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Weakly Pinned Bose Glass vs. Mott Insulator Phase in Superconductors
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We study the properties of the Bose glass phase of localized flux lines in irradiated superconductors
near the matching field BΦ. Repulsive vortex interactions destroy the Mott insulator phase predicted
to occur at B = BΦ. For ratios of the penetration depth to average defect distance λ/d ≤ 1 remnants
of the Mott insulator singularities remain visible in the magnetization, the bulk modulus, and the
magnetization relaxation, as B is varied near BΦ. For λ ≥ d, the ensuing weakly pinned Bose glass
is characterized by a soft Coulomb gap in the distribution of pinning energies.

PACS numbers: 74.60.Ge, 05.60.+w

For the application of high–Tc (type II) superconduc-
tors in external magnetic fields, an effective flux pin-
ning mechanism is essential in order to minimize the re-
sistive losses through Lorentz–force induced vortex mo-
tion. Specifically, columnar defects, i.e., linear damage
tracks in the material caused by heavy–ion irradiation,
have emerged as very effective pinning centers [1]. For
such systems, a continuous vortex localization transi-
tion at TBG from an entangled flux liquid to a disorder–
dominated Bose glass phase was predicted [2,3], and sub-
sequently found in experiment [1]. In addition, it was
suggested that when the vortex and defect densities are
equal, each flux line would be attached to one pin, leading
to a Mott insulator phase within the Bose glass [3]. Re-
cent measurements of the magnetization relaxation rate
at low temperatures [4,5], and of the reversible magneti-
zation itself [6,7], have been interpreted as signatures of
this Mott insulator, and inspired further theoretical in-
vestigations [8–10]. Yet so far, the influence of the repul-
sive vortex interactions, whose range is set by the London
penetration depth λ, has not been carefully studied.

The aim of this Letter is to explore numerically how
the repulsive vortex forces affect the predicted Mott insu-
lator as the magnetic field B is varied near the matching
field BΦ. Using a random defect distribution with aver-
age defect distance d, we extend earlier work which was
limited to B ≪ BΦ [11]. Our findings are: 1) At BΦ the
Mott insulator, which is characterized by a hard gap ∆ in
the distribution of pinning energies g(e) near the chem-
ical potential µ, exists only for extremely short–range
interactions λ/d → 0 (Fig. 1, left inset); with increasing
λ < d the gap quickly fills and, therefore, the Mott insu-
lator is destroyed (Fig. 1, right top inset). For long–range
interactions λ > d a soft Coulomb gap [12] described by
g(e) ∝ |e − µ|seff emerges with an effective gap expo-
nent seff (Fig. 1, bottom inset). 2) By measuring the
reversible magnetization and the effective IV exponent,
which is related to the magnetization relaxation rate, we
are able to explain experimental results [4–7] as remnants

of the Mott insulator for λ < d, but not as true signatures
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FIG. 1. SBG / WBG crossover line (see text) vs. λ/d. The
insets show the pinning energy distribution g(e) vs. e− µ for
λ/d → 0 (left), λ/d = 1/4 (right top) and λ/d = 5, all at BΦ.

of this distinct thermodynamic phase itself. 3) We can
identify a crossover line (Fig. 1), discriminating between
the strong Bose glass (SBG, with all vortices localized
by defects) and the weak Bose glass (WBG, with vortex
bundle pinning) [3,8].

The theoretical description of the Bose glass is based
on the following free energy of NV flux lines, described
by their 2d trajectories ri(z) as they traverse a sample of
thickness L in a magnetic field B ‖ ẑ [2,3],

F =

∫ L

0

dz

NV
∑

i=1







ǫ̃1
2

(

dri(z)

dz

)2

+
1

2

NV
∑

j 6=i

V [rij(z)]

+

ND
∑

k=1

VD[ri(z) − Rk(z)]

}

. (1)

