
An Object-Oriented Method of Mission Profile Input 

for Aircraft Design 

by 
Francisco Rivera Jr. 

Thesis submitted to the Faculty of the 

Virginia Polytechnic Institute and State University 

in partial fulfillment of the requirements for the degree of 

Master of Science 

in 

Mechanical Engineering 

APPROVED 

Sinberr Alam 
VV 

Sankar Jayaram, Chairman 

7 
A. Myklebust J. R. Mahan 

  

April 30, 1993 

Blacksburg, Virginia



ware 

LY 
3
 

hey 
w
D
 

x 

“Sy 
DA, 

r
y



An Object-Oriented Method of Mission Profile Input 

for Aircraft Design 

by 
Francisco Rivera Jr. 

Sankar Jayaram, Chairman 

Mechanical Engineering 

(ABSTRACT) 

This thesis discusses the creation of an object-oriented method to facilitate the creation and 

specification of aircraft mission profiles. Mission profiles are detailed descriptions of an 

aircraft's flight path and its inflight mission activities. They are a vital aspect of the 

conceptual design process of an aircraft. The Mission Profile Input System (MPIS) created 

is general in nature and can be customized to be compatible with existing aircraft CAD 

systems. All data associated with the mission—phase parameters, phases, and mission 

parameters, are defined to be objects. Each data type can therefore be customized 

individually to meet any requirements which may be necessary to make the MPIS 

compatible with a host system. Customization of the MPIS is further enhanced by the 

nature of the design upon which it is based. An object-oriented design provides the system 

with a high degree of extendibility. The encapsulation and inheritance features of 

object-oriented design allow new types of phases and phase parameters to be simply 

"plugged" into the existing system. The MPIS provides the user with an interactive, Motif- 

like interface which is conducive to manipulating the large quantities of data inherent in 

specifying mission profiles. The system is based on the ISO graphics standard, PHIGS, 

and hence is device-independent. Moreover, the system has been implemented using the 

hybrid object-oriented language, C++, which is supported by a large number of computer 

systems.



Acknowledgments 

Were it not for the continuous, unconditional, support of my parents I doubt I could've 

managed to pull this one out—they have been my source of inspiration. Though, I can 

never hope to fully repay the debt I owe them, I dedicate this thesis as a small, symbolic 

token of my utmost appreciation for what they’ve provided. Para mi papa y mama, 

Francisco y Marcelina Rivera. Los mejor parientes que un hijo puede tener. .. Gracias por 

todo... 

I would like to extend my appreciation to Paul Gelhausen and Gary Hill for their numerous 

suggestions. Their input contributed significantly to the development of this thesis. 

I thank my advisor, Dr. Sankar Jayaram, whose “I promise you you’ll graduate” 

assurances gave me the impetus to continue on with the endeavor. Also I would like to 

thank Dr. A. Myklebust and Dr. J. R. Mahan for serving on my committee. 

  

Acknowledgements hii



The following is a list of people who, through some measure, “own" a piece of my thesis 

for their encouragement and help. 

Trisha Tran 

Laura Palacios 

Steven Jump 

Frank Sager 

Greg Simpson 
Dom Dal Bello 
Joseph Wood 

John Merrill 
Douglas T. Shafer 

David Coe 
Andreas Steude 
John Kelly 

Srinivas Dhulipala 

The "P-man"“ 
Scott Woyak 
Jim Pascoe 

Colin Heichman 
Vellaurit Rivera 

Nereyda Rivera 
Jim Veny 
The SLAC crowd 
The FMC crowd 
AND FINALLY 

Kathy Ireland 

- the greatest friend a person could ever hope to have—thanks for 
everything Trish. I'll see ya in England!!! 
- for being there when it counted the most—best of luck in Loyola Law 
School 
- for making sure I'd risk my life every time we went hiking—T’ll 
“pay” you back if you ever get nominated for the Supreme Court. 
- who told me "people like you belong in graduate school." Frank, it's 
“nearly as much fun as a sharp stick in the eye" :-) 
- well, Homer, it’s time that I join you in the real world... 
- who because he went to graduate school, I had to go. . .” Thanks” 
- the 'tons of money" you promised me better be on their way. I hate to 
think I did this for nothing 
- who assured me "college is nothing but fun and games" 
- my roomi who told me, "Go for it, it's only ONE year!"—you 
“deserve” to be a lawyer :-) 
- for all the support and "clear insight" he offered 
- whose help was immeasurable—thanks for helping me escape 
- whose Wayne's World humor ensured that I kept my sanity—better 
luck in cards next time, dude!!!! 
- whose whipping I'd inflict in racquetball made me look forward to the 
next day—thanks for everything—hbest of luck in Detroit 
- for being a great office "pal dude"—-we're outta here—"COOLness!" 
- object-oriented programming personified — thanks for all the help 
- who introduced me to Coconut—the only female in my life this year. 
:-) Merci. 
- Owner of Coconut 
- thanks for all the support sis!—we’ll celebrate your graduation soon 
enough ... 
- for reminding me that life is more than coding 
- for providing some seriously needed direction 
- for all their engineering advice 
- for all their non-engineering advice 

- Nope. I don't know her personally. But she provided some "divine" 
inspiration, nonetheless. :-) 

  

Acknowledgements Iv



Table Of Contents 

1.0 INTRODUCTION. ...............ccecececscecececececsccncscececeessescscuseacecesenseseses 1 

2.0 LITERATURE REVIEW. ............:.ccccccscesccncccccencencenceeccencescsessenseeseees 3 

OVELVIEW ...... 2 eee cece ence ccc cn sec cetccenncessceencceensen ens cessceseneeesesensesernseness 3 

Conceptual Aircraft Design. .................cececesccsececceeccscceeceeceeecseseseceens 3 

Program DeSign .............cesccesccescccceceetcccescesenccrestortsceesteeeeesensseeence 5 

Object-Oriented Design ................cccccccecccescctetccceccccecsesenccssnscessscesass 6 

Mission Profiles ............0cccccescceencocccceesccnecceesscrnecceessoenssetessceseoeeece 7 

3.0 THESIS OBJECTIVES. .......... cece cecssceceececsececereececsscecssceceseeeeees 9 

4.0 AIRCRAFT DESIGN AND MISSION PROFILE INPUT.................2eceeecees 10 

The Aijrcraft Design Process...................ccececceeceseecesecssrensccsscesscenscess 10 

Tools For Aircraft Conceptual DeSign....................cssessssssesescescceereecers 12 

7X OND 6.) 12 

Interactive CAD Version Of ACSYNT .................ccccesccccecccesceess 14 

ACSYNT’s Trajectory Module ............. 2... cccceenccceneceeceees 15 

5.0 REQUIREMENTS .................cceccssseceecceccecceccecceccescenscensenstessesseeseess 18 

OVETVIEW 2.0... cece cc ence nce cc cence nc cneeenccecceencetcessaeeecteneessesseseencescoeeaees 18 

Explanation Of Requirement. ................cceesceeeceescceceeoeecccensceeenccesecees 20 

6.0 DESIGN CONSIDERATIONG. ...............ccccccsececcscceceeccecescoececcnccsccecnes 24 

OVELVIEW 2.0.0... cece ec ecetecececcececeecsceneececencesecencsceatecsasecsceeceseceseones 24 

Program Design Considerations..............0.ceccecccccccccccnceecccesscessccessecers 26 

Object-Oriented Design And Language Selection......................00000 26 

Object Relationships ................cceccccsccccceececcescceccenceescescenseees 27 

Extendibility And Maintainability......0............ seeccseccsscccsseceeees 29 

Data Hand ling......... cece cece cecccnceen cer eeeenceorcscececnsserseseees 30 

Interface Layout .............. cece ccc cccceeceecceeenccecccceecetencceceseeseees 30 

7.0 THE MISSION PROFILE INPUT SYSTEM .................cceeccescecceccenscencees 32 

Class Structure Layout............... ec eeccccecceccececcesceccecsscescnsceceeseseoeses 32 

The PHIGS-Based, Motif-Like Interface......................cccessseeeeees 37 

  

Table Of Contents



Framework For Handling Data .................cccecesccccecccccctccccesenscceeusescees 39 

The User Interface..............cccccceeccecececececcncccscececccsceacececeseceecscscnoees 41 

8.0 CLASS DESCRIPTIONS................cccccsccccccccceccccceessccecsnsceeccsceseessseees 43 

OVELVIEW .... 0. cece cece cece cece nce c cc ceccneeen enc eseeeeescesssscsnseseennseaseensescesess 43 

PaAraMetel..........ccecceeccecccenncenccceccececesccceenceensessasceccesesseenscesnscessees 43 

Data Members-Parameters class ............cccccccceeeccccceesccceeensssceeees 44 

Functions Of Parameters ............ccscccsscccecccceccccsacceecseeessececceens 44 

PHASES 2.2... ccc cece ccc cc cence cence cece cee eenceeeeeeeeaccetersesenssenssscensenscccesens 46 

Data Members-Phases class..............scccceccccccecccccceccvecceeescceeeess 46 

Functions Of Phases ...............cccccesscccceeccnccccceceeeccaccececeseesease 47 

MiISSiON_ParaMe teTS.............. ccc cece cece cenccccccccccccccccecccccceccucccacccccsseucs 49 

Data Members-Mission_Parameters Class ...............cccccccccccceucccees 49 

Functions Of Mission_Parameter ..............2sscccccccccccccccceecececeees 50 

MiUSSIONS...........cccescceccccececccceescerseccccsesccesenseteeesccesseascesesscceecnseees 51 

Data Members-Missions Class.................ccccceccsececeeccecceccscescese 51 

Functions Of MiUSSiOMS................cccecscecscsccecscscscecscccececescecsoees 52 

Phase_Diagram_Window ..............ccccssccccccccceccccceccncccesscccecsenscueseuces 56 

Data Members-Phase_Diagram_ Window Class ................cceeecceeeees 56 

Functions Of Phase_Diagram Window ..............cccsccccscceescccesecees 56 

Mission Window ............cccccc ccc ccccccccccccuscccccccccccccccucncccccccecvecccseses 58 

Data Members-Mission_Window Class ............ccccccccccccccccccscsccees 58 

Functions Of Mission Window ..............c.csccesscccesccecccscesnceeceees 58 

9.0 SYSTEM CUSTOMIZATION .................cccscececsceccceccssecccececscecececscecees 63 

OVELVIEW «00.2... ccc cece nec e nec enccenescencccenccenscceccccescsecsncesceseesceseccseussees 63 

Trajectory Data Files ...............ccccecccccescecceccesccecctscencescesesescescescseeens 64 

Phase Defaults File... ............c cece ccccesccccccnccececccccecsccceescsccessssceeeeness 66 

PAraMeteLS............cccececccencecceccccccecscecceuceesteencessteccenscesceseccecccesceres 68 

The set_value_to fUnction .......... 0... cece cece cece ccc ccc cccccesccccceccececs 70 

The check function ............ccccccescceccccccccceececsnceesacesecscesscesees 71 

PHASES ..........cccccccencencecccencecccesscenceeacceseecceesseescecactecsescscnscesccenees 73 

The calculate fUnction...........0.0ccsceccccecececcccccscansceeensccecenscceeees 74 

The geo_segment function ..............cceeecccccecccecsncccecncccccessscceees 77 

Miscellancous.............20cceccencccccccesncceeccccsnctecscessccesccsessseeesseessacenses 78 

10.0 IMPLEMENTATION AND EXAMPLES OF RESULTS ...............cccccccceeeee 79 

  

Table Of Contents - vi



The Stand-Alone Version Of The MPIS................cscccscccccccccceencceccesccese 80 

Methods For Handling Data.................. cc eccesccececececescssecssccsceeseneeeees 83 

Creation of a MisSion ............cccecscceecccccsccccorscncccensscecesessseenees 83 

Modification of a Parameter................ccccsccccsscceecccecceestcccesssess 86 

The User-Interface ..........0ccscccscccceccecscccencceecccesceescsensccssesseesseeneees 88 

11.0 INTEGRATION WITH ACSYNT...............cccscccectccecscecccccesscetscceeesceees 104 

OVErVIEW ...... 2. cece ccccenccceecncenecncccenscesensceesccccesenseceessscesessateeseesserce 104 

Inte gration.............csceccecencece ccc ceceecnecnceccescscseseeceeesscsceseesseesenceaees 104 

Using The System From Within ACSYNT .................sscecceceseesccececesseees 111 

12.0 CONCLUSION AND RECOMMENDATIONS .............0cseccecceescsccceesceeees 112 

13.0 REFERENCES .............ccccescceccceeccccecceencceccncesccetscctesseeestecssseeseseesss 114 

APPENDICEG. ............c.scececcececcsccscescscsccsccectncescecescecenceesenceasscecsensecesceas 119 

APPENDIX A: User Guide.............ccccssccccccescsccccecescccccccesesscecectecsecs 120 

OVELVIEW 2.0.2.2 cece cece cece cecccncccesceeescecscceenecescseteceeengenssseeesseees 121 

Selecting Data.............ccccceccenccecccscccccrscceesscsacesscescescssecneesees 121 

The “Phase” Menu ..............sccccccccccsccccescscceeesccceesccscess 121 

The “Defaults” Menu.................ceccsccsceececcscsccscees 122 

The “Phase Options” Menu ..............c.ssceccccecsceececccceecsccs 123 

The “Quick Input” Menu .................cccceseeecesceeceees 125 

The “Parameter” Menu.................ccccsecseccsecsseeececeescesces 127 

The “Move Parameter’ Menu..................ccccsccccecccesssceesers 127 

The Push Butts ...............ccccceccceccceccecenccescncencseensceseacceeecs 127 

01) | Se 127 

Mission Parameters Toggle ...............ecccsceesccesccececeeesenees 128 

Phase Diagram Toggle..............cceccecccncceccscccestenscessscees 128 

OPUIONS 2.2.2.2... cece ccc ccce nce enc cece ear cenceenccencesscessseesseesees 128 

The “Select Other Variables” Menu ..................0e2000. 129 

The “Other Variables” Menu .................2s0cceeeseceeees 129 

The “Row/Column” Menu ..................ccccceeececeeeees 130 

The “Number Display” Menu................0ccseceseceeeees 130 

100 % (Fit-to-Screen)........... ccc cecececececsescevcccescccscseeees 130 

Window Basics.............cccccescceecccecccescscecccseesceesscecsccesessensees 131 

APPENDIX B: Detailed Class DeScription.....................ccscsscecceseereoneeees 132 

  

Table Of Contents . vil



The Parameters Class ...........ccccsccccccccccccccccccaccccccscccccccccsssceces 133 

Functions Of The Parameters Class..............cccceccesccceseccceccccescees 135 

The Phases Class.............scccccccscccscccecccceccccescscecssesecuscescesence 139 

Functions Of The Phases Class....................ccccceccssccesccnscecscncess 141 

The Mission_Parameters Class ............csccccesccessccceccecsecccescceseces 145 

Functions Of The Mission_Parameters Class................scccesscccceeees 147 

The Missions Class ...........ccccccscccscccescccencccencceesccecescesscsceccars 150 

Functions Of The Missions Class ...............sccccceccccescnccecccsccceecce 153 

The Phase_Diagram_ Window Class..............ccscccsscecccesccesceeccces 163 

Functions Of The Phase_Diagram_Window Clas...................s0seeee 165 

The Mission_ Window Class............ccccccccccccccccccccscccccccccecccccces 167 

Functions Of The Mission_Window Class...............sccscsscsssescseees 174 

Additional Functions...........sccccssccccccecccsnsscccscceccccsccccccccscccess 185 

Other Classes ............ccccccescceencccceccccccensccccescscescnsccececccceseucs 186 

VITA... ...cecccccccccsccceccccccccccccccceecssecnsensccenseensnsecnccseccessncesscccsssceesccensees 187 

  

Table Of Contents . vili



  

List of Illustrations 

Figure 1. The Trajectory Input Interface for ACSYNT ...............ccecsecesccceseeseees 16 

Figure 2. ACYNT’s Trajectory Module Input Method [Tayl88]......................cee0. 17 

Figure 3. Approach to the Development of the MPIS .................cceccesesescecceceeees 25 

Figure 4. Real-Life Object Analogy .................cccecceeesecceccesceceeccescnsececceceeers 28 

Figure 5. Class Relationships ....................scececeecececcescceccccencssesssssecsceccsoees 33 

Figure 6. Other Classes Created by Mission _Window..................ccsccscsccscseseees 34 

Figure 7. Class Organization for PHIGS Motif-like Framework [Woya92] ............. 38 

Figure 8. Internal Data Relationships......................:cssccceecccesceccesceceseeeeseeeees 40 

Figure 9. Trajectory Data File ........... 0... ccc cce cece ee ence e cece eens coe eeceescesseeeseensones 65 

Figure 10. The Phase.dfl.miss File.....................sccssscssccsecccssccsceccessceceeeceees 67 

Figure 11(a). Basic Parameter Definition .....................ccceceeceeecccecceecececcesceees 69 

Figure 11(b). Modification Required For Parameter Definition......................0ceee: 69 

Figure 12(a). Basic Phase Defimition...................cccccccccccccsccesceescceeseesceesseess 75 

Figure 12(b). Required Modification for Phase Definition ..................ssscesecseeeees 75 

Figure 13. Creation of Mission (Pseudo-Code).................-.scccscssscrcssssesenesseees 84 

Figure 14. Parameter Modification (Pseudo-Code)................ccccccsssssceccsesssseeees 87 

Figure 15. The MPIS With the Phase Diagram Window Activated................:css0 89 

Figure 16. The MPIS With the Mission Parameters Menu Activated...................0 90 

Figure 17. The Phase Menu.................. 2... cce ese e concen eee encenscecnceeesensoeeseeeceees 91 

Figure 18. The Defaults Menu ....................ccecccceeccccesccccecenseeeesceeeesssscoeeees 92 

Figure 19. The Phase Options Menu.................cc.ccccscccccccescccesnceeeesececececsees 93 

Figure 20. The Quick Input Menu...................cccsccecceccececceccescctecsessccssceessees 94 

Figure 21. The Parameter Menu ..................:ccceeseececcecceeceeceecceccecessnceseeseees 95 

Figure 22. The Move Parameter Menu..................seccesccecccsccccccccccceccesccscssoes 96 

Figure 23. The Select Other Variables Menu......................ceeceeesceeceecenceecescees 97 

Figure 24. The Other Variables Menw...................0csceececeeccececcecceceecencenceceees 98 

List Of Illustrations ix



Figure 25. The Row/Column Menu...................scccccesceeceecnccccccesccrscseesenssees 99 

Figure 26. Menu Listing Available Files......................eecceececcceeeeccceecsccceeeeees 100 

Figure 27. The Message Menu..................cceeccececceecceceeceececccecscesscscesccsnenes 101 

Figure 28. The Confirm Menu................0c.ccccccecccecccenceccesccccesccenceesssesaceeass 102 

Figure 29. The Filename Menu .....................ccecesceeceecerecceceeerenseeasenseseeeeses 103 

Figure 30. Sample Usage of the Quick Input Menu.......................e cee eeeeeeeceeeees 126 

  

List Of Illustrations . x



1.0 INTRODUCTION 

The design of an aircraft requires collaboration from a variety of disciplines. Conflicting 

design proposals often result from each group trying to optimize a different aspect of the 

aircraft design. To reconcile such differences, a set of objectives which the final design 

must satisfy is instituted before the design process begins. These objectives are referred to 

as the basic requirements of an aircraft—a set of design and performance specifications the 

final product must satisfy. Once these requirements are established, the various groups 

must compromise and reconcile their differences in order to achieve these basic 

requirements. A significant aspect of the basic requirements for an aircraft is the 

specification of its mission profiles. Mission profiles are detailed descriptions outlining the 

anticipated flight activities of the aircraft during a typical flight. These profiles are broken 

into more specialized segments known as phases which focus on specific flight operations. 

Each operation, in turn, is defined by a set of parameters which describe the various aircraft 

conditions. Examples of typical phases include cruise, loiter, and acceleration, whereas 

examples of typical parameters include time, speed, and altitude. The list of possible 

mission profiles is inexhaustible. The types of phases employed by a mission depend 

strongly on the type of aircraft under consideration. A combat phase, for example, used 

extensively in designing military aircraft, has no application in the design of commercial 

aircraft. 

Mission profiles are inherently data intensive. The number of phases and parameters that 

comprise a typical mission is usually quite large. The creation and manipulation of such a 

  

Introduction 1



large amount of data can prove to be overwhelming if the proper tools are not provided. 

This thesis addresses the creation of an object-oriented method of specifying mission 

profiles for aircraft design. The design, development, and use of this system is discussed 

in detail. The system created provides a good graphical user interface which displays the 

vast amounts of mission data in a friendly and consistent fashion. This system is general in 

nature and can be customized to be compatible with a wide variety of existing aircraft CAD 

software. 

The system, referred to as the Mission Profile Input System (MPIS), was developed at 

Virginia Polytechnic Institute and State University. It is part of an ongoing endeavor to 

develop better methods by which to improve the usefulness of current interactive CAD 

systems. 

  

Introduction . 2



2.0 LITERATURE REVIEW 

Overview 

The creation of the Mission Profile Input System relied upon ideas borrowed from the 

disciplines of aircraft and software design. The amount of literature which is available in 

these two areas is immense. The following sections do not reflect a comprehensive list of 

the literature which is available. Rather, they are intended to give a small, but 

representative, sample of what may be obtained. The books referenced in this section are 

included because the methods discussed within them were used extensively in the 

development of the MPIS. The literature survey is divided into four parts: literature on 

aircraft design, software design, object-oriented design and mission profiles. The third 

section describes a specialized method of software design which was used extensively in 

the creation of the Mission Profile Input System. The final section discusses some of the 

available literature pertaining to mission profiles and their role in the aircraft design 

process. 

Conceptual Aircraft Design 

As in the design of other products, iteration is an inherent element of aircraft design. Each 

iteration “fine tunes” the results from the preceding one to enhance and optimize the 

configuration of the aircraft. The process is repeated until the design satisfies a desired set 

of requirements and specifications. Leland M. Nicolai guides the reader through one 

  

Literature Review 3



complete iteration of the aircraft design process in his book “Fundamentals of Aircraft 

Design” [Nico84]. The topics covered range from a concise review of aerodynamics to a 

detailed discussion of environmental concerns. The book outlines analytical methods for 

making and assessing certain design decisions. The design considerations covered include 

engine sizing and selection, material selection, sizing of the vertical and horizontal tails, 

sizing of the fuselage, and static stability and control. 

A more comprehensive look at aircraft design is given by Daniel P. Raymer in his book 

“Aircraft Design: A Conceptual Approach” [Raym89]. The book gives equal treatment to 

the two major aspects of aircraft design: design layout and design analysis. Special 

emphasis is given to aircraft configuration layout. The reader is guided through the 

complicated procedure of drafting aircraft from analysis results. In addition to the topics 

discussed by Nicolai, Raymer addresses other aspects of design such as cost analysis and 

sizing and trade studies. 

An eight-book series designed to familiarize engineering students with the methodology 

and decision making involved in airplane design is given by Jan Roskam [Rosk89]. Each 

book in the series covers a different aspect of the design process. The topics include 

preliminary sizing, preliminary configuration, layout design of cockpit, layout design of 

landing gear, weight estimation, aerodynamic calculations, determination of stability, and 

cost estimation. Roskam presents the student with detailed examples of the considerations 

that go into designing an aircraft. Requirements and specifications that need to be 

considered are also detailed. 

The three aforementioned books focus primarily on the traditional design process—very 

little, if any, attention is given to the role of the computer in modern-day design. In his 

book “Development and Application of Computer-Based System for Conceptual Aircraft 

  

Literature Review . 4



Design,” Cornelis Bil focuses on the impact of computer-aided engineering (CAE) 

techniques on the design of aircraft [Corn88]. In particular, he focuses on the development 

and application of the Aircraft Design and Analysis System (ADAS) and its graphical 

interface, MEDUSA. The various modules of the ADAS program are discussed in detail, 

including how to utilize them. Emphasis is given to illustrating how to read the information 

provided by the system. Finally, to demonstrate the system, a design optimization study is 

performed on a short-haul passenger airliner. 

Program Design 

A comprehensive look at software design is given by Ray Turner in his book “Software 

Engineering Methodology” [Turn84]. Every aspect of program development, from 

conceptual design to code validation, is discussed in great detail. Emphasis is given to 

developing proper design principles including modularity, hiding, understandability, and 

uniformity. Coding and debugging techniques designed to facilitate development of good 

software are also offered. In addition to focusing on the specifics of individual design 

projects, Turner also offers advice and examples on how to manage software development 

projects which involve a group of people. Examples of small and major projects and 

discussions of project phases such as planning, motivation, control, and new product 

training, are included. 

In order for a software system to be useful and successful it must have a well-designed 

user interface. Judith R. Brown and Steve Cunningham detail the process of developing a 

good interface in their book “Programming The User Interface” [Brow89]. Techniques 

and examples to help in the development of interactive program design features such as 

input, output, screen layout, and error handling, are discussed in detail. Topics covered 

range from simple input and menu layout configurations to complicated window and user 

  

Literature Review 5



interface managers. For the interested reader, discussion on how to develop interfaces for 

people with disabilities is also included. 

A complete look at the many aspects of software development is provided by Robert C. 

