha1*alick(1985). For a path, we mean any connected se-

quence of pixels, each pixel neighboring its successor, in which the

path does not intersect itself. A row monotonically increasing path

is a path in which each successor pixel is on the same row or one

row below its predecessor. The set U„ designates the set of all row

monotonically increasing paths which begin at some border pixel of

the image above or to the left of pixel (r,c) and terminate at pixel

(r,c). The set L„ designates the set of all row monotonically increas-

ing paths which begin at (r,c) and terminate at some border pixel

below or to the right of pixel (r,c). These are illustrated in Figure

[III-1). Let N1(1*, c) = {(1* — 1, c — 1), (1* — 1, c), (1* — 1, c+ 1), (1*, c

—andN2(1*,c) = {(1* + 1,c — 1), (1* + 1,c), (1* + 1,c + 1), (1*,c + The
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set U,c(pq) where (p, q) 6 N1 (r, c) is defined as

U„(pq) = {T: T 6 U„, cmd (p,q) 6 T}

Similarly, we can define

L„(;j) = {T: T 6 U„ cmd (·£,j) 6 T}

where (i,j) 6 N2(r, c).

The set Z,c designates the set of all row monotonically increasing

paths begining from a border of the image passing through pixel (r,c)

and continuing to another border pixel of the image. The relationship

between Z„, and L,„c and U,„ should be obvious. Z,,, is just the join

of all paths in U„ with the paths in L„,. Similarly, we can define

as the join of all paths in U„,(pq) with the pathsinThe

set Ufc designates the set of all row monotonically increasing

paths which begin at some border pixel of the image at the same row

or above pixel (r,c) and terminate at pixel (r,c). The set Lfc designates

the set of all row monotonically increasing paths which begin at pixel

(r,c) and terminate at some border pixel at the same row or below

the pixel (r,c). This is illustrated in Figure (III-2).

For pixel (i,j), we let ßü designate the cubic facet parameters of

the pixel (i,j). We define fZn (sfc) to be the probability that pixel
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Figure III-1. illustrates the set U„ and the set L„. U„ is the set of all

row and column monotonically increasing paths beginning on a border

of the image above or to the left of the pixel (r,c) and terminating

at pixel (r,c). L,c is the set of all row and column monotonically

increasing paths beginning at the pixel (r,c) and terminating on the

border of the image below or to the right of the pixel.
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—-——_————_—“FigureIII-2. illustrates the set Ufa and the set Lfc. Ufa is the set of

all row monotonically increasing paths beginning on a border of the

image at the same row or above pixel (r,c) and terminating at pixel

(r,c). Lfc is the set of all row and column monotonically increasing

paths beginning at the pixel (r,c) and terminating on the border of

the image below or to the right of the pixel.
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(r,c) has true edge state 6:6 given the cubic facet parameters of the

best row monotonically increasing path T taking the direction 9:6

through (r,c) and the direction 9:6 is the direction which maximizes

P(8l‘„I&,„)· TMS,

fzrc qzrc($:07where

9:60 is a fixed value which is determined by

P(0:c0l-Igrc) > P(9T¤lErc) V 0TC $6 0:cO

—and

<1z..(<·¢l°—‘„, Ü:.) = gg P(SZ., öl-'clbg = (M) 6 T) (U! — 3)

Similarly, we can define fZr6(P6_6j) (6:6). We also define

——

*
1

*fz"; (src) i fZrc(pq,ij) (src)

(p•a)6N1(r,•=)
(¢.i)€N2(r,¤)

Therefore, the Baysian decision theory based edge detection scheme

becomes

6,,,
=

edge if fgrc (6:6 =' edge') > TZ': (6:6 =' no — edge')
'° no — edge otherwise

(II — 4)

To perform edge detection we have to compute fZ". Thus, we have

to compute qZn first.
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Analogous to the definition of qZn (6:0,0:0) we can now define

srv,. 9;) Md gr,. (6;, 9;) as f¤H¤w¤=

9v„(€;»9;) = 0£¤g}< P(@;»9;IE«j = (@5) 6 T) (TU — 5)

and

qägfi (@5) 6 T) (UT — 6)

In a similar way, gynm) (6:0, 0:0) and (6:0, 0:0) can be defined.

Since

6 T)

= qälägi (@5) 6 TIE;) = (@5) 6 T)

= qxrégjc E P(b7j = (@5) 6 TI@Z},92}, (@5) E T)
0;c":·¢

(i,j)€T‘

P
‘9‘~,0;9‘-, °,‘

6 T·•· (III — 7)
P(E¢5 * (@.7) E T)

where T- designates the set of all pixels in T but pixel (r,c).

We assume that when the pixel (r,c) is being examined, no ob-

served characteristics from any other pixel but pixel (r,c) affects the

observed data of position (r,c). Hence

(@5) 6 T|€l§,9E}, (@5) 6 T)



83

T) (UT — 8)
(¢.1)6T

and

P(@ij : (·i.j) E T) = (III — 9)
(¢„J)€T

The second assumption states that the observed facet measurements

Qij at each pixel (i, j) depends only upon the true facet parameters

and edge data associated with pixel (i, and does not depend upon

any true edge data of the other pixels. Hence

(kJ) € T)

(UT — 10)

Following the same derivations as illustrated in Appendix 3 we have

P(&€j : Tlszjsgifjs 6

(NI — 11)
(¢„i)€T

The probability P(6fj,9fj, (vl, j) E T) is the joint prior probabil-

ity of having the edge data for each pixel (1], j) on the path T be

63,9:}. This probability encodes all the information we have about

context. The simplest assumption of higher order than independence

is a Markov like assumption in which the joint prior probability be-

comes a function expressible as the product of functions whose ar-

guments are the label pairs for successive pixels in the path T. This
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is a second order generalized conditional independence assumption.

Letting R(T) designate the set of all pairs of successive pixels in the

path T, we have

T)

(111 — 12)
((¢„i)„(kJ))€R(T)

Using assumptions (III-9),(III-11),and (IH—12) we are ready to decom-

pose (III-7) into

* * gg; E ll **1
(«.5)61·—

·•= 1-[ A(@?„9i§)¢ZT) 921) (111 — 13)
((¢„J)„(kJ))€R(T)

Since Z„ can be decomposed as the join of U,,, and L„, this results

in

°Z~ Tk?)Tk?)*

A(€:jv0:jv€)kcI¤0I’;l)
((€„i)„(kJ))€R(T1)

(III — 14)

((¢„j)„(k„1))€R(T¤)
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Rearranging (III-14) we can group all expressions involving T1 to-

gether and all expressions involving T2 together and we obtain

<1z.. (@2, 92)

¢)
* * * * (HT—15)P(&„-„I8„„9„) U '° L '° °

Similarly, we have

qZr6(pq,ij)
(6:67 i

P kfß
*

lk
(61-61 01-6) * gL,-c(;j) (src, 01*6)

The decomposition of gfjrc will be in terms of the neighboring gyn_1

and hy;_1 c_1, hy;_1 G cmd hy;_1 hn, all of which need definition. By

definition

gv..($2,92) = ggü P($2,92I&«j = (M) 6 T)

= ggü P(€2},9§}, (M) 6 TIEÜ = (M) 6 T)

92)

(i,_-i)€T‘

* H A(E:j>0:j¤$Tclv0I:l) (IH — 16)
((¢.1)„(kJ))6R(T)

Also, we define

hv;,(@2, 92) = gg¤5 P(62,92|b«j = (M) 6 T)
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P(]<;i .|g’!‘., Q?.)
= max E H

— 2 •2 •1
· P lc--

T€U'°
@:,6:; (¢,.i)€T (-*7)

(i,j)ET"

·•=
H A(67}, 97}, 67;;, 97;;) (111 — 17)

((¢,j),(k,1))€R(T)

To do the decomposition for gyn we need to recognize that what-

ever the best path is, the best path to (r,c) must have come from one

of the pixel locations: (r,c-1), (r-1,c-1),(r-1,c), or (r-1,c-}-1). Because

the best paths cannot cross itself, if the best path came from (r,c-1),

then the path must be in U,,c-1. However, there is no danger of the

path crossing itself if the best path comes from (r-1,c-1). Hence, such

a path must be in Uf_1’a_1. Likewise, a best path coming from (1*-1,c)

must be in U;"_1’a and a best path coming from (1*-1,c+1) must be in

+1. Using this idea, we can write (III-16) as

P(& |6* 9* )

max{ max E H
mm;

TEUMA(i,j)€T

* H A(€:j¤0:jv€fcIv0I:l)
*((¢,J),(k,1))€R(T)

P(&, ·|6$·,97·)
maxT€Ur—1,c—1

0:j·‘:j(i,j)ET

* * * * * *
lk lk

* H A(€6j» 0sj, Em, gk:) * A(€r—1,c—1> gr-—1,c—1¤€rc> Gu),
((¢,J),(k,1))€R(T)
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max ——

aj' aj :.7
(a.;i)61·

=•= H A(6*- 9*- 6* 9* ) =•=A(6* 9* 6* 9* )•_19 •_79 kl9 kl r—1,c9 1*-1,69 rc9 rc 9

((¢„f)„(kJ))€R(T)

P(&«·I€*·:9*·)max E H 1 ¤1 •1
tr U· P lc--

* H A(€lj:0lj:€lÄ1:01l1)
((*J)„(kJ))€R(T)

*A(€:—1,c+17 9:--1,6+19 6:67

—Examiningthe first term in the maximization and comparing it to

gUr_c_1(6;‘,c_1,9Q‘."c_1) as defined by (III-16) we discover that the ex-

pressions are almost identical. The only difference is that the expres-

sion for involves a summation iterated over all

(ef, j) 6 T- while the first expression in the maximization involves a

summation iterated over all (i, j) 6 T . Since the maximization done

in the first term is over all paths terminating in (r,c-1), the summa-

tion over 6:’c_1 and 9f,c_1 can be interchanged with the maximization

over all T 6 U,,„-1. A similar reorganization can be done with the

second, third, and fourth terms of the summation after comparison

of them with hU;_1 c_1, , . This results in

gU (6* 0* )
__ P(ETCl€:C79:C)

*rc 7
—

'° '° P(&„)
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maxi0:,6-1*6:,6-1

($:-1,610:-1,6

*6:-1,6

E hU;_,,,+,(€:—1,c+1¤0:—1,c+1)
0:-1,6+1*6;-1,6+1

(III “ 19)

Equation (III-19) says that for each edge label 6:6,0:6, the condi-

tional probability of 6:6,0:6 given {@6, : (i, j) E T} where T is the

path giving the highest probability can be obtained on the basis of

the previously computed gyr_6_,, and on the previously computed

hy;_1 c_1,hy;_1 c,hy;_1 CH coming from the row above the current

row. So providing we can demonstrate a way to compute hyn , equa-

tion (HI-19) specifies a recursive neighborhood operator which scans

the image in a top down left right scan to produce for each pixel (r,c)

and for each edge label 6:6, 0:6 the probability gyn (6:6, 0:6).

It is easy to find that we also have

gU (6:6, i P(&7'Cl€:C7
*

(6:,6-11 0:,6-1) * A(€:,c-11 0;,6-118:61 0:6)

0:,¤—1•‘;,6—1
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and

* P(lg |$*9*OT

.,cT .
MJ MJ

where (1I,j) E N1(r,c) — (r, c — 1).

The algorithm for computing hyn is similar to that of gyn . For a

path from Ufc to reach (r,c) it must first have gone through one of the

pixel location: (r,c-1),(r,c+1),(r-1,c-1),(r-1,c), or (r-1,c+1). Further-

more, if it went through (r,c-1), since the path cannot cross itself, it

must be a path in From our development of equation [III-19}

, we know that the maximization over the probability of the paths

go through (r,c-1),(r-1,c-1),(r-1,c), and (r-1,c+1) yields gyn(6:c,9fc)

. Thus we have

hv;„

T*

H A(€:j¤0:j¤ sklvßltl)
((€„J)„('¤J))€R(T)

(UI — 20)

In a similar manner as in the development of (III-19), we interchange

the order of the summation over 6:,c_,_1, 9:,6+1 with the maximization
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over all path T in U;C+1. Now (III-20) becomes

kv;. (Eil, Gil) = ¤¤=¤<{9v„ (SIC, Gil),

P(&iclEI„» Gil)
P(ETC) * •

Zn0r,c+1’cr,c+1 ° °¢5"65 ('=-'ÜET
(i,:i)€T—

P

H"U*A(@I,„+1iGI,„+1i€I„„Gil)} (U! — 21)

By definition of (III-17), the bracketed expression of (III-21) is pre-

cisely hy;c+l (6;;+1, 0;;+1). Now this results in

hu;. (Eil, Gil) = m¤><{9v„. (Eil, Gil),

P ki I „GI „. „.

0:,6+19Equation(III-22) states that hyn can be recursively computed from

gyrgc and the previous hy;c+1 in a right left scan of a row done after

gyn has been computed. To start the recursive calculation (III-22),

we take hyn (6;, 0;) = gyn (6;, 0;) for that column position c which

is the rightmost position.

In summary, equation (III—19) and (III-22) gives the following

algorithm for the computation of gyn (6;,9;). From (III-19), we
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perform a top down left right scan of the image recursively com-

puting ggrc from the previous ggr_c_1 and the hg;_1’c_1,hg;_1,c, and

hg;_1 CH which had been computed on the previous row. Following

the computation of gg for all pixels on row r, we perform a ri ht
Yß

g

left scan of row r using equation (III-22) to compute hg;.

An absolutely mirror image derivation applies to gLN . Thus, we

have

gL (6*0*rc7 —

'° '° P(&;)

0:;+176:;:+1

0:+1,:+1*6;+1,6+1

0:+1,c—1’€:+1,c—1

23)

and

h1:;„ (6;: 9;) = m=¤<{gL„ (5;: 9;):
P(& |6* 0* E '»::„„,<6¢,:—::@:,„-1>

—rc
0:,6-1*6:4:-1

*A(€I,„-1: 9;:-1: @;: 9;)} (IN — 24)
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It is also easily to {ind that we have

P(_lg |6* 0* )
gLr6(r,6+1) (8:67

_;——TC

($:,6+19 0:,6+1) * A(€:,6+19 9:,6+196:69and

gL(6*rci' 7( j) TC TC P(Erc)

6:69where

(1],j) E N2(r, c) — (r, c + 1).

To compute them, we perform a bottom up right left scan of

the image recursively computing gLn from the previous gL,_6+1 and

the and which had been computed on the

previous row from the bottom up scan. Following the computation of

gLn for all pixels on row r, we perform a left right scan of row r and

compute hLn.

As soon as gLn (6:6, 0:6) has been computed, it can be com-

bined with gyn (6:6, 0:6) as given in equation (III-15) to compute

qZn (6:6, 0:6). In practice since the only 0:6 which is useful for the pur-

pose of edge detection is the angle 05,6 which maximizes P(0:6|_]g,6).

Thus, we can determine 05,6 first and then compute q,,,(6:6, 05,6) for
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both
0;‘c=”

edge” and ”no-edge”. Now by the definition of (III-2), we

can compute the two probability terms by

fz„. ($:6) = q*’¢(€:cv 051*6)

and
—

*
1

*fz,-c (ETC) fZr6(pq,ij) (€Tc)°

(x>q)€N1(•*•¤)
(¢5)€Na(¤¤)

Thus, we can label edge state of pixel (r,c) by means of the rule

provided by equation (III—4).

III-2. Probabilities

To perform the recursive algorithms (III-19),(III—22),(III-23),(III-

24), we need the probability ratio and the edge consistent
-0

function A(€ö,Ü5,€°;,Ü°{) where 0 and 1 designate any two adjacent

pixel positions in the image.

In Appendix 2 we have derived the conditional probability as

P(k2, . . . , k10|c—:*, 0*) = P(/6;, k§|6*, 0*)P(A, B|6*, 0*)

=•=P(/64,...,/610|A, B) (III—25)

Let A be the ratio of standard deviation of /62 and kg values between

edge and non-edge pixels. Then P(/62, /63|6* =' 6dge' ,0*) is a normal

distribution

0 ozq 0 ,N (H 0 2^2¤$¥+¤§) H) (IH 26)
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and P(]c2, l<:3|6* =' no — edgc', 0*) is a normal distribution

0 02q 0 ,N<**(»)»*(¤ 201+0)*) <*~-**>
where

cos 0* sin 0*H —
C- sin 0* cos 0* (III — 28)

The conditional probability P(A, B[6* =' edge' ,0*) is

/2:4 0 0 1 OZA 0 _N((0), T(0 (III 29)
and the conditional probability P(A, B|6* =' no — edgc', 0*) is

0 02* 0 , 0*,, 0N((0), 1(6 62,,):1% E U,B (111-60)
0

where all the notations T, A, B, 02, . . .,are defined in Appendix2.

Since

P(l<:§, k§|6* =' no — cdge', 0*)P(A, B|6*, 0*)
0rt

=•=P(k4,...,k1O|A, 1-2) 621r

+/ P(k;,k§|€* =' edg6’,,0*)P(A,B|6*,9*)
ort

=•=P(Ic4,...,16,0).4, 16) 1- @06* (III - 31)
From (III—19), (III-21), (III-22), (III-23), and (III-24) we know that the

term we used for the local edge probability is . And, when
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we compute this local probability, the probability P(k.l, . . . , ]cl0|A, B)

is cancelled out by dividing (111-31) by (111-25) and need not be com-

puted. The only probability need to be given is the prior probability

of edge state is ’edge’. This is, the probability P(6"‘ =' edge’) which

we denote by P(edg6).

Let
”0”

be the center pixel and
”1”

is an adjacent pixel of ”0".

The edge consistent function A(6;,,Ü§,6;,Ü;) is defined in three dif-

ferent cases:

(1). s;,=’edge’ and 6;=’edge’:

We follow the function defined in chapter 11. Due to the low

cumulative curvature requirement of an edge line in a small neigh-

borhood, it is reasonable to assume that A(6Q§, Üö, 6;, Ü;) has maximal

value when the edge direction at the immediate adjacent neighbor

agrees with that at the center. And the expected neighbor direction

based on this relative position agrees with the neighbor direction. To

satisfy these requirements, we define

A(65 =' cdgc', Ü5, 6; =' edge], Ü;) =

6 6*, 6* 6 6* M

where d and dl are defined as

cos(a — ß) + 1
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2 — + 1

and M is the adjacent edge position index with respect to the center

pixel according to the following order

5 4 3
6 0 2
7 8 1

The center position is the position of pixel sf. Different positions

of pixel 65 correspond to different M values.

