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Chapter 1 

INTRODUCTION: . . . 

. 1.1 BACKGROUND FOR STUDY .. 

The, objective of growth and yield studies is to · 

develop models to predic.t product volumes which may be 

expected. for given, sets of' stand characteristics ... 

Management alternatives. may then be devised to effect' those 

· characteristics·> which are" expected to result in favorable 

volume production.· Whole-..stand mode.ls have been. developed 

which predict some specified aggregate v6lurne of 'a stand .. for 

a given set of stand characteristics;. However, these models· 

are, no~ sufficient f.or many situations. Different size 

standards for· different products often neces:sitate· the 

prediction of volumes: of given portions o.f a stand, or of 

sets of trees o.f. specified sizes. · To meet. · these needs, 

models . have, been developed to predict either the, size 

(diameter and/or· height) distribution within a stand or the 

sizes· of· individual trees in the·. stand for< given . sets··. of 

stand characteristics~ Logically-, the growth components in 

these. model.s should mimic the underlying growth process as 

closely as· poss;Lble. Additionally it is sometimes des;i.rable 

to incluoe <a: sto.cha:stic element in growth mod.els ... However, 

in nearly· all growth and. yield mod.els the. mechani:sm for· 



generating ···diameter or basal area . · growth is ei the:r:· 

or implicitly empirically constructed~. ·explicitly 

AdditionaLI.y, in. size-distribution models, often no 
. . 

allowance. is made· for a stochastic element. Well"'."defined 

growth functions, from a biological standpoint, provide. some 

assurance that the· growth equations .·. in individual tree S·ize 

. or size· distribution mode:ls have· desirable properties. An 

individual tree size model developed along these lines can 

be made · stochastic: by . attaching a random variable . to the: 

predicted size, · as is conventionally.· done .. This is.valid 

because of the.· Iarqe number of ihdiV.iduaL . tree· sizes 

ordinariliy predicted. . . !n size distribution models,' .where 

only a. limited number of size cJ.,asses. are' projected• thr.ough 
. ' . 

time.·, this method is: not practical. and· an alternative. method 
"' I, 

Of, . introducing random Variability into these ' models. · is 

needed. 

Priority should be placed .. on modeling d±a.weter o:t: basal' 

a·rea growth because this . is: the· single most important tree · 

··dimension from a utilizati.on standpoint.. Heights .. may then 
. . . . 

be.predicted.from diameters using· one· of the commoh ·height:... 

diameter curves. 

1.2 OBJECTIVES. 

The objectives of this· study were: 
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. · 1. To . devedop an. individual . tree growth function, 
bas~d on the Chapman-Richards curve, in. which the. 
parameters of the· ¢urve are: modelled as functions 
of tree and stand variables, . and app·ly the 
function · to basal .area growth of loblolly pine· 
~e-~ . 

. . .. 

2·~ To, compare the·. results of the· model developed . 
unde·r objective (T) . to· those obtained from· a · 
simpler linear· model of. basal. area. growth · on an 
independent data set. 

3. To develop and: apply a stochastic model· to predict 
basal area distributions:,··· .based on . the the 

· ·· Chaprrian.;..Richards curve, in· which the· parameters of. 
th.e curve are considered,' to be' dependent random 
variables .. 

4:. To: study various height-diameter· curves in order-. 
to: determine which is the most appropriate for the·. 
data set util.ized, and apply this. curve as part o;f 
the· model developed in accord lefith objective (2) •. 



Chapter 2 

REVIE;Wc QE" TE:E LITERATURE 

2:~.1. IN01V1DUAt TREE MOOE;J:.S 

Model.swhich describe the. growth of individual trees 

have generally been divided into two categories: distance--

independent and distan:ce-depe.ndent (Munro, 1974)~ In the 

former., the· spatial. ·. coordinates. of·· the· trees are: not 

reql.lired,. ·and the m~asure of' competition included does not· 

utilize· inte.r-tree distances, In the·se. modeJ.s: tree growth 

is simulated either on an individual stem basis, or by size 

classes. Thus some·· of thes.e mo¢!.els actually yi.eld. only size' 

distributions, · while' others yi.eld. individual tr.ee sizes .• · 
. . 

Stochastic Variation. has .been included in ·size-class: 

dist:i:ibut±on · mode.ls- through a Markov: .·Chain· approach ( se~ 

Section 2~.6). A: stochastic element may be incorporated into 

models ·· which predict individual. tree sizes; whether 

distance-dependent . or distance-·independent, by ·adding, a 

random variable to predicted tree sizes (see.Section'2.6). 

No. unif.arm structure has been adhered to in the 

development of distance-independent model,s,· so it is 

dif ficu1t to make any general statements concerning: their 
. . 

. content (Daniels: and Burkhart, 1975). Examples. of distance-· 

independent ,models, may be found in Goulding· ( 1972 L Stage 

( 1973),. Dal~: (1975), or Bruner and Moser ( 1973). 



Although. the· detail varies f rorn model to model; 

di.stance....,depe.ndent models. deyeloped in· the .·past: .. have: 

followed• asimilar overall structure. 
. . . . ' . 

individual stem:>.growth ·. in height and diameter' · is predicted: 

via functions of site quality and 'the stemts current size 

and ·competitive status. The competition measure. is 

generally a function of the stem's. size in. relatio.n to the· 

sizes·· of and dtstances to .. ··its. nei.ghbors. Thus· the spatial. 

location.. of each. stem is. required. Distance.-dependent 

m'.odels generally provide more' detaiied•information about. 

individual tree growth than distance~independent modEds~ 

However, distance-dependent models are also. more experi:s·ive 

ta deve·lop and employ and: have· more· stringent data'. 

requirements than distance-independent mqdels.. . Examples.: of 

distance-dependent mode·ls may be. ·found in Newnham and Smith 
. . 

fl.964), B.elTa ·(1970) i Hatch (1971), Arney. ( 1972.), ' Ek and 

M,onserud. ( 1974}, Mi.tchell ( 1975), Daniels and Burkha.rt · 

( 1975 ) I \ and Danie ls et al~ . ( 197 9,) . Dai+iels and Burkhart 

( 1975 t provide a: thorough review: of. the literature, pertinent: 

·to distance,..dependent models.~ 
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2.2 DIAMETER-DISTRIBUTION MODELS 

Diameter distribution models represent a major class of 

growth and yield models fo.r predicting size distributions. 

These models are based upon characterization of the diameter 

distribution present in a stand at a given point in time 

with a probability density function (p.d.f.). Typically, a 

p.d.£. is selected and fit to the diameter distributions 

observed in sample data. The estimates of the parameters of 

the distribution are · then regressed upon stand-level 

variables (e.g. site index, number of trees per acre, age). 

The diameter distribution may then be predicted for any 

given set of stand characteristics. 

are ordinarily used to· estimate the 

trees of given diameter classes 

Height-diaTtteter curves 

mean total height of 

growing under given 

conditions. With. estimates of the total number of trees 

present, the relative frequency of each diameter class 

(obtained from the predicted p. d. f.. ) , and mean total height 

per diameter class, it is possible to estimate volume for 

any portion of the stand. Diameter distribution models do 

not ordinarily include a stochastic component. 

These models differ chiefly in the p.d.f. used. When 

the method was first developed, the beta distribution was 

predominantly used (Clutter and Bennett, 1965). More 

:r;ecently the Weibull distribution has been used (Bailey and 
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Delli 1973) .. - Some limited use; ha.s· ·- been made of the -

Johnson's SB distribution <( Hafley and Schreuder, 1977). 

The_ primary difficulty-_ in the · impl'ementation of_ --th.ese 

models-, regardless of- p. d .. f:., has. been. predicti.on. -- of the 

para.IIle.ter.s: of the- densi.ty· functipri.~- -- The- prediction models 

employed.have generally fit the observed data poorly. 'I'o 

circumvent this problem a -- new technique of predicting 

quantities:: 'which -are- -functions' - of- - the moments of the-. 

di stribu ti.ans {e'. g. quadratic mean di·ameter) and then 

solving· back for the.parameters has recentlybeen developed 

(Matney and Sullivan, in press; Hyink; in, press) - This 

approach is still too_ new: f.or any general conclusions to Joe -

drawn. as:- to its utili.ty-.. 

The major dia.IIleter distribution models developed---- for --

loblolly pine (Pinus - taeda, L •. ) thus_ far may -- be f.01.lnd: in 

Lenhart apci: Clutter (1971); Lenhart (1972), Smalley and: 

Bailey (1974}, Burkhart and Strub ( 1974), and-. Feduccia et 

. al.. (_1979.) . 

- 4-~3 - :DIAMETER AND BASAL-AREA GROW':r,H 

To date, individual tree diameter or basal area. growth 

functions -- have generally been empirical, in nature. One 

·- _ commori c:i:Pt:>roach (Daniels and: Burkhart, 1975 or Stage, 1973 )" 

llas beeri to derive an empirical regression ·- equation 
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describing diameter growth of open-grown trees. This 

then reduced according to an index of quantity is 

competition. This methodology is based on the premise that 

for a given age and site· quality, maximum diameter increment 

is obtained in the absence of competition. It is a long 

established fact that competition in the form of increased 

density results in reduced diameter increment. In fact, 

this is the basis for the common practice of thinning. 

Others {Lohrey, 1974; Jackson and Ure, 1964; Alemdag, 

1978; Newnham and Mucha, 1971) have developed empirical 

linear models to predict increment directly, using a measure 

of. competition as an independent variable. Increment has 

also been predicted directly via nonlinear equations (Alder, 

1979; Hahn and Leary, 1979; Daniels,. 1981). Still others 

have developed linear regressions to predict the logarithm 

of diameter increment, adjusted for climatic factors 

(Errikson, 19_78). 

Bailey (1980) proposed another type of diameter 

increment model. He derived the increment equation implied 

by use of growth and yield models based on diameter 

distributions. As previously discussed, in these models the 

current diameter distribution is characterized by a 

probability density function (p.d.f. ), e.g., the beta or 

Weibull, and then the parameters of the distribution are 



projected· through t.ime., Thus, .once an initial p.d.f. is, 

selected,. · . the diameter distributi.on is forced. to ·conform to 

that .p. d.,f"' for the duration of the project:ion. · The· 
. . . . 

main~ainan~e of. a given p.d.f. implies a.transformation of 

diameters ~through time:, arid Bailey· identified. the 

transformations. and resulting. implicit growth functi.ons 

which corre.spond. to most of the commonly used p .d. £. 's. E'er 

example, . Bai.ley .s!J,owed.. that use·· of the, Weibull p .. d. f. 

implies a" growth function of the form 

where::· W = size 
t = time 
e =· bas~ bf natural logarithms 

· b, k · = arbitrary cons tan ts 
A = initial size (at tinie zero)·., 0 , , , 

This; is· ·a· specific . case of a generalized ·growth. function 

pres·ented by Prodan (19$8, · pp. 310}; how.ever, Prodan· did' not 

investigate the properties of thiS'. curve. 

implied. by:.this. model. ii;;• given. by 
. 'd>.T b k 

d~···=· Ae t .. bktk-l. - Wbktk.-l· 

' The growt}i. ' ra:te 

Obviously,: b arid k must be of· the same sign in order .for 

increment to be positive. .If. b and k are negative, the . 
, , 

c,urve de~reases from time zero, reaches a minimum·, and then' 

increases· an¢L is asymptotic at A 0 , the iriitial size•. This 

is o.bviously undesirable. from a biological point of view. 
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Bailey applied the model a.nd computed estimates for b and k 

which were both positive, a condition which implies 

uninterrupted exponential growth. 

2.4 HEIGHT-DIAMETER/BASAL AREA CURVES 

Foresters have long known that there is correlation 

between diameter (or basal area) and height of individual 

stems in even-aged stands. Thus it is common to predict 

mean total tree height from diameter or basal area. 

Numerous curve forms have been reported, and the most common 

are presented along with their apparent authors in Table 1. 

The origin o~ model 2 is unclear. Models 6 and 7 are 

modifications of models 5 and 4 respectively, designed to 

take into account that a tree has no d.b.h. (measured at 4.5 

feet.above ground) until it reaches 4.5 feet in height. 

Curtis (1967) conducted a comprehensive study of the 

performance of many different height-diameter/basal area 

curves in second-growth Douglas-fir (Pseudotsuga menziesii, 

(Mi.rb.) Franco). He ranked the various models based on 

Furnival's index of fit (Furnival, 1961) and found that with 

the exception of models 5 and 6, all of the models presented 

in. Table 1 performed well. Based primarily upon ease of 

application, he recommended the use of models 3 and 4. 

However, he cautioned against the use of model 3 with data 
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Table I. Common height-dis.meter (basal area) curves. 

D.,z: .. l .. H'=a +1:rD'+c. 

2:~ · H = a.+ b (l/D) +· c (l/Dz) 

3- ff = a: + b lOg(D) 
·. . 

4.~. 1og(H) = a + h (1/D) 

5 • . log(H} =,a· + b log (D} 

&.. lo.g{H.-4; 5) = a + b· log{D) 

. T .. log.(R-4:;.5) =· a + b (l/D) 

8' .. Ii'= 4.5 + h (1 - e:-aD) 

*' H =, total tree height. 
D =· dbh .. 

. . 

Author(s} 

T;t'.orey 1932 

Henricksen 19.50 

Michailoff. 1943 

Stoffels. and Van Soest 1953 

--··· 
Meyer 1940 

e· = base of nattlt'al logarithms. 
a~.· bi~, c.""' constants to be estimated which var:y from .. ·. 

curve to. cut.ve. 
h = asymptote of (H-4 .• 5). 
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from young ages, since it might predict negative heights for 

small basal areas. 

Ek (1973) studied the performance of most of the common 

height-diameter/basal area curves in cases where the sample 

sizes were small (i.e., 'less than or equal to 10). From a 

population of 600 trees, random and systematic samples were 

drawn of size 3, 5, 

selection P:t'.Ocedure, 

andlO. For each sample size and 

coefficients for each of the height 

equations were computed. Using these coefficients, total 

height was predicted for every tree in the population. The 

height models were then evaluated on the basis of bias and 

precision. Ek concluded that models 3. and 4 were among the 

better height predictors for small sample sizes., but that 

model 3 had a tendency to predict negative heights for small 

stems. Models 5 and 6 were not included in Ek's study. 

