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ABSTRACT 

 
With the ever-growing concerns of environmental and climate concerns for energy consumption 

in our society, it is crucial to develop novel solutions that improve the efficient utilization of 

distributed energy resources for energy efficiency and demand response (DR). As such, there is a 

need to develop targeted energy programs, which not only meet the requirement of energy goals 

for a community but also take the energy use patterns of individual households into account. To 

this end, a sound understanding of the energy behavior of customers at the neighborhood level is 

needed, which requires operational analytics on the wealth of energy data from customers and 

devices.  

 

In this dissertation, we focus on data-driven solutions for customer energy behavior 

characterization with applications to distributed energy management and flexibility provision. To 

do so, the following problems were studied: (1) how different customers can be segmented for DR 

events based on their energy-saving potential and balancing peak and off-peak demand, (2) what 

are the opportunities for extracting Time-of-Use of specific loads for automated DR applications 

from the whole-house energy data without in-situ training, and (3) how flexibility in customer 

demand adoption of renewable and distributed resources (e.g., solar panels, battery, and smart 

loads) can improve the demand-supply problem. 

 

In the first study, a segmentation methodology form historical energy data of households is 

proposed to estimate the energy-saving potential for DR programs at a community level. The 

proposed approach characterizes certain attributes in time-series data such as frequency, 

consistency, and peak time usage. The empirical evaluation of real energy data of 400 households 

shows the successful ranking of different subsets of consumers according to their peak energy 

reduction potential for the DR event. Specifically, it was shown that the proposed approach could 

successfully identify the 20-30% of customers who could achieve 50-70% total possible demand 

reduction for DR.  Furthermore, the rebound effect problem (creating undesired peak demand after 

a DR event) was studied, and it was shown that the proposed approach has the potential of 

identifying a subset of consumers (~5%-40% with specific loads like AC and electric vehicle) who 

contribute to balance the peak and off-peak demand. A projection on Austin, TX showed 16MWh 

reduction during a 2-h event can be achieved by a justified selection of 20% of residential 

customers. 

 

In the second study, the feasibility of inferring time-of-use (ToU) operation of flexible loads for 

DR applications was investigated. Unlike several efforts that required considerable model 

parameter selection or training, we sought to infer ToU from machine learning models without in-



 

 

situ training. As the first part of this study, the ToU inference from low-resolution 15-minute data 

(smart meter data) was investigated. A framework was introduced which leveraged the smart meter 

data from a set of neighbor buildings (equipped with plug meters) with similar energy use behavior 

for training. Through identifying similar buildings in energy use behavior, the machine learning 

classification models (including neural network, SVM, and random forest) were employed for 

inference of appliance ToU in buildings by accounting for resident behavior reflected in their 

energy load shapes from smart meter data. Investigation on electric vehicle (EV) and dryer for 10 

buildings over 20 days showed an average F-score of 83% and 71%. As the second part of this 

study, the ToU inference from high-resolution data (60Hz) was investigated. A self-configuring 

framework, based on the concept of spectral clustering, was introduced that automatically extracts 

the appliance signature from historical data in the environment to avoid the problem of model 

parameter selection. Using the framework, appliance signatures are matched with new events in 

the electricity signal to identify the ToU of major loads. The results on ~1500 events showed an 

F-score of >80% for major loads like AC, washing machine, and dishwasher. 

 

In the third study, the problem of demand-supply balance, in the presence of varying levels of 

small-scale distributed resources (solar panel, battery, and smart load) was investigated. The 

concept of load complementarity between consumers and prosumers for load balancing among a 

community of ~250 households was investigated. The impact of different scenarios such as varying 

levels of solar penetration, battery integration level, in addition to users’ flexibility for balancing 

the supply and demand were quantitatively measured. It was shown that (1) even with 100% 

adoption of solar panels, the renewable supply cannot cover the demand of the network during 

afternoon times (e.g., after 3 pm), (2) integrating battery for individual households could improve 

the self-sufficiency by more than 15% during solar generation time, and (3) without any battery, 

smart loads are also capable of improving the self-sufficiency as an alternative, by providing ~60% 

of what commercial battery systems would offer. 

 

The contribution of this dissertation is through introducing data-driven solutions/investigations for 

characterizing the energy behavior of households, which could increase the flexibility of the 

aggregate daily energy load profiles for a community. When combined, the findings of this 

research can serve to the field of utility-scale energy analytics for the integration of DR and 

improved reshaping of network energy profiles (i.e., mitigating the peaks and valleys in daily 

demand profiles).  
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GENERAL AUDIENCE ABSTRACT 

 
Buildings account for more than 70% of electricity consumption in the U.S., in which more than 

40% is associated with the residential sector. During recent years, with the advancement in 

Information and Communication Technologies (ICT) and the proliferation of data from consumers 

and devices, data-driven methods have received increasing attention for improving the energy-

efficiency initiatives. 

With the increased adoption of renewable and distributed resources in buildings (e.g., solar panels 

and storage systems), an important aspect to improve the efficiency by matching the demand and 

supply is to add flexibility to the energy consumption patterns (e.g., trying to match the times of 

high energy demand from buildings and renewable generation). In this dissertation, we introduced 

data-driven solutions using the historical energy data of consumers with application to the 

flexibility provision. Specific problems include: (1) introducing a ranking score for buildings in a 

community to detect the candidates that can provide higher energy saving in the future events, (2) 

estimating the operation time of major energy-intensive appliances by analyzing the whole-house 

energy data using machine learning models, and (3) investigating the potential of achieving 

demand-supply balance in communities of buildings under the impact of different levels of solar 

panels, battery systems, and occupants energy consumption behavior. 

In the first study, a ranking score was introduced that analyzes the historical energy data from 

major loads such as washing machines and dishwashers in individual buildings and group the 

buildings based on their potential for energy saving at different times of the day. The proposed 

approach was investigated for real data of 400 buildings. The results for EV, washing machine, 

dishwasher, dryer, and AC show that the approach could successfully rank buildings by their 

demand reduction potential at critical times of the day. 

In the second study, machine learning (ML) frameworks were introduced to identify the times of 

the day that major energy-intensive appliances are operated. To do so, the input of the model was 

considered as the main circuit electricity information of the whole building either in lower-

resolution data (smart meter data) or higher-resolution data (60Hz). Unlike previous studies that 

required considerable efforts for training the model (e.g, defining specific parameters for 

mathematical formulation of the appliance model), the aim was to develop data-driven approaches 

to learn the model either from the same building itself or from the neighbors that have appliance-

level metering devices. For the lower-resolution data, the objective was that, if a few samples of 

buildings have already access to plug meters (i.e., appliance level data), one could estimate the 

operation time of major appliances through ML models by matching the energy behavior of the 

buildings, reflected in their smart meter information, with the ones in the neighborhood that have 

similar behaviors. For the higher-resolution data, an algorithm was introduced that extract the 



 

 

appliance signature (i.e., change in the pattern of electricity signal when an appliance is operated) 

to create a processed library and match the new events (i.e., times that an appliance is operated) 

by investigating the similarity with the ones in the processed library. The investigation on major 

appliances like AC, EV, dryer, and washing machine shows the >80% accuracy on standard 

performance metrics. 

In the third study, the impact of adding small-scale distributed resources to individual buildings 

(solar panels, battery, and users’ practice in changing their energy consumption behavior) for 

matching the demand-supply for the communities was investigated. A community of ~250 

buildings was considered to account for realistic uncertain energy behavior across households. It 

was shown that even when all buildings have a solar panel, during the afternoon times (after 4 pm) 

in which still ~30% of solar generation is possible, the community could not supply their demand. 

Furthermore, it was observed that including users’ practice in changing their energy consumption 

behavior and battery could improve the utilization of solar energy around >10%-15%. The results 

can serve as a guideline for utilities and decision-makers to understand the impact of such different 

scenarios on improving the utilization of solar adoption. 

These series of studies in this dissertation contribute to the body of literature by introducing data-

driven solutions/investigations for characterizing the energy behavior of households, which could 

increase the flexibility in energy consumption patterns.  
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Chapter 1: Introduction and motivation 

With the widespread adoption of distributed energy resources and advanced metering devices, 

future energy and distribution systems will operate in a considerably different environment. 

However, how to adapt to new elements for efficient operation is challenging and not fully 

understood. To this end, digitalization and data-driven solutions are becoming a powerful tool for 

the transition to sustainable energy. The unprecedented bulk of generated data from users and 

metering devices provides opportunities for learning and prediction of customers’ behavior and to 

improve the resource coordination.  

Residential buildings account for more than 37% of electricity consumption share in the United 

States [1], with a total consumption of 1.38 trillion kWh in 2017 [2]. Furthermore, the ever-

growing concerns on the environmental and carbon emission impact [2, 3], the increasing trend in 

the urban population [4], and the high cost of supplying the peak demand at critical times [5] 

necessitate proposing efficient solutions for the management of the power and energy system. To 

this end, the integration of clean renewable energy resources and energy efficient transportation 

systems are considered as viable solutions [6], and there is currently a nationwide trend for 

adopting efficient resources by policies. For example, the state of California had installed solar 

panels with the capacity of over 10 GW [7], accounting for more than 16% of net electricity 

generation [8], and the number of electric vehicles is projected to reach around 2 million by 2040 

[9]. Despite providing beneficial outcome, with the proliferation of highly volatile distributed 

renewable resources such as solar generation and the increased adoption of energy-efficient 

transportation system, the operation of the power system will be facing several challenges. 

Specifically, (1) with the high increase in the electricity load demand, an increase in the generation 

is expected. However, due to the high-cost and environmental factor described above, the number 

of controllable power plants is actually decreasing [10] and other energy resources will be 

replaced, and (2) with the high penetration of intermittent and fluctuating renewable energy 

resources, sending the surplus energy back to the grid can cause power instability. Subsequently, 

this can cause damage to household’s appliances [11]. 

As a result of such evolutions, management of energy demand and supply is becoming more 

challenging, and there is an increased need to add flexibility to the smart grid, in terms of reshaping 

the energy demand profiles at needed times. In other words, the increased adoption of renewable 
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energy resources requires the accommodation of flexible and controllable loads. Accordingly, 

reshaping the aggregate energy demand profiles (from a community of homes) requires making 

alteration to typical usage patterns at the scale of individual homes based on users’ (occupants’) 

behavior [12]; however, it has been shown that demand profiles among different homes (or even 

one along subsequent days) are highly stochastic and do not follow the same trend [13]. Therefore, 

the complex and varied interactional behavior among users bring about challenges for 

characterizing their consumption patterns [14].   

During recent years, the advancements in Information and Communication Technologies (ICT) 

have resulted in generating a vast amount of consumption data from residential homes. 

Specifically, with the roll-out of smart meters at the national scale and advancement in the 

advanced metering infrastructures (AMI) [15], opportunities for data analytics on the consumption 

data of residential homes have emerged in the energy sector. As a result, recent studies have 

focused on learning and predicting the characteristics of homes’ consumption styles, in order to 

reveal actionable patterns for demand-side management (DSM) (e.g., [13, 16-25]. However, how 

to utilize such data to adapt to the future distribution systems with a high level of solar, electric 

vehicle (EVs), smart loads, and the problem of peak demand supply is challenging and not fully 

understood [14, 26]. 

1.1. Problem statement and research gaps 

The research problem addressed in this dissertation is concerned with how interactional 

consumption behavior data of residential homes can be leveraged to make informed decisions for 

improving the flexibility of the energy system. The aim is to understand the dynamic complex 

human-appliance/building interaction across many households to reveal distinguishing factors of 

usage patterns and present actionable insight based on users’ consumption behaviors.  

Prior studies have looked into making occupants more aware about their energy usage, in the form 

of energy eco-feedback [27-33] for direct engagement of individual homes for DSM. However, 

considering that such approaches mainly look at energy data at the resolution of monthly or daily 

basis, they are not applicable to the concept of flexibility, in which the fluctuation of energy 

consumption at hourly basis is needed for distributed energy management. Flexibility is defined 

as the modification of household daily energy profiles through changing the power draw, the 

operation duration, and/or the activation time of individual devices [34]. Therefore, the focus of 
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this dissertation is to reveal actionable feedback based on data analytics for energy planners to 

enable strategies to improve flexibility of energy usage and to adopt automation scenarios. 

Specifically, the motivation stems from the fact that imposing a change in the usage behavior 

through direct feedback is challenging [35] and not as effective as emerging automation platforms 

[36]. 

Through our literature review, research gaps were identified as follows.  

 Limited understanding of flexibility potential of residential loads for DSM applications 

according to human-building interaction and their varied level of contribution. 

 Limited efforts in leveraging individual load data for improved energy management and 

automated control. 

Based on the essence of the problem statement, I have defined the requirements for addressing the 

problems as follows: 

1) The solution should be capable of identifying a limited subset of proper users for DSM programs 

while also accounting for a target amount of energy savings. In other words, it needs to avoid the 

rebound effect (i.e., creating unforeseen peak demand at off-peak time of a DR event, due to 

simultaneous contribution of many customers in DR). 

2) Due to the importance of smart loads contribution in distributed energy management paradigm, 

the solution should increase the information gain by inferring flexible appliance time-of-use events 

from investigating daily profile load shapes. 

3) Given the importance of demand and supply balancing in the presence of renewables, the 

approach needs to account for the inherent difference in household’s load shapes and investigate 

how inclusion of distributed energy resources (e.g., solar, battery, users’ flexibility) can improve 

the decentralized energy management and reduce the reliance on the grid. 

1.2. Research questions 

Based on the aforementioned objectives, the core questions addressed in this work are summarized 

as follows: 

1. How human interactional behavior can be leveraged for efficient operation of flexible loads at 

the community level? 
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2. How could common aggregate load shapes be leveraged in inferring the pattern of flexible 

appliance time-of-use? 

3. How does users’ complementarity in energy consumption styles and the integration of different 

distributed energy resource improve the load flexibility? 

1.3. Contributions 

In this dissertation, we have investigated data-driven solutions for characterizing the energy 

behavior of residential customers for addressing the demand flexibility. Namely, our contribution 

include: (1) presenting a segmentation approach with application to DR, which divides the 

community of consumers based on energy saving. The approach characterizes the features of 

human-building interaction (frequency, consistency, and peak time usage) for ranking the 

households based on their potential for peak demand shaving, (2) inference of flexible appliance 

time-of-use for DR through characterizing the similarities in whole-house energy data (readily 

available data) using machine learning. Unlike similar studies, the approach does not require the 

task of in-situ training or model parameter-tuning, and (3) the investigation of a community’s self-

dependency (using its own renewable generation for meeting its demand) under the realistic 

uncertainties in demand and generation, in addition to the impact of different levels of distributed 

energy resources. 

These contributions have been presented/published in the following journal papers: 

First study (Chapter 2): 

 [37] Afzalan, Milad, and Farrokh Jazizadeh. "Residential loads flexibility potential for 

demand response using energy consumption patterns and user segments." Applied 

Energy 254 (2019): 113693. DOI: https://doi.org/10.1016/j.apenergy.2019.113693 

 [38] Afzalan, Milad, and Farrokh Jazizadeh. "Data-driven identification of consumers 

with deferrable loads for demand response programs." IEEE Embedded Systems 

Letters (2019). DOI: 10.1109/LES.2019.2937834 

Second study (Chapters 3-5): 

 [39] Afzalan, Milad, and Farrokh Jazizadeh. "A Machine Learning Framework to Infer 

Time-of-Use of Flexible Loads: Resident Behavior Learning for Demand Response" IEEE 

Access (2020), DOI: https://doi.org/10.1109/ACCESS.2020.3002155 

 [40] Afzalan, Milad, and Farrokh Jazizadeh. "An automated spectral clustering for multi-

scale data." Neurocomputing 347 (2019): 94-108. DOI: 

https://doi.org/10.1016/j.neucom.2019.03.008 

 [41] Afzalan, Milad, Farrokh Jazizadeh, and Jue Wang. "Self-configuring event detection 

https://doi.org/10.1016/j.apenergy.2019.113693
https://doi.org/10.1109/LES.2019.2937834
https://doi.org/10.1109/ACCESS.2020.3002155
https://doi.org/10.1016/j.neucom.2019.03.008
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in electricity monitoring for human-building interaction." Energy and Buildings 187 

(2019): 95-109. DOI: https://doi.org/10.1016/j.enbuild.2019.01.036 

Third study (Chapter 6): 

 Afzalan, Milad, and Farrokh Jazizadeh. "Quantified investigation of peer-to-peer energy 

trading between prosumers and consumer: An empirical analysis " To be submitted to 

Applied Energy. 

1.4. Dissertation structure 

The rest of the dissertation is structured as follows: In chapter 2, the segmentation approach is 

presented, and its findings and implications are presented. Chapter 3 presents the inference of time-

of-use events of flexible loads using smart meter data. Chapters 4 and 5 presents the self-

configuring framework for inference of time-of-use events with high-resolution data. Chapter 6 

present the quantified results on the load balancing concept amongst prosumers and consumers. 

Chapter 7 concludes the dissertation by summarizing the discussions and future directions.   
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Chapter 2: Residential loads flexibility potential for Demand Response using 

energy consumption patterns and user segments 

Afzalan, Milad, and Farrokh Jazizadeh. "Residential loads flexibility potential for demand 

response using energy consumption patterns and user segments." Applied Energy 254 (2019): 

113693. DOI: https://doi.org/10.1016/j.apenergy.2019.113693 

Afzalan, Milad, and Farrokh Jazizadeh. "Data-driven identification of consumers with deferrable 

loads for demand response programs." IEEE Embedded Systems Letters (2019). DOI: 

10.1109/LES.2019.2937834 

 

 

Abstract 

 
Demand response (DR) is considered an effective approach in mitigating the ever-growing 

concerns for supplying the electricity peak demand. Recent attempts have shown that the 

contribution from the aggregate impact of flexible individual residential loads can add flexibility 

to the power grid as ancillary services. However, current DR schemes do not systematically 

distinguish the varying potential of user contribution due to the highly-varied usage behaviors. 

Thus, this paper proposes a data-driven approach for quantifying the potential of individual 

flexible load users for participation in DR. We introduced a metric to capture the predictability of 

usage in a future DR event using the historical consumption data for different load types. The 

metric helps to sort the users of flexible loads in a community according to their potential for load 

shifting scenarios. We then evaluated the applicability of the metric in the DR context to assess 

the extent of energy reduction for different segments of users. In our analysis, we included electric 

vehicle, wet appliances (dryer, washing machine, dishwasher), and air conditioning. The analysis 

of real-world data shows that the approach is effective in identifying suitable user segments with 

higher predictive potential for demand reduction. We also presented a cross-appliance comparison 

for assessing the flexibility potential of different user segments. As a case study based on Pecan 

Street Project, the findings suggest that potentially ~140MW demand reduction might be achieved 

in Austin, TX through only 20% participation of the selected flexible loads for the residential 

sector during a 2-hour event. 

2.1. Introduction 

With moving towards distributed and decentralized energy management [42, 43], it is important 

to add flexibility to the power consumption pattern at the individual household-level to enable 

https://doi.org/10.1016/j.apenergy.2019.113693
https://doi.org/10.1109/LES.2019.2937834
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efficient operation of the power system, grid-interactive efficient buildings, and self-adaptive 

smart grids. Accordingly, demand response (DR) is considered as a cost-effective technique for 

demand reduction and ancillary services in comparison to conventional and cost-intensive 

techniques for expanding generation capacity or network augmentation. From the automation 

perspective, DR schemes vary from methods based on direct user engagement to more automated 

ways, in which the load operation can be automatically scheduled with Home Energy Management 

(HEM) systems. The advances in communication technologies and embedded communication 

modules in appliances [44-46] have paved the way for automation of flexible load operation, which 

in turn could reduce the users’ burden for manual load shifting [47] and response fatigue [48]. 

Specifically, automation scenarios could enable the implementation of effective and acceptable 

dynamic pricing [49-51] in the electricity market such as real-time pricing (RTP), which is 

typically difficult to implement for manual scheduling of energy use due to high variation in 

pricing and higher uncertainty in user response [49, 52]. From the HEM automation perspective, 

several energy-intensive devices, such as wet appliances (tumble dryers, washing machines, and 

dishwashers), electric vehicles (EV), air conditioning (AC) systems, and water heaters could be 

adopted for flexible operation by receiving the signal from an operator. For example, wet 

appliances or EV can shift their operation or charging time to a later time during peak demand, or 

AC systems can adjust the temperature setpoint within the users’ preference ranges. In this context, 

flexibility has been formally defined as the potential for modification of appliance power profile 

by adjusting power draw, the operation duration, and/or the activation time [34]. Several 

experimental studies have shown the applicability of load control through automation by 

leveraging the flexibility of individual loads at needed times with little or no impact on users’ 

convenience [44, 53, 54]. 

In recent years, several research efforts have shown that the aggregate contribution of deferring 

individual loads in residential units could facilitate the peak demand reduction and provide 

ancillary services (e.g., [44, 54-57]). These studies have focused on assessing and quantifying the 

flexibility, offered by individual loads, as well as the associated response from users for automated 

DR on networks of households. In assessing load flexibility potentials, a number of factors should 

be taken into account. (1) Diversity in appliance types and interactional behaviors [13] makes the 

aggregate load profiles widely different and brings about a high level of uncertainty in estimating 

flexibility across different households [48]. Even for users with the same appliance type, the user-
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load interaction patterns could be considerably different, which results in differences in load 

flexibility potential. (2) In the adoption of automated DR technologies, targeted and stratified 

engagement of users is of economic importance in incentivization under the constraints of limited 

resources [58]. Specifically, introducing DR dynamic pricing scheme comes with constraints such 

as additional costs for enabling technologies and customer enrollment and marketing investment 

[59, 60]. Such barriers necessitate the identification and enrolment of only high-potential users, 

whose price responsiveness to dynamic pricing can be more beneficial [61]. (3) In idealistic 

scenarios through an unjustified selection of individual loads, the DR objective might not be 

satisfied, and the rebound effect (generating a new peak) can occur [62]. Synchronized activation 

of a large number of deferrable appliances to target a peak time [63] could actually jeopardize the 

system reliability and create another unforeseen peak [47]. Therefore, justified selection of 

participants under the uncertainty constraints of load type, load demand, and user behavior is the 

objective of our study on self-sustained smart grid operations. 

Accounting for the above factors, it is imperative to consider the users’ historical consumption and 

their variation of usage to effectively leverage the opportunities for load flexibility potentials. 

Specifically, individual loads’ usage pattern has shown to be an important factor for energy 

demand characterization while its influence on DR objectives has been less explored [64, 65]. 

Although smart meter aggregate-level data analysis has been used for user segmentation in DR 

applications (e.g., [13, 66, 67]), such investigations on an individual load basis, with applications 

for automated DR programs, has been less explored. Accordingly, in this paper, we have proposed 

a data-driven approach for user segmentation by leveraging individual load consumption patterns 

and statistical indicators of user-load interactions. Relying on the proposed segmentation strategy, 

through a case study by using the data from the Pecan Street Project [68], we have further 

investigated the DR capacity of the targeted selection of households according to user-appliance 

interactions and their associated usage pattern. Furthermore, using the proposed segmentation 

approach, we presented and evaluated a comprehensive cross-appliance comparison of demand 

reduction potential at a community level using real-world data. The method is applied to a sample 

of more than 300 households, primarily located in Austin, TX. 

The rest of the paper has been structured as follows. Section 2.2 covers the related literature. 

Section 2.3 defines the segmentation approach for ranking users and its constituent parameters. 

Section 2.4 presents the applicability of the method through empirical assessment for estimating 
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lower DR capacity and peak load reduction. Section 2.4.4 discusses the implications of the study, 

followed by concluding remarks and future research directions. 

2.2. Research Background 

The research background in this study has been presented from two perspectives of (1) residential 

load flexibility assessment for different types of loads regardless of user consumption behavior, 

and (2) leveraging users’ consumption behavioral patterns in DR targeted operations.  

2.2.1. Flexibility potential assessment of residential loads 

Residential loads could contribute to the flexibility of grid operation through two classes of 

deferrable and thermostatically-controlled loads (TCL) [69]. Accordingly, one of the primary 

directions of research has been focused on assessing the potential of smart appliances operation 

for load shifting regardless of the patterns of user-load interaction/consumption. In what follows, 

a number of the major studies are described to provide an insight on the research directions into 

this domain. In one of the leading efforts, through a field study on 77 households with solar power 

in the Netherlands, Kobus et al. [54] have explored the demand shift from smart washing machines 

in a field experiment. They used dynamic pricing to encourage user compliance for automated load 

shifting within a 24-hour window at an optimum time. The user acceptance to shift the demand 

was found to be relatively low (14%) given the extended window for shifted operations. In a later 

study, D’hulst et al. [44] investigated the flexibility potential of all wet appliances (i.e., dryers, 

washing machines, and dishwashers), as well as EVs and water heaters, in more than 180 

households in Belgium. Compared to the previous study, the engagement in smart and automated 

operation was increased (varying between 30~50%) mainly due to the increased incentive and 

authority of users in defining the allowable operational delay window. They have stated that varied 

levels of demand change could be observed from different load types at different times of the day. 

In this regard, EV and water heaters showed higher potential compared to wet appliances [44]. 

Klassen et al. [70] performed a field experiment for flexibility potential assessment of 188 

households in the Netherlands for smart washing machines for both manual and automated DR. 

They showed the potential of automated DR and reported success in shifting the load to off-peak 

pricing times resulting in 31% of load reduction during the evening. 

In addition to investigating the flexibility potential of deferrable appliances, studies have also 

sought to quantify the flexibility of thermostatically controlled load (TCL) (e.g., [57, 71, 72]). 
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Assessing the load flexibility for different ambient temperatures and setpoints of air conditioning 

systems [57, 72], as well as refrigerator and water heaters [57] for different building types comprise 

the main direction of research for flexibility quantification of TCLs. The use of elasticity 

component of the residential loads is another alternative for creating flexibility capacity [73]. 

Elasticity refers to reducing the power demand (e.g., reducing the heating load of a dryer) at the 

cost of increasing the duration time assuming that smart appliances could offer such flexibilities. 

These efforts have adopted simulation as a methodology for assessing flexibly potential for 

different building types and geographical locations without explicitly accounting for diversity in 

user consumption patterns, which stem from differences in interaction habits of users with 

appliances.   

In recent years, in order to leverage the aforementioned load flexibility potentials, Home Energy 

Management (HEM) systems have been introduced and explored (e.g., [53, 54, 74-83]). These 

efforts mainly have focused on optimal load scheduling for a single user and adopting effective 

DR dynamic pricing. In this work, looking at a network of buildings, we have investigated the 

quantification of load flexibility potential from the user segmentation perspective as the first step 

of targeting and prioritizing homes for distributed energy management initiatives. 

2.2.2. User identification for DR: consumption data analysis 

Several previous efforts have focused on the identification of suitable users for DR (e.g., [13, 67, 

84, 85]) by using historical behavior of households, reflected in aggregate power consumption 

data. To this end, studies that leveraged historical data are mainly categorized based on clustering 

the daily load profiles or developing DR selection functions. In the first category of studies [13, 

86-88], clustering has been used on daily aggregate consumption profiles of households to identify 

various repeating load shapes and their similarities and differences. Different techniques such as 

two-stage k-means [13, 86], hierarchical clustering [19], self-organizing maps (SOM) [16], and 

fast search and find of density peaks (FSFDP) [87] have been used for the user segmentation 

purposes. The selection of suitable users for participation has been carried out based on the shape 

and power magnitude of clusters, the variability of load shapes, and the distribution of different 

load shapes in each household [13, 86, 87]. Within this context, the rationale for user selection for 

direct DR control is to identify households with high-consumption and low-variability (i.e., less 

variation across subsequent days) load shapes [87]. Therefore, the user selection through aggregate 

load profiling has been mainly focused on visual analytics of load profile clusters. However, the 
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potential opportunities for demand reduction based on user selection have not been explored in a 

new set of data as a test set for further evaluations. On the other hand, selection functions as a 

quantitative approach for identification of user consumption patterns have been also investigated. 

For example, using aggregate power, Mammen et al. [67] proposed a function that couples the 

consistency of consumption, peak consumption, and customer response (learned from the 

historical events) to categorize user behavior. They studied the potentials of the proposed function 

by investigating the trade-off between participation fairness and the selection of users with higher 

consumption using a historical dataset from 60 apartments to simulate DR event. In another 

example, Holyhead et al. [89] proposed a residential DR approach based on mixed integer 

programming to target users based on relevance (the likelihood of using deferrable appliances at 

peak times) and willingness to respond positively to DR requests. 

As a common trend, the research efforts on user selection according to consumption patterns have 

focused on aggregate power data, which could mask the information from individual loads and 

thus reduce the potential for context-aware automated DR applications. Analysis of individual 

loads’ dynamics could bring about higher information gain on user behavior for context-aware 

operations. Although several efforts have looked into individual load contributions for DR (as 

discussed in section 2.2.1), they have not accounted for variance in user interactions with different 

load types and their impact on the efficacy of the DR process. In other words, all the users and 

their interaction with the flexible appliances were treated similarly. Nonetheless, there has been a 

number of research efforts that explored the data-driven impact of individual loads. In a recent 

effort, Malik et al. [71] investigated the contribution of AC units in summer on peak demand 

reduction using data from selected houses in Australia. Clustering was used to characterize 

different consumption patterns for AC units in different households, and a load control strategy 

was employed to assess the possible demand reduction for each cluster type. It was concluded that 

around 9% of total peak demand can be reduced trough moderate change in temperature setpoints. 

In another study [90], a comparison on flexibility potential of different appliances such as EVs, 

ACs, pool pumps, and lights was performed. However, this study did not account for differences 

among households in providing flexibility potential.  

As the review of the literature shows, in DR operations, behavioral patterns of users in interacting 

with individual appliances have been less investigated. A Large body of segmentation methods in 

literature has looked at the aggregate (i.e., whole-house) segmentation, except few recent studies 
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[71, 91] that focused on AC load segmentation. In other words, to the best of our knowledge, there 

is no comparative study on flexibility potential of different appliance types according to the user 

interaction patterns with individual loads. Therefore, we have proposed to leverage human-

appliance interaction patterns as another level of information in identifying suitable users for DR 

engagement. We specifically look at the load flexibility potentials from the perspective of 

engaging users with different behavioral patterns. To this end, we have proposed a multi-

dimensional metric to characterize user behavioral patterns for targeted engagement of users. The 

objective was to investigate the impact of user interaction with each flexible appliance separately 

by envisioning emerging Demand-Side Management (DSM) technologies [92] for the smart 

operation of individual loads for modern grid operation. We have further evaluated the DR 

capacity of engaging users with different interaction patterns while accounting for the probability 

of compliance to accept DR requests. 

2.3. Methodology 

As noted, in this study, we are proposing to learn from the user-appliance interaction patterns to 

characterize user behavioral traits for effective user segmentation and more informed user 

engagement. Therefore, the methodology in this study describes a proposed multi-dimensional 

metric for user behavior identification, as well as simulation studies for evaluating the DR capacity 

of engaging different groups of households in the load shifting process by accounting for user 

behavior and compliance. 

2.3.1. Data-driven user behavior characterization 

In this method, by assuming that the historical data at the appliance level are available, we have 

proposed to leverage the historical consumption data to quantitatively identify the behavioral 

patterns of user-appliance interactions that could benefit the goal of load shifting across a 

community. Through statistical analysis of the historical interactions, we have sought to create a 

potential score for each household for different load types or appliances. To this end, considering 

𝑁 users in a community, we assign a score 𝑆𝑖𝑗
𝑛  in which 𝑖 is the user and 𝑗 is the appliance type. 𝑆𝑖𝑗

𝑛  

is calculated by leveraging the daily power consumption for different households and appliances 

(𝑃𝑖𝑗𝑘) for day 𝑘. 𝑃𝑖𝑗𝑘(𝑡) is defined as the daily power consumption profile for user 𝑖 (𝑖 ∈ [1, . . , 𝑁]), 

appliance type 𝑗 (𝑗 ∈ [1, . . , 𝐽]), day index 𝑘 (𝑘 ∈ [1, . . , 𝐾]), and 𝑡 is time index of the day 



13 

 

(𝑡 𝜖 [1: 𝑇], e.g., 𝑇 = 24 for the hourly electricity consumption data). In order to characterize the 

user-appliance interaction patterns as 𝑆𝑖𝑗
𝑛 , as illustrated in Figure 2-1, we have proposed to consider 

three attributes (i.e., dimensions) [93], namely (i) frequency of use, (ii) consistency of use, and 

(iii) magnitude of demand during the peak time. All these attributes are measured for a specific 

load type (𝑗): 

 

Figure 2-1. Data-driven scoring system for characterization of user-appliance interactions. 

Frequency of operation: It is intuitive that some of the targeted appliance types might not be 

operated by some users on a regular basis. Therefore, it is important to understand the frequency 

of operation and the tendency of users to use an appliance or a device on a regular basis. Therefore, 

we have quantified the frequency of operation (𝐹𝑆𝑖𝑗
𝑛), in the range of [0,1] as follow: 

𝐹𝑆𝑖𝑗 =
|{𝑘 | max (𝑃𝑖𝑗𝑘(𝑡)) > 𝜏𝑗  , 𝑘 ∈ (1: 𝐾)}|

𝐾
                                                   (1) 

in which 𝜏𝑗 is a threshold value related to the minimum power draw that an appliance class has. 

Therefore, 𝐹𝑆𝑖𝑗 measures the ratio of the number of days that an appliance has been activated 

compared to the total number of historical days (𝐾) in the analysis. 𝜏𝑗 is used to eliminate the 

inherent impact of noise in the data or standby power to avoid false detection of operations.  