The range of function d and dl is the closed interval [ 0, 1 The

reason to select this nonlinear function for edge consistent function is

that as oz approaches ß the function has less penality (higher value)

than the absolute difference function which computes absolute differ-

ence between two angles. Conversely, it gives more penality when the

angle difference is large. Thus the angle quantization effect due to

the rectangular grid layout of the pixels will tend to be minimized.

(2}. 6(’§=’edge’ and 6’{=’no-edge’:

The edge direction consistency constraint on the ’edge’ to
’no-

edge’ case is in general much weaker than the constraint on the ’edge’

to ’edge’ case. The best way to obtain the consistent function for a

specific set of images is to perform a measurement from a training
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set of image data. And {it the measurement data to an appropriate

function. However, for the purpose of completeness, we suggest a

general function for this case. We define

A(6§ =' cdge',9§,6; =' no — edge',0;) =

6 6* 6* + 6 6* M(0v 1) 21( 0> 4)
(111-34)

where N is the adjacent edge position index with respect to the center

pixel according to the following order

3 2 1
4 0 8
5 6 7

The center position is the position of pixel 6;. Different positions

of pixel 6}; correspond to different N values.

{3). $5:,170-Gdgé, and 6;=’no—edge’:

For the purpose of completeness, we define

A(6; =' no — edge', 0;, 6; =' no —— cdg6',0;) =

=•= I I
*

=•= I I -•= 1
max{(1—A(6O = cdgc,00,61 (III—35)

so that if the edge direction is consistent we will have a low value and

vice versa. However, it is possible for a no-edge pixel pair to also have
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edge direction consistency in some cases. Therefore, we set a lower

bound for the function; the lower bound is set

toIII-3.Implementation Considerations

In this section we describe the way of using gereral context most

efficiently for edge detection. To implement the recursive algorithm

for gym (6:6, 0:6) we append one more image column to the left of the

image (we name it column 0) and initialize both gym (6:0
=’

edge’, 0:0)

and gym (6:0 =' no — cdge', 0:0) to 1. Similarly, we append one more

row on the top of the image (r=0) and initialize both gyoc (606
=’

edge',006) and gyoc (606 =' no — cdge',006) to 1. We also define the

consistent function A in a way that whenever one of its arguments

includes the appended boundary pixels it always has value 1. Thus,

starting from the pixel position (1,1) we have

(111 — 36)
and

P lc 6* 0*gU,.<6*;„.6:„>

=6;,,6;, —11

*A(€I1¤0I1v€,12>9I2)¤ 1}

E E (111-27)
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We now interpret the meaning of the probability ratio .

There are two ratios one for edge state =’edge’, one for edge state

=’no-edge’. Since

P(@) = =' edge',0*)P(0*|6* =' edg6')P(6dge)d0*
ge

4-/ P(_l<_;|6* = no -' edge', 0*)P(0*|6* =' no — edge')P(no — 6dg6)d0*
Gt

Z 1>(&|6* Z' edge',6*)d6*
27r on

— d P(&I€* =' no — cdge',0*)d0* (III — 38)
oe

Let 05 be the 0* which maximizes P(0*6*|@). It is the observed gra-

dient direction of a pixel. By definition the probability P(Ü*€*|E) for

all 0* 76 05 is less than the probability for 05. To simplify the com-

putation, we scale P(_l<;|6* =' edge',0*) and P(_lg|6"‘ =' no — 6dgc’,0*)

such that when summed over all possible edge directions the integral

is 21r times the probability when 0* = 05. Thus,

=' edgc',0*)d0* = 21rP(&|6* =' edge',05)
0t

and

/
P(@|6* =' no — edg6',0*)d0* = 21rP(_lg|c-:* =' no — edge',05)

0-•

Hence

1¤(l¤.) = P(¢dg¢)P(b|@* =' @dg¢'„ 95)
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+(1 — P(CdgC))P(&I€* =' no — cdge',9*) (III — 39)

In the case of 6* =' edge', the local edge probability becomes

P(&|@* =’ ¢dg<=’,9ö) =P(&)

__ P(&I€* =' cdge',0ö)_
P(E)P(bI€* =’ EWS) + (1 · P(E))P(&I¢* =’ N’»0*)

(III — 40)

Thus,
P(bI@* =' edgeßßö)

P(&)
= 1 if P(_lg|6*

=’
E’,0§) = P(@|6*

=’
N’,0;)

> 1 if P(l<:_|6*
=’

E’,9(’§) > P(&|6* =' N’,05)
< 1 if P(@|6*

=’
E’,0§) < P(&|6*

=’
N',9§)

This can explain the meaning of this local probability term which is

used in determining the optimal edge or no-edge paths. If the observed

cubic facet parameters of a pixel support the edge state of the pixel

=’edge’ over the edge state of the pixel =’no-edge’, then this local

probability will be greater than one. Otherwise, it will be less than

one. If the observed cubic facet data do not support any edge state,

the probability will be one. This is consistent with the initial term on

each path having the value one. In the case of 6*
=’

no — cdgc’, the

probability becomes

P(§I€*
=’

no — edge’,05) _
P(&)

—
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"” ‘ *11
Thus,

P(@|6* =' no — edgc',96)
Pfb)

= 1 if P(&I€" =’ E',95) =
P(bl@”‘

=' N'»95)
> 1 if P(EI€* =’

E’,9g) < P(@|6*
=’

N’,9g)
< 1 if P(&I€* =’

E’,9(’§) > P(]c_|6*
=’

N’,9g)

The way of implementing the recursive algorithm for gLn (6:6, 9:6) is

similar to what we describe above. We append one row at the bottom

of the image ( r=(Image row size) +1 ) and append one column to

the right of the image ( c=(Image Column size) + 1 Then initialize

gLN (6:6, 9:6) of the appended portion to the value one.

In the derivations we treat context of ’edge to edge’, ’edge to

no-edge’, and ’no-edge to no-edge’ equally. However, in the context

of edge lines. ’edge to edge’ consistency is much stronger than
’no-

edge to edge’ and ’no-edge to no-edge’ consistency. We endeavor to

remedy this unequal strength of context by emphsizing the ’edge to

edge’ context. We will evaluate an edge path assuming all its pixels

belong to the edge state=’edge’ and on the other hand, evaluate

a no-edge path to have all its pixels belong to the path only edge

state=’no-edge’.

In order to have a balance between local information and context

information we set limitations on the context influence. Thus, we set
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a lower bound of influence 6,,,,,, and an upper bound of influence

6,,,,,,, where 6,,,,,, < 1 < 6,,,,,,. The maximum possible value of any g

and h functions are limited to 6,,,,,,. Similarly, the minimum possible

value of any g and h functions are limited to 6,,,,,,. Thus, (111-19)

becomes
P(]<: [6*,0* )

gUrc (6* 6* , ) = * ma*x{° °' ° P(&,,)
¤¤i¤ {¤v.,,-, (6*, 95,,,-,) * A(6*, 95,,,-,, 6*, 95,,,), 6,,,,,,} ,

min (hv;_,„,_, (6*,95,-1,,-1) * A(6*, 95,-,,,-,, 6*, 95,,,), 6,,,,,,,},

min (hv;_,_, (6*, 95,-,,,) * A(6*, 95,-,,,, 6*, 95,,,), 6,,,,,,,) ,

min {hU;_,_,+, (6*, 9(*lr—1,c+1)*
A(€*> 05,-—1,,+1> $*> 0g,,c)¤ emax} e

6,,,,,,} (III — 42)

where 6* can be either
’edge’

or ’no-edge’. Similar equations hold for

91,,. (65,, 95,), hw, (65,, 95,), and hm, (65,, 95,)·

111-4. Experimental results

To understand the performance of the full context edge detector

we examine the behavior of the full context edge detector on one

well structured simulated image and two real images and compare

the results with the context free second derivative zero-crossing edge

operator to see how and in what degree the full context information

can improve the operator.
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The simulated test image is a noisy bar image. The image size is

100 X 50 pixels. The dark bars have pixel intensity 0 and the white

bars have pixel intensity 175. We apply a 2 X 2 box filter on this

image to simulate ideal single pixel width edge lines. We then add a

zero mean Gaussian noise with standard deviation 40 to this image.

The image is the same as what we used in chapter III and is shown

in Figure III-4{a).

To show the motivation of treating ’edge’ context and ’no-edge’

context differently, we try two schemes on the simulated image. The

first scheme uses best non-edge path for non-edge context. Thus,

it uses fZn (efc =' no — edge') as non-edge probability in the edge

detection process. The second scheme uses all the best non-edge path

for non-edge context by using the average probability ?Zrc(efc ='

no — edge') as non-edge probability in the edge detection process.

We test the image by applying the scheme which uses single op-

timal non-edge path passing through each pixel for non-edge context

against the scheme which uses the average of the non-edge paths from

different directions passing through each pixel for non-edge context.

On this image we fit each 5 X 5 neighborhood by a cubic polynominal.

and then apply the two full context operators on it. The resulting

edge images of the first scheme and the second scheme are shown in

Figure III—3(a) and (b).
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In order to quantitively see the difference in performance of these

two operators, we use the conditional probability of assigned edge

state ’edge’ given the true edge states ’edge’ of an image, P(E'
|E"‘),

and the conditional probability of true edge states ’edge’ given as-

signed edge states
’edge’

of an image P(E"‘|E'). The adjustable

parameters of each edge operator are chosen to equalize these two

conditional probabilities. The quality of the edge operator is deter-

mined by the value of P(E'|E*) = P(E"‘|E'). The performance in

terms of P(E’|E"‘) and P(E*|E') are shown in Table III-1. It lists the

test results of the edge operator for the two different non-edge con-

text schemes. Both context operators have much better performance

than the context free edge operator which has probability of correct

assignment of around 0.69 (see table III-1). The results show that the

second scheme performs better than the first. From here on we will

use the second scheme for the rest of the experiments.

We then apply the full context edge detector on two noisy object

images. The object images are simulated range images with image

size 128 by 128 pixels on which we add zero mean Gaussian noise

of standard deviation 30. The images are shown in Figures III-4(a},

and HI-5(a} . On these images we first apply a cubic polynominal

fitting with neighborhood size 5 X 5 and then apply both context

free second derivative zero-crossing edge operator and the full context
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Table III-1. P(E'|E'°‘) and
P(E’°‘|E')

values of the full context edge

operator with different schemes for non-edge context and the context

free edge operator

operator \ prob P(E’|E"‘) P[E"‘|E')

average path 0.8400 0.8316

single path 0.8600 0.8600

context free 0.6950 0.6814
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edge operator on these images. The context bounds we used for both

images are 6,„„,„= 0.1 and 6„„„,=l0. The result of the context free

edge operator on these images are shown in Figure III-4(b), and III-

5(b). The results of the full context edge operator on these images are

shown in Figure III-4(c}, and III-5(c}. It can be easily verified that

on both of these images the full context edge operator performs much

better. The edge images of the context edge operator have better

connectivity and much less noisy than the context free edge operator.

The edge consistent function we used is a linear combination

of the functions d(a,ß) and dl(oz,,ß) which are defined by (III—33).

The cosine based function we used has the characteristic that as

cz approaches ,8 the function has less penality (higher value) than

the absolute difference function which computes absolute difference

between two angles. Conversely, it gives more penality when the

angle difference is large. Thus, the angle quantization effect due to

the rectangular grid layout of the pixels will tend to be minimized.

In order to see the performance of the context edge operator when

employing different consistent functions. we use d' and dl' to replace

d and d1 for the edge consistent function. d' and dl' are defined as a

power of d and dl, respectively. Thus,

d'(¤,ß) = (d(¤.ß))'°°°”"
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and
d1’(¤.ß)

= (d1(¤<.ß))"°"’"

We apply the context operator on the image shown in Figure III-4(aj

by employing consistent functions with powers 0.3, 0.5, 1.0, 1.5, 2.0,

3.0, 4.0, and 5.0, respectively. All the parameter settings except the

power of the consistent function are keep at the same values as we

used to produce Figure III-4(c}. The edge results are shown in Figure

III—6.

It is found that when the power is small the detected edge lines

appear very thick and the connectivity of the edge lines is good.

On the other hand, as the power of the consistent function becomes

large, the detected edge lines appear thin and there are broken edge

lines. The best edge image among them is the output of the context

edge operator with power one. It is not difficult to explain this

phenomenon. When the power of the consistent function is small the

consistent function has high value in a wide range of angle difference.

Thus, the influence of the context information in the edge detection

process increases. Hence, the pixels adjacent to an edge pixel tend to

be labeled as an edge pixel. On the other hand, when the power of the

consistent function is large, the influence of the context information

decreases. Thus, the context edge operator can not fill some of the

gaps in the middle of edge lines.
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Finally, we apply the full context edge operator on an image

which is corrupted by a signal dependent noise. The signal dependent

noise image is generated by the function

SDN(f(r,c)) = N(f(r,c), @ + 10)

where N(cz, b) returns a normal random number with mean a and

standard deviation b. We apply the signal dependent noise on object

image 1. The noisy image is shown in Figure III-7(a}. We fit each 5

X 5 neighborhood of the noisy image by a bivariate cubic polynomial.

And then apply both the context-free second derivative zero-crossing

edge operator and the full context operator on the cubic polynomial

fitted image. The edge results are shown in Figure III-7(b)andIt

is easy to verify that the edge image produced by the full context

operator is better than the edge image produced by the context-free

operator.





IV. EDGE DETECTION USING WORLD CONSTRAINTS

Although it is possible to derive an edge detecting algorithm

and argue that it is mathmatically optimal under certain ideal image

models, the edge detecting problem for real scenes has not yet been

completely solved. The reason is that there is still no acceptable com-

plete model of the image intensity surface which corresponds to edges

in the real world scenes. People only select some particular image

intensity s11rface patterns (for example, step or ramp function) and

look for an edge operator which can optimally detect these particular

image intensity surface patterns. Thus, there is no guarantee that the

operator derived from these incomplete patterns can optimally iden-

tify all kinds of image intensity changes corresponding to edges of real

scenes. However, the edges in the real scene domain are not diflicult

to define and they are less ambiguous than the edges defined in the

image domain. The ambiguity with image edges is mainly caused by

the unknown factors involved in the many to one physics gowerning

image acquisition. ‘

Edges in a scene are the consequence of changes in some physical

properties of surfaces of the scene, such as illumination (shadows,

for example), geometry (orientation or depth) and reflectance. In

general, due to noise, occlusion or susceptibility to lighting changes

the images are degraded models of real world scenes. In order to
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handle these degraded data it is better if we use not only information

extracted from the image but also world constraints from scenes.

Thus, if an image intensity change around a pixel satislies all the edge

requirements we set on the shape of the greytone intensity surface

we will not identify it as an edge pixel unless it also satisiies the

requirements imposed by the world constraints. We have discussed in

chapter II a context dependent scheme which uses the world constraint

that real scene edges should be formed as continuous arcs instead of

as independent points. In this chapter, we introduce some more world

constraints which reflect the characteristics of real scene edges and

when used in the edge detection process can further improve the

performance of edge detection on degraded real images.

IV—1. Compensating for non-uniform lighting

In general, the illumination intensity on a scene is hardly uni-

form. Thus some areas of an image are illuminated more or less

than other areas. In a brighter area there may be some relatively

high contrast local neighborhoods which do not correspond to edges

of three dimensional surfaces. While, in a darker area there may be

some relatively low contrast local neighborhoods which correspond to
I

edges of surfaces, This implies that any gradient based edge detection

process which has no lighting compensation could not be expected in

general to have good results.
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In this section we introduce a dynamic compensation scheme

which can take care of the non-uniform lighting in an image and

have uniformly good results. The scheme is similar to the scheme

described by Barrow and Tenenbaum (1981). The scheme of Barrow

et.al. is employed to recover shape from shading and recover surface

albedo from shading while the scheme we disscuss in this section is

employed to compensate for the non-uniform lighting of edges. Be-

sides, the former only allows a change ofeither lighting or albedo while

the latter simultaneously allows for lighting, albedo, and orientation

changes. Figure IV-1 shows a simple model of image generation(see

Pentland(1984)). A distant point source illuminant at direction E, a

patch of surface with surface normal Ü, and a viewer indirectionWhere

1},117,17 are unit three dimensional vectors.

The image irradiance I can be generally given by

1 = pm? - E)R(1V, E,17)(117 · 17)* (117 - 1)

where p, called albedo, is the percentage of incident Hux which is

reflected, /\ is the amount of radiant flux incident upon the surface

and R(ÄI, is the reiiectance function which describes how much

of the reflected light leaves in each direction. The term

·describesthe amount of light incident on the surface, while the term
(]\-(

· I7)—1 describes the foreshortening that occurs during projection
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Figure IV-1. A simple model of image generation.
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into the image. A Lambertian reflectance function, an idealization of

a rough, matte surface, is defined as

R(N,E,V') = N-17

A surface with a Lambertian reflectance function scatters incident

light isotropically. We shall assume a Lambertian reflectance function.

Under these assumptions, the image irradiance I becomes

1=„i(N-E) (1V-2)

The assumption of a Lambertian reflectance function is not as restric-

tive as it might seem. Even very specular reflectance functions are

nearly Lambertian outside of the specular areas. For a Lambertian

surface any constant distribution of illumination is equivalent to a

single distant point source illuminant. This follows from application

of the mean value theorem. Thus, in the following we use the single

point source model for the derivations of the lighting compensation

scheme.

