## THE MASS MATRIX IN DYNAMIC STRUCTURAL ANALYSIS

by

Thomas J. Enneking

Thesis submitted to the Graduate Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Civil Engineering

APPROVED:

SZ M. Holzer, Chairman

R. H. Plaut

A. E. Somers, Jr.

December, 1978

Blacksburg, Virginia

### ACKNOWLEDGEMENTS

My appreciation is extended to Dr. Siegfried M. Holzer for his suggestions and support throughout this work and for his help in editing the manuscript. I also wish to thank Dr. R. H. Plaut, Dr. A. E. Somers and Dr. L. Meirovitch for their assistance and encouragement, not only in the writing of this report, but throughout my graduate study. Special thanks are for my wife, , who provided me with encouragement and inspiration during the preparation of this report.

## TABLE OF CONTENTS

|                                                                                          | Page |
|------------------------------------------------------------------------------------------|------|
| ACKNOWLEDGEMENTS                                                                         | ii   |
| LIST OF FIGURES                                                                          | iv   |
| LIST OF TABLES                                                                           | v    |
| CHAPTER I - INTRODUCTION                                                                 | 1    |
| CHAPTER II - LITERATURE STUDY ON MASS MATRICES AND RELATED<br>STRUCTURAL CHARACTERISTICS | 3    |
| Summary                                                                                  | 16   |
| CHAPTER III - DEVELOPMENT OF THE MASS MATRICES FOR THE<br>COMPARISON STUDY               | 17   |
| Consistent Mass Matrix                                                                   | 17   |
| Lumped Diagonal Mass Matrix                                                              | 21   |
| α-Factor Diagonal Mass Matrix                                                            | 25   |
| Scaled Diagonal Mass Matrix                                                              | 26   |
| CHAPTER IV - COMPARISON STUDY                                                            | 29   |
| Description of Analysis Process                                                          | 29   |
| Test Problem 1 - Simply-Supported Beam                                                   | 32   |
| Test Problem 2 - Three Member Frame                                                      | 36   |
| Test Problem 3 - Three Story Single Bay Frame                                            | 40   |
| Time and Cost Comparison                                                                 | 44   |
| CHAPTER V - SUMMARY AND CONCLUSIONS                                                      | 46   |
| REFERENCES                                                                               | 48   |
| APPENDIX A - USERS GUIDE FOR COMPUTER CODE                                               | 57   |
| APPENDIX B - COMPUTER CODE LISTING                                                       | 62   |
| VITA                                                                                     | 134  |
|                                                                                          |      |

ABSTRACT

## LIST OF FIGURES

| Figure | Page                                                        |
|--------|-------------------------------------------------------------|
| 1      | Kinetic Energy Formulation of a Differential Volume 18      |
| 2      | Beam-Column Element Used in the Comparison Study $\dots$ 20 |
| 3      | Beam Elements                                               |
| 4      | Test Problem 1 - Simply-Supported Beam                      |
| 5      | Test Problem 2 - Three Member Frame                         |
| 6      | Mode Shapes for Test Problem 2                              |
| 7      | Test Problem 3 - Three Story Single Bay Frame 41            |

# LIST OF TABLES

.

| Table |                                                                                     | Page |
|-------|-------------------------------------------------------------------------------------|------|
| 1     | Literature Study of Mass Matrices and Related<br>Structural Characteristics         | 4    |
| 2     | Mass Matrix Type - Definition of Symbols                                            | 10   |
| 3     | Finite Element Model - Definition of Symbols                                        | 11   |
| 4     | Continuum Model - Definition of Symbols                                             | 12   |
| 5     | Solution Process - Definition of Symbols                                            | 14   |
| 6     | Matrix Reduction Method - Definition of Symbols                                     | 15   |
| 7     | Natural Frequencies of a Simply-Supported Beam                                      | 34   |
| 8     | Percentage Differences Between Exact and<br>Computed Frequencies                    | 35   |
| 9     | Natural Frequencies of a Three Member Frame                                         | 38   |
| 10    | Member Properties for Test Problem 3 - Three<br>Story Single Bay Frame              | 42   |
| 11    | Natural Frequencies of a Three Story Single<br>Bay Frame                            | 43   |
| 12    | Execution Times and Corresponding Costs for<br>Consistent and Diagonal Mass Systems | 45   |

#### CHAPTER I

### INTRODUCTION

Traditionally engineers have lumped the mass of a structure at a discrete number of points based solely on experience. Then with the introduction of consistent mass approximations for continuous systems, it appeared that a proper discretization procedure had evolved. Now, however, there seems to be a trend to return to the lumped or diagonal mass approach, as researchers find that the use of consistent mass matrices does not always lead to improved accuracy in frequency prediction and always involves additional computations (12, 19, 20, 23, 28, 35, 36, 41, 49, 51, 82, 92, 93, 101).

The purpose of this investigation is to present a literature study pertaining to mass matrices and their role in structural analysis and to conduct a comparison study on different types of mass matrices on the basis of frequency prediction. In order to perform the comparison study, a FORTRAN code was developed using beam-column elements to assemble the system mass matrix and calculate the eigenvalues and eigenvectors. This code was then added to the code developed in CE4002-Matrix Structural Analysis and CE5980-Computer Aided Structural Design.

The formulation of the mass matrix has not been as thoroughly investigated as the stiffness matrix. This is probably because it is required for only a limited class of problems. However, as structures become lighter and more sophisticated, vibration analysis, and consequently the mass matrix, becomes critical to a complete structural analysis.

In the same way that the stiffness matrix relates the nodal displacements to the strain energy of an element, the mass matrix relates the no-

dal velocities to the kinetic energy. Let  $\rho$  = the mass per unit volume of the element and N = the interpolation matrix containing functions used to discretize the velocity field of the continuum. The mass matrix, m, can be written as

 $m = \iiint_{V} \rho N^{T} N dV$ 

where V = the volume of the element. The selection of these interpolation functions is arbitrary, but one obvious possibility is to use the same functions that were used to discretize the displacement field. If this is done, the kinetic energy of the elements will be consistent with the strain energy, and the resulting mass matrix is called a consistent mass matrix. Using a mass matrix of this type can at times lead to increased accuracy in frequency prediction; however, there is always an accompanying increase in computational effort (3, 5, 14, 16, 54, 88).

A lumped diagonal mass matrix is, as the name implies, a diagonal matrix containing the structural mass of a system lumped at a discrete number of points. This lumping is normally achieved by ascribing the mass of a certain portion of the structure to each of the discrete points approximating the continuum. There are other methods of forming diagonal mass matrices (24, 26, 35, 36, 49, 82, 86), which will be introduced in Chapter II and examined in greater detail in Chapter III. A diagonal system, formed by any method, leads to a relatively simple and efficient solution process. The computed frequencies and mode shapes, however, may differ from the exact, especially in the higher modes (6, 14, 41, 51, 54, 62, 67, 88).

#### CHAPTER II

### LITERATURE STUDY ON MASS MATRICES AND RELATED STRUCTURAL CHARACTERISTICS

This chapter contains a literature study on mass matrices and related structural characteristics. Element models, solution procedures, and mass matrix types were investigated to determine possible correlations between them and accurate frequency predictions. Also included in the study were methods for reducing the size, and consequently the solution time, of complex eigenproblems. Therefore, the role of the mass matrix in the current state of the art of dynamic structural analysis can be determined.

The information derived from this study is presented in Table 1. The symbols used in Table 1 are defined, in some detail, in Tables 2 - 6. Following these tables are brief summaries of key point.

The study contains information from various books and conference proceedings; however, the major sources were articles found in journals dealing with numerical methods, computers, and structures. Most of these were published since 1963.

# Table l

| Literature Study of | Mass Matrices | and Related | Structural | Characteristics |
|---------------------|---------------|-------------|------------|-----------------|
|---------------------|---------------|-------------|------------|-----------------|

| Reference<br>Number                                    |            | Ma<br>Mat<br>Ty | ss<br>rix<br>pe | E     | Fin<br>lem<br>Mod | ite<br>ent<br>el | Continuum<br>Model |        |             | Solution<br>Process |                   |                       | Matri |                       |
|--------------------------------------------------------|------------|-----------------|-----------------|-------|-------------------|------------------|--------------------|--------|-------------|---------------------|-------------------|-----------------------|-------|-----------------------|
| References<br>are grouped<br>according to<br>mass type | Consistent | Lumped          | Other           | Beams | Plates            | Shells           | Beams              | Plates | Frames      | Other               | Modal<br>Analysis | Direct<br>Integration | Other | x Reduction<br>Method |
| Consistent                                             | <br>[      |                 | Ì               |       |                   |                  | [                  |        | 4<br>5<br>7 |                     | ·                 | *<br>*                | }     |                       |
| 3                                                      | x          |                 |                 | 2     |                   |                  | РСВ                |        |             |                     | (<br> <br>        | 1                     | RL    | RNU                   |
| 4                                                      | X          |                 | Į               | 1     |                   | }                | CAB                | •      |             |                     |                   |                       | ND    | ASH                   |
| 4                                                      | x          |                 |                 | 1     |                   |                  | SSB                |        |             |                     |                   |                       | ND    | ASH                   |
| 4                                                      | X          |                 |                 | 1     |                   | ļ                | FFB                |        |             |                     |                   |                       | ND    | ASH                   |
| 5                                                      | x          |                 |                 | 2     |                   | ĺ                | CAB                | }      | }           |                     |                   | i<br>1                | ND    | RNU                   |
| 6                                                      | x          |                 | <br> <br>       | 1     |                   |                  | SSB                |        | Í           |                     |                   |                       | ND    | RNU                   |
| 6                                                      | x          |                 |                 | 1     |                   |                  | FFB                | )<br>! |             |                     |                   |                       | ND    | RNU                   |
| 7                                                      | x          | İ               |                 |       | 8                 | 14               |                    | l<br>t | ;<br>;<br>; | NP                  |                   | 1                     | ND    | RNU                   |
| 12                                                     | X          |                 |                 | 1     | 8                 |                  | CAB                | СВ     |             |                     |                   |                       | ND    | RNU                   |
| 14                                                     | x          |                 |                 | 3     |                   |                  |                    |        | :           | NP                  |                   |                       | ND    | RNU                   |
| 16                                                     | X          |                 |                 |       | 9                 | [<br>[           |                    | ССР    |             |                     |                   |                       | ND    | RNU                   |
| 19                                                     | X          |                 |                 |       | 9                 | 14               |                    | ССР    |             | СС                  | HQRI              |                       |       | RNU                   |
| 20                                                     | X          |                 |                 |       |                   | 14               |                    | }      |             | SC                  |                   |                       | ND    | RNU                   |
| 20                                                     | x          |                 |                 |       | 18                |                  |                    |        |             | СС                  |                   |                       | ND    | RNU                   |
| 22                                                     | X          |                 |                 | 6     |                   |                  | CAB                |        |             |                     |                   |                       | ND    | RNU                   |
| 27                                                     | x          |                 |                 |       |                   | NES              |                    | ,<br>  |             | NP                  |                   |                       | ND    | RNU                   |
| 28                                                     | х          |                 |                 |       |                   | 17               |                    |        |             | CC                  |                   |                       | ND    | RNU                   |

| Τa | зb | 1 | е | 1 |
|----|----|---|---|---|
|    |    |   |   |   |

Literature Study of Mass Matrices and Related Structural Characteristics

| Reference<br>Number                                    |            | Mas<br>Matr<br>Typ | ss<br>cix<br>pe | Fi<br>El<br>M | .nit<br>.eme<br>lode | e<br>nt<br>1 | Continuum<br>Model |        |        | Sol:<br>Pro | Matri             |                       |       |                       |
|--------------------------------------------------------|------------|--------------------|-----------------|---------------|----------------------|--------------|--------------------|--------|--------|-------------|-------------------|-----------------------|-------|-----------------------|
| References<br>are grouped<br>according to<br>mass type | Consistent | Lumped             | Other           | Beams         | Plates               | Shells       | Beams              | Plates | Frames | Other       | Modal<br>Analysis | Direct<br>Integration | Other | x Reduction<br>Method |
| Consistent                                             |            |                    |                 |               |                      |              |                    |        |        |             |                   |                       |       |                       |
| 29                                                     | X          |                    |                 |               |                      | 18           |                    |        |        | SSM         |                   |                       | ND    | RNU                   |
| 31                                                     | X          |                    |                 |               | 9                    |              |                    |        |        | NP          |                   | ļ                     | ND    | RNU                   |
| 32                                                     | x          |                    |                 |               |                      | NES          |                    |        |        | NP          |                   |                       | ND    | GUY                   |
| 34                                                     | x          |                    |                 |               | , 9                  |              |                    | CAP    | ]      |             |                   |                       | ND    | НО                    |
| 34                                                     | x          |                    |                 |               |                      | 15           |                    | COL    |        |             |                   |                       | ND    | НО                    |
| 38                                                     | x          |                    |                 | 1             | 2                    |              | САВ                |        | PF     |             | BAT               | NB                    |       | GUY                   |
| 38                                                     | X          |                    |                 | 3             |                      |              | SSB                |        | ;      |             | BAT               | NB                    |       | GUY                   |
| 50                                                     | X          |                    |                 |               | 9                    |              |                    | ССР    |        |             |                   |                       | ND    | RNU                   |
| 51                                                     | X          |                    |                 | 1             |                      |              | SSB                |        |        |             | HQRI              | NB                    |       | RNU                   |
| 51                                                     | x          |                    |                 | 1             |                      |              | FFB                |        |        |             | JAC               | wo                    |       | RNU                   |
| 54                                                     | x          |                    |                 | 1             |                      |              |                    |        | PF     |             |                   |                       | ND    | RNU                   |
| 55                                                     | X          |                    |                 | 5             |                      |              | SSC                |        |        |             |                   | 2                     | ND    | RNU                   |
| 55                                                     | X          |                    |                 | 5             |                      |              | САС                |        | ĺ      |             |                   |                       | ND    | RNU                   |
| 59                                                     | X          |                    |                 |               |                      | 16           |                    | SSP    |        |             |                   |                       | ND    | RNU                   |
| 64                                                     | X          |                    |                 | 1             |                      |              | CB                 |        |        |             |                   | ł                     | ND    | RNU                   |
| 65                                                     | X          |                    |                 |               |                      | 11           |                    |        |        | SC          |                   | (                     | ND    | RNU                   |
| 70                                                     | Х          |                    |                 |               | 9                    |              |                    | ССР    |        |             |                   |                       | ND    | RNU                   |

# Table l

| Literature Study of Mass Matrices and Related Structural Characteristic |
|-------------------------------------------------------------------------|
|-------------------------------------------------------------------------|

| Reference<br>Number                                    | 1          | Mas<br>Matı<br>Typ | ss<br>cix<br>De | Fi<br>El<br>M | nit<br>eme<br>lode | e<br>nt<br>1 | Continuum<br>Model |        |        | Sol<br>Pr        | Matri             |                       |       |                       |
|--------------------------------------------------------|------------|--------------------|-----------------|---------------|--------------------|--------------|--------------------|--------|--------|------------------|-------------------|-----------------------|-------|-----------------------|
| References<br>are grouped<br>according to<br>mass type | Consistent | Lumped             | Other           | Beams         | Plates             | Shells       | Beams              | Plates | Frames | Other            | Modal<br>Analysis | Direct<br>Integration | Other | x Reduction<br>Method |
| Consistent                                             |            |                    |                 |               |                    |              |                    | ,<br>, |        | {<br> <br>       |                   | 1                     |       |                       |
| 70                                                     | x          |                    |                 |               | 9                  |              |                    | SSP    |        |                  |                   |                       | ND    | RNU                   |
| 71                                                     | X          |                    |                 |               | 9                  |              |                    | SSP    |        |                  |                   |                       | ND    | RNU                   |
| 73                                                     | X          |                    |                 |               | 10                 |              |                    | RD     |        | 1                | ļ                 | ļ                     | ND    | RNU                   |
| 75                                                     | x          |                    |                 |               | 9                  |              | l<br>              | CAP    |        |                  | HQRI              |                       |       | RNU                   |
| 75                                                     | x          |                    |                 |               | 9                  |              |                    | SSP    |        |                  | HQRI              |                       |       | RNU                   |
| 76                                                     | х          |                    |                 | 2             |                    |              | САВ                |        |        | <br> <br>}       |                   |                       | ND    | RNU                   |
| 79                                                     | X          |                    |                 |               | 9                  |              |                    | CCP    |        |                  |                   | 5                     | ND    | RNU                   |
| 79                                                     | х          |                    |                 |               | 9                  |              |                    | SSP    |        |                  |                   |                       | ND    | RNU                   |
| 80                                                     | x          |                    |                 | 1             |                    |              | САВ                |        |        |                  |                   |                       | ND    | RNU                   |
| 80                                                     | X          |                    |                 | 1             |                    |              | SSB                |        |        |                  | 1                 | 1                     | ND    | RNU                   |
| 82                                                     | X          | ]                  |                 |               | 9                  |              |                    | SSP    |        |                  |                   |                       | ND    | RNU                   |
| 83                                                     | x          |                    |                 |               | 9                  |              |                    | SSP    |        | l<br>l           | İ                 | NB                    |       | RNU                   |
| 84                                                     | X          |                    |                 |               |                    | 17           |                    |        |        | сс               |                   |                       | ND    | RNU                   |
| 88                                                     | X          |                    |                 |               |                    | 17           |                    | ;      |        | CC               |                   |                       | ND    | GUY                   |
| 89                                                     | Х          |                    |                 |               | 8                  |              |                    | CAP    |        | i<br>i<br>i<br>i |                   |                       | ND    | RNU                   |
| 90                                                     | X          |                    |                 |               |                    | 17           |                    | 1      |        | SCP              | HQRI              |                       | RQ    | RNU                   |
| 93                                                     | х          |                    |                 | J             |                    |              | САВ                |        |        | 1                |                   |                       | ND    | RNU                   |

| Table | 1 |
|-------|---|
|       |   |

Literature Study of Mass Matrices and Related Structural Characteristics

| Reference<br>Number                                    |            |        |       |       |        |        |       | Cont:<br>Moo | inuu<br>del | n     | Sol<br>Pr         | utior                 | 1     | Matri                 |
|--------------------------------------------------------|------------|--------|-------|-------|--------|--------|-------|--------------|-------------|-------|-------------------|-----------------------|-------|-----------------------|
| References<br>are grouped<br>according to<br>mass type | Consistent | Lumped | Other | Beams | Plates | Shells | Beams | Plates       | Frames      | Other | Modal<br>Analysis | Direct<br>Integration | Other | x Reduction<br>Method |
| Consistent                                             |            |        | Ì     |       |        |        |       |              |             |       |                   |                       |       |                       |
| 94                                                     | х          |        |       | 1     |        |        | SSB   |              |             |       |                   |                       | RQ    | RNU                   |
| 95                                                     | Х          |        |       | 1     |        |        |       | j            | SF          |       |                   |                       | ND    | RNU                   |
| 96                                                     | X          |        |       | 5     |        |        | SST   | i<br>i       |             |       |                   |                       | ND    | RNU                   |
| 99                                                     | х          |        |       | 1     |        |        |       |              | SF          |       |                   |                       | ND    | RNU                   |
| Lumped                                                 |            |        |       |       |        |        |       |              |             |       |                   |                       |       |                       |
| 1                                                      |            | х      |       | 4     |        | 16     | CAB   |              |             | сс    |                   |                       | ND    | RNU                   |
| 3                                                      |            | х      |       | 2     |        |        | РСВ   |              |             |       |                   |                       | RL    | RNU                   |
| 6                                                      |            | х      |       | 1     |        |        | SSB   |              |             |       |                   |                       | ND    | RNU                   |
| 6                                                      |            | X      |       | 1     |        |        | FFB   |              |             | ]     |                   |                       | ND    | RNU                   |
| 12                                                     |            | x      |       | 1     | 8      |        | CAB   | CR           |             |       |                   | DƯ                    |       | RNU                   |
| 13                                                     |            | x      |       | 3     |        |        |       |              | SF          |       |                   | DU                    |       | RNU                   |
| 17                                                     |            | x      |       | 1     |        |        |       |              | PF          |       |                   |                       | ND    | RNU                   |
| 18                                                     |            | х      |       | 2     |        |        | СВ    |              | PF          |       |                   | }                     | ND    | RNU                   |
| 19                                                     |            | X      |       |       | 9      | 14     |       | CCP          |             | СС    |                   | DU                    |       | RNU                   |
| 20                                                     |            | x      |       |       |        | 14     |       |              |             | SC    |                   | NB                    |       | RNU                   |
| 28                                                     |            | x      |       |       |        | 17     |       |              |             | СС    |                   | }                     | ND    | RNU                   |
| 33                                                     |            | x      |       | 1     |        | 15     | САВ   |              |             | СС    |                   | DU                    |       | RNU                   |

| Та | Ь] | le | 1 |
|----|----|----|---|
|    |    |    |   |

Literature Study of Mass Matrices and Related Structural Characteristics

| Reference<br>Number                                    |            |        |       |       |        |        | Continuum<br>Model |          |        | Solution<br>Process |                   |                       | Matri       |                       |
|--------------------------------------------------------|------------|--------|-------|-------|--------|--------|--------------------|----------|--------|---------------------|-------------------|-----------------------|-------------|-----------------------|
| References<br>are grouped<br>according to<br>mass type | Consistent | Lumped | Other | Beams | Plates | Shells | Beams              | Plates   | Frames | Other               | Modal<br>Analysis | Direct<br>Integration | Other       | x Reduction<br>Method |
| Lumped                                                 |            |        |       |       |        |        |                    |          |        |                     |                   |                       |             |                       |
| 46                                                     |            | х      |       | 1     |        |        | CAB                |          |        | ·                   |                   |                       | ND          | RNU                   |
| 52                                                     |            | х      |       | 1     |        |        | FFB                |          |        |                     |                   | }                     | ND          | RNU                   |
| 53                                                     |            | x      |       | 1     | i      |        |                    | 8        | SF     | 1                   |                   |                       | ND          | RNU                   |
| 54                                                     |            | x      |       | 1     |        |        | <u></u>            |          | SF     |                     | ļ                 |                       | ND          | RNU                   |
| 58                                                     |            | x      |       | 1     |        |        | CAB                | <u> </u> | SF     |                     |                   | NB                    |             | RNU                   |
| 60                                                     |            | x      |       | 1     |        | 13     | SSB                |          |        | SC                  |                   | NB                    | r<br>5<br>5 | RNU                   |
| 60                                                     |            | x      |       | 1     |        | 13     | SSB                |          |        | SC                  |                   | WO                    |             | RNU                   |
| 61                                                     | 1          | x      |       |       |        | 13     |                    |          |        | SC                  |                   |                       | ND          | RNU                   |
| 62                                                     | Ì          | x      |       | 1     | ļ      |        | CAB                | į        |        | 1                   |                   | ;<br>i                | ND          | RNU                   |
| 67                                                     |            | x      |       | 1     |        |        |                    |          |        | SSG                 |                   |                       | ND          | RNU                   |
| 74                                                     |            | x      |       | 1     | 1      |        | Į                  |          | SF     | 1                   |                   |                       | ND          | RNU                   |
| 82                                                     |            | X      | ł     |       | 9      |        | \$<br>}<br>}       | SSP      |        |                     |                   |                       | ND          | RNU                   |
| 85                                                     |            | X      |       | 1     |        |        |                    |          | SF     |                     | \$                |                       | ND          | RNU                   |
| 92                                                     |            | x      | {     |       |        | 12     |                    |          |        | HS                  |                   | WO                    |             | RNU                   |
| 93                                                     |            | x      |       | 1     |        |        | CAB                | ļ        |        | ;                   |                   |                       | ND          | RNU                   |
| 94                                                     |            | x      |       | 1     |        |        | SSB                |          |        | }                   |                   | 1                     | RQ          | RNU                   |

| Та | b | 1 | e | 1 |
|----|---|---|---|---|
|    |   |   |   |   |

Literature Study of Mass Matrices and Related Structural Characteristics

| Reference<br>Number                                    | Mass<br>Matrix<br>Type |        |       | Finite<br>Element<br>Model |        |        | Continuum<br>Model |        |        |       | Solution<br>Process |                       |       | Matri                 |
|--------------------------------------------------------|------------------------|--------|-------|----------------------------|--------|--------|--------------------|--------|--------|-------|---------------------|-----------------------|-------|-----------------------|
| References<br>are grouped<br>according to<br>mass type | Consistent             | Lumped | Other | Beams                      | Plates | Shells | Beams              | Plates | Frames | Other | Modal<br>Analysis   | Direct<br>Integration | Other | x Reduction<br>Method |
| Other                                                  |                        |        |       |                            |        |        |                    |        |        |       | :<br>[              |                       |       |                       |
| 21                                                     |                        |        | DM    | 5                          |        |        |                    |        | SWB    |       |                     |                       | ND    | RNU                   |
| 26                                                     |                        |        | NI    |                            |        | 7      |                    |        |        | FM    |                     |                       | ND    | RNU                   |
| 35                                                     |                        |        | HRZ   | 1                          | 9      |        |                    | TP     |        |       |                     |                       | ND    | RNU                   |
| 36                                                     |                        |        | HRZ   |                            | 10     |        |                    | CR     |        |       |                     | ECD                   |       | RNU                   |
| 36                                                     |                        |        | HRZ   |                            | 10     |        |                    | CCP    |        |       |                     | ECD                   |       | RNU                   |
| 36                                                     |                        |        | HRZ   |                            | 10     |        |                    | SSP    |        |       |                     | ECD                   |       | RNU                   |
| 42                                                     |                        |        | нсн   |                            | 9      |        |                    | 1      |        | NP    | ĺ                   |                       | ND    | RNU                   |
| 49                                                     |                        |        | КВ    | 1                          |        |        | SSB                |        |        |       | 1                   | DU                    |       | RNU                   |
| 51                                                     |                        |        | КВ    | 1                          |        |        | SSB                |        |        | }     | HQRI                | NB                    |       | RNU                   |
| 51                                                     |                        |        | КВ    | 1                          |        |        | FFB                |        |        | }     | JAC                 | WO                    |       | RNU                   |
| 56                                                     |                        |        | ML    | 1                          |        |        | SSB                |        |        |       |                     |                       | ND    | RNU                   |
| 56                                                     |                        |        | ML    | 1                          |        |        | FFB                |        |        |       |                     |                       | ND    | RNU                   |
| 82                                                     |                        |        | HRZ   |                            | 9      |        |                    | SSP    |        | (     |                     |                       | ND    | RNU                   |
| 86                                                     |                        |        | SCII  | 1                          |        |        |                    |        |        | NP    |                     |                       | ND    | RNU                   |
| 97                                                     |                        |        | VKC   |                            | 9      |        |                    | SSP    |        |       |                     |                       | ND    | RNU                   |

The symbol; X; denotes that the general topic is discussed in the article. All other symbols, denoting specific topics discussed in the article, are defined in Tables 2 - 6.