Consistency of operation: An important factor in targeting users in a DR scheme is to understand 

the consistency of usage [94]. This attribute aims at measuring the extent to which a user’s 

behavior is deterministic or stochastic across subsequent days. Accordingly, from the utility 

perspective, it is more effective to invest in users with higher consistency, as this factor reflect the 

likelihood of following the expected usage pattern during the DR event. As a demonstration, we 

have shown the charging patterns of EVs for two users across 10 days in Figure 2-2. As shown, 

user 1 has shown to be more consistent by repeating the same pattern for different days, while user 

2 is more sporadic and less predictable in usage patterns. We have defined the consistency of 

operation (𝐶𝑆𝑖𝑗
𝑛), measured in the range of [0,1], as follows: 
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𝐶𝑆𝑖𝑗
𝑛 = 1 − 𝑅𝑀𝑆𝑖𝑗

𝑛           (2) 

in which 𝑅𝑀𝑆𝑖𝑗
𝑛  is the root mean square error (𝑅𝑀𝑆𝑖𝑗), normalized across all users in the 

community using min-max normalization. The non-normalized 𝑅𝑀𝑆𝑖𝑗 is defined as follows: 

𝑅𝑀𝑆𝑖𝑗

=

{
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𝑜𝑟 𝑜𝑡ℎ𝑒𝑟 𝑑𝑒𝑓𝑒𝑟𝑟𝑎𝑏𝑙𝑒 𝑙𝑜𝑎𝑑𝑠
}

𝑘∈𝐾𝑜𝑝

                  

  

∑ √ ∑ [𝑃𝑖𝑗𝑘
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𝑛(𝑡)]
2

𝑡2+
𝑡2−𝑡1

2

𝑡=𝑡1−
𝑡2−𝑡1

2

     𝑗 = 𝐴𝐶 𝑜𝑟 𝑇𝐶𝐿𝑠

𝑘∈𝐾𝑜𝑝

                                                                       

                     (3)   

in which 𝐾𝑜𝑝 is the set of days that an appliance was operational (defined in the numerator in Eq. 

(1)), �̅�𝑖𝑗
𝑛(𝑡) is the average of normalized daily profiles over the span of 𝐾 historical days, [𝑡1: 𝑡2] 

is a potential DR timeframe, and 𝑃𝑖𝑗𝑘
𝑛 (𝑡) is the normalized values of power consumption profile 

on each given day as calculated as follows: 

𝑃𝑖𝑗𝑘
𝑛 (𝑡) =

𝑃𝑖𝑗𝑘(𝑡)

max (𝑃𝑖𝑗𝑘(𝑡))
 , 𝑘 ∈ 𝐾𝑜𝑝                                                    (4) 

The 𝑅𝑀𝑆𝑖𝑗 (Eq. (3)) measures the deviation of the observed value compared to the average across 

all days that an appliance was operated. For AC or in general TCL loads, we limit the consistency 

measurement to the vicinity of DR timeframe, due to the fact that they might have multiple daily 

cycles. For deferrable loads, since the number of activations is limited per day, the consistency 

could be measured across the entire day. The normalization in Eq. (4) is to avoid biases in 

comparing the errors given the same appliance class shows varying levels of power draw across 

multiple users. 

 

Figure 2-2. Consistency of usage pattern for two users across 10 days 
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Peak time operation: using a pre-defined demand management timeframe, for example, a DR 

event timeframe, the historical usage pattern during the event timeframe could be characterized. 

Accordingly, users with higher consumption during DR timeframes are more suitable for load 

shifting or shedding. Assuming a DR timeframe of [𝑡1: 𝑡2], we define 𝑃𝑆𝑖𝑗 as: 

𝑃𝑆𝑖𝑗 = ∑ ∫ 𝑃𝑖𝑗𝑘(𝑡)
𝑡2

𝑡1

𝑑𝑡

𝑘∈𝐾𝑜𝑝

                                                (5) 

𝑃𝑆𝑖𝑗 indicates the energy consumption during the DR timeframe across historical days. Using min-

max normalization for all users, the 𝑃𝑆𝑖𝑗
𝑛  𝜖 [0,1] is calculated to account for power draw variations 

for the same load type. 

Potential score: Using the aforementioned attributes (dimensions) of frequency (𝐹𝑆𝑖𝑗
𝑛), 

consistency (𝐶𝑆𝑖𝑗
𝑛), and peak time use (𝑃𝑆𝑖𝑗

𝑛), we define 𝑆𝑖𝑗 as  

𝑆𝑖𝑗 = 𝐹𝑆𝑖𝑗
𝑛 ∗ 𝐶𝑆𝑖𝑗

𝑛 ∗ 𝑃𝑆𝑖𝑗
𝑛                                                          (6) 

The attributes are multiplied to penalize the 𝑆𝑖𝑗 if either of them is low (e.g., users that show 

frequent and consistent use with low energy consumption during DR timeframe). The superscript 

𝑛 for all attributes indicated that all values are mapped in the range of [0:1] over the entire 

community. 

For better interpretability, the min-max normalization of 𝑆𝑖𝑗 across the entire community is 

performed to obtain the normalized potential score 𝑆𝑖𝑗
𝑛𝜖[0,1]: 

𝑆𝑖𝑗
𝑛 =

𝑆𝑖𝑗 −min (𝑆𝑖𝑗)∀𝑖

max (𝑆𝑖𝑗)∀𝑖 − min (𝑆𝑖𝑗)∀𝑖
, 𝑖 ∈ [1, … ,𝑁]                                    (7) 

𝑆𝑖𝑗
𝑛  is applied to rank the users for different load types (𝑗). As the first stage of user engagement, 

this metric has been intended to be used for user engagement prioritization in a DR scheme for 

different load types. In other words, the score is used to consider the relevance factor, as the 

suitability for providing flexibility. However, user compliance should be also considered. If the 

consumption patterns are driven by operational urgency, it is less likely that users comply. On the 

other hand, if consumption patterns are habitual, it is more likely that users comply. Nonetheless, 

the level of flexibility in compliance is another factor that should be considered. The compliance 

could be quantified through direct communication or through statistical analysis in historical user 

response to DR events. 
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2.3.2. User-centered load shifting framework 

In order to quantify the aggregate impact of load shifting/shedding across a community for 

different groups (i.e., segments) of users, we have adopted a load shifting framework that leverages 

the user characterization model in section 2.3.1. Figure 2-3 illustrates the general framework, 

which leverages the ground truth data to simulate the impact of load shifting/shedding to off-peak 

time following a set of standard protocols, described in the following sections. 

 

Figure 2-3. Load shifting/shedding simulation framework based on user-appliance interaction 

patterns 

2.3.2.a. Load shifting/shedding simulation scenarios 

In order to quantify the DR capacity of the proposed score in load shifting, we have simulated the 

use of the above framework through a case study of a real-world community. In this simulation, 
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for each DR event day, we retrieved the daily consumption profile for user 𝑖 and appliance 𝑗. 

During the DR timeframe [𝑡1: 𝑡2], the operational status of an appliance class is examined by 

searching for available continuous activation load sequences (i.e., adjacent data points) above the 

limiting 𝜏𝑗. If no operation is detected, the power profile remains the same. Otherwise, the 

activation profile,  𝑖𝑗 = [𝑡𝑏𝑒𝑔: 𝑡𝑒𝑛𝑑] is identified, in which 𝑡1  𝑡𝑏𝑒𝑔 < 𝑡2 (i.e., activation start is 

within the DR timeframe), and 𝑡𝑒𝑛𝑑 could be either within DR timeframe or stretched to a later 

time. For load shifting from  𝑖𝑗, we have considered two scenarios: 

Scenario 1: Minimum temporal deferral: In this scenario, we have assumed that the deferred 

load will be immediately operated once the DR timeframe (i.e., the peak time) is over. Studies 

have shown that there is a higher probability that users shift the loads to an immediate timeframe 

after the DR event [95]. In other words, users prefer the minimum delay in the activation start. In 

this case, we assume the new activation cycle will happen at the  𝑖𝑗
∗ = [𝑡2: 𝑡2  𝑡𝑒𝑛𝑑 − 𝑡𝑏𝑒𝑔] 

timeframe. 

Scenario 2: Temporal deferral in a user flexibility window: In this scenario, each user defines 

an allowable flexibility window for each load type upon agreement for load deferral [44]. The 

flexibility window is within the comfort limit of users. In this way, the loads could be shifted to 

off-peak time when the electricity price is lower. Therefore, the new activation cycle will happen 

at the  𝑖𝑗
∗ = [𝑡𝑏𝑒𝑔 : 𝑡𝑒𝑛𝑑 ] in which 𝑡𝑏𝑒𝑔 > 𝑡2 and 𝑡𝑒𝑛𝑑 − 𝑡𝑏𝑒𝑔 < 𝑚𝑎𝑥𝑑. Here, 𝑚𝑎𝑥𝑑 is the 

maximum allowable delay time defined by the user.   

2.3.2.b. User compliance simulation scenarios 

To present the applicability of the method, we select multiple days that were not previously 

considered as the historical days for ranking the users. To this end, we randomly select five days 

after the historical days to quantify the energy reduction at the peak time and report the average 

result. We select multiple days to impose adequate variations for empirical demonstration. In 

quantifying the energy reduction during peak time, we have considered two alternatives for 

emulating user response: 

Scenario 1: Maximum potential: 

In this scenario, we allow for the load shifting of a load only if its consumption time coincides 

with the peak timeframe to evaluate the maximum load shifting potential. In other words, it was 

assumed that users always comply with a DR request signal. Therefore, the results represent the 
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upper bound for energy reduction potential. Since deferring the load to an immediate timeframe 

after the DR window is more consistent with user tendency [95], we used the minimum deferral 

scenario (described in section 2.3.2.a) for shifting the operation cycle for deferrable loads right 

after the DR timeframe ends (𝑡2).  

Scenario 2: User-compliance factor: 

Successful DR events consider users’ preferences. User compliance and the flexibility window 

(allowable time for load deferral) are contextual attributes that drive the users’ response to a DR 

event. User compliance indicates whether a user accepts a DR signal or configurations for 

automated operations of smart appliances for participation. The flexibility window defines the 

allowable timeframe for load deferral without compromising user comfort. In the literature, there 

exist a few experimental and field studies on characterizing users’ response for automated load 

deferral. In our simulations, we have adopted the user response output from a large-scale 

experimental pilot project over a community of houses monitored for 3 years [44]. The compliance 

factor, reflecting the average of acceptance to DR signals for each load, are as presented in Table 

2-1. For the flexibility window, the probability distributions shown in Figure 2-4 were adopted 

from the same study, which reported the average flexibility windows for EV, dryer, washing 

machine, and dishwasher as 5.6, 8.1, 7.3, and 8.5 hours, respectively [44]. AC was not included in 

Figure 2-4 as the control mechanism is different and is based on temperature setpoints. 

Table 2-1. Compliance factor (parameters partially adopted from [44]) 

Device Compliance factor threshold 

EV* 0.60 

Dryer 0.31 

Washing machine 0.29 

Dishwasher 0.56 

AC** 0.50 

* was not specified in ref [44] and we assumed its compliance factor threshold . In the reference, it 

was stated that a majority of smart configurations occurred in the evening. 

** AC was not included in the pilot study, and we assumed its compliance factor threshold. 
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Figure 2-4. The probability distribution of flexibility windows for different load types (adopted 

from [44]). 

For each owner of the deferrable loads, we used the compliance threshold specified in Table 2-1 

as the average fixed response of community for engaging in a DR event. A random number from 

a uniform distribution (between 0 to 1) was generated for each user as the compliance response. If 

the compliance response was lower than the compliance factor threshold, DR participation (i.e., 

agreement) was positive. Upon agreement, the value of the flexibility window (duration of load 

deferral) was selected from the probability distribution function (shown in Figure 2-4). We ran the 

results 10 times on each DR day in order to account for the fact that different users have varying 

compliance factors, and the values shown in Table 2-1 are used as the average of the community. 

In this scenario, to account for the possibility of load shifting to a next day (if the flexibility 

window allows), we extracted 48-hour power profiles. Figure 2-5 shows different combinations of 

scenarios from section 2.3.2.a and section 2.3.2.b. 

 

Figure 2-5. Combination of scenarios in simulation analyses. 
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2.3.3.  Case study community 

We hypothesized that user selection based on human-appliance interactions could be effective in 

realizing a large ratio of possible demand reduction in the entire community by engaging a small 

portion of users (for a specific load type). To assess this hypothesis, we used the real-world 

consumption data from the Dataport Pecan Street project [68], which is an ongoing project on 

monitoring the appliance-level and aggregate-level data for more than 1000 households, primarily 

located in Austin, TX, from 2011. Monitored houses have participated at different time periods. 

Therefore, some of them have opted-in and opted-out from the beginning of the project, and the 

number of houses has been subject to change over the years. In this study, we have retrieved the 

data for all households that were monitored during July and August 2015, reflecting high AC use 

as well. We used 15-minute resolution data, indicating that each daily profile includes 𝑇 = 96 

datapoints. 15-minute resolution data was used since (1) it was enough to capture the 

operation/charging of considered flexible appliances in this study and (2) could be acquired 

through smart meters [96]. Daily power profiles of appliances were used to examine the complex 

human-building interaction at the level of individual loads. 

Consumption daily profiles for EV, dryer, washing machine, dishwasher, and AC were extracted 

for different users. The total number of households that participated in the data collection process 

during the period of our study was 307. The data set information is presented in Table 2-2. The 

second column shows the number of households or owners, and the third column shows the 

number of households with viable datasets. In some of the houses, either the devices were not used 

over a long span of time or the datasets had considerable missing data points. The last column 

shows the number of daily profiles for different load types. 

Table 2-2. Characteristics of the selected community data set. 

Device # of owners # of viable datasets # of daily profiles 

EV 85 78 4909 

Dryer 184 175 10797 

Washing machine 190 93 11220 

Dishwasher 224 176 13208 

AC 282 276 16560 



21 

 

2.4. Data analysis and results 

The assessment of the hypothesis, the demonstration of the potential score, the results of load 

shifting under different scenarios, and a cross-comparison of the flexibility for different load types 

at different time-of-use across a 24-hour period have been presented in this section. 

2.4.1. The effectiveness of the potential score  

In this study, except otherwise specified, a DR timeframe of [𝑡1: 𝑡2] from 17:00 to 19:00 was used. 

This timeframe is compatible with our peak time observations in the aggregate consumption 

patterns of the case study community, as well as the common timeframe in practice (e.g., [97]). 

The 2-hour duration has been also commonly investigated in the literature [66, 89, 98]. 

Nonetheless, the selected timeframe is an input to the model, and the score 𝑆𝑛 could be calculated 

accordingly. Through a sensitivity analysis (as follows), we selected one month of historical days 

(𝐾) in the analysis. For 𝜏𝑗, values of 1kW, 0.8kW, 0.3kW, 0.5kW, and 0.5kW were used for EV, 

dryer, washing machine, dishwasher, and AC, respectively. These values were selected based on 

typical power draw values of appliances [99, 100] in addition to visual inspection of the dataset. 

The distribution of the potential scores (𝑆𝑛) for EV, dryers, washing machine, dishwasher, and AC 

are presented in Figure 2-6. Each subplot represents one load type and each data point represents 

one of the households in the community. Each of the axes represents one of the dimensions (i.e., 

𝐹𝑆𝑛, 𝐶𝑆𝑛, 𝑃𝑆𝑛) and variations of 𝑆𝑛 values have been illustrated by a color heat map. In subplot 

(a), it could be seen that the potential scores for EV charging are distributed across all three 

attributes in the community, indicating highly varied usage styles and operational frequencies in 

the community. In subplots (b-d), which represent wet appliances, there is a higher concentration 

in distribution of houses around lower values of 𝐹𝑆𝑛, indicating these appliances are mainly not 

operated on a regular basis. This is also consistent with the expected daily routines of users. 

However, higher 𝐶𝑆𝑛 values could be observed, reflecting on consistency of the time-of-use of the 

appliances by users. In the case of AC in subplot (e), a majority of data points show higher values 

of 𝐹𝑆𝑛, reflecting regular use of AC on a daily basis. Given that the data set is associated with 

summer days, the remaining few data points with low 𝐹𝑆𝑛 could be associated with unoccupied 

houses.  
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a) EV 

 

b) Dryer 

 

c) Washing machine 

 
d) Dishwasher 

 
e) AC 

Figure 2-6. Distribution of 𝑆𝑛 for different a) EV owners, b) dryer owners, c) washing machine 

owners, d) dishwasher owners, and e) AC owners. 
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The power variations for different potential scores have been presented in Figure 2-7 to provide 

an insight into their interpretation for several representative users. Each subplot illustrates the 

consumption profiles across all historical days (𝐾 = 30) with their associated potential scores and 

relevant dimensional values. To provide an example explanation of these visualizations, we have 

elaborated the observations for the EV data. User 1 charges the EV almost every day (26 out of 30 

days, 𝐹𝑆𝑛 = 1) with a relatively consistent pattern (𝐶𝑆𝑛 = 0.69), with the highest consumption in 

the community during the desired DR timeframe (𝑃𝑆𝑛 = 0.1) resulting in a potential score of 𝑆𝑛 =

1. User 2 has a relatively high potential score (𝑆𝑛 = 0.52). Compared to User 1, this user charges 

EV less frequently (𝐹𝑆𝑛 = 0.61), with lower consumption values (𝑃𝑆𝑛 = 0.27) while being more 

consistent across the activation days (𝐶𝑆𝑛 = 0.73). User 3 and user 4 both have lower a potential 

score (𝑆𝑛 = 0.11 and 𝑆𝑛 = 0.07, respectively). User 4 charges EV on a regular basis (higher 𝐹𝑆𝑛) 

with low temporal consistency (lower 𝐶𝑆𝑛) with a charging time that rarely coincides with the DR 

timeframe (lower 𝑃𝑆𝑛). Therefore, utilities will be less interested in involving these users in a DR 

event. As can be seen from usage patterns for different load types in Figure 2-7, user 1 and 2 with 

higher 𝑆𝑛 are more suitable for getting involved in a DR event as they have high frequent peak 

usage and more predictable behavior while user 3 and 4 manifest lower values for either of the 

dimensions. 

 

 
a) EV 

 
b) Dryer 

 
c) Washing Machine 
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d) Dishwasher 

 
e) AC 

Figure 2-7. The daily consumption profiles of four representative users with varied potential scores 

on 30 subsequent days and their associated dimensional values for: a) EV, b) dryer, c) washing 

machine, d) dishwasher, and e) AC. 

2.4.1.a. Sensitivity analysis: 

In order to show the sensitivity of 𝑆𝑛 on the number of historical days 𝐾, we performed a sensitivity 

analysis for different 𝐾 values of 20, 30, 40, 50, 60 days. Figure 2-8 illustrates the results for 

different load types. For each user ID# (i.e., house ID) on the horizontal axis, 5 different data points 

corresponding to different 𝐾 values have been plotted on a vertical line. Users were sorted 

according to the lowest deviation from the average values of 𝑆𝑛 over all 𝐾 days. In some cases 

that houses have opted out from the program during a longer timespan (𝐾>30), data points are 

missing. In some cases, variations of 𝐾 could result in changes in frequency, consistency, and peak 

usage, given the potential changes in behavioral traits in user behavior. Nonetheless, the results in 

Figure 2-8 show a low amount of sensitivity in terms of change in 𝑆𝑛 in total. Specifically, the 

average amount of standard deviation for 𝑆𝑛 across all households varied between 2% to 7% for 

different considered load types, as shown in Figure 2-8. 
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Figure 2-8. Sensitivity analysis result for quantifying 𝑆𝑛 across 20, 30, 40, 50, and 60 days for 

different load types. 

Based on the trend in Figure 2-8, we hypothesized that, through varying 𝐾,  𝑆𝑛 do not show 

significant changes for each user. We performed the Kruskal-Wallis test to examine whether 

distributions of ∆𝑆𝑛 for different households are significantly different for different 𝐾 values (𝐾 =

{20,30,40,50,60}). The Kruskal-Wallis was selected for the comparison of multiple groups of 

days (different 𝐾 values) as a non-parametric method since ∆𝑆𝑛 values did not follow the normal 

distribution. For each user, we measured the deviation of 𝑆𝑛 for each specific 𝐾 from its average 

(over the entire 𝐾 vector). The Kruskal-Wallis test was performed on the considered 5 groups 

(different 𝐾 values), in which each group contained ∆𝑆𝑛 values for users in the community. The 

null hypothesis was that the population medians for all groups of 𝐾 values are all equal for the 

case-study community. The p-values in analysis for all flexible appliances were above 0.05 (as 

shown in Table 2-3), indicating the fact that the null hypothesis is accepted and ∆𝑆𝑛 belongs to the 

same distribution in all cases. 

Table 2-3. Kruskal-Wallis test on the set of 𝐾 (different number of days). 

 
EV Dryer Washing machine Dishwasher AC 

P-value* 0.99 0.10 0.30 0.23 0.70 
               * 

P-value > 0.05 indicates the equal population medians of ∆𝑆𝑛 for the set of 𝐾
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2.4.2.  Empirical assessment of DR capacity 

In this section, we have evaluated the efficacy of the proposed scoring system in the smart 

engagement of the users in a DR event. To this end, we selected five DR days, not included in 

historical days to avoid a priori biases in DR flexibility assessments. Using different cut-off 

threshold values for 𝑆𝑛 (0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8), different groups of users were selected for 

participation in DR events. We have quantified the potential energy reduction for each user and 

each load type by measuring the differences between consumed energy at the peak timeframe 

[𝑡1:𝑡2] (using ground truth) and the resultant time-series obtained by load shifting/shedding. We 

used numerical integration on the power time-series to calculate energy consumption.  

We used load shifting for deferrable loads (i.e., EV, dryer, washing machine, and dishwasher). For 

AC, as a TCL load, we used partial load shedding through changing the temperature setpoint for 

simulation. In doing so, we adopted the assumptions and findings outlined in [71, 101]  a 25% 

power reduction during peak time by 1∘C increase in temperature setpoint of AC. Although the 

findings of these studies were dependent on their context, we used their assumptions to be able to 

estimate the aggregate contribution of different segments of users in demand reduction. Sophisticated 

models for thermal behavior of these houses could be developed by using simulation tools such as 

energyPlus. However, such model require detailed information from the buildings and is out of the 

scope of this study. Using the load shifting/shedding framework described in section 2.3.2, we 

considered different scenarios as presented in Figure 2-5.  

2.4.2.a. First scenario - maximum potential  

Figure 9 illustrates the achievable energy saving for different 𝑆𝑛 values and load types. The right 

and left vertical axes show the achievable energy reduction during the peak (from the entire 

community) and the percentage of engaged users, selected according to the 𝑆𝑛 values, respectively. 

The horizontal axis shows different cut-off values for user segmentation based on the 𝑆𝑛 values. 

In these graphs, 𝑆𝑛 = 0 indicates the participation of the entire community and the maximum load 

shifting potential for activated loads without accounting for the human-appliance interaction 

patterns. As shown in Figure 9, for all load types, as the 𝑆𝑛 cut-off increases, we generally observe 

that the demand reduction drops with a lower rate compared to the ratio of engaged households. 

Therefore, it is shown that we could identify and select a small portion of users to achieve demand 

reduction goals. For example, for EVs (Figure 9(a)), by selecting users with 𝑆𝑛 higher than 0.8, 
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0.6, and 0.4, energy reduction of 11%, 35%, and 49% could be achieved, respectively. These 

values correspond to only 3%, 11% and 19% of all the households in the community, respectively. 

 

          
     a) EV          b) Dryer 

            
                          c) Washing machine                d) Dishwasher 

  
     e) AC 

Figure 2-9. Load shifting potential for scenario 1 (averaged over 5 days) across different subsets 

of users. The value on top of the double-bar shows the ratio of ‘achievable saving’ to ‘ratio of 

users’ for each case (a higher value is desired). 

In order to provide a cross-appliance comparison of the energy reduction potentials, Figure 2-10 

shows the individual contribution of users for different load types. The horizontal axis shows the 

user IDs, sorted based on ascending values of 𝑆𝑛, and the vertical axis shows the energy reduction 

potential during the DR timeframe, averaged across five DR days. As the results in Figure 2-10 

show for different load types, if the loads have been activated during the peak, there is an 

increasing trend in saving potential as 𝑆𝑛 increases. As can be seen, many users have not 



28 

 

operated/charged the deferrable loads on DR test days during the peak time. On the other hand, 

given the regularity of usage, AC provides the highest energy reduction potential after EV. Among 

the deferrable loads, EV provides the highest potential for energy reduction followed by the dryer. 

Washing machine and dishwasher have shown to provide the least potential for DR operation on 

the selected test days. 

 
a) EV    b) Dryer                    c) Washing machine 

 
     d) Dishwasher          e) AC 

Figure 2-10. Demand reduction potential for scenario 1 (averaged over 5 days) for each user. 

As noted earlier, unjustified and synchronized compensation through engaging all categories of 

loads immediately after the DR event could result in a rebound effect – the creation of a secondary 

peak. In order to demonstrate the applicability of the method for load selection to avoid the rebound 

impact, we have shown the aggregate power profile from the entire community on a DR test day 

in Figure 2-11. Figure 2-11(a) illustrates the results from the contribution of all deferrable loads 

while Figure 2-11(b) also includes the AC. The ground truth line shows the actual aggregate power 

for the test day. The resultant load profiles from load shifting according to different segments of 

𝑆𝑛 are shown with dash lines. The percentage values in the legend of Figure 2-11 shows the 

average ratio of users engaged in DR. A hypothetical baseline of 1000 kW was considered. As 

shown in subplot (a), the cut-off value of 𝑆𝑛 = 0.2, corresponding to the participation of 30% of 

users, can result in the balance between the primary and the secondary peak and achieving the 
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hypothetical baseline. On the other hand, if the setpoint control of AC will be considered in 

addition to deferrable loads (subplot (b)), the same objective can be achieved by selecting 𝑆𝑛 =

0.8, corresponding to 5% of users. As the results show, engaging users according to their previous 

interaction patterns could help us achieve the targeted energy reduction without creating a rebound 

effect compared to engaging all users. 

 

a) 

 

b) 

Figure 2-11. Impact of load shifting/shedding (peak and secondary peak) across different subsets 

of users for (a) all deferrable loads and (b) all deferrable loads plus AC on a DR test day. 

Numbers in parentheses show the percentage of users engage (averaged over considered loads) 

in DR. 
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2.4.2.b. Second scenario - user compliance driven 

Figure 2-12 shows the achievable energy reductions according to different 𝑆𝑛 values for the second 

scenario, which represents a more realistic user engagement. Therefore, the maximum achievable 

reduction was observed to be a portion of reductions in the first scenario. The ratio between these 

two observations is close to the associated compliance factors. The user response to DR request 

could be negative, even if the activation indeed contributes to high peak demand, and therefore the 

maximum achievable saving will be limited. Nonetheless, the same trend that a high percentage of 

achievable energy reductions can be realized by a lower rate of targeted participation was also 

observed for this scenario.    

Similar to the previous scenario, Figure 2-13 illustrates the energy reduction potential for the 2-

hour DR timeframe for each user. The results for this scenario also revealed the efficacy of the 

proposed scoring method in the targeted engagement of users in DR events. Given the lower 

probability of the user compliance for dryer and washing machine, the reduction of flexibility 

potential for these loads has been relatively higher while AC and EV manifest better opportunities 

for load shifting. 

                              

     a) EV                                                                b) Dryer 

       
                          c) Washing machine              d) Dishwasher 



31 

 

    
  e) AC 

Figure 2-12. Load shifting potential for scenario 2 (averaged over 5 days) across different subsets 

of users. The value on top of the double-bar shows the ratio of ‘achievable saving’ to ‘ratio of 

users’ for each case (a higher value is desired). 

 

 

 
a) EV            b) Dryer       c) Washing machine 

 
d) Dishwasher      e) AC 

Figure 2-13. Demand reduction potential for scenario 2 (averaged over 5 days) for different users 

Table 2-4 presents the numeric values of demand reduction for different scenarios. It is expected 

that some users might not operate their deferrable loads at all during the DR test events, and in this 

case, the associated energy reduction will be zero. Accordingly, the averaged values in Table 2-4 

could be interpreted as the realizable demand reduction for different segments of users. Given the 

high variance among different user quantiles for each load type, the potential of the ancillary 
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services could be estimated and prioritized for different load types. For our case study community, 

EVs, ACs, dryers, dishwashers, and washing machines show the highest potentials, respectively.  

The energy saving potentials, presented in Table 2-4, could be also used as weight factors in case 

of combining the potential score of individual appliances into a metric at the household level. In 

that case, the metric would characterize the overall flexibility of the user and reflects the overall 

evaluation of household potential for individual load flexibility. 

 

 
Table 2-4. Average demand reduction potential over a 2-hour afternoon DR event based on 

different quantiles of users for different loads 

Load Type User quantile based on 𝑆𝑛 
Maximum potential 

(Wh) 

User response-driven  

(Wh) 

EV 

80-100 2095 1260 

60-80 1065 550 

40-60 495 280 

20-40 700 435 

0-20 120 75 

Dryer 

80-100 260 70 

60-80 145 40 

40-60 140 50 

20-40 90 25 

0-20 20 5 

Washing machine 

80-100 40 15 

60-80 20 10 

40-60 10 5 

20-40 0 0 

0-20 10 0 

Dishwasher 

80-100 60 35 

60-80 20 15 

40-60 20 10 

20-40 0 0 

0-20 15 5 

AC 

80-100 1515 760 

60-80 1195 590 

40-60 1010 485 

20-40 620 310 

0-20 210 105 

 

2.4.3. Diurnal variation of flexibility   

Defining the temporal flexibility of loads (as a function of the time of the day) could provide 

opportunities for the integration of renewables and maintaining the power balance in addition to 

the peak demand reduction. Accordingly, analyzing the historical patterns of temporal variations 

of load-specific demands provides insight into load targeting. To demonstrate the demand 

reduction potential of the considered load types with respect to different segments of users and 
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according to time-of-use, we presented the results in Figure 2-14 for maximum potential scenario 

and based on 𝑆𝑛 values on a 1-hour basis. Each bar represents the range of average demand 

reduction of the associated quantile for a given hour, and each marker shows the average demand 

reduction for the associated user quantiles. A longer bar indicates high variation in usage style and 

vice versa. Moreover, a higher concentration of the markers on the lower parts indicate that only 

a small portion of users could provide a higher power reduction potential. For example, the top 

quantile of users with EV in the 80-100% quantile (associated with high 𝑆𝑛 values) at 18:00 are 

highly suitable for shifting their demand, while the rest are not contributing as much.  

For EV, the diurnal charging pattern reflects a typical home to work commuting lifestyle as the 

charging time mainly starts in the late afternoon and stretches to early morning hours. For AC, the 

potential for demand reduction across the entire day is observed. The demand reduction potential 

reflects the occupancy pattern as well as the typical temperature variation pattern. In general, 

compared to deferrable loads that show a high uncertainty for demand reduction potential across 

different classes of the users, AC shows a lower variance and more predictable behavior. Wet 

appliances manifest a bi-modal distribution with a double peak around noon and the evening. The 

peak around noon indicates opportunities for solar power integration.  

 
a) 

 
b) 

 
c) 
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d) 

 
e) 

Figure 2-14. Average diurnal demand reduction potential for different user segments: a) EV, b) 

dryer, c) washing machine, d) dishwasher, and e) AC - The legend shows different quantiles of 

selected users based on their 𝑆𝑛 score. 

2.4.4.  Rebound impact 

In order to illustrate the impact of load shifting to off-peak time on different subsets of consumers, 

we performed an experiment to assess the impact of consumer segmentation on the rebound effect. 

To this end, for different subsets of consumers according to their 𝑆𝑛, the EV load signatures, if 

found on the DR test day timeframe, were shifted to the off-peak time. Figure 2-15 shows the 

aggregate power demand of the entire community (with 78 EV owners). As can be seen, the 

participation of the entire community (i.e., a cut-off threshold of 𝑆𝑛= 0 for selecting consumers) 

results in an undesirable off-peak demand, while selecting 𝑆𝑛 as 0.2 or 0.4 (participation of ~20-

40% of consumers) could balance the demand during DR time and off-peak time. Furthermore, to 

investigate the impact of the potential score on the optimal balance between DR time and off-peak 

time, the following equation was employed: 

∅ = ∑ |𝑐𝑜𝑠𝑡𝑖|
2∗(𝑡2−𝑡1)+1

𝑖=0
                                                     (8) 

 

𝑤ℎ𝑒𝑟𝑒 {
𝑐𝑜𝑠𝑡0 = 0

𝑐𝑜𝑠𝑡𝑖+1 = 𝑃𝑛(𝑡1  1)  𝑐𝑜𝑠𝑡𝑖 − 𝑃𝑏
𝑛(𝑡1  1)

 

 

in which 𝑃𝑛(𝑡) and 𝑃𝑏
𝑛(𝑡) are the aggregate power demand and the desired baseline demand at 

time 𝑡, respectively, and 𝑐𝑜𝑠𝑡 is the effort for transforming the observed demand curve into the 

baseline. Both 𝑃𝑛(𝑡) and 𝑃𝑏
𝑛(𝑡) are normalized such that their value at time 𝑡 is divided by the 
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sum of values at the DR timeframe. The above equation is based on the Earth Mover’s Distance 

concept [102] and measures the required work to transform the power demand 𝑃𝑛(𝑡) from DR 

peak to off-peak time into the uniform target baseline 𝑃𝑏
𝑛(𝑡). Therefore, a lower value of ∅ is 

desired as it reflects a more uniform distribution of load during and after DR. Table 2-1 

demonstrates the ∅ values for different subsets of consumers. Based on the ground truth curve 

shown in Figure 2-15, a value of 350 kW was assumed for the 𝑃𝑏
𝑛(𝑡) as the utility decision. As can 

be seen, a potential score value of 𝑆𝑛 = 0.2, corresponding to the participation of 40% has led to 

the optimal balance of power demand between peak and off-peak time. In contrast, the full 

participation (𝑆𝑛 = 0) resulted in a rebound effect with a high concentration of demand at the off-

peak time. 