Tausworthe in his book “Standardized Development of Computer Software” [Taus77]. The 

topics covered range from discussions on the need for software standards to the assessment 

of program correctness. Before delving into specificities of specialized program 

development, Tausworthe presents general topics. This includes discussion on the 

fundamental principles of software development, specification of program behavior, and 

program design. 

Object-Oriented Design 

A practical introduction to software engineering and object-oriented design is given by 

Darrel Ince in his book “Object-Oriented Engineering With C++” [Ince91]. As indicated 

by the title, the language used to illustrate object-oriented programming (OOP) techniques 

is C++, one of the most widely used languages in OOP implementation. As in most other 

books related to this topic, important OOP concepts such as polymorphism, inheritance, 

and encapsulation are described in great detail. Emphasis is given to proper object-oriented 

design, with focus on the aspects of object identification, object implementation, 

specification of object functionality, and object linkage. Formal software methodologies are 

also discussed, such as the three types of software prototyping: throw-away, incremental, 

and evolutionary. 

The recent attraction to OOP techniques comes from the fact that they offer a revolutionary 

way to look at programming. It offers not only a new way to write programs, but also a 

new way to think about how programs interact with the world. It is the latter concept which 

  

Literature Review . 6



the book “The Tao Of Objects,” written by Gary Entsminger [Ents90], tries to get across. 

Through the use of numerous examples, this book explores how OOP techniques and real- 

world problems are related. Emphasis in placed on encouraging the reader to think in terms 

of objects and methods to define them. Discussion on the determination of their makeup, 

boundaries, and generality is given. Real-world examples which illustrate good and bad 

object definition are given to demonstrate the advantages of a good design. These 

advantages include efficiency, maintainability, and readability. 

Mission Profiles 

At present, a general mission profile input system or methodology do not exist. Each 

aircraft design system has input methods which are system-specific. Systems such as 

ACSYNT [Wamp88a & Wamp88b], STOP [Stei67], and CASTOR [Simo86], utilize 

individual input techniques to funnel information into their mission performance analysis 

routines. Of these methods, only the ACSYNT Trajectory Input Module [Tay188] provides 

a graphical user interface to facilitate the creation of the mission profile. 

The amount of research devoted to developing better methods for the analysis of mission 

profiles demonstrates their importance to the overall aircraft design process. Various 

techniques to improve the analysis have been explored over the years. Specialized 

techniques were investigated by Rutowski using energy methods [Ruto54]. These 

methods analyzed the mission performance by minimizing the fuel and time paths of the 

mission. More general methods were explored by Stein [Stei67], Bryson [Brys68], and 

Shultz [Shul70]. These three methods optimized the complete path of the trajectory—i.e. 

the climb-cruise-descent phases were all taken into account. Stein utilized steepest descent 

methods whereas Bryson and Shultz obtained the trajectory solutions by applying 

optimization principles to the energy state equations. In 1984 Simos and Jenkinson coupled 

  

Literature Review 7



the flight profile analysis algorithm with a multivariate optimization (MVO) routine to 

determine the optimum mission profile for short-haul routes [Simo84]. This technique 

permitted the entire flight to be treated as a single complete problem and allowed physical, 

air-traffic control, and environmental limitations to be incorporated more easily. More 

importantly, however, the problems associated with the mathematical modeling of the 

thrust characteristics of propeller-driven aircraft were eliminated. Up to this point such 

modeling had been restricted to simplified thrust models in order to avoid the mathematical 

complexities. By 1986 a program combining the previously separate aspects of preliminary 

design optimization and flight-profile optimization was created. Dimitri Simos utilized this 

program, referred to as CASTOR, to optimize both aspects of the aircraft design for a 

short-haul aircraft [Simo86]. 

As the aircraft design process is rearranged from a sequential procedure into a 

nonhierarchical decomposition of the various design aspects, the analysis of the mission 

profile has become an even more integral part of the aircraft design process. The work 

started by [Simo86] is being expanded to provide for more sophisticated simultaneous 

optimization of the various design disciplines. Jaroslaw Sobieszczanski-Sobieski discusses 

some of these multidisciplinary analysis techniques [Sobi88]. Such techniques generate 

better results than those obtained by the traditional sequential design process. More 

importantly, these techniques eliminate the notion that each design aspect may be thought of 

as a separate process, independent from the rest. Henceforth the entire design process will 

be thought of as a single problem with each aspect within it influencing the others. 

  

Literature Review - 8



3.0 THESIS OBJECTIVES 

Motivation for the creation of the Mission Profile Input System (MPIS) was to provide a 

user interface by which large volumes of trajectory data could be easily entered, 

manipulated, and evaluated. The module should be flexible enough to be compatible with a 

wide variety of existing aircraft CAD systems. To create a system that would satisfy these 

requirements, the following objectives were established: 

e Create methods by which a mission profile can be easily created and 

modified. 

e Design and develop the system such that it can be customized to be 

compatible with existing aircraft CAD systems. 

e Create a user interface which meets the demands of both novice and 

experienced users by providing a high degree of user-friendliness along 

with a variety of efficient data-entry procedures. 

e Design a system conducive to future enhancements and extensions. 

e Test the system by integration with an existing aircraft CAD system— 

ACSYNT. 

Satifying these requirements would provide a method which facilitates the often arduous 

task of creating a mission profile—a critical aspect in the design of an aircraft. 

  

Thesis Objectives 9



4.0 AIRCRAFT DESIGN AND MISSION 

PROFILE INPUT 

The Aircraft Design Process 

The successful design of an aircraft requires a concerted effort from a multitude of 

disciplines. Engineers specializing in the areas of structures, flight control, propulsion, 

aerodynamics, performance, and weights, must work together to produce the optimum 

aircraft design. The optimum design from one specialized area often conflicts with the 

design of another area. Consequently, the final design is usually the result of multiple 

compromises made by the various design groups. In addition to engineering 

considerations, the economic and manufacturing aspects of the aircraft must be 

considered—design feasibility implies not only whether a product can be produced, but 

whether it can be produced at a reasonable cost and within a reasonable period of time. 

Before an aircraft is designed, its mission requirements must be established. These 

requirements identify the criteria to which the final design must adhere. Among other 

things, the mission requirements often identify the purpose, payload, speed, range, 

endurance, cost, and maintainability of the aircraft [Nico84]. In general, the mission 

requirements are established by the supplier (e.g. Boeing Airplane Company, Piper Aircraft 

Corporation, etc.) for commercial aircraft, whereas the user (e.g. U.S. government) 

establishes the mission requirements for military endeavors. 

  

Aircraft Design and Mission Profile Input 10



The aircraft design process has been traditionally divided into three major phases: 

conceptual design, preliminary design, and detail design [Nico84]. 

In the initial design phase certain general design constraints are imposed. The overall size, 

configuration, and inboard profile of the airplane are determined. Parametric trade studies 

are used to converge upon the best wing loading, wing sweep, aspect ratio, thickness ratio 

and general wing-body-tail configuration [Nico84]. These design parameters, however, 

are but best approximations—based upon various design assumptions which are subject to 

future changes. 

In the second phase the design begins to exhibit more detail. The engine is selected, the 

structural integrity of the aircraft is analyzed, refined weight and aerodynamic analysis are 

performed, and the dynamic stability and control influences on the control system are 

determined. More importantly, aerodynamic and structural tests are done on scaled models 

to verify the analytical conclusions. 

The final design phase consists of readying the design for production. All design 

parameters are "frozen," detailed component and assembly drawings are created, and the 

necessary tooling for the manufacturing process is developed. Finally, a prototype is built 

to test and prove the design. 

Presently, many aerospace companies are shifting from the traditional design process to 

concurrent engineering methods. Concurrent engineering reflects a growing trend by 

companies to move away from the vertical, hierarchical organizational structure to a flat and 

lean one. To expedite and decentralize the decision making process (thereby enhancing 

organizational flexibility) the number of job categories at each level of the hierarchy is 

reduced and the responsibility associated with each job is broadened [Dert89]. In virtually 

all cases, the fewer layers of hierarchy and the greater functional integration has resulted in 

  

Aircraft Design and Mission Profile Input 11



faster and cheaper product development. Certain companies, such as The Ford Motor 

Company, have successfully applied the concept. In developing the Ford Taurus, Ford 

created product-development teams which consisted of representatives from planning, 

design, engineering, manufacturing, and marketing. By working simultaneously rather 

than serially, these teams managed to successfully integrate the various phases of product 

development and produce a better product. Boeing Corporation is now attempting to 

duplicate Ford’s success. Multifunctional “design/build teams” are now in charge of 

developing both the product and the production process. The net effect is that two 

processes which were previously separated—design and production—now completely 

overlap. 

Tools For Aircraft Conceptual Design 

ACSYNT 

ACSYNT (AirCraft SYNThesis) was developed by NASA Ames Research Center for 

conceptual design studies of advanced aircraft in the early ‘70’s. It is a highly flexible 

program which allows for the study of a broad range of aircraft. ACSYNT consists of ten 

separate modules each dedicated to analyzing a separate aspect of an aircraft. The modules 

are as follows [Jaya92): 

GEOMETRY: calculates the surface areas and volumes 

TRAJECTORY: determines the mission performance of the aircraft 

configuration 

AERODYNAMICS: calculates the minimum drag, the lift, and the induced 

drag 

  

Aircraft Design and Mission Profile Input 12



PROPULSION: computes the design and off-design performance of the 

engine (turbojet, turbofan, turboprop, or propeller) 

STABILITY AND CONTROL: determines the center of gravity, the size of the 

horizontal control surface, the pitching-moment curve 

slope, and the static margin 

WEIGHTS: assigns initial weight values for computation and gives 

weight component multiplying factors 

SUPERSONIC AERO: analyzes the supersonic characteristics of the aircraft 

configuration 

COST: determines the manufacturing costs, direct and indirect 

operating costs, and the manufacturing and airline return 

on investment 

TAKEOFF: predicts takeoff data which varies according to the type 

of aircraft 

BALANCE: Separate program used to balance the aircraft 

configuration 

Additionally, ACSYNT contains analysis functions which facilitate the design process. 

The routines included may be used to optimize the design parameters, determine the gross 

weight of the aircraft, and/or calculate the sensitivity of the overall design to a specified 

design variable. The variety and number of options available to the user of ACSYNT are 

too numerous to be listed in this thesis. For further information on ACSYNT, the reader 

should refer the ACSYNT Manual. 

  

Aircraft Design and Mission Profile Input 13



INTERACTIVE CAD VERSION OF ACSYNT 

Despite its great power and flexibility, ACSYNT lacked a friendly user interface. The 

analytical results consisted of little more than row upon row of numbers. Much time and 

effort was devoted to deciphering what the numerical output implied. A greater limitation, 

however, was that the effects on the overall aircraft design resulting from “tweaking" the 

design parameters were not quickly, nor easily, apparent. In order to address this problem 

Virginia Polytechnic Institute and State University (VPI) and NASA Ames Research Center 

began work in 1986 to create a computer aided design version of 

ACSYNT [Wamp88a & Wamp88b]. Today, many of the initial goals established have 

been realized. ACSYNT is now highly interactive—design parameters may be quickly 

edited and their effects immediately observed on the aircraft geometry. Shaded and hidden 

surface views give designers the ability to quickly analyze and assess multiple aircraft 

configurations. More importantly, ACSYNT allows extraction of dimensional geometric 

parameters from its B-Spline surface models [Jaya91 & Jaya92a]. This feature allows the 

smooth transfer of data between the preliminary and conceptual stages of aircraft design. 

In 1990 several aerospace companies and government agencies along with VPI formed the 

ACSYNT Institute at the VPI CAD laboratory—an innovative program of joint R & D 

between government, academia and industry to continue sponsorship of the endeavor. 

Faster and better algorithms for creating, manipulating, and displaying aircraft geometry are 

being developed. Various methods for facilitating the entry and manipulation of data are 

also being explored. 

  

Aircraft Design and Mission Profile Input 14



ACSYNT’s Trajectory Module 

One example of a current mission profile input program is ACSYNT’s trajectory module. 

Like other trajectory modules, the ACSYNT Trajectory Module is exclusively tailored to be 

compatible only with its host program—-ACSYNT. Although the program is a separate 

module, it cannot be easily modified and made compatible with other CAD systems. 

Figure | illustrates the layout of ACSYNT’s Trajectory Module. Interactive icons and 

numerous help screens make it ideal for users unfamiliar with the program. However, for 

more experienced users, the rigidity introduced by the additional levels of interactivity 

detract from the efficient construction of a mission. This problem demonstrates the need to 

balance the user-friendly and entry-efficient demands of the interface layout. 

The greatest drawback to the interactive input methods associated with ACSYNT's 

Trajectory Module, however, is that it fails to provide the end-user the means by which to 

make a quick assessment of the overall mission. Mission data is not readily available to the 

user for inspection. Rather it is hidden from view by three hierarchical editing 

levels [Tayl88}. Modification of each parameter requires the user to respond to three 

separate inquiries: specification of a parameter category, specification of a parameter within 

the category, and finally, specification of the parameter value (see Figure 2). This tedious 

process for modifying each parameter needlessly renders the creation of a mission profile 

an inefficient and arduous task. Of greater consequence, the three-level hierarchical editing 

scheme allows for the inspection of only one parameter at a time. Hence, the end user 

cannot easily make comparisons between the various parameters. The final result of such 

restrictions and limitations is that the cumbersome task of entering data into the module 

often nullifies the positive aspects (e.g. layout simplicity, consistency, etc.) of the module. 

  

Aircraft Design and Mission Profile Input 15



  

ACSYNT/VPI - X41. @. 4: 
  

  

  

  

  

  

1.850 

wn— 
—> 

  

  

  
  

  

  

  

  

  

  

                    
    

FAI18 AIRCRAFT MISSION CYCLES TRAJECTORY 

MISSION 1 RECONNAISSANCE FILE 

lj *|)| pHaszt 1] PHasE 2] PHASE 3| PHASE 4 SETUP 
GLOBAL PARMS 

MISSION 

a a him | nh masse 
DO WINDOW BOX 

WINDOW RESET 

WINDOW TOGGLZ 

  

    

  

    

[ RESULTS 
0.00 

90c0.c00 RE 

t ol 

rome || =| = = | 
5.a0/_ — — 

So 

ENTER VALUE(S) USING DIALS AND/OR KEYBOARD: 
PICK ITEM/ENTER VALUES: MISSN, PHASEN, PARMN, SETN, VAL COPY 
all eslors changed to black and white 
PICK ITEM/ENTER VALUES: MISSN, PHASEN, PARMN, SETN, VAL COLORS 
PICK ITEM/ENTER VALUES: MISSN. PHASEN, PARMN, SETN, VAL 

HELP EXIT     
  

Figure 1. The Trajectory Input Interface for ACSYNT; [Tayl88] 

  

Aircraft Design and Mission Profile Input 16



  

EDITING LEVEL 1 

LIST OF 
PARAMETER 
CATEGORIES 

  

1 VALID INPUT 

  

EDITING LEVEL 2 
3 NUMBER INPUTS 
        LIST OF 

PARAMETERS 
WITHIN EACH 
CATEGORY 

2 NUMBER INPUTS   
  

we INPUT 

  

EDITING LEVEL 3 
  

  

3 VALID INPUTS 

   2 VALID INPUTS 
  

DETAILED 
DESCRIPTION 

OF EACH 
PARAMETER 

1 NUMBER INPUT 
  

Figure 2. ACYNT’s Trajectory Module Input Method [Tayl88] 

  

Aircraft Design and Mission Profile Input 

 



5.0 REQUIREMENTS 

Overview 

In order to satisfy the thesis objectives, a set of basic requirements was identified. The 

process of indentifying such requirements included requested feedback from Boeing, 

NASA, and Lockheed. The list of requirements developed was effectively divided into two 

parts—the user and the software requirements. The user requirements focused on such 

matters as program functionality and the friendliness of the interface. Software 

requirements focused on providing program flexibility and extendibility. This section 

describes the requirements which needed to be addressed: 

User Requirements 

@ The user interface must have a consistent look and feel to eliminate 

unnecessary confusion to the end-user. 

e The entry of all data should be done directly onto similar data 
input areas. 

° The various pop-up menus and their menu items should appear 

and operate similarly. 

e The system must be user-friendly to reduce the learning curve for new 

users. 

e The purpose of each pop-up menu and its menu items should 
be made self-evident to the user. 

  

Requirements . 18



The module must exhibit a high degree of functionality to increase its 

usefulness. 

e Pop-up menus must be draggable to eliminate visual 

interference with the background. 

e Windows should be draggable and resizable to maximize the 

efficient use of the screen. 

° The effects of a modification should be reflected immediately 
on the overall mission. 

° The windows must provide automatic centering and zooming 

capabilities. 

e The interface should display sufficient data to allow for a quick 
assessment of the overall mission. It should allow this data to 

be partitioned into smaller groupings such as phase and 

parameter data. 

e A separate window displaying a graphical representation of the 
overall mission should be provided. The user should be able to 

select a certain phase by selecting it directly on the graph. 

e The user should be able to edit phase data and delete, add, 

change and reorder mission phases. 

Software Requirements 

The program must exhibit good extendibility and flexibility features to 

allow for future enhancements and/or modifications to the code. 

° The types of acceptable phase parameters, phases, and mission 
parameters should be easily modifiable. 

e The design of the MPIS should allow for the easy addition of 

new Classes (i.e. data types). 

Sufficient program utilities must be provided to facilitate customization 

of the system. 

e Routines to facilitate the definition of unique properties for 
newly created data types should be provided. 

The module must be portable to maximize its usability. 

  

Requirements 19



Explanation Of Requirements 

Look and Feel 

The computer industry has devoted much time and effort to research and develop graphical 

user interfaces (GUI's) which present a consistent "look" and “feel” to the end-user. The 

term "look and feel" refers to the method in which the program interacts with the user— 

both visually and physically. Certain aspects of the look and feel are application- 

dependent. For example, it is best to manipulate and display data differently in a 

spreadsheet than from how it is done in a word processor. However, many other aspects 

are not program-dependent and may be similar across a variety of applications. Certain 

features, such as the pull-down menus, popularized by the Apple Macintosh, have become 

widely accepted as the “standard” and have been adopted by competing GUI's (e.g. 

Microsoft Windows, OS/2, Motif, etc.). 

The guiding motivation for the Mission Profile Input System's look and feel is to facilitate 

the creation and modification of a mission. Large volumes of data are inherent in 

describing aircraft missions. The creation of a single mission can easily become a long and 

tedious chore if the user interface is not designed correctly. The purpose of the Mission 

Profile Input System should be to provide a user interface by which a user can quickly and 

easily enter, display, manipulate, and modify the large quantity of data. The objective 

should be to present the user with the proper amount of data—enough to allow complete 

grasp of the mission at a glance, yet not so much as to make it overwhelming. 

User Friendliness 

User friendliness describes how easy and accommodating an application interface is. User 

friendly applications offer clear, consistent options to the user and, for the sake of 

  

Requirements . 20



efficiency, do not make unnecessary demands on the user. The "friendliness" of an 

application's interface greatly dictates how successful or useful the application will be. 

Although a universal standard on user friendliness does not exist and the topic remains 

somewhat subjective, many practices have been widely accepted and implemented 

(e.g. asking for user confirmation to validate critical commands, having a logically 

consistent menu hierarchy, etc.). 

Much emphasis must be placed on making the Mission Profile Input System user friendly. 

The data should be displayed in a complete, logical fashion to enhance its usefulness. To 

aid in the quick evaluation of the mission, the data should also be displayed graphically. 

Care must be taken to ensure that no data can be altered without first having to explicitly 

select a menu item that fully explains the ramifications of the action. For commands that 

greatly alter or destroy data, user verification of the command should be requested prior to 

command execution. 

Functionality 

The functionality of a program describes its capabilities. Although the number of user and 

software requirements which must be satisfied to create an acceptable version of an 

application is finite, the number of enhancements that can be implemented is inexhaustible. 

The more features a program is able to support (i.e. the greater its functionality) the more 

useful it will prove to the end-user. 

The most important functionality the Mission Profile Input System should exhibit is the 

proper maintenance and processing of the trajectory data. The system should also be 

flexible to allow the definition of new phases and parameters so that the functionality of the 

module can be quickly customized to adhere to existing aircraft design systems. Moreover, 

the MPIS should allow for the definition of a set of governing rules for each parameter and 

  

Requirements : 21



phase which will support the complex handling of the data. This feature will greatly 

increase the functionality of the system. 

Extendibility and Flexibility 

Program extendibility refers to how easily the functionality of a program can be extended. 

Programs are no longer designed to meet a limited set of objectives without regard to 

future, unforeseen requirements. Having to recode or modify entire programs because they 

lack the flexibility to satisfy a special case can prove to be an expensive and 

time-consuming proposition. Well-designed programs are structured such that very little, if 

any, modifications are required when new code is added. 

To prepare for unforeseen requirements, programs often exhibit a large degree of 

modularity—a characteristic which usually lends itself to good extendibility and flexibility 

traits. Because the Mission Profile Input System is intended to be used by a variety of 

design software, it must be highly flexible in the phases and parameters it can accept. 

Therefore, the MPIS should be modular in nature—phases and parameters should be 

definable independent of the existing code. The newly defined entities should then be able 

to quickly and easily “plug” themselves into the system. 

It is impossible to envision beforehand all the possible demands that may be put upon an 

application after it has been created. Undoubtedly, demands will arise which cannot be 

implemented without a major code revision. However, a well designed program should be 

flexible enough to accommodate reasonable changes and expansions. The MPIS should 

meet this criterion. 

  

Requirements . 22



Utilities 

Program utilities often refer to routines which are provided to facilitate program-user 

interaction. It can refer to interactive tools which allow the user to customize the layout of 

the interface, or it can refer to program functions which facilitate additions to the code. 

Regardless of the level of their implementation, utilities provide a simple alternative to what 

would otherwise require more complicated procedures by the user. 

The Mission Profile Input System should provide utilities which simplify program 

customization. It should provide routines to facilitate the creation of new phases and 

parameters. Functions which assist the user in defining set rules unique to individual 

phases and parameters should also be provided. 

Portability 

Program portability refers to the ability of a program to perform correctly in different 

environments. A highly portable program, for example, may run on an IBM RISC/6000, a 

Silicon Graphics, and a Hewlett Packard machine. Since the number of machines on which 

a program will be useful is directly related to the portability a program displays, high 

portability is quickly becoming a major design objective in modern programs. 

Since the Mission Profile Input System is intended to be utilized by a number of different 

CAD systems, it is likely that it will be implemented in different types of environments. To 

support such demands, the MPIS should be highly portable (i.e. it should be 

machine-independent and graphics device-independent). 

  

Requirements 23



6.0 DESIGN CONSIDERATIONS 

Overview 

In order to satisfy the objectives and requirements for the thesis, a good program design for 

the Mission Profile Input System was required. The flexibility, modularity, and 

extendibility required of the program made an object-oriented language the obvious choice. 

Other considerations, however, were not so obvious. Among the design aspects considered 

were the following: 

e Language selection 

e Object relationships 

e Program maintainability 

@ Data handling 

e Interface layout 

Before coding was initiated, an outline of the systematic approach to be used in the 

creation of the system was developed. A graphical representation of the procedure 

followed in the creation of the system is given in figure 3. The user requirements were 

  

Design Considerations . 24



  

       
    

User 

Requirements     Software 

Requirements      

    

     
- EXTENDIBILITY 

- UTILITIES - LOOK AND FEEL 

- PORTABILITY 
      

Requirements     

  

   

    

- USER FRIENDLINESS 

~ FUNCTIONALITY 

“
t
e
n
e
r
a
r
 
r
t
”
 

  

      

  

   

i 

: Design of 
: Classes 

\ OM ee oe - LANGUAGE SELECTION 

~ - OBJECT RELATIONSHIPS 

- MAINTAINABILITY 

- DATA HANDLING 
Implementation    

   
   

Mission Profile 

Input System 

    

Integration with 

ACSYNT 

  

Figure 3. Approach to the Development of the MPIS 

  
Design Considerations



reviewed extensively to ensure that the final product met not only the end user's needs, but 

also the needs of those wishing to make future extensions and improvements to the code. 

Recommendations from companies and government agencies, such as Lockheed and 

NASA, helped guide the final configuration of the interface. 

To satisfy these requirements much emphasis was placed on the object-oriented design of 

the system. Attention was given to such matters as inter-object relationships, object 

manipulation routines, and the modularity of the overall program. 

Program Design Considerations 

OBJECT-ORIENTED DESIGN AND LANGUAGE SELECTION 

The compatibility and extendibility requirements of the Mission Profile Input System made 

an object-oriented language a natural selection. C++, being one of the most accessible and 

widely used object-oriented language, was selected as the programming language. C++ is a 

superset of the C programming language. Thus, not only does it provide the powerful 

features which make object-oriented programming appealing, it also supports the vast 

library of functions associated with the C programming language. 

C++, like other object-oriented programming languages, supports polymorphism, function 

overloading, inheritance, and data/function encapsulation. These features allow for more 

efficient, flexible code than would otherwise be possible. In the case of the MPIS, the 

inheritance and overloading features are especially useful. Inheritance allows the reusability 

of code—the general features of an object can be specified in a single base class which can 

then be inherited by derived classes exhibiting these features. Overloading is useful in 

  

Design Considerations . 26



writing compact and readable code. Functions with the same name can refer to different 

routines based on the arguments used when calling them. Thus, functions which perform 

similar operations, but which must perform them differently for different argument types, 

can be overloaded. This eliminates the need to employ a different function name for each 

version of the routine. 