Model 5 is based on the allometric relationship 

H = aDb 

and has been used by Stage (1975), Stout ( 1973), 

Greenhill (1881) (as reported by Stout (1973)). 

and 

The 

allometri.c relationship between height and diameter was 

studied by Stage ( 1975) and Pienaar and Turnbull ( 1973) and. 

determined to be satisfactory for Western U.S. coniferous 

species and Norway spruce (Picea abies, ( L. ) Karst.), 

respectively. Stout (1973) recommended that this model be 
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modified to take into account that the origin should be 4 . .5 

feet in height if used with data. from young trees. 

Model 4 has been widely applied in studies of southern 

pines (Burkhart and Strub, 1974; Matney and Sullivan, in 

press; Daniels, 1981). Lenhart (1972), Lenhart and Clutter 

(1971), Smalley and Bailey (1974) and Feduccia et al. (1979) 

have all used modifications of this model. The reasons for 

this model's popularity appear to be four-fold: first, it is 

easy to apply; second, it yields an upper asymptote for 

height; third, it cannot predict negative heights; and 

fourth, it has performed adequately in the aforementioned 

studies. Note that regarding the first reason, all the 

models in. Table 1 are easy to apply. Regarding the second, 

if diameter and height are predicted together by a system of 

equations and if the diameter model is asymptotic over-time, 

then implicitly all the height models in Table 1 are 

asymptotic over time. 

Model 8, presented. by Meyer(1940) is essentially the 

monomolecular growth function, with the dependent variable 

being height above 4.5 feet and the independent variable 

being diameter. 

2.5 CHAPMAN-RICHARDS GENERALIZED GROWTH FUNCTION 
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As stated in the introduction, the component growth 

functions in growth and yield. models should mimic biological 

growth as closely as possible. This may be accomplished by 

using a biological growth function as a base, and 

constructing the tree growth function upon this base. In 

the last century or so, many mathematical functions have 

been developed and employed for the purpose of describing 

the growth of an organism.. Richards ( 1969} performed 

extensive analyses of most of the common functions. Prodan 

(1968), Turnbull (1963) and Grosenbaugh (1965) have studied 

many of the same functions as they relate to forestry 

applications. These functions differ primarily in the 

shapes they may assume. Several of the more common 

functions are shown in Figure 1 

extreme cases are the exponential 

and Table 

and the 

2. The two 

monomolecular. 

The exponential functi.on has no inflection point or upper 

asymptote, and implies a growth rate which is proportional 

to current size and a. linearly increasing function through 

time. The monomolecular function also lacks an i.nflection 

point. In this function, the growth rate is a constant 

proportion of growth yet to be made, i.e., the difference 

between the asymptote and current size. The growth rate is 

thus a linearly decreasing function through time. The 

remaining growth curves all fall somewhere between the 
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exponential and: monomolecular forms. Some· functions., such 

as the logistic or Backman, have an i.nflection point at: size 
' ' ' 

A/2, where A. is· the, upper asymptote~ ·and are symme:tric about 

this point (Prodan, 1968;· Richards,•• 1959)., Other functio.ns:,. 
. . ~ 

such as the Gompertz. {Richards, 1959} or Von. Bertalan.ffy· .. 
'. ' 

(Von Bertalanffy, 1957), :•· have. inflection points below the 

point. A/2 and are asymmetric. 

Von Bertal'anffy' s growth function· was based upon the-

· allornetric relationship! 

where S represents surf.ace area, V is volume or· weight~ ancL. 

l::.r and. m ar,e constants:.:' Since the cube root of volume has: a' 

linear" dimension, ·the· :squara of the cube root has the same-
' ' dimension as surface· area.· Thus. m in the above relationship> 

should have' a. val:ue of 2/3. Von Bertalanffy· ('1957) 
. . · .. · . 

hypo•thesized that· anabolism (constructive metabolism) 'is 
' ' 

pz:oportional. to surface area,. while· catabolism (destructive 

metabolism} is· proportional to volume. Potential volume: 
' . 

growth · rate was · then defined as. the difference · between 

anabolism and· catabolism1 and w:as expressed. as:. 

Potential Volume Growth Rate = aVm..,;. bV. 

Studie$ of various aquatic and terrestrial organisms led Vo.n 

Bertalahffy to .conclude that voTume growth of many organisms 

conformed to this equation1 while" for others the1 value o! m-
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Figure L Several common mathematical models £or describing biological 
growth (A = asymptote; arrow marks location of inflection 
point. Adapted from Turnbull, 1963). 
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varied between. 2/3 and 1.. When m=2/3, the cumulative growth 

curve: is asymmetrical. and sigmoid, with. the inflection point 

', occurring: ~t about 1/3' of final volume. (see' Figure 1). When 

m=l.~ 'the ·.growth· rate i.s a· constant proportion of cuz-rent 

size. and. growth ·is exponenti.al. 

Chapman ( 1961) and. Richards ( 1959·, l.969) both studied 

theVon-Bertalanffy curve and suggested it be generalized 

. through repararneterization to the. fol.lowing:: form:· 

W ;,.. A(l - be·:--kt) [l/ (I~m)] 

if m:< l; p> 0 
m> 1, h< 0 

where W is size, A ie the upper asymptote, t is time, e i,sc, 

the base.· of the natural logarithms, and b, . k', · and; m· are· 

constant parameters;. Richards (1959} showed. that. in this·· 
. . . . 

·form m' was· really a shape. parameter.. ·By ··allowing: m 'to 

as.sume~ any pqsitive value, Richards. showed that the curve: 

was able to ta]:te on a great many forms.. In particular, when; 

· m=o, · the; curve· reduces to the monomolecular function; when · · 

m=2/3, the~ Von Bertalanffy; when rn=l, the Gompertz ·(actually 

when m=l the, differential equation. has no solution, but 

·Richards. · (1959) has· ·shown that the solution approaches the 

Gomper:t:z cuz-ve as m approaches l}; when m=2, the- logisti.c; 

.and as: m appoach~s infin,ity, the exponential. Thus' as m .· . ·, 

increase·s, · the inflection point· moves outward. from · the 
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origin ( rn=O) to infinity ( m infinite) . The remaining 

parameters of the curve are A, k, and b. A is the asymptote 

or final size. Parameter b reflects the· choice of origin 

and is biologically meaningless (Richards, 1959). The final 

parameter, k, is a rate parameter. It measures the rate of 

increase of some quantity, but what this quantity is is 

conditional upon the value of m (Richards, 1959). This 

generalized curve has become known by various. names, among 

them the Chapman-Richards (C-R) curve, the Richards curve, 

and the generalized Von Bertalanffy curve. Following the 

publication of the C-R curve, few new growth curves have 

been developed. 

The C-R model has been applied in studies of forest 

stand development by Turnbull (1963), Pienaar (1965), Moser 

(1967), Pienaar and Turnbull {1973) and Rose and Chen 

(1977). Pienaar and Turnbull (1973) also demonstrated the 

adequacy of the C-R curve for describing individual tree 

growth in volume, basal area, and height for Norway spruce 

trees grown in Austria. The data used by Pienaar and 

Turnbull (1973) were taken from Assman (1970), who took it 

from Guttenburg (1915). Neither Assman. (1970) nor Pienaar 

and Turnbull (1973) describe the conditions of the stands in 

which the stems were grown. However, since Guttman's (1915) 

study included stems over 100 years of age, based upon the 
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silvics of the species and the history of European forestry, 

it can be assumed the stands were natural and even-aged. 

Finally, the C-R curve has been u·sed to describe height 

growth in connection with site index studies (Beck, 1971; 

Carmean, 1972; 

Tennent, 1977). 

Graney and Burkhart, 1973; Burkhart and 

2.6 STOCHASTIC GROWTH FUNCTIONS 

It has long been recognized that a deterministic growth 

methodology is not completely appropriate for an organism 

situated in a dynamic environment. Forest scientists have 

attempted to model unaccounted for variability by 

incorporating a random element into growth predictions. 

Three different methods have been employed to accomplish 

this, and at least one. other, as yet untried, method exists. 

The conventional method of generating a random growth 

increment or random cumulative size (depending on whether 

the investi.gator uses a differential or integral equation) 

in models which predict individual tree sizes has been to 

develop an equation to predict the mean growth of an 

individual stern possessing a given set of characteristics. 

A normally distributed random deviate is then added to the 

predicted quantity. The variance of the random component is 

taken to be equal to the Mean Square Error (MSE) resulting 
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from; the fitting- of the growth fuction to observ.ed data 

- (Daniels.- and Burkhart, 1975) .. This approach has generally 

been foundto perform.satisfactoril.y, and is. in agreement 

with ordina:ry regression - theory.. In. this theory it: is· 

_ usually -- assumed. that. the- - conditional p. d. f. of the 

dependent variable is normal, that the condi.ti.onal vari_arice-

is- homogeneous and well estimated by the MSE, __ and that. the 

- model is correct (thus· the _random. daviate added ·to- predicted 

growth. has. mean zero) . 

Another . method for - incorporating· stochastic -

variability i.nto growth predictions has. been utilization oe -

.- Markov- Chain theory (Buongiorn.o and .. Michie, 1980; _ Peden et 

a-1~, 1973r Bruner and Mose.r, 1973). This approach has been 

applied excI\l.sively in. distance-independent models 

describing:: growth in uneven-aged. stands. In general,·. the 

probability of · a·, tree in. the- i-th state {0.iameter· class) 

moving up 0 or more states, dying, being ·harvested, or 

achieving some other· specified. -condition du;'ihg.~ a. speci,fed 

time: interval is estimated from an exi.sting'.. data set. - '!'hese 

probabiiiti.es are then applied across an. existing. diameter 

distribution in the form of- a. transition matrix, thus 

determining the predicted distribution at the- end.of the. 

interval. Bruner and Moser ( 1973) provide an $,{cellent 

description '<:)f the mechanics: of the method. This approach 
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. . . ' . ' . 

seems to work well. £or short term predictions, ·but asthe 

length of the time·. interval is. increased the accuracy of 

this method declines (Bruner ancl Moser·, I973). Two cruc,i!al · 

assumptions: are .. rou.tiriely made. in t:his· approa:cJ::t. . One• is· the· 

stationarity assumption which·. requires the · transition 

probabilities· to be static. The·· other · is the Markov 

·· assurnpti.C)n which .. requires th:at the• . system have·. no memory, 

i.e.;, f'µture <ievelopment ciepends only •. on the present state· 

· of. th.e: system .. Both.· of· these ·assumptions have been 

challenged on biological grounds (Bruner and Moser, 1973) .. 

The th.irdand most recent methodof' stochastic· growth 

·prediction·· .has been the· use of stochastic differential · 
. ''/' . equati.ons, ·· (Garcia·,. 1979 >~ A stochastic · differential 

equation is• basica-lly ·an. ordinary differential equation'.wi.th ·. 

a random component: added ·on. The solution to a stochastic 

differential equation. is .··not a point: esti±na~e but rather'. a 

distribution. .. In ord~r. to make the·· so'lution mathematically 
' ' 

tractable~ one must ordinarily make two assumptions. Eirst 

one. must assume that the basic underlying model is linear. 

Second, ' one ordinarily aSS1lmes that the random: component is 

a Weiner process . The relevant property· of this procees is 

. that succesive. increments are assumed. t.o be: independent and 

normally ·. distibuted (Hoel et . al. , . 1972.} .• In. a growth 

context,. the. ~nderlying model is generally· }:)el.ieved. · to Joe 
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non-linear, and suc:cessive increments are known to be highly 

correlated .. Furthermore, since . increments cannot be · 
. , .· .·. . _. 

negatiye;, they cannot be· truly normally distributed. 

·. · Garc:f a: · ( 1979} adopted the· C-R· growth curve. t'o 
. . . 

st~chastically mod~l height development. He·· made. a 

t.ransformati.on to make the· equation linear, and,he accepted 

the· Weinerr process.. With this methodology he- developed site:· 

index.curves; for:tadiata pine (Pinus radiata, D.Don} that 

compared ·favorably· with those· developed · by· Burkhart . and 

Tennent (1977) .• However,. Burkhart, and Tennent used a much 

simpler methodology~ 

A. fourth method of· stochastic growth prediction exists·, 

although ·it has not yet been, attempted iri fo.restry. · In this 

met;hod the parameters of' the· growth curve are considered to, 

be random variables;. 

sizeable quantity 

rn the· case of linear regression·,, ·· a: 

of literat1.lre exists on esti:rnat·ing 

sto.chasti c parameters· (Rao,. 19 65) ~ ·These .me·thods generally 

assume a known error structure. Unfortunately, ·in the case 

of theo growth of .individual organisms, the.· models ar.e ·. 

generally nonlinear ami the error structure is generally 

unknown. Krause et al. (i967) utilized a three parameter 

logistic ···growth: function in a study on the growth of 

_chickens. They assumed the parameters to be stochastic and 

independent. They were· then able to solve for the, joint 
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distribution of the parameters. However, Karish (1973) has 

shown that when the parameters of a nonlinear growth 

function are estimated by nonlinear least squares, a high 

degree of correlation among the estimates is generally 

found. Thus the independence assumption. of Krause et al. 

(1967) is suspect. Little other work along these lines has 

been reported (Goldstein, 1979). 
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DATA,. 

Data used. .in this stuc;iy came. from: the. Mutual. 

Competition· Study at the North · Louisiana: Hill Farm 

Experiment Stat.ion, Homer, Louisiana. The entire tract on 

· which.the· experiment .. is located. is classified as site index.· 

68'., base> age 2s: year.s. for loblolly pine. ·.However, the 

height data indicate that ·.site: quality 

uniform·~ The soi.ls are predominantly 

is.·. not quite .· ·: so 

fine. sandy loams. 

Prior to implementation of the experiment. the: area was an 

. abanc;ioned crop field. Before. planting·, the vegetation on, 

. the area· was cut and the· stumps burned .. 

The. area was planted wi.th loblolly pine in 6. x" 6 ·foot 

spacing:: in Fepruary, 1958. Twenty 0.25-acre plots· were 

established and segregated into four blocks or replications· 

based on height in 1962'. However, no significant 

differences in mean height could be detected among the four 

replications<. · In 1962, four plots · (one front each 

replication)' were· thinned. to 1000 TPA (trees per acre:). The 

remaining: 16. plots were thinned to 600 TPA in the: same year. 

When a .I inch dif"ference in r,nean annual diameter growth was 

. c;ietected between· the plots thinned to 1000 TPA · and those 

thinnedto.600 TPA, 12·tfour on each replication} plots: were 

25 
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thinned to 300 TPA. The same procedure was followed for the 

treatments of 200 and 100 TPA. The process was completed in 

1965. Hereafter, the plots will be referred to by a two 

digit number. The first number will 

replication and the second the treatment. 

code is: 

1. 1000 TPA 

2. 600 TPA 

3. 300 TPA 

4. 200 TPA 

5. 100 TPA. 

