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Chapter 1.

 INTRODUCTION

1.1  BACKGROUND FOR STUDY

The~6bjectivé  of growth and yieldyétudie$' is‘to
develop models to predict product volumes which may be
expected  for = given sets ~ of stand characteristics.
Managemeﬁt alfernétives.may then be devised‘tO'effectithose
characteristics which are-expeCted to'resultv in favorable
Vo#umé>producti°n. Whole;stand-models> ha&e been de#eloped
‘whiéh predict some specifiéd aggregaﬁe Voluméfdf’a stand for
a given set of stand characteristics. However, these models
are. not.suﬁficient  for many situéﬁions; Diffefeht size
standardS' for‘ diffé;ent‘ products: - often nécessitate the
prediction~ofvvolume5' of given portionS‘of’a‘ sfan&,v‘ormpf“
sets;of"trees of specified'sizes. “To meet_-these»heéds)
:models  have beeﬁ developed to predict  either the siﬁe
(diameter and/or'height), distribﬁtién withiﬁ a stand or the
sizes*of‘ individual trees in the stand for given ]séts o£>
standvchéracteristics,  Logically, the gréwth componénts-in'
‘these models should mimic the'unaerlying growth process as
- closely as possibleﬂ Additionally it'ié‘sometimes desirable~
to‘iﬁclude a stochastic eiement in growth'ﬁodels. 'HOwevef,.

in' nearly'all' growth and yield‘modéls' thegmechaﬁism‘ for



generatihg 'diameter or basal area 'qrpw£h,v;is: éitherv
explicitly | Qi“ implicitly ' eméiriéally, ccnstructed;
Additionally, in;‘vsizé-distributibn’ models,  often no
allowance is made for'aistochastic “element. ’WelL—definéd
v\growth functions, from a biologicalbstandpoint¢ provide,some'
assurance that thé*growth equations “in individual‘trée Size
~or size distribution models have desirabievprOperties. An
j ,individual tree size médél déveloﬁédlalonq these lines,éan
be made stochastic by attaching a random;variéble’,to'the
'predicted Sizeﬁ. as,isfqonventionally’ doné; ‘ThiS‘is valid
because of the large ﬁﬁmber 'of ~ihdividual tree sizes
ordinarilly predicted., :Ih size‘diétributidn.médeis, where
,ohly-é'limited number of ‘size’c;asseS'aregperectedfthrough
time,.this‘method;iSrnot practical and‘an*altérnativermethod‘
of,’introducingf random vvariability'into these_“models'lis‘ 
Vneeded{ |
‘nPfiority'should,be~placed.on modeling diéméter or basal‘
éreé growth because ‘this,is“thevsingle moét-imﬁdrtant'tree'
dimeﬁsioﬁ frbm a utilizétibn‘ étandpoint, HéightécmaY'then;y
be. predic.téd' from diameters using one of the common height-

diameter curves.

1.2  OBJECTIVES

Thé”bbjectives of'this study were:



>

' To develop an.'ihdividual tree growth function,
- based on the Chapman-Richards curve, in which the
parameters of the curve are modelled as functions

of tree and stand ‘variablés,“ and apply the
function to basal area growth of loblelly pine

 trees.

To - compare the: results of the model developed
under objective (1) . to those obtained from a
simpler linear model of basal area growth on an
independent data set. '

- To develop and apply a stochastic model to predict

basal area distributions, = based on  the the
Chapman-Richards curve, in which the parameters of

- the curve are considered to be dependent random

variables.

To study - various height-diameter curves - in order
to determine which is the most appropriate for the

data set utilized, and apply this curve as part of

the model developed in accord with objective (2)-



Chapter 2

REVIEW OF THE LITERATURE

2.1 : INDIViDUAﬁ TREE’MODEﬁS‘

ModeIS‘whichx‘&escfibe.thei'gfowth of individual trees
“have generally been divided inﬁo . two categories: distance-
independent‘and:distancefdepehdent (Munro, 1974). In the] ,
‘-fbfméf; vﬁhe; spatial.'coordinateé‘of thét"treesv.aféAVnét
required, vand,the:measure”of‘ cbhpetition.includeazdoes hot
| ,utilize\inter-tree~dis£ances}f In théSé modéls tree grdwth,
ié\simulated either‘onJan‘indiVidﬁal stem basis, or by size
classes. Thus somé-of these models actually yield only size =
distributioné; while~'others yield individual-tree sizes.
 Sto¢hasti§ ”Vériation, hés' been included iﬁ isize-class
»rdistributionv'models through‘ a Markov  Chain approach (see
 Section 2.6). AzstOChastiC'elément may be~incorporaﬁed,iﬁto,
»quels- which‘ predict  individual tree sizes,. whether
distance-dependent ‘or vdistancewindependent, byi'adding; a
random‘Variabie~td:predicfed,tree.sizes’(see;Section'Z,G).

‘ No,'uniform  structuré» has been  adhered to inf'the 
development df distance-independent. models, so it is
 difficuLt to make any general statements concerning their
icontent (Daniéls and Burkhart, 1975). Examples_of.diStance-
independent models may be found in Goulding (1972), Stage

(1973), Dale {1975), or Bruner and Moser (1973).

"



AlthOughthe-’detéii‘ véries from model,'to, model,
:distance;dépendent models = developed in the ‘past;,have_
followed a,similar overall~structure;vv  In,the$e models,
ihdiyid@al'sﬁémigrowth in height“énd:diamete;‘ is pfedicted 
Via,functions> of site‘quality. and the stem's Véurrent size
and cdmpetitive statué;" The  compétitioﬁ. ‘measure is
generally a function of the stem's size in relation to the
sizes of‘andvdisténces to itsfneiéhbors. ‘Thus~the,épatiél
location of - each stem: is required. v»-Distancéédepehdeni
modeis, generally‘provide, more:,detailed:information about
individuaL  tree growth than distance-independentv models.
However, disﬁanéé—dependent models are also more expensivé.
- to develbp éndi employ - and havé ﬁore | stringent data
:equiremenﬁs than:distancé?independent modéls., ,Examples;of
diétance—dependent:models may be found in Newﬁhém’and Smith
(1964), Bélla (i970), Hatch (1971), Arney,(1972i,;‘ﬁk and
M;onsema (1974), Mitchell (1975), Daniels and Burkhart
(1975);v“ahd Daniels et al. (1979). f Daniels and Burkharti
"(1975)fprbVide a:thorough reﬁiew of”the literature.pertihent

ito distance-dependent models.



2.2 DIAMETER-DISTRIBUTION MODELS

Diametér distribution’modeis:represent'a major class of
gréwth and yieldfmodeiS'for bredictihgtléize'diétributibns.'
These modéls aregbase&“upoh'chéracterizétion‘Of the diameter
distribution present in'a stand at a given point»bin time
with a probability denéity”fﬁnction (pud;fd).' Typiéally; a
p.d.f. is selected and fit to the 'diameter'diStributions,
observed in Saﬁple data, ‘The estimates of thé’parameters~of
the distributionh "are  then régressedv upon éténd-level
variables (e.g. site;index, number of trees perbacregyage).
The -diamefer distribution may thénv'be predicted fo:‘ any
givenuset of‘stand‘chéracteristics. kHei§ht-diamefer‘curves‘
are,ordinarily',used to estimateAthe_;méanwtdtal height of
treéé' of givén diameter <classes _gréwinq~ under given
COnditions; With éstimétéé of ﬁhé._toial number Qf~tree§
‘present, the relative frequency of each diameter class
(obtained fromithe predicﬁéd’p.d;f.), and mean fotal height
per'diameter'Class,‘ it is possible té estimate volume:fbr'
any portion of;thé stand. DiameterLdistribution modelsvdo
not,ordiharily~inclﬁde‘a stochastic component.

' These models differ chiefly in the p.d.f. used. When
the;method was first developed, the beta distribution was
prédominantly1 usédv (Clutter and Bennett, 1965). More

‘recently the Weibull distribution has been used (Bailey and



v’Dell; 1973). . Some ;imited. use has been made‘ bf>vthe
Jchnson's S -distribution.( Hafiey and Schreuder, 1977).
The primary:‘difficulty 'in the implementatioh of théseg~
models,?'reéaﬁdless of\'p.d-f;; ‘hasrbeen,prédiction. of the
pérametéfs;of.theedensity funcﬁion. Thé\prediction models
employed have generally fit the»obServed data poofly; To
circumvent this problem a;'new:’technique of prédicﬁing
vquantitiéé:'whiéh afe' functions' of ' the momeﬁté.bof' the
distributions (e.g. "quadratiC"mean ‘diameter) and then
solving\béck;fbr the pérameters has récently‘been'de§élopedb
(Matney and Sullivan, in‘pfess; - Hyink, in éress)-~This
approach is sfill too new\for any“géneral conclusioné-to be-
drawn,as«to'its utility.

The major diameter distribution models developed for

‘loblolly pine (Rinus taéda, L.) thus far may be found in.

Lenhart and Clutter (1971),Lenhart (1972), Smalley and
Bailey,(1974), »Burkhaft and Strub (1974), and(Eeduccia et

al. (1979).

2.3'. DIAMEIER‘AND BASALJAREA‘GROWTH

To date, individual tree diameter or basal area growth
fundtions  have»geherally’,been empirical in nature; One
‘vcoﬁmon‘appfoach‘(DanielS’andBurkhart; 1975 or Stage, i973) 

has been =~ to derive an empirical regression equation



describing diameter gtowth ‘of opéh-érdwn trees. This
quantity is then reduced‘ aécordinqv tc an index of
competition. -This‘methodology is‘based oh the prémise_that_"
for*ézgiven,age‘ahd,Sitefquality; maximum:diameteriincremeﬁt
is obtained in the absence of vcompetitidn. It is a long
éstabliéhed‘fact that competition.invthe form of increased
'density'fesults in reduced di&meter*increment. - In fact,
,thié is'the'basis_for the common practice of thinninga |
Others (Lohrey, 1974; Jaékson and Ure, 1964; Alemdag,
19787 &Newnham= and Mucha, 1971) have developed émpirical
liﬁear~modelsvto predict.increment directly, usinqka.measure
of.compeﬁition aS‘aﬁ indépendent:variablé, ' Incrementfhasf
_vaISO'been,predicted=directly'&ia.nonlinear équations (Alder,
1979; Hahn and Leary, 1979; Daniels, 1981). Still others
"rhave:developed'ilinear regressidns te prédictu_the logarithmz:
of’*diamefef increment, adjusted : for"climatin factors
(Errikson, 1978). | |
| Baileyl,(1980) - proposed 'another iypg ,of‘_diameﬁer
jindrement-hodelf He derived the incremeﬁt‘equationgimpliéd- 
by »uée ’of" growth and yield modeis based'roh vdiametér‘
distributioﬁs. As previously discussed, in these models the
current diameteﬁ distribution is characterized' by ab
probabiiity‘density function (p.d.f.), e.g., the beta'dr

Weibull,' and} then‘the~parameters of the distribution are



projected through time.  Thus, once an'initial p.d.£f. is

,‘selected, the diameter‘distribution~is f0rced,t6 conform to

‘that p.dem for the duration of the pfojection.' ~ The
maintainance of a given p.d.f. impiies a:transfofmation of
diameters through timé,\" and Bailey identified  the

transformations and resulting: implicit growth - functions
which correspond to most of the'commonly used p.d.f.'s. For
'example,»_ Bailey showed that wuse of the Weibull p.d.f.

implies a~grqwth;fun¢tion of the form

size

t time .

e = base of natural logarithms
"b, k'= arbitrary constants ‘
A = initial size (at time zero).

,ThiSiis;‘azspecifiC';caSe of a;generalized ‘growth«function
presentéd by«Prodan,(1968, pp. 370); howeverrvProdah~did;notv
inveStigate»the:propertieS»of this curve. The growth réﬁe
implied by this model is inen by |

E ‘ ‘ %‘? = Ae,»b?'kbkttk‘l = Wbl‘ctkfl ‘
Obviously,ilb7and‘ k must be of the same sign in order fof
incremeﬁt to Dbe positive. If b and k are negétive, the
curvé~decreases from time zero, reaches a minimum, and~then'
'incréaéesvaﬁdhis’asymptotic at Ay, the initial size. This’

is obviously undesirable from a biological point' of view.
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Bailey applied the model and computed estimates for b and k
‘which.'were> both positive, a condition1VWhich’ implies

’uninterfupted~exponential growth.

2.4 HEIGHT-DIAMETER/EASAL.AREAFCURVES
| Foresters have long“knownpthat thére.is ,corréiation
betweenidiameter (qr bésalraréa) Land height of individuél
stems_in, eveh;éged sfands. »Thué’ it is cbmmon lto predict
.meah, toﬁél -tfeeV height .from‘.>diametef' or basal afea,
vNumerouS'Cuivevforms have:beeh‘reported, and the ﬁostchmmon,
arevpresentedQélong with their apparent authors in Table 1.
- The 6rigin‘of. model 2 is uncleér; | Models»6’ and 7 afe :
médifications‘of modeLS«.S-éna 4‘respectiVely, designed to
' take into account that a tree has no d. b h. (measured at 4;5
feet above ground) until it reaches 4.5 feet in height.

. Curtis (1967} conducted a.comprehens1ve study oivthé
performance of many=different.'height—diametef/basal  area'

curves in second-growth Douglas-fir (Pseudotsuga menziesii,

‘(Mirbh)‘ Franco). Heiranked'the vérious models based on
Furnival's index of”fit (Furni§al, 1961) and fouﬁd'thatvwith"
the exception of models 5 and 6, all of the models presented
in.Table 1 pérformed well. Based primarily upon -eaSe.of
_appliéaticnﬁ hé»rechmended. the use  of models:‘3rand'_4.

However, he cautioned against the use of model 3 with data
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- Table 1. Common height-diameter (basal area) curves.

,_‘Curve%, ‘ U ~ Author(s)
I.E=a+bD +~ch2 - Trorey 1932
' o v 2
2. d=a+b (/D) + ¢ (L/D%) —mmm
3.8 =2 +—b'log(D)  Henricksen 1950
4. log(H) = a + b (1/D) | Michailoff 1943
5. log(H) = a + b log(d) Stoffels and Vam Soest 1953
6. log(H~4.5) = a + b log(D)  -——-—
7. log(#-4.5) = a +b (1/D) ——
SETIY -aD  ra A
8. H=4.5+0 (1 -e ) Meyer 1940
% H = total tree height.
D = dbh. : , o
e-= base of natural logarithms.

a, b, ¢ = constants to be estimated which vary from
: curve to curve. ‘

" h = asymptote of (H-4.5).
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'from young ages,>since§it might predict negative»heights'fof'
small basal aréas,

7 Ek (1973) étudiedithe'perfbrmancé,of moéﬁ»of’thevcomm¢ﬂ<~
heighﬁ-diameter/basal area curves in  cases where‘the,éample
éizés;Wefé smaii (ire., less than or equal to iO). From a
‘pOpulatidn‘of 600 trées, gandom*énd syétematic samples were
drawn of size 3, 5, andﬁio. Eor'eéch sample »size'and
selection procedure, ‘coefficiénts for‘ each-dﬁi the height
eqﬁatioﬁs were ;omputéd. bUsingt these'coefficienté, total
: héight:wastredicted'for;eVery;trée in the population. The
height,modelé were then evaluated on the basis - of bigssand-
éreciéion. _Ek concluded;that.ﬁodelS'a aﬁdué’were:émonq-thé
bettér height pfedictorsr'fof smali sample sizes7 but that.
mddeig3 had a tendency to predict negative:heighﬁs,fbrrsmall'
bstems; Models 5 and 6zWere'th included in‘EkTs;studyﬂ

Model 5 is based on the allometric relationship
|  m=ap®

and has been used by Stage (1975), Stout (1?73), and
‘ Greenhill,‘(lBSI) (as reported by' Stout . (19873)). . The
| allcmetricz felationship between height and .diameter waé
studied by Stage (1975) aﬁd Pienaar and Turnbull (1973) and
"determineakto  beysatisfactory for Western U.S. céniferous.‘

: specieS“;andiorway spruce (Picea abies, (L.) Karst.),

respectively. Stout (1973) reComménded»that this‘modelvbe
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modified tq takefinfo,account thét” therorigin should,be.4L5 
feet in height if‘used*with data frch‘yoﬁng trees.