The numerous benefits object-oriented programming provides, however, prove even more 

valuable in developing maintainable code. Class encapsulation allows for the simplification 

of code debugging, editing, and expansion. 

For a complete discussion of object-oriented design the reader should refer to [Booc91]. 

OBJECT RELATIONSHIPS 

The key to a successful object-oriented program design is the development of proper 

relationships between the various classes (i.e. objects). The design of the class hierarchy 

greatly influences the flexibility and robustness the final code will exhibit. The motivation 

for object-oriented design is an attempt to create class relationships which mimic the 

relationships found in the real world [Ents90]. The objective is to identify the most basic 

objects (base classes) that may be defined and have them serve as the building blocks for 

more complex ones (derived classes). Basic objects usually reflect the commonalties 

exhibited by the more complicated objects. One way to look at class hierarchy is by 

envisioning the derived classes as being more specific instances of the base class. Figure 4 

presents a real-life analogy. The illustration depicts a cow as being a more specific instance 

of a herbivore which, in turn, is a more specific instance of an animal. Thus, if these 

examples are thought of as being classes, "animals" serves as a base class to its derived 

class “herbivores” and "herbivores" serves as a base class to its derived class "cow". 

  

Design Considerations . 27



  

  
  

      

“°° Carnvores 2 Bye Herbivores 

  

; Coyote ee Cow Horse     

Figure 4. Real-Life Object Analogy 

  

Design Considerations 28



EXTENDIBILITY AND MAINTAINABILITY 

Extendibility refers to how easily existing code can be modified to accommodate new 

requirements. As programs become more complex—performing multiple tasks, operating 

across platforms, supporting active links with other applications, etc.—extendibility has 

developed into a vital consideration in program design. The key to designing extendible 

code is instilling it with a high degree of modularity. In this manner, whenever additions to 

the program are made, a completely separate module can be created independent of the 

existing code and simply be "plugged" into the program. With a proper program design, 

the modifications required for the "plugging" process is usually minimal. 

Classes, in object-oriented programming, are modular by their very nature. Consequently, 

languages such as C++ are ideal for creating extendible and maintainable code. 

Object-oriented programming, however, offers an even more powerful concept for 

maintainability—encapsulation. Data and functions within classes may be "encapsulated" 

from the rest of the program such that they are limited in definition to the class in which 

they are defined. Access to these functions from the outside is restricted to public functions 

which the programmer defines. The inner working of such classes, in essence, take on the 

nature of "black boxes" to other programmers wishing to use them. Programmers utilize 

these classes through the public functions provided without needing to understand the 

details of how the classes work. Moreover, because the data and functions are fully 

encapsulated, newly created code is guaranteed to never affect the code already in 

existence—an extremely powerful feature for program extendibility. 

  

Design Considerations 29



DATA HANDLING 

The method by which data is handled in a program greatly influences the efficiency and 

performance of a program. Speed of program execution is usually the primary casualty in a 

poorly designed code and proves to be detrimental in the effective use of the program. 

Proper data handling, however, entails more than the efficiency of how data is processed. 

It also includes efficient memory management. The dynamic allocation of memory as it is 

required keeps the amount of memory the computer must devote to the application to a 

minimum. Moreover, such allocated memory can be freed once it is no longer needed. 

Keeping memory requirements to a minimum is becoming increasingly important to today's 

applications. Although memory and processing speeds of modern computers is 

progressively increasing, the days when an entire machine was devoted to running a single 

application are quickly disappearing. Machines today often run multiple processes 

simultaneously. Care must be taken to ensure that an application does not hoard 

unnecessary resources from the rest of the system. 

INTERFACE LAYOUT 

The proper design of the user interface is perhaps the most important phase in the 

development of an interactive program. The user interface acts as the communication bridge 

between the user and the program. Thus, regardless of how powerful or efficient a 

program may be, a poorly designed interface will render it useless if the user is unable to 

utilize it efficiently and correctly. 

In designing a good interface, certain considerations must be maintained. The demands 

made upon the user should be kept to a minimum. Sufficient interaction and communication 

  

Design Considerations . 30



should be provided to help the user effectively use the program. However, any 

unnecessary interactions serve only to detract from the efficient use of the program and 

should therefore be avoided. To avoid confusion and errors all options and requests made 

by the interface should be made self-evident to the user. If it is unable to do so, the 

interface should provide a safety mechanism, such as a request for confirmation, in order to 

ensure that the user is fully aware of the ramifications of the action to be performed. 

Finally, a consistent look and feel should be provided to the user. Menus, buttons, 

messages, requests, etc., should be consistent in their appearance and in the actions they 

perform. Items which perform unexpectedly should be fully explained and a request for 

command confirmation should be issued. 

  

Design Considerations 31



7.0 THE MISSION PROFILE INPUT SYSTEM 

Class Structure Layout 

Figure 5 and Figure 6 illustrate the class structure of the Mission Profile Input System. The 

structure reflects a balance between inheritance and instancing of classes. As a general rule, 

inheritance is used if the "derived object type [is] inherently similar to the base 

type" [Ince91]. If an object "contains" another object, then instancing is used [Booc91]. 

As an example, every parameter defined by the user is “inherently similar" to the class 

Parameters, therefore each one of them inherits Parameters. These parameters, in turn, are 

"contained" by the user-defined phases. Therefore, each phase instances the parameter 

classes. The following paragraphs clarify the relationship among the classes by explaining 

Figure 5 in words. 

Symbols: 

A—+ B Class A inherits class B. 

A» B Class B creates class A. 

A—» B Class B creates one instance or more of class A. 

A——eB 
Class B creates one instance of class A. 

  

The Mission Profile Input System . 32



—_ =~ 
~ —_ =~ 

iO on 

-—. Scoll_W \ 
/ —_—_ = 

L? 

{ Phase_Diagram_' Window | —~ 4. 

SoU |. 

—_— =: ~— —_ \ 

{ Mission_Parameters iO Mission Win cow 

No x dt / A. 

\Y. Other | Classes \ 

Missions y \ _ (see Figure °) . J 

\ _- =o 

1 

™ ~  -— = 

Ph \ 
Y -— + oe a ases y 

Pad 

{ User-Defined Phases _——_— = 

NX _ - 7 

1 

—— + -—— ~ 

7 \ 7 \ 

{ User-Defined Parameters a ( Parameters y 

X - \ — _-7 
_—_ es oes ae 

Figure 5. Class Relationships 

  The Mission Profile Input System 33



—_— = 

~ 

{ Color_Group yi Check_Box y 

- \ _~_ oe 

rr ae 

NL 

+ 

\ 

/ 

1 

{ PHIGS_Structure_ID 

— 
— me a oe OO 

+ 

—_—~» 

~ i 

7 
\ 

— Pop_Up_Menu , 

+ \ — ame -_ ” 1 

Ol 1 _ 
( Number_Box ayy + ~ TTY 
No La { Text_Input y 

at 

Lots 

{ Label Naat, 

No Le Push_Button , 

No LN 

  

—_=Z 

t Interface_Manager \ 
Static_Menu J XN _e”% 

\ -7 
—_ ews == ow 

—_ oes ae 

Figure 6. Other Classes Created by Mission_Window 

34 The Mission Profile Input System



Classes: 

Parameters Class: This class contains all the functions common to any parameter that 

may be created. Consequently, this class must be inherited by all user-defined parameters. 

It must be emphasized that for purposes of the MPIS the term “parameters” implies much 

more than mere storage containers for values (i.e. variables). Parameters are defined to be 

classes in order to allow the association of unique rules with each type. For example, each 

parameter may contain functions which allow it to automatically calculate itself, impose 

upper and lower limits on its value, etc. 

User-Defined Parameters: A valid parameter may be defined by the creation of its own 

class. The class contains all the information pertaining to the parameter, such as name, 

value, default value, and unique rules. The class Parameters contains all the functions 

common to any parameter that may be defined. Consequently, every newly defined 

parameter class must inherit Parameters. 

Phases Class: This class contains all the functions common to any phase that may be 

created. Consequently, this class must be inherited by all user-defined phases. 

User-Defined Phases: Similar to user-defined parameters, a valid phase may be defined 

by the creation of its own class. The class contains all the information which is relevant to 

the corresponding phase: its name, a linked list of the phase parameters, and all the rules 

which are unique to the phase. The class Phases contains all the functions common to any 

phase that may be defined. Consequently, every newly defined phase class must inherit the 

class Phases. Moreover, because each phase must create its own linked list of parameters, 

every phase class instances all of the parameter classes. 

  

The Mission Profile Input System 35



Mission_Parameters Class: This class contains all the information which pertains to 

the mission parameters. These parameters are strictly dependent on the requirements of the 

CAD system onto which the Mission Profile Input System is mounted. 

Missions Class: This class provides for the manipulation of mission data. Functions to 

create, modify, and destroy data are contained within this class. A mission is comprised of 

a linked-list of phases and a linked-list of mission parameters. Thus the classes 

corresponding to these objects are instanced within the Missions class. Note that the 

Missions class inherits the Mission_Parameters class and appears to violate the general rule 

for inheritance. A mission is not “inherently” similar to a mission parameter. The reason for 

inheriting the Mission_Parameters class is to provide the Missions class direct access to the 

Mission_Parameters functions. Although it has no notable affect on the efficiency of 

mission parameter manipulation, it does make the code more readable. Functions of the 

Missions class used in creating the Mission_Parameters linked list need not worry about 

passing mission parameter information between them. This information becomes globally 

known within the Missions class. 

Phase_Diagram_Window Class: This class creates the graphical representation of the 

mission data (i.e. the phase diagram). To create the window in which the phase diagram is 

displayed the class inherits the class Scroll_Window developed by Andreas Steude at 

Virginia Tech [Steu93]. The class is instanced by the Mission_Window Class whenever it 

is requested by the user. 

Mission_Window Class: This class acts as the central coordinator of all the other 

classes in the Mission Profile Input System. It coordinates the creation and control of the 

user-interface with the proper processing of the mission data. To create the Motif-like 

window in which the data are displayed, the Mission_Window Class inherits the 

  

The Mission Profile Input System - 36



Scroll_Window Class. Other features, such as the pop-up menus, text input areas, and 

menu items are created by instancing classes created by Scott Woyak, also at Virginia 

Tech [Woya92 & Woya93]. To keep track of the data, the Mission_Window Class first 

inherits and then instances the Missions Class. By inheriting the Missions Class all the 

routines required for manipulation of the mission data become readily available to the 

Mission_Window Class. 

THE PHIGS-BASED, MOTIF-LIKE INTERFACE 

As mentioned above, the development of the interface for the Mission Profile Input Mission 

relied heavily on a PHIGS-based, Motif-like framework developed by Scott Woyak at 

Virginia Tech [Woya92, Woya93, & Myk193]. For the sake of completeness, a brief 

description of this framework is provided here. 

The framework consists of five major groups of classes: Windows, Interface Managers, 

Menu Managers, Menu Items, and Menu Item Managers. The Interface Manager is the 

central processing class—it manages the various windows which a user creates. A variety 

of windows have been defined, including geometry managers (windows that display and 

maintain a PHIGS view), pop-up menus (windows which display menu items), and 

dialogue managers (windows which are used to exchange information with the user). 

Through inheritance, all these windows inherit the “Windows” base class which enables 

them to be managed identically by the Interface Manager. Similarly, menu items inherit the 

“Menu Item” class which enables them to be managed by the Menu Manager. Figure 7 

outlines the class organization of the framework. 

  

The Mission Profile Input System . 37



A —s- B_  Ainherits B 

A =---™ B  Acontrols B 

\’ Menu item 
xX Linked List ; ae 

“weet? ” Menu item “ 
\ Manager : 

oes fe Fu “ow ese” 
. rd ~ ea 

,  ViewManager een ‘ 
: x’ 

Menu Manager ‘ 

~ > 

meee eth 
x   oe” ° ~ o = 2 & ~ 

.” . -*. 

(meow e ee? Ye. ~~? ‘ 

ern X\.-- aN 

\ Geometry Manager ’ ‘ Pop-Up Menu 

“ewe et? “eee eee 

ores XC 

v Simple View 5 ~ 

Ve .’   
Figure 7. Class Organization for PHIGS Motif-like Framework [Woya92] 

  The Mission Profile Input System 38



Framework For Handling Data 

Sound data handling techniques are a major prerequisite to a successful program. 

Inefficient routines often result in poor or unreliable program performance. To address the 

concerns of proper data handling, all data handled by the MPIS is performed through the 

use of dynamic linked lists. Figure 8 illustrates the basic data configuration of the module. 

As shown by the figure, all mission data is handled by three types of linked lists: the 

parameter linked list, the phase linked list, and the Mission_Parameters linked list. Only 

one phase and Mission_Parameters linked list exists per mission. However, the number of 

parameter linked lists is equal to the number of phases in the mission—one for each phase. 

Employing linked lists to manipulate object data proves to be very efficient. The swapping, 

moving, and inserting of objects can be performed much quicker through pointer 

manipulation than could otherwise be possible with direct object manipulation. Moreover, 

pointers allow for the dynamic allocation of memory. The module's memory requirements 

can be limited to what is absolutely essential. More importantly, memory can be freed once 

an object is deleted—a frequent occurrence during mission modifications. 

The Mission Profile Input System is highly flexible in the types of input it can accept. 

Unfortunately, however, this flexibility introduces a fair amount of complexity as to how 

data must be handled. User input must be processed through numerous functions to ensure 

the validity of the entry. Moreover, functions are needed to ensure that the entire mission 

reflects the effects of the input. For an explanation of how the MPIS handles its data, refer 

to the section “Implementation and Examples of Results.” 

  

The Mission Profile Input System 39



7 Parameter Link List 

param(1) param(2) param(3) param(n) 

  

Phase(1)       ;                               

Phase Link List 

  

  
      

    param(1) param(2) param(3) param(n) 
                        

  

  

  
      

                
param(3) 

              

  

  

Phase(n)         

                
param(1) param(2) Ly’ param(3) \ wr param(n) 

Global Variable Link List 
( global variable(1) 7 

global variable(2) fo 

global variable(3) 

global variable(n) 

Figure 8. Internal Data Relationships 

              

  

  

  

The Mission Profile Input System



The User Interface 

The primary purpose for developing the Mission Profile Input System is to facilitate the 

creation of aircraft missions. With this in mind, the user interface for the system is 

designed to accelerate the entry and manipulation of large amounts of data. The layout of 

the interface is intended to give the end-user the ability to make an overall assessment of a 

mission very quickly. The proper balance for displaying a complete representation of the 

mission without cluttering up the screen is achieved by making extensive use of pop-up 

menus. The pop-up menus employed ensure that data and options not immediately relevant 

to the manipulation of the mission profile are hidden from the viewer until they are 

explicitly requested. 

To aid in the quick evaluation of the entire mission, all phase and parameter data are 

displayed to the user simultaneously. Editing, however, cannot be performed directly on 

the data on the screen. For purposes of editing, data are presented to the user one phase (or 

parameter) at a time. By clicking on the value on a screen, an editing pop-up menu 

displaying the data to be modified is activated. This approach is deemed desirable since it 

focuses attention on the data most closely associated with the parameter to be altered. It 

should be emphasized that data entry efficiency is not sacrificed by using this approach. 

The number of steps required by the user to enter and modify the data are exactly the same 

as it would be by using the direct entry approach. 

The Mission Profile Input System is intended for experienced and novice users. A simple 

consistency to the system is maintained by keeping the methods by which data are 

displayed highly structured. Except in cases where it is beneficial to display more than one 

pop-up menu, the number of pop-up menus on the screen is limited to one. Recognizing 

  

The Mission Profile Input System . 41



that such a highly structured layout may serve as a hindrance to more experienced users, 

multiple methods for manipulating data have been provided. For example, a novice user 

can modify each parameter individually. This method provides immediate feedback on the 

effects the modification has on the rest of the mission profile. The more experienced user 

can manipulate data faster by modifying parameters at the phase level. At this level all the 

parameters for a single phase may be modified simultaneously. Although this method is 

less user friendly than modifying parameters individually, a person who is familiar and 

confident with the changes to be made can create and modify a mission much quicker in 

this manner. 

The look and feel of the interface was developed using a Motif-like, object-oriented, 

interface framework [Woya92 & Woya93]. The framework was developed at Virginia 

Polytechnic Institute and State University and is based upon the three-dimensional 

international graphics standard, PHIGS. It allows for the creation of Motif-like windows, 

buttons, menus, etc., with Motif—like characteristic (e.g. resizable, draggable, etc.). 

Because it is based on PHIGS, the interface is machine-independent, thus supporting the 

portability requirements of the system. 

  

The Mission Profile Input System . 42



8.0 CLASS DESCRIPTIONS 

Overview 

The Mission Profile Input System consists of six (6) major classes: Parameters, Phases, 

Missions, Gobal_Variables, Mission_Window, and Phase_Diagram_Window. The 

following sections describe the purpose of each class and give detailed descriptions of the 

important data and functions they contain. For the exact protocol for invoking each function 

the reader should refer to Appendix B. 

Parameters 

This class contains functions which are common to every user-defined parameter. 

Consequently, every parameter which is defined for the system must inherit this class. The 

Parameters class contains functions used in positioning it within the parameter linked list. 

Other functions of the class are intended to facilitate the manipulation of data at the 

parameter level (i.e. modifications are limited in scope to the parameter). They include 

some powerful virtual functions which offer greater flexibility in the definition of new 

parameters. Detailed descriptions on how to use and implement these functions are given in 

the section System Customization. 

  

Class Descriptions . 43



DATA MEMBERS-PARAMETERS CLASS 

The Parameters class contains all the data pertaining to a parameter. It stores its value, 

default value, and name. Since keywords (e.g. LAST, SAME, etc.) are valid entries which 

represent a numeric parameter value, the value of a parameter must be stored in its two 

formats: character and float. In cases of keywords, the relationship between the character 

and float values is determined by the pre-defined rules governing the keyword. Otherwise, 

the character value is simply the character representation of the numeric value. 

The variables used to store parameter information are: 

cvalue -Stores the character value of the parameter. 

fvalue -Stores the float value. 

cdefault -Stores the default character value. 

fdefault -Stores the default float value. 

param_title -Stores the name of the parameter. The name of the parameter 

must be a single word. However, underscores (_) can be used to 

represent white spaces. These will be removed whenever the name 

is displayed on the screen. 

In addition, the class also contains the variable next—a pointer to the next parameter within 

the parameter linked list. In this fashion, the position of the parameter within its linked list 

is maintained. 

FUNCTIONS OF PARAMETERS 

The primary reason for defining each type of parameter to be its own class is that it offers 

greater extendibility and flexibility. Of interest is the ability to define unique rules 

governing the values of each parameter. One example is the definition of keywords. 

  

Class Descriptions . 44



Keywords (and their corresponding set of rules) may be defined to govern the numerical 

value of the parameter. Often times, keywords are used to describe a dependency of the 

current parameter to the value of another parameter. 

To facilitate the creation of a governing set of rules for a parameter, a series of functions is 

provided by the Parameters class. These functions are used to return a pointer to other 

parameters in the current or previous phase. By obtaining a pointer to a certain parameter, 

its value can be easily retrieved. The functions to retrieve a pointer are: 

prev -Returns a pointer to a specified parameter of the previous phase. 

cur -Returns a pointer to a specified parameter of the current phase. 

nxt -Returns a pointer to a specified parameter of the next phase. 

The rest of the functions contained by the Parameters class are used to set and retrieve the 

data of the parameter. Some functions, such as the get_value function are overloaded to 

allow for the two types of value formats. Other functions, such as the set_value_to and 

check functions are declared to be virtual so that they may be redefined. By overloading 

these functions a unique set of rules can be defined for the parameter. Some of the more 

important functions follow: 

put_next -Sets a pointer to the next parameter in the linked list. 

set_param_title -Sets the name of the parameter. 

set_value -Sets the value. 

set_default_value -Sets the default value. 

get_next -Returns a pointer to the next parameter in the linked list. 

get_param_title -Returns the name of the parameter. 

get_value -Returns the value of the parameter. 

get_default_value -Returns the default value. 

check -checks the validity of the current value of the parameter 

  

Class Descriptions . 4s



Phases 

This class contains functions which are common to every user-defined phase. 

Consequently, every phase which is defined for the system must inherit this class. The 

constructor of the class (an initialization routine which is launched automatically when the 

object is created) creates the parameter linked list associated with the phase. In addition to 

functions used to create the parameter linked list, the class also contains functions which 

allow for the manipulation of data at the phase level. Phase level manipulation allows for 

the modification of an entire phase or of one or more of its parameters. The Phases class 

also contains certain private and virtual functions designed to facilitate the definition of new 

phases and the rules which may be imposed upon its parameters. 

DATA MEMBERS-PHASES CLASS 

A large portion of the information attributable to a phase is contained within its parameter 

linked list. The parameter linked list is self-contained—i.e. the parameter data is 

encapsulated within the parameter object and is not part of the phase object. Consequently, 

the amount of data stored by the Phases class is quite small. Only three variables are 

required. They are as follows: 

phase_title -Stores the name of the phase. The same naming convention 

applies for naming a phase as does for naming a parameter. 

first_param -A pointer to the first parameter of the parameter linked list. Only 

the location of the first parameter is required since each parameter 

will point to the next one in the list. 

next -A pointer to the next phase in the phase linked list. 

  

Class Descriptions . 46



FUNCTIONS OF PHASES 

Like parameters, phases are defined to be their own objects in order to enhance their 

extendibility and flexibility. Because modifications are done at the phase level, comparisons 

can easily be made between the various parameters of a phase. This allows for the 

implementation of unique dependencies among the parameters—a powerful feature in 

expediting the creation of a mission profile. 

As mentioned, the creation of parameter dependencies relies heavily on comparing 

parameter values. To facilitate the task, a set of functions is provided by the class Phases 

which return the value of a specified parameter in either the current or previous phase. 

These functions are follow: 

number -Returns the float value of the specified parameter in the current 

phase. 

prev_number -Returns the float value of the specified parameter in the 

previous phase. 

word -Returns the character value of the specified parameter in the 

current phase. 

set -Sets the specified parameter to the specified value. The function is 

overloaded to provide for character and float values. 

The majority of the remaining functions contained by the Phases class may be divided into 

two types: functions to create the parameter linked list, and functions to manipulate the data 

within the parameter linked list. 

The task of creating the parameter linked list is primarily handled by two functions. The 

first, the get_proper_param function, returns a pointer to a parameter object which it 

creates. The type of object it creates is determined by the parameter name which it receives 

  

Class Descriptions 47



as an argument. The second function is the load_param_values function which creates the 

linked list from the information it receives. To assist it in creating the linked list, this 

function makes repeated calls to the get_proper_param function. 

The second type of function provides for the setting and retrieving of parameter data. The 

parameter to be modified may be specified by indicating its position within the parameter 

linked list or by specifying the parameter by name. Some of the functions provided by the 

class are as follows: 

set_param_char_value -Sets the value of the specified (by name) parameter to the 

character value. 

set_param_float_value -Sets the value of the specified (by name) parameter to the float 

value. 

set_first_param -Sets the parameter specified (by pointer address) to be the first 

parameter of the parameter linked list 

get_param_pointer -Returns a pointer to the specified (by position) parameter. 

get_float_param_value -Retrieves the value of the specified (by name) parameter. 

get_first -Returns a pointer to the first parameter of the linked list 

In addition to the aforementioned functions the class Phases has two very important virtual 

functions. The first is the check function which executes the various rules which have been 

defined for the phase. The function contains all the rules defined by the user and therefore 

must be edited when wishing to alter the rules for the phase. The second virtual function is 

the geo_segment function. This routine creates the graphical representation of the phase. 

The base definition for the function creates a straight line for every type of phase. To create 

more complicated representations, this function for the particular phase must be redefined. 

  

Class Descriptions . 48



Mission_Parameters 

The Mission_Parameters class is the object data type of the mission parameters for the 

Mission Profile Input System. The purpose for defining each mission parameter to be a 

distinct object is to provide for system extendibility. Aircraft CAD systems require various 

information for their particular analysis programs. Some systems require additional variable 

data, such as data type and data format. To accommodate additional requirements imposed 

by the various systems, the data type (i.e. class) may be quickly and easily modified. 

DATA MEMBERS-MISSION_PARAMETERS CLASS 

The Mission_Parameters class of the stand-alone version of the MPIS provides for four 

pieces of information for each mission parameter: the name, the value, a code indicating 

whether the variable should be displayed, and a comment about the variable. 

name -The name of the variable. 

value -The value of the variable 

display -A code indicating whether the variable should be displayed on the 

Other_Variables Menu (See the User Guide in Appendix B). 

comment -Storage space for miscellaneous information about the variable. 

This variable is included to allow for one additional piece of 

information without the need to physically modify the code. 

Like parameters and phases, mission parameters are maintained and manipulated in a linked 

list. Each mission parameter contains the variable next which points to the next mission 

parameter in the linked list. 