Thus, for example, plot 23 is the plot 

replication which was thinned. to 300 TPA .. 

identify the 

The treatment 

on the second 

The thinnings were combination selection-spacing 

thinnings, designed to leave high quality residual stems in 

as uniform a. spacing pattern as possible. It may be 

expected that this resulted in higher quality residual 

stands at the lower densities than at the higher densities. 

This is a confounding factor which should be taken into 

consideration when comparing growth responses between plots 

thinned to different residual densities. 

Measurements were made in nine years: 1962, 1963, 1964, 

1965, 1966, 1967, 1970, 1977, and 1978. Whenever a plot was 

measured, the diameter of every tree on the plot was 
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recorded to the nearest .01 inch. Exceptions to the 

measurement schedule were as follows: Plot 11 was not 

measured in 1964 or 1978. Plots 21, 31, and 41 were not 

measured in 1964. Plots 15, 32, 43, and 44 were not 

measured in 1978. Thus, although the maximum age from 

planting in the data set is 21 years, the maximum ag~ at 

which all plots were measured is 20 years. Heights of every 

tree on each plot were measured to the nearest .1 foot in 

1962 and 1963. Heights were also measured for every tree in 

1978 if the plot was measured that year, for every tree on 

plots thinned to 300 or fewer TPA in 1977, and for every 

tree on plots thinned to 100 TPA each year except 1964 (and 

1978 for plot 15). Whenever a plot was measured and not all 

heights were recorded, a sample of trees was measured for 

heights. The. samples were subjectively selected so as to be 

representative of diameter distribution on the plot. No 

well-defined sampling procedure was followed. 

Finally, the spatial coordinates of every tree left 

after completion of the thinning treatments were recorded in 

1977 so it is possible to construct individual tree 

competition indices based on 

relative heights. 

inter-tree distances and 
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METHODS 

4.1 HEIGHT-DIAMETER/BASAL AREA CURVES 

As mentioned in the Literature Review there are many 

published functions relating total height of an individual 

stem to its diameter or basal a-rea. Most of them seem to 

perform fai.rly well (Curtis, 1967), and thus there does not 

appear to be a need to search for a new, probably more 

complex function. It appears that time would be better 

spent identifying which of the existing models is the most 

appropriate for a given data set. Consequently, five of the 

more common height-diameter/basal area c.urves were studied 

to determine which performed best on the Hill Farm data. 

The 'best' model was then incorporated into the Parameter 

Distribution model (see next section). 

The f.ive models selected for comparison were: 

1. H = a + b log(BA) 

2. log(H) = a + b log(BA) 

3. log(H-4.5) - a + b log(BA) 

4~ log(H) = a + b (l/D) 

5. log(H-4.5) = a + b (l/D) 

where H is total height, D is diameter at breast height 

{d.b.h.), BA is basal area, a and bare constants which vary 

from model to model, and the logarithms are to base e. 

28 
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Models 1 and. 4 are those suggested for use by Curtis 

(1967) whereas 2 is the allometric model used by Stage 

(1975) and Stout (1973). Models 3 ~nd 5 are modifications 

of 2 and 4 designed to take into account the fact that 

individual trees have no d.b.h. or basal area until they 
;-

reach. 4.5 feet in height. 

The models were. compared on the first three 

replications within the data set, and the fourth replication 

was reserved for applying the height models within the 

Parameter Distribution model. On the first three 

replications, each model was fit by ordinary least squares 

to all the height-diameter/basal area pairs on each plot at 

each measurement. This resulted in a total of 105 plot~age 

combinations. For each combination the five models were 

ranked in terms of squared multiple correlation coefficient 

{R2 ), PRESS, and SUMABS. PRESS, an acronym for prediction 

sum.of squares, gives an indication of a model's predictive 

ability. It is calculated by removing one of the n 

observations at a time from the data set and calculating the 

regression coefficients based on the (n-1) remaining 

observations. Values of the independent variables for the 

removed observation are inserted into the calculated 

regression and an estimate of the dependent variable is 

computed. Differences between the estimate and the observed 

value are then squared and summed over n, i.e., 
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A. 
·.PRESS= I(Yi-Y1) 2 

where.: Yi= the· i-th observation on. the ·dependent .variable 
,..., 
Yi :::: the estimator of E'(Yi} excluding· the i-th 

observation 

n - the· number of observations in th& data: set. 

The model( s). which yield the lowest PRESS value ( s) should be 

those. which · would predict the best on. an independent data: 

set .. ·· .SUMABS> i.s. defined here as the sum. of the> absolute 

· PRESS residuals, Le·. , 

where: the variables. remain as defined above. Thus SUMABS is · 

another useful prediction orien.ted. tool. SI.JMABS is: not 

constrained to give· the same results, as PRESS, so both 

· .. statistics. were 1.lsed. E'or the· models which predict· Iog(H:) 

or log(H_;4. s.y the: three· statistics (R:z:,. P~ESS, · .. and SfilJLll.BS) 

had: to be transformed .·· since height is: the vari.abl.e· of 

interest, not its logarithm~ The value· of R2 was determined 

forthe·loq(H) models as follows; 
/\ . .., -· 

Rz = {I(H'i -· H}2 I !(~ - H) 2} 

where: Ht =· total hei.ght of tree i . 

H = mean total tree height 

"' Hi. =· anti-log of· the predicted value of: the dependent .. . , 

variable for the ith observation on · the 

independent variable, i.e., 
A. A 
H:i ... exp(YiJ where Yi.=· log(Hi) 
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. . . 

For· log{H~4.S) ·model.Si Ri was computed in an analogous 

manner, .. except that 4. 5 feet was added to the p·redicted 
. . 

. value .. aft~r taking . ariti ,- logs ... 
"i • . 

. ·The> method: . applied in computing PRESS and: . SUMABS for· 

the logarithmic models. was.basically the.same as. that.for 

computing Rz 

the· data set, 

After the i-th observation was removeci from 

and· an estimate for the i-th independent · 

variable coniputed from. the (n-1) .·remaining observations, the 

resulting: value was. converted to height and. the difference 

between it and the actual observed height was computed. 

PRESS was th.en the sum 'of• the squared differences:, .and 

SUMABS the sum: of the absolute differences. 

Once the five .·models were· ·ranked in terms of Rz:i PRESS, 
' and SUMABS. for each plot.-age combination the ranks were 

summed over all 105 combinations, and the ''best' model. 

chosen based on the summed. ranks·. 

Using a procedure followed by Burkhart and Strub {1974} 

and. Matney and Sullivan (in press),. surrogate. regressio.ns 

were then. determined for the coefficients a andb. of the 

selected model~ These: surrogate. regressions involved only 

stand-level variables· .. The variables tested for inclusion 

in. each regression were: 

1. ·quadratic mean diameter 

2. basal area pel;' acre~ .. 
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3. thinning treatment 

4.. age since thinning treatment 

5. age since planting 

6. average height of dominants and codominants 

7 .. log of average height of dominants and codominants 

8. number of trees per acre 

9. log of number of trees per acre 

All logarithms were to the base e. Values of R2 were 

determined for every possible linear combination of the 

preceding variables for each dependent variable (a and b). 

The models which performed best. in terms of R2 were then 

tested using PRESS. Then after consideration of R2 , PRESS, 

SUMABS, and the sum of the PRESS residuals (SUMRES), a 

surrogate regression was selected for each of the two 

variables a.. and b. These were inserted into the overall 

height model. This was then fit to al.l the height-· 

diameter/basal area pairs on the first three replications at 

every measurement 

were designed 

characteristics. 

to 

time simultaneously, as the surrogates 

take into account changing stand 

The final fitted height model was then 

implemented within the Parameter Distribution model, as 

described in the next section. 
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4.2 PARAMETER DISTRIBUTION MODEL 

The fourth method of stochastic growth projection 

mentioned. in the Literature Review, that of considering the 

parameters of the. growth curve to be random variables, was 

used in constructing a model to predict . basal area 

distributions. This model is called the Parameter 

Distribution model. Because of its great flexibility, the 

C-R curve was adopted as the basic growth. function. The 

following form of the function was used: 

BA= A(l _ e-k(t-c))[l/(1-m)] 

where: BA = basal area 

A = asymptotic BA 

t = time 

k, c, m = constant parameters 

e = base of natural logarithms 

(1) 

In this form the curve is condi ti.oned such that BA=O when 

t=c. Thus c represents the time required for a seedling to 

reach 4.5 feet in height. A in (1) is the asymptotic basal 

area of the individual tree. The remaining two parameters, 

k and m, are the rate and shape parameters of the C-R curve 

respectively. 

The purpose of the Parameter Distribution model. was to 

produce estimated basal area and height distributions for 



34 

given sets of' stand characteristics .. ·The data; was split; 

into a fitting set and. a:. validation set. ·. The C-R curve was ·· 

!it to every stem in the fitting data:. set.. The: parameters A 
! • • . . 

and c .were fixed a:. priori, for reasons described below, 

J..eaving two.free. parameters, kand m. E'or each plot I a 

sampling distribution was then fit to the estimates of k, 

· and models developed to predict the· parameter;;· of the. 

·sampling distribution·. from stand: variables. A ·model was 

then developed· to predict m from k and stand· variables . 

.. Firtca;lly, an. existing survival curve was modified for use irt 

this model. To operate the model, the number of· trees 

present at a given point in time• is predicted from the· 

survival· curve. Next the, parameters of the sampling · 

distribution. for k are predicted. A k ·value· is: . then 

randomly selected: from this di st:t.ibu.tion for . each stern. 

predicted tdbe present on the· basis of the survival curve. 

For each kvalue, an m value is then· predicted~ With these 

two values, the.predicted basal.area of the tree'.· is then 

computed from the· C-R curve. Repeating this. proces.s· for 

ea.ch stem predicted·. to' be present results. in a predi.cted 

basal: area distribution. Additionally,. .a hei.ght '. is 

predicted for each stem~ using the .. fitted · height•basal area 
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curve•, resulting in. a predi.cted hei,ght di.stribution. 

Specifying A and c a .pridri. 

In:. order to- simpli£y the estimation process,. A and c 

were lix~d a priori~ A was. fixed because the .. data: set used 

included· ages only up to21 years, and it would have been 

diffic;ult to estimate the asymptoti.c final basal area.. The 

parameter c: was fixed because the time· required . for 

individual·. stems to reach 4.5 feet in .. height on similar 

sites (such as those in the Hill E'armdata set) should be 

essentially constant. Pienaar and Turnbull (1973) made a 

similar assumpti.on. 

The value for .A was chose:i:1 by searchinq the· literature 

for the largest .recorded basal area for a lob lolly pine. · 

Based on the Ame:t;'.ican Forestry Association.' s register of big: · 

t:i:ees: (Pardo, 1973) the largest basal area for· loblolly pine: 

is approximately 21. 9 . square feet. On .. the asumptioz: that 
. . 

the asymptotic basal area· should. be S·lightly larger than: the .. · 

largest recorded, this. fiqUre· was. i.:hcreased to 22. 3 square 

feet (approx. 64- in. d.b.h. h I.t may be argued that many 

trees would never reach th.is asymptote, };:mt would die fi:i:st. 

A counter-argument may be that these stems: are, .. killed by 

factors .external to· the growth·· processes of· the s.tems, and;. 

that if ·the~ trees .were to live forever:, they would 
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eventually achieve this .. asymptotic size. At any rate, 

fixing.A simplifJedthe.estimation process considerably. 

The· value. of c was chosen by randomly selectingc IS 

trees from the· data set a."'ld: fitting equation ( 1) . :t:o them: 

with A fixed, but c, k, and m estimated from the data by 

nonlinear least squares .. ·. The nonlinear least squares 

procedure used at this point and for the remainder of this, 

study .· wa.sc that · of Marquardt. This procedure generally .. 

performs .better than alternative procedures when thee· 

parameters are highly correlated·. (SAS Institute, 1979L as. 

they generally are in growth· curves (Kar:ish:, .1973}-

Estimates for c varied from . T to 6.3,. with 3 being<: the 

approximate' median .. It was. felt tl:iat 3 year:s: · fo1,lowing 

planting .represented a reai:ronable estimate· for c, ·and c was 

fixed at 3 for the remainder of· the study .. 

4.2.2 Sensitivity analysis for A 

Since the choice of A wa.s arbitrary; it was the opinion · 

of the author that the sensitivity 'of the C-R curve to: A 
. . 

shouldbe investigated. For this purpose, A was fi.xed at 

18.96 sq. ft. (15%. below 22.3), 22.3 sq. ft., and 25.65 sq. 

ft" ( 15% above 2.2 ~ 3} and k and m were. estimated ( c=3. yrs.) 

for four trees randomly selected from each of the ·five 

thinningtreatments on the third replication. 
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estimates'· the basal areas of the trees were computed at age 

20 and 50 for each of the three values of A. These sizes 

are shown, along with the observed basal area at ag~ 20 in 

Table 3. The values for the three asymptotes are similar, 

suggesting that the curve is relatively insensitive to A. 

For each value of A, the curve seemed to slightly over-

predict the basal area at age 20 for the high densities 

(1000 and 600 TPA). However, in only one case was the over-

prediction greater than 10% of 

concluded that 22.3 sq. ft. 

the observed value. It was 

was an acceptable value for A, 

and this value was employed for the remainder of the study. 

The value of c was considered to be reasonable, 

therefore no sensitivity analysis was performed for this 

parameter. 

4.2.3 Estimation of k and m 

The next step was to fit equation (1) to individual 

trees on the first three replications of the data set (the 

fourth was reserved for validation purposes). Only trees 

with at least three measurements were included. However, 

preliminary fittings of equation (1) revealed a tendency, 

especially at the high densities, for m to either be 

estimated at 0 or for 0 to be included in the asymptotic 95% 

confidence intervals for m. In order to test whether m 
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Table 3... Ob·s~ried basal area at age 20 _and predicted basal area.s at 
ages 20 .and 50. with three .different asymptotes for four. 
individuctl loblolly pine trees from each thinning treatment . 
on. replication 3 in the Hill Farm· data.* · 

Predicted 
~inning Observed BA. Age 20 Age 50 
treatment · (ft2) at asym:etote asyinptote 

(tPA) age 20 18. 96· 22~3 25.65 18.96 22.3 .25.65 

1000 0~1650 . 0 .•. 1125 0 .. 1725. 0.1725 0.4730 0.47:36 .. 0.4740 
1000 0.1722 0.1850 0.1850 0.1850 0.507L 0.5078· ·o.so33.· 
1000 o. 4128. 0.4270 ·o.4271 o •. 4271 1.1573 1.1609 L1636 ·· 
1000 0 •. 1051 0.1352; Od352. 0.1352 0.3714: 0.3718 0.3721 

600 0~.3150 O.J434. 0~3435 0.3436 0~9343 o •. 9368 0.9387 
600 0.1475 0.1617 0.1617 0.1617 0.4436" o·.444.2· 0.4446 
600 0.3234 0.3356 0.3357 0.3357 0.9134- 0:9158 0.9176 
600 0.3490. o~.3858 o~ 3859 0.3860 1.0476 1.0509 1.0531 

·r . 