#### Mass Matrix Type

- DM Distributed mass approach examined by Coull and Mukherjee (21)
- HCH Lumping procedure identical to KB except  $\alpha$  is selected to allow a larger time step without upsetting convergence (42)
- HRZ Lumping procedure which scales diagonal terms of the consistent mass matrix to preserve the total mass of the system developed and used by Hinton, Rock and Zienkiewicz (35)
- KB Lumping procedure developed by Key and Beisenger (49) based on the consistent mass matrix and a gradient inertia scaling factor, α, selected on the basis of the maximum frequency
- ML Complementary energy representation of mass is used in conjunction with the potential energy representation to yield a modified nondiagonal "consistent" mass matrix (56)
- NI Numerical integration technique to form a diagonal lumped mass matrix studied by Fried and Malkus (26)
- SCH Consistent diagonal mass matrix determined using orthogonal base functions and mixed variational formulation developed by Schreyer (86)
- VKC Truncated mass matrix with only one degree of freedom per node and no coupling determined from the consistent mass matrix (97)

#### Finite Element Model

- 1 Two-Dimensional Beam
- 2 Two-Dimensional Beam including shear deformation and rotary inertia effects
- 3 Three-Dimensional Beam
- 4 Sandwich Beam
- 5 Thin-Walled Beam
- 6 Curved Beam
- 7 Triangular Membrane
- 8 Triangular Plate
- 9 Plate Bending
- 10 Axisymmetric Plate
- 11 Triangular Shell
- 12 Flat Quadrilateral Shell
- 13 Isoparametric Shell
- 14 Axisymmetric Shell
- 15 Thin Shell
- 16 Sandwich Shell
- 17 Curved Shell
- 18 Finite Dynamic Element developed by Gupta (29)
- NES No Element Specified

### Continuum Model

- CAB Cantilever Beam
- CAC Cantilever Channel Beam
- CAP Cantilever Plate
- CB Continuous Beam
- CC Circular Cylinder
- CCB Clamped-Clamped Beam
- CCP Clamped-Clamped Plate
- COL Column
- CR Clamped Ring
- FFB Free-Free Beam
- FM Fixed Membrane
- HS Hyperboloidal Shell
- NP No Example Problems
- PCB Pre-Twisted Cantilever Beam on a Rotating Disk
- PF Plane Frame
- RD Rotating Disk
- SC Spherical Cap
- SCP Simply-Supported Cylindrical Panel
- SF Space Frame
- SSB Simply-Supported Beam
- SSC Simply-Supported Channel Beam
- SSG Simply-Supported Grid

## Continuum Model

## Definition of Symbols

- SSM Simply-Supported Square Membrane
- SSP Simply-Supported Plate

SST - Simply-Supported Thin-Walled Beam

SWB - Y-Shaped Shear Wall Building

TP - Thick Square Plate

## Solution Process

- BAT Solution Methods Discussed by Bathe and Wilson (10)
- DU Direct Integration Methods were used; However, a Specific Type was not Discussed
- ECD Explicit Central Difference Time Integration
- HQRI Householder Reduction, QR Eigenvalue Solution and Inverse Iteration to Find Eigenvectors
- JAC Jacobi Solution Method
- NB Newmark-β Method
- ND Solution Process Not Discussed
- RL Ritz Method using Lagrange Functions (3)
- RQ Rayleigh Quotient Minimization Method
- WO Wilson-O Method

## Matrix Reduction Method

Definition of Symbols

- ASH Reduction method proposed by Appa, Smith and Hughes (4) where degrees of freedom producing the highest norms of vectors generated by K<sup>-1</sup>M are retained
- FRI Reduction method based on the Finite Element, Rayleigh-Ritz, and Power Methods discussed by Fried (27)
- GUY Reduction method discussed by Guyan (32) involving combinations of K and M elements in the elimination of degrees of freedom
- HO Reduction method where degrees of freedom are eliminated based on the lowest frequencies determined neglecting coupling effects (34)

•

RNU - Reduction method not used

#### Summary

There appears to be no clear cut preference in the literature for any one form of mass matrix. Although ten different types of mass matrices were mentioned, only four were discussed in more than one article: the consistent mass matrix, lumped diagonal mass matrix,  $\alpha$ factor diagonal mass matrix introduced by Key and Beisinger (49), and the scaled diagonal mass matrix formulated by Hinton, Rock, and Zienkiewicz (35).

The most commonly studied mass matrices were the lumped diagonal mass matrix and the consistent mass matrix. The most common element model used in their examination was the beam. For frames, the lumped diagonal mass matrix was used twice as often as the consistent mass matrix, while for structures composed of plate elements, the consistent mass matrix was more often used. When a direct integration solution scheme was employed, some form of diagonal mass matrix was usually used. Accurate frequencies were determined for certain problems by all methods.

#### CHAPTER III

## DEVELOPMENT OF THE MASS MATRICES FOR THE COMPARISON STUDY

The four types of mass matrices discussed by more than one article in the literature study are included in the comparison study: the consistent mass matrix, lumped diagonal mass matrix,  $\alpha$ -factor diagonal mass matrix (49), and the scaled diagonal mass matrix (35). Following an examination of each matrix's development is a discussion of its possible advantages and disadvantages in natural frequency estimation.

#### Consistent Mass Matrix

The consistent mass matrix can be derived using the kinetic energy, T. In Fig. 1, P is the reference state relative to which the motion of the element is defined, and  $P^*$  the location of P at time t. w is the displacement vector of P and V the volume of the element. If  $\rho$  is the mass per unit volume (the mass density) of the element, the kinetic energy of the differential volume can be written as

$$dT = \frac{1}{2} \rho \ dV \ \dot{w} \cdot \dot{w} = \frac{1}{2} \rho \ dV \ (\dot{w}_1^2 + \dot{w}_2^2 + \dot{w}_3^2)$$
(1)

Eq. 1 can be rewritten in matrix notation as

$$dT = \frac{1}{2} \rho \stackrel{\bullet T}{w} \stackrel{\bullet}{w} dV$$
 (2)

Both sides of Eq. 2 are integrated to determine the kinetic energy of the continuum model:

$$T = \frac{1}{2} \iiint_{V} \rho \ w^{T} \ w \ dV$$
(3)

To discretize the continuum, let

$$\dot{w} = N \dot{u}$$
 (4)

where w is the velocity vector, a function of x, y, z, and t. N is the



FIGURE 1 - KINETIC ENERGY FORMULATION OF A DIFFERENTIAL VOLUME

•

interpolation matrix, composed of interpolation functions, which are functions of x, y, and z.  $\dot{u}$  is a function of t. Then, by definition,

$$\dot{\mathbf{w}}^{\mathrm{T}} = \dot{\mathbf{u}}^{\mathrm{T}} \mathbf{N}^{\mathrm{T}}$$
(5)

Applying Eqs. 4 and 5 to Eq. 3 gives

$$T = \frac{1}{2} \dot{u}^{T} \left[ \iiint_{V} \rho N^{T} N dV \right] \dot{u}$$

 $T = \frac{1}{2} \dot{u}^{T} m \dot{u}$ 

or

where

$$m = \iiint_{V} \rho N^{T} N dV$$
(6)

m is a consistent mass matrix if the interpolation functions used to discretize the velocity and displacement fields are identical.

The beam-column element, shown in Fig. 2, is used in modeling the test problems for the comparison study. Its consistent mass matrix derived using Lagrange and Hermite interpolation functions (39) is

$$m = \frac{\rho AL}{420} \begin{bmatrix} 140 & 147 & 21L & 70 & 63 & -14L \\ 147 & 156 & 22L & 63 & 54 & -13L \\ 21L & 22L & 4L^2 & 14L & 13L & -3L^2 \\ 70 & 63 & 14L & 140 & 147 & -21L \\ 63 & 54 & 13L & 147 & 156 & -22L \\ -14L & -13L & -3L^2 & -21L & -22L & 4L^2 \end{bmatrix}$$
(7)

where A is the area and L the length of the element.

When studying the natural frequencies and mode shapes of structures with finite element analysis, using a consistent mass matrix often produces more accurate results (3, 5, 6, 14, 16, 54, 88). A consistent mass matrix has the advantage that it provides a mathematical approximation of



FIGURE 2 - BEAM-COLUMN ELEMENT USED IN THE COMPARISON STUDY

the exact inertia force associated with each degree of freedom rather than some arbitrary lumped value, and accounts for coupling between degrees of freedom. Another advantage is that when using a consistent mass matrix with compatible elements, the computed natural frequencies of the structure will always be upper bounds to the exact frequencies (6, 16, 19, 20, 23).

According to the literature, the primary disadvantage in using the consistent mass matrix is the increased complexity of the matrix computations, that is, the inversion or triangularization of a full or banded matrix rather than a diagonal one.

## Lumped Diagonal Mass Matrix

The interpolation functions, N, used in the evaluation of the consistent mass matrix, do not have to be exactly the same as those which discretize the displacement field. Other mass matrices can be derived by using different interpolation functions.

The lumped diagonal mass matrix for the beam element shown in Fig. 3(a) can be calculated from Eq. 6, if the interpolation functions are determined by assuming that half of the element acts like a rigid body unaffected by the remaining half (19, 77). The interpolation functions determined in this manner are

$$N_{1} = 1$$

$$N_{2} = x$$

$$N_{3} = 1$$

$$N_{4} = x$$

and the resulting mass matrix is





# FIGURE 3 - BEAM ELEMENTS

$$m = \rho A \qquad \qquad \frac{\frac{L}{2}}{\frac{L^3}{96}} \qquad \qquad \frac{\frac{L}{2}}{\frac{L^3}{96}}$$

Observe that the rotational terms are equal to the mass moments of inertia of each half about its center. However, if this method is used to calculate the interpolation functions for the beam element shown in Fig. 3(b), the type used in Test Problem 1, the resulting mass matrix is not diagonal. The interpolation functions remain

$$N_{1} = 1$$

$$N_{2} = x$$

$$N_{3} = 1$$

$$N_{4} = x$$

but the mass matrix becomes

$$\mathbf{m} = \rho \mathbf{A} \begin{bmatrix} \frac{\mathbf{L}}{2} & \frac{\mathbf{L}^2}{8} & 0 & 0 \\ \frac{\mathbf{L}^2}{8} & \frac{\mathbf{L}^3}{24} & 0 & 0 \\ 0 & 0 & \frac{\mathbf{L}}{2} & \frac{\mathbf{L}^2}{8} \\ 0 & 0 & \frac{\mathbf{L}^2}{8} & \frac{\mathbf{L}^3}{24} \end{bmatrix}$$

For this element, the rotational terms are equal to the mass moment of inertia of each half about its end. Although the diagonal terms are correct, some coupling between degrees of freedom is retained, that is, some off-diagonal terms are non-zero. Therefore, it appears that to guarantee the correct determination by this method of the lumped diagonal mass matrix for an element, each half of the element should be symmetric about its generalized displacements.

In a more popular method of forming a lumped diagonal mass matrix, the mass of contiguous regions surrounding a node are considered concentrated at that node. For example, a beam is divided in half and ascribed a rotational mass equal to the mass moment of inertia of the adjacent half segment about the node, and a translational mass equal to the mass of the half segment. The lumped diagonal mass matrix for the beam-column element, used in the test problems, is determined in this manner and shown in Eq. 8.

$$\mathbf{m} = \rho \mathbf{A} \begin{bmatrix} \frac{\mathbf{L}}{2} & & & \\ & \frac{\mathbf{L}}{2} & & \\ & & \frac{1}{3} \left(\frac{\mathbf{L}}{2}\right)^3 & & \\ & & & \frac{\mathbf{L}}{2} & & \\ & & & & \frac{\mathbf{L}}{2} & & \\ & & & & & \frac{\mathbf{L}}{2} & & \\ & & & & & \frac{1}{3} \left(\frac{\mathbf{L}}{2}\right)^3 \end{bmatrix}$$
(8)

Diagonal mass matrices, formed by any method, require less storage space and are easily inverted. The fundamental frequencies determined are usually accurate, and may actually at times be better than the frequencies determined using the consistent mass system (1, 9, 19, 20, 23, 28, 35). If a diagonal mass system is used, the calculated frequencies may be above or below the actual frequencies. Also, since the mass is concentrated at a point rather than distributed throughout the system, the lumping of the mass overestimates the flexibility of the structure, while the structural model inherently overestimates the stiffness. These could be reasons why in some cases diagonal mass results approximate the actual frequencies more closely than the consistent mass results. Therefore, the lack of bounding frequencies may not be a great disadvantage to a diagonal mass approach. Also, unless the finite element is conforming, the bounding frequency property of the consistent mass approach does not hold.

The mode shapes determined by a diagonal mass method are less reliable and frequencies are usually less accurate than when using the consistent mass system, although only slightly so in the lower modes. In general, the errors induced by lumping increase as the complexity of the element increases (23, 41, 51, 62, 67, 88, 101).

## a-Factor Diagonal Mass Matrix

This method for forming a diagonal mass matrix, described in a paper by Key and Beisinger (49), is an approach which generates a diagonal mass matrix from the non-diagonal consistent mass matrix. Consider the consistent mass matrix terms, from Eq. 7, corresponding to the translational displacements of the beam-column element. The non-zero elements of the  $\alpha$ -factor diagonal mass matrix are formed by adding the diagonal terms of the consistent mass matrix to the appropriate off-diagonal terms:

$$m_{11} = \frac{\rho AL}{420} (140 + 70) = \frac{\rho AL}{2}$$

$$m_{22} = \frac{\rho AL}{420} (156 + 54) = \frac{\rho AL}{2}$$

$$m_{44} = \frac{\rho AL}{420} (70 + 140) = \frac{\rho AL}{2}$$

$$m_{55} = \frac{\rho AL}{420} (54 + 156) = \frac{\rho AL}{2}$$

The same technique is then applied to the rotational inertia terms

$$m_{33} = \frac{\rho AL}{420} (4L^2 - 3L^2) = \frac{\rho AL}{420}$$
$$m_{66} = \frac{\rho AL}{420} (-3L^2 + 4L^2) = \frac{\rho AL}{420}$$

The diagonal mass matrix formed according to the  $\alpha$ -factor method is



where  $\alpha$  is the gradient inertia scaling factor.  $\alpha$  is selected so that the maximum eigenvalue for the diagonal mass system is equal to the maximum eigenvalue of the consistent mass system. The  $\alpha$  value specified by Krieg and Key (51) for a beam-column element is 17.5. Interestingly enough, using this value for  $\alpha$  produces a mass matrix equivalent to the lumped diagonal mass matrix defined in Eq. 8. In the comparison study of Chapter IV, the maximum frequency determined using the consistent mass matrix does not coincide with the maximum frequency determined using the  $\alpha$ -factor diagonal mass matrix, with  $\alpha = 17.5$ . Additional study is needed to determine if the given  $\alpha$  value is correct.

The advantages and disadvantages of using this type of mass matrix for natural frequency prediction of structures are those discussed previously for a diagonal mass matrix.

## Scaled Diagonal Mass Matrix

For this mass matrix, described in papers by Hinton, Rock and

Zienkiewicz (35) and by Rock and Hinton (82), the diagonal terms of the consistent mass matrix are computed and then scaled so as to preserve the total overall mass of the element.

In mathematical notation, the non-zero elements of the scaled diagonal mass matrix are

$$m_{rr} = \frac{(\iiint \rho N_r N_r dV) (\iiint \rho dV)}{(\iiint j \rho dV)} r = 1, 2, ..., 6$$
(9)
$$(\iiint j \rho N_j N_j dV) j \neq 3$$

Eqs. 7 and 9 are used to compute the non-zero elements of the scaled diagonal mass matrix for the beam-column element

$$m_{11} = m_{44} = \frac{\left(\frac{1400AL}{420}\right) \rho AL}{\frac{\rho AL}{420} (140 + 156 + 140 + 156)} = \frac{140\rho AL}{592}$$
$$m_{22} = m_{55} = \frac{\left(\frac{156\rho AL}{420}\right) \rho AL}{\frac{\rho AL}{420} (140 + 156 + 140 + 156)} = \frac{156\rho AL}{592}$$
$$m_{33} = m_{66} = \frac{\left(\frac{4L^2\rho AL}{420}\right) \rho AL}{\frac{\rho AL}{420} (140 + 156 + 140 + 156)} = \frac{4L^2\rho AL}{592}$$

So the diagonal mass matrix formed according to this scaling method is



Since the overall mass of the structure is retained, this appears to be

a more rational method of forming a diagonal mass matrix from the consistent mass matrix than the method proposed by Key and Beisinger.

Again, the advantages and disadvantages pertaining to the use of this type of mass matrix in frequency estimation are those discussed previously for a diagonal mass matrix.

#### CHAPTER IV

### COMPARISON STUDY

A comparison study was conducted in order to determine the accuracy of frequency estimation for different types of mass matrices. Originally the study was to be composed of the four types of mass matrices referred to more than once in the literature study; however, it was reduced to three types after the  $\alpha$ -factor diagonal mass matrix was shown to be identical to the lumped diagonal mass matrix for the beam-column element.

Three test problems were used in the study: a simply-supported beam (6), a three member frame (102), and a three story single bay frame (17). Natural frequencies were determined using the computer code listed in Appendix B. Comparisons were made with results presented in the source of the test problem, and to exact results when available.

#### Description of Analysis Process

The accuracy of a solution and the validity of the results are dependent on the solution process used to obtain them. There is no one best solution method for all types of eigenproblems. The method used in this comparison study was selected after discussions with Dr. Meirovitch and a limited amount of research into the characteristics of various other types of solution routines.

The generalized form of the eigenproblem is

$$K \Phi = \omega^2 M \Phi \tag{10}$$

where K and M are the stiffness and mass matrices respectively.  $\Phi$  is an eigenvector or mode shape, and  $\omega$  is a natural frequency of the system. Then for this solution procedure the generalized eigenproblem must be

transformed into a standard eigenproblem of the form

$$\tilde{K} \tilde{\Phi} = \omega^2 \tilde{\Phi}$$

where  $\tilde{K}$  is the matrix resulting from the transformation and  $\tilde{\Phi}$  is an eigenvector for the  $\tilde{K}$  system. The transformation is performed using a symmetric Choleski decomposition. M is transformed into a matrix product of a triangular matrix and its transpose

$$M = \tilde{L} \tilde{L}^{T}$$
(11)

Then, letting

$$\tilde{\Phi} = \tilde{L}^{T} \Phi$$
(12)

and applying Eqs. 11 and 12 to Eq. 10 gives

$$\tilde{K} \tilde{\Phi} = \omega^2 \tilde{\Phi}$$

where

$$\tilde{K} = \tilde{L}^{-1} K (\tilde{L}^{-1})^{T}$$

This decomposition is only applicable if M is positive definite. A consistent mass matrix is always positive definite; however, when using a diagonal mass matrix all elements must be greater than zero. (For a more detailed discussion of this decomposition, see Bathe and Wilson (10) pp. 258, 381-382.)

After the decomposition is performed, the resulting  $\tilde{K}$  matrix is reduced to tridiagonal form using a Householder reduction transformation and the eigenvalues are obtained by QR iteration. A tridiagonal matrix is one in which all elements except those on the main diagonal, and the two diagonals adjacent to the main diagonal, are zero. In the QR iterative solution method,  $\tilde{K}$  is decomposed into the form

$$K = Q_1 R_1$$

where  $Q_1$  is an orthogonal and  $R_1$  an upper triangular matrix. Then, let-

ting

$$R_1 Q_1 = Q_1^T \tilde{K}_2 Q_1$$

begins the iterative cycle. The eigenvalues are determined through repeated calculations of RQ, while the eigenvectors are determined by inverse iteration. (For a more detailed discussion of this solution technique (HQRI) see Bathe and Wilson (10) p. 461.) Then, using the same transformations as before, the eigenvectors for the original generalized eigenproblem are determined from those of the tridiagonalized system.

This solution procedure works well for symmetric, positive definite, banded matrices. However, if M is ill-conditioned with respect to inversion, the transformation process will also be ill-conditioned and could result in the inaccurate calculation of eigenvalues and eigenvectors (10). Another disadvantage is that when a banded mass matrix is used in the generalized eigenproblem, a full matrix is obtained from the transformation to the standard eigenproblem. Therefore, bandedness cannot be used to simplify the solution of the standard eigenproblem. Also, since this technique solves for all eigenvalues and eigenvectors, another solution process may be more efficient if all are not required.

Along with the calculation of frequencies and mode shapes, the program listed in Appendix B has the capacity to compute fully stressed designs, responses to member loadings and internal member responses for various loading conditions. If a consistent mass matrix is to be used, it is generated internally and assembled for the system in the same manner as the stiffness matrix. For a diagonal mass matrix, all system mass values must be input.
#### Test Problem 1 - Simply-Supported Beam

This problem, taken from Archer (6), is a simply-supported beam divided into six elements as shown in Fig. 4. The twelve degrees of freedom considered include a translational and rotational degree of freedom at each interior node and a rotational degree of freedom at each end. The mass matrices are developed as described in Chapter III with the exception of the scaled diagonal mass matrix. The use of beam elements rather than beam-column elements causes only a deletion of the first and fourth rows and columns in the consistent mass matrix and the lumped diagonal mass matrix; however, the scaled diagonal mass matrix becomes

$$m = \frac{\rho AL}{312} \begin{bmatrix} 156 \\ 4L^2 \\ 156 \\ 4L^2 \end{bmatrix}$$

The member properties, shown in Fig. 4, are consistent throughout the structure and were chosen so that the output frequencies would correspond directly to those determined by Archer (6). All frequencies were then non-dimensionalized and compared to the exact frequencies for a simply-supported beam (44, 81, 104), as shown in Table 7. The percentage differences between the computed and exact frequencies are shown in Table 8.

An examination of Tables 7 and 8 shows that the computed consistent mass matrix frequencies are verified by the results of the consistent mass study by Archer (6). As expected, the consistent mass matrix frequencies are always higher than the exact frequencies; they are accurate to more than 3% in the first five modes with a maximum error of 38% in the eleventh mode.



Cross Sectional Area - 10.0  $in^2$ Modulus of Elasticity - 30000.0 ksi Moment of Inertia - 40.0  $in^4$ Mass Density - 0.0060014  $\frac{kips-sec^2}{in^4}$ 

FIGURE 4 - TEST PROBLEM 1 - SIMPLY-SUPPORTED BEAM

| Mode<br>Number | Exact  | Archer<br>Consistent Mass<br>Study | Consistent<br>Mass<br>Matrix | Lumped<br>Diagonal<br>Mass Matrix | Scaled<br>Diagonal<br>Mass Matrix |
|----------------|--------|------------------------------------|------------------------------|-----------------------------------|-----------------------------------|
| 1              | 9.8696 | 9.8703                             | 9.8801                       | 9.7647 .                          | 9.8307                            |
| 2              | 39.478 | 39.511                             | 39.519                       | 37.759                            | 38.896                            |
| 3              | 88,826 | 89.177                             | 89.184                       | 80.573                            | 85.697                            |
| 4              | 157.91 | 159.78                             | 159.78                       | 133.50                            | 146.78                            |
| 5              | 246.74 | 253.29                             | 253.29                       | 191.41                            | 212.66                            |
| 6              | 355.31 | 394.37                             | 394.37                       | 249.42                            | 449.64                            |
| 7              | 483.61 | 533.30                             | 533.30                       | 303.23                            | 492.01                            |
| 8              | 631.65 | 733.28                             | 733.28                       | 349.49                            | 573.04                            |
| 9              | 799.44 | 991.28                             | 991.28                       | 386.05                            | 654.30                            |
| 10             | 986.96 | 1312.1                             | 1312.1                       | 411.88                            | 720.75                            |
| 11             | 1194.2 | 1645.2                             | 1645.2                       | 427.03                            | 763.88                            |
| 12             | 1421.2 | 1807.2                             | 1807.2                       | 432.01                            | 778.79                            |

| Mode<br>Number | Consistent<br>Mass<br>Matrix | Lumped<br>Diagonal<br>Mass Matrix | Scaled<br>Diagonal<br>Mass Matrix |
|----------------|------------------------------|-----------------------------------|-----------------------------------|
| 1              | .106                         | -1.06                             | 394                               |
| 2              | .104                         | -4.35                             | -1.47                             |
| 3              | .403                         | -9,29                             | -3.52                             |
| 4              | 1.18                         | -15.5                             | -7.05                             |
| 5              | 2.65                         | -22.4                             | -13.8                             |
| 6              | 11.0                         | -29.8                             | 26.5                              |
| 7              | 10.3                         | -37.3                             | 1.74                              |
| 8              | 16.1                         | -144.7                            | -9.28                             |
| 9              | 24.0                         | -51.7                             | -18.2                             |
| 10             | 32.9                         | -58.3                             | -27.0                             |
| 11             | 37.8                         | -64.3                             | -36.0                             |
| 12             | 27.2                         | -69.6                             | -45.2                             |

TABLE 8 - PERCENTAGE DIFFERENCE BETWEEN EXACT AND COMPUTED FREQUENCIES

The lumped diagonal mass matrix results are consistently lower than the exact frequencies with an error of more than 20% by the fifth mode. The maximum error was approximately 70% in the twelfth mode.