 

Table 2-5. Values of ∅ for different subset of consumers 

𝑆𝑛 0 0.4 0.4 0.6 0.8 Ground truth 

Ratio of participating 

consumers (%) 
100 40 18 9 4 0 

∅(1𝑒−2) 26.3 6.4 9.8 20.6 23.4 30.0 

 

 
Figure 2-15. Comparison of the aggregate power demand of the community based on ground truth and 

different subsets of consumers for DR and subsequent off-peak timeframe 
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2.5. Implications and limitations 

2.5.1. Large-scale potential for demand reduction 

The findings in this study could provide insight for planners and utilities to identify and target 

potential candidates for automated DR. To this end, we have estimated the potential for Austin 

TX, as a demonstration of city-scale assessment. According to the U.S. Census Bureau, the number 

of households in Austin was about 360,000 in 2017 [103]. Although the appliance ownership rate 

in Austin could be different from our sample, we used the same rate as a basis for a rough estimate 

of demand reduction at a city-scale. Therefore, by assuming the same appliance ownership rate 

(Table 2-2) and the information in Table 2-4, it is estimated that participation of only 20% of users 

with higher demand reduction potential, during a 2-hour DR event, could result in up to 35.2MW, 

8.2MW, 1.0MW, 2.0MW, and 91.1MW for EV, AC, dryer, washing machine, and dishwasher, 

respectively. This suggests a total of 137.5MW reduction for all loads combined.  

2.5.2. User segmentation and fairness 

An important consideration in DR programs is fairness to ensure that a specific set of users are not 

targeted on a regular basis and avoid the risk of user fatigue [104], which could result in reduced 

willingness for participation. In our segmentation scheme, given that DR events might be selected 

at different time intervals for different days as operatorial decisions dictate, the 𝑆𝑛 values for users 

could vary across different days. Therefore, the same user could be assigned to a different subset 

of targeted users for each DR event, which in turn helps to alleviate the fatigue problem. To 

demonstrate how users will be assigned to different subsets (sorted based on their potential score), 

we have considered three DR time intervals of 16-18, 17-19, and 18-20. For each interval, based 

on the 𝑆𝑛 values, each user will be assigned to a different quantile (i.e., a subset), which contains 

the set of users such that 
𝑖

100
< 𝑆𝑛 <

𝑖+10

100
, 𝑖 ∈ {0,10, … ,90}. Therefore, users will be assigned to 

10 different quantiles.  

The results are presented in Figure 2-16. Each polyline spanning the x-axis represents one user 

across different DR events. Darker lines are associated with a higher frequency of occurrence. A 

horizontal polyline indicates that the user is always assigned to the same quantile at different DR 

times, while each inclined line indicates the allocation of the user to a different quantile as DR 

timeframe varies. In Figure 2-16 considerable variations across the community are observed, 

implying that users are allocated to varying levels of priority for participation for different DR 
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timeframes. Heuristic-based methods, which iteratively update the record of DR participation for 

each user at each event, have been used as an alternative method for improved fairness [67]. 

      
Figure 2-16. Association of different users to different quantiles based on varied DR timeframes. 

Each line represents the output for a user. Darker lines are associated with a higher frequency of 

occurrence. 

2.5.3. Data availability 

In our proposed segmentation scheme, data at the individual load level (i.e., appliance-level) is 

used for analysis. In the context of smart grid, smart appliances will be capable of providing such 

information and respond to DR signals for load shifting. Furthermore, considering the appliances 

mentioned in this study, recent efforts based on disaggregation methodologies have achieved 

reasonable accuracy for load disaggregation from smart meter data. For example, disaggregation 

of EV loads [105, 106], dryer, washing machine, dishwasher [107], or AC [108], with relatively 

acceptable accuracy (~70-100%) have been reported in recent studies. Accordingly, the proposed 

segmentation scheme, coupled with disaggregation on smart meter data could be used for incentive 

programs or for an economic feasibility assessment of offering smart appliance rebates to suitable 

candidates under budget constraints.  

We evaluated our method based on a case study analysis from the Pecan Street project [68], which 

is currently the largest available energy consumption dataset at both aggregate and appliance 

levels. More specifically, we used a sample of more than 300 households to ensure that the analysis 

covers diversity in energy consumption styles and interactional behaviors of users. However, this 

approach is considered a generalized approach as it includes two main steps: (1) quantifying the 
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differences between users by using the proposed scoring metric, and (2) providing quantified 

energy demand variations. As long as the datasets that enable examining the complex human-

building interaction at the level of individual loads characteristics are available, these metrics could 

be quantified. 

2.5.4. Limitations 

There are a number of limitations associated with this work as outlined here: (1) Daily routines 

and occupants’ lifestyle is impacted by the day of the week (working days or weekends). 

Accordingly, consumption styles can be reflected differently on weekends compared to weekdays. 

For the computation of potential score in this work, we have not distinguished between such 

differences. Nonetheless, given larger duration and availability for the data, 𝑆𝑛 values can be 

calculated separately on weekdays and weekends and separately evaluated for DR events. (2) We 

have looked at the flexibility based on potential demand reduction that can be realized by the 

participation of individual loads. However, the potential increase in power demand is also deemed 

as a flexibility attribute, which was not investigated in this work. (3) Looking at the results in 

Figure 2-14, the increasing trend in demand reduction potential based on higher 𝑆𝑛 values are not 

observed in all cases. This is due to the fact that the usage styles in the future (used as test events) 

are not always dependent on previously shown historical behaviors and uncertainties are involved. 

Nonetheless, the results in most cases appear to agree with our expectation, and regular or seasonal 

upgrade in calculating the scores could be effective. (4) We accounted for user compliance using 

previous community-level empirical studies. However, the average compliance factor for each 

load type might not be the best representation of the community, and varying levels of willingness 

in complying with the DR requests for each household need more sophisticated model compared 

to the implemented distribution function in this work. For example, it is possible that users with 

frequent and consistent usage pattern will be less willing to shift their loads. Therefore, the 

causality of behavioral patterns is an important factor to consider. Investigation of the association 

between user compliance and historically observed consumption behavior is among our future 

research directions. (5) We used the same timeframe for all the households with respect to the 

same benchmark calendar days for the evaluation. In our sample in this study, there were cases 

with missing data (e.g., hours of missing data for a day) in which we opted for eliminating the 

specific day from our analysis. In practice, missing data points, such as every 15-minute data, 

could be interpolated with adjacent points as long as such data points are scarce and not continuous. 
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However, continuous metering failures that limit the measured data could hinder the evaluation 

process for a specific customer. An interesting research direction is to develop a data-driven 

technique that considers a certain duration of data and measures when the behavior of a customer 

has changed. As a result, if the behavior has not changed over the considered duration, a practical 

solution could be referring to existing alternate days (e.g., same day of the week) in the historical 

dataset for the same customer as a replacement alternative. (6) In specific cases such as the 

presence of outmoded or anomalous appliances, higher electricity consumption could be incurred. 

However, such improper functionality does not necessarily imply increased/proper engagement of 

users for DR program. Nonetheless, a two-tier scenario can be considered: (I)- The customers can 

be suitable for energy-efficiency programs such as being targeted for appliance replacement and 

not necessarily DR programs that look at imposing temporal changes in the dynamic patterns of 

consumption. Recent data-driven methods for identifying outmoded or anomalous appliances for 

historical data includes reference [109] that looked into identifying potential households with 

outmoded and inefficient appliances such as HVAC or reference [110] that identifying anomalous 

appliances through examining their load signatures. Relying on such existing methodologies from 

the literature, it is possible to filter out potential customers with such specific cases in the data pre-

processing step and filter them in the evaluation step. (II)- The findings can be used for 

incentivizing right customers for automated technology adoption. In the case of having outmoded 

appliances, the operation time could still be shifted. In other words, shifting the operation time 

does not depend on the technology in the appliance. Therefore, although users with outmoded 

appliances cannot be integrated into DR programs such as Direct Load Control (DLC), they can 

be targeted for adopting smart appliances. 

2.6. Conclusion 

In this study, we systematically investigated the demand reduction potential for different individual 

residential loads according to historical consumption styles. A data-driven scoring approach was 

used to characterize and rank the users based on the patterns of their interaction with different 

loads. The empirical assessment in the context of DR shows the applicability of the score for user 

segmentation for automated DR. The investigations were conducted for a variety of deferrable 

loads including EV, dryer, washing machine, dishwasher, as well as AC. In a comparative analysis 

of flexibility potential, we used two scenarios: (1) maximum potential of load shifting/shedding 
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and (2) user compliance modeling. The findings show that households manifest high variations in 

providing demand reduction potential and the proposed scoring approach could capture those 

variations. Furthermore, the scoring approach was shown to be effective in the targeted 

engagement of the users for effective demand reduction without a rebound effect. EV and AC were 

shown to provide a higher level of flexibility compared to wet appliances. A demand reduction 

projection for households in Austin, TX, proposes that justified selection of considered loads for 

DR during the afternoon timeframe could potentially provide around 140 MW power reduction, 

with only 20% participation of residential users in the community.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 

 

Chapter 3: A Machine Learning Framework to Infer Time-of-Use of Flexible 

Loads: Resident Behavior Learning for Demand Response  

Afzalan, Milad, and Farrokh Jazizadeh. "A Machine Learning Framework to Infer Time-of-Use 

of Flexible Loads: Resident Behavior Learning for Demand Response" IEEE Access, 2020, DOI: 

https://doi.org/10.1109/ACCESS.2020.3002155 

 

Abstract 

Load shapes obtained from smart meter data are commonly leveraged to understand daily energy 

use patterns for adaptive operations in applications such as demand response. However, they do 

not provide information on the underlying causes of specific energy use patterns – i.e., inference 

on appliance time-of-use (ToU) as actionable information. To this end, we investigated a scalable 

machine learning framework to infer appliance ToU from energy load shapes in a collection of 

residential buildings. A scalable and generalized inference model obviates the need for model 

training in a given building to facilitate its adoption by only relying on available training data from 

previously observed buildings. We have investigated the feasibility of using load shape 

segmentation to boost ToU inference in buildings by learning from their nearest matches that share 

similar energy use patterns. To infer the appliance ToU for a building, classification methods are 

trained on subintervals of load shapes from matched buildings with known ToU. The framework 

was evaluated using real-world energy data from Pecan Street Dataport. The results for a case 

study on electric vehicles (EV) and dryers show promising performance by using 15-min smart 

meter load shape data with 83% and 71% F-score, respectively, and without in-situ training. 

3.1. Introduction 

In recent years, conventional centralized power systems are shifting to decentralized alternatives 

that integrate distributed energy resources (DER) such as solar panels, district resources, storage 

systems, and advanced technologies for smart metering and control. These changes provide 

opportunities and call for efficient adaptive and responsive operations – e.g., utilization of Demand 

Response (DR) programs for load balancing or energy exchange at neighborhood level. However, 

the successful implementation of adaptive operations in the residential sector requires a sound 

understanding of energy usage patterns such as load shapes – i.e., the variation of power demand 

over the span of a day. Detailed analysis of the usage patterns reveals temporal drivers of demand, 

which in turn enables efficient targeting of customers for customized energy programs and demand 

https://doi.org/10.1109/ACCESS.2020.3002155
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control automation [37, 38, 93]. Building energy load shapes are commonly characterized through 

data-driven segmentation methodologies by clustering smart meter data to help engage consumers 

for DR programs [13, 87] by providing information on peak time and off-peak time demands. 

However, understanding the drivers of demand variations through an in-depth analysis of the 

human-building interactions (HBI) at the appliance (i.e., individual load) level will improve the 

efficacy of managing loads for demand-supply balance as shown in previous research [37, 111].  

HBI assessments center on identifying the patterns of using different flexible loads (e.g., electric 

vehicles) in a household. These assessments provide a quantitative and statistical measure to 

evaluate the benefits for engaging end-users in adaptive management of loads (e.g., engagement 

in DR programs). By measuring time-of-use (ToU) of flexible loads and driving other metrics such 

as frequency and consistency of use, operations could be moved toward intelligent and distributed 

load operation/scheduling with reduced burden for end users [47]. In other words, information 

from HBI patterns, as supplementary information to the load shapes at the aggregate level, helps 

manage power systems more efficiently by engaging a sub-set of consumers that will result in 

higher gain in efficient operations. Leveraging smart meter data, machine learning (ML) tools have 

been used to characterize different energy usage patterns in residential buildings and 

neighborhoods and to infer variations in energy lifestyles (e.g., [16, 112, 113]). However, 

leveraging building energy load shapes has not been used for inference of the appliance ToU.  

Determining the daily ToU of appliances can be carried out by using individual plug sensors at 

each device. Such an approach provides accurate measurements but calls for distributed 

installation of sensors, which is intrusive and may be prohibitively complicated and expensive. On 

the other hand, appliances’ ToU can be implicitly inferred through inference models using pattern 

recognition algorithms from the power data at the aggregate (i.e., whole building) level. However, 

an inference model suited to a specific building calls for a priori assumption about appliance 

characteristics, high-resolution data, or in-situ training, which might be an obstacle for a scalable 

approach. Therefore, enabling a generalized and data-driven inference approach that does not rely 

on specialized instrumentation and in-situ algorithm training, or specific assumptions on an 

individual building, could facilitate scalable adaptive operations such as DR or DER management. 

Research has shown that the dynamic patterns of energy consumption, driven by residents’ 

interactional behavior, are correlated with appliance ToU [114, 115]. Accordingly, in this study, 

we have investigated ToU inference models that leverage neighbor (i.e., previously observed) 
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buildings with similar energy use behavior for training by leveraging a behavioral learning 

framework. To this end, we have introduced a machine learning framework for inference of 

appliance ToU in buildings by accounting for resident behavior reflected in their energy load 

shapes from smart meter data. In other words, we have sought to:  

 Propose a scalable approach for ToU inference of flexible loads by relying on only low-

resolution smart meter data – i.e., 15-min resolution, which is the default sampling rate in 

practice. 

 Enable a data-driven learning framework for ToU inference to identify the similarities 

between households by leveraging the aggregate energy load shapes. In contrast to methods 

that require specific instrumentation at the building level or a priori information on 

appliance models, we solely leverage the information in energy load shapes of a sample of 

neighbor buildings whose appliance ToU is available for training.  

Therefore, in contrast to in-situ training for energy disaggregation, which requires user 

engagement or specialized sensors in each building, we have investigated the feasibility of a 

limited sample of known buildings with similar behavior, whose appliance ToU data is already 

known – i.e., a generalized training data set. In this way, the information granularity in energy load 

shape analysis could be increased through a scalable approach. 

The rest of this paper is structured as follows. In section 2.2, the related literature and research 

background, including the research on energy disaggregation, have been presented. In Section 3.3, 

the proposed inference framework has been presented. In Section 2.4, the framework evaluation 

through a case study, as well as the results and discussions are presented. Section 3.5 includes the 

concluding remarks. 

3.2. Related works 

ToU inference in buildings is becoming increasingly important for mitigating the stress on the grid 

and supporting distributed energy management. To this end, several studies have explored the 

underlying causes of variation in appliance usage profiles at different times of the day from the 

user interaction perspective [37, 116, 117]. The study by Cetin et al. [116] investigates the energy 

use of appliance profiles including dryers, washing machines, and refrigerators in 40 buildings to 

understand the variation at different times of the day. Statistical results showed electricity use 

varies more amongst buildings during the peak time of the day compared to off-peak time. The 
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variations in appliance ToU amongst buildings have been studied to estimate cost saving under 

dynamic pricing scheme [117] and to quantify energy saving and load flexibility for different 

segments of users [37]. The results have shown highly variable energy demands and high load 

flexibility potential at different times of a day. By leveraging such information, it has been shown 

that the associating appliance ToU with load shape analysis and segmentation in the residential 

sector could lead to improved implementation of DR programs [71, 118].   

To infer appliance ToU, studies have proposed different predictive models by learning form the 

variations on aggregate power time series as their data source [119-122]. Basu et al. [119] 

investigated the applicability of several classifiers, such as decision trees and Bayes networks, for 

ToU inference by using historical consumption information and human expert knowledge as the 

basis for in-situ training. Various studies have looked into inference of appliance usage by 

employing different deep learning architectures including long short-term memory (LSTM) [121], 

denoising autoencoder [123], and convolutional neural network (CNN) [124]. Barsim and Yang 

[122] developed a convolutional neural network architecture to extract individual profiles of 

appliances and evaluated it on five residential buildings. Kelly and Knottenbelt [121] investigated 

the applicability of three deep learning architectures including LSTM and denoising autoencoders 

and investigated their performance for detecting the use of major appliances including washing 

machine and dishwasher for five buildings. Lie et al. in [108] used the concept of transfer learning 

and leveraged a pre-trained deep learning model on an image recognition dataset for appliance 

classification. As a common feature, the applicability of such methods have been investigated on 

datasets with high-resolution data (e.g., with sampling rates of 1 Hz or higher – example relevant 

datasets with high-resolution data could be found in [125]), or alternative metrics such as voltage-

current trajectory have been employed instead of real power measurement, which is commonly 

recorded by smart meters. 

As an alternative to direct appliance ToU inference, classical energy breakdown (disaggregation) 

methodologies could be employed to extract the ToU of appliances. Through aggregate load event 

identifcation or reconstructing the time-series of individual appliances from energy breakdown 

and comparing thresholds with the values on the resultant time-series, ToU at different time of the 

day can be extracted. Energy breakdown methodologies have been widely studied – references 

[126-128] are well-known representative surveys in this field. In these studies, a wide range of 

parameters, important in driving the outcome, have been used across studies: (1) varying levels of 
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sampling rate in acquiring aggregate power data have been used, including high resolution data 

(@60Hz) [40, 129-131] and low-resolution (sampling every hour) data [132], (2) varying number 

of buildings for evaluation, including individual buildings [133], a few buildings (3 to 6) [41, 123], 

or 10 and more buildings [134, 135], and (3) different methods of training, including supervised 

methods that may require extensive parameter search [136], or supervised methods, capable of 

automated parameter tuning [40, 41, 130], and unsupervised methods using Hidden-Markov 

models [137, 138]. The scalability potential of these solutions varies from one to another [27] 

given their specific design and implementation. A scalable solution for ToU inference ideally 

accounts for the following factors: it avoids in-situ training – learning from the same environment 

that is the subject of prediction, and uses low-resolution (real-power) data that can be acquired 

with ubiquitous metering infrastructure such as smart meters and their default configurations. 

Since this study has been motivated by DER integration and automated DR, we looked at the class 

of loads that are controllable and energy-intensive. Recent efforts have reported reasonable 

accuracies for energy breakdown methods. For example, disaggregation of EV loads [105, 106], 

dryer, washing machine, dishwasher [107], or AC [108] has reached accuracies in the range of 

~70-95% in several efforts. However, the aforementioned studies have focused either on high 

resolution data (1-minute or higher sampling rates), required considerable model parameter 

selection, and reported the performance on small samples (i.e., a few buildings or a short duration 

of 1 day to a few days).  

A number of studies focused on developing scalable solutions, for which learning the data 

representation from a sample of labeled data is carried out to identify the breakdown energy for 

another set of buildings. Using monthly aggregate data, Batra et al. [135] estimated the monthly 

energy breakdown of appliances for around 50 buildings through matching one building with 

similar ones in which the energy breakdown data is available. They used different features such as 

monthly energy usage, statistical attributes such as skew and kurtosis, and external attributes such 

as temperature and building size for classification with K nearest neighbors. The results show an 

improved performance over a benchmark Hidden Factorial Markov (HMM) model for a variety of 

appliances including HVAC, washing machine, dryer, with accuracies ranging between 40-75%. 

The authors later developed a Matrix Factorization approach to develop a scalable solution for 

energy breakdown, and they evaluated the performance of the method over 500 houses [139]. 

However, the scalable solutions in [135, 139] only estimated the monthly usage (i.e., one 
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consumption estimation per month), without providing insight into the variation of daily appliance 

ToU, which is essential for dynamic load management applications.  

A summary of example related works discussed in this section is presented in Table 3-1. Summary 

characteristics of example related research efforts. Typically, these studies rely on higher-

resolution data and in-situ training as common features, which hinder their adoption as a scalable 

approach for ToU inference. In contrast, in this research, we have investigated the feasibility of an 

ML framework for inferring ToU of major flexible loads from smart meter data with 15-minute 

resolution that accounts for the following features: (1) integrating a residential behavior learning 

component that leverages energy load shapes for identification of a training dataset to increase the 

efficiency of the machine learning training process, (2) inferring ToU for unseen buildings which 

have not contributed to the training process, and (3) investigation on appliance ToU is performed 

over hourly basis with application to dynamic load management (e.g., demand-response). 

Table 3-1. Summary characteristics of example related research efforts. 

Resolution Method Performance Major appliances Ref 

6 seconds (real power) 

Deep learning 

F-score of 49%-72% 
Washing machine, 

dishwasher 
[121] 

1 Hz (real power) F-score of 41%-80% 
Washing machine, 

dishwasher 
[122] 

1 Hz (real power) F-score of ~80-90% Dryer, dishwasher [123] 

1 Hz (real power) 
Hidden Markov 

Model (HMM) 
F-score of 84% Wash/Dryer [137] 

1 minute HMM 
Energy accuracy of 

52%-75% 
Dryer, dishwasher [138] 

30 kHz (current-voltage) Transfer learning F-score of 87%-100% 
AC, washing 

machine 
[108] 

1 min 
Heuristic 

algorithm 

Normalized mean 

square error of 19% 
EV [106] 

1 min – 5 min 

Independent 

component 

analysis (ICA) 

F-score of 68-94% EV [105] 

1 hour Sparse coding Accuracy of 55% Dryer, dishwasher [132] 

 

3.3. Appliance ToU Inference Framework 

We propose this framework to investigate a scalable approach for inferring appliance ToU from 

aggregate load shapes in buildings (called target buildings) with smart meter data using default 

resolution of 15-minute intervals. Target buildings are environments that are new to the framework 
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and do not contribute in model training. The premise of this framework centers on learning from 

buildings (called training sample buildings) with similar energy behavior patterns, reflected in the 

characteristics of their aggregate daily load shapes. The training sample buildings are instrumented 

with plug metering devices at individual load level in addition to commonly accessible smart 

meters. The training sample buildings exclude the target building and could be identified as the 

best matches (in terms of energy behavior patterns) with target building. The framework is as 

illustrated in Figure 3-1. We have elaborated on the components of this framework in the following 

sections.  

 

Figure 3-1. Schematic framework for appliance ToU inference. 

3.3.1. Data requirements and processing 

Figure 3-2 shows the required information flow for the framework. The data from the training 

sample buildings include (1) power time series at 15-min intervals (resembling the sampling rate 

by smart meters [140]), (2) appliance ownership information, (3) and power time series from plug 

meters (i.e., sub-metering at appliance level) with the same resolution as the aggregate-level power 

data. Considering the data collection campaigns and public release of large-scale energy data sets 

from residential buildings in the past recent years, data sets with such characteristics are available 

for hundreds of buildings [141]. On the other hand, the data sets in target buildings, in which the 

framework makes the inference, include (1) power time series from smart meters at 15-min 

intervals and (2) appliance ownership information. Accordingly, the process of identifying training 

sample for a given target with similar behavior (which we refer to as the matching process) calls 

for aggregate power time series and appliance ownership information, which are either available 

or could be acquired. Smart meters have been deployed in half of the United States and considered 
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as a scalable platform for data collection and analysis, and appliance ownership data can be 

obtained through a one-time inquiry from home owners or could be automated. 

 
Figure 3-2. Data requirements and information flow for the proposed framework. 

3.3.2. Characterization of energy behavior patterns for training sample 

Identifying the training sample buildings for a given target building relies on the energy behavior 

patterns of these buildings. Therefore, the framework characterizes the energy behavior patterns 

by leveraging aggregate daily load shapes in order to find potential candidate buildings that are 

similar to the target. In this process, characterization is defined as understanding the variations of 

daily energy use patterns, which could be achieved by segmentation of daily load shapes through 

clustering techniques. 

3.3.2.a. Segmentation of daily load shapes (clustering) 

Let 𝑃𝑖𝑛(𝑡) = {𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑇} be the daily load shapes in the form of power time series collected 

through a smart meter. Here, 𝑇 is the total number of samples per day, 𝑖 ∈ {1,2, … ,  } is the building 

index (  is the total number of buildings), and 𝑛 ∈ {1,2, … ,𝑁} is the index for historical days (𝑁 

is the number of historical days). Therefore, considering 𝑀 as the total number of load shapes 

(𝑀 =  × 𝑁), the load shape library could be clustered into 𝐾 clusters.  

Different clustering techniques can be employed for the segmentation of energy load shapes, 

including K-means, hierarchical clustering, and customized methods for power time-series 

segmentation. In this framework, we have proposed a two-stage method based on Self-Organizing 

Map (SOM) clustering for creation of initial clusters, followed by extracting temporal features 

from clusters for merging similar ones. In the first step, SOM is applied to all the load shapes (𝑀) 

to obtain 𝐾  clusters, in which 𝐾 ≫ 𝐾. In the second step, a number of statistical features are 

extracted from clusters that provide quantitative metrics for describing the temporal shape or 

magnitude of power demand (such as the timing of peak demand) to collectively characterize a 
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cluster. Specifically, the feature set describes the energy consumption level (total consumption 

level), and the distribution pattern (number of relative peaks in each cluster), the timing of peak 

occurrence, and the intensity of the peak demand (magnitude of peak demand compared to adjacent 

points).  

Figure 3-3 illustrates the extracted features from a cluster that characterize the information 

contained in one cluster. Using this approach, clusters with similar set of features are merged to 

further reduce the size of the cluster library. In this way, various load shapes with distinct temporal 

shapes are extracted, while each one presents a unique shape. More details about the proposed 

clustering approach could be found in [142]. Upon creating the clusters, each load shape (𝑃𝑖𝑛) will 

be associated with a cluster index 𝑘 ∈ {1,… , 𝐾}.  

 

 

Figure 3-3. Example of a clustered load shape and its extracted features. Detail about feature 

extraction can be found in [142]. 

3.3.2.b. Energy behavior characterization 

The outcome of the segmentation for a given building includes a number of representative clusters 

that summarizes different patterns of energy use across a historical period. To characterize the 

energy behavior of that building, one could consider the dominant cluster that includes majority 

of observations over the historical days. However, residential buildings show high uncertainty in 

energy consumption patterns [114], and they are typically expected to be represented by different 

clusters and change their pattern across different days. Therefore, it is more realistic to associate 

the behavior of each building with multiple clusters that are commonly observed. To this end, upon 

segmentation, each building will be characterized based on the frequency of clusters observed over 

historical data.  

Considering the frequency of different clusters for each building, the energy behavior of each 

building i can be characterized in a feature vector  𝜋𝑖: 
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 𝜋𝑖 = {𝑃𝑟𝑖1, 𝑃𝑟𝑖2, … , 𝑃𝑟𝑖𝐾}             (1) 

in which 𝑘 is the index of the clusters and 𝑃𝑟𝑖𝑘, 𝑘 ∈ [1: 𝐾] is the probability (frequency of 

observing a cluster) of observing 𝐶𝑖𝑘 across historical days for a building. 𝐶𝑖𝑘 is the kth cluster in 

the load profile data set of building i. 𝑃𝑟𝑖𝑘 is defined as: 

 𝑃𝑟𝑖𝑘 =
∥𝐶𝑖𝑘∥

𝑁
                                         (2) 

In which ∥ 𝐶𝑖𝑘 ∥ is the number of daily load shapes for building 𝑖 in cluster 𝑘. The 𝜋𝑖 represents 

the energy behavior of buildings according to their daily load shapes and the frequency of 

observations. 

 
Figure 3-4. Representation of 𝜋 according to the frequency of clusters. 

Figure 3-4 illustrates an example of clusters and the associated feature vector (𝜋) that is derived 

according the frequency of clusters over a period of historical data. It is noted that clustering is 

performed on the entire sample (both the training and target buildings), and 𝜋𝑖 is characterized on 

all the buildings. 

3.3.2.c. Identifying Nearest Matches to Target as the Training Sample 

To identify the training sample buildings for ToU inference in the target building, we adopted the 

use of KNN algorithm for finding the nearest training sample buildings that match the energy 

behavior of the target. Considering the training sample size of   ≪  , the nearest matches in a 

community with respect to the target are the [1, … ,   ]. Here, 𝜋𝑖 vector is used as the feature vector 

for KNN algorithm with Euclidean distance as the similarity measure. In this work, we primarily 

investigated 10 as the number of neighbors for the KNN, while comparing it against other values 

in the result section. 
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3.3.3. Appliance time-of-use inference  

Given the power time series of the daily load shape for target building i on day n, 𝑃𝑖𝑛(𝑡), the 

objective is to identify the use of a flexible appliance across a collection of time bins during the 

day – Ω𝑖𝑛 = {𝜔1, 𝜔2, 𝜔3, . . , 𝜔Γ} in which   is the total number of time bins (𝜏 ∈ [1:  ]). A time 

bin is a window of multiple data points with the length 𝑙, which represents a timeframe that could 

be selected for DER management or a DR event. The elements in vector Ω𝑖𝑛 has the following 

binary form: 

 

𝜔𝜏 = {
1    𝑖𝑓 𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒 𝑤𝑎𝑠 𝑏𝑒𝑖𝑛𝑔 𝑢𝑠𝑒𝑑
0    𝑖𝑓 𝑎𝑝𝑝𝑙𝑎𝑖𝑛𝑐𝑒 𝑤𝑎𝑠 𝑛𝑜𝑡 𝑢𝑠𝑒𝑑

    (3) 

 

 

Therefore, to infer a deferrable load status we have: 

 

 𝑖𝑛𝜏 = {
1         𝑖𝑓 𝑃(𝜔𝜏 = 1|𝑃𝑖𝑛𝜏(𝑡)) > 𝑃(𝜔𝜏 = 0|𝑃𝑖𝑛𝜏(𝑡))

0                                            𝑒𝑙𝑠𝑒
      (4) 

 

in which  𝑖𝑛𝜏 is the appliance ToU prediction for building 𝑖, on day 𝑛, and at the time bin 𝜔𝜏. 

𝑃𝑖𝑛𝜏(𝑡) denotes the 𝑃𝑖𝑛(𝑡) power time-series associated with the time frame 𝜏, in which 𝑡 ∈ [𝜏𝑙 −

𝑙  1: 𝜏𝑙] 

 

.   𝑖𝑛𝜏 is used as the appliance ToU predictor for presenting the results in this paper. 

In order to prepare the ground-truth in the form of Ω𝑖𝑛 (binary series across different time bins per 

day) for the training sample buildings, the continuous power time-series need to be converted into 

the binary form at each time bin. Considering 𝑃 (𝑡) = {𝑝 
1
, 𝑝 

2
, 𝑝 

3
, … , 𝑝 

𝑇
} as the appliance 

power time-series ground truth, we employed the following equation for preparing the ground-

truth Ω𝑖𝑛 in our training sample: 

 

𝜔𝜏 = {
1             𝑖𝑓 max(𝑃 (𝑡)|𝑡= (𝜏− )+1:𝜏 +1) > 𝑃𝑛

0        𝑒𝑙𝑠𝑒
   (5) 

 

in which 𝑃𝑛 is the nominal power draw threshold of a load while being on. 
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(b) 

 

Figure 3-5. Example of daily load shapes over twenty days for one building and its 

corresponding dryer power time series and label for each time bin: (a) power consumption 

collected by using a smart meter at 15-minute interval, (b) magnified view of the first day from 

part (a), (c) power consumption of a dryer for the same time span in (a), and (d) extracted labels 

of dryer from part (c) at two-hour intervals. 

3.3.3.a. Classifier component 

To classify the appliance ToU at each time bin in the target building, we investigated the 

application of several classifiers. The processed historical data of daily load profiles 𝑃(𝑡) and Ω 

from the training sample buildings are used for training, and 𝑃(𝑡) from the target building is used 

for inferring the appliance ToU. Therefore, the classifier infers Ω from 𝑃(𝑡) by relying solely on 

the information from training sample with known ToU [𝑓: 𝑃(𝑡) → Ω]. Using the nearest matches 

from the training sample building (described in section 3.2), predictions for each appliance will be 

carried out separately. To this end, we investigated Dense Neural Network (Dense NN), KNN, 

Support Vector Machine (SVM), and Random Forest (RF) as four classification algorithms. 

Considering that building load shapes are presented in relatively low dimensions and the dataset 

that is moderate in size (compared to common vision and text datasets), we opted for a two dense-

layer NN. The architecture consists of 300 hidden units in the first layer with ReLU activation 

function, a sigmoid activation function in the second layer to map two status of ‘On’ and ‘Off’, 

and RMSprop as the optimizer. The second classifier, KNN, uses the class output of 𝑘 nearest 

neighbors based on Euclidean distance for classification. 5 nearest neighbors for load shapes was 

used in the analysis upon empirical observation. The third classifier, SVM, defines decision 

(a) 

(c) (d) 
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boundaries based on hyperplanes to separate the feature space into classes. The fourth classifier, 

RF, is an ensemble learning method that leverages multiple decision trees and select the mode of 

the classes of individual tress as the output.  