300 ·o •. 4516 .· 0.4687 0.4688 0.4688 1.2678 1.2722 1..2754 > 
300·· o. 6480. 0.6383 0.6383 0~6383 1.8015 1..8078 1.8124 
300 0.4922. 0 •. 4854 0.4854. 0.4854 1.5284. L.,.5341 L.5384: 
300 o~.5454 o.5741 0.5742· o .. 5742 1.5451 l.5516 1.5564 

200 0.4516 0.4465 0.4465 0~4465 I. 4932 1.4994 1.5042 
200 0.3068 o~ 3069~ .. 0.3069 o. 3069 0.8364 0.8382 0.8396 
200 .0.5786 0.5667 0.5667 0.5666 1.6876· 1.6936. 1.6980 
200 o~.7854, o. 7762. 0.7761. o. 7761 ·2.6954 2. 7178 2,;7349 

100 1.1946 1.1783 1 .. 1781 1.1780 4.1718 4.2288 4~2722 

100 1~1309' L 1053 ·. 1.1051 . 1.1049 4.2196 4.2838 ·. 4 •. 3332 
100 1.2767 1.2838. 1.28.37 1.2836 .3.5926· 3 •. 6198 3.6398 
100 o •. 7594 a.n2s 0.7725. o. 7724 2 .• 2180 2.2278 2.2351 

*' Basal area in square feet •. 
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might be set equal to 0, a preliminary fitting was performed 

using all the sterns on replica ti.on 3 only. The results of 

this fitting are shown in Table 4. Since the percent of 

cases where 0 was not included in the asymptotic 95% 

confidence intervals for rn was less than the conventional 

Type I error rate of . 05 for plots 31. and 32, it was decided 

to to set rn to 0 for densities 1000 and 600 TPA. When rn is 

fixed, equation. ( 1) may be transformed to 

(1-m) log[l - (BA/22.3) l = -k(t-c) (2) 

with k the unknown parameter. Equation (2) is a no-

intercept linear model and may be fit by ordinary least 

squares. Thus equation (2) was fit to individual trees on 

plots 11, 12, 21, 22, 31, and 32, while equation (1) was f.it 

by nonlinear least squares to all the sterns on plots 13, 14, 

15, 23, 24, 25, 33, 34, and 35. As with equation (1), only 

trees with at least three measurements were fit with 

equation (2). 

A justification for setting m, the shape parameter of 

the C-R curve, to 0 for the denser plots may be made on 

biological grounds. As m increases, the position of the 

inflection point moves upward from the origin (i.e., no 

inflection point) to infinity. When m=O, the growth rate is 

maximum at time zero and declines over time. When rn:>O, the 
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Table 4. · Mean estimated values: and percentag~ of cases in which zero 
was. not included. in a 95% confidence interval for·. the shape 

· parameter IIi of the Chapman-Richards growth cu;rve ~· by plot· 
for replication three of the Hill Farm data~ 

Percent Mean 
Plot n .cases· m 

31 247 4 •. 88' 0.0151 

32 150 4.6T 0.0114 

33 T3 16.00 0.0763 

34 50 66.00 0.1650 

3·5 24 75.00· o. 2778 
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growth rate increases· from time zero unti 1 the the time at 

• which. the.· inflection point occurs, and, then declines . 

.. may be. argued that in less dense stands a state of juvenile 

growth· exists during .. which the· i:ndividual tree grows at an 

increasing· rate;.. Th:i.s. stage cont.inues until; ·competition ·· 

(crown or rqot or both) or some other ecological phenomenon 

sets in; and then the growth rate begins to remain constant. 

or decline ... ln denser stand.s this juvenile·· state· either. 

does ·:not exist or terminates so early that it. is of no 

practical consequence. This logic appears to be. borne: out. 

by the means of the• estimated m values in Table· 4 .. A trend 

is·.· evident with·· the. means increa.sing with , decreasi.ng 

··.density~·· Only the means· of plots 31 and 32 violate this 

trend. It appears that the density at which this 

hypotheti.cal juvenile· growth rate is prolOnged into _a range 

of practical interest occurs somwhere between 600 and ·300 

TPA·. 

4.2.4. 
I 

Cha'rac:t;:erizing" the marginal .. distribution of k 

Following the fitting of. equations ( 1.) and (2) to. the 

stems on. the first three replications, the· marginal 

·distribution of k for e'ach plot was fit.by a p.d.f. Sine~· k 

must be.positive the choice· of candidate · distributions was 

linti ted to those- allowing only positive values. The three 
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candidates selected were the lognormal, · .·. Wei.bull, and % 
¢iistribUtions. ·· The; ·· p. ~::L f. 's of these·· three distributions 

are· shown in Table S. The lognorrnal wa~ chos,en. because many 

biological phenomena te_:p.d. to f"o11ow a lognorrnal distribution 

(Krause et al." 1967).. The Weibull ··and. SB were chosen: 

becauseof their familiarity to foresters. This familiarity· 

sterns from the: u·se of these two distributions in diameter 

distribution gi::owth and yield models (Bailey. and Dell, 1973; 

Hafley and Schreuder, 1977). 

Each: of' the three distributions 

estimated kvalues on each plot using; the method.of maximum 

likelihood. to estimate' the distributional parameters .. 

Maximum Iikeliho9d' estimators- ( MLE I s r. may ·. be shown to have 

many. desirable. statistical. properties (Bickel and Doksum, · 

19'77). 

The · MLE's~ for . the lognorrnaL distribution exist in 
closed form. ·The MLE.' s for the Weibull di:stribut:i;.on must, be 

found by an iterative procedure. B ;.R ~ zutter1 has written 
. '-

an extensive FORTRAN pro9rarn for the U. S .D .A. ·Forest Service 

which. computes MLE' s for the: Weibtill and:· this program was 

used in the current investigation. 

1L R. Zu.tter is a procurement forester for Buckeye Cellulose 
Corp.,. _Americus, GA. 
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Probability density functions· (p~ 4.f. 1's) for distributions 
selected as; candidates for the marginal distribution of k, 
the rate· parameter of the Ghapman--Richards growth curve •. 

Distribution p. d •. f. * , 

s , 
B f (x)= 

lognornial f (x)=' 

Weibull f (x)- { 

o ,A · . . . · -e: . 2 
(Z'IT)l/Z exp{ 4I y + o log r-+). .... ) I } (:x:-€) (€+/..-x) "€ x , 

' . g<x<g+/..; o>O; -oo<y<co; X>O;. -co<E;<CC> • 

o, elsewhere. 

' 1• (o) 'cip{-~f/.. + & log(x)Jz:}:., ~<)\<00 ; o>O; x>O. 
(2n--)l/2(x) . 

O, elsewhere .. 

{c/b) (x/b)c-l exI>[-(x/b)cl , x>O; b>O; c>O~ 

0, elsewhere~ 

* log,= logarithm to the base e. 
exp(x) = e raised to the power x. 
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The SB distribution has four parameters. If k is the 

·random variable, the four parameters are kmin, kmax, a,. and 

b. The parameter kmin is the minimumvalue.·of kpossible 
' ' 

and. kmax the: .maximum .. · The MLE's for this distribution must 

also· be salved for iteratively. However, iE kmin and kmax 

are knoW!l, ··then, ·conditional upon kmin and kmax, the MLE is 

for a. and. b. exist in closed form (Schreuder and Hafley, 

1977 )· .. In order .to avoid the iterative proce.ss of 

estimating the four parameters of. the SB simultaneously, 

kmin and. kmax were fixed. The·; e.stimates for k ranged from: 

a .000042 to• 0. 017. Thus O ·was deemed to be; a logical value 

for kmin_ Three values, 0~018, 0.02,. and0.022 weretried 

·for kmax .. Therefore· three· pairs of ·· MLE' s for a and h were 

found for each :plot. 

Next. the statisti.c D was calculated for each of the 

five candidate distri:Qutions for each plot. D is the 

maximum absolute difference between the hypothetical 

cumulative distribution. (e.g-. the Weibull) and the observed 

cumu.lati ve di str.ibuti on, i ~ e. , 

D = ma~ l Fn(k) - F{k) I 
k' 

where:: Fn is the observed cumulative distribution 

F is the hypot]:ieticaL cumulative· distribution. 

The values of D from the five distribution:s were then ranked;. 

for each,·. plot1 · and the ranks summed over plots · f()r the 
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distributions. Addi.ti anally a weighted difference D w was 

calculated for each distribution as £allows 

where: Di= value of D for plot i 

ni = sample size on plot i. 

Based on Dw and the summed ranks of D, one distribution was 

then selected to characterize the marginal distribution of 

k. 

Linear regression equations were then developed to 

predict the parameters of the marginal distribution of k. 

The dependent variables were the estimated parameter values. 

In this model it was assumed that one set of k and m values 

characterized the growth of a tree throughout its life .. 

Thus the independent variables in the prediction models for 

the parameters of the distribution of k were necessarily 

variables measured at a reference point in time. The 

independent variables were height of dominants and 

codominants at age 20 (HD20 ) , log(HD20 ) , ( 1/HD20 ) , number. of 

trees per acre ~t age 8 (TS 8), (Ts 82 ),log(TS 8 ), (l/TS 8), and 

(TS 8 *HD 20 ) . All logarithms were to the base e. Height of 

dominants at age 20 rather than the conventional base age of 

25 was used. because 20 was the oldest age at which all plots 

were measured. Trees surviving at age 8 was used because 

age 8 was the earliest age at which all of the thinning 
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treatments were completed. · It was hyp.othesized that the 

di.fferences ·in the distributions of k· from plot to plot 

could be accounted for by either ,variab,l:e site ·quality, as 

measured by HD20, · .·by·· the thinning· treatment. or by the: 

-varioµs. transformations of :these two vari.ables. 

Using the· independent variables listed previously, R7 

values were·. ca1cµ1ated for each possible linear prediction 

equation for each pafameter.. The 'models . which gave the 

high.est Ra; values were then evaluated on the basis of PRESS 

andSUMABS. A. predi9tion model was then chosen. fbr each 

parameter. 

4·.2. S ·Prediction· of m 

E'er :those plots on. which m was not assumed to b.e z.ero ,, . 

it was necessary to develop a method' for· predicting• m: 

Rather than. assuming the parameters of the growth curve to. 

be independent. as was done by Krause et al. (1967).. the 

known dependence between the parameters. was utilized. This 

was do.rte· by regressing m on k and k 2 • The variables TSg and 

an 20 were also· included to allow· for differences in the 

relationship b~tween k and m between. plots. The final model· 

was chosen after considering Rz, PRE.SS, s~BS, and SUMRES. 
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Survival function 

.A survival curve was needed to .complete· the Parameter 

Distribution model. In .. this· analysis~.. the survival curve.: 

presented by Smalley and Bailey· ( 1974} was modified. The:· 

ori.ginal . Smalley , and Bailey survival func:tion was .of· · the 

form 

log{TP/TSJ = AP { a l:'og(TP) + b HD + cJHD } 
·, 

where: AP :;::::. age since: planting. 

TP: = !lumber of trees planted pe:r acre 

TS - number of trees surviving per acre at age AP' 

.HD - mean height of dominants. and codominants at age 

This function has the desireable· characteristic that at the 

age of planting AP=O, and. thus TP=TS. The- curve, has: also 

been used by E'educcia et al. { 1979) and studied by· Burkhart 

et aT. (1981). It seems· to give: reas·onable estimates for· 

surviving numbers of. stems {Feduccia. et al. t 1979;. Burkhar.t, 

pe:r:s .. comm.) .. The function was· · modified in the present 

study. to the .form· 

log(TR'J'.'/TSJ = (AE - AT) { a log(TRTJ +· b HD +· cJHD l · 

where:. TRT' - the numl:>er of stems per: acre left after 

- thinningtreatment 

AT. - age since thinning treatment 
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· The other variabTes: remain as.·. defined above. In. this form 

the curve .... ··.· .. takes:· into .· account ·. the· different thinning 

treatments:'. This form also retains the desirable · 

characteristic that when· AP=AT, TS=TRT~ 

4.2. T Application 

The: Parameter DistriJ:n.J.t.ion . model was applied on the 

fourth replication. If the model were to .· perform poorly~ 

this w.ould be most evident at the later ages encompassed by 

the data~. Thus, f'or each pl.ct on replication f(>ur; the last 

age at. which that plot. was measured' was selected for testing· 

the model.. Using these ages ,the observed mean heights of: 

dominan:ts: and codominants·,. and the actual numbers of· trees 

left after thinning, estimated parameter values were· 

computed, for the; marginal distributions of k via the 

prediction mod.els developed: on .. the fitting data set~ The:. 

number of trees per acre· surviving at the last age on each 

plot of.· the validation set was predicted using · the, fitted .. 

·survival function. For compar.ison purposes., this: number·. was. 

then reduced. to the exact acreage· of the given plot.·. Using 

the· red.uced number, k values were then randomly d.rawn from 

the estimated margi,naL distribution of· k for· each stem 

predicted to be: present. E'or plots 43, 44·, Cind 45, . m values · 

were then predicted.· for each k value using the fitted 
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regression of m on k, k2., and TSs (the regression chosen: did:. 

·not include· HDio ) . These m values estimated the mean .m for· 

a ··. giv .. en. pai.r · o. f·.· k ·and Ts· valu.es . 8 . . ,, and .were• called. 

deterministic. A second pair of· k · arid m values were· 

r,andom deviate.· to the· 

deterministic m value.. The variance of this random deviate 

··was taken to be· equal'. to the· MSE f·rom the fitted· regression 

These m values were called. 