  

Class Descriptions . 49



FUNCTIONS OF MISSION_PARAMETERS 

The functions of the class Mission_Parameters are limited to setting and retrieving the 

various data of each variable. For every variable in the class, there exists one function to set 

it and one to retrieve it. In adapting the MPIS to different CAD systems it may become 

necessary to add more complex routines. The functions defined for the class in the 

stand-alone version of the MPIS are: 

put_next -Sets a pointer to the next mission parameter of the linked list 

set_mp_name_to -Sets the name of the mission parameter to whatever is specified. 

set_mp_value_to -Sets the value of the variable 

set_mp_display_to -Sets the display code. 

set_mp_comment_to -Sets the miscellaneous piece of information. 

get_next -Returns a pointer to the next mission parameter of the linked list 

get_mp_name -Returns the name of the current variable 

get_mp_value -Returns the value of the current variable. 

get_mp_display -Returns the display code. 

get_mp_comment -Returns the miscellaneous comment. 

  

Class Descriptions . $0



Missions 

This class is the object data type of a mission. It contains all the data and functions 

necessary to create, manipulate, and modify a mission profile. It creates a mission 

interactively or by reading information from a file. Either way, it creates the appropriate 

phase and mission parameter objects from the information it receives. The Missions class 

coordinates the plethora of data by grouping it into two distinct linked lists: the phase 

linked list and the Mission_Parameters linked list. Linked lists are utilized because they 

increase the efficiency by which the data can be manipulated. It is more efficient to 

manipulate a list of objects through the modification of their pointers, than it is to 

manipulate the objects themselves. 

DATA MEMBERS-MISSIONS CLASS 

The majority of the information a mission contains is stored within the phase and 

Mission_Parameters linked lists. Therefore, the amount of data stored by the mission class 

itself is quite small. It is limited to the name of the mission, the list of parameter names 

which the mission contains, and a pointer to the first phase of the mission. A variable also 

exists to store the names of available phases which can be dynamically added to the 

mission. The actual variable names used by the mission are as follow: 

mission_name -Stores the name of the mission. The same naming convention 

applies for the naming of a mission as does for the naming of a 

phase or parameter. 

_hames -An array which stores the name of the parameters contained 

within the mission. The order in which the names appear in the 

array is the order by which they appear on the screen. 

  

Class Descriptions §1



names_of_avail_phases -An array which stores the names of phases which can be added 

interactively by the end user during a session. 

FUNCTIONS OF MISSIONS 

The Missions class contains a wide variety of functions designed to manipulate mission 

data. The functions perform manipulation at the mission level which implies that they have 

open and direct access to all data. This allows for the creation of sophisticated relations 

between any number of mission variables. For example, the value of a parameter within a 

certain type of phase can be linked to the value of a specific mission parameter. To facilitate 

the creation of such relations, functions to set, retrieve, and navigate through data are 

provided. An attempt was made to make the list of functions comprehensive. If more 

complex or specialized functions are required in the future, they will no doubt be definable 

by the combination of two or more of the following functions. The functions are grouped 

into four distinct types: functions to create a mission, functions to manipulate parameters, 

functions to manipulate phases, and functions to manipulate mission parameters. 

Functions to Create Mission: 

get_proper_phase -This function returns a pointer to a phase object which it creates. 

The type of object it creates is determined by the phase name it 

receives as an argument. It also receives a list of values which it 

assigns to the linked list of parameters which is created when the 

phase is instanced. 

create_mission -The function which creates a mission profile by reading data from 

a file. From the data read, it creates the linked list of the phases by 

making successive calls to the get_proper_phase function. Once it 

completes the phase linked list, it creates the linked list of mission 

parameters by instancing the Mission_Parameters class. 

  

Class Descriptions . §2



save_miss -This function archives the current mission. It stores the mission 

data in a recognizable format to a file specified by the user. 

Functions to Manipulate Parameters: 

get_num_of_params — -Returns the number of parameters in the parameter linked lists. 

Since every phase must contain all the parameters available, every 

parameter linked list necessarily has the same number of 

components. 

update_element -Changes the value of the parameter to the newly specified one. 

The parameter to be modified is specified by position—the 

position of the phase it belongs to in the phase linked list, plus the 

position of the parameter within its parameter linked list. The 

function is overloaded to allow for character and float value types. 

reset_to_default_value -Resets the value of a parameter to its default value. The parameter 

is specified by position. 

retrieve_float_value -Retrieves the float value of the specified (by position) parameter. 

retrieve_char_value -Retrieves the character value of the specified (by position) 

parameter. 

move_param -Moves a parameter specified by name from its current location 

within the parameter linked list to the newly specified one. 

retrieve_param_title -Retrieves the name of the parameter specified by position. Since 

the order in which parameters appear is the same for every phase, 

only the location of the parameter within the parameter linked list 

needs to be specified. 

get_max_param_value -Retrieves the maximum value of a parameter. The parameter must 

be specified by name. The routine traverses the phase linked list of 

the mission and returns the maximum value it encounters for the 

parameter in question. 

get_min_param_value -Retrieves the minimum value of a parameter. The parameter must 

be specified by name. The routine traverses the phase linked list of 

the mission and returns the minimum value it encounters for the 

parameter in question. 

  

Class Descriptions §3



copy_element -The function copies the value of one parameter onto a second 

one. Both parameters are specified by position. Note that the 

usefulness of this function is somewhat limited since only one 

parameter can be copied at a time. However, the function can 

serve as a building block to more complex copying routines. 

Unlike parameters, phase object types are not unique within their respective linked list. 

More than one CLIMB phase, for example, can be contained within a mission. 

Consequently, when modifying a phase, it should never be specified by name. Instead, a 

phase should always be specified by its position within the phase linked list. 

Functions to Manipulate Phases: 

get_phase_pointer 

get_num_of_phases 

insert_phase 

add_phase 

delete_phase 

default_phase 

reset_phase_defaults 

move_phase 

retrieve_phase_title 

-Returns a pointer to the specified phase. 

-Returns the number of phases contained by the current mission. 

-Inserts a new phase into the specified position. The new phase is 

created by calling the get_proper_phase function which creates the 

phase object from the phase name it receives. 

-Works identically to the insert_phase function except that instead 

of inserting the new phase in the phase link list it adds it to the end 

of the list. 

-Removes the specified phase from the phase link list. The object 

is deleted to free up memory. 

-Works identically to the get_proper_phase function except that it 

only takes one argument—the name of the phase. It reads the 

names and values for its parameter linked list from a file which 

contains their default values. This is used to quickly add entire 

phases to the mission profile. 

-Resets all the parameters within the phase to their default values. 

This 

reset_to_default_value function. 

-Moves the specified phase to a new position. 

is done by making successive calls to the 

-Returns the name of the specified phase. 

  

Class Descriptions $4



assign_values_to_phase -Assigns a list of values to the parameters of the phase. The values 

are assigned sequentially—the first value is assigned to the first 

parameter, the second value to the second, etc. Assignment of 

values continues until the list of values is exhausted or the number 

of parameters is exceeded. 

Functions to Manipulate Mission_Parameters: 

load_mission_ parameters 

-This function is called by the create_mission function to create the 

Mission_Parameters linked list. It reads information from a 

specified file and properly loads it into the Mission_Parameters 

object is creates. 

write_mission_parameters 

get_mp_ pointer 

set_mp_value_to 

get_float_mp_value 

get_char_mp_value 

-This function is called by the save_miss function to store the 

mission parameters in their proper format. The file to which it 

writes is received as an argument. 

-This function returns a pointer to the specified mission parameter. 

The function is overloaded to allow specification of the variable by 

either name or position. 

-This function is also overloaded. It sets the specified (by name) 

mission parameter a new value. The function is overloaded to 

provide for both character and float values. 

-This function retrieves the float value of the specified mission 

parameter. The variable must be specified by name. The class 

Mission_Parameters makes no provisions for storing mission 

parameters in both character and float formats. Thus the function 

tests whether the character value can be converted to a float type. 

If it cannot, it returns an error message. 

-This function returns the character value of the mission 

parameter. 

  

Class Descriptions 55



Phase_Diagram_Window 

The Phase_Diagram_Window class creates a graphical representation (i.e. phase diagram) 

of the mission data to aid the user in a quick assessment of the mission. The class is 

comprised of mostly private variables and functions which enable it to display the diagram. 

Except for the Motif-like qualities of the window, which allow the user to resize and drag 

the window, the class makes no provisions for interactive modification of how the diagram 

is displayed. The user can, however, select a particular phase and the corresponding phase 

editing menu in the main window (i.e. the window containing the data) will be activated 

and will be ready for input. 

DATA MEMBERS-PHASE_DIAGRAM_WINDOW CLASS 

As previously mentioned, the data contained within this class is used mostly to allow the 

class to properly display the phase diagram. Variables are defined to store information such 

as the width, height, and scaling factors of the diagram. One important variable that needs 

mention, however, is the mission_window variable. This variable stores a pointer to the 

main window (i.e. the window which displays the data). This pointer is used to return 

control of the program to the main window whenever the user clicks on a leg of the 

diagram. 

FUNCTIONS OF PHASE_DIAGRAM_WINDOW 

As is the case with the data pertaining to this class, the functions defined are mostly for 

internal use. The functions automatically retrieve data from the mission and properly scale it 

  

Class Descriptions - 56



to create the phase diagram. No input from the user is required. A brief explanation on the 

purpose and functionality of the more important functions follows: 

set_proper_scale 

set_proper_zoom 

Create_axis 

create_geometry 

display_error_message 

-This function calculates the correct scaling factors in the x and y 

directions to properly display the graph. The x scaling factor is 

always set equal to one and the y value is calculated accordingly. 

The y value is calculated using the following formula: 

|max imum _x— minimum _ 3] 

(6 * maximum_y) 
  

It was determined, through the process of trial-and-error, that this 

formula generates the desired visual results. 

-This function retrieves the maximum and minimum x and y 

values from the mission and sets the correct view magnification to 

display the scaled diagram properly. The required maximum and 

minimum values are retrieved by using the get_max_param_value 

and get_min_param_value functions respectively. These functions 

are defined for the class Missions. Before the magnification of the 

window is set, a call to the set_proper_scale function is made to 

determine the actual size of the scaled diagram. 

-This function creates the axis for the diagram. Since the 

magnification of the display window is continually changing, the 

size of the axis must also be continually updated to retain a fixed 

appearance on the screen. 

-This function creates the phase diagram. It creates a PHIGS 

structure and inserts each leg of the phase diagram by calling the 

geo_segment function of each phase. 

-This routine is used to display an error message in the phase 

diagram window whenever the graph can not be constructed. 

  

Class Descriptions 57



Mission_Window 

The Mission_Window class serves as the coordinator for all other classes in the Mission 

Profile Input System. The class controls all aspects of the program—from the interactive 

display on the screen to the “behind the scene” synchronized execution of data manipulation 

routines. The data manipulation functions are directly accessible to the Mission_Window 

class through the inheritance of the class Missions. To assist it in the creation of the 

user-interface, classes created at Virginia Tech by Scott Woyak [Woya92 & Woya93] and 

Andreas Steude [Steu93] are used. These classes create many of the objects which make 

up the graphical user interface. The names of the particular classes employed are given in 

Appendix B under “Other Classes.” 

DATA MEMBERS-MISSION_WINDOW CLASS 

All the data contained within the Mission_Window class is for internal use only. Pointers 

and flags for object types such as menus, menu items, labels, and color groups are defined 

and used to properly coordinate the various interactive features of the user interface. None 

of these variables has significance beyond being holders for information required by the 

class. 

FUNCTIONS OF MISSION_WINDOW 

The functions of the Mission_Window class can be generally divided into two types: 

functions which create objects to be displayed on the screen and functions which govern 

  

Class Descriptions . $8



and process the internal control of the program. The majority of the functions are used to 

create the various interactive menus of the user interface and to transfer program control 

between them. 

Functions Which Create Objects: 

The stand-alone version of the Mission Profile Input System contains sixteen separate 

menus. These menus allow the user to manipulate the data and the way in which it is 

displayed. Although separate functions exist for each type of menu, all the functions are 

similar in structure. The pop_up menu and its menu items are created by instancing the 

appropriate classes [Woya92] and control is maintained by executing a control loop until 

some valid input is received from a logical input device. The sixteen functions which create 

the different menus are as follow: 

filename_menu -Creates a menu which prompts the user for the name of a file. 

mission_parameter_menu 

-Creates the only menu which does not demand complete program 

control. The control can be toggled between this menu and other 

windows. The menu displays a selected list of mission 

parameters. 

phase_options_menu = -Creates a menu which displays the various options available for 

manipulating phases. 

options_menu -Creates a menu which displays the general options available to the 

user. Routines that can be executed from this menu affect the 

entire mission. Examples are: Save Mission, Retrieve Mission, 

Modify Display, etc. 

add_phase_menu -Creates a menu which displays the phases available for addition 

to the mission. 

phase_menu -Creates a menu which lists all the parameter values of a particular 

phase. This menu is the primary method by which parameter 

values can be modified. 

  

Class Descriptions 59



parameter_menu 

move_parameter_menu 

confirm _menu 

message_menu 

apply_defaults_menu 

row_column_menu 

quick_input_menu 

retr_del_file_menu 

other_variables_menu 

select_variables_menu 

-Creates a menu which lists all the values of a particular parameter 

(i.e. lists the value of a particular parameter for all the phases). 

This menu is an auxiliary method by which parameter values can 

be modified. 

-Creates a menu which allows the user to move a particular 

parameter. 

-Creates a menu which requests confirmation to the previous 

command. 

-Creates a menu which displays a message to the user. The menu 

waits for acknowledgment from the user. 

-Creates a menu which allows the user to reset a particular 

parameter to its default value. Of the sixteen menus, this is the 

only one which never removes the previous menu from the screen. 

Consequently, more than one menu is displayed whenever this 

menu is activated. However, although multiple menus appear, 

only this one accepts input. 

-Creates a menu which allow the user to vary the column and row 

spacing of the display. 

-Creates a menu which allows the user to modify all of the 

parameters of a particular phase simultaneously. This method is 

not as user-friendly as the method offered by the parameter_menu, 

but it is much more efficient for the experienced user. 

-Creates a menu which lists all the files containing mission data. 

The routine looks for all files with a “.miss.data” extension in a 

specified directory. 

-Creates a menu which lists all mission parameters specified as 

“viewable” in the select_variables_menu. 

-Creates a menu by which the user can select the variables to be 

displayed by the other_variables_menu. 

The user-interface consists of objects aside from menus. The most significant of these are 

the five push-buttons which appear directly above the main window (the window which 

displays the data). The buttons are created using the create_additional_components 

  

Class Descriptions 60



function. This function is available to the Missions class from inheritance of the 

Scroll_Window class [Steu93]. 

Functions Which Govern Control: 

As mentioned previously, the functions which create the menus contain control loops 

which maintain control within their corresponding menus. However, this control is only 

local—the menu, and its control loop, are destroyed when the menu disappears from the 

screen. General control is primarily enforced by three functions. These functions process 

input from the logical input devices and act accordingly. All three functions are defined to 

be virtual in the base class Scroll_Window [Steu93] and are redefined by the 

Mission_Window class to reflect its particular needs. The functions are as follows: 

process_additional_components 

-This function is used to process information from the additional 

components defined in the Mission_Window class (objects which 

are defined in the derived class, Mission_Window, but not in the 

base class Scroll_Window). The Mission_Window class has 

five such components—the five push buttons which appear at the 

top. Thus, this function processes information whenever one of 

these buttons is selected. 

process_geometry_view 

-This function processes information whenever a logical input is 

detected inside the geometry view (i.e. inside the window in 

which the data is displayed). The function returns a variety of 

information concerning the location and description of the item 

selected. However, only the logical pick information is of interest 

for the purposes of the class. 

  

Class Descriptions 61



process_from_mouse -This function processes information whenever the computer 

mouse button is pressed. Because the Mission Profile Input 

System relies heavily on input from the mouse, this function is 

perhaps the most important of the control processing functions. 

When input from the mouse is detected, the function determines 

what item on the screen was selected and routes control 

appropriately. One of the functions it calls is the 

process_additional_components routine which tests whether one 

of the components defined within Mission_ Window was selected. 

The Mission_Window class contains additional functions to those listed so far. However, 

they are mostly intended to perform functions that are frequently required by the routines 

just described. Some of the more important ones are listed. 

initialize_colors 

refresh_window 

toggle_window 

scan_for_pick 

-Resets the PHIGS color table to ensure that certain color indices 

reflect certain colors. 

-Updates the window to reflect the latest changes. 

-Toggles the window between its current size and the specified 

one. 

-This function is used extensively by functions which create the 

menus. It takes a pick id and determines what type of data was 

selected. It routes control accordingly. 

  

Class Descriptions 62



9.0 SYSTEM CUSTOMIZATION 

Overview 

The Mission Profile Input System is intended for use by a variety of CAD systems. 

Recognizing that requirements will vary for different programs, the module was designed 

to be customizable. Parameters, phases, and mission parameters can be easily created, 

modified, or deleted, to accommodate the various requirements. Much thought was given 

to whether such flexibility should be given at the implementation or end-user level. Finally 

it was decided that this flexibility should be introduced at the implementation level. It is 

foreseen that the programs onto which the module will be implemented will have a fixed set 

of requirements (i.e. the types of parameters, phases, and mission parameters the CAD 

system will accept). In order for the module to function correctly, such requirements must 

be addressed upon the module's implementation. Once the module is implemented, the user 

will have no need for the ability to define new object types, since the host CAD system is 

unable to process them. 

The following sections describe in detail the steps required to customize the module. They 

describe how to create, modify and delete parameters, phases, and mission parameters. 

However, to accomplish this requires some knowledge of the data files which the MPIS 

creates for archiving purposes. For this reason, the explanation begins with a description of 

these files. 

  

System Customization . 63



Trajectory Data Files 

Figure 9 lists a typical trajectory data file. The first two lines of the file contain the name of 

the mission and the number of mission phases, repectively. The third line gives a listing of 

all the parameters. Note that the entire list of parameters MUST be contained within one 

line and that entries MUST be separated by at least one tab character. Beginning on line 

four, the phases contained by the mission are listed. Each line consists of the phase name 

plus the values of its parameters. The list of values correspond in order to the list of 

parameters given in line three. Tabs are used to separate the entries within each phase and 

end-of-line characters are used to separate the phases. 

All defined parameters must be listed for each phase. A distinction should be drawn 

between the list of parameters found on the second line of the file and the list of phases 

which subsequently follows. The list of parameters lists ALL the parameters which have 

been defined for the module. Since multiple instances of the same parameter are not 

allowed for any given phase, each entry in the list must be unique. The list of phases, on 

the other hand, lists the phases which the mission contains and do not necessarily reflect all 

the phases which are available. Moreover, since each mission may contain multiple 

occurrences of the same phase, each phase entry need not be unique. 

After the list of phases contained by the mission is exhausted, a listing of the mission 

parameters begins. Each line thereafter contains the data for one mission parameter: the 

name, the value, a code denoting whether it should be displayed, and a brief associated 

comment. Like previous entries, each of these entries must be separated by at least one tab 

character. 

  

System Customization . 64



line 1 

line 2 

line 3 

line4 

line 5 

line 6 

line 7 

Mission_Name 

4 

PARAM1 PARAM2 

PHASE 1 valuel-1 

PHASE2 value2-1 

PHASE3 value3-1 

PHASE4 value4-1 

gvl_name gv1_value gv1_display_code gv1_comment 

gv2_name gv2_value gv2_display_code gv2_comment 

PARAM4 

valuel-2 

value2-2 

value3-2 

value4-2 

additional global variables 

PARAM3 

value1-3 

value2-3 

value3-3 

value4-3 

Figure 9. Trajectory Data File 

PARAMS 

value1-4 

value2-4 

value3-4 

value4-4 

valuel-5 

value2-5 

value3-5 

value4-5 

  

System Customization 65



Phase Defaults File 

To facilitate and expedite the creation of trajectory missions by the end user, entire phases 

may be added with the click of a button. The file phase.dfl.miss is found in the same 

directory as the trajectory data files and contains a listing of all the phases which are 

available to the MPIS. Figure 10 shows the file. 

Line one of this file gives a listing of all the parameters. The order of the list is arbitrary. 

However, once defined, it governs the order in which the parameter values must be listed 

in the phase definitions which follow. The rest of the file consists of information for the 

default phases. As in the Trajectory Data Files, phases are defined within a single line. The 

line is comprised of the phase name and the default values of the phase parameters. As in 

previous files, all entries within a line must be separated by at least one tab character. 

  

System Customization . 66



line 1 

line 2 

line 3 

line 4 

line 5 

PARAM1 

PHASE 1 

PHASE2 

PHASE3 

PHASE4 

PARAM2 

value1-1 

value2-1 

value3-1 

value4-1 

PARAM4 

value 1-2 

value2-2 

value3-2 

value4-2 

additional phases which are defined 

PARAM3 

value1-3 

value2-3 

value3-3 

value4-3 

Figure 10. The Phase.dfl.miss File 

PARAMS 

value1-4 

value2-4 

value3-4 

value4-4 

value1-5 

value2-5 

value3-5 

value4-5 

  

System Customization 67



Parameters 

Creation 

Figures 11(a) and 11(b) give a typical class definition for a parameter. A separate class 

must be defined for each type of parameter. Note that each parameter class which is created 

must inherit the class Parameters which contains all the functions associated with the 

object. New parameters can be easily defined by adhering to the following procedure: 

1. 

2. 

Copy the code given in Figure 11(a). 

Change the name of the class to reflect the new parameter. Ensure that 

the name change is reflected in the constructor of the class. 

Assign the class a new reference name. This is done by changing the 

name inside quotes in the set_param_title_to function call. The name 

given to the parameter must be a single word and is the EXACT title by 

which the parameter must be referred when referenced by name from 

any other part of the code. Although the name is restricted to being a 

single word, underscores may be used in its definition. These 

underscores will be treated as blank spaces when the title is displayed 

on the screen. 

Add a new conditional statement to the function 

Phases::get_proper_param. Figure 11(b) illustrates the format of the 

conditional statement. Note that the name of the new parameter must 

be placed inside the quotes found in the conditional test and that the 

newly defined parameter class must be reflected in the call to the new 

data type. 

Modify the phase.defaults.miss to reflect the newly created parameter. 

  

System Customization 68



class parameter_name : public Parameters 

{ 
public: 
parameter_name (char value []) 

{ 
set_param_title_to ("NAME"); 

if (format_type (value)) 
set_value_to (value); 

else 
set_value_to (atof (value)); 

set_default_values (value); 

next = NULL; 

} 

arg3 = list of acceptable input 
void check () { checker (arg/, arg2, arg3); } 

// assign name 

// same as above 

// give name of parameter 

// optional: used to list acceptable entries 
/f optional: Redefine function. 
// see following sections 

Figure 11(a). Basic Parameter Definition 

Parameter *Phases::get_proper_param (char* name, char* value) 

{ 

else if (! (strcmp ("NAME", name))) 
{ 
param = new parameter_name (value); 
retum param; 

} 

// add new conditional statement 

/f give object type 
// return pointer to parameter 

Figure 11(b). Modification Required For Parameter Definition 

  

System Customization 69



Modification 

The primary reason for defining each type of parameter to be a separate class is that it offers 

the flexibility of defining set rules which are unique to each one. This is done through the 

use of virtual functions. Virtual functions are functions which are defined in the base class 

but may be redefined by derived classes. The power of such functions is that each derived 

class can make identical function calls without necessarily referring to the same routine. 

Virtual functions which are not redefined by the derived class default to the base class 

definition. 

The Parameters class offers two virtual functions: the set_value_to and the check functions 

(Appendix B describes the exact function protocol). 

THE SET_VALUE_TO FUNCTION 

The first function, set_value_to , is overloaded. The term “overloaded” implies that 

separate routines are called depending on the types of arguments used in calling the 

function. The reason for overloading this function is that the procedure required for setting 

the value of the parameter is contingent upon the type of the value. A value of type float is 

treated differently than a value of type character. 

In its base class definition, the set_value_to function simply assigns the argument as the 

value of the parameter. However, because the function is virtual, it may be redefined to 

perform more sophisticated assignments. For example, bounds may be imposed on the 

value of the parameter by performing conditional tests. If the value is above (or below) a 

certain value, the value can be reset to the proper bound, an error message can be 

  

System Customization . 70



displayed, or the previous value of the parameter can be restored. In other instances, where 

only a certain type of data is allowable, this function can be redefined to ensure that the data 

meets the proper criteria. Regardless of its sophistication, however, it should always be 

kept in mind that the assignment occurs at the parameter level. Consequently, access to data 

is restricted in scope to the current parameter. The implication of such a restriction is that 

the parameter value cannot be compared to values outside of it—comparisons to other 

parameters or mission parameters are not allowed. Because this assignment is done at the 

lowest (i.e. parameter) level, caution should be used in defining rules. This set of rules 

will supersede all other rules which may be imposed at the phase and mission levels. 

THE CHECK FUNCTION 

In manipulating vast amounts of data, it is often convenient if keywords can be assigned to 

variables which imply certain dependencies. Not only does it make the data more readable, 

it often reduces the work required in making modifications to it. For example, if the final 

speed of a phase is the same as its initial speed, it is much more readable, and convenient, 

to assign the parameter the keyword "SAME" than it would be to assign it the numerical 

value of the initial speed. Moreover, if the initial speed is altered, the keyword "SAME" 

will still be valid whereas the numerical value will no longer be. 

The virtual function check is used to process such keywords. It calls the function 

checker(argl, arg2, arg3) whose arguments dictate how the keywords are processed. The 

first argument must be the name of the parameter from the current phase whose value will 

be substituted for the keyword "SAME". The second argument is the name of the parameter 

from the previous phase whose value will be substituted for the keyword "LAST". The 

last parameter is a list of words that will be considered acceptable input by the parameter. 