‘Model 4*hés.béén:widely applied]in.stﬁdies of southern
'pinesn(Burkhart'and Strub, 1974; Matney‘and.Sullivan, in
pféss; Daniels, 1981). Lenhart (1972), Lenhart and Clutter
(1971), Smalley and Bailey (1974) and Feduccia et al. (1979)
have all used modifications of this model. , The reasons for
this model's popularityvappear to be four-fold: first, it is
'easy’to~'apply; second, it . yields an upper asymptote for
height; third, it cannot predict negative heights; and
fourth, it has performed adequately in the aforementioned
studies. Note that regarding the first reason, all the
models in,Table~l.are:eaéy to apply. Regarding the second,
if diameter and height are predicted together by a system of
equations and if the diameter ﬁodel is asymptotic over -time,
then implicitly all the height models in Table 1  are
asymptotic over time.

Model 8, presented by Meyer(1940) is essentially the
_monomoiecular growth function, with the dependent variable
being height above 4.5 feet and the independent wvariable

being diameter.

2.5 CHAPMAN-RICHARDS GENERALIZED GROWTH FUNCTION
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 As:stated- in the introduction, the cdmponent,growth
functions.in growth and yield models should mimiC‘bioldgical
growth as‘élosely-as‘pdésible. This may be accomplished by
’uSing~ a biélogical growth function as a basey‘ and
constructing the‘tree  growth functiOn‘upon this base. Ih
the last century or so, many mathematical functions have
been developed and employed for the purpoée of describing 
the growth of an organism. Richards (1969) performed
extehsive analyses of most of the common functions. Prodan
(1968), Turnbull (1963) and Grosenbaugh (1965) have studied

many of the same functions as they relate to forestry

applications. These functions differ primarily in  the
shapes they may assume. Several of the more common
functions' are shown in Figure 1 and Table 2. The . two

extreme cases are the exponential and the monomolecular.
The exponential function has no ihflection point or upper
asymptote, and implies a growth rate which is proportional
to current size and a linearly increasing function through
time. The monomolecular function also lacks an inflection
point. In  this function, the growth rate is. a constant .
proportion of growth yet to be made, i.e., the difference
between the asymptote and current size, The growth rate is
thus a linearly decreasing function through time. The

remaihing ‘growth curves all fall somewhere between the
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exponential and:monomoleculat forms.  Some functions, such
' as the logistic or Backman,'havekan,inflectioﬁ.point at siie
A/é; where'AiiS»thefupﬁerrasymptotéy and are symmetricjabout
this-pqint'(bedan, 196é; Richérdé,;1959)- Other functiong,
such as the Gompértz'(Richards,‘ 1§59) §r:»Von.Bertalahffyu
(Von Bertalanffy, 1957),= havé'”ihflection points below the
' boint_A/ZQandvare asymmetric. '
Von Bertaianffy’s growth‘fungtion was based wupon the
allométric rélati@nsﬁip:
S =by™
where S represents surface area, V is volume or weight, and
‘b‘and:m are constants. Since the cube root of volume has a
‘iinear dimension, ‘thé-sqﬁare-of the cube root has the same
diménsionvas5surfa¢e:area.' Thus m in the above relationship
should havé~ a value of 2/3. ‘ Von Bertalanffy (1957)
hypothesized‘vthat anabolism (constructivekmetaboliSm) jis
‘ proportibnal to surfacé area; whilélcatabolism (destru@tive
:metaboliSm): is proportional to volume. Pofential volume
" growth 'ra£é7was 'thén defined as the difference between
 anébblism aﬁd“catabolism, and was expressed as: |
Potential Volume Growth Rate = aV®- bV.

Studies of various aquatic and terrestrial organisms led‘Von
Bértaianffy'té conclude:that volume growth of many organisms

_conformed t01thi3'equation, while for others the value of m
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Figure 1. Several common mathematical models for describing biological
growth (A = asymptote; arrow marks location of inflection
point. - Adapted from Turmbull, 1963).
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Véried'betweenJZ/S and 1. Whéﬁ;m=2/3, the cumulative growth
curve isbasymmetrical and sigmoid, with the inflection point
 oc¢ur:inqﬁatfabout i/3'§£ iihal;volumé:(see;Eigure l). When
m=1, 'the,‘éroﬁth‘rate is .a conéfaﬁt’proportigﬁ/ of Curreﬁt
size aﬁqurqwthiis’exponential. |
Chapman (1961) aﬁdvRichardsv (1959,1969) both studied
the Von-Ber£alanffy curve and suggested’itr be generalized
‘thfoﬁgh[reparameterization to the fOlldwing‘form;':
W= AQ - pe <Y -m)]
if m< 1, b> 0
m> I;bk’o

AWhere W isysize, Ais the upper asymptote, t is time, e is

the base of the natural logarithms, and b, k, and m are
constant‘parameters.v - Richards. (1959) showed.that,in this
form m"vwasvreally a shape parameter. By allowing m to

assumé énYypositive value, Richards showed that  the curve
was’ablé to‘take-on°a:great many forms. In particﬁlar,vwhenﬂ
’m=0, _the.curVelréduces~to thé monomolecularbfunétion; wheh'
e m=2/3,;the~V§n Bertalanffy; wﬁen ﬁ=l, the Gompertz‘(actually
wheh.m=1_ thezdifferential, equation has no solution;’ but
Richards (1959) has;shown that the solution approaéhes the
Gompertz curve as m approaches.l); when m=2, théalogistic;
ﬁgénd aé ﬁ~lappoéches infinity,’ the exponential. Thus- as m

"~ increases, the inflection point moves - outward from the
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origin (m=0) to infinity (m infinite). >The remaining

_,parametersxof the'curVejare A; k, and b. A isithe/asympfote
or.fiﬁaIVSiZe. , Pafaﬁéter'b reflects the chdice-of‘oriqin
_andiié_biologically'meaninéless (Riéhards,'1959).» The-fihal»
paraméter, k,vis a rate parameter. ‘It méasufes the‘raté of
ihérease'of'"some quantity;‘ but what this quantity is is
conditional:upon. the value of m (Richards, 1959). This
generaliZédﬁcurve has bécéme-knan. by various names, = among
them the Chépman-Richards’(C;R) ~curve, thegRiChards;curve;,
and. the géneralized[Vbn Bertalanffy curvé. Following the
publicationiof the C-R curve, few new growth curves have
been developed. |

, The C-R model has4‘beén:appliediiin,studieS’ of forést‘
,Stand’development'by Turnbuli (1963), Pienaar (1965), Moser
:(1967}, Pienaar and Turnbull (1973) andv'Rose'aﬁd Chen
(1977), Pienaar and Turnbull (1973) 'also,demonétrated-the
adequacy of]'tﬁe C-R curve for deséribing'individual- tree
growth in volume, basal area, and height,for’Nngay spruce -
trees.jgroﬁﬁ in Austria. The data used by‘Pienaar _énd
Turnbullm(i973) vwere-taken ffcm Assman (1970); bwhc took it
from-Guttenburg (1915). ‘Neither Assman (1970). nor*Pienéar
and Turnbullv(l973) describe the conditions of the stands in
ﬁhich thevstems were grown. waevery since-GuttménfS*(l915)

study included stems over 100 years of age, based upon the
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_silvics»df'the species’and‘thevhisfory‘of Eufopean foféstry,‘.
it can 'be,assumed the stands were;naturél and even-aged.
[Finéily;'_the; C-R curve has béen.;uSéd,to describé height
'growih in'connection with sitekindex studie; - (Beck, 1971;
Carméan, 1972; Graney and Burkhért, >1973; Burkhart and -

Tennent, 1977).

2.6 STOCHASTIC GROWTH EUNCTIONS

It hés long been recognized that a detérministic growth
methodology is not completely appropriate for an organism
situated in a dynamic’ environment. Forest scientists have
%attempted' to model ﬁnaccounted. for variability oy
incorporating‘ba- random element into growth - predictions.
Three different methods have been  employed to  accomplish
this, and at least one other, as yet untried, method éxists.

The conventicnal method of generating a random growth
inérement or random cumulative size (depending on whether
the investigator uses a differential or integral equation)
in modelS' which predict individual‘ tree sizes has. been to
develqp an equation to prédict the mean growth of ‘an
individual stem possessing a given set of characteristiés.
A normally distributed random deviate is then added to the
predicted quantity. The variance of the»random component is

taken to be equal to the Mean Square Error (MSE) resulting



21

from the.fittiné' of théf‘growthﬁfuctidn' to obserVedv data.
(Daniels and Burkhart, 1975). This approach'hasvgenerally
been féﬁhd to perform“satisfactorily,» andvis ih agreemént
with ;o:dinarY’regféssidh theory}: ‘In;jthis.fthebry’it is
uéually’ aéSumed4 that  the cohditional' p.d.f.  of the
deéendent variable is normal, that‘the»conditional‘va;iénCe'
is homogeneous and well estimated by the MSE, and that the
‘mddel is«correct](thuS'fhe random deviatefadded‘to~predicted
bgrowth has.meanﬁzeré).

Another ,hethod' fbr incorporating ' sto;haétic.
Variability»into growth.predictionS“ hassbeen'utiiizationvof'

',Markoijhain”theory'(Buongiorno and. Michie, _19807 - Peden et

o al., 1973; Bruner and Moser, 1973). .'Thiskapproach has been
applied 'exclusivelyr in distance—independent models
describing'growth.inYUnevenéaged sﬁands. In general, the

probability‘of‘ é.tree= in;the i-th state 'kdiaméter‘class)b
} moVing'ﬁp O or more states, dying, being harvested, or
achieving some ‘othér'specified conditicn du;ing‘ agspeciﬁed '
time‘inte:val‘is estimated from énAéxistiﬁqfdata set. These
’ probabiiities arev’ﬁhen applied across an exiStiné diameter .
’distribution in the form of a transition matrix," thﬁs
determining the predicted distribution at the end of the
interval. Brunef “and Moser (1973)‘ prcvide~ anvexcellent 

description of the mechanics of the method. This approach
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 seems to work Wéll forﬁshort,ferm pfédictions, but as the
iéngth«ofv thé time:vinterval is increased]thé accuracy of
ﬁhisrmethod.déciinés (Bruner and Moser, 1973). Two crucial
_assumptionsqare'routinely méde.in thisrapproach,'tOnejis the
statibnarity' assumption.x'which' réquires ~ the 'tranéitioﬁ
probabilities: to be static. 'Théf other »ié* the Markowv
assumption.which._reQuires‘tHattthef.systeﬁ have no meﬁory;
i.é-,i‘futﬁre:development depends oﬁly on thévpresent state
“of ,the} system. Both of theée ‘assumpticns have been',
challenged.on‘biclogicél grounds (Bruner ahd Mosef, 1973).
The third and most,recent method‘of’ stoéhastic growth
predicticn ‘has been7,the~uSé of stochastic differential
equationsu’(Gafcfé,’.‘1979)-  A stochastic différential
= equéfion isfbasically anvordinary differential,equation*with
a‘random‘component addedadn, The solution to a stochastic
differentiél équation-is'fnofia point estiﬁate~ but rather a
distribution. In order to_make-the~solution,maﬁhématically
tractable, one*mustvordinafily make two assumptions. Eitst :
ohefmust'aésume that the basic undéflying‘ mddél is linear.
Secénd, one Qrdinafily assumes,that,the randbm'component is
a‘Weiner pr6cess. Thevrelevant property of this proceés is
thattsﬁcéesive;increments are éssumedf to be independent and
‘ngrmallyv distibuted-(Hoel étral., 1972),' | In‘a"growth

context, the ﬁnderlYing model is generally believed to be
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noaninearfrand SuccéssiVe'increments are.kn0wn‘t§ be highly
. cérfelaﬁed. v ’Furtherﬁére, sincé¢ _increments éannot be
1néqative} théyv¢annot be;truly nbrmally disfributed;

|  ’:Gér¢faf (1979)»> adopted the C-R growth curve to
stdchasticallYm‘model' ﬁeiqht;-developﬁeﬁt. Hé' made ~a
transformation.tovmake~the~equati0n linear, and _he accepted
‘the Weiner process. With this methodology he déveloped site

index curves for radiata pine ‘(ggnusvradiata) D.Don) that

'compéred }fa&orably-with> those déveloped by Bﬁrkhartv and
Tenﬂent (1977). vawevér; Bﬁrkhart and Tennent used a much
simpler‘methodology. |

“ A foﬁrth'methodfbf'stochastic‘growth prediction exists,
aithough'iﬁ'has not yet beén,attempted in forestry, In this
vmetth.the parémeters of‘the~‘growth curve are considered~to‘
be random“variablesu In the case of linear iegression, a 
‘Sizeable< gquantity  of  literature exists on estimating
‘stochastic‘pa;ameterS‘(Rao, 1965). ‘These methods generally
assuMe a: known error  structure. vUnfortunately,-inithércase,
‘of‘.thewgrqwth‘ of individual organisms, the models> are
generally' noniinear and ﬁhe error étructure is générally
unknown. " Krause et al. (1967) vutilize&-a»threevparameter=
’logistig ‘growth function in a study on vﬁhe- growth‘ of
chickens, They,assumed'the parameters to beustbchastic and

independent. They were then able to solve for the»joihtr"
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distributidn‘of ﬁhé parameteré.'_ HoweVer; Karish (1973);héé

éhown"thatvqﬁheh the’vparémeters  gf a ndnlinear gr§wth
function are[estimated~ by nonlinear least squares, 'a;high
 degree of corrélatidn‘vamoné_the estimates ’isﬁ generélly
found. v»Thus the"iﬁdependénce aSsumption,of.Krause et al.
(19867) is'suspect. Little other work along:théée lines has

been reported (Goldstein, 1979).