Edges in images arise from several very different kinds of scene

events: material refiectance changes, discontinuities of surface orien-

tation, occluding contours and cast shadows, etc. In the following, we

shall discuss a compensation technique which can take care of most

of the cases.
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A. Edges caused by material reflectance changes

Under the Lambertian reflectance model, Equation (IV-2) implies

dI Z d(p,\(]\-/:-1i)) (IV Z 3)

If we are examining a small edge region of an image, it is rea-

sonable to assume that the illumination and surface normals change

very little, and so we may treat A, ]\-I and I; as constants. Then (IV-3)

becomes

dI Z MN -
I,‘)dp

Assume we have lighting changes in this image. Thus, the radiant

fiux is not uniform around the whole image. lf the same kind of edge

region in a different position of the image is illuminated by a different

radiant fiux A'. Then it has a different irradiance change dI' and

dI' Z ,\’(I\-I - I,°)dp

Let ph be the albedo of the surface on that side of edge which has

higher image irradiance Ih or Ih,. Then

dIdI' _
,\'

—
,\rph(]\'f.j,‘)

—
Ih,

-
Ih 10rdI——=•=dI (]V—4)
Ih!
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Since the observed image intensity change is dl' , to recover the effect

of lighting change, we can apply equation(lV—4) to obtain dl. And

then use dl instead of dl' in the edge detection process.

B. Edges caused by discontinuity of surface orientations

In a small edge region of an image, the intensity change caused by

discontinuity of surface orientation can be described by the following

equation:

dl = 4(pA(N‘ - 1I)) = pA(dN - L')

Assume that the lighting is non-uniform in this image and the

same edge region is illuminated by a different radiant flux A'.

dl' = pA'(dN · and

dl _ „x _ Ap(N},·lÄ) _£
dI'

—
A'

—
,\rp(]§fh.f,’)

—
1},,

or dl = Ä =•= dl'
Ih!

where N}, is the surface normal of the surface which corresponds to

higher image irradiance I}, or 1},1. in one side of edge.

The same as in case (A) to compensate for the effect of lighting

change, we can apply equation (IV-4) to recover dl and use dl in the

edge detection process.
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C. Edges caused by occluding contours

The intensity change caused by occluding contours is given by

dI = d(pA(N' - 17))

: d(p>—(N · 19)) dp+ d(p«\(1V · 19)) 19))
*

dh;
dp dk dzv

+d(p«\(1*1_·19))
* di

dL
.. .. -• -· dA -• -• .. ..

= A(N - L)dp+ p(N · L); ·•· dr + pA(dN · L) + p«\(N · dL) (IV — 5)

Where r is the distance between the point source and the illuminanted

surface and «\ is a function of r which can be written as p\ = Thus

= and (IV-5) becomes

ÄQ —• -• -• -• dr —• —• —• —•

dI = -_;[(N · L)dp — 2p(N · L)? + p(dN · L) + p(N · dL)] (IV — 6)

Assume the image has non-uniform lighting and the same sort of edge

points are illuminated by a different radiant fiux «\'. Where A can be

expressed as Then

, AQ, -· -· -· -· dr -· -• -· -·dI = · L)dp — 2p(N · L)-; + p(dN · L) + p(N · dL)]

and

Q:Ä:dI'
N ,Vph(_7{fh . jh) Ih,

Ior dI = J- », dr
Ih!
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where p§,,]\Ihandl,‘h are the p,l\-I and
I,.

values of the surface corre-

sponds to one side of the edge region which has higher Ih or Ih, value.

To compensate for the effect of lighting change, equation (IV-4) can

be applied to recover dl.

In summary, to compensate for the effect of lighting change, for

a given image, we first estimate the expected Ih value from all the

image data and then estimate Ih, for each local neighborhood. We

multiply the intensity change of the local neighborhood dl' by the

factor to compensate for the effect of lighting changes. Since the

term {I} is different from neighborhood to neighborhood, we can also

call it dynamic compensation.

We next show how to estimate by means of the cubic facet
model on a local edge neighborhood. Let the gradient direction of the

center pixel of the neighborhood be 9 We wish to only consider points

(r,c) on the line in direction 9. Hence r = psin9 cmd c = pcos 9.

Then we have

A Blvl/J) = E*P3+E‘*P2+DP+k1

I A 2Mp) = ;·•=p +Bp+B

fé' (p) = Ap + B

and f5"(p) = A (IV ·· 7)
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where p is the distance along the direction 0 between (r,c) and

(0,0),A = 6[k·y sin 63
+ kg sing 0cos0 + kg sin0cos2 0 + klo cos3 0],

B = 2[k4 sinz 0 + kg, sin0cos 0 + kg cos2 0] and D = kg sin0 + kg cos 0.

Let pg = ä, then f(Q'(pg) = 0. Therefore pg is the estimated

edge position if pg is inside the edge neighborhood we have an edge

candidate. Let pl be the boundary of the neighborhood in the 0

direction so that the high intensity part of the surface profile starts

from the position pg along the direction 0 ends at pl. Without loss

of generality we assume pl > pg. Then we can estimate Ih by the

following rule

Ih Z
f,f§,‘ f6(p)dp Z

P1 — Po

ä*(p‘i—p3)+€*(pi’—·pä)+€*(pi—pä)+kl(pl—p¤)
P1 — Po

A 2 2= ·•= (pl +p¤) ·•= (pl +p0)+

!;‘*(Pf+P1P0+Pä)+£;**(P1+/>o)+kl (IV—8)

IV-2. Curvature constraint on the edge detection

In view of the edges in the real scenes, it is reasonable to expect

an edge to be on the boundary between two large enough scene sur-

faces which correspond to two significantly different image regions.

The small regions in an image are most probably caused by noise
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or correspond to minor features in a scene. Thus, the boundaries

of these small regions should not be identified as edges. This world

information can be formulated as a curvature constraint on the image

intensity profile taking in the gradient direction of the pixel under

consideration. The constraint is that the maximum curvature of the

profile in the neighborhood of an edge point should not be too high.

Because, if the curvature is high, it will most probably corresponding

to a noise point.

In order to incorporate this constraint into the edge detection

process, we introduce an image feature called normalized gradient

which is defined for each pixel position as the gradient value of the

pixel divided by the absolute value of the maximum curvature in the

neighborhood of this pixel. If the graytone intensity profile in the

gradient dirction of an image position has small normalized gradient,

it is hardly possible that this image position adjacents two large

enough image regions. Thus, this image position should not be an

edge pixel. Hence, the normalized gradient of image graytone intensity

surface around an edge point must not be too small and in this way

the curvature information can aid the edge detecting process.

We now show the way to obtain the maximum curvature of an

image position taking in the gradient direction by means of cubic

facet image model. Let f(r,c) be the surface function underlying the
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neighborhood of pixel centered at the image position (0,0). Let fg(p)

be the surface function along the gradient direction 0 and p be the

distance between (r,c) and (0,0). It is well known that the curvature

at any point of this one dimensional profile can be described by

|f"(p)| (TV — 9)
(1 + (f6(p)) )

Based on the cubic facet model we have

Ap + BlT¤6(P) = (TV — 10)
(1 + (;p2 + Bp+ D) )

where A, B, and D are defined in equation (IV—7). The maximal

curvature along the gradient direction appears at position po, such

that fß(p0) = 0. We compute the curvature kg(p) at position po.

That is

k6(p¤) = |Apo + Bl (TV — 11)

Since fß(p) = 2% =•= p2 + Bp + D = 0 we can solve for po which is the

smaller root. Thus,
—B + VB2 — 2ADp° Z _——_Ä_l—

and

lcg(p0) = B2 — 2AD

The gradient of the point at p = 0 is D. Thus the normalized gradient

is
DG„ = -— IV — 12

(/B2 — 2AD
( )



126

We now show how the normalized curvature constraint can aid in the

edge detection process by means of a simple one-dimensional example.

Let 5 points in 1-dimensional space be symmetric indexed by the set

R = {-2, -1, 0,1, 2}. From Haralick(1981) we know that the discrete

orthogonal polynominal set up to third order for the index set R is

{1,1*,1*2 - 2,1*3

-Theleast square error Htting of the discrete orthogonal polynom-

inal set on the intensity function I(r) which has domain R yields

2 a 17f(1*)=ao+a11*+a2(1* —2)+a,3(1* —?1*) (IV—13)

and the coeflicients ao, . . . , a3 can be obtained by summing over I(r)

by the weights of the following masks:

(1) ao mask

g * ] 1 1 1 1 1 ]

(2) al mask

* ] -2 -1 0 1 2 ]

(3) az mask

ä*] 2-1 -2 -1 2]

(4) ag mask
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-6 12 0 -12 6]

Since

f(1*) = 610 + 6111* + 612(1* — 2)+ 613(1* — F1)

we have

I 2f (1*) = (611 — -5-613) + 26121* + 36131* (IV — 14)

f”(1*) = 2613 + 66131* (IV — 15)

f"'(1) = 663 (IV — 16)

and according to (IV-11) the maximum curvature is

2 17
402 —1203(01By

solving f" (1*0) = 0 we have the position of second derivative zero

crossing as
1 az

= —— —-— IV — 1Tg
3

*Anideal step edge in 1-dimensional discrete space can be represented

as
_ a V 1* E {-2,-1,0}’{’) ‘ {1 v 1 6 {1,2}

where b > 61 and the value b-a is the contrast of the step edge.
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By applying the masks to I(r) we can obtain the least square

error discrete orthogonal polynomial iitting coefiicients for the ideal

step edge as follows
1

ao = g(3a. + 2b)

3al = E(b — a)

1ag = iZ(b
— a)

1

(L3Thus,the gradient at the center position is

1
0,)

and the maximum curvature is

1 7
k("ma=¤) - E + EÜ — al

Besides, the position of zero crossing of second derivative is

T _ 2
°
’ 7

Now let’s carry out the same procedure on a noise point speciiied by

_ a, ·£f r 96 1
J(T)—{b1Ifr=1

where b > a and the value b-a is the height of the noise point.

By applying the masks to J(r) we can obtain the least square error
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discrete orthogonal polynominal fitting coeflicients for ideal single

noise point as follows
1

GO = +1

G1 = ·— G)

1
az = H(G—1

G3 = ‘é(G

*—Thus,the gradient at the center position is

17 2
= G1 '— FG3 = — G)

and the maximum curvature is

1 4 al

Besides, the position of the zero crossing of the second derivative is

_ 1
Tg - ji

It is easy to find that the noise point has higher estimated gradient

value than that of the edge point. It is even worse that the noise

point has estimated second derivative zero crossing point closer to the

center when compared with that of the edge point. Therefore, we will

definitely identify the noise point as an edge when we try to identify

the edge point based on the context free criteria described in section
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II. Now we show how the curvature constraint can aid in this example.

By dividing the gradient by the curvature we can get a normalized

gradient. Since the curvature of a noise point is larger than the edge

point, the normalized gradient of the edge point (0.75) is now larger

than that of the noise point (0.57). Furthermore, since both gradient

and curvature values depend on the edge contrast (or noise height) b-

a. Thus, b—a will be cancelled out in the normalized gradient. Hence,

the normalized gradient can have uniform performance for different

edge contrasts.

IV—3. Experiment results

To demonstrate the performance of an edge detectors incorpo-

rating world constraints, We use the lighting cpmpensated cubic facet

based second derivative zero—crossing edge operator and examine its

behavior on one well structured simulated image and two real images.

We then apply the curvature constrained operator on two simulated

images. In all the experiments we compare the performance of the

new operator with the old operator to see how and in what degree

the world constraints can improve the operator.

The simulated image for the lighting compensation experiment

is a checkerboard of size 100 x 100 pixels with a check size of 20

x 20 pixels. In order to simulate an extreme of the non-uniform
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lighting condition. We have all the checks in the middle row of

the checkerboard greyscale intensity zero(darkest) and thus separate

the checkerboard into top portion and bottom portion. The dark

checks of the top portion have gray tone intensity 38 and the light

checks have gray tone intensity 88. The dark checks of the bottom

portion have gray tone intensity 75 and the light checks have gray

tone intensity 175. Thus, the bottom portion doubles the lighting of

the top portion. To this checkerboard, we add independent Gaussian

noise having mean zero and standard deviation 15 on the top portion

of the checkerboard and add zero mean independent Gaussian noise

of standard deviation 30 on the bottom portion of the checkerboard.

The noisy non-uniform lighting checkerboard is shown in Figure IV-

2{a}.

We first fit each 5 X 5 neighborhood of this image to a cubic

polynominal and then apply the second derivative zero-crossing edge

operator on this image. It is found that if the selected threshold value

for edge detection is low , the bottom portion of the edge image is

very noisy(see Figure IV-2( On the other hand, if the threshold

value is high, the top portion of the edge image becomes invisible (see

Figure IV-2(c}). There is no appropriate gradient threshold value

which can produce good edges on both top and bottom portions of

the checkerboard. We then incorporate the lighting compensation
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scheme with the same edge operator. The result (see Figure IV-2{d})

shows that this new operator can detect reasonably good edges on

both top and bottom portions of this image.

In order to see how this scheme is also useful on real images,

we apply both second derivative zero-crossing operator without and

with lighting compensation on a pair of stereo bulkhead images. (see

Figure IV-3{a) and Figure IV-4(a}). The image sizes are both 205 by

154 pixels.

It is easy to see that due to the specular reflection of the bulkhead

metal surface the lighting is non-uniform on both images. We first fit

each 7 X 7 neighborhood of both images by a cubic polynomial and

then apply the edge detectors on them. The edge detection result of

the without compensation operator is shown in Figure IV-3(b} and

Figure IV-4(b). It is found that for both images they are pretty noisy

in bright regions and on the other hand, have bad connectivity in the

dark regions. the result of the same edge operator with lighting com-

pensation are shown in Figure IV-3(c) and Figure IV-4(c},respectively.

It is easy to verify that on both images the new operator produces

less noise and better connectivity edge images compare with the old

one.

We are now ready to test the curvature constrained edge detec-

tion scheme. The first test image is a noisy bar image. The image
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size is 100 X 50 pixels. The dark bars have pixel intensity 0 and the

white bars have pixel intensity 175. We apply a 2 X 2 averaging on

this image to simulate ideal single pixel width edge lines. We then

add a zero mean Gaussian noise with standard deviation 40 on this

image. The noisy image is shown in Figure IV-5{a}.

On this image we fit each 5 X 5 neighborhood by a cubic poly-

nominal. and then apply second derivative zero crossing operators

without and with curvature constraint. The result edge images are

shown in Figure IV—5(b) and In order to quantitively see the

difference in performance of these two operators. we use the condi-

tional probability of assigned edge state
’edge’

given the true edge

states
’edge’

of an image, P(E'
|E’°‘),

and the conditional probability

of true edge states ’edge’ given assigned edge states ’edge’ of an image

P(E"‘|E' The adjustable parameters of each edge operator are cho-

sen to equalize these two conditional probabilities. The quality of the

edge operator is determined by the value of P(E'|E"‘) = P(E*|E'

Although this performance measure is not in general applicable on all

kinds of images, it is well suitful for this simulated bar image. the

performance in terms of P(E'|E"‘) and P(E*|E') are shown in Table

IV-1. It lists the test results of the edge operator with and without

curvature constraint. The results show that the conditional proba-

bilities are improved from 68 percent to 75 percent by the curvature
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constraint scheme.

Finally, we apply the with and without curvature constrained

edge operators on a second image consisting of concentric light rings(

grey level 140) on a dark background(grey level 115). This image is

generted as 512 by 512 image, with a central dark circle of radius 64,

surrounded by three bright rings of width 32, these being separated

by two dark rings of the same width, with a dark surround. The

decision as to whether a pixel should be light or dark was based on

its Euclidean distance from the center of the image. Then this image

was reduced to size 128 by 128, by replacing each 4 by 4 block with a

single pixel having the average grey level of the block. The image is

the same as the test image used by Kitchen and Rosenfeld(1981).(see

Figure IV-6 {a))

We add a zero mean Gaussia.n noise with standard deviation 10

on this image (Thus, following Pratt(1978)’s convention the signal-

to-noise ratio is 6.25). Then we lit this image by a 5 X 5 cubic facet

model. The iitted image is applied by the edge operators with and

without curvature constraint. The resulting edge images are shown in

Figure IV-6(b) and (c}. It can be easily verified by a visual evaluation

that the one with curvature constraint has better result.



142

Table IV-1. P(E' |E"") and
P(E’°‘|E')

values of the second directional

derivative edge operator with and without curvature constraint.

prob \ operator without constraint with constraint

P(E'|E"‘) 0.6950 0.7500
P(E’°‘

|E'} 0.6814 0.7425





V. A GENERAL EDGE EVALUATOR

V-1. Introduction

It is of interest to evaluate the quality of an edge detector, both

to compare one detector scheme with another, and also to study the

behavior of a given detector under different conditions and parameter

settings. Several authors have proposed techniques for edge evaluation

(Fram and Deutsch, 1974; ,Abdou and Pratt, 1979; Peli and Malah,

1982; and Kitchen and Rosenfeld ,1981).

Three basic failings in all of the other above edge evaluation

schemes were noted by Kitchen and Rosenfeld. With the exception

of Shaw, they all required prior knowledge of the true edge position.

While this provides the opportunity to make definite statements con-

cerning spatial precision, similar techniques are not applicable to real

world images where the true edge positions are unknown. Another

failing, as noted by Peli and Malah, is the general lack of a continu-

ity measure. Edges that are fragmented but consistently displaced

from the true edge, receive similar scores from Abdou and Pratt as

perfectly continuous but similarly displaced edges. Finally, none of

these schemes use consistency in the direction of the detected edges

in their evaluation scores. Only Shaw notes edge directions, but only

to compare the changes in direction of edge segments between noisy

144
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and noise-free images. Ideally the edge gradient direction should be

everywhere perpendicular to the edge and in a manner consistent with

adjacent edge pixels.

To address these criticisms and the undesirability of qualitative

human intervention, Kitchen and Rosenfeld developed a fully auto-

matic edge evaluation technique based on the idea of local edge co-

herence. The idea of local edge coherence is founded on the premise

that ideal edge features should be locally line like. Edge coherence

has, therefore, two components: edge pixels should be adjacent and

connected. They should be thin like a line and ideally one pixel wide.

Kitchen and Rosenfeld chose to incorporate these two components

into one edge evaluation scheme. The first component, continuation

(C), measures the degree to which adjacent pixels agree in their de-

termination of the local edge direction. The thinness component (T)

simply measures the local edge density. No knowledge of ’true’ edge

position is ever required. Both components can range in value 0

(poor) to 1 (perfect).

C and T are then combined into a convex combination evaluation

measure for the center pixel of every 3X3 pixel neighborhood in the

threshold edge-filtered image:

E = ·7C' + (1 — ·7)T



146

where 7(< 1) is a weighting coeflicient adjusted to give E a suitable

balance between thinness and coherence. The details of calculating C

and T are clearly presented in Rosenfeld (1981).