This consists first of an elastic line tension term, with tilt
modulus ǫ̃1. The second term denotes the interaction en-
ergy of all vortex pairs (local in z), where rij = |ri − rj |
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and V (r) = 2ǫ0K0(r/λ) is the screened repulsive vor-
tex potential, with the modified Bessel function K0(x) ∝
− log(x) as x → 0, and K0(x) ∝ x−1/2 exp(−x) for x →
∞. The energy scale is set by ǫ0 = (φ0/4πλ)2. The last
term describes ND columnar pins (‖ B), modeled by z–
independent square well potentials VD with average spac-
ing d, centered on randomly distributed positions {Rk}.
The typical defect radius is ck ≈ 50Å, and related to the
pinning strengths Uk via Uk ≈ (ǫ0/2) log[1 + (ck/

√
2ξ)2]

[3]. The ion beam dispersion induces a distribution of
the Uk with width w =

√

〈δU2

k 〉.
The mathematical analysis of Eq. (1) exploits a map-

ping of the statistical mechanics of this free energy
of directed lines to the quantum mechanics of two–
dimensional bosons subject to point disorder [2,3]. Here,
we focus on the ground states properties of Eq. (1) for
B ∼ BΦ at zero temperature, which is a fair approxima-
tion for the Bose glass phase for T < T1 ≈ 0.6 . . . 0.8 TBG.
In this regime, thermal wandering of vortices can be ne-
glected [3,11,13,14], and the vortices will essentially be
straight which allows us to ignore the elastic energy. This
leaves us with a static two–dimensional problem of NV

interacting “particles” and ND defects. For computa-
tional reasons we represent our problem on an underly-
ing triangular grid with N “lattice” sites and therefore
N − ND interdefect sites (“interstitials”). The effective
Hamiltonian then reads

Heff =
1

2

N
∑

i6=j

ninjV (rij) +

ND
∑

k=1

nktk , (2)

where {ni = 0, 1} represent the site occupation numbers.
If we take ξ = 10Å and c0 = 50Å, we obtain for the
“bare” defect pinning energies tk = −〈Uk〉 + wk, with
〈Uk〉 = 0.65 and width w = 0.1 in units of 2ǫ0. For sim-
plicity we assume a flat distribution of pinning energies
around its mean, P (wk) = Θ(w − |wk|)/2w, where Θ de-
notes the step function. The simulations are performed
by randomly distributing NV vortices and ND defects
on the triangular grid and minimizing the total energy
with respect to single–particle transfers, thereby obtain-
ing pseudo–groundstates for the Hamiltonian (2) [15].
Our simulations are mostly carried out with N = 1600,
ND = N/16 = 100, using periodic boundary conditions.
We study physical quantities as functions of the inter-
action range λ/d = 1/4, 1/2, 1, 5, and the filling fraction
f = NV /ND = B/BΦ, in the interval 0.2 ≤ f ≤ 3. All
distances are given in units of the lattice constant a of
the triangular grid. The lower limit for the interaction
range is determined by λ = a, since even smaller values
effectively correspond to λ → 0. We typically take an
average over 50 different realizations of the disorder.

We have compared our findings for f ≤ 0.6 with those
obtained in Ref. [11], where it was assumed that all vor-
tices remain bound to defects, irrespective of the value of
λ, and therefore continuously spaced random positions
could be used. Indeed, we were able to reproduce the

previous results for filling fractions f = 0.2 and f = 0.4
quantitatively. We have also tried to render the artifi-
cial grid finer by keeping ND constant and increase N
from 1600 to 3600, the largest sample we could study,
and did not detect any lattice dependence for both grid
sizes. Hence, we believe that our results should be largely
insensitive to the underlying lattice representation, and
provide a fair approximation to a more realistic contin-
uum description. Also, we could not find any significant
finite–size effects when keeping N = 3600 and λ/d fixed
and increasing ND from 36 to 100 and 225.