The scaled diagonal mass matrix frequencies were lower than the exact frequencies in all modes except the sixth and seventh. These computed frequencies were consistently more accurate than the lumped diagonal mass matrix frequencies, and in the higher modes, seven through eleven, were more accurate than the consistent mass matrix frequencies. The error was less than 10% through the first four modes and in modes seven and eight. The maximum error was approximately 45% in the twelfth mode.

## Test Problem 2 - Three Member Frame

This problem, taken from Warburton (102), is the three member frame shown in Fig. 5. Joint rotation and lateral translation were allowed at each joint for a total of four degrees of freedom. The mass matrices were developed for the beam-column elements as described in Chapter III. The member properties, included in Fig. 5, are again consistent throughout the structure and chosen so that the output frequencies correspond directly with the Warburton results. The fundamental frequency was determined in the source using two methods, a frame analysis procedure and a single degree of freedom lumped mass model. These frequencies and the computed results are shown in Table 9. The approximate mode shapes were also determined for this problem and are shown in Fig. 6.

The frame analysis procedure is described in detail by Warburton (102). It is essentially a trial and error procedure in which the frame is divided into a number of beams whose displacements and rotations are



Cross Sectional Area - 24.0  $in^2$ Modulus of Elasticity - 30000.0 ksi Moment of Inertia - 1600.0  $in^4$ Mass Density - 0.000078125  $\frac{kips-sec^2}{in^4}$ 

FIGURE 5 - TEST PROBLEM 2 - THREE MEMBER FRAME

TABLE 9 - NATURAL FREQUENCIES,  $\omega_n \left(\frac{\rho_{AL}^4}{\Xi I}\right)^{\frac{1}{2}}$ , OF A THREE MEMBER FRAME

|                | warburton         |                                              |                              | Turned                  |                         |  |
|----------------|-------------------|----------------------------------------------|------------------------------|-------------------------|-------------------------|--|
| Mode<br>Number | Frame<br>Analysis | Lumped Single<br>Degree of<br>Freedom System | Consistent<br>Mass<br>Matrix | Diagonal<br>Mass Matrix | Diagonal<br>Mass Matrix |  |
| 1              | 3.17              | 3.46                                         | <b>3.11</b> 8                | 2.853                   | 4.079                   |  |
| 2              |                   |                                              | 18,01                        | 8.479                   | 21.06                   |  |
| 3              |                   |                                              | 35.35                        | 11.13                   | 27.34                   |  |
| 4              |                   |                                              | 139.9                        | 69.37                   | 98.10                   |  |



FIGURE 6 - MODE SHAPES FOR TEST PROBLEM 2

expressed in terms of end forces and moments. Continuity is ensured by equating the appropriate displacements.

The fundamental frequency determined using the consistent mass matrix is within 1% of the fundamental frequency determined using the frame analysis procedure. However, frequencies determined using either of the diagonal mass matrix schemes vary from these by 10% or more. The lumped diagonal mass matrix frequencies are the lowest in all modes. The consistent mass matrix frequencies are the largest in the higher modes, while the scaled diagonal mass matrix frequencies are the largest in the lower modes. The fact that the scaled diagonal mass matrix frequencies could be greater than the consistent mass matrix frequencies was not seen in Test Problem 1.

# Test Problem 3 - Three Story Single Bay Frame

This problem, taken from Cheng (17), is the three story single bay frame shown in Fig. 6. Rotation and lateral translation were again allowed at each joint for a total of twelve degrees of freedom. The mass matrices are as described in Chapter III; the given member properties (17) varied throughout the structure and are shown in Table 10. Cheng determined the frequencies for the first three modes using a three degree of freedom lumped mass model. These frequencies and the computed results are shown in Table 11.

Since there were no exact frequencies available for this problem, general comparisons to the lumped mass results of Cheng are all that can be made. As expected, the lumped diagonal mass matrix frequencies are lowest in all modes and closest to the frequencies determined by Cheng.



- $\boldsymbol{x}$  Degree of Freedom Number
- X Member Number
- X- Node Humber

FIGURE 7 - TEST PROBLEM 3 - THREE STORY SINGLE BAY FRAME

•

# TABLE 10 - MEMBER PROPERTIES FOR TEST PROBLEM 3 - THREE STORY SINGLE BAY FRAME

| Member<br>Number | Cross-Sectional<br>Area (in <sup>2</sup> ) | Moment of<br>Inertia (in <sup>4</sup> ) | Modulus of<br>Elasticity (ksi) | Mass Density<br>( <u>kips-sec<sup>2</sup>)</u><br>in <sup>4</sup> |
|------------------|--------------------------------------------|-----------------------------------------|--------------------------------|-------------------------------------------------------------------|
| 1                | 10.0                                       | 340.0                                   | 30000.0                        | 7.3386(10) <sup>-7</sup>                                          |
| 2                | 9.13                                       | 239.0                                   | 30000.0                        | 7.3386(10) <sup>-7</sup>                                          |
| 3                | 9.13                                       | 239.0                                   | 30000.0                        | 7.3386(10) <sup>-7</sup>                                          |
| 4                | 10.0                                       | 340.0                                   | 30000 <b>.0</b>                | 7.3386(10) <sup>-7</sup>                                          |
| 5                | 13.2                                       | 351.0                                   | 30000.0                        | 7.3386(10) <sup>-7</sup>                                          |
| 6                | 13.2                                       | 351.0                                   | 30000.0                        | 7.3386(10) <sup>-7</sup>                                          |
| 7                | 10.0                                       | 340.0                                   | 30000.0                        | 7.3386(10) <sup>-7</sup>                                          |
| 8                | 25.0                                       | 723.0                                   | 30000.0                        | 7.3386(10) <sup>-7</sup>                                          |
| 9                | 25.0                                       | 723.0                                   | 30000.0                        | 7.3386(10) <sup>-7</sup>                                          |

.

.

TABLE 11 - NATURAL FREQUENCIES,  $\omega_n \left(\frac{\rho A L^4}{EI}\right)^{\frac{1}{2}}$ , of a three story single BAY FRAME

| Mode<br>Number | Cheng<br>Lumped Three<br>Degree of<br>Freedom System | Consistent<br>Mass<br>Matrix | Lumped<br>Diagonal<br>Mass Matrix | Scaled<br>Diagonal<br>Mass Matrix |
|----------------|------------------------------------------------------|------------------------------|-----------------------------------|-----------------------------------|
| 1              | 32.270                                               | 34.365                       | 33.486                            | 47.833                            |
| 2              | 96,927                                               | 103.87                       | 93.263                            | 137.41                            |
| 3              | 168.94                                               | 185.48                       | 159.44                            | 236.95                            |
| 4              |                                                      | 399 <b>.5</b> 8              | 173.64                            | 431.10                            |
| 5              |                                                      | 471.01                       | 232.76                            | 571.80                            |
| 6              |                                                      | 602.84                       | 243.81                            | 577.45                            |
| 7              |                                                      | 657.66                       | 286.37                            | 681.47                            |
| 8              |                                                      | 908.73                       | 286.53                            | 711.27                            |
| 9              |                                                      | 1018.3                       | 316.03                            | 777.04                            |
| 10             |                                                      | 1226.7                       | 841.75                            | 1178.5                            |
| 11             |                                                      | 1478.8                       | 994.34                            | 1400.4                            |
| 12             |                                                      | 2506.1                       | 1223.2                            | 1742.9                            |

Again, as in Test Problem 2, the consistent mass matrix frequencies are the largest in the higher modes, while the scaled diagonal mass matrix frequencies are the largest in the lower modes.

## Time and Cost Comparison

For each test problem, comparisons were made between the time required to reach a solution when using a banded consistent mass matrix and that required when using a diagonal one. These execution times and the corresponding costs are shown in Table 12.

Although the execution times in all cases were slightly less when using a diagonal mass matrix scheme, the corresponding costs were unaffected. Therefore, any economic incentive for using a diagonal mass matrix was not evident in this study. TABLE 12 - EXECUTION TIMES AND CORRESPONDING COSTS FOR CONSISTENT AND DIAGONAL MASS SYSTEMS

|                 |                                      | Test Problem 1 | Test Problem 2 | Test Problem 3 |
|-----------------|--------------------------------------|----------------|----------------|----------------|
| Execution       | Consist <b>ent</b><br>Mass<br>System | 4.80           | 3.35           | 4.99           |
| (CPU)           | Diagonal<br>Mass<br>System           | 4.68           | 3.32           | 4.88           |
| Cost<br>(Cents) | Consistent<br>Mass<br>System         | 10             | 6              | 10             |
|                 | Diagonal<br>Mass<br>System           | 10             | 6              | 10             |

#### CHAPTER V

## SUMMARY AND CONCLUSIONS

A major conclusion resulting from this study is that there is no clear cut preference in the literature for any one type of mass matrix; however, based on the results of the comparison study, the frequencies determined using the consistent mass matrix were more accurate, and computed with no significant increase in solution time or cost, than those determined using a diagonal mass system. Additional research is needed to determine if this contradiction of the literature can be substantiated for larger problems.

In Test Problem 1, where direct comparisons with the exact frequencies could be made, the consistent mass matrix frequencies were more accurate through the first six modes than those determined using either diagonal mass matrix. Therefore, since these lower modes are critical for most civil engineering structures, the consistent mass matrix is superior in frequency prediction to the diagonal systems. In the higher modes, the scaled diagonal mass matrix frequencies more closely approximated the exact frequencies; however, in most cases the error was 10% or more. Therefore, the value of frequency estimation for the higher modes is questionable. Although the exact frequencies for the structures in Test Problems 2 and 3 were not available, these problems were useful for frequency and time comparisons between mass matrix types. The exact results could be determined with further study to provide an additional basis for accuracy comparisons.

The results of the time and cost comparisons showed that there were no additional costs incurred when using a consistent mass matrix. There-

fore, there is little reason to use a diagonal mass matrix.

It is hoped that the fairly extensive literature study, presented in Chapter II, will aid the person interested in discovering more about the role of the mass matrix in dynamic structural analysis; although the mass matrix is infrequently the major topic of an article, it is often considered as important within the article. The literature study is perhaps the most valuable and useful part of this thesis.

Included in the literature study were several methods for reducing the size of eigenproblems by a reduction in the number of degrees of freedom. Perhaps, in a later work, an automated degree of freedom reduction method could be incorporated into the program listed in Appendix B, and a study could be done to determine the effects of reduction on frequency estimation.

#### REFERENCES

- Abel, J. F. and Popov, E. P., "Static and Dynamic Finite Element Analysis of Sandwich Structures," <u>Proceedings of the Second Conference on</u> <u>Matrix Methods in Structural Mechanics</u>, Wright-Patterson Air Force Base, Ohio, 1968.
- Akesson, B. A., "PFVIBAT A Computer Program for Plane Frame Vibration Analysis by an Exact Method," <u>International Journal for Numerical</u> Methods in Engineering, Vol. 10, No. 6, 1976, pp. 1221-1231.
- 3. Ansari, K. A., "Nonlinear Vibrations of a Rotating Pretwisted Blade," Computers and Structures, Vol. 5, No. 2, 1975, pp. 101-118.
- Appa, K., Smith, G. C. C. and Hughes, J. T., "Rational Reduction of Large-Scale Eigenvalue Problems," <u>Journal of the American Institute</u> of Aeronautics and Astronautics, Vol. 10, No. 7, 1972, pp. 964-965.
- Archer, J. S., "Consistent Matrix Formulations for Structural Analysis Using Finite Element Techniques," <u>Journal of the American Insti-</u> <u>tute of Aeronautics and Astronautics</u>, Vol. 3, No. 10, 1965, pp. 1910-1918.
- Archer, J. S., "Consistent Mass Matrices for Distributed Mass Systems," Journal of the Structural Divison, ASCE, Vol. 89, 1963, pp. 161-178.
- 7. Argyris, J. H. and Scharpe, D. W., "Matrix Displacement Analysis of Shells and Plates Including Transverse and Shear Strain Effects," <u>Computer Methods in Applied Mechanics and Engineering</u>, Vol. 1, No. 1, 1972, pp. 81-139.
- 8. Armstrong, I. D., "The Natural Frequencies of Multi-Storey Frames," The Structural Engineer, Vol. 47, No. 8, 1969, pp. 299-308.
- Bathe, K. J. and Wilson, E. L., "Large Eigenvalue Problems in Dynamic Analysis," Journal of the Engineering Mechanics Divison, ASCE, Vol. 98, No. 6, 1972, pp. 1471-1485.
- 10. Bathe, K. J. and Wilson, E. L., <u>Numerical Methods in Finite Element</u> Analysis, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1976.
- 11. Bathe, K. J. and Wilson, E. L., "Solution Methods for Eigenvalue Problems in Structural Mechanics," <u>International Journal for Numerical</u> Methods in Engineering, Vol. 6, No. 2, 1973, pp. 213-226.
- Belytschko, T. and Hseih, B. J., "Non-Linear Transient Finite Element Analysis with Convected Coordinates," <u>International Journal for Numer-</u> ical Methods in Engineering, Vol. 7, 1973, pp. 255-271.

- Belytschko, T., Schwer, L. and Klein, M. J., "Large Displacement Transient Analysis of Space Frames," <u>International Journal for Numerical</u> Methods in Engineering, Vol. 11, No. 1, 1977, pp. 65-84.
- Benton, M. D., Hobbs, G. K. and Dickerson, J. R., "Dynamic Analysis of Complex Structures," <u>Shock and Vibration Bulletin</u>, No. 37, Part 2, 1968, pp. 173-192.
- Berger, B. S. and Shore, S., "Dynamic Response of Lattice-Type Structures," Journal of the Engineering Mechanics Division, ASCE, Vol. 89, No. 2, 1963, pp. 47-70.
- 16. Bogner, F. K., Fox, R. L. and Schmit, Jr., L. A., "The Generation of Inter-Element Compatible Stiffness and Mass Matrices by the use of Interpolation Formulas," <u>Proceedings of the First Conference on Matrix</u> <u>Methods in Structural Mechanics</u>, Wright-Patterson Air Force Base, Ohio, 1965.
- 17. Cheng, F. Y., "Dynamic Characteristics of Multistory Buildings," Journal of the Structural Division, ASCE, Vol. 94, No. 8, 1968, pp. 2023-2025.
- 18. Cheng, F. Y., "Vibrations of Timoshenko Beams and Frameworks," Journal of the Structural Division, ASCE, Vol. 96, No. 3, 1970, pp. 551-571.
- 19. Clough, R. W., "Analysis of Structural Vibrations and Dynamic Response," <u>Recent Advances in Matrix Methods of Structural Analysis and</u> Design, University of Alabama Press, Huntsville, Alabama, 1971.
- Clough, R. W. and Wilson, E. L., "Dynamic Finite Element Analysis of Arbitrary Thin Shells," <u>Computers and Structures</u>, Vol. 1, No. 1, 1971, pp. 33-55.
- 21. Coull, A. and Mukherjee, P. R., "Natural Vibrations of Shear Wall Buildings on Flexible Supports," <u>Earthquake Engineering and Structural</u> Dynamics, Vol. 6, No. 3, 1978, pp. 295-315.
- Davis, R., Henshell, R. D. and Warburton, G. B., "Curved Beam Finite Elements for Coupled Bending and Torsional Vibration," <u>Earthquake</u> Engineering and Structural Dynamics, Vol. 1, No. 2, 1972, pp. 165-175.
- 23. Desai, C. S. and Abel, J. F., <u>Introduction to the Finite Element</u> <u>Method</u>, Van Nostrand Reinhold Co., New York, 1972.
- 24. Farrington, C. C., Gregory, R. T. and Taub, A. H., "On the Numerical Solution of Sturm-Liouville Differential Equations," <u>Mathematical</u> <u>Tables and Other Aids to Computation</u>, Vol. 11, No. 59, 1957, pp. 131-150.
- 25. Fertis, D. G., <u>Dynamics and Vibrations of Structures</u>, John Wiley and Sons, Inc., New York, 1973.

- Fried, I. and Malkus, D. S., "Finite Element Mass Matrix Lumping by Numerical Integration with No Convergence Rate Loss," <u>International</u> Journal of Solids and Structures, Vol. 11, No. 4, 1975, pp. 461-466.
- 27. Fried, I., "Condensation of Finite Element Eigenproblems," Journal of the American Institute of Aeronautics and Astronautics, Vol. 10, No. 11, 1972, pp. 1529-1530.
- 28. Greene, B. E., Jones, R. E., McLay, R. W. and Strome, D. R., "Dynamic Analysis of Shells Using Doubly Curved Finite Elements," <u>Proceedings</u> of the Second Conference on Matrix Methods in Structural Mechanics, Wright-Patterson Air Force Base, Ohio, 1968.
- 29. Gupta, K. K., "On a Finite Dynamic Element Method for Free Vibration Analysis of Structures," <u>Computer Methods in Applied Mechanics and</u> <u>Engineering</u>, Vol. 9, No. 1, 1976, pp. 105-120.
- Gupta, K. K., "Vibration of Frames and Other Structures with Banded Stiffness Matrix," <u>International Journal for Numerical Methods in</u> <u>Engineering</u>, Vol. 2, No. 2, 1970, pp. 221-228.
- 31. Guyan, R. J., "Distributed Mass Matrix for Plate Element Bending," Journal of the American Institute of Aeronautics and Astronautics, Vol. 3, No. 3, 1965, pp. 567-568.
- 32. Guyan, R. J., "Reduction of Stiffness and Mass Matrices," <u>Journal of the American Institute of Aeronautics and Astronautics</u>, Vol. 3, No. 2, 1965.
- Hartzman, M. and Hutchinson, J. R., "Non-Linear Dynamics of Solids by the Finite Element Method," <u>Computers and Structures</u>, Vol. 2, 1972, pp. 47-77.
- Henshell, R. D. and Ong, J. H., "Automatic Masters for Eigenvalue Economization," <u>Earthquake Engineering and Structural Dynamics</u>, Vol. 3, No. 4, 1975, pp. 375-383.
- 35. Hinton, E., Rock, T. A. and Zienkiewicz, O. C., "Note on Mass Lumping and Related Processes in the Finite Element Method," <u>Earthquake</u> <u>Engineering and Structural Dynamics</u>, Vol. 4, No. 3, 1976, pp. 245-249.
- 36. Hinton, E., "Dynamic Transient Analysis of Axisymmetric Circular Plates by the Finite Element Method," <u>Journal of Sound and Vibration</u>, Vol. 46, No. 4, 1976, pp. 465-472.
- 37. Holzer, S. M., "Lecture Notes on CE5640 Computer Aided Structural Design," VPI & SU, Blacksburg, Virginia, Summer Quarter, 1978.
- Holzer, S. M., "Lecture Notes on CE6020 Dynamics of Structures," VPI & SU, Blacksburg, Virginia, Spring Quarter, 1978.

- 39. Holzer, S. M., "Lecture Notes on CE6030 Finite Element Analysis of Structures," VPI & SU, Blacksburg, Virginia, Spring Quarter, 1978.
- 40. Holzer, S. M., "Lecture Notes on CE4002 Matrix Structural Analysis," VPI & SU, Blacksburg, Virginia, Winter Quarter, 1978.
- 41. Huebner, K. H., <u>The Finite Element Method for Engineers</u>, John Wiley and Sons, Inc., New York, 1975.
- 42. Hughes, T. J. R., Cohen, M. and Haroun, M., "Reduced and Selective Integration Techniques in the Finite Element Analysis of Plates," Nuclear Engineering and Design, Vol. 46, No. 1, 1978, pp. 203-222.
- 43. Hughes, T. J. R., "Reduction Scheme for Some Structural Eigenvalue Problems by a Variational Theorem," <u>International Journal for Numer-</u> ical Methods in Engineering, Vol. 10, No. 4, 1976, pp. 845-852.
- 44. Hurty, W. C. and Rubenstein, M. F., <u>Dynamics of Structures</u>, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1964.
- 45. Irons, B. M. and Barlow, J., "Comments on Matrices for the Direct Stiffness Method," Journal of the American Institute of Aeronautics and Astronautics, Vol. 2, No. 2, 1964, p. 403.
- Iyengar, H. S., Amin, N. and Carpenter, L., "Computerized Design of World's Tallest Building," <u>Computers and Structures</u>, Vol. 2, No. 5, 1972, pp. 771-783.
- 47. Johnsen, T. L., "On the Computation of Natural Modes of an Unsupported Vibrating Structure by Simultaneous Iteration," <u>Computer Methods in</u> <u>Applied Mechanics and Engineering</u>, Vol. 2, No. 3, 1973, pp. 305-322.
- Kamat, M. P., "Effect of Shear Deformations and Rotary Inertia on Optimum Beam Frequencies," <u>International Journal for Numerical Methods</u> in Engineering, Vol. 9, No. 1, 1975, pp. 51-62.
- 49. Key, S. W. and Beisinger, Z. E., "The Transient Dynamic Analysis of Thin Shells by the Finite Element Method," <u>Proceedings of the Third</u> <u>Conference on Matrix Methods in Structural Mechanics</u>, Wright-Patterson Air Force Base, Ohio, 1970.
- 50. Klein, S. and Sylvester, R. J., "The Linear Elastic Dynamic Analysis of Shells of Revolution by the Matrix Displacement Method," <u>Proceedings of the First Conference on Matrix Methods in Structural Me-</u> chanics, Wright-Patterson Air Force Base, Ohio, 1965.
- 51. Krieg, R. D. and Key, S. W., "Transient Shell Response by Numerical Time Integration," <u>International Journal for Numerical Methods in</u> <u>Engineering</u>, Vol. 7, 1973, pp. 273-286.

- 52. Leckie, F. A. and Lindberg, G. M., "The Effect of Lumped Parameters on Beam Frequencies," <u>Aeronautical Quarterly</u>, Vol. 14, 1963, pp. 224-240.
- Leimbach, K. R. and McDonald, D., "Free Vibration of Two-Dimensional Frameworks," <u>Journal of the Structural Division, ASCE</u>, Vol. 96, No. 2, 1970, pp. 267-289.
- 54. Mee, A. L., Jordaan, I. J. and Ward, M. A., "Dynamic Response of a Staggered Wall-Beam Structure," <u>Earthquake Engineering and Structural</u> Dynamics, Vol. 3, No. 4, 1975, pp. 353-364.
- Mei, C., "Coupled Vibrations of Thin-Walled Beams of Open Section Using the Finite Element Method," <u>International Journal of Mechanical Sciences</u>, Vol. 12, 1970, pp. 883-891.
- 56. Melosh, R. J. and Lang, T. E., "Modified Potential Energy Mass Representations for Frequency Prediction," <u>Proceedings of the First Con-</u> <u>ference on Matrix Methods in Structural Mechanics</u>, Wright-Patterson Air Force Base, Ohio, 1965.
- 57. Melosh, R. J., "Manipulation Errors in Finite Element Analysis," <u>Re-</u> <u>cent Advances in Matrix Methods of Structural Analysis and Design</u>, University of Alabama Press, Huntsville, Alabama, 1971.
- Mondkar, D. P. and Powell, G. H., "Finite Element Analysis of Non-Linear Static and Dynamic Response," <u>International Journal for Numer-</u> ical Methods in Engineering, Vol. 11, No. 3, 1977, pp. 499-520.
- 59. Monforton, G. R. and Schmit, Jr., L. A., "Finite Element Analysis of Sandwich Plates and Cylindrical Shells with Laminated Faces," <u>Proceedings of the Second Conference on Matrix Methods in Structural</u> <u>Mechanics</u>, Wright-Patterson Air Force Base, Ohio, 1968.
- 60. Nagarajan, S. and Popov, E. P., "Elastic-Plastic Dynamic Analysis of Axisymmetric Solids," <u>Computers and Structures</u>, Vol. 4, No. 6, 1974, pp. 1117-1134.
- 61. Nagarajan, S. and Popov, E. P., "Non-Linear Dynamic Analysis of Axisymmetric Shells," <u>International Journal for Numerical Methods in</u> Engineering, Vol. 9, No. 3, 1975, pp. 535-550.
- Neubert, V. H., "Lumping of Mass in Calculating Vibration Response," Journal of the Engineering Mechanics Division, ASCE, Vol. 90, No. 1, 1964, pp. 47-67.
- 63. Newmark, N. M. and Rosenblueth, E., <u>Fundamentals of Earthquake Engi-</u> neering, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1971.
- 64. Olson, M. D., "A Consistent Finite Element Method for Random Response Problems," <u>Computers and Structures</u>, Vol. 2, No. 2, 1972, pp. 161-180.

- 65. Olsen, M. D. and Lindberg, G. M., "Dynamic Analysis of Shallow Shells with a Doubly Curved Triangular Finite Element," <u>Journal of Sound and</u> Vibration, Vol. 19, No. 3, 1971, pp. 299-318.
- 66. Olson, M. D. and Lindberg, G. M., "Vibration Analysis of Cantilevered Curved Plates Using a New Cylindrical Shell Finite Element," <u>Proceedings of the Second Conference on Matrix Methods in Structural Mechanics, Wright-Patterson Air Force Base, Ohio, 1968.</u>
- 67. Omid'Varan, C., "Free Vibration of Grid-Stiffened Plates," Journal of Sound and Vibration, Vol. 19, No. 4, 1971, pp. 463-472.
- 68. Ovunc, B. A., "Dynamics of Frameworks by Continuous Mass Methods," Computers and Structures, Vol. 4, No. 5, 1974, pp. 1061-1089.
- 69. Parameswaran, M. A. and Sukumaran, K., "A Lumped Mass Vibration Model of a Slender Latticed Cantilever," <u>Computers and Structures</u>, Vol. 6, No. 2, 1976, pp. 107-109.
- Pardoen, G. C., "Static, Vibration and Buckling Analysis of Axisymmetric Circular Plates Using Finite Elements," <u>Computers and Struc</u>tures, Vol. 3, No. 2, 1973, pp. 355-375.
- Pardoen, G. C., "Vibration and Buckling Analysis of Axisymmetric Polar Orthotropic Circular Plates," <u>Computers and Structures</u>, Vol. 4, No. 5, 1974, pp. 951-960.
- 72. Paz, M. and Dung, L., "Power Series Expansion of the General Stiffness Matrix for Beam Elements," <u>International Journal for Numerical</u> <u>Methods in Engineering</u>, Vol. 9, No. 2, 1975, pp. 449-459.
- Pedersen, P. and Meghed, M. M., "Axisymmetric Element Analysis Using Analytical Computing," <u>Computers and Structures</u>, Vol. 5, No. 4, 1975, pp. 241-247.
- 74. Penzien, J., Kaul, M. K. and Berge, B., "Stochastic Response of Off-Shore Towers to Random Sea Waves and Strong Motion Earthquakes," <u>Com</u>puters and Structures, Vol. 2, No. 5, 1972, pp. 733-756.
- 75. Popplewell, N. and McDonald, D., "Conforming Rectangular and Triangular Plate-Bending Elements," Journal of Sound and Vibration, Vol. 19, No. 3, 1971, pp. 333-347.
- 76. Przemieniecki, J. S., "Quadratic Matrix Equations for Determining Vibration Modes and Frequencies of Continuous Elastic Systems," <u>Proceedings of the First Conference on Matrix Methods in Structural Mechanics</u>, Wright-Patterson Air Force Base, Ohio, 1965.
- 77. Przemieniecki, J. S., <u>Theory of Matrix Structural Analysis</u>, McGraw-Hill, Inc., New York, 1968.

