An Object-Oriented Method of Mission Profile Input
for Aircraft Design
by
Francisco Rivera Jr.

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of
Master of Science
in
Mechanical Engineering

APPROVED

Lk /éyﬂm

Sankar Jayaram Chairman

Lok il (@?

7
A. Myklebust

April 30, 1993
Blacksburg, Virginia

w&d
\ Ry

!
¥3

-

~
LI
e

-3

/7
£

<

)
Yy

An Object-Oriented Method of Mission Profile Input
for Aircraft Design

by
Francisco Rivera Jr.
Sankar Jayaram, Chairman
Mechanical Engineering
(ABSTRACT)
This thesis discusses the creation of an object—oriented method to facilitate the creation and
specification of aircraft mission profiles. Mission profiles are detailed descriptions of an
aircraft's flight path and its inflight mission activities. They are a vital aspect of the
conceptual design process of an aircraft. The Mission Profile Input System (MPIS) created
is general in nature and can be customized to be compatible with existing aircraft CAD
systems. All data associated with the mission—phase parameters, phases, and mission
parameters, are defined to be objects. Each data type can therefore be customized
individually to meet any requirements which may be necessary to make the MPIS
compatible with a host system. Customization of the MPIS is further enhanced by the
nature of the design upon which it is based. An object-oriented design provides the system
with a high degree of extendibility. The encapsulation and inheritance features of
object-oriented design allow new types of phases and phase parameters to be simply
"plugged" into the existing system. The MPIS provides the user with an interactive, Motif-
like interface which is conducive to manipulating the large quantities of data inherent in
specifying mission profiles. The system is based on the ISO graphics standard, PHIGS,
and hence is device-independent. Moreover, the system has been implemented using the
hybrid object-oriented language, C++, which is supported by a large number of computer

systems.

Acknowledgments

Were it not for the continuous, unconditional, support of my parents I doubt I could've
managed to pull this one out—they have been my source of inspiration. Though, I can
never hope to fully repay the debt I owe them, I dedicate this thesis as a small, symbolic
token of my utmost appreciation for what they’ve provided. Para mi papa y mama,
Francisco y Marcelina Rivera. Los mejor parientes que un hijo puede tener. . . Gracias por
todo .

I would like to extend my appreciation to Paul Gelhausen and Gary Hill for their numerous
suggestions. Their input contributed significantly to the development of this thesis.

I thank my advisor, Dr. Sankar Jayaram, whose “I promise you you’ll graduate”
assurances gave me the impetus to continue on with the endeavor. Also I would like to
thank Dr. A. Myklebust and Dr. J. R. Mahan for serving on my committee.

Acknowledgements . iti

The following is a list of people who, through some measure, "own" a piece of my thesis

for their encouragement and help.

Trisha Tran
Laura Palacios
Steven Jump
Frank Sager

Greg Simpson
Dom Dal Bello
Joseph Wood

John Merrill
Douglas T. Shafer

David Coe
Andreas Steude
John Kelly

Srinivas Dhulipala

The "P-man”
Scott Woyak
Jim Pascoe

Colin Heichman
Vellaurit Rivera

Nereyda Rivera
Jim Veny

The SLAC crowd
The FMC crowd

AND FINALLY

Kathy Ireland

- the greatest friend a person could ever hope to have—thanks for
everything Trish. I'll see ya in England!!!

- for being there when it counted the most—best of luck in Loyola Law
School

- for making sure I'd risk my life every time we went hiking—1I’1l
“pay” you back if you ever get nominated for the Supreme Court.

- who told me "people like you belong in graduate school." Frank, it's
"nearly as much fun as a sharp stick in the eye" :-)

- well, Homer, it’s time that I join you in the real world . . .

- who because he went to graduate school, I had to go . . .”Thanks”

- the 'tons of money" you promised me better be on their way. I hate to
think I did this for nothing

- who assured me "college is nothing but fun and games"

- my roomi who told me, "Go for it, it's only ONE year!"—you
“deserve” to be a lawyer :-)

- for all the support and "clear insight" he offered

- whose help was immeasurable—thanks for helping me escape

- whose Wayne's World humor ensured that I kept my sanity—better
luck in cards next time, dude!!!!

- whose whipping I'd inflict in racquetball made me look forward to the
next day—thanks for everything—best of luck in Detroit

- for being a great office "pal dude"—we're outta here—"COOLness!"
- object-oriented programming personified — thanks for all the help

- who introduced me to Coconut—the only female in my life this year.
:-) Merci.

- Owner of Coconut

- thanks for all the support sis!—we’ll celebrate your graduation soon
enough . . .

- for reminding me that life is more than coding

- for providing some seriously needed direction

- for all their engineering advice

- for all their non-engineering advice

- Nope. I don't know her personally. But she provided some "divine"
inspiration, nonetheless. :-)

Acknowledgements

iv

Table Of Contents

1.0 INTRODUCTION. ..ottt tcetarat s etean e cesnsnssnsnes 1
2.0 LITERATUREREVIEW........ctiiiiiiiiieeiiiieieeaeiaetseneetssnnnncaeensnncnsnns 3
OVEIVIEW ... eeieiiieiitiiieiteieeeeeeaneenseaasaetonsessansnessnenasesasanssansansennsenen 3
Conceptual Aircraft Design.......ccooovuiiriiiiiiniiiiniiiiirenceenereeane 3
Program Designcciuiniiiiiiiiiiii e 5
Object-Oriented DeSigncouveiieiniiieiieiriei i ereereriereenceeeeaeans 6
Mission Profiles.......cociiiiiiuiieiiiiiiiiiiiiiiiiiiiiie et recer e eees 7
3.0 THESIS OBIJECTIVES....... oot teer e eee e ree s seennanss 9
4.0 AIRCRAFT DESIGN AND MISSION PROFILE INPUT.cccccccevvennenen. 10
The Aircraft Design Process......c.ccocoieimeciirieciiemeniiiicrceeeececeeneneens 10
Tools For Aircraft Conceptual Design......cccccceverriiiiiereeeiieneieeeeeceeeenenn. 12
FLXON) ¢\) WP 12
Interactive CAD Version Of ACSYNTcccoiiiiiiiiiiiiiiieieeiiaenaens 14
ACSYNT’s Trajectory Module.........ccoeiiiiiineininennnnnnnne.. 15
5.0 REQUIREMENTSoiiiiiiiiiiiieeieiieteeteareeeeeransarenensansnsancnsannases 18
[0, o 5 PP 18
Explanation Of Requirements..........ccceeeiiieiieiniinieieieirtaraeeaarenerencaeneas 20
6.0 DESIGN CONSIDERATIONS..... .. icieeeeeeeereeecenneceneeeneneenanes 24
OVEIVIEW ... ceeiecieiii ettt e et s era e et earasaanresaereaneasaenranes 24
Program Design Considerations...........ccveviveieieiieinceieneenceneraneacenacnnns 26
Object-Oriented Design And Language Selection...........ccccceeueuneeen. 26
Object Relationshipscccooviimiiiiiiiiiiiiii e 27
Extendibility And Maintainability........cccoeceiiiiemiiommmrniiiennnenenens 29
Data Handling......ccoooeeiniminiiiiiiiiiiiiiiiiir e 30
Interface Layoutccuoieiiniiiiiii it ees 30
7.0 THE MISSION PROFILE INPUT SYSTEMcccnniniiiiiiiiiiiiiireeeneenes 32
Class Structure Layout..........cccoiiiiiiiiiiiiiiiiieiiiiicrre e cenneeena. 32
The PHIGS-Based, Motif-Like Interface.......cccccceeervevereicrrcrenennns 37

Table Of Contents

Framework For Handling Data............cooiiiiiiiiiiiiiiiiiiiiiciieeeaees 39

The User INterface........cooieiieiiiiiieiiieiiiiiciiir e rcenreeeeeeasones 41
8.0 CLASS DESCRIPTIONS.uiiiiiiitiiiiiietereeeieiatraeencanranrensencanssnennns 43
OVEIVIEW . ..eeeeiieiiei et e e et eeeeaneeeteaasaasaaeerataanaancesseennnsannrsansenees 43
| V111 [1 o TP 43
Data Members-Parameters Class.......occvveeeeiieiiiiieeiiiieeineennnneennns 44
Functions Of Parametersccceveieieiiiieniieieriennreeerenenreennans 4

o1 LT PP 46
Data Members-Phases €lass........cccovuiiiiiiniiiiiiiiiiiiiiciieiieaenns 46
Functions Of Phasescccoiiiiiiiiiiiiiiiiieieieceecieeeeneeneanns 47
Mission_Parameters.coouinieeeniiiinieiiiiieeiereeeiee e rene e erreaaes 49
Data Members-Mission_Parameters Classccceeeeveeenrerrreeeenenenns 49
Functions Of Mission_Parametersc...cccevveiiineinerieeineineenennn. 50
MISSIONS. .. etteiiiiniiteeiieeii i et eareaeeeentensaneneraseneansensensansansansenenns 51
Data Members-Missions Class.......ccceeveeimmniiieniireecienccenennenen. 51
Functions Of MIiSSiONS....cciiieiiieiiiiireiciirireereceenreeeeennenas 52
Phase_Diagram_Windowcccooiiiiiiiiiiiiiiiiiieiii e eeeeiriceareaennes 56
Data Members-Phase_Diagram_Window Class...................coc....... 56
Functions Of Phase_Diagram_Window.............cccoceiiiiiieiiiinennnnns 56
MISSION_WINAOW ..eeoiiiniiiiiieiiiiiriiiieetetienseeensesessessnresesseseossosnssnes 58
Data Members-Mission_Window Class........cccceveiiiiineiineienrnnnnnn. 58
Functions Of Mission_Window.........cc.ccoiiiiiinriiiiiiieeiernceneannn. 58

9.0 SYSTEM CUSTOMIZATION. ...t iieiteeeeeeeeaeeeeneeeesnssneanenns 63
10,7 o (o) PPN 63
Trajectory Data Filesccoooniiiniiiiiiiiiii e reeeeererceeneneenns 64
Phase Defaults File.........ccooiiniiniiiiiiiieicii e e e eeereeeneeenaennnes 66
| T8 1 1] 1<) £ PP PSP U PP 68
The set_value_to funCtioncoueviieiiiiniiiiiiiiieeeiiieeieeeennaens 70

The check fUNCUONc.ciniiniiiiiiii i eceeieee e raeeens 71

PhaSes . o.nineieiiii e ere e reeieaceta e et teee e e e eeaeneaneananan 73
The calculate function............ccoeiirineiniiiiiiiieiieierieeceeenrenrenns 74

The geo_segment funCtONccceieviiiiiiiiiiiiiiiiiiiiieiieercerennnonnes 77
MiSCEllaNEOUS.eveeiiieieieieeeee e et et et raere e et reaeeieerarerna e naaaanan 78
10.0 IMPLEMENTATION AND EXAMPLES OFRESULTScccccvvvvvininnennnn. 79

Table Of Contents . vi

The Stand-Alone Version Of The MPIS........cooiiiiiiiiiiiiiiiiiiireeeeeeeaees 80
Methods For Handling Data......ccccocoveniiinniiiiiiieiiieniieniniancrneneenanes 83
Creation 0f @ MiSSIONcouiiiiieininiiieiicieiiritnerneaeraneaenennaans 83
Modification of @ Parameter........occeueeeeiriieiiiiriiieiiieeeenenens 86
The User-INterfaceccouvinieiieriiiieeieiieiiieencieiiietettatanrancsnsonsonns 88
11.0 INTEGRATION WITH ACSYNTciiiiiiiiiiiiiiiienretaetsecnsncansessacnnns 104
OVEIVIEW ... eeieiiniiiiiieiieiieierieniencenesiotsonennssestantonssonsanncsssssnsannranns 104
INtE@Iation.......cceueiinineininiieieiiieiei it eiiert e eeeeara e enens 104
Using The System From Within ACSYNTccociiiniiiiiiiiiiiiiiiiiicienen, 111
12.0 CONCLUSION AND RECOMMENDATIONSccciiiiiiiieiierenieaneceennnn. 112
13.0 REFERENCEScoiiitiiniiiiiiietraneeraecracseenrecensseanseransnsasnnnnnes 114
APPENDICES. ... oottt reeteeecaeresacaerecntsasaneeensnsassnsnsssasansnnnns 119
APPENDIX A: User Guide.......cccoieiiniiiiiiiiiiiiiiiicen e eeceneeenannns 120
OVEIVIEW ...t iieiei et teeeeneat e tentensensansnnaansaeessensennnns 121
Selecting Data........ccveieiniiiinieererireeraereteeeetreeeeraenaensasnns 121
The “Phase” MenUcccoeiiniiieiiiiieiiieiieeieeeeececeneannes 121
The “Defaults” Menu.....ccccceveveniienecrecreniienncennnnns 122
The “Phase Options” Menuccoieiieiiiiiiieririnennennnnn. 123
The “Quick Input” Menucccocveiiiiieiiinininennnn.e, 125
The “Parameter” Menu......ccooveeiiieiiirciieciecnieenceennneen. 127
The “Move Parameter”’ Menu.......cccoeeviieiieiinrenerneeecnnnnns 127
The Push Buttonsccueineiiiiiiiiiiiiiiicei i ieeeirere e ecneenes 127
{011 3 1 SO SRR 127
Mission Parameters Togglec.oooveiiiiiiiiiniiiiiiannn, 128
Phase Diagram Toggle.......ccccciieimieiiiiiiiiiiiircieeeenenne, 128
OPHONS ...oeiniiiiiiiieiii e e terieere e eeeeaeranranneneaneanns 128
The “Select Other Variables” Menu 129
The “Other Variables” Menu..........cccciveiiniiniiniannn. 129
The “Row/Column” Menucccoeeiviiniiniiaennennnnns 130
The “Number Display” Menu..........ccccveveiianiannnnn. 130
100 % (Fit-10-SCreen)....ceeuvrerirereenreneernreeneeneensensesrennens 130
Window BasiCs......couvuiieiiiiieiiiiii e ri e e e e eann 131
APPENDIX B: Detailed Class Description........c.cccceeveeeeeeeeeeenneenrennnnnnn. 132

Table Of Contents . vil

The Parameters Class ...c..evveeeeeererieeeeeiieeseereesseeressssssecesesesenes 133

Functions Of The Parameters Class..........ccccciceiriiieiinecierenennnns 135
The Phases Class.ccociuiiiiiniiiiiiie i receier e reeee e eeaeanes 139
Functions Of The Phases Class....cccccceirimmmniermreencriennnnreeeennan. 141
The Mission_Parameters Class.......ccovveeeeriiioriiiierieneeeenaraannns 145
Functions Of The Mission_Parameters Class..........cccceeeiieeiannnnn... 147
The Missions Classcoevuciieiiiineiieiieneenerneccereneeecnncnnenns 150
Functions Of The Missions Classcceciiiiiiiieiiiinecnerneenennn. 153
The Phase_Diagram_Window Class.........ccccecevieiiniiniieiincannnnnnn.. 163
Functions Of The Phase_Diagram_Window Class...........cccccouveunnen 165
The Mission_Window Class........cccceeeiniieiieiioriaiiiierieiieeaernannen 167
Functions Of The Mission_Window Class.......ccceceireurerneecenennnnen 174
Additional Functions.........ccceeeeeeerneieereneerererearencreecnrenecannanes 185
Other Classescveeeieeinereateeeteareeeeeneerereaeceseenessassasseaneaansenes 186
.. 187

Table Of Contents . viii

List

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

of Illustrations

1. The Trajectory Input Interface for ACSYNTccoiiiiiiiiiiiiiiiineene, 16
2. ACYNT’s Trajectory Module Input Method [Tayl88]............cccceueenen..n. 17
3. Approach to the Developmentof the MPISoooiiiiiiiiiain, 25
4. Real-Life Object Analogyc.ooevuiuininiiiniiiiiiiiiiiiiiiiiiiiiceecenene, 28
5. Class RelationShipscoeeeriuenieieiieniiriiiiieaieaeereereeeearnrarenanans 33
6. Other Classes Created by Mission_Window.......ccccocvrervereerencrennrannnne 34
7. Class Organization for PHIGS Motif-like Framework [Woya92] 38
8. Internal Data Relationships........cccceeieiiiieemeeiiiiiecneenieieenceeeeeenen. 40
9. Trajectory Data Filecovniniiiiiiiiiie ittt e e e e eeeaees 65
10. The Phase.dfl.miss File.....ccccuiiiniiieiieiiieiiiiiieciceeeceecenaeeeene 67
11(a). Basic Parameter Definitioncc.ccviiiiiiiiiiiieiiieiieeeneeennenes 69
11(b). Modification Required For Parameter Definition.............c.cc.ccueeeeen. 69
12(a). Basic Phase Definition.........cccouveiiiiiiiiiiiiiciiiiiecieenieceneeanenns 75
12(b). Required Modification for Phase Definitionc..cccceevniieiannnnnn. 75
13. Creation of Mission (Pseudo-Code)......ccceumerirmmmuecrerneireeenenceennnee 84
14. Parameter Modification (Pseudo-Code)......ccceuuvevrerereeecreeeneeeerennee. 87
15. The MPIS With the Phase Diagram Window Activated.............c.ccouuee.. 89
16. The MPIS With the Mission Parameters Menu Activated...................... 90
17. The Phase MenU.......ccoiuiiiiiiiiiiii i i i e e e eeeeneeeneennaaannns 91
18. The Defaults MenUcouvineiiiiiiiiiii i ieer e ceiceeareaeenaes 92
19. The Phase Options MEnU.........cuveiiiiiiiiiiiii i ereeeraeearaenenans 93
20. The Quick INPUt MENUcuvinriiiiiiniiiirieirnereeneenneaesacsincsanaans 94
21. The Parameter MeNUovieiiiiiiiiiiiieieriarieneaneeenesecronconsonnans 95
22. The Move Parameter MENU..........cceviueneieieieencieenceneeeeaernesnecenances 96
23. The Select Other Variables Menu..........cccoeieiiiiiiiiiiiiiiiiiiiiieeaees 97
24. The Other Variables MeNU..........ccocviiiiiiiiiiiiiiiecrereieceeeeneneenns 98

List Of Illustrations

Figure 25. The Row/Column Menu..........cccooeiiiiiiiiiiiiiiiiiiiiiiiiiiiiinneeee 99

Figure 26. Menu Listing Available Files...........ccccooviiiiiiiiiiiiiiiiiiiiiiiiiininnn, 100
Figure 27.The Message Menu.........cccoimiiiiiiiiiniiiiieiiiiiiiiii e ieecaenaens 101
Figure 28. The Confirm MeENU.........oiniiinii it e e reenes 102
Figure 29. The FilenameMenuccooiiiiiiiiiiiiiiiiiiiiiiiii e 103
Figure 30. Sample Usage of the Quick InputMenu............cccoeiiiiiiiiiiiiianninnnn. 126

List Of Illustrations - x

1.0 INTRODUCTION

The design of an aircraft requires collaboration from a variety of disciplines. Conflicting
design proposals often result from each group trying to optimize a different aspect of the
aircraft design. To reconcile such differences, a set of objectives which the final design
must satisfy is instituted before the design process begins. These objectives are referred to
as the basic requirements of an aircraft—a set of design and performance specifications the
final product must satisfy. Once these requirements are established, the various groups
must compromise and reconcile their differences in order to achieve these basic
requirements. A significant aspect of the basic requirements for an aircraft is the
specification of its mission profiles. Mission profiles are detailed descriptions outlining the
anticipated flight activities of the aircraft during a typical flight. These profiles are broken
into more specialized segments known as phases which focus on specific flight operations.
Each operation, in turn, is defined by a set of parameters which describe the various aircraft
conditions. Examples of typical phases include cruise, loiter, and acceleration, whereas
examples of typical parameters include time, speed, and altitude. The list of possible
mission profiles is inexhaustible. The types of phases employed by a mission depend
strongly on the type of aircraft under consideration. A combat phase, for example, used
extensively in designing military aircraft, has no application in the design of commercial

aircraft.

Mission profiles are inherently data intensive. The number of phases and parameters that

comprise a typical mission is usually quite large. The creation and manipulation of such a

Introduction 1

large amount of data can prove to be overwhelming if the proper tools are not provided.
This thesis addresses the creation of an object-oriented method of specifying mission
profiles for aircraft design. The design, development, and use of this system is discussed
in detail. The system created provides a good graphical user interface which displays the
vast amounts of mission data in a friendly and consistent fashion. This system is general in
nature and can be customized to be compatible with a wide variety of existing aircraft CAD

software.

The system, referred to as the Mission Profile Input System (MPIS), was developed at
Virginia Polytechnic Institute and State University. It is part of an ongoing endeavor to
develop better methods by which to improve the usefulness of current interactive CAD

systems.

Introduction . 2

2.0 LITERATURE REVIEW

Overview

The creation of the Mission Profile Input System relied upon ideas borrowed from the
disciplines of aircraft and software design. The amount of literature which is available in
these two areas is immense. The following sections do not reflect a comprehensive list of
the literature which is available. Rather, they are intended to give a small, but
representative, sample of what may be obtained. The books referenced in this section are
included because the methods discussed within them were used extensively in the
development of the MPIS. The literature survey is divided into four parts: literature on
aircraft design, software design, object-oriented design and mission profiles. The third
section describes a specialized method of software design which was used extensively in
the creation of the Mission Profile Input System. The final section discusses some of the
available literature pertaining to mission profiles and their role in the aircraft design

process.

Conceptual Aircraft Design

As in the design of other products, iteration is an inherent element of aircraft design. Each
iteration “fine tunes” the results from the preceding one to enhance and optimize the
configuration of the aircraft. The process is repeated until the design satisfies a desired set

of requirements and specifications. Leland M. Nicolai guides the reader through one

Literature Review 3

complete iteration of the aircraft design process in his book “Fundamentals of Aircraft
Design” [Nico84]. The topics covered range from a concise review of acrodynamics to a
detailed discussion of environmental concerns. The book outlines analytical methods for
making and assessing certain design decisions. The design considerations covered include
engine sizing and selection, material selection, sizing of the vertical and horizontal tails,

sizing of the fuselage, and static stability and control.

A more comprehensive look at aircraft design is given by Daniel P. Raymer in his book
“Aircraft Design: A Conceptual Approach” [Raym89]. The book gives equal treatment to
the two major aspects of aircraft design: design layout and design analysis. Special
emphasis is given to aircraft configuration layout. The reader is guided through the
complicated procedure of drafting aircraft from analysis results. In addition to the topics
discussed by Nicolai, Raymer addresses other aspects of design such as cost analysis and

sizing and trade studies.

An eight-book series designed to familiarize engineering students with the methodology
and decision making involved in airplane design is given by Jan Roskam [Rosk89]. Each
book in the series covers a different aspect of the design process. The topics include
preliminary sizing, preliminary configuration, layout design of cockpit, layout design of
landing gear, weight estimation, aecrodynamic calculations, determination of stability, and
cost estimation. Roskam presents the student with detailed examples of the considerations
that go into designing an aircraft. Requirements and specifications that need to be

considered are also detailed.

The three aforementioned books focus primarily on the traditional design process—very
little, if any, attention is given to the role of the computer in modemn-day design. In his

book “Development and Application of Computer-Based System for Conceptual Aircraft

Literature Review - 4

Design,” Cornelis Bil focuses on the impact of computer-aided engineering (CAE)
techniques on the design of aircraft [Corn88]. In particular, he focuses on the development
and application of the Aircraft Design and Analysis System (ADAS) and its graphical
interface, MEDUSA. The various modules of the ADAS program are discussed in detail,
including how to utilize them. Emphasis is given to illustrating how to read the information
provided by the system. Finally, to demonstrate the system, a design optimization study is

performed on a short-haul passenger airliner.