  

System Customization 71



To illustrate the function's usage, suppose that the parameter FINAL_SPEED is being 

defined. In this case the keyword "SAME" should refer to the value of the parameter 

"INITIAL_SPEED" of the current phase. The final speed of the phase depends on 

conditions of the current phase, not those of the previous one. Therefore the keyword 

"LAST" should have no meaning. Finally, suppose that a maximum speed is defined. The 

keyword "MAX" should be allowed to reflect this upper limit. Thus a list containing this 

keyword should be used as the third argument. The process of redefining the virtual 

function is as follows: 

1. Define the list of acceptable keywords: 

char list [] [} = { "MAX", NULL}; 

2. Redefine the virtual function: 

check ( { checker ("INITIAL_SPEED",NULL, list) }; 

Note that the first two arguments have routines associated with them. The third argument, 

however, only makes the entries in the list acceptable—it does not describe how these 

words will be processed. In the example given, the set_value_to function of the parameter 

must be redefined to check for the keyword "MAX". If the value matches the keyword, the 

maximum value should then be attributed to the parameter. 

Example: redefining the set_value_to function: 

parameter_name::set_value_to (char *value) 

{ 

if (! (strcmp ("MAX", value))) 

fvalue = 1000.00; 

  

System Customization 72



In summary, the parameter FFNAL_SPEED, in this case, would accept all numeric entries, 

plus two keywords: "SAME" and "MAX", It should be noted that in its default definition 

check function provides only for numeric entries. Any non-numeric entries are treated as 

invalid entries. 

Deleting 

To delete a parameter which has previously been defined, the following procedure must be 

followed: 

1. Delete its class definition. 

2. Delete the conditional statement in the function get_proper_params. 

3. Eliminate its name and default values in the phase defaults file. 

Phases 

Creation 

Figures 12(a) and 12(b) give a typical class definition for a phase. A separate class must be 

defined for each type of phase. Note that each phase class inherits the class phases which 

contains all the functions associated with the object. New phases can be easily defined by 

adhering to the following procedure: 

1. Copy the code given in figure 12(a). 

2. Change the name of the class to reflect the new phase. Ensure that the 

name change is reflected in the destructor of the class. 

3. Assign the class a new reference name. This is done by changing the 

name inside quotes in the set_phase_title_to function call. The name 

given to the phase must be a single word and is the name by which the 

phase must be referred to exactly when referring to it by name from any 

other part of the code. Although the name is restricted to being a single 

  

System Customization . 73



word, underscores may be used in its definition. These underscores 

will be treated as blank spaces when the title is displayed on the screen. 

4. Add a new conditional statement to the function 

Missions::get_proper_phase. Figure 12(b) illustrates the format of the 

conditional statement. Note that the name of the new phase must be 

placed inside the quotes found in the conditional test and that the newly 

defined phase class must be reflected in the call to the new data type. 

5. Modify the phase.defaults.miss file to ensure that the newly created 

phase is reflected. 

Modification 

As is the case with parameters, defining each type of phase as a separate class allows for 

the definition of set rules unique to each one. As explained earlier, this is accomplished via 

use of virtual functions. 

Like the parameters class, the phases class provides two virtual functions. They are the 

calculate and geo_segment functions. 

THE CALCULATE FUNCTION 

The calculate function is similar to the check function described earlier in that it is used to 

impose user-defined constraints on parameter data. A significant difference, however, is 

  

System Customization . 74



class phase_name : public Phases // assign name 

{ 

Maen hase_pame Q { delete_phase_variables Q; } // reflect phase name 

phase_name (char *param_titles [], char *input) // reflect phase name 

set_phase_title_to ("NAME"); // give name of phase 

load_param_values (param_titles, input) 

next = NULL; 

} 

void calculate Q; // optional: Include to redefine the 
// function. See following sections 

Figure 12(a). Basic Phase Definition 

Phases *Missions::get_proper_phase (char* title, char* data []) 

{ 

else if (! (strcmp (title, "VAME"))) // add new conditional statement 
{ 

phase = new phase_name (value); // give object type 
retum phase; // return pointer to phase 

} 

Figure 12(b). Required Modification for Phase Definition 

  

System Customization . 75



that this function is performed at the phase level. Comparisons between parameters 

belonging to the same or the previous phase can be made. Simple to complicated parameter 

interdependencies can be quickly constructed. These parameter interdependencies are 

unique to the phase in which they are defined. 

To simplify the creation of such dependencies, four private functions are currently provided 

to return character or float information from a specified parameter. They are as follow: 

prev_number (name): This function returns the numeric value of the specified 

parameter from the previous phase. To return the value of the parameter FINAL_SPEED 

in the previous phase, the following function call is used: 

prev_number ("FINAL_SPEED"); 

number (name): This function returns the numeric value of the specified parameter from 

the current phase. To return the value of the parameter FINAL_SPEED in the current 

phase, the following function call is used: 

number ("FINAL_SPEED"); 

word (name): This function returns the character value of the specified parameter from 

the current phase. To return the value of the parameter FINAL_SPEED in the current 

phase, the following function call is used: 

word ("FINAL_SPEED"); 

set (name, value): This function is overloaded to handle an argument of type float or of 

type character. It sets the value of the specified parameter to the specified value. To set the 

value of the parameter FINAL_SPEED to the keyword "SAME" the following function call 

is made: 

set ("FINAL_SPEED", "SAME"); 

  

System Customization . 76



or, to set the value to 10.0, use: 

set (“FINAL_SPEED", 10.0); 

As an example of redefining the calculate function, the parameter “"DISTANCE”"—the 

distance traveled during the current phase—can be defined simply as the following: 

calculate ( { 

float time = number ("TIME_ELAPSED"); 

float final_speed = number ("FINAL_SPEED"); 

float init_speed = number (“INITIAL_SPEED"); 

float new_value = int_speed + ( (final_speed - init_speed) / 2.0) * time ** 2.0; 

set “DISTANCE”, new_value); } 

Other, more complicated, interdependencies can similarly be created. 

THE GEO_SEGMENT FUNCTION 

The geo_segment function is used by the class Phase_Diagram_Window to represent the 

mission data in graphical form (i.e. the phase diagram). The function constructs the 

graphical representation of its corresponding phase. The default function definition creates 

a Straight line proportional to the distance covered by the phase. This function may be 

redefined to create more sophisticated graphical representations. In redefining the function, 

caution should be used to ensure that the newly defined representations correctly reflect 

scaling. 

  

System Customization . 77



Miscellaneous 

In addition to imposing rules on the parameter and phase levels, rules may also be imposed 

on the mission level. In general, rules at this level can affect data throughout the mission. 

Such rules, for example, may include routines to alter various parameters whose values are 

contingent on the values of some specified mission parameter. Regardless of how simple 

or sophisticated the testing routines may be, it is suggested that they be defined within 

functions which are made part of the Missions class. These functions should then be called 

from the appropriate location within the refresh function. 

  

System Customization . 78



10.0 IMPLEMENTATION AND EXAMPLES OF 

RESULTS 

Overview 

The design and creation of the Mission Profile Input System (MPIS) is now complete—the 

design and user requirements outlined in the “Requirements” section have been 

implemented. The result has been the stand-alone version of the MPIS. Testing of the 

system has demonstrated that the objectives initially set forth have been satisfied. The 

system offers a friendly, interactive method by which a mission profile can be created, 

manipulated, and modified. The structured and forthright approach to the input of data 

offered by the system is of great benefit to the novice user. Equally important, however, 

the system also offers various methods by which the experienced user can circumvent the 

rigidity of such an approach to accelerate the process of creating and manipulating a 

mission profile. 

The resulting system has also proven to contain good extendibility features. To test the 

customization traits of the system, the stand-alone version of the MPIS has been 

customized to be compatible with the aircraft CAD system, ACSYNT (see the section 

“Integration With ACSYNT’). The design structure of the program has proven sufficiently 

robust and flexible such that no major modifications or extensions to the code were 

required in the adaptation of the system. 

  

Implementation And Examples Of Results 79



The Stand-Alone Version Of The MPIS 

The stand-alone version of the MPIS is intended to demonstrate the functionality of a 

general, customizable system which can be used to create and manipulate mission profiles. 

Since existing aircraft CAD systems have a variety of phase and parameter requirements, 

no attempt was made to include a comprehensive definition of phases and parameters with 

the stand-alone version. Rather, the phases and parameters defined within this version of 

the MPIS are intended to demonstrate the flexibility of the system—serving as templates for 

the definition of new ones. 

The following parameters and phases have been implemented to prove the design of the 

system. However, it should be emphasized that they are merely intended to prove the 

concept and will thus most likely have to be modified or replaced upon adaptation of the 

MPIS to a CAD system. 

Parameters defined: 

Class Name: initial_ 

Parameter Name: INIT_SPD 

Notes: The following keywords are defined: 

LAST -Sets the float value of the parameter equal to the 

float value of the parameter FINAL_SPD from the previous phase. 

Class Name: final_speed 

Parameter Name: FINAL_SPD 

Notes: The following keywords are defined: 

SAME -Sets the float value of the parameter equal to the 

float value of the parameter INIT_SPD from the same phase. 

  

Implementation And Examples Of Results 80



Class Name: 

Parameter Name: 

Notes: 

Class Name: 

Parameter Name: 

Notes: 

Class Name: 

Parameter Name: 

Notes: 

Class Name: 

Parameter Name: 

Notes: 

Class Name: 

Parameter Name: 

Notes: 

Class Name: 

Parameter Name: 

Notes: 

initial_altitude 

INIT_ALT 

The following keywords are defined: 

LAST -Sets the float value of the parameter equal to the 

float value of the parameter FINAL_ALT from the previous phase. 

final_altitude 

FINAL_ALT 

The following keywords are defined: 

SAME -Sets the float value of the parameter equal to the 

float value of the parameter INIT_ALT from the same phase. 

time 

' TIME 

None 

distance 

DISTANCE 

This parameter is calculated automatically. It is defined as: 

  

INIT_SPD+ 1 ( FINAL_SPD — INIT _ =P roe? 

2 2 

total_distance 

TOTAL_DIST 

This parameter is calculate automatically. It is defined as: 

TOTAL_DIST(from previous phase) + DISTANCE 

direction 

DIRECTION 

The following character entries are permitted: 

F _ -indicates forward travel 

B ___ -indicates backward travel 

Used by the Phase_Diagram_Window to draw distance in the 

negative direction. 

  

Implementation And Examples Of Results 81



Class Name: 

Parameter Name: 

Notes: 

Phases Defined: 

Class Name: 

Phase Name: 

Notes: 

Class Name: 

Phase Name: 

Notes: 

Class Name: 

Phase Name: 

Notes: 

Class Name: 

Phase Name: 

Notes: 

drop_ bomb 

DROP_BOMB 

The following character entries are permitted: 

Y = -bomb is dropped 

N __ -bomb is not dropped 

acceleration 

ACCEL 

The DIST and TOTAL_DIST parameters are calculated from their 

dependencies. 

cruise 

CRUISE 

The DIST and TOTAL_DIST parameters are calculated from their 

dependencies. 

loiter 

LOITER 

The DIST and TOTAL_DIST parameters are calculated from their 

dependencies. 

climb 

CLIMB 

The DIST and TOTAL_DIST parameters are calculated from their 

dependencies. 

  

Implementation And Examples Of Results 82



Methods For Handling Data 

As explained in the section “The Mission Profile Input Module,” the ability of the system to 

accept diverse types of input results in a fair amount of complexity in how the data must be 

handled. The input must be processed through numerous functions to ensure its validity. 

To fully appreciate how the MPIS handles data, it is necessary to understand two major 

procedures: how a mission is created, and how the modification of a parameter value is 

resolved. The sequence of function calls for these two procedures fully illustrate the 

methods by which objects are created, input values validated, and dependent parameters 

updated. By comprehending these particular methods, other procedures, such as phase 

insertion and phase deletion, can be easily understood. 

CREATION OF A MISSION 

Figure 13 describes the control path of the program when a mission is first created. Data to 

create the proper mission objects is read from a file specified by the user by the function 

Missions::create_mission. The values are assigned to the newly created corresponding 

objects. To ensure that the data is valid and that dependencies between the data are properly 

maintained, comprehensive tests are performed on the input data after it has been assigned. 

The first information read from the file is the mission name, the number of phases and the 

names of the parameters contained by the mission. The last two values are used to properly 

read the rest of the data. After reading this information the linked list of phases is created. 

This is done by making successive calls to the Missions: :get_proper_phase function. This 

function takes the name of the phase and the list of the values for its parameters as 

  

Implementation And Examples Of Results 83



Missions::create_mission (filename) /! creates data from information read from a file 

{ 
temp = # of phases /f store number of phases 
param_names [] = list of parameters // assign the list of parameters to param_names 
for (# of phases) // repeat for the # of phases 

Phases::get_proper_phase (word (name), list) // create the phase specified; ensure format of name 
add phase to the phase linked list 

} 

for (# of mission parameters) // repeat for the # of mission parameters 

{ 
create mission parameter 

assign values to mission parameter 
add mission parameter to Mission_Parameters linked list 

} 
} 

phase constructor /f automatically launched upon a phase's creation 
{ ‘1 From get_proper_phase 

assign phase attributes // assign attributes such as phase name 
Phases::load_param_values (param_names, values) // create parameter linked list 

} 

Phases: :load_param_values (param_names, values) 

for (# of parameters) // repeat for the number of parameters 

Phases::get_proper_param (name, value) // creates parameter specified by the name. Assigns value 
add parameter to parameter linked list 

} 
} 

parameter constructor /f automatically launched upon a parameter's creation 
{ // From get_proper_param 

assign parameter attributes // assign attributes such as parameter name 
Parameters::set_value_to (word (value)) // sets the value of the parameter. Ensure format of value 

} 

Parameters::set_value_to (value) 

{ 
assign value 
Parametérs::check () // check input for validity 

} 

Parameters::check () 

if (value of param is keyword) ‘If it is a keyword, launch proper routine 
launch appropriate routine // launch appropriate routine 

else if (entry is acceptable) // else if the entry is defined to be acceptable 
return /t if yes, leave value in tack 

else if (format (value of param)) // else check what the format of the value is 

display error message // Tf it is a “word” display error message 
// else end check. Entry is a numeric value 

Figure 13. Creation of Mission (Pseudo-Code) 

  

Implementation And Examples Of Results 84



arguments. By comparing the name it receives to the names of the available phases, the 

function determines which phase object to create. The constructor of the phase created, in 

turn, creates the parameter link list. This is done by calling the Phases: :load_param_values 

function which takes a the list of available parameters and the list of their corresponding 

values as arguments. This function traverses the list of parameters and matches each 

parameter name with it’s respective value. The Phases::load_param_values function makes 

successive Calls the Phases::get_proper_param function, sending one pair of values as 

arguments for each call. The Phases::get_proper_param function determines the proper 

parameter object to create by comparing the names of the available parameters to the 

parameter name which it receives. The constructor of the parameter created requires one 

argument—its value. The constructor assigns the value it receives to itself. Assignment of 

the parameter value is done by calling the Parameters::set_value_to function. The 

Parameters: :set_value_to function is a virtual function and thus may be redefined to 

perform differently. However, in its base definition it assigns the value to the proper 

parameter variable and then calls the Parameters::check function. Like the 

Parameters::set_value_to function, the Parameters::check function is virtual. Its definition 

can be altered to adhere to different rules. However, it’s main purpose should always be to 

check the validity of the input. Conditional tests should be used to check whether the entry 

is valid. If not, the proper actions should be taken. 

Once the linked list of phases is complete, the linked list of mission parameters is 

constructed. This is done by creating objects of type Mission_Parameters, assigning them 

the values read from the file, and linking them in a linked list. Upon completing this linked 

list, the creation of the mission is complete. 

  

Implementation And Examples Of Results 85



MODIFICATION OF A PARAMETER 

Figure 14 illustrates the control path of the Mission Profile Input System whenever the 

value of a parameter is modified. The modification process is complicated by the need to 

verify the validity of the input and the need to determine whether any special processes 

(e.g. process keyword entries) need to be executed. 

The value of a parameter is modified by calling the Missions::update_element function. 

This function takes three arguments. The first two arguments determine the parameter to be 

updated by specifying the exact location of the parameter within the various linked lists. 

The third argument is the new value to which the parameter is to be set. Setting the 

parameter value is performed by calling the Parameters::set_value_to function. This 

function assigns the value and then calls the Parameters::check function, which verifies the 

validity of the input and executes any special processes. 

Once the value of the parameter is updated, all the data within the mission must be updated 

to reflect the effects on dependent parameters. This is done by executing the 

Missions: :refresh function. The Missions::refresh function updates the parameters with 

keyword entries to ensure that their values are properly reflected. Moreover, the function 

also ensures that all the dependencies between parameters are also updated. 

To ensure that the mission is updated correctly, the Missions::refresh function executes a 

thorough scan of all the mission data. Each phase of the mission is scanned for keywords. 

The entire linked list of parameters is updated and the set rules for the phase are executed 

  

Implementation And Examples Of Results 8 6



process for making modification to a parameter 

{ 
Missions::update_element (phase_num, param_num, new_value) // assign the new_value to the a parameter 

refresh () // update all the data to reflect the change 

Missions: :update_element (phase_num, param_num, new_value) 

phase_pt = Missions::get_phase_pointer (phase_num) // get pointer to the correct phase 

param_pt = phase_pt->Phases::get_param_pointer (param_num) // use phase pointer to get parameter pointer 
param_pt->Parameters::set_value_to (word (value)) // set parameter value; ensure proper format 

} 

Parameters::set_value_to (value) 

{ 
assign value 
Parameters: :check () // check input for validity 

} 

Parameters::check () 

{ 
if (value of param is keyword) ‘If it is a keyword, launch proper routine 

launch appropriate routine // launch appropriate routine 
else if (entry is acceptable) // else if the entry is defined to be acceptable 

return // if yes, leave value in tack 
else if (format (value of param)) #/ else check what the format of the value is 

display error message ‘If it is a “word” display error message 
/ else end check. Entry is a numeric value 

} 

Missions::refresh () 

for (# of phases) // repeat for the number of phases 

{ 
for (# of parameters) // repeat for the number of parameters 

if (parameter value is a keyword) // if keyword do the following 

for (# of parameters) // rescan the entire current phase 

if (parameter value is a keyword) // act only on parameters which have a keyword 

{ 
curr_param->Parameters::set_value_to (key_word) 

// set current parameter value—this function will again 
// call the check function 

} 
} 
current_phase->Phases: :calculate () // update the entire current phase 

} 
} 

} 
} 

Phases::calculate () // updates entire phase to reflect parameter dependencies 

{ 
perform user-defined calculations on phase parameters 

} 

Figure 14. Parameter Modification (Pseudo-Code) 

  

Implementation And Examples Of Results 87



for each keyword encountered. Thus, for a phase containing five keywords, five iterative 

updates of the phase are performed. In this manner, the data is always guaranteed to reflect 

the proper values regardless of the order in which the parameter modifications were made. 

For the interested reader, the exact protocol for the functions (denoted by italicized names) 

may be found in Appendix B. 

The User-Interface 

Figures 15 through 29 illustrate the interface for the stand-alone version of the MPIS. 

Figure 15 shows the system with the phase diagram activate, and Figure 16 shows the 

system with the Mission Parameters menu activate. The remaining figures illustrate the 

various interactive pop-up menus offered by the system. Explanations for the purpose of 

each of the menus, along with instructions on how to use them, may be found in 

Appendix A. 

  

Implementation And Examples Of Results 88



  

    

    

Bor SFO FINAL FD IMT AT FINCAT TDF OSE TOR. DT DIRECTIIN IR 604 

wer 6.9 ILE ar SE eee. F tub ibe F NA 

ACE. Lear wae Lasr | eat. § ai. 55.3 F Hi 

WAITER LAT 150.8 Laer a. a ban. # 31.5 Be. F F N 

CRUSE Loar ian. € Lasr SE ead. ae | 223.3 F eI 

PCE. Lest 28 LAT LOWE, @ bag. # Sib 186.9 F N 

CPLE Lear Se LAST SE tad. 8 Ent aBE.3 F 4 

ACCEL. Leer SE List Ra. 8 LAGE. B aa.% 43.9 F nr 

  
\ 

Baz rt 

45g ne 

    
       

Figure 15. The MPIS With the Phase Diagram Window Activated 

  

Implementation And Examples Of Results



  

  

INT SPO BALD OTT PINOT TIME OMTRACE TOL MEST DIRECTIIN OR Be 
waa BG SIA. § as HE eae, B dab ib. k F WAR p 

axe Lear Bm. 8 Lagr Mie. eau. U ath 88, 5 F HH : 
LOTER sg ER user 608.8 rag, f IB a6 & F N 
CIDE Lear OE LABT RE cay, 8 77.8 1T3, 3 F N 

CEL Leg©r a € LAST Le, 8 oda, F 3b 195. @ F i 

Cee Ler wre Lat wre OE, # 4,5 198,35 F N 

ence. wear Ste Lagr auG.8 9 ae OSS 241.8 F ray 

  
       

Figure 16. The MPIS With the Mission Parameters Menu Activated 

  

Implementation And Examples Of Results 90



  

  

  
    

Figure 17. The Phase Menu 

  
  

Implementation And Examples Of Results 91



  

    
    

Figure 18. The Defaults Menu 

  aaa 

  

Implementation And Examples Of Results 92



  

: 3 
BR
GR
GS
 

  
  

Figure 19. The Phase Options Menu 

  
  Implementation And Examples Of Results 93



   
INT SFU 

Tel Go DPA 

coe. Lasr tana 

LOTTER Leer Ue 8 

CALIE Laer san. 6 

Ace. LeGT oA 

CPLOSE Loar ae 

AB. LPeT SAE 

  

FIL FE WAT FINLAT TI 

wm RE bag. B 

Lasr 28.8 oan. tb 

LAST eau. 8 cae. B 

wer aE oad. 8 

LET LOE, 8 ak. » 

Lear ate ae. B 

LAeT ZALS L088. ? 

  

LAS TFACE 

tab 

atk 

31.8 

av.5 

hb 

35.5 

a5. 6 

  

FOR. BEST DIRECTIIN 

the & 

58.3 

an. B 

423.3 

106.9 

186.2 

245, 8      
E 

F 

FE 

F 

F 

FE 

Ee 

WP Ee 

Mra 

iW 

a
 

4 

HR 

    

      

Figure 20. The Quick Input Menu 

  

Implementation And Examples Of Results 94



  

d 
a
h
a
h
a
h
a
 

  

  

    

  

    

Figure 21. The Parameter Menu 

  

  Implementation And Examples Of Results 95



  

hae dace aaa amas aaa aad haa detente damnasibsaanadimaneaeieaneaiek 

     
    

INT 50 

3.9 m8 ae SAE au. F it b ik 

Leer ie. & Laar Z8. eae. & 4b 58.3 

ifer 100.8 LAST oem. a eae. # a7. § ag. F 

Lear 12a. Lasr cn ead. 8 tr. 123.5 

Lear wo LAST L0u8, 8 nag. # 3.5 188.9 

Ler SAE LAgT Se edd. 8 sh Ane. 

Ler SE LAST 2088. F LAUS, B 7.5 243,98 

  
    

Figure 22. The Move Parameter Menu 

  

Implementation And Examples Of Results 96



  

  

  

  

  

  SB 9S 148 395 

Figure 23. The Select Other Variables Menu 

  
Implementation And Examples Of Results 97



  

  
    

Figure 24. The Other Variables Menu 

  
  

Implementation And Examples Of Results 98



3 

wR 

SiG. 6 

URE 

ia. € 

Baa. 8 

a
e
R
g
g
E
S
G
 

    

  
FINAL [Pl 

ier 

LABT 

Ler 

LAST a8. 8 

LAST 

LAST 

waa. F 

Bad. & 

oa. F 

bag. 8 

ous. B 

dé. F 

L588. 8 

  

ib. & 

S8.3 

un. & 

133.5 

185.0 

186.2 

45.0 

TOL MST VIRGIN IRF Be 

F 

m
u
"
 
n
H
 TF 
O
T
 

         
g
e
t
 

R
2
2
 

    8 Sf 

Figure 25. The Row/Column Menu 

145 

  

   Za 

  

Implementation And Examples Of Results 99



  

  
      

Figure 26. Menu Listing Available Files 

  

Implementation And Examples Of Results 100



  

  

Sa ee 

Ing 0 FING SD NAT FIL EALT ITE 

Tat LG 2a. 0 a8 SHE cae. B 

eco. Léar a user oa.8 ole. B 

UTTER LAST 2.0 LAET ea. A 

CaAISE Lear 1o3. 8 Lagr SHE aa. 5 

LAST Leer 

Lear esr 

Leer Ler 

DITANCE 

ik. 