- 78. Ramsden, N. N. and Stoker, J. R., "Mass-Condensation: A Semi-Automatic Method for Reducing the Size of Vibration Problems," <u>International Journal for Numerical Methods in Engineering</u>, Vol. 1, 1969, pp. 333-349.
- 79. Rao, G. V., Raju, I. S. and Raju, K. K., "A Finite Element Formulation for Large Amplitude Flexural Vibrations of Thin Rectangular Plates," Computers and Structures, Vol. 6, No. 3, 1976, pp. 163-167.
- Rao, G. V., Raju, K. K. and Raju, I. S., "Finite Element Formulation for the Large Amplitude Free Vibrations of Beams and Orthotropic Circular Plates," <u>Computers and Structures</u>, Vol. 6, No. 3, 1976, pp. 169-172.
- 81. Rayleigh, J. W. S., <u>The Theory of Sound</u>, Vol. 1, Dover Publications, New York, 1945.
- Rock, T. A. and Hinton, E., "A Finite Element Method for the Free Vibration of Plates Allowing for Transverse Shear Deformation," <u>Com</u>puters and Structures, Vol. 6, No. 1, 1976, pp. 37-44.
- 83. Rock, T. A. and Hinton, E., "Free Vibration and Transient Response of Thick and Thin Plates Using the Finite Element Method," <u>Earth-</u> <u>quake Engineering and Structural Dynamics</u>, Vol. 3, No. 1, 1974, pp. 51-63.
- Ross, C. T. F., "Finite Elements for the Vibration of Cones and Cylinders," <u>International Journal for Numerical Methods in Engineering</u>, Vol. 9, No. 4, 1975, pp. 833-845.
- Schenker, L., "The Dynamic Response of Tall Structures to Lateral Loads," Journal of the Engineering Mechanics Division, ASCE, Vol. 82, No. 2, 1956, pp. 944-1 - 944-13.
- 86. Schreyer, H. L., "Consistent Diagonal Mass Matrices and Finite Element Equations for One-Dimensional Problems," <u>International Journal for</u> Numerical Methods in Engineering, Vol. 12, No. 7, 1978, pp. 1171-1184.
- Schwanz, H. R., Rutishauser, H. and Stiefel, E., <u>Numerical Analysis</u> of Symmetric Matrices, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973.
- Sen, S. K. and Gould, P. L., "Free Vibration of Shells of Revolution Using the FEM," Journal of the Engineering Mechanics Division, ASCE, Vol. 100, No. 2, 1974, pp. 283-303.
- Slyper, H. A., "Development of Explicit Stiffness and Mass Matrices for a Triangular Plate Element," <u>International Journal of Solids and</u> <u>Structures</u>, Vol. 5, No. 3, 1969, pp. 241-249.

- 90. Stanton, E. L. and McGovern, D. J., "The Application of Gradient Minimization Methods and Higher Order Discrete Elements to Shell Buckling and Vibration Eigenproblems," <u>Computers and Structures</u>, Vol. 1, No. 3, 1971, pp. 413-434.
- 91. "SUBROUTINES EIGRS, EHOBK, EHOUSS, EQRT2S, UERTST," International Mathematical and Statistical Libraries, Inc., Houston, Texas.
- 92. Suryoutomo, H., Gould, P. L. and Prodyut, K. B., "Direct Dynamic Analysis of Shells of Revolution Using High-Precision Finite Elements," Computers and Structures, Vol. 7, No. 3, 1977, pp. 425-433.
- 93. Tolani, S. K. and Rocke, R. D., "A Strain Energy Comparison of Discrete Modeling for Vibrating Continuous Systems," <u>Journal of Engi</u>neering for Industry, Vol. 94, No. 1, 1972, pp. 23-30.
- 94. Tong, P., Pian, T. H. H. and Bucciarelli, L. L., "Mode Shapes and Frequencies by Finite Element Method Using Consistent and Lumped Masses," Computers and Structures, Vol. 1, No. 4, 1971, pp. 623-638.
- 95. Toridis, T. G. and Khozeimeh, K., "Computer Analysis of Rigid Frames," Computers and Structures, Vol. 1, No. 2, 1971, pp. 193-221.
- 96. Venancio-Filho, F. and Iguti, F., "Vibrations of Grids by the Finite Element Method," <u>Computers and Structures</u>, Vol. 3, No. 6, 1973, pp. 1331-1344.
- 97. Vysloukh, V. A., Kandidov, V. P. and Chesnokov, S. S., "Reduction of the Degrees of Freedom in Solving Dynamic Problems by the Finite Element Method," <u>International Journal for Numerical Methods in Engineering</u>, Vol. 7, No. 2, 1973, pp. 185-194.
- 98. Wang, C. K., <u>Computer Methods in Advanced Structural Analysis</u>, Intext Press, Inc., New York, 1973.

- 99. Wang, S. L. and Gray, H. P., "Dynamic Response of Elastoplastic Beam-Girder Systems," <u>Computers and Structures</u>, Vol. 2, No. 2, 1972, pp. 223-251.
- 100. Wang, T. M. and Kinsman, T. A., "Vibrations of Frame Structures According to the Timoshenko Theory," <u>Journal of Sound and Vibration</u>, Vol. 14, No. 2, 1971, pp. 215-227.
- 101. Warburton, G. B., "Recent Advances in Structural Dynamics," <u>Symposium</u> on Dynamic Analysis of Structures, Birnichill Institute, National Engineering Laboratory, East Kilbride, Glasgow, 1975.
- 102. Warburton, G. B., <u>The Dynamical Behavior of Structures</u>, Pergamon Press, London, 1964.

- 103. Weaver, Jr., W. and Yoshida, D. M., "The Eigenvalue Problem for Banded Matrices," <u>Computers and Structures</u>, Vol. 1, No. 4, 1971, pp. 651-664.
- 104. Young, D. and Felgar, Jr., R. P., <u>Tables of Characteristic Functions</u> <u>Representing Normal Modes of Vibration of a Beam</u>, The University of Texas Publication No. 4913, Austin, Texas, 1949.

.

•

#### APPENDIX A

#### USERS GUIDE FOR COMPUTER CODE

The computer code listed in Appendix B is an analysis and/or design program with the capability of determining the natural frequencies and mode shapes of beams and of plane frames composed of beam-column elements. Structures are limited to ten members, ten joints, twenty degrees of freedom and four loading conditions. If more complex structures are to be considered the COMMON statements and storage allocations must be adjusted accordingly. The units used internally in the program are inches, kips, seconds and radians. These must also be used in the input data. A description of the data deck is as follows:

#### FIRST CARD

#### NDS

NDS - number of data sets, problems, contained in the data deck

#### DATA SET CARDS

## Structure Information Card

## .NM, NJ, NDOF, MB, NLC

NM - total number of members in the structure

NJ - total number of joints in the structure

- NDOF number of degrees of freedom considered in the analysis
- MB bandwidth of the stiffness matrix and consistent mass matrix if it

is used, equal to the maximum difference between the MCODE values of each element excluding zeros plus one

## NLC - number of loading conditions in data set

#### Function Calling Card

## INFOC, IFSDC, ITTCON, INFOP, ILDAP, IGENCL, MASTYP

- INFOC SUBROUTINE INTFOR calling flag: if greater than zero, internal
   member forces are calculated
- IFSDC SUBROUTINE FSD calling flag: if greater than zero, a fully stressed design is determined
- ITTCON iteration control value: maximum number of iterations allowed to reach a fully stressed design; if IFSDC equals zero ITTCON should be set equal to zero
- INFOP if greater than zero, internal member forces are printed; must be set equal to zero if INFOC and IFSDC are zero
- ILDAP if greater than zero, the tilda force matrix is printed
- IGENCL SUBROUTINE EIGEN calling flag: if equal to zero, frequencies and mode shapes are not determined; if equal to one, frequencies and mode shapes are determined but no other analysis and/or design is performed; if equal to two, frequencies and mode shapes are determined along with other analysis and/or design
- MASTYP calling flag for mass matrix selection: if equal to zero, a consistent mass matrix is generated and assembled internally; if equal to one, system diagonal mass matrix values must be read in while non-diagonal values are set equal to zero internally

Member Loading Total Card - not required if IGENCL equals one

 $\underline{NMA(I)} \qquad I = 1, NLC$ 

NMA(I) - total number of member loadings in each loading case
Member Property Cards

```
INC(I,1), INC(I,2), A(I), XI(I), E(I), DENS(I) \qquad I = 1, NM
```

INC(I,1), INC(I,2) - beginning, ending joint of element I
A(I), XI(I), E(I), DENS(I) - area, moment of inertia, modulus of elasti-

city, mass density for each element I

Use one card for each member

Joint Coordinates Cards

X(I,1), X(I,2) I = 1,NJ

X(I,1), X(I,2) - X or 1, Y or 2 coordinate of joint I

Use one card for each joint

Member Action Index Card - not required if IGENCL equals one

 $\underline{MA(N,I)} \qquad I = 1, NLC \text{ and } N = 1, NM$ 

MA(N,I) - number of member loads on member N in load case I

Start a new card for each loading case

<u>Member Action Information Cards</u> - not required if IGENCL equals one or if all NMA(I)'s equal zero

MNUM(I,J),LDTYP(I,J),WON(I,J),WTW(I,J),WTH(I,J),WFO(I,J)

J = 1, NLC and I = 1, NMA(J)

MNUM(I,J) - member number; members must be read in sequentially lowest to highest

LDTYP(I,J) - types of loading, values explained below

WON(I,J), WTW(I,J), WTH(I,J), WFO(I,J) - loading parameters, values ex-

plained below, all zeros must

be read in

Input all member loadings for load case one and then continue for other loading cases.

## Explanation of LDTYP and Loading Parameters

LDTYP = 1 Uniform Distributed Load

WON, WTW - starting, ending position of load from the a-end of the member as a fraction of L

WTH - load value

WFO - set equal to zero

LDTYP = 2 Concentrated Transverse Load

WON - load value

WTW - position of load in inches from a-end of the member

WTH, WFO - set equal to zero

LDTYP = 3 Concentrated Axial Load

WON - load value

WTW - position of load in inches from a-end of the member

WTH, WFO - set equal to zero

LDTYP = 4 Uniform Temperature Increase

WON - amount of temperature increase

WTW - coefficient of thermal expansion

WTH, WFO - set equal to zero

- LDTYP = 5 Linearly Varying Distributed Load
  - WON, WTW starting, ending position of load from the a-end of the member as a fraction of L

WTH, WFO - starting, ending value of load

LDTYP = 6 Fabrication Error

WON - inches too long, (-) if too short

WTW, WTH, WFO - set equal to zero

<u>LDTYP = 7</u> Linearly Varying Temperature Increase - Used in Conjunction with LDTYP = 4

WON - linear variation in temperature, 0 to WON, or if used with

LDTYP = 4 it is the difference between the beginning and ending temperature values

WTW - coefficient of thermal expansion

WTH - depth of section

WFO - set equal to zero

Nodal Loading Cards - not required if IGENCL equals one

PSTOR(L,K) K = 1,NLC and L = 1,NDOF

PSTOR(L,K) - load applied to degree of freedom L during loading case K
A new card must be started for each loading case and all zeros must be
read in.

<u>Yield Strength Card</u> - not required if IGENCL equals one or if IFSDC equals zero

FY

FY - yield strength of member material

#### MCODE Matrix Cards

MCODE(L,M) L = 1,NM and M = 1,6

MCODE(L,M) - relates system degrees of freedom to element degrees of freedom; if no system degree of freedom corresponds to degree of freedom M of element L a zero is input, otherwise the corresponding system degree of freedom number is input; for each element, each successive number excluding zeros must be greater than all previous ones

<u>Diagonal Mass Values Card</u> - not required if IGENCL equals zero or if MASTYP equals zero

SM(I,1) I = 1,NDOF

SM(I,1) - system diagonal mass matrix values

# APPENDIX B

COMPUTER CODE LISTING

.

.

| С | MAIN PROGRAM                                                      | MAIN  | 10  |
|---|-------------------------------------------------------------------|-------|-----|
| C |                                                                   | -MAIN | 20  |
| C | THIS IS A MULTIPURPOSE PLANE FRAME PROGRAM UTILIZING BEAM-COLUMN  | MAIN  | 30  |
| C | ELEMENTS. MEMBER AND JOINT FORCES, NATURAL FREQUENCIES AND MODE   | MAIN  | 40  |
| С | SHAPES AND FULLY STRESSED DESIGNS CAN BE DETERMINED FOR STRUCTURE | SMAIN | 50  |
| С | WITH A MAXIMUM OF 10 MEMBERS AND/OR JOINTS AND 20 DEGREES OF FREE | -MAIN | 60  |
| С | DOM OR LESS. LARGER STRUCTURES MAY BE ANALYZED BUT THE COMMON     | MAIN  | 70  |
| С | STATEMENTS AND STORAGE ALLOCATIONS MUST THEN BE MODIFIED.         | MAIN  | 80  |
| С |                                                                   | MAIN  | 90  |
| С |                                                                   | MAIN  | 100 |
| C | MAJOR VARIABLES ARE DEFINED AS FOLLOWS:                           | MAIN  | 110 |
| С |                                                                   | MAIN  | 120 |
| C | NM,NJ-NUMBER OF MEMBERS, NUMBER OF JOINTS                         | MAIN  | 130 |
| C | NDOF-NUMBER OF DEGREES OF FREEDOM OF THE STRUCTURE                | MAIN  | 140 |
| C | MB-HALF BAND WIDTH OF THE STIFFNESS AND MASS MATRICES             | MAIN  | 150 |
| C | NDS-NUMBER OF DATA SETS MAKING UP DATA DECK                       | MAIN  | 160 |
| С | NLC-NUMBER OF LOADING CONDITIONS                                  | MAIN  | 170 |
| С | INFOC-CALLING FLAG FOR CALCULATION OF INTERNAL MEMBER FORCES      | MAIN  | 180 |
| C | IFSDC-CALLING FLAG FOR CALCULATION OF FULLY STRESSED DESIGN       | MAIN  | 190 |
| С | ITTCON-MAXIMUM ALLOWABLE NUMBER OF ITERATIONS, DESIGN CHANGES, TO | MAIN  | 200 |
| C | REACH A FULLY STRESSED DESIGN                                     | MAIN  | 210 |
| С | INFOP-FLAG FOR PRINTING INTERNAL MEMBER FORCES                    | MAIN  | 220 |
| C | ILDAP-FLAG FOR PRINTING MEMBER FORCES DUE TO MEMBER LOADS,        | MAIN  | 230 |
| С | F-TILDAS                                                          | MAIN  | 235 |
| С | IGENCL-FLAG FOR CALCULATION OF EIGENVALUES AND EIGENVECTORS       | MAIN  | 240 |
| C | X-JOINT COORDINATE MATRIX, TWO COORDINATES PER JOINT              | MAIN  | 250 |
| C | INC-MEMBER INCIDENCE MATRIX, CONNECTIVITY BETWEEN MEMBERS         | MAIN  | 260 |
| C | A-CROSS-SECTIONAL AREA OF EACH MEMBER                             | MAIN  | 270 |
| С | XI-MOMENT OF INERTIA OF EACH MEMBER                               | MAIN  | 280 |
| С | E-YOUNG'S MODULUS OF ELASTICITY OF EACH MEMBER                    | MAIN  | 290 |
| C | XL-LENGTH OF EACH MEMBER                                          | MAIN  | 300 |
| С | C-COSINE OF THE ANGLE BETWEEN THE MEMBER AND THE CORRESPONDING    | MAIN  | 310 |

| С | GLOBAL AXIS                                                        | MAIN  | 320 |
|---|--------------------------------------------------------------------|-------|-----|
| С | S-SINE OF THE ANGLE BETWEEN THE MEMBER AND THE CORRESPONDING       | MAIN  | 330 |
| С | GLOBAL AXIS                                                        | MAIN  | 340 |
| С | MASTYP-CALLING FLAG FOR MASS MATRIX TYPE DESIRED                   | MAIN  | 350 |
| C | ALPH, BETA-STIFFNESS MATRIX PARAMETERS                             | MAIN  | 360 |
| С | DENS-MASS DENSITY OF ELEMENT                                       | MAIN  | 370 |
| С | WEIGHT-WEIGHT OF MEMBER                                            | MAIN  | 380 |
| C | FY-YIELD STRENGTH OF MEMBER MATERIAL                               | MAIN  | 390 |
| С | TWEIHT-TOTAL WEIGHT OF THE STRUCTURE                               | MAIN  | 400 |
| С | MCODE-MATRIX RELATING ELEMENT TO SYSTEM DEGREES OF FREEDOM         | MAIN  | 410 |
| C | AK-UPPER TRIANGULAR BANDED PORTION OF THE STIFFNESS MATRIX         | MAIN  | 420 |
| С | SM-UPPER TRIANGULAR BANDED PORTION OF THE MASS MATRIX              | MAIN  | 430 |
| С | NMA-NUMBER OF MEMBER ACTIONS IN LOADING CASE                       | MAIN  | 440 |
| C | MA-MEMBER ACTION INDEX CONTAINING THE NUMBER OF MEMBER ACTIONS     | MAIN  | 450 |
| С | APPLIED TO EACH MEMBER                                             | MAIN  | 460 |
| С | MNUM-MEMBER NUMBER OF MEMBER TO WHICH A MEMBER LOAD IS APPLIED     | MAIN  | 470 |
| С | LDTYP-TYPE OF MEMBER LOAD APPLIED                                  | MAIN  | 480 |
| С | WON, WTW, WTH, WFO-MEMBER LOAD PARAMETERS DEPENDENT ON LOAD TYPE   | MAIN  | 490 |
| С | PSTOR-APPLIED CONCENTRATED LOAD AT EACH DEGREE OF FREEDOM          | MAIN  | 500 |
| С | FLOC-MEMBER FORCES IN LOCAL COORDINATES                            | MAIN  | 510 |
| С | PP-JOINT FORCES IN GLUBAL COORDINATES                              | MAIN  | 520 |
| C | DISP-DISPLACEMENTS FOR EACH DEGREE OF FREEDOM                      | MAIN  | 530 |
| С | XXX-LOCATION OF PANEL POINTS IN EACH MEMBER WHERE INTERNAL MEMBER  | MAIN  | 540 |
| С | RESPONSES ARE CALCULATED                                           | MAIN  | 550 |
| С | V-SHEAR FORCE AT EACH PANEL POINT FOR EACH MEMBER                  | MAIN  | 560 |
| С | BM-INTERNAL BENDING MOMENT AT EACH PANEL POINT FOR EACH MEMBER     | MAIN  | 570 |
| С | BMM-MAXIMUM INTERNAL BENDING MOMENT FOR EACH MEMBER                | MAIN  | 580 |
| С | FBALL, FTALL, FCALL-ALLOWABLE BENDING, TENSILE, COMPRESSIVE STRESS | SMAIN | 590 |
| C | SECMOD-SECTION MODULUS FOR EACH MEMBER                             | MAIN  | 600 |
| C | ELM-EFFECTIVE LENGTH OF EACH MEMBER                                | MAIN  | 610 |
| С | FBACT, FAXACT-ACTUAL BENDING, AXIAL STRESS                         | MAIN  | 620 |
| C | SF-SCALING FACTOR FOR EACH MEMBER USED TO MODIFY DESIGN IN DETER-  | MAIN  | 630 |

| С      | MINING A FULLY STRESSED DESIGN                                           | MAIN  | 640         |
|--------|--------------------------------------------------------------------------|-------|-------------|
| С      | M-SKYLINE VALUES OF MASS MATRIX                                          | MAIN  | 650         |
| С      | DD, AZ-EIGENVALUES, EIGENVECTORS OF STRUCTURE                            | MAIN  | <b>66</b> 0 |
| С      | Z-EIGENVECTORS OF MODIFIED STRUCTURAL SYSTEM                             | MAIN  | 670         |
| C      | D, G, TLINV, TILDAK, SSKTIL-MODIFIED MASS-STIFFNESS MATRICES USED        | MAIN  | 680         |
| С      | EIGENVALUE, EIGENVECTOR CALCULATIONS                                     | MAIN  | 690         |
| С      |                                                                          | MAIN  | 700         |
| С      |                                                                          | MAIN  | 710         |
| 0      | LATEST REVISION - OCTOBER 1978                                           | MAIN  | 720         |
| С      |                                                                          | MAIN  | 730         |
| С      |                                                                          | MAIN  | 740         |
| С      |                                                                          | -MAIN | 750         |
|        | COMMON X(10,2),A(10),XI(10),E(10),XL(10),C(10),S(10),ALPH(10),BET        | AMAIN | 760         |
|        | 1(10), SSKTIL(210), WON(10,4), WTW(10,4), WTH(10,4), WFD(10,4), PP(30,4) | MAIN  | 770         |
|        | 2FLOC(10,6,4), BM(10,7,4), PSTOR(20,4), PDUP(20,4), BMM(10,4), XXX(10,7) | ,MAIN | 780         |
|        | 34),V(10,7,4),DISP(20,4),WEIGHT(10),D(20,20),G(20,20),TLINV(20,20)       | ,MAIN | 790         |
|        | 4TILDAK(20,20),AZ(20,20),DENS(10),MCODE(10,6),INC(10,2),MNUM(10,4)       | ,MAIN | 800         |
|        | 5MA(10,4),LDTYP(10,4),NMA(4),FY,NM,NJ,NDOF,MB,INFOC,IFSDC,ITTCON,N       | LMAIN | 810         |
|        | 6C, INFOP, ILDAP, IGENCL, MASTYP                                         | MAIN  | 820         |
|        | DIMENSION T(1000)                                                        | MAIN  | 830         |
| C      |                                                                          | MAIN  | 840         |
| C      | READ NUMBER OF DATA SETS                                                 | MAIN  | 850         |
| C      |                                                                          | MAIN  | 860         |
|        | READ (5,*) NDS                                                           | MAIN  | 870         |
| ~      | DO 2 JJJ=1, NDS                                                          | MAIN  | 880         |
| C      |                                                                          | MAIN  | 890         |
| ۲<br>۲ | READ CALLS FUR INTERNAL FURLES, FULLY STRESSED DESIGNS, ALLUWABLE        | MAIN  | 900         |
| L<br>C | TIERATIONS AND CALLS FOR PRINTING THE F-TILDA'S AND INTERNAL             | MAIN  | 910         |
| L<br>C | MEMBEK FUKLES                                                            | MAIN  | 915         |
| ι      | DEAD LE +1 INEGO TECDO TITONI INFOR TIDAR TOCNOL HACTYR                  | MAIN  | 920         |
| r      | KEAU 101+1 INFUL, IFSUL, ITTUUN, INFUP, ILUAP, IGENUL, MASTYP            | MAIN  | 930         |
| L      |                                                                          | MAIN  | 74U         |

| C | READ NUMBER OF MEMBERS, NUMBER OF JOINTS, NUMBER OF DEGREES OF | MAIN 950        |
|---|----------------------------------------------------------------|-----------------|
| C | FREEDOM, BANDWIDTH AND NUMBER OF LOADING CONDITIONS            | MAIN 960        |
| C |                                                                | MAIN 970        |
|   | READ (5,*) NM,NJ,NDOF,MB,NLC                                   | MAIN 980        |
|   | IF (IGENCL.EQ.1) GO TO 1                                       | MAIN 990        |
| C |                                                                | MAIN1000        |
| С | READ TOTAL NUMBER OF MEMBER ACTIONS IN EACH LOADING CASE       | MAIN1010        |
| C |                                                                | MAIN1020        |
|   | READ (5,*) (NMA(I),I=1,NLC)                                    | MAIN1030        |
| С |                                                                | <b>MAIN1040</b> |
| C | SET UP DYNAMIC DIMENSIONING                                    | MAIN1050        |
| С |                                                                | MAIN1060        |
| 1 | N1=1                                                           | <b>MAIN1070</b> |
|   | N2=1+NDOF*MB                                                   | MAIN1080        |
|   | N3=1+N2+NDOF                                                   | MAIN1090        |
|   | N4=1+N3+NM*6*NLC                                               | MAIN1100        |
|   | CALL EXEC (T(N1),T(N2),T(N3),T(N4))                            | MAIN1110        |
|   | WRITE (6,3)                                                    | <b>MAIN1120</b> |
| 2 | CONTINUE                                                       | MAIN1130        |
|   | STOP                                                           | <b>MAIN1140</b> |
| C |                                                                | <b>MAIN1150</b> |
| 3 | FORMAT (1H-)                                                   | MAIN1160        |
|   | END                                                            | MAIN1170        |