Program Design

A comprehensive look at software design is given by Ray Turner in his book “Software
Engineering Methodology” [Turn84]. Every aspect of program development, from
conceptual design to code validation, is discussed in great detail. Emphasis is given to
developing proper design principles including modularity, hiding, understandability, and
uniformity. Coding and debugging techniques designed to facilitate development of good
software are also offered. In addition to focusing on the specifics of individual design
projects, Turner also offers advice and examples on how to manage software development
projects which involve a group of people. Examples of small and major projects and
discussions of project phases such as planning, motivation, control, and new product

training, are included.

In order for a software system to be useful and successful it must have a well-designed
user interface. Judith R. Brown and Steve Cunningham detail the process of developing a
good interface in their book “Programming The User Interface” [Brow89]. Techniques
and examples to help in the development of interactive program design features such as
input, output, screen layout, and error handling, are discussed in detail. Topics covered

range from simple input and menu layout configurations to complicated window and user

Literature Review . 5

interface managers. For the interested reader, discussion on how to develop interfaces for

people with disabilities is also included.

A complete look at the many aspects of software development is provided by Robert C.
Tausworthe in his book “Standardized Development of Computer Software’ [Taus77]. The
topics covered range from discussions on the need for software standards to the assessment
of program correctness. Before delving into specificities of specialized program
development, Tausworthe presents general topics. This includes discussion on the
fundamental principles of software development, specification of program behavior, and

program design.

Object-Oriented Design

A practical introduction to software engineering and object-oriented design is given by
Darrel Ince in his book “Object-Oriented Engineering With C++” [Ince91]. As indicated
by the title, the language used to illustrate object-oriented programming (OOP) techniques
is C++, one of the most widely used languages in OOP implementation. As in most other
books related to this topic, important OOP concepts such as polymorphism, inheritance,
and encapsulation are described in great detail. Emphasis is given to proper object-oriented
design, with focus on the aspects of object identification, object implementation,
specification of object functionality, and object linkage. Formal software methodologies are
also discussed, such as the three types of software prototyping: throw-away, incremental,

and evolutionary.

The recent attraction to OOP techniques comes from the fact that they offer a revolutionary
way to look at programming. It offers not only a new way to write programs, but also a

new way to think about how programs interact with the world. It is the latter concept which

Literature Review . 6

the book “The Tao Of Objects,” written by Gary Entsminger [Ents90], tries to get across.
Through the use of numerous examples, this book explores how OOP techniques and real-
world problems are related. Emphasis in placed on encouraging the reader to think in terms
of objects and methods to define them. Discussion on the determination of their makeup,
boundaries, and generality is given. Real-world examples which illustrate good and bad
object definition are given to demonstrate the advantages of a good design. These

advantages include efficiency, maintainability, and readability.

Mission Profiles

At present, a general mission profile input system or methodology do not exist. Each
aircraft design system has input methods which are system-specific. Systems such as
ACSYNT [Wamp88a & Wamp88b], STOP [Stei67], and CASTOR [Simo86], utilize
individual input techniques to funnel information into their mission performance analysis
routines. Of these methods, only the ACSYNT Trajectory Input Module [Tayl88] provides

a graphical user interface to facilitate the creation of the mission profile.

The amount of research devoted to developing better methods for the analysis of mission
profiles demonstrates their importance to the overall aircraft design process. Various
techniques to improve the analysis have been explored over the years. Specialized
techniques were investigated by Rutowski using energy methods [Ruto54]. These
methods analyzed the mission performance by minimizing the fuel and time paths of the
mission. More general methods were explored by Stein [Stei67], Bryson [Brys68], and
Shultz [Shul70]. These three methods optimized the complete path of the trajectory—i.e.
the climb-cruise-descent phases were all taken into account. Stein utilized steepest descent
methods whereas Bryson and Shultz obtained the trajectory solutions by applying

optimization principles to the energy state equations. In 1984 Simos and Jenkinson coupled

Literature Review 7

the flight profile analysis algorithm with a multivariate optimization (MVO) routine to
determine the optimum mission profile for short-haul routes [Simo84]. This technique
permitted the entire flight to be treated as a single complete problem and allowed physical,
air-traffic control, and environmental limitations to be incorporated more easily. More
importantly, however, the problems associated with the mathematical modeling of the
thrust characteristics of propeller-driven aircraft were eliminated. Up to this point such
modeling had been restricted to simplified thrust models in order to avoid the mathematical
complexities. By 1986 a program combining the previously separate aspects of preliminary
design optimization and flight-profile optimization was created. Dimitri Simos utilized this
program, referred to as CASTOR, to optimize both aspects of the aircraft design for a
short-haul aircraft [Simo86].

As the aircraft design process is rearranged from a sequential procedure into a
nonhierarchical decomposition of the various design aspects, the analysis of the mission
profile has become an even more integral part of the aircraft design process. The work
started by [Simo86] is being expanded to provide for more sophisticated simultaneous
optimization of the various design disciplines. Jaroslaw Sobieszczanski-Sobieski discusses
some of these multidisciplinary analysis techniques [Sobi88]. Such techniques generate
better results than those obtained by the traditional sequential design process. More
importantly, these techniques eliminate the notion that each design aspect may be thought of
as a separate process, independent from the rest. Henceforth the entire design process will

be thought of as a single problem with each aspect within it influencing the others.

Literature Review R 8

3.0 THESIS OBJECTIVES

Motivation for the creation of the Mission Profile Input System (MPIS) was to provide a
user interface by which large volumes of trajectory data could be easily entered,
manipulated, and evaluated. The module should be flexible enough to be compatible with a
wide variety of existing aircraft CAD systems. To create a system that would satisfy these

requirements, the following objectives were established:

o Create methods by which a mission profile can be easily created and
modified.
° Design and develop the system such that it can be customized to be

compatible with existing aircraft CAD systems.

° Create a user interface which meets the demands of both novice and
experienced users by providing a high degree of user-friendliness along
with a variety of efficient data-entry procedures.

o Design a system conducive to future enhancements and extensions.
o Test the system by integration with an existing aircraft CAD system—

ACSYNT.

Satifying these requirements would provide a method which facilitates the often arduous

task of creating a mission profile—a critical aspect in the design of an aircraft.

Thesis Objectives . 9

4.0 AIRCRAFT DESIGN AND MISSION
PROFILE INPUT

The Aircraft Design Process

The successful design of an aircraft requires a concerted effort from a multitude of
disciplines. Engineers specializing in the areas of structures, flight control, propulsion,
aerodynamics, performance, and weights, must work together to produce the optimum
aircraft design. The optimum design from one specialized area often conflicts with the
design of another area. Consequently, the final design is usually the result of multiple
compromises made by the various design groups. In addition to engineering
considerations, the economic and manufacturing aspects of the aircraft must be
considered—design feasibility implies not only whether a product can be produced, but

whether it can be produced at a reasonable cost and within a reasonable period of time.

Before an aircraft is designed, its mission requirements must be established. These
requirements identify the criteria to which the ﬁhal design must adhere. Among other
things, the mission requirements often identify the purpose, payload, speed, range,
endurance, cost, and maintainability of the aircraft [Nico84]. In general, the mission
requirements are established by the supplier (e.g. Boeing Airplane Company, Piper Aircraft
Corporation, etc.) for commercial aircraft, whereas the user (e.g. U.S. government)

establishes the mission requirements for military endeavors.

Aircraft Design and Mission Profile Input 10

The aircraft design process has been traditionally divided into three major phases:

conceptual design, preliminary design, and detail design [Nico84].

In the initial design phase certain general design constraints are imposed. The overall size,
configuration, and inboard profile of the airplane are determined. Parametric trade studies
are used to converge upon the best wing loading, wing sweep, aspect ratio, thickness ratio
and general wing-body-tail configuration [Nico84]. These design parameters, however,
are but best approximations—based upon various design assumptions which are subject to

future changes.

In the second phase the design begins to exhibit more detail. The engine is selected, the
structural integrity of the aircraft is analyzed, refined weight and aerodynamic analysis are
performed, and the dynamic stability and control influences on the control system are
determined. More importantly, acrodynamic and structural tests are done on scaled models

to verify the analytical conclusions.

The final design phase consists of readying the design for production. All design
parameters are "frozen," detailed component and assembly drawings are created, and the
necessary tooling for the manufacturing process is developed. Finally, a prototype is built

to test and prove the design.

Presently, many acrospace companies are shifting from the traditional design process to
concurrent engineering methods. Concurrent engineering reflects a growing trend by
companies to move away from the vertical, hierarchical organizational structure to a flat and
lean one. To expedite and decentralize the decision making process (thereby enhancing
organizational flexibility) the number of job categories at each level of the hierarchy is
reduced and the responsibility associated with each job is broadened [Dert89]. In virtually

all cases, the fewer layers of hierarchy and the greater functional integration has resulted in

Aircraft Design and Mission Profile Input 11

faster and cheaper product development. Certain companies, such as The Ford Motor
Company, have successfully applied the concept. In developing the Ford Taurus, Ford
created product-development teams which consisted of representatives from planning,
design, engineering, manufacturing, and marketing. By working simultaneously rather
than serially, these teams managed to successfully integrate the various phases of product
development and produce a better product. Boeing Corporation is now attempting to
duplicate Ford’s success. Multifunctional *“design/build teams” are now in charge of
developing both the product and the production process. The net effect is that two
processes which were previously separated—design and production—now completely

overlap.

Tools For Aircraft Conceptual Design

ACSYNT

ACSYNT (AirCraft SYNThesis) was developed by NASA Ames Research Center for
conceptual design studies of advanced aircraft in the early ‘70’s. It is a highly flexible
program which allows for the study of a broad range of aircraft. ACSYNT consists of ten

separate modules each dedicated to analyzing a separate aspect of an aircraft. The modules

are as follows [Jaya92]:

GEOMETRY: calculates the surface areas and volumes

TRAJECTORY: determines the mission performance of the aircraft
configuration

AERODYNAMICS: calculates the minimum drag, the lift, and the induced
drag

Aijrcraft Design and Mission Profile Input 12

PROPULSION:

STABILITY AND CONTROL.:

WEIGHTS:

SUPERSONIC AERO:

COST:

TAKEOFF:

BALANCE:

computes the design and off-design performance of the
engine (turbojet, turbofan, turboprop, or propeller)

determines the center of gravity, the size of the
horizontal control surface, the pitching-moment curve
slope, and the static margin

assigns initial weight values for computation and gives
weight component multiplying factors

analyzes the supersonic characteristics of the aircraft
configuration

determines the manufacturing costs, direct and indirect
operating costs, and the manufacturing and airline return
on investment

predicts takeoff data which varies according to the type
of aircraft

separate program used to balance the aircraft
configuration

Additionally, ACSYNT contains analysis functions which facilitate the design process.

The routines included may be used to optimize the design parameters, determine the gross

weight of the aircraft, and/or calculate the sensitivity of the overall design to a specified

design variable. The variety and number of options available to the user of ACSYNT are

too numerous to be listed in this thesis. For further informnation on ACSYNT, the reader

should refer the ACSYNT Manual.

Aircraft Design and Mission Profile Input 13

INTERACTIVE CAD VERSION OF ACSYNT

Despite its great power and flexibility, ACSYNT lacked a friendly user interface. The
analytical results consisted of little more than row upon row of numbers. Much time and
effort was devoted to deciphering what the numerical output implied. A greater limitation,
however, was that the effects on the overall aircraft design resulting from "tweaking" the
design parameters were not quickly, nor easily, apparent. In order to address this problem
Virginia Polytechnic Institute and State University (VPI) and NASA Ames Research Center
began work in 1986 to create a computer aided design version of
ACSYNT [Wamp88a & Wamp88b]. Today, many of the initial goals established have
been realized. ACSYNT is now highly interactive—design parameters may be quickly
edited and their effects immediately observed on the aircraft geometry. Shaded and hidden
surface views give designers the ability to quickly analyze and assess multiple aircraft
configurations. More importantly, ACSYNT allows extraction of dimensional geometric
parameters from its B-Spline surface models [Jaya91 & Jaya92a]. This feature allows the

smooth transfer of data between the preliminary and conceptual stages of aircraft design.

In 1990 several aerospace companies and government agencies along with VPI formed the
ACSYNT Institute at the VPI CAD laboratory—an innovative program of joint R & D
between government, academia and industry to continue sponsorship of the endeavor.
Faster and better algorithms for creating, manipulating, and displaying aircraft geometry are
being developed. Various methods for facilitating the entry and manipulation of data are

also being explored.

Aircraft Design and Mission Profile Input 14

ACSYNT’s Trajectory Module

One example of a current mission profile input program is ACSYNT’s trajectory module.
Like other trajectory modules, the ACSYNT Trajectory Module is exclusively tailored to be
compatible only with its host program—ACSYNT. Although the program is a separate

module, it cannot be easily modified and made compatible with other CAD systems.

Figure 1 illustrates the layout of ACSYNT’s Trajectory Module. Interactive icons and
numerous help screens make it ideal for users unfamiliar with the program. However, for
more experienced users, the rigidity introduced by the additional levels of interactivity
detract from the efficient construction of a mission. This problem demonstrates the need to

balance the user-friendly and entry-efficient demands of the interface layout.

The greatest drawback to the interactive input methods associated with ACSYNT's
Trajectory Module, however, is that it fails to provide the end-user the means by which to
make a quick assessment of the overall mission. Mission data is not readily available to the
user for inspection. Rather it is hidden from view by three hierarchical editing
levels [Tayl88]. Modification of each parameter requires the user to respond to three
separate inquiries: specification of a parameter category, specification of a parameter within
the category, and finally, specification of the parameter value (see Figure 2). This tedious
process for modifying each parameter needlessly renders the creation of a mission profile
an inefficient and arduous task. Of greater consequence, the three-level hierarchical editing
scheme allows for the inspection of only one parameter at a time. Hence, the end user
cannot easily make comparisons between the various parameters. The final result of such
restrictions and limitations is that the cumbersome task of entering data into the module

often nullifies the positive aspects (e.g. layout simplicity, consistency, etc.) of the module.

Aircraft Design and Mission Profile Input 15

ACSYNTAVPI - X1.0.1:

&
—

9000.00

e

BC_D

>
e [

— [

%
——
<[

S ..

PICK ITEM/ENTER VALUES:

FA18 AIRCRAFT MISSION CYCLES TRAJECTORY
MISSION 1 RECONNAISSANCE FILE
—>|<— M| || PHASE 1| PHASE 2| PHASE 3| PHASE 4 SETUP
GLOBAL PARMS
MISSION
D = | b= | b= -
t~) WINDOW BOX

WINDOW RESET
WINDOW TOGGLZE

ENTER VALUE(S) USING DIALS AND/OR XEYBOARD:
PICK ITEM/ENTER VALUES: MISSN, PHABEN, PARMN, BETN, VAL
all cclors changed to black and white

PICK ITEM/ENTER VALUES: MISSN, PHASEN, PARMN, BETN, VAL
ISSN, PHASEN, PARMN, SETN, VAL

RESULTS

— — RETURN
COPY
COLORS
HELP BXIT

Figure 1. The Trajectory Input Interface for ACSYNT; [Tayl88]

Aircraft Design and Mission

Profile Input

16

EDITING LEVEL 1 1 VALID INPUT

LIST OF
PARAMETER
CATEGORIES

EDITING LEVEL 2

1 VALID INPUT
LIST OF
PARAMETERS
WITHIN EACH

CATEGORY

3 NUMBER INPUTS

EDITING LEVEL 3

2 NUMBER INPUTS

DETAILED
DESCRIPTION
OF EACH
PARAMETER

3 VALID INPUTS

1 NUMBER INPUT

2 VALID INPUTS

Figure 2. ACYNT’s Trajectory Module Input Method [Tayl88]

Aircraft Design and Mission Profile Input

17

5.0 REQUIREMENTS

Overview

In order to satisfy the thesis objectives, a set of basic requirements was identified. The
process of indentifying such requirements included requested feedback from Boeing,
NASA, and Lockheed. The list of requirements developed was effectively divided into two
parts—the user and the software requirements. The user requirements focused on such
matters as program functionality and the friendliness of the interface. Software
requirements focused on providing program flexibility and extendibility. This section

describes the requirements which needed to be addressed:

User Requirements

) The user interface must have a consistent look and feel to eliminate
unnecessary confusion to the end-user.

° The entry of all data should be done directly onto similar data
input areas.
° The various pop-up menus and their menu items should appear
and operate similarly.
o The system must be user-friendly to reduce the learning curve for new
users.
° The purpose of each pop-up menu and its menu items should

be made self-evident to the user.

Requirements . 18

o The module must exhibit a high degree of functionality to increase its
usefulness.

Pop-up menus must be draggable to eliminate visual
interference with the background.

Windows should be draggable and resizable to maximize the
efficient use of the screen.

The effects of a modification should be reflected immediately
on the overall mission.

The windows must provide automatic centering and zooming
capabilities.

The interface should display sufficient data to allow for a quick
assessment of the overall mission. It should allow this data to
be partitioned into smaller groupings such as phase and
parameter data.

A separate window displaying a graphical representation of the
overall mission should be provided. The user should be able to
select a certain phase by selecting it directly on the graph.

The user should be able to edit phase data and delete, add,
change and reorder mission phases.

Software Requirements

[The program must exhibit good extendibility and flexibility features to
allow for future enhancements and/or modifications to the code.

The types of acceptable phase parameters, phases, and mission
parameters should be easily modifiable.

The design of the MPIS should allow for the easy addition of
new classes (i.e. data types).

o Sufficient program utilities must be provided to facilitate customization
of the system.

Routines to facilitate the definition of unique properties for
newly created data types should be provided.

[} The module must be portable to maximize its usability.

Requirements

19

Explanation Of Requirements
Look and Feel

The computer industry has devoted much time and effort to research and develop graphical
user interfaces (GUI's) which present a consistent "look" and "feel” to the end-user. The
term "look and feel" refers to the method in which the program interacts with the user—
both visually and physically. Certain aspects of the look and feel are application-
dependent. For example, it is best to manipulate and display data differently in a
spreadsheet than from how it is done in a word processor. However, many other aspects
are not program-dependent and may be similar across a variety of applications. Certain
features, such as the pull-down menus, popularized by the Apple Macintosh, have become
widely accepted as the “standard” and have been adopted by competing GUI's (e.g.
Microsoft Windows, OS/2, Motif, etc.).

The guiding motivation for the Mission Profile Input System's look and feel is to facilitate
the creation and modification of a mission. Large volumes of data are inherent in
describing aircraft missions. The creation of a single mission can easily become a long and
tedious chore if the user interface is not designed correctly. The purpose of the Mission
Profile Input System should be to provide a user interface by which a user can quickly and
easily enter, display, manipulate, and modify the large quantity of data. The objective
should be to present the user with the proper amount of data—enough to allow complete

grasp of the mission at a glance, yet not so much as to make it overwhelming.
User Friendliness

User friendliness describes how easy and accommodating an application interface is. User

friendly applications offer clear, consistent options to the user and, for the sake of

Requirements . 20

efficiency, do not make unnecessary demands on the user. The "friendliness" of an
application's interface greatly dictates how successful or useful the application will be.
Although a universal standard on user friendliness does not exist and the topic remains
somewhat subjective, many practices have been widely accepted and implemented
(e.g. asking for user confirmation to validate critical commands, having a logically

consistent menu hierarchy, etc.).

Much emphasis must be placed on making the Mission Profile Input System user friendly.
The data should be displayed in a complete, logical fashion to enhance its usefulness. To
aid in the quick evaluation of the mission, the data should also be displayed graphically.
Care must be taken to ensure that no data can be altered without first having to explicitly
select a menu item that fully explains the ramifications of the action. For commands that
greatly alter or destroy data, user verification of the command should be requested prior to

command execution.
Functionality

The functionality of a program describes its capabilities. Although the number of user and
software requirements which must be satisfied to create an acceptable version of an
application is finite, the number of enhancements that can be implemented is inexhaustible.
The more features a program is able to support (i.e. the greater its functionality) the more

useful it will prove to the end-user.

The most important functionality the Mission Profile Input System should exhibit is the
proper maintenance and processing of the trajectory data. The system should also be
flexible to allow the definition of new phases and parameters so that the functionality of the
module can be quickly customized to adhere to existing aircraft design systems. Moreover,

the MPIS should allow for the definition of a set of governing rules for each parameter and

Requirements . 21

phase which will support the complex handling of the data. This feature will greatly
increase the functionality of the system.

Extendibility and Flexibility

Program extendibility refers to how easily the functionality of a program can be extended.
Programs are no longer designed to meet a limited set of objectives without regard to
future, unforeseen requirements. Having to recode or modify entire programs because they
lack the flexibility to satisfy a special case can prove to be an expensive and
time-consuming proposition. Well-designed programs are structured such that very little, if

any, modifications are required when new code is added.

To prepare for unforeseen requirements, programs often exhibit a large degree of
modularity—a characteristic which usually lends itself to good extendibility and flexibility
traits. Because the Mission Profile Input System is intended to be used by a variety of
design software, it must be highly flexible in the phases and parameters it can accept.
Therefore, the MPIS should be modular in nature—phases and parameters should be
definable independent of the existing code. The newly defined entities should then be able

to quickly and easily “plug” themselves into the system.

It is impossible to envision beforchand all the possible demands that may be put upon an
application after it has been created. Undoubtedly, demands will arise which cannot be
implemented without a major code revision. However, a well designed program should be
flexible enough to accommodate reasonable changes and expansions. The MPIS should

meet this criterion.

Requirements] 22

Utilities

Program utilities often refer to routines which are provided to facilitate program-user
interaction. It can refer to interactive tools which allow the user to customize the layout of
the interface, or it can refer to program functions which facilitate additions to the code.
Regardless of the level of their implementation, utilities provide a simple alternative to what

would otherwise require more complicated procedures by the user.

The Mission Profile Input System should provide utilities which simplify program
customization. It should provide routines to facilitate the creation of new phases and
parameters. Functions which assist the user in defining set rules unique to individual

phases and parameters should also be provided.
Portability

Program portability refers to the ability of a program to perform correctly in different
environments. A highly portable program, for example, may run on an IBM RISC/6000, a
Silicon Graphics, and a Hewlett Packard machine. Since the number of machines on which
a program will be useful is directly related to the portability a program displays, high
portability is quickly becoming a major design objective in modern programs.

Since the Mission Profile Input System is intended to be utilized by a number of different
CAD systems, it is likely that it will be implemented in different tyiaes of environments. To
support such demands, the MPIS should be highly portable (i.e. it should be
machine-independent and graphics device-independent).

Requirements : 23

6.0 DESIGN CONSIDERATIONS

Overview

In order to satisfy the objectives and requirements for the thesis, a good program design for
the Mission Profile Input System was required. The flexibility, modularity, and
extendibility required of the program made an object—oriented language the obvious choice.
Other considerations, however, were not so obvious. Among the design aspects considered

were the following:

° Language selection

° Object relationships

o Program maintainability
° Data handling

° Interface layout

Before coding was initiated, an outline of the systematic approach to be used in the
creation of the system was developed. A graphical representation of the procedure

followed in the creation of the system is given in figure 3. The user requirements were

Design Considerations - 24

User
Requirements

Software
Requirements

- EXTENDIBILITY
- UTILITIES
- PORTABILITY

e many
S,

- LOOK AND FEEL

Requirements

- USER FRIENDLINESS

- FUNCTIONALITY .

s

Program
Design
Considerations

va
R IPSPYY S

e,

{
HE
§
\
No - LANGUAGE SELECTION
- OBJECT RELATIONSHIPS
- MAINTAINABILITY

. - DATA HANDLING
implementation

Mission Profile
Input System

Integration with
ACSYNT

Figure 3. Approach to the Development of the MPIS

Design Considerations

reviewed extensively to ensure that the final product met not only the end user's needs, but
also the needs of those wishing to make future extensions and improvements to the code.
Recommendations from companies and government agencies, such as Lockheed and

NASA, helped guide the final configuration of the interface.

To satisfy these requirements much emphasis was placed on the object-oriented design of
the system. Attention was given to such matters as inter-object relationships, object

manipulation routines, and the modularity of the overall program.