One drawback of the Kitchen-Rosenfeld approach is that it has

an inherent bias against curved edges. This is a result of the premise

that ideal edge features should be locally line like. Besides, it can

only take care of 3X3 neighborhood.

The thinness requirement proposed by Kitchen and Rosenfeld

only allow edge lines of a single pixel width. This is apparently not

true for the ideal step edges. An ideal step edge may have pixels

on both sides of the edge. This is the reason why in their paper

they chose 7 = 0.8 (giving small weight to the thinness measure) to

perform the experiments. And all the test images they used have only

ideal ramp edges and no ideal step edges.

Furthermore, as mentioned by the authors, Kitchen & Rosen-

feld’s measure disregards the correct location of the edges. Thus,

an edge detector that systematically mislocated edged will receive an

evaluation measure equal to that of a detector which perfectly lo-

cated edges. Besides, the approach is basically ad hoc. No underlying

theories had been described.

In this chapter, we formulate the edge evaluation problem as
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a Bayesian decision problem and show that the edge evaluation of

Kitchen and Rosenfeld is just a special solution to this problem. Fi-

nally, a general evaluator which can deal with any size of neighborhood

is proposed. The edge detector can also measure the correctness of

edge position. This is the first time a general edge position correctness

measure has been proposed.

V-2. Edge coherence measure

In order to make decision about which edge operator performs

best, the expected score of each edge operator must be evaluated.

Let 6; and O; be the observed edge state and edge direction at pixel

i detected by a given edge operator; I is the set of the entire image;

A = E I cmd Ej =' E'}; I1- = I — A; E and O are the observed

edge state and edge direction of the whole image. And 6f and Of are

the true edge state and true edge direction at pixel i. S(6f, Of , 6; =

{$1, O; : 1] E is the score obtained when 6; = ,n;)°jg;;]c, and O; are

observed edge direction and the true edge data are 6f and Of , for all

·£ E ä. The expected score is formulated as

i E I)P(6f,Of :1I€ I|E,O)

iE]

= S(6f,Of,6; =' E',O; :1IE A)P(6f,Of :1] E A|E, O)

66.4
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+ $(6:,0:,6; =' N',0, : II E Ä)P(6:,9: : II E Ä|E,9)] (V — 1)
sf ,6:

SEX

An edge operator which has highest expected score for a given image

is considered as the best operator for this image.

The score function we use here computes the score realized when

the observed edge data is 6,, 0, and the true edge data is 6:, 9: as the

sum of the scores realized on a pixel by pixel basis. That is,

$(6:,0:,6;,0, :1I€ I)

= E $(6:,0;,6,,0,) (V - 2)‘§g?
In the case that the score function is defined by (V-2), (V-1) becomes

Tä[ $(6:,0:,6; =' E',0,)P(6:,0:|E,0)

?g?
+ $(6:,0:,6, =' N',9,)P(6:,0:|E,0)] (V — 3)

For edge detection it is reasonable to use a zero-one score function

for each pixel in (V-3). When the pixel’s observed edge data and true

edge data are identical, the score is one. If they are different, the

score is zero. Then (V-3) becomes

1 ¤•= I I
*m[Z1>(g, = E,0: =0,|E,9)

66.4
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+ZP(6; =' N’,0: =0,|E',0)] (V -4)
je]

Two conditional independence assumptions are applied to make the

above probability P(6: = 6,,0: = 0,|E, 0) only depend on the local

neighborhood of i. The first assumption amounts to limited influence.

It says that the true edge data at a pixel i only influences the observed

edge data for pixels in the neighborhood of i and do not influences the

observed edge data or pixels outside the neighborhood of i. Hence

P(@;„9k=k¢N(¢)I¢¥„9F) =P(5k,9;„=k¢N(¢)) (V—6)

The second conditional independance assumption amounts to noise

independence. It states that given the true edge data at pixel i, the

probability of jointly observing edge data for the neighborhood of i,

6,, 0, : j E N and for the mutually exclusive image of N(i), 6;,, 0;, :

lc ¢ N is equal to the conditional probability of 6,,0, : j E N

given 6:, 0: times the conditional probability of 6;,, 0;, : k §E N given

6:, 0: :

P(€,,Ü, zj E N(7:);€k,Ü}, Z lc ¢ N(i)|€:,Ü:) =

P(81„6j =5 G N(¢)|6Z‘,9I’)P(€;„9;„ = k G N(¢)I@Z‘„9?) (V — 6)

Putting together the two conditional independence assumptions and

after some mathemtical manipulations we have

P(6: = 6;,0: = 0,|E, 0) =
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:6;,9: =Ü;|€j,Üj ZjEN('Ä)) (V-7)

Thus (V-4) becomes

1
P(6: =' E',9: = 9;|6,,9, zjEV!,6.,

+ZP(6: ='N',9:=9j|6;,,9k:lc€N(j))] (V—8)

16X

The probability P(6: = 6;,9: = 9;|6J·,9j : j E of (V-8) is

the conditional probability of 6: = 6; and the true edge direction is

the observed edge direction given all the edge context of the neigh-

borhood of i. We organize the neighborhood context of i in a way

similar to what we defined in the previous chapter. The definitions of

Z;, U;, L;, U: and L: are similar to their definations in that chapter.

The only difference is that we are now only concerning with the local

neighborhood of i not the entire image. We define

qz.(@1* ,91*) =

gggjP(€$,9F|¢6,96 =5€T) (V—9)

where T is the best local row monotonically increasing path in the

local neighborhood taking the direction 9: through i. Then (V-8)

becomes
1

* *Gi = 96)
661
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1
* *

•

= —2:maxP(6:; :6,,0; =0,|6j,0j :3 ET) (V—10)
III _ TEZ1•EI

By the definition of the conditional probability

qz.(@E’ = ¢119E’ = 91)

= 6,,0;* = 0,|6,,0j :3 E T) =

11 6 T|6,,0, 1 1 6 T) =
¢j,0j
der-

1 6 T|1;;,6;; 1 11 6 T)
1· 1

561-

P(6}*„,0,"; : Ic E T)
* P(6;,0; : l E T)

(V — 11)

where T- designates the set of all pixels in T but pixel i. By making

similar assumptions as we made on chapter II and from Appendix 3,

(V-11) can be decomposed into

})(€j,ÜjIEi,Ü¥)ws? =@«»9ä‘ =9·) = msi E H ———+%T€Z· 1;,.; ET P(@1191)
.‘iET'

# H
¤(62‘19I’1€§‘19§’) (V—12)

(¢„1)€R(T)

Since Z, can be decomposed as the joint of U, and L,, this results in

qZ·<€*’ = €‘·"¥‘ = ”9=1
"1 1 "1

5ET; JET;
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Üilgllv

H ¤(¤Z‘602“:€§:0§‘) (V—13)
(¢„i)€R(T¤)

Rearranging (V-13) we can group all expressions involving T1 together

and all expressions involving T2 together and we obtain

<1Z:(@Ü = Eivgf = 06)

6 Ei =6;,06 =0; =•=g 6 Ei =6-,06 =0; V—14v( ) L( 6 )( )
where

gU6(6: = 6;,9: = 9;) T)

:5 6 T|6,,6, :5 6 T)
Oj,¢j
567-

P(€5:05I$§:0§)
=

maxTEU;ier-

·•=
H ¤(@¥„93‘:$§:9§*) (V—15)

(¢:.i)€R(T)

and the definition of gL6 = 6;, 067 = 0;), 6;, 0f = 0;) and

6;, 0§' = 0;) are similar.
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The edge probability P(aj, 0j) can be computed as

= P(6j,0j|6;T =' E',0;')P(0;?|6;? =' E')P(6; =' E’)d0;?
5

+Ä* P(6j,0j|6;F
=’

N,,Ü;)P(Ü;|€;
=’

N’)P(6;F
=’

N')d6;‘ (V — 16)

We assume that there is no favorite edge direction for either edge or

no-edge pixel. Thus

1
P(Ü;|€;Y =' E') = P(Ü;|€;Y =I N') = ä

(V — 17)

and (V-16) becomes

1
* * * *

5

1
* * * *+5 AV

P(6j,9j|6j =' N',0j)P(6j =' N’)d0j (V — 18)

An implicit assumption has been made in Kitchen and Rosenfeld’s

approcah. The assumption is that for the pixels which have observed

edge state ’edge’, the probability of the true edge state ’edge’ is

approximately 1. Hence (V-18) becomes

P(€j =' ECM =
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l P ——'E'0-*—'E'0*d0* V 19277, 07 (EJ- ¤Jl€_·i" vj) j ( " )
6

Although the assumption of observed edge implying true edge is not

exactly true, this is the best value we can give for edge detector

evaluation. Because it is not feasible to give some prior value of how

good certain edge detector is and then evaluate how good the operator

is based on the prior value. Otherwise, the evaluation will be biased.

Since the edge angle probability is a function of the true edge angle

0; and it has maximum value when 0; = 0,. Thus, it is convenient to

pick up a function for the probability. such that

/
P(6, =' E',0,|6; =' E',0;)d0;”§

= 21rP(6, =' E',0,|E:;Y =' E',0;‘ = 0,)

Hence,(V-19) becomes

P(6, =' E',0,) = P(6, =' E',0,|6;Y =' E",0; = 0,)

Thus
P(c-:, =' E’,0,|c·:7'Y

=’ E’,0;‘
= 0,)

= 1
P(6, =' E’,0,)

Similarly, we can have

P(€5
:1 (V—20)P(6,

=’
N',0,)

Therefore
9m(€6 = Eißgi = 96) = 7%%
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H a.(6: = 6;,9: = 9;,6; = 6,,9: = 9,) (V — 22)
(¢.1)6R(T>

Thus, we can use the observed edge data of both the center pixel and

its neighborhood to estimate the local edge coherence instead of using

the true edge data which are not in general available.

It is noted that Kitchen and Rosenfeld directly used observed

edge data for edge detector evaluation. While, they did not mention

in their paper about the assumptions behind it. It is also noted that

Kitchen and Rosenfeld’s scheme considers only local edge coherence

of the pixels which have observed edge state = ’edge’ and ignore the

pixels which have observed edge state = ’no-edge’. This is the reason

why they need the thinness measure to have a balance between the

continuation measure and the number of edge pixels. Since if they

used the continuation measure alone ( 7 = 1.0 ) the edge score will

reach a maximum value on an edge image which selects quite a good

set of edge pixels and these edges are several pixels thick. However,

when they used the thinness measure it will bias against ideal step

edges. Thus, some improvement need to be done by either considering

the coherence of the non-edge pixels and ignore the thinness measure

or using an improved version of the thinness measure which does not

bias against ideal step edge.

Since the constraints set on the coherence between local non-edge
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pixels is much weaker than the coherence constraints set on the edge

direction relationship between local edge pixels. Thus, unless for a

particular set of images the non-edge coherence is very strong and

we know this coherence very well, we can not expect to have a fair

edge operator evaluation based on the local non-edge coherence. In

the following derivations we consider only the local coherence of edge

pixels. However, it is easy to extend the derivations to include all the

non-edge coherence in the edge evaluation for certain edge images.

The thinness measure we used which will be discribed in the next

section is much more robust than what Kitchen and Rosenfeld used.

Putting (V-20) and (V-21) into (V—14) we have

<1z,(SZ‘ = S6,0I = 06) =

9v,(S? = S60? = 06)* 91,, (SF = S6, 0I = 06)

= ,
a(6; = 6;,0; = 0,,6; = 6,,0; = 0,)

(•,1)€R(T1)

*
G„(E.‘: = 5;, = 0;,6; = 6,, Ü; = Ü,) (V — 22)

(¢,J)€R(T¤)

By a similar derivation as in chapter IV. Both gg, = 6,, 0; = 0;)

and gL, = 6;,0; = 0;) can be obtained by a dynamic program-

ming technique carried out in the local neighborhood around pixel i.

Assume the row column coordinate of i is (r,c), then

gv,. (SI C, 0IC) = mS¤<{
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9U,,„-1 ($:,,-1 = €r,S—1¤0:,c—1 = 0r,S—1)* a(€:,c—1v 9:,6-11 EIC1 SIS),

6:cs 9:c)1

hv;_,_,(SI-1,, = S,—1,,,9I-1,, = 9,-1,,)* ¤(SI-1,,, 9I-1,,, SIS,9IS),

($:-1,6+1 = €#°—l,¢+l>0:—1,c+1 = 0v‘—l,¢+l)

*"·($:—1,,+1= 0:—1,,+1=€:C10:C)} (V " 23)

and

(SIS, 9IS),

9IS)} (V — 24)

Similarly, we have

01,,, (SIS, SIS)

9,+1,,+1)

*"(€:+1,,+110I+1,,+1, $:9, SIS),

9,+1,,) ·•· ¤(SI+1,„,9I+1,.,, SIS, 9IS),
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*"(€:+1,c—1> 0:+1,c—1> €:c> 9:c)} (V “ 25)

and

hL;c (6:6, 0:6) = max{

1)*

(V " 26)

The scheme of Kitchen and Rosenfeld is just a special case of this

scheme when the neighborhood size is selected as 3 X 3 and a.(6f
=’

E’,0§‘ = 0;,6; =' E',0; = 0,-) is defined as

vrK vr

where
vr — oz — ,0

vr

and K is the adjacent edge position index with respect to the center

pixel according to the following order:

3 2 1
4 0 0
5 6 7

We follow the function defined in chapter II. Due to the low cumulative

curvature requirement of an edge line in a small neighborhood, it is

reasonable to assume that a(6§,0§,6’{,0f) has maximal value when

the edge direction at the immediate adjacent neighbor agrees with
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that at the center. And the expected neighbor direction based on this

relative position agrees with the neighbor direction. To satisfy these

requirements, we define

a(6(°§ =' cdge',0§,6°{ =' edge', 0;) =

ÜI) + d1(9'6, ¥) (V _ 27)
2

where d and dl are defined as

cos a — ,3 + 1

2 — + 1 (V _ 28,
and M is the adjacent edge position index with respect to the center

pixel according to the following order

5 4 3
6 0 2
7 8 1

The center position is the position of pixel 1, different position of

pixel 0 corresponds to different M values.

The range of function d and dl is the closed interval [ 0, 1 The

reason to select this nonlinear function for edge consistent function is

that as a approaches ß the function has less penality (higher value)

than the absolute difference function which computes absolute differ-

ence between two angles. Conversely, it gives more penality when the
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angle difference is large. Thus the angle quantization effect due to

the rectangular grid layout of the pixels will tend to be minimized.

V-3. Edge correctness and thinning measures

As we mentioned before Kitchen and Rosenfeld’s edge evaluator

disregards the correct location of the edges. An edge detector that

systematically mislocated edges will receive an evaluation measure

equal to that of a detector which perfectly locates edges. To resolve

this problem, a new scheme is proposed in this section. This scheme

considers both the observe edge data and the original greyscale image.

The idea is that an edge point is considered as having been correctly

detected if the mean of the image region to the left (with respect

to edge direction ) of the point is quite different from the mean of

the image region to the right of the point. And the left and right

regions are by themselves homogeneous. We obtained the means and

variances from the greyscale image which has been processed by the

given edge detector. Suppose the left region and right region of an

edge pixel have greyscale means and variances (;1.1,0¥) and (pg, 0§),

respectively. Then the features ;1. and 0 should satisfy the following

criterion

max(0¥,0g) < (V — 29)

where K is a selected constant represents the prior knowledge about
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the minimum signal to noise ratio of any homogeneous regions of the

given image. Thus, an edge point should have the difference between

its left region mean and right region mean significantly greater than

the maximum possible difference caused by noise. As we define in

(V-9) and (V-22)

91*

=5 E T)

= gyi = 6;, = *
gL‘ = 6;, =

a(6; = 6;, 0; = 0;,6; = 6;, 0; = 0;)

0;,6; = 6;,0; = 0;)

Let T be the best row monotonically increasing path starting from an

upper boundary and ending at a lower boundary of the neighborhood.

Let T„, and T) be the best row monotonically increasing paths ending

at pixel i and starting at pixel i, respectively. Then T = T,; U Öl} Let

1*,;,,;;,; = min{r ; V (r,c) E T„}

and

Cum;„ = min{c ; V (r,„„;„,c) E T„}

then b„ = (1*,;,,,;,;,6;;,,;;,;) E T„ which is the starting point of the best

path T„. Similarly, we can define

r;„,„ = max{·r ; V (r, c) E Öl;}
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clmaa: = max{¤ ; V (mmm c) E 7}}

and bl = (1-l,,,,,,,,cl„,,,,,) E Tl which is the ending point of the best

path Sl}.