41.& 

31.8 

27.5 

Ce ae 

TOL DEST DRECTIIN IRF 8Of 

ib. b 

56. Xx 

a8. B 

it3.3 

r
n
n
R
n
n
7
n
t
?
R
i
t
 

  

Figure 27. The Message Menu 

  

    Implementation And Examples Of Results 101



  

Nee nnn ne en nn ee eee era 

  

      

INT SFO) FINAL PD ONT ALTO OFINEL ELT «TIME COE | FL DOS RECTION IF 88 

DI v9 10.8 a0 SE 500.8 ik. ib. b F nr 

oe. Lear ah. Lear 2a. eat. at. 5a.X F hi 

LOTTER LAST 1008.8 List wea. W 5a8. B 5 a0. B F N 

CRLESE Lear 1208.0 F MN 

POEL. LAST 10.8 F N 

cALOSE Lasr SE F ni 

PCr. Leer SAE F nh 

  

  

  

AS
ME
 N

ER
R 

SR
NR
 

SI 
R
R
R
 

R
I
T
E
 

TE
. 
w
a
e
 

h
a
t
r
e
d
s
 

  J 

a
 

a
 

i
 

* |
 

uw
 

”
 

LY
] 

A 
3
g
 ta
 

*
 

an
 

3 
a
 

  

Figure 28. The Confirm Menu 

  

Impiementation And Examples Of Results 102



  

BET SG FOAL SO DAT FAL AT ThE SRCE | TOIL OS RECTION IRP Co 

7. 8 a8 Se tan. ¥ i6.b ib, & +h 

a a LAgT a. cag. h di. b $8. x HN 

  
      

Figure 29. The Filename Menu 

  

Implementation And Examples Of Results 103



11.0 INTEGRATION WITH ACSYNT 

Overview 

As proof of its flexible features, the Mission Profile Input System was integrated into the 

interactive CAD version of ACSYNT. The amount of code modification required to make 

the stand-alone version of the system compatible with ACS YNT was carefully noted. Upon 

completion, ACSYNT integration proved the robustness and flexibility of the data handling 

routines provided by the MPIS. All of ACSYNT’s data manipulation requirements were 

satisfied without the need to modify or append the utilities offered by the system. 

However, certain characteristics of ACSYNT did require unexpected modifications to other 

aspects of the stand-alone MPIS. Most noticeable was the separation of the analysis and 

interactive portions of ACSYNT—data entered by the user cannot immediately be 

processed by the ACSYNT analysis modules. Since the affects of modifications made to 

the mission profile are not immediately available, the graph generated by the 

ACSYNT-integrated version of the MPIS is not drawn to scale. 

Integration 

Integration of the module to ACSYNT required approximately three man-days. Most of the 

effort was dedicated to writing translators which convert data from ACSYNT to MPIS 

  

Integration With ACSYNT : 104



format. The following sections describe the modifications made to the stand-alone version 

of the Mission Profile Input System to make it compatible with ACSYNT. 

Transferring Data 

Data transferred between the MPIS and ACSYNT by translating data from the TRIN. MOD 

file of ACSYNT into the MPIS format (see the section “Trajectory Data Files”). The 

TRIN.MOD file is used by the ACSYNT spreadsheet utility for temporary storage of the 

modifications made by the user (changes are not considered permanent until they are stored 

as “ACS input” [ACS Y93]). The decision to transfer data using the TRIN.MOD file was 

made in an effort to adapt the MPIS system without disabling the ACSYNT spreadsheet. 

By writing to the same file, both systems have access to the same data and can therefore 

both be utilized. 

When the MPIS is initiated, it translates the information from the TRIN.MOD file into 

MPIS format—stored in a scratch file called trin.mod—and used as the default mission by 

the system. When the user exits from the MPIS, the system translates the mission 

information back into ACS YNT format and overwrites the TRIN.MOD file. 

Saving Mission Information 

To save a mission in MPIS format the user must explicitly save it using the “SAVE 

MISSION AS...” option under the Options Menu (see Appendix B). Mission 

information can also be saved by saving it in ACSYNT format. This is done by using the 

“SAVE ACS INPUT” option under the FILES menu (see [ACSY93]). This option, 

however, saves all information pertaining to the current aircraft configuration. Moreover, it 

makes any modifications made to the current aircraft permanent. For this reason, it is 

sometimes more advisable to save the mission information under MPIS format. 

  

Integration With ACSYNT 105



Modifications to the MPIS 

The number and types of parameters and phases the MPIS accepts were modified to reflect 

the requirements of ACSYNT. The modifications were made following the guidelines 

described in the section “System Customization”. Following is a list of the new data types 

(i.e. phase and parameter classes) defined. Explanations are provided on the rules 

implemented for each data type. 

Parameters defined: 

Class Name: Sstart_mach 
Parameter Name: MSTART 
Special Notes: The following keywords are defined: 

PREV -Represents code -1 

OPT -Represents code 0 

The parameter value is restricted to be less than 10.0. 

Class Name: end_mach 

Parameter Name: MEND 

Special Notes: The parameter value is restricted to be less than 10.0. 

Class Name: Start_alt 

Parameter Name: HSTART 

Special Notes: The following keywords are defined: 
PREV -Represents code -1 

OPT -Represents code 0 

The parameter value is restricted to be less than 100,000. 

  

Integration With ACSYNT . 106



Class Name: 

Parameter Name: 

Special Notes: 

Class Name: 
Parameter Name: 

Special Notes: 

Class Name: 
Parameter Name: 

Special Notes: 

Class Name: 

Parameter Name: 

Special Notes: 

Class Name: 

Parameter Name: 

Special Notes: 

Class Name: 

Parameter Name: 

Special Notes: 

Class Name: 

Parameter Name: 

Special Notes: 

end_alt 

HEND 
The following keywords are defined: 
NEXT -Represents code -1 

OPT -Represents code 0 
NOCLIMB -Represents code -1 

The parameter value is restricted to be less than 100,000. 

distance 
DIST 
The following keywords are defined: 
RANGE -Represents code -10 

The parameter value is restricted to be less than 100,000.0. 

time 
TIME 
The parameter value is restricted to be less than 10,000.0. 

turns 

NTURNS 
The parameter value is restricted to be less than 1,000.0. 

vind 
VIND 

The parameter value is restricted to be less than 10,000. 

fuel_factor 
WKFUEL 
The parameter value is restricted to be less than 100.0. 

mparam 
M 
The parameter is always set equal to the mission parameter 
MMPROP. 

  

Integration With ACSYNT 107



Class Name: 

Parameter Name: 

Special Notes: 

Class Name: 

Parameter Name: 

Special Notes: 

Class Name: 

Parameter Name: 

Special Notes: 

Class Name: 

Parameter Name: 

Special Notes: 

power_setting 

IP 
The following keywords are defined: 
ALTWAFT __ -Represents code -3 
ALTWOAFT _ -Represents code -2 

TOFFWAFT  -Represents code -1 
TOFFWOAFT -Represents code 0 
MAXAFT -Represents code 1 

MAXTOFF __ -Represents code 2 
MAXCONT __ -Represents code 3 
DRAG -Represents code 4 

IDLE -Represents code 5 

The parameter must be one of the above values. The default value 
is IDLE. 

range_indicator 

IX 
The following keywords are defined: 
NEITHER -Represents code 0 
ADD -Represents code 1 
SUB -Represents code -1 

missile_indicator 

WwW 
The following keywords are defined: 

DROP -Represents code 1 
NODROP -Represents code 0 

The parameter must be one of the above values. The default value 
is NODROP. 

bomb_indicator 

B 
The following keywords are defined: 
DROP -Represents code 1 
NODROP -Represents code 0 

The parameter must be one of the above values. The default value 
is NODROP. 

  

Integration With ACSYNT - 108



Class Name: 

Parameter Name: 

Special Notes: 

Class Name: 

Parameter Name: 

Special Notes: 

Phases Defined: 

Class Name: 

Phase Name: 

Special Notes: 

Class Name: 

Phase Name: 

Special Notes: 

Class Name: 

Phase Name: 

Special Notes: 

ammo_indicator 

A 
The following keywords are defined: 

DROP -Represents code 1 

NODROP -Represents code 0 

The parameter must be one of the above values. The default value 
is NODROP. 

print_indicator 
P 
The following keywords are defined: 
PRINT -Represents code 1 

NOPRINT -Represents code 0 

The parameter must be one of the above values. The default value 

is NOPRINT. 

climb 
CLIMB 

The following parameters do not apply to the phase: 

NTURNS 
TIME 

MEND 

DIST 

acceleration 

ACCEL 
The following parameters do not apply to the phase: 

VIND 
NTURNS 
DIST 

cruise 

CRUISE 
The following parameters do not apply to the phase: 
IX 
VIND 
NTURNS 

  

Integration With ACSYNT . 109



Class Name: loiter 
Phase Name: LOITER 

Special Notes: The following parameters do not apply to the phase: 

IX 
VIND 
NTURNS 

Class Name: combat 
Phase Name: COMBAT 

Special Notes: The following parameters do not apply to the phase: 
IX 
DIST 

Class Name: descent 
Phase Name: DESCENT 

Special Notes: The following parameters do not apply to the phase: 

IX 

VIND 

NTURNS 

TIME 

DIST 

Class Name: hover 

Phase Name: HOVER 
Special Notes: The following parameters do not apply to the phase: 

IX 

VIND 

NTURNS 

DIST 

Modifications Made to the Mission_Parameters Class 

In addition to the mission parameter information required by the stand-alone version of the 

MPIS, ACSYNT requires two additional pieces of information to correctly keep track of its 

mission parameters. It requires that the type and format of the variable be specified. 

Consequently, the Mission_Parameters class was modified to accommodate the additional 

information requirements. The corresponding functions to set and retrieve this information 

  

Integration With ACSYNT . 110



were also implemented. ACSYNT makes no provisions for keeping track of the variable 

information which determines whether the variable is to be shown by the Other Variables 

Menu. Consequently, every time the data are transferred from ACSYNT, the value of the 

variables is reset to its default value of “NO” (i.e. the variables is not shown by default). 

Using The System From Within ACSYNT 

The MPIS can be initiated from within ACSYNT by using the “Trajectory Module” option 

under the “Trajectory” menu. The system will utilize a different window (PHIGS 

workstation) from the one in which ACSYNT appears. However, although both the MPIS 

and ACSYNT appear simultaneously on the screen, only the MPIS will accept user input. 

Control will not return to ACSYNT until the MPIS is exited. 

  

Integration With ACSYNT 111



12.0 CONCLUSION AND RECOMMENDATIONS 

The stand-alone version of the Mission Profile Input System has satisfied the objectives 

initially set forth. The system offers a friendly, interactive method by which a mission 

profile can be created, manipulated, and modified. It offers a structured and forthright 

approach to the input of data and yet retains the flexibility necessary to enhance efficiency. 

The system has also proven to contain good extendibility features. Adaptation to the aircraft 

conceptual design system, ACSYNT, was performed without the need to implement major 

modifications or extensions to the code. 

Development of the MPIS has also shown that object-oriented design and programming 

lend themselves well to programs of its nature. As mentioned earlier, object-oriented 

programs attempt to mimic relationships found in the real-world. The relationship between 

parameters, phases, and missions, where one is contained within another, can easily be 

mimicked using the instancing of objects. The missions instance the phases, which, in 

turn, instance the parameters. 

The current version of the Mission Profile Input System should be thought of as the first 

complete iteration of its design—it is the framework upon which future versions can be 

improve. As is the tendency of code development, better and more efficient algorithms for a 

better system were uncovered even as the first design was being implemented. 

Suggested areas of improvement are in the definition of phases and parameters. Although 

the current method is highly flexible and straightforward, it could be made even less 

  

Conclusions And Recommendations. 112



tedious if one generic class was defined to represent any type of phase or parameter. 

Functions to define the properties of the particular type could be used to customize the 

individual phases and parameters. Problems arising from trying to store such information 

will need to be resolved. 

Another area which can be improved is the dynamic definition of rules by the user for the 

various phases and parameters. Currently, such rules must be implemented at the code 

level. By giving the user the ability to modify these rules interactively, the functionality of 

the program will be greatly increased. Methods by which to determine invalid or 

inconsistent rules will have to be considered. Also provisions will have to be made for 

storing such information. 

The power and usefulness of a program is determined by how effectively the end-user is 

able to maximize its potential. Ultimately, however, only the end-user can determine what 

is the most efficient interface layout for personal maximization of the potential of the 

program. Usually, this cannot be determined until a layout configuration has been 

implemented and its limitations are discovered through daily usage. For this reason, it 

would be desirable to give end-users the ability to fully customize the interface to suit their 

individual needs. The types of menus, their menu items, and when and how the menus 

appear would be completely dictated by the user. Such a system would no doubt require a 

major endeavor—well beyond the scope of a single thesis. However, such a system would 

provide much insight and take full advantage of the power of object-oriented programming. 

  

Conclusions And Recommendations . 113



13.0 REFERENCES 

[ACSY93] ACSYNT Institute, ACSYNT (AirCraft SYNThesis) V2.0: Overview and 

[Booc91] 

[Brow89] 

[Brys68] 

[Corn88] 

[Dert89] 

Installation Manual, Virginia Polytechnic Institute and State University, 

Blacksburg, Virginia, 1993. 

Booch, G., Object-Oriented Design with Applications, The 

Benjamin/Cummings Publishing Company, Inc., 1991. 

Brown, Judith R., Cunningham, Steve, Programming the User Interface, 

John Wiley & Sons, Inc., New York, New York, 1989. 

Bryson, A.E., Jr. and Desai, M.N., “Energy State Approximations in 

Performance Optimization of Aircraft,” AIAA-68-877, Pasadena, 

California, 1968. 

Cornelis, Bil, Development and Application of a Computer-Based System 

for Conceptual Aircraft Design, Delft University Press, Delft University, 

The Netherlands, 1988. 

Dertouzoss, Michael, L., Lester, Richard K., Solow, Robert M. and The 

MIT Commission on Industrial Productivity, Made in America: Regaining 

the Productive Edge, HarperCollins Publishers, New York, New York, 

1984. 

  

References 114



[Ents90] 

[Ince91] 

[Jaya91] 

[Jaya92a] 

[Jaya92b] 

[Mull89] 

[Myk193] 

Entsminger, Gary, The Tao of Objects: A Beginner's Guide to 

Object-Oriented Programming, M&T Publishing Inc., Redwood City, 

California, 1990. 

Ince, Darrel, Object-Oriented Software Engineering with C++, 

McGraw-Hill Book Company Europe, Berkshire, England, 1991. 

Jayaram, Uma, “Extracting Dimensional Geometric Parameters from 

B-Spline Surface Models”, Ph.D. Dissertation, Mechanical Engineering 

Department, VPI & SU, Blacksburg, VA, 1991. 

Jayaram, U., Myklebust A., and Gelhausen, P., “Extracting Dimensional 

Geometric Parameters from B-Spline Surface Models of Aircraft’, 

Presented at AIAA Aircraft Design Systems Meeting, Hilton Head South 

Carolina, August 24-26, 1992 (paper no. AIAA-92-4283). 

Jayaram, S., Myklebust A., and Gelhausen, P., “ACSYNT - A Standards- 

Based System for Parametric Computer Aided Conceptual Design of 

Aircraft’, Presented at 1992 Aerospace Design Conference, Irvine 

California, February 3-6, 1992 (paper no. AIAA-92-1268). 

Mullin, Mark, Object Oriented Program Design with Examples in C++, 

Addison-Wesley, Reading, Massachusetts, 1989. 

Myklebust, Arvid, Woyak, Scott, Jacobson, Allen, Lin W.H., “A Final 

Research Report to IBM Corporation”, Final Research Report, Report 

Number 436023-5, Computer Aided Design Laboratory, Virginia 

Polytechnic Institute and State University, Blacksburg, VA, 1993. 

  

References 115



[Nico84] 

[Raym89] 

{[Rosk89] 

[Ruto54] 

[Schi92] 

[Shul70] 

[Simo84] 

[Simo86] 

Nicolai, Leland M., Fundamentals of Aircraft Design, METS, Inc., San 

Jose, California, 1984. 

Raymer, Daniel P., Aircraft Design: A Conceptual Approach, American 

Institute of Aeronautics and Astronautics, Inc., Washington, D.C., 1989. 

Roskam, Jan, Airplane Design, Roskam Aviation and Engineering 

Corporation, Ottawa, Kansas, 1989. 

Rutowski, E.S., “Energy Approach to the General Aircraft Performance 

Problem,” Journal of Aeronautical Sciences, Vol. 21, No. 3, March 1954, 

pp. 187-195. 

Schildt, Herbert, Teach Yourself C++, Osborne McGraw-Hill, Berkeley, 

CA, 1992. 

Schultz, Robert.L., and Kilpatrick, P.S., “Aircraft Optimum Multiple Flight 

Paths”, Final Report ONR Contract NO0014-69-C-0339 NR 213-074, 

June 1970, Honeywell Inc., Minneapolis, Minnesota. 

Simos, Dimitri, and Jenkinson, Lloyd R., “The Determination of Optimum 

Flight Profiles for Short-Haul Routes”, Presented as Paper 84-2408 at 

AIAA/AHS/ASEE Aircraft Design Systems and Operations Meeting, 

San Diego, California, Oct. 31-Nov. 2, 1984. 

Simos, Dimitri, and Jenkinson, Lloyd R., “Optimization of the Conceptual 

Design and Mission Profiles of Short-Haul Aircraft”, Presented as Paper 

86-2696 at AIAA/AHS/ASEE Aircraft Systems, Design and Technology 

Meeting, Dayton Ohio, Oct. 20-22, 19986. 

  

References 116



[Sobi88] 

[Stei67] 

[Steu93] 

[Tayl88] 

{[Taus77] 

[Turn84] 

[Wamp88a] 

Sobieszczanski-Sobieski, Jaroslaw, “Sensitivity Analysis and 

Multidisciplinary Optimization for Aircraft Design: Recent Advances and 

Results”, Presented as Paper 88-1.7.3 at the 16th Congress of the 

International Council of the Aeronautical Sciences, Jerusalem, Israel, 

Aug. 28-Sept. 2, 1988. 

Stein, L.H., Matthews, M.L., and French, J.W., “STOP—A Computer 

Program for Supersonic Transport Trajectory Optimization,” CR-793, 

May 1967, NASA. 

Steude, Andreas, “Object-Oriented Graphical User Interface for Engineering 

Design”, M.S. Thesis, Mechanical Engineering Department, VPI & SU, 

Blacksburg, VA, 1993. 

Taylor, Andrew Kent, “Specification of Mission Cycles for Aircraft 

Conceptual Design Using the PHIGS Standard”, M.S. Thesis, Mechanical 

Engineering Department, VPI & SU, Blacksburg, VA, 1988. 

Tausworthe, Robert C., Standardized Development of Computer Software, 

Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1977. 

Turner, Ray, Software Engineering Methodology, Reston Publishing 

Company, Inc., Reston, Virginia, 1984. 

Wampler, S. G., “Development of a CAD System for Automated 

Conceptual Design”, M.S. thesis, Mechanical Engineering Department, 

Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 

May 1998. 

  

References 117



[Wamp88b] Wampler, S. G., Myklebust, A., Jayaram S., and Gelhausen P., 

“Improving Aircraft Conceptual Design - A PHIGS Interactive Graphics 

Interface for ACSYNT’”’, Presented at AIAA/AHS/ASEE Aircraft Design, 

Systems and Operations Conference, Atlanta Georgia, September 7-9, 1988 

(paper no. AIAA-88-4481). 

[Woya92] Woyak, Scott, “A Motif-Like Object-Oriented Interface Framework Using 

PHIGS”, M.S. Thesis, Mechanical Engineering Department, VPI & SU, 

Blacksburg, VA, 1992. 

[Woya93] Woyak, S, and Myklebust, A., “A Motif-Like Object-Oriented Interface 

Framework Using PHIGS”, 1st Annual PHIGS User’s Group Conference, 

March 21-24, 1993, Orlando, Florida. 

  

References . 118



APPENDICES 

  

Appendices . 119



APPENDIX A: User Guide 

  

Appendix A:User Guide . 120



OVERVIEW 

Throughout the design process, the concerns of the end-user were consistently kept in 

mind. The interface was configured to give a complete representation of the trajectory 

mission in a straightforward, consistent manner. To prevent the module's display from 

getting cluttered with unnecessary options—and to avoid an unnecessarily deep menu 

structure—pop-up menus were used extensively. These menus can be launched by 

selecting the data directly or by selecting one of the five push buttons situated above the 

main window. These menus and their options were grouped in their most logical order and 

every effort was made in making them self-explanatory. The following sections describe in 

detail each menu and its options. The menus are divided into two major types: menus 

launched by selecting mission data, and menus launched by selecting one of the five push 

buttons. Illustrations of the various menus are given in the section “Implementation & 

Examples of Results.” 

SELECTING DATA 

The “Phase”? Menu 

Selecting any parameter value on the screen with the mouse highlights the entire phase to 

which the parameter belongs and launches the Phase Menu. This menu is the primary 

method by which the values of the parameters can be modified. The heading of the menu 

gives the number and name of the phase selected. The names and values of the parameters 

belonging to the phase are listed in order. Parameters which are not applicable to the 

phase—denoted by the value "N/A"— are not listed. To minimize the number of steps 

  

Appendix A:User Guide . 121



required to modify a parameter, the value of the parameter selected is automatically 

highlighted. Typing in a new value and hitting ENTER on the keyboard will replace the old 

value. Note that ENTER must be pressed in order to register the new value. Tabbing out 

of the input area or selecting the DONE menu option will NOT register the change. To 

make additional changes, or to transfer control to a different menu item, the tab key may be 

used. Control may also be transferred by directly selecting the desired menu item. 

The Phase Menu will remain on the screen until the DONE option is selected or the mouse 

button is pressed outside the menu area. If another mission data item is selected the menu 

corresponding to the new item selected will be launched. Otherwise, the menu will simply 

be removed from the screen. 

The rightmost side of the Phase Menu displays a column of push buttons. These buttons 

launch the Defaults Menu for the parameter selected. 

The Phase Menu may also be launched by selecting any leg in the phase diagram. By 

default, the first parameter of the phase will be highlighted when it is launched by this 

method. 

THE “DEFAULTS” MENU 

The default value of a parameter is the value originally assigned to it. If the mission was 

read from a file, the default value is the parameter value read. After modifications have been 

made to a mission, it is sometimes desirable to reassign the original value to a parameter. 

The Defaults Menu is used for this purpose. As mentioned earlier, the Defaults Menu is 

launched by selecting one of the push buttons in the Phase Menu. Unlike most other 

pop-up menus, the Defaults Menu requires that a menu item be selected before it be 

removed from the screen. It consists of four push buttons and an input area. The input area 

  

Appendix A:User Guide : 122



displays the current default value of the parameter. This can be changed by entering a new 

value and pressing the ENTER key. If ENTER is not pressed after changing the value, the 

change will NOT be registered. The four push buttons dictate the action to be performed 

before exiting the menu. The menu will be removed as soon as an option has been selected. 

APPLY Menu Option: This option takes the current default value and assigns it to the 

parameter. If the default value has been altered (i.e. a new value has been registered in the 

input area), the new value will be applied, but the default value of the parameter will remain 

unchanged. 

REDEFINE Menu Option: This menu item defines the default value of a parameter to 

be the value registered in the input area (CAUTION: The ENTER key must be pressed to 

register a new value). Note, however, that the new default value is not applied to the 

parameter. 

REDEFINE & APPLY Menu Item: This menu item combines the actions of the two 

previous ones. It defines the default value to be the value registered in the input area and 

applies it to the parameter. 

CANCEL: This menu item exits the menu without performing any tasks. 

The “Phase Options” Menu 

Selecting a phase title will highlight the entire phase and launch the Phase Options Menu. 

This menu offers editing operations which are performed at the phase level. The menu 

options are as follow: 

  

Appendix A:User Guide . 123



Delete current phase: Selecting this option will delete the currently highlighted phase. 

The menu will remain on the screen with the next available phase becoming active. In the 

interest of efficiency, no confirmation is required in issuing this command. Therefore 

caution should be exercised in its usage. 

Add new phase before current one: This option will activate a menu by which 

phases can be added. The menu lists the phases available for addition. Selecting a phase 

from this menu will insert the phase BEFORE the currently active one. 

Add new phase after current one: Same as the previous option, except that the phase 

will be inserted AFTER the currently active one. 

Set phase to default values: This option sets all the parameters of the active phase to 

their default values (see the “Defaults Menu” section for the definition of a default value). 

To safeguard against accidental changes, command confirmation is required in issuing this 

command. 

Quick input: This option launches the Quick Input Menu. See the “Quick Input Menu” 

section. 

Done: This option quits the Phase Options Menu. Control may also be released by 

pressing the mouse button while the cursor is anywhere outside the menu. 

  

Appendix A:User Guide . 124



THE “QUICK INPUT” MENU 

Although the Phase Menu offers a convenient method by which to modify the parameters, 

it limits changes to one parameter at a time. This restriction can prove quite burdensome to 

more experienced users. The Quick Input Menu circumvents this dilemma. It allows users 

to modify the parameters for an entire phase simultaneously, albeit in a less friendly 

fashion. 

The Quick Input Menu contains two input areas which the user can use to enter the list of 

modifications. Although entries can be made in either input area, it is recommended that 

the second area be used only if room for entries is exhausted in the first one. The two push 

buttons below the input areas are used to process the list. The APPLY button applies the 

list of modifications to the currently active phase. The DONE button exits the menu without 

performing the modifications. 