Program Design Considerations

OBJECT-ORIENTED DESIGN AND LANGUAGE SELECTION

The compatibility and extendibility requirements of the Mission Profile Input System made
an object-oriented language a natural selection. C++, being one of the most accessible and
widely used object-oriented language, was selected as the programming language. C++is a
superset of the C programming language. Thus, not only does it provide the powerful
features which make object-oriented programming appealing, it also supports the vast

library of functions associated with the C programming language.

C++, like other object-oriented programming languages, supports polymorphism, function
overloading, inheritance, and data/function encapsulation. These features allow for more
efficient, flexible code than would otherwise be possible. In the case of the MPIS, the
inheritance and overloading features are especially useful. Inheritance allows the reusability
of code—the general features of an object can be specified in a single base class which can

then be inherited by derived classes exhibiting these features. Overloading is useful in

Design Considerations) 26

writing compact and readable code. Functions with the same name can refer to different
routines based on the arguments used when calling them. Thus, functions which perform
similar operations, but which must perform them differently for different argument types,
can be overloaded. This eliminates the need to employ a different function name for each

version of the routine.

The numerous benefits object-oriented programming provides, however, prove even more
valuable in developing maintainable code. Class encapsulation allows for the simplification

of code debugging, editing, and expansion.

For a complete discussion of object-oriented design the reader should refer to [Booc91].

OBJECT RELATIONSHIPS

The key to a successful object-oriented program design is the development of proper
relationships between the various classes (i.e. objects). The design of the class hierarchy
greatly influences the flexibility and robustness the final code will exhibit. The motivation
for object-oriented design is an attempt to create class relationships which mimic the
relationships found in the real world [Ents90]. The objective is to identify the most basic
objects (base classes) that may be defined and have them serve as the building blocks for
more complex ones (derived classes). Basic objects usually reflect the commonalties
exhibited by the more complicated objects. One way to look at class hierarchy is by
envisioning the derived classes as being more specific instances of the base class. Figure 4
presents a real-life analogy. The illustration depicts a cow as being a more specific instance
of a herbivore which, in turn, is a more specific instance of an animal. Thus, if these
examples are thought of as being classes, "animals" serves as a base class to its derived

class "herbivores" and "herbivores” serves as a base class to its derived class "cow".

Design Considerations . 27

’pérnluhres o 'jj”’llevly-‘b;mibi'e”s ‘

ow Horse

Figure 4. Real-Life Object Analogy

Design

Considerations

28

EXTENDIBILITY AND MAINTAINABILITY

Extendibility refers to how easily existing code can be modified to accommodate new
requirements. As programs become more complex—performing multiple tasks, operating
across platforms, supporting active links with other applications, etc.—extendibility has
developed into a vital consideration in program design. The key to designing extendible
code is instilling it with a high degree of modularity. In this manner, whenever additions to
the program are made, a completely separate module can be created independent of the
existing code and simply be "plugged” into the program. With a proper program design,

the modifications required for the "plugging" process is usually minimal.

Classes, in object-oriented programming, are modular by their very nature. Consequently,
languages such as C++ are ideal for creating extendible and maintainable code.
Object-oriented programming, however, offers an even more powerful concept for
maintainability—encapsulation. Data and functions within classes may be "encapsulated”
from the rest of the program such that they are limited in definition to the class in which
they are defined. Access to these functions from the outside is restricted to public functions
which the programmer defines. The inner working of such classes, in essence, take on the
nature of "black boxes" to other programmers wishing to use them. Programmers utilize
these classes through the public functions provided without needing to understand the
details of how the classes work. Moreover, because the data and functions are fully
encapsulated, newly created code is guaranteed to never affect the code already in

existence—an extremely powerful feature for program extendibility.

Design Considerations . 29

DATA HANDLING

The method by which data is handled in a program greatly influences the efficiency and
performance of a program. Speed of program execution is usually the primary casualty in a
poorly designed code and proves to be detrimental in the effective use of the program.
Proper data handling, however, entails more than the efficiency of how data is processed.
It also includes efficient memory management. The dynamic allocation of memory as it is
required keeps the amount of memory the computer must devote to the application to a
minimum. Moreover, such allocated memory can be freed once it is no longer needed.
Keeping memory requirements to a minimum is becoming increasingly important to today's
applications. Although memory and processing speeds of modern computers is
progressively increasing, the days when an entire machine was devoted to running a single
application are quickly disappearing. Machines today often run multiple processes
simultaneously. Care must be taken to ensure that an application does not hoard

unnecessary resources from the rest of the system.

INTERFACE LAYOUT

The proper design of the user interface is perhaps the most important phase in the
development of an interactive program. The user interface acts as the communication bridge
between the user and the program. Thus, regardless of how powerful or efficient a
program may be, a poorly designed interface will render it useless if the user is unable to

utilize it efficiently and correctly.

In designing a good interface, certain considerations must be maintained. The demands

made upon the user should be kept to a minimum. Sufficient interaction and communication

Design Considerations . 30

should be provided to help the user effectively use the program. However, any
unnecessary interactions serve only to detract from the efficient use of the program and
should therefore be avoided. To avoid confusion and errors all options and requests made
by the interface should be made self-evident to the user. If it is unable to do so, the
interface should provide a safety mechanism, such as a request for confirmation, in order to
ensure that the user is fully aware of the ramifications of the action to be performed.
Finally, a consistent look and feel should be provided to the user. Menus, buttons,
messages, requests, etc., should be consistent in their appearance and in the actions they
perform. Items which perform unexpectedly should be fully explained and a request for

command confirmation should be issued.

Design Considerations 31

7.0 THE MISSION PROFILE INPUT SYSTEM

Class Structure Layout

Figure 5 and Figure 6 illustrate the class structure of the Mission Profile Input System. The
structure reflects a balance between inheritance and instancing of classes. As a general rule,
inheritance is used if the "derived object type [is] inherently similar to the base
type” [Ince91]. If an object "contains” another object, then instancing is used [Booc91].
As an example, every parameter defined by the user is "inherently similar" to the class
Parameters, therefore each one of them inherits Parameters. These parameters, in turn, are
"contained" by the user-defined phases. Therefore, each phase instances the parameter
classes. The following paragraphs clarify the relationship among the classes by explaining

Figure 5 in words.

Symbols:

A—B Class A inherits class B.

A:. B Class B creates class A.

Al:i B Class B creates one instance or more of class A.
A—®B

Class B creates one instance of class A.

The Mission Profile Input System . 32

—— Sy
-~ -

/ —

Scoll_W

{ Phase_Diagram_ V\ﬁndow
.~__ /‘
e \Q§§

z /
[Mission_Parameters Mission_ Wlndow
Tm--- \ j f
Missions
7/
\ _ -
1
P = /l
{ User-Defined Phases
\ -~ - -
1
P -~ \ 7
{ User-Defined Parameters / {
\ -~ N

— Em— —— w—

Figure 5. Class Relationships

’x\ _

Other Classes
(see Figure 6)

— e ams =

o
N e - -

Parameters

-
-

-—

-

\
/

33

The Mission Profile Input System

"
N e
s \ - -
{ Color_Group s | Check_Box ,
- AN — e -
’~_-—§

N o -
+
|

{ PHIGS_Structure_ID

-

— e wmm -

+

'—Q\—

7

- Mission_Window 1

__ _
- e = -—— ™
P
{ Interface_Manager - \
\ _— - Static_Menu J
\ -
—-—

e — —

Figure 6. Other Classes Created by Mission_Window

/ N e e .I -
Number_Box + ~ -
\ _ - (Text_Input
N _
/ - = ~ L e
{ Label TN -~ \
- Push_Button J
-

—

—

\
1& Pop_Up_Menu p
+N -

34

The Mission Profile Input System

Classes:

Parameters Class: This class contains all the functions common to any parameter that
may be created. Consequently, this class must be inherited by all user-defined parameters.
It must be emphasized that for purposes of the MPIS the term "parameters” implies much
more than mere storage containers for values (i.e. variables). Parameters are defined to be
classes in order to allow the association of unique rules with each type. For example, each
parameter may contain functions which allow it to automatically calculate itself, impose

upper and lower limits on its value, etc.

User-Defined Parameters: A valid parameter may be defined by the creation of its own
class. The class contains all the information pertaining to the parameter, such as name,
value, default value, and unique rules. The class Parameters contains all the functions
common to any parameter that may be defined. Consequently, every newly defined

parameter class must inherit Parameters.

Phases Class: This class contains all the functions common to any phase that may be

created. Consequently, this class must be inherited by all user-defined phases.

User-Defined Phases: Similar to user-defined parameters, a valid phase may be defined
by the creation of its own class. The class contains all the information which is relevant to
the corresponding phase: its name, a linked list of the phase parameters, and all the rules
which are unique to the phase. The class Phases contains all the functions common to any
phase that may be defined. Consequently, every newly defined phase class must inherit the
class Phases. Moreover, because each phase must create its own linked list of parameters,

every phase class instances all of the parameter classes.

The Mission Profile Input System . 3s

Mission_Parameters Class: This class contains all the information which pertains to
the mission parameters. These parameters are strictly dependent on the requirements of the

CAD system onto which the Mission Profile Input System is mounted.

Missions Class: This class provides for the manipulation of mission data. Functions to
create, modify, and destroy data are contained within this class. A mission is comprised of
a linked-list of phases and a linked-list of mission parameters. Thus the classes
corresponding to these objects are instanced within the Missions class. Note that the
Missions class inherits the Mission_Parameters class and appears to violate the general rule
for inheritance. A mission is not “inherently” similar to a mission parameter. The reason for
inheriting the Mission_Parameters class is to provide the Missions class direct access to the
Mission_Parameters functions. Although it has no notable affect on the efficiency of
mission parameter manipulation, it does make the code more readable. Functions of the
Missions class used in creating the Mission_Parameters linked list need not worry about
passing mission parameter information between them. This information becomes globally

known within the Missions class.

Phase_Diagram_Window Class: This class creates the graphical representation of the
mission data (i.e. the phase diagram). To create the window in which the phase diagram is
displayed the class inherits the class Scroll_Window developed by Andreas Steude at
Virginia Tech [Steu93]. The class is instanced by the Mission_Window Class whenever it

is requested by the user.

Mission_Window Class: This class acts as the central coordinator of all the other
classes in the Mission Profile Input System. It coordinates the creation and control of the
user-interface with the proper processing of the mission data. To create the Motif-like

window in which the data are displayed, the Mission_Window Class inherits the

The Mission Profile Input System . 36

Scroll_Window Class. Other features, such as the pop-up menus, text input areas, and
menu items are created by instancing classes created by Scott Woyak, also at Virginia
Tech [Woya92 & Woya93]. To keep track of the data, the Mission_Window Class first
inherits and then instances the Missions Class. By inheriting the Missions Class all the
routines required for manipulation of the mission data become readily available to the

Mission_Window Class.

THE PHIGS-BASED, MOTIF-LIKE INTERFACE

As mentioned above, the development of the interface for the Mission Profile Input Mission
relied heavily on a PHIGS-based, Motif-like framework developed by Scott Woyak at
Virginia Tech [Woya92, Woya93, & Mykl93]. For the sake of completeness, a brief
description of this framework is provided here.

The framework consists of five major groups of classes: Windows, Interface Managers,
Menu Managers, Menu Items, and Menu Item Managers. The Interface Manager is the
central processing class—it manages the various windows which a user creates. A variety
of windows have been defined, including geometry managers (windows that display and
maintain a PHIGS view), pop-up menus (windows which display menu items), and
dialogue managers (windows which are used to exchange information with the user).
Through inheritance, all these windows inherit the “Windows” base class which enables
them to be managed identically by the Interface Manager. Similarly, menu items inherit the
“Menu Item” class which enables them to be managed by the Menu Manager. Figure 7

outlines the class organization of the framework.

The Mission Profile Input System . 37

A ——= B Alnherits B

A ==—= B AcontroisB

.-‘mmgeduemnun\'
\ _ Unokedlst .
o Wind \ \[-__---

ee =TT~
-

‘' linked List ¢ 4

.
-
N aaee="

.‘--..- ~
-

1% Monuitem

. Linked List N 'd.---‘\,
S naaeee’ *~ Menu item N\
\ Manager »

- -

P ~
; View Manager ! __-"- ~
il N cwa=’ v Menu Manager
- - A
\\‘---__§ ..,-- ‘\
b J >~ RadioButton \
R 8 . Y Manager
’.o \] . ---\ \‘.-' \ \\\ -“‘u'
. ® . =%
\hterface Manager .l.-..‘- Window ' v Menu ltem N 'a
‘--‘-..' \\ -.‘ \\ ‘..--"‘ J’
\ - \ e TN
es ™" w --" ~
- - - -
. d N\ Radio Button \

L)
.
L R

N aeees™" LIS S A
RS -
,o° ~
et TTUN '\ Slider
-
* 3 .
|} Simple View N N eee==" - -
\\\ -.-'. \
- v Push Button N
N - ”

Figure 7. Class Organization for PHIGS Motif-like Framework [Woya92]

The Mission Profile Input System

Framework For Handling Data

Sound data handling techniques are a major prerequisite to a successful program.
Inefficient routines often result in poor or unreliable program performance. To address the
concerns of proper data handling, all data handled by the MPIS is performed through the
use of dynamic linked lists. Figure 8 illustrates the basic data configuration of the module.
As shown by the figure, all mission data is handled by three types of linked lists: the
parameter linked list, the phase linked list, and the Mission_Parameters linked list. Only
one phase and Mission_Parameters linked list exists per mission. However, the number of

parameter linked lists is equal to the number of phases in the mission—one for each phase.

Employing linked lists to manipulate object data proves to be very efficient. The swapping,
moving, and inserting of objects can be performed much quicker through pointer
manipulétion than could otherwise be possible with direct object manipulation. Moreover,
pointers allow for the dynamic allocation of memory. The module's memory requirements
can be limited to what is absolutely essential. More importantly, memory can be freed once

an object is deleted—a frequent occurrence during mission modifications.

The Mission Profile Input System is highly flexible in the types of input it can accept.
Unfortunately, however, this flexibility introduces a fair amount of complexity as to how
data must be handled. User input must be processed through numerous functions to ensure
the validity of the entry. Moreover, functions are needed to ensure that the entire mission
reflects the effects of the input. For an explanation of how the MPIS handles its data, refer

to the section “Implementation and Examples of Results.”

The Mission Profile Input System : s

/ Parameter Link List

param(1) param(2) param(3) param(n)
Phase Link List y

C Phase(2)
param(1) param(2) param(3) param(n)

/

(Phase(3)
param(1) param(2) param(3) param(n)

_—

Phase(1)

Phase(n)

param(1) [\ _g| param(2) param(3) [\ _gr| param(n)

Global Variable Link List
global variable(1)
Zgwbal variable(2)
global variable(3)
global vanable(n)

Figure 8. Internal Data Relationships

The Mission Profile Input System - 40

The User Interface

The primary purpose for developing the Mission Profile Input System is to facilitate the
creation of aircraft missions. With this in mind, the user interface for the system is
designed to accelerate the entry and manipulation of large amounts of data. The layout of
the interface is intended to give the end-user the ability to make an overall assessment of a
mission very quickly. The proper balance for displaying a complete representation of the
mission without cluttering up the screen is achieved by making extensive use of pop-up
menus. The pop-up menus employed ensure that data and options not immediately relevant
to the manipulation of the mission profile are hidden from the viewer until they are

explicitly requested.

To aid in the quick evaluation of the entire mission, all phase and parameter data are
displayed to the user simultaneously. Editing, however, cannot be performed directly on
the data on the screen. For purposes of editing, data are presented to the user one phase (or
parameter) at a time. By clicking on the value on a screen, an editing pop-up menu
displaying the data to be modified is activated. This approach is deemed desirable since it
focuses attention on the data most closely associated with the parameter to be altered. It
should be emphasized that data entry efficiency is not sacrificed by using this approach.
The number of steps required by the user to enter and modify the data are exactly the same

as it would be by using the direct entry approach.

The Mission Profile Input System is intended for experienced and novice users. A simple
consistency to the system is maintained by keeping the methods by which data are
displayed highly structured. Except in cases where it is beneficial to display more than one

pop-up menu, the number of pop-up menus on the screen is limited to one. Recognizing

The Mission Profile Input System . 41

that such a highly structured layout may serve as a hindrance to more experienced users,
multiple methods for manipulating data have been provided. For example, a novice user
can modify each parameter individually. This method provides immediate feedback on the
effects the modification has on the rest of the mission profile. The more experienced user
can manipulate data faster by modifying parameters at the phase level. At this level all the
parameters for a single phase may be modified simultaneously. Although this method is
less user friendly than modifying parameters individually, a person who is familiar and
confident with the changes to be made can create and modify a mission much quicker in

this manner.

The look and feel of the interface was developed using a Motif-like, object-oriented,
interface framework [Woya92 & Woya93]. The framework was developed at Virginia
Polytechnic Institute and State University and is based upon the three-dimensional
international graphics standard, PHIGS. It allows for the creation of Motif-like windows,
buttons, menus, etc., with Motif-like characteristic (e.g. resizable, draggable, etc.).
Because it is based on PHIGS, the interface is machine-independent, thus supporting the

portability requirements of the system.

The Mission Profile Input System . 42

8.0 CLASS DESCRIPTIONS

Overview

The Mission Profile Input System consists of six (6) major classes: Parameters, Phases,
Missions, Gobal_Variables, Mission_Window, and Phase_Diagram_Window. The
following sections describe the purpose of each class and give detailed descriptions of the
important data and functions they contain. For the exact protocol for invoking each function
the reader should refer to Appendix B.

Parameters

This class contains functions which are common to every user-defined parameter.
Consequently, every parameter which is defined for the system must inherit this class. The
Parameters class contains functions used in positioning it within the parameter linked list.
Other functions of the class are intended to facilitate the manipulation of data at the
parameter level (i.e. modifications are limited in scope to the parameter). They include
some powerful virtual functions which offer greater flexibility in the definition of new
parameters. Detailed descriptions on how to use and implement these functions are given in

the section System Customization.

Class Descriptions . 43

DATA MEMBERS-PARAMETERS CLASS

The Parameters class contains all the data pertaining to a parameter. It stores its value,
default value, and name. Since keywords (e.g. LAST, SAME, etc.) are valid entries which
represent a numeric parameter value, the value of a parameter must be stored in its two
formats: character and float. In cases of keywords, the relationship between the character
and float values is determined by the pre-defined rules governing the keyword. Otherwise,

the character value is simply the character representation of the numeric value.

The variables used to store parameter information are:

cvalue -Stores the character value of the parameter.
fvalue -Stores the float value.
cdefault -Stores the default character value.
fdefault -Stores the default float value.
_title -Stores the name of the parameter. The name of the parameter

must be a single word. However, underscores (_) can be used to
represent white spaces. These will be removed whenever the name
is displayed on the screen.

In addition, the class also contains the variable nexr—a pointer to the next parameter within
the parameter linked list. In this fashion, the position of the parameter within its linked list
is maintained.

FUNCTIONS OF PARAMETERS

The primary reason for defining each type of parameter to be its own class is that it offers
greater extendibility and flexibility. Of interest is the ability to define unique rules

governing the values of each parameter. One example is the definition of keywords.

Class Descriptions - 44

Keywords (and their corresponding set of rules) may be defined to govern the numerical
value of the parameter. Often times, keywords are used to describe a dependency of the

current parameter to the value of another parameter.

To facilitate the creation of a governing set of rules for a parameter, a series of functions is
provided by the Parameters class. These functions are used to return a pointer to other
parameters in the current or previous phase. By obtaining a pointer to a certain parameter,

its value can be easily retrieved. The functions to retrieve a pointer are:

prev -Returns a pointer to a specified parameter of the previous phase.
cur -Returns a pointer to a specified parameter of the current phase.
nxt -Returns a pointer to a specified parameter of the next phase.

The rest of the functions contained by the Parameters class are used to set and retrieve the
data of the parameter. Some functions, such as the get_value function are overloaded to
allow for the two types of value formats. Other functions, such as the sez_value_to and
check functions are declared to be virtual so that they may be redefined. By overloading

these functions a unique set of rules can be defined for the parameter. Some of the more

important functions follow:

put_next -Sets a pointer to the next parameter in the linked list.
set_param_title -Sets the name of the parameter.

set_value -Sets the value.

set_default_value -Sets the default value.

get_next -Retumns a pointer to the next parameter in the linked list.
get_param_title -Returns the name of the parameter.

get_value -Returns the value of the parameter.

get_default_value -Returns the default value.

check -checks the validity of the current value of the parameter

Class Descriptions . 48

Phases

This class contains functions which are common to every user-defined phase.
Consequently, every phase which is defined for the system must inherit this class. The
constructor of the class (an initialization routine which is launched automatically when the
object is created) creates the parameter linked list associated with the phase. In addition to
functions used to create the parameter linked list, the class also contains functions which
allow for the manipulation of data at the phase level. Phase level manipulation allows for
the modification of an entire phase or of one or more of its parameters. The Phases class
also contains certain private and virtual functions designed to facilitate the definition of new

phases and the rules which may be imposed upon its parameters.

DATA MEMBERS-PHASES CLASS

A large portion of the information attributable to a phase is contained within its parameter
linked list. The parameter linked list is self-contained—i.e. the parameter data is
encapsulated within the parameter object and is not part of the phase object. Consequently,
the amount of data stored by the Phases class is quite small. Only three variables are

required. They are as follows:

phase_title -Stores the name of the phase. The same naming convention
applies for naming a phase as does for naming a parameter.
first_param -A pointer to the first parameter of the parameter linked list. Only

the location of the first parameter is required since each parameter
will point to the next one in the list.
next -A pointer to the next phase in the phase linked list.

Class Descriptions . 46

FUNCTIONS OF PHASES

Like parameters, phases are defined to be their own objects in order to enhance their
extendibility and flexibility. Because modifications are done at the phase level, comparisons
can easily be made between the various parameters of a phase. This allows for the
implementation of unique dependencies among the parameters—a powerful feature in

expediting the creation of a mission profile.

As mentioned, the creation of parameter dependencies relies heavily on comparing
parameter values. To facilitate the task, a set of functions is provided by the class Phases

which return the value of a specified parameter in either the current or previous phase.

These functions are follow:

number -Returns the float value of the specified parameter in the current
phase.

prev_number -Returns the float value of the specified parameter in the
previous phase.

word -Returns the character value of the specified parameter in the

current phase.
set -Sets the specified parameter to the specified value. The function is
overloaded to provide for character and float values.

The majority of the remaining functions contained by the Phases class may be divided into
two types: functions to create the parameter linked list, and functions to manipulate the data
within the parameter linked list.

The task of creating the parameter linked list is primarily handled by two functions. The
first, the get_proper_param function, returns a pointer to a parameter object which it

creates. The type of object it creates is determined by the parameter name which it receives

Class Descriptions . 47

as an argument. The second function is the load_param_values function which creates the
linked list from the information it receives. To assist it in creating the linked list, this

function makes repeated calls to the get_proper_param function.

The second type of function provides for the setting and retrieving of parameter data. The
parameter to be modified may be specified by indicating its position within the parameter
linked list or by specifying the parameter by name. Some of the functions provided by the

class are as follows:

set_param_char_value -Sets the value of the specified (by name) parameter to the
character value.

set_param_float_value -Sets the value of the specified (by name) parameter to the float
value.

set_first_param -Sets the parameter specified (by pointer address) to be the first
parameter of the parameter linked list

get_param_pointer -Returns a pointer to the specified (by position) parameter.

get_float_param_value -Retrieves the value of the specified (by name) parameter.

get_first -Returns a pointer to the first parameter of the linked list

In addition to the aforementioned functions the class Phases has two very important virtual
functions. The first is the check function which executes the various rules which have been
defined for the phase. The function contains all the rules defined by the user and therefore
must be edited when wishing to alter the rules for the phase. The second virtual function is
the geo_segment function. This routine creates the graphical representation of the phase.
The base definition for the function creates a straight line for every type of phase. To create

more complicated representations, this function for the particular phase must be redefined.