Let the row column coordinate of the pixel i be (1,, cl). We define

vectors ·ü.° and
l.

as

E = bu " = (Tumin - Tbcumin " ci)

f: bl ’ = (Tlmaa: " Tiyclmax '“ Ci) " 30)

Let 0,, be the angle between 'l-1: and the column axis We define the

set T,} as

{(1- + 1,c)|V(1-,c)
€ T,,} if O° S 0,, S 22.5°

{(1* + 1,c + 1)|V(1·, c) E T,,} if 22.5° < 0,, S 67.5°
T,} = {(1*,c + 1)|‘v’(1‘,c) E T,,} if 67.5° < 0,, S 112.5°

{(1- — 1,c + 1)|V(1-, c) E T,,} if 112.5° < 0,, S 157.5°
{(1- — 1,c)|V(1-,c) E 157.5° < 0,, S 180°

(V — 31)

as shown in Figure V-1. And

{(1- + 1,c)|V(1-,c) G T,}} if 0° S 0,, S 22.5°
{(1- + 1,c + 1)|V(1-, c) E T3} if 22.5° < 0,, S 67.5°

T3 = {(’I',C + 1)|V(1-, c) E TQ} if 67.5° < 0,, S 112.5°
{(1- — 1,c + 1)|V(1-,c) E T3} if 112.5° < 0,, S 157.5°

{(1- — 1,c)|V(1-,c)
€ Ti} if 157.5° < 0,, S 180°

The definitions of T3, T3, . . . are similar.
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112.5° 57_5o

157.5G(r“l»C+1)1

1
E1800 (r-1,c) (1-+ 1,c) oo

Figure V—1. Shows how the set Tf+1 is constructed based on the

angle 9,,.
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In summary, let T5 = T,,. then

{(1* + 1,6)|V(1*, 6) 6 T5} 1Äf 0° S 0,, S 22.5°
{(1* + 1,6 + 1)|V(1*, 6) 6 T5} if 22.5° < 0,, S 67.5°

T5"'1 = {(1*,6 + 1)|\/(1*,6) 6 T5} if 67.5° < 0,, S 112.5°
{(1* — 1,6 + 1)|V(1*, 6) 6 T5} if 112.5° < 0,, S 157.5°

{(1* — 1,6)|\7’(1*, c) 6 T5} if 157.5° < 0,, S 180°
(V — 32)

where K 6 integer I. Let 0; be the angle between
I,

and the column

axis E and let T10 = T). Then we can define TT+1 as

{(1* — 1,6)|V(1*, 6) 6 TT} if 0° 2 0; 2 —22.5°
{(1* — 1,6 + 1)|V(1*,c) 6 TT} if — 22.5° > 0; 2 —67.5°

TT+1 = {(1*,6 + 1)|V(1*, 6) 6 TT} if — 67.5° > 0; 2 —112.5°
{(1* + 1,c + 1)|\/(1*, 6) 6 TT} if — 112.5° > 0; 2 —157.5°

{(1* + 1, c)|V(1*, 6) 6 TT} if — 157.5° > 0; 2 ——180°
(V — 33)

where K 6 integer I. Figure V-2 shows how the set TT+1 is con-

structed.

From (V-32), we have

{(1* — 1,c)|V(1*,c) 6 T5} if 0° S 0,, S 22.5°
{(1* —— 1,6 — 1)|\/(1*, 6) 6 T5} if 22.5° < 0,, S 67.5°T5“1

= {(1*,6 — 1)|\/(1*, 6) 6 T5} if 67.5° < 0,, S 112.5°
{(1* + 1,6 — 1)|\/(1*, 6) 6 T5} if 112.5° < 0,, S 157.5°

{(1* + 1,c)|\/(1*, 6) 6 T5} if 157.5° < 0,, S 180°
(V — 34)

Similarly, from (V-33), we have

{(1 + 1,c)|v(1,c) 6 1)*} if 0** 2 0, 2 -22.6**
{(1* + 1,6 — 1)|V(1*, 6) 6 TT} if —— 22.5° > 0; 2 —67.5°TT“1

= {(1*,6 — 1)|V(1*,c) 6 TT} 1If — 67.5° > 0; 2 —112.5°
{(1* — 1,6 — 1)|V(1*,c) 6 TT} if — 112.5° > 0; Z —157.5°

{(1* —- 1,c)|V(1*, 6) 6 TT} if — 157.5° > 0; 2 —180°
(V — 35)
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—180° · Q
Ä

(r·1,c) (I‘+1,c) ~ 0°

‘(r-1,c—l) Q
Q ·(r+1,c-1) Q Q

(r,c-1)A.~.Q
Q ~ Q Ä . ' Q

Q
Ä

—112.5° Q E Q . Q Ä—67.5° Q Q

Figure V-2. Shows how the set Tlk+1 is constructed based on the

angle 9;.



166

Let Tk = T5 U TE, lc 6 I. For a selected width d which is smaller than

or equal to the minimum width of any meaniful region of the given

image, the pixels belong to the set UL, Tf and U;l_1 T‘
construct

the right and the left regions of the pixel i. If the observed edge state

of i is ’edge’, we will compute the means pl, p2 and variances 0%, 0% of

the right and left regions, respectively. The location accuracy measure

la of the observed edge point can then be defined as

otherwzse

Such that if the square difference of the region means are larger than

the given signal to noise ratio times the maximum of the standard

deviation of the regions the la value will be one. Otherwise it will be

less than one.

Let |N;| and |N,| designate the number of pixels immediately

adjacent to the pixels belonging to the local optimal edge path T and

which have observed edge state ’edge’ on the left side and the right

side of the optimal path T. Thus,

N; = {1I|·i 6
T—1

and 6; =' edge'}

N, = 6 T1 and 6; =' edgc'}

and |N;|, |N,| represents the number of elements belong to the set N;

and N,. Let |T1|, |T"1| represents the number of elements belong to

the set T1 and
T’1. Figure V-3 shows the sets N;,N,, T1, and T“1.
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T—1 Tl

I-_ °°' .
I-- I--

:E : Y
IE E:
IE E:

L -
•_ _

L"? 2__
:_·*§ E :__

{__ EZ__
IE {
iE ;
iE : f

IN1] = 9 |T‘| = 12

IN,] = 5 |T“‘| = 12

Figure V-3. shows the sets N1, N,,T1, and T"1.
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A generalize thinness measure T which is applicable for any size

of neighborhood is defined as:

N N,T = 1 - (V - 37)
or

2 =•= min N N,T=T-—-—| '} (V-33)
depends on whether we allow the existence of ideal step edge (two

pixel width) or not (only a.llow single pixel width). We use equation

(V-38} if we allow the existence of the ideal step edge. Otherwise, we

use equation (V-37).

The edge score based on local edge coherence (not include edge

position correctness) can be a combination of the continuation mea-

sure C, obtained from equation {V—10) and the thinness measure T.

Kitchen and Rosenfeld used a linear combination of the two measures

and had the continuation be weight four times as the thinness weight.

We propose a more robust way for the combination between C and

T. The combination we defined is the same as what they used. Thus

E = v(T)C + (1 — ·1(T))T

However, the 7 we used is a function of T. And it is defined as:

0.2 if 12T20.85
7(T) = 0.25 0.85 > T 2 0.75 (V — 39)

0.3 if 0.75 > T 2 0.65



169

Hence,we do not allow any edge image to have T < 0.65. We claim

that for those edge images which have T < 0.65 the evaluation score is

meaningless and the only comment we can make is they are bad edge

images because once T is small the image has quite a lot redundant

edges. And the edge evaluation scheme is not reliable for this kind of

image. In Kitchen and Rosenfeld’s experiment for edge detection they

did not set the lower limit on T. Therefore, it happens that for the

low SNR test images the edge evaluation scheme they used will either

have little difference between the images of different SNR values or

the edge score may be higher for some noisy images and have lower

edge score for the images which have higher SNR.

V-4. Experimental results

We present some experiments to understand the performance of

the general edge evaluator. To permit a comparison, we have tried to

make our experimental setup as similar as possible to that of Kitchen

and Rosenfeld. We used similar edge detection schemes and the same

noise model and test images. However we use a 5 X 5 window for the

edge evaluation instead of a 3 X 3 window.

Three well known edge detectors are used in the experiments.

They are the Kirsch operator, the 3 X 3 Sobel operator and Neviatia’s

compass operator (see Neviatia and Babu (1980)). Two test images
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were used. The first one is an image of 64 X 64 pixels. It consisted

of a left panel with grey level 115, a right panel with grey level

140, and a single central column of intermediate grey level 128. We

call this image the ”vertical edge" image. It is the same as the one

used by both Abdou 86 Pratt and Kitchen 86 Rosenfeld. The second

image consisting of concentric light rings (grey level 140) on a dark

background (grey level 115). This image was originally generated as

a 512 by 512 image with a central dark circle of radius 64, surrounded

by three bright rings of width 32, these being separated by two dark

rings of the same width, with a dark surround. The decision as to

whether a pixel should be light or dark is based on its Euclidean

distance from the center of the image. Then this image was reduced

to size 128 by 128, by replacing each 4 by 4 block with a single pixel

having the average grey level of the block. This image is the same as

one of the test image used by Kitchen and Rosenfeld. From now on

we call this image the ”rings” image.

To study the effects of noise, independent zero—mean Gaussian

noise was added to each of the test images at seven different signal

to noise ratios: 1, 2, 5, 10, 20, 50, and 100. The signal-to-noise ratio

(SNR) is defined as
2

SNR
=whereh is the edge constrast ( in this case 25 ), and 0 is the standard
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deviation of the noise, adjusted to give the selected values of SNR.

Figure V-4 and V-5 shows these two test images and their noisy

images with different SNR.

In the experiment, we applied each operator to the test images

at the seven different signal-to-noise ratios, and at each noise level

the threshold was adjusted to maximize the edge evaluation score E.

The local neighborhood size for edge evaluation is selected as 5 X

5. The size is larger than Kitchen and Rosenfeld’s scheme which can

only deal with 3 X 3 neighborhood. Figures V-6 and V-7 show the

evaluation result for different edge operators.

For the vertical edge test image we allow only single pixel width

edge and the edge evaluator is set up in a way that it performs the

evaluation based on this single edge assumption. The results based

on the local edge coherence measure give compass edge operator high

score over the other two operators when the noise level is not too high.

However, once noise is very high the compass operator becomes the

worst operator on this image. This is due to the fact that the Nevitia’s

compass edge detection scheme performs not only edge detection but

also edge line linking. Thus, when the image is not too noisy the

edge linking process can improve the edge image. However, if the

image is too noisy, the edge linking process tends to link wrong edge

lines and the edge image becomes even worse than the raw edge
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Fi ure V-6. The ed e coherence score for different ed e 0 erators.E E P

The test image is the vertical edge image. where 1: for Sobel operator

2: for Kirsch operator and 3: for Nevitia’s compass operator.
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Figure V-7. The edge coherence score for different edge operators.

The test image is the ring image. where 1: for Sobel operator 2: for

Kirsch operator and 3: for Nevitia’s compass operator.
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image. The Kirsch operator has better performance compared with

the Sobel operator when the SNR is higher than 10. Its performance

becomes worse than the Sobel operator when the SNR is greater than

10. It is noted that the performance score curves of these operators

for the low SNR images are not as flat as the curves of Kitchen and

Rosenfeld’s evaluator(see Figure V-6). This is because that we have

a lower bound for the thinness measure T. The edge images of these

operators on the vertical edge image are shown in Figures V-8, V-9

and V—10,respectively. It is noted that a visual evaluation of these

edge images is consistent with what we obtained quantitively based

on the evaluator.

The result of the edge position correctness measure for different

operators are listed in Tables V—1 to V-3. The table shows that for

this particular image the edge correctness measure is consistent with

the edge coherence measure. Any combination of them will yield

almost equivalent evaluation score of each operator.

For the rings test image we allow the existence of double pixel

width edge and the edge evaluator is set up to accept double width

edge lines when performing the evaluation . The results based on the

local edge coherence measure on this image give different evaluations

for each operator compared with the evaluation based on the vertical

edge images. On this image the Sobel operator has uniformly best
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Table V-1. The edge accuracy measure for the Sobel edge operator

on the vertical edge image.

SNR \ result k input accuracy

100 5 0.9771

50 5 0.9243

20 3 0.7612

10 2 0.4897

05 1 0.4157
l

02 1 0.3761

01 1 0.3550

SNR \result k input accuracy

100 5 0.9754

50 5 0.8993

20 3 0.7913

10 2 0.4532

05 1 0.4027

02 1 0.3562

01 1 0.3378
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Table V-3. The edge accuracy measure for the compass edge operator

on the vertical edge image.

SNR \result k input accuracy

100 5 1.0000

50 5 0.9859

20 3 0.9310

10 2 0.8586

05 1 0.7032

02 1 0.4837

01 1 0.4247
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score. The Nevatia’s compass operator has worst score and the Kirsch

operator has performance in between. The reason that the compass

operator has low evaluation score on this image is partially because

that the edge linking process provided by the compass operator always

try to detect single width edge lines although they are not there.

Besides, the edge direction between any adjacent edge points are not

exactly equivalent. Thus, the edge linking process on the rings image

can not have as good performance as it is applied on the vertical edge

image. It is also noted that the performance score curves of these

operators for the low SNR images are not as flat as the curves of

Kitchen and Rosenfeld’s evaluator. This is because that we have set

the lower bound on the thinness measure T. The edge images of these

operators on the rings image are shown in Figures V-11, V-12 and

V-13.

The result of edge position correctness measure for different oper-

ators are listed in Tables V-4 to V-6. The tables show that if we were

to combine the edge correctness measure with the edge corherence

measure, we will increase the score of the compass operator. This is

because that the performance of the compass operator is not really

as bad as it appears in the edge coherence score. The reason why it

appears bad in the edge coherence measure is because this operator

tries to detect single edge line while double edge lines are acceptable









186

Table V—4. The edge accuracy measure for the Sobel edge operator

on the rings image.

SNR \ result k input accuracy

100 5 0.9073

50 5 0.8833

20 3 0.8507

10 2 0.7438

05 1 0.5704

02 1 0.4589

01 1 0.3957

Table V-5. The edge accuracy measure for the Kirsch edge operator

on the rings image.

SNR \result k input accuracy

100 5 0.9199

50 5 0.8964

20 3 0.8648

10 2 0.7082

05 1 0.6016

02 1 0.4608

01 1 0.3958
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Table V-6. The edge accuracy measure for the compass edge operator

on the rings image.

SNR \result lr input accuracy

100 5 0.8049

50 5 0.7908

20 3 0.7674

10 2 0.7433

05 1 0.7541

02 1 0.5924

01 1 0.4746
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to the coherence measure. Thus, a combination of the two measures

can really have more reliable edge score.

In order to see this edge evaluator applies on the context edge

operator and the context free second derivative zero-crossing edge op-

erator. We apply the full context edge operator which is described in

chapter III, the local context edge oparetor with 5 X 5 context neigh-

borhood size(see chapter II), and the context free second derivative

zero-crossing operators ( Haralick, 1984 ) on a set of noisy images

with added noise have standard deviation 10, 20, 30, 40, and 50, re-

spectively. Thus, we can not only see the performance of the edge

evaluator but also see the performance of the context edge operators

against context free edge operator under different noise level. The

adjustable parameters of each operator are adjusted so that they can

have highest edge score for a given image.

The edge results which maximize the edge score are shown in

Figure V-14. It is easy to verify that by a visual evaluation both

context edge operators have better performance over the context free

edge operator. The full context edge operator and the local context

edge operator have similar performance when the noise is small. When

the noise increases, the full context edge operator tends to produce

edge images of better edge connectivity and less noisy while the edge

lines are thicker than the edge lines produced by the local context edge
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operator. The local context edge operator tends to produce broken

edge lines and has more noise points than the full context edge images

while it produces thin edge lines. These results consistent with what

we expect on context. The full context edge operator has stronger

context influence on the image. Thus, when the image is noisy the

effect of context tends to fill the gaps between edge lines and at the

same time merge the adjacent pixels of edge lines. Besides, most

of the noise points are clean out by context. The local context edge

operator has weaker context influence on the noisy image. Thus, when

the image is noisy, the context effect can not fill large gaps between

edge lines and it does not unselectively merge pixels adjacent to an

edge line. While, it can not clean out as many noise points as full

context edge operator does.

The edge score curves for different noise level are shown in Figure

V-15. It is found that the edge scores is consistent with the visual

evaluations. It can reflect very well what we have seen from the

image. From the edge score curves we can find that the context

operators always have better performance on all five noise levels. As

the noise increases, the difference between the edge score increases and

then when noise has standard deviation greater than 40 it decreases.

The maximum of the score difference occurs when the noise standard

deviation equals to 40. When the noise is small, the full context edge
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operator and local context edge operator have similar edge scores.

As the noisy level is greater than 30, the edge score difference is

significant and the difference keeps steadily at this value. It is noted

that the full context edge operator has higher edge score than the

local context edge operator in all the noise levels.

By a visual evaluation, we find that as the noise level increases.

The full context operator tends to detect thick edge lines which have

good connectivity and less noisy. The thinness measure alone is shown

in Figure V-16. It is consistent with the visual evaluations. Finally,

the location accuracy measure of these operators on the noisy images

are shown in Figure V-17. It is found that just as we expected the

context operators have better score over the context free operator.

And the local context edge operator has better location accuracy

when the noise level is greater than 30.
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Figure V-15. Shows the edge scores of the context edge operators and

the context free edge operator applied on a set of noisy images with

noise standard deviations 10, 20, 30, 40, and 50, respectively.
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Figure V-16. Shows the edge thinness measures of the context edge

operators and the context free edge operator applied on a set of

moisy images with noise standard deviations 10, 20, 30, 40, and 50,

respectively.
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Figure V-17. shows the edge location accuracy of the context edge

operators and the context free edge operator applied on a set of

noisy images with noise standard deviations 10, 20, 30, 40, and 50,

respectively.



VI. MORPHOLOGIC EDGE DETECTION

VI—1. INTRODUCTION

Mathematical morphology is an approach to image processing

based on set theoretic concepts of shape. The early works include

Dineen (1955), Kirsch (1957), Preston (1961, 1971, 1983), Landsmon

(1965), Moore (1966,1968), and Golay (1969,1984). It was formalized

at the Ecole de Mine in Paris in the mid 1970’s by G. Matheron

(1975), and expended by J. Serra (1982) and S. Sternburg (1980It

has grown to envelop a variety of applications and hardwares.

Several companies manufacturing machine vision hardware suc-

cessfully use mathematical morphology to solve industrial machine

vision problems (MV1, 1984). The machines they produce can deal

with morphological operations more efficiently than other operations.

Judging by the scientific archival literature, the techniques of math-

ematical morphology seem to be less used and less explored by the

academic research communities.

Mathematical morphology can take full advantage of the specific

shapes of the target objects. It always assumes that we have certain

prior knowledge about the shapes of the target objects and can se-

lect in advance the most appropriate structuring elements to fit these

shapes. In these applications it does not necessarily have to depend

196
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on the local properties of each small neighborhood of the image. How-

ever, as the problems we confront become more and more complicated

because different views of the same object may have to be processed,

mathematical morphology alone cannot fully handle these problems

efficiently. A combination of mathematical morphology with other

approaches such as statistical pattern recognition, structural pattern

recognition, two-dimensional signal processing and methods of con-

ventional image processing will undoubtedly be appropriate.

One class of approaches to computer vision depends heavily on

good image segmentations determined by region growing and/or edge

operators. A general edge detection scheme which can extract good

enough arc and region information for the matching process of struc-

tural pattern recognition or the connectivity and feature analysis used

by statistical pattern recognition is the basic requirement of a good

conventional vision system.