| SUBROUTINE EXEC (AK, P, FTIL, SM)                                                                                                              | EXEC    |   |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------|---|
|                                                                                                                                                | EXEC    | , |
|                                                                                                                                                | EXEC    |   |
|                                                                                                                                                | EXEC    | 4 |
| THIS SUBROUTINE IS THE EXECUTIVE SUBROUTINE WHICH CALLS ALL SUB-                                                                               | EXEC    |   |
| ROUTINES SPECIFIED BY USER UPTIONS. ALSO DISPLACEMENTS AT EACH                                                                                 | EXEC    | 1 |
| DEGREE OF FREEDOM AND MEMBER AND JOINT FORCES FOR EACH LOADING                                                                                 | EXEC    |   |
| CONDITION ARE OUTPUT. TILDA FORCES AND INTERNAL MEMBER RESPONSE                                                                                | S EXEC  |   |
| MAY ALSO BE OUTPUT.                                                                                                                            | EXEC    |   |
|                                                                                                                                                | EXEC    | L |
|                                                                                                                                                | EXEC    | 1 |
|                                                                                                                                                | EXEC    | 1 |
| LUMMUN X(10,2),A(10),X1(10),E(10),XL(10),L(10),S(10),ALPH(10),BE                                                                               | IAEXEC  | L |
| (10); SSKI1L(210); WUN(10;4); WIW(10;4); WIH(10;4); WFU(10;4); PP(30;4)                                                                        |         | 1 |
| (*LUC(10,0,4),BM(10,7,4),PSTUR(20,4),PDUP(20,4),BMM(10,4),XXX(10,                                                                              | I JEXEL | 1 |
| )4];V(10;/;4);U1)7(20;4);WE10H1(10);U(20;20);G(20;20);ILINV(20;20<br>(T1) 0.4/20; 20) 0.7/20; 20) 0.5NS(10) NCODE(10; 4) INC(10; 2) MNUM(10; 4 |         | 1 |
| FILDARIZUJZUJJAZIZUJZUJJDENSTIDJJMCUDETIDJOJJINCTIDJZJJMNUMTTUJ4<br>Smalio a) intvolio a) nmala) ev nm ni ndoe me inego iesoc ittoon           | NI EVEC | 1 |
| DMALLUJYJJLUTTYLIUJYJJNMALYJYTJJNMJNJJNUUFJMDJINFUCJIFSUCJITICUNJ<br>20. tnego tidad tcenci mastyd                                             |         | 1 |
| DIMENSION AKINDDE,MB), PINDDE), ETTIINM,6,NIC), SMINDDE,MB)                                                                                    | EXEC    | 2 |
|                                                                                                                                                | EXEC    | 2 |
| CALL ALL OTHER SUBRUITINES DEPENDING ON USER ELAGS                                                                                             | EXEC    | 2 |
| THE ALL OTHER SUBROTTINES BETERBING ON ODER TEROS                                                                                              | EXEC    | 2 |
| CALL INPUT (AK)                                                                                                                                | EXEC    | 2 |
| CALL MPROP                                                                                                                                     | EXEC    | 2 |
| IF (IGENCL.EQ.0) GO TO 1                                                                                                                       | EXEC    | 2 |
| CALL STIFF (AK)                                                                                                                                | EXEC    | 2 |
| CALL AMASS (AK, P, FTIL, SM)                                                                                                                   | EXEC    | 2 |
| CALL EIGEN (AK, P, FTIL, SM)                                                                                                                   | EXEC    | 2 |
| IF (IGENCL.EQ.1) GO TO 15                                                                                                                      | EXEC    | 3 |
| CALL MACT (AK,P,FTIL)                                                                                                                          | EXEC    | 3 |
| IF (IGENCL.EQ.2) GO TO 2                                                                                                                       | EXEC    | 3 |
|   | CALL STIFF (AK)                                                  | EXEC 330 |
|---|------------------------------------------------------------------|----------|
| 2 | CALL SOLVE (AK,P)                                                | EXEC 340 |
|   | CALL FORCE (AK,P,FTIL)                                           | EXEC 350 |
|   | IF (INFOC.EQ.O) GO TO 3                                          | EXEC 360 |
|   | CALL INTFOR                                                      | EXEC 370 |
| 3 | IF (IFSDC.EQ.0) GC TO 5                                          | EXEC 380 |
|   | IF (INFOC.GT.O) GO TO 4                                          | EXEC 390 |
|   | CALL INTFOR                                                      | EXEC 400 |
| 4 | CALL FSD (AK,P,FTIL)                                             | EXEC 410 |
| 5 | DO 14 II=1,NLC                                                   | EXEC 420 |
|   | WRITE (6,16) II                                                  | EXEC 430 |
|   | IF (ILDAP.EQ.O) GO TO 7                                          | EXEC 440 |
|   | IF (NMA(II).EQ.0) GO TO 7                                        | EXEC 450 |
|   | WRITE (6,17)                                                     | EXEC 460 |
| С |                                                                  | EXEC 470 |
| С | WRITE THE MEMBER TILDA FORCES FOR EACH LOADING CASE IF REQUESTED | EXEC 480 |
| С |                                                                  | EXEC 490 |
|   | DO 6 I=1,NM                                                      | EXEC 500 |
| 6 | WRITE (6,18) I,(FTIL(I,J,II),J=1,6)                              | EXEC 510 |
| 7 | WRITE (6,19)                                                     | EXEC 520 |
| С |                                                                  | EXEC 530 |
| C | WRITE DISPLACEMENTS AT EACH DEGREE OF FREEDOM FOR EACH LOADING   | EXEC 540 |
| С | CASE                                                             | EXEC 550 |
| С |                                                                  | EXEC 560 |
|   | DO 8 I=1,NDOF                                                    | EXEC 570 |
|   | WRITE (6,20) I,DISP(I,II)                                        | EXEC 580 |
| 8 | CONTINUE                                                         | EXEC 590 |
| С |                                                                  | EXEC 600 |
| С | WRITE MEMBER FORCES FOR EACH LOADING CASE                        | EXEC 610 |
| С |                                                                  | EXEC 620 |
|   | WRITE (6,21)                                                     | EXEC 630 |
|   | DO 9 I=1, NM                                                     | EXEC 640 |

|    | WRITE (6,22) I,FLCC(I,1,II),FLOC(I,4,II),FLOC(I,2,II),FLOC(I,5,I | <b>I)EXEC 650</b> | ) |
|----|------------------------------------------------------------------|-------------------|---|
|    | 1,FLOC(I,3,II),FLOC(I,6,II)                                      | EXEC 660          | ) |
| 9  | CONTINUE                                                         | EXEC 670          | ) |
| С  |                                                                  | EXEC 680          | ) |
| C  | WRITE JOINT FORCES FOR EACH LOADING CASE                         | EXEC 690          | ) |
| С  |                                                                  | EXEC 700          | ) |
|    | WRITE (6,23)                                                     | EXEC 710          | ) |
|    | DO 10 I=1,NJ                                                     | EXEC 720          | ) |
|    | WRITE (6,24) I,PP(3*I-2,II),PP(3*I-1,II),PP(3*I,II)              | EXEC 730          | ) |
| 10 | CONTINUE                                                         | EXEC 740          | ) |
|    | IF (INFOC.EQ.O) GO TO 11                                         | EXEC 750          | ) |
|    | GO TO 12                                                         | EXEC 760          | ) |
| 11 | IF (IFSDC.EQ.0) GO TO 14                                         | EXEC 770          | ) |
| 12 | IF (INFOP.EQ.O) GO TO 14                                         | EXEC 780          | ) |
|    | WRITE (6,25)                                                     | EXEC 790          | ) |
| С  |                                                                  | EXEC 800          | ) |
| C  | WRITE THE INTERNAL MEMBER RESPONSES, SHEAR AND BENDING MOMENTS,  | EXEC 810          | ) |
| С  | FOR EACH LUADING CASE IF REQUESTED                               | EXEC 820          | ) |
| С  |                                                                  | EXEC 830          | ) |
|    | DC 13 M=1,NM                                                     | EXEC 840          | ) |
|    | WRITE (6,26) M,(XXX(M,I,II),I=1,7)                               | EXEC 850          | ) |
|    | WRITE $(6, 27)$ $(V(M, [, 11), 1=1, 7)$                          | EXEC 860          | ) |
|    | WRITE $(6, 28)$ (BM(M, I, II), I=1,7)                            | EXEC 870          | ) |
| 13 | CONTINUE                                                         | EXEC 880          | ) |
| 14 | CONTINUE                                                         | EXEC 890          | ) |
| 15 | RETURN                                                           | EXEC 900          | ) |
| С  |                                                                  | EXEC 910          | ) |
| 16 | FORMAT (1H0,///,10X,17HLOADING CONDITION,12)                     | EXEC 920          | ) |
| 17 | FORMAT (//40X,31HTILDE FORCE MATRIX (TRANSPOSED)/)               | EXEC 930          | ) |
| 18 | FORMAT (8X,6HMEMBER,13,6(5X,F12.5)/)                             | EXEC 940          | ) |
| 19 | FORMAT (1H-,3HDOF,5X,4HDISP)                                     | EXEC 950          | ) |
| 20 | FORMAT (1H0,1X,12,4X,F10.6)                                      | EXEC 960          | ) |

| 21 | FORMAT   | (1H-,6HMEMBER,5X,12HA-END FORCES,5X,12HB-END FORCES)           | EXEC 970   |
|----|----------|----------------------------------------------------------------|------------|
| 22 | FORMAT   | (1H0,2X,12,7X,F10.4,7X,F10.4,/,11X,F10.4,7X,F10.4,/,11X,F      | 10EXEC 980 |
|    | 1.4,7X,F | 10.4)                                                          | EXEC 990   |
| 23 | FORMAT   | <pre>(1H-,5HJ0INT,5X,7H1-FORCE,5X,7H2-FORCE,5X,6HMOMENT)</pre> | EXEC1000   |
| 24 | FORMAT   | (1H0,1X,12,5X,F9.3,3X,F9.3,3X,F9.3)                            | EXEC1010   |
| 25 | FORMAT   | (1H0,///,40X,29H**INTERNAL MEMBER RESPONSES**,//)              | EXEC1020   |
| 26 | FORMAT   | (/,1X,7HMEMBER ,I2,7(4X,2HX=,F8.3),/)                          | EXEC1030   |
| 27 | FORMAT   | (5X,5HSHEAR,7(2X,E12.4))                                       | EXEC1040   |
| 28 | FORMAT   | (4X,6HMOMENT,7(2X,E12.4))                                      | EXEC1050   |
|    | END      |                                                                | EXEC1060   |

```
INPT 10
     SUBROUTINE INPUT (AK)
     20
С
С
                                                                   INPT
                                                                         30
С
                                                                   INPT
                                                                        40
     THIS SUBROUTINE READS, STORES AND OUTPUTS THE INFORMATION
                                                                   INPT 50
С
С
     SUPPLIED BY THE USER
                                                                   INPT
                                                                         60
С
                                                                   INPT
                                                                         70
С
                                                                   INPT
                                                                        80
              С
     COMMON X(10,2),A(10),XI(10),E(10),XL(10),C(10),S(10),ALPH(10),BETAINPT 100
    1(10), SSKTIL(210), WON(10,4), WTW(10,4), WTH(10,4), WFO(10,4), PP(30,4), INPT 110
    2FLUC(10,6,4), BM(10,7,4), PSTOR(20,4), PDUP(20,4), BMM(10,4), XXX(10,7, INPT 120
    34), V(10,7,4), DISP(20,4), WEIGHT(10), D(20,20), G(20,20), TLINV(20,20), INPT 130
    4TILDAK(20,20),AZ(20,20),DENS(10),MCDDE(10,6),INC(10,2),MNUM(10,4),INPT 140
    5MA(10,4),LDTYP(10,4),NMA(4),FY,NM,NJ,NDOF,MB,INFOC,IFSDC,ITTCON,NLINPT 150
    6C, INFOP, ILDAP, IGENCL, MASTYP
                                                                   INPT 160
     DIMENSION AK(NDOF, M6)
                                                                   INPT 170
                                                                   INPT 180
С
С
                                                                   INPT 190
     WRITE THE NUMBER OF MEMBERS AND JOINTS
С
                                                                   INPT 200
     WRITE (6,19) NM, NJ
                                                                   INPT 210
     WRITE (6,20)
                                                                   INPT 220
     WRITE (6,21)
                                                                   INPT 230
                                                                   INPT 240
С
     READ JOINT COORDINATES, MEMBER PROPERTIES AND CONNECTIVITY
                                                                   INPT 250
С
                                                                   INPT 260
С
     READ (5,*) (INC(N,1), INC(N,2), A(N), XI(N), E(N), DENS(N), N=1, NM)
                                                                   INPT 270
                                                                   INPT 280
     READ (5,*) (X(J,1),X(J,2),J=1,NJ)
     IF (IGENCL.EQ.1) GO TO 5
                                                                   INPT 290
                                                                   INPT 300
С
                                                                   INPT 310
С
      READ THE MEMBER ACTION INDEX
C
                                                                   INPT 320
```

|   | DO 1 I=1, NLC                                             | INPT 330        |
|---|-----------------------------------------------------------|-----------------|
|   | READ $(5, *)$ (MA(N, I), N=1, NM)                         | INPT 340        |
| 1 | CONTINUE                                                  | <b>INPT 350</b> |
|   | DO 2 J=1, NLC                                             | <b>INPT</b> 360 |
|   | NMALC=NMA(J)                                              | <b>INPT 370</b> |
|   | IF (NMALC.EQ.O) GO TO 2                                   | INPT 380        |
| С |                                                           | INPT 390        |
| C | READ MEMBER ACTION LOADING AND APPLIED NODAL LOADING      | INPT 400        |
| С |                                                           | <b>INPT 410</b> |
| C |                                                           | INPT 420        |
| С | FOR LOAD CASE 1 - UNIFORM DISTRIBUTED LOAD                | <b>INPT 430</b> |
| C | W1, W2 ARE STARTING, ENDING FRACTION OF L FROM A-END      | INPT 440        |
| С | W3 IS LOADING VALUE                                       | INPT 450        |
| C |                                                           | INPT 460        |
| C | FOR LOAD CASE 2 - CONCENTRATED LOAD                       | INPT 470        |
| C | W1 IS LOADING VALUE                                       | <b>INPT 480</b> |
| С | W2 IS DISTANCE FROM A-END IN INCHES                       | INPT 490        |
| C |                                                           | <b>INPT 500</b> |
| С | FOR LOAD CASE 3 - CONCENTRATED AXIAL LOAD                 | INPT 510        |
| С | W1 IS LOADING VALUE                                       | INPT 520        |
| С | W2 IS DISTANCE FRGM A-END IN INCHES                       | INPT 530        |
| С |                                                           | INPT 540        |
| C | FOR LOAD CASE 4 - UNIFORM TEMPERATURE INCREASE            | INPT 550        |
| С | W1 IS UNIFORM INCREASE IN TEMPERATURE                     | INPT 560        |
| С | W2 IS COEFFICIENT OF THERMAL EXPANSION                    | INPT 570        |
| C |                                                           | INPT 580        |
| С | FOR LOAD CASE 5 - LINEARLY VARYING DISTRIBUTED LOAD       | INPT 590        |
| С | W1, W2 ARE STARTING, ENDING FRACTIONS OF L FROM THE A-END | INPT 600        |
| С | W3, W4 ARE STARTING, ENDING VALUES OF LOAD                | INPT 610        |
| C |                                                           | INPT 620        |
| С | FOR LOAD CASE 6 - FABRICATION ERROR                       | INPT 630        |
| С | W1 IS INCHES TOO LONG                                     | INPT 640        |

| С |                                                                            | INPT | 650 |    |
|---|----------------------------------------------------------------------------|------|-----|----|
| 3 | FOR LOAD CASE 7 - LINEARLY VARYING TEMPERATURE INCREASE USED IN            | INPT | 660 |    |
| С | CONJUNCTION WITH LOAD CASE 4                                               | INPT | 670 |    |
| С | WI IS THE LINEAR VARIATION IN TEMPERATURE. O TO WI                         | INPT | 680 |    |
| Č | W2 IS THE COEFFICIENT OF THERMAL EXPANSION                                 | INPT | 690 |    |
| Ċ | W3 IS THE DEPTH OF THE SECTION                                             | INPT | 700 |    |
| Č |                                                                            | INPT | 710 |    |
| - | READ (5.*) (MNUM(I.J).LDTYP(I.J).WON(I.J).WTW(I.J).WTH(I.J).WFO(I.         | INPT | 720 |    |
|   | 1J), I=1, NMALC)                                                           | INPT | 730 |    |
| 2 | CONTINUE                                                                   | INPT | 740 |    |
| Ĉ |                                                                            | INPT | 750 |    |
| Č | READ APPLIED LOADS AT EACH DEGREE OF FREEDOM                               | INPT | 760 |    |
| Ċ |                                                                            | INPT | 770 |    |
| - | D0 4 K=1.NLC                                                               | INPT | 780 |    |
|   | READ $(5, *)$ (PSTOR(L,K),L=1,NDOF)                                        | INPT | 790 |    |
|   | $DO_3 J=1 \cdot NDOF$                                                      | INPT | 800 | 73 |
| 3 | PDUP(J,K) = PSTOR(J,K)                                                     | INPT | 810 |    |
| 4 | CONTINUE                                                                   | INPT | 820 |    |
| • | IF (IFSDC.EQ.0) GQ TQ 5                                                    | INPT | 830 |    |
| C |                                                                            | INPT | 840 |    |
| č | READ THE YIELD STRENGTH OF MEMBER MATERIAL                                 | INPT | 850 |    |
| č |                                                                            | INPT | 860 |    |
| • | READ (5.*) FY                                                              | INPT | 870 |    |
| C |                                                                            | INPT | 880 |    |
| č | WRITE THE NODAL COORDINATES AND MEMBER PROPERTIES                          | INPT | 890 |    |
| Ċ |                                                                            | INPT | 900 |    |
| 5 | DB 6 M=1.NJ                                                                | INPT | 910 |    |
| 2 | WRITE (6.22) M.X(M.1).X(M.2)                                               | INPT | 920 |    |
| 6 | CONTINUE                                                                   | INPT | 930 |    |
| - | WRITE (6.23)                                                               | INPT | 940 |    |
|   | WRITE (6.24) (N.INC(N.1).INC(N.2). $\Delta(N)$ .XI(N).E(N).DENS(N).N=1.NM) | INDT | 950 |    |
|   | WRITE (6.25)                                                               | INPT | 960 |    |
|   |                                                                            |      |     |    |

| С  |                                                            | <b>INPT 970</b> |
|----|------------------------------------------------------------|-----------------|
| С  | READ AND WRITE THE MCODE MATRIX RELATING ELEMENT TO SYSTEM | DEGREESINPT 980 |
| С  | OF FREEDOM                                                 | INPT 990        |
| С  |                                                            | INPT1000        |
|    | DO 7 LL=1,NM                                               | INPT1010        |
|    | READ (5,*) (MCGDE(LL,MM),MM=1,6)                           | INPT1020        |
|    | WRITE (6,26) (MCODE(LL,MM),MM=1,6)                         | INPT1030        |
| 7  | CONTINUE                                                   | INPT1040        |
|    | IF (IGENCL.EQ.1) GO TO 18                                  | <b>INPT1050</b> |
|    | DO 17 L=1,NLC                                              | <b>INPT1060</b> |
|    | WRITE (6,27) L                                             | INPT1070        |
| С  |                                                            | INPT1080        |
| C  | WRITE LOADING INFORMATION FOR EACH LOADING CONDITION       | INPT1090        |
| C  |                                                            | INPT1100        |
|    | WRITE (6,28)                                               | INPT1110        |
|    | DO 8 I=1, NDOF                                             | INPT1120        |
|    | WRITE (6,29) I,PDUP(I,L)                                   | INPT1130        |
| 8  | CONTINUE                                                   | INPT1140        |
|    | NMALC=NMA(L)                                               | INPT1150        |
|    | IF (NMALC.EQ.O) GO TO 17                                   | INPT1160        |
|    | DO 16 J=1,NMALC                                            | INPT1170        |
|    | MND=MNUM(J,L)                                              | INPT1180        |
|    | LODTYP=LDTYP(J,L)                                          | INPT1190        |
|    | W1=WON(J,L)                                                | INPT1200        |
|    | W2=WTW(J,L)                                                | INPT1210        |
|    | W3=WTH(J,L)                                                | <b>INPT1220</b> |
|    | W4=WFO(J+L)                                                | INPT1230        |
|    | GU TC (9,10,11,12,13,14,15), LODTYP                        | INPT1240        |
| 9  | WRITE (6,30) MN0,W3,W1,W2                                  | INPT1250        |
|    | GO TO 16                                                   | INPT1260        |
| 10 | WRITE (6,31) MNO,W1,W2                                     | INPT1270        |
|    | GC TO 16                                                   | INPT1280        |

| 11 | WRITE (6,32) MNO,W1,₩2                                         | INPT1290        |
|----|----------------------------------------------------------------|-----------------|
|    | GO TO 16                                                       | INPT1300        |
| 12 | WRITE (6,33) MNU,W1,W2                                         | INPT1310        |
|    | GO TO 16                                                       | INPT1320        |
| 13 | WRITE (6,34) MNO,W3,W1,W4,W2                                   | INPT1330        |
|    | GO TO 16                                                       | INPT1340        |
| 14 | WRITE (6,35) MN0,W1                                            | INPT1350        |
|    | GO TO 16                                                       | INPT1360        |
| 15 | WRITE (6,36) MNO,W1,W2                                         | INPT1370        |
|    | WRITE (6,37) W3                                                | INPT1380        |
| 16 | CONTINUE                                                       | INPT1390        |
| 17 | CONTINUE                                                       | INPT1400        |
| 18 | RETURN                                                         | INPT1410        |
| C  |                                                                | <b>INPT1420</b> |
| 19 | FORMAT (1H1,18X,12,29X,12)                                     | INPT1430        |
| 20 | FORMAT (1H+,17HNUMBER OF MEMBERS,15X,16HNUMBER OF JOINTS,//,1  | X,35HINPT1440   |
|    | 1INPUT UNITS: INCHES, KIPS, RADIANS,///)                       | INPT1450        |
| 21 | FORMAT (1H-,5HJOINT,3X,6HCOOR-1,3X,6HCOOR-2)                   | INPT1460        |
| 22 | FORMAT (1H0,1X,12,2F10.2,//)                                   | INPT1470        |
| 23 | FORMAT (1H-,6HMEMBER,3X,7HFROM JT,3X,5HTO JT,3X,8HC/S AREA,6X  | ,1HI,INPT1480   |
|    | 19X,1HE,9X,7HDENSITY)                                          | INPT1490        |
| 24 | FORMAT (1H0,2X,12,7X,12,7X,12,5X,F6.2,4X,F7.2,3X,F8.1,3X,F10.  | 7,///INPT1500   |
|    | 1)                                                             | INPT1510        |
| 25 | FORMAT (1H-,12HMCODE MATRIX)                                   | INPT1520        |
| 26 | FURMAT (1H0,615)                                               | INPT1530        |
| 27 | FORMAT (1H0,///,10X,17HLOADING CONDITION,12)                   | INPT1540        |
| 28 | FORMAT (1H-,3HDOF,5X,7HLOADING)                                | INPT1550        |
| 29 | FCRMAT (1H0,1X,12,4X,F8.2)                                     | INPT1560        |
| 30 | FORMAT (/20X,6HMEMBER,12,34H IS SUBJECTED TO A UNIFORM LOAD C  | F, F8. INPT1570 |
|    | 15,9HKIPS/INCH/20X,8HSTARTING,F5.2,12HL AND ENDING,F5.2,30HL F | ROM TINPT1580   |
|    | 2HE A-END OF THE MEMBER)                                       | INPT1590        |
| 31 | FORMAT (/20X,6HMEMBER,12,37H IS SUBJECTED TO A TRANSVERSE LOA  | D OF, INPT1600  |

|    | 1F8.3,5H KIPS,F9.5,36H INCHES FROM THE A-END OF THE MEMBER)            | INPT1610        |
|----|------------------------------------------------------------------------|-----------------|
| 32 | FORMAT {/20X,6HMEMBER,12,32HIS SUBJECTED TO AN AXIAL LOAD OF,F8.5,     | INPT1620        |
|    | 14HKIPS,F9.5,35HINCHES FROM THE A-END OF THE MEMBER)                   | INPT1630        |
| 33 | FORMAT (/20X,6HMEMBER,12,52HIS SUBJECTED TO A UNIFORM INCREASE IN      | INPT1640        |
|    | ITEMPERATURE OF, F7.4, 10HDEGREES F./45X, 40HTHE COEFFICIENT OF THERMA | AINPT1650       |
|    | 2L EX-PANSION IS,F10.8)                                                | INPT1660        |
| 34 | FORMAT (/20X,6HMEMBER,12,32HIS SUBJECTED TO A LINEAR LOAD OF, F8.5,    | INPT1670        |
|    | 19HKIPS/INCH/2X,8HSTARTING,F5.2,52HL FROM THE A-END OF THE MEMBER A    | INPT1680        |
|    | 2ND VARYING LINERALY,/20X,2HTO,F8.5,23HKIPS/INCH AT A DISTANCE,F5.     | INPT1690        |
|    | 32,30HLFROM THE A-END OF THE MEMBER.)                                  | INPT1700        |
| 35 | FORMAT (/20X,6HMEMBER,12,2HIS,F8.5,42HINCHES TOO LONG DUE TO FABRI     | [INPT1710       |
|    | 1CA-TION ERRORS)                                                       | INPT1720        |
| 36 | FORMAT (/20X,6HMEMBER,12,52HIS SUBJECTED TO A LINEAR VARIATION IN      | INPT1730        |
|    | ITEMPERATURE OF, F7.4, 10HDEGREES F./45X, 39HTHE COEFFICIENT OF THERMA | AINPT1740       |
|    | 2L EXPANSION IS,F10.8)                                                 | <b>INPT1750</b> |
| 37 | FORMAT (45X,19HDEPTH OF SECTION IS,F9.6,6HINCHES)                      | <b>INPT1760</b> |
|    | END                                                                    | INPT1770        |