Class Descriptions . 48

Mission_Parameters

The Mission_Parameters class is the object data type of the mission parameters for the
Mission Profile Input System. The purpose for defining each mission parameter to be a
distinct object is to provide for system extendibility. Aircraft CAD systems require various
information for their particular analysis programs. Some systems require additional variable
data, such as data type and data format. To accommodate additional requirements imposed
by the various systems, the data type (i.e. class) may be quickly and easily modified.

DATA MEMBERS-MISSION_PARAMETERS CLASS

The Mission_Parameters class of the stand-alone version of the MPIS provides for four
pieces of information for each mission parameter: the name, the value, a code indicating

whether the variable should be displayed, and a comment about the variable.

name -The name of the variable.

value -The value of the variable

display -A code indicating whether the variable should be displayed on the
Other_Variables Menu (See the User Guide in Appendix B).

comment -Storage space for miscellaneous information about the variable.

This variable is included to allow for one additional piece of
information without the need to physically modify the code.

Like parameters and phases, mission parameters are maintained and manipulated in a linked
list. Each mission parameter contains the variable next which points to the next mission

parameter in the linked list.

Class Descriptions . 49

FUNCTIONS OF MISSION_PARAMETERS

The functions of the class Mission_Parameters are limited to setting ’and retrieving the
various data of each variable. For every variable in the class, there exists one function to set
it and one to retrieve it. In adapting the MPIS to different CAD systems it may become
necessary to add more complex routines. The functions defined for the class in the

stand-alone version of the MPIS are:

put_next -Sets a pointer to the next mission parameter of the linked list
set_mp_name_to -Sets the name of the mission parameter to whatever is specified.
set_mp_value_to -Sets the value of the variable

set_mp_display_to -Sets the display code.
set_mp_comment_to -Sets the miscellaneous piece of information.

get_next -Returns a pointer to the next mission parameter of the linked list
get_mp_name -Returns the name of the current variable

get_mp_value -Returns the value of the current variable.

get_mp_display -Retumns the display code.

get_mp_comment -Returns the miscellaneous comment.

Class Descriptions . 50

Missions

This class is the object data type of a mission. It contains all the data and functions
necessary to create, manipulate, and modify a mission profile. It creates a mission
interactively or by reading information from a file. Either way, it creates the appropriate
phase and mission parameter objects from the information it receives. The Missions class
coordinates the plethora of data by grouping it into two distinct linked lists: the phase
linked list and the Mission_Parameters linked list. Linked lists are utilized because they
increase the efficiency by which the data can be manipulated. It is more efficient to
manipulate a list of objects through the modification of their pointers, than it is to

manipulate the objects themselves.

DATA MEMBERS-MISSIONS CLASS

The majority of the information a mission contains is stored within the phase and
Mission_Parameters linked lists. Therefore, the amount of data stored by the mission class
itself is quite small. It is limited to the name of the mission, the list of parameter names
which the mission contains, and a pointer to the first phase of the mission. A variable also
exists to store the names of available phases which can be dynamically added to the

mission. The actual variable names used by the mission are as follow:

mission_name -Stores the name of the mission. The same naming convention
applies for the naming of a mission as does for the naming of a

phase or parameter.
_names -An array which stores the name of the parameters contained

within the mission. The order in which the names appear in the
array is the order by which they appear on the screen.

Class Descriptions . 51

names_of_avail_phases -An array which stores the names of phases which can be added
interactively by the end user during a session.

FUNCTIONS OF MISSIONS

The Missions class contains a wide variety of functions designed to manipulate mission
data. The functions perform manipulation at the mission level which implies that they have
open and direct access to all data. This allows for the creation of sophisticated relations
between any number of mission variables. For example, the value of a parameter within a
certain type of phase can be linked to the value of a specific mission parameter. To facilitate
the creation of such relations, functions to set, retrieve, and navigate through data are
provided. An attempt was made to make the list of functions comprehensive. If more
complex or specialized functions are required in the future, they will no doubt be definable
by the combination of two or more of the following functions. The functions are grouped
into four distinct types: functions to create a mission, functions to manipulate parameters,

functions to manipulate phases, and functions to manipulate mission parameters.
Functions to Create Mission:

get_proper_phase -This function returns a pointer to a phase object which it creates.
The type of object it creates is determined by the phase name it
receives as an argument. It also receives a list of values which it
assigns to the linked list of parameters which is created when the
phase is instanced.

create_mission -The function which creates a mission profile by reading data from
a file. From the data read, it creates the linked list of the phases by
making successive calls to the get_proper_phase function. Once it
completes the phase linked list, it creates the linked list of mission
parameters by instancing the Mission_Parameters class.

Class Descriptions - 52

save_miss -This function archives the current mission. It stores the mission
data in a recognizable format to a file specified by the user.

Functions to Manipulate Parameters:

get_num_of_params -Returns the number of parameters in the parameter linked lists.
Since every phase must contain all the parameters available, every
parameter linked list necessarily has the same number of
components.

update_element -Changes the value of the parameter to the newly specified one.
The parameter to be modified is specified by position—the
position of the phase it belongs to in the phase linked list, plus the
position of the parameter within its parameter linked list. The
function is overloaded to allow for character and float value types.

reset_to_default_value -Resets the value of a parameter to its default value. The parameter
is specified by position.

retrieve_float_value -Retrieves the float value of the specified (by position) parameter.

retrieve_char_value -Retrieves the character value of the specified (by position)
parameter.

move_param -Moves a parameter specified by name from its current location
within the parameter linked list to the newly specified one.

retricve_param_title -Retrieves the name of the parameter specified by position. Since
the order in which parameters appear is the same for every phase,
only the location of the parameter within the parameter linked list
needs to be specified.

get_max_param_value -Retrieves the maximum value of a parameter. The parameter must
be specified by name. The routine traverses the phase linked list of
the mission and returns the maximum value it encounters for the
parameter in question.

get_min_param_value -Retrieves the minimum value of a parameter. The parameter must
be specified by name. The routine traverses the phase linked list of
the mission and returns the minimum value it encounters for the
parameter in question.

Class Descriptions . 53

copy_eclement

-The function copies the value of one parameter onto a second
one. Both parameters are specified by position. Note that the
usefulness of this function is somewhat limited since only one
parameter can be copied at a time. However, the function can
serve as a building block to more complex copying routines.

Unlike parameters, phase object types are not unique within their respective linked list.

More than one CLIMB phase, for example, can be contained within a mission.

Consequently, when modifying a phase, it should never be specified by name. Instead, a

phase should always be specified by its position within the phase linked list.

Functions to Manipulate Phases:

get_phase_pointer -Returns a pointer to the specified phase.

get_num_of_phases -Returns the number of phases contained by the current mission.

insert_phase -Inserts a new phase into the specified position. The new phase is
created by calling the get_proper_phase function which creates the
phase object from the phase name it receives.

add_phase -Works identically to the insert_phase function except that instead
of inserting the new phase in the phase link list it adds it to the end
of the list.

delete_phase -Removes the specified phase from the phase link list. The object
is deleted to free up memory.

default_phase -Works identically to the get_proper_phase function except that it

reset_phase_defaults

move_phase
retrieve_phase_title

only takes one argument—the name of the phase. It reads the
names and values for its parameter linked list from a file which
contains their default values. This is used to quickly add entire
phases to the mission profile.

-Resets all the parameters within the phase to their default values.
This is done by making successive calls to the
reset_to_default_value function.

-Moves the specified phase to a new position.

-Returns the name of the specified phase.

Class Descriptions

54

assign_values_to_phase -Assigns a list of values to the parameters of the phase. The values

are assigned sequentially—the first value is assigned to the first
parameter, the second value to the second, etc. Assignment of
values continues until the list of values is exhausted or the number
of parameters is exceeded.

Functions to Manipulate Mission_Parameters:

load_mission_parameters

-This function is called by the create_mission function to create the
Mission_Parameters linked list. It reads information from a
specified file and properly loads it into the Mission_Parameters
object is creates.

write_mission_parameters

get_mp_pointer

set_mp_value_to

get_float_mp_value

get_char_mp_value

-This function is called by the save_miss function to store the
mission parameters in their proper format. The file to which it
writes is received as an argument.

-This function returns a pointer to the specified mission parameter.
The function is overloaded to allow specification of the variable by
either name or position.

-This function is also overloaded. It sets the specified (by name)
mission parameter a new value. The function is overloaded to
provide for both character and float values.

-This function retrieves the float value of the specified mission
parameter. The variable must be specified by name. The class
Mission_Parameters makes no provisions for storing mission
parameters in both character and float formats. Thus the function
tests whether the character value can be converted to a float type.
If it cannot, it returns an error message.

-This function returns the character value of the mission
parameter.

Class Descriptions

55§

Phase_Diagram_Window

The Phase_Diagram_Window class creates a graphical representation (i.e. phase diagram)
of the mission data to aid the user in a quick assessment of the mission. The class is
comprised of mostly private variables and functions which enable it to display the diagram.
Except for the Motif-like qualities of the window, which allow the user to resize and drag
the window, the class makes no provisions for interactive modification of how the diagram
is displayed. The user can, however, select a particular phase and the corresponding phase
editing menu in the main window (i.e. the window containing the data) will be activated

and will be ready for input.

DATA MEMBERS-PHASE_DIAGRAM_WINDOW CLASS

As previously mentioned, the data contained within this class is used mostly to allow the
class to properly display the phase diagram. Variables are defined to store information such
as the width, height, and scaling factors of the diagram. One important variable that needs
mention, however, is the mission_window variable. This variable stores a pointer to the
main window (i.e. the window which displays the data). This pointer is used to return
control of the program to the main window whenever the user clicks on a leg of the

diagram.
FUNCTIONS OF PHASE_DIAGRAM_WINDOW

As is the case with the data pertaining to this class, the functions defined are mostly for

internal use. The functions automatically retrieve data from the mission and properly scale it

Class Descriptions - 56

to create the phase diagram. No input from the user is required. A brief explanation on the

purpose and functionality of the more important functions follows:

set_proper_scale

set_proper_zoom

create_axis

create_geometry

display_error_message

-This function calculates the correct scaling factors in the x and y
directions to properly display the graph. The x scaling factor is
always set equal to one and the y value is calculated accordingly.
The y value is calculated using the following formula:

|max imum_ x — minimum_ x|
(6 * maximum_y)

It was determined, through the process of trial-and-error, that this
formula generates the desired visual results.

-This function retrieves the maximum and minimum x and y
values from the mission and sets the correct view magnification to
display the scaled diagram properly. The required maximum and
minimum values are retrieved by using the get_max_param_value
and get_min_param_value functions respectively. These functions
are defined for the class Missions. Before the magnification of the
window is set, a call to the set_proper_scale function is made to
determine the actual size of the scaled diagram.

-This function creates the axis for the diagram. Since the
magnification of the display window is continually changing, the
size of the axis must also be continually updated to retain a fixed
appearance on the screen.

-This function creates the phase diagram. It creates a PHIGS
structure and inserts each leg of the phase diagram by calling the
geo_segment function of each phase.

-This routine is used to display an error message in the phase
diagram window whenever the graph can not be constructed.

Class Descriptions

57

Mission_Window

The Mission_Window class serves as the coordinator for all other classes in the Mission
Profile Input System. The class controls all aspects of the program—from the interactive
display on the screen to the “behind the scene” synchronized execution of data manipulation
routines. The data manipulation functions are directly accessible to the Mission_Window
class through the inheritance of the class Missions. To assist it in the creaf;ion of the
user-interface, classes created at Virginia Tech by Scott Woyak [Woya92 & Woya93] and
Andreas Steude [Steu93] are used. These classes create many of the objects which make
up the graphical user interface. The names of the particular classes employed are given in

Appendix B under “Other Classes.”

DATA MEMBERS-MISSION_WINDOW CLASS

All the data contained within the Mission_Window class is for internal use only. Pointers
and flags for object types such as menus, menu items, labels, and color groups are defined
and used to properly coordinate the various interactive features of the user interface. None
of these variables has significance beyond being holders for information required by the

class.

FUNCTIONS OF MISSION_WINDOW

The functions of the Mission_Window class can be generally divided into two types:

functions which create objects to be displayed on the screen and functions which govern

Class Descriptions . 58

and process the internal control of the program. The majority of the functions are used to
create the various interactive menus of the user interface and to transfer program control

between them.
Functions Which Create Objects:

The stand-alone version of the Mission Profile Input System contains sixteen separate
menus. These menus allow the user to manipulate the data and the way in which it is
displayed. Although separate functions exist for each type of menu, all the functions are
similar in structure. The pop_up menu and its menu items are created by instancing the
appropriate classes [Woya92] and control is maintained by executing a control loop until
some valid input is received from a logical input device. The sixteen functions which create

the different menus are as follow:

filename_menu -Creates a menu which prompts the user for the name of a file.
mission_parameter_menu
-Creates the only menu which does not demand complete program
control. The control can be toggled between this menu and other
windows. The menu displays a selected list of mission

parameters.

phase_options_menu -Creates a menu which displays the various options available for
manipulating phases.

options_menu -Creates a menu which displays the general options available to the

user. Routines that can be executed from this menu affect the
entire mission. Examples are: Save Mission, Retrieve Mission,
Modify Display, etc.

add_phase_menu -Creates a menu which displays the phases available for addition
to the mission.

phase_menu -Creates a menu which lists all the parameter values of a particular
phase. This menu is the primary method by which parameter
values can be modified.

Class Descriptions . 59

parameter_menu

move_parameter_menu

confirm_menu

message_menu

apply_defaults_menu

row_column_menu

quick_input_menu

retr_del_file_menu

other_variables_menu

select_variables_menu

-Creates a menu which lists all the values of a particular parameter
(i.e. lists the value of a particular parameter for all the phases).
This menu is an auxiliary method by which parameter values can
be modified.

-Creates a menu which allows the user to move a particular
parameter.

-Creates a menu which requests confirmation to the previous
command.

-Creates a menu which displays a message to the user. The menu
waits for acknowledgment from the user.

-Creates a menu which allows the user to reset a particular
parameter to its default value. Of the sixteen menus, this is the
only one which never removes the previous menu from the screen.
Consequently, more than one menu is displayed whenever this
menu is activated. However, although multiple menus appear,
only this one accepts input.

-Creates a menu which allow the user to vary the column and row
spacing of the display.

-Creates a menu which allows the user to modify all of the
parameters of a particular phase simultaneously. This method is
not as user-friendly as the method offered by the parameter_menu,
but it is much more efficient for the experienced user.

-Creates a menu which lists all the files containing mission data.
The routine looks for all files with a “.miss.data” extension in a
specified directory.

-Creates a menu which lists all mission parameters specified as
‘“viewable” in the select_variables_menu.

-Creates a menu by which the user can select the variables to be
displayed by the other_variables_menu.

The user-interface consists of objects aside from menus. The most significant of these are

the five push-buttons which appear directly above the main window (the window which

displays the data). The buttons are created using the create_additional_components

Class Descriptions

function. This function is available to the Missions class from inheritance of the

Scroll_Window class [Steu93].
Functions Which Govern Control:

As mentioned previously, the functions which create the menus contain control loops
which maintain control within their corresponding menus. However, this control is only
local—the menu, and its control loop, are destroyed when the menu disappears from the
screen. General control is primarily enforced by three functions. These functions process
input from the logical input devices and act accordingly. All three functions are defined to
be virtual in the base class Scroll_Window [Steu93] and are redefined by the

Mission_Window class to reflect its particular needs. The functions are as follows:

process_additional_components
-This function is used to process information from the additional
components defined in the Mission_Window class (objects which
are defined in the derived class, Mission_Window, but not in the
base class Scroll_Window). The Mission_Window class has
five such components—the five push buttons which appear at the
top. Thus, this function processes information whenever one of
these buttons is selected.

process_geometry_view
-This function processes information whenever a logical input is
detected inside the geometry view (i.e. inside the window in
which the data is displayed). The function returns a variety of
information concerning the location and description of the item
selected. However, only the logical pick information is of interest
for the purposes of the class.

Class Descriptions : 61

process_from_mouse

-This function processes information whenever the computer
mouse button is pressed. Because the Mission Profile Input
System relies heavily on input from the mouse, this function is
perhaps the most important of the control processing functions.
When input from the mouse is detected, the function determines
what item on the screen was selected and routes control
appropriately. One of the functions it calls is the
process_additional_components routine which tests whether one
of the components defined within Mission_Window was selected.

The Mission_Window class contains additional functions to those listed so far. However,

they are mostly intended to perform functions that are frequently required by the routines

just described. Some of the more important ones are listed.

initialize_colors

refresh_window

toggle_window

scan_for_pick

-Resets the PHIGS color table to ensure that certain color indices
reflect certain colors.

-Updates the window to reflect the latest changes.

-Toggles the window between its current size and the specified
one.

-This function is used extensively by functions which create the
menus. It takes a pick id and determines what type of data was
selected. It routes control accordingly.

Class

Descriptions

62

9.0 SYSTEM CUSTOMIZATION

Overview

The Mission Profile Input System is intended for use by a variety of CAD systems.
Recognizing that requirements will vary for different programs, the module was designed
to be customizable. Parameters, phases, and mission parameters can be easily created,
modified, or deleted, to accommodate the various requirements. Much thought was given
to whether such flexibility should be given at the implementation or end-user level. Finally
it was decided that this flexibility should be introduced at the implementation level. It is
foreseen that the programs onto which the module will be implemented will have a fixed set
of requirements (i.e. the types of parameters, phases, and mission parameters the CAD
system will accept). In order for the module to function correctly, such requirements must
be addressed upon the module's implementation. Once the module is implemented, the user
will have no need for the ability to define new object types, since the host CAD system is

unable to process them.

The following sections describe in detail the steps required to customize the module. They
describe how to create, modify and delete parameters, phases, and mission parameters.
However, to accomplish this requires some knowledge of the data files which the MPIS
creates for archiving purposes. For this reason, the explanation begins with a description of

these files.

System Customization . . 63

Trajectory Data Files

Figure 9 lists a typical trajectory data file. The first two lines of the file contain the name of
the mission and the number of mission phases, repectively. The third line gives a listing of
all the parameters. Note that the entire list of parameters MUST be contained within one
line and that entries MUST be separated by at least one tab character. Beginning on line
four, the phases contained by the mission are listed. Each line consists of the phase name
plus the values of its parameters. The list of values correspond in order to the list of
parameters given in line three. Tabs are used to separate the entries within each phase and

end-of-line characters are used to separate the phases.

All defined parameters must be listed for each phase. A distinction should be drawn
between the list of parameters found on the second line of the file and the list of phases
which subsequently follows. The list of parameters lists ALL the parameters which have
been defined for the module. Since multiple instances of the same parameter are not
allowed for any given phase, each entry in the list must be unique. The list of phases, on
the other hand, lists the phases which the mission contains and do not necessarily reflect all
the phases which are available. Moreover, since each mission may contain multiple

occurrences of the same phase, each phase entry need not be unique.

After the list of phases contained by the mission is exhausted, a listing of the mission
parameters begins. Each line thereafter contains the data for one mission parameter: the
name, the value, a code denoting whether it should be displayed, and a brief associated
comment. Like previous entries, each of these entries must be separated by at least one tab

character.

System Customization . 64

line 1

line 2

line 3

line4

line 5

line 6

line 7

line 8

line 9

Mission_Name

4

PARAM1 PARAM2 PARAM4 PARAM3 PARAMS

PHASE1 valuel-1 value1-2 value1-3
PHASE2 value2-1 value2-2 value2-3
PHASE3 value3-1 value3-2 value3-3
PHASE4 value4-1 value4-2 value4-3
gv1_name gv1_value gv1_display_code gv1_comment

gv2_name gv2_value gv2_display_code gv2_comment

additional global variables

Figure 9. Trajectory Data File

valuel-4

value2-4

value3-4

value4-4

value1-5

value2-5

value3-5

value4-5

System Customization

65

Phase Defaults File

To facilitate and expedite the creation of trajectory missions by the end user, entire phases
may be added with the click of a button. The file phase.dfl.miss is found in the same
directory as the trajectory data files and contains a listing of all the phases which are

available to the MPIS. Figure 10 shows the file.

Line one of this file gives a listing of all the parameters. The order of the list is arbitrary.
However, once defined, it governs the order in which the parameter values must be listed
in the phase definitions which follow. The rest of the file consists of information for the
default phases. As in the Trajectory Data Files, phases are defined within a single line. The
line is comprised of the phase name and the default values of the phase parameters. Asin

previous files, all entries within a line must be separated by at least one tab character.

System Customization : 66

line 1

line 2

line 3

line 4

line S

PARAM1 PARAMZ PARAM4

PHASE1 valuel-1 value1-2

PHASE2 value2-1 value2-2

PHASE3 value3-1 value3-2

PHASE4 valued-1 value4-2

additional phases which are defined

Figure 10. The Phase.dfl.miss File

PARAM3

valuel-3

value2-3

value3-3

value4-3

PARAMS5

valuel1-4

value2-4

value3-4

vaiue4-4

valuel1-5

value2-5

value3-5

value4-5

System Customization

67

Parameters

Creation

Figures 11(a) and 11(b) give a typical class definition for a parameter. A separate class

must be defined for each type of parameter. Note that each parameter class which is created

must inherit the class Parameters which contains all the functions associated with the

object. New parameters can be easily defined by adhering to the following procedure:
1.
2.

Copy the code given in Figure 11(a).

Change the name of the class to reflect the new parameter. Ensure that
the name change is reflected in the constructor of the class.

Assign the class a new reference name. This is done by changing the
name inside quotes in the set_param_title_to function call. The name
given to the parameter must be a single word and is the EXACT title by
which the parameter must be referred when referenced by name from
any other part of the code. Although the name is restricted to being a
single word, underscores may be used in its definition. These
underscores will be treated as blank spaces when the title is displayed
on the screen.

Add a new conditional statement to the function
Phases::get_proper_param. Figure 11(b) illustrates the format of the
conditional statement. Note that the name of the new parameter must
be placed inside the quotes found in the conditional test and that the
newly defined parameter class must be reflected in the call to the new
data type.

Modify the phase.defaults.miss to reflect the newly created parameter.

System Customization

68

class parameter_name : public Parameters

{
public:
parameter_name (char value [])

{
set_param_title_to ("NAME");

if (format_type (value))
set_value_to (value);
else
set_value_to (atof (value));
set_default_values (value);

next=NULL;
}

arg3 = list of acceptable input

void check () { checker (argl, arg2, arg3);)

// assign name

// same as above

// give name of parameter

// optional: used to list acceptable entries
// optional: Redefine function.
/1 see following sections

Figure 11(a). Basic Parameter Definition

Parameter *Phases::get_proper_param (char* name, char* value)

{

else if (! (stremp ("NAME", name)))
{

param = new parameter_name (value);
return param;
}

// add new conditional statement

/] give object type
// return pointer to parameter

Figure 11(b). Modification Required For Parameter Definition

System Customization

69

Modification

The primary reason for defining each type of parameter to be a separate class is that it offers
the flexibility of defining set rules which are unique to each one. This is done through the
use of virtual functions. Virtual functions are functions which are defined in the base class
but may be redefined by derived classes. The power of such functions is that each derived
class can make identical function calls without necessarily referring to the same routine.
Virtual functions which are not redefined by the derived class default to the base class

definition.

The Parameters class offers two virtual functions: the set_value_to and the check functions

(Appendix B describes the exact function protocol).

THE SET_VALUE_TO FUNCTION

The first function, set_value_to , is overloaded. The term "overloaded" implies that
separate routines are called depending on the types of arguments used in calling the
function. The reason for overloading this function is that the procedure required for setting
the value of the parameter is contingent upon the type of the value. A value of type float is

treated differently than a value of type character.

