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Generalized Principal Component Analysis

Karo Solat

(ABSTRACT)

The primary objective of this dissertation is to extend the classical Principal Components

Analysis (PCA), aiming to reduce the dimensionality of a large number of Normal interre-

lated variables, in two directions. The first is to go beyond the static (contemporaneous or

synchronous) covariance matrix among these interrelated variables to include certain forms

of temporal (over time) dependence. The second direction takes the form of extending the

PCA model beyond the Normal multivariate distribution to the Elliptically Symmetric fam-

ily of distributions, which includes the Normal, the Student’s t, the Laplace and the Pearson

type II distributions as special cases. The result of these extensions is called the Generalized

principal component analysis (GPCA).

The GPCA is illustrated using both Monte Carlo simulations as well as an empirical study,

in an attempt to demonstrate the enhanced reliability of these more general factor models

in the context of out-of-sample forecasting. The empirical study examines the predictive

capacity of the GPCA method in the context of Exchange Rate Forecasting, showing how

the GPCA method dominates forecasts based on existing standard methods, including the

random walk models, with or without including macroeconomic fundamentals.



Generalized Principal Component Analysis

Karo Solat

(GENERAL AUDIENCE ABSTRACT)

Factor models are employed to capture the hidden factors behind the movement among a

set of variables. It uses the variation and co-variation between these variables to construct

a fewer latent variables that can explain the variation in the data in hand. The principal

component analysis (PCA) is the most popular among these factor models.

I have developed new Factor models that are employed to reduce the dimensionality of a

large set of data by extracting a small number of independent/latent factors which represent

a large proportion of the variability in the particular data set. These factor models, called the

generalized principal component analysis (GPCA), are extensions of the classical principal

component analysis (PCA), which can account for both contemporaneous and temporal

dependence based on non-Gaussian multivariate distributions.

Using Monte Carlo simulations along with an empirical study, I demonstrate the enhanced

reliability of my methodology in the context of out-of-sample forecasting. In the empirical

study, I examine the predictability power of the GPCA method in the context of “Exchange

Rate Forecasting”. I find that the GPCA method dominates forecasts based on existing

standard methods as well as random walk models, with or without including macroeconomic

fundamentals.
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Chapter 1

Introduction

1.1 An Overview

The method of Principal Component Analysis (PCA) is a multivariate technique widely used

to reduce the dimensionality of data summarized in the form of a variance-covariance matrix

ellipsoid by rotating the coordinate system to render the resulting components uncorrelated.

The classical PCA models use eigenvalue decomposition methods on the contemporaneous

data covariance matrix to extract the uncorrelated principal components. This allows the

modeler to retain only the components that cover a significantly high portion of the variation

in the data.

The origin of the PCA method is not easy to trace back historically because the mathematics

for the spectral decomposition of a matrix have been known since the late 19th century and

the initial application of Singular Value Decomposition (SVD) to a data matrix. The reason

is that statistical analysts up until the 1920s did not distinguish between the variance-

covariance parameters (Σ) and their estimates (Σ̂). The first to point out this important

distinction is Fisher [1922]. The SVD method, which is considered as the building blocks of

PCA, and its connection to the components of a correlation ellipsoid, have been presented in

Beltrami [1873], Jordan [1874], and Galton [1889]. However, it is widely accepted that the

1



2 Chapter 1. Introduction

full description of PCA method was first introduced in Pearson [1901] and Hotelling [1933].

This dissertation proposes a twofold extension of the classical PCA. The first replaces the

Normal distribution with the Elliptically Symmetric family of distributions, and the second

allows for the existence of both contemporaneous and temporal dependence. It is shown

that the Maximum Likelihood Estimators (MLEs) for the Generalized PCA (GPCA) are

both unbiased and consistent. In the presence of temporal dependence, the unbiasedness of

the MLEs depends crucially on the nature of the non-Gaussian distribution and the type of

temporal dependence among the variables involved.

Section 1.2 briefly summarizes the classical PCA with a view to bring out explicitly all the

underlying probabilistic assumptions imposed on the data, as a prelude to introducing the

GPCA and proposing a parameterization of the GPCA as a regression-type model. This

is motivated by the fact that oftentimes discussions of the PCA emphasize the mathemati-

cal/geometric aspects of this method with only passing references to the underlying proba-

bilistic assumptions. Chapter 2 introduces the definition and notation of a Matrix Variate

Elliptically Contoured distribution along with a few representative members of this family.

Chapter 3 presents the Generalized Principal Component Analysis (GPCA) model together

with its underlying probabilistic assumptions and the associated estimation results. Chapter

4, presents two Monte Carlo simulations associated with the Normal vector autoregressive

(Normal VAR) and the Student’s t vector autoregressive (StVAR) models, to illustrate the

predictive capacity of the GPCA when compared to the PCA. We show that when there is

temporal dependence in the data, the GPCA dominates the PCA in terms of out-of-sample

forecasting.

Chapter 5 illustrates the estimation results associated with GPCA model by applying the

method to a panel of 17 exchange rates of OECD countries and use the deviations from
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the components to forecast future exchange rate movements, extending the results in Engel

et al. [2015]. We find that the GPCA method dominates on forecasting grounds several

existing standard methods as well as the random walk model, with or without including

macroeconomic.

1.2 Principal Component Analysis

Let Xt:=(X1t, ..., Xmt)
>∼ N(µ,Σ), t∈N:=(1, ..., T, ...)1, be a m × 1 random vector, and

Ap:=(v1, ...,vp), be a m × p matrix (p ≤ m), which consists of p ordered2 orthonormal3

eigenvectors of the contemporaneous covariance matrix Σ=E((Xt − µ)(Xt − µ)>).

Therefore, the matrix of p (p ≤ m) principal components, Fpc
t :=(fpc1t , ..., f

pc
pt )
>, t∈N, can be

constructed as follows:

Fpc
t =A>p (Xt − µ) ∼ N(0,Λp), (1.1)

where Λp=diag(λ1, ..., λp) is a diagonal matrix with the diagonal elements equal to the first

p eigenvalues of Σ arranged in a descending order. Table 1.1 summarizes the assumptions

imposed to the joint distribution of PCs together with the statistical Generating Mechanism

(GM).

1A> denotes the transpose of a matrix A which means every ijth element of A is equal to the jith element
of A>.

2Ordered based on the descending order of the corresponding eigenvectors λ1 ≥ ... ≥ λp.
3Mutually orthogonal and all of unit length.
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Table 1.1: Normal Principal Components model

Statistical GM Fpc
t =A>p (Xt − µ) + εt, t∈N,

[1] Normality Fpc
t ∼N(., .),

[2] Linearity E(Fpc
t )=A>p (Xt − µ),

[3] Constant covariance Cov(Fpc
t )=Λp=diag(λ1, ..., λp),

[4] Independence {Fpc
t , t∈N} is an independent process,

[5] t-invariance θ:=(µ,Ap,Λp) is not changing with t.

It is important emphasize that the above assumptions [1]-[5] provide an internally consistent

and complete set of probabilistic assumptions pertaining to the observable process {Xit : t =

1, ..., T, i = 1, ..., N} that comprise the statistical model underlying the PCA. In practice, one

needs to test these assumptions thoroughly using effective Mis-Specification (M-S) tests to

probe for any departures from these assumptions before the model is used to draw inferences.

If any departures from the model assumptions are detected, one needs to respecify the original

model to account for the overlooked statistical information in question. In deriving the

inference procedures in the sequel, we will assume that that assumptions [1]-[5] are valid for

the particular data. This is particularly crucial in the evaluation of the forecasting capacity

of different statistical models as well as in the case of the empirical example in chapter 5.

For more details see Jolliffe [1986], Jackson [1993] and Stock and Watson [2002].



Chapter 2

Family Of Elliptically Contoured

Distributions

The family of Elliptically Contoured Distributions is introduced by Kelker [1970], Gupta

et al. [1972], Cambanis et al. [1981], and Anderson and Fang [1982]. The properties of

matrix variate elliptically contoured distributions is also presented in Gupta et al. [2013].

Definition 2.1. Let matrix X, m×T, be a Random Matrix. We say X has a matrix-variate

elliptically contoured distribution (m.e.c.d.), written

X(m×T )=



x11 x12 · · · x1T

x21 x22 · · · x2T

...
...

. . .
...

xm1 xm2 · · · xmT


∼ Em,T (M,Σ⊗Φ;ψ). (2.1)

where ⊗ denotes the Kronecker product and ψ(.) is an scalar function called characteristic

generator, if the characteristic function is of the form

φX(S)=etr(iS>M)ψ(tr(S>ΣSΦ)),
1 (2.2)

Where S: m× T , M: m× T , Σ ≥ 0: m×m, Φ ≥ 0: T × T and ψ: [0,∞)→ R. Also, the

1tr(S)=trace(S) is the sum of elements on the diagonal of the square matrix S and etr(S)=exp(trace(S)).

5



6 Chapter 2. Family Of Elliptically Contoured Distributions

probability density function (when exists) is of the form

f(X)=kmT |Σ|−
T
2 |Φ|−m2 h[tr((X−M)>Σ−1(X−M))Φ−1] (2.3)

where kmT denotes the normalizing constant and the non-negative function h(.) is called

density generator. Note that the characteristic function and the probability density function

(when exists) are functions of first two moments.

To simplify, we assume that the density function of X and its first two moments exist and are

finite. In 2.1, Σ represents the contemporaneous covariance matrix of X and Φ represents

the temporal covariance matrix of X.

The first and second moments are of the form

• E(X)=M;

• Σ=


σ11 · · · σ1m

...
. . .

...

σm1 · · · σmm

=E
(

(X−E(X))(X−E(X))>
)

;

• Φ=


φ11 · · · φ1T

...
. . .

...

φT1 · · · φTT

=E
(

(X−E(X))>(X−E(X)
)

;

• Cov(X)=Cov(vec(X>))=cΣ⊗Φ2 where c = −2ψ′(0) is an scalar. 3

Also, Cov(xit, xjs)= −2ψ′(0)σijφts where i, j∈{1, ...,m} and t, s∈{1, ..., T}. Also, the ith row

2vec(X>) denotes the vector (X1, ..., Xm)> where Xi, i ∈ {1, ...,m} is the ith row of Matrix X.
3Proof can be found in Gupta et al. [2013] pages 24-26.
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(i=1, ...,m) of X has the variance matrix cσiiΦ and The tth column (t=1, ..., T ) of X has the

variance matrix cφttΣ.

Theorem 2.2. Let X be an m×T random matrix and x = vec(X>). Then X ∼ Em,T (M,Σ⊗

Φ;ψ), i.e. the characteristic function of X is φX(S) = etr(iS>M)ψ(tr(S>ΣSΦ)), iff

x ∼ EmT (vec(M>),Σ⊗Φ;ψ), i.e. the characteristic function of x is

φx(s) = etr(is>vec(M>))ψ(s>(Σ⊗Φ)s)

where s = vec(S>).

Proof. Proof can be found in Gupta and Varga [1994b].

The matrix form of a multivariate sampling distribution has a desirable property that allows

to estimate the covariance matrix by estimating Σ and Φ, i.e. contemporaneous covariance

and temporal covariance matrices, instead of Cov(vec(X>)). In other words, to estimate the

parameters we can use m×(m+1)
2

+ T×(T+1)
2

parameters instead of mT×(mT+1)
2

parameters.

2.1 Gaussian Distribution

Definition 2.3. Assume we have a random matrix X of order m × T . We say X has a

matrix variate normal distribution, i.e.

X(m×T ) ∼ Nm,T (M,Σ⊗Φ) (2.4)

Where M = E(X) : m×T , Σ = E((X−M)(X−M)>) ≥ 0 : m×m, Φ = E((X−M)>(X−

M)) ≥ 0 : T × T , Cov(X) = Σ⊗Φ. The characteristic function is of the form

φX(S) = etr(iS>M− 1

2
S>ΣSΦ), (2.5)
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where S : m× T . Also, the probability density function is of the form

f(X) = (2π)−
mT
2 |Σ|−

T
2 |Φ|−

m
2 etr(−1

2
(X−M)>Σ−1(X−M)Φ−1). (2.6)

Note that the characteristic function and the probability density function are functions of

first two moments.

2.2 Student’s t Distribution

The random matrix X of order m× T has a student’s t distribution with degree of freedom

ν, i.e.

X(m×T ) ∼ Stm,T (M,Σ⊗Φ; ν) , (2.7)

The characteristic function is of the form

φX(S) = etr(iS>M− 1

2
S>ΣSΦ), (2.8)

where S : m × T , M = E(X) : m × T , Σ = E((X − M)(X − M)>) ≥ 0 : m × m,

Φ = E((X−M)>(X−M)) ≥ 0 : T × T , Cov(X) = Σ⊗Φ.

The p.d.f. is given by

f(X)=
Γm[ 1

2
(ν+m+T−1)]

π
mT
2 Γm[ 1

2
(ν+m−1)]

|Σ|−T2 |Φ|−m2 × |Im + Σ−1(X−M)Φ−1(X−M)>|− ν+m+T−1
2

(2.9)

Note that the characteristic function and the probability density function are functions of
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first two moments.

2.3 Laplace Distribution

Definition 2.4. Assume we have a random matrix X of order m × T . We say X has a

matrix variate Laplace distribution, i.e.

X(m×T ) ∼ Lapm,T (M,Σ⊗Φ) (2.10)

Where M = E(X) : m×T , Σ = E((X−M)(X−M)>) ≥ 0 : m×m, Φ = E((X−M)>(X−

M)) ≥ 0 : T × T , Cov(X) = Σ⊗Φ, if the characteristic function has the form of:

φX(S) = etr(iS>M)(1 +
1

2
tr(S>ΣSΦ))−1, (2.11)

where S : m× T .

Note that the characteristic function is a function of first two moments.

2.4 Pearson Type II Distribution

Definition 2.5. Assume we have a random matrix X of order m × T . We say X has a

matrix variate Pearson Type II Distribution (matrix-variate inverted T distribution), i.e.

X(m×T ) ∼ PIIm,T (β, ν) (2.12)
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if the probability density function is in the form of:

f(X)=
Γβm[ 1

2
(ν+T )β]

π
1
2mTβΓβm[ 1

2
(βν)]
|Im −XX>|

β(ν−m+1)
2

−1 (2.13)

2.5 Pearson Type VII Distribution

Definition 2.6. Assume we have a random matrix X of order m × T . We say X has a

matrix variate Pearson Type VII distribution, i.e.

X(m×T ) ∼ PVIIm,T (M,Σ; β, ν) (2.14)

Where M = E(X) : m × T , Σ = E((X −M)(X −M)>) ≥ 0 : m × m, If the probability

density function has the form of

f(X)= Γβm

(πν)
1
2mTΓβm[ 1

2
(β−m)]

|Σ|− 1
2 |Im + 1

ν
Σ−1(X −M)Φ−1(X −M)>|−β (2.15)

Note that the probability density function is a function of first two moments.

2.6 Exponential Power Distribution

Definition 2.7. Assume we have a random matrix X of order m × T . We say X has a

matrix variate Exponential Power distribution, i.e.

X(m×T ) ∼ EPm,T (M,Σ; r, s) (2.16)



2.6. Exponential Power Distribution 11

Where M = E(X) : m × T , Σ = E((X −M)(X −M)>) ≥ 0 : m ×m. If, the probability

density function has the form of

f(X)=
sΓm(m

2
)

(π)
1
2mTΓm(m

2s
)
r
m
2s |Σ|− 1

2 etr(−r[(X −M)Σ−1(X −M)>]s) (2.17)

Note that the probability density function is a function of first two moments.



Chapter 3

Statistical Models

3.1 Generalized Principal Component Analysis

Principal component analysis focuses primarily on the contemporaneous covariation in the

data by assuming temporal independence i.e. it implicitly assumes that the temporal covari-

ance matrix is an identity matrix (Φ=IT ). In contrast, the GPCA accounts for both con-

temporaneous and temporal covariation in the data as well as allowing for a non-Gaussian

distribution.

Zhang et al. [1985] show that a matrix variate elliptically symmetric contoured distribution

can be viewed as a multivariate distribution by a simple transformation in the characteristic

generator function. Let X ∼ Em,T (M,Σ⊗Φ;ψ). The characteristic function can be written

in two form:

φX(S)= etr(iS>M)ψ(tr(S>ΣSΦ)),

φX(S)= etr(iS>M)ψ0(S>ΣS))

1 (3.1)

where ψ0(K) = ψ(tr(KΦ)). Therefore, a matrix-variate elliptically symmetric contoured

distribution (m.e.c.d.) of order m × T can be used to describe a vector-variate elliptically

contoured distribution (v.e.c.d.) consists of m variables and T observations (for more details,

1tr(S)=trace(S) is sum of the elements on the diagonal of a square matrix S and etr(S)=exp(trace(S)).

12
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see Siotani [1985], Gupta and Varga [1994b] and Gupta and Varga [1994c]).

Let X be the sampling matrix of order m× T with joint distribution:

X=(X1, ...,XT ) ∼ Em,T (µe>T×1,Σ⊗Φ;ψ), (3.2)

where eT×1=(1, ..., 1)>, µ = (µ1, ..., µm)>, and µi, i ∈ {1, ...,m} is the expected value of ith

row of the sampling matrix X. When ψ(.) and Φ are known, the MLEs of µ and Σ (say µ̂

and Σ̂) are of the form (see Anderson [2003b] and Gupta et al. [2013]):

µ̂=X Φ−1eT×1

e>T×1Φ−1eT×1
(3.3)

Σ̂= 1
2(T−1)ψ′(0)

X(Φ−1 − Φ−1eT×1e>T×1Φ−1

e>T×1Φ−1eT×1
)X> (3.4)

where (Φ−1 − Φ−1eT×1e>T×1Φ−1

e>T×1Φ−1eT×1
) is the weighted average matrix imposed by a certain form

of temporal dependence. A special case of the weighted average matrix is when Φ = IT

which the weighted average matrix would reduce to the deviation from the mean matrix

(IT − eT×1(e>T×1eT×1)−1e>T×1).