‘Chapter 3

DATA

Data vuéed »'in thisv study came from“' £he. Muﬁual
Competitionv‘Study at ‘the  North Louisiana Hill Eafm
Experiment Station, Homer, Louisiana. | The entiré‘tract on
'whichfthe’experimeﬁt is located is classified as site index
68,> basej age*25 yéars ‘for loblolly'pinéa ‘HoweVer; the
height data_inaicate- that site quality is not quite so
uniform. - The soils - are predominantly fine'éandy. loams. -
Prior to implémentation 6f’ther experiment_the.area. was an
abandohed crop field. ‘Before piahting) the Vegétation‘on}
the area was cut‘énd'the~stumps bufned.

iThe,area was planted,withv1ob1oilykpine'in»6'x‘sfoot'v
~ spacing in Febfuary, 1958. = Twenty 0.25-acre plots'weré '
'eétablished énd.ségregated:intb' four blocks or replications
based on height' in 1962. ,HOWever? | né significantb
diffefences’in mean height could be~détected‘aﬁong ﬁhe foufv
replications.  In 1962, four pl@ts (one  from each
réplication) were thinned to 1000 TPA (trees per acre)} The
Vremainingtl6 plots were thinned to 600 TPA’in the same year.
When a:.I inch;difference in mean'annual'diametervgrthh.wasi
defecfedﬁbetween; the plots thinned to 1000 TPA an& those

thinned to 600 TPA, 12 (four on each replication) plots were

25
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thinned to 300 TPA. the'samé procedure-waS'folloWed'for the -

treatments of 200 and 100 TPA. - The process was 5ompleted in

1965. Hereafter, the plbtsuwill’be referred to by a two
diéit number-.»'v.Thé first number will idéntify the B
réplication‘and théasécond- the treatment. _The treatment.
code is: | | |

1. 1000 TPA

2. 600 TPA

3. 300 TPA

4. ZOO‘fPA

5. 100 TPA.

‘vThus,-» for example, plot.23' is _the plot on the sécond 
repiicatidnuwhich,WAs:thinhed,to-SOO’TPAQ |
| The thinnings were combinaﬁion\ -selectien—spacing
thinnings, ,designed‘to leéve_high,qualityrresidﬁal’étems in
as iunifOrm a spacing pattern as possible. It“may be
eXpected»‘thaﬁj.this ‘resulted in higher quality‘ résidual
”Stands-at the«lowervdensitiés than.ét the higher densities{
This is.gv»cdnfounding factor ~which should be taken into-
vconsidération whén comparing,growth responses between plots
thinned to differént residual densities.

| Measurements were7made in nine years: 1962, 1963,_1964;
_1965; 1965, 1967, 1970, 1977, and 1978. Whenever a plot’wés

(measured,l the diameter of every tree on the plotk was



27

f§¢orded vtO' the nearest .01 inch. Exceptions to the
méASuremgptt73chedule,were- as follows: Plot ll:was~ not
measufedviﬁ 1964:pr 1978, 'Plots '21; ‘31, ahd 41'QereQnot
"measﬁfed in’}1964@ ‘Plots 15, 32;» 43; ~.and 44 were not
Vmeaéuredlin 1978. >'Thus, although‘thev maximum age  from
planting“in the data set is 21vyearé, the méximum agé—at
which all plots were,measured_is 20'years. Heights‘of'every
tree on each plot wefé measuredv to the nearest .1 foot in
~1962 and’l963, Heights‘were;alsc measuréd-for‘evefy’tree in
1978 if the plot was measured ﬁhat‘Year, for_ever?'treevon
plotéfthinned -to'300 or fewer TPA in 1977, and for every
tree-on\plots thinned to 100 TPA'each,year-exceptv1964?(ahd
1978 fcr'plét.iS); Whenever a plot was measured and not all
heights'were'recorded,. a‘sample of trees was measured for
heights. The.Sampleéiwere subjectively selected so as to be
representative of diameter distribution  on the §iot. ‘No
well—defined,sampling‘pfocedure:was followed. |
"Finally,"the' spatial coordinates ‘of'every 'tree;iéft
after éompletion of the thinning tfeatm§n£3‘were'recorded in
1977 so bit, is possible to construct individﬁal .treé
competitioﬁ indices based on inter-tree . distances and

relative heights.



~ Chapter 4

. METHODS

.4Q1.. HEIGHI-biAMETER/BASAL'AREA CURVES
"l ,Asjmentioned in‘the«Literature% Review there arefmany’
published functiohs‘rrelating total height of an individual
~ stem to its diametervqr\basal‘area; Most of them seem to
, perforﬁ fairly well (Curtis, 1967), ‘and thus there does ﬁot
>appear to be a need to search for a new, probably m§ré
complex function.  It.appeafs‘ that}time« wduld be' bettef
spent identifying which of the existing models 1is the most
appropriate7f6r a~§iveﬁ data_sét. Consequently, five of the
more,common; height—diameter/basal area curvés wére studied
to defermiﬁe which-performed‘ best on thegHill Farm data.
‘The.*beSt’  model was then dincorporated into the Parameter
,DistribUtién model (see next section).
’The five models selected for comparison were:
1. H=a + b log(Ba) | |

2. log(H) = a + b log(BA)

3. log(H-4.5) = a + b log(BA)

4. log(H) = a + b (1/D)
5. a + b (1/D) .
4 where;Ht is total height, D is diameter,af' breast height

log(H-4.5)

1}

(d.b.h,)L’BA.is basél érea, a and b are constants which vary

from model tovmodel, and the logarithms are to base e.

28
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| ':Models 1 énd;4gare those sﬁégested,for\use~vby Curtis

'(1967)"FWhereas 2* is.the allbmetrié'model' usedvby: Stagé
(1975) and Stout (1973). Médels 3 ahd:S»are‘modificationS'
of 2 and 4 designedJ to take into account the fact thatb
: indi?idual_trees have’no'd,b.h; "or basal area untiirthef
réach,4.5vfeé€.in height. |

The models were compared on the first three
replicationS‘wifhin the data‘set, and the fourth replication
was resérved_for ~applying the héight modelsv'within  the
Parameter Distribution modeig . On.‘ ther'firstA- three .
replications, “each model was fit by ordinary least,squarés
to all the‘height-diameter/basal area pairs on each'plotiat
.each,measurement. This resulted in a total of 105»plot-aQe
_combinations;_ For each combinétion the five models wére
ranked in termSAOf"squa:ed multiple correlation coefficient~
- (R2%), PRESS,‘and SUMABS.‘bVPRESS,‘ an écronym forvpfediction
'sum\of squarés, givés an'indicationvof a model's predictivé
ability. = It is calculated by removing one  of the{'n-
obéér&ations at a timé‘from the data set»and‘calculating’the
reé?ession fcoeffiqients based on the (n-1) rémaininq
observatidns. Values of the independeﬁt variables er the
rremoved-”qbserVation, are inserted into the ‘calculated
regression and an eétimate‘of the dependent variablev is'
computedf"Differences:between.thévestimate andﬁthe:observed

value are then squared and summed over n, i.e.,
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PRESS = (Vi -?ij)z
where: Yi]= the-i;theebservation on the dependent variable
in = the estimator of E(Yi) excluding the i-th
| observatioﬁ | 7

n = the number of observatlons in the data set.
‘The model(s) whlch yleld the lowest PRESS value(s) should be
those-whiChv_would predict the best on an independent data
Set.'v SUMABS  is defined here as the sum of . the absolute
"PRESS residuals, i.ew., r | | |

- SUMABS= I|Y ;- i

whefe the variables remain as defined above. Thue SUMABS- is
another wuseful predietion oriented tool. SUMABS‘ng not
constrained. to give the same results as PRESS, so both
statistics were used;  For thee models which predict log(H)
or;log(H-4.5)»the:three‘statistics (R%*, PRESS, - aﬁd;SUMABS)»
had to be transformedv‘Since height iS'the“variable» of
interest, not itSrlogarithm. The value of R? wasﬁdetermined
for the log(H) models as follows: | |

{2(1—1 - H)2 / Z‘(HJ;_ - H)?}

where: H; = total height of tree i.
- H = mean total tree height
~ : ” .
H; = anti-log of the predicted value of the dependent

‘vafiable for the ith observatien on  the
independent'variable; i.e.,

A .
Hy = exp( ) where Y= log(H )
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For log(H¥4Q5)rsmodéls R2 bwas -cqmputed in .an‘ analogous
'manner,~‘except:*that 4.5 feet was"added to bthe,predicted
.value-sfter'taking_antivlogs. |

."Theéhethbdfkapplied inlsomputing‘ PRESS,and{"SUMABszor"V
thésiogarithmic models was basicaliy théssame'as ﬁhat»fqrv
computing.Rz, - After the.i-£h  observation was removed frqm]
the data set, - and‘ans‘estimate for the i-th independent
Vvariable computed from the (n-l),remaining‘observations,_thsT
resulfing'value was. cthefted to height and, the difference
betwsenf-it and the actual observed height was computed.
PRESS' was then the sumr'of the squared differencés, aﬁd
SUMABS thé sum of the absolute‘differences.

Once the five models were ranked in terms of”Ré, PRESS;
and.vSﬁMABS for each plotfage' combiﬁation the ranks were
summed over all 105 cqmbinations, and‘_the "best' mbdel
- chosen based on the:summed>ranks§ |

Using a procedure followed‘by_Burkhart.and:Strub‘(1974)7‘
and Matney and‘Sullivan (in,preSS), | surrogate regressions
'were~then,~de£ermined,for the coefficients a and b of thes
Selected mddelf Thése‘surfoqate,vregressiohs involved»oﬁly‘s
stahd-le&el Variables. } The.variablss tested.for‘inclusion

in each regression were:

1. gquadratic mean diameter

2. basal area per acre
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3. 'thinning’treatment
4, 'age $inces£hinning;treatmeﬁt P
5. age sincefplantinéyl |
6. aVérage height of dominanté'andvcodominants
7. -lbg of averaée height,of dominants'énd'codominants
8. number of trees per acre
9. log of number of trees per acre
»?Allﬂ logarithms_wefe to the base e; . Values: of R? were

determined Afor;evéryw poSsible linear combinatidn-of"the
.precedinQ~variables for each dependent variable (a and b).
The modelé which pérformed! best in terms of R? were then
tested using PRESS. Then’after consideratioh‘of'R’, PRESS;14
SUMABS, and the sum“of'theﬁ PRESS residuals,‘(SUMRES),' a:
Surrdgate regression was selected for veach“iof; ﬁhe two
rvariables a and b. These were insérted into thé overall
height model. This was .theh fiﬁ to all the height-
diametér/basal aréa:pairsbon the first three replicatidns at
every measﬁreﬁent time simultaneously, - as the5 surrogates
‘Were~ designed{fto take iﬁto. account changinék stand
‘chéracteristicsu The = final fitted height model WaS’then
'implementéd.‘withinvthe_ Parameter Distribution;model,‘ as

described in the next section.
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2.2 PARAMETER DISTRIBUTION MODEL

| The‘ fourth ‘methbd of stochastic grqwthh-projeqtidh‘
mentioned in the=Literature;Review, Jthat;of ébnsideriné»the
- pérameteré.offthé;érowth CUrve to’bé:random Variables, wésf

~used in _construCtingz. a model to predict . basal area

distributions. This model is called the Parameter
‘Distribution model. Because of its great flexibility, the
C-R_cutve/'waS'adopted*as the basic growth function.  The

following form of the function was used:

-k(t=c), [1/ (1-m) ]

BA = A(L - e @)

where: BA = basal area

A

- asymptotic BA

£f= time -

k, c; m = constant parameters

e =’base of natural logarithms
In this form the curve is conditioned such that BA=O when
t=c. Thus7c,fepresents the time required fof-avseedling‘tb
reachm4;5 feet,in height.‘ A in (1) iS'thé'asymptotic bééal
areé'of'the individual tree.b The,remaininé.tﬁo.parameters,
k and m, are the rate and shape parameters of the C-R curve
respectively;‘

| The purpose of the Parameter Distribution model was to

produce-eétimated,,basal area and:height,-distributions>for
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given sets,‘of“stand‘chafacteristiés, The data was split
intd;a,fitting,set and.a;validation set. The C-R curVe was
- fit to évery.stem in thé ﬁitting,data set} The parameters A
~and ¢ >weretfixed épgriéri, - for reasons ,déscribed below,
leavingffwo'free parameters, k'aﬁd m. For each plot, a
sampling distribution was thenafit‘ to the estimates of k,
‘ énd models developed to predict the parametersr of the
»sampling‘distribution, from stand variables. A model was
then déveldpéd‘to predict m from k and stand variables.
Finally, an existing'survival curve;Wés modified for use in
this model. To»operatev the model,  the number of trees
presént at a given point in time is predicted from the
surVival“ curve. Next the paramete?s of the sampling
distribution,‘for k are predicted. A k value is then
: randoﬁly selected: from this distribution for each stem

predicted to be present«on the basis of the survival curve.

For each k Value,'an m value;is-then predicted. With these
two values, vthe*prediétéd basal area of the tree is then
computed from the'C~R~cufve. - Repeating this process for

each stem predicted to be preseﬁt results in a'predicted;
basal area distribution. Additionally, a height is

predicted for each stem using the fitted height-basal area
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curVe,fresulting in‘a»predicted height distribution.

'4}2,lf‘vSpecifying A and ¢ a priori

In brder to simpiify thesestimation.process;, A and c
ﬁere~fixe&,a priofiv A was fixed because the'data,set uséd
included*éges‘only ‘up to Zl'years,:;and it wéuld have been
difficult to estimate the as?mptotic final basal area. The
- parameter ¢ was fixed ‘becaﬁse the - time required,vfor
individual: stems to reach 4.5 feetviﬁ height on similar
sites (such as those in the Hill Farm data set) should be
essentiallyiconstént} Pienaar and Turnbull (1973) »made a
, similaf assumptipﬁ.

‘The Valué,for,A was ¢hosen by searching the literature
for the largesturecorded basal area for‘a’vloblélly.pine,
Based‘on.the,AmericanSForestryvASsociation’s register of big
~ trees (Pardo, 1973) the largest basal area fér.léblolly:pine
iS'approximateiy'Zl.Q square feet. On the~ asumptibg'that
the asymptotic basal area should be slightly larger than_the
largest recorded,v this figure was increased to 22.3 équare,
féet,(approx; 64 in. d.b.h.). It may be arguedjthat,many
trees‘wdﬁldfnever reach this asymptote, but would die'first.
A counter-argument may be that these stems are killed by
factors exterﬁal to the growth processes of the stems, and

that if“the<'treesk were to 1live forever, they wbuld
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e&éntually ~achieve this asymptbticb size;» At any rate,
fixing A;simplified’theﬂeStimation pfodess considerably.‘
| The~ v&luéfof‘ c wésm chosen by;'randomly,séieétinq' 15
treés froﬁj the'data,set,andijfitting-équation.(l)‘ to thémg
with A fixed, but c, k; and m estimaﬁed from the &ata.EY
nonlinear least squares. The nonlinear ,1east séuares
procedure used at this point and forvthe remainder of this
study was?that‘ of Marquardt. - This procedure, generallyv”
perfbrmsn better than alternative :prbcedures Qhen the
. parameters are‘highly correlatedﬁ(SAS:Inétitutey- 1979), -as
" they genefally are‘in growth'curves\(Karish;‘l973).f |
Eétimates for ¢ varied from .7 to 6.3, with 3 being the
approximateemédian; It Was‘vfelt that 3 years following
planting represented a réaSonable estiméte-for,c; ’andrc»waé

fixed at 3 for the remainder of the study. -

4.2.2 Sensitivity analysis for A

'Since‘the'chdiCe of A was arbitrary, it was the opinion
of the author that the sensitivity of the C;R curve to A
‘should,be investigated.' For this purpose, A was fixed at
18.96 sg. ft. (15% below’22.3), 22.3 sq.’ ft., and 25.65 sq.
ft;(lS%,above-22.3)‘ and k and m were estimated (c=3 yrsf)
for four trees randomly selected from eachv.of"the five

~thinning treatments on‘the third replication. ,'Using thése



:_estimates,:the;basal>aréas of the treés we:e‘computed‘at‘aéé
_ 20 and 50 fof: eacﬁ of’fhevthreeivalués ofv‘A}‘ Thesevsizes
 are‘shown,‘ along;&ith'the~observed _basal area at age 20 in
- Table 3. '»The,vélﬁeS'fpr,‘the threefaSymptotes'are similar,
suggesting thét the curVegis .rélatively'insensitive to- AL
For each value of A, »the-cufve.bseemed to -slightly‘over-
predict'the.‘basalvarea at age ,20 for the high densities
(1000 and 600 TPA). However, in only one case was the over-
prediction-greater'than,10% of  the observed value. It waS"
cohcludéd that 22.3 sg. ft.r wasvan acceptable value fot A,
ahd:thiS’valuerwasvemployed,for the remaihder of the study.
The wvalue of ¢ was considered to be reasonable,
'thérefore no sensitivity analysis was performed;for this

parameter.