A natural first question to ask is how many flux lines
are depinned as a result of the vortex interactions, de-
pending on the values of f and λ/d. Within the Bose
glass one may discriminate between the SBG and the
WBG, where the latter is characterized by a markedly
reduced localization temperature TBG and critical cur-
rent Jc [3]. For λ/d ≪ 1, the crossover between these
regimes is expected to occur for B ∼ BΦ [8]. Once inter-
actions become strong, the WBG will appear well below
BΦ. Fig. 1 shows the filling fraction focc at which 10 %
of the vortices are depinned, as a function of λ/d, which
we tentatively take as a criterion to define a crossover
line between the SBG and WBG. One observes a rather
strong dependence of this line on λ/d, which is shifted
well below BΦ as soon as λ ≈ d. Only for λ/d ≤ 1/4
does the line remain above BΦ; yet obviously this is a
prerequisite for the Mott insulator phase to appear.

In order to see if the Mott insulator persists for a finite
interaction range and a random distribution of pinning
sites, we compute the single–particle density of states
g(e), i.e. the distribution of (interacting !) pinning en-
ergies, where ei =

∑

j 6=i njV (rij) + ti. For long–range
interactions (λ ≫ d) one expects a soft “Coulomb” gap
in g(e) at the chemical potential e = µ, separating oc-
cupied (e < µ) from empty (e > µ) states; near µ, g(e)
should vanish according to g(e) ∝ |e − µ|seff [12,11]. In
the limit λ/d → 0, on the other hand, the Mott insula-
tor phase at f = 1 is characterized by the appearance
of a hard gap separating the occupied defect states at
e = −〈Uk〉 ± w from the unoccupied states at e = 0
(Fig. 1, left inset). The right insets in Fig. (1) show g(e)
at f = 1 for λ/d = 1/4 (top) and λ/d = 5 (bottom).
The bottom figure exhibits a wide Coulomb gap, which
we also find (though narrower) for λ/d = 1.

The top inset, however, only shows a fairly flat den-
sity of states for the occupied sites, which is somewhat
depleted for e ≈ µ, and rises sharply for e ≥ µ. The fact
that all states below µ are continuously filled implies that
even rather short–range interactions suffice to destabilize
a distinct thermodynamic Mott insulator phase [9]. We
have also looked at λ/d = 1/8 by increasing N to 3600,
using only ND = 56, whence d =

√

N/ND ≈ 8, and
even here we still found some states in the vicinity of µ.
We are therefore led to conclude that for the true Mott
insulator to appear in this system with a random spa-
tial distribution of pinning sites, a necessary condition is
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FIG. 2. Log–linear plots of the bulk modulus c11 (top) and
the magnetization M (bottom) vs. f for λ/d = 1/4 (left scale
in the bottom plot) and λ/d = 1/2 (right scale).

λ ≪ d. We speculate that for a more regular array of
columnar defects [16], the Mott insulator at T = 0 may
persist to considerably larger interaction ranges [9].

Next, we have determined the chemical potential µ
as a function of f , i.e. the H(B) curve, defining µ =
(emax + emin)/2 with emax the maximum site energy of
the occupied states, and emin the minimum of the un-
occupied site energies, and then averaging over disorder
[12]. From this we obtain the bulk modulus of the sys-
tem via c11 = ∂µ/∂f = ND∂µ/∂NV . A divergence of c11

at BΦ would indicate the appearance of the Mott insula-
tor, which is incompressible (adding another vortex costs
an energy ∆) and in this respect similar to the Meissner
state. Correspondingly, its signature should be a sharp
jump in µ at f = 1 [for λ → 0 the height of this jump
is given by the hard gap ∆ = 〈Uk〉 in g(e)]. Fig. 2 (top)
shows that while the divergence is smeared out already
for short–range interactions (λ/d = 1/4), yet a quite
pronounced peak in c11 remains, shifted downwards to
f ≈ 0.85. For larger interaction range (λ/d = 1/2) the
jump of µ is displaced to even smaller f(≈ 0.55) and
less marked; for λ ≥ d, the bulk modulus becomes essen-
tially constant over the entire range of f . In both cases
depicted here, the location of the peak in c11 coincides
with that value of f at which a sizeable number of vor-
tices actually leave the defect sites. The fact that the
average bulk modulus is enhanced for larger λ is simply
an energetic effect, since a vortex entering the system has
to overcome a higher energy barrier due to the interac-
tions. The behavior of c11 confirms again that no true
Mott insulator exists even for relatively short–range in-
teractions λ/d = 1/4 or 1/2. We do observe, though, a
distinctive ”lock–in” structure for λ/d < 1, which com-
pletely disappears for λ/d ≥ 1.