These formulae for MLEs µ̂ and Σ̂ of µ and Σ indicate that for an operational model in

(3.2) we need to know the nature of the distribution (ψ) and the temporal dependence (Φ)

in the data. These problems do not arise in the case of the classical PCA because it assumes

a Normal distribution and temporal independence (Φ=IT ). Note that when Φ=IT , under

certain conditions, the asymptotic joint distribution of the principal components of Σ̂ is

equivalent to the joint distribution of principal components of Σ̂ when we assume Normality

(Gupta et al. [2013], page 144), but it is not reliable when Φ 6= IT . Put differently, under

temporal independence (Φ=IT ) there is no need to worry about a distributional assumption
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as long as we retain the family of m.e.c.d. But, if there is any form of temporal dependence

(Φ 6= IT ), then the distributional assumption is important to secure unbiased and consistent

MLEs of parameters.

The above discussion suggests the GPCA uses the extended form of covariance matrix, Σ⊗Φ,

to extract GPCs. To derive p GPCs (p < m), we arrange the eigenvalues of Σ and Φ in

a descending order (λ1, ..., λm) and (γ1, ..., γT ), and find their corresponding orthonormal

eigenvectors Am×m= (v1, ...,vm) and BT×T= (u1, ...,uT ), respectively. The first p GPCs

(p < m) take the form:

F=A>p (X− µe>T×1)B ∼ Ep×T (0p×T , (A
>
p ΣAp)⊗(B>ΦB);ψ) =⇒

=⇒ F=(F1, ...,FT )=A>p (X−µe>T×1)B ∼ Ep×T (0p×T ,Λp⊗ΓT ;ψ) (3.5)

where Ft=(f1t, ..., fpt)
>, Ap= (v1, ...,vp), Λp=diag(λ1, ..., λp) and ΓT=diag(γ1, ..., γT ).

Why do GPCs account for the maximum variation present in the data? The simple answer is

that the first element of matrix F, f11 can be derived by the following optimization problem.

Let v be an m × 1 and u be a T × 1 vectors where ||v||=1 and ||u||=1.2 Assume v and u

are optimizing V ar(v>Xu) subject to the restrictions ||v||=1 and ||u||=1. The Lagrangian

function is:

L (v,u, ξv, ξu)=(v>Σv ⊗ u>Φu)− ξv(v>v − 1)− ξu(u>u− 1) (3.6)

2||.|| denotes the length of a vector.
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First Order Conditions (F.O.C.) =⇒

Σv − ξvv=0 =⇒ Σv=ξvv, (3.7)

and

Φu− ξuu=0 =⇒ Φu=ξuu. (3.8)

Hence, ξv (ξu) is an eigenvalue for Σ (Φ) and v (u) is the corresponding eigenvector. In

fact, since ξv (ξu) optimizes the objective function, it is the highest eigenvalue of Σ (Φ).

By repeating the same process, for klth element of F, fkl, we solve the same optimization

problem by subtracting the first kl − 1 elements of F with the following objective function:

V ar(v>[X−
k−1∑
i=1

l−1∑
j=1

viv
>
i Xuju

>
j ]u) (3.9)

�

In light of (3.5), the GPCs are contemporaneously and temporally independent. By assuming

Normality, Table 3.1 summarizes the assumptions imposed to the joint distribution of GPCs

together with the statistical Generating Mechanism (GM).
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Table 3.1: Normal Generalized Principal Components model

Statistical GM F=A>p (X− µe>T×1)B + ε

[1] Normality F ∼N(., .),

[2] Linearity E(F)=A>p (X− µe>T×1)B,

[3] Constant covariance Cov(F)=Λp ⊗ ΓT ,

[4] Independence {Ft, t∈N} is an independent process,

[5] t-invariance θ:=(µ,Ap,Λp) is not changing with t.

As argued above, the probabilistic assumptions [1]-[5] in Table 3.1 comprise the statistical

model underlying the GPCA. As such, these assumptions need to be tested before the mod-

eler proceeds to use the inference procedures derived in what follows, including the optimal

estimators and the procedures used to evaluate the forecasting capacity of this and related

models. If any of these assumptions are found wanting, the modeler needs to respecify the

original model. All the derivations that follow assume the validity of assumptions [1]-[5].

To illustrate the above, let us assume Xt=(X1t, ..., Xmt)
>, t=1, ..., T , is a Normal, Markov

and Stationary process with expected value µ=E(Xt)=(µ1, ..., µm)>. The sampling matrix of

random vector Xt with T observations is X=(X1, ...,XT ) where X ∼ Em×T (µe>T×1,Σ⊗Φ;ψ)

where eT×1=(1, ..., 1)>. The parameterization of a Normal, Markov (M) and stationary (S)

process {Xt, t ∈ N}, by using sequential conditioning, implies that (see Spanos [2018]):

f(X1, ...,XT ; θ)= f1(X1; θ1).
∏T

t=2 ft(Xt|Xt−1,Xt−2, ...,X1; θt)

M
= f1(X1; θ1).

∏T
t=2 ft(Xt|Xt−1; θt)

M&S
= f(X1; θ).

∏T
t=2 f(Xt|Xt−1; θ)
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The above derivation enables us to derive the covariance matrix between Xt and Xs. For

simplicity, assume µ = 0. If t < k < s where t, k, s ∈ {1, ..., T}, then:

Cov(Xt,Xs)= E(XtXs)

= E
(
E(XtXs|Xk)

)
= E

(
E(Xt|Xk)E(Xs|Xk)

)
= E

((Cov(Xt,Xk

V ar(Xk)

)
Xk

(Cov(Xs,Xk

V ar(Xk)

)
Xk

)
= Cov(Xt,Xk).Cov(Xs,Xk)

V ar(Xk)

(3.10)

Using 3.10, Spanos (Spanos [1999],page 445-449) shows that:

Cov(Xt,Xs)Σ.φ(|t−s|)=Σ.φ(0).a|t−s|, t, s∈{1, ..., T}

where 0 < a ≤ 1 is a real constant. This implies that:

Cov(X)=Σ⊗ Φ=



Cov(X1,X1) Cov(X1,X2) · · · Cov(X1,XT )

Cov(X2,X1) Cov(X2,X2) · · · Cov(X2,XT )

...
...

. . .
...

Cov(XT ,X1) Cov(XT ,X2) · · · Cov(XT ,XT )


(3.11)

=⇒

Φ=



φ(0) φ(1) · · · φ(T − 1)

φ(1) φ(0) · · · φ(T − 2)

...
...

. . .
...

φ(T − 1) φ(T − 2) · · · φ(0)


=φ(0)



1 a · · · aT−1

a 1 · · · aT−2

...
...

. . .
...

aT−1 aT−2 · · · 1


6=IT (3.12)
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which means that the temporal covariance matrix Φ is a symmetric Toeplitz matrix (see

Mukherjee and Maiti [1988]). It is important to emphasize that asssuming temporal inde-

pendence in the derivation of the classical PCA will result in biased estimators for µ̂ and Σ̂;

see 3.3 and 3.4.

3.2 Regression Models

Let Xt=(X1t, ..., Xmt)
> be a set of m random variables that can be explained by p latent

GPCs, Ft=(f1t, ..., fpt)
>; for simplicity we assume E(Xt)=0m. The sampling matrix distri-

bution of X=(X1, ...,XT ) and its derived GPCs F=(F1, ...,FT ) (see 3.5) are:

X ∼ Em×T (0m×T ,Σ⊗Φ;ψ), (3.13)

F ∼ Ep×T (0p×T ,Λp⊗ΓT;ψ). (3.14)

As argued above, the nature of distribution and temporal dependence Φ should be specified

before one can obtain unbiased MLEs of the unknown parameters. In light of that, the

matrices ΓT and B are assumed known. To address the time-varying form of the diagonal

matrix ΓT which represents the temporal co-variation matrix of GPCs, we have two different

approaches.

Given that Φ is an invertible matrix, the constant transformation presented below can adjust

for the time variation in the GPCs by replacing it with the adjusted GPCs as follows:

F̃=F.Γ
−1/2
T ∼ Ep×T (0p×T ,Λp ⊗ Γ

−1/2
T ΓTΓ

−1/2
T ;ψ) (3.15)

∼ Ep×T (0p×T ,Λp ⊗ IT ;ψ) (3.16)



3.2. Regression Models 19

Empirically, the factor model is useful when the data set can be explained by a few factors

(for instance, in the finance literature 3 to 5 factors are usually suggested). Hence, the ratio

of the summation of the largest few eigenvalues over the summation of all eigenvalues of the

covariance matrix is closed enough to one (usually 95% is the threshold). This means that

the rest of the eigenvalues when we have a large number of observations (T ) are very small

and converging to zero as t grows. Hence, for the sake of the argument we assume that there

is no time variations in the ΓT except for the first few elements on the diagonal.

Let Zt:=

Xt

Ft

 , (m+ p)× 1 and its sampling matrix Z:=(Z1, ...,ZT ), (m+ p)× T . The

joint distribution of Z is:

Z=

X

F

 ∼ E(m+p)×T (0(m+p)×T ,

 Σ Ξ12

Ξ21 Λp

⊗(Φ + ΓT );ψ), (3.17)

where Ξ12=Cov(X,F)=Ξ>21. Hence, the conditional distribution (X|F) is:

(X|F) ∼ Em×T (Ξ12Λ
−1
p F, (Σ−Ξ12Λ

−1
p Ξ21)⊗ (Φ + ΓT );ψq(F)), (3.18)

where q(F)=tr(F>Λ−1
p FΦ−1).

The question that naturally arises at this stage pertains to the crucial differences between

the classical PCA and the GPCA. If we assume normality and temporal independence, i.e.

Φ=IT , in the above derivations, then the matrix of eigenvectors (B) can be assumed as an

identity matrix, reducing the GPCA to the classical PCA model. In this case, the conditional

distribution in 3.18 can be reduced to:

(Xt|Ft) ∼ Nm(Ξ12Λ
−1
p Ft, (Σ−Ξ12Λ

−1
p Ξ21); ψq(F)), (3.19)
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where q(Ft)=F>t Λ−1
p Ft. Not surprisingly, this shows that the classical PCA is an special

case of the GPCA when we impose Normality and temporal independence on the data.

To shed additional light on the above derivation, let us focus on particular examples.

3.2.1 Normal, Markov and Stationary Process

Let X, F and Z be as defined in section 3.2, but assume that X is a Normal, Markov and

stationary vector process. This implies that the joint distribution of X=(X1, ...,XT ) where

Xt=(X1t, ..., Xmt)
> can be represented by a block ‘bivariate’ Normal distribution:

(Xt−1,Xt) ∼ Nm×2

0m×2, Σ⊗

φ(0) φ(1)

φ(1) φ(0)


 (3.20)

The 2 × 2 temporal covariance matrix in 3.20 is a reduced form of symmetric Toeplitz

matrix 3.12 for Normal, Markov and Stationary process. Note that if we replace the Markov

assumption with Markov of order P , then reduced form of the temporal covariance matrix

would be a matrix of order (P + 1)× (P + 1).

This probabilistic structure gives rise to a Normal Vector Autoregressive (VAR) model, as

shown in Table 3.2.
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Table 3.2: Normal Vector Autoregressive (VAR) model

Statistical GM Xt=B>Xt−1 + ut, t∈N,

[1] Normality (Xt,X
0
t−1)∼N(., .),

where Xt : m× 1 and X0
t−1 : =(Xt−1, ...,X1),

[2] Linearity E(Xt|σ(X0
t−1))=B>Xt−1,

[3] Homoskedasticity V ar(Xt|σ(X0
t−1))=Ω,

[4] Markov {Xt, t ∈ N} is a Markov process,

[5] t-invariance Θ:=(B,Ω) is not changing with t.

B = (Σφ(0))−1Σφ(1) = φ(1)
φ(0)Im,

Ω = Σφ(0)− (Σφ(1))>(Σφ(0))−1(Σφ(1)) = Σ(φ(0)− φ(1)2

φ(0) )

Table 3.2 comprises the probabilistic assumptions defining the Normal VAR(1) model, and

the same comments given for Tables 1.1 and 3.1 apply to this statistical model.

The joint distribution of GPCs takes the form:

F ∼ Np×T (0p×T , (Λp⊗ΓT )) (3.21)

Hence, the joint distribution of Z=

X

F

 presented in (3.17) can be reduced to:

(Zt−1,Zt) ∼ N(p+m)×2(0(p+m)×2, (Σ0⊗Ω0)), (3.22)
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where Σ0=

 Σ Ξ12

Ξ21 Λp

, Ω0=

φ(0) φ(1)

φ(1) φ(0)

 and Ξ12=Cov(X,F)=Ξ>21.

Thus, the conditional distribution (Zt|Zt−1) would be of the form:

(Zt|Zt−1) ∼ Nm+p

(
φ(1)
φ(0)

Zt−1,Σ0 ⊗
(
φ(0)− φ(1)2

φ(0)

))
(3.23)

As argued above, apart from a few largest eigenvalues, we can assume the rest of eigenvalues

are equal to zero; i.e. for a large set of observations, ∃to<T s.t. ∀t > t0: γt ' 0, which means

that they can be ignored in the bivariate distribution when t > t0.

Further reduction to the form (Zt|Zt−1) gives rise to a Normal Dynamic Linear Regression

(NDLR) model. Let

(Xt,Ft,Xt−1,Ft−1) ∼ N2(m+p)(02(m+p),Ω0 ⊗Σ0), (3.24)

(Ω0 ⊗Σ0)=

φ(0)Σ0 φ(1)Σ0

φ(1)Σ0 φ(0)Σ0

=



φ(0)Σ φ(0)Ξ12 φ(1)Σ φ(1)Ξ12

φ(0)Ξ21 φ(0)ΛP φ(1)Ξ21 φ(1)Λp

φ(1)Σ φ(1)Ξ12 φ(0)Σ φ(0)Ξ12

φ(1)Ξ21 φ(1)ΛP φ(0)Ξ21 φ(0)Λp


=

 V11 V12

V21 V22


The joint distribution in 3.24, can be decomposed as follow:

f(Xt,Ft,Xt−1,Ft−1; Θ)= f(Xt|Ft,Xt−1,Ft−1; Θ1) · f(Ft,Xt−1,Ft−1; Θ2)
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So, the joint distribution 3.24 can be viewed as a product of marginal and conditional

distributions presented below:

(Xt|Ft,Xt−1,Ft−1) ∼ Nm(V−1
11 V12(Ft,Xt−1,Ft−1)>, V)

where V = V11−V12V
−1
22 V21

(3.25)

and,

(Ft,Xt−1,Ft−1) ∼ Nm+2p(0m+2p,V22) (3.26)

The decomposition of bivariate normal distribution in 3.24 to the conditional distribution

3.25 and marginal distribution 3.26 induces a form of re-parameterization as follows:

θ:= {V11,V12,V22}

θ1:= {V22}

θ2:= {B,V} where B=V−1
11 V12 and V=V11−V12V

−1
22 V21

This re-parameterization indicates that the parameter sets θ1 and θ2 are variation free3; so

we have a weak exogeneity with respect to Θ1 and the marginal distribution can be ignored

for the modeling purpose and instead we can model in term of conditional distribution (see

Spanos [1999] pages 366-368).

3.2.2 Student’s t, Markov and Stationary Process

Again, let X, F and Z be as defined in section 3.2, but assume that X is a Student’s t,

Markov and stationary process. This implies that the joint distribution of X=(X1, ...,XT )

3Θ1 and Θ2 are variation free if for all values of Θ1 the range of possible values of Θ2 doesn’t change.
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where Xt=(X1t, ..., Xmt)
> can be represented by:

(XT ,X
0
T−1) ∼ Stm×T

0m×T , Σ⊗Φ =

φ11 Φ12

Φ21 Φ22

 ; ν

 (3.27)

where ν is the degree of freedom and X0
t−1 = (Xt−1, ...,X1).

Table 3.3 presents the probabilistic structure of a Student’s t Vector Autoregressive (StVAR)

model.

Table 3.3: Student’s t Vector Autoregressive (StVAR) model

Statistical GM Xt=B>Xt−1 + ut, t∈N,
[1] Student’s t (Xt,X

0
t−1)∼St(., .; ν),

where Xt : m× 1 and X0
t−1 : =(Xt−1, ...,X1),

[2] Linearity E(Xt|σ(X0
t−1))=B>Xt−1,

[3] Heteroskedasticity V ar(Xt|σ(X0
t−1))= νφ11.2

ν+m−2
q(X0

t−1),

q(X0
t−1):=Σ[Im + Σ−1X0

t−1Φ
−1
22 X0

t−1
>]

φ11.2:=φ11 −Φ12Φ
−1
22 Φ21

[4] Markov {Xt, t ∈ N} is a Markov process,

[5] t-invariance Θ:=(B,Σ,Φ) is not changing with t.

Table 3.3 specifies the main statistical model for GPCA based on the matrix Student’s t

distribution. The validity of the probabilistic assumptions [1]-[5] is assumed in the derivations

that follow. In practice, this statistical model is adopted only when these assumptions are

valid for the particular data; see chapter 5.

Hence, the joint distribution of GPCs takes the form:

F ∼ Stp×T (0p×T , (Λp⊗ΓT ) ; ν) (3.28)
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Hence, the joint distribution of Z=

X

F

 presented in (3.17) can be reduced to:

 Zt

Zt−1

 ∼ St(p+m)×2(0(p+m)×2, (Ω0⊗Σ0) ; ν) (3.29)

where Σ0=

 Σ Ξ12

Ξ21 Λp

, Ω0=

φ(0) φ(1)

φ(1) φ(0)

 and Ξ12=Cov(X,F)=Ξ>21.