In its base class definition, the set_value_to function simply assigns the argument as the
value of the parameter. However, because the function is virtual, it may be redefined to
perform more sophisticated assignments. For example, bounds may be imposed on the
value of the parameter by performing conditional tests. If the value is above (or below) a

certain value, the value can be reset to the proper bound, an error message can be

System Customization . 70

displayed, or the previous value of the parameter can be restored. In other instances, where
only a certain type of data is allowable, this function can be redefined to ensure that the data
meets the proper criteria. Regardless of its sophistication, however, it should always be
kept in mind that the assignment occurs at the parameter level. Consequently, access to data
is restricted in scope to the current parameter. The implication of such a restriction is that
the parameter value cannot be compared to values outside of it—comparisons to other
parameters or mission parameters are not allowed. Because this assignment is done at the
lowest (i.e. parameter) level, caution should be used in defining rules. This set of rules

will supersede all other rules which may be imposed at the phase and mission levels.

THE CHECK FUNCTION

In manipulating vast amounts of data, it is often convenient if keywords can be assigned to
variables which imply certain dependencies. Not only does it make the data more readable,
it often reduces the work required in making modifications to it. For example, if the final
speed of a phase is the same as its initial speed, it is much more readable, and convenient,
to assign the parameter the keyword "SAME" than it would be to assign it the numerical
value of the initial speed. Moreover, if the initial speed is altered, the keyword "SAME"
will still be valid whereas the numerical value will no longer be.

The virtual function check is used to process such keywords. It calls the function
checker(argl, arg2, arg3) whose arguments dictate how the keywords are processed. The
first argument must be the name of the parameter from the current phase whose value will
be substituted for the keyword "SAME". The second argument is the name of the parameter
from the previous phase whose value will be substituted for the keyword "LAST". The

last parameter is a list of words that will be considered acceptable input by the parameter.

System Customization : 71

To illustrate the function's usage, suppose that the parameter FINAL_SPEED is being
defined. In this case the keyword "SAME" should refer to the value of the parameter
"INITIAL_SPEED" of the current phase. The final speed of the phase depends on
conditions of the current phase, not those of the previous one. Therefore the keyword
"LAST" should have no meaning. Finally, suppose that a maximum speed is defined. The
keyword "MAX" should be allowed to reflect this upper limit. Thus a list containing this
keyword should be used as the third argument. The process of redefining the virtual

function is as follows:

1. Define the list of acceptable keywords:
char list [] [] = { "MAX", NULL};
2. Redefine the virtual function:
check () { checker ("INITIAL_SPEED",NULL,list) };

Note that the first two arguments have routines associated with them. The third argument,
however, only makes the entries in the list acceptable—it does not describe how these
words will be processed. In the example given, the set_value_to function of the parameter
must be redefined to check for the keyword "MAX". If the value matches the keyword, the

maximum value should then be attributed to the parameter.

Example: redefining the set_value_to function:
parameter_name::set_value_to (char *value)
{

if (! (strcmp ("MAX", value)))
fvalue = 1000.00;

System Customization . 72

In summary, the parameter FINAL_SPEED, in this case, would accept all numeric entries,
plus two keywords: "SAME" and "MAX". It should be noted that in its default definition
check function provides only for numeric entries. Any non-numeric entries are treated as

invalid entries.
Deleting

To delete a parameter which has previously been defined, the following procedure must be
followed:

1. Delete its class definition.

2. Delete the conditional statement in the function get_proper_params.

3. Eliminate its name and default values in the phase defaults file.

Phases
Creation

Figures 12(a) and 12(b) give a typical class definition for a phase. A separate class must be
defined for each type of phase. Note that each phase class inherits the class phases which
contains all the functions associated with the object. New phases can be easily defined by

adhering to the following procedure:
1. Copy the code given in figure 12(a).

2. Change the name of the class to reflect the new phase. Ensure that the
name change is reflected in the destructor of the class.

3. Assign the class a new reference name. This is done by changing the
name inside quotes in the ser_phase_title_to function call. The name
given to the phase must be a single word and is the name by which the
phase must be referred to exactly when referring to it by name from any
other part of the code. Although the name is restricted to being a single

System Customization . 73

word, underscores may be used in its definition. These underscores
will be treated as blank spaces when the title is displayed on the screen.

4, Add a new conditional statement to the function
Missions::get_proper_phase. Figure 12(b) illustrates the format of the
conditional statement. Note that the name of the new phase must be
placed inside the quotes found in the conditional test and that the newly
defined phase class must be reflected in the call to the new data type.

5. Modify the phase.defaults.miss file to ensure that the newly created
phase is reflected.

Modification

As is the case with parameters, defining each type of phase as a separate class allows for
the definition of set rules unique to each one. As explained earlier, this is accomplished via

use of virtual functions.

Like the parameters class, the phases class provides two virtual functions. They are the

calculate and geo_segment functions.

THE CALCULATE FUNCTION

The calculate function is similar to the check function described earlier in that it is used to

impose user-defined constraints on parameter data. A significant difference, however, is

System Customization . 74

class phase_name . public Phases

{
public:
~phase_name () { delete_phase_variables ();)

phase_name (char *param_titles [], char *input)
{
set_phase_title_to ("NAME"),
load_param_values (param_titles, input)

next = NULL;
}

void calculate (;

/1 assign name

// reflect phase name
// reflect phase name

// give name of phase

// optional: Include to redefine the
// function. See following sections

Figure 12(a). Basic Phase Definition

Phases *Missions::get_proper_phase (char* title, char* data [])

{

else if (! (stremp (title, "NAME™)))
{

phase = new phase_name (value);
retum phase;
}

// add new conditional statement

1/ give object type
// return pointer to phase

Figure 12(b). Required Modification for Phase Definition

System Customization

78

that this function is performed at the phase level. Comparisons between parameters
belonging to the same or the previous phase can be made. Simple to complicated parameter
interdependencies can be quickly constructed. These parameter interdependencies are

unique to the phase in which they are defined.

To simplify the creation of such dependencies, four private functions are currently provided

to return character or float information from a specified parameter. They are as follow:

prev_number (name): This function returns the numeric value of the specified
parameter from the previous phase. To return the value of the parameter FINAL_SPEED

in the previous phase, the following function call is used:

prev_number ("FINAL_SPEED");

number (name): This function returns the numeric value of the specified parameter from
the current phase. To return the value of the parameter FINAL_SPEED in the current

phase, the following function call is used:
number ("FINAL_SPEED");

word (name): This function returns the character value of the specified parameter from
the current phase. To return the value of the parameter FINAL_SPEED in the current

phase, the following function call is used:
word ("FINAL_SPEED"),

set (name, value): This function is overloaded to handle an argument of type float or of
type character. It sets the value of the specified parameter to the specified value. To set the
value of the parameter FINAL_SPEED to the keyword "SAME" the following function call
is made:

set ("FINAL_SPEED", "SAME");

System Customization - 76

or, to set the value to 10.0, use:
set ("FINAL_SPEED", 10.0);

As an example of redefining the calculate function, the parameter "DISTANCE"—the

distance traveled during the current phase—can be defined simply as the following:
calculate 0 {
float time = number ("TIME_ELAPSED");
float final_speed = number ("FINAL_SPEED"),
float init_speed = number ("INITIAL_SPEED");
float new_value = int_speed + ((final_speed - init_speed) / 2.0) * time ** 2.0;
set ("DISTANCE", new_value); }

Other, more complicated, interdependencies can similarly be created.

THE GEO_SEGMENT FUNCTION

The geo_segment function is used by the class Phase_Diagram_Window to represent the
mission data in graphical form (i.e. the phase diagram). The function constructs the
graphical representation of its corresponding phase. The default function definition creates
a straight line proportional to the distance covered by the phase. This function may be
redefined to create more sophisticated graphical representations. In redefining the function,
caution should be used to ensure that the newly defined representations correctly reflect

scaling.

System Customization . 77

Miscellaneous

In addition to imposing rules on the parameter and phase levels, rules may also be imposed
on the mission level. In general, rules at this level can affect data throughout the mission.
Such rules, for example, may include routines to alter various parameters whose values are
contingent on the values of some specified mission parameter. Regardless of how simple
or sophisticated the testing routines may be, it is suggested that they be defined within
functions which are made part of the Missions class. These functions should then be called

from the appropriate location within the refresh function.

System Customization . 78

10.0 IMPLEMENTATION AND EXAMPLES OF
RESULTS

Overview

The design and creation of the Mission Profile Input System (MPIS) is now complete—the
design and user requirements outlined in the “Requirements” section have been
implemented. The result has been the stand-alone version of the MPIS. Testing of the
system has demonstrated that the objectives initially set forth have been satisfied. The
system offers a friendly, interactive method by which a mission profile can be created,
manipulated, and modified. The structured and forthright approach to the input of data
offered by the system is of great benefit to the novice user. Equally important, however,
the system also offers various methods by which the experienced user can circumvent the
rigidity of such an approach to accelerate the process of creating and manipulating a

mission profile.

The resulting system has also proven to contain good extendibility features. To test the
customization traits of the system, the stand-alone version of the MPIS has been
customized to be compatible with the aircraft CAD system, ACSYNT (see the section
“Integration With ACSYNT”). The design structure of the program has proven sufficiently
robust and flexible such that no major modifications or extensions to the code were

required in the adaptation of the system.

Implementation And Examples Of Results 79

The Stand-Alone Version Of The MPIS

The stand-alone version of the MPIS is intended to demonstrate the functionality of a
general, customizable system which can be used to create and manipulate mission profiles.
Since existing aircraft CAD systems have a variety of phase and parameter requirements,
no attempt was made to include a comprehensive definition of phases and parameters with
the stand-alone version. Rather, the phases and parameters defined within this version of
the MPIS are intended to demonstrate the flexibility of the system—serving as templates for

the definition of new ones.

The following parameters and phases have been implemented to prove the design of the
system. However, it should be emphasized that they are merely intended to prove the
concept and will thus most likely have to be modified or replaced upon adaptation of the
MPIS to a CAD system.

Parameters defined:

Class Name: initial_:
Parameter Name: INIT_SPD
Notes: The following keywords are defined:
LAST -Sets the float value of the parameter equal to the

float value of the parameter FINAL_SPD from the previous phase.

Class Name: final_speed
Parameter Name: FINAL_SPD
Notes: The following keywords are defined:

SAME -Sets the float value of the parameter equal to the
float value of the parameter INIT_SPD from the same phase.

Implementation And Examples Of Results 80

Class Name:
Parameter Name:
Notes:

Class Name:
Parameter Name:
Notes:

Class Name:
Parameter Name:
Notes:

Class Name:
Parameter Name:
Notes:

Class Name:
Parameter Name:
Notes:

Class Name:
Parameter Name:
Notes:

initial_altitude

INIT_ALT
The following keywords are defined:
LAST -Sets the float value of the parameter equal to the

float value of the parameter FINAL_ALT from the previous phase.

final_altitude

FINAL_ALT

The following keywords are defined:

SAME -Sets the float value of the parameter equal to the
float value of the parameter INIT_ALT from the same phase.

time

" TIME

None

distance
DISTANCE
This parameter is calculated automatically. It is defined as:

INIT_SPD+ _;_(FINAL _ SPD2— INIT _ SPD)HM £
total_distance
TOTAL_DIST

This parameter is calculate automatically. It is defined as:
TOTAL_DIST(from previous phase) + DISTANCE

direction

DIRECTION

The following character entries are permitted:

F -indicates forward travel

B -indicates backward travel

Used by the Phase_Diagram_Window to draw distance in the
negative direction.

Implementation And Examples Of Results 81

Class Name:

Parameter Name:

Notes:

Phases Defined:

Class Name:
Phase Name:
Notes:

Class Name:
Phase Name:
Notes:

Class Name:
Phase Name:
Notes:

Class Name:
Phase Name:
Notes:

drop_bomb

DROP_BOMB

The following character entries are permitted:
Y -bomb is dropped

N -bomb is not dropped

acceleration

ACCEL

The DIST and TOTAL_DIST parameters are calculated from their
dependencies.

cruise
CRUISE
The DIST and TOTAL_DIST parameters are calculated from their

dependencies.

loiter

LOITER

The DIST and TOTAL_DIST parameters are calculated from their
dependencies.

climb

CLIMB

The DIST and TOTAL_DIST parameters are calculated from their
dependencies.

Implementation And Examples Of Results 82

Methods For Handling Data

As explained in the section “The Mission Profile Input Module,” the ability of the system to
accept diverse types of input results in a fair amount of complexity in how the data must be
handled. The input must be processed through numerous functions to ensure its validity.
To fully appreciate how the MPIS handles data, it is necessary to understand two major
procedures: how a mission is created, and how the modification of a parameter value is
resolved. The sequence of function calls for these two procedures fully illustrate the
methods by which objects are created, input values validated, and dependent parameters
updated. By comprehending these particular methods, other procedures, such as phase

insertion and phase deletion, can be easily understood.

CREATION OF A MISSION

Figure 13 describes the control path of the program when a mission is first created. Data to
create the proper mission objects is read from a file specified by the user by the function
Missions::create_mission. The values are assigned to the newly created corresponding
objects. To ensure that the data is valid and that dependencies between the data are properly

maintained, comprehensive tests are performed on the input data after it has been assigned.

The first information read from the file is the mission name, the number of phases and the
names of the parameters contained by the mission. The last two values are used to properly
read the rest of the data. After reading this information the linked list of phases is created.
This is done by making successive calls to the Missions::get_proper_phase function. This

function takes the name of the phase and the list of the values for its parameters as

Implementation And Examples Of Results 83

Missions::create_mission (filename) {/ creates data from information read from a file

{

temp = # of phases // store number of phasés
param_names [] = list of parameters // assign the list of parameters to param_names
for (# of phases) // repeat for the # of phases

Phases::get_proper_phase (word (name), list) // create the phase specified; ensure format of name
add phase to the phase linked list
}

for (# of mission parameters) // repeat for the # of mission parameters
{

create mission parameter

assign values to mission parameter

add mission parameter to Mission_Parameters linked list

}
}
phase constructor // automatically launched upon a phase's creation
{ /! From get_proper_phase

assign phase attributes // assign attributes such as phase name

Phases::load_param_values (param_names, values) // create parameter linked list
)

Phases::load_param_values (param_names, values)
for (# of parameters) 1/ repeat for the number of parameters

Phases::get_proper_param (name, value) // creates parameter specified by the name. Assigns value
add parameter to parameter linked list
)
}

parameter constructor /! automatically launched upon a parameter's creation

{ /] From get_proper_param
assign parameter attributes // assign attributes such as parameter name
Parameters::set_value_to (word (value)) // sets the value of the parameter. Ensure format of value

}

Parameters::set_value_to (value)

{

assign value
Parametérs: :check () 1/ check input for validity

}

Parameters::check ()

if (value of param is keyword) I/ If it is a keyword, launch proper routine
launch appropriate routine // launch appropriate routine

else if (entry is acceptable) 1/ else if the entry is defined to be acceptable
return 1l if yes, leave value in tack

else if (format (value of param)) // else check what the format of the value is
display error message I/ If it is a "word" display error message

// else end check. Entry is a numeric value

Figure 13. Creation of Mission (Pseudo-Code)

Implementation And Examples Of Results 84

arguments. By comparing the name it receives to the names of the available phases, the
function determines which phase object to create. The constructor of the phase created, in
turn, creates the parameter link list. This is done by calling the Phases::load_param_values
function which takes a the list of available parameters and the list of their corresponding
values as arguments. This function traverses the list of parameters and matches each
parameter name with it’s respective value. The Phases::load_param_values function makes
successive calls the Phases::get_proper_param function, sending one pair of values as
arguments for each call. The Phases::get_proper_param function determines the proper
parameter object to create by comparing the names of the available parameters to the
parameter name which it receives. The constructor of the parameter created requires one
argument—its value. The constructor assigns the value it receives to itself. Assignment of
the parameter value is done by calling the Parameters::set_value_to function. The
Parameters::set_value_to function is a virtual function and thus may be redefined to
perform differently. However, in its base definition it assigns the value to the proper
parameter variable and then calls the Parameters::check function. Like the
Parameters::set_value_to function, the Parameters::check function is virtual. Its definition
can be altered to adhere to different rules. However, it’s main purpose should always be to
check the validity of the input. Conditional tests should be used to check whether the entry
is valid. If not, the proper actions should be taken.

Once the linked list of phases is complete, the linked list of mission parameters is
constructed. This is done by creating objects of type Mission_Parameters, assigning them
the values read from the file, and linking them in a linked list. Upon completing this linked

list, the creation of the mission is complete.

Implementation And Examples Of Results 8§

MODIFICATION OF A PARAMETER

Figure 14 illustrates the control path of the Mission Profile Input System whenever the
value of a parameter is modified. The modification process is complicated by the need to
verify the validity of the input and the need to determine whether any special processes
(e.g. process keyword entries) need to be executed.

The value of a parameter is modified by calling the Missions::update_element function.
This function takes three arguments. The first two arguments determine the parameter to be
updated by specifying the exact location of the parameter within the various linked lists.
The third argument is the new value to which the parameter is to be set. Setting the
parameter value is performed by calling the Parameters::set_value_to function. This
function assigns the value and then calls the Parameters::check function, which verifies the

validity of the input and executes any special processes.

Once the value of the parameter is updated, all the data within the mission must be updated
to reflect the effects on dependent parameters. This is done by executing the
Missions::refresh function. The Missions::refresh function updates the parameters with
keyword entries to ensure that their values are properly reflected. Moreover, the function

also ensures that all the dependencies between parameters are also updated.

To ensure that the mission is updated correctly, the Missions::refresh function executes a
thorough scan of all the mission data. Each phase of the mission is scanned for keywords.

The entire linked list of parameters is updated and the set rules for the phase are executed

Implementation And Examples Of Results 86

process for making modification to a parameter

{

Missions::update_element (phase_num, param_num, new_value) // assign the new_value to the a parameter

refresh ()
}

// update all the data to reflect the change

Missions::update_element (phase_num, param_num, new_value)

phase_pt = Missions::get_phase_pointer (phase_num) // get pointer to the correct phase
param_pt = phase_pt->Phases::get_param_pointer (param_num) // use phase pointer to get parameter pointer

param_pt->Parameters::ses_value_to (word (value))

Parameters::set_value_to (value)

{

assign value
Parameters: :check ()

}

Parameters::check ()

{
if (value of param is keyword)
launch appropriate routine
else if (entry is acceptable)
return
else if (format (value of param))
display error message

}

Missions::refresh ()
{
for (# of phases)
{

for (# of parameters)

if (parameter value is a keyword)

for (# of parameters)
{

if (parameter value is a keyword)

{

// set parameter value; ensure proper format

1/ check input for validity

/1 If it is a keyword, launch proper routine

// launch appropriate routine

1/ else if the entry is defined to be acceptable
/] if yes, leave value in tack

// else check what the format of the value is
I/ If it is a "word” display error message

// else end check. Entry is a numeric value

I/ repeat for the number of phases

// repeat for the number of parameters
/1 if keyword do the following

I/ rescan the entire current phase

// act only on parameters which have a keyword

curr_param->Parameters::set_value_to (key_word)

}
}

}
}
}

current_phase->Phases: :calculate ()

}

Phases::calculate ()
{

}

perform user-defined calculations on phase parameters

/1 set current parameter value—this function will again
1/ call the check function

// update the entire current phase

// updates entire phase to reflect parameter dependencies

Figure 14. Parameter Modification (Pseudo-Code)

Implementation And Examples Of Results

87

for each keyword encountered. Thus, for a phase containing five keywords, five iterative
updates of the phase are performed. In this manner, the data is always guaranteed to reflect

the proper values regardless of the order in which the parameter modifications were made.

For the interested reader, the exact protocol for the functions (denoted by italicized names)

may be found in Appendix B.

The User-Interface

Figures 15 through 29 illustrate the interface for the stand-alone version of the MPIS.
Figure 15 shows the system with the phase diagram activate, and Figure 16 shows the
system with the Mission Parameters menu activate. The remaining figures illustrate the
various interactive pop-up menus offered by the system. Explanations for the purpose of
each of the menus, along with instructions on how to use them, may be found in

Appendix A.

Implementation And Examples Of Results 88

INIT 5F0 FINAL 711
T 5.2 0.k
[oe -0 Lar p -
LITTER LAET 150, B
CRME g 10 ¥
R LAGT 0.k
e 1o ar SHE
[ore-N LFST SE

INCT AT
e

BERER

FINLAT TIE
MNE L
=41 il 8
.8 L1
SNE el ¥
1068, 8 bR ¥
SHE el 8
e pLLIA

DCITNCE
pLTe 4
LY
F17%
7.5
p 99 7
5.1
. -

TOR. ST DIRECTIIN RGP BOR

ik F NA
5B 3 F H
BO. F F N
1233 P H
108,32 F N
183 F 12
45,2 F N

2800 o B
1692 e Pl
1260 e .
sir > " i %
486 o~ H

i T T T T 1 .

2 g5 145 19s 245 g

Figure 15. The MPIS With the Phase Diagram Window Activated

Implementation And Examples Of Results

89

DT S0 FRAL 51 DIT AT FNALAT TBE DNRACE TOTL ST DORECTIN IRGP B
ma ho R A HE (<L) i b ib. b F NR |
AYE. LegT a8 Lagr N] . v A b L) F]]
LATTER LT o] e 08B rHd. R 2.6 8B, = M
GRS LeET e LT RHE i, s L 173, 3 F N
A Legr 200. 8 LR 15986 it ¥ Hob i85.9 F]
CAUTSE LT HE LT NE L k118 183 F N
AXE. Ledr =23 1 (¥) awd. 8 il & 85.§ 2458 F A

%
|

Figure 16. The MPIS With the Mission Parameters Menu Activated

Implementation And Examples Of Results

2108 . :
1693 el

1700 _—_/—

Figure 17. The Phase Menu

Implementation And Examples Of Results 91

Figure 18. The Defaults Menu

Implementation And Examples Of Results

92

14T S0

™I (3] .

s 8 Lear .