In order to make further contact with experiments,

we measured the total energy G, which yields the re-
versible magnetization via the thermodynamic relation
M = −∂G/∂B ∝ −N−1

V ∂G/∂f . Fig. 2 (bottom) depicts
M as a function of f on a log–linear plot for λ/d = 1/4
and λ/d = 1/2. The data for λ/d = 1/4 show a pro-
nounced minimum in M at f ≈ 1, embedded in a slow
logarithmic growth as f increases. The second plot for
λ/d = 1/2 hardly displays any structure aside from a
shallow dip near f ≈ 0.6. This feature is completely
absent for λ/d ≥ 1, where only the log(

√
f) increase re-

mains, resembling the magnetization curve of an unirra-
diated superconductor [6,7,10]. The observed behavior
of M at λ/d = 1/4 qualitatively agrees very well with re-
cent measurements performed by van der Beek et al. in
an irradiated BSCCO crystal [7], who find (at T ≈ T1)
a pronounced dip in M centered near B = BΦ. The
disappearance of this minimum in the experiments as
T → T−

BG
may be at least partially due to the increase

of the London penetration depth λ(T ), in addition to
the entropic renormalizations studied in Ref. [10]. Our
simulations cannot explain, however, the magnetization
minima found at f > 1 in BSCCO tapes [6,17].

We would like to point out that the maximum in c11

occurs at lower values of f than the minimum in M
(compare, e.g., our data for λ/d = 1/4), which can
be understood as follows. Starting from the relation
M ∝ B − H , the bulk modulus may be written as
c11 ∝ ∂H/∂B ∝ const. − ∂M/∂B = const. + ∂2G/∂B2;
thus the maximum of c11 occurs at the location of the
steepest negative slope in M(B), which has to be at a
smaller B than the minimum in M . Only in the “true”
Mott insulator phase will the singularities both in c11 and
M coincide at B = BΦ.

We now briefly return to the case of long–range inter-
actions λ/d > 1, where a soft Coulomb gap appears in the
distribution of pinning energies (r.h.s. inset in Fig. 1).
Notice that the energetically favorable sites include both
the defect and high–symmetry interstitial positions; thus,
the original spatial randomness is in effect smoothened,
and the gap exponent seff increased as compared to a sit-
uation where no interstitials are allowed [11]. At large
f , a substantial fraction of the vortices will leave the
pin positions, and as a consequence, Bose glass behavior
can only be seen at low temperatures [14]. Yet, then the
pinning via the repulsive forces exerted by neighbors that
are still attached to columnar defects is very effective; we
find that the potential minima are roughly equally deep
and wide for all vortices in a given pseudo–ground state
configuration, irrespective of the flux line occupying a de-
fect or an interstitial site. This gives us confidence that
the single–vortex density of states may indeed be used
to infer low–current transport properties in the variable–
range hopping regime [3,11].

In the localized Bose glass phase, vortex transport at
low currents J ≪ Jc is expected to occur via variable–
range hopping [3], in analogy with doped semiconduc-
tors [12]. In the spirit of the thermally–assisted flux flow
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FIG. 3. Transport exponent 1/peff vs. f for λ/d = 1/2, 1, 5.

model, this leads to a highly nonlinear IV characteristics
E = ρ0 J exp[−UB(J)/kBT ], with effective (free) energy
barriers that diverge according to UB(J) = U0 (J0/J)peff

as J → 0. For short–range interactions, peff should be
given by the 2d Mott variable–range hopping exponent
p0 = 1/3 [3]. Yet, once the vortex interactions become
long–range, the emergence of a Coulomb gap in the dis-
tribution of pinning energies near µ leads to a consid-
erable enhancement of flux pinning with effective expo-
nents up to peff ≈ 0.7, if f = 0.1 [11]. Such values for
peff in the range between 1/3 and 1 (as suggestive of the
vortex half–loop excitations dominating for intermediate
currents [3,11]) were found in recent magnetization re-
laxation experiments extending up to BΦ [14].