4.2.3 Estimation of k and m

The next 'step was to fiﬁ;equation_(l) to individual
trees on ﬁhe, first three replications*of»the déta;set (the
fourth,waé ‘reserved“for validation purposes).  Only trees
Qith at ieast thfee,measurementS‘Were- included. However,
preliminary fittingS~ of equation (1) - revealed a tendency,
especially at the high densities, for m to eiﬁher- be
estimated at,O'or for‘O to be included in the asymptotic 95%

confidence intervals for m. In order to test whether m
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Table 3. Observed basal area at age 20 and predicted basal areas at
" ages 20 and 50 with three different asymptotes for four
 individual loblolly pine trees from each thlnning treatment
on. repllcatlon 3 in the Hill Farm data.

o « Predicted ,
Thinning Observed BA ~ Age 20 ‘ Age 50
treatment (ft2) at asymptote asymptote ‘

(TPA)- age 20 18.96 22.3 25.65 ' 18,96 22.3 . 25.65
1000 0.1650 0.1725 0.1725 0.1725 0.4730 0.4736 0.4740
1000 0.1722 - 0.1850  0.1850 0.1850 0.5071. 0.5078 0.5083"
1000 0.4128 0.4270 0.4271 0.4271 1.1573 1.1609 1.1636 .
1000 0.1051 0.1352° 0.1352 0.1352 0.3714 0.3718 0.3721
600 0.3150 0.3434. 0.3435 0.3436, 0.9343 0.9368 0.9387"
600 - 0.1475 0.1617 0.1617 0.1617 0.4436 0.4442 0.4446
600 C.3234 0.3356 0.3357 0.3357 0.9134 0.9158 0.9176
600 0.3490 0.3858 0.3859 0.3860 1.0476 1.0509 1.0531
300 0.4516 0.4687 0.4688 0.4688 1.2678 1.2722 1.2754
300 0.6480 0.6383 0.6383 0.6383 1.8015 1.8078 1.8124
300 0.4922  0.4854 0.4854 0.4854 1.5284 1.5341 '1.5384
300 0.5454 0.5741 0.5742- 0.5742 1.5451. 1.5516. 1.5564
200 0.4516. = 0.4465 - 0.4465 0.4465 1.4932 1.4994 1.5042
200. - "~ 0.3068 0.3069  0.3069 0.3069 0.8364 0.8382 0.8396
200 0.5786 0.5667 0.5667 0.5666 1.6876 1.6936 1.6980
200 0.7854 0.7762. 0.7761 0.7761 2.6954 2.7178 2.7349
100 1.1946 - 1.1783 1.1781 1.1780 4.1718 4.2288 4.2722

100 1.1309 1.1053  1.1051 1.1049 4.2196 4.2838 4.3332
100 ©1.2767 1.2838 1.2837 1.2836 3.5926 3.6198 3.6398

100 0.7594 0.7725 0.7725 0.7724 2.2180 2.2278 2.2351

* Basal area in square feet.
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might‘be‘set equal to_O) a preliminary fitting was performed.
using all the/stems on replication 3 oniy; The résulﬁs of
this fittingb are,éhown in Téble  4. Since the percent of
cases‘ where 0 was  not included. in. theu-asymptOtic 95%
' confidence intervals for m was léss than ,the‘convenﬁiOnal_
TYpé I error rate of OS for plots 31 and 32, it was decided
to to set m to O for den51t1es 1000 and 600 TPA.  When m is

fixed, equatlon (1) may be transformed to

log[l - (BA/22.3) o

with k  the unknown parameter. Equation (2) is a no-
'intercept‘ linear model and may be fit by ordlnary least
squares. - Thus equatlon (2) was fit to 1nd1v1dual trees on
plots’il, 12, 21, 22, 31, and.32, while equation (1) was-flt,
by nénlinear'least,squares to all the stems oh plots 13, 14;
15, 23,‘24,’25, 33, 34, and 35. As with.equétion.(l), only
trees with at least three measirements weré fit with
equation (2). ’ | |
YA.justifiéation»for>settinghm, the shape paraméter of
the’C-R curve, to O for the denser ‘ploté may be made on
blologlcal grounds As m inCreases; thé position  of the
inflection p01nt moves upward from the' origin (i.e.,‘ no
inflection point) to infinity; When‘m#o, the;growth rate is

maximum at time zero and declines over time. When m>0, the



 Table 4.

Mean estlmated Values and percentage of cases in which zero

‘was not included in a 95% confidence interval for the shape
-~ parameter m of the Chapman-Richards growth curve, by plot
for replication three of the Hill Farm data.

Percent Mean
Plot n cases m '
31 247 4.88 0.0151
32 150 4.67 0.0114

33 73 16.00 0.0763

34 50 66.00 0.1650

35 24 75.00 2.2778
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~ growth rafe'ihc:eases‘ from time~zefo unﬁil the” the time at
which.the inflection.péint occurs, land\then‘deélihes.‘ It
méy'be argued.that in iesé ‘dense stands a state of juvenile
growth eXists‘durinq which the indiVidual treé grows at én
' increasing’rate-_ »This stage con@inues until.'competifion
(crbwn or root or both) ~6r somé other ecologicalvphenomenohv
sets in, and then the gerth rate begins to remain constant
orbdeClihe;. In‘denser stands this juvenile  state»either
doeé ‘not-éxist ér terminates so early .that it is of ﬁo
practical'consequence. This logiciappears to be,bornerout 
by the means of'the'estimated m'valués in Table 4. 'A trénd

“is'. evident With the means increasing with,fdeqreasing
'density; Only ‘the‘meanS‘of'plots 31 and 32 violate this
trend. = It appears that the density at Which this
hypofhetical juvenile»growﬁh rate is prolonged into a range
of practical interest occurs somwhere Dbetween 5600 énd 300

TPA.

4.2.4 Charécterizingﬁthe‘marginal distributidn of k
Following the fittiﬁg of equations (1) and (2) to the
stems on the first three replicatioﬁs, the marginal
distribution of k for each plot was fit by a p.d.f. Since k
must be_positive the choice of candidaté'»distributicns was.

limited to‘thosegallowihg‘only positive values. The three
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céndidates selectedﬁwere’ the lanormal,i Weibull,‘ and S
diStributions.' The p.d.f.'s of these~’three distributions»
are'Shown ianeble757 ‘The lognormal was chosen~becau$e many
blologlcal phenomena tend to follow a lognormal dlstrlbutlon
" (Krause et _al.; 1967). The Welbull and.SB were chosen
~because of theirrfamiliarity to foresters. This-familiarity
stems from the use of these two distributions_ in diameter
distribution,growth and Yield,models (Bailey and Deil, 1973;
Hafley and Schreuder, 1977). ‘, | |

Each oft the three distributions was fit to the
’estinated k.valuesnon:each plot wusing the metnod;of maximum
likelihood to  estimate the ‘distributional parameters.
Maximum-likelihoodrestimators~(MLE's): may - be shown to have
many desirable statistical(properties~ (Bickel and Doksum,'
1977) . |

The‘ MLE?S‘ for theilognormalv distribution exist in
closed form. The MLE’S for the;Weibull.distribution must be
found\by-en iterative procedurer‘ B;R. '~Zutterlihasbwritten o
an eXtensive FORTRAN nrogram for the U,S.D.A,‘Forest Service
ﬂwhich computes MLE's for the Weibull and this program~was

used in the current investigation.

‘:% R. Zutter is a procurement forester for Buckeye Cellulose
Corp . Amerlcus, GA.
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Table 5. Probability'density’functions«(p,d.f.fs) for distributions
selected as candidates for the marginal distribution of k,
the rate parameter of the Chapman-Richards growth curve.

Distribution p.d.f.*

(Zﬂ)l/2 (x=-€) (e+A=x)

Coe<x<etA; §>0; -w<y<o; A>(; —-®<g<o,

expl 5[ v + ¢ 1g =17}

SB‘ f(x)= { |

\. 0, elsewhere.

(8) expl{-%[A + & log(x)]%} , —o<A<=; 6503 x>0.

lognormél fx)=

0, elsewhere.

o { (/) (x/5)° ! exp[~(x/b)%] , x>0; b>0; c>0.
Weibull £(x)= o ‘ :

0,'elséwhere.

# log = logarithm to the base e.
exp(x) = e raised to the power x.
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The SB distribution has four pérémeters. If k is the

random“variable; the four parameters are kmin, kmax, a, and

b. The parameter kmin is;the’minimum:value_~of'k;possiblé'
‘and,kmax;theumaximﬁm.  The MLE's for thiS'diStfibution,must‘
alSo be'sleedffor'iteratively. However, 1if kmin and kmax

are known,‘then, conditional upon kmin énd_kmax, thévMLE’s
for a- éndvb  exist in closed form  (Schreuder and,bHafley,
1977), In  order to avoid thé iterative procesé“ of
estimating the four pérameters of the SB simultaneously;
kmin and kmax were fixed. The estimates for kvranged’from
0,000042 to 0.0l7.‘ Thus 0 was deeﬁed to be a logical»valuef
for kmin. Three values, 0.018, 0.02, and 0.022 wereﬁtried.
for kma#,- Therefore three pairs of MLE's for a and‘b*were
-found‘fbr,each.plot,

Next the stétisfic,D was calculated for eachf‘of‘the .
five candidate distributions for each plot. D is the
maximum absoiute difference  between the hypothetiCal 
cumulative’distribution (é,gu utherWeibull) ahd the observed
icumulativevdiStribution, i.e.,

| D = max |Fn(k) - E(R)]|-
where: Fn is the observeg cumulative distribution

| F is the hypothetical cumulative~distribution.'

The values of D’from the five distributions were then ranked

for each plot, and the ranks vsummed"over" plots for the
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distributions. .Additionally a weighted difference‘vDV¢was
Acélculatéd‘for each distribution as foilows
Dy ={ InDy In}
where: Dij= value of D for plot i
ni=rsamplevsize‘on'plot if

Based on Dy and the summed ranks of D, one distribution was
then selected to characterize the marginal distribution of
k. |

Linear. regression equations were then develéped' to -
predict the parameters of the marginal distribution of k.
The dependent variables were the estimated.parameter Valués.
In?this model it was assumed that one set of k and m values
characterized the growth of a tree throughout its 1life.
Thus the-independeht variables in the,predictiOh models for
the parameters of the distribution of k were necessarily
'variables measured at a reference point in - time. The~
independent variables were } height» of dominants and
‘éodominants.at age-zov(HDm)), lcg(HIbo), (I/TEEO ). numbér of
‘trees per‘acre,at_ageys (TSB), (TSSZ),log(TSS); (l/TSS),'and
(TSg*HD 5) - Allvlbgarithms were to the base e. Heightvof
dominants at age 20 rather than the conventional base age of
25 was used because 20 was the oldest age at which all plots .
were measured. Trees surviving at age 8 'wés used because

age 8 was the earliest age at which all of the thinning
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treétménts'wereg‘cémpletéd. It was hypothésized' that the
differences ‘in the diStribﬁfions'dﬁ‘.k‘from plofvtc piot,
could.be.accounted‘for‘by »either,variable site quality,r aé,
measured 'by'HDQo, by thé thinnin§~ treatment or‘bj the 
-various transférmatioﬁsnbf these two variableé. |
K Using the independent variables listed previously, R?
values were calculated for each possible linear prediction
equétion for each parameter. The modelé Whiéh'gave<'the
highesthz values were then evaluated onithefbasis of PRESS
and:SUMABS; ‘ A,predigtion,mbdel was then chosen for each

parameter.

4.2.5 Prediction of m

" For thésé»plots onIWhich m waé’not,assumeduto:be>zero,v
it ‘was necessary to develop a method fof‘prediéting" m.
Rathér>than assuming thévparameters of the growth‘curve to
be indepéndent. as wasvdcne by Krause et al. '(1967), the
kndwn}dependencefbetween.the'paraméter5=wasfutilizéd. This
was donefby regressing m on k and k2. The'variablesvTSB and
HD 79 were also included to allow for differences in the
relationship between k and m between‘plots.‘ The final model>

was chosen after considering R?, PRESS, SUMABS, and  SUMRES.
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4}2.6, Survival function

A surviVél curvev was needed fo:complete* thé Parameter
bistributioh.médel, ’In,thig_ analysis, the survival curve
presented.by Smalley and Bailey (1974) was modified. The
briginal_Smalley'\and Bailey su?vi&al~function was of the
form

log(TP/TS) = AP { a lIog(TP) + b HD + cJHD }

Whereﬁ AP'= age since planting

TP'= number of trees planted per acre

TS—=anumber bf'trees surviving per acre at age AP

“HD =rmean‘heightjof dominants and codominants at age

AP.
This function'has the desireabie‘ éharacteristic.ﬁhat at.the-
age of'piantinq,AP=0, and thus TP#TS. ' The~curve:has aiso
been*uéed by‘Fedﬁccia et al. ’(1979) and studied by Burkhart
et al. (1981l). It seems tovgive‘reaSOnable estimates for
surviving_numbers'of.Stems (Feducciavet al., 1979; Burkhart,
pér§,  cOmm.). TherfunctionuwaS' modified in . the present
Studyvto7the form |

log(TRT/TS) = (AP - AT) { a log(TRT) + b HD + cJHD }
where: TRT‘='thé number of stems per acre left after
thinning treatment

_AT

~age since thinning treatment
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' The other variables remain as 'defined above. In this form
the Chrve:, takes into account the different thinning
treatments.  This form also retains the desirable

‘characteristic that when AP=AT, TS=TRT.