LOTER LT o LAST N8
CumEE LASr e LAST MnE
IR Lrer o B et 1008, 8
oaner Lear WE La8T *HE
POCEL LFET SHE LET 27, B

e P

b11%
n.s
34 b
1.3
aE

m " T WM TN

Figure 19. The Phase Options Menu

Implementation And Examples Of Results

93

INTSFD FDRL 8 INT AT
TR [A b Y] [%]
R LasT wad LagT
LATER LeET i | LABT
ORIME LasT 188 ¢ L
[rr- B LPET b] LET
CcAnE LT ME Lar
oa. LPET SHE LHET

FINLAT TDE

SNE L
2541 6k &
.y L
A E hid. 8
17586 8§ iR, ¥
aE (71N]

2% 3 EE L g

[AITHCE
1 b
a8 b
3LE
n.s
> I
I3
L L

P
58.3
an.e
1133
106: @
186.2
.0

TOWL ST DIRECTIIN IROP ECE
NR
12
N
|

T A M W R T

zZ Z
gy

1241

Figure 20. The Quick Input Menu

Implementation And Examples Of Results

94

N RS S S

[NREOT, v R —

e

2800 _
1b00 P el
1960 T

Figure 21. The Parameter Menu

Implementation And Examples Of Results

95

3

INT
5w

Lsar
LAeT
L2ar
LAET
Lar
LFET

Figure 22. The Move Parameter Menu

Implementation And Examples Of Results

96

Figure 23. The Select Other Variables Menu

Implementation And Examples Of Results

917

Figure 24. The Other Variables Menu

Implementation And Examples Of Results

98

FISL I TNOTAT FINALAT TDE DISTHCE TOTA. MST IIFECTIIN IROP BOE

INIT 8P
T (5] b N R WE . § pL A 1b. b F 4]
SE Lar 00 ¢ LT S8i.e k4. & ®$.h §8.1 F N
LOTTER LAET R LAET 00 B Gk ¥ AnE gn. @ F N
TFSE Lar 150 6 LNar SrE oMd. 8 .5 151.3 F N
FOE. LPBT o8 LAET 1000, 8 ok 0 .k 185.G F N
CRUTSE Laar ME Laar M€ oie. B 49 18&.2 F 2]
POCHL. LPET BYE LMETY o L Y] pU LA n. & £435.0 F NA

Figure 25. The Row/Column Menu

Implementation And Examples Of Results

T oFD p

™I . o

A Lodt w4 Lar 2580 (18]
UITTER LesT i LAET .0 ik, v
ORIE LT r- 8§) Lar SrE rAd. R
R, LFBT .8 LAET pi- 1) ol ¥
CRANE Lar &HE Lar e kld. &
XA LFBT AT

20N 8 ine4. B

41. b
e
.5
ik
L3
[

S8. %
e
153.%
145G
186.2
pLMN

T A" MM

H

H

Figure 26. Menu Listing Available Files

2000
1490 e
1760 -
B8R /_____/
456 o
] S il
| | |] | L
] 58 L] 195

245

i

i
W

—1 A ——

Implementation And Examples Of Results

100

O SAFSAUH Nt NUHPF RSOSSN S ——

s L e

INTSF0 FINL 5D INOAT FINLAT TIE DISTANCE TUTH. DIST DIRECTION IRCP BOMR
THQ [3] =8 aa SHE e, s 16 b ik b F N
SOCEL LAar b N | Lar 4.0 g, b 4.4 568.% F 2]
LOTTER LABT m. LNET . e s s as. 8 F N
CROSE LT 190§ uar aE . ¥ 27.8 123X F]
PG LAET o LT 485,09 F N
CRITSE Laar BYE Laar i88.X ¥ 4
R LMeT SHE et 2450 F NFH

e £

1089 o o
1198 f_,.-f §
LT — L
419 e .
B PN et . |

i | | i | i

] sf a5 145 185 245 :

Figure 27. The Message Menu

Implementation And Examples Of Results 101

2000

1o

13060 ~

INIT SF0 FINL T DMITAT FINVLAT TIE [OSHICE TIWL ITT DIRECTION 1M B

™ma [X] 00.4 [N SHE . i s th b F N

“arn ear = LesT 2% 1 it B [T 58.3 P Y]

LBITER LeET bl 9] LT w0 [N k18] €. B F N

CRUSE 7 1204 F N

O LPGT b N] F N

CADSE Lear SE F 7] ﬁ
R LPET SAE F []

i

| S
St SR RN

Figure 28. The Confirm Menu

Implementation And Examples Of Results

102

T
|

i
i

BUTSFD FDAL I THODAT FALAT TRE UISTACE TOTRL 1037 JIRECTION IROP 608
™I [B =0 LY] SHE tan. ¥ 18, b i b 14,1
AR Lagr b 8 LagrT o= N | Q. b 4. b S8.% F 2]

Figure 29. The Filename Menu

Implementation And Examples Of Results 103

11.0 INTEGRATION WITH ACSYNT

Overview

As proof of its flexible features, the Mission Profile Input System was integrated into the
interactive CAD version of ACSYNT. The amount of code modification required to make
the stand-alone version of the system compatible with ACSYNT was carefully noted. Upon
completion, ACSYNT integration proved the robustness and flexibility of the data handling
routines provided by the MPIS. All of ACSYNT’s data manipulation requirements were
satisfied without the need to modify or append the utilities offered by the system.
However, certain characteristics of ACSYNT did require unexpected modifications to other
aspects of the stand-alone MPIS. Most noticeable was the separation of the analysis and
interactive portions of ACSYNT—data entered by the user cannot immediately be
processed by the ACSYNT analysis modules. Since the affects of modifications made to
the mission profile are not immediately available, the graph generated by the

ACSYNT-integrated version of the MPIS is not drawn to scale.

Integration

Integration of the module to ACSYNT required approximately three man-days. Most of the

effort was dedicated to writing translators which convert data from ACSYNT to MPIS

Integration With ACSYNT - 104

format. The following sections describe the modifications made to the stand-alone version

of the Mission Profile Input System to make it compatible with ACSYNT.
Transferring Data

Data transferred between the MPIS and ACSYNT by translating data from the TRIN.MOD
file of ACSYNT into the MPIS format (see the section “Trajectory Data Files”). The
TRIN.MOD file is used by the ACSYNT spreadsheet utility for temporary storage of the
modifications made by the user (changes are not considered permanent until they are stored
as “ACS input” [ACSY93]). The decision to transfer data using the TRIN.MOD file was
made in an effort to adapt the MPIS system without disabling the ACSYNT spreadsheet.
By writing to the same file, both systems have access to the same data and can therefore

both be utilized.

When the MPIS is initiated, it translates the information from the TRIN.MOD file into
MPIS format—stored in a scratch file called trin.mod—and used as the default mission by
the system. When the user exits from the MPIS, the system translates the mission

information back into ACSYNT format and overwrites the TRIN.MOD file.
Saving Mission Information

To save a mission in MPIS format the user must explicitly save it using the “SAVE
MISSION AS...” option under the Options Menu (see Appendix B). Mission
information can also be saved by saving it in ACSYNT format. This is done by using the
“SAVE ACS INPUT” option under the FILES menu (see [ACSY93]). This option,
however, saves all information pertaining to the current aircraft configuration. Moreover, it
makes any modifications made to the current aircraft permanent. For this reason, it is

sometimes more advisable to save the mission information under MPIS format.

Integration With ACSYNT - 105§

Modifications to the MPIS

The number and types of parameters and phases the MPIS accepts were modified to reflect
the requirements of ACSYNT. The modifications were made following the guidelines
described in the section “System Customization”. Following is a list of the new data types
(i.e. phase and parameter classes) defined. Explanations are provided on the rules

implemented for each data type.

Parameters defined:

Class Name: start_mach

Parameter Name: =~ MSTART

Special Notes: The following keywords are defined:
PREV -Represents code -1
OoPT -Represents code 0

The parameter value is restricted to be less than 10.0.

Class Name: end_mach
Parameter Name: MEND
Special Notes: The parameter value is restricted to be less than 10.0.
Class Name: start_alt
Parameter Name: HSTART
Special Notes: The following keywords are defined:
PREV -Represents code -1
OPT -Represents code 0

The parameter value is restricted to be less than 100,000.

Integration With ACSYNT - 106

Class Name:

Parameter Name:

Special Notes:

Class Name:

Parameter Name:

Special Notes:

Class Name:

Parameter Name:

Special Notes:

Class Name:

Parameter Name:

Special Notes:

Class Name:

Parameter Name:

Special Notes:

Class Name:

Parameter Name:

Special Notes:

Class Name:

Parameter Name:

Special Notes:

end_alt

HEND

The following keywords are defined:
NEXT -Represents code -1
OPT -Represents code 0
NOCLIMB -Represents code -1

The parameter value is restricted to be less than 100,000.

distance

DIST

The following keywords are defined:
RANGE -Represents code -10

The parameter value is restricted to be less than 100,000.0.

time
TIME
The parameter value is restricted to be less than 10,000.0.

turns
NTURNS
The parameter value is restricted to be less than 1,000.0.

vind
VIND
The parameter value is restricted to be less than 10,000.

fuel_factor
WKFUEL
The parameter value is restricted to be less than 100.0.

mparam
M

The parameter is always set equal to the mission parameter
MMPROP.

Integration With ACSYNT

107

Class Name:

Parameter Name:

Special Notes:

Class Name:

Parameter Name:

Special Notes:

Class Name:

Parameter Name:

Special Notes:

Class Name:

Parameter Name:

Special Notes:

power_setting
IP
The following keywords are defined:

ALTWAFT -Represents code -3
ALTWOAFT -Represents code -2
TOFFWAFT -Represents code -1

TOFFWOAFT -Represents code 0

MAXAFT -Represents code 1
MAXTOFF -Represents code 2
MAXCONT -Represents code 3
DRAG -Represents code 4
IDLE -Represents code 5

The parameter must be one of the above values. The default value
is IDLE.

range_indicator

IX

The following keywords are defined:
NEITHER -Represents code 0
ADD -Represents code 1
SUB -Represents code -1
missile_indicator

W

The following keywords are defined:
DROP -Represents code 1
NODROP -Represents code 0

The parameter must be one of the above values. The default value
is NODROP.

bomb_indicator

B

The following keywords are defined:
DROP -Represents code 1
NODROP -Represents code 0

The parameter must be one of the above values. The default value
is NODROP.

Integration With ACSYNT

108

Class Name:

Parameter Name:

Special Notes:

Class Name:

Parameter Name:

Special Notes:

Phases Defined:

Class Name:
Phase Name:
Special Notes:

Class Name:
Phase Name:
Special Notes:

Class Name:
Phase Name:
Special Notes:

ammo_indicator

A
The following keywords are defined:
DROP -Represents code 1

NODROP -Represents code 0

The parameter must be one of the above values. The default value
is NODROP.

print_indicator

P
The following keywords are defined:
PRINT -Represents code 1

NOPRINT -Represents code 0

The parameter must be one of the above values. The default value
is NOPRINT.

climb

CLIMB

The following parameters do not apply to the phase:
NTURNS

TIME

MEND

DIST

acceleration

ACCEL

The following parameters do not apply to the phase:
VIND

NTURNS

DIST

cruise

CRUISE

The following parameters do not apply to the phase:
IX

VIND

NTURNS

Integration With ACSYNT - 109

Class Name:
Phase Name:
Special Notes:

Class Name:
Phase Name:
Special Notes:

Class Name:
Phase Name:
Special Notes:

Class Name:
Phase Name:
Special Notes:

loiter

LOITER

The following parameters do not apply to the phase:
IX

VIND

NTURNS

combat

COMBAT

The following parameters do not apply to the phase:
IX

DIST

descent

DESCENT

The following parameters do not apply to the phase:
IX

VIND

NTURNS

TIME

DIST

hover

HOVER

The following parameters do not apply to the phase:
IX

VIND

NTURNS

DIST

Modifications Made to the Mission_Parameters Class

In addition to the mission parameter information required by the stand-alone version of the
MPIS, ACSYNT requires two additional pieces of information to correctly keep track of its
mission parameters. It requires that the type and format of the variable be specified.
Consequently, the Mission_Parameters class was modified to accommodate the additional

information requirements. The corresponding functions to set and retrieve this information

Integration With ACSYNT - 110

were also implemented. ACSYNT makes no provisions for keeping track of the variable
information which determines whether the variable is to be shown by the Other Variables
Menu. Consequently, every time the data are transferred from ACSYNT, the value of the

variables is reset to its default value of “NQO” (i.e. the variables is not shown by default).

Using The System From Within ACSYNT

The MPIS can be initiated from within ACSYNT by using the “Trajectory Module” option
under the “Trajectory” menu. The system will utilize a different window (PHIGS
workstation) from the one in which ACSYNT appears. However, although both the MPIS
and ACSYNT appear simultaneously on the screen, only the MPIS will accept user input.
Control will not return to ACSYNT until the MPIS is exited.

Integration With ACSYNT 111

12.0 CONCLUSION AND RECOMMENDATIONS

The stand-alone version of thé Mission Profile Input System has satisfied the objectives
initially set forth. The system offers a friendly, interactive method by which a mission
profile can be created, manipulated, and modified. It offers a structured and forthright
approach to the input of data and yet retains the flexibility necessary to enhance efficiency.
The system has also proven to contain good extendibility features. Adaptation to the aircraft
conceptual design system, ACSYNT, was performed without the need to implement major

modifications or extensions to the code.

Development of the MPIS has also shown that object-oriented design and programming
lend themselves well to programs of its nature. As mentioned earlier, object-oriented
programs attempt to mimic relationships found in the real-world. The relationship between
parameters, phases, and missions, where one is contained within another, can easily be
mimicked using the instancing of objects. The missions instance the phases, which, in

turn, instance the parameters.

The current version of the Mission Profile Input System should be thought of as the first
complete iteration of its design—it is the framework upon which future versions can be
improve. As is the tendency of code development, better and more efficient algorithms for a

better system were uncovered even as the first design was being implemented.

Suggested areas of improvement are in the definition of phases and parameters. Although

the current method is highly flexible and straightforward, it could be made even less

Conclusions And Recommendations - 112

tedious if one generic class was defined to represent any type of phase or parameter.
Functions to define the properties of the particular type could be used to customize the
individual phases and parameters. Problems arising from trying to store such information

will need to be resolved.

Another area which can be improved is the dynamic definition of rules by the user for the
various phases and parameters. Currently, such rules must be implemented at the code
level. By giving the user the ability to modify these rules interactively, the functionality of
the program will be greatly increased. Methods by which to determine invalid or
inconsistent rules will have to be considered. Also provisions will have to be made for

storing such information.

The power and usefulness of a program is determined by how effectively the end-user is
able to maximize its potential. Ultimately, however, only the end-user can determine what
is the most efficient interface layout for personal maximization of the potential of the
program. Usually, this cannot be determined until a layout configuration has been
implemented and its limitations are discovered through daily usage. For this reason, it
would be desirable to give end-users the ability to fully customize the interface to suit their
individual needs. The types of menus, their menu items, and when and how the menus
appear would be completely dictated by the user. Such a system would no doubt require a
major endeavor—well beyond the scope of a single thesis. However, such a system would

provide much insight and take full advantage of the power of object-oriented programming.

Conclusions And Recommendations 113

13.0 REFERENCES

[ACSY93] ACSYNT Institute, ACSYNT (AirCraft SYNThesis) V2.0: Overview and

[Booc91]

[Brow89]

[Brys68]

[Corn88]

[Dert89]

Installation Manual, Virginia Polytechnic Institute and State University,
Blacksburg, Virginia, 1993.

Booch, G., Object-Oriented Design with Applications, The
Benjamin/Cummings Publishing Company, Inc., 1991.

Brown, Judith R., Cunningham, Steve, Programming the User Interface,
John Wiley & Sons, Inc., New York, New York, 1989.

Bryson, A.E., Jr. and Desai, M.N., “Energy State Approximations in
Performance Optimization of Aircraft,” AIAA-68-877, Pasadena,
California, 1968.

Cormnelis, Bil, Development and Application of a Computer-Based System
for Conceptual Aircraft Design, Delft University Press, Delft University,
The Netherlands, 1988.

Dertouzoss, Michael, L., Lester, Richard K., Solow, Robert M. and The
MIT Commission on Industrial Productivity, Made in America: Regaining
the Productive Edge, HarperCollins Publishers, New York, New York,
1984.

References

114

[Ents90]

[Ince91]

[Jaya91]

[Jaya92a]

[Jaya92b]

[Mull89]

[Mykl93]

Entsminger, Gary, The Tao of Objects: A Beginner’s Guide fo

Object-Oriented Programming, M&T Publishing Inc., Redwood City,
California, 1990.

Ince, Darrel, Qbject-Oriented Software Engineering with C+4+,
McGraw-Hill Book Company Europe, Berkshire, England, 1991.

Jayaram, Uma, “Extracting Dimensional Geometric Parameters from
B-Spline Surface Models”, Ph.D. Dissertation, Mechanical Engineering
Department, VPI & SU, Blacksburg, VA, 1991.

Jayaram, U., Myklebust A., and Gelhausen, P., “Extracting Dimensional
Geometric Parameters from B-Spline Surface Models of Aircraft”,
Presented at ATIAA Aircraft Design Systems Meeting, Hilton Head South
Carolina, August 24-26, 1992 (paper no. AIAA-92-4283). '

Jayaram, S., Myklebust A., and Gelhausen, P., “ACSYNT - A Standards-
Based System for Parametric Computer Aided Conceptual Design of
Aircraft”, Presented at 1992 Aerospace Design Conference, Irvine

California, February 3-6, 1992 (paper no. AIAA-92-1268).

Mullin, Mark, Object Oriented Program Design with Examples in C++,
Addison-Wesley, Reading, Massachusetts, 1989.

Myklebust, Arvid, Woyak, Scott, Jacobson, Allen, Lin W.H., “A Final
Research Report to IBM Corporation”, Final Research Report, Report
Number 436023-5, Computer Aided Design Laboratory, Virginia
Polytechnic Institute and State University, Blacksburg, VA, 1993.

References

11§

[Nico84]

[Raym89]

[Rosk89]

[Ruto54]

[Schi92]

[Shul70]

[Simo84]

[Simo86]

Nicolai, Leland M., Fundamentals of Aircraft Design, METS, Inc., San
Jose, California, 1984.

Raymer, Daniel P., Aircraft Design: A Conceptual Approach, American

Institute of Aeronautics and Astronautics, Inc., Washington, D.C., 1989.

Roskam, Jan, Airplane Design, Roskam Aviation and Engineering
Corporation, Ottawa, Kansas, 1989.

Rutowski, E.S., “Energy Approach to the General Aircraft Performance
Problem,” Journal of Aeronautical Sciences, Vol. 21, No. 3, March 1954,
pp. 187-195.

Schildt, Herbert, Teach Yourself C++, Osborne McGraw-Hill, Berkeley,
CA, 1992.

Schultz, Robert.L., and Kilpatrick, P.S., “Aircraft Optimum Multiple Flight
Paths”, Final Report ONR Contract N00014-69-C-0339 NR 213-074,
June 1970, Honeywell Inc., Minneapolis, Minnesota.

Simos, Dimitri, and Jenkinson, Lloyd R., “The Determination of Optimum
Flight Profiles for Short-Haul Routes”, Presented as Paper 84-2408 at
ATAA/AHS/ASEE Aircraft Design Systems and Operations Meeting,
San Diego, California, Oct. 31-Nov. 2, 1984.

Simos, Dimitri, and Jenkinson, Lloyd R., “Optimization of the Conceptual
Design and Mission Profiles of Short-Haul Aircraft”, Presented as Paper
86-2696 at AIAA/AHS/ASEE Aircraft Systems, Design and Technology
Meeting, Dayton Ohio, Oct. 20-22, 19986.

References

116

[Sobi88]

[Stei67]

[Steu93]

[Tayl88]

[Taus77]

[Turn84]

[Wamp88a]

Sobieszczanski-Sobieski, Jaroslaw, “Sensitivity Analysis and
Multidisciplinary Optimization for Aircraft Design: Recent Advances and
Results”, Presented as Paper 88-1.7.3 at the 16th Congress of the
International Council of the Aeronautical Sciences, Jerusalem, Israel,

Aug. 28-Sept. 2, 1988.

Stein, L.H., Matthews, M.L., and French, J.W., “STOP—A Computer
Program for Supersonic Transport Trajectory Optimization,” CR-793,
May 1967, NASA.

Steude, Andreas, “Object-Oriented Graphical User Interface for Engineering
Design”, M.S. Thesis, Mechanical Engineering Department, VPI & SU,
Blacksburg, VA, 1993.

Taylor, Andrew Kent, “Specification of Mission Cycles for Aircraft
Conceptual Design Using the PHIGS Standard”, M.S. Thesis, Mechanical
Engineering Department, VPI & SU, Blacksburg, VA, 1988.

Tausworthe, Robert C., Standardized Development of Computer Software,
Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1977.

Turner, Ray, Software Engineering Methodology, Reston Publishing
Company, Inc., Reston, Virginia, 1984.

Wampler, S. G., “Development of a CAD System for Automated
Conceptual Design”, M.S. thesis, Mechanical Engineering Department,
Virginia Polytechnic Institute and State University, Blacksburg, Virginia,
May 1998.

References

117

[Wamp88b] Wampler, S. G., Myklebust, A., Jayaram S., and Gelhausen P.,

[Woya92]

[Woya93]

“Improving Aircraft Conceptual Design - A PHIGS Interactive Graphics
Interface for ACSYNT”, Presented at AIAA/AHS/ASEE Aircraft Design,
Systems and Operations Conference, Atlanta Georgia, September 7-9, 1988
(paper no. AIAA-88-4481).

Woyak, Scott, “A Motif-Like Object-Oriented Interface Framework Using
PHIGS”, M.S. Thesis, Mechanical Engineering Department, VPI & SU,
Blacksburg, VA, 1992,

Woyak, S, and Myklebust, A., “A Motif-Like Object-Oriented Interface
Framework Using PHIGS”, 1st Annual PHIGS User’s Group Conference,
March 21-24, 1993, Orlando, Florida.

References

118

APPENDICES

Appendices . 119

APPENDIX A: User Guide

Appendix A:User Guide - 120

OVERVIEW

Throughout the design process, the concerns of the end-user were consistently kept in
mind. The interface was configured to give a complete representation of the trajectory
mission in a straightforward, consistent manner. To prevent the module's display from
getting cluttered with unnecessary options—and to avoid an unnecessarily deep menu
structure—pop-up menus were used extensively. These menus can be launched by
selecting the data directly or by selecting one of the five push buttons situated above the
main window. These menus and their options were grouped in their most logical order and
every effort was made in making them self-explanatory. The following sections describe in
detail each menu and its options. The menus are divided into two major types: menus
launched by selecting mission data, and menus launched by selecting one of the five push
buttons. Illustrations of the various menus are given in the section “Implementation &

Examples of Results.”

SELECTING DATA

The “Phase” Menu

Selecting any parameter value on the screen with the mouse highlights the entire phase to
which the parameter belongs and launches the Phase Menu. This menu is the primary
method by which the values of the parameters can be modified. The heading of the menu
gives the number and name of the phase selected. The names and values of the parameters
belonging to the phase are listed in order. Parameters which are not applicable to the

phase—denoted by the value "N/A"— are not listed. To minimize the number of steps

Appendix A:User Guide - 121

required to modify a parameter, the value of the parameter selected is automatically
highlighted. Typing in a new value and hitting ENTER on the keyboard will replace the old
value. Note that ENTER must be pressed in order to register the new value. Tabbing out
of the input area or selecting the DONE menu option will NOT register the change. To
make additional changes, or to transfer control to a different menu item, the tab key may be

used. Control may also be transferred by directly selecting the desired menu item.

The Phase Menu will remain on the screen until the DONE option is selected or the mouse
button is pressed outside the menu area. If another mission data item is selected the menu
corresponding to the new item selected will be launched. Otherwise, the menu will simply

be removed from the screen.

The rightmost side of the Phase Menu displays a column of push buttons. These buttons

launch the Defaults Menu for the parameter selected.

The Phase Menu may also be launched by selecting any leg in the phase diagram. By
default, the first parameter of the phase will be highlighted when it is launched by this
method.

THE “DEFAULTS” MENU

The default value of a parameter is the value originally assigned to it. If the mission was
read from a file, the default value is the parameter value read. After modifications have been
made to a mission, it is sometimes desirable to reassign the original value to a parameter.
The Defaults Menu is used for this purpose. As mentioned earlier, the Defaults Menu is
launched by selecting one of the push buttons in the Phase Menu. Unlike most other
pop-up menus, the Defaults Menu requires that a menu item be selected before it be

removed from the screen. It consists of four push buttons and an input area. The input area

Appendix A:User Guide - 122

displays the current default value of the parameter. This can be changed by entering a new
value and pressing the ENTER key. If ENTER is not pressed after changing the value, the
change will NOT be registered. The four push buttons dictate the action to be performed

before exiting the menu. The menu will be removed as soon as an option has been selected.

APPLY Menu Option: This option takes the current default value and assigns it to the
parameter. If the default value has been altered (i.e. a new value has been registered in the
input area), the new value will be applied, but the default value of the parameter will remain

unchanged.

REDEFINE Menu Option: This menu item defines the default value of a parameter to
be the value registered in the input area (CAUTION: The ENTER key must be pressed to
register a new value). Note, however, that the new default value is not applied to the

parameter.

REDEFINE & APPLY Menu Item: This menu item combines the actions of the two
previous ones. It defines the default value to be the value registered in the input area and

applies it to the parameter.

CANCEL: This menu item exits the menu without performing any tasks.

The “Phase Options” Menu

Selecting a phase title will highlight the entire phase and launch the Phase Options Menu.
This menu offers editing operations which are performed at the phase level. The menu

options are as follow:

Appendix A:User Guide . 123

Delete current phase: Selecting this option will delete the currently highlighted phase.
The menu will remain on the screen with the next available phase becoming active. In the
interest of efficiency, no confirmation is required in issuing this command. Therefore

caution should be exercised in its usage.

Add new phase before current one: This option will activate a menu by which
phases can be added. The menu lists the phases available for addition. Selecting a phase
from this menu will insert the phase BEFORE the currently active one.