Thus, the conditional distribution (Zt|Zt−1) would be of the form:

(Zt|Zt−1) ∼ Stm+p

(
φ(1)
φ(0)

Zt−1, q(Zt−1).
(
(φ(0)− φ(1)2

φ(0)
).Σ0

)
; ν +m

)
q(Zt−1):=[1 + 1

ν
Z>t−1(φ(0)Σ0)−1Zt−1]

(3.30)

Further reduction to the form (Zt|Zt−1) gives rise to a Student’s t Dynamic Linear Regression

(NDLR) model. Let

(Xt,Ft,Xt−1,Ft−1) ∼ St2(m+p)(02(m+p),Ω0 ⊗Σ0; ν) (3.31)

(Ω0 ⊗Σ0)=

φ(0)Σ0 φ(1)Σ0

φ(1)Σ0 φ(0)Σ0

=



φ(0)Σ φ(0)Ξ12 φ(1)Σ φ(1)Ξ12

φ(0)Ξ21 φ(0)ΛP φ(1)Ξ21 φ(1)Λp

φ(1)Σ φ(1)Ξ12 φ(0)Σ φ(0)Ξ12

φ(1)Ξ21 φ(1)ΛP φ(0)Ξ21 φ(0)Λp


=

 V11 V12

V21 V22


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The joint distribution in 3.31, can be decomposed as follows:

f(Xt,Ft,Xt−1,Ft−1; θ)= f(Xt|Ft,Xt−1,Ft−1; θ1) · f(Ft,Xt−1,Ft−1; θ2).

So, the joint distribution 3.31 can be viewed as a product of marginal and conditional

distributions presented below:

(Xt|Ft,Xt−1,Ft−1) ∼ Stm
(
V−1

11 V12(Ft,Xt−1,Ft−1)>,V.q(Ft,Xt−1,Ft−1); ν +m+ 2p
)

where V=V11−V12V−1
22 V21,

q(Ft,Xt−1,Ft−1):=[1 + 1
ν
(Ft,Xt−1,Ft−1)>V−1

22 (Ft,Xt−1,Ft−1)]

(3.32)

and,

(Ft,Xt−1,Ft−1) ∼ Stm+2p(0m+2p,V22; ν) (3.33)

The decomposition of bivariate student’s t distribution in 3.31 to the conditional distribution

3.32 and marginal distribution 3.33 induces a form of re-parameterization as follows:

θ:= {V11,V12,V22}

θ1:= {V22}

θ2:= {B,V,V22} where B=V−1
11 V12 and V=V11−V12V

−1
22 V21

This re-parameterization indicates that the parameter sets θ1 and θ2 are not variation free

because V22 appears in all parameters sets which can directly impose restrictions; so we do

not have a weak exogeneity with respect to θ1 and the marginal distribution cannot be ignored

for the modeling purpose and instead we can model in term of conditional distribution.



Chapter 4

Monte Carlo Simulation

4.1 The Normal VAR Simulation

The reason that we choose a Normal VAR for the Monte Carlo simulation is that the Random

Walk as a benchmark model has the best chance to survive against factor models when we

have a Normal, Markov and Stationary process. The Normal VAR model presented in Table

3.2 can be re-parameterized as a Normal Dynamic Linear Regression (NDLR) model by

introducing a different partitions on the bivariate joint distribution presented in 3.20. Let

Xt=(X1t, ..., Xmt)
> and µ=E(Xt), so,

 Xt

Xt−1

 ∼ N2m


µ
µ

 ,

φ(0) φ(1)

φ(1) φ(0)

⊗Σ

 (4.1)

∼ N2m


µ
µ

 ,

φ(0)Σ φ(1)Σ

φ(1)Σ φ(0)Σ


 (4.2)

Let define Xj
t=(X1t, ..., X(j−1)t, X(j+1)t, ..., Xmt), Wj

t=

 Xj
t

Xt−1

 and E(Wj
t )=µW j

t
where j=1, ...,m.

27
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For simplicity, assume j=1; the joint distribution in 4.1 can be written as follows:

X1t

W1
t

 ∼ N2m


 µ1

µW 1
t

 ,

σ11 Σ12

Σ21 Σ22


 (4.3)

where µ1 = E(X1t), σ11=V ar(X1t), Σ12=Cov(X1t,W
1
t )=Σ>21, and Σ22=Cov(W1

t ).

As we have explained in section 3.2.1, the Normal, Markov and Stationary process can be

modeled only in term of conditional distribution due to the weak exogeneity. The parame-

terization of this conditional distribution can be summarized as follows:

(X1t|W1
t ) ∼ N(α + βW1

t , σ0) (4.4)

α=µ1−βµW 1
t
,β=Σ12

σ11
, σ0=σ11−Σ12Σ

−1
22 Σ21.
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4.1.1 Simulation Design

Let Xt=(X1t, ..., X15t) where t ∈ {1, ..., 250} and:

 Xt

Xt−1

 ∼ N30


µ
µ

 ,

φ(0) φ(1)

φ(1) φ(0)

⊗Σ


where µ, Σ, φ(0) and φ(1) are as follows

Σ =



0.072 0.030 0.018 0.031 0.036 0.064 −0.044 −0.024 0.008 0.031 −0.022 0.083 0.084 0.036 −0.016

0.030 0.017 0.011 0.014 0.017 0.028 −0.015 −0.005 0.006 0.015 −0.005 0.037 0.038 0.018 −0.002

0.018 0.011 0.033 0.020 0.023 0.028 0.017 0.022 0.031 0.034 0.023 0.037 0.034 0.023 0.025

0.031 0.014 0.020 0.025 0.021 0.033 −0.008 0.001 0.016 0.026 0.003 0.044 0.045 0.022 0.005

0.036 0.017 0.023 0.021 0.027 0.040 −0.006 0.003 0.019 0.028 0.004 0.050 0.049 0.027 0.007

0.064 0.028 0.028 0.033 0.040 0.070 −0.030 −0.010 0.020 0.039 −0.008 0.088 0.087 0.043 −0.003

−0.044 −0.015 0.017 −0.008 −0.006 −0.030 0.072 0.054 0.029 0.005 0.052 −0.043 −0.049 −0.007 0.047

−0.024 −0.005 0.022 0.001 0.003 −0.010 0.054 0.045 0.031 0.015 0.044 −0.016 −0.021 0.004 0.041

0.008 0.006 0.031 0.016 0.019 0.020 0.029 0.031 0.034 0.031 0.031 0.025 0.020 0.019 0.031

0.031 0.015 0.034 0.026 0.028 0.039 0.005 0.015 0.031 0.038 0.016 0.052 0.049 0.028 0.019

−0.022 −0.005 0.023 0.003 0.004 −0.008 0.052 0.044 0.031 0.016 0.044 −0.013 −0.018 0.005 0.041

0.083 0.037 0.037 0.044 0.050 0.088 −0.043 −0.016 0.025 0.052 −0.013 0.117 0.116 0.053 −0.005

0.084 0.038 0.034 0.045 0.049 0.087 −0.049 −0.021 0.020 0.049 −0.018 0.116 0.119 0.052 −0.010

0.036 0.018 0.023 0.022 0.027 0.043 −0.007 0.004 0.019 0.028 0.005 0.053 0.052 0.031 0.008

−0.016 −0.002 0.025 0.005 0.007 −0.003 0.047 0.041 0.031 0.019 0.041 −0.005 −0.010 0.008 0.039



Φ =

 φ(0) φ(1)

φ(1) φ(0)

 =

 φ(0) φ(0).a

φ(0).a φ(0)

 =

 1.8 1.8×0.8

1.8×0.8 1.8


µ = (2.5, 1.9, 0.8, 0.5, 1.3, 0.9, 3.4, 2.3, 0.3, 0.08, 4.5, 3.7, 1.4, 2.9, 0.001)

The contemporaneous covariance matrix, Σ, is based on the contemporaneous covariance

matrix of the log exchange rates of 15 OECD countries based on US dollar. Also, reduced

form of temporal covariance matrix Φ is an example of the Normal, Markov and Stationary

process explained in 3.12. In addition, the covariance matrix Φ⊗Σ > 0 is a positive definite

matrix.
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The theoretical coefficients, the t-statistics (brackets) and corresponding p-values (square

brackets) associated with the difference between the actual (θ∗) and estimated (θ̂) coeffi-

cients1 are:

X1t= 0.564
(−1.484)
[0.138]

+ 0.659
(−0.055)
[0.956]

X2t − 1.767
(−0.563)
[0.574]

X3t − 0.059
(0.253)
[0.800]

X4t + 0.764
(0.172)
[0.863]

X5t + 0.082
(0.114)
[0.910]

X6t

− 0.257
(−0.335)
[0.738]

X7t − 3.408
(0.173)
[0.863]

X8t + 0.379
(0.432)
[0.666]

X9t + 1.171
(0.854)
[0.393]

X10t + 1.64
(−0.159)
[0.874]

X11t

− 0.148
(−0.155)
[0.877]

X12t − 0.166
(−1.060)
[0.289]

X13t + 0.245
(0.484)
[0.629]

X14t + 1.851
(−0.125)
[0.900]

X15t

+ 0.800
(0.184)
[0.854]

X1t−1 − 0.527
(−0.376)
[0.707]

X2t−1 + 1.414
(−0.881)
[0.378]

X3t−1 + 0.048
(0.391)
[0.696]

X4t−1 − 0.611
(−0.059)
[0.953]

X5t−1

− 0.066
(−0.064)
[0.949]

X6t−1 + 0.206
(1.295)
[0.196]

X7t−1 + 2.726
(−0.465)
[0.642]

X8t−1 − 0.303
(−0.803)
[0.421]

X9t−1 − 0.937
(−0.424)
[0.672]

X10t−1

− 1.312
(0.998)
[0.318]

X11t−1 + 0.119
(1.532)
[0.126]

X12t−1 + 0.132
(−0.532)
[0.595]

X13t−1 − 0.196
(−0.710)
[0.478]

X14t−1 − 1.481
(−0.562)
[0.574]

X15t−1

+ 0.0513ε1t

where σ0=
√

0.002634=0.0513 and ε1t ∼ N(0, 1). Also, R2=1− σ2
0

φ(0)σ11
=1− 0.002634

1.8×0.072
=0.98.

The histogram comparison of empirical and theoretical distributions of these coefficients are

presented in the appendix A.2.

4.1.2 Forecasting

In this section, we use the Monte Carlo simulation presented above to generate a set of 15 ran-

dom variables, Xt=(X1t, ..., X15t)
>, with 250 observations for each variable i.e. t=1, ..., 250.

To compare the predictive capacity of GPCA vs PCA, we extract a set of three factors (ei-

1Hypothesis testing H0 : θ∗ − θ̂ = 0 vs. H1 : θ∗ − θ̂ 6= 0
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ther GPCs or PCs) from the panel of 15 variables, X=(X1, ...,X250). The eigenvalue ratio

test indicates that three factors account for 97% of the variation in the data. Figure 4.1

and Figure 4.2 are presenting the principal components (PCs) and the generalized principal

components (GPCs) extracted from the full sample, respectively.

Figure 4.1: Principal Components
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Figure 4.2: Generalized Principal Components

As illustrated in Figure 4.2, GPCs are constructed by decomposing the extended covariance

matrix Σ⊗Φ; therefore, the most of temporal covariation are captured by a few first points

of time.

Our presumption is that the variation of the variables in Xt ∼ N(µ,Σ) can be explained by
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factor models. Algebraically,

Xit=Fit + uit, uit ∼ N(0, σ2
u), t=1, ..., 250, i=1, ..., 15, (4.5)

Fit=δif1t + δif2t + δif3t, (4.6)

where fjt and δj, j=1, 2, 3, are factors and factor loadings, respectively. Also, in order to

extract factors, we centralize Xt according to the in-sample data. In addition, we have:

0=E(Xit+h−Xit) =E(Xit+h)−E(Xit)=E(Xit+h)−EFit(E(Xit|Fit))=E(Xit+h)−Fit,

which implies that:

E(Xit+h)=Fit =⇒ EXit(E(Xit+h|Xit))=Fit =⇒ EXit(E(Xit+h−Xit|Xit))=Fit−Xit =⇒

E(Xit+h −Xit)=Fit −Xit, (4.7)

where h is the forecast horizon. Therefore, we use Fit−Xit as a central tendency to forecast

Xit+h−Xit:

Xit+h −Xit=αi + β(Fit −Xit) + εit+h (4.8)

where αi is a fixed effect of the i-th variable.

We begin with the first 150 observations to extract factors F̂it and estimate the coefficients,

i.e.

Xi150 −Xi(150−h)=αi + β(F̂i(150−h) −Xi(150−h)) + εi150

Then we use the estimated coefficients α̂i and β̂ to predict the value of Xi(150+h) −Xi150 as
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follows:

Xi(150+h) −Xi150=α̂i + β̂(F̂i150 −Xi150)

We will follow the same recursive procedure by adding another observation to the end of the

in-sample data set to generate forecasts.

Figure 4.3 illustrates the above procedure for horizon h=4:

Figure 4.3: Forecasting Procedure for horizon h

The forecast evaluation is based on comparing the root mean squared prediction errors

(RMSPE). We compare RMSPE of the factor model (either GPCA or PCA) with random

walk model to examine the predictive capacity of the factor model using Theil’s U -statistic

(Theil [1971]). The U -statistic is defined as follows:

U − statistics=RMSPEfactormodel

RMSPErandomwalk

The U -statistic less than one means that the factor model has a better performance than

the random walk model. Also, we use the t-test proposed by Clark and West [2006] to test

the hypothesis that H0: U=1 vs H1: U < 1, based on a .025 significance level with rejection

region defined by (τ(X) > 1.96).

Table 4.1 presents the median U -statistics in each forecast horizon for both models (GPCA
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and PCA) and the number of individual variables (out of 15) with U -statistic less than one

and Clark and West t-test greater than 1.960. The detailed table of individual variables for

both models are in the appendix (see Table A.1 and Table A.2).

Table 4.1: Forecast evaluation: GPCA vs PCA

Horizon h

Model Measurement h=1 h=4 h=8 h=12

ĜPCit −Xit Median U -statistic 0.697 0.685 0.713 0.735

(#U < 1 out of 15) (15) (15) (15) (15)

[#t > 1.960 out of 15] [15] [7] [5] [1]

P̂Cit −Xit Median U -statistic 0.995 0.998 0.997 0.997

(#U < 1 out of 15) (10) (10) (9) (8)

[#t > 1.960 out of 15] [2] [0] [0] [0]

Note: ĜPCit−sit and P̂Cit−sit represent deviations from factors produced by

the GPCA and the classical PCA, respectively. The number of variables (out

of 15) with U -statistic (Theil [1971]) less than one and the number of variables

(out of 15) with Clark-West t-statistic (Clark and West [2006]) more than 1.960

are reported in parenthesis and brackets, respectively.

To illustrate the predictive capacity of the GPCA method and compare it to that of the PCA

method, Figures 4.4 to 4.7 compare the actual observation (Xit+h−Xi) with predicted values

using both GPCA method (α̂i + β̂(ĜPCit −Xit)) and PCA method (α̂i + β̂(P̂Cit −Xit))

for horizon h=1 and i=1, ..., 4.2

2Plots of the all variables in all horizons are presented in the appendix A.3
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Figure 4.4: Predicted values vs Actual observation (h = 1)

Figure 4.5: Predicted values vs Actual observation (h = 1)
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Figure 4.6: Predicted values vs Actual observation (h = 1)

Figure 4.7: Predicted values vs Actual observation (h = 1)
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4.2 The Student’s t VAR (StVAR) Simulation

The Student’s t VAR model presented in table 3.3 can be re-parameterized as a StDLR

model by introducing a different partition of the bivariate joint distribution presented in

3.27. Let Xt=(X1t, ..., Xmt)
> and µ=E(Xt):

 Xt

Xt−1

 ∼ St2m


µ
µ

 ,

φ(0) φ(1)

φ(1) φ(0)

⊗Σ; ν

 (4.9)

∼ St2m


µ
µ

 ,

φ(0)Σ φ(1)Σ

φ(1)Σ φ(0)Σ

 ; ν

 (4.10)

Let define Xj
t=(X1t, ..., X(j−1)t, X(j+1)t, ..., Xmt), Wj

t=

 Xj
t

Xt−1

 and E(Wj
t )=µW j

t
where

j=1, ...,m. For simplicity, assuming j=1, the joint distribution in 4.9 can be written as

follows: X1t

W1
t

 ∼ St2m


 µ1

µW 1
t

 ,

σ11 Σ12

Σ21 Σ22

 ; ν

 (4.11)

where µ1=E(X1t),
1

ν−2
σ11=V ar(X1t),

1
ν−2

Σ12=Cov(X1t,W
1
t )=

1
ν−2

Σ>21, and 1
ν−2

Σ22=Cov(W1
t ).

As we have explained in section 3.2.2, the Student’s t, Markov and Stationary process cannot

be modeled only in terms of conditional distribution because the weak exogeneity property

does not hold. In order to model, Spanos [1994] argues that a estimation of GLS-type esti-

mators can be used to estimate the parameters.3 The conditional and marginal distributions

obtained from decomposing the joint distribution 4.11 is as follows:

3Poudyal [2017] provides an R package (StVAR) that is based on the derivations presented in Spanos
[1994].
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(X1t|W1
t ) ∼ St

(
α + βW1

t , σ; ν + (2m− 1)
)

(4.12)

α=µ1−βµW 1
t
,β=Σ12

σ11
, σ=

(
σ11−Σ12Σ

−1
22 Σ21).q(W1

t ),

q(W1
t ):=[1 + 1

ν
W1

t
>
Σ−1

22 W1
t ]

W1
t ∼ St2m−1(µW 1

t
,Σ22) (4.13)

4.2.1 Simulation Design And Forecasting

We use the same Σ, Φ, and µ as used in section 4.1 to generate a set of 15 variables with

250 observations based on the joint Student’s t distribution with degree of freedom ν = 30.