This section explores the capability of morphology to perform

edge detection. As far as we can determine, the image processing

literature does not discuss any morphological edge detector.

VI-2. Basic Morphologic Operators

An image can be represented by 6. set of pixels. The morphologic

operators can be thought to work with two images: the original data
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to be analyzed and a structuring element image which analogous to

the kernel in convolution operation. Each structuring element has a

shape which can be thought of as a parameter to the operators.

First we consider the case of binary images. Let A be the set

of points representing the original binary image and B be the set of

points representing a stucturing element. The dilation of A by B,

denoted A EB B, is defined by

A€BB= U {b+a|b€ B}
a€A

The erosion of A by B, denoted A S B, is defined by

ASB ={1¤IB+1¤ Q A}

The extensions of the morphologic transformations from binary

into greyscale processing by S. Sternberg (1980,1983,1984) in the mid

1980’s introduced a natural morphologic generalization of the dilation

and erosion operations.

The dilation of a greyscale image f by a greyscale structuring

element b is denoted by d, and is defined by

d(r, c) = — 7:,6 — + b(1Ä,j))

where the maximum is taken over all (1}, j) in the domain of b. The

erosion of a greyscale image f by a structuring element b is denoted
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by 6 and is defined by

¢(1,¤) = ¤gg¤(f(1 + 5, C +5)- b(¢,5))

where the minimum is taken over all (1S, j) in the domain of b.

The algorithms of mathematical morphology combine sequences

of dilations and erosions, and the residues of them in a way which

often produces useful and pleasantly surprising results.

VI-3. The Simple Morphologic Edge Detectors

The purpose of this section is to explore some simple morphologic

edge detectors which do not work in order that we provide some

understanding of morphologic operators and provide the basis for

those discussed in section IV which do work. A simple method of

performing gray scale edge detection in a morphology based vision

system is to take the difference between an image and its erosion by

a small structuring element. The difference image is the image of

edge strength. We can then select an appropriate threshold value to

threshold the edge strength image into a binary edge image.

Let’s denote the center of a local neighborhood by (0,0) and a

point which is 61* apart from the center in row direction and 6c apart

from the center in column direction by (61*,66). We define rod as a

greyscale structuring element which is flat on top and has disk like
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domain. As an example, the domain of the structuring element rod

radius 1 is defined by the set

Drodl (0) 1)) 0))

(1)Letbz Dmdl —> {0, . . . , 255} be the rodl structuring element. Since a

rod is fiat on top, the grayscale value of all the b(r, c), (r, c) E D„,d1

is 0.

The erosion of a grayscale image f(r,c) by the structuring element

rod 1 can be carried out by the rule:

+* + +<T» *1
which in the case of a zero height structuring element becomes

+1* +1 = 111* + +»+ +*1 W1 — +1
The erosion residue edge detectior produce the edge strength image

Ge defined by

Ge(r, c) = f(r,c) — c(r, c)

f(r c)
(ijärägxmn

f(r z c 3)

= , —
+

I,
+ ' VI — 2Wgréalgiodllf (T T) f(T T C 2)] ( )

Since D„,d1 includes exactly the four connected neighbors of position

(0,0), the edge strength image we obtain is

Ge , = — l, ' VI -3(T C) f (T 2)] ( )
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where N4(r, c) is the set of four connected neighbors of position (r, c).

We can now interpret the morphologic edge operator as a local

neighborhood nonlinear operator which takes the maximum among

the four first differences in directions 0°,90°,180°, and 270°.

A natural non-morphological Variation of this operator takes the

summation instead of maximization. This is the familar linear digital

Laplacian operator V2f(r, c) (Rosenfeld et. al.,1982) which is the

digital convolution of f (1*, c) with the kernel

0 -1 0
-1 4 -1
0 -1 0

In order to compare the performance of the nonlinear morphological

edge operator with the linear Laplacian operator, we apply them to

four perfect digital step edge patterns of edge contrast E running in

directions 0°,90°,45°, and 135°, respectively, i.e.

EEEEEOEEEEEE
E E E E E 0 E E 0 0 E E
0 0 0 E E 0 E 0 0 0 0 E

Eo¤ Eoo¤ E45° E135°

The magnitude of the responses of G and V2f are as follows:

Eo¤ E9o=· E45° E135°
G, E E E E

V2; E E 2E 2E

Thus the responses of V2f to these edges are E, E, 2E and 2E, a

bias of 2 in favor of the diagonal edges. These biases are eliminated
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if we use the morphological operator G, instead of V2f. Besides

G, yields values in the same range as the original grayscale, which

is most convenient on any computer vision system which has frame

buffer limitations on the range of greyscale values.

Next we try both operators on a single noise point pattern with

noise height h. i.e.
0 0 0
0 h 0
0 0 0

The responses of G, and V2f are h and 4h respectively. Thus

although both G, and V2f are noise sensitive, the noise response

of V2f is four times the response of G, and hence four times the

response of V2f on a vertical or horizontal ideal step edge with edge

contrast h.

It is also possible to increase the neighborhood size of the mor-

phologic edge operator by increasing the size of the structuring ele-

ment used on the erosion operation. For example, we can have an

8-connected neighborhood edge operator by changing the structuring

element to be flat on top and have domain

D8-„,,„„,„1 = {(-1, -1), (0, -1), (1, -1),

(-1,0), (0,0), (1, 0), (-1, 1), (0, 1), (1, 1)} (VI - 4)
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The edge strength image we obtain is then

Ge l —

——whereN8 (1*, c) is the set of eight connected neighbors of image position

(1*, c).

The corresponding linear Laplacian operator which has eight con-

nected neighborhood support can be implemented as the digital con-

volution of f(1*, c) with
-1 -1 -1
-1 8 -1
-1 -1 -1

We now apply both operators in the four perfect digital step edge

patterns Eos ,Eoos , E4,-,s, and E185s . The magnitude of the responses

of G, a„ndV2f are as follows:

E0¤ E9o¤ E45° E135°
Ge 8*COTI7l¢Ct¢d E E E E

V2f8—conncct¢d 3E3EIt

is found that by incresing the neighborhood size, the V2f operator

now has uniform performance on these edges. The response of both

operators on the single noise point pattern are h and 8h respectively.

Thus, both operators are noise sensitive, the Laplacian being more

noise sensitive. This explains why the raw Laplacian operator is

not a good edge detector in noisy images. Laplacian edge operator

generally low pass filter noisy images by a Gaussian filter and then



204

apply a Laplacian operator. Edges are located at zero- crossings of

the Laplacian (Marr et. al. 1980). However the Gaussian filter can

shift the positions of most of the edges in real images.

The erosion residue morphological edge detector is a nonlinear

Laplacian-like operator which is also noise sensitive, it cannot be a

good edge detector for noisy images. The rule that increasing the

neighborhood size of the operator will reduce the amount of noise

fails with the erosion residue morphological edge detector. Consider,

for example, the erosion residue morphological edge detector on the

following image pattern

F F F F F
F F F F F
F F 0 F F
F F F F F
F F F F F

The pattern shown above is a flat area with pixel intensity F and

a noise spike at the center of this area with pixel intensity 0. The

response of the morphological edge operator is

0 0 0 0 0
0 F F F 0
0 F 0 F 0
0 F F F 0
0 0 0 0 0

which has the same value F for all the 8-connected neighbors of the

center point. If we increase the size of the neighborhood support of
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the morphological operator, the number of pixels which are given a

value F will also increase accordingly. As a matter of fact all the

neighborhood support but the center point will be given the value

F. Thus, the larger the operator’s support, the noisier the operator’s

response can possibly be.

The erosion residue morphological edge detector is position bi-

ased. It only gives edge strength to border pixels on that side of the

edge which have the higher value. For example, the operator only

gives the inside boundary of the higher valued checkers of a perfect

checkerboard image its corresponding edge strength and gives the

outside boundary of the higher valued checkers edge strength zero.

To resolve this bias and give both inside and outside boundaries

of the checkers their corresponding edge strengths, the dilation residue

morphological edge detector can be used in conjunction with erosion

residue operator. The dilation residue operator takes the difference

between a dilated image and its original image. For example, if the

structuring element for the dilation is a rod of radius 1, then the

dilation of the grayscale image f(r, c) is

d(¤ C) = (ijgréabfm [f(r — C, C — 5)] (VI — 6)
and the edge strength image is

Gd(r, c) = d(r, c) — f(r, c) =
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‘, ° — , VI — 72) f(T ¤)] ( )

lt is obvious that this operator only gives edge strength to that side

of the edge which has the lower value.

A position unbiased edge operator can be obtained by a com-

bination of the operators G„(r,c) and Gd(r,c) using the pixel-wise

minimum, maximum, or sum. Let us consider the maximum first.

Define

E(r, c) = max(G,(r, c), Gd(r, c))

lf(¤ ¢) — f(M)! (VI — 8)

where N(r, c) is the neighborhood support of the structuring element

for both dilation and erosion operations.

To understand the performance of this operator, we apply it on

four perfect digital step edge patterns of edge contrast E one ideal

ramp edge pattern of edge contrast E and one single noise pattern of

noise height N, i.e.,

E E E E E E E E 0 0
E E E E E E E E 0 0
E E E E E E E E 0 0
0 0 0 0 0 E E E 0 0
0 0 0 0 0 E E E 0 0

Eo<> E9o<·
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E E E E E E E E E E
E E E E 0 0 E E E E
E E E 0 0 0 0 E E E
E E 0 0 0 0 0 0 E E
E 0 0 0 0 0 0 0 0 E

E46== E1s6¤

0 0 *;*2 E E 0 0 0 0 0
0 0 E E 0 0 0 0 0
0 0 E E E 0 0 N 0 0
0 0 E E E 0 0 0 0 0
Q Q E E 0 0 0 0 0

E,O¤ noise

The results of this edge operator when the neighborhood support is

N4(r,c) are

0 0 0 0 0 0 0 E E 0
0 0 0 0 0 0 0 E E 0
E E E E E 0 0 E E 0
E E E E E 0 0 E E 0
0 0 0 0 0 0 0 E E 0

Eo¤ E90¤

0 0 0 0 E E 0 0 0 0
0 0 0 E E E E 0 0 0
0 0 E E 0 0 E E 0 0
0 E E 0 0 0 0 E E 0
E E 0 0 0 0 0 0 E E

E45° E135°

0 0 0 0 0 0 0
0 0 0 0 N 0 0
0 E E E 0 0 N N N 0
0 0 0 0 N 0 0
Q Q 0 0 0 0 0

Erw, noise
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Now the performance of the edge operator can be easily evaluated.

This operator performs perfectly on ideal step edge patterns. How-

ever, it is noise sensitive. It responds with five noise edge points on a

single noise pattern. It is even worse than that for an ideal ramp edge

pattern. Ideally, the detected edge pattern for the ramp should have

single pixel width edge line and its edge strength should be equal to

the edge contrast. It detects edge lines giving them only half their

edge contrast and the detected edge is wide, three pixels in width.

We now consider the edge operator which is defined as summation

of G,(r, c) and G'd(r, c). Thus

E(r, c) = G,(r, c) + Gd(r, c) (VI —— 9)

To see the performance of this operator, we apply it on the

edge patterns we used to test the maximum version edge operator.

The results of this edge operator when the neighborhood support for

dilation and erosion is N4(r, c) are
0 0 0 0 0 0 0 E E 0
0 0 0 0 0 0 0 E E 0
E E E E E 0 0 E E 0
E E E E E 0 0 E E 0
0 0 0 0 0 0 0 E E 0

Eo¤ E9o¤
0 0 0 0 E E 0 0 0 0
0 0 0 E E E E 0 0 0
0 0 E E 0 0 E E 0 0
0 E E 0 0 0 0 E E 0
E E 0 0 0 0 0 0 E E

E45° E135°



209

0 ä E 0 0 0 0 0 0
0 § E % 0 0 0 N 0 0
0 § E §— 0 0 N N N 0
0 § E § 0 0 0 N 0 0
Q ä. E % g 0 0 0 0

E,0„ 77,0286

It is easy to see that just as the maximum version of this edge operator,

the summation version performs perfectly on ideal step edge patterns.

And it is also noise sensitive. It responds with five noise edge points

on a single noise pattern. However, for the ideal ramp edge pattern

it detects an edge line whose edge strength equals edge contrast and

two lines on both sides of the edge line whose edge strength equals

half edge contrast. Thus, by thresholding with a value greater than

half edge contrast it is possible to have perfect performance on the

ideal ramp edge pattern in the sense that it detects a single width

edge line.

Finally we consider the edge operator which is defined as mini-

mum of G,(1*, c) and Gd(1*, c). Hence,

E(1*, c) = min(G, (1*, c), Gd(1·, c)) (VI — 10)

To understand the performance of this operator, we again apply it

on the edge patterns we used to test the maximum and summation

version edge operators. The result of this edge operator when the
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neighborhood support for dilation and erosion is N4(r, c) are

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Eo¤ E9o¤

0 0 0 0 E 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

E45° E135°
0 0 0 0 0 0 0 0 0
0 0 § 0 0 0 0 0 0 0
0 0 § 0 0 0 0 0 0 0
0 0 g 0 0 0 0 0 0 0
0 0 % 0 0 0 0 0 0 0

Em, noise
The results of this operator on these edge patterns are interesting.

The performance on the ideal ramp edge pattern is promising. It

can detect a single edge line with edge strength And it is noise

insensitive. It has no response when applied to the single noise point.

Unfortunately, it is not able to detect ideal step edge patterns. This

motivates a new edge operator which first performs a blur operation

to convert all the ideal step edges into ideal ramp edges and then

applies the minimum version of edge operator on them. In the next

section, we will analyze this blur-minimum operator in greater detail

as well as some others.
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VI-4. Morphologic Operators Which Work

As mentioned in the previous section, the simple morphological

edge operators based on erosion or dilation residues are either sensitive

to noise or can not detect ideal step edges. In this section we discuss

a few more morphological edge operators which can detect ideal step

edges and are not noise sensitive. They are the improved dilation and

erosion residue operators and the blur-minimum operator.

VI-4-1. Improved residue operators

A. Improved dilation residue operator

In this section we introduce an improved version of the dilation

residue operator Gd(r,c). Let a.1,a2,a3, and a4 be the structuring

elements which are Hat on top and have domains

Dal = {(-1,0), (O, 1)}

17,,2 = {(0, -1), (1,0)}

17,,6 = {(-1,0), (0, -1)}

17,,4 ={ (0, 1),(1, 0) }

and D2 be a structuring element which is fiat on top and has domain

{(-1,-1), (-1,1), (1, -1), (1, 1)}
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The operator is defined by

GQ(1*, 6) = min{D1Älatio11„D„d1 (1*, 6) — f(1·, 6),

6)} (VI — 11)

where GZ(1*, 6) is defined by

GZ(1*, 6) = ma.x{

|(D1Ila,t1Ion„1(1·,6) — f(1*, 6)) — (Dilat·io11„„2(1*, 6) — f(1*, 6))|,

|((D1Ilat·io11,„3(1·,c) — f(1*, 6)) — (D1Ilat1Äona4(1·, 6) —f(1*,To

see the performance of this operator, we apply it on four perfect

digital step edge patterns of edge contrast E, one ideal ramp edge

pattern of edge contrast E, and two single noise patterns of noise

height N, i.e.,

E E E E E E E E 0 0
E E E E E E E E 0 0
E E E E E E E E 0 0
0 0 0 0 0 E E E 0 0
0 0 0 0 0 E E E 0 0

Eo¤ E9o¤

E E E E E E E E E E
E E E E 0 0 E E E E
E E E 0 0 0 0 E E E
E E 0 0 0 0 0 0 E E
E 0 0 0 0 0 0 0 0 E

E46¤ E135°
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0 0 E E 0 0 0 0 0
0 0 E E 0 0 0 0 0
0 0 Q E E 0 0 N 0 0
0 0 Q E E 0 0 0 0 0
0 0 E E 0 0 0 0 0

E,O„ noisel

N N N N N
N N N N N
N N 0 N N
N N N N N
N N N N N

no·ise2

The c) — f(r, c) operation results

0 0 0 0 0 0 0 0 E 0
0 0 0 0 0 0 0 0 E 0
0 0 0 0 0 0 0 0 E 0
E E E E E 0 0 0 E 0
0 0 0 0 0 0 0 0 E 0

EOO EQOO

0 0 0 0 0 0 0 0 0 0
0 0 0 0 E E 0 0 0 0
0 0 0 E 0 0 E 0 0 0
0 0 E 0 0 0 0 E 0 0
0 E 0 0 0 0 0 0 E 0

E45° E135°

0 0 0 0 0 0 0 0
0 Q Q 0 0 0 0 N 0 0
0 Q Q 0 0 0 N 0 N 0
0 Q Q 0 0 0 0 N 0 0

0 Q Q 0 0 0 0 0 0 0

Eroc, noiscl
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0 0 0 0 0
0 0 0 0 0
0 0 N 0 0
0 0 0 0 0
0 0 0 0 0

no·£s62

And the results of Dilationpz (1*, c) — f(1*, c) operation are

0 0 0 0 0 0 0 0 E O
0 0 0 0 0 0 0 0 E 0
0 0 0 0 0 0 0 0 E 0
E E E E E 0 0 0 E 0
0 0 0 0 0 0 0 0 E 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 E E 0 0 0 0
0 0 0 E 0 0 E 0 0 0
0 0 E 0 0 0 0 E 0 0
0 E 0 O 0 0 0 0 E 0

E45° E135°

0 0 0 0 0 0 0 0
0 0 0 0 N 0 N 0
0 0 0 0 0 0 0 0
0 0 0 0 N 0 N 0
0 0 0 0 0 0 0 0

Erw, noiscl

0 0 0 0 0
0 0 0 0 0
0 0 N 0 0
0 0 0 0 0
0 0 0 0 0

n„o1Äse2
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The results of GZ (r, c) will be

0 0 0 0 0 0 0 0 E 0
0 0 0 0 0 0 0 0 E 0
0 0 0 0 0 0 0 0 E 0
E E E E E 0 0 0 E 0
0 0 0 0 0 0 0 0 E 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 E E 0 0 0 0
0 0 0 E 0 0 E 0 0 0
0 0 E 0 0 0 0 E 0 0
0 E 0 0 0 0 0 0 E 0

E45° E135°

0 0 0 0 0 0 0 0
0 0 0 0 0 N 0 0
0 0 0 0 N 0 N 0
0 0 0 0 0 N 0 0
Q Q Q 0 0 0 0 0

Eros noiscl

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

noisc2

Finally, the results of GQ(r, c) will be

0 0 0 0 0 0 0 0 E 0
0 0 0 0 0 0 0 0 E 0
0 0 0 0 0 0 0 0 E 0
E E E E E 0 0 0 E 0
0 0 0 0 0 0 0 0 E 0

EOO EIQOO
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0 0 0 0 0 0 0 0 0 0
0 0 0 0 E E 0 0 0 0
0 0 0 E 0 0 E 0 0 0
0 0 E 0 0 0 0 E 0 0
0 E 0 0 0 0 0 0 E 0

E45° E135°
0 ä 0 0 0 0 0 0 0
0 2 2 0 0 0 0 0 0 0
0 2 -,-*2 0 0 0 0 0 0 0
0 § § 0 0 0 0 0 0 0

0 E E 0 0 0 0 0 0 02 2 .Em, nozsel

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

noisc2

Thus, just as the simple dilation residue operator, it assigns edge

strength E to all the edge pixels which are on the low value side of

the ideal step edge and it detects two edge lines of half edge contrast

from ideal ramp edge patterns. However, unlike the simple dilation

residue operator it will not pick up a noise pixel. Hence, this is an

improved version of the Gd(r,c) operator. It is also noted that this

operator does not need any blurring as a preprocessor.