3.3.3.b. Oversampling consideration for training 

The appliance ToU data sets are imbalanced by nature. Intuitively, for most buildings, it is 

expected that “Off” class is dominant compared to the “On” class. However, for our problem, the 

minority “On” class has higher importance. Therefore, it is desired to reduce the number of false 

negatives (FN) compared to false positives (FP). Imbalanced datasets can adversely affect the 

performance of classifiers and lead to bias in favor of the majority class [143]. Solutions to mitigate 

this problem include oversampling or creating synthetic data for the minority class [144]. Here, 

we have used the Synthetic Minority Over-sampling Technique (SMOTE) for mitigating the 

imbalanced problem. SMOTE [145] creates artificial instances of the minority class that are close 

to the existing ones in the dataset. Synthetic samples are created by calculating the difference 

between observations from the minority class and their nearest neighbors (∆). These differences 

are then multiplied by a random coefficient between 0 and 1 and added along each feature to create 

a synthetic observation. Using this approach, the extra synthetic data for ‘On’ examples is only 

added to the training sample of buildings to ensure it does not affect the dataset for the target 

building. 

3.4. Results and Discussion 

3.4.1. Dataset and performance metrics 

We used a sample of 467 buildings in Pecan Street Dataport [141], primarily located in Austin, 

TX, in July and August as the case study for segmentation and creating clustered load shapes. 

After pre-processing and performing moving average filtering on 15-minute data to reduce noise, 

26870 daily load shapes were obtained. Moving average with a 1-hour window was considered to 

reduce the impact of noise in energy load shapes.  

To evaluate the framework, we considered EV and dryer as two instances of flexible loads that are 

suitable for DER management and DR applications. For each load, we considered 10 buildings as 

the target buildings (test set) that owned the same appliance (using ownership data) with 20 days 

of data for evaluating the performance to provide adequate instances for evaluation. For each target 

building, 10 nearest matches were selected as the training sample with 60 days of data. The 
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aggregate data and appliance data had a sampling rate at every 15 minutes. A value of 𝑙 = 8, 

corresponding to time bins with a duration of 𝜏 = 2 hours was selected to represent the common 

timeframe for running DR events [146]. 

For training the classifiers, we used two scenarios of training for the target buildings. In the first 

scenario, labeled as RBL (resident learning), we used the data from 10 nearest matches, selected 

by using the method discussed in Section 3.2. In the second scenario, we used the data from 30 

buildings randomly sampled in the community without considering nearest matches. We 

deliberately selected a higher number of buildings for the second scenario to give more power by 

feeding more data for training and compare it with the alternative approach of using similar 

matches for training. Nonetheless, a sensitivity analysis for the training samples size by evaluating 

different combinations of 10, 20, or 30 buildings is presented later in Section 3.4.3. Standard 

metrics including precision, recall, and F-score were used for evaluation considering our 

imbalanced datasets and need for assessing the trade-off among TP, FP, and FN.  

3.4.2. Building energy characterization 

The two-stage clustering technique described in section 3.2.1 was employed on the smart meter 

data. An initial 60 clusters were generated on the entire dataset. Clusters were visually examined 

to ensure that they are compact and their centroids are representative of their associated members. 

In the second stage, features from clusters were extracted and those with similar features were 

merged. This was done to eliminate highly correlated clusters and to maintain those that reflect 

distinct ToU on load shapes. This process further reduced the cluster library size to 39 clusters, 

and they were considered as the final clusters for the rest of analysis. Figure 3-6 shows samples of 

clusters in the library and their frequency of occurrence. After this process, each daily load shape 

in the library (for buildings in both groups of training samples and target) was annotated with its 

cluster index and building ID.  
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Figure 3-6. Examples of clustered energy load shapes and their frequency of occurrence in the 

community. 

Using the results in the previous section, the energy behavior of the building, 𝜋𝑖 (described in 

Section 3.2.2), was calculated. The nearest ten matches for each target were identified using KNN.  

Figure 3-7 demonstrates an example histogram of clusters in one of the target buildings and its 

nearest neighbor. Figure 3-7(a) compares the histogram of clusters, and Figure 3-7(b) shows the 

top three clusters with higher occurrence for two buildings. As shown, there is a high similarity in 

terms of energy use behavior across historical days for these two buildings. 

 

    (a)              (b) 

Figure 3-7. Household characterization and similarity search for one target building: (a) 

histograms of clusters for two buildings, and (b) top three daily load shape clusters. 

3.4.3. Appliance time-of-use inference 

Through using the statistical approach and different classifiers described in section 3.3, ToU 

inference of individual loads based on smart meter data was investigated. Figure 3-8 shows a visual 

demonstration of the EV charging prediction for one building over 20 days. The upper subplot is 

the smart meter data, collected at 15-minute intervals. The lower subplot compares the ground-

truth and prediction of EV charging status at each associated time bin using Dense NN+RBL. As 
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can be seen, the detected charging instances are highly in agreement with the ground-truth, and 

most of the charging instances are correctly identified at its right time by load shape analysis. 

 

 

Figure 3-8. Visual demonstration for EV charging of one building for 20 days: (a) smart meter 

data, (b) ground-truth and prediction of EV charging. 

To provide a comparison between different methods, Figure 3-9 shows the F-score values, 

averaged over all target buildings. As noted, ‘RBL’ represents the ‘resident learning’ approach for 

selecting the training sample buildings. Based on the results shown in Figure 3-9, for both EV and 

dryer, the ‘Dense NN+RBL’ approach demonstrates the best performance, with an average F-score 

of 83% and 71% respectively. For EV, for all four classifiers, integrating the ‘RBL’ component 

improved the results (5% on average). For dryer, integrating the ‘RBL’ component improved the 

results for two classifiers, while the impact was negligible (1% improvement). It must be noted 

that three times more data was used for training based on random sampling compared to the RBL 

approach. 

 

(a) 

(b) 
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Figure 3-9. Performance comparison of different algorithms for (a) EV and (b) dryer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)

(b)
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Table 3-2. Performance comparison of different algorithms for individual buildings (best results 

are shown in bold) 
EV 

Method  Dense NN+RBL KNN+RBL SVM+RBL RF+RBL 
Building 

ID# 

F-score Recall Precision F-score Recall Precision F-score Recall Precision F-score Recall Precision 

6072 0.86 0.87 0.86 0.82 0.84 0.80 0.83 0.84 0.83 0.86 0.85 0.89 

9776 0.59 0.63 0.59 0.61 0.63 0.60 0.58 0.64 0.59 0.62 0.64 0.61 

545 0.91 0.88 0.96 0.80 0.78 0.83 0.86 0.80 0.97 0.84 0.80 0.91 

3036 0.89 0.93 0.86 0.79 0.87 0.75 0.85 0.90 0.81 0.87 0.91 0.84 

1169 0.91 0.90 0.94 0.78 0.86 0.73 0.89 0.87 0.91 0.84 0.84 0.85 

5749 0.72 0.93 0.67 0.67 0.86 0.63 0.65 0.80 0.62 0.67 0.84 0.63 

9935 0.66 0.78 0.68 0.61 0.72 0.64 0.59 0.69 0.62 0.64 0.75 0.59 

1629 0.92 0.90 0.94 0.87 0.88 0.86 0.88 0.86 0.90 0.89 0.91 0.89 

4352 0.96 0.97 0.95 0.91 0.92 0.90 0.95 0.97 0.93 0.96 0.97 0.95 

6990 0.84 0.87 0.82 0.78 0.83 0.75 0.78 0.81 0.77 0.84 0.88 0.81 
Average 0.83 0.87 0.83 0.76 0.82 0.75 0.79 0.82 0.79 0.80 0.84 0.80 

 Dense NN KNN SVM RF 

6072 0.76 0.79 0.73 0.76 0.82 0.74 0.73 0.75 0.71 0.74 0.76 0.73 

9776 0.58 0.61 0.58 0.54 0.61 0.57 0.55 0.63 0.58 0.54 0.60 0.54 

545 0.87 0.83 0.93 0.87 0.84 0.90 0.83 0.78 0.92 0.82 0.76 0.96 

3036 0.87 0.87 0.88 0.77 0.74 0.81 0.78 0.76 0.80 0.75 0.71 0.80 

1169 0.91 0.90 0.94 0.86 0.84 0.88 0.88 0.89 0.87 0.89 0.85 0.95 

5749 0.71 0.93 0.66 0.72 0.93 0.67 0.71 0.88 0.66 0.67 0.76 0.62 

9935 0.52 0.68 0.63 0.50 0.66 0.61 0.49 0.57 0.54 0.50 0.63 0.46 

1629 0.86 0.83 0.91 0.70 0.68 0.73 0.77 0.73 0.88 0.69 0.67 0.80 

4352 0.84 0.78 0.94 0.89 0.87 0.91 0.93 0.90 0.96 0.91 0.88 0.95 

6990 0.85 0.85 0.85 0.80 0.81 0.78 0.81 0.81 0.82 0.80 0.78 0.83 
Average 0.78 0.81 0.80 0.74 0.78 0.76 0.75 0.77 0.78 0.73 0.74 0.76 

Dryer 
 Dense NN+RBL KNN+RBL SVM+RBL RF+RBL 

Building 

ID# 

F-score Recall Precision F-score Recall Precision F-score Recall Precision F-score Recall Precision 

6990 0.65 0.79 0.63 0.70 0.81 0.67 0.69 0.77 0.65 0.64 0.70 0.62 

8282 0.78 0.87 0.74 0.65 0.69 0.64 0.72 0.77 0.70 0.70 0.74 0.67 

3044 0.64 0.64 0.63 0.68 0.69 0.68 0.63 0.63 0.63 0.59 0.59 0.62 

6139 0.71 0.70 0.73 0.66 0.67 0.65 0.73 0.75 0.71 0.64 0.63 0.73 

7901 0.91 0.86 0.98 0.79 0.77 0.82 0.77 0.72 0.85 0.73 0.69 0.83 

9356 0.76 0.78 0.75 0.64 0.65 0.63 0.70 0.72 0.69 0.59 0.61 0.65 

4874 0.85 0.83 0.88 0.82 0.78 0.89 0.79 0.74 0.89 0.80 0.75 0.92 

4505 0.74 0.75 0.73 0.67 0.69 0.66 0.75 0.74 0.76 0.62 0.62 0.63 

5288 0.34 0.59 0.52 0.44 0.49 0.50 0.40 0.50 0.50 0.45 0.52 0.44 

3367 0.71 0.74 0.70 0.68 0.69 0.68 0.67 0.66 0.68 0.55 0.56 0.61 
Average 0.71 0.75 0.73 0.67 0.69 0.68 0.68 0.70 0.71 0.63 0.64 0.67 

 Dense NN KNN SVM RF 

6990 0.64 0.77 0.62 0.64 0.73 0.62 0.65 0.70 0.62 0.68 0.72 0.64 

8282 0.69 0.76 0.67 0.65 0.69 0.64 0.62 0.70 0.62 0.59 0.60 0.60 

3044 0.68 0.72 0.66 0.69 0.75 0.67 0.67 0.75 0.65 0.57 0.58 0.56 

6139 0.68 0.71 0.67 0.63 0.65 0.62 0.71 0.76 0.68 0.57 0.57 0.63 

7901 0.86 0.79 0.97 0.80 0.83 0.78 0.80 0.82 0.79 0.82 0.80 0.85 

9356 0.68 0.76 0.67 0.61 0.69 0.62 0.60 0.67 0.61 0.51 0.55 0.47 

4874 0.83 0.78 0.95 0.80 0.76 0.85 0.74 0.70 0.82 0.68 0.65 0.85 

4505 0.85 0.88 0.82 0.79 0.83 0.77 0.76 0.83 0.73 0.83 0.87 0.80 

5288 0.33 0.64 0.54 0.42 0.50 0.50 0.48 0.54 0.51 0.46 0.60 0.44 

3367 0.74 0.80 0.72 0.75 0.79 0.73 0.75 0.79 0.73 0.66 0.66 0.67 
Average 0.70 0.76 0.73 0.68 0.72 0.68 0.68 0.73 0.68 0.64 0.66 0.65 

  

Table 3-2 provides the drill-down performance metrics for individual buildings. F-score, precision, 

and recall metrics were reported. For EV, out of 10 examples, 9 of them had improved F-score 

when classifiers were trained using the ‘RBL’ approach. For dryer, 6 out of 10 examples had 

improved F-score when the classifier integrates the ‘RBL’ approach for training. It was also 
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observed, that evaluation for EV achieved average Recall and Precision of 87% and 83%, 

respectively in the best case, while these values for dryer were 76% and 73%, respectively. In 

general, prediction on EV showed better performance compared to the dryer. Furthermore, the 

results in Table 3-2 shows that in most cases, the ToU can be predicted with high accuracy with 

Dense NN+RBL, while there were a few instances that turned out to be challenging in prediction 

(further discussed in Section 4.4). 

Figure 3-10 shows the aggregate confusion matrix for all ten buildings over twenty days (200 days 

of observations) with two-hour time bins. For EV, there were a total of 2061 ‘Off’ and 339 ‘On’ 

instances, and for dryer, there were a total of 2070 ‘Off’ and 330 ‘On’ instances. As could be 

inferred from Figure 3-10, for EV, out of 339 charging instances (‘On’ class), 273 of them were 

correctly identified. For the dryer, out of 330 ‘On’ instance, 216 of them were correctly identified. 

Regarding the ‘Off’ instances, 1863 out of 2061 for EV, and 1740 out of 2070 instances for dryer 

were correctly classified. As the results show, the proposed approach has the potential to add a 

new layer of information on detecting the operational details for flexible loads by using daily load 

shape information from smart meter. 

 
      (a)                   (b) 

Figure 3-10. Appliance ToU inference for (a) EV (including 2061 ‘Off’ and 339 ‘On’ 

observations) and (b) Dryer (including 2070 ‘Off’ and 330 ‘On’ observations). 

To demonstrate the trade-off between true positive rate and true negative rate, Figure 3-11 shows 

the Receiver Operating Characteristic (ROC) curves across all buildings. For EV and dryer, the 

Area Under the Curve (AUC) show a high value of 0.93 and 0.86 (1 is perfect classification), 

corresponding to the probability of ranking a randomly chosen ‘On’ observation higher than a 

randomly chosen ‘Off’ observation. To adjust different levels of True Positive Rate (TPR) versus 

False Positive Rate (FPR), varying levels of thresholds for the classifier can be selected. For 

example, for EV, achieving TPR values of 0.7, 0.8, and 0.9 results in FPR values of 0.02, 0.10, 
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and 0.22, respectively. For dryer, the same TPR values of 0.7, 0.8, and 0.9 corresponds to the FPR 

values of 0.18, 0.25, and 0.36, respectively.  

 
Figure 3-11. ROC curve across all target buildings. 

 Sensitivity to the training size: To evaluate the impact of training sample size in our 

comparative analyses, we performed an experiment by changing the ratio of training sample 

for the scenario without “RBL” and compared it with the scenario that included “RBL”. 

Specifically, in addition to the presented results in the previous section in which the ratio of 

training size in the scenario without “RBL” to the scenario with “RBL” was set to 3, we also 

performed the same experiments with the training size ratio of 2 and 1. Figure 3-12 presents 

the results for improvements in F-score by inclusion of RBL step in the framework. The F-

score was averaged over the entire test set for different ratios of random sampling versus RBL 

for smart sampling. The first three subplots show F-score and improvement in F-score for 

different training ratios of 1, 2, 3. The x-axis represents the F-score using ‘RBL’ component, 

and y-axis shows the difference of F-score compared to the baseline of random sampling. The 

last subplot represents variation of F-score improvement across the training ratios. As can be 

seen, in most cases, the inclusion of “RBL” component improves the performance of 

algorithms since data points are placed above the baseline (the gray dashed line indicates no 

change). Besides, it confirms our assumption that setting the same number of buildings for 

both scenarios would further accentuate the improvement by including the ‘RBL component. 

Additionally, results show varying sensitivities to the training size ratio. However, it does not 

considerably affect the performance. 
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 (a) 

 
(b) 

Figure 3-12. Comparison in F-score by changing the ratio of training size for (a) EV and (b) 

dryer. 

3.5. Discussion and limitation 

There are a number of limitations associated with this work as we elaborated here. We only focused 

on two classes of loads including EV and dryer that have high power draws. The usage of these 

devices can induce some noticeable change in load shapes pattern which make them favorable for 

our analysis. However, the identification of ToU for appliances with lower power draws will not 

make such changes in the load shape pattern, and therefore, might not be detected by the proposed 

approach. Nonetheless, we focused on two classes of deferrable loads that had the highest 

importance to DR applications in the residential sector [147, 148]. Moreover, as the results in Table 

3-2 showed, although the framework showed relatively high detection rate in most buildings, there 

are a few instances that turned out to be challenging.  

 
(a) 
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(b) 

Figure 3-13. Comparison of dryer identification for two buildings with (a) worst performance 

and (b) good performance. 

Figure 3-13 compares the ToU identification of dryer for a building with the worst performance 

(Building #9: ID 5288; F-score=0.34) with another building with a good performance (Building 

#5: ID 7901; F-score = 0.91). As could be seen, for the building with the high error value (Fig. 

13(a)), the demand magnitude is considerably high at most times. Therefore, it could be considered 

an outlier in terms of energy consumption. Furthermore, there are many considerable sharp peaks 

in the load shapes, and the associated time bins were classified with dryer operation as false 

positives. This could be caused by simultaneous interference from other appliances that have 

similar load behaviors such as water heater or AC. To alleviate problems for such cases, we could 

add heuristics to detect outliers by using the known power draw information from typical 

appliances, and integrate contextual attributes such as occupancy information and outdoor 

temperature data for estimation of baseline loads. Additionally, outlier detection techniques can 

be applied to detect load profiles with discord in the building pool as a pre-processing or post-

processing step [149, 150]. 

 

3.6. Conclusion 

In this study, we have investigated the development of a scalable framework for inferring time-of-

use (ToU) for major flexible loads in support of applications such as integration of distributed 

energy resources (DERs) and demand-response operations. The framework draws on the use of 

low-resolution real power data, sampled at 15-minute intervals through ubiquitously available 

smart meter infrastructure, and a training scheme that excludes in-situ training – i.e., inference is 
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carried out for buildings that are not part of the training data set. The framework uses a number of 

known buildings with specialized appliance-level metering instrumentation to provide the basis 

for generalized training (i.e., the training pool), and searches in the training pool to identify the 

buildings (i.e., the training sample) that their energy behavior matches that of a target building.  

The framework employs a segmentation component that uses clustering of daily load shapes and 

compares the frequency of observed clusters across buildings to match them as building with 

similar energy behavior. Upon identification of the training sample, a classification algorithm that 

uses the daily load shapes as the input parameter, detects the use of flexible loads across different 

times of a day. Various classifiers were employed to evaluate their performance in identifying the 

ToU. A case study on Pecan Street Dataport for EV and dryer was conducted. Using only the 

information from limited number of buildings in the training sample, the best average recall of 

87% and 76%, and precision of 83% and 73% were achieved for EVs and dryers, respectively. The 

results show the feasibility and potential of the approach for adding a new level of information to 

the daily load shapes (i.e., the ToU) that reflects on the casualty of the observed energy 

consumption pattern on the daily load shapes. Future directions of this research will include the 

use of machine learning algorithms for automated feature extraction, accounting for simultaneous 

operation of loads with high power draw through heuristic augmentation of the framework, 

incorporating contextual information such as occupancy or building area in addition to 

identification of other flexible load types. 
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Chapter 4: An Automated Spectral Clustering for Multi-scale Data 

Afzalan, Milad, and Farrokh Jazizadeh. "An automated spectral clustering for multi-scale 

data." Neurocomputing 347 (2019): 94-108. DOI: https://doi.org/10.1016/j.neucom.2019.03.008 

 

Abstract 

Spectral clustering algorithms typically require a priori selection of input parameters such as the 

number of clusters, a scaling parameter for the affinity measure, or ranges of these values for 

parameter tuning. Despite efforts for automating the process of spectral clustering, the task of 

grouping data in multi-scale and higher dimensional spaces is yet to be explored. This study 

presents a spectral clustering heuristic algorithm that obviates the need for any input by estimating 

the parameters from the data itself. Specifically, it introduces the heuristic of iterative eigengap 

search with (1) global scaling and (2) local scaling. These approaches estimate the scaling 

parameter and implement iterative eigengap quantification along a search tree to reveal 

dissimilarities at different scales of a feature space and identify clusters. The performance of these 

approaches has been tested on various real-world datasets of power variation of appliance signature 

with multi-scale nature. Our findings show that iterative eigengap search with a PCA-based global 

scaling scheme can discover different patterns with an accuracy of higher than 90% in most cases 

without asking for a priori input information. 

4.1. Introduction 

Clustering, the practice of partitioning data into different groups with similar observations, has a 

variety of applications in knowledge discovery for unknown phenomena in different fields such as 

object recognition [151, 152], cyber-physical systems [17, 153], or bioinformatics [154]. Spectral 

clustering [155-157] is a data analytics technique that has gained popularity in recent years. Due 

to its capability of high-quality clustering and handling non-convex clusters that are typically 

challenging for other methods [157], spectral clustering has been implemented in different 

domains like computer vision and speech separation with promising performance [158-161]. An 

overview of the literature reveals that spectral clustering has been adopted and adapted for 

different application domains. In this study, we have explored automated spectral clustering for 

feature spaces with multi-scale and higher dimensional attributes. Our vision has stemmed from 

the need for self-configuring algorithms in cyber-physical systems that need to adapt their behavior 

in different settings. 

https://doi.org/10.1016/j.neucom.2019.03.008
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Spectral clustering decomposes the eigenvectors of a Laplacian matrix derived from an affinity 

matrix (i.e., similarity matrix) of the data and transforms the data into a new dimension, where it 

can be grouped with k-means or other algorithms that minimize a distortion metric. The affinity 

matrix in this context demonstrates the pairwise similarity between data points and is used to 

overcome the difficulties due to the lack of convexity in the data distribution. While considered as 

an unsupervised method, the algorithm calls for the determination of the number of clusters and a 

scaling parameter (that defines the behavior of the affinity matrix), which require algorithm tuning 

and a priori data provision. These values are commonly provided based on data-driven parameter 

tuning (i.e., model selection) techniques or the general knowledge of a domain and therefore, make 

the autonomous application of algorithms more challenging. Accordingly, research efforts have 

been made on automated (also known as self-tuning) spectral clustering with a focus on particular 

problems. 

The main body of work in automated spectral clustering has focused on challenging two-

dimensional and image segmentation problems (e.g., [162-165]). Automated spectral clustering 

for multi-scale high dimensional data (mainly time-series) is another domain of research that has 

been less explored. Clustering in higher dimensions could be a challenging task [166]; however, it 

has interesting applications in domains such as energy or power consumption pattern analysis, 

gene expression groupings, or speech separation. In other words, with emerging (and fast-growing) 

technologies for autonomous systems and smart environments, mainly in the form of cyber-

physical systems, the need for self-tuning and context-aware algorithms that do not require human 

intervention for cluster analysis is increasing. The challenges for clustering of this type of data 

include: (1) Different groups of data can reside on different scales creating a multi-scale nature for 

the feature space. Consequently, larger scale components can mask the distinction of complex 

patterns in the smaller scales, and (2) the presence of noise in the acquired data could add to the 

complexity of the clustering process. Accordingly, in this study, we have proposed a heuristic 

algorithm for automated spectral clustering of multi-scale higher-dimensional data in order to 

obviate the need for a priori information (i.e., number of cluster k, and scaling parameter 𝜎) so 

that the algorithms could configure their behavior by learning from the data.  

Our proposed approach is built on the eigengap metric by introducing a new heuristic algorithm 

that couples eigengap with data-driven estimation of scaling parameter and a search framework 

that accounts for the multi-scale nature of the feature space. The performance of the proposed 
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heuristic has been evaluated on real-world labeled datasets with multi-scale nature in a higher-

dimensional space and compared to the performance of commonly used internal validation 

techniques that call for a threshold as the stopping criterion (i.e. the number of cluster 

optimization). The proposed method was initially motivated by the task of energy disaggregation, 

which is the practice of dividing the aggregate power series into individual appliance components 

with considerable power draw values (i.e., different scales). While there are recent well-known 

clustering studies for electricity energy monitoring (e.g. [137, 167]), they presume the number of 

appliances and only handle appliances with high power draws. However, due to our interest in the 

automation of cyber-physical systems, we are seeking to perform clustering without parameter-

tuning or a priori information (i.e., number of clusters) provision.  

The rest of the paper has been structured as follows: In section 4.2, a background on automated 

(i.e., self-tuning) spectral clustering as well as clustering of high dimensional data is presented. 

Section 4.3 presents the proposed heuristic by introducing methods for estimation of scaling 

parameter and the number of clusters (𝐾) that formalize our proposed framework for automated 

clustering. Section 4.4 discusses the datasets and their properties and then proceeds with presenting 

the results, evaluation, and efficacy of the heuristic algorithms. Finally, the conclusion summarizes 

the work and its findings. 

4.2. Related Works in Spectral Clustering  

Spectral clustering has gained popularity due to their ease of implementation and efficiency in 

clustering [168, 169]. Therefore, in recent decades, several clustering algorithms have been 

proposed and used for different applications. The focus in these algorithms has been on the 

application of the similarity matrix spectrum for dimensionality reduction and feature space 

transformation to introduce convexity. One of the well-known algorithms in this field is the one 

proposed by Ng, Jordan, and Weiss (referred to as NJW) [157]. In addition to the efforts in the 

formalization of spectral clustering algorithms, a number of studies have focused on expanding 

the algorithms into instances, which are capable of self-tuning or automated identification of 

natural partitions (or groups) in the data. Natural in this context refers to the clusters (or groups) 

that represent the actual/physical separation in the data.  
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4.2.1. Automated Spectral Clustering 

As a widely adopted technique, Zelnik-Manor and Perona introduced a self-tuning spectral 

clustering algorithm [162] (built on NJW) that accounts for multiple scales in the feature space 

and automatically identifies the number of clusters using an optimization technique over a range 

of possible numbers for clusters. As part of this algorithm, they have proposed a novel similarity 

measure that integrates a data-driven scaling parameter by considering the distance of each point 

with some of its nearest neighbors. Scaling parameter refers to a parameter that controls the width 

of the neighborhood in the similarity metric. The number of clusters was estimated through 

examining a range of possible group numbers, recovering the rotation that best aligns the 

eigenvector of the matrix obtained from the data, and minimizing a cost function for possible 

rotations. The algorithm’s performance has been evaluated on a number of reference 2D problems 

(identified as benchmarks) as well as image segmentation problems, with promising performance.  

A major part of the efforts in the field of automated spectral clustering has focused on the problem 

of image segmentation and thus the aforementioned study (i.e., [162]) has been used as the 

benchmark for comparative analyses. In a class of these studies, it has been argued that the 

eigenvector selection is a crucial task for clustering because not all of the largest vectors are 

informative for natural segmentation of the data. These studies mainly sought the task of automatic 

determination of the number of clusters under noisy and sparse data. Different methods have been 

proposed to account for eigenvector selection. Identifying the relevance of the eigenvectors 

according to their contribution in determining the number of clusters [163] and eigenvector 

selection through direct entropy ranking or a combination of elements in the ranking [164] are 

examples of these methods. Other studies have proposed alternative solutions to address the 

problem of automated clustering in image segmentation. For example, [165] uses non-normalized 

information of eigenvectors (rather than using a unit space for feature representation) and [170] 

performed iterative cluster and merge in order to address the problem of image down-sizing (which 

can lead to losing fine details). 

Unlike the aforementioned efforts that have proposed solutions for challenging 2D datasets and 

image segmentation, [171] proposed a kernel spectral clustering for a large-scale network without 

parameter input. To this end, entropy was used to detect the block-diagonal of the affinity matrix 

that was created by the projections in the eigenspace. The efficacy of the proposed approach was 

studied through synthetic data and real-world network datasets. While these existing approaches 
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[163-165, 170, 171] were developed to tackle spectral clustering in an automated manner, they are 

either designed to solve the problem for multi-scale 2D and image segmentation or network data, 

which is different in nature from data with multi-scale higher dimensional attributes as sought 

here. 

4.2.2. Spectral Clustering in Higher Dimension 

Spectral clustering for higher dimensional feature spaces has also been the subject of some studies 

(e.g. [172-177]) to address different challenges. One of the examples of higher dimensional spaces 

in the real-world application is the time-series data. High level of noise and uneven sequence of 

length in data representation were among the challenges that have been taken into account. A class 

of studies has coupled spectral clustering and hidden Markov models (HMM) to benefit from 

structure and parametric assumptions of HMMs. These algorithms were evaluated on real-world 

datasets of motion capture, handwriting time-series sequence, sign language, and noisy sensor 

network data (e.g., [172], [178]). The inevitable challenge of noise in real-world data has led to 

studies on spectral clustering approaches that are robust to noise. Examples of techniques that 

focused on robustness to noise include using a mapping approach based on regularizations into a 

new space to separate the noise points in a new cluster [173], and proposing a partitioning criterion 

(discriminative hypergraph) which considers the intra-cluster compactness and inter-cluster 

separation of vertices [179]. The performance of these studies was evaluated on datasets including 

digit numbers with 256 features and gene expression data. In another class of studies with higher 

dimensional features, clustering of large-scale datasets (both in the number of features and 

instances) were explored since they are computationally expensive [174-177, 180]. These 

approaches typically integrate sparse coding-based graph or apply approximation methods to 

reduce cost while the performance might be deteriorated. Among the works that attempted to 

enhance the performance, we can mention the application of a landmark-based spectral clustering 

[176] that selects representative data points so that original data points are the linear combination 

of these landmarks and utilization of a sparse matrix and local interpolation to improve the 

approximate outputs [177]. These studies had a focus on the efficiency and improved performance 

of the algorithm or been applied toward a specific application solution. Therefore, they have 

considered parameter selection and prior knowledge of the domain. 

Considering the existence of real-world data with higher dimensional attributes, our study 

focuses on a heuristic spectral clustering algorithm that can robustly reveal different groupings for 
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a class of multi-scale data for autonomous systems that need to adapt to different contexts.  

4.3. An Automated Spectral Clustering Heuristic 

The fundamentals of spectral clustering methods have been extensively described in the literature 

(e.g., [157], [168], [162], [181, 182]). Our heuristics is built on the NJW spectral clustering 

algorithm [157]. A brief description of the NJW algorithm is followed to expand on it for our 

extended algorithm. 

Assuming the data set 𝑆 = [𝑠1, 𝑠2, 𝑠3 … , 𝑠𝑛] ∈ 𝑅𝑛×𝑚 with 𝐾 clusters, the NJW algorithm steps are 

as follows: 

1) Develop the affinity matrix 𝐴 ∈ 𝑅𝑛×𝑛, defined by:  

𝐴𝑖𝑗 = {
exp (−

∥𝑠𝑖−𝑠𝑗∥
2

2𝜎2 )               𝑖  𝑗

 0                                         𝑖 = 𝑗
                                   (1) 

where 𝜎2 is the scaling parameter of the model. 

2) Using 𝐷, a diagonal matrix with the summation of the elements on the i-th (𝑖 ∈ [1, 2, … , 𝑛]) 

row of A as 𝐷(𝑖, 𝑖), the Laplacian matrix is defined as 

𝐿 = 𝐷−
1

2𝐴𝐷
1

2                                   (2) 

3) Compute 𝑣1, 𝑣2, … , 𝑣𝐾 the K largest eigenvectors of 𝐿, and form the matrix 𝑉 =

[𝑣1, 𝑣2, … , 𝑣𝐾] ∈ 𝑅𝑛×𝐾 

4) Form matrix 𝑌 ∈ 𝑅𝑛×𝐾 by renormalizing each row of 𝑉 as 

𝑌𝑖𝑗 =
𝑉𝑖𝑗

(∑ 𝑉𝑖𝑗
2

𝑗 )
1

2
⁄                      (3) 

5) Cluster each row of 𝑌 as a point in 𝑅𝐾 via K-means algorithm. 

6) Original point 𝑠𝑖 belongs to cluster k, if and only if row i of the matrix 𝑌 is assigned to k.  

As the above steps state, the algorithm calls for input information. This information includes (1) 

the number of clusters (K), similar to other clustering algorithms that either need K (e.g., the well-

known K-means) or other input parameters such as thresholds as stopping criteria or model 

parameters (e.g., hierarchical clustering or mean-shift [183], [184]), and (2) a scaling parameter 

(𝜎2) for forming the affinity matrix. These parameters could be estimated by human knowledge 

for specific problem domains or through internal validation, which also requires a threshold 

identification as an input parameter. Specifically, as proposed by Ng et al. [157], scaling parameter 
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can be automatically fine-tuned by running the algorithm several times and selecting an optimal 

value from a range so that least distorted clusters of the rows in 𝑌 are obtained. However, 

identifying this range calls for knowledge of the data, which contradicts the self-configuration 

objective. 