· stochastic. .All predicted negativem values, determj,nistic 

or stochastic, were set. to zer.o. For plots 41 and 42 m. was 

set to· zero for each: tree predicted.to be present after 

adjusting the estimate from the survival curve to the. proper 

acreage~ These· values were called deterministic and no. 

stochstic m values were· computed. Once k: and m were known 

(predicted} the predicted basal area> was determi.ned .. 

for each of plots. 4T_ and 42 there wasc one predicted basal·· 

··area distribution1 while for each· of plots 43, · 4.4; and 45 

there were: two • ·· 

For every.. predicted . basal area distribution, a 

predi.ctedheight. distribution was generated. This; was done 

by predicting a· height for each predicted individual tree 

basal area, using. the f.i tted height-basal area model (see 

sec,tion 4. l) ·~·. 
. . \ ·. 

Inputs: to this;. model we.re· age·, ob.served mean 
. . 

height of' . dominants arid· codominants at age 20, : .·· predictecl 
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number .of, stems per acre, ·predicted plot basal area per acre· 

(obtained. . by summinq the predicted indi viduaI tree .. basal 

areas; and converting: to per acre values)" and the predicted 

basal area: of .the individual tree.·. One set of heights was 

generated by using the mean.· he_ights. predicted from the 

regression. These' heights were called deterministic. 

Another set was obtained by adding a N(O,a 2 ) random variable 

to the deterministic height. The variance of the random 

variable was taken to be eqtial to the MSE from the. fi.tting: 

of the. height_ model on the first three. replications .• 

Every predicted distribution was compared to the 

appropriate· ·observed distribution. The comparisons were 

done -subjectively by inspecting· histograms: of the observed 

andpredicteddistributions, and by looking at the means and 

standard; deviations 0£ the predicted distributions: in 

relation to the observed. Objective comparisons were· also· 

performed via the two-sample Kolmogorov...,Smirnov (K-S) test. 

This is a non ... parametric statistical test designed to test 

whether two independent samples .. were drawn from the same 

population. 

As the resu:l ts obtained· from a stochastic simulation 

model vary according to the initial random nu.mber seed, the 

model ·was run · on replication four with twenty different 

randomly selected seeds~- __ The model. --· was also run· once on 
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each 6£ the first three· replications in. order· to determine 

if. i.t behaved ·differently on the fitting than on the 

independent validation data. 

4 .. 3 NONLINEAR GROWTH. FUNCTION 

4~3.1 Specification of model 

Assuming the parameters ·of the C-R curve to be constant 

throughout.the life' of a tree, and developing a methodology 

to predict them, as done in the previous section, represents 

·one means. of applying• this function to individual tree 

growth. Another method involves modeling the parameters of 

the curve· as functions cf tree- and~ stand-level variables. 

This approach has the advantage that the, growth curve 

predicted for a'. stem would change as the variables which 

model. the parameters of the curve change. At any point in. 

time the· model would predict the subsequent growth .·of the 

stem to follow a C-R growth curve, with the parameters of 

the curve· based on the latest available information (tree..;. 

and. stan.d.-level.variables: measured at the current time). 

One form. of such a model, is 

where:.: · BA. = basal area: at. time· i. 
1. 

AP. =· age from planting at. time i 
1 

(3) 

f., g. =·functions of tree- and stand,.-levelvariables at time i 
1. l. 

A =· asymptote 

c = constant 

e ·=· base of natural logarithms •. 
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In .model (3) BA ··tends to· .A as Af>. tends to infinity, and·· .. BA 

=o· when AP =¢'• Since:: f. and. g are not specif~ed, ·{3) 

_actually represents.· a class: of. models. 

This class of~ models describe.s the growth . of an 

individual: tree' and: permits· the ··tracking of ·an .individual 

tree over time:1. unlike the parameter: distribution model 

whi.ch yields· _basal area distributions . at. points in time but 

does not permit following· the· growth of an individual tree. 

In order to ascertain whether this approach would 

result in· improved growth predictions. over more conventional.· .. 

. methqds, a. model. belonging to the class of models in· ( 3') was· 

developed. The: model was then compared to « linear· modeL of: 

individual tree.· growth on an independent data set .. · 

The· vari.ab.les· k. and m of the C';_R curve are constant. 

throughout the life of a tree when the model is fit in the 

form of ( 1) ,, so· it was not possible to· checkdirectlythe 
·. ., . 

relationships of these parameters to time-dependenttreeand 

stand-level variables which are constantly · changing· 

throughout. the life of an indi.vidua.l tree. Furthermore, the 

data set was; · too sma:ll tcr check· the relationships · by 

examinin·g the. estimated parameter values for many trees at 

different levels of a· given variable at a: re;erence point in 

time while holding: the other stand variable$ constant. Thus 

the· fu;nctions.f. and g which model k and.m .of.the. C-R c:urye 

respectively were.· hypothesized. The functions chosen. were: 
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·fi - (a. CRi+ b Bi+ c APAi+ d BA1 + .e• T$i) 2 

9{ - (a + b TS:() 

whe·re:: CRi = predicted crown ratiq at time i 

B: i = plot. basal area, in sq. ft. at time i 

APAi< Area Potentially Available to the subject. tree 

at time i. 

TS i - · No. of trees suvi ving . per acre at time i 

l3Ai = Basal area· in sq. ft. of the< subject tree· at 

·time L 

a,b,c,d,e are coefficients to. be estimated. 

B, . TS, and BA are'' ·measured variables; and need no 

explanation. Crown ratio (CR) is defined as the length of . 

. live, crown di v:ided by total height. This .. variable was not 

measured on .the· data set. However, Feduccia et al. ( 1979} 

presented. a .model to predict crown ratio for individual 

loblolly pines. based _upon the tree's d.b.h .. , quadratic mean. 

diameter for the stand, average. height of. dominants. and 

codominants in the. stand, . and ag~. The .data for their study 

came from plantations of similar origin and. · geographical 

region as those used in the present study. The mean. 

predicted crown ratios for all plot-age combi.riations on the.· 

· first. replication are shown in Table 6< 
reasonable except at the lowest density, 

The. values seem: 

a~ which the-re: 
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appears to be a: positive· bias in the predictions. Daniels 

(1981) used this model to predict crown ratios for the d.ata 

used in. the· present study,· and found that inclusion of· 

predicted crown rati.o improved the fit of his basal a:rea 

increment model. Thus the model was accepted despite the· 

apparent problem at the .lowest dens.i ty. Hahn a.nd Leary 

(1979} ·have used predicted ·crown ratio in. their diameter 

increment·. model. Thus there is a precedence for this. 

procedure. 

Area; potentially available (APA} is an individual. tree-' 

based variable designed to qu:antify the effects of. 

competi ti.on f'rom neighl:>oring trees on a subject tree. This 

variable measures·. the horizontal area assumed to be 

avaiiable to the subject tree. It .· is computed from a ·· 

mathematical expression. relating tree diameter to diameter 

of and· distance to adjacent trees (Moore et al., 1973'}. 

Several f orrns of this variable have been presented ih the 

literature. The primary difference between them is in the 

function which is used to. weight inter-tre.e distances. 

Daniels (1981) found that of all the weighting factors 

presented. thus far, the ratio 

{D ~ I (D 2 + D 2 )} 
.. s. $- c 

where: D = d.b.,h. of. subj.ect tree. s 
D = d.b.h .. of competitor c . 
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Table 6. Mean. estimated crown ratios for loblolly pine trees, predic-
ted with the equation by Feduccia et al. (1979), by plot and 
age for replication one of the Hill Farm data. 

Plot 
Age 11 12 13 14 15 

6 77.8 84.5 --* 
7 76.8 

8 70.5 69. 6 68.0 
·' 

9 59.0 65.0 74.4 62.8 46.2 

10 54.7 60.3 70.1 76.4 88.9 

13 50.7 56.0 66-3 72. 1 84.8 

20 42.6 47. 2 57.4 63.3 75. 5 

? 1 -J. 38.4 44.7 49.9 

Density at 
age 8. 1046 641 317 211 103 

(stems/ acre) 

* Plot not measured that year. 
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yielded the highest correlation between APA and basal area 

increment. Daniels (1981) also found that APA had a higher 

correlation with basal area increment than any other 

individual tree competition index considered. Thus APA was 

included in (3). 

and 

It is widely 

the density 

believed that individual tree basal area 

of the surrounding stand are highly 

correlated with its subsequent growth, therefore B, BA, and 

TS were included in (3). Note that if APA were a perfect 

measure of competitive stress upon an individual stem, 

stand-level measures such as B and TS would be unnecessary. 

However, this has not been found to be true in_ the past. 

Instead, stand-level measures of competition have been found 

to be statistically significant in explaining basal area 

growth in the presence of individual tree competition 

indeces (Daniels, 1981). 

Initially, the function f in (3) was linear, since 

linear models are generally reasonable approximations in the 

absence of any specialized knowledge. However, in the 

process of fitting the overall model (3), using nonlinear 

least squares, the function f showed a tendency to become 

negative. As this function models k of the C-R curve and k 

must be positive, the expression was squared. 

f was also modeled with an intercept term. 

The function 

The fit was 
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nearly identical in terms of R2 and MSE to that where the 

intercept term was not inc 1 uded. Thus the intercept term 

was dropped for simplicity. Additionally, the terms TS and 

B were exchanged for their inverses in one run, ·~ as 1- was 

felt that the rate parameter· k should have an inverse 

relationship with density. Again the fit was nearly 

identical in terms of R2 and MSE, so the form of the 

function shown above was adopted. 

In a separate part of this investigation it was found 

that the parameter m of the C-R growth curve was related to 

initial thinning treatment (see section 4.2.3). Thus m· was 

modeled as a simple linear regression involving number of 

survivng stems per acre as the independent variable. 

Due to the inclusion of APA in (3), the model is 

distance-dependent, and thus would find application in 

distance-dependent individual. tree models. 

4.3.2 Application 

Model (3) was fit on the first three replications of 

the data set using nonlinear least squares. All the 

thinning treatments were fit at once, since the parameters 

of the model should theoretically take the different stand 

conditions into account. Whenever there were two subsequent 

measurements made on an individual stem, this constituted 



58 

one observation. The dependent variable was the basal area 

at the second measurement, and the independent variables 

were CR, TS, B, BA, and APA at the first. AP in the 

expression (AP - c) was taken to be age from planting at the 

second measurement. The asymptote A and the parameter c 

were fixed at 22.3 square feet and 3 years, respectively. 

The model was tested on the fourth replication. 

Whenever there were two subsequent measurements made on a 

tree, the model was applied using the values of the 

independent variables at the first measurement to predict 

the basal area of the tree at the second. The differences 

and absolute differences between observed and predicted 

basal areas were then summed and averaged over replication 

four. For comparison, a. linear model of the form 

BA . +l = b + b1 CR . + b 2 AP A . + b 3 BA . + b 4 B . + 
l. 0 l.. l. l. l. 

b 6 TSi + b 7 (AP i+l - AP i) 

where the variables remain as previously defined was fit on 

the third replication with ordinary least squares and tested 

on the fourth using the same methods as for model (3). The 

linear model represented a conventional approach to the 

problem of predicting growth and served as a 'base line' for 

comparison. 

In order to ascertain the effect of specifying the 

asymptote to be 22.3 square feet in (3), the entire 
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procedure was repeated with asymptotes of 18. 96 ( 15% below · 

22.3) and 25.65 (15%, above 22.3} square feet. 



. Chapter 5 

RESUI:.Ts· AND DISCUSSION.· 

5. 1, . HElGHT~DlAMETER/BASAL AREA, CURVE 

s.·1.1 ChoiCe. of curve 

Th~ ·results · from sununinq. the· ranks of the five 

candidate height_;diameter/}:>a.sal area curves based· on R2 , 

. . 
PRESS, ··· and. SUMA:BS over the 105 plot-age combinations on the · 

first·. three· replications ar~ shown in Table· 7. Model 1, 

which predicts mean height, conditional upon basal area was 

clearly· the best of the five on the data used in this study. 

It may be argl.led that the test was unfairly biased. in. favor 

of ... model l since the· criteria. were: based. on . predicted 

heights, . ancL the other models predict Iog:(H} or· log(H-4. 5) . 

However, .the.: author feels. that this was s;ompletly 

appropriate., since height and. not its logarithm is the· 

qllanti ty .. o.f interest. The model which predicted height 

directly thus. had a.built-in advantage over the others, and 

the test should have reflected this. 

Curtis (1967) . suggested that models which predict 

height rather than log{H') should perform poorly on data sets 

which include many young trees. In particular, such models 

wi111ikely predic.t negative heights for small basal areas. 

The data used in .. the: current. study was from young stands and 

60 
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Table, T:.. . Summed ranks. over 105. plot-age. combinations 0!1 the. Hill Farm: 
. data. for five candidate height:_diameter (basal. area:) models' 
baseci on: three statistics.*'· ·. 

Model Rz** PRESS SUMABS 

r .. H =: a: + b log(BA) 237 (l) IF' 226 (1) 225 (1) 

2 .. log(H) - a+ b log(BA) 311 (2) ... 302 (2) 310.5 (2) 

3. log(H-4.S) -· a + b log(BA) 386 (5) 380 (5) 393 (5) 

4. log{H) =a. +b (l/D) 315 (3) 332 (3) 314 (3) 

5~ log(H-4.S) =·a,+ b (l/D) 326.· (4) 335 (4) ·332 . .5 (4) 

* Statisticsc ranked such that I = best, ...•.... , .. S = worst 
for a particular plot-age- combination. · 

z **. R · ,. PRESS" and. SUMA.BS transf armed to H for log.(H) and 
· log(E-4~5) models. · 

{ft Figure~ in parentheses is relative- rank of Sumllled rank~ 
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.yet model 1 was the best under all three criteria. Note·. 

espe.cia:lly that this ·model was··· best under PRESS and. SUMABS ... 
:. . . . . . 

.·If the. mode.I had predicted negat:i.ve· heights·· for small basal 

areas,_ these statistics would have magnified the problem. 

Apparently, the danger of predicting- negative· heights fo.r 

low basal areas when height is the dependent ·variable is 

real only when low basaI are.as are not well represented in 

th~ fitting- data. In the Hil.l Farm data, (2:verage basal. 

areas•. on the first thJ:ee replications at ages 5 ·. and 6, were· 

a. 029 and 0. 049, respectively, ·.indicating that. small basal 

areas were well represented. The heights associated with 

these basal .areas were necessarily positive and kept the 

regression line in· th,e· range of positive values.. Perhaps at 

basal areas,'. smaller than those in the data set the model 

. would predict negative heights; however, basal areas so 

small would be.of little practical interest. 