4.2.7 Application

The Parameter'Distribﬁtion model was applied on the
fourth replication. If the model were to perform poorly,
‘this\wouldfbe most.evidgntfat“fhe later ages enéompassed‘by
r-the_data,  Thus:for each plot on replication;four,,the last
age at which that plot was measured was selected for testing
the model. Usiﬁg-thesevages ,the observed mean heights of
dominantS‘aﬁd‘coddminantsp and the actual numbers of‘trées
left after thinning; “estimated parametér' values - were
computed fof the; marginal distributions of ‘k. via the
~prediction models.developed. onuthe‘fitting data set. Thé,
number-of trees per acre surviving at the last age on each
plot of  the validatibn‘sef. was’predicted'using the fitted
‘survival function. Fof~comparison purposes, this number was
then.reduéed to the'exact acreage of the given plét. ,-Using
the reduced number, rk values were then randomly qrawn from
the estimatedﬂmérginal; distribution of Kk for each stem
predictedvtO'beﬁpresenﬁg For plots 43, 44, and 45,‘m vaiues

were then,’predicted for each k valué using the fitted
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regression of m on k, k%, and TSB(therregréssion chosen‘did

‘not include HQKy). These m values estimated the mean m for
a given pair of k and TSy values, and were called
,deterministic. A second pair of k ~and m  values were

' generated by adding a N(0,0%) random deviate to the
deterministic m wvalue. The variance of this random deviate .

was taken to be equal to the MSE from the fitted regression

of m onk, k¥, and TSg. These m values were called
stochastict 'All predicted negative m values, deterministics~
or stochastic, were set to zero. For-plots.4l and 42 m was

set‘tqs.zero for each tree predicted to be present after
adjusting the estimate from thevsurvival‘curve to the proper
acreage{ fThese values were called’fdeterministic,and no.
stochstic,m values were computed. Once Xk and m were kno&n
(predicted)ﬂ the predicted basal area was déterminedh Thus
' for'each of plotss41.and - 42 there was one éredicted’basal
area distribution, while fqr each of‘plots'43, 44, andfés
sjthere were two. |

For every. prsdicted basal area distributioh; ,ba_‘
predicted height distribution was génerateda This was done
by predicting a height for each predicted individual tree
}basal area, using the fitted height-basal aféa.»modél (see
Sectionyéul). Inputs to thisimddel‘were-age; obsér&ed mean

height ofﬂ dominants and codominants at age ZO,blpredicted
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’number’of,stems per acre,.predicted plot basal area per acre
(obtained by’summing‘ the.predicted, individual tree basali
areaS«and goﬁVertinq tolﬁér‘acre'Values), and the predicted
basal area of the individual free. v Ohe'sét’of héightsvwas
generéted' by using_ the meaﬁ:fheights predicted' from - the
regreésioﬁ. These heights -Weré‘vcalled déteﬁministicL
Ahothervsetvwas obﬁained by adding a N(O,o0?) random variable
to the deterministic height. The» Qariance‘of the random
variable was taken ’to be equal to the MSE from thé—fitting,
ofvthe.héight.modelvon the first threé‘replications,

E?ery predictéd ~distribution was = compared to -the.
appropriate observed distfibution. ~ The éomﬁarisons - were.
done subjectively by ihspecting’histogramsvof the observed
and predicted‘distributions, énd.by\lookinq at the means and .
standafd’ deviationé of the predictéd, distrigﬁtions in
relatioﬁ-toathe observed. Objective comparisons were also
pgrformedivia the two-sample Kolmogorov—Smirnov (K-S) testf
This is a non-parametfic statistical test designed ‘to test 
whether'two_‘independent samplés - were drawn fr6m~the saﬁe
population;

As the results obtained from a stochastic simulation
model vary according to the initial random number,seed,' the
model was run-.on“:eplication' four with twéntylldifferent

randomly selected seeds. Thefmodelp’waSjalso run once on
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each of the first three replications in order to determine
~if it behaved dlfferently on the fitting than on the

1ndependent valldatlon data.

4.3 NONLINEAR GROWTH FUNCTION

4.3.1 Specification of model

Assuming the parameters of the C-R curve ﬁo be constant
throughout the life of a tree, and developing a-metﬁodology
" to predict them, as done in the previous section, represents
Oneb means of applying this function to individual tree
growth. Another method involves modeling the parameters of
the curve as functions of tree- and stand-level variables.
This approach has the advantage that the growth curve
predicted for é‘stem~4would change: as the variables which
model the parameters of the curve change-. At any point in
time the- model>would,predict the subsequent growth of the
stemvto follow a C—R growth curve, with the»parametersfof‘
the curVe‘based- on the latest available information (tree-
and stand-lével variables measured at the current timé);

One form of such a model is

- _ —fi(APi+1-c). g4
BA. 1 Al - e ) (3)
where? 'BAi = basal area at time i.
APi = age from planting at time i

£ ,‘gi functlons of tree- and stand-level varlables at time i
A = asymptote
¢ = constant

~e = base of natural logarithms.
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In ﬁodel,(S)kBASRtends to A as APV tends‘tc infinity,;andiBAbs
=0 whenrAP =c. Sihce& f'and; g'are->not specified, {3)
actually represenfsfasclass ofﬁmédels,‘

This class of mcdéLS:vdessribes theﬁ growths of’ an
individual tree andqpérmitsuthe> tracking of 'an individual
tree over time, ,unlike the~‘pafameter'distribufion model
which yields basal area,distributionsu.at,points‘in time but
doeS'nqt,pérmit.fsllowinQ‘the growth of an individual tree.

In order to ascertsin.whether this‘ approachk'would
result,in improved growth‘predictiohssover more conventional
méthods, a:model,beloﬁging tovthe class of mode15~in'(3) was
developed. The:modelvwaS'then~compéred'to a linear model of
indiVidual trsefgrowth on an:independehtjdata’set;' |

The-variables- kand m of the C-R curve are constant
thrbughout”the,life of a tree when the model is - fit in the
form of (1), so it was not possible to check directly'the‘
relationships of these parameters to time—depéndent treeand
stand;level VariableS- which arefvfconstantiy‘ chsnging
throughout;the lifevof‘én‘individual,tfee./ Eﬁrthermofe,,the'
data set was too smail tof check  the relationships by
examining the»estimatéd ,parametér values_for many trees at
different levels of a given-vafiable~at,a»refefenCe5point.in
timeawhiié holding‘the other stand variables constant.,‘Tﬁus'
the:functiqns f,ands g’which'mbdél k andAm of'the C~R curve

respectively'were_hypothesized; ~ The fUnctions4chosen wefe:
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£1 = (a CR;+ b éif‘c APA;+ d BA;+ e TS?)"‘
g = (a+ b TSy | |
where:kCRi = predicted.crown ratio at time i
B, = plot basal area in sq. f£w étvfimexi
APA# = Areé Pbtehtialiy Avéilabie to the subject tree
éﬁ time 1 | | |
TS. =”No, of trées suviving per acre at time i

BA

Basal area in sq.vftq of‘the*subjéct tree at
time 1.

a,b,c,d,e are coefficients to be estimated.

B, TS, and BA are measured vafiables and need no
explanatibn. Crown ratio (CR) is defined as the length of
Alive:cro&n,divided by;total,'height, This‘variable'was7not
measured.on.thé»data-set. ' However¢ Feduccia‘et al. (1979)

' presentedh a model  to predict crown ratio for individual
‘loblolly'pines,baSed,upon the tree's d.b.h., quadraticvmean,
diameter for -the stand, average height offdominantsv and :
‘CQ@Ominénts‘in.the'stand,'andlage. The-data‘for their sfudy
came"from'plantations. of similar origin and geographical
region as those used in the present study. © -The mean
"predictedicrown ratios for all plot-age ccmbinatigns on the
firSt replicétion are shown in Table 6. The vélues'seem

reasonable:exceptf at the lowest density, at which there
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‘appears to be a positive bias in the‘predictions; Daniels

(1981) uéed this model to-predict.crown ratios for the data
used in the present study} ~ and found  that inclusion of
predicted crown ratio improVed* the fit of his basal area
increment model. Thus 'thermodel was accepted despite the
apparent problem at ﬁhe lowest density. Hahn éna Leary -
(1979) have used predicted crown ratio in their diaheter
increment model. Thusv there is a precedence for thié
‘procedUre.,

Area potentially aVailable‘(APA) is an individual tree-
baSed variable designed to  quantify the effects of
competition from neighboring trees on‘a subject tree. This
variable measures the horizontal area assumed to be
available to the - subject tree. It 1is computed'from a
mathematical expression relating tree diameter tb diameter
of ahd' diétance to adjacent trees  (Moore et al., 1973).
Several forms offthisvvériéble have beenvpresented‘ in the
literature. The primary difference between tbem is in the
function which is used‘to - weight inter-tree distances.
Daniels (1981) found tha£ of all the weighting factors
presehted thus far, *the ratio

{Ds_2 / (DS_2 + Dc‘)}
where:fDS:'d.bth. of subject tree

Dc= dgb;h, of competitor



Table 6. Mean estimated crown ratios for loblolly pine trees, predic-
' ted with the equation by Feduccia et al. (1979), by plot and
age for replication ome of the Hill Farm data.

Plot
Age 11 12 13 “14 15

6 77.8 845 =% = —
7 -—  76.8 -- _ -
8  70.5 69.6 68.0 -  --
9  59.0 65.0 74.4 62.8 46.2
10 54.7 60.3 70.1 76.4 88.9

13 50. 56.0 66.3 72.1 84.8

~I

20 42,6 47.2 57.4 63.3 75.5

38.

_[_\
£~
~
~
o~
O
O

]

|

~
—
|
|

Density at
age 8 1046 641 317 211 103
(stems/acre)

* Plot not measured that year.
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‘yieldéd'the highést’ cocrrelation between APA and ‘basalrérea
increment. Daniels (1981) also'fodnd that APA had a higher
correlaﬁion; with basal ' area increment than any other
individual tree,competition;index considered. ThustPA was
includedfin (3).
| It is widély believed that individual tree basal area:
and the density of the surrounding stand are highly
correlated‘with4its subsequent growth, therefore B?*BA, ~and
TS‘weré included in (3). Note that if APA were a perfect
measure of competiti&e' stress upon . an  individual stem,
stand-level measures such as B and TS would be unnecessary.
However, this has not been found to be true in the past.
Instead, stand-level'méasures of competitionfhave been found.
to be statistically significant in explaining basal area
"growth in the presence of individual tree competitioﬁ
indeces (Daniels, 1981).
Initially, the function £ in (3) was linear, since
‘ linearbmodels are genérally reasonable approximations in the
‘absence ‘of‘any specialized knowledge. However, in the
process of fitting théboVerall model (3),. 'usihg nonlinear
least squares, the function f showed a tendency to become
negative.’ As this function models k of the'C~R»cufve'and k
muét-be positive,"the expression was sgquared. The function

f was also modeled with an intercept term. The fit was
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‘nearly identical in terms of R? and'MSE'to'thatr.where the;
,‘interCepteterm was ‘not‘inéludede Thus the intereeptdterm :
ewesidropped.for simplicity, Additionally,.the~térms TS and
S.B Were ekchanged‘,for‘theit inversee in ehe fun;tt as'it was
vfeltb'thet the rate paraﬁeter-'k"should,have an inverse:
relationship with density. Again the  fit was nearly
identical in terms ~of ‘Rzland MSE, so the form of the
functiondshewn above was adopted. |
In a separate part of this investigation‘ it was found
that the parameter m ef the C-R growth cuse?was related to
initial thinning treatment’(seetseetion 4.2.3). Thus m was
‘modeled as a simple linear regression~involving number of
survivng.stems per acre as the independent variable. |
Due to the inclusion of APA in (3)(v the model’ is
distance-dependent, and thus would find application in

-distance~dependent individual: tree models.

. 4.3.2 Application

'Model (3) was fit onbthe firstL three replicetiqns of
the 'dataA set using nonlinear least -squares; All the
thinning treatments were fit at once, since the parameters
of the model should theoretically take the different stand
ceﬁditions into;eccounta JWﬁenever there»were~two subsequent

- measurements made on an individual stem, this constituted
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one observation. ‘The:dependent;varieble was the besal_erea
at‘the eecond meesuremenﬁ,“ 'and,ﬁheevindependent variables
were CR;e TS, 1 B, BA, and APA at theifirste AP in.the
expressioh (AP - c) was~taken‘tc be age frcm'plantingkat'the '
secoﬁd’measurement.‘ The~astptete=A~'and the parameter ¢
were fixed at 22.3 square feet;and 3 years, respecfively.

The vmodel ‘wasf‘tested, ~on the fourth replication,
Whenever there~vwere two sUbsequent,»measurements made on . a
tree; the model was abplied‘using the values of the.
indepehdent variables at the first meaeurement to predict
the basal area of thertree .atethe second. The differences
and absolute differences between observed andf,predieted
basal areas were then.summedvand,averaged over replication
- four. Eorscohparison, a linear model of the form

BA, ,=b + Db
]

el 1 CRy + b, APA;, + by BA; + b, By +

bg TS; * by (AP

where the variables remain as previously defined was fit on

3 4

- aP))

the third replication with ordinary least squaresvand,tested
on the fourtheuSingvthe‘sahe'methods'as for model (3). ‘The
‘lineer, modelfrepresented a conventional approach te the
problem of predicting grewth end,served as a 'baée-line’Afbr
comparison.

In order to ascertain the effect. of specifying the

asymptote to be 22.3 square feet in (3), = the entire



procedurefwas repeated with asymptot_es of 18.96 (15Y% below
22.3) and 25.65 (15% above 22.3) square feet.



Chapter 5
 RESULTS AND DISCUSSION
5.1 HEIGHT-DIAMETER/BASAL AREA CURVE

5.1.1 Choice of curve

Thé~;fesults from summing. the ranks ofv‘the five
candidaﬁe height-diametef/bésal area: curves based on RZ,
PRES$)  and SUMABS over the IQS'pldt-age combinations on ﬁhe 
~first three replications'are.shown‘ in,Table'7;v Model 1,
whichipredicts mean height, cohditional upon basal érea:was
clearly the best of thé!fivé on the.data'used in this study.
It may be argued that the  test was unfairly biésediin favor
of ~model  1 since‘ the- criteria. were based on  predicted
heights, éndithe'othér models:predict‘log(H)‘“dr’log(H—é.S),
However, - the author ' feels - that this was completly
appropriate, sincé=height and not .iﬁs ;logarithm’is thev
‘quantity ofiihterést.: ‘Thé,médel‘ which prediéfed height
directly¢thus had a‘bﬁilt—in advantagezover'the others, - and
the tesf'shouldfhave reflected.this. ‘
| - Curtis (1967) "squésted thét models which predict
height‘raﬁher than log(H) should perform.pooriy on daté sets
which=include-many"young trees. In particular, such models
FWill,iikely'prediéﬁ negative heights‘ forvsmall‘basal areas.