- INPT1770
- 76

| MPRP      | 10                                                               |
|-----------|------------------------------------------------------------------|
| MPRP      | 20                                                               |
| MPRP      | 30                                                               |
| MPRP      | 40                                                               |
| MPRP      | 50                                                               |
| OR MPRP   | 60                                                               |
| MPRP      | 65                                                               |
| MPRP      | 70                                                               |
| MPRP      | 80                                                               |
| MPRP      | 90                                                               |
| ETAMPRP   | 100                                                              |
| 4), MPRP  | 110                                                              |
| , /, MPKP | 120                                                              |
| O),MPRP   | 130                                                              |
| 4), MPRP  | 140                                                              |
| , NLMPRP  | 150                                                              |
| MPKP      | 160                                                              |
| MPRP      | 100                                                              |
| MPRP      | 180                                                              |
| MPRP      | 190                                                              |
| MPKP      | 200                                                              |
| MDDD      | 210                                                              |
| MDOD      | 220                                                              |
| MDDD      | 230                                                              |
| MPRP      | 240                                                              |
| MORD      | 260                                                              |
| MDDD      | 270                                                              |
| MPRP      | 280                                                              |
| MPRP      | 290                                                              |
| MPRP      | 300                                                              |
| MPRP      | 310                                                              |
|           | MPRP<br>MPRP<br>MPRP<br>MPRP<br>OR<br>MPRP<br>MPRP<br>MPRP<br>MP |

| RETURN | MPRP | 320 |
|--------|------|-----|
| END    | MPRP | 330 |

| SUBROUTINE MACT (AK,P,FTIL) M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| M = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m = m =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                     |
| M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                     |
| M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40                                     |
| THIS SUBROUTINE CALCULATES AND STORES THE MEMBER FORCES RESULTING M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                     |
| FROM MEMBER LOADS. THESE TILDA FORCES ARE THEN TRANSFORMED TO M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                                     |
| GLOBAL COORDINATES AND, IF THEY ARE CONCENTRATED AT SYSTEM DEGREESM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70                                     |
| OF FREEDOM, SUBTRACTED FROM ANY APPLIED LOADS CONCENTRATED THERE. M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80                                     |
| M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90                                     |
| M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110                                    |
| (10), X(10), 2), A(10), XI(10), E(10), XL(10), C(10), S(10), ALPH(10), BETAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120                                    |
| $\frac{1}{10} + \frac{5}{5} + \frac{1}{10} +$ | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130                                    |
| 24LUL(10,6,4), BM(10,7,4), PSIUK(20,4), PDUP(20,4), BMM(10,4), XXX(10,7,4)<br>24) V(10,7,4) DISD(20,4) WEICHT(10) D(20,20) C(20,20) TI (NV(20,20) M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140                                    |
| = 5479V(10979479015P(209479WE1001(10790(20920790(20920791L1WV(20920790))) = 47100V(20920790(20920790)) = 67100V(20920790(20920790)) = 67100V(20920790) = 6710V(20920790) = 6710V(20920700) = 6710V(20920700) = 6710V(20920790) = 6710V(20920700) = 6710V(20920700) = 6710V(20920700) = 6710V(20920700) = 6710V(2092000) = 6710V(2092000) = 6710V(209200) = 6710V(2092000) = 6710V(209200) = 6710V(2092000) = 6710V(209200) = 6710V(209200) = 6710V(209200) = 6710V(20900) = 6710V(20000) = 6710V(20000) = 6710V(2000) = 6710V(2000) = 6710V(2000) = 6710V(2000) = 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150                                    |
| - 411LUAR(20)20))A2(20)20))UENS(10)2MGUDE(10)0)21NG(10)2)2MNUM(10)4)3M<br>- 5MA(10 A) 10TYD(10 A) NMA(A) EV NM NI NDDE MD INEGO JECDO ITTOON NUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 170                                    |
| - SMALLUIAAIILUITELLUITELLUIAAIINMANAAIIELINMINJINUUEIMOILNEUUIIESUUIILLUNINLM<br>- AC. INEAD. IIDAD. TCENCI. MASTYD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 190                                    |
| NIMENSION AKINDDE MEN. DINDDEN. ETIIINM.4.NUCN. CTIIIN AN M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                    |
| DIPENSION ARCHOURSPIDIS FUNDORIS FULLINGSONDERS OFICIUSOI M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                    |
| INITIALIZE THOA FORCE SYSTEM TO ZERO M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 210                                    |
| MUTALLE TECHTOROE STOLET TO LERG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ΔΟΤ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 220                                    |
| DO = I = 1.NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ΔΟΤ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 230                                    |
| $DO \ 1 \ J=1.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 240                                    |
| GTIL(1, J) = 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 250                                    |
| DO 1 K=1,NLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 260                                    |
| FTIL(I,J,K)=0.0 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 270                                    |
| CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 280                                    |
| D0 11 N=1,NLC M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 290                                    |
| IF (NMA(N).EQ.0) GO TO 11 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                                    |
| K=1 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 310                                    |
| DO 10 I=1,NM M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 320                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SUBROUTINE MACT (AK,P,FTIL)<br>THIS SUBROUTINE CALCULATES AND STORES THE MEMBER FORCES RESULTING<br>FROM MEMBER LOADS. THESE TILDA FORCES ARE THEN TRANSFORMED TO<br>GLOBAL COORDINATES AND, IF THEY ARE CONCENTRATED AT SYSTEM DEGREESM<br>OF FREEDOM, SUBTRACTED FROM ANY APPLIED LOADS CONCENTRATED THERE. M<br>COMMON X(10,2),A(10),XI(10),E(10),XL(10),C(10),S(10),ALPH(10),BETAM<br>1(10),SSKTIL(210),WON(10,4),WTW(10,4),WF0(10,4),PP(30,4),W<br>2FLOC(10,6,4),BM(10,7,4),PSTOR(20,4),PDUP(20,4),BMM(10,4),XXX(10,7,M<br>34),V(10,7,4),DISP(20,4),WEIGHT(10),D(20,20),G(20,20),TLINV(20,20),W<br>4TILDAK(20,20),AZ(20,20),DENS(10),MCODE(10,6),INC(10,2),MNUM(10,4),W<br>5MA(10,4),LOTYP(10,4),NMA(4),FY,NM,NJ,NDOF,MB,INFOC,IFSDC,ITTCON,NLM<br>6C,INFOP,ILDAP,IGENCL,MASTYP<br>DIMENSION AK(NDOF,MB), P(NDGF), FTIL(NM,6,NLC), GTIL(10,6)<br>M<br>NITIALIZE TILDA FORCE SYSTEM TO ZERO<br>DO 1 J=1,6<br>GTIL(1,J)=0.0<br>DO 1 K=1,NLC<br>FTIL(1,J,K)=0.0<br>CONTINUE<br>DO 11 N=1,NLC<br>IF (NMA(N),EQ.0) GG TO 11<br>K=1<br>DO 10 I=1,NM | SUBROUTINE MACT (AK,P,FTIL)       MACT |

|        | L=MA(I,N)                                                                            | MACT  | 330 |
|--------|--------------------------------------------------------------------------------------|-------|-----|
|        | IF (L.EQ.0) GO TO 10                                                                 | MACT  | 340 |
|        | M=K+L-1                                                                              | MACT  | 350 |
|        | KK=K                                                                                 | MACT  | 360 |
|        | DU 9 J=KK,M                                                                          | MACT  | 370 |
|        | K=K+1                                                                                | MACT  | 380 |
|        | MNO=MNUM(J,N)                                                                        | MACT  | 390 |
|        | LODTYP=LDTYP(J,N)                                                                    | MACT  | 400 |
|        | W1=WON(J,N)                                                                          | MACT  | 410 |
|        | W2=WTW(J,N)                                                                          | MACT  | 420 |
|        | W3=WTH(J,N)                                                                          | MACT  | 430 |
|        | W4=WFO(J,N)                                                                          | MACT  | 440 |
| С      |                                                                                      | MACT  | 450 |
| C      | DETERMINE TYPE OF MEMBER LOADING                                                     | MACT  | 460 |
| С      |                                                                                      | MACT  | 470 |
|        | GU TO (2,3,4,5,6,7,8), LODTYP                                                        | MACT  | 480 |
| С      |                                                                                      | MACT  | 490 |
| C      | CALCULATE AND STORE F-TILDAS                                                         | MACT  | 500 |
| C      |                                                                                      | MACT  | 510 |
| C      |                                                                                      | MACT  | 520 |
| C      | LUAD TYPE I UNIFURM LOAD                                                             | MACT  | 530 |
| L<br>2 |                                                                                      | MACT  | 540 |
| 2      |                                                                                      | MACT  | 550 |
|        |                                                                                      | MACT  | 560 |
|        |                                                                                      | MACT  | 570 |
|        |                                                                                      | MACT  | 580 |
|        |                                                                                      | MACI  | 590 |
|        | A6=W1平平4/4。U<br>たてましくHND 2 NN-たてましくMND 2 NN-2/22-A2+2 0+A2+2 0 21+A5+2 0 A(+2 0)+2   | MACT  | 600 |
|        | FILL(MNU)21NJ=FILL(MNU)21NJ=1W2=A2#3•U+A3#2•U=W1+A5#3•U-A6#2•U]#W                    | JMALI | 010 |
|        | - I*ALIMNUJ<br>ETIL/MNO 2 NI-ETIL/MNO 2 NI /AL A242 0.42 A//A642 0 A//A642 0 A//A642 | MACI  | 620 |
|        | 「!」LLIMINU!フォバノ=デ!LLIMINU!フォバノー IALーAとぞく。U+A 3ーA4+A3ぞと。U-A6)やW3やXL(MNU<br>1 ***?     | IMALI | 630 |
|        | 1**2                                                                                 | MALI  | 640 |

|   | FTIL(MNO,5,N)=FTIL(MNO,5,N)-(A2*3.0-A3*2.0-A5*3.0+A6*2.0)*W3* | XL (MNMACT | 650 |
|---|---------------------------------------------------------------|------------|-----|
|   | 10)                                                           | MACT       | 660 |
|   | FTIL(MN0,6,N)=FTIL(MN0,6,N)+(A2-A3-A5+A6)*W3*XL(MNO)**2       | MACT       | 670 |
|   | GO TO 9                                                       | MACT       | 680 |
| C |                                                               | MACT       | 690 |
| C | LOAD TYPE 2 SINGLE CONCENTRATED LOAD                          | MACT       | 700 |
| С |                                                               | MACT       | 710 |
| 3 | B=XL(MNO)-W2                                                  | MACT       | 720 |
|   | ALI=XL(MNO)                                                   | MACT       | 730 |
|   | FTIL(MN0,2,N)=FTIL(MN0,2,N)-W1*B**2/(ALI**3)*(3.0*W2+B)       | MACT       | 740 |
|   | FTIL(MN0,3,N)=FTIL(MN0,3,N)-W1*W2*8**2/(ALI**2)               | MACT       | 750 |
|   | FTIL(MNO,5,N)=FTIL(MNO,5,N)-W1*W2**2*(W2+3.0*B)/(ALI**3)      | MACT       | 760 |
|   | FTIL(MNO,6,N)=FTIL(MNO,6,N)+W1*B*W2**2/(ALI**2)               | MACT       | 770 |
|   | GO TO 9                                                       | MACT       | 780 |
| С |                                                               | MACT       | 790 |
| С | LOAD TYPE 3 AXIAL LOAD                                        | MACT       | 800 |
| С |                                                               | MACT       | 810 |
| 4 | FTIL(MN0,1,N)=FTIL(MN0,1,N)-W1*(XL(MN0)-W2)/XL(MN0)           | MACT       | 820 |
|   | FTIL(MN0,4,N)=FTIL(MN0,4,N)-W1*W2/XL(MN0)                     | MACT       | 830 |
|   | GO TO 9                                                       | MACT       | 840 |
| С |                                                               | MACT       | 850 |
| С | LOAD TYPE 4 UNIFORM INCREASE IN TEMPERATURE                   | MACT       | 860 |
| C |                                                               | MACT       | 870 |
| 5 | FTIL(MNO,1,N)=FTIL(MNO,1,N)+A(MNO)*E(MNO)*W1*W2               | MACT       | 880 |
|   | FTIL(MN0,4,N)=FTIL(MN0,4,N)-A(MNO)*E(MNO)*W1*W2               | MACT       | 890 |
|   | GO TO 9                                                       | MACT       | 900 |
| С |                                                               | MACT       | 910 |
| С | LOAD TYPE 5 LINEAR LOAD                                       | MACT       | 920 |
| С |                                                               | MACT       | 930 |
| 6 | XM=(W4-W3)/(W2-W1)                                            | MACT       | 940 |
|   | Q1=-XM*W1+W3                                                  | MACT       | 950 |
|   | A1=₩2**2/2₀0                                                  | MACT       | 960 |

.

|    | A2=W2**3/3.0                                                | MACT 970  |
|----|-------------------------------------------------------------|-----------|
|    | A3=W2**4/4.0                                                | MACT 980  |
|    | A4=w1**2/2.0                                                | MACT 990  |
|    | A5=W1**3/3.0                                                | MACT1000  |
|    | A6=W1**4/4.0                                                | MACT1010  |
|    | A7=W2**5/5.0                                                | MACT1020  |
|    | A8=W1 * * 5/5.0                                             | MACT1030  |
|    | B1=W2-A2*3.0+A3*2.0-W1+A5*3.0-A6*2.0                        | MACT1040  |
|    | B2=A1-A3*3.0+A7*2.0-A4+A6*3.0-A8*2.0                        | MACT1050  |
|    | FTIL(MN0,2,N)=FTIL(MN0,2,N)-(Q1*B1+XM*B2)*XL(MND)           | MACT1060  |
|    | B2=A2-A3*2.0+A7-A5+A6*2.0-A8                                | MACT1070  |
|    | B1=A1-A2*2.0+A3-A4+A5*2.0-A6                                | MACT1080  |
|    | FTIL(MN0,3,N)=FTIL(MN0,3,N)-(Q1*81+XM*82)*XL(MN0)**2        | MAC T1090 |
|    | B1=A2*3.0-A3*2.0-A5*3.0+A6*2.0                              | MACT1100  |
|    | B2=A3*3.0-A7*2.0-A6*3.0+A8*2.0                              | MACT1110  |
|    | FTIL(MN0,5,N)=FTIL(MN0,5,N)-(Q1*B1+XM*B2)*XL(MN0)           | MACT1120  |
|    | FTIL(MN0,6,N)=FTIL(MN0,6,N)-(Q1*B1+XM*B2)*XL(MN0)**2        | MACT1130  |
|    | GO TO 9                                                     | MACT1140  |
| C  |                                                             | MACT1150  |
| С  | LOAD TYPE 6 FABRICATION ERROR + MEANS MEMBER TOO LONG       | MACT1160  |
| С  |                                                             | MACT1170  |
| 7  | FTIL(MNC,1,N)=FTIL(MNO,1,N)+A(MNO)*W1*E(MNO)/XL(MNO)        | MACT1180  |
|    | FTIL(MNO,4,N)=FTIL(MNO,4,N)-A(MNO)*W1*E(MNO)/XL(MNO)        | MACT1190  |
|    | GO TU 9                                                     | MACT1200  |
| C  |                                                             | MACT1210  |
| С  | LOAD TYPE 7 LINEAR VARIATION IN TEMPERATUREUSED WITH TYPE 4 | MACT1220  |
| C  |                                                             | MACT1230  |
| 8  | FTIL(MNO,3,N)=FTIL(MNO,3,N)+XI(MNO)*E(MNO)*W1*W2/W3         | MACT1240  |
|    | FTIL(MNO,6,N)=FTIL(MNO,6,N)-XI(MNO)*E(MNO)*W1*W2/W3         | MACT1250  |
| 9  | CONTINUE                                                    | MACT1260  |
| 10 | CONTINUE                                                    | MACT1270  |
| 11 | CONTINUE                                                    | MACT1280  |

C C C 7

C C C 8

|    | DG 14 L=1, NLC                                                    | MACT1290  |
|----|-------------------------------------------------------------------|-----------|
|    | IF (NMA(L).EQ.0) GO TO 14                                         | MACT1300  |
| С  |                                                                   | MACT1310  |
| C  | TRANSFORM TILDA FORCES TO GLOBAL COORDINATES                      | MACT1320  |
| C  |                                                                   | MACT1330  |
|    | DO 13 $I=1,NM$                                                    | MACT 1340 |
|    | IF (MA(I,L).EQ.0) GO TO 13                                        | MACT1350  |
|    | CI=C(I)                                                           | MACT1360  |
|    | S1=S(1)                                                           | MACT1370  |
|    | GTIL(I,1)=CI*FTIL(I,1,L)-SI*FTIL(I,2,L)                           | MACT1380  |
|    | GTIL(1,2)=SI*FTIL(1,1,L)+CI*FTIL(1,2,L)                           | MACT1390  |
|    | GTIL(1,3) = FTIL(1,3,L)                                           | MACT1400  |
|    | GTIL(1,4)=FTIL(1,4,L)*CI-SI*FTIL(1,5,L)                           | MACT1410  |
|    | GTIL(1,5)=FTIL(1,4,L)*SI+CI*FTIL(1,5,L)                           | MACT1420  |
|    | GTIL(1,6) = FTIL(1,6,L)                                           | MACT1430  |
| C  |                                                                   | MACT1440  |
| С  | IF F-TILDA IS CONCENTRATED AT A SYSTEM DEGREE OF FREEDOM SUBTRACT | MACT1450  |
| C  | IT FROM THE APPLIED LOAD THERE.                                   | MACT1460  |
| С  |                                                                   | MACT1470  |
|    | DO 12 JJ=1.6                                                      | MACT1480  |
|    | IF (MCODE(I.JJ).EQ.0) GO TO 12                                    | MACT1490  |
|    | KK=MCODE(I,JJ)                                                    | MACT1500  |
|    | PSTOR(KK,L) = PSTOR(KK,L) - GTIL(I,JJ)                            | MACTISIO  |
| 12 | CONTINUE                                                          | MACT1520  |
| 13 | CONTINUE                                                          | MACTISZO  |
| 14 | CONTINUE                                                          | MACT1540  |
|    | RETURN                                                            | MACT1550  |
|    | END                                                               | MACT1560  |

|        | SUBROUTINE STIFF (AK)                                                    | STIF         | 10  |
|--------|--------------------------------------------------------------------------|--------------|-----|
| С      |                                                                          | STIF         | 20  |
| C      |                                                                          | STIF         | 30  |
| С      |                                                                          | STIF         | 40  |
| С      | THIS SUBROUTINE CALCULATES THE STIFFNESS MATRIX OF THE SYSTEM.           | STIF         | 50  |
| С      | THE MEMBER STIFFNESS MATRICES ARE CALCULATED AND THEN ASSEMBLED          | STIF         | 60  |
| С      | INTO A SYSTEM STIFFNESS MATRIX OF THE SIZE (NDOF, MB).                   | STIF         | 70  |
| С      |                                                                          | STIF         | 80  |
| C      |                                                                          | STIF         | 90  |
| С      |                                                                          | STIF         | 100 |
|        | COMMON X(10,2),A(10),XI(10),E(10),XL(10),C(10),S(10),ALPH(10),BE         | TASTIF       | 110 |
|        | 1(10), SSKTIL(210), WON(10,4), WTW(10,4), WTH(10,4), WFO(10,4), PP(30,4) | ),STIF       | 120 |
|        | 2FLOC(10,6,4), BM(10,7,4), PSTOR(20,4), PDUP(20,4), BMM(10,4), XXX(10,   | 7,STIF       | 130 |
|        | 34),V(10,7,4),DISP(20,4),WEIGHT(10),D(20,20),G(20,20),TLINV(20,20)       | ),STIF       | 140 |
|        | 4TILDAK(20,20), AZ(20,20), DENS(10), MCODE(10,6), INC(10,2), MNUM(10,4   | ),STIF       | 150 |
|        | 5MA(10,4),LDTYP(10,4),NMA(4),FY,NM,NJ,NDOF,MB,INFOC,IFSDC,ITTCON,        | NLSTIF       | 160 |
|        | 6C, INFOP, ILDAP, IGENCL, MASTYP                                         | STIF         | 170 |
|        | DIMENSION AK(NUOF, MB), AA(7), INDEX(6,6)                                | STIF         | 180 |
|        | DATA INDEX/1,2,3,-1,-2,3,2,4,5,-2,-4,5,3,5,6,-3,-5,7,-1,-2,-3,1,         | 2,5111       | 190 |
| ~      | 1-3,-2,-4,-5,2,4,-5,3,5,(,-3,-5,6/                                       | 511+         | 200 |
| L      |                                                                          |              | 210 |
| L<br>C | INITIALIZE STIFFNESS MAIRIX VALUES TO ZERO                               | 5115         | 220 |
| L      |                                                                          | 5115         | 230 |
|        | DU I J=I,NDUF<br>DO 1 K-1 MC                                             | 5115         | 240 |
| 1      | AK(1 K) = 0 0                                                            | 511F         | 250 |
| T      |                                                                          | 511F<br>6T1C | 200 |
|        | $\begin{array}{c} UU = 0 \\ C = - \left( 1 \right) \end{array}$          |              | 210 |
|        |                                                                          | STIE         | 200 |
|        |                                                                          | 511F         | 290 |
|        | RI=RETA()                                                                | STIF         | 310 |
|        | XI I=XI (I)                                                              | STIF         | 320 |
|        | /L = /L / 4 /                                                            | <b>JII</b>   | 720 |

| C |                                                               | STIF 330     |
|---|---------------------------------------------------------------|--------------|
| C | VALUES WHICH MAKE UP THE INDIVIDUAL MEMBER STIFFNESS MATRICES | ARE STIF 340 |
| C | CALCULATED                                                    | STIF 350     |
| C |                                                               | STIF 360     |
|   | AA(1)=AI*(BI*CI**2+12.0*SI**2)                                | STIF 370     |
|   | AA(2) = AI + CI + SI + (BI - 12.0)                            | STIF 380     |
|   | $AA(3) = -AI \neq 6.0 \neq XLI \neq SI$                       | STIF 390     |
|   | AA(4)=AI*(BI*SI**2+12.0*CI**2)                                | STIF 400     |
|   | AA(5)=AI*6.0*XLI*CI                                           | STIF 410     |
|   | AA(6)=AI*4.0*XLI**2                                           | STIF 420     |
|   | AA(7) = AA(6)/2.0                                             | STIF 430     |
| C |                                                               | STIF 440     |
| С | ASSEMBLE THE STIFFNESS MATRIX                                 | STIF 450     |
| C |                                                               | STIF 460     |
|   | DO 4 JM = 1,6                                                 | STIF 470     |
|   | J=MCODE(I,JM)                                                 | STIF 480     |
|   | IF (J.EQ.0) GO TO 4                                           | STIF 490     |
|   | DG 3 KM=JM,6                                                  | STIF 500     |
|   | K=MCODE(I,KM)                                                 | STIF 510     |
|   | IF (K.EQ.0) GO TO 3                                           | STIF 520     |
|   | KB=K-J+1                                                      | STIF 530     |
|   | L=INDEX(JM,KM)                                                | STIF 540     |
|   | IF (L.LT.0) GO TO 2                                           | STIF 550     |
|   | AK(J,KB)=AK(J,KB)+AA(L)                                       | STIF 560     |
|   | GO TO 3                                                       | STIF 570     |
| 2 | L=-L                                                          | STIF 580     |
|   | AK(J,KB)=AK(J,KB)-AA(L)                                       | STIF 590     |
| 3 | CONTINUE                                                      | STIF 600     |
| 4 | CONTINUE                                                      | STIF 610     |
| 5 | CONTINUE                                                      | STIF 620     |
|   | RETURN                                                        | STIF 630     |
|   | END                                                           | STIF 640     |

|   | SUBROUTINE SOLVE (AK,P)                                                                                                                                                                        | SOLV   | 10  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|
| C | بد هم به هم شده مرب به مرب به به به به به به به مرب و مرب به مرب به مرب به مرب مرب مرب مرب مرب مرب مرب مرب مرب<br>مرب به مرب مرب مرب مرب مرب به مرب به مرب مرب مرب مرب مرب مرب مرب مرب مرب مرب | -SOLV  | 20  |
| C |                                                                                                                                                                                                | SOLV   | 30  |
| C |                                                                                                                                                                                                | SOLV   | 40  |
| С | THIS SUBROUTINE DECOMPOSES AND TRIANGULARIZES AK AND THEN SOLVES                                                                                                                               | SOLV   | 50  |
| С | FOR THE DISPLACEMENTS USING A GAUSSIAN ELIMINATION TECHNIQUE                                                                                                                                   | SOLV   | 60  |
| С |                                                                                                                                                                                                | SOLV   | 70  |
| C |                                                                                                                                                                                                | SOLV   | 80  |
| C |                                                                                                                                                                                                | -SOL V | 90  |
|   | COMMON X(10,2),A(10),XI(10),E(10),XL(10),C(10),S(10),ALPH(10),BET                                                                                                                              | ASOLV  | 100 |
|   | 1(10), SSKTIL(210), WON(10,4), WTW(10,4), WTH(10,4), WFU(10,4), PP(30,4)                                                                                                                       | ,SOLV  | 110 |
|   | 2FLOC(10,6,4), BM(10,7,4), PSTOR(20,4), PDUP(20,4), BMM(10,4), XXX(10,7)                                                                                                                       | SOLV   | 120 |
|   | 34), V(10,7,4), DISP(20,4), WEIGHT(10), D(20,20), G(20,20), TLINV(20,20)                                                                                                                       | ,SOLV  | 130 |
|   | 4TILDAK(23,20), AZ(20,20), DENS(10), MCODE(10,6), INC(10,2), MNUM(10,4)                                                                                                                        | ,SOLV  | 140 |
|   | 5MA(10,4),LDTYP(10,4),NMA(4),FY,NM,NJ,NDOF,MB,INFOC,IFSDC,ITTCON,N                                                                                                                             | ILSOLV | 150 |
|   | 6C, INFOP, ILDAP, IGENCL, MASTYP                                                                                                                                                               | SOLV   | 160 |
|   | DIMENSION AK(NDOF,MB), P(NDOF)                                                                                                                                                                 | SOLV   | 170 |
| C |                                                                                                                                                                                                | SOLV   | 180 |
| C | AK IS DECOMPOSED AND TRIANGULARIZED                                                                                                                                                            | SOLV   | 190 |
| C |                                                                                                                                                                                                | SGLV   | 200 |
|   |                                                                                                                                                                                                | SOLV   | 210 |
|   | NKS=NE-1                                                                                                                                                                                       | SOLV   | 220 |
|   | DU = 2 N = 1, NRS                                                                                                                                                                              | SOLV   | 230 |
|   |                                                                                                                                                                                                | SULV   | 240 |
|   |                                                                                                                                                                                                | SULV   | 250 |
|   | IF (MB.LI.MR) MR=MB                                                                                                                                                                            | SULV   | 260 |
|   |                                                                                                                                                                                                | SULV   | 270 |
|   |                                                                                                                                                                                                | SULV   | 280 |
|   |                                                                                                                                                                                                | SULV   | 290 |
|   |                                                                                                                                                                                                | SULV   | 300 |
|   |                                                                                                                                                                                                | SULV   | 310 |
|   | UU L K=LIMK                                                                                                                                                                                    | SULV   | 320 |