B. Improved erosion residue operator

In this section we introduce an improved version of the erosion

residue operator G’¢(r, c). Let al, a2, 0.3, a4 and D2 be the structuring
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elements which are defined in the previous section. Then the operator

is defined by

6) = min{f(1·, 6) — E1·os1Äo11.Dm„(1·,6),

f(1·, 6) — E1·os1]on„D,(1·, 6), GZ(1·, 6)} (VI — 12)

where GQ (1*, 6) is defined as

GL’(¤ C) = m¤><{

|(f(1·, 6) — E1·os1Ion.,,1(1·, 6)) — (f(1·, 6) — E1·os1Ion„2(1·, 6))|,

|(f(1·, 6) — E'ros1Ion,,3(1*, 6)) — (f(r, 6) — E1·0s1Äo1za4(1*,We

apply this operator on the same edge and noise patterns as we

used in the previous section. The results are

|(f(1·, 6) — ETO8’iOTLa1(T, 6)) — (f(1·, 6) — E1·os1Io11.„2(1·, :

0 0 0 0 0 0 0 E 0 0
0 0 0 0 0 0 0 E 0 0
E E E E E 0 0 E 0 0
0 0 0 0 0 0 0 E 0 0
0 0 0 0 0 0 0 E 0 0

Eo¤ E9o<>

0 0 0 0 0 E 0 0 0 0
0 0 0 0 0 0 E 0 0 0
0 0 0 0 0 0 0 E 0 0
0 0 0 0 0 0 0 0 E 0
0 0 0 0 0 0 0 0 0 E

E45° E135°
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0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
g () E E () 0 0 0 0 0

2 2 .
Eroo nozsel

0 0 0 0 0
0 0 N 0 0
0 N 0 N 0
0 0 N 0 0
0 0 0 0 0

71,0*5662

|(f(r, c) — Eros1Ion.,,3(r,c)) — (f(r,c)0

0 0 0 0 0 0 E 0 0
0 0 0 0 0 0 0 E 0 0
E E E E E 0 0 E 0 0
0 0 0 0 0 0 0 E 0 0
0 0 0 0 0 0 0 E 0 0

0 0 0 0 E 0 0 0 0 0
0 0 0 E 0 0 0 0 0 0
0 0 E 0 0 0 0 0 0 0
0 E 0 0 0 0 0 0 0 0
E 0 0 0 0 0 0 0 0 0

E46¤ E135°
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
() Q g 0 0 0 0 0

E,O„ noisel
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0 0 0 0 0
0 0 N 0 0
0 N 0 N 0
0 0 N 0 0
0 0 0 0 0

n„o·ise2

The results of II1lI1{f — Erosionpoodl , f — Erosionpo} are

0 0 0 0 0 0 0 E 0 0
0 0 0 0 0 0 0 E 0 0
E E E E E 0 0 E 0 0
0 0 0 0 0 0 0 E 0 0
0 0 0 0 0 0 0 E 0 0

Eoe EQOO

0 0 0 0 E E 0 0 0 0
0 0 0 E 0 0 E 0 0 0
0 0 E 0 0 0 0 E 0 0
0 E 0 0 0 0 0 0 E 0
E 0 0 0 0 0 0 0 0 E

E45° E135°

0 0 % % 0 0 0 0 0 0
0 0 0 0 0 0 0 0 E
0 0 E E 0 0 0 N 0 0
0 0 0 0 0 0 0 0
g g g 0 0 0 0 0

Eroo noisel

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

n„o·isc2
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And finally the GQ(r, c) results are:

0 0 0 0 0 0 0 E 0 0
0 0 0 0 0 0 0 E 0 0
E E E E E 0 0 E 0 0
0 0 0 0 0 0 0 E 0 0
0 0 0 0 0 0 0 E 0 0

E0¤ E9o¤

0 0 0 0 E E 0 0 0 0
0 0 0 E 0 0 E 0 0 0
0 0 E 0 0 0 0 E 0 0
0 E 0 0 0 0 0 0 E 0
E 0 0 0 0 0 0 0 0 E

E45° E1s6¤
0 0 0 0 0 0 0 0
0 0 % ä 0 0 0 0 0 0
0 0 ä § 0 0 0 0 0 0
0 0 Lg § 0 0 0 0 0 0
Q () % g () 0 0 0 0 0

Eroc
noisel

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

·n.oisc2

It is found that just as G, (r, c) operator, it assigns edge strength E

to all the edge points which are on the high value side of the ideal

step edge and it detects two edge lines of half edge contrast from ideal

ramp edge patterns. However, unlike simple erosion residue operator,

it will not pick up the noise pixel. Hence this is an improved version

of the G,(r, c) operator.
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C. Putting GQ and GQ together

It is natural that an improved version of the morphologic edge

operator which has no position bias and is noise insensitive will be

a combination of the improved dilation residue and erosion residue

operator. Consider the sum of these two.

E'(·r, c) = G';(·r, c) + GQ(·r, c). (VI — 13)

The results of this operator applied to the same test patterns as we

used before are:

0 0 0 0 0 0 0 E E 0
0 0 0 0 0 0 0 E E 0
E E E E E 0 0 E E 0
E E E E E 0 O E E 0
0 O O O 0 0 0 E E 0

E0¤ E9o¤

0 0 0 0 E E 0 0 0 0
0 0 0 E E E E 0 0 0
0 0 E E 0 0 E E 0 O
0 E E 0 0 0 0 E E 0
E E 0 0 0 0 0 0 E E

E4s¤ E135°

0 ä E % 0 0 0 0 0 0
0 E E E 0 0 0 0 0 0
0 E E E- 0 0 0 0 0 0
0 E E EE- 0 0 0 0 0 0
Q El E Jg g 0 0 0 0 0

Emo noisel
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0 0 0 O 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

no1Ise2

The operator has perfect performance on ideal step edges and single

noise patterns. By a thresholding with a threshold value greater than

it can perfectly detect ideal ramp edges. The shortcoming of this

operator is that it works only on 3 X 3 local neighborhood. Thus, its

capability of reduce noise effect is limited.

VI-4-2. Blur and Minimum operator

This morphological edge operator is defined by

IEdg,-„,„,„gt;, = min{I1 — Eros1Ion(I1), D1Ilat·ion(I1) — I1}

{VI —— 14)

where I1 = Bl·u.r{ I;„p„t } and Bl·u.r{ I;„p„t } is the input image

with a blurring operation. We use the same neighborhood size for the

kernal of both blur and the structuring element of the dilation and

erosion.

Consider the following one-dimensional step edge sequence as a

motivation for this definition: The blur uses a neighborhood of width

three and the erosion and dilation use a Hat structuring element of
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domain {-1,0, 1}.

original 0 0 0 0 E E E
blur 0 0 0 gl gl E E

erosion of blur 0 0 0 0 g % E
dilation of blur 0 0 E E E
blur - erosion 0 0 0 § g- g 0
dzzwbwb - blur 0 0 gl gl g 0 0
edge strength 0 0 0 ä

gg 0 0

The advantage of this operator, as illustrated below, is that it will

not detect single noise point.

original 0 0 0 N 0 0 0
blur 0 0 g g g 0 0

erosion of blur 0 0 0 0 0
d’I:l0,t'I:OTL bf blur 0 g g g'- g 0 0
blur —erosion 0 0 0 0 0 0
dilation — blur 0 0 0 0 0 0
edge strength 0 0 0 0 0 0 0

Now let us examine the performance of this operator on ideal ramp

edge sequences. Let a;, be an one-dimensioal sequence which has

ag = 0 for all i $ 0 and a, = E for all i > 5. Besides, a, 2 aj, for all

i > j and i,j E {1, . . . , 5}. Let a sequence e, be the sequence aj after

a blur-minimum operation of three point support. Then

e;=0foralli<0

0.1 0260 = 3*; 61 = *5

_ II1lI1(G„3,Gz4 — 0,1)ez " ”—Ü——
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min(a,4 — 61,1,61,5 — 61,2)
C33

min(615 — az, E — 61,5)
3

e
E — G4 E — G5

l ° c i —·5 3 1 6 3

6;=0for61,ll·i>6

Thus, for an ideal ramp edge of three pixels 61,1 = 61,2 = 0, 613 = gg 61,4 =

a5 = E the edge strength will be

ÜQ 61 g ä
%; 65 66

For an ideal ramp edge of four pixels 611 = 61,2 = 0,61,5 = §,614 =

2%, 61,5 = E the edge strength will be

"°"?§ä Séäeö0 0 5 5 5 6* 0

For an ideal ramp edge of five pixels 611 = 0,61,2 = %,61,3 = %,61,4 =

äag 615 = E the edge strength will be

CQ C1 62 C3 C4 C5 C6

Q Ä Ä Ä Ä Ä Q
12 6 4 6 12

For an ideal ramp edge of six pixels 61,1 = €,61,2 = %,a,3 = %,61,4 =

61,5 = E the edge strength will be

CQ C1 C2 C3 64 C5 C6
Ä 2Ä Ä Ä E Ä Q15 15 5 5 15 15
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For an ideal ramp edge of seven pixels al = ä, 0.2 = %, a3 = ig, 61.4 =

2-%,61.5 = the edge strength will be

2 2 2 2 2 2 2
18 9 6 6 6 9 18

It is noted that this operator is noise insensitive. For the ideal step

edge it produces a result which has non-zero edge strength on both

the two edge pixels. This is consistent with the fact that an ideal

step edge line should be two pixels in width. However, due to the

effect of blurring, The edge strength assigned to the edge pixels is

one third the edge contrast. For ideal ramp edges of different spatial

extent, it will assign a non-zero edge strength to more than one pixels.

However, the true edge pixel is mostly given higher edge strength than

its neighbors. Thus, by thresholding the edge strength image with a

suitful threshold value we can extract the ideal ramp edges. It is also

noted that as the spatial extent of the ideal ramp edge increases, the

edge contrast of the detected edge point decreases. For the case of a

seven pixel ramp edge, the detected edge strength of the edge point

is the same as the edge strength of its immediate adjacent pixels.

The reason why we need the small amount of blurring is that

this operator only assigns a pixel to be an edge pixel if it has a value

in the middle between two greyscale extremes of the neighborhood

centered at the given pixel. Thus, there must be signiiicant differences
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in greyscale value between the pixel and both its nearby greyscale

maximum and nearby greyscale minimum pixel. The edge pixels for

are the two pixels on either side of the jump. For the ideal step edge,

these pixels are a local maximum and minimum. Hence, this operator

can not detect the ideal step edges unless we blur the ideal step edge

before applying this operator.

In order to have a better understanding of this edge operator, we

give a derivation which explains this operator as an easily understand-

able local neighborhood non-linear operator. Let K be the neighbor-

hood size of the kernel of the blur and the domain of the structuring

element. Without loss of generality we assume that K is an odd

number. Let L = and b; = Blur(a,), 6, = b; — Eros·ion(a,),

di = D1Ilat·ion(a.,) — b,, then

ap
K

q q
0}

p=1 p=1

and
"‘ M
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1 <1 q

P- P-
<1 q

0}
P=1 P=1

For example, let K = 3, we define one-dimensional five point

masks
A1 = $·•= [ -1 0 0 1 0 ]
A2 = §=•= [ 0 1 0 0 -1 ]
A3 = §=•= [ 1 0 0 -1 0 ]
A4 = §=•· [ 0 -1 0 0 1 ]

Then, the edge detector becomes

min{max{A1 =•= f, A2 =•= f},ma.x{A3 ·•= f,

A4wheref is the input data and
”
*" is the convolution operation.

In the case that K = 5, we define one-dimensional nine point

masks

A1 = $=•= [ 0 -1 0 0 0 0 1 0 0 ]
A2 = §=•= [ -1 -1 0 O 0 1 1 0 0 ]
A3 =

§=•< [ 0 0 1 0 0 0 0 -1 0 ]
A4=§=•=] 0 0 1 1 0 0 0 -1 -1]
A3 =

§=•= [ 0 1 0 0 0 0 -1 0 0 ]
A3=§=•=[ 1 1 0 0 0 -1 -1 0 0

0 0 -1 0 0 0 0 1 0 ]
A3 = —§=•= [ 0 0 -1 -1 0 0 0 1 1 ]

Then, the edge detector becomes

mi¤{m¤><{A1=•=f,A2=•=f,A3=•=f,A4=•·f},m¤¤<{A5·•=f„A6*f,A7*f„A8=•=f}}
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It is found that this operator finds the difference between each

side of a given point. Instead of considering only the difference of the

average pixel intensity on both sides of a pixel it considers diiferences

of varieties of local structures and combine the result of each difference

by maximizations and a minimization operation. Thus, by increasing

the neighborhood size of the blur operator and the neighborhood size

of the morphologic operation this operator can reduce the noise effect

and yet not blur too much the edges.

VI-5. Experimental Results

To understand the performance of the morphologic edge oper-

ators, we examine the behavior of the morphologic edge operators

on two simulated images and compare the results of the morphologic

edge operators with the cubic facet second derivative edge operator (

Haralick,1984The

first simulated image is an image which has ten distorted

square boxes. In order to simulate edges of different directions, the

left side of the square boxes are tilted such that their correspoding

edge lines have directions ranging from 0° to 45°. The edge contrast

of these edges are 50 and the box size is 50 X 50 pixels. To this image,

we add independent Gaussian noise having mean zero and standard

deviation 15. The original and noisy images are shown in Figure VI—1.
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In order to compare the performance of different edge operators,

we use the conditional probability of assigned edge on state ’edge’

given the true edge states ’edge’ of an image, P(E'|E"‘), and the

conditional probability of true edge states ’edge’ given assigned edge

states
’edge’

of an image P(E"|E°' The adjustable parameters of

each edge operator are chosen to equalize these two conditional prob-

abilities. The quality of the edge operator is determined by the value

of P(E' |E"‘) = P(E"‘|E' Although this performance measure is not

in general applicable on all kinds of images, it is well suited for this

simulated image.

We apply the maximum version (see equation (VI-7)), the im-

proved summation version (see equation (VI-13)), the blur-minimum

version (see equation (VI-14)) of the morphologic edge detectors and

the cubic facet second derivative zero-crossing edge operator on the

noisy square boxes and compare the performance in terms of P(E’ |E*)

and The equivalent neighborhood supports for the blur-

minimum operators used are 5 X 5 ( use 3 X 3 neighborhood for the

operators), 9 X 9 ( use 5 X 5 neighborhood for the operators), and

13 X 13 (use 7 X 7 neighborhood for the operators), respectively.

The neighborhood sizes for the cubic facet edge detector are 5 X 5

and 9 X 9, respectively. Table 1 lists the test results of these edge

operators. The conditional probability of the maximum version mor-
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phologic edge operator is only 29 percent. The improved summation

version of the morphologic edge operator increases the probability to

45 percent. The blur-minimum version of the morphologic edge op-

erator has superior performance. It increases the probability to 78,

94, and 92 percents for 5 X 5, 9 X 9, and 13 X 13 neighborhood

support, respectively. This is because the blur-minimum operators

have a larger number of pixels involved in the edge detection than

just a 3 X 3 neighborhood. The equivalent neighborhoods involved

in edge detection process for the blur-minimum operator are 5 X 5,

9 X 9, and 13 X 13, respectively. Similarly, the cubic facet second

derivative zero-crossing edge operator also makes use of larger than 3

X 3 neighborhood support and it has good performance. Its perfor-

mance probability is about 82 and 92 percents for the 5 X 5 and 9 X

9 neighborhoods, respectively.

Figure VI-2(a),(b),(c), and (d) show the results of the maxi-

mum version, improved summation version, the blur-minimum (9 X

9) version of the morphologic edge operators, and the cubic facet edge

operator (9 X 9).

A visual evaluation also leaves the impression that the blur-

minimum edge detector and the cubic facet second derivative zero-

crossing edge operator produces much better edge continuity and has

less noise than the other edge detectors.
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Table 1. P(E' |E"") and P(E""|E’) values of morphologic edge opera-

tors and cubic facet edge operators.

operator \ prob P(E'|E’°“) P{E'“[E')

maximum 0.2911 0.2953

improved sum 0.4565 0.4380

blur-minimum(5X5} 0.7870 0.7870

blur-mi11imum(9X9} 0.9587 0.9350

blur-mir1imum(13X13} 0.9061 0.9369

facet edge (5X5) 0.8387 0.8256

facet edge (9X9) 0.9355 0.9063
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The second simulated image is a checkerboard of size 100 x 100

pixels with a check size of 20 x 20 pixels. The dark checks have

gray tone intensity 50 and the light checks have gray tone intensity

100. To this perfect checkerboard, we add independent Gaussian

noise having mean zero and standard deviation 7.5, 15.0, and 30.0,

respectively. Thus, the Signal to Noise Ratio (SNR=of

these images are 6.67, 3.33, and 1.67, respectively. The perfect and

noisy checkerboards are shown in Figure VI-3.