Also, the forecasting method is similar to that presented in section 4.1 with a different dis-

tributional assumption. Again, we use Fit−Xit as a central tendency to forecast Xit+h−Xit:

Xit+h −Xit=αi + β(Fit −Xit) + εit+h, εit+h ∼ St(0,Vt; ν=30+1),

Vt = ν
ν−1

(
σ11−Σ12Σ

−1
22 Σ21).q(Fit −Xit),

q(Fit −Xit):=[1 + 1
ν
(Fit −Xit)

>Σ−1
22 (Fit −Xit)]

(4.14)

Table 4.1 presents the median U -statistics in each forecast horizon for both models (Student’s

t GPCA (StGPCA) vs. Classical PCA) and the number of individual variables (out of 15)

with U -statistic less than one and Clark and West t-test greater than 1.960. The detailed

table of individual variables for both models are in the appendix (see Table A.3 and Table

A.4).
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Table 4.2: Forecast evaluation: StGPCA vs. PCA

Horizon h

Model Measurement h=1 h=4 h=8 h=12

̂StGPCit −Xit Median U -statistic 0.712 0.743 0.752 0.710

(#U < 1 out of 15) (15) (15) (15) (15)

[#t > 1.960 out of 15] [15] [4] [0] [0]

P̂Cit −Xit Median U -statistic 0.999 1.002 0.996 1.000

(#U < 1 out of 15) (9) (7) (12) (7)

[#t > 1.960 out of 15] [1] [0] [0] [0]

Note: ̂StGPCit− sit and P̂Cit− sit represent deviations from factors produced

by the StGPCA and the classical PCA, respectively. The number of variables

(out of 15) with U -statistic (Theil [1971]) less than one and the number of

variables (out of 15) with Clark-West t-statistic (Clark and West [2006]) more

than 1.960 are reported in parenthesis and brackets, respectively.

Also, Figure 4.8 to 4.11 presents the comparison between actual observations, the StGPCA

predictions, and the classical PCA predictions for horizon h = 1.4

4Plots of the all variables in all horizons are presented in the appendix A.5
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Figure 4.8: Predicted values vs Actual observation (h = 1)

Figure 4.9: Predicted values vs Actual observation (h = 1)
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Figure 4.10: Predicted values vs Actual observation (h = 1)

Figure 4.11: Predicted values vs Actual observation (h = 1)



Chapter 5

Empirical Study

5.1 Introduction

The random walk model is hard to beat in forecasting exchange rates, and this finding

has more or less survived the numerous studies since Meese and Rogoff [1983a] and Meese

and Rogoff [1983b]. The model essentially forecasts that log level of exchange rate remains

the same in the future, and this seemingly simple model beats well-founded, sophisticated

models of exchange rates that make use of economic fundamentals like output, interest rates,

or inflation rates. It is a well-established finding for horizons from 1 quarter to 3 years, while

the results are more ambiguous for longer horizons.1

Instead of looking for new fundamentals or econometric methods to beat the random walk,

some recent papers look for predictability of the exchange rates. In particular, factors are

extracted from a panel of exchange rates, and the deviations of the exchange rates from the

factors are used to forecast their future changes.2 Engel et al. [2015] first propose this new

direction and find mixed results. They extract three principal components from a panel of

17 exchange rates (with the US dollar as the base currency), and they find that the factors

1Engel and West [2005] shows that random walk dominates when the discount factor is near one and the
fundamentals are persistent. For a recent survey on the empirical findings, see Rossi [2013] and Maasoumi
and Bulut [2013].

2For simplicity, we abuse the usage and refer to principal component as “factor” in this chapter.

43
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improve the random walk only for long horizons during the more recent period (1999 to

2007). Wang and Wu [2015] adopt the method of independent component factors that is

robust to fat tails, and, using a longer sample, they are able to beat the random walk at

medium and long horizons regardless of the sample periods.

Our empirical study here follows this line of research and extracts factors in a simple and

intuitive way. We adopt a more general approach and make use of temporal covariations as

well as contemporaneous covariations as we have explained in Chapter 3. Though we are

agnostic on what the factors represent, we believe that we are better at capturing unobserved

fundamentals that make exchange rates persistent and correlated through time. Indeed, we

find that relaxing the assumptions imposed to the classical PCA substantially improves the

forecasting performance of the factors in Engel et al. [2015] by beating the random walk in

all horizons and sample periods. We also show that our more transparent method improves

upon that proposed by Wang and Wu [2015].

We use the method explained in Chapter 3 to extract the GPCs and compare our forecasting

performance with that in Engel et al. [2015] and Wang and Wu [2015], using the same data

analyzed in each paper.

5.2 Empirical Results

5.2.1 Data

We use end of quarter data on nominal bilateral US dollar exchange rates of 17 Orga-

nization for Economics Co-operation and Development (OECD) countries from 1973:1 to
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2007:4.3 The countries are Australia, Austria, Belgium, Canada, Denmark, Finland, France,

Germany, Japan, Italy, Korea, Netherlands, Norway, Spain, Sweden, Switzerland, and the

United Kingdom. Table 5.1 presents the descriptive statistic summary of the data.

Table 5.1: Summary Statistics

Country N Mean SD Min Max Skew Kurtosis

Australia 140 0.189 0.269 −0.399 0.715 −0.44 2.39
Canada 140 0.220 0.130 −0.032 0.466 −0.13 2.28
Denmark 140 1.897 0.180 1.624 2.421 0.95 3.34
United Kingdom 140 −0.549 0.157 −0.949 −0.145 −0.45 2.94
Japan 140 5.061 0.372 4.438 5.721 0.42 1.63
Korea 140 6.659 0.334 5.985 7.435 −0.23 2.42
Norway 140 1.880 0.163 1.577 2.230 0.09 2.34
Sweden 140 1.866 0.264 1.371 2.384 −0.33 2.09
Switzerland 140 0.512 0.268 0.118 1.177 0.70 2.54
Austria 140 2.614 0.212 2.235 3.093 0.36 2.06
Belgium 140 3.609 0.184 3.311 4.144 0.86 3.45
France 140 1.731 0.196 1.391 2.261 0.54 2.86
Germany 140 0.657 0.209 0.284 1.147 0.37 2.11
Spain 140 4.732 0.342 4.025 5.279 −0.66 2.36
Italy 140 7.185 0.344 6.335 7.733 −0.80 2.73
Finland 140 1.546 0.177 1.263 1.948 0.37 2.11
Netherlands 140 0.762 0.197 0.404 1.267 0.43 2.40

Note: Quarterly log-exchange rates based on the US dollar 1973:1-2007:4

5.2.2 Models Of Exchange Rates

In this section we show that the GPCA can perform better than other methods of factor

modeling in the context of exchange rate forecasting, and we will focus the discussion on

certain arguments that have been presented by Engel et al. [2015]. The reason is that Engel

et al. [2015] includes a comprehensive analysis of factor model specifications and auxiliary

macro-variables along with the results from different factor models adopted to conduct out-

of-sample forecasting of exchange rates. We want to examine if there is any improvement

3The data source is International Financial Statistics.
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in the context of out-of-sample forecasting by replacing their factorization method with the

GPCA method. Although in some cases the PCA method for British Pound, as a base

currency, shows improvement when compare to the factor analysis (FA) method, Engel et al.

[2015] conclude that overall results for the FA method are better than the PCA method.

We compare the out-of-sample forecasting capacity of the GPCA method to the FA method

adopted by Engel et al. [2015].

We construct three sets of out-of-sample forecasting. First, for the 9 non-Euro currencies

(Australia, Canada, Denmark, Japan, Korea, Norway, Sweden, Switzerland, and the United

Kingdom) called “long sample” forecasting for the time period 1987:1 to 2007:4. Second,

for the 17 currencies ( Australia, Austria, Belgium, Canada, Denmark, Finland, France,

Germany, Japan, Italy, Korea, Netherlands, Norway, Spain, Sweden, Switzerland, and the

United Kingdom) called “early sample” forecasting for the time period 1987:1 to 1998:4

(before Euro). Finally, for the 10 currencies (countries included in long sample plus Euro)

called “late sample” for the time period 1999:1 to 2007:4.

To determine the number of GPCs we use the eigenvalue test which gives the percentage of

variation explained through the retained GPCs. Three components, will explain 96% of the

variation in the data (similar to the PCA). By the method explained in section 3.1 we derive

GPCs and estimate the coefficients based on the following model:

sit = const.+ δ1igpc1t + δ2igpc2t + δ3igpc3t + uit,

= const.+GPCit + uit, uit ∼ NIID(0, σ2
u),

(5.1)

where sit, (i=1, ..., 17), is the log of nominal exchange rates of currency i based on the US

dollar, the derived GPCs are gpc1t, gpc2t & gpc3t. We aim to use GPCit = δ1igpc1t+δ2igpc2t+

δ3igpc3t to forecast sit.
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The rest of the model specifications that we take into account is similar to what has been

proposed by Engel et al. [2015]. First we assume that GPCit − sit is stationary and can be

useful to capture the stationary regularity of future values of sit through sit+h − sit where

h=1, 4, 8, 12 is quarterly horizons of forecasting.

Let ĜPCit=δ̂1iĝpc1t + δ̂2iĝpc2t + δ̂3iĝpc3t for currencies i=1, ..., 17. We use it as a central

tendency to estimate the coefficients of the following regression:

sit+h − sit = αi + β(ĜPCit − sit) + εit+h, εit+h ∼ NIID(0, σ2
εi

) (5.2)

where αi is the individual effect of currency i. The estimated coefficients α̂i and β̂ can be

used to predict the future value of the nominal exchange rates.

As a typical example, figure 5.1 illustrates the procedure for quarterly horizon h=4 in the

“long sample” forecasting:

Figure 5.1: Forecasting Procedure (h = 4, long sample)

We use data from 1973:1 to 1986:4 to estimate ĜPCit and then estimate the panel regression

sit+4 − sit = αi + β(ĜPCit − sit) + εit+4, t∈{1973:1, ..., 1985:4}. (5.3)

Using the estimated coefficients α̂i and β̂ from the regression (5.3), we evaluate the predicted
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value of si,1987:4 − si,1986:4 using the following equation

si,1987:4 − si,1986:4=α̂i + β̂(ĜPCi,1986:4 − si,1986:4). (5.4)

We repeat this procedure by adding another observation to the end of the sample to produce

predictions by a recursive method.4 Also, the forecast evaluation is based on the method

and measurement presented in Engel et al. [2015] which is root mean squared prediction

error (RMSPE). We compute Theil’s U -statistic (Theil [1971]) that is equal to a ratio by

dividing RMSPE of factor model (GPCA or FA) to the RMSPE of the random walk model.

The U -statistic less than one means that the factor model has a better performance than

the assumed random walk model.

5.2.3 Discussion Of Results

In the PCA, most of the variation among individual variables has been explained by the first

three factors. In addition to what has been captured by the PCA, the GPCA also captures

the variation and co-variation between different points of time across all variables. That is

the reason why factors are converging to the same pattern despite some differences at the

beginning. Figure 5.25 depicts the time plot of three GPCs for the whole sample 1973:1 to

2007:4.

4We need to centralize data to extract the factors, and, to make sure that the forecasts are truly out-of-
sample, data are centralized only using in-sample data.

5Note that the boxes are the plots of GPCs from 10th observation to the end of data set
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Figure 5.2: Generalized Principal Components t-plot

Table 5.2 presents the median Theil’s U -statistics for early, late and long samples regarding

to the following model: 6

• The model that uses the GPCA to extract factors for (ĜPCit − sit), and

• The model that uses FA to extract factors for (F̂it − sit).7

6The U -statistic is defined as the ratio of RMSPEModel to RMSPERandomWalk. Results for individual
countries are available upon request.

7Although the results for three factors model have not been reported in Engel et al. [2015], fortunately,
they have made their codes available on their website (http://www.ssc.wisc.edu/~cengel/Data/Factor/
FactorData.htm) for replication.

http://www.ssc.wisc.edu/~cengel/Data/Factor/FactorData.htm
http://www.ssc.wisc.edu/~cengel/Data/Factor/FactorData.htm
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Table 5.2: Forecast evaluation: GPCA vs FA (Engel et al. [2015])

Horizon h

Model Sample(# Currencies) Measurement h=1 h=4 h=8 h=12

ĜPCit − sit Long sample (9) Median U -statistic (#U < 1) 0.996(7) 0.963(7) 0.926(8) 0.905(8)

F̂it − sit Long sample (9) Median U -statistic (#U < 1) 1.003(3) 0.996(5) 0.996(5) 1.038(4)

ĜPCit − sit Early sample (17) Median U -statistic (#U < 1) 0.993(15) 0.957(14) 0.919(16) 0.973(9)

F̂it − sit Early sample (17) Median U -statistic (#U < 1) 1.000(10) 0.995(9) 1.000(9) 1.130(3)

ĜPCit − sit Late sample (10) Median U -statistic (#U < 1) 0.993(7) 0.970(8) 0.888(9) 0.788(10)

F̂it − sit Late sample (10) Median U -statistic (#U < 1) 1.008(3) 1.020(3) 0.953(8) 0.822(8)

Note: ĜPCit − sit and F̂it − sit represent deviations from factors produced by the GPCA and the FA,

respectively.

The first column indicates the factor model that has been used in the forecasting evaluations.

The second column lists the type of sample and number of currencies in that sample. The

third column presents the measurement method that has been used to evaluate the forecasta-

bility power of the model which is the median U -statistic. Also, it reports the number of

currencies in the sample that have the U -statistic value less than one8. The last four columns

are reporting the median U -statistic for different horizons (h=1, 4, 8, 12) and samples.

The results presented in Table 5.2 show that the GPCA outperforms both the FA and the

driftless random walk models in all cases. The FA model used by Engel et al. [2015] has

better predictive performance than the random walk model only in 5 cases, and in all the 5

cases the FA is dominated by the GPCA.

Engel et al. [2015] use three sets of auxiliary macro variables as a measure of central tendency

8U -statistic less than one means that the model has smaller RMSPE compare to the random walk.



5.2. Empirical Results 51

to improve the factor model in a way that captures more regularity pattern in the exchange

rates to forecast more accurately. These auxiliary macro variables are “monetary model”

(Mark [1995]), “Taylor rule” (Molodtsova and Papell [2009]) and PPP (Engel et al. [2007]).

Table 5.3 compares the results that has been obtained by the GPCA method without any

auxiliary macro variables with the FA method presented in Engel et al. [2015] using auxiliary

macro variables.

Table 5.3: Forecast evaluation: GPCA vs FA+Macro variables (Engel et al. [2015])

Horizon h

Model Sample(# Currencies) Measurement h=1 h=4 h=8 h=12

ĜPCit − sit Long sample (9) Median U -statistic (#U < 1) 0.996(7) 0.963(7) 0.926(8) 0.905(8)

F̂it − sit + Taylor Long sample (9) Median U -statistic (#U < 1) 1.008(1) 1.035(0) 1.068(1) 1.052(3)

F̂it − sit +Monetary Long sample (9) Median U -statistic (#U < 1) 1.008(3) 1.064(3) 1.200(4) 1.456(4)

F̂it − sit + PPP Long sample (9) Median U -statistic (#U < 1) 1.002(3) 0.993(6) 0.942(7) 0.903(5)

ĜPCit − sit Early sample (17) Median U -statistic (#U < 1) 0.993(15) 0.957(14) 0.919(16) 0.973(9)

F̂it − sit + Taylor Early sample (17) Median U -statistic (#U < 1) 1.010(3) 1.041(2) 1.103(4) 1.156(3)

F̂it − sit +Monetary Early sample (17) Median U -statistic (#U < 1) 0.995(10) 0.997(9) 1.115(7) 1.190(7)

F̂it − sit + PPP Early sample (17) Median U -statistic (#U < 1) 0.998(7) 0.972(14) 1.015(8) 1.098(3)

ĜPCit − sit Late sample (10) Median U -statistic (#U < 1) 0.993(7) 0.970(8) 0.888(9) 0.788(10)

F̂it − sit + Taylor Late sample (10) Median U -statistic (#U < 1) 1.009(2) 1.036(2) 1.004(4) 0.828(8)

F̂it − sit +Monetary Late sample (10) Median U -statistic (#U < 1) 1.013(3) 1.033(4) 0.977(6) 1.126(5)

F̂it − sit + PPP Late sample (10) Median U -statistic (#U < 1) 1.005(4) 0.999(5) 0.900(8) 0.727(9)

Note: ĜPCit − sit and F̂it − sit represent deviations from factors produced by the GPCA and the FA,

respectively.

Based on the results presented in Table 5.3, the GPCA by itself is outperforming the FA

method with auxiliary macro variables on forecasting grounds.
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5.2.4 Comparing With An Alternative Method

Another study related to the predictability of exchange rates that has been published re-

cently is a paper by Wang and Wu [2015]. In this paper it is argued that the information

relating to the third moment can be useful to improve the forecasting capacity of the ex-

change rates forecasting models. They apply the denoising source separation (DSS) algo-

rithm (Särelä and Valpola [2005]) on the normalized nominal exchange rates snit=
sit−µsi
σsi

to

extract independent components (IC) and mixing coefficients that can be used to construct

an IC-based fundamental exchange rate (Êit). Êit − snit can be used to predict sit+h − sit.

The rest of the model is similar to the model presented by Engel et al. [2015]. The number

of factors has been determined by three different criteria, the cumulative percentage of total

variance (CPV ) (Jackson [1993]), Bayesian information criterion (BIC3) and ICp2 (Bai and

Ng [2004]). They conclude that the IC-based model can perform better than the PCA in

the context of out-of-sample forecasting of exchange rates.