|   | J=J+1                                                | SOLV | 330 |
|---|------------------------------------------------------|------|-----|
| 1 | AK(I, J) = AK(I, J) - CP * AK(N, K)                  | SOLV | 340 |
| 2 | AK(N,L)=CP                                           | SOLV | 350 |
| С |                                                      | SOLV | 360 |
| C | BACK SUBSTITUTION IS USED TO SOLVE FOR DISPLACEMENTS | SOLV | 370 |
| С |                                                      | SOLV | 380 |
|   | DO 7 II=1,NLC                                        | SOLV | 390 |
|   | DO 3 JJ=1,NDOF                                       | SOLV | 400 |
| 3 | P(JJ) = PSTOR(JJ, II)                                | SOLV | 410 |
|   | DO 4 N=1, NRS                                        | SOLV | 420 |
|   | M=N-1                                                | SOLV | 430 |
|   | MR=NE-M                                              | SOLV | 440 |
|   | IF (MB.LT.MR) MR=MB                                  | SOLV | 450 |
|   | CP=P(N)                                              | SOLV | 460 |
|   | P(N) = CP/AK(N, 1)                                   | SOLV | 470 |
|   | DO 4 L=2, MR                                         | SOLV | 480 |
|   | I=M+L                                                | SGLV | 490 |
| 4 | P(I)=P(I)-AK(N,L)*CP                                 | SOLV | 500 |
|   | P(NE)=P(NE)/AK(NE,1)                                 | SOLV | 510 |
|   | DO 5 I=1, NRS                                        | SOLV | 520 |
|   | N=NE-I                                               | SOLV | 530 |
|   | M=N-1                                                | SOLV | 540 |
|   | MR=NE-M                                              | SOLV | 550 |
|   | IF (MB.LT.MR) MR=MB                                  | SCLV | 560 |
|   | DO 5 K=2,MR                                          | SOLV | 570 |
|   | L=M+K                                                | SOLV | 580 |
| 5 | $P(N) = P(N) - AK(N, K) \neq P(L)$                   | SOLV | 590 |
|   | DO 6 KK=1,NDOF                                       | SOLV | 600 |
| 6 | DISP(KK,II)=P(KK)                                    | SOLV | 610 |
| 7 | CONTINUE                                             | SOLV | 620 |
|   | RETURN                                               | SOLV | 630 |
|   | END                                                  | SOLV | 640 |

|   | SUBROUTINE FORCE (AK, P, FTIL)                                                   | FORC       | 10  |
|---|----------------------------------------------------------------------------------|------------|-----|
| С | وبو میچو م و بود به ه بود به ه بود به به بود و بود و بود بود بود بود بود بود بود | FORC       | 20  |
| С |                                                                                  | FORC       | 30  |
| C |                                                                                  | FORC       | 40  |
| С | THIS SUBROUTINE CALCULATES BOTH MEMBER AND JOINT FORCES.                         | FORC       | 50  |
| C |                                                                                  | FORC       | 60  |
| С |                                                                                  | FORC       | 70  |
| С | ㅋ チャット ㅋ キ キ ギョッチ キ キャー オーチャー オーチャー キャー キャー キャー キャー キャー キャー キャー キャー キャー キ        | FORC       | 80  |
|   | COMMON X(10,2),A(10),XI(10),E(10),XL(10),C(10),S(10),ALPH(10)                    | ,BETAFORC  | 90  |
|   | 1(10), SSKTIL(210), WON(10,4), WTW(10,4), WTH(10,4), WFB(10,4), PP(3             | 0,41,FORC  | 100 |
|   | 2FLOC(10,6,4), BM(10,7,4), PSTOR(20,4), PDUP(20,4), BMM(10,4), XXX(              | 10,7,FDRC  | 110 |
|   | 34),V(10,7,4),DISP(20,4),WEIGHT(10),D(20,20),G(20,20),TLINV(20                   | ,201,FURC  | 120 |
|   | 4TILDAK(20,20),AZ(20,20),DENS(10),MCODE(10,6),INC(10,2),MNUM(1                   | 0,4),FORC  | 130 |
|   | 5MA(10,4),LDTYP(10,4),NMA(4),FY,NM,NJ,NDOF,MB,INFOC,IFSDC,ITTC                   | ON, NLFORC | 140 |
|   | 6C, INFOP, ILDAP, IGENCL, MASTYP                                                 | FORC       | 150 |
|   | DIMENSION AK(NDOF, MB), P(NDOF), FTIL(NM, 6, NLC), DTOT(10, 6)                   | FORC       | 160 |
| С |                                                                                  | FORC       | 170 |
| С | INITIALIZE JOINT FORCES TO ZERO                                                  | FORC       | 180 |
| С |                                                                                  | FORC       | 190 |
|   | DO 1 N=1,NLC                                                                     | FORC       | 200 |
|   | NJF=3*NJ                                                                         | FORC       | 210 |
|   | DO I J=1, NJF                                                                    | FORC       | 220 |
| 1 | PP(J,N)=0.0                                                                      | FCRC       | 230 |
|   | DO 6 II=1,NLC                                                                    | FORC       | 240 |
|   | DO 5 I=1,NM                                                                      | FORC       | 250 |
| С |                                                                                  | FORC       | 260 |
| С | DETERMINE JOINT DISPLACEMENTS                                                    | FURC       | 270 |
| С |                                                                                  | FORC       | 280 |
|   | DO 3 L=1,6                                                                       | FORC       | 290 |
|   | IF (MCODE(I,L).EQ.0) GO TO 2                                                     | FORC       | 300 |
|   | M=MCODE(I,L)                                                                     | FDRC       | 310 |
|   | DTOT(I,L)=DISP(M,II)                                                             | FGRC       | 320 |

|   |                                                                |          | • • |
|---|----------------------------------------------------------------|----------|-----|
|   | GO TO 3                                                        | FORC 330 |     |
| 2 | DTOT(I,L)=0.0                                                  | FORC 340 |     |
| 3 | CONTINUE                                                       | FORC 350 |     |
|   | J=INC(I,1)                                                     | FORC 360 |     |
|   | K=INC(I,2)                                                     | FORC 370 |     |
|   | J1=3* J-2                                                      | FORC 380 |     |
|   | J2=J1+1                                                        | FORC 390 | :   |
|   | J3=J2+1                                                        | FORC 400 |     |
|   | K1=3≠K-2                                                       | FORC 410 |     |
|   | K2=K1+1                                                        | FORC 420 |     |
|   | K3=K2+1                                                        | FORC 430 |     |
|   | CI=C(I)                                                        | FORC 440 |     |
|   | SI=S(I)                                                        | FORC 450 |     |
|   | AI=ALPH(I)                                                     | FORC 460 |     |
|   | BI=BETA(I)                                                     | FORC 470 | ~   |
|   | XLEN=XL(I)                                                     | FORC 480 | 89  |
| С |                                                                | FORC 490 |     |
| C | DISPLACEMENTS ARE TRANSFORMED FROM LOCAL TO GLOBAL COORDINATES | FORC 500 |     |
| С |                                                                | FORC 510 |     |
|   | U1=CI*DTOT([,1)+SI*DTOT(I,2)                                   | FORC 520 |     |
|   | U2 = -SI * DTOT(I, 1) + CI * DTOT(I, 2)                        | FORC 530 |     |
|   | U3=DTOT(I,3)                                                   | FORC 540 |     |
|   | U4=CI*DTOT(1,4)+SI*DTOT(1,5)                                   | FORC 550 |     |
|   | U5=-SI*DTOT(I,4)+CI*DTOT(I,5)                                  | FORC 560 |     |
|   | U6=DTOT(1,6)                                                   | FORC 570 |     |
| C |                                                                | FORC 580 |     |
| C | CALCULATE ELEMENT FORCES                                       | FORC 590 |     |
| С |                                                                | FORC 600 |     |
|   | F1=AI*BI*(U1-U4)                                               | FORC 610 |     |
|   | F2=AI*{12.0*U2+6.0*XLEN*U3-12.0*U5+6.0*XLEN*U6)                | FORC 620 |     |
|   | F3=AI*(6.0*XLEN*U2+4.0*XLEN**2*U3-6.0*XLEN*U5+2.0*XLEN**2*U6)  | FORC 630 |     |
|   | F4=-F1                                                         | FORC 640 |     |

|   | F5=-F2                                                         | FORC 650 |
|---|----------------------------------------------------------------|----------|
|   | F6=-F3+XLEN*F2                                                 | FORC 660 |
|   | IF (NMA(II).EQ.0) GC TO 4                                      | FORC 670 |
|   | F1=F1+FTIL(I,1,1])                                             | FORC 680 |
|   | F2=F2+FTIL(1,2,11)                                             | FORC 690 |
|   | F3=F3+FTIL(1,3,11)                                             | FORC 700 |
|   | F4=F4+FTIL(I,4,II)                                             | FORC 710 |
|   | F5=F5+FTIL(1,5,11)                                             | FORC 720 |
|   | F6=F6+FTIL(1,6,11)                                             | FORC 730 |
| С |                                                                | FORC 740 |
| С | MEMBER FORCES ARE TRANSFORMED FROM LOCAL TO GLOBAL COORDINATES | FGRC 750 |
| С |                                                                | FORC 760 |
| 4 | GF1=CI*F1-SI*F2                                                | FORC 770 |
|   | GF2=SI*F1+CI*F2                                                | FORC 780 |
|   | GF3=F3                                                         | FORC 790 |
|   | GF4=C I*F4-S I*F5                                              | FORC 800 |
|   | GF5=S1*F4+C1*F5                                                | FORC 810 |
|   | GF6=F6                                                         | FORC 820 |
| C |                                                                | FORC 830 |
| С | MEMBER FORCES ARE STORED IN LOCAL COORDINATES                  | FORC 840 |
| C |                                                                | FORC 850 |
|   | FLOC(1,1,1)=F1                                                 | FORC 860 |
|   | FLOC(I,2,II)=F2                                                | FORC 870 |
|   | FLOC(1,3,11) = F3                                              | FORC 880 |
|   | FLOC(1,4,II)=F4                                                | FORC 890 |
|   | FLOC(1,5,II)=F5                                                | FORC 900 |
| - | FLOC(I,6,II)=F6                                                | FORC 910 |
| C |                                                                | FORC 920 |
| C | JUINT FURCES ARE CALCULATED                                    | FORC 930 |
| C |                                                                | FORC 940 |
|   | PP(J1, 11) = PP(J1, 11) + GF1                                  | FURC 950 |
|   | PP(J2,11)=PP(J2,11)+GF2                                        | FORC 960 |

|   | PP(J3,II)=PP(J3,II)+GF3 | FORC 970 |
|---|-------------------------|----------|
|   | PP(K1,II)=PP(K1,II)+GF4 | FURC 980 |
|   | PP(K2,II)=PP(K2,II)+GF5 | FORC 990 |
|   | PP(K3,II)=PP(K3,II)+GF6 | FORC1000 |
| 5 | CONTINUE                | FORC1010 |
| 6 | CONTINUE                | FORC1020 |
|   | RETURN                  | FORC1030 |
|   | END                     | FORC1040 |

SUBROUTINE INTFOR **INFO** 10 -----INFO 20 С С INFO 30 С INFO 40 THIS SUBROUTINE CALCULATES SHEAR AND MOMENT VALUES AT PANEL POINTSINFO 50 С С ALONG A MEMBER BY APPLICATION OF NEWMARK'S METHOD. INFO 60 С INFO 70 С **INFO** 80 С -----INFO 90 COMMON X(10,2),A(10),XI(10),E(10),XL(10),C(10),S(10),ALPH(10),BETAINFO 100 1(10) • SSKTIL(210) • WON(10•4) • WTW(10•4) • WTH(10•4) • WFO(10•4) • PP(30•4) • INFO 110 2FLOC(10,6,4),BM(10,7,4),PSTCR(20,4),PDUP(20,4),BMM(10,4),XXX(10,7,INFO 120 34),V(10,7,4),DISP(20,4),WEIGHT(10),D(20,20),G(20,20),TLINV(20,20),INFG 130 4TILDAK(20,20),AZ(20,20),DENS(10),MCODE(10,6),INC(10,2),MNUM(10,4),INFO 140 5MA(10,4),LDTYP(10,4),NMA(4),FY,NM,NJ,NDOF,MB,INFOC,IFSDC,ITTCON,NLINFO 150 6C, INFOP, ILDAP, IGENCL, MASTYP **INFO** 160 DIMENSION Q(9), R(9) INFO 170 DO 17 KK=1, NLC **INFO 180** ILOAD=0**INFO 190** С **INFO 200** С FOR EACH MEMBER, CONVERT APPLIED MEMBER LOADING TO A SET OF STATICINFO 210 С EQUIVALENT LOADS AT PANEL POINTS. INFO 220 С INFO 230 DO 16 M=1.NM **INFO 240 INFO 250** С С INITIALIZE EQUIVALENT PANEL POINT LOADS TO ZERO, ESTABLISH HOW **INFG 260** MANY MEMBER ACTIONS THE ELEMENTS FEELS. IF NONE, GO STRAIGHT TO INFO 270 С С V-M CALCULATIONS **INFO 275 INFO 280** С DO 1 I = 1.7**INFO 290** 1 R(I) = 0.0**INFO 300** H=XL(M)/6. **INFO 310** 

|   | NLOAD=MA(M,KK)                                                   | INFO 320 |
|---|------------------------------------------------------------------|----------|
|   | IF (NLOAD.EQ.O) GO TO 14                                         | INFO 330 |
| С |                                                                  | INFO 340 |
| C | ASSEMBLE EQUIVALENT PANEL POINT LOADS RESULTING FROM ALL ACTIONS | INFO 350 |
| C | ON THE MEMBER                                                    | INFO 360 |
| C |                                                                  | INFO 370 |
|   | DO 13 JJ=1, NLOAD                                                | INFO 380 |
|   | ILOAD=ILOAD+1                                                    | INFO 390 |
|   | ID=LDTYP(ILOAD,KK)                                               | INFD 400 |
|   | GD TO (4,2,13,13,4,13,13), ID                                    | INFO 410 |
| С |                                                                  | INFO 420 |
| C | CONCENTRATED TRANSVERSE LUADS                                    | INFO 430 |
| C |                                                                  | INFO 440 |
| 2 | XX=0.0                                                           | INFO 450 |
|   | I I=1                                                            | INFO 460 |
|   | XLOC=WTW(ILOAD,KK)                                               | INFO 470 |
|   | XLOAD=WON(ILOAD,KK)                                              | INFO 480 |
| С |                                                                  | INFO 490 |
| C | LOCATE PANEL WHERE LOAD ACTS                                     | INFO 500 |
| С |                                                                  | INFO 510 |
| 3 | XX=XX+H                                                          | INFO 520 |
|   | II=II+1                                                          | INFO 530 |
|   | IF (XLOC.GT.XX) GO TO 3                                          | INFO 540 |
| C |                                                                  | INFO 550 |
| Û | REDUCE CONCENTRATED LOAD TO TWO PANEL POINT LOADS                | INFO 560 |
| С |                                                                  | INFO 570 |
|   | CC=XLOC+H-XX                                                     | INFO 580 |
|   | R(II-1)=R(II-1)+XLOAD*(1CC/H)                                    | INFO 590 |
|   | R(II)=R(II)+XLUAD*CC/H                                           | INFD 600 |
|   | GO TO 13                                                         | INFO 610 |
| С |                                                                  | INFO 620 |
| C | DISTINGUISH BETWEEN UNIFORM AND LINEAR LOAD                      | INFO 630 |

| C      |                                                                 | INFO | 640        |
|--------|-----------------------------------------------------------------|------|------------|
| 4      | IF (ID-EQ-1) GO TO 5                                            | INFO | 650        |
|        | XBEGIN=WON(ILOAD,KK)*XL(M)                                      | INFO | 660        |
|        | XEND=WTW(ILOAD,KK)*XL(M)                                        | INFO | 670        |
|        | QBEGIN=WTH(ILOAD,KK)                                            | INFO | 680        |
|        | QEND=WF0(ILOAD,KK)                                              | INFO | 690        |
|        | GU TO 6                                                         | INFO | 700        |
| 5      | XBEGIN=WON(ILOAD,KK)*XL(M)                                      | INFO | 710        |
|        | XEND=WTW(ILUAD,KK)*XL(M)                                        | INFO | 720        |
|        | QBEGIN=WTH(ILOAD,KK)                                            | INFO | 730        |
|        | QEND=QBEGIN                                                     | INFO | 740        |
| С      |                                                                 | INFO | 750        |
| С      | DISTRIBUTED TRANSVERSE LOAD (UNIFORM OR LINEAR)                 | INFO | 760        |
| C      |                                                                 | INFO | 770        |
| 6      | SLOPE=(QEND-QBEGIN)/(XEND-XBEGIN)                               | INFO | 780        |
| С      |                                                                 | INFO | 790        |
| C      | LGCATE FIRST PANEL POINT INSIDE LOADED AREA (FROM A-END)        | INFO | 800        |
| C      |                                                                 | INFO | 810        |
|        | X X=0.0                                                         | INFO | 820        |
|        | I I=1                                                           | INFO | 830        |
| 7      | XX=XX+H                                                         | INFO | 840        |
|        |                                                                 | INFO | 850        |
|        | IF (XBEGIN.GT.XX) GO TO 7                                       | INFO | 860        |
|        | Il=II                                                           | INFO | 870        |
|        | AA=XX-XBEGIN                                                    | INFO | 880        |
| C      |                                                                 | INFO | 890        |
| C      | IF LOAD STARTS AND ENDS IN ONE PANEL, HANDLE AS A SEPARATE CASE | INFO | 900        |
| ί      |                                                                 | INFO | 910        |
|        | IF (XEND-LI-XX) GU IU 12                                        | INFO | 920        |
| c      | QUIIJ=QDEGIN+AA*SLUPE                                           | INFO | 930        |
| с<br>с | LOCATE EIRET DANEL DOINT INCIDE LOADED ADEA (FROM D. SHO)       | INFO | 940        |
| L      | LUCAIE FIRSI PANEL PUINI INSIDE LUADED AREA (FRUM B-END)        | INFO | <b>950</b> |

| С  |                                                                   | INFO 960  |
|----|-------------------------------------------------------------------|-----------|
| 8  | XX=XX+H                                                           | INFO 970  |
|    | 11=11+1                                                           | INFO 980  |
|    | IF (XEND.GT.XX) GO TO 8                                           | INF0 990  |
|    | 12=11-1                                                           | INF01000  |
|    | BB=XEND+H-XX                                                      | INF01010  |
| С  |                                                                   | INF01020  |
| С  | IF LOAD COVERS ONLY ONE PANEL POINT, HANDLE SPECIALLY             | INF01030  |
| С  |                                                                   | INF01040  |
|    | IF (I1.EQ.12) GO TO 10                                            | INF01050  |
| С  |                                                                   | INF01060  |
| С  | EVALUATE DISTRIBUTED LOAD AT INTERMEDIATE PANEL POINTS            | INF01070  |
| С  |                                                                   | INF01080  |
|    | 11=11                                                             | INF01090  |
| 9  | [ ]= ] ] + ]                                                      | INF 01100 |
|    | Q(II)=Q(II-1)+H*SLOPE                                             | INF01110  |
|    | IF (II.LT.12) GO TO 9                                             | INF01120  |
| С  |                                                                   | INF01130  |
| С  | IF THERE ARE PANELS BETWEEN THE FIRST AND LAST PANELS, ADD THEIR  | INF01140  |
| С  | EFFECTS TO THE INSIDE PANEL POINT LOAD OF THE OUTER TWO LOADED    | INF01150  |
| С  | PANELS                                                            | INF01155  |
| С  |                                                                   | INF01160  |
|    | R(I1)=R(I1)+H/6.*(2.*Q(I1)+Q(I1+1))                               | INF01170  |
|    | R(I2)=R(I2)+H/6.*(2.*Q(I2)+Q(I2-1))                               | INF01180  |
| С  |                                                                   | INF01190  |
| С  | COMPUTE EFFECTIVE LOADS AT PANEL POINTS DUE TO TWO OUTSIDE LOADED | INF01200  |
| C  |                                                                   | INF01210  |
| 10 | R2=(AA/(2.*H))*((H-2.*AA/3.)*QBEGIN+(H-AA/3.)*Q(I1))              | INF01220  |
|    | R1=(QBEGIN+Q(11))*AA/2-R2                                         | INF01230  |
|    | R3=(B6/(2.*H))*((H-2.*BB/3.)*QEND+(H-AA/3.)*Q(I2))                | INF01240  |
|    | R4=(QEND+Q(I2))*BB/2-R3                                           | INF01250  |
|    | R(11) = R(11) + R2                                                | INF01260  |
|    |                                                                   |           |

|    | R(I1-1)=R(I1-1)+R1                                              | INF01270 |
|----|-----------------------------------------------------------------|----------|
|    | R(12)=R(12)+R3                                                  | INF01280 |
|    | R(12+1)=R(12+1)+R4                                              | INF01290 |
| С  |                                                                 | INF01300 |
| C  | IF INTERMEDIATE PANEL POINTS BETWEEN "11" AND "12" ARE PRESENT, | INF01310 |
| С  | CALCULATE THEIR EQUIVALENT LOAD BY RECURSIVE FORMULA            | INF01320 |
| C  |                                                                 | INF01330 |
|    | IF ((12-11).LT.2) GO TO 13                                      | INF01340 |
|    | I1P1=I1+1                                                       | INF01350 |
|    | 12M1=12-1                                                       | INF01360 |
|    | DU 11 I = I1P1, I2M1                                            | INF01370 |
| 11 | R(I)=R(I)+H/6.*(Q(I-1)+Q(I+1)+4.*Q(I))                          | INF01380 |
|    | GO TO 13                                                        | INF01390 |
| С  |                                                                 | INF01400 |
| C  | HANDLE SPECIAL CASE WHERE LOAD STARTS AND ENDS IN ONE PANEL     | INF01410 |
| С  |                                                                 | INF01420 |
| 12 | AA=XBEGIN+H-XX                                                  | INF01430 |
|    | BB=XEND-XBEGIN                                                  | INF01440 |
|    | RI1=BB/(2.*H)*((AA+BB/3.)*QBEGIN+(AA+2.*BB/3.)*QEND)            | INF01450 |
|    | R(I1) = R(I1) + RI1                                             | INF01460 |
|    | R(I1-1)=R(I1-1)+BB/2.*(QBEGIN+QEND)-RI1                         | INF01470 |
| 13 | CONTINUE                                                        | INF01480 |
| C  |                                                                 | INF01490 |
| C  | COMPUTE SHEAR AND BENDING MOMENT AT PANEL POINTS                | INF01500 |
| C  |                                                                 | INF01510 |
| 14 | BM(M, 1, KK) = (-1, 0) * FLOC(M, 3, KK)                         | INF01520 |
|    | V(M, 1, KK) = FLOC(M, 2, KK) + R(1)                             | INF01530 |
| _  | XXX(M,1,KK)=0.0                                                 | INF01540 |
| C  |                                                                 | INF01550 |
| C  | DETERMINE AND STORE MAXIMUM BENDING MOMENT FOR EACH MEMBER      | INF01560 |
| C  |                                                                 | INF01570 |
|    | BMM(M,KK) = ABS(BM(M, 1, KK))                                   | INF01580 |

| DO 15 I=2,7                             | INF01590                                                                                                                                                                                                                       |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V(M,I,KK)=V(M,I-1,KK)+R(I)              | INF01600                                                                                                                                                                                                                       |
| BM(M, I,KK)=BM(M,I-1,KK)+V(M,I-1,KK)*H  | INF01610                                                                                                                                                                                                                       |
| CHECK=ABS(BM(M,I,KK))                   | INF01620                                                                                                                                                                                                                       |
| IF (CHECK.GT.BMM(M,KK)) BMM(M,KK)=CHECK | INF01630                                                                                                                                                                                                                       |
| XXX(M,I,KK)=XXX(M,I-1,KK)+H             | INF01640                                                                                                                                                                                                                       |
| CONTINUE                                | INF01650                                                                                                                                                                                                                       |
| CONTINUE                                | INF01660                                                                                                                                                                                                                       |
| RETURN                                  | INF01670                                                                                                                                                                                                                       |
| END                                     | INF01680                                                                                                                                                                                                                       |
|                                         | DO 15 I=2,7<br>V(M,I,KK)=V(M,I-1,KK)+R(I)<br>BM(M,I,KK)=BM(M,I-1,KK)+V(M,I-1,KK)*H<br>CHECK=ABS(BM(M,I,KK))<br>IF (CHECK.GT.BMM(M,KK)) BMM(M,KK)=CHECK<br>XXX(M,I,KK)=XXX(M,I-1,KK)+H<br>CONTINUE<br>CONTINUE<br>RETURN<br>END |