4.3.1. Estimating Scaling Parameter, 𝝈𝟐 

The scaling parameter (𝜎2), shown in Eq. (1), defines the width of neighborhoods which 

subsequently affects the calculation of the affinity matrix. In other words, it is a reference distance, 

below which two points are evaluated as similar and beyond which dissimilar [162], [185]. Ng et 

al. [157] describe the scaling parameter as the parameter that controls how rapidly the affinity falls 

off with the distance between two observations (i.e., data points). Therefore, selection of this 

parameter characterizes the dissimilarity in the feature space and thus the structure of clusters. In 

order to illustrate the effect of scaling parameter on the clustering, we have presented the outcome 

of spectral clustering on a power dataset, with high dimensional data points (which are subsections 

of a power time-series) in Figure 4-1. The data in this figure represent selected feature vectors for 

a problem of energy disaggregation, which uses signal processing and machine learning algorithms 

to identify the contribution of individual appliances on the aggregated power time-series. The time-

series data is collected through one sensor on the main circuit panel in a building to avoid extensive 

instrumentation. Thus, this figure also shows the challenges of clustering in energy disaggregation. 

The spectral clustering outcome was visualized in Figure 4-1(b) for different 𝜎 values to 

demonstrate the sensitivity. NJW algorithm was used with three as the number of clusters. While 

in all the cases the number of clusters is set to the correct number (k=3) as depicted in Figure 4-1. 

(a), variation of 𝜎 can affect the performance. As in this case, 𝜎 = 100 is a suitable estimation 

while 𝜎 = 20 or 𝜎 = 40 leads to false prediction. The performance is sensitive to the scaling value 

over different datasets, indicating the importance of correct inference for the automated approach. 

Therefore, in our proposed heuristic, we have adopted the following methods for data-driven 

scaling factor estimation. 
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                𝜎 = 100, 𝑘 = 3      𝜎 = 40, 𝑘 = 3      𝜎 = 20, 𝑘 = 3 

(a)        (b) 
Figure 4-1.Sensitivity of 𝜎 on clustering output for a power time-series data. (a) is the feature vectors for 

three appliances and (b) shows the clustering results for three different values of 𝜎. (𝜎 = 100 gives the 

right prediction). 

 

4.3.1.a. PCA-based Scaling Parameter 

Scaling parameter identifies the boundaries of the similarity neighborhood. A larger 𝜎 indicates 

the similarity with more distant data points, whereas smaller values highlight the neighboring 

points. Therefore, in order to estimate the scale of neighborhoods, we have adopted the application 

of principal component analysis (PCA), which utilizes an orthogonal transformation to map the 

original variables into new space with uncorrelated variables. Given the higher dimensionality of 

data, we employ PCA in our approach to ensure that we focus on components of the feature space 

that account for the most variance in the data. In this study, through observations, we consider the 

one-time standard deviation of major principal axes (that accounts for the maximum variance in 

the whole data) in order to estimate the 𝜎. This assumption allows us to form an approximate 

boundary threshold for distinguishing similar and dissimilar points based on the distribution of 

data points. Since only the first few components constitute the most variance, the number of 

considered principal axes is selected such that at least 95 percent of total variance is granted. This 

ensures reducing the input while also accounting for the whole variability of data. 

Let us consider a set of data points 𝑆 with 𝑛 observations and 𝑚 features as: 

𝑆 = [𝑠1, 𝑠2, 𝑠3 … , 𝑠𝑛],        𝑆 ∈ 𝑅𝑛×𝑚                        (4) 

The eigenvectors that correspond to the highest eigenvalues of the covariance of 𝑆 are associated 

with the highest variance. The projection matrix 𝑈 is formed by stacking the eigenvectors of 

corresponding eigenvalues sorted in the descending order. Using 𝑈, the sample data is transformed 

into the new space as follows: 

𝑃 = 𝑆 × 𝑈,       𝑃 ∈ 𝑅𝑛×𝑚                 (5)  
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Each principal component is derived by selecting the corresponding column from 𝑃. We employ 

the variance information from principal components for evaluating the scaling parameter. 

Therefore, the scaling parameter (𝜎2) will be estimated as follows: 

𝜎2 =
∑ 𝑤𝑖𝑣𝑖

𝑦
𝑖=1

∑ 𝑤𝑖
𝑦
𝑖=1

                   (6) 

where 𝑤𝑖 is the data-driven weighting factor from 𝒘. 𝑤𝑖 denotes the ratio of the variance for the 

𝑖 − 𝑡ℎ principal axis to the summation of variance from all the principal axes (contained in 𝑃): 

𝒘𝑇 = [𝑤1, 𝑤2, … , 𝑤𝑚], 𝑤1 > 𝑤2 > ⋯ > 𝑤𝑚  (7) 

We select 𝑦 major principal axes (in Eq.6) such that 

∑ 𝑤𝑖
𝑦
𝑖=1

∑ 𝑤𝑗
𝑚
𝑗=1

> 0.95      (8) 

Here, 𝑦 is the smallest integer that satisfies the above inequality. The above inequality is used to 

consider almost the whole variability of data from PCA without considering all the principal axes. 

Typically, the first few principal axes account for the most variance in the data. An empirical 

analysis for Eq. (8) is provided in section 4.3.2. 

Also, 𝝂 contains the variance of data points that are projected along the principal axes (each axis 

contains 𝑛 points, i.e., the total number of observations in the data). 

𝝂𝑇 = [𝜈1, 𝜈2, … , 𝜈𝑚], 𝜈1 > 𝜈2 > ⋯ > 𝜈𝑚                 (9) 

4.3.1.b. Local Scaling for Self-tuning 

As a data-driven approach for estimation of the scaling parameter, Zelnik-Manor and Perona [162] 

suggested that, instead of considering a global parameter for the whole affinity matrix, a local scale 

for each point allows the point-to-point distance self-tuning, which can further be used to compute 

the affinity for pairwise points. As proposed by [162], instead of using Eq. (1) for calculating the 

affinity matrix, a local scale parameter is defined by each point, and Eq. (1) is re-written as 

𝐴𝑖𝑗 = exp (−
‖𝑥𝑖−𝑥𝑗‖

2

𝜎𝑖𝜎𝑗
)                       (10) 

where 

𝜎𝑖 = ‖𝑥𝑖 − 𝑥𝑘‖                                 (11) 

𝑥𝑘 is the k’th nearest neighbor of 𝑥𝑖. Through empirical observations, a value of 𝑘=7 was suggested 

[162] that works for a range of applications. Local scaling provides a highly representative measure 

of scale for each data point. However, comparing to methods that use a global scale, this 
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improvement in estimation comes with a higher computational cost since it calls for a KNN search 

for each data point in the process of forming the affinity matrix. 

4.3.2. Iterative Eigengap Search Heuristic 

Determining the number of clusters is a challenging problem even for human users and selecting 

the “right number of groups” is subject to different interpretation. In the case of spectral clustering, 

a commonly used heuristic is the eigengap that measures the stability of the eigenvectors in the 

Laplacian matrix. Based on the matrix perturbation theory, the subspace spanned by the first i 

eigenvectors of the Laplacian matrix 𝐿 is stable if and only if the eigengap measure in Eq. (12) is 

large: 

 𝛿𝑖 = |𝜆𝑖 − 𝜆𝑖+1| , 𝑖 = 1, … ,𝑁 − 1                         (12) 

where 𝑁 is the total number of observations, 𝛿1, …,  𝛿𝑛−1 are the eigengaps, and 𝜆1, … , 𝜆𝑛 are the 

eigenvalues of the Laplacian matrix 𝐿 (defined in Eq. 2). 

The value of eigengap for subsequent eigenvalues can indicate the place to pick the number of 

clusters. By examining the eigenvalue measures, the number of clusters can be estimated through 

𝐾 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖(𝛿𝑖)                 (13) 

where 𝛿𝑖 is calculated through Eq. (12).  

Eigengap heuristic is a technique that mainly works in well-separated feature spaces [10] but is 

not capable of properly partitioning the feature space in the presence of multi-scale data or mixed 

background as is the usual case in real-world data. In order to extend the capabilities of eigengap 

metric for multiscale data analysis, we propose to use an iterative eigengap search to reveal the 

complex topology of the feature space. 

4.3.2.a. Iterative Eigengap Search with global scale 

In a multi-scale feature space, the data in the larger scale could mask the dissimilarities and 

therefore the microstructure of the smaller scales. However, if an algorithm explores the structure 

of feature space in different scales, the dissimilarities could be revealed and therefore, the eigengap 

metric could be utilized for identifying the number of clusters. This is the rationale behind our 

proposed Iterative Eigengap Search (IES) that partitions a feature space through searching along a 

tree-like structure. While at each iteration the eigengap might not find the final groupings of data 

points, it will segregate the data in different scales and consequently accentuates the dissimilarities 

at each scale. Therefore, the algorithm could refine the clusters through visiting each node (i.e., 
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cluster) from the previous iteration by passing it to the spectral clustering algorithm. The process 

of refining the clusters will be carried out until eigengap cannot reveal finer structures in a leaf 

node. In other words, the stopping criterion is when all the nodes of the tree have been visited and 

all the leaf nodes contain only one cluster according to the eigengap measure. 

Fig. 2 illustrates the conceptual process of Iterative Eigengap Search tree. In this tree structure, the 

root indicates the whole dataset, which is passed through eigengap heuristic (Eq.(12)) to determine 

an initial K (Eq. (13)), and then clustered with NJW algorithm with a PCA-based global scaling 

parameter. Through empirical observations, we found that the K should be sought in the first half 

of the vector of eigenvalues. Each of the produced nodes is processed with eigengap heuristic to 

be clustered again. As schematically shown in Figure 4-2, there are 6 nodes with estimated k=1 

(after being analyzed with eigengap) that are accepted as final clusters, which all together form the 

data in the root node. The final clusters are thus the ones at the leaf nodes. At each level of the tree 

and for each node, the 𝜎 measure is updated with respect to the content of that node to identify a 

scaling factor for that specific subset of data points.  

 
Figure 4-2. Framework of Iterative Eigengap Search (IES) for discovering patterns in different 

scales (groups with k=1 are accepted as the final clusters). 

As described in section 4.3.1.a, we used the inequality in Eq. (8) to consider the major principal 

components. Considering the fact that the first major components typically account for the most 

variance in the data [186], we select the first major components such that at least 95 percent of 

variance is granted. As an empirical demonstration, we have considered all the datasets, later 

described in section 4.2, and measured the amount of variance and the percentage of major 

components for each generated node in the IES, as shown in Figure 4-3. As can be seen in Figure 

4-3 (a), the inequality results in an amount of variance that is close to 1 in our heuristic. On the 
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other hand, as shown in Figure 4-3 (b), in most cases, the number of principal components is 

limited to a small portion of the features to achieve the objective described in Eq. (8). Therefore, 

we used the cut-off threshold of 0.95 to account for almost the whole variance by limiting the 

number of principal components. 

 

 
Figure 4-3. Empirical analysis for the selection of major components in the generated nodes in 

IES: (a) Amount of variance granted, (b) ratio of selected major components. 

 

4.3.2.b. Iterative Eigengap Search with local scaling 

In this alternative of the heuristic, we have adopted the local scaling parameter that identifies the 

scale by quantifying the distance between nearest neighbors in our search tree framework. As 

proposed by the original work by Zelnik and Penora [162], we have utilized 7 nearest neighbors 

for the 𝜎 estimation. The selected number of neighbors was suggested in [162] based on 

comprehensive analysis of both high dimensional and low dimensional data. This approach 

considers the impact of point-to-point distance in forming the affinity matrix such that multiple 

scales of data are accounted for. The local scale is used in the Iterative Eigengap Search to identify 

the structure in the feature space. Given that local scaling has already considered the multi-scale 
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nature of data, the results through one iteration could be considered as the clustering output, which 

we call eigengap with local scaling (ELS).  

Figure 4-4 presents the pseudo-code for the Iterative Eigengap Search. The tree search is carried 

out similar to a depth-first search algorithm and therefore a stack data structure that uses the LIFO 

(last-in-first-out) feature is used to store the data (and the subsequent sub-sections). 
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Figure 4-4. Pseudo-code for Iterative Eigengap Search Heuristic. 

In this work, we have adopted NJW, which uses the normalized Laplacian matrix to extract the 

structure of the data as the standard spectral clustering (SC) for our automated clustering method. 

In the past recent years, different variations of SC have been proposed that showed improvement 

over NJW from specific perspectives including improved eigenvector selection [164, 187], 

alternate affinity matrix generation [188], and reduced computational cost [189, 190]. Nonetheless, 

we have adopted NJW as a seminal well-established algorithm. Considering the nature of the 

proposed framework for automated clustering, other variations of spectral clustering could be 

replaced instead, as long as they employ a graph Laplacian matrix (e.g., [168, 191]) that enables 

the use of eigengap heuristic and the scaling parameter in their similarity estimation. 

4.4. Algorithm Evaluation 

4.4.1. Evaluation Metrics 

In this study, the algorithm performance has been explored through external validation and was 

compared with internal validation techniques. Clustering validation is a domain which determines 

the goodness of clustering output [181]. While external validation relies on the external data such 

as the class labels, internal validation only searches for the information in the data to check the 

goodness of partitioning, and can also be employed to find the optimal number of clusters [192]. 

Both data types used in this study are labeled, which enables us to use external validation. 

However, we are also checking the performance against commonly used minimization of the sum 

of squared error in cluster dispersion to contrast the algorithm performance against conventional 

methods of automated clustering. 
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In internal validation, different metrics typically consider the compactness (high intra-cluster 

similarity) and separation (low inter-cluster similarity) to estimate the quality of partitions. These 

metrics can be used as a measure to find the optimal number of clusters. To measure the dispersion 

(or tightness) of clusters, the sum of the squared error (SSE) [193], [194] can be measured as:  

 

𝑆𝑆𝐸𝑘 = ∑ ∑ ∥ 𝑥 − �̅�𝑖 ∥
2

𝑥𝜖𝐶𝑖𝑖 , 𝑖 = 1,2, … , 𝑘                      (14)  

 

where 𝑥 are the data points in cluster i, �̅�𝑖 is the centroid of cluster i, and k is the total number of 

clusters. 

The SSE is measured for a set of clustering outcome for a range of k values to form an “elbow 

curve”. The optimal number of cluster is decided based on the rate of dispersion by identifying a 

threshold for change between subsequent values on the elbow curve.  

For the external validation, as the data is fully labeled, we have adopted precision, recall, and F-

measure of the confusion matrix. Based on a majority vote, we assign a dominant label to a cluster 

and form the confusion matrix.  

4.4.2. Dataset Description 

Power consumption datasets 

This category of data is focused on power time-series and the power draw of appliances in a typical 

building. As appliances change their operational states (e.g., going from off to on), the power draw 

changes. Clustering has applications in non-intrusive electricity consumption disaggregation, 

which uses minimal sensing in a building unit coupled with machine learning frameworks. More 

details on the need and challenges for automated clustering in this field of problems could be found 

in [130]. In order to shed light on the nature of this data type, Figure 4-5 shows a sample of raw 

time series data over a 3-hour period with 60Hz resolution. The red circles in this figure illustrate 

the events, when operational states of appliances were changed. 
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Figure 4-5. A sample of aggregate power variation time-series. 

Events are detected using the Generalized Likelihood Ratio (GLR) event detection algorithm. 

Therefore, the dataset contains the noise due to performance of automated feature extraction 

algorithms as well. The transient in power draw in the vicinity of these events are defined as the 

appliance signatures and are used as feature vectors, rendering this problem as a feature-based time 

series clustering according to [195]. In this study, we have used the transient signature (comprised 

of real and reactive power) for one second after each event and 2/3 of a second before each one. 

This dataset has been collected and labeled in three occupied apartments over the course of two 

weeks [125], in which we used the data from the first apartment for our analysis. The dataset is 

fully labeled under human supervision with the data from ground truth sensors. The labels 

represent appliances operational states, and each appliance could have several operational states. 

These labels have been used for external validation.  

Power data has a highly multi-scale nature, which has been visualized in Figure 4-6 for one 

example dataset. This dataset contains 16 labels (i.e., different classes). In this figure, feature 

vectors for all instances have been plotted (only real power section of the vectors was presented). 

Going from left to right, feature vectors in the larger scales were recursively removed and thus the 

dissimilarities in smaller scales have been revealed. Differences in scales stem from differences in 

appliances’ power draw. In the smallest scale, the dataset contains 7 clusters that are completely 

masked when the scaling parameter is not estimated according to that scale. The challenging task 

of clustering in this problem arises from the fact that automated clustering can simply overlook 

distinguishing patterns in the small-scale region. In this study, we have used four power datasets, 

for which in Figure 4-7, the average of variations for all the events of particular labels were plotted. 

The wide range of power variations for a multitude of labels in all the datasets demonstrates the 

multi-scale characteristic of this type of data. 
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Figure 4-6. Visualization of a power dataset (time series signal) that shows the effect of multiple 

scales for the clustering problem; the presence of different clusters are magnified from left to 

right. In the right frame, 7 groups exist while in the left frame their presence is entirely concealed 

due to the presence of other patterns with high measurement difference. 

 
Figure 4-7. Average of measurement difference for different labels. 

Table 4-1. Description of datasets. 

Dataset No. of data points No. of features No. of classes 

Power dataset 1 756 202 16 

Power dataset 2 498 202 16 

Power dataset 3 1454 202 12 

Power dataset 4 2235 202 15 

Cell cycle dataset 384 17 5 

 

4.4.3. Performance Assessment 

In this section, we provide details on qualitative and quantitative assessments. In the former, the 

effect of the proposed algorithm on the quality of clusters has been visually described. The latter 

evaluates the performance by using metrics including accuracy, F-measure and computational 

time. A comparative performance assessment has been also included. 



81 

 

4.4.3.a. Qualitative Performance Assessment 

The qualitative assessment is presented for selected datasets that help illustrate (accentuate visual 

variations) the challenges and performance of the algorithm. Figure 4-8 and Figure 4-9 visualize 

the clustering output for power dataset 1. Figure 4-8 shows the clustering outcome with Iterative 

Eigengap Search (IES) with global scaling after the first iteration on the search tree. K is initially 

estimated as 3, and 3 child nodes are generated. As expected, conventional eigengap is not able to 

identify the structure of the feature space and resulted in low-quality clusters. Figure 4-9 shows 

the outcome of the clustering for the iterative search of eigengap, in which 44 clusters were 

identified at the leaf nodes (where k=1). As Figure 4-8 and Figure 4-9 demonstrate, the Iterative 

Eigengap Search starts with a coarse level separation of clusters in the first iteration and refines 

the result iteratively to provide high-quality clusters as the outcome. 

 
Figure 4-8. Clustering outcome after first iteration with the coarse-level division on power 

dataset 1. 

 
Figure 4-9. Clustering outcome using Iterative Eigengap Search with global scaling on power 

dataset 1. 
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Figure 4-10 shows the clustering outcome for Iterative Eigengap Search with local scaling on 

power dataset 2. In Figure 4-10 (a), the clusters in root node were presented. As shown in this 

figure, a reasonable estimation for k is achieved, but there are few clusters (highlighted with dash 

lines), which potentially could be improved. Figure 4-10 (b) presents how the iterative approach 

modifies the clusters. Local scaling results in a higher number of clusters in the first iteration with 

a shallower tree structure.  

 
(a) 

 
(b) 

Figure 4-10. Clustering outcome using Iterative Eigengap Search with local scaling on power 

dataset 2: (a) cluster outcome after first iteration (clusters with potential for improvement were 

highlighted) and (b) cluster outcome on the leaf nodes. 
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The quantitative impact of this difference, both in terms of accuracy and computational time (given 

local scaling has a higher computational cost), will follow. 

4.4.3.b. Quantitative performance assessment 

Given that the labels for data points are known, we carried out external validations to quantify the 

algorithm performance in comparison to state-of-the-art and conventional internal validation. For 

internal validation, by considering a range for the number of clusters in ascending order, the SSE 

was obtained for each dataset using the concept described in Eq. (14). Figure 4-11 shows the elbow 

curves for all power datasets. 

 In all cases, PCA was used to estimate the scaling factor (𝜎). Since spectral clustering algorithm 

implements K-means in the last step, the results are affected by the random initialization of 

centroids, and thus the structure of the elbow curve for the subsequent number of k’s would be 

affected. To avoid this bias, we assigned fixed initial seeds values (i.e., the same specific data 

points for initialization of K-means) for all k values in forming the elbow curve. As shown in 

Figure 4-11, the noisy structure of data brings about inconsistencies in descending trend of SSE 

values as k increases, though the general pattern of flattening for measurement is preserved, except 

for case (d). For case (d), since the elbow curve within the considered range of k is not presented, 

estimating k based on this plot has not been considered. Upon forming the elbow curves, we have 

manually selected the number of clusters by visual evaluation of the rate of decrease in values for 

the internal validation.  

 
Figure 4-11. Elbow curves for a) power dataset 1, b) power dataset 2, c) power dataset 3, and d) power 

dataset 4. 
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To associate the cluster label with the ground truth, we form a matrix that relates the cluster number 

(assigned by the algorithm) for each observation to its corresponding ground truth label and call it 

the association matrix henceforth. As an example, Table 4-2 shows the association matrix for 

power dataset 1. The association matrix is mapped to a confusion matrix for the performance 

quantification. In forming the confusion matrix, clusters are labeled based on the majority vote. In 

order to provide insight on labeling clusters with the majority vote, let us consider cluster number 

23, which contains 20 feature vectors (i.e., data points) in total. It could be seen that 19 data points 

are from class 14501 and one instance is from class 18001. Considering the dominance of class 

14501, it is assigned as the label for cluster 23. 

Table 4-2. Association matrix between generated clusters and ground truth label (Power dataset 

1). 

 
Ideally, the number of generated clusters will be the same as the number of ground truth labels. 

However, as the number of generated clusters exceeds the number of ground truth labels, clusters 

with the same label will be merged to form the confusion matrix. For example, the contents of 

column 20 to 24 in Table 4-2  are cumulated and the groups are merged since they all represent 

class 14501. Figure 4-12 shows the output of mapping to form the confusion matrix for power 

dataset 1. 

 
Figure 4-12. The equivalent confusion matrix mapped from association matrix (power dataset 1). 
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The final clusters after assigning the associated label and (manual) merging of similar clusters is 

shown in Figure 4-13. Except for class 14301 that has similar signature representations with 

14101, all other classes were retrieved and preserved through the clustering process. It must be 

noted that the abovementioned process of manual merging was performed only for visualization 

of clusters in association with the classes in the physical environment. Nonetheless, the 

quantitative performance assessment of the clustering process was carried out with respect to the 

direct output of the clustering algorithms through the association matrix (Table 4-2) without any 

cluster merging. 

 
Figure 4-13. Cluster representation after (manual) merging for power dataset 1. Each label 

represents an appliance transition state. 

To demonstrate the effectiveness of the Iterative Eigengap Search (IES) that is the focus of this 

study, for comparison, we provided the outcome of the following spectral clustering algorithms: 

(1) similar to our work, the ZP self-tuning technique [162], and MEG-CD [196] are automated 

spectral clustering methods, (2) FUSE spectral clustering [197] is specifically focused on multi-

scale datasets; (3) and NJW [157] and CPQR [198] are conventional spectral clustering algorithms 

that call for parameter inputs. In addition, the results for the internal validation, which is commonly 

used for the validation of clustering methods, as well as the legacy eigengap heuristic have been 

presented. 

Calculated from the association matrix, Table 4-3 presents the performance metrics of different 

methods on all the datasets. Five-fold cross-validation was used for evaluation, and the average is 

reported for the accuracy, precision, recall, and F-measure metrics to avoid bias in the 

quantification of performance metrics. As the values in Table 4-3 indicate, Iterative Eigengap 
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Search with global scaling shows the best performance. Followed by that is the Iterative Eigengap 

Search with local scaling with fewer number of clusters, which is more compatible with the natural 

separation of patterns in the feature space. As noted, Iterative Eigengap Search does not require 

any range for the number of clusters. For the ZP self-tuning [162] and MEG-CD [196], although 

considered as automated clustering, they required a range of initial values to optimize over the 

number of clusters. Therefore, a range of 2 to 80 clusters for power datasets, and 2 to 20 for the 

cell cycle dataset were considered for ZP self-tuning [162] and internal validation. A range of 100 

to 3000 with intervals of 100 for σ was considered for MEG-CD [196]. We chose this range based 

on our empirical observations on the dataset. Since ZP self-tuning [162] underestimates the 

number of clusters, it does not result in an accurate outcome, specifically for the power datasets. 

Similarly, legacy eigengap heuristic leads to a smaller number of clusters and consequently low 

performance due to its incapability of accounting for the multi-scale nature. MEG-CD [196] 

performed better in terms of estimating the number of clusters but the inaccurate estimation of σ 

(shown by the internal validation) led to a low performance in clustering. For NJW [157], since 

both K and σ are estimated manually, K is assumed to be equal to the number of classes (input 

information), and σ was selected such that the clusters with smallest distortion are obtained. The 

results show that while K was manually selected to its true value, the performance in all the cases 

falls behind the Iterative Eigengap Search. For the recent multi-scale clustering algorithm, FUSE 

[197], the IES outperforms as well. Also, CPQR [198] showed to be less accurate compared to the 

IES in all cases, but the approach has the highest computational efficiency among all the methods. 

The last column in Table 4-3 shows the total analysis runtime. It must be noted that for the NJW 

algorithm [157] ZP self-tuning [162], and MEG-CD [196], we had to define a range for 𝜎 and K, 

which consequently affects the reported runtime. Based on the extent of familiarity with the 

problem, a higher or lower range can be defined, which can significantly change the reported time. 
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Table 4-3. Performance quantification of different methods (Performance metrics are averaged 

over 5-fold cross-validation). The first three methods (indicated in bold) are proposed. 

Method Dataset 𝜎 selection K Accuracya Precisiona Recalla F-measurea Runtime (s) 

IES with Global 

Scale (leaf node 

clusters) 

Power data1 

PCA 

44 0.97 0.97 0.97 0.96 15 

Power data2 40 0.89 0.85 0.89 0.86 9 

Power data3 38 0.97 0.96 0.97 0.96 24 

Power data4 60 0.96 0.95 0.96 0.95 78 

One step IES with 

Local Scale (ESL)  

Power data1 

Local  

Scaling 

27 0.88 0.84 0.88 0.85 6 

Power data2 10 0.84 0.78 0.84 0.80 4 

Power data3 25 0.93 0.89 0.93 0.90 8 

Power data4 17 0.93 0.89 0.93 0.91 13 

IES with Local 

Scale (leaf node 

clusters) 

Power data1 

Power data2 

Power data3 
Power data4 

Local  

Scaling 

30 0.90 0.87 0.90 0.88 55 

24 0.89 0.84 0.89 0.85 43 

28 0.93 0.89 0.93 0.91 50 

20 0.94 0.90 0.94 0.92 47 

Internal 

validation 

Power data1 
Power data2 

Power data3 

Power data4 

PCA 

55 0.93 0.89 0.92 0.91 89b 

56 0.87 0.83 0.87 0.85 40 

45 0.94 0.94 0.94 0.93 201 

N/Ac N/A N/A N/A N/A 1201 

Legacy 
Eigengap 

Power data1 

Power data2 
Power data3 

Power data4 

PCA 

3 0.44 0.25 0.44 0.30 1 

3 0.37 0.17 0.3 0.22 <1 

6 0.60 0.36 0.59 0.44 5 

5 0.51 0.26 0.51 0.35 15 

NJW [157] 

Power data1 

Power data2 
Power data3 

Power data4 

Least  

Distortion 

16d 0.82 0.73 0.82 0.76 30b 

16 0.66 0.61 0.66 0.61 20 

12 0.89 0.82 0.89 0.85 115 

15 0.54 0.30 0.54 0.38 520 

MEG-CD [196] 

Power data1 

Power data2 

Power data3 
Power data4 

Local 

Scaling 

12 

6 

7 
3 

0.47 

0.32 

0.58 
0.51 

0.29 

0.13 

0.35 
0.26 

0.47 

0.32 

0.58 
0.51 

0.34 

0.17 

0.43 
0.35 

7c 

4 

34 
111 

CPQR [198] 

Power data1 

Power data2 

Power data3 
Power data4 

Local 

Scaling 

16d 

16 

12 
15 

0.80 

0.83 

0.86 
0.91 

0.76 

0.76 

0.75 
0.84 

0.80 

0.83 

0.86 
0.91 

0.77 

0.80 

0.80 
0.87 

2 

1 

2 
4 

Self-tuning ZP 

[162] 

Power data1 

Power data2 

Power data3 
Power data4 

Local 

Scaling 

3 0.47 0.23 0.45 0.30 445b 

2 0.40 0.16 0.40 0.23 225 

4 0.81 0.67 0.81 0.73 584 

4 0.92 0.85 0.92 0.88 850 
a These values are calculated based on the weighted average of each label. 
b Results of these columns with these methods are affected by the range of the considered parameters.  
c Not applicable since the elbow curve structure is not formed in the identified range. 
d K for this approach is manually set to the number of classes since K needs to be known in advance. 
 

To provide a more accurate context for comparing the clustering outcome, two important factors 

of clustering quality were taken into account: (1) the ratio of the generated clusters to the number 

of class labels and (2) the ratio of the class labels retrieved after clustering. The former indicator 

shows how close the number of clusters is to the number of ground truth labels. Ideally, this value 

is equal to 1 when all the ground truth observations of each class are contained in one distinct 

cluster. The latter indicator denotes the percentage of class labels that possess a separate cluster 

after forming the confusion matrix. A value of 1 indicates the ideal case. However, the similarity 

between different classes and their significant unbalanced distribution can reduce this value (e.g., 

in a case where instances of a very small class are put in a cluster that also contains a ratio of a 

very large class, the majority vote selects the larger class). Figure 4-14 presents the variation of 
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these indicators versus F-measure for power datasets only. Each subplot in Figure 4-14  represents 

one of the variations of the proposed heuristic method. As shown in Figure 4-14 (a), IES with 

local scaling maintains a better balance between the 1st indicator and the performance. On the 

other hand, IES with global scaling results in better performance for all the cases at the cost of 

generating a larger number of clusters. Regardless of the number of clusters, the application of 

PCA for estimation of the global scaling factor results in improved performance. Considering the 

2nd indicator, as shown in Figure 4-14 (b), IES with global scaling outperforms in recalling class 

labels with high F-measure values (three out of four cases), which could be interpreted as the 

ability to retrieve natural patterns.  

 
(a) 

 
(b) 

Figure 4-14. Variation of cluster quality indicators versus F-measure for (a) generated number of 

clusters, (b) ability for retrieving natural patterns. For the legend of this plot, IESG denotes IES 

with global scale (leaf node clusters); ESL denotes one step IES with local scale; IESL denotes 

IES with local scale (leaf node clusters). 

In order to provide insight on the computational cost of these techniques, Figure 4-15 presents the 

run-time for different methods. All the analyses were carried out through MATLAB 

implementation. As shown in this figure, eigengap search (only one iteration) with local scaling is 

the most computationally effective approach but it sacrifices the efficacy of results (as discussed 

from Figure 4-14 (a) and (b) and Table 4-3). As expected, IES with local scaling generally takes 

more time compared to IES with global scaling. The result of the comparable self-tuning approach 
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[162] is excluded here to avoid bias since the publically available code was partially implemented 

with C++, which is known to be more efficient compared to MATLAB. However, since it 

considers a range of number for clustering as the post-processing step, the results are more 

computationally expensive unless a narrow range based on the knowledge of the domain is 

selected. 

 
Figure 4-15. Comparison of analysis runtime. 

4.5. Conclusion 

We have proposed and evaluated an Iterative Eigengap Search (IES) heuristic for automated 

spectral clustering of multi-scale and higher dimensional feature spaces. The proposed heuristic 

does not require a priori assumption for the number of clusters (K) or scaling parameter of affinity 

measures (𝜎) including a range of values for the number of clusters. The algorithm iteratively 

searches for eigengaps at different scales of the feature space along a tree structure to partition and 

refine generated clusters with eigengap heuristic. The scaling parameter is estimated through data-

driven methods using (1) a PCA-based global scaling factor or (2) using a local-scaling factor that 

quantifies local scales by measuring the distance of each data point with its nearest neighbors. The 

scaling parameters are updated at each node of the tree to reveal the dissimilarities in the local 

structure of a feature space. We have evaluated the performance of the proposed heuristic on 

several real-world appliance signature power datasets with multiple classes. The datasets are of 

higher dimensions with multi-scale and heterogeneous nature. The performance of the IES has 

been compared against several well-known fundamental spectral clustering methods and an 

internal validation approach that seeks to minimize the dispersion of clustering outcome. The 

performance assessments showed that the IES heuristic outperforms comparable approaches in 
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terms of accuracy (an average of 90% for most of the evaluated cases) and capability of finding 

(recovering) natural partitions in a feature space.  
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Chapter 5: Self-Configuring Event Detection in Electricity Monitoring for 

Human-Building Interaction 

Afzalan, Milad, Farrokh Jazizadeh, and Jue Wang. "Self-configuring event detection in electricity 

monitoring for human-building interaction." Energy and Buildings 187 (2019): 95-109. DOI: 

https://doi.org/10.1016/j.enbuild.2019.01.036 

 

Abstract 

Monitoring the temporal changes in the operational states of appliances is a key step in inferring 

the dynamics of operations in smart homes. This information could be leveraged in a variety of 

energy management applications including energy breakdown of individual loads, inferring the 

occupancy patterns, and associating the energy use to occupants’ activities. The operational states 

of appliances could be identified through detecting and classifying the events on power time-series. 