The,déta used in the current study was from young stands and

- 860
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Tabié17;‘v8ummed ranks over lOS‘plot-age‘cémbiﬁations on the Hill Farm -
data for five candidate height-diameter (basal area) models,
based on three statistics.®

2

~ Model .  - R“%%*  PRESS SUMABS
VI; H=a+b log(BA) . 237'(1)#' 226 (1) 225 (1)
2. log(H) = a + b log(34) 311 (2) 302 (2) 310.5 (2)

3. log(H=4.5) = a + b log(BA) 386 (3) 380 (5) 393 (5)

4. log(H) =a +b (1/D) 315 (3) 332 (3) 314 (3

5. log(H-4.5) = a + b (1/D) 326 (&) . 335 (&) 332.5 (4)

* Statisties ranked such that 1 = best, ....., 5 = worst :
for a particular plot-age combination. '
'***Rz, PRESS, and SUMABS transformed to H for log(H) and
- log(H-4.5) models. '

# Figure in parentheses is relative rank of summed rank.
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‘yet’model 1 was the'besf’,under all,thfée criteria. Note
“especially that this,mbdel was best.underiERESS,and,SUMABS.
 If the‘modelvhad,predicteak negativ¢-heights for'smail bésal
areas; thesé -statisti§s would ﬁavebmagﬁified, thetpfoblem.
 A§parently, the vdanger’of ?redicting‘negative heights»for_
low.bésal‘ areas when height is the depehdent vériable‘is
real only when low basal areas are not well representedfin'
thevfitting data. | In the Hill Farm'daté,  average basal
~areas on the first.three replications at ages 5 and 6 were
-0,029~and!0.04§, respectively, uindicating that small basal
areas;were weil represented. The heights. associated with
these basal areas were ﬁeceSSarily positive and kept rthe
regression line in the range of positive values. Perhaps at
‘basal areas smaller than those in the data set the médel
‘would”predict< negati?e heights; however{ basal areas so
' small would be of little practidal interest.

| Two other aspects of these results aref’noteworthy;
‘first; the intuitively ‘appealing"featuref of ~modelling;,
,iog(H-é;S)ﬂrather than log(H) didQnot improve the two log(H)
models' perférmance. Since*daté setS‘which‘ include many
young stems, 'such‘as the one used here, are where this
‘adjustment should logically be most importént, it séems,that
‘thé-adjustment_ is-unnecessary-‘ Second, the widéiy‘used

1og(H)-fecipro¢al‘of'diameﬁer model (model . 4) ‘waé'fbund.to;i



63

'be‘a pobrer:prediCtortof'mean heiqht than;modelk(l)'or mbdel
,(2); the alldhetric model. Although thls study used only'
one data satt and thls set was llmlted 1n age range, it
’ ucertainly’ appears. that the relatlve‘ performance Qf ‘these

models should be 'tested further.

5.1.2  Choice of surrogate regressions

The coeff1c1ents a and b of model- l’were;individually
,regressed upon all possible linear sombinations_ of -the

following variables: -

1. age since planting, (AP)
2. age since thinning treatment, (AT)
3. 'quadratic mean diameter at age AP, (D)

4. plot basal area per acre at age AP, (B)

0

average height of dominants and codominants at age
AP, (HD)

6 lg{;’(r-m)‘ |

7.”,numberbofvtrees surviving per acre at age AP,v(TS)
8. ,log(TS) | | |
S thinning treatment, (TRT)

All logarithms were to Abase e.  After fitting all .thev

possible models for each coefficient,  the R? values were
examined. v:Those~models Which performed,wéll under R? and

had the fewest indépendént variables were selected for
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further éxéﬁinationvwith PRESS, SUMABS, aﬁd SUMRES; For
coefficient é, : séven.’modelso wéfe‘ ohosen: 'forfvfufthér-'
~oinvéstigation% 1oThése~ sevén models.aref‘shown[in"Tablo 8.
Model 7a was the‘best in terﬁswof Ré,' PRESS, SUMABS, and
thirddunder SUMRES."vThe-choicé.wasﬁClear, and‘model'7aiﬁas.'
selectedias the>sﬁrrogate for‘é. Six modélsfweré chosen as
~ candidates for the surrogate for b. They are listed, along
with ﬁheir'Rz, PRESS,>SUMABS,o and SUMRES Values’in Table S.

Here\the.ohoioe‘ wasfléss apparent. Models.3b and‘6b~both‘
performédﬂ well, with 3b being the best under PRESS and
SUMRES and fourth wunder R? and SUMABS. Model 6b was best
'undef‘Rz and. SUMABS, second under  PRESS and  fifth under

SUMRES. Between the twokﬁodels the only statistic that was
verj different from a practical standpoint was SUMRES.

SUMRES is  the sum of the PRESS‘residuaLs;v"and gives -an‘
indication of a.mbdelfs-,bias;,' Model 3b had a SUMRES of
-o,oss’, suggesting very little bias, while model 6b had a
SUMRES of -1.496, about twenty-five times greater:  On the

basis fof‘this and the fact that'model‘ 3b 'hasoonel less
‘variable than 6b and ‘is’thereforé. simpler, model 3b was

selected. )

of‘The~_oVeraLl height model was thus of the following

»form:. | ‘ |
| Hi=v bo + b

log(HD. ) + b D + b HD + log(BA ) { b + b AT
p 1eg (B ) 271 Pty 9(BA ) { b + b AT,

+ b log(HD ) + b HD }
6 T 1 7 i
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Table 8. Statistics from fitting the candidate surrogate regressions
' for a and b in the model H = a + b log(BA) on the first
three replications of the Hill Farm data.
Dependent 2 _
Model variable Independent variables® R PRESS SUMABS SUMRES
1 a HD 0.9428 1440.99 304.71 -0.758
2 a HD, B 0.9642  917.20 232.60 -1.362
3 a HD, D 0.9747 640.42 200.38 -1.532
4 a HD, BA : 0.9763  599.26-.199.62  0.26C
5 a HD, BA, log(TS) - 0.9771 - 588.03 186.25 -0.276
6 a HD, D, AT 0.9778 578.68 190.59  =~0.547
7 a HD, D, log(HD) 0.9789- 537.20 177.71 -0.312
8 B HD, AT, log(TIS) 0.6622  833.53  198.40 -0.819
9 b HD, B, log(TS) 0.6662  814.85 190.95 0,199
10 b HD, AT, log(HD) 0.6736 782.77 193.62. -0.056
11 b HD, AT, log(HD), D 0.6862 845.86 202.76 =3.475
12 b HD, AT, log(Is), B 0.6898  795.32 191.38 =-0.517
13 b HD, 189.66. -1.496

AT, log(TS), log(HD) 0.6916

784.81




'whefe the subscript 1 refers to age since treatment, and the
&ariables are: as described,abové. This model was fit to all
the height-basal aréaﬁpairs on ‘themfirst three replications
and the-fesultihg equationiwas’
H&='—l9;051.+ 15.006 loq(Hq_) - 28.530 D; + 0.752 HQi+

log(BA;){-3.838 - 0.109 AT+ 2.015 log(HD,) + 0.153 Hqi}

R? = 0.97 Sy.x = 3.370 mean H = 30.5 n = 5912
All thefestimatéd. coefficients were significant at vthe .01
probability level. The' R? value'indicateswthat the model
fit the data Veryfwéll-

Finally, note that in the model
H=a + b log(BAa)

the coefficient a represents the estiméted.mean>height‘fOr a
tree with a.basal area of one sguare foot (approx. 13.5
inches d.b.h.). However, since few <trees on the data set
were this large, no attémpt,was made to interpret a in,this

manner.

5.2 PARAMETER DISTRIBUTION MODEL

5.2.1 Fitting of growth curves

The average R? values from the fitting of the C-R curve
to all the stems on the first three replicationsvafe‘showh'
by»pldt in Table 9. For plots 11, 12, 21, 22, 31, and 32
thescurVé |

log{l - (BA/22.3)} = -k(t-c)
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 was fit as a no intercept linear model and the an;era,g'erR2
values shown in Table § are in terms of log{l-(BA/22.3)}.
Theulinear'fdrm;was~used to simplify'theféstimation'process.'

. For plots 13, 14, 15, 23, 24, 25, 23, 34, and 35 the curve

BA = 22.3(1 - 1/ (1-m)]

e—kLt-3))

WAS'used, Since this is a nonlinear model; R? per se cannot
'be,calcﬁlated; Howéver; one may easily compute
~‘R§ﬁ='{Rss-(Tss'-,CTSS)} / CTSS

where: RSS= I ¥} - £(¥;-¥;)?

TSS= ¢ Y?

CTSS= I(Y; - Y)2.
The statistic R§L ekpreSses the: percent of wvariation
explained by the regression, oVer and above that'explained
by the mean of the dependent variable. |

The results in Table 9 show that the curve(s) £fit the

datavweli. - Since theaR?’valueS*for the two fitting methods
Were computed differently, theyvare not directly comparable.
Within each,fitting method there appears to be'a trend, with
mean R? values 1increasing as residual density following”
treatment decreases. This is reasonable. One might expect
an individual stem to trace a slightly smoother growth curve
as residual.' density decreases since«’ one variablé

(competition) which affects growth is reduced in magnitude.
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Table 9. Mean and standard deviation of ®% values'from‘fitting the
Chapman-Richards growth curve to all loblolly pines on a
plot in the Hill Farm data, by plot. :

v v ; standard
“'Plot = mean R - ‘deviation n -
11 0.77  0.4745 248
12 0.84 0.4273 150
21 0.78 0.3310 249
22 0.85 0.1925 150
3L 0.82 0.3135 246
32, 0.87 0.1824 150
. .mmean Rer
13 0.94 0.1790 75
14 0.96 0.0707 50
15 0.99 0.0109 24
23 0.96 0.0730 74
24 0.90 0.2568 52
25 0.99 0.0094 24
33 0.98 © 0.0333 74
34 0.97 0.1186 50
35 0.99 24

0.0163

* For plots 11, 12, 21, 22, 31, and 32 R2 values are in terms of

log (I- ~ BA/22 3), from no—intercept linear model.

For plots 13, 14, 15, 23, 24, 25, 33, 34, and 35

from the nonlinear model and are computed as follows:

2

E%]ﬁ=

€,

-D? - g,

A
-Y)

2
i

£, -

?)Z

values are
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ﬁIhuSvé_ grbwth’curve'shOuld tend «to'fit<stems in‘ stands‘of

low density better.

. 5.2.2  Estimating the marginal distribution of k

 _‘Nek£‘thes'éétimateézfdr 'k were fitfto: therlognormal, ;“
Weibull,  and S, (kmaz= 0.018,  0.02, ‘and  0.022)
distributionslr The value of the»statistic D=:m%§'l(5n~ F)l 
whicﬁv~resﬁltedﬁlfrom, fitting each distribution ‘to"the 
'estimated\coefficients 'Cn.éach.plot-‘is shown in T;ble‘log
The b' values were ranked from lowest to:highest' for éach'
plot and the frequency of ranks for each distribution is
shown in Tablev1l- The values in Table 10 indicate that the
_Weibull, lognormal; andeB(kmax=Q;018)”' are.tﬁé’top three
candidates.. As:a-further test, average-D Vélués weighted?by
Saméie siZe‘wérer‘calculated for each:distribuﬁion. The
weigﬁted average D;Values were:
lognormal‘ ' .0908
Weibull ~  .0663
S, kmax=.018  .0904
S, lkmax=.02  .0905 _ | T
Sy kmax=.022  .0909. | -
,Sincéf the Weibull distribution had the lowest weighted
average D,,, it was éelectedt ~>As a further'check' on the:'

Validity of the Weibull, one-sample K-S tests were performed



‘for each plot. ,‘Thisertest_is'deSigned~ toetest' whether a
sampleucouldrhaVe: been,arawn'frcmaaj,séecifiedfhypothetical
'bdlstrlbutlon » The test‘is besed'cﬁ fhe.statistich; »The‘p—
Vlevels wh;ch result from the test estlmate the‘probability‘
of'observ1ng a D Value as large or larger than that actually
observed, glven that the sample~ did ~arlse» from the'
hypothetical  distribution. " Note however that'  these

probabllltles cannot  be strictly 1nterpreted in th*s case
One of the fundamental assumptlons of the K- S test is: that

‘the=observatxonsv;nnthe~samplew'arev1ndependent. ‘ Slnce_tne
estimates for k come from fitting.avgrowth curve tojtreeS~on
the same plot, and:fhus probebly influencing’cne another's
‘growth the' estlmated k s areiprcbabaly- not independent.
,,However; the p-levels:may-be~regarded‘ as en index of the
'QQOdhess’ cr 'clcsenessfb of fit; A large‘ p-level
represents a.gocd fit, whereas a,smell p-level,reflects;they
opposite. The p-levelskfrom performinqethe~ohe-semple K-S
| ‘test on the fit of the Weibul’le distribution to the marginals
of’k‘are"shcwn by plot in Table 12. AscthesecVValues are:
 §enereilyv_high,; with only one being below . .05, the
conventionalf,vstatistical' significance 4level, it was
concluded ~that the» Weibull estimated  the marginalc’

dlstrlbutlons of k adequately
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- + = - : '
Values and ranks for D = max (D , lD“I) from fitting the .
‘five candidate distributions for the marginal distribution

- of k, the rate parameter of the Chapman-Richards growth

‘curve, to estimates of k resulting from fitting the curve
to-individual loblolly pine trees. on three replications in
the Hill Farm data.* :

- S B ‘

lognormal - Weibull = kmax=0.022 kmax=0.0Z. kmax=0.018 .

35

Table 10.
Plot " n
11 248

- 120 150
13 75
14 50
1524
21 249
22 150
23 74
24 52
31246
32150
33 . 74
.34 50"

:.j;24

0.1184 (5) 0.0450 (1) 0.1161 (4) 0.1159 (3) 0.1156 (2)
0.1000 (5) 0.0493. (1) 0.0978.(4) 0.0975 (3) 0.0972 (2)
0.1218 (1) 0.1644 (5) - 0.1291 (2) 0.1299 (3) 0.1309 (4)
0.0668 (1) 0.1057 (5) 0.0737 (2) 0.0747 (3) 0.0758 (4).
0.1423 (1) 0.1900 (2) 0.1930 (3) 0.2043 (4) 0.2318 (5)

0.0738 (5) 0.0601 (1) 0.0730 (4) 0.0729 (3) 0.0728 (2)

0.0865 (5) 0.0430 (1) 0.0836 (4) 0.0832 (3) 0.0828 (2)
0.0965 (1) 0.1165 (5)  0.1003 (2) 0.1005 (3) 0.1008 (4)
10,1123 (1) 0.1572 (5) 0.1334 (2) 0.1360 (3) 0.1396 (4)
0.1467 (5) 0.0925 (1) 0.1190 (4) 0.1159 (3) 0.1121 (2)
0.0588 (5) 0.0387 (1) 0.0571 (4) 0.0569 (3) 0.0567 (2)
0.0993 (5) 0.0428 (1) 0.098L (&) 0.0979 (3) 0.0977 (2)
0.0479 (4) 0.0823 (5) 0.0419 (3) 0.0410 (2) 0.0405 (1)
0.1150 (5) 0.0641 (1) 0.0985 (4)  0.0965 (3)  0.0939 (2)
0.0901 (2) .0.0979 (4) 0.0891 (1) 0.0924 (3) 0.0987 (5)

*fFigures~in parentheses. are ranks of D values within plots;
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Table 11. Frequency of ranks within plots for D'=rmaXt(D+, Ip7]) from
fitting the five candidate distributions for the marginal
distribution of k, the rate parameter of the Chapman-Rich-
ards growth curve, to estimates of k resulting from fitting
. the curve to individual. loblolly pine trees on. three repll—
‘catlons in the Hill Farm data.

;SB

"'Rank  lognormal Weibull kmax = 0.022 kmax O 020 kmax = 0. 018 ‘.

1 5 8 1 0 1
2 1 1 4 1 8
3 0 0 2 13 0
4 L 1 8 1 4
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Table 12. Probabllltles frcm one—sample k=S test of tﬁe flt of the
: Welbull distribution to estimates of k, the rate parameter
of the Chapman-~Richards growth curve, by plot for. three
repllcations in the Hlll Farm data. : .

| Plot DDEE » o p—lsVeiﬁ
11 0.0450 248 0.6960
12 0.0493 150 0.8599
13 0.1646 75 0.0347
14 0.1057 50  0.6315
15 "o.i9oo 24 0.3516

21 0.060L 249 0.3293

22 0.0430 150  0.9442
23 »70.1165: 74 0.2680
24 0.1572 52 0.1529

25 0.0975 24 0.9864
31 0.0387 266 0.8538
‘  32 0.0628 150 0.9465
33 0.0823 74 . 0.6974
34 0.0641 50  0.9864

35 0.0979 25 0.9755

* Reject thé.hypoﬁhesized'diStribution if p-levellfalls below:
a specified significance level (e.g., 0.05 or 0.01).