To compare the performance of the morphologic based edge op-

erators with non-morphologic based edge operator. We apply the

cubic facet based second directional zero-crossing edge operator and

the maximum, improved summation and blur-minimum versions of

the morphologc edge operator on the noisy checkboard images and

compare the performance in terms of P(E'|E*) and P(E*|E’ The

structuring element for the maximum and improved summation mor-

phologic edge operators is a rod of radius 1 which has four connected

pixels as its neighborhood support. The neighborhood supports for

the blur—minimum operator are 5 by 5 and 9 by 9, respectively. The

window sizes of the cubic polynominal fitting for the second derivative

zero-crossing operator are 5 by 5 and 9 by 9, respectively.

Figure VI-4 plots the probability results of these edge operators.

The results show that the second derivative zero-crossing edge op-
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erator and the blur-minimum morphologic edge operator have much

better performance compare with the other two operators. When the

SNR is large, the blur-minimum edge operator of 5 X 5 neighborhood

size and the cubic facet zero-crossing edge operator perform best. As

the SNR becomes small, the blur-minimum edge operator having a 9

X 9 neighborhood size and the cubic facet zero-crossing edge operator

perform best. The improved summation morphologic edge operator

has good performance as the SNR is large. As the SNR decreases

its performance probability decreases dramatically and soon becomes

much worse than the zero-crossing and blur-minimum operators. The

maximum version morphologic edge operator has worst performance

among all these operators.

The performance of the edge operators can be explained in terms

of the neighborhood size we used for each operator. Both the blur-

minimum edge operator of 9 X 9 equivalent kernel support and the 9

X 9 cubic facet second derivative zero-crossing edge operator involve

81 pixels in the edge detection process to assign the edge state of a

single pixel. Due to the fact of large neighborhood size, they have

best performance as the noise increases. The 5 by 5 blur-minimum

morphologic edge operator and the 5 by 5 cubic facet second derivative

zero-crossing edge operator involve 25 pixels in the edge detection

process. Thus, they have best performance as the noise is small.
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Figure VI-4. The performance probabilities of different edge operators

applied on the noisy checkboard images. curve 1: blur-minimum

morphologic edge operator of 9 by 9 equivalent support; curve 2:

second derivative zero—crossing edge operator of 9 by 9 support; curve

3: blur-minimum morphologic edge operator of 5 by 5 equivalent

support; curve 4: second derivative zero—crossing edge operator of 5 X

5 support; curve 5: improved summation morphologic edge operator;

curve 6: maximum morphologic edge operator.
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because they are good enough to deal with small noise and they

will not blur too much the true edges. As the noise increases, their

performance is worse than those with a larger neighborhood size.

However, their performance is much better than the performance of

the improved summation morphologic edge operator which involves

only 9 pixels and the maximum version morphologic edge operator

which involves only 5 pixels in the edge detection process.

It is noted that as the noise is small, an edge operator of small

neighborhood support such as the improved summation operator is

good enough. However, as the SNR becomes small, we have to use

edge operators of larger neighborhood support. Since the performance

of the blur-minimum morphologic edge operator is comparable to the

zero-crossing edge operator, it will be very useful in those applications

which can not afford the higher computation cost of the facet edge

operator.

Finally, we illustrate an example of the morphologic edge detec-

tors applied on a real image. The image is a mold for sand casting (see

Figure VI-5(a)). We apply the maximum, the improved summation,

the blur minimum morphologic edge detector with 9 by 9 support, a

difference of Gaussian operator with circular support of diameter 40

and 24 pixels, and cubic facet second derivative zero-crossing of win-

dow size 9 by 9 on this image. The resulting edge images are shown in
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Figure VI-5(b)-(f A visual evaluation leaves the impression that the

cubic facet edge operator and the blur-minimum morphologic edge

detector have best performance. The difference of Gaussian operator

produces thick edge lines and the edge connectivity is not as good as

the blur-minimum edge operator. The improved summation edge op-

erator is better than the maximum version edge operator. While, both

of them are more noisy than the cubic facet and the blur-minimum

edge operator.









VII. CONCLUSIONS

The problem of detecting edges in an image is addressed in this

dissertation. We argued that image edges are not necessary scene

edges and vice versa. To simulate the edge perception ability of

human eyes and detect scene edges from a image, context information

and world constraint must be employed in the edge detection process.

We have described one way of developing an edge detection

scheme from a Bayesian theoretic framework. By assuming that only

certain patterns of edge state and edge direction combinations are

likely to occur in a 3 x 3 neighborhood of positions and giving all

allowable patterns equal probability, a dictionary-based context de-

pendent edge detection algorithm was formulated. We then discussed

a general approach based on the dynamic programming method which

can be used in the context edge detecting process in place of the dic-

tionary scheme.

We also reviewed the facet model and the directional derivative

concept. Based on a cubic polynomial facet model and the statistical

analysis, in Appendix 2 we showed how to obtain edge probability

from local measurement.

We then demonatrated how lighting compensation and curvature

constraint can aid the edge detection process. We provided some
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experimental results of these scheme applied on both simulated images

and real images to support our arguments and concluded that world

constraint can really improve any edge detection scheme which detects

only image edges.

We derived an edge detection process which uses the context of

the whole image for edge detection. Thus, we have the most desirable

kind of edge labeling process which uses the entire context of the

image. The edge detection operation is then a global process and not

a local neighborhood operation.

We also illustrated how in the implementation of this operator we

can achieve the balance between local and global context information.

Besides, we show a good way of efficively using context. In the im-

plementation, We make fully use of the strongest context information

and avoid the weak and ambiguous context constraints.

The context information and world constraint can be used to

evaluate the performance of edge detectors. We formulated a general

edge evaluator based on local edge context and world constraint. A

general edge coherence measure and a robust edge thinness measure

are introduced. Besides, a general edge position correctness measure

is also described. This is the first time a general edge correctness

measure is proposed.
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Finally, a simple edge detection scheme based on morphologic

operators was discussed. In order to have a noise insensitive version

of this operator some improved morphologic edge operator are also

suggested.

The context information we used in the dissertation to aid the

edge detction process is the general context information ( for example,

edge direction consistency Thus, the context operators based on

this general context are good for all the real images and they can ex-

tract more accurate scene edges. However, the algorithms we derived

for the context edge detection mechanism are capable of incorporat-

ing much more context information to the edge detection process.

Thus, we have a tool which can accept prior information about edge

context ( not necessary to be general ) and apply this information

most effectively to achieve good edge detection for the images which

consistent with the given prior context information. This capability

is very useful for the real applications. Because, in the real applica-

tions each specific set of images will most probably have some prior

context information which are a lot stronger than the general context.

By employing this specific information in the edge detection process

through the context mechanism developed by this dissertation, we

can expect to have a superior result. The concept is similar to the

concept of applying morphologic operations. Although, it is almost



247

impossible to have a general applicable morphologic operator for all

the images, the morphologic operators are very useful in the real ap-

plications. In most of the real applications there exists some useful

prior information about the shape of the objects to be processed. The

morphologic operators are nothing but a set of tools which can make

use of prior shape information most effectively. Since we have a tool

which can use context information most effectively, we have reason to

believe that it will also be very useful in real applications.

The scheme of using context and world constraint to help scene

feature extraction can be applied on more than just edge detection.

A modification of this scheme is directly applicable on the field of line

detection.
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APPENDIX 1.

Putting the two conditional independence assumptions (Il-13)

and ll-(14) together, we have

(M) 6 RXC)

(@5) 6 N(@¢)»&z„„ = (@m) 6 N(@¢)»E$„6$„)
6;. HK)

Z (@5) 6 N(r,c))

E; P(K)

(@5) 6 N(¤¤))
P(K)

=•=P(&.j = (@5) 6 N(n ¤))P(l¤.«j = (@ 5) 6 N(@@))

Now when the left hand side is summed over the possible values 6:6

can take, the sum must be unity. Summing the right hand side over

the possible values 6:6 can take, the sum is

P(&7j = (@5) 6 N(@¢))P(k«j = (@5) 6 N(n¤))
P(K)

which also, therefore, must be unity. So, the two conditional inde-

pendence assumptions imply equation (II—15).
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APPENDDC 2.

Let’s examine the facet model which produces the coeflicients

k1’•••’k10• Suppose that the observed facet f(r,c) given the true

facet coeflicients k;, . . . , kfo can be written as

f(r, c) = kf + k;r + k§c + k§r2 + kgrc + kgcz

+k;r3 + k§·r2c + kgrcz + k'{0c3 + n(r, c)

(A2.1)

where 17(r, c) is independent Gaussian noise having mean 0 and

standard deviation 0. We assume that k;,...,k’{0 are indepen-

dent Gaussian random variables with mean 0 and standard devia-

tion 0;,. . . ,0;0, respectively if there is no edge. If there is an edge,

the means remain 0, but the standard deviation may change. Also,

kj, . . . ,
k’{0

will not be independent but will have one linear depen-

dency.

Unfortunately, k; , . . . , kfo are not observed. They are estimated

by ko, . . . , klo. Each coeflicient kg is determined by

ki = f(r,c)0.;(r, c)
(Vic)

where the weighting mask al has the property that

f(C, C)C6(n C) = IC? C)
(r„C) (r„C)
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and 20,6) a;(r, c)aj(r, c) = 0

for·i7éj,·1I,j€ {1,...,6} or 1I,j E {4,...,10}

Hence E[k;|k§‘] = kf and V[k;|k§‘] = 62 2(6’6) a2(r,c). To simplify

notation, we let q; = 2(6’6)a2(r,c) Then we have V[k,] = 6q; +

62. Finally, because the masks for the first order coefficients are

orthogonal to the masks of the second order coeflicients and the masks

of the second order coefficients are orthogonal to the third order

coefficients and because the noise is independent normal, kg and kg are

independent of k4, ks, ks and kl, ks, kg are independent of kq, . . . , klo.

Coffecients ko and kg are not independent of kl,. . . ,klo but in the

following derivation we will assume that their dependence is small so

that they can be treated as independent. Finally the existence or

non-existence of an edge has no influence on the coeflicient kl, the

constant term, and the value of the constant term has no influence on

weather or not an edge exists.

Thus,

= P(k2,
k3|6”°“,

0'°‘)P(k.l, . . . , klo|6"‘,0’°°)|P(k2, . . . , klo)

=•·sinceedge pixels have no a priori favored edge directions. The im-

portant probabilities in this decomposition for the edge and no edge
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case are P(kg, kg|6*, 0*)andP(k4, . . . , k1g|6*, 0*). First we consider the

conditional probability for kg and kg given edge or no edge and then

k4’ • • •’We

do the analysis for kg and kg in terms of two orthogonal

linear combinations of kg and kg. Whether or not there is an edge,

the direction 0* is the gradient direction. The gradient direction 0*

is well defined when kg2 + kg2 > 0 and satisiies

kg cos 0* — kg sin0* = 0

Thus, given the direction 0* the random variable kg cos 0* — kg sin 0*

has a normal distribution with mean 0 and variance 02 (qg cos2 0* +

qg sinz 0*). Since qg = qg the variance becomes 02qg.

Next we determine the distribution of the random variable r =

kg sin 0* — kg cos 0*. The true value of the first directional derivative

taken in the direction of the gradient is given by r* = kg sin 0* —

kg cos 0* .

By deiinition of the gradient direction, 0* is a random variable

and satisfies r* = y/ kg2 + kg2 which is the magnitude of the gradient.

Let 0g = 0g = 0g, then has a chi-squared distribution with 2
H

degrees of freedom. Let 17, = n(r,c)a,(r,c). Then each ni has

an independent normal distribution with mean 0 and variance q;02.
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Si¤¢¢ 92 = 96,94 = 96, 97 = 910,¤"·d 96 = 99·

r = kg sin 0* + kg cos 0* = (ic; + ng) sin 0* + (kg + ng) cos 0*

= r* + ng sin 0* + ng cos 0*

(A2.2)

From (A2.2) the expected value pg of r is pg = (/%-0; and the

variance of r is 20;2 + q02, where q = qg = qg. If 0;2 > q02, the

density function for r will be approximately the density function for

N/k;2 + kgz which is the Rayleigh density function:

r —r2"') ‘*In
order for there to be an edge the value of the first directional

derivative must be non-zero. Thus the random variable r will have a

significantly non-zero mean pg and a variance of 20;2 + q02. Let

V[kg|6* =' no — edge'] = 0;1

then

V[kg|6* =' edge'] = A20;1

where A is greater than 1. Therefore, In the no edge case we have

mean pg = 0 and variance 20;% + q02. In the edge case, we have a

mean pg = \/§A0; and a larger variance ZA20;2 + q02.
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From the above analysis we have determined that kg and ks are

normally distributed. The expected value of is given by
6

p2 _ cos 0* sin 0* 0
pg

— — sin 0* cos 0* pg

(A2.3)

and its covariance is

cos 0* sin 0* 02q 0 cos 0* — sin 0*
— sin 0* cos 0* 0 2o;2 + ag sin 0* cos 0*

(A2.4)

Next we consider the conditional distribution of l<:4, . . . ,Ic10. If the

pixel is a non—edge pixel, there is no constraint on the second direc-

tional derivative. However, if the pixel is an edge, there must be a

point in the pixel’s area such that the second directional derivative

taken in the gradient direction must have a negatively sloped zero

crossing. This represents a linear constraint on lo},....lcfo. From

equation (II-8) we know that

where

.4* = 6[k;s3 + kgszc + k;s02 + k;„0*’·]

B* = 2[lc§S2 + ]c§SC' + k§C2]
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S = sin0*; C = cos0*

Thus the constraint on kj, . . . , lcfo is that an edge exists if for some

p,0 < |p| < po where po is just smaller than the length of a side of

a pixel, we have A*p + B* = 0 and A=•=
< 0. This constraint causes

the difference in the distribution for the observed (k4, . . . , kw) in the

case of edge and non-edge pixels.
A

The true value of coefficients A* and B* are not known. Given

the true gradient direction 0*, the computed coeflicients A and B

satisfy

A = 6[1¤,s3 + kgszc + kgscz + klocß]

= A* UQSGZ + U1oG3] = A* + ÜA

B = 2[lc4S2 + k5SC + k6C2]

= Big
+ 2l*74S2 + USSC + 'I6C2l = Bl;

+ UB

We want to determine the joint distribution of A and B under the con-

ditions of edge and no edge. lf there is no edge there is no constraint

of
A"‘

and B*. If there is an edge, there is the constraint

.. A*p + B*
r = ———— = O

y/ 1 + p2

Our analysis of the joint distribution of A and B will be relative to

the orthonormal linear combinations

A* B*

\/ 1 + p2
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8* =
(—A"‘

+
ßB’°‘)

\/ 1 + p2

Let the orthonormal matrix T be given by

gg. gg
_ 3/1+102 y/1+p’T ’ g g

*/1+11*(A2.6)

Then,
A* 1**(13*) ’

TIfthere is no edge all the random variables
A"‘,

B*,11A, 17B are inde-

pendent normals with mean 0 and variances

024. = 36(S60$ + S4C'20ä + S2C40ä + C'6020)

0%. = 4(S40§ + S2C'208_-2 + C40ä)

02,8 = 36(S60; + S"C20§8 + S2C"0§8 + C60;8)

.*38 = 4(s**¤j8 + $2020; + 0*0;)

Thus A r* 11,* )l T
*(B) (3 ) T (113

from which it follows that has a normal distribution with mean
0 and covariance

02. 0 , 02 0+( ö“ mi.)
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(A2.7)

where

1+p 1+p

If there is an edge, we have 1** = 0 and s* has normal distribution

with positive mean —,u„_4• (since A* < 0) and variance aj. In this

case, A 0 ÜA
T(B (Ts

>
’7B

(A2.8)

from which it follows that has a normal distribution with mean
(**8* and covariance

T 0 0 T,
+ 62,, 0

0 03. 0 ogs

(A2.9)

Since A and B are function of k4, . . . , klo, The probability

P(164,. . . , klo|6*, 0*) = P(k4, . . . , klo, A, B|6*, 0*)

P(6*, 0*|k4, . . . , klo, A, B)
= —-—————————— P k ,...,k ,A,B

P(8*’ 0*) * (

4Now0* is independent of k4, . . . , klo and the true edge state constrains

164,. . . , klo only through A and B. That is, once the values of A, B are
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known, the values ]c4, . . . ,]<:10 do not contain any further information

about 6*. Thus

P(6*,0*|]c4, . . . , klo, A, B) = P(6*, 0*|A, B)

(A2.11)

Putting (A2.11) into (A2.10) we have

P(k4, . . . , k10|6*, 0*) = P(A, BI€*, 0*)P(k4, . . . , ]c10|A, B)

We assume that for each value of (A,B), P(k4, . . . , k10|A, B) is nearly

constant. In this case

P(lc4, . . . , k1O)€*, 0*) 0*)

Therefore, instead of using P(k4, . . . , lc10|6*, 0*) we can use

P(A, B|6*, 0*) in the edge detecting process.



Y

267

APPENDIX 3.

Under assumptions of equati0ns{II-27} and {II-28) we have

P(b„|~‘¤'5v,9?v) = Z P<r„„r;¤e;..6;„>
E?.

_ ZE, P(EÜ„¢’}‘v,9?v)P(bÄ»@k»9N)
Plelvvglv)

P=

Xp; P(&l°-LET.,9l‘.)P(&Ä»€ä»9»)P($’iv-„,Üiv-„lEÄ»€T., Oli)
Pla;/vglv)

where

= {6; : k 6 {0,...,8} cmdk 96 n}

9j‘V_„
= {9; : k 6 {0,...,8} cmdk 96 n}

Since the dependence between 6"]Q,_„, 0}"V_„ and &;, 6;, 9; is only

through edge data 6*},, 0;, we have

Now we can show that under equations (A3.1} and (II-28} and some

mathematical manipulations , the observed facet parameters for each

pixel depend only on the true edge state and direction for the pixel
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and does not depend on the true edge state and direction for any

other pixels in the neighborhood. Thus

P(&„l@iv»0iv) = P(&„l6Ü„9Ä)

(A3.2)

From equations (A3.2) and {II-27}, equation{II-29) follows directly.