Despite the advancements in the field of event detection, they often require in-situ configuration 

of model parameters to achieve a higher level of performance according to each new context. In 

order to address such limitation, in this paper, we have proposed a self-configuring event detection 

framework for detecting the changes in operational states of appliances. The framework seeks to 

autonomously learn the contextual characteristics of the loads from the environment and adapt the 

event detection parameters. The proposed unsupervised framework couples an automated 

clustering for identifying the recurring motifs, which are representations of the appliances’ 

transient power draw signatures in a given environment and a proximity-based motif matching for 

detecting the events. The framework was evaluated on EMBED dataset, a publicly available fully 

labeled electricity disaggregation dataset, collected from three apartments with different categories 

of the appliances. The evaluations demonstrate that the proposed event detection framework 

outperforms the conventional event detection in detecting the operational states of different classes 

of loads across different environments. The proposed framework could also facilitate human-

building interactions in training smart home applications by populating motifs to infer the 

operations of appliances and activities of occupants. 

5.1. Introduction 

Buildings account for 74% of total electricity consumption in the US with a share of more than 

half for residential buildings [199]. Therefore, enabling efficient consumption of the electricity in 

buildings remains as a major sustainability objective. Understanding the energy consumption of 

https://doi.org/10.1016/j.enbuild.2019.01.036
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appliances and their operational schedule in a building and the interactions between occupants and 

the appliances could bring about a number of advantages that pave the way for achieving 

sustainability goals in the form of both demand-side and demand-response energy management 

[31, 200]. Among these goals, one could point to providing detailed energy information to 

occupants for increased awareness (e.g., [27-33]), characterizing the energy impact of occupants’ 

activities (e.g., cooking a meal or adjusting the air conditioning setting), understanding the habitual 

patterns of occupants in use of appliances for smart and autonomous operations [201, 202], 

inferring the occupancy of building units for occupancy-driven energy management [203-208], 

and enabling utilities to identify and target critical loads for grid reliability at high peak demand 

time [83, 209]. At the center of all these applications is the understanding of load dynamics in 

buildings that reflect the individual appliance operations. Individual load operations could be 

monitored through direct sensing of individual appliances. However, in pursuit of scalable 

appliance-level analyses, electricity disaggregation [128, 210-212], which relies on data 

measurement at the aggregate level at one sensing node, could be used as a cost-effective 

alternative to break down the aggregate load into end-use individual loads.  

By inferring when an appliance changes its operational state, which is interpreted as an event on 

the aggregate power time-series, we could potentially identify its energy consumption, the user 

interaction with the appliance, and the activities of users (inferred from interacting with a series of 

appliances). Therefore, identifying the events on power time-series comprises an important step in 

characterizing the energy performance of individual loads and human-appliance interactions. In 

this context, an event denotes a change of the appliance operational state, which could be the on/off 

switching (e.g., in case of a lighting load) or an operational state-transition (e.g., different cycles 

of a washing machine). Assuming a time-series signal 𝑃(𝑡), collected at the aggregate level, an 

event detector aims to identify the timestamps associated with the change points 𝑇 =

{𝑡1, 𝑡2, … , 𝑡𝑁}. These timestamps will be mapped to a set of labels (corresponding to the classes 

that represent appliance names) through a training step. This information could be further analyzed 

by pattern recognition methods for processing the data into either energy breakdown estimation of 

appliances [213, 214], inferring the trend of household’s appliance use to determine the drivers of 

consumption and predicting future demand [116, 215-217], or inferring the activities of occupants 

[64, 218, 219]. 
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Depending on the resolution of electricity consumption data, different algorithms could be used 

for event detection. Increasing the resolution of the data could help improve the accuracy of the 

classification algorithms [210] in inferring load identities. This improvement is due to the 

information gain from the presence of transient data (i.e., a momentary increase in the power before 

reaching a steady state of power draw), which reveals more information on the dynamics of the 

loads [211] (Figure 5-1 illustrates an example power time-series with trainset power draw data). 

However, increasing the resolution brings about an increase in noise interference, which results in 

challenges for event detectors, such as the increase in false positive detection [220]. To tackle the 

challenges in detecting events on high-resolution data, advanced event detection techniques were 

adopted and devised in the literature (e.g., [221-224]). As a common feature, these algorithms rely 

on a number of algorithm parameters that drive the detection statistics and the performance and 

thus need to be configured for different environments through a training (i.e., tuning) process. 

Although the configuration could be carried out through experimental efforts and across different 

environments, the diversity in the appliances’ technologies could pose a challenge in achieving 

scalable performance in different environments. Therefore, there is often a need for 

reconfiguration of the algorithms to ensure that the better set of parameters for each new 

environment is set. 

 

 
Figure 5-1. Sample real power time series with a 60Hz resolution that shows the information 

gain from transient power draw 

To contribute to the scalability of the electricity disaggregation solutions, in this study, we have 

proposed a framework to move towards self-configuring event detection techniques. The proposed 

framework is centered on enabling event detectors to learn from the data in an environment and 

adapt to the characteristics of the environment and its unique loads. The framework is built on 

populating an initial dataset for learning and leveraging the recurring motifs, reflected in the shapes 

of appliances’ transient power draw. In its high-level concept, the framework consists of the 

following steps: 
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 Populating an initial dataset of appliances’ signatures (i.e., vectors representing transient power 

draws) from a buffered power time series by utilizing a conventional event detector (with 

generalized configured parameters). 

 Characterizing the recurring motifs by using an unsupervised automated clustering on detected 

events in the buffered data. The extracted motifs in the library represent the characteristics of 

appliances’ signatures in the environment. 

 Shifting the event detector to a motif-based matching method: events will be identified, where 

the shape of the power time series matches one of the motifs. Motif-matching step involves an 

outlier detection in comparing the power-time series shape with the representative motifs in 

the library. 

Therefore, this study contributes to the body of literature by proposing an event detection 

framework that seeks to automatically learn the algorithm parameters based on the context of an 

environment to avoid parameter-tuning in each new environment. Due to the nature of the motif 

detection step, which employs an automated clustering (without assuming the number of clusters), 

the proposed framework could also act as a classification step (mapping the events to their 

associated appliances). Moreover, our evaluation of the framework over the EMBED dataset [125], 

which is the most comprehensive labeled dataset with three building units, puts the analysis among 

the most comprehensive assessments.  

The rest of the paper is structured as follows. In section 5.2, we presented a literature review of 

the related studies. In section 5.3, we presented the framework and discussed its components, 

following by section 5.4, in which the results of evaluations have been presented. The paper was 

concluded in section 5.5.  

5.2. Background and Related Works 

Disaggregation methodologies have been applied in different capacities with a focus on residential 

buildings (e.g., [211, 225]) or commercial and office settings (e.g., [226-228]). Several recent 

efforts have focused on improved feature selection for appliance classification [229], employing 

deep learning methods [123, 124], using alternative metrics such as current or voltage instead of 

the commonly used power metric for load monitoring [124, 230], and leveraging the impact of 

device interaction (mutual operational status) for improving the disaggregation accuracy [231, 

232]. employing interactive visualization and user-interaction (expert knowledge) to interpret 
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disaggregation results [233]. Here, our focus is on the event detection methodologies. Event 

detection is a commonly used approach in the analysis of time-series data and it has applications 

in various domains. Similarly, event detection has been used for the analysis of the power time-

series (or similar electricity consumption metrics). The approach has been often adopted in the 

electricity disaggregation, also known as non-intrusive load monitoring, specifically in a category 

of efforts, described as event-based methods. In this category, the abrupt changes on the time series 

are identified as events that are associated with changes in the operational states of appliances. In 

early studies on electricity disaggregation, the efforts were focused on developing heuristics for 

detecting the events of on/off appliances. Hart [234], in his seminal research, proposed a detector 

for on/off transitions by segmenting the normalized power values into steady or changing states. 

In this heuristic, using low-resolution power data, the steady states were identified by measuring 

the power variations against a threshold for a pre-defined number of samples on the power time 

series (e.g., three sample points). The segments of the time series that violate this rule are 

considered to be changes (i.e., events). This approach has been also used in the recent state-of-the-

art disaggregation studies (e.g., [235]). In another heuristic method [236], separate profiles for 

different appliances were collected as the training and a set of rules were defined to find the on/off 

transitions by comparison with the pre-defined power ranges. The approach called for profile 

initialization of the appliances in-the-field. 

In order to benefit from the data reflected in the transient power draws, research studies shifted to 

use the data from the high-resolution power time series. Increasing the resolution of the power data 

poses more challenges to event detection due to the presence of noise. In order to address these 

challenges, improved event detection algorithms were proposed. The application of the generalized 

likelihood ratio (GLR) test was introduced by Luo et al. [221] to improve the performance. In this 

method, events are detected by measuring whether samples before and after an event are coming 

from two different Gaussian distributions. The algorithm calls for configuring several parameters 

including two window sizes to calculate the parameters of probability distribution functions before 

and after each event and a threshold for likelihood ratio to compare against the detection statistics. 

Variations of the GLR algorithm for enhanced performance has been also proposed (e.g., [129]), 

which call for more parameters and thus configurations. Other research efforts have also 

introduced variants of event detection algorithms for high-resolution data to improve detection 

accuracy. Some of these efforts are based on the goodness-of-fit χ^2 test-based algorithm on power 



96 

 

time series [133, 237], Window-with-Margins event detection method [238], and adaptive event 

detection [239] that detects the time limits of each transition interval. Similar to the GLR 

algorithm, these methods also call for a number of parameters that need to be configured for high-

performance event detection. Alternative methods of event detection for alternative electricity 

measurement metrics have been also proposed. For example, high-resolution voltage time series 

were used by Patel, Robertson, Kientz, Reynolds and Abowd [201] for detecting events associated 

to switch on/off or changes of the cycle in appliances. They proposed a specialized event detection 

algorithm that uses a threshold for identification of the events on the voltage noise time series 

which required data acquisition systems with very high sampling rates. 

Since extensive parameter-tuning or training imposes a barrier to the wide adoption of 

disaggregation technologies, a few recent studies have focused on unsupervised approaches [240, 

241]. Wild et al. [240] proposed an unsupervised event detector based on the kernel Fisher 

discriminant analysis (KFDA) using current harmonics. The event detector requires two sliding 

windows with the predetermined length to calculate the test statistics and a bandwidth parameter 

for the Kernel function. Similarly, in [241], an event detector based on a two-step clustering from 

graph signal processing has been proposed. The approach collects the subsequent sampling points 

with power measurement difference above a threshold and then applies adaptive thresholds to 

refine the clusters until all of them have a coefficient of variation below a specific range for the 

quality control.  

These aforementioned event detection methods either require a training process ([201, 236, 237, 

242]) or a parameter-tuning ([129, 221, 234, 243, 244]) step, which calls for the reconfiguration 

of parameters for new environments and therefore pose a challenge on generalizability and wide 

adoption. In order to tackle such limitations, in this study, we have sought to propose an event 

detection approach that leverages the recurring appliance signatures, obtained from an 

environment to adapt to the characteristics of each unique environment. The approach allows the 

system to automatically identify detection parameters according to the characteristics of the new 

deployed environment and could potentially facilitate appliance event labeling through reduced 

user-system interaction.  
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5.3. Self-Configuring Event Detection Framework 

The proposed framework seeks to shift the detection logic from searching for abrupt changes on a 

time series to a motif-based detection approach. Therefore, the framework utilizes a search for the 

most probable transient (power draw) shapes on a time-series that are associated with appliances’ 

state transitions, which we refer to as motifs. The concept of using motifs has received attention in 

the time-series data mining domain (e.g., [245]). In this work, we leverage and deploy the recurring 

motifs (i.e., time-series subsequences) that represent a collection of signatures from a specific 

operational state of a given appliance. In doing so, the framework uses the processed power time-

series as the representative metric of aggregate electricity consumption. Figure 5-2 illustrates the 

components and process map of the framework. There are two underlying steps: (1) self-training 

stage for motif processing on the buffered data, and (2) the proximity-based event detection stage. 

In what follows, the descriptions for different components have been provided. 
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Figure 5-2. The framework for the motif-based event detection 
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5.3.1. Data buffering and motif processing  

5.3.1.a. Conventional event detection for initial learning 

The first step of this framework focuses on identifying the recurring appliance signature motifs in 

a given environment. Considering that the motifs represent the changes of the appliances’ 

operational states, the number of these motifs is significantly lower compared to those of steady-

state segments. Therefore, the framework leverages a conventional event detector to identify the 

occurrence of transient events that represent the potential motifs and prepare the dataset for 

contextual learning. As the nature of motifs implies, this framework leverages the information in 

the transient state in high resolution data. Although any event detection algorithm for high-

resolution data could be integrated into this framework, in this study, we have utilized the GLR 

event detector [221] as a common method, which uses a statistical test to identify events. The 

algorithm evaluates likelihood ratio (detection statistics) between Gaussian distributions 

(𝑆~𝑁(𝜇, 𝜎2)S~N(_, 2)), assigned to samples of data before and after each data point on the 

power time-series: 

𝐿(𝑛) = ln
𝑃(𝑠𝑖|𝜇1, 𝜎1

2
)

𝑃(𝑠𝑖|𝜇0, 𝜎0
2
)
   (1) 

where 𝑠𝑖 is the i-th signal sample point, and 𝜇0, 𝜎0
2, 𝜇1, and 𝜎1

2 are mean and standard deviation in 

two windows before and after each data point. Time-series sample points with a likelihood ratio 

higher than a predefined threshold are marked as events. Accordingly, the algorithm calls for 

configuring the size of two windows before and after each sample point for estimating parameters 

of the distributions and a threshold for event detection. In some implementations of this algorithm 

[129], additional mechanisms for reduced false positives have been used. These mechanisms in 

turn call for configuring a few more parameters. 

In the proposed framework, the conventional event detector will be used without specific efforts 

on tuning these parameters. In other words, we use parameters from the literature that are the 

outcome of a configuration process for a specific dataset. Therefore, the event detector, in this step, 

is prone to identifying wrong events (false positives), or missing events (false negatives). 

Accordingly, the initially collected events from the environment include a mix of both correct and 

wrong detections. Nonetheless, the impact of such inaccurate detections is tackled by the motif-

mining approach, which has been described in the upcoming sub-sections. 



99 

 

5.3.1.b. Feature Extraction 

Upon identifying the initial events, a sequence of data samples that surround an event is extracted 

to form the feature vectors (𝒇𝒗) representing each appliance signature motif. Two windows of pre-

event samples (𝑤𝑝𝑟𝑒wpre) and post-event samples (𝑤𝑝𝑜𝑠𝑡wpost) are used to extract the features. 

Different harmonic components of real and reactive power time series could be used in the feature 

extraction stage. In this implementation of the framework, we have focused on the fundamental 

frequency component of real and reactive power time series as the representation signature motifs 

in the vicinity of the events: 

𝒇𝒗 = {𝒑1, 𝒒1}   (2) 

where 𝑝1 pand 𝑞1 qare real and reactive power (fundamental frequency) components, respectively. 

Figure 5-3 illustrates some examples of transient power signatures (the real component only) 

representing changes in appliances’ operational state. These feature vectors are normalized to have 

a value of zero at the point of the event so that the aggregate nature of the power time-series does 

not affect the comparison between two vectors. 

 

Figure 5-3. Examples of extracted features (the real power component) on the buffered data 

5.3.2. Identifying Recurring Motifs through Automated Clustering 

The next step includes self-learning of the recurring motifs for enhanced event detection. A critical 

component to achieve this goal includes automated clustering of the appliance signatures to infer 

the motifs. Although clustering algorithms are categorized under the unsupervised learning 

techniques, they commonly call for a priori parameters. For instance, K-Means clustering, 

hierarchical clustering, and mean-shift clustering require different parameters including the 

number of clusters, a threshold for pruning the tree, or the kernel bandwidth, respectively. 

Although these values could be set using the domain knowledge, the use of algorithms that need 

additional hyperparameters contradicts the objective of self-configuration. Therefore, we have 

developed autonomous clustering algorithms that obviate the need for input parameters (e.g., 
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[130]). In this study, we have adopted our proposed heuristic for automated spectral clustering 

with application to electricity disaggregation [40]. The spectral clustering algorithm uses the 

eigenvalues of a Laplacian matrix from the data for dimensionality reduction and clustering in 

fewer dimensions [246]. Assuming a data set 𝑋 = [𝑥1, 𝑥2, 𝑥3 … , 𝑥𝑛] ∈ 𝑅𝑛×𝑚 in which 𝑛 is the 

number of data points (i.e., all feature vectors) and m is the number of features, a similarity matrix 

is defined as: 

𝐴𝑖𝑗 = {
exp (−

∥𝑥𝑖−𝑥𝑗∥
2

2𝜎2 )               𝑖  𝑗

 0                                         𝑖 = 𝑗
                                            (3) 

 

In which 𝜎2 is the scaling factor. Through creating a diagonal matrix with the summation of all 

the elements on the i-th row of 𝐴 as 𝐷𝑖𝑖, a Laplacian matrix is defined as:  

𝐿 = 𝐷−
1

2𝐴𝐷
1

2                                   (4) 

Assuming K cluster, spectral clustering uses the top K eigenvalues of 𝐿 and performs clustering on 

the associated normalized eigenvectors of 𝐿 in a lower dimensional space using k-means approach. 

The clustering outcome commonly calls for two input parameters: (1) the number of clusters and 

(2) a scaling factor that depends on the context of the analysis. In order to enable automated 

clustering, we have proposed heuristics to identify these two parameters. For the former, we have 

introduced the concept of iterative eigengap search (IES) that partitions a feature space using a 

search tree structure to reveal eigengaps at different scales of the feature space. In order to learn 

the scaling factor from the data itself, we have proposed a principal component analysis- (PCA-) 

based quantification of scaling factor at different scales of the feature space. Scaling factor in this 

context is a parameter that controls the width of the neighborhood [168], and the value of 𝜎 defines 

the reference distance between connected data points within the same scale. In other words, 𝜎 is a 

contextual reference distance that defines if two data points should be considered similar. The 

outcome of the clustering process is the groups of feature vectors that represent similar operational 

states of appliances in the target environment. Since collecting the cluster library is a core part of 

the framework, we have briefly discussed the methodology in this section (more details on the 

proposed automated clustering could be found in [40]). 

Iterative Eigengap Search (IES) Heuristic: Selecting the right number of clusters (K) is 

challenging and subjective in many application domains. In the case of load monitoring, K 

corresponds to unique and observable appliance state transitions (i.e., appliance signatures), in a 
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given environment, for which the number of appliances as well as the number of transition states 

for finite state machines is not known. In spectral clustering, eigengap, a well-known heuristic, 

could be used for automated evaluation of the number of clusters (K) [168, 191]. Let 𝜆𝑖 be the 

eigenvalues of a Laplacian matrix (calculated based on pairwise similarity distance of feature 

vectors in a given dataset). Eigengap 𝛿𝑖 is estimated through: 

𝛿𝑖 = |𝜆𝑖 − 𝜆𝑖+1| , 𝑖 = 1, … , 𝑛 − 1       (5) 

where 𝑛 is the total number of feature vectors. The number of clusters (𝐾) can be estimated by:  

𝐾 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖(𝛿𝑖)     (6) 

In Eq. 6, the aim is to select the largest gap between k-th and (k+1)-th eigenvalues derived from 

the Laplacian matrix for the selection of the number of cluster. The eigengap heuristic justification 

has been outlined in the literature based on perturbation theory and spectral graph theory [168, 

247]. Although eigengap is a measure for estimating the number of clusters, it typically works well 

in datasets with well-separated feature spaces [168]. However, for the appliance signature features 

with a multi-scale and noisy nature, the resultant number of clusters is not accurate. Specifically, 

the differences between the signatures of appliances with smaller transient power draws are 

masked by signature with larger power draws resulting in clustering the signatures from different 

appliances and states into one cluster. Therefore, we proposed the Iterative Eigengap Search (IES) 

to search for the eigengap at different scales of the feature space and overcome the challenges of 

scale effect in dissimilarity quantification. 

The IES uses a recursive search on a search tree structure as schematically illustrated in Figure 

5-4. At the first step, the entire dataset of feature vectors (root node in Figure 5-4) is processed by 

spectral clustering (NJW algorithm [246]) and eigengap heuristic. The process continues 

recursively by clustering the data at each node of the tree. This process is continued until the 

eigengap cannot further segregate the data in any of the leaf nodes (i.e., K is estimated as 1 based 

on Eq. 6). Once the clustering of all nodes is completed, the clusters at the leaf nodes will constitute 

the final clusters. As noted in developing the similarity matrix, a scaling parameter is required to 

identify the boundaries of the similarity neighborhood. In order to estimate the scale of 

neighborhoods in an automated manner, we employed the PCA, which deploys orthogonal 

transformation to map the original features into a new space with uncorrelated variables. Given 

that PCA sorts the transformed variables based on the maximum variance within the data, we 

employed PCA to account for the most variance from the major principal axes as the estimation 
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of 𝜎2. This will enable us to define an approximated boundary threshold for the formation of the 

similarity matrix and to distinguish the similar and dissimilar data points according to their 

distribution at each generated node of the tree. Therefore, the value of the scaling parameter will 

be different at each node and will be updated to consider the similarity neighborhood of that 

specific subset of data points. By using this approach, although the eigengap might not initially 

predict the right number of clusters, it can facilitate segregating the appliance signatures into 

different clusters that (likely) reside in different scales, which are characterized by different power 

draws. 

 

Figure 5-4. The visualization of the IES for appliance signature clustering: The root nodes 

include the entire dataset (with 6 clusters) which is iteratively partitioned with eigengap. The leaf 

nodes (K=1) are accepted as the final clusters. 

Cluster quality assessment: the task of clustering aims at obtaining high intra-cluster similarity 

(dense clusters) and low-inter cluster similarity (well-separated clusters). However, a number of 

challenges may affect the quality of appliance signature clusters which in turn may affect the event 

detection performance. First, due to the uncertainty in appliance signature characteristics (e.g., 

power draws) and the inherent challenges involved in clustering, some of the clusters may contain 

signatures that are distant from each other. Second, as noted earlier, the conventional event 

detectors are prone to detect false positives, whose feature vectors will be processed during the 

clustering. Accordingly, it is required to mitigate the impact of such undesired effects by 

examining the quality of clusters before extracting the recurring motifs. Without such 

consideration, some of the motifs might not represent an appliance state change in the 

environment. To this end, we have used a dispersion measure for cluster quality assessment [248]. 
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Assuming 𝑚 feature vectors in a cluster, the dispersion measure for cluster 𝑘 (𝐷𝑀𝑘) is calculated 

as follows: 

𝐷𝑀𝑘 = max𝑑𝑖𝑠𝑡(𝒇𝒗𝒊, 𝒇𝒗𝑗) , 𝑖, 𝑗 ∈ 1:𝑚    (7) 

where 𝑑𝑖𝑠𝑡(𝒇𝒗𝑖, 𝒇𝒗𝑗) is the pairwise Euclidean distance between 𝒇𝒗𝑖 and 𝒇𝒗𝑗. According to our 

empirical observations, a cluster might less likely represent a recurring motif if the following 

condition holds [248]: 

𝐷𝑀𝑘 > 𝑆𝑘  𝜎𝑘     (8) 

in which 𝑆𝑘 and 𝜎𝑘 are the mean and standard deviation of the 𝑑𝑖𝑠𝑡(𝒇𝒗𝑖, 𝒇𝒗𝑗) across all the feature 

vectors in cluster 𝑘. In evaluating the cluster quality, feature vectors were normalized by dividing 

each element by the absolute maximum value in each feature vector. Accordingly, clusters which 

satisfy Eq. 8 are eliminated from the motif extraction step. Other variations of Eq. 8 can be 

employed (𝐷𝑀𝑘 > 𝑆𝑘  𝑡 ∗ 𝜎𝑘). However, the adjustment of 𝑡 could either result in accepting 

more clusters, some of which might be affected by cluttered observations that do not reflect a real 

appliance state change (in case of 𝑡>1) or reducing the number of clusters (in case of 𝑡<1). 

Therefore, through empirical assessment, we used Eq. 8 based on its efficacy in selecting the 

clusters with useful information. 

Motif library population: to extract the motifs that represent an appliance state transition, we 

have used the centroid vector (mean of the feature vectors) within each cluster (𝑀𝑘). These motifs 

(𝑀𝑘) play an important role in characterizing activities, human-appliance interactions, and energy 

consumption in an environment. The number of the motifs depends on the number of appliances, 

the complexity of their operational states, and the timeline of the initial data buffering. Figure 5-5 

illustrates examples of several extracted motifs on a sample dataset. The corresponding appliance 

label for each motif has been provided as well. 
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Figure 5-5. Examples of feature vectors, clusters, and their associated motifs (only real power 

component was shown). Each feature vector contains 100 samples (corresponding to a duration 

of ~1.7s). 

Given that the motif identification process could be carried out over a few days and get updated 

on a regular basis, the potential false negatives from the conventional event detectors will not affect 

the motif extraction as numerous events representing each motif are often observed in an 

environment.  

5.3.3. Proximity-based event detector 

As the description of the framework implies, this approach uses a proximity-based technique such 

as nearest neighbor for motif-based event detection. Therefore, the approach is a semi-supervised 

classification problem. However, to control the false positives, an outlier detection step is required 

for accepting or rejecting an event considering that the nearest neighbor classifier will associate 

every new observation with one of the motifs. Therefore, the motif-based event detection process 

is as follows: 

– For each sample point on the power time-series, extract a feature vector (𝑃𝑖) following Eq. 

2. We call this feature vector the power signature shape. 

– Identify the closest motif to the power shape using a 1NN algorithm.  
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– Run an outlier detection to accept or reject the power shape as a viable event. 

As the process shows, the proposed framework could combine the process of event detection and 

classification. Therefore, upon detection of an event, if the clusters are labeled (as shown in Figure 

5-5) with the name of appliances in the physical environment, the load identity is also revealed 

that in turn could be used for other applications such as human-appliance interaction monitoring, 

occupancy detection, or energy consumption assessment. 

In extracting the power signature shapes, similar contiguous windows of pre-event samples 

(𝑤𝑝𝑟𝑒wpre) and post-event samples (𝑤𝑝𝑜𝑠𝑡wpost), as used for motif extraction, are employed. By 

sliding these two windows along the time-series, for each sample point, a representative power 

signature shape (𝑃𝑖) is extracted in the form of a feature vector. These feature vectors are 

normalized to have a zero value at the intersection of the feature extraction windows. The index 

for the closest motif (𝑘𝑖
∗) to each power signature shape (𝑃𝑖) is identified using the 1-NN algorithm 

such that 

𝑘𝑖
∗ = argmin dist(𝑃𝑖 , 𝑀𝑘 ) , 𝑘 𝜖 1: 𝐾    (9) 

Outlier detection: As noted, the objective of this outlier detection is to evaluate a binary 

hypothesis to decide if 𝑃𝑖 is coming from the same distribution that motif 𝑘𝑖
∗ represents. There 

exist different methods of outlier detection that could be used for this purpose such as comparing 

the distance of a new observation from the motifs (e.g., using Mahalanobis distance that accounts 

for the shape of signatures as well) or two-class support vector classifiers. All these methods either 

call for a threshold value or training process to be used for hypothesis testing. Processing the motifs 

through clustering, not only provides the recurring motifs but also provide an insight into the 

stochastic nature of the power draw at different times. The variations of the feature vectors in each 

cluster provide the ground for learning the outlier detection thresholds from the environment itself.  

Given that the clustered feature vectors represent a dense set of data points, the clustered motifs 

do not include outliers. This fact enables us to identify a range of acceptable thresholds for each 

cluster to measure the similarity of power shape 𝑃𝑖  with the corresponding motif 𝑘𝑖
∗. Therefore, we 

have formulated the event detection in this context as an outlier implementation that uses a distance 

metric for evaluating the hypothesis. To this end, we have used the following criteria for hypothesis 

testing and detection statistics. A sample point 𝑖 is flagged as an event if the following similarity 

criterion is met: 
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𝑫𝑖 < 𝜇𝑘𝑖
∗  𝑓𝜎𝑘𝑖

∗                                                                   (10) 

where 𝑫𝒊 is the distance between the motif (𝑘𝑖
∗) and the power signature shape (𝑃𝑖);  𝜇𝑘𝑖

∗  𝑓𝜎𝑘𝑖
∗ 

indicates the similarity threshold for each motif and is learned from the content of each cluster; 

𝜇𝑘𝑖
∗  and 𝜎𝑘𝑖

∗  are the mean and standard deviation of the distances between the motif and each 

feature vector in the cluster 𝑘𝑖
∗,  and 𝑓 is the parameter that controls the flexibility of the boundaries 

in each cluster. In this outlier detection, we have adopted the Frechet distance [249], which is 

defined as follows: 

𝑫𝒊 = 𝒅(𝑃𝑖 , 𝜇𝑘𝑖
∗) = 𝑖𝑛𝑓 𝑚𝑎𝑥𝛼,𝛽  𝑡∈[0,1]{∥ 𝑃𝑖(𝛼(𝑡)) − 𝜇𝑘𝑖

∗(𝛽(𝑡) ∥}  (11) 

In which ∥. ∥ denotes the 𝐿2 norm and 𝛼, 𝛽: [0,1]→ [0,1] span over all continuous increasing 

functions. The Frechet distance (FD) measures the similarity between time-series segments by 

considering the order and location of data points in the shape of the signatures, and therefore 

suitable in our implementation as it considers the continuity of shapes into account for distance 

measurement. This will make FD a more effective measure for our purpose compared to the widely 

used distances such as Euclidean or Mahalanobis distance that employ one-to-one mapping for 

calculating the distance. The pseudocode of the proposed event detection algorithm is as presented 

in Figure 5-6. 

For each sample point i, 

𝑃𝑖 = 𝑆(𝑖 − 𝑤𝑝𝑟𝑒 − 1: 𝑖  𝑤𝑝𝑜𝑠𝑡  1) 

𝑀𝑘𝑖
∗ ← 1𝑁𝑁 (𝑃𝑖,𝑴) 

𝛿𝑖=|𝑆𝑖+1 − 𝑆𝑖| 

𝜓𝑖
∗ = 𝐹𝐷(𝑀𝑘𝑖

∗ , 𝑃𝑖) 

If 𝛿𝑖 > 𝜏𝛿 and 𝜓𝑖
∗ < 𝜇𝑘𝑖

∗  𝑓𝜎𝑘𝑖
∗ 

𝐸𝑝 ← 𝑖 

End 

End 

Figure 5-6. Pseudo code for the motif-based event detection algorithm 

 

To visually demonstrate the underlying steps involved in the proposed event detector, Figure 5-7 

shows the process for one sample point that was detected as an event. Part (a) reflects the data 

buffering and motif processing to populate the motif cluster library and identify the parameters for 



107 

 

outlier detection for each cluster (self-training process). The outcome of this part is used for the 

event detector in part (b), applied to all the samples for the power time-series. In this figure, steps 

I and II indicate the feature extraction on the buffered data. The collected features are passed to 

clustering (step III). In step IV, the quality of clusters is assessed. The centroids of remaining 

clusters were collected as motifs (step V). By calculating the statistics (average, 𝜇𝑘, and standard 

deviation, 𝜎𝑘) for observations within each cluster, similarity thresholds (step VI) for each motif 

is calculated (defined in Eq. 10). In part (b), for each power sample (step VII), a power signature 

shape (step VIII) is extracted. Using 1NN, the closest motif to the power signature shape is 

determined. In step (X), the distance of the closest motif (obtained in step IX) is compared with 

the associated similarity thresholds (from step VI). Since the equation holds in this case, the power 

shape for sample i is considered similar to the motif shown in step (X) and marked as an event. If 

the motifs were labeled as well, the load identity, i.e., kitchen light turn-on in this case, is revealed 

as well. 

 

Figure 5-7. Schematic diagram for the appliance self-configuring event detector using real data 

5.4. Evaluation and Results 

5.4.1. Dataset Description 

To evaluate the performance of the proposed approach, we applied the algorithm to a real-world 

dataset of electricity disaggregation. The EMBED dataset [125] includes the aggregate power time 

series, collected from three apartments at the main circuit panel of each unit, for different periods 
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varying from two to four weeks in Los Angeles, CA. The data has been fully labeled by leveraging 

ground truth sensors (both electricity and light) that were installed at the consumption node, and 

contains the timestamps as well as the corresponding appliance labels and sub-labels for different 

operational states of appliances. In our analysis, we have used the processed power time-series 

(real and reactive) at 60Hz, which enables capturing the transient shapes between steady states. In 

the US, the electricity infrastructure uses a split-phase system that feeds appliances on two major 

circuits (i.e., phases). Therefore, in our analysis, we have pointed to performance on different 

phases (A and B). Table 1 shows the characteristics of appliances operations in different 

apartments. Details of the data collection and post-processing could be found in Jazizadeh et al. 

[125] and therefore were not presented here. 

Table 5-1. Properties of the EMBED dataset [125] 

Dataset No. of events No. of appliances No. of classes* 

Apt 1 ~4400 16 66 

Apt 2 ~9100 20 62 

Apt 3 ~7800 18 68 

    * No. of classes represent the number of appliance state transitions 

5.4.2. Performance evaluation 

To characterize and quantify the performance, we have utilized the commonly used evaluation 

metrics [211, 250] of precision, recall, and F-measure. In order to simulate the data buffering 

process in forming the benchmark motifs, we have divided the power data into two train and test 

subsets using a 75-25 ratio, respectively. It is intuitive to have a separate portion of the data for 

populating the motif library to avoid over-fitting and matching the power signature shapes to a 

motif that was already extracted from the same section. A pre-event window (𝑊𝑝𝑟𝑒) of size 40 (i.e., 

two third of a second) and a post-window (𝑊𝑝𝑜𝑠𝑡) of size 60 (i.e. one second) were used in feature 

extraction. In classification studies, it has been observed that the detection performance is not 

highly affected by the size of the windows. A general rule of thumb in identifying the size is to 

ensure that signatures are not overlapping and the transient information perseveres. Moreover, 

considering the fact that the size of the window for both benchmark motif identification and event 

detection is the same, the window size effect will be minimized. In buffering the data, GLR event 

detection algorithm was adopted from [129]. Leveraging the assessments in the literature, a general 
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set of parameters for the GLR algorithm was used [251]. No specific effort was made to ensure 

that the GLR algorithm is tuned to its better level of performance. The data for the training subset 

was passed through the clustering algorithm to create the clustered motifs. An empirical value of 

𝑓 = 50 was considered for characterizing the thresholds for each cluster in Eq. 10. This value was 

identified through a sensitivity analysis over different values of 𝑓. A vector of 𝑓 =

{1, 5, 10, 25, 50, 75, 100} was tested for the data set from Apt 1-Phase A. Figure 5-8 shows the F-

score results for different 𝑓 values. 