Wang and Wu [2015] use the quarterly log-exchange rates based on US dollar for the same

17 OECD countries that have been used in Engel et al. [2015]. Although, they have used

the data from 1973:1 to 2011:2. Table 5.4 presents the descriptive statistics of this data.
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Table 5.4: Summary Statistics

Country N Mean SD Min Max Skew Kurtosis

Australia 154 0.183 0.260 −0.399 0.715 −0.39 2.46
Canada 154 0.205 0.134 −0.036 0.466 −0.03 2.13
Denmark 154 1.876 0.185 1.551 2.421 0.92 3.38
United Kingdom 154 −0.544 0.154 −0.949 −0.145 −0.51 3.03
Japan 154 5.012 0.388 4.391 5.721 0.45 1.78
Korea 154 6.695 0.339 5.985 7.435 −0.35 2.37
Norway 154 1.870 0.161 1.577 2.230 0.18 2.38
Sweden 154 1.873 0.254 1.371 2.384 −0.40 2.26
Switzerland 154 0.467 0.294 −0.181 1.177 0.47 2.62
Austria 154 2.583 0.225 2.164 3.093 0.35 2.11
Belgium 154 3.586 0.191 3.239 4.144 0.80 3.39
France 154 1.713 0.196 1.391 2.261 0.64 2.94
Germany 154 0.627 0.222 0.213 1.147 0.36 2.15
Spain 154 4.736 0.327 4.025 5.279 −0.72 2.60
Italy 154 7.188 0.329 6.335 7.733 −0.87 3.02
Finland 154 1.537 0.173 1.263 1.948 0.49 2.26
Netherlands 154 0.733 0.210 0.332 1.267 0.39 2.38

Note: Quarterly log-exchange rates based on the US dollar 1973:1-2011:2

Table 5.5 compares the results based on the GPCA method and the IC-based model, using

the data provided by Wang and Wu [2015]. For most horizons the GPCA forecasts better

than the IC-based model, the only exception being horizon h = 12.
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Table 5.5: Forecast evaluation: GPCA vs ICA (Wang and Wu [2015])

Horizon h

Model Sample(# Currencies) Measurement h=1 h=4 h=8 h=12

ĜPCit − sit Long sample (9) Median U -statistic (#U < 1) 0.995(7) 0.969(8) 0.938(7) 0.961(7)

Êit − snit(Criterion: CPV) Long sample (9) Median U -statistic (#U < 1) 1.000(4) 0.986(7) 0.956(7) 0.946(9)

Êit − snit(Criterion: BIC3) Long sample (9) Median U -statistic (#U < 1) 1.000(4) 0.991(8) 0.955(7) 0.941(9)

Êit − snit(Criterion: ICp2) Long sample (9) Median U -statistic (#U < 1) 1.001(3) 1.002(3) 0.974(7) 0.951(9)

ĜPCit − sit Early sample (17) Median U -statistic (#U < 1) 0.993(15) 0.957(14) 0.919(16) 0.973(9)

Êit − snit(Criterion: CPV) Early sample (17) Median U -statistic (#U < 1) 0.999(11) 0.991(13) 0.950(13) 0.965(10)

Êit − snit(Criterion: BIC3) Early sample (17) Median U -statistic (#U < 1) 0.999(10) 0.994(13) 0.956(14) 0.964(10)

Êit − snit(Criterion: ICp2) Early sample (17) Median U -statistic (#U < 1) 1.000(7) 0.999(9) 0.976(14) 0.976(10)

Note: ĜPCit − sit and Êit − snit represent deviations from factors produced by the GPCA and the ICA,

respectively.

5.2.5 Forecasting Using The Updated Data

To evaluate the reliability of GPCA method further, it is important to investigate the con-

sistency of the results when we increase the sample size. Therefore, we report the results

by updating the data to 2017:4. Table 5.6 presents the descriptive statistics for the period

1973:1 to 2017:4; and Table 5.7 presents the median Theil’s U -statistic obtained from using

the updated data.
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Table 5.6: Summary Statistics

Country N Mean SD Min Max Skew Kurtosis

Australia 180 0.179 0.246 −0.399 0.715 −0.36 2.63
Canada 180 0.197 0.133 −0.036 0.466 0.01 2.09
Denmark 180 1.867 0.176 1.551 2.421 1.03 3.80
United Kingdom 180 −0.523 0.155 −0.949 −0.145 −0.55 3.20
Japan 180 4.955 0.389 4.339 5.721 0.60 2.05
Korea 180 6.742 0.334 5.985 7.435 −0.60 2.51
Norway 180 1.881 0.164 1.577 2.230 0.18 2.20
Sweden 180 1.893 0.245 1.371 2.384 −0.55 2.49
Switzerland 180 0.392 0.328 −0.181 1.177 0.40 2.43
Austria 180 2.560 0.218 2.164 3.093 0.53 2.32
Belgium 180 3.573 0.182 3.239 4.144 0.93 3.78
France 180 1.709 0.185 1.391 2.261 0.71 3.27
Germany 180 0.605 0.215 0.213 1.147 0.54 2.37
Spain 180 4.762 0.310 4.025 5.279 −0.92 3.04
Italy 180 7.215 0.313 6.335 7.733 −1.06 3.52
Finland 180 1.544 0.164 1.263 1.948 0.40 2.34
Netherlands 180 0.713 0.203 0.332 1.267 0.56 2.61

Note: Quarterly log-exchange rates based on the US dollar 1973:1-2017:4

Table 5.7: Forecast evaluation: GPCA using data from 1973:1 to 2017:4

Horizon h

Model Sample(# Currencies) Measurement h=1 h=4 h=8 h=12

ĜPCit − sit Long sample (9) Median U -statistic (#U < 1) 0.992(9) 0.961(8) 0.923(7) 0.915(7)

ĜPCit − sit Early sample (17) Median U -statistic (#U < 1) 0.993(15) 0.957(14) 0.919(16) 0.973(9)

ĜPCit − sit Late sample (10) Median U -statistic (#U < 1) 0.992(9) 0.964(9) 0.907(9) 0.854(9)

Note: ĜPCit − sit represents deviations from factors produced by the GPCA.
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Conclusion

The discussion in this dissertation extends the traditional PCA to include temporal depen-

dence as well as non-Gaussian distributions. The proposed generalized principal components

analysis (GPCA) method substantially improves the out-of-sample predictability of factors.

Using two Monte Carlo simulation designs, we show that the GPCA method can capture

most of the volatility in the data while the classical PCA method performs poorly due to

ignoring the temporal dependence and distributional nature of the data.

In addition, the empirical study using exchange rate data shows that employing factors

that incorporate both contemporaneous and temporal covariation in the data, substantially

improves the out-of-sample forecasting performance. In addition, exchange rates are found to

converge to the GPCA factors, while the convergence is not as clear when traditional methods

of extracting factors are used (with or without including macroeconomic fundamentals).

As with the traditional PCA, the retained factors in the GPCA represent a linear combi-

nations of the original observable variables and thus any attempt to interpret them, or use

them for policy analysis will often be difficult. The PCA and GPCA should be viewed as

data-based statistical models whose substantive interpretation is not clear cut.

The results of this dissertation can be extended in a number of different directions, including:
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• Replacing the Student’s t with other distributions within the Elliptically symmetric

family.

• Explore different types of temporal dependence.
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Appendix A

Monte Carlo Simulation

A.1 The Normal VAR Detailed Forecasting Results

Table A.1: Individual Forecast Evaluation for GPCA

Theil’s U -statistic Clack and West t-test

Variables h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12
X1 0.731 0.647 0.768 0.720 3.014 2.383 1.291 1.310
X2 0.710 0.633 0.764 0.679 2.972 2.684 1.189 2.033
X3 0.683 0.693 0.678 0.731 3.442 1.646 1.893 1.377
X4 0.693 0.733 0.714 0.728 3.456 1.488 1.547 1.274
X5 0.735 0.668 0.713 0.736 3.035 2.097 1.735 1.314
X6 0.752 0.659 0.719 0.742 2.648 2.392 2.013 1.359
X7 0.671 0.685 0.720 0.746 3.191 1.826 1.571 1.351
X8 0.661 0.691 0.695 0.736 3.163 1.676 1.949 1.431
X9 0.671 0.691 0.669 0.743 3.298 1.661 2.019 1.240
X10 0.697 0.685 0.685 0.741 3.716 1.906 1.904 1.406
X11 0.662 0.693 0.696 0.736 3.133 1.634 1.919 1.418
X12 0.731 0.655 0.720 0.734 2.994 2.675 2.107 1.438
X13 0.726 0.655 0.736 0.726 2.847 2.621 1.794 1.284
X14 0.726 0.686 0.693 0.731 2.615 2.085 2.002 1.290
X15 0.660 0.694 0.687 0.735 3.201 1.598 2.024 1.440
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Table A.2: Individual Forecast Evaluation for PCA

Theil’s U -statistic Clack and West t-test

Variables h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12
X1 0.979 0.978 1.003 0.979 1.162 0.689 -0.045 0.246
X2 0.952 0.958 0.997 0.924 1.686 0.797 0.030 0.645
X3 0.990 0.996 0.998 0.992 0.985 0.199 0.078 0.234
X4 0.930 0.963 0.962 0.946 2.152 0.575 0.375 0.461
X5 0.987 0.993 1.001 1.002 0.846 0.239 -0.014 -0.025
X6 1.002 1.004 0.981 1.021 -0.172 -0.161 0.507 -0.382
X7 0.983 0.984 0.989 0.980 2.118 0.803 0.349 0.393
X8 1.012 1.010 1.009 1.010 -2.362 -0.728 -0.547 -0.345
X9 0.998 0.999 0.994 1.008 0.326 0.048 0.274 -0.274
X10 0.995 0.998 1.008 1.005 0.546 0.091 -0.196 -0.080
X11 1.013 1.009 1.012 1.011 -2.546 -0.605 -0.645 -0.366
X12 1.003 1.000 0.985 0.997 -0.345 -0.010 0.585 0.082
X13 0.999 0.998 0.990 0.985 0.086 0.130 0.355 0.404
X14 0.990 0.990 0.972 0.978 0.559 0.256 0.444 0.215
X15 1.011 1.010 1.008 1.009 -2.006 -0.734 -0.471 -0.350
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A.3 The Normal VAR: Predictions vs. Actual Obser-

vations Plots

A.3.1 Horizon h = 1
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(a) Predicted values vs Actual observation (h = 1)

(b) Predicted values vs Actual observation (h = 1)

(c) Predicted values vs Actual observation (h = 1)
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(a) Predicted values vs Actual observation (h = 1)

(b) Predicted values vs Actual observation (h = 1)

(c) Predicted values vs Actual observation (h = 1)

(d) Predicted values vs Actual observation (h = 1)
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A.3.2 Horizon h = 4

(a) Predicted values vs Actual observation (h = 4)

(b) Predicted values vs Actual observation (h = 4)

(c) Predicted values vs Actual observation (h = 4)



74 Appendix A. Monte Carlo Simulation

(a) Predicted values vs Actual observation (h = 4)

(b) Predicted values vs Actual observation (h = 4)

(c) Predicted values vs Actual observation (h = 4)

(d) Predicted values vs Actual observation (h = 4)
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(a) Predicted values vs Actual observation (h = 4)

(b) Predicted values vs Actual observation (h = 4)

(c) Predicted values vs Actual observation (h = 4)

(d) Predicted values vs Actual observation (h = 4)
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(a) Predicted values vs Actual observation (h = 4)

(b) Predicted values vs Actual observation (h = 4)

(c) Predicted values vs Actual observation (h = 4)

(d) Predicted values vs Actual observation (h = 4)
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A.3.3 Horizon h = 8

(a) Predicted values vs Actual observation (h = 8)

(b) Predicted values vs Actual observation (h = 8)

(c) Predicted values vs Actual observation (h = 8)
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(a) Predicted values vs Actual observation (h = 8)

(b) Predicted values vs Actual observation (h = 8)

(c) Predicted values vs Actual observation (h = 8)

(d) Predicted values vs Actual observation (h = 8)
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(a) Predicted values vs Actual observation (h = 8)

(b) Predicted values vs Actual observation (h = 8)

(c) Predicted values vs Actual observation (h = 8)

(d) Predicted values vs Actual observation (h = 8)
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(a) Predicted values vs Actual observation (h = 8)

(b) Predicted values vs Actual observation (h = 8)

(c) Predicted values vs Actual observation (h = 8)

(d) Predicted values vs Actual observation (h = 8)
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A.3.4 Horizon h = 12

(a) Predicted values vs Actual observation (h = 12)

(b) Predicted values vs Actual observation (h = 12)

(c) Predicted values vs Actual observation (h = 12)
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(a) Predicted values vs Actual observation (h = 12)

(b) Predicted values vs Actual observation (h = 12)

(c) Predicted values vs Actual observation (h = 12)

(d) Predicted values vs Actual observation (h = 12)
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(a) Predicted values vs Actual observation (h = 12)

(b) Predicted values vs Actual observation (h = 12)

(c) Predicted values vs Actual observation (h = 12)

(d) Predicted values vs Actual observation (h = 12)
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(a) Predicted values vs Actual observation (h = 12)

(b) Predicted values vs Actual observation (h = 12)

(c) Predicted values vs Actual observation (h = 12)

(d) Predicted values vs Actual observation (h = 12)



A.4. The Student’s t VAR Detailed Forecasting Results 85

A.4 The Student’s t VAR Detailed Forecasting Results

Table A.3: Individual Forecast Evaluation for Student’s t GPCA

Theil’s U -statistic Clack and West t-test

Variables h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12
x1 0.737 0.722 0.727 0.724 2.991 1.681 1.222 1.175
x2 0.700 0.748 0.703 0.745 3.122 1.642 1.340 0.982
x3 0.699 0.743 0.766 0.707 3.182 1.492 0.975 1.253
x4 0.712 0.703 0.718 0.704 2.968 2.030 1.492 1.267
x5 0.744 0.736 0.736 0.719 2.813 1.730 1.256 1.166
x6 0.758 0.720 0.737 0.704 2.835 2.096 1.382 1.421
x7 0.687 0.761 0.779 0.713 3.488 1.196 0.672 0.775
x8 0.675 0.779 0.793 0.712 3.795 1.117 0.581 0.736
x9 0.682 0.772 0.831 0.702 3.555 1.149 0.570 1.079
x10 0.720 0.731 0.754 0.705 2.823 1.707 1.128 1.324
x11 0.672 0.781 0.794 0.708 3.892 1.099 0.577 0.748
x12 0.738 0.718 0.728 0.710 2.893 2.196 1.477 1.505
x13 0.745 0.705 0.728 0.708 2.946 2.268 1.438 1.487
x14 0.738 0.744 0.752 0.717 2.706 1.562 1.348 1.391
x15 0.670 0.785 0.802 0.710 3.920 1.088 0.563 0.760
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Table A.4: Individual Forecast Evaluation for PCA

Theil’s U -statistic Clack and West t-test

Variables h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12
x1 1.004 1.004 0.996 1.011 -0.276 -0.145 0.084 -0.180
x2 0.930 0.966 0.961 0.983 2.496 0.506 0.452 0.143
x3 0.989 1.009 0.980 0.997 0.951 -0.309 0.402 0.068
x4 0.950 0.981 0.949 0.951 1.214 0.283 0.408 0.291
x5 1.021 1.003 0.992 1.016 -1.503 -0.157 0.247 -0.434
x6 0.999 0.979 0.990 0.980 0.066 0.713 0.211 0.465
x7 0.993 0.999 1.015 1.002 0.771 0.042 -0.510 -0.065
x8 1.013 1.010 1.004 1.017 -1.744 -0.517 -0.096 -0.438
x9 0.990 1.002 0.996 0.979 1.230 -0.116 0.117 0.582
x10 0.999 1.014 0.982 1.000 0.082 -0.458 0.358 0.006
x11 1.011 1.010 0.999 1.015 -1.575 -0.544 0.023 -0.428
x12 0.990 0.988 0.989 0.992 1.560 1.389 0.861 0.458
x13 1.002 0.999 1.011 1.005 -0.229 0.072 -0.502 -0.201
x14 0.978 0.988 0.999 0.993 1.347 0.349 0.032 0.176
x15 1.007 1.006 0.997 1.011 -1.154 -0.426 0.077 -0.367
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A.5 The Student’s t VAR: Predictions vs. Actual Ob-

servations Plots

A.5.1 Horizon h = 1

(a) Predicted values vs Actual observation (h = 1)

(b) Predicted values vs Actual observation (h = 1)

(c) Predicted values vs Actual observation (h = 1)
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(a) Predicted values vs Actual observation (h = 1)

(b) Predicted values vs Actual observation (h = 1)

(c) Predicted values vs Actual observation (h = 1)

(d) Predicted values vs Actual observation (h = 1)
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(a) Predicted values vs Actual observation (h = 1)

(b) Predicted values vs Actual observation (h = 1)

(c) Predicted values vs Actual observation (h = 1)

(d) Predicted values vs Actual observation (h = 1)
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A.5.2 Horizon h = 4

(a) Predicted values vs Actual observation (h = 4)

(b) Predicted values vs Actual observation (h = 4)

(c) Predicted values vs Actual observation (h = 4)
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(a) Predicted values vs Actual observation (h = 4)

(b) Predicted values vs Actual observation (h = 4)

(c) Predicted values vs Actual observation (h = 4)

(d) Predicted values vs Actual observation (h = 4)
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(a) Predicted values vs Actual observation (h = 4)

(b) Predicted values vs Actual observation (h = 4)

(c) Predicted values vs Actual observation (h = 4)

(d) Predicted values vs Actual observation (h = 4)
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(a) Predicted values vs Actual observation (h = 4)

(b) Predicted values vs Actual observation (h = 4)

(c) Predicted values vs Actual observation (h = 4)

(d) Predicted values vs Actual observation (h = 4)



94 Appendix A. Monte Carlo Simulation

A.5.3 Horizon h = 8

(a) Predicted values vs Actual observation (h = 8)

(b) Predicted values vs Actual observation (h = 8)

(c) Predicted values vs Actual observation (h = 8)
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(a) Predicted values vs Actual observation (h = 8)

(b) Predicted values vs Actual observation (h = 8)

(c) Predicted values vs Actual observation (h = 8)

(d) Predicted values vs Actual observation (h = 8)



96 Appendix A. Monte Carlo Simulation

(a) Predicted values vs Actual observation (h = 8)

(b) Predicted values vs Actual observation (h = 8)

(c) Predicted values vs Actual observation (h = 8)

(d) Predicted values vs Actual observation (h = 8)
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(a) Predicted values vs Actual observation (h = 8)

(b) Predicted values vs Actual observation (h = 8)

(c) Predicted values vs Actual observation (h = 8)

(d) Predicted values vs Actual observation (h = 8)
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A.5.4 Horizon h = 12

(a) Predicted values vs Actual observation (h = 12)

(b) Predicted values vs Actual observation (h = 12)

(c) Predicted values vs Actual observation (h = 12)
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(a) Predicted values vs Actual observation (h = 12)

(b) Predicted values vs Actual observation (h = 12)

(c) Predicted values vs Actual observation (h = 12)

(d) Predicted values vs Actual observation (h = 12)
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(a) Predicted values vs Actual observation (h = 12)

(b) Predicted values vs Actual observation (h = 12)

(c) Predicted values vs Actual observation (h = 12)

(d) Predicted values vs Actual observation (h = 12)
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(a) Predicted values vs Actual observation (h = 12)

(b) Predicted values vs Actual observation (h = 12)

(c) Predicted values vs Actual observation (h = 12)

(d) Predicted values vs Actual observation (h = 12)
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A.6 R Codes

Some part of these codes are based on the E-views codes provided by Charles Engel 1 related
to the paper Engel et al. [2015].