Two other aspects of thes.e results are• notewotthy; 

first, the int:uitively · appealing feature .· of .·· modelling-

log(ff-4. 5 L rather than log(H) <;iid not improve the· two- log(H} 

models' performance. Since'. data sets which include many 

young stems, such as the one used here, are where this 

a<;iju,stment should logically be: most important, it seems that 

the adjustment ·is unnecessary. Second, the widelyused 

log(H)-recip:rocal o'f· di.ameter mod.el (model 4) was found to 
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be a pcore.r predictor of mean heig:b.t than. model {l) -- or model 

( 2) , the allometric model. Although this study used only 

- ohe data set;. and _thi.s~ set was limi.ted in ag_e · range, it 

certainly- appears that the relative. performance of these: 

models should be 'tested further. 

5.1.2 Choice of surrogate regressions 

The coefficients a - and b of mode-1 1- were• individually_ 

regressed U!)On all possible: linear combinations_ of' the 

fo.llowing vari.ables: 

1. age since planting·;;. (AP) 

2. age: since' thinning treatment, (AT)-

3; quadratic mean diameter at ageAP, (D) 

4. plot basal area per acre at age- AP, (B) 

5 .. average height. of. dominants a!ld, codominants at- age-
AP, - (HD} . 

6. log(HD). 

7. number of trees surviving- per acre at age AP, (TS) 

8. log(_TS) 

-9. thinning treatment, (TRT) 

All logarithms were to base e. After £itting all .the 

possible models for each .. coefficient, the R2 v.alues were 

examined.• Those models which performed well under R2 and 

had· the fewest independent V.ariables> were- -- sele.cted. for 
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further examination. with PRESS, SUMABS:, and SUMRES. For 

coefficient a, . seven . mociels were·. chosen for furt):ier 

·. investigation. These · seven models. ar_e shown in Table 8. 

Model 7a was the best i?l terms of R7 , .PRESS, SPMABS., and: 

th.;trdunder SUMRES. The choice was clear, .and model Ta~ was 

selected as the surrogate for a. Six models. were chosen as 

candidates for the surrogate.for b. They are listed, along· 

_with their R2 , PRESS, SUMAas, and. SUMRES ·values in Table 8. 

Here· the choice was; less apparent. Models 3b ·and6b both 

p.erformed: Well:, wi.th 3b being· the best under PRESS and 

SUMRES and fourth under R7 . and SUMABS. Model 6b was best 

under R2 and. SUM.ABS, second under PRESS··· and fifth under 

SUMRES' .. · Between the two models the only statistic that was 

very different front. a practical. standpoint was SUMRES. 

SUMRES is the. sum of· the· PRESS residuals,· and gives~· an 

indication· of _a., model's bias. Model. 3b had: a . SUMRES of 

-0.056 , suggesting very little bias, while model 6b had a 

SUMRES of -L.496, .. about twenty-five times greater . 

. ·.basis of this and the· fact that model~ 3b has· one less 

variable· than 6b·. and is therefore simpler, model. 3b was 

selected. 

The overall height model was· thus of the following 

· £~orm: 

H,.~ b0._ ... +_bl ..... log(HD-i_) + b D + b HD + log(BA, ) { .b + b AT .,_ .... 2i" 3 i :L 4 5 i 
+ b log(HD. ) + b7_HD1 .. } . 6 l. 
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Table 8. Statistics from. fitting the candidate surrogate regressions 
fora and b in the model H = a+ b log(BA} on. the first 
three replications of the Hill. Fann data. 

Dependent 
R2 Model variable Independent .variables* PRESS SUMA.BS SUMRES 

I a HD 0.9428 1440.99 304.71 -0.758 
2 a, HD, B o •. 9642: 917:.20 232.60 -1.362 
3 a HD . ' D 0.9747 640.42 200.38 -1.532 
4 a HD, BA 0.9763 599 •. 26 199.62 0.260 
5 a HD, BA, .. log(TS) 0.9771 588.03 186.25. -o'..276 
6 a HD, .. D, AT 0 •. 9778 578.68 190.59 -0.547 
7 a HD, D, log (lID) 0.9789 537.20 177 .71 -0.312 

31, f) HD, .. AT, log(TS) 0.6622 833.53 198.40 ...;o .819 
9 b HD;.· B, log(TS) 0.6662 814.85 190.95 0.199 

10 b HD,,. AT~, log{HD) 0.6736 782. 77 193.62 -0.056 
11. b HD,. AT,. log(HD), D 0.6862 845.86 202.76 --3,.475 
lZ. b HD, ,AT~ log(TS), B. o. 6898 795.32. 191.38 . -0.517 
13 o HD,.. AT, log (TS), log(HD) o •. 6916 784.81 189.66 -1.496 
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where the subscript i refers to age since treatment, and the 

variables are as described above. This model was fit to all 

the height-basal area pairs on the. first three replications 

and the resulting equation was 

~= -19.051+15.006 log(HI1_) - 28.530 Di+ 0.752 HDi + 

log(BAi){-3.838 - 0.109 ATi+ 2.015 log(HDi) + 0.153 HDi} 

R2 = 0.97 Sy.x = 3.370 mean H = 30.5 n = 5912 

All the estimated coefficients were significant at the .01 

probability level. The R2 value indicates that the model 

fit the data very well. 

Finally, note that in the model 

H = a + b log(BA) 

the coefficient a represents the estimated mean height for a 

tree with a basal area of one square foot (approx. 13.5 

inches d.b.h.). However, since .few trees on the data set 

were this large, no attempt was made to interpret a in this 

manner. 

5.2 PARA.1V1ETER DISTRIBUTION MODEL 

5.2.1 Fitting of growth curves 

The average R2 values from the fitting of the C-R curve 

to all the stems on the first three replications are shown 

by plot in Table 9. For plots 11, 12, 21, 22, 31, and 32 

the· curve 

log{l - (BA/22.3)} = -k(t-c) 
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was fit as a no intercept linear model and. the average R2 

values shown in. Table 9 are in terms of log{l-(BA/22.3)}. 

The linear form was used to simplify the estimation process. 

For plots 13, 14, 15, 2.3, 24:, 25, 23, 34., and 35 the curve 

BA= 22.3(1 - e-k(t-J))[l/(l-m)] 

was used. Since this is a no~linear model, R2 per se cannot 

be calculated. However, one. may easily compute 

R2 = {RSS-(TSS - CTSS)} / CTSS NL ,,..,. 
where: RSS= !.Yf - !(Yi-Yi) 2 

TSS= ! Yf 

CTSS= !(Yi - Y) 2 • 

The statistic R2 expresses the percent 
NL 

of variation 

explained by the regression, over and above that explained 

by the mean of the dependent variable. 

The results in Table 9 show that the curve(s) fit the 

data well. Since the R2 values for the two fitting methods 

were computed differently, they are not directly comparable. 

Within each fitting method there appears to be a trend, with 

mean R2 values increasing as residual density following 

treatment decreases. This is reasonable. One might expect 

an individual stem to trace a slightly smoother growth curve 

as residual density decreases since one variable 

( competi ti.on) which affe.cts growth is reduced in magnitude. 
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Table 9. 
. . . . . .· . . . . ..2 .··.. . . . . 

Mean and· standard deviation of R values. from fitting. the· 
Chapman-Richards growth curve to all. loblolly pines on a ·. 
plot in the HilLFarm data,. by plot. · 

. 2. i$andard 
·:e10t mean R · ·deviation· n, 

11 0.7T 0.4745 248 

12 0.84. 0.4273 150 
21 0.78 0.3310. 249 
22 0.85 0.1925 1so·· .. 

31 0.82 .0.3135 246 
32 0.87 0.1824 150 

2 
.mean:R.Nr. 

I 

13 0.94 0.1790. 75 
14 0.96 0.0707 50 

15 o.,99 0.0109 24 

23 0.96 0.0730 74 
24 0.90 0.2568 52 
25 0.99 0.0094 24 
33 Q.98 o. 0333' 74 
34 0~97 0.1186 50 
35 0.99 0.0163 24 

*·For plots.11, 12, 21, 22, 31,. and 32 R2 values are in terms• of 
log Cl~ - BA/22.,31, from no:..intercept linear tnodeL 2 .· 
For pl,ots 13, 14,, 15, 23 ,. 24,. 25 ,. 33, 34, and .35 ·~ values are 
ft-om the nonlinear model and .are computed as follows: .. 
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,Thus'. a growth curve should. tend · to fi.t. stem$ in. stands of' 
,' . . 

·row; dens:Ltybette:r;.· 
. . 

5. 2~. 2: '. .E:s'timatinq· the marginal distribution of k 
•. estimate$· fo·r ·. k were. fit to the I,ognormat/ 

and: ·SB (kmax= 0.018, 0.02, and 0.022) 

distributions. The value of the st~tistic P= mix I (Fn- F) I 
which ' 'resulted· from. f·i tting each. distribution. · to the· 

estimated. cdefficients ._ on. each;. plot is shown in Table 10•~. 

The'. D va·lues were .ranked from. lowest to highest for e_ach 

plot and · · the frequency of, ranks· for ~ach distribution is 

shown in. Table• 11. The values in>Ta.ble 10 indicate that the 

_Weibull,. loqnormal;- and SB(kmax=0~018) are the top three 

candidates. · As a fuz:ther test, average D values weighted by· 

sample size were; calculated'. for each distribution. ·· The 

We'.ighted. average D. values wer.e: 

loqnorm·al . 0908, 

:weibull • 0663 

SB, Jrinax= .-018 ~ 0904: 

S'B; kma-'t=. 02 ·. . 0905 

s·B, kmax:;,022 . 0909. 

Since the · Weibull · distribution had · the lowest weighted 

average D, it was' selected~ As a further. check on the. 

·validity of the· Weibull, one-sampJ,.e K-S tests were performed· 
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for each plot. This test is- designed to- test whether. a 

sample could have;·· been~ ci'rawn from- a_. _ specifiec::l- hypothe.t±cal --
>. • .•. 

distribution. The_ t¢st ia .. based on the- statistic. D~ -The. p~-
' ... -. , . 

levels whicJ:1 result: from the. test estimate ·- th_e Pi;Obabili:ty 

·of' obs~rving- aD value as latge·or-la~ger than that: actually 

e>bserved, given that the- sample· did arise from·_ the 
- -

hypothet:ical distribution:.- Note- however that these 

probabilities cannot be: strictly: interpreted in_ this: case· .. 

One of the -__ fundamental. assumptions. of the K,...S test i:s• that 

- the: observations- i.n: .. the samplE! -are:, independent._- Since the 
·. . . . 

estimates for k come- from fitting· a. growth curve -to trees on_ 

-- the- same- plot, and thus -probably influencing one an.other i s-

. growth, _ the estimated k's are, p.r¢>baba1y: not independent .. 

However, -- the: p-levels: rriay- be- regarded as an index of the 

- ''goodness:' -- or large p:.. tevel. _ 

represents- a good fit;.. whereas a small p-level reflects: the 

opposite. 

test on the_ fit of the- Weibull distz-ibution to the marginals 

of' k are -- - shown by: plot in._ .Table- !2.. As these: -values. are: 

-._ generally high.1 with only one. being below, ~ 05, the 

convention_al -- .- statistica'l significance level,_ i.t was• 

concluded that the Weibull estimated - the- marginal---- -
- ' 

distr_ibutions of- k adequately. 
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. · .. ,·; .·' 

Table, 10 •.. Values and: ranks for D =max (D+, l:b""'j) from fitting the. 
, five: candidate· distributio:ns for• the marginal distribution . 
. of k,. the. -i:-ate para.tnefer·; o:!Lthe· Chapman-Richards growth · · 
curVe,, to•. estimates. of• k r.esulting• from· ·fitting: the curve 
to . individual: lobloily pine trees. on three. tepl;ications in 
the H:ill Farm, data\*· 

Plot n Iognormal Weibull. kmax=O. 022. kmax=O. 02. · km.ax==O. 018 

11. . 248 o~.1184 C.5) o •. o4so c1) 0.1161 (4) 0.1159 (3) 0~1156 (2) · 
. 12' 150 0 .. 1000 (5} 0.0493 .(1) 0.0978 (4} o. 0975 (3) 0.0972 {2) 
r1, 75 o.121s·, Eir 0.1644. cs)> 0.1291 c2) O\.i299, {3) 0..1309 C4) 
14 50 0.0668 (1) O.IOST (S) ·· 0.0737. (2} 0'.0747 (3) 0.0758 (4} 
rs 24" 0~1.421· Cl) 0~1900 .(2). 0~1910 (3} · 0 •. 2043 (4) o.2318 (5} 
21 249· 0~0738 (5}· 0~0601 (1) ·0 .. 0730 (4), 0 •. 0729: (3) ·0.0728 (21· 

·22: 150. :0.0865 (5) 0.0430 (l} 0.0836 (4} ·a.0832 CD 0.0828, (2) 
23 74 · o~o9.65 Cl) 0.1165 cs). o.J.003 · C2J . o. ioo5 (3) . 0..1008. (4) 

. 24 52 · Oocll23. (I} 0.15,7'2' (5}: 0.·1334. (2) Q.f360.(1). 0.1396 (4) 
25 :24 0~1467'. (5} O;,Q925 (l)i 0'~1190 (4} 0. i.159 -(3) 0.,1121 (2) 

·. 31 .·· 246 o.0588 (5) Ch0387 (l} ·. 0.057.L (4) · 0~0569 (3) 0.0567 (2) 
32· · ··1so · 0 •. 0993 C5J , o.04zs (1) ·. o. 0981 {4) ··. 0.0979 (3) OJJ977 (2) 
-3.3 · .. 74: 0.0479 (4} 0.;0823 (:Sf 0.0419 (3) 0;0410 (2) 0•0405 (:1,) 
34 SQ: 0',.1150 {5) O. 0641 (i) 0.0985 (4) 0;.0965 (3) 0.0939 (2) 
35' ' 24.' 0'.0901 (2) '.0 •. 0979 {4)' 0.,0891 (i} 0.0924 (3} O'.Q987 .(5) 

* Figures:. in parentheses are ranks of D values'. within plots. 
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Table. lL .. ·Frequency of.rankswithinplots- for Il= m~.-(D+, ··ln-r) from• 
. fitting the five candidate distributions for the marginal 
distribution of k, the rate parameter of the Chaptnan-Ric:h"""; 
ar.ds growth curve, to estimatei;;. of k resu1ting from- fitting. 
the curve: to: in<iivi:duaL loblolly· pine trees· on. three :repli-
cations in. the Jti.11. Farm, data., · · 

Rank. lognormal ·weibull kmax = 0.022kmax •. =• 0~020 kmax = .0~018 

l 5 8 l 0 1 

2 r 1. 4 1. 8 

3 0 0 2 13 O·· 

4; 1 1 8 J: 4 

5 8 5 0 0 2 
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12. Probabilities from one-sample K~s test of the fit of the 
Weibull distribution to estimates of k, the rate parameter 
of the Chapman-Richards growth curve, by plot for three 
replications in the Hill Farm <la.ta.* 

Plot D** ff 
n p-level 

ll 0.0450 248 0.6960 

12 0.0493 150 0. 8599 

13 0 .1644 75 0.0347 

14 0.1057 50 0.6315 

15 0.1900 24 0.3516 

21. 0.0601 249 0.3293 

22 0.0430 150 0.9442 

23 0.1165 74 0.2680 

24 0.1572 52 0.1529 

25 0.0975 24 0.9864 

31 0.0387 246 0.8538 

32 0.0428 150 0.9465 

33 0.0823 74 0.6974 

34 0.0641 50 0.9864 

35 0.0979 25 0.9755 

* Reject the hypothesized distribution if p-level falls below 
a specified significance level (e.g., 0.05 or 0.01). 