 

Figure 5-8. Sensitivity analysis for identifying the 𝑓 value on phase A of Apt 1 

5.4.3. Event detector evaluation 

The performance of the proposed framework against the conventional GLR algorithm was 

assessed on the test data subset. The true positives (TP), false positives (FP), false negatives (FN), 

precision, recall, and F-score were used as the quantified performance metrics. True negatives 

(TN) are not presented since events are sparse on the power time-series, and the number of events 

is significantly lower compared to the number of instances on steady-state segments. Therefore, 

any event detector can achieve a very high number of TN, and the metric is not able to justify the 

performance. In order to quantify the metrics, a ±3 sample points (less than 0.1 second) was 

considered as the tolerance in the comparison between ground truth and predicted events. Table 

5-2 shows the results of the evaluation. In this table, for the motif-based approach, events for the 

associated appliance classes that have been operated at least once in the training stage were 

considered for the evaluation. The higher values (i.e., better performance) for precision, recall, and 

F-score have been highlighted in bold. 
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As the results show, the proposed motif-based event detector had a promising performance without 

the need for parameter-tuning or a priori information for the clustering. Particularity, by using the 

motif-based event detection, an average F-score of 0.81 across all datasets was obtained that is 

higher compared to the benchmark GLR performance of 0.67. Moreover, the average value of 

precision (trade-off between true and false detection), and recall (trade-off between true and wrong 

detection) is 0.78 (compared to 0.66 for GLR) and 0.86 (compared to 0.76 for GLR), respectively. 

The motif-based approach maintains a better balance for these metrics, considering the standard 

deviation across all datasets. Figure 5-9 summarizes the performance metric results.  

Table 5-2. Evaluation results for the proposed event detection, compared to GLR 

Event Detection 

Method 
Dataset # of events TP FP FN Precision Recall F-Score 

Motif-based (Self-

configuring) 

Apt 1 (Phase A) 337 229 61 108 0.79 0.68 0.73 

Apt 1 (Phase B) 1075 981 19 94 0.98 0.91 0.95 

Apt 2 (Phase A) 665 659 63 6 0.91 0.99 0.95 

Apt 2 (Phase B) 1016 764 381 252 0.67 0.75 0.71 

Apt 3 (Phase A) 1734 1497 717 237 0.68 0.86 0.76 

Apt 3 (Phase B) 304 296 164 8 0.64 0.97 0.77 

 Average     0.78 0.86 0.81 

 Standard deviation     0.14 0.12 0.11 

GLR 

Apt 1 (Phase A) 337 219 106 118 0.67 0.65 0.66 

Apt 1 (Phase B) 1075 529 23 546 0.96 0.49 0.65 

Apt 2 (Phase A) 1128 659 469 469 0.58 0.58 0.58 

Apt 2 (Phase B) 1016 925 423 91 0.69 0.91 0.78 

Apt 3 (Phase A) 1734 1608 881 126 0.65 0.93 0.76 

Apt 3 (Phase B) 304 299 451 5 0.40 0.98 0.57 

 Average     0.66 0.76 0.67 

 Standard deviation     0.18 0.21 0.09 

As the visual illustrations of the performance metrics, shown in Figure 5-9, the motif-based 

approach outperforms GLR with higher precisions across different environments. This could be 

mainly associated with the fact that the motif-based approach reduces the false positives in event 

detection. However, comparison of the recall values shows an interesting trend. In some cases, the 

GLR shows a better recall as it is generally more sensitive the changes. However, this increase 
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comes with a cost of reduced precision. This trade-off is better balanced by the proposed motif-

based event detection. 

 

Figure 5-9. Comparison of performance evaluation metrics for motif-based versus GLR event 

detectors 

To provide a better context for the performance of the proposed approach, in Figure 5-10, we have 

presented visualizations of the detected events on samples of the power time series for a variety of 

appliances. Short sections of power time-series (less than 3 hours) have been provided for each 

dataset for visual interpretation. The corresponding motif labels were employed for event 

classification as well. TP, FP, and FN are depicted based on the ground truth data. 
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Figure 5-10. Detected events using motif-based approach on samples of power time-series from: 

(a) Apt 1, phase A, (b) Apt 1, phase B, (c) Apt 2, phase A, (d) Apt 2, phase B, (e) Apt 3, phase 

A, (f) Apt 3, phase B. 

 

As these graphs and quantitative evaluations show, the motif-based approach has also resulted in 

a number of false positives and negatives. From this limited observation, it appears that the 

congested areas (with multiple repeated cycles) could result in higher false negatives. Moreover, 

it could be seen that the missing events (i.e., false negatives) appear to have lower power draws. 

Depending on the application domain, the importance of detecting the operational events for 

appliances might vary. Therefore, we have also evaluated the performance of the motif-based event 

detection according to the transient power draw values for appliances. In doing so, we have 

illustrated the trade-off between true detection (TP) and missed detection (FN) for different power 

ranges in Figure 5-11. As this figure shows, missed detections are mainly attributed to events that 

have a lower power draw, less than 100 Watts, and only in one case (Apt 1, phase A), some of the 

very large power draw events (more than 1000 Watts) are not detected. The parameters of the 

conventional event detector for populating the motif library could play a role in such observations. 

For example, the GLR could be set to ignore low power variations in consecutive samples to avoid 

false positives due to noise interference. In such scenarios, the motifs from the low power draw 
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appliances might not be retrieved and used in motif-based event detection. In this study, we have 

set the minimum change in power to be equal to 25W. 

 

 
Figure 5-11. Histogram of true positives versus false negatives for the motif-based event detector 

for different power ranges: (a) Apt 1, phase A, (b) Apt 1, phase B, (c) Apt 2, phase A, (d) Apt 2, 

phase B, (e) Apt 3, phase A, (f) Apt 3, phase B. The values on the horizontal axis indicate the 

upper bound for the power range. For example, a value of 100 indicates a power range of 0-100 

Watt. 

5.4.3.a.  Appliance-level evaluation 

The evaluation of the performance from the appliance type perspective is important as this 

knowledge could affect the performance of the end-use applications. Appliances with major power 

draws have a more significant role in quantifying the energy consumption, and therefore their 

associated events are of greater importance in that context. For example, air conditioning and 

heating system events mainly have higher power draws with a longer period of operations, which 

make them important for energy consumption assessment ([252, 253]). On the other hand, events 

for appliances with lower power draw play a less important role in energy consumption assessment 

but they are important in inferring human activities and human-appliance interactions. If low-

power events happen frequently and sustain long intervals of operations, their cumulative impact 

could be also considerable for energy consumption. For example, identifying events for some 
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appliances such as electric range can be tangibly tied to occupants’ activity (e.g., cooking). 

Specifically, identifying occupants’ activity can provide context-aware applications in the 

buildings. Similarly, fine-grained monitoring of events for several multi-state appliances like the 

refrigerator or dishwasher can provide an insight for fault detection or demand response 

opportunities for the residential sector [254].   

To provide an insight on the performance for different categories of appliances, we measured the 

number of true (TP) and missed detection (FN) for each appliance type and presented the results 

in Table 5-3. To this end, for each label type in the ground truth data, we compared the timestamps 

between ground truth and predicted events. In this table, the 3-digit labels represent the appliance 

type according to the EMBED dataset. Some appliances have only turn-on and turn-off events 

(e.g., lights), while others have different transition states (e.g., Air conditioning (AC) systems).  
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Table 5-3. Detection rate from appliances’ perspective for the test part of the dataset 
Dataset Label Appliance # of events True Positive False Negative 

Apt 1 (Phase A) 

111 

129 

140 

141 

142 

143 

144 

145 

162 

163 

180 

300 
 

Refrigerator 

TV 

Unknown kitchen light 

Kitchen light 1 

Kitchen fan light 

Kitchen light 2 

Bathroom light 1 

Bathroom light 2 

Kettle 

Toaster 

Air conditioning 

Unknown 

65 

96 

77 

5 

8 

2 

12 

61 

9 

9 

38 

28 
 

49 

25 

1 

5 

8 

2 

12 

60 

7 

8 

36 

16 
 

16 

71 

76 

0 

0 

0 

0 

1 

2 

1 

2 

12 
 

Apt 1 (Phase B) 

120 

122 

180 

181 

182 

183 

300 
 

Laptop 

LCD monitor 

Air conditioning 

Hair dryer 

Iron 

Washing machine 

Unknown 

15 

6 

27 

9 

14 

948 

56 
 

2 

0 

26 

8 

14 

931 

0 
 

13 

6 

1 

1 

0 

17 

56 
 

Apt 2 (Phase A) 

100 

140 

144 

164 

180 
 

Electric range 

Bathroom light 

Closet light 

Water heater 

Air conditioning 

217 

6 

21 

27 

394 
 

217 

6 

20 

27 

389 
 

0 

0 

1 

0 

5 
 

Apt 2 (Phase B) 

100 

111 

129 

140 

145 

164 

200 

300 
 

Electric range 

Refrigerator 

TV 

Unknown light 

Bathroom light 

Water heater 

Grill 

Unknown 

174 

455 

63 

46 

131 

34 

75 

38 
 

174 

329 

2 

0 

122 

34 

75 

28 
 

0 

126 

61 

46 

9 

0 

0 

10 
 

Apt 3 (Phase A) 

111 

120 

129 

140 

142 

143 

144 

145 

146 

147 

166 

180 

181 

300 
 

Refrigerator 

Laptop 

TV 

Unknown Light 

Closet light 

Kitchen light 

Living room light 

Bathroom light and fan 

Bedroom lamp 

Living room lamp 

Hair iron 

Air conditioning 

Hair dryer 

Unknown 

869 

12 

16 

6 

10 

44 

19 

107 

20 

6 

334 

277 

11 

3 
 

810 

0 

7 

2 

6 

42 

19 

98 

15 

4 

214 

269 

11 

0 
 

59 

12 

9 

4 

4 

2 

0 

9 

5 

2 

120 

8 

0 

3 
 

Apt 3 (Phase B) 

162 

163 

167 

180 
 

Kettle 

Toaster 

Dishwasher 

Air conditioning 

24 

36 

33 

211 
 

24 

36 

33 

203 
 

0 

0 

0 

8 
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Figure 5-12 illustrates the ratio of the correctly detected events for each appliance type (refer to 

Table 5-3 for label interpretation). As the results show, for apartment 1, appliances like AC, 

washing machine, bathroom light (which operates a fan as well), iron, and toaster have high 

detection accuracy, while TV, laptop, and kitchen light, all with low power draw, are hard to detect. 

For apartment 2, except for TV and the kitchen light, the event detector achieves high accuracy for 

a variety of appliances like AC, range, water heater, and grill. For apartment 3, except for the 

laptop that was failed to be recognized, closet light, unknown light, TV, and hair iron showed an 

average performance. However, the event detector shows a nearly perfect detection rate for the 

kettle, toasters, dishwasher, AC, dryer, and some of the lights. As can be seen from Figure 5-12, 

the event detector has a promising performance for a variety of different appliances. However, for 

the ones with considerably low power draws (less than 100 Watt), the inevitable impact of noise 

and artifact could be reflected into the shape of appliance signatures, which results in the reduced 

performance in the clustering procedure (section 5.3.2) or the proximity-based event detector 

(section 5.3.3). 
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Figure 5-12. The distribution between TP and FN rates for detected events for each appliance 

type: (a) Apt 1, phase A, (b) Apt 1, phase B, (c) Apt 2, phase A, (d) Apt 2, phase B, (e) Apt 3, 

phase A, (f) Apt 3, phase B. 

In the presented analyses, it was assumed that the event detector was evaluated at a time period 

when no new appliance was added to the environment. If new appliances (with different 

signatures) are added to a house, their corresponding characteristics need to be added to the library. 

To tackle this problem, motif processing could be performed regularly in case new appliances are 

added to the environment to capture their characteristics. In addition, the detection of the appliance 

type that causes an event is an important step following the event detection for all applications of 

human-appliance interaction. This process could be carried out by using a classification algorithm 

that uses a training dataset for inferring the appliance type. Our proposed approach leverages 

motifs of appliance signatures from similar sets of observations associated with the generated 

clusters. Therefore, clusters could be used as the training data set for the aforementioned classifier 

considering that the clusters are labeled by the actual identity of the appliances. In practice, this 

could be potentially performed through user interfaces (an example of interactive user interface in 

similar field of disaggregation can be found in [233]). 

We have also evaluated the impact of 𝑓on the performance of the algorithm in different 

environments as illustrated in Figure 5-13. As shown, a value of 10<𝑓<100 leads to a relatively 

consistent performance, and the value of 𝑓 in the selected range does not have an impact on the 

performance in different contexts. 

 
Figure 5-13. Analysis of the impact of 𝑓 value across different datasets 
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5.4.4. Limitations 

Although the proposed approach has shown an overall promising performance, there are a number 

of limitations to be addressed: First, the detection rate for some of the low power-draw devices 

including laptop, TV, and lights was observed to be lower. Figure 5-12 of illustrates these 

observations. In general, the detection of the operations for low power-draw appliances in the 

presence of appliances with higher power-draw and in the context of high-resolution electricity 

signal could be challenging. In fact, developing techniques for detection of miscellaneous 

electrical loads (MEL) [255], is a topic of research that the Department of Energy has prioritized 

in the past few years. Second, identifying the status of the appliances is dependent on the detection 

of on/off events. Similar to other related studies in this domain, missing an on or off event can lead 

to the wrong estimation of the operational status for different applications. Given that the initial 

dataset (i.e., buffered data set) is populated through a conventional event-detection algorithm, the 

outcome of the clustering and the cluster quality analysis process could affect the detection of the 

events through motif-based event detection. Nonetheless, from the energy perspective, Figure 5-11 

of the manuscript shows that for events with higher transient power ranges (>200W), the correct 

detection rate is high. Third, in our study, it is assumed that after identifying the recurring motifs 

from the buffered data during the self-training stage, the appliances inside the house remain the 

same. However, in case of adding a new appliance to the house, it is required to allow time for the 

motif-based approach to account for the occupant interaction with the new device, in order to learn 

the contextual information of the newly added load and to update the motif library, accordingly. 

This also holds true for appliances that have not been used during the data buffering stage. Fourth, 

in case of having simultaneous events (operational state transitions of different appliances with 

very close time difference), the shape of the feature vectors will be impacted by the simultaneous 

events, which can also affect the clustering and the motif-based event detection step. However, 

considering the fact that the length of the feature vectors was set to a limited duration that preserves 

the transient shape (less than 2 seconds), the chance of observing a large number of simultaneous 

events in practice will be low. 

5.5. Conclusion 

Fine-grained monitoring of operations of the household appliances through power time-series 

requires the knowledge on the timing of events. However, event detectors typically rely on models 
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that are configured to a specific environment, in which they are deployed. In this paper, we present 

the shift from event detection based on abrupt changes in time-series of representative power 

metrics to a motif-based approach. Motifs are represented by clustered signatures, which represent 

the transient power draws due to change in operational states of appliances in an environment. 

Motif-based event detection facilitates the self-configuration of algorithms in a new environment. 

The realization of the proposed approach calls for data-driven techniques that automatically 

populate a motif library in an unsupervised manner and use a similarity threshold for comparison 

between clustered motifs and the new observations. The framework in this study uses a 

combination of a proposed automated spectral clustering, 1NN classifier, and an outlier detection 

based on the Frechet distance. The outlier detection autonomously learns its parameters from the 

clustered signatures in an environment that represent the motifs. The evaluation of the framework 

power time series on EMBED dataset’s three apartments over two weeks demonstrated a 

promising performance. Overall, the proposed algorithm outperforms the GLR algorithm without 

the need for detection statistics parameter-tuning in new environments.  

As described in this study, the motif-based approach leverages a dense set of observations in the 

form of a cluster to identify motifs and quantify the event detection thresholds for different clusters. 

Therefore, the new detected events are associated with a set of observations from the environment 

that either reflects the automatic change in the operational state of an appliance or a change that is 

caused by occupants. Accordingly, the framework also provides the ground for more efficient 

communication with the users in an environment for learning the activities. The framework could 

be used for facilitated training of a machine learning framework that identifies when different 

appliances are being used without the need to ask for several inputs for one appliance. Therefore, 

leveraging the proposed framework for facilitated training of machine learning frameworks that 

infer the disaggregated energy consumption of appliances or associating the energy consumption 

to activities of occupants comprise the future direction of this research. 
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Chapter 6: Quantified investigation of demand and supply balancing among 

prosumers and consumers: A feasibility assessment for energy trading   

 

Abstract 

 
With the increased adoption of distributed energy resources (DER) and renewables such as solar 

panels at the building level, consumers turn into prosumers and will supply their own energy 

demand on site. This will provide peer-to-peer (P2P) energy trading opportunity, in which 

prosumers offer their surplus energy to consumers. Despite recent attention of P2P research on the 

residential households and investigating different aspects of virtual and physical layers, empirical 

analysis and quantified estimation of load balancing potential for energy trading is not well 

established. Therefore, in this paper, we investigated the load balancing potentials of a community 

with decentralized DER management systems through a data-driven simulation of varying 

infrastructure configurations by using real-world data. The concept of load complementarity 

amongst prosumers and consumers is used for establishing the self-sufficiency of the community. 

Multiple scenarios by accounting for load profiles uncertainty across households, the PV and 

battery integration level in the community, and users’ flexibility in load operation are investigated 

to understand the load balancing potential for decentralized distribution. A case study on ~250 

residential buildings in Austin, TX, is presented. The findings showed that with a high level of PV 

integrations (more than 75%), energy trading could result in self-dependency for the entire 

community during peak generation hours (11am-3pm) while there are limited opportunities during 

later times after 4pm with PV-standalone systems. As alternatives, it was shown that integrating 

building level storage and users’ flexibility for load shifting during 2-h could improve the self-

sufficiently of the community up to 18% and 11%, respectively. 

6.1. Introduction 

Smart grid rely on novel elements such as Information and Communication Technologies (ICT), 

metering devices, controllable loads, photovoltaics (PV), and batteries for improved operation of 

the power system. These elements can revolutionize the energy management flow by moving to 

decentralized energy distribution and reducing our reliance on centralized distribution systems 

with fossil fuels. As a result, increasing the utilization of clean and green energy resources will 
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mitigate the global warming concerns and results in billions of dollars saving in electricity 

generation [256]. Following this vision, the integration of small-scale distributed energy resource 

at the household-level has received increasing attention over the last years. Consumers who adopt 

renewables like PV and incorporate batteries become prosumers. Therefore, they can supply their 

own energy demand and actively participate in the energy market by selling excessive energy to 

their neighbors. As such, Peer-to-Peer (P2P) energy trading has been considered as the next-

generation approach for supply and demand balancing, in which the collective participation of 

prosumers and consumers at the household level will have substantial impact for decentralized 

distribution [257]. 

To promote the utilization of on-site generation and improving the self-sufficiency, energy policies 

have been enacted by different countries and states. For example, Germany used to grant a special 

bonus for self-consumed electricity as defined by its Renewable Energy Act [258]. Similarly, Italy 

and China have introduced a self-consumption subsidy [259]. Furthermore, European countries 

(like France and Italy) are imposing modifications to decrease their feed-in-tariff levels [259], and 

US states consider changing net metering schemes to reduce the rates [260]. In such electricity 

markets, sending surplus energy back to the grid would be discouraged, and the match of on-site 

generation and demand will be inherently promoted [261]. In line with this vision, in community-

level local energy trading, the goal is to cover the demand of local consumers by the excessive 

energy of prosumers and small-scale DERs. However, reaching this goal is challenging due to the 

inherent mismatch between solar generation and household demands, in addition to uncertain and 

myriad energy consumption patterns observed by households [262]. 

During recent years, the research on community-level energy trading have studied optimization 

techniques and simulation [263], integrating the network constraint [264], and investigating 

financial gain [265]. However, a feasibility investigation on load balancing potential (i.e., 

matching the available surplus versus deficit energy) at the neighborhood scale is needed to study 

the role of realistic users’ energy behavior and prosumers’ assets. Specifically, it is essential to 

understand the self-sufficiency potential of a community under realistic uncertainties in load 

profiles that is driven by households’ lifestyles, in addition to simulating the impact of PV 

integration-level, battery adoption, and load flexibility. Accordingly, this could assist energy 

policymakers to assess reaching the sustainability target goals of communities and decarbonization 

assessment under different integration levels of small-scale distributed resources. 
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Inspired by this, in this paper, we carry out a data-driven feasibility assessment on the load 

balancing potential among prosumers and consumers at the neighborhood scale. As investigation 

on real consumption and generation data for a community of ~300 households in Austin, TX, from 

the Pecan Street Dataport project is considered for the case study. The primary questions we sought 

to answer include: 

 Given the realistic household load profiles, what is the load balancing potential for load 

balancing in communities with equal prosumers/consumers? 

 What is the impact of different PV penetration level for load balancing potential? 

 How does the inclusion of battery storage systems improve the load balancing potential?   

 How does reshaping energy profiles through load flexibility/user practice impact the load 

balancing potential? 

Using data-driven inference on real energy and consumption data, we present quantified results to 

measure the community self-sufficiency for the abovementioned scenarios. Therefore, the findings 

of this work can shed light for policy-makers and energy planners for feasibility assessment of 

energy trading for decentralized distribution and meeting community sustainability goals, under 

the realistic assumption of using real demand and generation data across a neighborhood of 

households. 

The rest of the paper is structured as follows: Section 6.2 describes the case study, characteristics 

of the data, and the applied methods. Section 6.3 presents the results, discussion, and implications 

for different scenarios, and Section 6.4 presents the concluding remarks. 

6.2. Methods and materials 

The analytical experiments in this paper are carried out on real demand and PV generation data. 

For each experiment, and to create a community, groups of prosumers and consumers were 

selected using bootstrapping technique to account for the uncertainty in energy daily profiles 

across households. Each experiment has been run 100 times through random sampling of 

prosumers/consumers. For the cases that battery storage was considered, the charging/discharging 

was simulated for individual households. For the cases that involved load flexibility by users, the 

impact of load deferral or partial load shedding was simulated for individual households, and daily 

load profiles under the users’ flexible behavior were reconstructed with simulation. Therefore, 

upon considering the impact of each attribute/energy behavioral response for individual 
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households, the aggregate impact of energy exchange simulation over the community could have 

been measured. 

6.2.1. Basic definitions 

We define the basic definitions that are covered throughout the paper as follows. 

Prosumers (𝐻𝑝): Electricity consumers who install a type of renewable resource are considered 

as prosumers, therefore, they can generate energy while consuming it. In this paper, we considered 

PV as the renewable resource, and prosumers are the ones who have installed solar photovoltaic 

panels. A household in the prosumer group is shown as 𝑛 ∈ 𝐻𝑝. 

Consumers (𝐻𝑐): Consumers only consume electricity, therefore, they rely on a central market 

for electricity purchase or their peers who have PV and could share their excessive production. A 

household in the prosumer group is shown as 𝑛 ∈ 𝐻𝑐. 

Surplus energy: Surplus energy is available when the amount of PV production at each time 

instance exceeds the instantaneous demand for prosumers. Surplus energy is offered by prosumers, 

and it could be transferred in a P2P market, saved in battery storage and used at a later time, or 

being fed back to the grid with net metering/feed-in-tariff options. Considering the surplus energy 

of a prosumer as 𝑠𝑛, 𝑛 ∈ 𝐻𝑝, the total surplus energy of the community is 𝑆𝑐 = ∑𝑠𝑛.  

Deficit energy: Deficit energy is the amount of energy that need to be supplied either from a 

central market or acquired from peers who have surplus energy. Deficit energy is primarily 

requested by consumers. However, when prosumers’ demand exceed their generation or available 

savings in the battery, they have deficit energy, too. Considering the deficit energy of a 

consumer/prosumer as 𝑑𝑛, 𝑛 ∈ {𝐻𝑐, 𝐻𝑝}, the total deficit energy of the community is 𝐷𝑐 = ∑𝑑𝑛. 

Net demand: To account for the surplus and deficit energy, the measured power drawn from the 

electrical grid is the primary factor. 

The net demand, 𝐿(𝑡), at each time 𝑡 is measured as: 

𝐿(𝑡) = 𝑃(𝑡) − 𝐺(𝑡) − 𝐵(𝑡)     (1) 

In which 𝑃(𝑡) is the power demand, 𝐺(𝑡) is the PV generation and 𝐵(𝑡) is the battery power. Here, 

𝑃(𝑡)>0, 𝐺(𝑡)>0, and 𝐵(𝑡)<0 while charging and 𝐵(𝑡)>0 while discharging. Also, 𝐿(𝑡)<0 

contributes the accumulation of surplus energy, while 𝐿(𝑡)>0 contributes to the accumulation of 

deficit energy. 
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Complementarity factor: The ideal objective of a P2P market is to cancel out the aggregate deficit 

energy in a community through integrating aggregate surplus energy. Here, we define the 

complementarity factor (𝐶𝐹) percentage as the ratio of deficit energy from consumers/prosumers 

that can be covered by prosumers. Therefore: 

𝐶𝐹(%) =  100 ∗ |
𝑆𝑐

𝐷𝑐
|                (2) 

In which 𝑆𝑐 and 𝐷𝑐 are the surplus and deficit energy of the community, respectively. 𝑆𝑐 is 

provided by prosumers whose net energy is negative, while 𝐷𝑐 is requested by consumers and/or 

prosumers whose net energy is positive. A value of 𝐶𝐹 =100% is ideal since it indicates the 

complete independence from the central market and meeting the load balance merely through 

energy trading. A value of 𝐶𝐹>100% indicates the presence of extra surplus energy in the 

community, which can be saved in the battery or be fed back to the grid.  

Self-sufficiency: We extend the definition of self-sufficiency [266] for individual households into 

a community, as an indicator of PV utilization in the presence of energy trading. Self-sufficiency 

is defined as: 

𝜑𝑠𝑠 =
∫ ∑ 𝑀(𝑡)𝑑𝑡𝑛∈𝐻𝑝
𝑡2
𝑡1

∫ ∑ 𝑃(𝑡)𝑛∈{𝐻𝑐,𝐻𝑝}
𝑡2
𝑡1

𝑑𝑡
                                                                    (3) 

in which 𝑀(𝑡) is the power generation utilized on-site as follows: 

𝑀(𝑡) = min{𝑃(𝑡), 𝐺(𝑡)  𝐵(𝑡)}                                                 (4) 

[𝑡1, 𝑡2] is the considered timeframe for measuring the self-sufficiency. In this work, assuming that 

energy trading is carried out during PV output, [𝑡1, 𝑡2] is measured across all the PV generation 

hours. The numerator in Eq. 3, as the on-site generation by PV or storage saving is measured for 

the prosumers’ group (𝐻𝑝), and the denominator, as the energy demand of the community, is 

measured for both the prosumers’ (𝐻𝑝) and consumers’ group (𝐻𝐶). Simply, self- sufficiency for 

the community is the share of PV generation, directly consumed by the community during 

generation hours.  

6.2.2. Household selection 

Electricity daily load profiles for residential buildings are known to have high variation across 

households and across days [13, 114]. Although certain pre-defined (with limited number) [267] 

or synthetic load profiles [268] can be employed to evaluate the impact of PV adoption in different 

capacities, it could limit the generalization of findings by overlooking the stochastics nature of 



126 

 

household load profiles. Therefore, to present a reasonable estimation of community load 

balancing potential, it is essential to account for such uncertainties and include myriad possibilities 

in load profiles, driven by occupants’ energy behavior. Here, for simulating the energy trading 

scenarios under different PV/battery penetration and load flexibility, we use the real demand and 

generation daily profiles across two months for each households. The bootstrapping sampling 

technique is used to form communities by selecting different combinations of households. 

Therefore, to account for the variation of load profiles, we sample 𝑚 households (ranging from 20 

to 100) to form a community as an individual experiment and repeated the experiment 100 times 

to account for stochastic nature of load profiles for reporting the hypothetical energy exchange.  

To calculate the PV generation and net energy for each households and to measure the surplus and 

deficit values, the numerical integration on daily profiles was carried out. Considering a daily 

profile as 𝑃(𝑡) (or any other forms like 𝐿(𝑡) or 𝐺(𝑡)), the energy is equal to: 

𝐸 = ∫ 𝑃(𝑡)𝑑𝑡                                                                      
𝑡2

𝑡1
    (5) 

In which [𝑡1, 𝑡2] is the timeframe of interest for measuring the energy. 

6.2.3. Battery modeling 

We considered the availability of battery for prosumers. To schedule the prosumers’ battery 

(assuming they have one), we considered charging of the battery at the presence of surplus energy, 

and discharging later when the deficit is present. The specifications of the battery was assumed 

similar to the commercial Tesla Powerwall [269], with a capacity of 13.5kWh, and 7kW peak 

power. Therefore, physical specifications of the battery is accounted in the battery modeling. 

Figure 6-1 shows the battery scheduling for the simulation. During the times that the generation is 

higher than demand, the battery is charged, given the physical constraints of the battery. Discharge 

of the battery happens when the demand gets higher than generation, if there is available energy 

in battery accumulated from previous times. When the surplus energy of the household exceeds 

the battery capacity, then the difference can offered for energy trading with consumers. Here, we 

opted for a simplified and intuitive model for battery scheduling to show the impact of storage for 

benefiting the load balancing. More sophisticated battery modeling under the constraint of 

dynamic pricing, cycle life, and losses could be integrated as well [270]. 
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Figure 6-1. Battery scheduling flowchart. 

Using the scheduling approach in Figure 6-1, battery simulation charging/discharging is modeled 

individually for each prosumers. Figure 6-2 shows an example of charging/discharging pattern of 

the battery, in addition to demand and generation patterns of one prosumer during one week. 
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Figure 6-2. Examples of (a) demand, (b) generation, and (c) battery charge/discharge pattern for 

one household during one week. 

6.2.4. Users’ flexibility 

In the smart grid context, loads flexibility can be achieved by user’s practice through postponing 

the load operation or through adoption of smart loads (i.e., smart appliances) with automated 

scheduling capabilities. Therefore, flexibility through reshaping the demand profiles provide more 

room for efficient utilization of PV. Specific appliances have shown to have high flexibility in 

operation [37, 147, 148], which include EV, AC, and wet appliances (washing machine, dryer, 

dishwasher). AC’s flexibility can be achieved by changing the temperature setpoint to reduce the 

demand, while EV and wet appliances flexibility is offered through delaying the 

operation/charging time. Here, we have used the concept of flexibility for investigating the 

improvement in community load balancing. Through using individual appliance-level data 

associated with each daily profile in the dataset, the users’ flexibility was modeled. Specifically, 

the EV charging energy (if any) and wet appliances energy (if any) associated with each daily 

profile of prosumers and consumers was measured on an hourly basis. Similarly, for AC in the 

residential buildings, through using the suggestions in [271, 272], the energy saving associated 

with 1∘𝐹, 2∘𝐹 , and 2∘𝐹 (with pre-cooling) increase of temperature setpoint was subtracted from 

the actual AC profiles. 25%, 31%, and 68% of AC power reduction with 1∘𝐹, 2∘𝐹 (with pre-

cooling), and 2∘𝐹 temperature setpoint increased was modeled [271]. Therefore, by adjusting a 

subset of prosumer/consumers who allow for flexible operation of the abovementioned appliances 
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in our experiments, we could measure the aggregate change of network demand and integrate them 

with metrics described in section 0. 

6.2.5. Case study community 

We used the historical energy dataset of 244 residential households located in Austin, TX for the 

case study. The dataset is available through Pecan Street Project [68]. The community included 

119 prosumers with PV and 125 consumers. Since our case study focused on the PV rooftop solar 

panel as the renewable source, we used the data for July and August, as the representative months 

in summer, which has warmer climate and sunny days. The dataset was collected during 2015. The 

demand data and generation data with 15-minute resolution, similar to what smart meters record, 

was used. For the generation data, less than 0.001% of profiles (8 out of 7152) had missing 

information, in which were eliminated from the dataset. In total, the prosumers and consumers 

dataset included 7144 and 7492 daily profiles for the considered timeframe. Each daily profile 

included 96 data points, which was annotated with ‘household ID’ and ‘day of the year’ index for 

the sake of information retrieval.  

6.3. Results and discussion 

6.3.1.  Exploratory data analysis 

We began the analysis by presenting the characteristics of the dataset for prosumers and 

consumers. This includes the statistics for prosumers and consumer energy usage, PV generation, 

and the variability analysis of households load shapes. 

6.3.1.a. Demand, generation, and household energy patterns 

As a key assumption, the complementarity of surplus and deficit energy is required to enable 

energy exchange. Figure 6-3 shows the daily load shapes of a consumer (Figure 6-3(a)) and a 

prosumer (Figure 6-3(b)) plotted over 20 subsequent days. As can be seen, the complementarity 

patterns of load shape between the prosumers and consumers in the shaded area (time of 

generation) can be leveraged for P2P energy trading and load balancing. 