A.6.1 The Normal VAR Simulation Design and Forecasting

1 options(tol =10e-40)

2 library(psych); library(zoo); library(dynlm); library(graphics);

library(aod)

3 library(Quandl); library(nortest); library(car);library(foreign)

4 library(tidyr); library(nFactors); library(fBasics); library(far)

5 library(Matrix); library(MCMCpack); library(Hmisc); library(

ADGofTest)

6 library(numDeriv); library(grDevices); library(StVAR); library(stats

)

7 library(mvtnorm); library(plyr); library(reshape2)

8

9 ############################ Data Generating

10 set.seed (1234)

11 phi0 <-1.8

12 a<-0.8

13 sigmat <-matrix(c

(0.072253514 ,0.029550653 ,0.018048041 ,0.030974202 ,0.035580663 ,

14 0.063596492 , -0.044353946 , -0.023820021 ,0.007845989 ,0.031214058 ,

15 -0.021647049 ,0.08288506 ,0.084255886 ,0.036116467 , -0.015758023 ,

16 0.029550653 ,0.01679944 ,0.011098948 ,0.014289844 ,0.016592454 ,

17 0.027956533 , -0.015018814 , -0.005433569 ,0.006380243 ,0.015463976 ,

18 -0.004629422 ,0.037085423 ,0.037605746 ,0.018340162 , -0.002218735 ,

19 0.018048041 ,0.011098948 ,0.032512655 ,0.019745562 ,0.022764677 ,

20 0.028123621 ,0.016547583 ,0.022492343 ,0.031449585 ,0.033754869 ,

21 0.023350481 ,0.037365467 ,0.033886629 ,0.023088821 ,0.025034264 ,

22 0.030974202 ,0.014289844 ,0.019745562 ,0.024720436 ,0.021428559 ,

23 0.033187292 , -0.007956688 ,0.00132638 ,0.016101257 ,0.025557668 ,

24 0.002543218 ,0.044172615 ,0.044523807 ,0.022379023 ,0.005155761 ,

25 0.035580663 ,0.016592454 ,0.022764677 ,0.021428559 ,0.026619446 ,

26 0.039854456 , -0.006240459 ,0.003382064 ,0.019284845 ,0.028382497 ,

27 0.004487382 ,0.050225972 ,0.048577871 ,0.026500612 ,0.007327197 ,

28 0.063596492 ,0.027956533 ,0.028123621 ,0.033187292 ,0.039854456 ,

29 0.069823393 , -0.029664082 , -0.010147566 ,0.019770641 ,0.039342479 ,

30 -0.008072806 ,0.087829782 ,0.087412774 ,0.042590271 , -0.00259529 ,

1https://www.ssc.wisc.edu/~cengel/Data/Factor/FactorData.htm

https://www.ssc.wisc.edu/~cengel/Data/Factor/FactorData.htm
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31 -0.044353946 , -0.015018814 ,0.016547583 , -0.007956688 , -0.006240459 ,

32 -0.029664082 ,0.071597342 ,0.053611242 ,0.028972791 ,0.005395715 ,

33 0.052089757 , -0.043365436 , -0.049071759 , -0.006508762 ,0.046979943 ,

34 -0.023820021 , -0.005433569 ,0.022492343 ,0.00132638 ,0.003382064 ,

35 -0.010147566 ,0.053611242 ,0.045146562 ,0.030542163 ,0.015094679 ,

36 0.044348213 , -0.015764937 , -0.020798273 ,0.004410417 ,0.041410615 ,

37 0.007845989 ,0.006380243 ,0.031449585 ,0.016101257 ,0.019284845 ,

38 0.019770641 ,0.028972791 ,0.030542163 ,0.03384728 ,0.030772889 ,

39 0.030988106 ,0.024702971 ,0.020158578 ,0.019159546 ,0.031331137 ,

40 0.031214058 ,0.015463976 ,0.033754869 ,0.025557668 ,0.028382497 ,

41 0.039342479 ,0.005395715 ,0.015094679 ,0.030772889 ,0.03845654 ,

42 0.016369007 ,0.05235939 ,0.049424261 ,0.028235865 ,0.019238997 ,

43 -0.021647049 , -0.004629422 ,0.023350481 ,0.002543218 ,0.004487382 ,

44 -0.008072806 ,0.052089757 ,0.044348213 ,0.030988106 ,0.016369007 ,

45 0.043707141 , -0.01286569 , -0.017712702 ,0.005494672 ,0.040962468 ,

46 0.08288506 ,0.037085423 ,0.037365467 ,0.044172615 ,0.050225972 ,

47 0.087829782 , -0.043365436 , -0.015764937 ,0.024702971 ,0.05235939 ,

48 -0.01286569 ,0.116828351 ,0.115920941 ,0.053252761 , -0.005108878 ,

49 0.084255886 ,0.037605746 ,0.033886629 ,0.044523807 ,0.048577871 ,

50 0.087412774 , -0.049071759 , -0.020798273 ,0.020158578 ,0.049424261 ,

51 -0.017712702 ,0.115920941 ,0.118666879 ,0.052494625 , -0.009870713 ,

52 0.036116467 ,0.018340162 ,0.023088821 ,0.022379023 ,0.026500612 ,

53 0.042590271 , -0.006508762 ,0.004410417 ,0.019159546 ,0.028235865 ,

54 0.005494672 ,0.053252761 ,0.052494625 ,0.031352219 ,0.008293733 ,

55 -0.015758023 , -0.002218735 ,0.025034264 ,0.005155761 ,0.007327197 ,

56 -0.00259529 ,0.046979943 ,0.041410615 ,0.031331137 ,0.019238997 ,

57 0.040962468 , -0.005108878 , -0.009870713 ,0.008293733 ,0.038942027)

58 ,nrow=15,ncol =15)

59 sigma <-kronecker(matrix(c(phi0 ,phi0*a,phi0*a,phi0),nrow = 2,ncol =

2),sigmat)

60 meann <-c

(2.5 ,1.9 ,0.8 ,0.5 ,1.3 ,0.9 ,3.4 ,2.3 ,0.3 ,0.08 ,4.5 ,3.7 ,1.4 ,2.9 ,0.001 ,

61 2.5 ,1.9 ,0.8 ,0.5 ,1.3 ,0.9 ,3.4 ,2.3 ,0.3 ,0.08 ,4.5 ,3.7 ,1.4 ,2.9 ,0.001)

62 X = rmvnorm(n=250, mean=meann , sigma=sigma , method="chol")

63 x1=X[,1]; x2=X[,2]; x3=X[,3]; x4=X[,4]; x5=X[,5]; x6=X[,6]; x7=X

[,7]; x8=X[,8];

64 x9=X[,9]; x10=X[,10]; x11=X[,11]; x12=X[,12]; x13=X[,13]; x14=X

[ ,14]; x15=X[ ,15];

65 lx1=X[ ,16]; lx2=X[ ,17]; lx3=X[ ,18]; lx4=X[ ,19]; lx5=X[ ,20]; lx6=X

[ ,21]; lx7=X[ ,22]; lx8=X[,23]

66 ; lx9=X[ ,24]; lx10=X[ ,25]; lx11=X[ ,26]; lx12=X[ ,27]; lx13=X[ ,28];

lx14=X[,29]; lx15=X[,30]

67

68 Xmat <-data.frame(x1 ,x2 ,x3 ,x4 ,x5 ,x6 ,x7 ,x8 ,x9 ,x10 ,x11 ,x12 ,x13 ,x14 ,x15)

69 mydata <-as.matrix(Xmat)
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70

71 #################### Set parameter values

72 FF=3; NN = 15; R=dim(mydata)[1]; tst = 150; hrzn <-c(1,4,8,12); lh=

length(hrzn); P=(R-tst -1)

73 #################################### Constructing matrices and

series

74 TheilU_CW_statistic <-TheilU_CW_statistic.pc<-matrix(NA ,NN ,2*lh)

75

76 rownames(TheilU_CW_statistic)<-rownames(TheilU_CW_statistic.pc)<-c(

colnames(mydata [ ,1:15]))

77 colnames(TheilU_CW_statistic)<-colnames(TheilU_CW_statistic.pc)<-c("

U stat , h=1","U stat ,

78 h=4","U stat , h=8","U stat , h=12", "CW stat , h=1","CW stat , h=4","CW

stat , h=8","CW stat , h=12")

79

80 Yhat <-Yhat.pc<-matrix(0,dim(mydata)[1],NN*lh)

81 pred_error_factor_all <- pred_error_factor_all.pc <- pred_error_rw_

all <- matrix(0,dim(mydata)[1],NN*lh)

82 MSPEadj <-MSPEadj.pc<-c(rep(0,NN))

83 mydatape <-matrix(NaN ,dim(mydata)[1],NN)

84

85 for(hh in 1:lh){

86 k=hrzn[hh]

87 tnd=(R-1)

88

89 c<-c(rep (0 ,1000))

90 loads <-loads.pc<-matrix(NA,NN ,3)

91 rownames(loads)<-rownames(loads.pc)<-colnames(mydata)

92 colnames(loads)<-colnames(loads.pc)<-cbind("Load1","Load2","Load3"

)

93 for(t in tst:tnd){

94 mydatagpca <-mydata [1:(1+t) ,]

95 for (i in 1:NN) {

96 mydatagpca[,i]<-as.matrix(mydatagpca[,i])-mean(as.matrix(

mydatagpca[,i]))

97 }

98 ########## GPCs

99

100 B<-eigen(cov(t(mydatagpca)))$vectors

101 A<-eigen(cov(mydatagpca))$vectors [ ,1:3]

102 sc<-t(t(A)%*%t(mydatagpca)%*%B)

103 pc<-t(t(A)%*%t(mydatagpca))

104 rownames(sc)<-rownames(pc)<-rownames(mydata [1:(1+t) ,])

105 colnames(sc)<-cbind("GPC1","GPC2","GPC3")

106 colnames(pc)<-cbind("PC1","PC2","PC3")
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107

108 ##################### Revised contemporaneous covariance matrix

109 #We can use the MLE of contemporaneous covariance matrix as well

.

110 #However , when we obtain a statistically adequate model , the

sample covariance of order

111 #T*T would be fine because in the GLS -type regression (if we

have non -Gaussian distribution)

112 #The heteroskedastic standard error will do the same as MLE. In

this simulation I found out the

113 #results from using sample covariance and MLE covariance is the

same up to three decimals which can

114 #be due to the rounding.

115 # M<-matrix(NaN ,(fp+t),(fp+t))

116 # phi0 <-1.8

117 # a<-0.8

118 # e<-matrix (1,(fp+t) ,1)

119 # for(pp in 1:(fp+t)){

120 # for(qq in 1:(fp+t)){

121 # M[pp ,qq]<-phi0*(a^(abs(qq-pp)))

122 # }

123 # }

124 # Qn<-(inv(M)%*%e%*%t(e)%*%inv(M))

125 # Qd<-as.numeric (1/(t(e)%*%inv(M)%*%e))

126 # Qa<-Qn*Qd

127 # hatsigma <-0.004*t(mydatagpca)%*%(inv(M)-Qa)%*%mydatagpca

128 #################################

129 for(i in 1:NN) {

130 factorfit <-lm(mydatagpca[,i]~sc)

131 loads[i,]<-factorfit$coefficients [2:4]

132 factorfit.pc<-lm(mydatagpca[,i]~pc)

133 loads.pc[i,]<-factorfit.pc$coefficients [2:4]

134 }

135

136 # constructing regressors F(it)-s(it) for 1,...,F factors , i

=1,...,NN

137

138 FactorX <-FactorX.pc<-matrix(NA ,1+t,NN)

139 rownames(FactorX)<-rownames(FactorX.pc)<-rownames(mydata [1:(1+t)

,])

140 colnames(FactorX)<-colnames(FactorX.pc)<-colnames(mydata [,1:NN])

141 Ymat <-matrix(NA ,(1+t),NN)

142 rownames(Ymat)<-rownames(mydata [1:(1+t) ,])

143 colnames(Ymat)<-colnames(mydata [,1:NN])

144 for (j in 1:NN){
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145 FactorX[,j]=- mydatagpca[,j]

146 FactorX.pc[,j]=- mydatagpca[,j]

147 for(f in 1:FF){

148 FactorX[,j]= FactorX[,j]+( loads[j,f]*sc[,f])

149 FactorX.pc[,j]= FactorX.pc[,j]+( loads.pc[j,f]*pc[,f])

150 }

151

152 Ymat[,j]<-mydatagpca[,j]-Lag(mydatagpca[,j],shift = k)

153 }

154 FactorLX <-FactorLX.pc<-matrix(NaN ,dim(FactorX)[1],dim(FactorX)

[2])

155 for(j in 1:NN){

156 FactorLX[,j]<-Lag(FactorX[,j],shift = k)

157 FactorLX.pc[,j]<-Lag(FactorX.pc[,j],shift = k)

158 }

159

160 FactorLXlong <-melt(FactorLX)

161 FactorLXlong.pc<-melt(FactorLX.pc)

162 Ylong <-melt(Ymat)

163

164 Y_FactorLX <- cbind(Ylong ,FactorLXlong [,3])

165 Y_FactorLX.pc <- cbind(Ylong ,FactorLXlong.pc[,3])

166 colnames(Y_FactorLX) <- c("time","variables","Y","gpcX")

167 colnames(Y_FactorLX.pc) <- c("time","variables","Y","pcX")

168

169 LRMFit <- lm(Y ~ gpcX+factor(variables)-1,data = Y_FactorLX)

170 LRMFit.pc <- lm(Y ~ pcX+factor(variables)-1,data = Y_FactorLX.pc

)

171

172 c[601:615] <-LRMFit$coefficients [2:16]; c[650] <-LRMFit$

coefficients [1]

173

174 c[401:415] <-LRMFit$coefficients [2:16]; c[450] <-LRMFit$

coefficients [1]

175

176 for(l in 1:NN){

177 Yhat [(1+t),l+((hh -1)*NN)]=c[600+l]+c[650]*FactorX [(1+t),l]

178 Yhat.pc[(1+t),l+((hh -1)*NN)]=c[400+l]+c[450]*FactorX.pc[(1+t),

l]

179 }

180 }

181

182 #################################### Forecast evaluation

183 ti1 =(1+ tst)

184 ti2=R
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185

186 pred_error_factor <-pred_error_factor.pc<-matrix(0,dim(mydata)[1],

NN)

187 pred_error_rw<-matrix(0,dim(mydata)[1],NN)

188 SPE_SPEAdj <-SPE_SPEAdj.pc<-matrix(NA ,dim(mydata)[1],NN)

189 for(o in 1:NN){

190 mydatape [1:tst ,o]<-as.matrix(mydata [1:tst ,o])-mean(as.matrix(

mydata [1:tst ,o]))

191 for(t in tst:tnd){

192 C<-as.matrix(mydata [1:t,o])-mean(as.matrix(mydata [1:t,o]))

193 mydatape[t,o]<-C[t]

194 }

195 pred_error_factor[ti1:ti2 ,o]<-(Lag(mydatape[ti1:ti2 ,o],shift = -

k)-mydatape[ti1:ti2 ,o])-Yhat[ti1:ti2 ,o+((hh -1)*NN)]

196 pred_error_factor.pc[ti1:ti2 ,o]<-(Lag(mydatape[ti1:ti2 ,o],shift

= -k)-mydatape[ti1:ti2 ,o])-Yhat.pc[ti1:ti2 ,o+((hh -1)*NN)]

197

198 pred_error_rw[ti1:ti2 ,o]<-Lag(mydatape[ti1:ti2 ,o],shift = -k)-

mydatape[ti1:ti2 ,o]