Each entry in the entry list must be separated by at least one blank character. The list of 

modifications corresponds directly to the parameters of the active phase (i.e. the first entry 

affects the first parameter, the second entry the second parameter, etc.). The list need not 

have the same number of entries as there are number of parameters. Once the list of 

modifications has been exhausted the remaining parameters will remain unchanged. To 

prevent a parameter, which lies inside the range of the modification list, from being 

modified, the special symbol "*" may be used. This symbol skips over the parameter 

without altering it. Figure 30 gives an example of using the Quick Input Menu. 

  

Appendix A:User Guide 125



200 275 100.0 150.5 13.0 25.0 200 1000 

  

  

| 100 SAME 135.5* *10.0 | . 
  

  

INPUT MENU   

    

APPLY DONE MODIFICATIONS 

                  

100 SAME 135.5 150.5 13.0 10.0 200 1000 

REMAIN UNAFFECTED 

Figure 30. Sample Usage of the Quick Input Menu 

  

Appendix A:User Guide . 126



The “Parameter” Menu 

This menu offers an additional method by which parameters can be modified. It is identical 

to the Phase Menu except that all the values for a single parameter are displayed instead of 

the values of all the parameters for a single phase. Due to the size limitation of the screen, 

the menu is disabled once the number of phases in the mission exceeds twenty-two. Unlike 

the Phase Menu, all values are displayed—including those designated as not applicable (i.e. 

"N/A"). The Parameter Menu is launched in a unique fashion. To launch it, the middle 

mouse button must be used to select a parameter value while a pop-up menu is active. If no 

pop-up menu is active and the procedure is followed, the Phase Menu will be launched. 

The “Move Parameter’ Menu 

Selecting the title of a parameter highlights the parameter and launches the Move Parameter 

Menu. This menu allows the order of the parameters to be changed. To move the 

parameter, select the number box until it displays the desired new position. Select the 

APPLY push button to move the currently active parameter to the new position. The DONE 

push button exits the menu without applying changes. 

THE PUSH BUTTONS 

Quit 

This button exits the Mission Profile Input System. To avoid the accidental termination of 

the system, confirmation of the command is required. 

  

Appendix A:User Guide 127



Mission Parameters Toggle 

This button is used to toggle the Mission_Parameters Menu on and off. The 

Mission_Parameters Menu displays some of the more important mission parameters. These 

and other mission parameters may also be displayed in the Other Variables Menu. This 

menu, unlike the others, is not a pop-up menu. Control of the program can be toggled 

between this menu and other windows on the screen. Thus, this menu can be displayed and 

used without the need to sacrifice control from other parts of the program. 

Phase Diagram Toggle 

This button toggles the phase diagram of the mission on and off. 

Options 

This button displays all the general options available. They include options to save and 

retrieve files, modify the screen layout, and display and manipulate mission parameters. A 

brief description on each option is given below. 

Save Mission: This option saves the mission under its current name. 

Save Mission As: This option saves the mission under a name specified by the user. 

Names should be void of blank spaces and/or punctuation marks. 

Retrieve Mission: This option displays a list of the currently available missions. 

Clicking on the desired mission will retrieve it. Loading a new mission will redefine the 

current one. For this reason, confirmation of the command is required. 

Select Viewable Variables: Launches the Select Other Variables Menu. 

  

Appendix A:User Guide . 128



View Other Variable: Launches the Other Variables Menu. 

Row/Column Display: Launches the Row/Column Menu 

Number Display: Launches the Number Display Menu 

THE “SELECT OTHER VARIABLES” MENU 

This menu is used to designate which mission parameters will be displayed by the Other 

Variables Menu. Variables can be toggled to be viewable or non-viewable by selecting 

their checkboxes. A lowered checkbox indicates that the variable is viewable. The reason 

for this option is that it allows the user to limit the variables displayed in the Other Variables 

Menu to those deemed most important. Variables that are less important, or which are not 

frequently modified, can be hidden from view. 

THE “OTHER VARIABLES” MENU 

This menu allows the modification of mission parameters which have been designated as 

viewable by the Select Other Variables Menu. It is important to note that no type or data 

checking is performed on any of the input values. Thus, it is up to the user to ensure that 

the data entered is indeed valid. 

  

Appendix A:User Guide 129



THE “ROW/COLUMN” MENU 

This menu allows the user to customize the layout of the display. The left and right number 

boxes reflect the current column and row spacing, respectively. To change the spacing, 

select the number boxes until they reflect the desired new dimensions and select the APPLY 

push button. The DONE push button exits the menu without applying any changes. 

THE “NUMBER DISPLAY” MENU 

Like the previous menu, the Number Display Menu allows the user to customize the 

display layout. The number box displays the precision to which numeric values are 

displayed. The precision ranges from zero (0) to nine (9). To change the current precision 

click on the number box until it reflects the desired new numerical precision. The "Toggle 

Alignment" option toggles the alignment of the data between left and center alignment. The 

DONE option exits the menu. 

100 % (Fit-to-Screen) 

This push button scales the display to fit the window. It is primarily used to adjust the 

display after new phases have been added to the mission or frequent zooms have been 

performed. 

  

Appendix A:User Guide . 130



WINDOW BASICS 

The window layout of the Mission Profile Input System has been modeled to mimic a 

Motif-based window environment. As in the Motif interface, the window can be resized by 

dragging its border and it can be moved by dragging its title bar. A toggle button on the 

upper-right corner toggles the size of the window between its current and maximum 

dimensions. 

In addition to the Motif-like functions, the windows provide zooming capabilities. These 

buttons are situated on the lower right hand corner of the windows. The left button makes 

the display larger, whereas the right button makes it smaller. 

  

Appendix A:User Guide 131



APPENDIX B: Detailed Class Description 

Following is a detailed description of all the classes used by the Mission Profile Input 

System. Note that only classes created by the author are described in detail. Classes which 

are used, but not created by the author, are listed under "Other Classes" and are only 

included for the sake of completeness. 

  

APPENDIX B: Detailed Class Description 132



THE PARAMETERS CLASS 

Class Name: 

Parameters 

Location: 

parameters.h 

Inheritance: 

None 

Description: 

This class provides the functions necessary to manipulate data at the parameter 

level. Every parameter which is defined for the mission must inherit this class. This 

class is instanced in the class Phases. 

Private Variables: 

char * cvalue 

float fvalue 

char * cdefault 

float fdefault 

Protected Variables: 

Parameters * next 

Public Variables: 

None 

Private Functions: 

Parameters * prev 

Parameters * cur 

Parameters * nxt 

stores the character value of the parameter 

stores the float value of the parameter 

stores the character default value of the parameter 

stores the float default value of the parameter 

points to the next parameter in the linked list 

returns pointer to a specified parameter in the 

previous phase 

returns pointer to a specified parameter in the current 

phase 

returns pointer to a specified parameter in the next 

phase 

  

Appendix B: The Parameters Class 133



Protected Functions: 

void 

Public Functions: 

void set_param_title_to 

char * get_value 

float get_value 

char * get_default_value 

float get_default_value 

void set_default_values 

char * get_param_title 

Parameters * get_next 

void put_next 

void checker 

Virtual Functions: 

void set_value_to 

void check 

delete_parameter_variables 

frees up memory taken up by the class 

sets the name of the parameter to a specified title 

returns character value of parameter 

returns float value of parameter 

returms character default value of parameter 

retums float default value of parameter 

sets the default value of the parameter 

returns the name of the parameter 

returns a pointer to the next parameter in the linked 

list 

sets a pointer to the next parameter in the linked list 

checks and process keywords 

assigns the value to the parameter 

specifies how the keywords are treated 

  

Appendix B: The Parameters Class 134



FUNCTIONS OF THE PARAMETERS CLASS 

Location: parameters.C 

Function: private 

Parameters * prev (char *name) 

returns a pointer to parameter name in the previous phase 

Argument Description: 

char * name name of a parameter in the previous phase 

Function: private 

Parameters * cur (char *name) 

retums a pointer to parameter name in the current phase 

Argument Description: 

char * name name of a parameter in the current phase 

Function: private 

Parameters * nxt (char *name) 

returns a pointer to parameter name in the next phase 

Argument Description: 

char * name name of a parameter in the next phase 

Function: protected 

void delete_parameter_variables (0 

used to free up memory when class is deleted 

Argument Description: 

None 

  

Appendix B: Functions Of The Parameters Class 135



Function: public 

void set_param_title_to (char *name) 

sets the title of the parameter to name 

Argument Description: 

char * name name of a parameter 

Function: public 

char * get_value (char *type) 

returns the character value of the parameter 

Argument Description: 

char * type type = CHAR = "1" 

Function: public 

float get_value (float type) 

returns the float value of the parameter 

Argument Description: 

float type type = REAL = 1.0 

Function: public 

char * get_default_value (char *type) 

returns the default character value of the parameter 

Argument Description: 

char * type type = CHAR = "1" 

Function: public 

float get_default_value (float type) 

returns the default float value of the parameter 

Argument Description: 

float type type = REAL = 1.0 

  

Appendix B: Functions Of The Parameters Class 136



Function: public 

void set_default_values (char *entry) 

sets the default value of the parameter to entry 

Argument Description: 

char * entry the default value of the parameter 

Function: public 

char * get_param_title () 

returns the name of the parameter 

Argument Description: 

None 

Function: public 

Parameters * get_next () 

returns a pointer to the next parameter in the linked list 

Argument Description: 

None 

Function: public 

void put_next (Parameters *next) 

sets the parameter next to be the next parameter in the parameter linked list 

Argument Description: 

Parameters * next pointer to the next parameter in the linked list 

  

Appendix B: Functions Of The Parameters Class | 137



Function: public 

void checker (char * name1, char * name2, char ** list) 

dictates how keywords in the program will be processed 

Argument Description: 

char * namel name of a parameter in the current phase whose value 

will be substituted for the keyword "SAME" 

char * name2 name of a parameter in the previous phase whose 

value will be substituted for the keyword "LAST" 

char ** list list of entries which will be considered acceptable by 

the parameter 

Function: virtual, overloaded 

void set_value_to (char *value) 

void set_value_to (float value) 

sets the value of the parameter to value—can be redefined to define new 

requirements for parameter value assignment 

Argument Description: 

char * value the value of the parameter 

float value the value of the parameter 

Function: virtual 

void check () 

used to specify how the keywords in the program are to be treated—can be 

redefined to specify new keywords 

Argument Description: 

None 

  

Appendix B: Functions Of The Parameters Class 138



THE PHASES CLASS 

Class Name: 

Phases 

Location: 

phases.h 

Description: 

This class provides the necessary function to manipulate phases and their parameter 

data. Every phase which is defined for the mission must inherit this class. A linked 

list of parameters is created by each phase through instancing of the Parameters 

Class. 

Inheritance: 

None 

Private Variables: 

char * phase_title 

Protected Variables: 

Phases * next 

Parameters * first_param 

Public Variables: 

None 

Private Functions: 

None 

name of the phase 

pointer to the next phase in the linked list 

pointer to the first parameter of the phase 

  

Appendix B: The Phases Class 139



Protected Functions: 

float 

float 

char * 

void 

void 

prev_number 

number 

word 

set 

returns float value of a specified parameter in the 

previous phase 

returns float value of a specified parameter in the 

current phase 

retums character value of a specified parameter in the 

current phase 

sets a specified parameter in the current phase to a 

specified value 

delete_phase_variables 

Public Functions: 

Parameters * get_proper_param 

void 

void 

char * 

float 

Phases * 

void 

load_param_values 

set_phase_title_to 

get_phase_title 

Parameters * get_param_pointer 

frees up memory taken up by the phase 

returns a pointer to a new parameter of a specified 

type 
assigns the parameter values to the phase 

assigns the name of the phase 

retums the name of the phase 

returns a pointer to the specified parameter 

get_float_param_value 

get_next 

put_next 

Parameters * get_first 

void Set_first_param_to 

Virtual Functions: 

void 

void 

calculates 

geo_segment 

returns the float value of the specified parameter 

returns a pointer to the next phase in the linked list 

sets a pointer to the next phase in the linked list 

returns a pointer to the first parameter of the phase 

sets the first pointer of the phase to be the specified 

phase 

updates all the parameters in the phase 

creates the graphical representation of the phase 

  

Appendix B: The Phases Class 140



FUNCTIONS OF THE PHASES CLASS 

Location: phases.C 

Function: protected 

float prev_number (char *name) 

returns the float value of the parameter name in the previous phase 

Argument Description: 

char * name the name of the parameter 

Function: protected 

float number (char *name) 

returns the float value of the parameter name in the current phase 

Argument Description: 

char * name the name of the parameter 

Function: protected 

char * word (char *name) 

returns the character value of the parameter name in the current phase 

Argument Description: 

char * name the name of the parameter 

Function: protected, overloaded 

void set (char *name , float value) 

void set (char * name, char *value) 

sets the value of parameter name in the current phase to value 

Argument Description: 

char * name the name of the parameter 

float value the value of the parameter 

char * value the value of the parameter 

  

Appendix B: Functions Of The Phases Class 141



Function: protected 

void delete_phase_variables () 

used to free up memory when the phase is deleted 

Argument Description: 

None 

Function: public 

Parameters * get_proper_param (char *name, char *value) 

retums a pointer to a newly created parameter of type name and assigns the value 

value to it 

Argument Description: 

char * name the name of the parameter—used to create the right 

type of parameter object 

char * value the value to be assigned to the newly created 

parameter 

Function: public 

void load_param_values (char **parameter_list, char **values_list) 

assigns all the parameters in the parameter_list to a phase and assigns the values 

taken from the values_list 

Argument Description: 

char ** parameter _list the list of the names of the parameters to be assigned 

to the phase 

char ** values_list a list from which the values to be assigned to the 

parameters are taken 

Function: public 

void set_phase_title_to (char *name) 

sets the name of the phase to name 

Argument Description: 

char * name the name of the phase 

  

Appendix B: Functions Of The Phases. Class 142



Function: public 

char * get_phase_title () 

returns the name of the phase 

Argument Description: 

None 

Function: public 

Parameters * get_param_pointer (int location) 

returns a pointer to the parameter occupying the position location in the linked list 

Argument Description: 

int location the position the parameter occupies within the 

parameter linked list 

Function: public 

float get_float_param_value (char *name) 

retums the float value of the phase of name name 

Argument Description: 

char * name the name of the phase 

Function: public 

Phases * get_next () 

returns a pointer to the next phase in the phase linked list 

Argument Description: 

None 

Function: public 

void put_next (Phases *next) 

sets the phase next to be the next phase in the phase linked list 

Argument Description: 

Phases * next pointer to the next phase in the phase linked list 

  

Appendix B: Functions Of The Phases Class 143



Function: public 

Parameters * get_first () 

returns a pointer to the first parameter of the phase 

Argument Description: 

None 

Function: public 

void set_first_param_to (Parameters *first_parameter) 

sets the first parameter of the phase to be first_parameter 

Argument Description: 

Parameters * first_parameter pointer to the what will be defined as the first 

parameter in the parameter linked list 

Function: virtual 

void calculate () 

updates parameter values to reflect dependencies—can be redefined to define new 

parameter dependencies 

Argument Description: 

None 

Function: virtual 

void geo_segment () 

draws the graphical representation of the phase—can be redefined to allow for more 

elaborate graphical representations 

Argument Description: 

None 

  

Appendix B: Functions Of The Phases. Class 144



THE MISSION_PARAMETERS CLASS 

Class Name: 

Mission_Parameters 

Location: 

Mission_Parameters.h 

Description: 

This class provides all the functions necessary to assign and retrieve mission 

parameter data. These class is inherited by the class Missions. 

Inheritance: 

None 

Private Variables: 

char * name 

char * value 

char * comment 

char * display 

Mission_Parameters * 

next 

Protected Variables: 

None 

Public Variables: 

None 

Private Functions: 

None 

Protected Functions: 

None 

the name of the mission parameter 

the value of the mission parameter 

general comment about the mission parameter 

code to determine whether to display variable = 

ON/OFF 

points to the next mission parameter in the mission 

parameter linked list 

  

Appendix B: The Mission_Parameters. Class 145



Public Functions: 

void put_next 

Mission_Parameters * 

void 

char * 

void 

char * 

void 

char * 

void 

char * 

get_next 

set_mp_name_to 

get_mp_name 

set_mp_value_to 

get_mp_value 

set_mp_display_to 

get_mp_display 

set_mp_comment_to 

get_mp_comment 

Virtual Functions: 

None 

assigns a specified mission parameter to be the next 

one in the Mission_Parameters linked list 

returns a pointer to the next mission parameter in the 

Mission_Parameters linked list 

sets the name of the mission parameter 

returns the name of the mission parameter 

sets the value of the mission parameter 

returns the value of the mission parameter 

sets the variable to either displayable or non- 

displayable 

returns the code which indicates whether a mission 

parameter is displayable 

sets a comment to the mission parameter 

returns the comment of the mission parameter 

  

Appendix B: The Mission_Parameters. Class 146



FUNCTIONS OF THE MISSION_PARAMETERS CLASS 

Location: Mission_Parameters.C 

Function: public 

void put_next (Mission_Parameters *next) 

assigns the mission parameter next to be the next item in the Mission_Parameters 

linked list 

Argument Description: 

Mission_Parameters * 

next pointer to the variable which will be assigned as the 

next mission parameter 

Function: public 

Mission_Parameters * get_next () 

returns a pointer to the next item in the Mission_Parameters linked list 

Argument Description: 

None 

Function: public 

void set_mp_name_to (char *name) 

sets the name of the mission parameter to name 

Argument Description: 

char * name the name of the mission parameter 

Function: public 

char * get_mp_name () 

returns the name of the mission parameter 

Argument Description: 

None 

  

Appendix B: Functions Of The Mission_Parameters Class 147



Function: public 

void set_mp_value_to (char *value) 

sets the value of the mission parameter to value 

Argument Description: 

char * value the value of the mission parameter 

Function: public 

char * get_mp_value () 

returns the value of the mission parameter 

Argument Description: 

None 

Function: public 

void set_mp_display_to (char *code) 

sets the display of the mission parameter to code 

Argument Description: 

char * code code = "ON" or code = "OFF" — describes whether 

a mission parameter should be displayed 

Function: public 

char * get_mp_display () 
returns the display code of the mission parameter 

Argument Description: 

None 

  

Appendix B: Functions Of The Mission_Parameters Class 148



Function: public 

void set_mp_comment_to (char *comment) 

sets the comment of the mission parameter to comment 

Argument Description: 

char * comment comment which is assigned to the mission parameter 

Function: public 

char * get_mp_comment () 

returns the comment of the mission parameter 

Argument Description: 

None 

  

Appendix B: Functions Of The Mission_Parameters Class 149



THE MISSIONS CLASS 

Class Name: 

Missions 

Location: 

missions.h 

Inheritance: 

Mission_Parameters Class 

Description: 

This class serves as the central coordinator for all mission data manipulation. It 

creates the phase linked lists from information read from a file by instancing the 

class phases. From the information in the file, it also creates a linked list of mission 

parameters. The Mission_Parameters functions are directly accessible through 

inheritance. Routines to create, modify, and destroy any part of the mission are 

available. This class is inherited by the class Mission_Window 

Private Variables: 

char * mission_name name of the mission 

Protected Variables: 

Mission_Parameters * 

first_mission_parameter 

pointer to the first mission parameter in the 

Mission_Parameters linked list 

char * __names ordered list of the parameter names 

char * names_of_avail_phases 

list of phases available to the mission 

Public Variables: 

None 

Private Functions: 

None 

  

Appendix B: The Missions Class . 150



Protected Functions: 

void delete_mission_variables 

frees up memory taken up by the Missions class 

Public Functions: 

int check_file_validity checks to see whether specified file exists 

void create_mission creates mission by loading information from a file 

Phases * get_proper_phase _retums pointer to a newly created phase 

void save_miss saves mission information to a file 

void set_mission_name_to 

sets the name of mission 

char * get_mission_name returns the name of the mission 

Phases * get_phase_pointer _returns a pointer to a specified phase 

int get_num_of_phases returns the number of phases in the mission 

int get_num_of_params retums the number of parameters in the mission 

void get_avail_phases retrieves the available phases from a file and stores 

them in the protected variable 

names_of_avail_phases 

Phases * default_phase returns a pointer to a newly created phase—with 

default parameter values 

void insert_phase inserts a phase into the phase linked list 

void add_new_phase adds a new phase to the phase linked list 

void delete_phase removes a phase from the phase linked list 

void refresh updates the entire mission to reflect dependencies 

void update_element updates a specified parameter to reflect a specified 

value 

void reset_to_default_value 

resets a specified parameter to its default value 

void reset_phase_defaults resets all the parameters of the phase to their default 

values 

void move_phase moves a specified phase within the phase linked list 

to the specified location 

void move_param moves a specified parameter within the parameter 

linked list to the specified location 

float retrieve_float_value returns the float value of the specified parameter 

  

Appendix B: The Missions Class 151



char * 

char * 

char * 

float 

float 

void 

void 

void 

void 

retrieve_char_value returns the character value of the specified parameter 

retrieve_param_title returns the name of the specified parameter 

retrieve_phase_title returns the name of the specified phase 

get_max_param_value 

returns the maximum value in the mission for a 

specified parameter 

get_min_param_value 

returns the minimum value in the mission for a 

specified parameter 

copy_element copies a specified element onto a second specified 

element 

assign_values_to_phase 

assigns values to a list of parameters for the specified 

phase 

load_mission_parameters 

creates the mission parameters by reading 

information from a file 

write_mission_parameters 

writes the mission parameters to a file 

Mission_Parameters * 

void 

float 

char * 

void 

get_mp_ pointer returns a pointer to a specified mission parameter 

set_mp_value_to assigns a specified value to the mission parameter 

get_float_mp_value returns the float value of the mission parameter 

get_char_mp_value returns the character value of the mission parameter 

write_to_acsynt_file writes the mission information to ACSYNT format 

Virtual Functions: 

None 

  

Appendix B: The Missions Class - 152



FUNCTIONS OF THE MISSIONS CLASS 

Location: missions.C 

Function: protected 

void delete_mission_variables () 

frees up memory allocated to the mission 

Argument Description: 

None 

Function: public 

int check_file_validity (char *filename ) 

checks to see whether file filename exist—treturns 1 if YES; 0 if NO 

Argument Description: 

char * filename name of the file 

Function: public 

void create_mission (char *filename) 

creates the mission by reading information from the file filename 

Argument Description: 

char * filename name of the file 

Function: public 

Phases * get_proper_phase (char *name, char **values) 

returns a pointer to a new phase whose data type is determined by name and assigns 

the values of the parameters from values 

Argument Description: 

char * name name of the phase 

char ** values list of values from which the parameter values are 

assigned 

  

Appendix B: Functions Of The Missions Class 153



Function: public 

void save_miss (char *filename) 

saves the mission information to the file filename 

Argument Description: 

char * filename name of the file 

Function: public 

void set_mission_name_to (char *name) 

sets the name of the mission to name 

Argument Description: 

char * name name of the mission 

Function: public 

char * get_mission_name () 

returns the name of the mission 

Argument Description: 

None 

Function: public 

Phases * get_phase_pointer (int location) 

returns a pointer to the phase specified by location 

Argument Description: 

int location position of the phase within the phase linked list 

Function: public 

int get_num_of_phases () 

returns the number of phases within the mission 

Argument Description: 

None 

  

Appendix B: Functions Of The Missions Class 154



Function: public 

int get_num_of_params () 

returns the number of parameters within the mission 

Argument Description: 

None 

Function: public 

int get_avail_phases () 

retrieves the names of the available phases from a file and stores them in the 

variable names_of_avail_phases 

Argument Description: 

None 

Function: public 

Phases * default_phase (char *name) 

returns a pointer to a new phase whose data type is determined by name—the 

parameter values are taken from a file 

Argument Description: 

char * name name of the phase 

Function: public 

void insert_phase (char *name, int location) 

inserts a new phase of name name in the location location of the phase linked list 

Argument Description: 

char * name name of the phase 

int location position of the phase within the phase linked list 

  

Appendix B: Functions Of The Missions Class 155



Function: public 

void add_new_phase (char *name) 

adds a new phase of name name at the end of the phase linked list 

Argument Description: 

char * name name of the phase 

Function: public 

void delete_phase (int location) 

removes the phase located at position location within the phase linked list 

Argument Description: 

int location position of the phase within the phase linked list 

Function: public 

void refresh () 

updates the entire mission to ensure that all values reflect all data interdependencies 

Argument Description: 

None 

Function: public, overloaded 

void update_element (int phase_number, int parameter_number, char * value) 

void update_element (int phase_number, int parameter_number, float value) 

assigns the value value to the parameter determined by phase_number and 

parameter_number 

Argument Description: 

int phase_number the position of the phase within the phase linked 

list—phase to which the parameter in question 

belongs 

int parameter_number _ the position of the parameter within the parameter 

linked list 

char * value the new character value of the parameter 

float value the new float value of the parameter 

  

Appendix B: Functions Of The Missions Class 156



Function: public 

void reset_to_default_value (int phase_number, int parameter_number) 

resets the parameter determined by phase_number and parameter_number to its 

default value 

Argument Description: 

int phase_number the position of the phase within the phase linked 

list—phase to which the parameter in question 

belongs 

int parameter_number _ the position of the parameter within the parameter 

linked list 

Function: public 

void reset_phase_defaults (int location) 

resets all the parameters specified by location to their default values 

Argument Description: 

int location position of the phase within the phase linked list 

Function: public 

void move_phase (int location], int location2) 

moves phase from location! to location2 

Argument Description: 

int location 1 old location of the phase 

int location2 new location of the phase 

  