130 

 

 

Figure 6-3. Load complementarity for energy trading: (a) a consumer’s daily profile with deficit 

energy (+ net values), (b) a prosumer’s daily profiles with surplus energy (- net values). 

Figure 6-4(a) shows all the PV generation profiles (7144 profiles) in the dataset for 119 prosumers. 

The median PV peak power was 3.95kW (5th and 95th quantile of 1.8kW, 6.5kW), while there were 

outlier profiles with highest PV peak of 11.0kW. Figure 6-4(b) shows the distribution of PV 

generation from 9 am to 7 pm, as the times when solar was available. The highest generation 

potential is between 2 pm to 3 pm. Furthermore, in the earlier timeframe in the morning spanning 

later to the maximum generation time, the generation has the potential to entirely supply the 

demand (and also stored in the battery, if available), while in the later timeframe stretching to the 

evening, the generation can partially supply the demand (and discharged from the battery, if 

available, to cover the rest). Since most of PV generation is between 9 am to 7 pm, we considered 

this timeframe in the rest of the paper for presenting the results. 

 

Figure 6-4. Solar generation patterns in the community: (a) PV power profiles, (b) Daily 

averaged PV generated energy. 

As part of the sanity check on the data representation for the community load balancing, the 

consumers and prosumers should be almost homogeneous in their absolute energy demand. In 

other words, if the community of prosumers turn out to have significantly higher demand compared 
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to the consumers pool, they consume their on-site PV generation themselves (i.e., positive net 

value) and would not be able offer energy trading. Figure 6-5 compares the distribution of the daily 

net energy (drawn from the grid) and demand energy for prosumers (𝑁=119, 7144 profiles) and 

consumers (𝑁=125, 7492 profiles). PV generation hours during 9am-7pm was considered. In 

Figure 6-5(a), the median net energy for prosumers is -0.6kWh (5th, 25th, 75th, and 95th percentile 

of -18 kWh, -8 kWh, 8 kWh, and 27kWh). The observation on prosumers net energy shows that, 

on average, the prosumer group can highly supply its demand need, while adding consumers to 

the community will reduce the self-dependency. In Figure 6-5(b), it is show that the demand energy 

of prosumers (without considering PV generation), is higher on average compared to the 

consumers. For the prosumers, the median demand energy for is 25kWh (5th, 25th, 75th, and 95th 

percentile of 8 kWh, 18 kWh, 33 kWh, and 52 kWh) while for the consumers, the median demand 

energy for is 14kWh (5th, 25th, 75th, and 95th percentile of 3 kWh, 7 kWh, 24 kWh, and 42 kWh). 

This observation inclines that in the community, PV owners have heavier consumption, which 

could be associated with external factors such as larger household size, or the presence of modern 

appliances with higher usage and/or owning a plug-in EV. However, as the distributions of energy 

demand between consumers and prosumers are relatively comparable, we considered the dataset 

suitable for the presentation of load balancing potential results. 

 

  (a)       (b) 

Figure 6-5. Distribution of (a) demand for the entire community and (b) drawn from the grid 

energy and from 9 am-7 pm. 

As noted, a high variation in daily energy usage exists across both households and subsequent 

days. Figure 6-6 presents the variation of total daily energy consumption across households, each 

with two months of daily profiles. In Figure 6-6(a), 53% of prosumers (63, 𝑁 = 119), on average 
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have a daily negative net energy (i.e., surplus), which they could offer to neighbors, while 

maintaining their self-dependency (dashed baseline of 0 in Figure 6-6(a)). For consumers (Figure 

6-6(b)), all have positive net energy intuitively, while both the average daily energy and inter-day 

difference is considerable across households. 

  

       (a) 

  

(b) 

Figure 6-6. Distribution of net energy for (a) prosumers and (b) consumers from 9 am-7pm for 

all households. 

6.3.1.b. Entropy analysis for household load profiles 

Households exhibit variously different load profiles across multiple days. Accordingly, the 

variability of energy profiles shows the extent to which a prosumer/consumer is stable or 

unpredictable. To demonstrate the distribution of household variability in energy patterns, the 

concept of entropy was used. Using a clustering technique, and assigning the entire library of daily 

profiles into different cluster, the entropy of a household, 𝐸𝑛, is defined as: 

𝐸𝑛 = −∑ 𝑃(𝐶𝑖) log(𝑃(𝐶𝑖))                                                         (6)
𝐾

𝑖=1
 

In which 𝑃(𝐶𝑖) is the probability of observing cluster 𝑖, and 𝐾 is the total number of cluster. A low 

value of 𝐸𝑛 indicates higher stability of households’ load profiles across different days, while a 

higher 𝐸𝑛 denotes low predictability. The lowest value for 𝐸𝑛 is zero, when all daily load profiles 

of a household belongs to one cluster. 
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The K-means clustering technique was used on daily load profiles of prosumers (7144 profiles) 

and consumers (7492 profiles). Upon empirical observation, using 5 clusters revealed distinct load 

profiles with different patterns. Figure 6-7 shows the clusters of load profiles (net energy value) 

in addition to the entropy of individual households. For the prosumers community (Figure 6-7(a)), 

except cluster 2 with 20% frequency, which did not offer surplus energy at any time of the day, 

other clusters all had some surplus energy with different peak levels. Therefore, cluster 2 have no 

potential for energy trading, while cluster 3 has the highest potential due to its sharp surplus peak 

during PV generation in addition to its moderately low peak during evening when PV generation 

diminishes. For the prosumer community (Figure 6-7(b)), cluster 2 is a suitable candidate energy 

trading due to sharp deficit peak at PV generation time, while cluster 3 (with constant 

consumption), and cluster 1 and 5 (with peak demand around 6:00 pm) also offer some potential 

for P2P exchange. Cluster 4 has low consumption until around 11 pm, in which a peak arises, 

therefore, not justified for energy trading (unless their prosumers neighbors have extra energy in 

storage). Figure 6-7(c) and Figure 6-7(d) shows the distribution of entropy with respect to average 

daily net energy for prosumers and consumers, and each data point is one household. The 

horizontal/vertical dashed line in those plots reflect the 25th and 75th percentile of values for 

entropy/net energy. As the distribution shows, for each of the nine areas, the community includes 

a variety of households with low to high predictability and energy demand, which further reflects 

the varied range of households with different energy behavior. 
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Figure 6-7. Clustered load profiles of prosumers and consumers and their entropy distribution: 

(a) clusters of prosumers daily profiles, (b) clusters of consumers daily profiles, (c) entropy of 

prosumers households, and (d) entropy of consumer households. Values in the legend for subplot 

(a) and (b) for shows the frequency of clusters in the community. 

6.3.2. Load complementarity for energy balancing 

This section presents the results of load balancing potential under the impact of PV integration, 

battery adoption, and users’ load flexibility.  

6.3.2.a. Equal distribution of prosumers and consumer 

In this scenario, we considered “what is the load balancing potential for communities with the 

same number of prosumers and consumers with no change in behavior?”. Here, it was assumed 

that the community contains the same number of prosumers and consumers, and no flexibility in 

behavior or storage is available. Therefore, it reflects the potential of energy trading just based on 

PV generation. 

Using subnetworks of 𝑛 households with surplus and deficit energy, we performed a simulation 

and measured the extent to which energy balancing that can be achieved. A range of 𝑛 =

{20,40,60,80,100} as the household sample size in the community was considered for measuring 

the complementarity factor. Therefore, the number of prosumers and consumers was assumed to 

be 𝑛 2⁄  in this case. For each community size and each hour of PV generation, 100 experiments, 

indicating 100 communities, was considered. Figure 6-8 presents the variation of net energy by 

prosumers, deficit energy by consumers, and complementarity factor (%) for three subsequent 

hours (2pm-5pm). In all subplots, it is shown that increasing the community size results in linear 

change for surplus energy and deficit energy (𝑅2 > 0.98 for all cases). As a result, the 

complementarity factor (𝐶𝐹) for various community size remains almost constant (𝜎 < 1.5 for all 

three subplots). During 2-3 pm, which is the highest PV generation time, 𝐶𝐹 reaches 50.0% on 

average for various community size, while it declines to 31.8% and 15.5% during 3-4 pm and 4-5 

pm, respectively. The reduction of 𝐶𝐹 is associated both with the decline of PV generation, in 

addition to the considerable increased demand of prosumers and consumers at the hours stretching 

to the evening. Specifically, during 4-5pm, the community of prosumers’ net energy is positive 

(generation do not cover the demand). Therefore, unlike 2-4pm, the aggregate surplus energy 

offered by a  subset of prosumers is not able to cancel out the deficit of another subset of prosumers. 
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A complete statistics for different hours of PV generation (similar to what presented in Figure 

6-8), is presented in Table 6-1. As shown, the highest 𝐶𝐹 happens at 12-1 pm, in which prosumers 

surplus energy covers could cover up to 72.5% of the entire community’s demand through energy 

trading. However, during 16-19pm and 9-10am, prosumers do not offer any surplus energy within 

themselves (i.e., positive net energy values), which reduces the potential for energy trading. In the 

extreme cases, at and 5-6pm and 6-7pm, the CF is less than 5% and 1%, indicating almost no 

potential for energy trading. Apart from these hours, the 𝐶𝐹 is positive at different hours, varying 

between 15.5 (3-4 pm) to 62.9 (11-12 pm). 

To summarize, in communities with equal distribution of prosumers and consumers and without 

any storage capacity or user flexibility, the 𝐶𝐹 (%) is highly dependent on PV generation, 

therefore, exhibiting high variation at different times of generation (standard deviation of 24% in 

complementarity). During hours of PV generation from 9am-7pm, 60% of time, prosumers group 

on aggregate have surplus energy and could offer to consumers. In the most productive hour, 𝐶𝐹 

reaches to 72.5%, while on average it is 35.6 %. Besides, increasing the community size leads to 

linear increase in surplus and deficit energy and therefore the 𝐶𝐹 remains almost constant. 

 

  (a)        (b)             (c) 

Figure 6-8. Comparison of surplus energy, deficit energy, and complementarity factor for various 

community size with equal number of prosumers and consumers at (a) 2-3pm, (b) 3-4pm, and (c) 

4-5pm. The left axis represents the net energy for bar charts, and the right axis represents the 

complementarity factor for the line. 
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Table 6-1. Surplus energy, deficit energy, and complementarity factor for various community size with 

equal number of prosumers and consumers from 9am-7pm. 

Time of day Community size Prosumers net energy 

(kWh)* 

Consumers net energy 

(kWh)* 
𝐶𝐹 (%)* 

9 am-10 am 

20 3.9 10.1 17.2 

40 8.6 22.1 14.8 

60 12.0 33.0 15.3 

80 16.4 42.6 15.6 

100 20.0 54.3 15.1 

10 am-11 am 

20 -2.6 13.0 45.7 

40 -3.8 23.5 43.1 

60 -6.1 36.0 41.5 

80 -9.4 48.4 42.5 

100 -10.1 60.3 41.2 

11 am-12 pm 

20 -6.0 13.7 62.2 

40 -13.6 27.5 63.9 

60 -21.5 41.5 64.6 

80 -28.2 54.8 63.7 

100 -34.1 71.6 59.8 

12 pm-1 pm 

20 -10.2 15.3 79.3 

40 -19.6 33.2 69.6 

60 -29.4 47.1 71.7 

80 -39.8 62.6 72.1 

100 -48.9 78.9 69.9 

1 pm-2 pm 

20 -8.5 18.8 61.4 

40 -17.3 35.2 61.8 

60 -25.0 55.2 57.8 

80 -32.6 72.1 57.3 

100 -42.3 89.4 58.4 

2 pm-3 pm 

20 -6.6 18.9 52.2 

40 -12.6 37.1 49.9 

60 -21.1 58.2 50.2 

80 -27.0 76.4 49.6 

100 -32.7 95.6 48.3 

3 pm-4 pm 

20 -1.5 20.2 32.7 

40 -3.8 41.5 31.9 

60 -5.3 63.2 30.8 

80 -7.6 81.2 32.1 

100 -10.0 103.2 31.6 

4 pm-5 pm 

20 5.6 20.7 16.2 

40 9.0 44.8 16.1 

60 17.5 64.8 15.0 

80 22.4 86.9 15.2 

100 27.4 109.1 15.2 

5 pm-6 pm 

20 14.3 23.3 4.9 

40 29.4 48.1 4.5 

60 42.9 70.7 4.6 

80 57.8 94.9 4.6 

100 71.1 117.2 4.8 

6 pm-7 pm 

20 23.8 25.2 0.8 

40 48.0 51.4 0.8 

60 70.0 75.6 0.9 

80 94.1 101.0 0.9 

100 117.9 125.3 0.9 

Average    35.6 

* Values for each cell in these columns reflects the average of 100 experiment. 
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6.3.2.b. Varying prosumers distribution  

In this scenario, we considered “what is the load balancing potential for communities with 

different ratio of prosumers?”. Therefore, we considered varying level of PV integration in the 

community, without considering any storage or users’ flexibility. A community size of 𝑁 = 20, 

and 100 repetition of experiment with bootstrapping was considered. Figure 6-9 presents the 

complementarity factor (%) for three subsequent hours (2pm-5pm). Prosumers ratio (i.e., PV 

integration) of {25%, 50%, 75%, 100%} was considered for the community. Therefore, in each 

experiment, 5, 10, 15, and 20 (out of 20) prosumers exist in the community. As can be seen, during 

2-3 pm, with 75% and 100% prosumer ratio, the 𝐶𝐹 exceeds 100% (109% and 274%, respectively), 

thereby covering the entire demand of both prosumers and consumers and offering excess surplus, 

which could go back to the grid or stored in battery. For 25% and 50% of prosumers ratio in that 

case, the median of 𝐶𝐹 is 19% and 56%, respectively. During 3-4pm, only with 100% prosumers 

ratio, the 𝐶𝐹 exceeds 100% (149%) while for 25%, 50%, and 75% prosumer ratio, 13%, 33%, and 

74% of the network demand can be supplied by prosumers. However, during 4-5pm, with 100% 

prosumer ratio, the 𝐶𝐹 only reaches up to 50%, while lowering PV integration further limits the 

complementarity in network (𝐶𝐹 of only 7% with 25% prosumer ratio).  

 

   (a)            (b)                   (c) 

Figure 6-9. Comparison of complementarity factor for varying level of prosumers in the 

community (𝑁 = 20) at (a) 2-3pm, (b) 3-4pm, and (c) 4-5pm. 

Due to the highly varied energy demand and load profiles, the 𝐶𝐹 values in Figure 6-9 shows 

considerable variation in different experiments. Figure 6-10 shows the distribution of 

complementarity factor at 2-3pm for a prosumer ratio of 0.25 (first case in Figure 6-9(a)). Due to 

the similarity to the normal distribution, a two-sample Kolmogorov-Smirnov (KS) test on the 

histogram and normal distribution was conducted. The test result was not significant (p-

value=0.89), indicating the normality of the distribution. The KS test for other scenarios (different 
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prosumers ratio) in addition to different hours in Figure 6-9 showed p-values of higher than 0.05 

except in one case. 

 

Figure 6-10. Histogram of complementarity factor at 14pm-15pm for prosumer ratio of 0.25. 

Figure 6-11 compares the average complementarity factor and its 95% confidence interval for 

different prosumer ratio during hours of PV generation. Due to the high variation across different 

prosumer ratio and hour of the day, the y-axis is shown in logarithmic scale. For all the scenarios, 

it was observed that during the timeframe of 9am-4pm, the aggregate net energy of prosumers was 

negative (i.e., surplus energy), with high potential of P2P exchange. For 25% and 50% prosumer 

ratio, the highest 𝐶𝐹, during 12-13pm, offers a value 27% and 75%. However, for 75% and 100% 

prosumer ratio, the 𝐶𝐹 exceeds 100% from around 10am-3pm, with the highest value of 165% and 

420% during 12-13pm. Additionally, during 11am-3pm, with high integration of 75% and 100% 

PV, not only prosumers can supply their own demand and consumer peers, but on average they 

still have a surplus energy equal to 30% and 217% of the network demand. However, without any 

type of storage, the surplus energy has to go back to the grid with the option of net metering/feed-

in-tariff. This observation shows that, while increasing PV generation improves load balancing 

potential, its benefit is limited to the hours of highest PV generation, but not during later times in 

evening when the demand gets higher. Specifically, regardless of the PV integration level, after 

4pm, the aggregate prosumers net energy was positive, which considerably limit the 

complementarity factor. Even with 100% prosumer ratio in community, only 12% and 2% of the 

network deficit (from both prosumers and consumers) could be supplied by PV generation. 
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Figure 6-11. Impact of varying prosumer ratio on complementarity factor of the community 

during PV generation hours for 25%, 50%, 75%, and 100% prosumer ratio.  

To summarize, in communities with high ratio of prosumers with PV standalone systems (more 

than 75%), energy trading can cover all the demand (100%) of community during hours of highest 

PV generation (11am-3pm). Additionally, extra surplus energy is available during those hours 

with the potential of storage or feeding back to the grid. However, in communities with PV 

standalone systems, significant shortage in supply of the community can be induced during later 

times of PV generation (4-7pm), in which prosumers are not able to supply their own demand. 

Therefore, to efficiently utilize the PV generation for energy trading leading to later times (4-7pm), 

alternate measures, including deploying battery system or users’ flexibility is needed.  

6.3.2.c. Integration of battery storage 

In this scenario, we considered “what is the load balancing potential for communities with 

different ratio of battery storage?”. Therefore, in addition to setting varying ratios of PV 

integration in the previous section, we also considered different levels of battery storage adoption 

in the community. The adoption of battery storage is only considered for the prosumers. Therefore, 

for each ratio of prosumers, we considered the different battery integration levels for prosumers. 

PV ratios of {0.25, 0.5, 0.75, and 1} and battery ratios of {0.25, 0.5, 0.75, and 1} was used for 

forming communities with 𝑁=20 through repeating 100 experiments. As an example for PV ratio 

of 0.5, and battery ratio of 0.5, 10 prosumers and 10 consumers includes the community, out of 

which 5 prosumers have battery storage.  
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Initially, the presence of a community storage level without physical constraint for charging was 

considered to show the most optimistic load balancing potential with unlimited storage. Figure 

6-12 shows the impact of the community storage battery for different prosumers ratios. During 10 

to 15, which were the hours that 𝐶𝐹 exceeds 100% with PV-standalone system (untapped potential 

for PV utilization), the battery stores the extra energy and 𝐶𝐹 is set 100. From 16 to 19, which 

were the hours with low chance of energy trading (Figure 6-11), a 100% ratio of prosumers could 

result 𝐶𝐹 = 100 during all evening hours, given unlimited storage. With 75% prosumer ratio, 

the 𝐶𝐹 at 4-5pm, 5-6pm and 6-7pm, would be 85%, 49%, and 10%, which shows an improvement 

of 180%, 75% and 80% compared to the similar case with the PV-standalone system. 

 

Figure 6-12. Impact of community storage battery without physical constraints during PV 

generation hours for 25%, 50%, 75%, and 100% prosumer ratio. 

 

Figure 6-13 presents the self-sufficiency of the community during the PV generation hours under 

different PV and battery adoption level. As can be seen, the increase of battery adoption results in 

improvement in self-sufficiency of the community. Particularly, a maximum improvement of 

4.8%, 11.3%, 13.0, and 17.0% in self-sufficiency is observed with full integration of batteries, 

under 25%, 50%, 75%, and 100% of PV ratio respectively. Specifically, with 100% PV-battery 

adoption, the self-sufficiency of the community increases to 83%.  



141 

 

 

Figure 6-13. Self-sufficiency of the community with different levels of PV and battery. 

6.3.2.d. Impact of users’ flexibility 

In this scenario, we considered “what is the impact of users’ flexibility in improving the load 

balancing potential?”. We specifically considered different levels of contribution as {20%, 40%, 

60%, 80%, 100%} from users under different combinations of flexible loads {AC 1°, AC 1° + 

deferrable loads, AC 2°(with pre-cooling), AC 2°(pre-cooling) + deferrable loads, AC 3°, AC 3° + 

deferrable loads}. Given the low potential of P2P exchange during hours leading to evening time 

(Figure 6-11), the flexibility was considered during a relatively short needed time, which is the 

timeframe of 5pm-7pm.  

Figure 6-14 present the self-sufficiency of the community under different PV integration (each 

subplot) and different flexibility contributions from prosumers/consumers. Each line represent the 

type of load/temperature set point change in which the flexibility was considered. Each data point 

shows the mean value from 100 experiments. As can be seen, increasing the flexibility will result 



142 

 

in increased self-sufficiency. Particularly, for 25% PV, a maximum increase of 4.4% (22.1% to 

26.5%), for 50% PV, an increase of 5.4% (39.3% to 44.7%), for 75% PV, an increase of 9.0% 

(53.2% to 62.2%), and for 100% PV, an increase of 10.4% (65.1% to 75.5%) was observed. 

Regarding the level of flexibility contribution, on average (regardless of PV integration), an 

improvement of 2.2%, 4.1%, 5.0%, and 7.5% with 25%, 50%, 75%, and 100% flexibility 

participation over the baseline is observed. 

To summarize, flexibility in users’ behavior, with small temperature setpoint change (2°) and 

deferring the flexible load operation, during hours of low generation (5pm-7pm) can improve the 

self-sufficiency up to more than 10%. Specifically, in communities with 100% PV ratio, the self-

sufficiency at PV generation time could reach to ~75%.      

                  
 (a)       (b) 

         
        (c)          (d) 

 

Figure 6-14. Impact of flexible behavior on self-sufficiency for (a) 25% PV integration, (b) 50% 

PV integration, (c) 75% PV integration and (d) 100% PV integration. 
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6.3.2.e. Comparison of users’ flexibility versus battery storage  

The results in Sections 6.3.2.c and 6.3.2.d showed the potential of two attributes (battery storage 

and user’s flexibility) for improving the load balancing potential during PV generation hours. To 

compare the impact of these two attributes, Figure 6-15 shows the improvement of self-sufficiency 

through users’ flexibility and battery storage compared to the baseline (i.e., just PV integration). 

As can be seen, with increasing the PV ratio in the community, the improvement by including 

users’ flexibility and battery storage is more highlighted. Furthermore, with low PV ratio (25%) 

the impact of user’s flexibility is comparable with the battery storage while with high PV ratio, 

battery storage shows higher improvement compared to the user’s flexibility. Nonetheless, with 

high PV ratios of 75% and 100% in the community, the users’ flexibility practice improvements 

showed to be 69% and 61% of that of the battery storage. Therefore, in the case of low/none 

batteries adoption in the community, users’ flexibility can be deemed as a viable/alternate 

approach for utilizing PV generation for energy trading. This could be achieved by using advanced 

technologies like smart appliances and smart thermostat, which allow for automation under user’s 

allowance, or users’ manual practice in operation of flexible loads. 

 

Figure 6-15. Comparison of self-sufficiency improvement with different users’ flexibility and 

battery storage.  

6.3.3. Limitation 

There are a number of limitations associated with this work: (1) Like any data-driven studies, the 

findings presented here were extracted from the dataset. Therefore, the generalizability of findings 

is associated with similarity in energy profiles of prosumers/consumers. Nonetheless, we used the 

data from Pecan Street Project [68], which is currently one of the largest campaign for energy 

initiative, and selected ~250 households from the ERCOT grid. Nonetheless, the majority of 

analysis presented here included sub-hourly resolution demand and generation data. Demand data 
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is extracted from smart metering, which is a ubiquitous and available metering infrastructure in 

most regions. Generation data, in the absence of real PV data, can also be estimated from 

temperature and geographical location information with open-source solutions (e.g., PV Watts1). 

Therefore, similar type of analysis can be carried out easily on other datasets. (2) The findings for 

load balancing potential for the community was obtained through the aggregation of surplus and 

deficit energy of individual consumers, assuming the energy trading without including 

transmission loss or network constraints. Studying these factors could further shed light on the 

findings of this work. (3) For the battery scenario, we considered flat pricing rate. Therefore, 

battery was discharged at the earliest time that demand exceeds generation. In the presence of 

dynamic pricing, sophisticated optimization techniques can be used for battery modeling and ideal 

times for energy trading. (4) We relied on the presence of PV systems that are installed in 

prosumers’ households, with the same capacity as specified in the dataset. Therefore, the impact 

of different PV capacities or battery sizing was not modeled. (5) We considered discrete values for 

PV, battery, and flexibility rates. Nonetheless, the model is dynamic and can map the results for 

any arbitrary values. Such criteria can be set by utilities or decision-makers. (6) We presented the 

results of case-study for the summer. Therefore, integrating the results over the yearly period could 

show the impact of seasonality.  

6.4. Conclusion 

This paper presents data-driven quantification of load balancing potential amongst prosumers and 

consumers, which could be achieved through energy trading. A case-study of ~250 buildings was 

done to quantify the surplus/deficit energy of prosumers and consumers under the presence of PV 

solar generation for communities. The impact of hour of the day during PV generation, PV 

integration rate, battery integration rate, and users’ flexibility on load operation was modeled to 

measure complementarity and self-sufficiency.  

The following key observations were made: Standalone PV in households would considerably help 

in balancing the surplus and deficit energy within a community during times of high solar 

generation. Specifically, with equal distribution of prosumers and consumers, ~75% of deficit 

energy in the community can be canceled out prosumers at the highest PV peak hour. Furthermore, 

with 100% PV integration, the community can become entirely self-dependent during at high PV 

                                                      
1 https://pvwatts.nrel.gov/ 

https://pvwatts.nrel.gov/
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generation times (11am-3pm) through covering 100% of deficit energy by energy trading. 

However, during the times leading to evening (4pm afterwards to 7pm when PV generation 

diminishes), the prosumers no longer could supply their own demand. As a result, the impact of 

alternate measures such as battery storage systems or user’s flexibility was studied. It was observed 

that with 100% battery integration or 100% users’ flexibility in adjusting flexible loads during 

critical times, the self-sufficiency of the community could improve around 85% and 75% 

respectively. Furthermore, at the absence of storage systems, the user’s flexibility showed the 

improvement in self-sufficiency by ~60% of what could be offered by commercial conventional 

storage batteries. 

Future directions of this research comprise of studying the seasonality impact, evaluation on other 

datasets at different geographical locations, the impact of different battery and PV sizing, and 

including the network constraints to model P2P energy trading.  
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Chapter 7: Conclusion 

7.1. Summary of studies 

In this dissertation, data-driven techniques are proposed for analyzing the temporal energy data of 

households with application to distributed energy management. As the core objective, the solutions 

addressed in this work aim at improving the match between energy demand and energy supply of 

the communities through mining the high-resolution energy data of households. Specifically, the 

problems associated with this dissertation included (1) segmentation of households according to 

their peak demand shaving potential for DR events, (3) inference of time-of-use events of 

appliances for DR, and (4) impact of integrating small-scale distributed elements (e.g., solar 

panels, storage, and smart loads) for balancing the demand-supply. 

For the first problem, a segmentation approach through time-series analysis on energy data and 

statistical modeling was introduced. The complex interactional behavior of human-appliances 

were modeled by extracting the frequency, consistency, and peak time usage on energy data. Using 

the approach, the community of households were ranked based on their peak shaving potential for 

DR events. The results showed the applicability of the predictive approach for segregating 

different households according to their peak shaving potential. Through quantitative analysis, the 

potential of different appropriate loads for DR applications (e.g., EV, AC, and dryer) were ranked. 

Furthermore, through simulation, the proposed segmentation approach showed the applicability of 

avoiding the rebounded effect (i.e., creating undesired peak demand right after DR event) through 

justified identification of a small set of households in the community. 

For the second problem, ML solutions were introduced to infer the timing of appliance events from 

the whole-house energy data. Given the primary limitation of prior efforts that require considerable 

effort for model parameter selection, the objective was to provide a generalizable training dataset 

to avoid in-situ training. The problem was investigated for both low-resolution (e.g., 15 minute) 

and high-resolution data (60Hz). For the low-resolution data, we introduced a framework that first 

identify the similar households in the community based on energy behavior, and then used 

classifiers for appliance time-of-use inference. Neural network, SVM, random forest, and decision 

tree were tested to classify the appliance ‘On’, ‘Off’ events from the sub-intervals of energy load 

shapes. Results show average F-score of 83%, and 71% for EV and dryer across ten test 

households, solely by training the model on a set of neighbors in the community with known labels. 
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For the high-resolution data, we first introduced a self-tuning spectral clustering approach that first 

cluster the appliance signature without a priori information. The extracted clusters were used to 

create a processed library of appliance signature in the same environment. Thereafter, outlier 

detection was used on the whole-house energy samples to identify similar signatures to those in 

the library and thereby identifying new events. The evaluation on ~15000 events showed a high 

accuracy for event detection. Specifically, for major appliances for DR applications, AC, 

dishwasher, and washing machine had an F-score of higher than 90%. 

For the third study, under the realistic uncertainty of load profiles, the impact of small-scale 

distributed elements (solar panels, storage, and smart loads) for improving the demand-supply 

problem was studied. Communities including more than 100 prosumer and 100 consumers in 

Austin, TX was used as a case-study. It was observed that communities with equal distribution of 

prosumers and consumers, ~75% of deficit energy in the community can be canceled out by 

prosumers at the highest PV peak hour. Furthermore, with 100% PV integration, the community 

can become entirely self-dependent during at high PV generation times (11am-3pm). The 

integration of other elements such as battery storage and smart appliances showed the potential of 

increasing the self-sufficiency of the community to around 85% and 75%, respectively. 

Furthermore, the user’s flexibility showed to be a viable solution to improve the self-sufficiency 

by offering ~60% of what could be achieved by commercial battery storage. 

7.2. Summary of contribution 

In summary, this dissertation has contributed to adaptive operation of distributed energy 

management applications by leveraging the interactional energy consumption behavior of 

households through data analytics. The contributions of this work, which addressed the research 

questions, are outlined as follows: 

(1) This study introduced a segmentation approach for ranking the households based on peak 

reduction potential. Furthermore, through community-level analysis, the flexibility of different 

major appliances, at different hours of the day were quantified. This actionable information could 

assist electric utilities for resources planning and program design for DR. (2) This study introduced 

machine learning-based event detection frameworks for identifying the major appliances time-of-

use. To envision an scalable approach, the proposed solutions do not call for model parameter 

search, and the basis for model training/parameter search was merely based on automated 
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techniques or learning from similar households with known information. (3) This study 

investigated the role of small-scale distributed resources for improving the demand/supply match 

under the impact of uncertainty in energy behavior at the community-scale. The data-driven 

analysis could assist utilities and energy planners for resource allocation to improve the self-

sufficiency of communities. 

7.3. Future research directions 

Future works of this research can address several questions, as elaborated here: 

(1) Integrating the users’ perception and how different subset of households respond to DR events 

could shed light on the potential of stratified engagement of households for DR application and 

reshaping the network demand. For our first study, we considered the user compliance factor by 

relying on previous community-level empirical studies. However, accounting for different levels 

of willingness in responding to the DR requests for buildings needs more comprehensive 

investigation. For instance, users with frequent and consistent energy patterns might be less willing 

to shift their loads, even with proper forms of incentives. Therefore, further investigations based 

on behavioral theories and pilot studies are important to associate the actual user compliance and 

historically observed consumption behavior. 

(2) ML-based methods and optimizations techniques have high potential to improve the flexibility 

of the decentralized energy systems. For example, advanced forecasting techniques can be used 

for predicting the demand/generation of consumers/prosumers, and optimization techniques could 

be used to model the P2P exchange under non-flat pricing (i.e., dynamic pricing) to maximize the 

energy saving and minimize generation cost. Furthermore, the rise of secure and decentralized 

solutions like blockchain provide opportunities for modeling P2P exchange transactions. Through 

integrating these elements, future research could focus on developing P2P exchange solutions by 

minimizing the forecasting errors and maximizing the utilization of renewables for decentralized 

applications. 

(3) Extreme events like power outage are undesired situations that impact grid reliability. Although 

this work mainly focused on community-level data for improved energy balancing of the network 

to potentially avoid those issues, looking at individual elements, i.e., buildings, can shed light on 

the smart operation of loads in case of facing these undesired events. Specifically, through the 

adoption of battery storage coupled with Home Energy Management (HEM) systems, modules 
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could be developed for adjusting the priority levels of individual loads operation. Accordingly, 

developing optimization models for HEM based on user priority is regarded as an active area of 

research. 

(4) To further improve the model training for ToU inference, using larger samples for training 

could be helpful. Currently, commercial off-the-shelf smart plugs (e.g., Amazon smart plugs) are 

available as easily deployable solutions to record the information of individual loads. Therefore, 

through a larger adoption of these devices, the larger samples for training can be obtained, which 

in turn could improve the model performance. However, one open question is the private 

information that could be revealed by obtaining this information from households. Although the 

model training and analytics are carried out on a cloud server, it could still be subject to privacy 

leaks. Recent attempts (e.g., [273, 274]) have proposed privacy-preserving techniques to obfuscate 

energy data while still allowing for sophisticated machine learning solutions, and this is an ongoing 

area of research. 

(5) Like any data-driven methods, our findings were presented based on evaluation of the 

considered datasets in this work. Nonetheless, we primarily used the samples from the Pecan Street 

Projects, as the most largest energy dataset publicly available to scholars. However, with the 

increased adoption of novel metering devices, more data will be available for further evaluation. 

Therefore, to increase the generalizability of the findings, future work could look at larger 

spatiotemporal scope, through investigation of seasonality impact and geographical diversity. 
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