199

200 pred_error_factor_all[,(((hh -1)*NN)+1):(hh*NN)]<-pred_error_

factor

201 pred_error_factor_all.pc[,(((hh -1)*NN)+1):(hh*NN)]<-pred_error_

factor.pc

202 pred_error_rw_all[,(((hh -1)*NN)+1):(hh*NN)]<-pred_error_rw

203

204 SPE_Factor <-pred_error_factor[,o]*pred_error_factor[,o]

205 SPE_Factor.pc<-pred_error_factor.pc[,o]*pred_error_factor.pc[,o]

206 SPE_rw<-pred_error_rw[,o]*pred_error_rw[,o]

207

208 SPE_SPEAdj[ti1:ti2 ,o]<-(SPE_rw[ti1:ti2]-SPE_Factor[ti1:ti2])

209 +Lag(Yhat[ti1:ti2 ,o+((hh -1)*NN)],shift = -k)*Lag(Yhat[ti1:ti2 ,o

+((hh -1)*NN)],shift = -k)

210 SPE_SPEAdj.pc[ti1:ti2 ,o]<-(SPE_rw[ti1:ti2]-SPE_Factor.pc[ti1:ti2

])

211 +Lag(Yhat.pc[ti1:ti2 ,o+((hh -1)*NN)],shift = -k)*Lag(Yhat.pc[ti1:

ti2 ,o+((hh -1)*NN)],shift = -k)

212

213 MSPEadj[o]<-mean(SPE_SPEAdj[,o],na.rm=TRUE)

214 MSPEadj.pc[o]<-mean(SPE_SPEAdj.pc[,o],na.rm=TRUE)

215 TheilU_CW_statistic[o,hh]<-(mean(SPE_Factor ,na.rm=TRUE)/mean(SPE

_rw ,na.rm=TRUE))^0.5

216 TheilU_CW_statistic.pc[o,hh]<-(mean(SPE_Factor.pc ,na.rm=TRUE)/

mean(SPE_rw,na.rm=TRUE))^0.5

217 }
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218 #Univariate case: Standard errors and CW stats

219 P1=P-k+1

220 P2=P-(2*(k-1))

221 t_1=1+ tst

222 t_2=dim(mydata)[1]-k+1

223

224 Yhatrec <-Yhatrec.pc<-matrix(0,dim(mydata)[1],NN)

225 dist_adj <-dist_adj.pc<-matrix(NA ,dim(mydata)[1],NN)

226 mean_dist <-mean_dist.pc<-c(rep(0,NN))

227 sq_dist_adj <-sq_dist_adj.pc<-c(rep(0,NN))

228 CW_statistic <-CW_statistic.pc<-c(rep(0,NN))

229 mean_dist_cent <-mean_dist_cent.pc<-matrix(NA ,dim(mydata)[1],NN)

230

231 for(jj in 1:NN){

232 for(g in 1:k){

233 Yhatrec [(t_1:t_2),jj]<-Yhatrec [(t_1:t_2),jj]+Lag(Yhat[(t_1:t_

2),jj+((hh -1)*NN)],shift = g)

234 Yhatrec.pc[(t_1:t_2),jj]<-Yhatrec.pc[(t_1:t_2),jj]+Lag(Yhat.

pc[(t_1:t_2),jj+((hh -1)*NN)],shift = g)

235 }

236 dist_adj[(t_1:t_2),jj]<-2*(mydatape [(t_1:t_2),jj]-Lag(mydatape [(

t_1:t_2),jj],shift = 1))*Yhatrec [(t_1:t_2),jj]

237 mean_dist[jj]<-mean(dist_adj[,jj],na.rm=TRUE)

238 mean_dist_cent[(t_1:t_2),jj]<-dist_adj[(t_1:t_2),jj]-mean_dist[

jj]

239 sq_dist_adj[jj]<-(1/P2)*sum(mean_dist_cent[,jj]^2,na.rm = TRUE)

240

241 dist_adj.pc[(t_1:t_2),jj]<-2*(mydatape [(t_1:t_2),jj]-Lag(

mydatape [(t_1:t_2),jj],shift = 1))*Yhatrec.pc[(t_1:t_2),jj]

242 mean_dist.pc[jj]<-mean(dist_adj.pc[,jj],na.rm=TRUE)

243 mean_dist_cent.pc[(t_1:t_2),jj]<-dist_adj.pc[(t_1:t_2),jj]-mean_

dist.pc[jj]

244 sq_dist_adj.pc[jj]<-(1/P2)*sum(mean_dist_cent.pc[,jj]^2,na.rm =

TRUE)

245

246 ################### Univariate Clark -West stats

247 CW_statistic[jj]<-sqrt(P1)*(MSPEadj[jj]/sqrt(sq_dist_adj[jj]))

248 CW_statistic.pc[jj]<-sqrt(P1)*(MSPEadj.pc[jj]/sqrt(sq_dist_adj.

pc[jj]))

249 TheilU_CW_statistic[jj ,hh+lh]=CW_statistic[jj]

250 TheilU_CW_statistic.pc[jj ,hh+lh]=CW_statistic.pc[jj]

251 }

252 }
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A.6.2 The Student’s t VAR Simulation Design and Forecasting

1 options(tol =10e-40)

2 library(psych); library(zoo); library(dynlm); library(graphics);

library(aod)

3 library(Quandl); library(nortest); library(car);library(foreign)

4 library(tidyr); library(nFactors); library(fBasics); library(far)

5 library(Matrix); library(MCMCpack); library(Hmisc); library(

ADGofTest)

6 library(numDeriv); library(grDevices); library(StVAR); library(stats

)

7 library(mvtnorm); library(plyr); library(reshape2); library(dummies)

8

9 ############################ Data Generating

10 set.seed (1234)

11 phi0 <-1.8

12 a<-0.8

13 sigmat <-matrix(c

(0.072253514 ,0.029550653 ,0.018048041 ,0.030974202 ,0.035580663 ,

14 0.063596492 , -0.044353946 , -0.023820021 ,0.007845989 ,0.031214058 ,

15 -0.021647049 ,0.08288506 ,0.084255886 ,0.036116467 , -0.015758023 ,

16 0.029550653 ,0.01679944 ,0.011098948 ,0.014289844 ,0.016592454 ,

17 0.027956533 , -0.015018814 , -0.005433569 ,0.006380243 ,0.015463976 ,

18 -0.004629422 ,0.037085423 ,0.037605746 ,0.018340162 , -0.002218735 ,

19 0.018048041 ,0.011098948 ,0.032512655 ,0.019745562 ,0.022764677 ,

20 0.028123621 ,0.016547583 ,0.022492343 ,0.031449585 ,0.033754869 ,

21 0.023350481 ,0.037365467 ,0.033886629 ,0.023088821 ,0.025034264 ,

22 0.030974202 ,0.014289844 ,0.019745562 ,0.024720436 ,0.021428559 ,

23 0.033187292 , -0.007956688 ,0.00132638 ,0.016101257 ,0.025557668 ,

24 0.002543218 ,0.044172615 ,0.044523807 ,0.022379023 ,0.005155761 ,

25 0.035580663 ,0.016592454 ,0.022764677 ,0.021428559 ,0.026619446 ,

26 0.039854456 , -0.006240459 ,0.003382064 ,0.019284845 ,0.028382497 ,

27 0.004487382 ,0.050225972 ,0.048577871 ,0.026500612 ,0.007327197 ,

28 0.063596492 ,0.027956533 ,0.028123621 ,0.033187292 ,0.039854456 ,

29 0.069823393 , -0.029664082 , -0.010147566 ,0.019770641 ,0.039342479 ,

30 -0.008072806 ,0.087829782 ,0.087412774 ,0.042590271 , -0.00259529 ,

31 -0.044353946 , -0.015018814 ,0.016547583 , -0.007956688 , -0.006240459 ,

32 -0.029664082 ,0.071597342 ,0.053611242 ,0.028972791 ,0.005395715 ,

33 0.052089757 , -0.043365436 , -0.049071759 , -0.006508762 ,0.046979943 ,

34 -0.023820021 , -0.005433569 ,0.022492343 ,0.00132638 ,0.003382064 ,

35 -0.010147566 ,0.053611242 ,0.045146562 ,0.030542163 ,0.015094679 ,

36 0.044348213 , -0.015764937 , -0.020798273 ,0.004410417 ,0.041410615 ,

37 0.007845989 ,0.006380243 ,0.031449585 ,0.016101257 ,0.019284845 ,

38 0.019770641 ,0.028972791 ,0.030542163 ,0.03384728 ,0.030772889 ,

39 0.030988106 ,0.024702971 ,0.020158578 ,0.019159546 ,0.031331137 ,
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40 0.031214058 ,0.015463976 ,0.033754869 ,0.025557668 ,0.028382497 ,

41 0.039342479 ,0.005395715 ,0.015094679 ,0.030772889 ,0.03845654 ,

42 0.016369007 ,0.05235939 ,0.049424261 ,0.028235865 ,0.019238997 ,

43 -0.021647049 , -0.004629422 ,0.023350481 ,0.002543218 ,0.004487382 ,

44 -0.008072806 ,0.052089757 ,0.044348213 ,0.030988106 ,0.016369007 ,

45 0.043707141 , -0.01286569 , -0.017712702 ,0.005494672 ,0.040962468 ,

46 0.08288506 ,0.037085423 ,0.037365467 ,0.044172615 ,0.050225972 ,

47 0.087829782 , -0.043365436 , -0.015764937 ,0.024702971 ,0.05235939 ,

48 -0.01286569 ,0.116828351 ,0.115920941 ,0.053252761 , -0.005108878 ,

49 0.084255886 ,0.037605746 ,0.033886629 ,0.044523807 ,0.048577871 ,

50 0.087412774 , -0.049071759 , -0.020798273 ,0.020158578 ,0.049424261 ,

51 -0.017712702 ,0.115920941 ,0.118666879 ,0.052494625 , -0.009870713 ,

52 0.036116467 ,0.018340162 ,0.023088821 ,0.022379023 ,0.026500612 ,

53 0.042590271 , -0.006508762 ,0.004410417 ,0.019159546 ,0.028235865 ,

54 0.005494672 ,0.053252761 ,0.052494625 ,0.031352219 ,0.008293733 ,

55 -0.015758023 , -0.002218735 ,0.025034264 ,0.005155761 ,0.007327197 ,

56 -0.00259529 ,0.046979943 ,0.041410615 ,0.031331137 ,0.019238997 ,

57 0.040962468 , -0.005108878 , -0.009870713 ,0.008293733 ,0.038942027)

58 ,nrow=15,ncol =15)

59 sigma <-kronecker(matrix(c(phi0 ,phi0*a,phi0*a,phi0),nrow = 2,ncol =

2),sigmat)

60 meann <-c

(2.5 ,1.9 ,0.8 ,0.5 ,1.3 ,0.9 ,3.4 ,2.3 ,0.3 ,0.08 ,4.5 ,3.7 ,1.4 ,2.9 ,0.001 ,

61 2.5 ,1.9 ,0.8 ,0.5 ,1.3 ,0.9 ,3.4 ,2.3 ,0.3 ,0.08 ,4.5 ,3.7 ,1.4 ,2.9 ,0.001)

62 X = rmvt(n=250, sigma=sigma , df=30, delta=meann ,type="shifted")

63 x1=X[,1]; x2=X[,2]; x3=X[,3]; x4=X[,4]; x5=X[,5]; x6=X[,6]; x7=X

[,7]; x8=X[,8];

64 x9=X[,9]; x10=X[,10]; x11=X[,11]; x12=X[,12]; x13=X[,13]; x14=X

[ ,14]; x15=X[ ,15];

65 lx1=X[ ,16]; lx2=X[ ,17]; lx3=X[ ,18]; lx4=X[ ,19]; lx5=X[ ,20]; lx6=X

[ ,21]; lx7=X[ ,22]; lx8=X[,23]

66 ; lx9=X[ ,24]; lx10=X[ ,25]; lx11=X[ ,26]; lx12=X[ ,27]; lx13=X[ ,28];

lx14=X[,29]; lx15=X[,30]

67

68 Xmat <-data.frame(x1 ,x2 ,x3 ,x4 ,x5 ,x6 ,x7 ,x8 ,x9 ,x10 ,x11 ,x12 ,x13 ,x14 ,x15)

69 mydata <-as.matrix(Xmat)

70

71 #################### Set parameter values

72 FF=3; NN = 15; R=dim(mydata)[1]; tst = 150; hrzn <-c(1,4,8,12); lh=

length(hrzn); P=(R-tst -1)

73 #################################### Constructing matrices and

series

74 TheilU_CW_statistic <-TheilU_CW_statistic.pc<-matrix(NA ,NN ,2*lh)

75
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76 rownames(TheilU_CW_statistic)<-rownames(TheilU_CW_statistic.pc)<-c(

colnames(mydata [ ,1:15]))

77 colnames(TheilU_CW_statistic)<-colnames(TheilU_CW_statistic.pc)<-c("

U stat , h=1","U stat ,

78 h=4","U stat , h=8","U stat , h=12", "CW stat , h=1","CW stat , h=4","CW

stat , h=8","CW stat , h=12")

79 Yhat <-Yhat.pc<-matrix(0,dim(mydata)[1],NN*lh)

80

81 pred_error_factor_all <- pred_error_factor_all.pc <- pred_error_rw_

all <- matrix(0,dim(mydata)[1],NN*lh)

82

83 MSPEadj <-MSPEadj.pc<-c(rep(0,NN))

84

85 mydatape <-matrix(NaN ,dim(mydata)[1],NN)

86

87 for(hh in 1:lh){

88 k=hrzn[hh]

89 tnd=(R-1)

90

91 c<-c(rep (0 ,1000))

92 loads <-loads.pc<-matrix(NA,NN ,3)

93 rownames(loads)<-rownames(loads.pc)<-colnames(mydata)

94 colnames(loads)<-colnames(loads.pc)<-cbind("Load1","Load2","Load3"

)

95 for(t in tst:tnd){

96 mydatagpca <-mydata [1:(1+t) ,]

97 for (i in 1:NN) {

98 mydatagpca[,i]<-as.matrix(mydatagpca[,i])-mean(as.matrix(

mydatagpca[,i]))

99 }

100

101 B<-eigen(cov(t(mydatagpca)))$vectors

102 A<-eigen(cov(mydatagpca))$vectors [ ,1:3]

103 sc<-t(t(A)%*%t(mydatagpca)%*%B)

104 pc<-t(t(A)%*%t(mydatagpca))

105 rownames(sc)<-rownames(pc)<-rownames(mydata [1:(1+t) ,])

106 colnames(sc)<-cbind("GPC1","GPC2","GPC3")

107 colnames(pc)<-cbind("PC1","PC2","PC3")

108

109 for(i in 1:NN) {

110 factorfit <-lm(mydatagpca[,i]~sc)

111 loads[i,]<-factorfit$coefficients [2:4]

112 factorfit.pc<-lm(mydatagpca[,i]~pc)

113 loads.pc[i,]<-factorfit.pc$coefficients [2:4]

114 }
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115

116 # constructing regressors F(it)-s(it) for 1,...,F factors , i

=1,...,NN

117

118 FactorX <-FactorX.pc<-matrix(NA ,1+t,NN)

119 rownames(FactorX)<-rownames(FactorX.pc)<-rownames(mydata [1:(1+t)

,])

120 colnames(FactorX)<-colnames(FactorX.pc)<-colnames(mydata [,1:NN])

121 Ymat <-matrix(NA ,(1+t),NN)

122 rownames(Ymat)<-rownames(mydata [1:(1+t) ,])

123 colnames(Ymat)<-colnames(mydata [,1:NN])

124 for (j in 1:NN){

125 FactorX[,j]=- mydatagpca[,j]

126 FactorX.pc[,j]=- mydatagpca[,j]

127 for(f in 1:FF){

128 FactorX[,j]= FactorX[,j]+( loads[j,f]*sc[,f])

129 FactorX.pc[,j]= FactorX.pc[,j]+( loads.pc[j,f]*pc[,f])

130 }

131

132 Ymat[,j]<-mydatagpca[,j]-Lag(mydatagpca[,j],shift = k)

133 }

134 FactorLX <-FactorLX.pc<-matrix(NaN ,dim(FactorX)[1],dim(FactorX)

[2])

135 for(j in 1:NN){

136 FactorLX[,j]<-Lag(FactorX[,j],shift = k)

137 FactorLX.pc[,j]<-Lag(FactorX.pc[,j],shift = k)

138 }

139

140 FactorLXlong <-melt(FactorLX)

141 FactorLXlong.pc<-melt(FactorLX.pc)

142 Ylong <-melt(Ymat)

143

144 Y_FactorLX <- cbind(Ylong ,FactorLXlong [,3])

145 Y_FactorLX.pc <- cbind(Ylong ,FactorLXlong.pc[,3])

146 colnames(Y_FactorLX) <- c("time","variables","Y","gpcX")

147 colnames(Y_FactorLX.pc) <- c("time","variables","Y","pcX")

148

149 y = Y_FactorLX$Y ; X = cbind(Y_FactorLX$gpcX)

150 Trendd = cbind(dummy(Y_FactorLX$variables))

151 XX <- na.omit(cbind(y,X,Trendd))

152 y1 <- XX[,1] ; X1 <-as.matrix(XX[,2]) ; Trend1 <- XX[ ,3:17]

153 colnames(Trend1) <- colnames(mydata)[1:15]; colnames(X1) <- "

gpcX" ; lag <- 0 ; ll <- ncol(X1)

154

155 LRMFit <- StDLRM(y1 , X1 ,v=30, Trend=Trend1 ,lag=0,hes="TRUE")
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156 LRMFit.pc <- lm(Y ~ pcX+factor(variables)-1,data = Y_FactorLX.pc

)

157

158 c[601:615] <-LRMFit$coefficients [1:15]; c[650] <-LRMFit$

coefficients [16]

159

160 c[401:415] <-LRMFit$coefficients [2:16]; c[450] <-LRMFit$

coefficients [1]