* D = max o7, DD,

'#‘p—levels are-épprqximate‘for'n less than 80.
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Next prédiction>eqﬁétiqns for the\,two'parameters”bfand
c of the Weibull distribution were developed. The variables

considered for inclusion as independent variables were

number of‘treés_ per,aCrev'surviving at 1age»8"(T58) and
average: height of dominants ‘and codominants (HDyg) and
‘various transformations of these two quantities. These

Variables‘were ehtered as‘independent variables in a linear

model,  with the depéndent'variable» being,b’ or ¢. All
possible combinations of the independent variables were
examined for each dépendent variable. = For each parameter,
the‘ models with  the fewesf; independent vafiables which
performed  well under R? were selected for further
examination with PRESS, SUMABS, and SUMRES; The candidate
models'selected, for each parameter are shown in Table 13.
The model selected as the predictor for c was 7. This model
‘was tied for the best on the basis of Ré, best on PRESS and
SUMABS, and fourth under SUMRES. Since the ©primary
kobjective~§f the model was prediction, PRESS and SUMABS were
deemed to»bé’the most important of the four statistics, and
the choice;waé clear. Model 13 was chosen as the predictor
for b for the same reasons. This model was tied for best
under R%,  best under PRESS and SUMABS, and third under

SUMRES.
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»';Thusfthé finélffi£ted*predictionr:equétionS,fdr bAandiﬁf_
'were »I  ‘7 }: | | |
| élé?ées 4345 + o 0612,(EE§0) + 1506, 1385 (1/ng)
~ -0.0002 (TSS)(HDZO) + 10. 6942 loq(TSS)

i,;R = 0.74 Sy.x = 0. 750 ‘n =15 mean c = 2.351
b = -0.0075 % 0.0010 log(TSS)‘¥vl.i493_(l/TSS)»

R* = 0.99 Sy.x =2.646 x 1077 n =15 mean b = 0.003

Ityis‘zlnterestlng that tnese -parametéréiWeré- so wélL

,related (judglng by the R? values) o the‘étathvariables
 HD,y and Tss.. , Inya‘_dlfferent. context,’ when diameter
distributions themselves are fit directly by the Weibull,
the parameters.of thé p;d}f, ére,generally pdorly’relatédito
kstandyvaﬁiables,;bwiﬁhr 3? VéIUéS‘ for‘c~ being-afound,lo.l

(Smalley and Bailey, 1974; Feduccia et al., 1979).

5.2.3 Prediction of m from k

First a simplef’linear*-modelfregressingilm'_on k  was
' triéd. , Thiéfyielded-an;Rz of .761. 'Addition of k? raised

:the»Rr‘vaige,to .815. Subéequent édditipns bf TSéfand HDQO'
4 (infthe‘pfésénce bf'TSg):’inCreéSedfthesz’to .SZS.and .828,

respectively. The latter three models were then‘evaluaﬁed
oh_the,basis of PRESS,_SUMABS; and‘SUMRES.,”They Werervéry
-jsiﬁilar‘ fcr_all  criteria. The three-variable‘médeiv.wa§
Choséﬁ as,a,¢§mpromise; ‘The fittéd'regresicn-equatibn‘Qaé: |

m = -0.1418 + 81.4591 k - 2922.1617 k* + 0.0002 TS,
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R® = 0.825 Sy.x = 0.055 n = 447 mean m = 0.1205

 5.2.4  Survival curve

The modified survival curve detailed in METHODS was fit 
to the 105° plot-ége:combinations on the three fitting
replications with the following results:

log(TRT/TS) = (AP - AT) (0.0116 log(TRT) + 0.0023 HD -
0.0254135 ) |
R? =0.74 Sy.x = 0.05392 n=105

The R? value was inflated slightly because the regression

was forcedvthrough the origin. " The model was also . fit
Without this restriction , and an R? value of 0.70 . was
obtained.

These results. compare.favorably with those of Smalley:
and Bailey (1974) and Feduccia et al. (1979) who, using the
curve in its original form, reporﬁed R? and Sy.x values of

0.84 and 0.0648, and 0.66 and 0.1342, respectively.

5.2.5 Application to independent data.

The Parameter Distribution model waé~ applied to the

fourth replication. = The results are’summarized in Tables

14-17 and Figures 2-11.  Tables 14 and 15 display the

~ observed and predicted means and standard deviations of

basal area and height, »respectively. " The values in. these
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ptables were;obtained:with one'run‘ of’thevmodel, i.e., ‘one
seed,» and are presented for the fittwng and test data sets.

: These Tables also display the - p-|evels-resulting from the -
'comparison of ‘the predicted and observed distributions via
the two-sample~ Kfs-test. | Thesnull hypotheSiSuassoc1ated
with this test yis that the two*samples_arose from: the sane
population. The p-levels approximatel the'probability of

obserVing a difference vbetWeen the c. d f ’s of the ~two

vsamples as large or larger than than that actually observed S

-given‘that the~null.hypothe3is—is true-. A high p-levelvis
thus-desireable,  Note however that due to the“problem'of_’
independence 'mentionednearliert ~these pflevels‘are. only
.general -indicators of probabilities; The p-leveIS'Vin
general apoear to be low However, it must be kept infmindf
exactly what the K-S’ test is testing, which is whether or
not the'twovsamples came from the'samespopulation., Because
of  all the v abstraction involved in the ’parameter.’
distribution model this may be too harsh a test '*Given anv
set. of initial stand characteristics, the final;, observed
distribution may be considered"a random variable; '_,The
‘predicted  distributions resulting from the  parameter
diStributioni model are also random variables. - Thus one
might;;expeCttgsomev differenoes-between ~tne. observed, and

predictedpdistributions;’kWhich would be reflected in low p-
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b 1eV¢iS‘ ~Furthermore) fhe K-S.test-'is sensitivesto\sampleh
adsiiew B When the samples are large (e.g. > 100), it does not
_fake' too great 'av dlﬁference between,,the two samples »tdf
§roduce:a lowf'pflevel. ThuS‘a moreh reasonablegmethod:fornb_
‘hjudqing the bperformancefgof ‘the model 'is7ra“ ubjective
- comparison of the observed and predicted means and standardd
hydeV1at;ons, and ofy the-plotted observed and, predlcted
dlstrlbutlons.'
The p-levels do yleld one usefulipiece of.information,
Withln plot3~ fOI»Wthh‘mL wasvpredicted[:through-reqression
analySis,’ the predicted: basal areavtended to  agree better

with the observed when m'was stochastio, A similar*trend;is

o ev1dent in Table 15 for the helght dlstrlbutlons At least

'one-of prediction methods,II, ITI, and IV (see Table 15 for
definition of method,types) was better than;method I in 15
of'theVZOicasesw“ HoWeVer; ‘there'wassho discernable trend
kamong II,~IlI; and lV‘as-to Whichrwas better. “
| The results in Tables 14 and 15 demonstrate that the
lresultsrobtained for"the‘fitting’andhindepehdent* data sets
Qere’similarr | | H
-Eigures - 2-11 show the observed - ahd-l predicted‘
dlstrlbutlons'resultlng from one run (one seed) of the model
‘ on ‘the 1ndependent data. The seed used in these Flgureskwas;

..the same as that used to compute the values in Tables 14 and
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715;. The resﬁlfs,obtained.withithiS’seed’wefe typicai 6fethe
results obtained_from runs with 19 différentjseéds. ‘Table
16 showe:the/means,and"sﬁéndafdlde&ietieﬁs'of'theapredicted
: meansv and«-predidted standard-[deviatiohsu of basal:‘area
reeulﬁin§~fromfball‘20 runs'cfv’thegmodel-withl'zo different
seedss \Table’l7 shows the same for heights.

An internal difficulty in the model may be evident in
‘Figure~2;IFWhich.shOWS'the,predicted and‘observed’basel area.’
kkdietributions for plot  41. ‘Recall thet,,the marginal
~distributions of k were fit +to the coeffients estimatedﬂfor‘
kevery tree with at least three measurements on_‘each.plot;
ThuS’freeet which did not survive bto the last measurement-
wereeincluded: in this fitting data set fer the marginals.
Theeauthor sees: no way to circumvent this difficulty. No
. matter what age 1is piCked, if only stems which suvived to
fhat‘age.~are-u5ed, to calibrate thevinternal‘ﬂmodels, the
marginals of k will still be biased as described abeve for-
,projected aées; - They would also be biased;pribr to ﬁhat age
as'sfems which had not vet died WOuid._nOt:be‘-allowed:to'
influence the marginal of k. v Oon plotS‘thihnedfto IOOC.TPA,
average mortality was approximately 40%. In Figure 2 it:is
_evideﬁt’that' the model predicted too. many stems with low
baeal areas for this’plot.‘ Presumebly this was due to the

;inclusion“in the fitting set for the marginals of >k many-
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stems on plots 11, -21,  and 31 which had died priof to the
| last measuremént;‘"_Thesévstems‘ would logically have‘been"
'mosle‘smallér°stéms,' resulting’inﬂa»predicted‘distribution '

'“btéo heévy ‘at the lower end. Despite this problem, the

‘predictedq énd.obéerved, distributions in Figure 2 do- not

appeaf 'to be too radically different frdmm a. practiéal
- standpgiﬁt. It,élso must be kept  in mind that 1000 TPA at
‘ ageusais Very heévy stpéking by‘cﬁrrent'standards:"Although
| the figﬁres' vary, plantations ére3 now: mdre~ commonly
established.in the 500*600 TPA ranéeyv Wheﬁ comparinq:the
observed and predicted distributions fbr plotS’v42-45
(Eiguresv3-6) this problem was nbtvevidéntu" Notelfurthef
that'the_ difficulty caused by mortality 1is not:-unique to‘
:thiérmodei.f,InAdiameter distribution models if one attempts
to'éstablishma‘biological basis for the p.d.f. emploYed;by
’sbiviné'for .the implied growth function as Bailey (i980)
'has,’then.one muét assume ‘that either-ho mortality'occurs or.-
that "mortéli£y"is proportional across. the diameter
distributionQ  The limitations  of either of 'these 
assumptionslére obvious. |

Figures 3-6 show that wiéh ~the exception of Figures 5a
and Ga,v the_predicted'and observed basalgarea'diStributions’
generélly, correspondéd well for_plotS‘ 42445."‘There Vafe.

‘particular cells in  given histograms where the»_tWo diverge‘
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widelyg 'butx4 thié’ris  not Surprisingflsince.‘ the “two
diét:ibuticns;aré'bbﬁh-fandom'variables;"Withiiérger sample
‘ siﬁés; i!e;;  largeﬁ‘ ploté, ﬁhesex differences would be
:egpected to_beéome,hinor;v - .
| Eigufes  4?6.reVealUVWhy allowing m'vto be1stochastic'
"tendSN to improve the correspondence between observed and
predicted distributions. This method produced a wider
’ spread:_in,the 'predictedfdistribﬁtioh, which agreed mére
’clésélvaith the observed. | |

‘Téble‘ 16 shows that the means of thé  predicted
distributions tended t§ be close to those of the observed
distributions; Only on plot 42 (forzthevSingle”prediCtion
system used,for this:plot) énd plotq44, (for bothwsystems),
were the observed means more than ~one standard deviation
‘away from the predicted means. However, the’diffefences
betweeﬁlthe-observedAand'predicted~means‘for'plot 42 and the
‘two.predicted means on plot 44 were  only apprdximately 18,
1z, aﬁd»lz percent of’ﬁhefobserved means, reépectively. The
authcr  feels that theseu7differencesr are not ,exéessively
lafge* The reasonifor thé~»o§er%pfedictions'on ‘these two
plots is evident after ‘consideration of tﬁe-means on:thé
plots used for fittingu‘_‘Observed ﬁean basal areasvaf the
f_last‘méasufméntmonvpiots,lz,_ZZ,,’and 32 were .3371, ,3913,

'and ;2684:squaré*feet, respectively. For plots 14, 24, and



34 thelmeanﬁufwéreu.6497;.‘ .6154, and .6423 squaré.,feet
respéctively.' Thefprédiéted meéns‘forj ploté 42 (.3261‘sq;’
ft.) and 44 (.6375 sqg. ft., m,déterministic; .6371 éq. ft.,
mj$to¢hastic) agree‘Well with these-values. |
Table 16 also éhows that on the-averagé, _the‘mean of
the predicted distribution was - slightly higher than the

observed mean, suggesting that mortality was not a problem

in 'this 'regard. = The mean absolute difference ' between
observed and predicted means was .03 sqg-. ft. for both
deterministic: and stochastic m. The. mean absolute

difference between observed ana” predicted standard
déviatidns'was .05 sg. ft. for deterministic m and .06 sq.
ft. for stochastic m. As would be expected, allowing m to
be stochastic resulted in higher ‘standard'deviat%onS‘fof
predicted basal area on;plots whre this method was used. On
plots 43 and 44 the standard deviation with m deterministic
was closest to the observed, whereas on plot 45 the standard
deviation with m stochastic was  closest. This  is in
contrast to the p-levels and histograms which show that
allowing m to  be stochastic improves ﬁhe correspondence
between the observed and predicted distributions. Although
the p-levels and histograms were from one run of the model,

the above trend in standard deviations was also evident in

this one run  (see Table 14). Thus the correspohdence
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between the obser&ed and predicted distributidns;depénds,on
mofe thanréorreSpondenéé between the standard deVigtions.

o .Eigufes*? through 11 depict the observed and predicted
héightrdistributions. ~ An ocular inspection shows that the
two distributions tend to take ' the same shape; then~there‘:
is an obviously poor correspondence, this may be traced back
to the'predicted. basal area distribution. - For example,
Figure 7 shows that on plot 41, both prediction me£hods'(m
deterministic, H deterministic; m déterministic,‘ H
stochastic) resulted in too many low heights. The reason
for this ,was“probably the  previously discussed under-
prediétion,of basal areas on this plot. Anoﬁher example'is
Figure ‘lla, Inv‘this ~case the predicted heights are
>concentrated in too small an intervalm Figure 6a shows that
this was also true of the predicted basal areas.