+ ** D = max (D , ID -D . 
# p-levels are approximate for n less than 80. 
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Next prediction equations for the two parameters b and 

c. of the Weibull distribution were developed. The variables 

considered for inclusion 

number of trees per acre 

average height of dominants 

as independent variables 

surviving.at age 8 (TS8 ) 

and codominants ( FID 20), 

were 

and 

and 

various transformations of these two quantities. These 

variables were entered as independent variables in a linear 

model, with the dependent variable being b or c. All 

possible combinations of the independent variables were· 

examined for each dependent variable. For each parameter, 

the models with the fewest independent variables which 

performed well under selected for further 

examination with PRESS, SUMABS, and SUMRES. The candidate 

models selected for each. parameter are shown in Table 13. 

The model selected as the predictor for c was 7. This model 

was tied for the best on the basis of R2 , best on PRESS and 

SUMABS; and fourth under SUMRES. Since the primary 

objective of the model was prediction, PRESS and SUMABS were 

deemed to be the most important of the f.our stati sties, and 

the choice was clear. Model. 13 was chosen as the predictor 

for b for the same reasons. This model was tied for best 

under R2 , 

SUMRES. 

best under PRESS and SUMABS, and third under 
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·· ·. Th1.l.S the <final fitted prediction equations for b and (:: 

.·were:··. . . .· 
- ,.:··.. - . " . .. 

C' ' - -63·.4345' + '0. 0612 '<HDio') +, 1506.,1385 {l/TS a}'.·· 

· ·•·, -.0~0002, 'cTsg )(EDzoJ + 10. 6942 16g:(T58.) 
.. - . - . . 

' ' . 

·Rz .. ::::· 0.74 . Sy;-.x· :: 0.3750 ri = IS mean c. = Z. 351 

b - --0~:0075 + 0.0010 log(TS3} +· 1..1493 {1/TSs) 

n =15 mea:n b = 0.003 

It is ·interesting that these parameters were sowelL 

re:lated (jud9ing by. the. R2 values) to th~· stand variab:les· 

HD 20 and ts 8 In a a'if:ferent. conte~t, when diameter 

distributions themselve.s· are• fit d:irect:ly by·. the, Weibull, 

the .·parameters .. o £' the p.c d .. f ~· are generally. Poorly · relateol to 

. stand.; variables; with. ~z· ·values· .' for. c l::>ein~r around O. l 
:' ... --- . '. •' ··_ ·.· ," _: ·. . .·· 

·(Smalley and Ba;i ley, i97'4;. E'.educcia et al. , 19?9} . 

Prediction of. m from· k 
' . 

First' a simple·· linear . mode.1 regressing~ m .on k was 

tried> ' Thi.s. yielded an.: R2 of> . 761. · Addition of k.2 raised 

'the~ R;2~ value to .Sl5. · Subsequent adc:iitions of TS 8'and~ HDzo .·. 
(in. the pre.s.en¢e of TS8J increased 'the· R2. to . 825 and . 828, 

respectiveiy. The latter three. models were then evaluated 
, . 

on. the~ bas·i e o-f PRESS, . StlMA:BS', .·· and Sl]MRES. · They were· very. 

si.milar for ·all.· criteria. The three~variable, model • was:. 
. .. . . . 

.· . ' ... 

chosen as, a compromise·: The fitt~d regresion equation. was: 
m.· = ~0.14.'18 + 8.1 •. 4.5.91 k. - 2. 922.1617 k 2.· + O~OOOZ. TS 8 , 
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R2 - 0.825 Sy.x = 0~055 n 447 mean m - 0.1205 

5 .2.4. Survival.curve 
.·' .: , : ' 

The rn.odified survival; curve detailed in ME'l?HODS was f.it 

to the· lOS· plot-age combinations on the three. fitting 

replications with the following resul.ts: 

log(TRT/TS) = (AP - AT) (0.0116 l·og(TRT) + 0.0023 HD. -. 

0.0254JHD ) 

R2 =0 •. 74, . Sy. x = 0. 0592 . n=lOS 

The R2 value was infl.ated slightly because the regression 

was. forced through the origih. The model was also fit 

without thi.s restriction # and an R2 value of· 0. 70 was 

obtained ... 

These results. compare favorably with those of Smalley 

and. Bailey (1974) and Feduccia et al. (1979) who, using the 

curve in its original form, reported R2 arid. Sy.x values of 

0.84 and'0.0648, and'~.66 and 0.1342, respectively. 

5·~2 .5 Application to independent data 

The Parameter Distribution model was appli.ed to th.e 

fourth replication. The results are summarized in Tables 

14-17 and Figures· 2-lL Tables 14. and. . 15' display the · 

.· obserV:ed and predicted means and standard deviations of 

basal area and height, .respectively. The· values in these 
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tables were obtai.ned with one run of the model, i.e. , one 

seed, andare presented .for the fitting and test data sets. 

These Tables also display the p-levels resulting from the 

comparison of the predicted and observed distributions via 

the two-sample K-S test. The null hypothesis associated 

with this test is that the two samples arose from the same 

population. The p-levels approximate the probability of 

observing a difference between the, c.d.f. 's of the two 

samples as large or larger than than that actually observed, 

given that the null hypothesis is true. A high p-level is 

thus desireable. Note however that due to the problem of 

independence mentioned earlier, these 

general indicators of probabilities. 

p-levels are only 

The p-levels in 

general appear to be low. However, it must be kept in mind 

exactly what the K-S test is testing, which is whether or 

not the two samples came from the same population. 

of all the abstraction involved in the 

distribution model this may be too harsh a test. 

set of initial stand characteristics, the final, 

Because 

parameter 

Given any 

observed 

distribution may be considered a random variable. The 

predicted distributions resulting from the 

distribution model are also random variables. 

parameter 

Thus one 

might expect some differences between the observed and 

predicted distributions, which would be reflected in low p-
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levels. Furthermore, the K-S test is sensitive to sample 

size. When the samples are large (e.g. > 100), it does not 

take too great a difference between the two samples to 

produce a low p-level. Thus a more reasonable method for 

judging the performance of the model. is a subjective 

comparison of the observed and predicted means and standard 

deviations, and of the plotted observed and predicted 

distributions. 

The p-levels do yield one useful piece of information. 

Within plots for which rn was predicted through regression 

analysis, the. predicted basal area tended to agree better 

with the observed when m was stochastic. A similar trend is 

evident in Table 15 for the height distributions. At least 

one of prediction methods II, III, and IV (see Table 15. for 

definition of method types) was better than.method I in 15 

of the 20 cases_ However, there was no discernable trend 

among Il, III, and IV as to which was better. 

The results in Tables 14 and 15 demonstrate that the 

results obtained for the fitting and independent data sets 

were similar. 

Figures 2-11 show the observed and predicted 

distributions resulting from one run (one seed) of the model 

on the independent data. The seed used in these Figures was 

the same as that used to compute the values in Tables 14 and 
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15. · The> resu1.ts . obtained with this Seed were typical <:>f the· 

results _obtai'ned from runs.·. with .19 di.f•fe:r:.-ent · seeds~ · ·· Table· 

16 shows. the· means and. st'andard deviations of" the• predicted 

means · and,. predic:'ted. standard ·.deviations· of basal· area, 
' . . . . . 

resulting· from•.. all 20 runs of ·the: .modeL with: 20 different 

seeds• Table 17 shows the same for heights. 

An. internal. difficulty· in the model may be.evident in 

Figure ·2, · which shows· the predic:ted- and observed basal, area, 

distributi~ons for plot 41. Recall · that .. the ·marginal • 

distributions. of k were fit to the. coeffients estimated for 

every tree with at least three measurements on- each plot. 

Thus trees which did not survive tothe last measurement 

were· included: in this fitting data set for the' marginals. 

The author sees· no- way to; circumvent this difficulty. _No 

matter what age is picked, if only stems which suvived to 

·.that.age.· are:used. to calibrate th,e· interna·l. .models, the 

marginals of'.k will still be biased as described above for 

projected· ages. They would also be biased prior to that age. 

as· stem$ ·which had not yet died. wouJ.d not be aTlowedto 

· influence·the-marginaJ. of k. On plots thinned to 1000.TPA, 

average mortality was approximately 40%.• lnE'igure 2 it is 

evident that the model predicted too .·· .. many stems with low. 

basal areas· .for thi.s. plot. Prest.lmably this was due to the 

inclusion in the fitting set for the marginals of k many 
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. -~ . . 
.• stems on plo.ts 11, . :21, and 31. . which had died prior to. the 

·. 'last; ~easureme'nt. · These. stems.: would logica.lly have been··.· 
.· ... '•. - . . -

mostly sntalier stems;· resulting in a· predicted distribution 

tpo heavy •·at the lower .end. Despite.this problem, the 

·predicted .. and observed.·. distributions in·. Eigt.lre z do· not 
. \' 

appear to be too· radically diff'erent from: . a. practical 

standpoint. It: also must be· kept .. in mind• that 10.00 TPA at 

age· s. is very. heavy stockinq by· current: standa•rds~ · Although 

the f ig:ures v:ary, plantations ar.e now: .. more· commonly 

established. in the: 500;..;.:600 TPA range< When: co~paring: the 

observed and predicted distributions for plots. 4:2-45 

(Fi.gures.3~6) this problem was not evident. Note further· 

that the. · difficulty caused by mortality is not ·unique to 

·. th.i:s model. In diameter dist.ribution models if' one attempts:-

to· establish .a biological basi.s for the· p.d.f. employed' by 

solving for the· implied growth.. function. as- Bailey ( l9SO) 

·has., then on.e· must assume that either no mortality occurs or -

that ·· mortality ·. ± s proportional across the ·diameter 

ci:i.str~bl.ltion ~ The• · limitations of eith.er df these · 

··. assumptions. are obvi·ous. 

Figures 3-6 show that with the exception of Figu:resSa 

and 6a,. · the. predicted and ooserv-ed oasal area distributions 

generally. correspopdedwell fbr plots 42:..45_ '!'here ·are 

particulat cells in given histograms where· the: · two diverge 
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widely, ·· but. .. this is not surprising·. since the. two 
. .. 

distributions ·are both· random ·variables. ·· W:i th larger sample.· 

sizes,. i.e.·' l.arg'e:t · plots, these differences would. be 

expected· tobecome.minor. 

Figt.I:res< 4~6 reveal ·why all.owinq m to be sto.chastic · 

tends to· improve the corresponcience between: observed and: 

predicted·.· distributions • This method produced a wider 

.. spread in the pred:icted distribution, 

cLoseiy. with the observed. 

which agreed more. 

Table 16 shows~ that: the .. means of. the predicted 

di.stribu.tions tended to be· close· to those of the observed. 

distributions. Only on plot 42 (for· the single· prediction 

system. used for this· plot) and plot: .44 (for bo.th ·~ystems) 

were the observed means more than .·one standard deviation 

away from the predicted means .. However, the differences 

.. between the observed. and predicted means for plot 42 and: the 

two predicted means on plot 44 were. only approximately 18, 

12, and 12 perc:ent of the observed means, respectively. The 

author ·.·. f¢els. that: .·these' differences. are not excessively 

iarge .. The reason for the: over-predicti.ons on these· two 

plots is evident after consideration of the· means on the· · 

plots used for. fitting. . Observed mean: basal areas at .the 

last measurm~nt on. plots 12, 22, and 32 were .. 3371; . 3913; 

and .2684: square' feet, respE!ctiyely. For plots 14, 24, and 

" 
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34 the means were .6497, .6154, and .6423 square feet 

respectively. The predicted means for plots 42 (. 3261 sq .. 

ft.) and 44 (.6375 sq. ft., m deterministic; ~6371 sq. ft., 

m stochastic) agree well with these values. 

Table 16 also shows that on the average, the mean of 

the predicted distribution was slightly higher than the 

observed mean, suggesting that mortality was not a problem 

in this regard. The mean absolute difference between 

observed and predicted means was .03 sq. ft. for both 

deterministic and stochastic m. The mean absolute 

difference between observed and predicted standard 

deviations was .05 sq. ft. for deterministic m and _06 sq. 

ft. for stochastic m. As would be expected, allowing m to 
~ 

be s.tochastic resulted in higher standard deviations of 

predicted basal area on plots whre this method was used. On 

plots 43 and 44 the standard deviation with m deterministic 

was closest to the observed, whereas on plot 45 the standard 

deviation with m stochastic was closest. This is in 

contrast to the p-levels and histograms which show that 

allowing m to be stochastic improves the correspondence 

between the observed and predicted distributions. Although 

the p-levels and histograms were from one run of the model, 

the above trend in standard deviations was also evident in 

this one run (see Table 14). Thus the correspondence 
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between the observed and predicted distributions depends on 

more than correspondence between the standard deviations. 

Figures 7 through 11 depict the observed and predicted 

height distributions. An ocular inspection shows that the 

two distributions tend to take the same shape. When there 

is an obviously poor correspondence, this may be traced back 

to the predicted basal area distribution. For example, 

Figure 7 shows that on plot 41, both prediction methods (m 

deterministic, H deterministic; m deterministic, H 

stochastic) resulted in too many low heights. The. reason 

for this was probably the previously discussed under-

prediction of basal areas on this plot. Another example is 

Figure lla. In this case the predicted heights are 

concentrated in too small an interval.. Figure 6a. shows that 

this was also true of the predicted basal areas. 