We have calculated peff from the IV characteristics ob-
tained by integrating over g(e) for e > µ (see Ref. [11]).
In Fig. 3 we plot p−1

eff
as a function of f for various val-

ues of λ/d. Remarkably, peff increases with growing vor-
tex density for f < 1, as opposed to the earlier simu-
lations where no interstitial positions were allowed and
to the contrary a decrease with f was found, owing to
the fact that the system had to accommodate with the
underlying randomness [11]. Now, however, with favor-
able interstitial sites being available, the disorder effects
are screened by the interactions as the vortex density in-
creases. This leads to stronger correlations, and in fact
more mean–field like behavior with larger values of peff

as is apparently seen in experiment [14]. For λ/d = 1/2,
we find a marked minimum in p−1

eff
at f ≈ 1.4 (see Fig. 3)

obviously due to a delicate interplay of disorder and
correlation effects. Assuming that relaxation times are
determined by the variable–range hopping energy bar-
riers (vortex superkinks), log(t/t0) ≈ UB(J)/kBT [1],
one finds for the magnetization relaxation rate S =
−dM/d log t = −d log J/d log t = kBT/peffU(J); there-
fore S(B) ∝ 1/peff(f). Hence, the minima in S(B)
near B ≈ 1.4BΦ detected by low–temperature relaxation

experiments on YBCO [4], and on a Tl–compound [5],
might be explained by the maximum in peff we find with
our simulations. At elevated temperatures, this structure
should disappear quickly in this WBG regime.

In summary, we have investigated the Bose glass phase
of flux lines localized by columnar defects near the match-
ing field, taking the vortex interactions properly into ac-
count. For a random spatial distribution of pinning cen-
ters, the proposed Mott insulator phase is destabilized
by the repulsive forces between the flux lines, but for a
moderate interaction range λ/d < 1 interesting “lock–in”
effects remain visible in the reversible magnetization, the
bulk modulus, and the magnetization relaxation, which
at least qualitatively explains a number of recent exper-
iments. For larger λ/d > 1, the distribution of pinning
energies displays a wide Coulomb gap, and sites available
for variable–range hopping processes include both defect
as well as high–symmetry interstitial positions.
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and A.P. Young. C.W. acknowledges support from a NSF
Grant DMR 94–11964 and U.C.T. through a European
Commission TMR Grant ERB FMBI-CT96-1189.

[1] For a recent review, see, e.g., G. Blatter et al., Rev. Mod.
Phys. 66, 1125 (1994).

[2] I. F. Lyuksyutov, Europhys. Lett. 20, 273 (1992).
[3] D. R. Nelson and V. M. Vinokur, Phys. Rev. Lett. 68,

2398 (1992); Phys. Rev. B 48, 13 060 (1993).
[4] K. M. Beauchamp et al., Phys. Rev. Lett. 75, 3942

(1995).
[5] E. R. Nowak et al., Preprint (1995).
[6] Q. Li et al., Phys. Rev. B 54, R788 (1996).
[7] C. J. van der Beek et al., Phys. Rev. B 54, R792 (1996).
[8] L. Radzihovsky, Phys. Rev. Lett. 74, 4919 and 4923

(1995).
[9] C. Reichhardt et al., Phys. Rev. B 53, R8898 (1996).

[10] L. N. Bulaevskii et al., Phys. Rev. Lett. 77, 936 (1996).
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U. C. Täuber and D. R. Nelson, Phys. Rev. B 52, 16 106
(1995).

[12] See, e.g., B.I. Shklovskii and A.L. Efros, Electronic Prop-

erties of Doped Semiconductors (Springer, Berlin, 1984).
[13] L. Krusin-Elbaum et al., Phys. Rev. B 53, 11 744 (1996).
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