The values in Table 17 verify the conclusions drawn
from the histograms. The average absolute differences
between observed and prediéted mean(heights‘were ,2.72 ft.[
2;72.ft&, 1.56 ft., and 1.53 ft. for predictionumethodsll,
I1, ITIT, and IV respectively. . The first two vaverage
absolute differences are larger than the second two because
methods I and II were used on plot‘4l‘and_methods IiI and IV
wérefnot; - The differences between observed and pfedicted

mean.heightsr(observed  - predicted) for'plot._41 were 7.36.
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yft, ahd?7g4 ft. for mefhéds I and IT, respectiveiy." These~"”
vunder-predictidhs  were due to the éver-ébundaﬁqeyaf low
- heights in fhe?éredictéd‘distfibutiqns.  | |
1 TheVa§efaqé; abéolﬁte differences betwéeﬁb‘observed,ahd:
predictéd‘standard,deﬁiationS‘of‘héight were 1.92 ft., 1;73
:ft,, 0.90 ft., and 1.13 ft. for methods I,FII, III, and 1V,
respectively. = Again the reason the first +two average
absolute‘differences;are larger than the second"two‘is'the 
inclusion of thekstandard deviations from plot 41 in the
first two. The differences between observed and-predictéd
standard deviations (obser?ed - predicted) were 4.88 ft. and
5.35~ftm for prediction methods I and II; respectivelyJ 
Ehese’cver?predictibné wereﬁdue,to‘thevover-abundance’of‘ldw
heighfs iﬁ, the‘rpredicted; distributions. ~ On plot. 45;
predictionw method I underestimated  the observed. standard
deviation by'3,74»ftﬁ This was more than twicevas large as
thecdifferénces yielded ' by the other @ethods. . The}reaéon,
for the,under-prediction’of the~standard-deviatioﬁ by method
I was the‘COhcentration'of the-prédicted'basal_‘areaé’into
too small an interval on this plot whén,m was=deterministi¢;
as described earlier. |
‘ fIti is iﬁteresting that method 1IV. (m stochastic, H
stochastic) was better on only one~plot; 45, Oﬁ ﬁhis‘plot

' the‘three~lévelé of-fandomness (k, m, and H,all‘stochastic) '

\
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Trésulted;in a ‘higher étahdard deViation which moreaciosely’
 ,égreed Qith thé;AobserV§d;v On plois'43 and;‘44tthis ﬁethod .
prOduced‘tob'great amstandard deviation. A

 The*perfqrménce’fothevsurvivaiv éurve‘can,be evéluatedj
by comparing.the'predictedlandv’obserVed numbers of’étems at
the laét measurement for each plot. These values are shown
in Table 14, Only‘ on plptl 21 were the observed and
predicted, nﬁmbeerbe trees sﬁbétantially’differenﬁ. : In |
: cohpariéon with plots 11, 31, and 41 it is apparent that
plot 21 experienced hFaVier than average mortélity.‘ 'Note
that the-obServed,and.?redicted number of trees in Table 15
cannoﬁ be»xcompared becéuse not every obsérved,tree had a
recordéd; height, vet a height was predicted for every

predicted basal area.

5.3  NONLINEAR GROWTH FUNCTION

Fitting  the nonlinear growth function with the
'aSymptote» specified at 22.3 squaré ~féet of basalﬂ'area
v»resuited,in.thé~followinq estimatéd regression equation:
= AQL - o Fi(APi+1-c) g1

BAin

]

~ where: f; = {(0.00400 CR; + 6.15593 BA; - 0.00010 TS

- 0.00237 Bj+ 0.00499 APA),/1000}

g; = 0.44272 - 0.02351 TS ;/1000

R? = 0.93 Sy.x = 0.048 n = 10195 mean BA (4= 0-1927
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4.whefe; BA5i1=3bésal_area of stem at time_i+l‘in Square‘feetv:
o CRL%,ﬁredictedacrOWh ratio of stem at time i | B
 31=-basal'area per:acreS(sq,_ft;) at time~iv
TSL#~numbér 6f"t:eés{per a§re:at timegi
APA ;= area potentially availablefto the stem at time
; . _ _
A3i= age form planting at time i.
‘Nbﬁe; of the asymptotic 95% confideﬁce 'inﬁetvals for the
estimatedvéoéfficiehts included,zerow‘  The RZ, Ska, and
estimated‘VCOefficients were all vefyz‘similar when ‘thé
asymptote was specified at 25.65 sq. ft. or 18.96 sq-..’ ft.
Note;_that the  estimated cocefficient for TS in the
- function modelling‘the quantityy (l/(l-m)), Was- negative.
This means - that lower m vlaues were predicted« for hiéﬂer
densities,  which. isrconsistentxwith thenresul£5~ from the
’ parameter’distribﬁtion'modelb |
The.estimated linear'hodel was |
BA ,,,= -0.0896 + 0.0010 vc:Riv'_+» 0.0003 APA, + 1.0694 BA,
- 0.000l Bi_¥ (3.19 x‘lo'%~;si +-O.OZI§_(APiH_
‘Rz"= 0.95 Sy.x = 0.040 n = 10195 mean BA _ = 0.1927

- AR )

The estimated coefficient for TSi. was signifiCant'ét the .1
leveivof probability. All”the»otherswwere 'significant'at B

the .01 level.
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ReSuits'of,ﬁittinq,thenon—linéar“‘and.linearkmOdelsfon
’theiindépendentgdata,aré-presented;‘in'Table,18; The Table
displayé»the.»mean differen¢ev and mean 1abSolute,difference
resultihgi‘fromi1predi¢ting“ théfgobéer§éd basal areas én'
réplication;fburii and then computinq the differencevbetWeen
théfobservéd-and pfedicted. vThe values show that the linear 
model performed better than the nonlinear. |

The standard erforf of the méan'.difference~ between
6b5érved and'pfedictedkbasél areas ~for‘thé»nohlinea:.model;
- asymptote = 18.96 sq. ft. was;.Ol x‘10f“ larger‘than_thosé
for‘thefnonlinear7model(with;asymptotes of 22.3 sq. ft: or
25.65 sq. 'ft. | The'three,nonlinear models . were identical
uhder the three other statistics shown in Table 18. This
again'éstéblishé$ the insensitivity of the C-R curve to the

asymptotew
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Table 18. Meaﬁsvand staﬁdard‘efrors of means of difference and
absolute difference between basal area observed on one
replication in the Hill Farm data, and basal area pre-
dicted with the linear model and with the nonlinear
model with. three different asymptotes.*

Difference Absolute Difference
: std. error std. error
. Model . .n . mean of mean mean of mean

Iinear 3391 0.0006 7.19 x 10-'4 0.0253 " 5.74 x lOfér'v

nonlinear, I 3391 -0.0071 8.51L x 107"  0.0302 6.87 x._lo'4

nonlinear, IT 3391 -0.007L 8.51 x 10-4 0.0302  6.87 x,].Om4

- . : -]

nonlinear, IIT 3391  -0.0071 8.52 x 10 4 0.0302 6.87 x 10
# nonlinear, . T asymptote = 22,3 'square feet.
‘nonlinear, II asymptote = 25.65 square feet.

nonlinear, IITI :

asymptote

~18.96 square feet.



Chapter 6

- CONCLUSIONS AND RECOMMENDATIONS

The data set used in this étudyvhad little sité quélity
variation, and a specific combination spacing-sélection
thinning. ~ Therefore, care must  Dbe exercised in
extrapolating. the resuitS' found herein to cases where site
quality is markedly different‘ from that of the data used
here, or the thinning procedure is different.

As stated earlier, the model

H=2a+Db lqg(BA)
performed well in  this study. Based on these prelimiﬁary
findings, it is suggésted,that a larger study is needed. in
order to determine whether this model is better in general
than other candidate height - diameter/basal area curves.

Although a much larger study of the Parameter
Distribution model is needed in order to draw any firm
conclusions,v it appeafs now - that ~the following ,general
procedure would be the best means of employing this model.
First be ’cautious when applying the model on plots which
were-established at high densities or have experienced heavy
‘mortality. Second, test to see at what densities m may be
set to zero, and do so for these densitieé. Fcr‘otherl

densities regress m on k, k?, and stand variables measured

104



105

at’a«réfereﬁce;pointain:time.a For'predictioh:of’basai éréés
 emp1éy,thé”stochasticfm,:_ This méthodvappeared tc'function
1béttef1thanQﬁsihg» the deterministic m dn pi6ts  where,m_was
'determined_thfoughvregfessién’analysis. F6r prediction of
heights; use:thefdeterministic height model. Based on Tabie
16 this method appeared to perform as well as,fhe others.

In retrospect, thé Parémeter'Distribution model has at
least fiveadesireablevcharaéteriStics.' ‘First, it is based
oh afsound biolOgicalugr0wth curve. fSeéond, it possesses én
internai stochasticxelement. Third, &ll the internal models
aﬁpear to £it well, in contrast.to‘therdiameter_distribution
models in which the internal prediction.equations ‘fbr the
parameters-oﬁ the7p}d,f. ' tend:tok_fitﬂthe« observed data
,poorly; ‘Fourth,: agéin in confrast to. the diameter
distributidn.modsls, the predicted basaluarea distribution
isvnotféonstrained to conform to a certainvp.d;f; Finally,
and.errhaps most importantly,. the~ model is-loéiéala aﬁd
irelati§ely réasy to cémpréhend.' However, the parameter
distribﬁtion‘ model also has at least two disadvantages.
Eirét is~vfhe problemibfl‘mortality. More' precisely, ‘thé
problém‘iS'the~ death of;trees inciuded in the fitting data
set for the marginal distribution ofka before they reach
 projection‘age; ,'Althoughfthis: did.nbt appéar'tO‘ have,é

noticealbe effect in the range of densities of -practical
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'interest;vmoreisfudiesbare needed.to fuliy define the,exteht
of this¥pr6blem; - As statéd,earlier; 7it’does.n¢t éppeér>£o'
'thé-aﬁthoﬁ'that this,Prob1em1¢an:bé‘eliminated;~.HOWever; if
necessary, pefhapsva. méthod.coﬁl& be devised 1to'alleviaﬁe
the,effécﬁsbqf fhis?problem;’  TheiobjééfiVe of such a study
miéht be ﬁc determine the_optimumvmihimalvlifespan for trées
included in the fitting data. = This might be fo{;_nd by
‘§arying thef. minimél ‘ lifespan ~,and domparing' the
correspohdende; of . the resulting prediéted: basal area
distributions»to>the observed.

Thé~second"di5advanage of the‘Parameter Distribution
model is thaﬁ ‘it requires re-measurement data to calibrate
thefgfowth ;functions,. In sifuatiohs wherer‘oﬁlY'temporary‘
plot data‘are‘available, other techniques must be applied.
The good fit of the C-R curve to ‘the individual- stems
cbnsideréd in this study suggests - that some use should be
made o£’lsu¢h_a: function in diaﬁeter'distribution_ models.
‘Some work has progressed along theée lines. As,previously
-mentioned, -Bailey:(l98d) has defived_the'gréwth functions‘
implied byﬂﬁhe ~uségofi several p.d.f.'s comm&ﬁly used inv
‘diameter distribution models. These gfowth curves should bé
examined to see if they represent, individual tree growth
adequateiy.‘: If they do not, thenvan.effort'Should be made

to find or develop a p.d.f. which would include a curve such
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as the C;R: grbwth ¢utvé{ as the implied growth _fuﬁctiph;
Perhéps _é mé£hod _épﬁld be deriVéd.to. incorporate such a
grqwth ¢ufve  inﬁoftheaéstimatioﬁ‘ o£7the,parameters Qf the
u.'diameteerf basal éreafdistribution.; For e#amplei perhaps
the‘method of s§lVing'for‘the paréméfers of‘the,distribution
from predictéd'quantitiés Whichvare» funtiéns of thefmomehts
of the 'p‘d.f. could be carried a step further in which a
>$ound growthwcurve~iS"empIOYed‘tOtestimate<the moments.
'Y'Regérding, the"~individuai treei nonliheér  growth
function, on the basis éf. the results reportedtherein, it
dQes'not yield better growth predictions than the simpler
- linear model. Therefore the use of the nonlinéar model
would ordinarily be uncalled fqr, Howeverpl fCrésters,area
'ofteh_called:On‘to,extrapolate~vbeyqnd’theﬁrange>of observed
data. Eorfthis~purpose»thef nonlineafumédeIZWOUld.probablyx
be safer thén the 1inear~mddel,f since it‘is:based“’upon'é
reasonable growth;curve'with knbwnmlong—term properties.
In:summary;‘the,results of this_study'were miked.\ The
effort'devoted‘to héight4diameter, curves indicaﬁed that the
model ¢urrently in widespread ﬁser méy bnot be the best
available model. The‘Parametér/ Distribution_model, which
v‘,estimétes the,basai, area and height,distributions - at gi?en
PCints inftime;pérformed[fairlyf,well.  More:work5is‘needed

to refine this model and link it more 'closely with
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Aélternative~methddqloqies. ' The nonlinear individual tree
 ~growth functioﬁ‘;didfnot perform as well as an alternative
linear model,' and its use would only beljustifiedh when

extrapolation is necessary.
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MODELS QF STAND BASAL AREA'DISTRIBUTiQNS, INDIVIDUAL‘TREE
BASAL AREA GROWTH, |
- AND HEIGHT?ﬁIAMETER RELATIONSHIPS FOR LOBLOLLY PINE
v . Yy v ,
Edwin,Jémes Green

(ABSTRACT)

The study dealt with developing methodologies for pred4
ictihg‘basal area distributions and individual tree basal
areas. Data for the study was from the Hill Farm Experiment
Station at Homer, Louisiansza. v

Five-height#diameter (basal area) curves were examined
éo determine which was mdst appropriate for the daﬁa set
utilized. The: model H = a + b log(BA), where H denotes
height and BA denoctes basal area, was chosen asvbeét; based
on several fit and prediction oriented statistics.

A stochastic basal,area.distribution,modél, ‘called the
parameter diétribution model, was developed. The model was
based on the Chapman—Richardé growth curve.. This»curve was
fithté all stems:on,apptoximately 3/4 of‘the data set. Two:
parameters of the curve were fixed a priori, leaving two
parameters to be estimated. A sampling distribution was fit
to the estimates of the rate parameter, k.b Models were

developed to.predict' thé:parameters» of this distribution



from stand #ariables; A model was then derived to predict
m, the shape‘pafameter'éf‘the C-R curve, from k and étand
vafiables.f:Finally, an‘existihg‘survival function was_modi;

fied. Thevoveréllrmodel was implemented as follows: first,
the number'oflsurvi&ing stems was predicted. ' Then‘k and m
values were predicted fpr each predicted stem. Substitutioﬁ
of'these two . values into the C-R curve yielded‘a predicted
basal area for each stem. The previously mentioned‘height- 
diameter curve was employed to predict, a height for each
predicted basal area. Stochastic elements were built into

v |

~the prediction mcdel for m and the height-diametér‘curve.

Predicted:basal area and height distributions wére compared
to;obserVed on the remaining»i/4,o£ thé daté set. Although
the two-sample K-S test was statistically significant, the
‘observed. and predicted.distributioﬁs did appear to be close,

in general, from a practical standpoint. - -This approach
appeares promising as a stochastic meﬁhod of predicting size
distributions.

The ChapmaﬁrRichards cUrve—Was.also modified. for ﬁse as
an'individuai tfee basél area growth model.  Two parameters‘
of the curve were fixed, énd.the remaining’tWO were modelled
as functions of tree- and stand-level variables.  The modi-
fied growth funétion fit the data.‘well, but on an indepen-

dentﬂdata75et, a simpler linear model of basal area growth



 'perf§fmed‘be£ter in tefmé.ofj_méan'difference and,mean'abso—
lute differencé‘betWeénvobServed and.predicted bésal areas.
Thﬁs, thé=only anticipated use»of the modified C-R model is
in siﬁﬂatidns ‘where éxtrapolatign beyond the range of
observed data is vrequired, 'since—ﬁhis~mddel"Has_desirablé
lonq-_tefm charact’eristics,‘ '~ whereas the line‘af model ~does

not.
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