The values in Table 17 verify the conclusions drawn 

from the histograms. The average absolute differences 

between observed and predicted mean heights were 2.72 ft., 

2. 72 ft., l. 56 ft., and 1. 53 ft. for prediction methods I, 

II,. III, and IV respectively. The first two average 

absolute differences are larger than the second two because 

methods I and II were used on plot 41 and methods III and IV 

were not. The differences between observed 

mean heights (observed - predicted) for plot 

and predicted 

41 were 7.36 
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. . 
. £t.~- .and T.4 ft. for methods I and I!, respectively. 

under-predictions were .due· to the. over ... ·abundance·. of·. low 
.. . . . . 

heights· in the:- predicted. dis.tributions.··. 

The·· average: absolute~ differences between ·· observed and 

predictec:t stand·ard devi.ations of height were·. 1.92_ ft., .L T3 

ft .. ~ 0. 90 ft., and. L 13 ft.. for methods I, IT, II!, and IV, 

respectively. Again the reason the first two average'-

absolute c:Hfferences .. are larger than the second .. two is. i;he 

. inclusi,on of the standard deviations from plot 41 in the 

first· two .. The differences: between observe.d and predicted 

standard deviations (observed· .. predicted)·· were '4.~88 ft: .. and 

5.35· ft .. for prediction methods:_ I and . I.I, respec:tivel,y. • 

These over.'-predictions were due to the over-abundance of low: 

heights. in the predicted. distributions<-· On:. . plot 45, 

predicti.on method I 'l.lnderestimated· the observed standard 

deviation by_J·.14 ft. Thi.s was more· than twice as large as: 

tl;Le· differences yielded by the other methods. The reason 
. . . 

f.or. the u:nder,...prediction of the standard deviation by method 

!' was the· concentration .of the predicted ~asal · areas into 

too smal.l an interval on this plot when m was· deterministic, 

as described earlier. 

··It is interesting :that method IV. ·. (rn stochastic, H 

.. stochastic} was better on only one· plot, 45. On this plot 

the three· levels of randomness (k, rn, and H, all stochastic) 
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resulted in a higher standard deviation which more closely 

agreed.with the observed. On plots 43 and 44 this method 

produced too great a standard deviation. 

The performance of the survival curve can be evaluated 

by comparing. the predicted and observed numbers of stems at 

the last measurement for each plot. These values are shown 

in Table 14. Only on plot 21 were. the observed and 

predicted numbers of trees substantially different. In 

comparison with plots 11, 31, and. 41 it is apparent that 

plot 21 experienced heavier than average mortality. 
! 

Note 

that the observed and predicted number of trees in Table 15 

cannot be compared. because not every obs;~rved tree had a 

recorded. height, yet a height was predicted for ev~_ry 

predicted basal area. 

5 .3 NONLINEAR GROWTH. FUNCTION 

Fitting the nonlinear growth function with the 

asymptote specified at 22.3 square feet of basal area 

resulted in the following estimated regression equation: 

where: fi = {(0.00400 CRi + 6.15593 BAi - 0.00010 T8i 

- 0.00237 Bi+ 0.00499 APAi)/1000} 

gi = 0. 44272 - 0. 0235l TS :i/1000 

R2 = 0.93 Sy.x = 0.048 n = 10195 mean BAi+l= 0.1927 
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.. where:, BA ·i+l::;: basal~. area of stem at. time . i +l in square feet 

CR.i:.= p.redi.cted· crown ratio o:f stem at ti.me· i · 

None. 

. . 

B:i;,= basaL area per>acre: (sq. ft •. ) at ·time· i · 

T~;= nu~er. of· trees· per ac.re at time i. 

APA1=. area potentially available to the stem at time 

APi= age form .. plantirtg at time i. 

of the. 'asymptotic 95% ... · confidence. 
. ' 

intervals for the 

estimated coefficients included. zero .. The R2 , Sy .. x, and 

e·Stimated ·coefficients w·ere all very: similar when the 

asymptote was specified at 25. 65 sq·. ,ft. or 18. 96 sq. ft. 

Note that the: . estimated· coefficient ·• for TS · in the · 

function mode.lling: the. quanti.ty (1/(1-m)) was. negative'. 

This means that:lower mvlaues were predicted for higher 

densities, . which ··.·is consistent with the resu.lts· from the. 

parameter distribution m.odel., 

The estimated linear model was 

BAi+l= -0~0896> +· 0.0010 CRi. + 0.0003.)~.I?Ai + l.0694 BAi. 

- 0. 0001.: B . + (3~ 19 x 10-~ TS. + 0 .. 0216 (AP.+l· ~ AP. } . 
J.. ' . J. ' 1 .J. 

'R2 = 0.95 · Sy·.x. = Q:.040 n. =-·10195 mean BA i+l= 0.1927 

The: estimated coefficient for TS i was significant at the . 1 

level of proba:Pili t"y·. All the· others were· · sighificarit at 
. ' . 

the .Ol level. 
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Results of fitting the non-·linear · and linear- model·s on. 

the: in¢iependent data .are presented · in Table 18. The· Table: 

displaysthe ·mean difference and. mean absolute. difference 

resulting: ·from predicting· the·· ·observed basal areas· on 
' ' ' 

replication four·~ and then computing' the difference between 

the observed. and predicted. The values show that the linear 

model. performed better than the n·onlinear. 

The· standard error·.• of the mean .. difference· between. 

observed .and predicted 'J:?asar areas for the nonlinear model, 

as.ymptote .. =• 18. 96 sq. ft. was . 01 x ·. 10.:- 4 larger tha:n .those 

for the· nonlinear model. with. asymptotes~ of 22. 3' sq. ft~ or 

·25.65. sq. ft. Thee three nonlinear models .· were identical 

under the three ether statistics shown in Table· 18. · This 

again establishes the insensi·tivity of the C-R curve to the 

asymptote·. 
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Table 18. Means and standard errors of means of difference and 
absolute difference between basal area observed on one 
replication in the Hill Farm data, and basal area pre-
dicted with the linear model and with the nonlinear 
model with three different asymptotes.* 

Model n 

linear 3391. 

nonlinear, I 3391 

nonlinear, II 3391 

nonlinear, III 3391 

* nonlinear, I 
nonlinear, II 
nonlinear, III 

Difference Absolute Difference 
std. error 

.mean of mean mean 

0.0006 7.19 x 10-4 0.0253 

-0 •. 0071 8.51 x 10-4- 0.0302 

-0.0071 8.51 x 10-4 0.0302 

-0.0071 8.52 x 10-4 0.0302 

asymptote = 22.3 square feet. 
asymptote = 25.65 square feet. 
asymptote= 18.96 square feet. 

std. error 
of mean 

5.74 x 10-4 

6.87 x 10-4 

6.87 x 10-4 

6.87 -4 x 10 



Chapter 6 

CONCLUSIONS Af\J-0 RECOMMENDATIONS 

The data set·used in this study h~~ little site quality 

variation, and a specific combination spacing-selection 

thinning. Therefore, care must . be exercised in 

extrapolating the results found herein to cases where' site 

quality is markedly different from. that of the data used 

here, or the thinning procedure is di'fferent. 

As stated earlier, the model 

H = a + b log(BA) 

performed well in this study. Based on these preliminary 

findings, it is suggested that a larger study is needed in 

order to determine whether this model is better in general 

than other candidate height - diameter/basal area curves. 

Although a much larger study of the Parameter 

Distribution model is needed in order to draw any firtn 

conclusions, it appears now that ··the following . general 

procedure would .. be the best means of empJ.oying, this model. 

First be cautious when applying the model on plots which 

were established at high densities or have experienced heavy 

mortality~ Second, test to see at what densities rn tnay be 

set to zero; and. do so for these densities. E'or other 

densities regress- rn on k, k 2 ; and stand varia]:)les measured 

104 
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. . . . . . '. . 

at a reference: point in time .. For predictiofrqf basal areas 
·, 

empl6y the:. stochastic: m. Tbis method appeared to function 
.··. . 

better than using the deterministic ·m on plots: 
.. .. . .· 

where m was: 

· .. determined through regression. analysis .. E'or prediction of 

heights;· use· the: det~rrriinistic. height model. Based on Table 

16 this method appeared to perform as. well as the others. 

Ih retrospect, the Parameter Distribution model has at 

least five· desireable characteristic:.s·. · E'irst, . it is based 

on a" sound biolbgical growth curve·. Seco.nd, it possesses an 

internal. stochastic element~ Third, ·. al.l the. internal. models 

appear to fit welL, in contrast to. the diameter distribution · 

models in which the. internal· prediction equations for the. 

parame·ters of the p .ct·. f. tend: to. fit the observed. dat,a 

poorly. E'ourt}l, C1,gain in contrast to .. the diameter 

distribution models,. the predicted basal. area distribution 
-

is not constrained. to conform to a certain. p.d·~f. Finally, 

and: perhaps most importantly, the· model is logical and·. 

relatively easy to comprehend.·· However, the parameter 

distribution model also·· has at least two. disadvantages. 

E'irst is ·the problem of mortality. More preci s:ely, the· 

problem is the> death of trees included in the· fitting data 

set for the marginal distributio.n of k before they reach 

projection age. ·Although> this did. riot appear to have. a 

noticealbe. effect in the range of.· densities .of practica·l 
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interest, more studies are needed to fully define the extent 

of this problem.. As stated. earlier, it does not appear to 

the author that this problem can be eliminated. However, if 

necessary, perhaps a. method could be devised to alleviate 

the effects of this problem. The objective of such a study 

might be to determine the optimum minimal lifespan for trees 

included in the fitting data. This might be found by 

varying the minimal lifespan 

correspondence of the resulting 

distributions to the observed. 

and comparing the 

predicted basal area 

The second disadvanage of the Parameter Distribution 

model is that it requires re~measurement data to calibrate 

the growth functions. In situations where only temporary 

plot data are available, other 

The good fit of the C-R curve 

techniques must be applied. 

to the individual stems 

considered in this study suggests that some use should be 

made of such a function in diameter distribution models. 

Some work has progressed along these lines. As previously 

mentioned, Bailey (1980) has derived the growth func.tions 

implied by the use of several p.d.f. 's commonly used in 

diameter di.stribution models. These growth curves should be 

examined to see if they represent individual tree growth 

adequately. If they do not, then an effort should be made 

to find or develop a p.d.f. which would include a curve such 
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as the. c~R ·.·growth curve' as· the implied growth function. 

Perhaps .. a. method ·could be derived to incorporate such . a: 
. . . · . 

. growth cu:r:ve' into. ·the' estimation· of. the parameters. o.f the· 

diameter' or basal area' distribution. For example / perhaps· · 
' . . ' . - . . 

· the methoci of solving fci-r tl'le parameters of the distribution 

from predicted quantities whi.ch are funtions of the moments· 

of the, p~cl.f. could be carried· a step further in which.a 
.·' ' - . 

sound· growth. curve is· employed.to: estimate the ·moments. 

'Regarding ·the individual tre.e nonlinear growth 

function1 .· on. the· basis·· of. the results reported herein, it 

does not yield better.growth predictions than. the simpler 

linear model. Therefore. the use of the. nonlinear ·model. 

would ordinarily be unC'alled for. However r· f:Oresters. are· . 

often called on·to.extra.polate beyond the range of observed 

data .. For this·. purpose< the nonlinear model would probably,, 

be safer· than the linear model, .· since if is based upon a 

reasonable· growth. curve with known. long.-terrn properties. 

In summary~ the results of this study were mixed. The ... 

effort devoted to height-diameter curves indicated that the· 

model currently in widespread use may not be the· bes.t 

available model. The'. Parameter D.istribution model, which 

estimates thebasal area. and height <;iistribUtions at given 

points. in ti.me performed fairly. well. More work is needed 

to refine 'this ·model. and link it more· closely.. with 
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alternative· methqdologies. The nonlinear individual tree· 

growth function did. not perform. as well as an alternative 

linear mode!..,. and its ·use- would only be· justified. when 

extrapolationisnecessary. 
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MODELS OF 8-TAND BASAL AREA DISTRIBUTIONS, INDIVIDUAL: TREE:. 

BASAL.AREA GROWTH, 

AND HEIGHT-DIAMETER RELATIONSHIPS FOR LOBLOLLY PINE ·. 

by 

Edwin James Green. 

(ABSTRACT) 

The study dealt with developing methodologies for pred:-

icting basal area distributions and. individual tree basal 

areas .. · Data for the. study was from the Hill Farm Experiment 

Station at Homer, Louisiana. 

Five height-diameter (basal area) curves: were examined 

to determine which was most appropriate for the· data set 

utilized. The• model H = a + b log(BA), where H denotes 

height. and. BA denotes basal area., was chosen as best, based 

on several fit and. prediction oriented· statistics. 

A stochastic basal area distribution model, called the 

parameter distribution model, was developed. The model was 

based on.the Chapman-Richards growth curve.. This curve was 

fit to all stems on approximately 3/4 of the data· set. Two 

parameters of the curve were fixed a· priori,· leaving two 

parameters to .be· estimated. A sampling distribution was fit . 

to. ·the estimates of th19 rate parameter, k. Models were 

.developed· to predict the parameters of this distribution 



. from: ·stand variables:. A model · was then derived to predict 

m, the shape. parameter· of the c·-R curve, from k and stand 

variables~ · . Finally,· ·an existing survival function was modi-

fied. The overall.model was implemented as follows: first, 

· the number of surviving. stems was predicted. Then k and m 

val.:ues were predicted for each predicted stem., Substitution 

of these two values into the C-R curve yielded a predicted 

basal area for each stem. The previously mentionedheight-

diameter curve was employed to·predict a height for each 

· predicted basal area. Stochastic elements were built into 

the pred.iction model for m and the height-diameter curve. 

Predicted .basal ar.ea and hei.ght distributions were compared 

to observed on the remaining 1/4 o.f the data set. Although 

the two--samp1e K-S test was statisti.cally significant, the 

obse·rved and predicted distribution.s did appea.r to. be close, 

iri general, from a practical.· standpoint. ·This approach 

appeares promising as a·stochastic method of predicting size· 

distributions~ 

The Chapman;"!"'Richardscurve was also modified for use as 

an individual tree basal. area growth. model. Two parameters 

of the curve were fixed, and the remaining two were modelled 

as functions· of tree~ and stand--level variables. The modi-

fied growth functio.n fit the data well, but -on an indepen-. 

dent data set, a. simpler linear model of basal area growth 



performed.better in terms of mean difference and mean abso-

lute difference between observed and predicted basal areas. 

Thus, the· only anticipated use of the modified C-R model is 

in situations where extrapolation beyond the range of 

observed data is required, since this model has. desirable 

long-term characteristics, whereas the linear model does 

not. 
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