Add new phase after current one: Same as the previous option, except that the phase

will be inserted AFTER the currently active one.

Set phase to default values: This option sets all the parameters of the active phase to
their default values (see the “Defaults Menu” section for the definition of a default value).
To safeguard against accidental changes, command confirmation is required in issuing this

command.

Quick input: This option launches the Quick Input Menu. See the “Quick Input Menu”

section.

Done: This option quits the Phase Options Menu. Control may also be released by

pressing the mouse button while the cursor is anywhere outside the menu.

Appendix A:User Guide . 124

THE “QUICK INPUT” MENU

Although the Phase Menu offers a convenient method by which to modify the parameters,
it limits changes to one parameter at a time. This restriction can prove quite burdensome to
more experienced users. The Quick Input Menu circumvents this dilemma. It allows users
to modify the parameters for an entire phase simultaneously, albeit in a less friendly

fashion.

The Quick Input Menu contains two input areas which the user can use to enter the list of
modifications. Although entries can be made in either input area, it is recommended that
the second area be used only if room for entries is exhausted in the first one. The two push
buttons below the input areas are used to process the list. The APPLY button applies the
list of modifications to the currently active phase. The DONE button exits the menu without

performing the modifications.

Each entry in the entry list must be separated by at least one blank character. The list of
modifications corresponds directly to the parameters of the active phase (i.e. the first entry
affects the first parameter, the second entry the second parameter, etc.). The list need not
have the same number of entries as there are number of parameters. Once the list of
modifications has been exhausted the remaining parameters will remain unchanged. To
prevent a parameter, which lies inside the range of the modification list, from being
modified, the special symbol "*" may be used. This symbol skips over the parameter

without altering it. Figure 30 gives an example of using the Quick Input Menu.

Appendix A:User Guide . 125

200 275 100.0 150.5 13.0 25.0 200 1000

I 100 SAME 135.5¢ *10.0] »

INPUT MENU

APRLY DONE MODIFICATIONS

100 SAME 135.5 150.5 13.0 10.0 200 1000

REMAIN UNAFFECTED

Figure 30. Sample Usage of the Quick Input Menu

Appendix A:User Guide . 126

The “Parameter” Menu

This menu offers an additional method by which parameters can be modified. It is identical
to the Phase Menu except that all the values for a single parameter are displayed instead of
the values of all the parameters for a single phase. Due to the size limitation of the screen,
the menu is disabled once the number of phases in the mission exceeds twenty-two. Unlike
the Phase Menu, all values are displayed—including those designated as not applicable (i.e.
"N/A"). The Parameter Menu is launched in a unique fashion. To launch it, the middle
mouse button must be used to select a parameter value while a pop-up menu is active. If no

pop-up menu is active and the procedure is followed, the Phase Menu will be launched.

The “Move Parameter” Menu

Selecting the title of a parameter highlights the parameter and launches the Move Parameter
Menu. This menu allows the order of the parameters to be changed. To move the
parameter, select the number box until it displays the desired new position. Select the
APPLY push button to move the currently active parameter to the new position. The DONE

push button exits the menu without applying changes.

THE PUSH BUTTONS

Quit

This button exits the Mission Profile Input System. To avoid the accidental termination of

the system, confirmation of the command is required.

Appendix A:User Guide . 127

Mission Parameters Toggle

This button is used to toggle the Mission_Parameters Menu on and off. The
Mission_Parameters Menu displays some of the more important mission parameters. These
and other mission parameters may also be displayed in the Other Variables Menu. This
menu, unlike the others, is not a pop-up menu. Control of the program can be toggled
between this menu and other windows on the screen. Thus, this menu can be displayed and

used without the need to sacrifice control from other parts of the program.

Phase Diagram Toggle

This button toggles the phase diagram of the mission on and off.

Options

This button displays all the general options available. They include options to save and
retrieve files, modify the screen layout, and display and manipulate mission parameters. A

brief description on each option is given below.

Save Mission: This option saves the mission under its current name.

Save Mission As: This option saves the mission under a name specified by the user.

Names should be void of blank spaces and/or punctuation marks.

Retrieve Mission: This option displays a list of the currently available missions.
Clicking on the desired mission will retrieve it. Loading a new mission will redefine the

current one. For this reason, confirmation of the command is required.

Select Viewable Variables: Launches the Select Other Variables Menu.

Appendix A:User Guide - 128

View Other Variable: Launches the Other Variables Menu.
Row/Column Display: Launches the Row/Column Menu

Number Display: Launches the Number Display Menu.

THE “SELECT OTHER VARIABLES” MENU

This menu is used to designate which mission parameters will be displayed by the Other
Variables Menu. Variables can be toggled to be viewable or non-viewable by selecting
their checkboxes. A lowered checkbox indicates that the variable is viewable. The reason
for this option is that it allows the user to limit the variables displayed in the Other Variables
Menu to those deemed most important. Variables that are less important, or which are not

frequently modified, can be hidden from view.

THE “OTHER VARIABLES” MENU

This menu allows the modification of mission parameters which have been designated as
viewable by the Select Other Variables Menu. It is important to note that no type or data
checking is performed on any of the input values. Thus, it is up to the user to ensure that

the data entered is indeed valid.

Appendix A:User Guide . 129

THE “ROW/COLUMN” MENU

This menu allows the user to customize the layout of the display. The left and right number
boxes reflect the current column and row spacing, respectively. To change the spacing,
select the number boxes until they reflect the desired new dimensions and select the APPLY
push button. The DONE push button exits the menu without applying any changes.

THE “NUMBER DISPLAY” MENU

Like the previous menu, the Number Display Menu allows the user to customize the
display layout. The number box displays the precision to which numeric values are
displayed. The precision ranges from zero (0) to nine (9). To change the current precision
click on the number box until it reflects the desired new numerical precision. The "Toggle
Alignment" option toggles the alignment of the data between left and center alignment. The

DONE option exits the menu.
100 % (Fit-to-Screen)
This push button scales the display to fit the window. It is primarily used to adjust the

display after new phases have been added to the mission or frequent zooms have been

performed.

Appendix A:User Guide . 130

WINDOW BASICS

The window layout of the Mission Profile Input System has been modeled to mimic a
Motif-based window environment. As in the Motif interface, the window can be resized by
dragging its border and it can be moved by dragging its title bar. A toggle button on the
upper-right corner toggles the size of the window between its current and maximum

dimensions.

In addition to the Motif-like functions, the windows provide zooming capabilities. These
buttons are situated on the lower right hand comer of the windows. The left button makes

the display larger, whereas the right button makes it smaller.

Appendix A:User Guide . 131

APPENDIX B: Detailed Class Description

Following is a detailed description of all the classes used by the Mission Profile Input
System. Note that only classes created by the author are described in detail. Classes which
are used, but not created by the author, are listed under "Other Classes" and are only

included for the sake of completeness.

APPENDIX B: Detailed Class Description 132

THE PARAMETERS CLASS

Class Name:
Parameters

Location:
parameters.h

Inheritance:
None

Description:

This class provides the functions necessary to manipulate data at the parameter

level. Every parameter which is defined for the mission must inherit this class. This

class is instanced in the class Phases.

Private Variables:

char * cvalue
float fvalue
char * cdefault
float fdefault

Protected Variables:
Parameters * next

Public Variables:
None

Private Functions:
Parameters * prev

Parameters * cur

Parameters * nxt

stores the character value of the parameter

stores the float value of the parameter

stores the character default value of the parameter
stores the float default value of the parameter

points to the next parameter in the linked list

returns pointer to a specified parameter in the
previous phase

returns pointer to a specified parameter in the current
phase

returns pointer to a specified parameter in the next
phase

Appendix B: The Parameters Class

133

Protected Functions:
void delete_parameter_variables
frees up memory taken up by the class

Public Functions:

void set_param_title_to sets the name of the parameter to a specified title
char * get_value returns character value of parameter
float get_value returns float value of parameter
char * get_default_value returns character default value of parameter
float get_default_value returns float default value of parameter
void set_default_values sets the default value of the parameter
char * get_param_title returns the name of the parameter
Parameters * get_next returns a pointer to the next parameter in the linked
list
void put_next sets a pointer to the next parameter in the linked list
void checker checks and process keywords
Virtual Functions:
void set_value_to assigns the value to the parameter
void check specifies how the keywords are treated

Appendix B: The Parameters Class . 134

FUNCTIONS OF THE PARAMETERS CLASS

Location: parameters.C

Function: private
Parameters * prev (char *name)
returns a pointer to parameter name in the previous phase

Argument Description:
char * name name of a parameter in the previous phase

Function: private
Parameters * cur (char *name)
returns a pointer to parameter name in the current phase

Argument Description:
char * name name of a parameter in the current phase

Function: private
Parameters * nxt (char *name)
returns a pointer to parameter name in the next phase

Argument Description:
char * name name of a parameter in the next phase

Function: protected
void delete_parameter_variables ()
used to free up memory when class is deleted

Argument Description:
None

Appendix B: Functions Of The Parameters Class 135§

Function: public
void set_param_title_to (char *name)
sets the title of the parameter to name

Argument Description:
char * name name of a parameter

Function: public
char * get_value (char *type)
returns the character value of the parameter

Argument Description:
char * type type =CHAR ="1"

Function: public
float get_value (float type)
returns the float value of the parameter

Argument Description:
float type type =REAL =1.0

Function: public
char * get_default_value (char *type)
returns the default character value of the parameter

Argument Description:
char * type type=CHAR ="1"

Function: public
float get_default_value (float type)
returns the default float value of the parameter

Argument Description:
float type type =REAL =1.0

Appendix B: Functions Of The Parameters Class

136

Function: public
void set_default_values (char *entry)
sets the default value of the parameter to entry

Argument Description:
char * entry the default value of the parameter

Function: public
char * get_param_title ()
returns the name of the parameter

Argument Description:
None

Function: public
Parameters * get_next ()
returns a pointer to the next parameter in the linked list

Argument Description:
None

Function: public
void put_next (Parameters *next)
scts the parameter next to be the next parameter in the parameter linked list

Argument Description:
Parameters * next pointer to the next parameter in the linked list

Appendix B: Functions Of The Parameters Class

137

Function: public
void checker (char * namel, char * name2, char ** list)
dictates how keywords in the program will be processed

Argument Description:

char * namel name of a parameter in the current phase whose value
will be substituted for the keyword "SAME"

char * name2 name of a parameter in the previous phase whose
value will be substituted for the keyword "LAST"

char ** list list of entries which will be considered acceptable by
the parameter

Function: virtual, overloaded
void set_value_to (char *value)
void set_value_to (float value)
sets the value of the parameter to value—can be redefined to define new
requirements for parameter value assignment

Argument Description:
char * value the value of the parameter
float value the value of the parameter

Function: virtual
void check ()
used to specify how the keywords in the program are to be treated—can be
redefined to specify new keywords

Argument Description:
None

Appendix B: Functions Of The Parameters Class 138

THE PHASES CLASS

Class Name:
Phases

Location:
phases.h

Description:

This class provides the necessary function to manipulate phases and their parameter
data. Every phase which is defined for the mission must inherit this class. A linked
list of parameters is created by each phase through instancing of the Parameters

Class.

Inheritance:
None

Private Variables:

char * phase_title

Protected Variables:
Phases * next
Parameters * first_param

Public Variables:

None

Private Functions:
None

name of the phase

pointer to the next phase in the linked list
pointer to the first parameter of the phase

Appendix B: The Phases Class

139

Protected Functions:

float

float

char *

void

void

prev_number

number

word

set

returns float value of a specified parameter in the
previous phase

returns float value of a specified parameter in the
current phase

retums character value of a specified parameter in the
current phase

sets a specified parameter in the current phase to a

specified value

delete_phase_variables

Public Functions:

Parameters * get_proper_param

void
void
char *

float

Phases *

void

load_param_values
set_phase_title_to
get_phase_title
Parameters * get_param_pointer

frees up memory taken up by the phase

returns a pointer to a new parameter of a specified
type

assigns the parameter values to the phase

assigns the name of the phase

returns the name of the phase

returns a pointer to the specified parameter

get_float_param_value

get_next
put_next

Parameters * get_first

void

set_first_param_to

Virtual Functions:

void
void

calculates
geo_segment

returns the float value of the specified parameter
returns a pointer to the next phase in the linked list
sets a pointer to the next phase in the linked list
returns a pointer to the first parameter of the phase
sets the first pointer of the phase to be the specified
phase

updates all the parameters in the phase
creates the graphical representation of the phase

Appendix B: The Phases Class

140

FUNCTIONS OF THE PHASES CLASS
Location: phases.C

Function: protected
float prev_number (char *name)
returns the float value of the parameter name in the previous phase

Argument Description:
char * name the name of the parameter

Function: protected
float number (char *name)
returns the float value of the parameter name in the current phase

Argument Description:
char * name the name of the parameter

Function: protected
char * word (char *name)
returns the character value of the parameter name in the current phase

Argument Description:
char * name the name of the parameter

Function: protected, overloaded
void set (char *name , float value)
void set (char * name, char *value)
sets the value of parameter name in the current phase to value

Argument Description:

char * name the name of the parameter
float value the value of the parameter
char * value the value of the parameter

Appendix B: Functions Of The Phases Class

141

Function: protected
void delete_phase_variables ()
used to free up memory when the phase is deleted

Argument Description:
None

Function: public
Parameters * get_proper_param (char *name, char *value)
returns a pointer to a newly created parameter of type name and assigns the value
value to it

Argument Description:

char * name the name of the parameter—used to create the right
type of parameter object

char * value the value to be assigned to the newly created
parameter

Function: public
void load_param_values (char **parameter_list, char **values_list)
assigns all the parameters in the parameter_list to a phase and assigns the values
taken from the values_list

Argument Description:

char ** parameter_list the list of the names of the parameters to be assigned
to the phase
char ** values_list a list from which the values to be assigned to the

parameters are taken

Function: public
void set_phase_title_to (char *name)
sets the name of the phase to name

Argument Description:
char * name the name of the phase

Appendix B: Functions Of The Phases. Class 142

Function: public
char * get_phase_title ()
returns the name of the phase

Argument Description:
None

Function: public
Parameters * get_param_pointer (int location)
returns a pointer to the parameter occupying the position location in the linked list

Argument Description:
int location the position the parameter occupies within the
parameter linked list

Function: public
float get_float_param_value (char *name)
returns the float value of the phase of name name

Argument Description:
char * name the name of the phase

Function: public
Phases * get_next ()
returns a pointer to the next phase in the phase linked list

Argument Description:
None

Function: public
void put_next (Phases *nexr)
sets the phase next to be the next phase in the phase linked list

Argument Description:
Phases * next pointer to the next phase in the phase linked list

Appendix B: Functions Of The Phases Class 143

Function: public
Parameters * get_first ()
returns a pointer to the first parameter of the phase

Argument Description:
None

Function: public
void set_first_param_to (Parameters *first_parameter)
sets the first parameter of the phase to be first_parameter

Argument Description:
Parameters * first_parameter pointer to the what will be defined as the first
parameter in the parameter linked list

Function: virtual
void calculate ()
updates parameter values to reflect dependencies—can be redefined to define new
parameter dependencies

Argument Description:
None

Function: virtual
void geo_segment ()
draws the graphical representation of the phase—can be redefined to allow for more
elaborate graphical representations

Argument Description:
None

Appendix B: Functions Of The Phases. Class 144

THE MISSION_PARAMETERS CLASS

Class Name:
Mission_Parameters

Location:
Mission_Parameters.h

Description:
This class provides all the functions necessary to assign and retrieve mission
parameter data. These class is inherited by the class Missions.

Inheritance:
None

Private Variables:

char * name the name of the mission parameter

char * value the value of the mission parameter

char * comment general comment about the mission parameter

char * display code to determine whether to display variable =
ON/OFF

Mission_Parameters *

next points to the next mission parameter in the mission

parameter linked list

Protected Variables:
None

Public Variables:
None

Private Functions:
None

Protected Functions:
None

Appendix B: The Mission_Parameters.- Class 145§

Public Functions:
void put_next assigns a specified mission parameter to be the next
one in the Mission_Parameters linked list
Mission_Parameters *

get_next returns a pointer to the next mission parameter in the

Mission_Parameters linked list

void set_mp_name_to sets the name of the mission parameter

char * get_mp_name returns the name of the mission parameter

void set_mp_value_to sets the value of the mission parameter

char * get_mp_value returns the value of the mission parameter

void set_mp_display_to sets the variable to either displayable or non-
displayable .

char * get_mp_display returns the code which indicates whether a mission
parameter is displayable

void set_mp_comment_to sets a comment to the mission parameter

char * get_mp_comment returns the comment of the mission parameter

Virtual Functions:
None

Appendix B: The Mission_Parameters. Class 146

FUNCTIONS OF THE MISSION_PARAMETERS CLASS
Location: Mission_Parameters.C

Function: public
void put_next (Mission_Parameters *next)
assigns the mission parameter next to be the next item in the Mission_Parameters
linked list
Argument Description:
Mission_Parameters *
next pointer to the variable which will be assigned as the
next mission parameter

Function: public
Mission_Parameters * get_next ()
returns a pointer to the next item in the Mission_Parameters linked list

Argument Description:
None

Function: public
void set_mp_name_to (char *name)
sets the name of the mission parameter to name

Argument Description:
char * name the name of the mission parameter

Function: public
char * get_mp_name ()
returns the name of the mission parameter

Argument Description:
None

Appendix B: Functions Of The Mission_Parameters Class 147

Function: public
void set_mp_value_to (char *value)
sets the value of the mission parameter to value

Argument Description:
char * value the value of the mission parameter

Function: public
char * get_mp_value ()
returns the value of the mission parameter

Argument Description:
None

Function: public
void set_mp_display_to (char *code)
sets the display of the mission parameter to code

Argument Description:

char * code code = "ON" or code = "OFF" — describes whether

a mission parameter should be displayed

Function: public
char * get_mp_display ()
returns the display code of the mission parameter

Argument Description:
None

Appendix B: Functions Of The Mission_Parameters Class

148

Function: public
void set_mp_comment_tov(char *comment)
sets the comment of the mission parameter to comment

Argument Description:
char * comment comment which is assigned to the mission parameter

Function: public
char * get_mp_comment ()
returns the comment of the mission parameter

Argument Description:
None

Appendix B: Functions Of The Mission_Parameters Class 149

THE MISSIONS CLASS

Class Name:

Missions
Location:

missions.h

Inheritance:
Mission_Parameters Class

Description:
This class serves as the central coordinator for all mission data manipulation. It
creates the phase linked lists from information read from a file by instancing the
class phases. From the information in the file, it also creates a linked list of mission
parameters. The Mission_Parameters functions are directly accessible through
inheritance. Routines to create, modify, and destroy any part of the mission are
available. This class is inherited by the class Mission_Window

Private Variables:
char * mission_name name of the mission

Protected Variables:
Mission_Parameters *
first_mission_parameter
pointer to the first mission parameter in the
Mission_Parameters linked list
char * _names ordered list of the parameter names
char * names_of_avail_phases
list of phases available to the mission

Public Variables:
None

Private Functions:
None

Appendix B: The Missions Class . 1§80

Protected Functions:
void delete_mission_variables
frees up memory taken up by the Missions class

Public Functions:

int check_file_validity checks to see whether specified file exists

void create_mission creates mission by loading information from a file

Phases * get_proper_phase returns pointer to a newly created phase

void save_miss saves mission information to a file

void set_mission_name_to
sets the name of mission

char * get_mission_name returns the name of the mission

Phases * get_phase_pointer returns a pointer to a specified phase

int get_num_of_phases returns the number of phases in the mission

int get_num_of_params returns the number of parameters in the mission

void get_avail_phases retrieves the available phases from a file and stores
them in the protected variable
names_of _avail_phases

Phases * default_phase returns a pointer to a newly created phase—with
default parameter values

void insert_phase inserts a phase into the phase linked list

void add_new_phase adds a new phase to the phase linked list

void delete_phase removes a phase from the phase linked list

void refresh updates the entire mission to reflect dependencies

void update_element updates a specified parameter to reflect a specified
value

void reset_to_default_value
resets a specified parameter to its default value

void reset_phase_defaults resets all the parameters of the phase to their default
values

void move_phase moves a specified phase within the phase linked list
to the specified location

void move_param moves a specified parameter within the parameter
linked list to the specified location

float retrieve_float_value returns the float value of the specified parameter

Appendix B: The Missions Class 151

char *
char *
char *
float

float

void

void

void

void

retrieve_char_value returns the character value of the specified parameter
retrieve_param_title returns the name of the specified parameter
retrieve_phase_title returns the name of the specified phase
get_max_param_value
returns the maximum value in the mission for a
specified parameter
get_min_param_value
returns the minimum value in the mission for a
specified parameter
copy.element copies a specified element onto a second specified
element
assign_values_to_phase
assigns values to a list of parameters for the specified
phase
load_mission_parameters
creates the mission parameters by reading
information from a file
write_mission_parameters
writes the mission parameters to a file

Mission_Parameters *

void
float
char *
void

get_mp_pointer returns a pointer to a specified mission parameter
set_mp_value_to assigns a specified value to the mission parameter
get_float_mp_value returns the float value of the mission parameter
get_char_mp_value returns the character value of the mission parameter
write_to_acsynt_file writes the mission information to ACSYNT format

Virtual Functions:

None

Appendix B: The Missions Class - 152

FUNCTIONS OF THE MISSIONS CLASS

Location: missions.C

Function: protected
void delete_mission_variables ()
frees up memory allocated to the mission

Argument Description:
None

Function: public
int check_file_validity (char *filename)
checks to see whether file filename exist—returns 1 if YES; 0 if NO

Argument Description:
char * filename name of the file

Function: public
void create_mission (char *filename)
creates the mission by reading information from the file filename

Argument Description:
char * filename name of the file

Function: public
Phases * get_proper_phase (char *name, char **values)
returns a pointer to a new phase whose data type is determined by name and assigns
the values of the parameters from values

Argument Description:

char * name name of the phase
char ** values list of values from which the parameter values are
assigned

Appendix B: Functions Of The Missions Class 153

Function: public
void save_miss (char *filename)
saves the mission information to the file filename

Argument Description:
char * filename name of the file

Function: public
void set_mission_name_to (char *name)
sets the name of the mission to name

Argument Description:
char * name name of the mission

Function: public
char * get_mission_name ()
returns the name of the mission

Argument Description:
None

Function: public
Phases * get_phase_pointer (int location)
returns a pointer to the phase specified by location

Argument Description:
int location position of the phase within the phase linked list

Function: public
int get_num_of_phases ()
returns the number of phases within the mission

Argument Description:
None

Appendix B: Functions Of The Missions Class 154

Function: public
int get_num_of_params ()
returns the number of parameters within the mission

Argument Description:
None

Function: public
int get_avail_phases ()
retrieves the names of the available phases from a file and stores them in the
variable names_of_avail_phases

Argument Description:
None

Function: public
Phases * default_phase (char *name)
returns a pointer to a new phase whose data type is determined by name—the
parameter values are taken from a file

Argument Description:
char * name name of the phase

Function: public
void insert_phase (char *name, int location)
inserts a new phase of name name in the location location of the phase linked list

Argument Description:
char * name name of the phase
int location position of the phase within the phase linked list

Appendix B: Functions Of The Missions Class 18§

Function: public
void add_new_phase (char *name)
adds a new phase of name name at the end of the phase linked list

Argument Description:
char * name name of the phase

Function: public
void delete_phase (int location)
removes the phase located at position location within the phase linked list

Argument Description:
int location position of the phase within the phase linked list

Function: public
void refresh ()
updates the entire mission to ensure that all values reflect all data interdependencies

Argument Description:
None

Function: public, overloaded
void update_element (int phase_number, int parameter_number, char * value)
void update_element (int phase_number, int parameter_number, float value)
assigns the value value to the parameter determined by phase_number and
parameter_number