Appendix B: Functions Of The Missions Class 157



Function: public 

void move_param (char *name, int location) 

moves the parameter specified by name to the new position location within the 

parameter linked list 

Argument Description: 

char * name name of the parameter 

int location : new position of the parameter within the parameter 

linked list 

Function: public 

float retrieve_float_value (int phase_number, int parameter_number) 

returns the float value of the parameter specified by phase_number and 

parameter_number 

Argument Description: 

int phase_number the position of the phase within the phase linked 

list—phase to which the parameter in question 

belongs 

int parameter_number the position of the parameter within the parameter 

linked list 

Function: public 

char * retrieve_char_value (int phase_number, int parameter_number) 

returns the character value of the parameter specified by phase_number and 

parameter_number 

Argument Description: 

int phase_number the position of the phase within the phase linked 

list—phase to which the parameter in question 

belongs 

int parameter_number _ the position of the parameter within the parameter 

linked list 

  

Appendix B: Functions Of The Missions Class 158



Function: public 

char * retrieve_param_title (int location ) 

returns the name of the parameter located at location within the parameter linked list 

Argument Description: 

int location position of the parameter within the parameter linked 

list 

Function: public 

char * retrieve_phase_title (int location ) 

returns the name of the phase located at location within the phase linked list 

Argument Description: 

int location position of the phase within the phase linked list 

Function: public 

float get_max_param_value (char * name) 

returns the maximum value of the parameter of name name found within the 

mission 

Argument Description: 

char * name name of the parameter 

Function: public 

float get_min_param_value (char * name) 

returns the minimum value of the parameter of name name found within the mission 

Argument Description: 

char * name name of the parameter 

  

Appendix B: Functions Of The Missions Class 159



Function: public 

void copy_element (int old_phase_pos, int old_param_pos, int 

new_phase_pos, new_param_pos) 

copies the value of a parameter from one position to another 

Argument Description: 

int old_phase_position position of the phase within the phase linked list to 

which the parameter which is to be copied from 

belongs 

int old_param_position position of the parameter to be copied from within 

the parameter linked list 

int new_phase_position position of the phase within the phase linked list to 

which the parameter to be copied to belongs 

int new_param_position position of the parameter to be copied to within the 

parameter linked list 

Function: public 

void assign_values_to_phase (char *list, int phase_number) 

assigns values to the parameters belonging to the phase specified by the 

phase_number—the values are taken from list, a string of entries 

Argument Description: 

char * list a list of values to be assigned to the parameter— 

entries within the list are separated by at least one 

blank character 

int phase_number the location of the phase within the phase linked list 

  

Appendix B: Functions Of The Missions Class 160



Function: public 

void load_mission_parameters (FILE *filename) 

creates the Mission_Parameters linked list by reading information from the file 

filename 

Argument Description: 

FILE * filename pointer to the file from which to read 

Function: public 

void write_mission_parameters (FILE *filename) 

saves the mission parameter information to the file filename 

Argument Description: 

FILE * filename pointer to the file to which to write 

Function: public, overloaded 

Mission_Parameters * get_mp_pointer (int location) 

Mission_Parameters * get_mp_pointer (char *name) 

returns a pointer to the mission parameter specified by location or name 

Argument Description: 

int location location of the mission parameter within the 

Mission_Parameters linked list 

char * name name of the mission parameter 

Function: public, overloaded 

void set_mp_value_to (char *name, float value) 

void set_mp_value_to (char *name, char *value) 

sets the mission parameter of name name to the value value 

Argument Description: 

char * name name of the mission parameter 

float value float value of the mission parameter 

char * value character value of the mission parameter 

  

Appendix B: Functions Of The Missions Class 161



Function: public 

float get_float_mp_value (char * name) 

returns the float value of the mission parameter name 

Argument Description: 

char * name name of the mission parameter 

Function: public 

char * get_char_mp_value (char * name) 

returns the character value of the mission parameter name 

Argument Description: 

char * name name of the mission parameter 

Function: public 

void write_to_acsynt_file () 

saves the mission information to an ACSYNT file 

Argument Description: 

None 

  

Appendix B: Functions Of The Missions Class 162



THE PHASE_DIAGRAM_WINDOW CLASS 

Class Name: 

Phase_Diagram_Window 

Location: 

geometry_window.h 

Description: 

This class creates the graphical representation of the mission data. It inherits the 

class Scroll_ Window to enable it to create the window in which the graphics are 

displayed. This class is instanced in the class Mission_Window. 

Inheritance: 

Scroll_ Window Class 

Private Variables: 

PHIGS_Stucture_ID * 

geo_structure pointer to the PHIGS structure which creates the 

graphical representation of the data 

Mission_Window * 

mission_window pointer to the window in which the mission data is 

displayed 

float x_scaling the scaling factor along the horizontal direction for 

the graph 

float y_scaling the scaling factor along the vertical direction for the 

graph 

float minimum_x minimum x value for the graph (scaled) 

float maximum_x maximum x value for the graph (scaled) 

float maximum_y maximum y value for the graph (scaled) 

Pint color_index_red color table index number for the color red 

Pint color_index_green color table index number for the color green 

Pint color_index_white color table index number for the color white 

Protected Variables: 

None 

  

Appendix B: The Phase_Diagram_Window Class 163



Public Variables: 

None 

Private Functions: 

void create_axis creates the axis for the graph 

int set_proper_zoom sets the proper zooming factor for the graph 

void initialize_colors sets color table indices to represent required colors 

void display_error_message 

displays error message in the window 

void process_geometry_view 

processes events detected within the window 

Protected Functions: 

None 

Public Functions: 

void create_geometry creates the graphical representation of the data 

void destroy_geo_structure 

frees up the memory taken up by the PHIGS 

structure which creates the graphical representation 

Virtual Functions: 

None 

  

Appendix B: The Phase_Diagram_Window Class 164



FUNCTIONS OF THE PHASE_DIAGRAM_WINDOW CLASS 

Location: geometry_window.C 

Function: private 

void create_axis () 

creates the axis used in the graphical representation 

Argument Description: 

None 

Function: private 

void set_proper_zoom () 

zooms the display window by the proper factor to display the graph correctly 

Argument Description: 

None 

Function: private 

void set_proper_scale () 

calculates the correct scaling factor which must be used to zoom the window 

correctly 

Argument Description: 

None 

Function: private 

void initialize_colors () 

assigns the correct colors to the color indices to be used by the class 

Argument Description: 

None 

  

Appendix B: Functions Of The Phase_Diagram_Window Class 165



Function: private 

void display_error_message () 

displays an error message instead of the graph—used whenever the data available is 

insufficient to create a graph 

Argument Description: 

None 

Function: private 

void process_geometry_view (int choice, Ppoint3 *loc_posi. int 

view_index, Ppick_path *pick_path, Event *event) 

used to detect events that occur within the display area of the window 

Argument Description: 

int choice value entered using the choice logical device 

Ppoint3 * loc_pos xX, y, and z values of the location selected using the 

locator logical device 

int view_index index of the view in which the event was detected 

Ppick_path * 

pick_path the pick path returned by the logical pick device 

Event * event pointer to the event detected 

Function: public 

void create_geometry () 

creates the graphical representation of the mission data 

Argument Description: 

None 

Function: public 

void destroy_geo_structure () 

deletes the PHIGS structure which creates the graphical representation 

Argument Description: 

None 

  

Appendix B: Functions Of The Phase. Diagram_Window Class 166



THE MISSION_WINDOW CLASS 

Class Name: 

Mission_Window 

Location: 

mission_window.h 

Description: 

This class acts as the central coordinator of all other classes. It creates and controls 

display of the mission data. It creates the mission data itself through instancing of 

the class Missions and has access to all the functions found within that class 

through inheritance. To enable it to create the interface it also inherits the class 

Scroll_Window. Whenever appropriate, instancing of the class 

Phase_Diagram_Window occurs to display the graphical representation of the 

mission. 

Inheritance: 

Scroll_ Window Class 

Missions Class 

Private Variables: 

Phase_Diagram_Window * 

geo_window 

Pint white_color 

Pint red_color 

Pint blue_color 

Pint gray_color 

Color_Group * 

menu_color 

Color_Group * 

label_color 

pointer to the window which displays the graphical 

representation of the mission data 

the color table index for the color white 

the color table index for the color red 

the color table index for the color blue 

the color table index for the color gray 

pointer to the set of colors used to display menus 

pointer to the set of colors used to display labels 

  

Appendix B: The Mission_Window Class 167



Color_Group * 

input_color pointer to the set of colors used to display input text 

int menu_face_color index of the color used in coloring the faces of 

menus 

Push_Button * 

autozoom_button pointer to the push button used for auto zooming 

Push_Button * 

mission_parameter_button 

pointer to the push button used to toggle the mission 

parameters menu 

Push_Button * 

options_button pointer to the push button used to display options 

menu 

Push_Button * 

quit_button pointer to the push button quit 

Push_Button * 

geo_window_button pointer to the push button used to toggle the window 

that displays the graphical representation of the data 

on and off 

Label * autozoom_label pointer to the label used by autozoom_button 

Label * mission_parameter_label : 

pointer to label used by mission_parameter_button 

Label * options_button_label pointer to the label used by options_button 

Label * quit_button_label —_ pointer to the label used by quit_button 

Label * geo_window_button_label 

pointer to the label used by geo_window_ button 

PHIGS_Structure_ID * 

mission_structure —_ pointer to the PHIGS structure which displays the 

mission data 

Interface_Manager * 

manager pointer to the interface manager which governs and 

controls the various windows and menus on the 

screen 

  

Appendix B: The Mission_Window Class 168



Static_Menu * 

int 

int 

int 

float 

float 

int 

int 

int 

int 

Ptext_align 

float 

float 

char * 

int 

int 

int 

mission_parameters_address 

pointer to the static menu—mission parameters menu 

exit_mission_parameter_menu 

flag used to indicate exit from the mission parameters 

menu 

mission_parameter_menu_toggled 

flag used to indicate that the mission parameters 

menu was toggled 

toggle_window_flag flag used to indicate that the window that displays the 

graphical representation of the data was toggled 

the location of the lower-left hand corner of the 

ACSYNT ttle bar (in Normalized Projection 

Coordinates) 

geometry_view_width 

the width of the data display (in World Coordinates) 

flag used to indicate whether data is being loaded for 

the first time 

the id of the PHIGS structure which displays the data 

( structure displayed by this window) 

mission_parameter_on 

flag indicating that the mission parameters menu is 

acsynt_title_loc 

initial_ data_loading 

this_structure_id 

toggled on 

number_precision the number of significant digits with which data is 

displayed 

text_alignment tells PHIGS how to align the text to be displayed 

horizontal_spacing spacing between columns for display of the data 

vertical_spacing spacing between rows for display of the data 

list_of_files a list of all files that contain missions 

first_phase_menu _ flag used to indicate initial launching of phase_menu 

flag used to indicate initial launching of 

file_name_menu 

first_filename_menu 

first_phase_options_menu 

  

Appendix B: The Mission_Window Class 169



int 

int 

int 

int 

int 

int 

int 

int 

int 

int 

int 

flag used to indicate initial launching of 

phase_options_menu 

first_options_menu flag used to indicate initial launching of 

options_menu 

first_add_phase_menu 

flag used to indicate initial launching of 

add_phase_menu 

first_parameter_menu 

flag used to indicate initial launching of parameter 

menu 

first_move_parameter_menu 

flag used to indicate initial launching of 

move_parameter_menu 

first_confirm_menu flag used to indicate initial launching of 

confirm_menu 

first_message_menu flag used to indicate initial launching of 

message_menu 

first_apply_defaults_menu 

flag used to indicate initial launching of 

apply_defaults_menu 

first_row_column_menu 

flag used to indicate initial launching of 

row_column_menu 

first_number_display_menu 

flag used to indicate initial launching of 

number_display_menu 

first_quick_input_menu 

flag used to indicate initial launching of 

quick_input_menu 

first_retr_del_file_menu 

flag used to indicate initial launching of 

retr_del_file_menu 

  

Appendix B: The Mission_Window Class 170



int 

int 

first_other_variables_menu 

flag used to indicate initial launching of 

other_variables_menu 

first_select_variables_menu 

flag used to indicate initial launching of 

select_variables_menu 

Protected Variables: 

None 

Public Variables: 

None 

Private Functions: 

void 

void 

void 

void 

void 

char * 

void 

void 

set_additional_differences 

specifies differences between the class 

Mission_Window and the class Scroll_Window 

create_additional_components 

creates extra components found in the 

Mission_Window class and not in the 

Scroll_ Window class 

delete_additional_components 

deletes the extra components created by this class 

process_additional_event 

processes events generated by the additional 

components created by this class 

process_geometry_view 

processes events detected within the display area of 

the window created by this class 

filename_menu creates the menu prompting the user for a filename— 

returns the file name 

mission_parameter_menu 

creates the menu which displays the mission 

parameters 

phase_options_menu 

  

Appendix B: The Mission_Window Class 171



void 

void 

void 

void 

void 

void 

void 

void 

void 

void 

void 

void 

void 

void 

Creates the menu which displays the options for 

editing at the phase level 

options_menu creates the menu which displays the available general 

options 

add_phase_menu __ creates the menu by which the user can add phases 

parameter_menu creates the menu by which parameters can be edited 

move_parameter_menu 

creates the menu by which the user can move 

parameters 

confirm_menu creates the menu which prompts the user for 

confirmation 

message_menu creates the menu used to display messages to the user 

apply_defaults_menu 

creates the menu by which parameters may be reset 

to their default values 

row_column_menu creates the menu by which the user can alter the row 

and column spacing 

number_display_menu 

creates the menu by which the user can alter the 

display of the data layout 

quick_input_menu creates the menu by which the user can make 

modification for an entire phase at once 

retr_del_file menu creates the menu by which the user can retrieve or 

delete files 

other_variables_menu | 

creates the menu in which mission parameters are 

shown 

select_variables_menu 

creates the menu by which the user can select which 

variables will be displayed by the 

other_variables_menu 

create_mission_structure 

creates the PHIGS structure which displays the 

mission data 

  

Appendix B: The Mission_Window Class 172



char * 

void 

void 

void 

void 

void 

int 

display_properly modifies data for proper screen display 

refresh_window updates window to reflect latest changes 

initialize_colors assigns specified colors to specified color table 

indices 

scan_for_pick determines if a logical pick input was generated in the 

display area 

initializer initializes private class variables upon its creation 

toggle_ window toggles window to it's current and previous size 

get_list_of_files retrieves list of available files which contain missions 

Protected Functions: 

None 

Public Functions: 

void 

void 

void 

void 

int 

int 

int 

void 

phase_menu creates a menu by which parameters can be modified 

turn_ETC_on turns immediate mode on 

turn_ETC_off turns immediate mode off 

open_initial_mission opens a default file when module is first launched 

get_white_color returns the color table index for white 

get_red_color retums the color table index for red 

get_green_color returns the color table index for green 

process_from_mouse 

processes events generated from the mouse device 

Virtual Functions: 

None 

  

Appendix B: The Mission_Window Class 173



FUNCTIONS OF THE MISSION_WINDOW CLASS 

Location: mission_window.C 

Function: private 

void set_additional_differences () 

defines the differences between the Mission_Window class and the Scroll_ Window 

class 

Argument Description: 

None 

Function: private 

void create_additional_components () 

creates components that are required, but not part of the Scroll_Window class 

Argument Description: 

None 

Function: private 

void delete_additional_components () 

deletes the additional components created by this class 

Argument Description: 

None 

Function: private 

void process_additional_event (Event *event) 

processes events generated by the additional components created by this class 

Argument Description: 

Event * event pointer to the event generated 

  

Appendix B: Functions Of The Mission_Window Class 174



Function: private 

void process_geometry_view (int choice, Ppoint3 *loc_pos, int 

view_index, Ppick_path *pick_path, Event *event) 

used to detect events that occur within the display area of the window 

Argument Description: 

int choice value entered using the choice logical device 

Ppoint3 * = loc_pos x, y, and z values of the location selected on the 

screen 

int view_index index of the view in which the event was detected 

Ppick_path * pick_path the pick path of the entity selected 

Event * event pointer to the event detected 

Function: private 

char * filename_menu (char *default_file) 

creates a menu to prompt the user for a file name—returns the name entered 

Argument Description: 

char * default_file the default filename which is offered by the menu 

Function: private 

void mission_parameter_menu () 

creates the static menu which displays the principle mission parameters 

Argument Description: 

None 

  

Appendix B: Functions Of The Mission_Window Class 175



Function: private 

void phase_options_menu (int phase_number) 

creates a pop-up menu displaying the options available for making modifications at 

the phase level 

Argument Description: 

int phase_number the position of the phase selected within the phase 

linked list 

Function: private 

void options_menu () 

creates 2 pop-up menu displaying the general options available 

Argument Description: 

None 

Function: private 

void add_phase_menu (int active_phase, int entry_code) 

Creates a pop-up menu by which to add a new phase before or after (depending on 

entry_code) the active_phase 

Argument Description: 

int active_phase the position of the active phase within the phase 

linked list—active phase means it was the phase 

selected before the menu was launched 

int code flag indicating whether to add the code before or after 

the active phase (1 = before, 2 = after) 

  

Appendix B: Functions Of The Mission_Window Class 176



Function: private 

void parameter_menu (int phase_number, int parameter_number) 

creates a pop-up menu by which parameters can be modified—presents all the 

parameters for the phase phase_number, the parameter parameter_number is 

highlighted by default 

Argument Description: 

int phase_number the position of the phase within the phase linked list 

to which the parameter selected belongs 

int parameter_number _ the position of the parameter selected within the 

parameter linked list 

Function: private 

void move_parameter_menu (int mew_position) 

creates a pop-up menu by which the user can move a parameter to a new position 

Argument Description: 

int new_position the new position of the parameter 

Function: private 

void confirm_menu (char *promp?) 

creates a pop-up menu asking the user for confirmation to the prompt 

Argument Description: 

char * prompt the prompt to be displayed 

Function: private 

void message_menu (char *message) 

creates a pop-up menu which displays the message message to the user 

Argument Description: 

char * message the message to be displayed 

  

Appendix B: Functions Of The Mission _Window Class 177



Function: private 

void apply_defaults_menu (int phase_number, int parameter_number, char 

*title) 

creates a pop-up menu by which a parameter can be reset to its default value—the 

parameter in question is determined by phase_number and parameter_number 

Argument Description: 

int phase_number the location of the phase within the phase linked list 

to which the parameter in question belongs 

int parameter_number _ the location of the parameter within the parameter 

linked list 

char * title the heading to be displayed by the menu 

Function: private 

void row_column_menu () 

creates a pop-up menu by which the column and row spacing of the layout can be 

altered 

Argument Description: 

None 

Function: private 

void number_display_menu () 

creates a pop-up menu by which the appearance of the numeric data can be altered 

Argument Description: 

None 

Function: private 

void quick_input_menu () 

Creates a pop-up menu which allows the user to change all the parameters for an 

entire phase at once 

Argument Description: 

None 

  

Appendix B: Functions Of The Mission_Window Class 178



Function: private 

void retr_del_file_menu () 

creates a pop-up menu by which mission files can be retrieved or deleted 

Argument Description: 

None 

Function: private 

void other_variables_menu (int position) 

creates a pop-up menu which displays mission parameters selected as being 

viewable in the select_variables_menu 

Argument Description: 

int position the position within the Mission_Parameters linked 

list of the first variable to be displayed by the menu 

Function: private 

void select_variables_menu (int position) 

creates a pop-up menu by which the user can determine which variables will be 

displayed by the other_variables_menu 

Argument Description: 

int position the position within the Mission_Parameters linked 

list of the first variable to be displayed by the menu 

Function: private 

void create_mission_structure (int row, int column) 

creates the PHIGS structure which displays the mission data—updates the data 

(including graphical representation) to reflect latest changes before posting it to the 

screen 

Argument Description: 

int row row of data to highlight—used to denote a phase as 

active 

int column column of data to highlight—used to denote a 

parameter as active 

  

Appendix B: Functions Of The Mission_Window Class 179



Function: private 

void refresh_window () 

updates the display window to reflect latest changes 

Argument Description: 

None 

Function: private 

void initialize_colors () 

modifies the PHIGS color table—assigns colors to a set of color table indices 

Argument Description: 

None 

Function: private 

void scan_for_pick (Pop_Up_Menu *menu, Event *event) 

tests whether event contains input from a logical pick device—used whenever the 

interface manager sends a message of value zero (0) 

Argument Description: 

Pop_Up_Menu * 

menu the menu from which the function is called 

Event * event the event detected 

Function: private 

void initializer () 

initializes all private class variables when the data type is first created 

Argument Description: 

None 

  

Appendix B: Functions Of The Mission_Window Class 180



Function: private 

void toggle_window (float min_x, float max_x, float min_y, float max_y) 

toggles the window between its current size and the size specified by the arguments 

passed 

Argument Description: 

float min_x minimum x value of the window (Normalized 

Projection Coordinates) 

float max_x maximum x value of the window (NPC) 

float min_y minimum y value of the window (NPC) 

float max_y maximum y value of the window (NPC) 

Function: private 

void toggle_window (float min_x, float max_x, float min_y, float max_y) 

toggles the window between its current size and the size specified by the arguments 

passed 

Argument Description: 

float min_x minimum x value of the window (Normalized 

Projection Coordinates) 

float max_x maximum x value of the window (NPC) 

float min_y minimum y value of the window (NPC) 

float max_y maximum y value of the window (NPC) 

Function: private 

int get_list_of_files (char *directory_name) 

retrieves a list of files from the directory directory_name that contain mission data— 

returns 1 if successful; 0 if unsuccessful 

Argument Description: 

char * directory_name directory path name of the directory in which the files 

are searched for 

  

Appendix B: Functions Of The Mission_Window Class 181



Function: public 

void phase_menu (int phase_number, int parameter_number) 

creates a pop-up menu by which parameters can be modified—presents all the 

values for a given parameter; the parameter value for phase phase_number is 

highlighted by default 

Argument Description: 

int phase_number the position of the phase within the phase linked list 

to which the parameter selected belongs 

int parameter_number the position of the parameter selected within the 

parameter linked list 

Function: public 

void turn_ETC_on Q( 

turns immediate mode on for certain items of the interface 

Argument Description: 

None 

Function: public 

void turn_ETC_off () 

turns immediate mode off for certain items of the interface 

Argument Description: 

None 

Function: public 

void open_initial_mission () 

opens a default mission file when the module is first launched—the name of the 

default file is hard coded in the function 

Argument Description: 

None 

  

Appendix B: Functions Of The Mission_Window Class 182



Function: public 

void get_white_color () 

returns the color table index for the color white which was defined by the 

initialize_color function 

Argument Description: 

None 

Function: public 

void get_red_color () 

returns the color table index for the color red which was defined by the 

initialize_color function 

Argument Description: 

None 

Function: public 

void get_green_color () 

returns the color table index for the color green which was defined by the 

initialize_color function 

Argument Description: 

None 

  

Appendix B: Functions Of The Mission_Window Class 183



Function: public 

void process_from_mouse (int choice, Ppoint3 *loc_pos, int view_index, 

Ppick_path *pick_path, Event *event) 

processes events that are generated from the mouse 

Argument Description: 

int choice value entered using the choice logical device 

Ppoint3 * = loc_pos : xX, y, and z values of the location selected on the 

screen 

int view_index index of the view in which the event was detected 

Ppick_path * pick_path the pick path of the entity selected 

Event * event pointer to the event detected 

  

Appendix B: Functions Of The Mission_Window Class 184



ADDITIONAL FUNCTIONS 

Location: utilities.C 

Function: does not belong to a class 

int format_type (char *value) 

determines if value is purely numeric or if it contains symbols which render it a 

“word"—this function is used since PHIGS can only accept string inputs; returns 1 

if it is a "word", returns 0 if it is a "number" 

Argument Description: 

char * value entry whose format is to be tested 

Function: does not belong to a class 

char * word (char *value) 

ensures that value is a single word—leading blank characters are removed; value is 

truncated at first blank character which follows a valid character; returns the 

modified word 

Argument Description: 

char * value entry which is to be modified 

  

Appendix B: Additional Functions _ . 185



OTHER CLASSES 

The following classes are used by the Mission Profile Input System but were not created by 

the author. One of the advantages of using an object-oriented language is that it allows for 

high code reusability. The classes are not discussed in detail. They are listed here for 

completeness. 

For more information on the following classes refer [Steu93]: 

Scroll_Window 

For more information on the following classes refer [Woya92 & Woya93): 

PHIGS_Structure_ID 

Check Box 

Color_Group 

Event 

Frame 

Interface_Manager 

Label 

Number_Box 

Pop_Up_Menu 

Push_Button 

Static_Menu 

Text_Input 

  

Appendix B: Other Classes . 186



VITA 

Francisco Rivera Jr. was born January 11, 1969 in McAllen, Texas. He grew up 

surrounded by orchards in the small town of Santa Paula, California. He attended the 

University of California at Santa Barbara where he studied Mechanical Engineering. After 

graduating in 1991 he decided to head east to Virginia Tech where he did his graduate work 

in computer-aided design. Upon graduating from Virginia Tech the author will return to 

work close to home in San Jose, California. 

fo Z 
Cxrz, cee, Es, Zecms Lee. 

Francisco Rivera J r, sy 
4 

Lo