161

162 for(l in 1:NN){

163 Yhat [(1+t),l+((hh -1)*NN)]=c[600+l]+c[650]*FactorX [(1+t),l]

164 Yhat.pc[(1+t),l+((hh -1)*NN)]=c[400+l]+c[450]*FactorX.pc[(1+t),

l]

165 }

166

167 }

168

169 #################################### Forecast evaluation

170 ti1 =(1+ tst)

171 ti2=R

172

173 pred_error_factor <-pred_error_factor.pc<-matrix(0,dim(mydata)[1],

NN)

174 pred_error_rw<-matrix(0,dim(mydata)[1],NN)

175 SPE_SPEAdj <-SPE_SPEAdj.pc<-matrix(NA ,dim(mydata)[1],NN)

176 for(o in 1:NN){

177 mydatape [1:tst ,o]<-as.matrix(mydata [1:tst ,o])-mean(as.matrix(

mydata [1:tst ,o]))

178 for(t in tst:tnd){

179 C<-as.matrix(mydata [1:t,o])-mean(as.matrix(mydata [1:t,o]))

180 mydatape[t,o]<-C[t]

181 }

182 pred_error_factor[ti1:ti2 ,o]<-(Lag(mydatape[ti1:ti2 ,o],shift = -

k)-mydatape[ti1:ti2 ,o])-Yhat[ti1:ti2 ,o+((hh -1)*NN)]

183 pred_error_factor.pc[ti1:ti2 ,o]<-(Lag(mydatape[ti1:ti2 ,o],shift

= -k)-mydatape[ti1:ti2 ,o])-Yhat.pc[ti1:ti2 ,o+((hh -1)*NN)]

184

185 pred_error_rw[ti1:ti2 ,o]<-Lag(mydatape[ti1:ti2 ,o],shift = -k)-

mydatape[ti1:ti2 ,o]

186

187 pred_error_factor_all[,(((hh -1)*NN)+1):(hh*NN)]<-pred_error_

factor

188 pred_error_factor_all.pc[,(((hh -1)*NN)+1):(hh*NN)]<-pred_error_

factor.pc

189 pred_error_rw_all[,(((hh -1)*NN)+1):(hh*NN)]<-pred_error_rw
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190

191 SPE_Factor <-pred_error_factor[,o]*pred_error_factor[,o]

192 SPE_Factor.pc<-pred_error_factor.pc[,o]*pred_error_factor.pc[,o]

193 SPE_rw<-pred_error_rw[,o]*pred_error_rw[,o]

194

195 SPE_SPEAdj[ti1:ti2 ,o]<-(SPE_rw[ti1:ti2]-SPE_Factor[ti1:ti2])

196 +Lag(Yhat[ti1:ti2 ,o+((hh -1)*NN)],shift = -k)*Lag(Yhat[ti1:ti2 ,o

+((hh -1)*NN)],shift = -k)

197 SPE_SPEAdj.pc[ti1:ti2 ,o]<-(SPE_rw[ti1:ti2]-SPE_Factor.pc[ti1:ti2

])

198 +Lag(Yhat.pc[ti1:ti2 ,o+((hh -1)*NN)],shift = -k)*Lag(Yhat.pc[ti1:

ti2 ,o+((hh -1)*NN)],shift = -k)

199

200 MSPEadj[o]<-mean(SPE_SPEAdj[,o],na.rm=TRUE)

201 MSPEadj.pc[o]<-mean(SPE_SPEAdj.pc[,o],na.rm=TRUE)

202 TheilU_CW_statistic[o,hh]<-(mean(SPE_Factor ,na.rm=TRUE)/mean(SPE

_rw ,na.rm=TRUE))^0.5

203 TheilU_CW_statistic.pc[o,hh]<-(mean(SPE_Factor.pc ,na.rm=TRUE)/

mean(SPE_rw,na.rm=TRUE))^0.5

204 }

205 #Univariate case: Standard errors and CW stats

206 P1=P-k+1

207 P2=P-(2*(k-1))

208 t_1=1+ tst

209 t_2=dim(mydata)[1]-k+1

210

211 Yhatrec <-Yhatrec.pc<-matrix(0,dim(mydata)[1],NN)

212 dist_adj <-dist_adj.pc<-matrix(NA ,dim(mydata)[1],NN)

213 mean_dist <-mean_dist.pc<-c(rep(0,NN))

214 sq_dist_adj <-sq_dist_adj.pc<-c(rep(0,NN))

215 CW_statistic <-CW_statistic.pc<-c(rep(0,NN))

216 mean_dist_cent <-mean_dist_cent.pc<-matrix(NA ,dim(mydata)[1],NN)

217

218 for(jj in 1:NN){

219 for(g in 1:k){

220 Yhatrec [(t_1:t_2),jj]<-Yhatrec [(t_1:t_2),jj]+Lag(Yhat[(t_1:t_

2),jj+((hh -1)*NN)],shift = g)

221 Yhatrec.pc[(t_1:t_2),jj]<-Yhatrec.pc[(t_1:t_2),jj]+Lag(Yhat.

pc[(t_1:t_2),jj+((hh -1)*NN)],shift = g)

222 }

223 dist_adj[(t_1:t_2),jj]<-2*(mydatape [(t_1:t_2),jj]-Lag(mydatape [(

t_1:t_2),jj],shift = 1))*Yhatrec [(t_1:t_2),jj]

224 mean_dist[jj]<-mean(dist_adj[,jj],na.rm=TRUE)

225 mean_dist_cent[(t_1:t_2),jj]<-dist_adj[(t_1:t_2),jj]-mean_dist[

jj]
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226 sq_dist_adj[jj]<-(1/P2)*sum(mean_dist_cent[,jj]^2,na.rm = TRUE)

227

228 dist_adj.pc[(t_1:t_2),jj]<-2*(mydatape [(t_1:t_2),jj]-Lag(

mydatape [(t_1:t_2),jj],shift = 1))*Yhatrec.pc[(t_1:t_2),jj]

229 mean_dist.pc[jj]<-mean(dist_adj.pc[,jj],na.rm=TRUE)

230 mean_dist_cent.pc[(t_1:t_2),jj]<-dist_adj.pc[(t_1:t_2),jj]-mean_

dist.pc[jj]

231 sq_dist_adj.pc[jj]<-(1/P2)*sum(mean_dist_cent.pc[,jj]^2,na.rm =

TRUE)

232

233 #Univariate Clark -West stats

234 CW_statistic[jj]<-sqrt(P1)*(MSPEadj[jj]/sqrt(sq_dist_adj[jj]))

235 CW_statistic.pc[jj]<-sqrt(P1)*(MSPEadj.pc[jj]/sqrt(sq_dist_adj.

pc[jj]))

236 TheilU_CW_statistic[jj ,hh+lh]=CW_statistic[jj]

237 TheilU_CW_statistic.pc[jj ,hh+lh]=CW_statistic.pc[jj]

238 }

239

240 }
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A.6.3 Exchange Rate Forecasting

1 options(width=60, keep.space=TRUE , scipen = 999)

2 library(plm); library(psych); library(zoo); library(nlme); library(

dynlm); library(graphics)

3 library(aod); library(foreign); library(mvtnorm); library(Quandl);

library(ConvergenceConcepts)

4 library(tseries); library(nortest); library(car); library(tidyr);

library(nFactors); library(quantmod)

5 library(fBasics); library(far); library(ADGofTest); library(matlab);

library(rms); library(ggplot2)

6 library(Hmisc); library(ggpubr); library(Matrix); library(forecast);

library(MCMCpack); library(numDeriv)

7 library(grDevices); library(rgl); library(heavy); library(glmnet);

library(rpart)

8 library(randomForest); library(leaps); library(rpart.plot); library(

mFilter)

9 library(stats); library(tidyr); library(reshape2)

10

11 ################# PROCESSING THE DATA

12 setwd("PATH")

13 mydata <-read.csv("Data - Updated.csv",header = TRUE)

14 #################### Set parameter values

15 S=3 #1= early sample (pre Euro), 2=late smpl (post), 3=full smpl

16 EUR=1 #1 if forecast of Euro is needed

17 FF=3; NN = 17; R=dim(mydata)[1]; tst = 55; hrzn <-c(1,4,8,12); lh=

length(hrzn)

18

19 if(S==1){

20 P=49

21 }

22 if(S==2){

23 P=75

24 }

25 if(S==3){

26 P=(R-tst -1)

27 }

28 #################################### 3. Constructing matrices and

series

29 TheilU_CW_statistic <-matrix(NA ,NN ,2*lh)

30

31 rownames(TheilU_CW_statistic)<-c(colnames(mydata [ ,1:17]))

32 colnames(TheilU_CW_statistic)<-c("U stat , h=1","U stat ,h=4","U stat ,

h=8","U stat , h=12","CW stat , h=1","CW stat , h=4","CW stat , h=8"

,"CW stat , h=12")
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33 Yhat <-matrix(0,dim(mydata)[1],NN*lh); Yhat_euro <-matrix(0,dim(mydata

)[1],lh); Yhateuro <-matrix(0,dim(mydata)[1],lh)

34

35 pred_error_factor_all <- pred_error_rw_all <- matrix(0,dim(mydata)

[1],NN*lh)

36

37 MSPEadj <-c(rep(0,NN))

38

39 mydatape <-matrix(NaN ,dim(mydata)[1],NN)

40

41 for(hh in 1:lh){

42 k=hrzn[hh]

43

44 if (S==1){

45 tnd=(tst+P-1)

46 }

47 if (S==2){

48 tst =104

49 tnd=(tst+P-1)

50 }

51 if (S==3 && EUR ==1){

52 tnd=(R-1)

53 }

54

55 c<-c(rep (0 ,1000))

56 loads <-matrix(NA,NN ,3)

57 rownames(loads)<-colnames(mydata [ ,1:17])

58 colnames(loads)<-cbind("Load1","Load2","Load3")

59 for(t in tst:tnd){

60 mydatagpca <-mydata [1:(1+t) ,]

61 for (i in 1:NN) {

62 mydatagpca[,i]<-as.matrix(mydatagpca[,i])-mean(as.matrix(

mydatagpca[,i]))

63 }

64

65 B<-eigen(cov(t(mydatagpca)))$vectors

66 A<-eigen(cov(mydatagpca))$vectors [ ,1:3]

67 sc<-t(t(A)%*%t(mydatagpca)%*%B)

68 rownames(sc)<-rownames(mydata [1:(1+t) ,])

69 colnames(sc)<-cbind("GPC1","GPC2","GPC3")

70 for(i in 1:NN) {

71 factorfit <-lm(mydatagpca[,i]~sc)

72 loads[i,]<-factorfit$coefficients [2:4]

73 }

74
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75 # constructing regressors F(it)-s(it) for 1,...,F factors , i

=1,...,NN

76

77 FactorX <-matrix(NA ,1+t,NN)

78 rownames(FactorX)<-rownames(mydata [1:(1+t) ,])

79 colnames(FactorX)<-colnames(mydata [,1:NN])

80 Ymat <-matrix(NA ,(1+t),NN)

81 rownames(Ymat)<-rownames(mydata [1:(1+t) ,])

82 colnames(Ymat)<-colnames(mydata [,1:NN])

83 for (j in 1:NN){

84 FactorX[,j]=- mydatagpca[,j]

85 for(f in 1:FF){

86 FactorX[,j]= FactorX[,j]+( loads[j,f]*sc[,f])

87 }

88

89 Ymat[,j]<-mydatagpca[,j]-Lag(mydatagpca[,j],shift = k)

90 }

91 FactorLX <-matrix(NaN ,dim(FactorX)[1],dim(FactorX)[2])

92 for(j in 1:NN){

93 FactorLX[,j]<-Lag(FactorX[,j],shift = k)

94 }

95

96 FactorLXlong <-melt(FactorLX)

97 Ylong <-melt(Ymat)

98

99 Y_FactorLX <- cbind(Ylong ,FactorLXlong [,3])

100 colnames(Y_FactorLX) <- c("time","country","Y","gpcX")

101

102 LRMFit <- lm(Y ~ gpcX+factor(country)-1,data = Y_FactorLX)

103

104 c[601:617] <-LRMFit$coefficients [2:18]; c[650] <-LRMFit$

coefficients [1]

105

106 for(l in 1:NN){

107 Yhat [(1+t),l+((hh -1)*NN)]=c[600+l]+c[650]*FactorX [(1+t),l]

108 }

109 }

110

111 if(S==2){

112 for(e in 10:NN){

113 Yhat_euro [104:(R-k),hh]<-Yhat_euro [104:(R-k),hh]+Yhat [104:(R-k

),e+((hh -1)*NN)]

114 }

115 Yhateuro [104:(R-k),hh]<-Yhat_euro [104:(R-k),hh]/8

116 }
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117

118 #################################### Forecast evaluation

119 if(S==1){

120 ti1 =(1+ tst)

121 ti2 =104

122 }

123 if(S==2){

124 ti1 =104

125 ti2=R

126 }

127 if(S==3){

128 ti1 =(1+ tst)

129 ti2=R

130 }

131 pred_error_factor <-matrix(0,dim(mydata)[1],NN)

132 pred_error_rw<-matrix(0,dim(mydata)[1],NN)

133 SPE_SPEAdj <-matrix(NA ,dim(mydata)[1],NN)

134 for(o in 1:NN){

135 mydatape [1:tst ,o]<-as.matrix(mydata [1:tst ,o])-mean(as.matrix(

mydata [1:tst ,o]))

136 for(t in tst:tnd){

137 C<-as.matrix(mydata [1:t,o])-mean(as.matrix(mydata [1:t,o]))

138 mydatape[t,o]<-C[t]

139 }

140

141 if(S==2 && o>9){

142 pred_error_factor[ti1:ti2 ,o]<-(Lag(mydatape[ti1:ti2 ,o],shift =

-k)-mydatape[ti1:ti2 ,o])-Yhateuro[ti1:ti2 ,hh]

143 }else{

144 pred_error_factor[ti1:ti2 ,o]<-(Lag(mydatape[ti1:ti2 ,o],shift =

-k)-mydatape[ti1:ti2 ,o])-Yhat[ti1:ti2 ,o+((hh -1)*NN)]

145 }

146 pred_error_rw[ti1:ti2 ,o]<-Lag(mydatape[ti1:ti2 ,o],shift = -k)-

mydatape[ti1:ti2 ,o]

147

148 pred_error_factor_all[,(((hh -1)*NN)+1):(hh*NN)]<-pred_error_

factor

149 pred_error_rw_all[,(((hh -1)*NN)+1):(hh*NN)]<-pred_error_rw

150

151 SPE_Factor <-pred_error_factor[,o]*pred_error_factor[,o]

152 SPE_rw<-pred_error_rw[,o]*pred_error_rw[,o]

153

154 if(S==2 && o>9){

155 SPE_SPEAdj[ti1:ti2 ,o]<-(SPE_rw[ti1:ti2]-SPE_Factor[ti1:ti2])
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156 +Lag(Yhateuro[ti1:ti2 ,hh],shift = -k)*Lag(Yhateuro[ti1:ti2 ,hh

],shift = -k)

157 }else{

158 SPE_SPEAdj[ti1:ti2 ,o]<-(SPE_rw[ti1:ti2]-SPE_Factor[ti1:ti2])

159 +Lag(Yhat[ti1:ti2 ,o+((hh -1)*NN)],shift = -k)*Lag(Yhat[ti1:ti2 ,

o+((hh -1)*NN)],shift = -k)

160 }

161

162 MSPEadj[o]<-mean(SPE_SPEAdj[,o],na.rm=TRUE)

163

164 TheilU_CW_statistic[o,hh]<-(mean(SPE_Factor ,na.rm=TRUE)/mean(SPE

_rw ,na.rm=TRUE))^0.5

165 }

166 #Univariate case: Standard errors and CW stats

167 if(S==3){

168 P1=P-k+1

169 P2=P-(2*(k-1))

170 t_1=1+ tst

171 t_2=R-k+1

172 }

173 if(S==1){

174 P1=P-k+1

175 P2=P1

176 t_1=1+ tst

177 t_2=105

178 }

179 if(S==2){

180 P1=P-k+1

181 P2=P-(2*(k-1))

182 t_1=105

183 t_2=R-k+1

184 }

185

186 Yhatrec <-matrix(0,dim(mydata)[1],NN)

187 dist_adj <-matrix(NA ,dim(mydata)[1],NN)

188 mean_dist <-c(rep(0,NN))

189 sq_dist_adj <-c(rep(0,NN))

190 CW_statistic <-c(rep(0,NN))

191 mean_dist_cent <-matrix(NA ,dim(mydata)[1],NN)

192

193 for(jj in 1:NN){

194 for(g in 1:k){

195 if(S==2 && jj >9){

196 Yhatrec [(t_1:t_2),jj]<-Yhatrec [(t_1:t_2),jj]+Lag(Yhateuro[t_

1:t_2,hh],shift = g)
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197 }else{

198 Yhatrec [(t_1:t_2),jj]<-Yhatrec [(t_1:t_2),jj]+Lag(Yhat[(t_1:t

_2),jj+((hh -1)*NN)],shift = g)

199 }

200 }

201 dist_adj[(t_1:t_2),jj]<-2*(mydatape [(t_1:t_2),jj]-Lag(mydatape [(

t_1:t_2),jj],shift = 1))*Yhatrec [(t_1:t_2),jj]

202 mean_dist[jj]<-mean(dist_adj[,jj],na.rm=TRUE)

203 mean_dist_cent[(t_1:t_2),jj]<-dist_adj[(t_1:t_2),jj]-mean_dist[

jj]

204 sq_dist_adj[jj]<-(1/P2)*sum(mean_dist_cent[,jj]^2,na.rm = TRUE)

205

206 #Univariate Clark -West stats

207 CW_statistic[jj]<-sqrt(P1)*(MSPEadj[jj]/sqrt(sq_dist_adj[jj]))

208 TheilU_CW_statistic[jj ,hh+lh]=CW_statistic[jj]

209 }

210 }
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