Argument Description:

int phase_number the position of the phase within the phase linked
list—phase to which the parameter in question
belongs

int parameter_number the position of the parameter within the parameter
linked list

char * value the new character value of the parameter

float value the new float value of the parameter

Appendix B: Functions Of The Missions Class 156

Function: public
void reset_to_default_value (int phase_number, int parameter_number)
resets the parameter determined by phase_number and parameter_number to its
default value

Argument Description:
int phase_number the position of the phase within the phase linked
list—phase to which the parameter in question
belongs
int parameter_number the position of the parameter within the parameter
linked list

Function: public
void reset_phase_defaults (int location)
resets all the parameters specified by location to their default values

Argument Description:
int location position of the phase within the phase linked list

Function: public
void move_phase (int locationl, int location2)
moves phase from locationl to location2

Argument Description:
int location1 old location of the phase
int location2 new location of the phase

Appendix B: Functions Of The Missions Class 187

Function: public

void move_param (char *name, int location)
moves the parameter specified by name to the new position location within the
parameter linked list
Argument Description:
char * name name of the parameter
int location ’ new position of the parameter within the parameter
linked list

Function: public
float retrieve_float_value (int phase_number, int parameter_number)
returns the float value of the parameter specified by phase_number and
parameter_number

Argument Description:
int phase_number the position of the phase within the phase linked
list—phase to which the parameter in question
belongs
int parameter_number the position of the parameter within the parameter
linked list

Function: public
char * retrieve_char_value (int phase_number, int parameter_number)
returns the character value of the parameter specified by phase_number and
parameter_number

Argument Description:
int phase_number the position of the phase within the phase linked
list—phase to which the parameter in question
belongs
int parameter_number the position of the parameter within the parameter
linked list

Appendix B: Functions Of The Missions Class 158

Function: public
char * retrieve_param_title (int location)
returns the name of the parameter located at location within the parameter linked list

Argument Description:
int location position of the parameter within the parameter linked
list

Function: public
char * retrieve_phase_title (int location)
returns the name of the phase located at location within the phase linked list

Argument Description:
int location position of the phase within the phase linked list

Function: public
float get_max_param_value (char * name)
returns the maximum value of the parameter of name name found within the
mission
Argument Description:
char * name name of the parameter

Function: public
float get_min_param_value (char * name)
returns the minimum value of the parameter of name name found within the mission

Argument Description:
char * name name of the parameter

Appendix B: Functions Of The Missions Class 159

Function: public
void copy_element (int old_phase_pos, int old_param_pos, int
new_phase_pos, new_param_pos)
copies the value of a parameter from one position to another

Argument Description:

int old_phase_position position of the phase within the phase linked list to
which the parameter which is to be copied from
belongs

int old_param_position position of the parameter to be copied from within
the parameter linked list

int new_phase_position position of the phase within the phase linked list to
which the parameter to be copied to belongs

int new_param_position position of the parameter to be copied to within the
parameter linked list

Function: public
void assign_values_to_phase (char */ist, int phase_number)
assigns values to the parameters belonging to the phase specified by the
phase_number—the values are taken from list, a string of entries

Argument Description:

char * list a list of values to be assigned to the parameter—
entries within the list are separated by at least one
blank character

int phase_number the location of the phase within the phase linked list

Appendix B: Functions Of The Missions Class 160

Function: public
void load_mission_parameters (FILE *filename)
creates the Mission_Parameters linked list by reading information from the file
filename

Argument Description:
FILE * filename pointer to the file from which to read

Function: public
void write_mission_parameters (FILE *filename)
saves the mission parameter information to the file filename

Argument Description:
FILE * filename pointer to the file to which to write

Function: public, overloaded
Mission_Parameters * get_mp_pointer (int location)
Mission_Parameters * get_mp_pointer (char *name)
returns a pointer to the mission parameter specified by location or name

Argument Description:

int location location of the mission parameter within the
Mission_Parameters linked list
char * name name of the mission parameter

Function: public, overloaded
void set_mp_value_to (char *name, float value)
void set_mp_value_to (char *name, char *value)
sets the mission parameter of name name to the value value

Argument Description:

char * name name of the mission parameter
float value float value of the mission parameter
char * value character value of the mission parameter

Appendix B: Functions Of The Missions Class 161

Function: public
float get_float_mp_value (char * name)
returns the float value of the mission parameter name

Argument Description:
char * name name of the mission parameter

Function: public
char * get_char_mp_value (char * name)
returns the character value of the mission parameter name

Argument Description:
char * name name of the mission parameter

Function: public
void write_to_acsynt_file ()
saves the mission information to an ACSYNT file

Argument Description:
None

Appendix B: Functions Of The Missions Class

162

THE PHASE_DIAGRAM_WINDOW CLASS

Class Name:
Phase_Diagram_Window

Location:
geometry_window.h

Description:
This class creates the graphical representation of the mission data. It inherits the
class Scroll_Window to enable it to create the window in which the graphics are
displayed. This class is instanced in the class Mission_Window.

Inheritance:
Scroll_Window Class

Private Variables:
PHIGS_Stucture_ID *
geo_structure pointer to the PHIGS structure which creates the
graphical representation of the data
Mission_Window *
mission_window pointer to the window in which the mission data is

displayed

float x_scaling the scaling factor along the horizontal direction for
the graph

float y_scaling the scaling factor along the vertical direction for the
graph

float minimum_x minimum x value for the graph (scaled)

float maximum_x maximum x value for the graph (scaled)

float maximum_y maximum y value for the graph (scaled)

Pint color_index_red color table index number for the color red

Pint color_index_green color table index number for the color green

Pint color_index_white color table index number for the color white

Protected Variables:
None

Appendix B: The Phase_Diagram_Window Class 163

Public Variables:
None

Private Functions:

void create_axis creates the axis for the graph

int set_proper_zoom scts the proper zooming factor for the graph

void initialize_colors sets color table indices to represent required colors
void display_error_message

displays error message in the window
void process_geometry_view
processes events detected within the window

Protected Functions:
None

Public Functions:
void create_geometry creates the graphical representation of the data
void destroy_geo_structure
frees up the memory taken up by the PHIGS
structure which creates the graphical representation

Virtual Functions:
None

Appendix B: The Phase_Diagram_Window Class 164

FUNCTIONS OF THE PHASE_DIAGRAM_WINDOW CLASS
Location: geometry_window.C

Function: private
void create_axis ()
creates the axis used in the graphical representation

Argument Description:
None

Function: private
void set_proper_zoom ()
zooms the display window by the proper factor to display the graph correctly

Argument Description:
None

Function: private
void set_proper_scale ()
calculates the correct scaling factor which must be used to zoom the window
correctly

Argument Description:
None

Function: private
void initialize_colors ()
assigns the correct colors to the color indices to be used by the class

Argument Description:
None

Appendix B: Functions Of The Phase_Diagram_Window Class 165

Function: private
void display_error_message ()
displays an error message instead of the graph—used whenever the data available is
insufficient to create a graph

Argument Description:
None

Function: private
void process_geometry_view (int choice, Ppoint3 *loc_posi. int
view_index, Ppick_path *pick_path, Event *event)
used to detect events that occur within the display area of the window

Argument Description:

int choice value entered using the choice logical device
Ppoint3 * loc_pos X, ¥, and z values of the location selected using the
locator logical device
int view_index index of the view in which the event was detected
Ppick_path *
pick_path the pick path returned by the logical pick device
Event * event pointer to the event detected

Function: public
void create_geometry ()
* creates the graphical representation of the mission data

Argument Description:
None

Function: public
void destroy_geo_structure ()
deletes the PHIGS structure which creates the graphical representation

Argument Description:
None

Appendix B: Functions Of The Phase_Diagram_Window Class 166

THE MISSION_WINDOW CLASS

Class Name:
Mission_Window

Location:
mission_window.h

Description:
This class acts as the central coordinator of all other classes. It creates and controls
display of the mission data. It creates the mission data itself through instancing of
the class Missions and has access to all the functions found within that class
through inheritance. To enable it to create the interface it also inherits the class
Scroll_Window. Whenever appropriate, instancing of the class
Phase_Diagram_Window occurs to display the graphical representation of the
mission.

Inheritance:
Scroll_Window Class
Missions Class

Private Variables:
Phase_Diagram_Window *

geo_window pointer to the window which displays the graphical
representation of the mission data

Pint white_color the color table index for the color white
Pint red_color the color table index for the color red
Pint blue_color the color table index for the color blue
Pint gray_color the color table index for the color gray
Color_Group *

menu_color pointer to the set of colors used to display menus
Color_Group *

label_color pointer to the set of colors used to display labels

Appendix B: The Mission_Window Class 167

Color_Group *

input_color pointer to the set of colors used to display input text
int menu_face_color index of the color used in coloring the faces of
menus
Push_Button *

autozoom_button pointer to the push button used for auto zooming
Push_Button *
mission_parameter_button
pointer to the push button used to toggle the mission

parameters menu
Push_Button *
options_button pointer to the push button used to display options
menu
Push_Button *
quit_button pointer to the push button quit
Push_Button *

geo_window_button pointer to the push button used to toggle the window
that displays the graphical representation of the data
on and off
Label * autozoom_label pointer to the label used by autozoom_button
Label * mission_parameter_label '
pointer to label used by mission_parameter_button
Label * options_button_label pointer to the label used by options_button
Label * quit_button_label pointer to the label used by quit_button
Label * geo_window_button_label
pointer to the label used by geo_window_button
PHIGS_Structure_ID *
mission_structure pointer to the PHIGS structure which displays the
mission data
Interface_Manager *
manager pointer to the interface manager which governs and
controls the various windows and menus on the
screen

Appendix B: The Mission_Window Class 168

Static_Menu *

int

int

int

float

float

int

int

int

int

Ptext_align
float

float

char *

int

int

int

mission_parameters_address
pointer to the static menu—mission parameters menu
exit_mission_parameter_menu
flag used to indicate exit from the mission parameters
menu
mission_parameter_menu_toggled
flag used to indicate that the mission parameters
menu was toggled
toggle_window_flag flag used to indicate that the window that displays the
graphical representation of the data was toggled
acsynt_title_loc the location of the lower-left hand comer of the
ACSYNT title bar (in Normalized Projection
Coordinates)
geometry_view_width
the width of the data display (in World Coordinates)
initial_data_loading flag used to indicate whether data is being loaded for
the first time
this_structure_id the id of the PHIGS structure which displays the data
(structure displayed by this window)
mission_parameter_on
flag indicating that the mission parameters menu is
toggled on
number_precision the number of significant digits with which data is
displayed
text_alignment tells PHIGS how to align the text to be displayed
horizontal_spacing spacing between columns for display of the data
vertical_spacing spacing between rows for display of the data
list_of files a list of all files that contain missions
first_phase_menu flag used to indicate initial launching of phase_menu
first_filename_menu flag used to indicate initial launching of
file_name_menu
first_phase_options_menu

Appendix B: The Mission_Window Class 169

int

int

int

int

int

int

int

int

int

int

int

flag used to indicate initial launching of
phase_options_menu
first_options_menu flag used to indicate initial launching of
options_menu
first_add_phase_menu
flag used to indicate initial launching of
add_phase_menu
first_parameter_menu

flag used to indicate initial launching of parameter

menu
first_move_parameter_menu
flag used to indicate initial launching of
move_parameter_menu
first_confirm_menu flag used to indicate initial launching of
confirm_menu
first_message_menu flag used to indicate initial launching of
message_menu
first_apply_defaults_menu
flag used to indicate initial launching of
apply_defaults_menu
first_row_column_menu
flag used to indicate initial launching of
row_column_menu
first_number_display_menu
flag used to indicate initial launching of
number_display_menu
first_quick_input_menu
flag used to indicate initial launching of
quick_input_menu
first_retr_del_file_menu
flag used to indicate initial launching of
retr_del_file_menu

Appendix B: The Mission_Window Class

170

int

int

first_other_variables_menu
flag used to indicate initial launching of
other_variables_menu
first_select_variables_menu
flag used to indicate initial launching of
select_variables_menu

Protected Variables:

None

Public Variables:

None

Private Functions:

void

void

void

void

void

char *

void

void

set_additional_differences
specifies differences between the class
Mission_Window and the class Scroll_Window
create_additional_components
creates extra components found in the
Mission_Window class and not in the
Scroll_Window class
delete_additional_components
deletes the extra components created by this class
process_additional_event
processes events generated by the additional
components created by this class
process_geometry_view
processes events detected within the display area of
the window created by this class
filename_menu creates the menu prompting the user for a filename—
returns the file name
mission_parameter_menu
creates the menu which displays the mission
parameters
phase_options_menu

Appendix B: The Mission_Window Class 171

void

void

void

void

void

void

void

void

void

void

void

void

void

void

creates the menu which displays the options for

editing at the phase level
options_menu creates the menu which displays the available general
options
add_phase_menu creates the menu by which the user can add phases
parameter_menu creates the menu by which parameters can be edited

move_parameter_menu
creates the menu by which the user can move

parameters

confirm_menu creates the menu which prompts the user for
confirmation

message_menu creates the menu used to display messages to the user

apply_defaults_menu
creates the menu by which parameters may be reset
to their default values

row_column_menu creates the menu by which the user can alter the row
and column spacing

number_display_menu
creates the menu by which the user can alter the
display of the data layout

quick_input_menu creates the menu by which the user can make
modification for an entire phase at once

retr_del_file_menu creates the menu by which the user can retrieve or
delete files

other_variables_menu _
creates the menu in which mission parameters are
shown

select_variables_menu
creates the menu by which the user can select which
variables will be displayed by the
other_variables_menu

create_mission_structure

‘ creates the PHIGS structure which displays the

mission data

Appendix B: The Mission_Window Class 172

char *
void
void

void

void

void
int

display_properly modifies data for proper screen display
refresh_window updates window to reflect latest changes
initialize_colors assigns specified colors to specified color table

indices
scan_for_pick determines if a logical pick input was generated in the
display area
initializer initializes private class variables upon its creation
toggle_window toggles window to it's current and previous size

get_list_of_files retrieves list of available files which contain missions

Protected Functions:

None

Public Functions:

void
void
void
void
int
int
int
void

phase_menu creates a menu by which parameters can be modified
turn_ETC_on turns immediate mode on
turn_ETC_off turns immediate mode off

open_initial_mission opens a default file when module is first launched
get_white_color returns the color table index for white
get_red_color returns the color table index for red
get_green_color returns the color table index for green
process_from_mouse

processes events generated from the mouse device

Virtual Functions:

None

Appendix B: The Mission_Window Class 173

FUNCTIONS OF THE MISSION_WINDOW CLASS
Location: mission_window.C

Function: private
void set_additional_differences ()
defines the differences between the Mission_Window class and the Scroll_Window

class

Argument Description:
None

Function: private
void create_additional_components ()
creates components that are required, but not part of the Scroll_Window class

Argument Description:
None

Function: private
void delete_additional_components ()
deletes the additional components created by this class

Argument Description:
None

Function: private
void process_additional_event (Event *event)
processes events generated by the additional components created by this class

Argument Description:
Event * event pointer to the event generated

Appendix B: Functions Of The Mission_Window Class 174

Function: private
void process_geometry_view (int choice, Ppoint3 *loc_pos, int
view_index, Ppick_path *pick_path, Event *event)
used to detect events that occur within the display area of the window

Argument Description:

int choice value entered using the choice logical device

Ppoint3 * loc_pos X, ¥, and z values of the location selected on the
screen

int view_index index of the view in which the event was detected

Ppick_path * pick_path the pick path of the entity selected

Event * event pointer to the event detected

Function: private
char * filename_menu (char *defauls_file)
creates a menu to prompt the user for a file name—returns the name entered

Argument Description:
char * default_file the default filename which is offered by the menu

Function: private
void mission_parameter_menu ()
creates the static menu which displays the principle mission parameters

Argument Description:
None

Appendix B: Functions Of The Mission_Window Class 17§

Function: private
void phase_options_menu (int phase_number)
creates a pop-up menu displaying the options available for making modifications at
the phase level

Argument Description:
int phase_number the position of the phase selected within the phase
linked list

Function: private
void options_menu ()
creates a pop-up menu displaying the general options available

Argument Description:
None

Function: private
void add_phase_menu (int active_phase, int entry_code)
creates a pop-up menu by which to add a new phase before or after (depending on
entry_code) the active_phase

Argument Description:
int active_phase the position of the active phase within the phase
linked list—active phase means it was the phase
selected before the menu was launched
int code flag indicating whether to add the code before or after
the active phase (1 = before, 2 = after)

Appendix B: Functions Of The Mission_Window Class 176

Function: private
void parameter_menu (int phase_number, int parameter_number)

creates a pop-up menu by which parameters can be modified—presents all the
parameters for the phase phase_number, the parameter parameter_number is

highlighted by default
Argument Description:
int phase_number the position of the phase within the phase linked list
to which the parameter selected belongs
int parameter_number the position of the parameter selected within the
parameter linked list

Function: private
void move_parameter_menu (int new_position)

creates a pop-up menu by which the user can move a parameter to a new position

Argument Description:
int new_position the new position of the parameter

Function: private
void confirm_menu (char *prompi)
creates a pop-up menu asking the user for confirmation to the prompt

Argument Description:
char * prompt the prompt to be displayed

Function: private
void message_menu (char *message)
creates a pop-up menu which displays the message message to the user

Argument Description:
char * message the message to be displayed

v Appendix B: Functions Of The Mission_Window Class

177

Function: private
void apply_defaults_menu (int phase_number, int parameter_number, char
*title)
creates a pop-up menu by which a parameter can be reset to its default value—the
parameter in question is determined by phase_number and parameter_number

Argument Description:

int phase_number the location of the phase within the phase linked list
to which the parameter in question belongs

int parameter_number the location of the parameter within the parameter
linked list

char * title the heading to be displayed by the menu

Function: private
void row_column_menu ()
creates a pop-up menu by which the column and row spacing of the layout can be
altered

Argument Description:
None

Function: private
void number_display_menu ()
creates a pop-up menu by which the appearance of the numeric data can be altered

Argument Description:
None

Function: private
void quick_input_menu ()
creates a pop-up menu which allows the user to change all the parameters for an
entire phase at once

Argument Description:
None

Appendix B: Functions Of The Mission_Window Class 178

Function: private
void retr_del_file_menu ()
creates a pop-up menu by which mission files can be retrieved or deleted

Argument Description:
None

Function: private
void other_variables_menu (int position)
creates a pop-up menu which displays mission parameters selected as being
viewable in the select_variables_menu

Argument Description:
int position the position within the Mission_Parameters linked
list of the first variable to be displayed by the menu

Function: private
void select_variables_menu (int position)
creates a pop-up menu by which the user can determine which variables will be
displayed by the other_variables_menu

Argument Description:
int position the position within the Mission_Parameters linked
list of the first variable to be displayed by the menu

Function: private
void create_mission_structure (int row, int column)
creates the PHIGS structure which displays the mission data—updates the data
(including graphical representation) to reflect latest changes before posting it to the
screen

Argument Description:

int row row of data to highlight—used to denote a phase as
active

int column column of data to highlight—used to denote a
parameter as active

Appendix B: Functions Of The Mission_Window Class 179

Function: private
void refresh_window ()
updates the display window to reflect latest changes

Argument Description:
None

Function: private
void initialize_colors ()
modifies the PHIGS color table—assigns colors to a set of color table indices

Argument Description:
None

Function: private
void scan_for_pick (Pop_Up_Menu *menu, Event *event)
tests whether event contains input from a logical pick device—used whenever the
interface manager sends a message of value zero (0)

Argument Description:
Pop_Up_Menu *
menu the menu from which the function is called
Event * event the event detected

Function: private
void initializer ()
initializes all private class variables when the data type is first created

Argument Description:
None

Appendix B: Functions Of The Missien_Window Class 180

Function: private

void toggle_window (float min_x, float max_x, float min_y, float max_y)
toggles the window between its current size and the size specified by the arguments
passed

Argument Description:
float min_x minimum x value of the window (Normalized
Projection Coordinates)

float max_x maximum x value of the window (NPC)

float min_y minimum y value of the window (NPC)

float max_y maximum y value of the window (NPC)

Function: private

void toggle_window (float min_x, float max_x, float min_y, float max_y)
toggles the window between its current size and the size specified by the arguments
passed

Argument Description:
float min_x minimum x value of the window (Normalized
Projection Coordinates)

float max_x maximum x value of the window (NPC)

float min_y minimum y value of the window (NPC)

float max_y maximum y value of the window (NPC)

Function: private
int get_list_of_files (char *directory_name)
retrieves a list of files from the directory directory_name that contain mission data—
returns 1 if successful; 0 if unsuccessful

Argument Description:
char * directory_name directory path name of the directory in which the files
are searched for

Appendix B: Functions Of The Mission_Window Class 181

Function: public
void phase_menu (int phase_number, int parameter_number)
creates a pop-up menu by which parameters can be modified—presents all the
values for a given parameter; the parameter value for phase phase_number is

highlighted by default
Argument Description:
int phase_number the position of the phase within the phase linked list
to which the parameter selected belongs
int parameter_number the position of the parameter selected within the
parameter linked list

Function: public
void turn_ETC_on ()
turns immediate mode on for certain items of the interface

Argument Description:
None

Function: public
void turn_ETC_off ()
turns immediate mode off for certain items of the interface

Argument Description:
None

Function: public
void open_initial_mission ()
opens a default mission file when the module is first launched—the name of the
default file is hard coded in the function

Argument Description:
None

Appendix B: Functions Of The Mission_Window Class 182

Function: public
void get_white_color ()
returns the color table index for the color white which was defined by the
initialize_color function

Argument Description:
None

Function: public
void get_red_color ()
returns the color table index for the color red which was defined by the
initialize_color function

Argument Description:
None

Function: public
void get_green_color ()
returns the color table index for the color green which was defined by the
initialize_color function

Argument Description:
None

Appendix B: Functions Of The Mission_Window Class 183

Function: public
void process_from_mouse (int choice, Ppoint3 *loc_pos, int view_index,
Ppick_path *pick_path, Event *event)
processes events that are generated from the mouse

Argument Description:

int choice value entered using the choice logical device

Ppoint3 * loc_pos X, ¥, and z values of the location selected on the
screen

int view_index index of the view in which the event was detected

Ppick_path * pick_path the pick path of the entity selected

Event * event pointer to the event detected

Appendix B: Functions Of The Mission_Window Class 184

ADDITIONAL FUNCTIONS
Location: utilities.C

Function: does not belong to a class
int format_type (char *value)
determines if value is purely numeric or if it contains symbols which render it a
"word"—this function is used since PHIGS can only accept string inputs; returns 1
if it is a "word", returns 0 if it is a "number”
Argument Description:
char * value entry whose format is to be tested

Function: does not belong to a class
char * word (char *value)
ensures that value is a single word—leading blank characters are removed; value is
truncated at first blank character which follows a valid character; returns the
modified word

Argument Description:
char * value entry which is to be modified

Appendix B: Additional Functions . 185§

OTHER CLASSES

The following classes are used by the Mission Profile Input System but were not created by

the author. One of the advantages of using an object-oriented language is that it allows for

high code reusability. The classes are not discussed in detail. They are listed here for

completeness.

For more information on the following classes refer [Steu93]:

Scroll_Window

For more information on the following classes refer [Woya92 & Woya93]:

PHIGS_Structure_ID
Check_Box
Color_Group
Event

Frame
Interface_Manager
Label
Number_Box
Pop_Up_Menu
Push_Button
Static_Menu

Text_Input

Appendix B: Other Classes - 186

VITA

Francisco Rivera Jr. was born January 11, 1969 in McAllen, Texas. He grew up
surrounded by orchards in the small town of Santa Paula, California. He attended the
University of California at Santa Barbara where he studied Mechanical Engineering. After
graduating in 1991 he decided to head east to Virginia Tech where he did his graduate work
in computer-aided design. Upon graduating from Virginia Tech the author will return to

work close to home in San Jose, California.

o

Uz, ’/J{J&A / e [zz

Francisco Rivera Jr s
/

I