|        | SUBROUTINE FSD (AK, P, FTIL)                                            | FSDR     | 10  |
|--------|-------------------------------------------------------------------------|----------|-----|
| С      | ، ۵ ۵۰۰ ۵۰ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵                                | FSDR     | 20  |
| С      |                                                                         | FSDR     | 30  |
| С      |                                                                         | FSDR     | 40  |
| С      | THIS SUBROUTINE DETERMINES A FULLY STRESSED DESIGN BASED ON             | FSDR     | 50  |
| С      | RESTRICTIONS SET BY THE AISC CODE. THE DESIGN REACHED MUST BE           | FSDR     | 60  |
| С      | WITHIN TWO PERCENT OF THE CODE LIMITATIONS. AFTER THE DESIGN,           | OR FSDR  | 70  |
| С      | THE MAXIMUM NUMBER OF ITERATIONS, ITTCON, IS REACHED, MOMENTS OF        | F FSDR   | 80  |
| C      | INERTIA, AREAS AND SCALING FACTORS ARE OUTPUT FOR EACH MEMBER,          | FSDR     | 90  |
| С      | ALONG WITH THE TOTAL WEIGHT OF THE STRUCTURE.                           | FSDR     | 100 |
| С      |                                                                         | FSDR     | 110 |
| С      |                                                                         | FSDR     | 120 |
| C      |                                                                         | FSDR     | 130 |
|        | COMMON X(10,2),A(10),XI(10),E(10),XL(10),C(10),S(10),ALPH(10),B         | ETAFSDR  | 140 |
|        | 1(10), SSKT IL(210), WON(10,4), WTW(10,4), WTH(10,4), WFO(10,4), PP(30, | 4),FSDR  | 150 |
|        | 2FLOC(10,6,4), BM(10,7,4), PSTOR(20,4), PDUP(20,4), BMM(10,4), XXX(10   | ,7,FSDR  | 160 |
|        | 34), V(10,7,4), DISP(20,4), WEIGHT(10), D(20,20), G(20,20), TLINV(20,2  | D),FSDR  | 170 |
|        | 4TILDAK(20,20),AZ(20,20),DENS(10),MCODE(10,6),INC(10,2),MNUM(10,        | 4),FSDR  | 180 |
|        | 5MA(10,4),LD1YP(10,4),NMA(4),FY,NM,NJ,NDOF,MB,INFOC,IFSDC,ITTCUN        | , NLFSDR | 190 |
|        | 6C, INFUP, ILDAP, IGENCL, MASIYP                                        | FSDR     | 200 |
| ~      | DIMENSION AKINDUF, MB), P(NDCF), FTIL(NM,6,NLC), SF(10)                 | FSUR     | 210 |
| C      |                                                                         | FSUR     | 220 |
| Ĺ      | DETERMINE ALLOWABLE STRESSES IN TENSION AND BENDING                     | FSUR     | 230 |
| ι      |                                                                         | FSUR     | 240 |
|        | FBALL=0.66*FY                                                           | FSUR     | 250 |
|        |                                                                         | FSUK     | 200 |
| c      | IICUNI=0                                                                | FSUK     | 210 |
| C      |                                                                         | FSUK     | 280 |
| L<br>C | CHECK ITERATION COUNT                                                   | FSUK     | 290 |
| し      | LE LITCONT EQ ITTCON) CO TO 20                                          | FSUK     | 300 |
| T      | IF LICUNT-EQOITLUNI GU IU ZU<br>ITCONT-ITCONT-I                         | FOUR     | 220 |
|        |                                                                         | FSUK     | 520 |

| С |                                          | FSDR 330 |
|---|------------------------------------------|----------|
| С | INITIALIZE SCALING FACTORS TO ZERO       | FSDR 340 |
| C |                                          | FSDR 350 |
|   | DO 2 M=1,NM                              | FSDR 360 |
| 2 | SF(M)=0.0                                | FSDR 370 |
|   | DMAX=0.0                                 | FSDR 380 |
|   | DO 14 L=1,NLC                            | FSDR 390 |
| С |                                          | FSDR 400 |
| С | DETERMINE KL/R RATIO FOR EACH MEMBER     | FSDR 410 |
| С |                                          | FSDR 420 |
|   | DO 13 I=1,NM                             | FSDR 430 |
|   | IA=MCODE(1,3)                            | FSDR 440 |
|   | IB=MCODE(I,6)                            | FSDR 450 |
|   | IF (IA.EQ.0) GO TO 3                     | FSDR 460 |
|   | IF (IB.EQ.0) GO TO 4                     | FSDR 470 |
|   | EK=1.0                                   | FSDR 480 |
|   | GO TO 6                                  | FSDR 490 |
| 3 | IF (IB.EQ.0) GU TO 5                     | FSDR 500 |
| 4 | EK=2.0                                   | FSDR 510 |
|   | GU TU 6                                  | FSDR 520 |
| 5 | EK=1.2                                   | FSDR 530 |
| 6 | R=SQRT(XI(I)/A(I))                       | FSDR 540 |
|   | ELM=EK*XL(I)/R                           | FSDR 550 |
| C |                                          | FSDR 560 |
| C | DETERMINE ACTUAL STRESSES IN EACH MEMBER | FSDR 570 |
| С |                                          | FSDR 580 |
|   | FAXACT=FLOC(I,1,L)/A(I)                  | FSDR 590 |
|   | SECMOD=0.58*XI(1)**0.75                  | FSDR 600 |
|   | FBACT=BMM(I,L)/SECMOD                    | FSDR 610 |
|   | IF (FAXACT.GT.0.0) GO TO 7               | FSDR 620 |
|   | SFAX=-FAXACT/FTALL                       | FSDR 630 |
|   | SFBEN=FBACT/FBALL                        | FSDR 640 |

|    | SFLC=SFAX+SFBEN                                                | FSDR | 650 |
|----|----------------------------------------------------------------|------|-----|
|    | GO TO 12                                                       | FSDR | 660 |
| C  |                                                                | FSDR | 670 |
| С  | DETERMINE ALLOWABLE STRESS IN COMPRESSION                      | FSDR | 680 |
| C  |                                                                | FSDR | 690 |
| 7  | PI=3.1415926                                                   | FSDR | 700 |
|    | CC=SQRT(2.0*PI**2*E(I)/FY)                                     | FSDR | 710 |
|    | IF (ELM.GT.CC) GO TO 8                                         | FSDR | 720 |
|    | FNUMER=FY*(1.0-ELM**2/2.0/CC**2)                               | FSDR | 730 |
|    | FDENOM=5.0/3.0+3.0*ELM/8.0/CC-ELM**3/8.0/CC**3                 | FSDR | 740 |
|    | FCALL=FNUMER/FDENGM                                            | FSDR | 750 |
|    | GC TO 9                                                        | FSDR | 760 |
| 8  | FCALL=12.0*PI**2*E(I)/(23.0*ELM**2)                            | FSDR | 770 |
| 9  | SFAX=FAXACT/FCALL                                              | FSDR | 780 |
|    | IF (SFAX-LE-0-15) GU TO 11                                     | FSDR | 790 |
|    | CM=0.85                                                        | FSDR | 800 |
|    | FPRIME=12.0*PI**2*E(I)/(23.0*ELM**2)                           | FSDR | 810 |
|    | SFBEN=CM*FBACT/FBALL/(1.O-FAXACT/FPRIME)                       | FSDR | 820 |
|    | SF1=SFAX+SFBEN                                                 | FSDR | 830 |
|    | SF2=FAXACT/(0.6*FY)+FBACT/FBALL                                | FSDR | 840 |
|    | IF (SF2.GT.SF1) GO TO 10                                       | FSDR | 850 |
|    | SFLC=SF1                                                       | FSDR | 860 |
|    | GO TO 12                                                       | FSDR | 870 |
| 10 | SFLC=SF2                                                       | FSDR | 880 |
|    | GO TO 12                                                       | FSDR | 890 |
| 11 | SFLC=FAXACT/FCALL+FBACT/FBALL                                  | FSDR | 900 |
| С  |                                                                | FSDR | 910 |
| C  | DETERMINE AND STORE THE LARGEST SCALING FACTOR FOR EACH MEMBER | FSDR | 920 |
| С  |                                                                | FSDR | 930 |
| 12 | IF (SFLC.GT.SF(1)) SF(1)=SFLC                                  | FSDR | 940 |
| 13 | CONTINUE                                                       | FSDR | 950 |
| 14 | CONTINUE                                                       | FSDR | 960 |

|    | DO 15 I=1,NM                                                      | FSDR 970 |
|----|-------------------------------------------------------------------|----------|
|    | TEST=ABS(SF(I)-0.99)                                              | FSDR 980 |
|    | IF (TEST.GT.DMAX) DMAX=TEST                                       | FSDR 990 |
| 15 | CONTINUE                                                          | FSDR1000 |
| C  |                                                                   | FSDR1010 |
| С  | IF SUFFICIENT PRECISION IS REACHED WRITE FSD REACHED AND MEMBER   | FSDR1020 |
| С  | PROPERTIES                                                        | FSDR1030 |
| C  |                                                                   | FSDR1040 |
|    | IF (DMAX.LE.0.01) GO TO 21                                        | FSDR1050 |
|    | TWEIHT=0.0                                                        | FSDR1060 |
| С  |                                                                   | FSDR1070 |
| C  | IF SUFFICIENT PRECISION IS NOT REACHED, DETERMINE IF THE OVER-    | FSDR1080 |
| С  | RELAXATION FACTOR SHOULD BE APPLIED                               | FSDR1090 |
| С  |                                                                   | FSDR1100 |
|    | IF (DMAX.LE.0.05) GO TO 17                                        | FSDR1110 |
| C  |                                                                   | FSDR1120 |
| C  | APPLY OVER-RELAXATION FACTOR IF APPLICABLE                        | FSDR1130 |
| C  |                                                                   | FSDR1140 |
|    | DO 16 K=1,NM                                                      | FSDR1150 |
| 16 | SF(K)=SF(K) ++1.2                                                 | FSDR1160 |
| C  |                                                                   | FSDR1170 |
| C  | SCALE MEMBER PROPERTIES AND DETERMINE NEW TOTAL STRUCTURAL WEIGHT | FSDR1180 |
| C  |                                                                   | FSDR1190 |
| 17 | DO 18 J=1,NM                                                      | FSDR1200 |
|    | $XI(J) = SF(J) \neq XI(J) / 0.99$                                 | FSDR1210 |
|    | $A(J) = SQRT(XI(J)) \neq 0.58$                                    | FSDR1220 |
|    | WEIGHT(J)=XL(J)*A(J)*32.17*DENS(J)*12.0                           | FSDR1230 |
|    | TWEIHT=TWEIHT+WEIGHT(J)                                           | FSDR1240 |
| 18 | CONTINUE                                                          | FSDR1250 |
|    | DO 19 JJ=1, NLC                                                   | FSDR1260 |
|    | DO 19 K=1,NDOF                                                    | FSDR1270 |
| 19 | PSTOR(K,JJ) = PDUP(K,JJ)                                          | FSDR1280 |

С **FSDR1290** С REPEAT ANALYSIS PROCEDURE FSDR1300 С FSDR1310 CALL MPROP FSDR1320 CALL MACT (AK, P, FTIL) **FSDR1330** CALL STIFF (AK) FSDR1340 CALL SOLVE (AK, P) FSDR1350 CALL FORCE (AK, P, FTIL) FSDR1360 CALL INTFOR **FSDR1370** GO TO 1 FSDR1380 С FSDR1390 С IF SUFFICIENT PRECISION IS NOT REACHED WRITE FSD NOT REACHED AND F SDR 1400 С MEMBER PROPERTIES AT FINAL ITERATION **FSDR1410** C **FSDR1420** 20 WRITE (6,24) ITTCON FSDR1430 IF (ITCONT.EQ.ITTCON) GO TO 22 **FSDR1440** WRITE (6,25) ITCONT 21 FSDR1450 22 WRITE (6,26) FSDR1460 DO 23 M=1.NM **FSDR1470** WRITE (6,27) M,XI(M),A(M),SF(M) **FSDR1480** 23 CONTINUE FSDR1490 WRITE (6,28) TWEIHT **FSDR1500** RETURN FSDR1510 C **FSDR1520** 24 FORMAT (1H0,//19H FSD NOT REACHED IN, 13, 12H ITERATIONS //72H THE MFSDR1530 1EMBERPROPERTIES AND SAFETY FACTORS FOR EACH MEMBER ARE AS FOLLOWS: FSDR1540 2///> FSDR1550 25 FORMAT (1H0,//,15H FSD REACHED IN, I3, 13H ITERATIONS. //80H THE MEMFSDR1560 1BER PROPERTIES AND SAFETY FACTOR RATIOS FOR EACH MEMBER ARE AS FOFSDR1570 2LLOWS:///) **FSDR1580** FORMAT (1H0,6HMEMBER,5X,1HI,11X,1HA,11X,2HSF) **FSDR1590** 26 27 FORMAT (1H0,2X,12,3X,F10.4,2X,F10.4,2X,F10.4) **FSDR1600** 

| 28 | FORMAT | (1H0,5X,15HT0TAL | WE IGHT | IS,F8.4,5H KIPS) | FSDR1610 |
|----|--------|------------------|---------|------------------|----------|
|    | END    |                  |         |                  | FSDR1620 |
|        | SUBROUTINE AMASS (AK, P, FTIL, SM)                                          | AMAS  | 10  |
|--------|-----------------------------------------------------------------------------|-------|-----|
| С      | م جند به چنه ها ها ها ها ها ها ها ها ها ها ها ها ها                         | AMAS  | 20  |
| С      |                                                                             | AMAS  | 30  |
| С      |                                                                             | AMAS  | 40  |
| С      | THIS SUBROUTINE DETERMINES THE MASS MATRIX OF THE SYSTEM. IF A              | AMAS  | 50  |
| C      | CONSISTENT MASS MATRIX IS USED, THE MEMBER MASS MATRICES ARE                | AMAS  | 60  |
| C      | CALCULATED AND THEN ASSEMBLED INTO A SYSTEM MASS MATRIX OF THE              | AMAS  | 70  |
| С      | SIZE (NDDF,MB). IF A DIAGONAL MASS MATRIX IS USED, SYSTEM VALUES            | AMAS  | 80  |
| С      | ARE INPUT.                                                                  | AMAS  | 90  |
| С      |                                                                             | AMAS  | 100 |
| C      |                                                                             | AMAS  | 110 |
| С      |                                                                             | AMAS  | 120 |
|        | COMMGN X(10,2),A(10),XI(10),E(10),XL(10),C(10),S(10),ALPH(10),BETA          | AMAS  | 130 |
|        | 1(10), SSKTIL(210), WGN(10,4), WTW(10,4), WTH(10,4), WFU(10,4), PP(30,4),   | AMAS  | 140 |
|        | 2FLOC(10,6,4), BM(10,7,4), PSTOR(20,4), PDUP(20,4), BMM(10,4), XXX(10,7,    | AMAS  | 150 |
|        | 34, $V(10,7,4)$ , DISP(20,4), WEIGHT(10), D(20,20), G(20,20), TLINV(20,20), | AMAS  | 160 |
|        | 411LDAK(20,20), AZ(20,20), DENS(10), MCODE(10,6), INC(10,2), MNUM(10,4),    | AMAS  | 170 |
|        | 5MA(10,4),LUTYP(10,4),NMA(4),FY,NM,NJ,NUUF,MB,TNFUL,TFSUL,TTLUN,NL          | AMAS  | 180 |
|        | 6C, INFOP, ILDAP, IGENLL, MASIYP                                            | AMAS  | 190 |
|        | DIMENSION AK(NOUF, MB), P(NOUF), FIIL(NM, 6, NLC), SM(NOUF, MB), NEEDE      | AMAS  | 200 |
|        |                                                                             | AMAS  | 210 |
|        | UAIA NEEUEU/1,2,3,4,5,6,2,7,8,5,9,10,3,8,11,-6,-10,12,4,5,-6,1,2,-          | -AMAS | 220 |
| ~      | 13, 5, 9, -10, 2, 7, -8, 6, 10, 12, -3, -8, 117                             | AMAS  | 250 |
| C      |                                                                             | AMAS  | 240 |
| L<br>C | INITIALIZE MASS MATRIX VALUES TU ZERU                                       | AMAS  | 250 |
| ι      |                                                                             | AMAS  | 200 |
|        | DU I I=I,NUUF                                                               | AMAS  | 210 |
| •      |                                                                             | AMAS  | 200 |
| I<br>C | SM(1,J)=0.0                                                                 | AMAC  | 290 |
| L<br>C | CHECK IE & CONSISTENT OF DIACONAL MASS MATRIX IS TO BE USED                 | CAMA  | 310 |
| C<br>C | CHECK IN A CONSISTENT ON DIAGONAL MASS MAININ IS TO DE USED                 |       | 320 |

|   | IF (MASTYP.EQ.1) GO TO 6                                          | AMAS   | 330 |
|---|-------------------------------------------------------------------|--------|-----|
| C |                                                                   | AMAS   | 340 |
| C | IF USING A CONSISTENT MASS MATRIX, VALUES WHICH MAKE UP THE INDI- | AMAS   | 350 |
| C | VIDUAL MEMBER MASS MATRICES ARE CALCULATED.                       | AMAS   | 360 |
| C |                                                                   | AMAS   | 370 |
|   | DO 5 I=1,NM                                                       | AMAS   | 380 |
|   | XLI=XL(I)                                                         | AMAS   | 390 |
|   | CI=C(I)                                                           | AMAS   | 400 |
|   | S1=S(1)                                                           | AMAS   | 410 |
|   | XMU=A(I)*XLI*DENS(I)                                              | AMAS   | 420 |
|   | SS(1)=XMU+(140.0+CI++2-294.0+SI+CI+156.0+SI++2)/420.0             | AMAS   | 430 |
|   | SS(2)=XMU*(147.0*CI**2-16.0*SI*CI-147.0*SI**2)/420.0              | AMAS   | 440 |
|   | SS(3)=XMU*XLI*(21.0*CI-22.0*SI)/420.0                             | AMAS   | 450 |
|   | SS(4)=XMU*(70.0*CI**2-126.0*SI*CI+54.0*SI**2)/420.0               | AMAS   | 460 |
|   | SS(5)=XMU*(63.0*CI**2+16.0*SI*CI-63.0*SI**2)/420.0                | A MA S | 470 |
|   | SS(6)=XMU*XLI*(13.0*SI-14.0*CI)/420.0                             | AMAS   | 480 |
|   | SS(7)=XMU*(156.0*CI**2+294.0*SI*CI+140.0*SI**2)/420.0             | AMAS   | 490 |
|   | SS(8)=XMU*XLI*(21.0*SI+22.0*CI)/420.0                             | AMAS   | 500 |
|   | \$\${9}=XMU+{54.0+CI++2+126.0+\$I+70.0+\$I++2}/420.0              | AMAS   | 510 |
|   | SS(10)=-XMU*XLI*(14.0*SI+13.0*CI)/420.0                           | AMAS   | 520 |
|   | SS(11)=XMU*4.0*XLI**2/420.0                                       | AMAS   | 530 |
|   | SS(12)=-XMU*3.0*XL[**2/420.0                                      | AMAS   | 540 |
| C |                                                                   | AMAS   | 550 |
| C | ASSEMBLE SYSTEM MASS MATRIX                                       | AMAS   | 560 |
| С |                                                                   | AMAS   | 570 |
|   | DO 4 JM=1,6                                                       | AMAS   | 580 |
|   | J=MCODE(I,JM)                                                     | AMAS   | 590 |
|   | IF (J.EQ.0) GO TO 4                                               | AMAS   | 600 |
|   | DO 3 KM=JM,6                                                      | AMAS   | 610 |
|   | K=MCODE(I,KM)                                                     | AMAS   | 620 |
|   | IF (K.EQ.0) GO TO 3                                               | AMAS   | 630 |
|   | KB=K-J+1                                                          | AMAS   | 640 |
|   |                                                                   |        |     |

|   | L=NEEDED(JM,KM)                                                   | AMAS | 650 |
|---|-------------------------------------------------------------------|------|-----|
|   | IF (L.LT.O) GG TO 2                                               | AMAS | 660 |
|   | SM(J,KB)=SM(J,KB)+SS(L)                                           | AMAS | 670 |
|   | GO TO 3                                                           | AMAS | 680 |
| 2 | L=-L                                                              | AMAS | 690 |
|   | SM(J,KB)=SM(J,KB)-SS(L)                                           | AMAS | 700 |
| 3 | CONTINUE                                                          | AMAS | 710 |
| 4 | CONTINUE                                                          | AMAS | 720 |
| 5 | CONTINUE                                                          | AMAS | 730 |
|   | GO TO 7                                                           | AMAS | 740 |
| С |                                                                   | AMAS | 750 |
| С | READ SYSTEM MASS MATRIX VALUES IF A DIAGONAL MASS MATRIX IS TO BE | AMAS | 760 |
| C | USED                                                              | AMAS | 770 |
| C |                                                                   | AMAS | 780 |
| 6 | READ (5,*) (SM(1,1),I=1,NDOF)                                     | AMAS | 790 |
| 7 | RETURN                                                            | AMAS | 800 |
|   | END                                                               | AMAS | 810 |

| SUBROUTINE EIGEN (AK, P, FTIL, SM) EIGN                                    | 1  |
|----------------------------------------------------------------------------|----|
|                                                                            | 2  |
| EIGN                                                                       | 3  |
|                                                                            | 4  |
| THIS SUBRUUTINE DETERMINES THE EIGENVALUES AND EIGENVECTURS OF THEETGN     | 5  |
| GENERALIZED EIGENVALUE PROBLEM INVOLVING THE K AND M MATRICES. EIGN        | 6  |
| A CHULESKI DECUMPUSITION IS USED TO TRANSFORM THE MASS MATRIX INTOEIGN     | Ì  |
| IWU IRLANGULAR MAIRICES, IHAI IS, M=L*L-IRANSPUSE. IHEN IHE IRL- EIGN      | 5  |
| ANGULAR MATRIX IS INVERTED AND A NEW K-TILDA MATRIX IS FORMED EIGN         | •  |
| WHERE K-TILDA=L-INVERSE*AK*L-TRANSPOSE-INVERSE. THE K-TILDA EIGN           | 10 |
| MATRIX IS THEN STORED IN THE SYMMETRIC MODE SUITABLE FOR USING THEEIGN     | 1  |
| IMSL SUBROUTINE EIGRS. THIS SUBROUTINE TRIDIAGONALIZES THE K- EIGN         | 12 |
| TILDA MATRIX BY A HOUSEHOLDER TRANSFORMATION AND SOLVES FOR THE EIGN       | 13 |
| EIGENVALUES USING THE QL METHOD. THE EIGENVECTORS, FOR THE TRI- EIGN       | 14 |
| DIAGONAL SYSTEM ARE THEN DETERMINED BY INVERSE ITERATION. THESE EIGN       | 1  |
| ARE THEN TRANSFORMED INTO THE EIGENVECTORS FOR THE ORIGINAL EIGN           | 10 |
| SYSTEM. OTHER REQUIRED SUBROUTINES ARE CHODEC, SYMST AND THE IMSLEIGN      | 1  |
| SUBROUTINE EIGRS WHICH REQUIRES THE OTHER IMSL SUBROUTINES EHOBKS, EIGN    | 1  |
| EHOUSS, EQRT2S, AND UERTST. EIGN                                           | 1  |
| EIGN                                                                       | 2  |
| EIGN                                                                       | 2  |
| EIGN                                                                       | 2  |
| CO4MON X(10,2),A(10),XI(10),E(10),XL(10),C(10),S(10),ALPH(10),BETAEIGN     | 2  |
| 1(10),SSKTIL(210),WON(1C,4),WTW(10,4),WTH(10,4),WFO(10,4),PP(30,4),EIGN    | 2  |
| 2FLOC(10,6,4),BM(10,7,4),PSTOR(20,4),PDUP(20,4),BMM(10,4),XXX(10,7,EIGN    | 2  |
| 34),V(10,7,4),DISP(20,4),WEIGHT(10),D(20,20),G(20,20),TLINV(20,20),EIGN    | 2  |
| 4TILDAK(20,20),AZ(20,20),DENS(10),MCODE(10,6),INC(10,2),MNUM(10,4),EIGN    | 2  |
| 5MA(10,4),LDTYP(10,4),NMA(4),FY,NM,NJ,NDOF,MB,INFOC,IFSDC,ITTCON,NLEIGN    | 2  |
| 6C, INFOP, ILDAP, IGENCL, MASTYP EIGN                                      | 2  |
| DIMENSION AK(NDUF, MB), P(NDOF), FTIL(NM, 6, NLC), SM(NDOF, MB), M(20)EIGN | 3  |
| 1, DD(20), Z(400,1), WK(20) EIGN                                           | 3  |
| EIGN                                                                       | 32 |
|                                                                            |    |

| С | INITIALIZE THE EIGENVECTORS TO ZERO                         | EIGN | 330 |
|---|-------------------------------------------------------------|------|-----|
| C |                                                             | EIGN | 340 |
|   | DO 1 I=1,NDOF                                               | EIGN | 350 |
|   | DC 1 J=1,NDOF                                               | EIGN | 360 |
| 1 | AZ(I, J) = 0.0                                              | EIGN | 370 |
|   | CALL CHODEC (AK, P, FTIL, SM)                               | EIGN | 380 |
|   | CALL SYMST                                                  | EIGN | 390 |
|   | I JOB=1                                                     | EIGN | 400 |
|   | CALL EIGRS (SSKTIL, NDOF, IJOB, DD, Z, NDOF, WK, [ER)       | EIGN | 410 |
|   | IF (MASTYP.LT.1) GO TO 2                                    | EIGN | 420 |
|   | WRITE (6,8)                                                 | EIGN | 430 |
|   | GO TO 3                                                     | EIGN | 440 |
| 2 | WRITE (6,9)                                                 | EIGN | 450 |
| 3 | WRITE (6,10)                                                | EIGN | 460 |
| C |                                                             | EIGN | 470 |
| С | WRITE THE EIGENVALUES                                       | EIGN | 480 |
| С |                                                             | EIGN | 490 |
|   | DC 4 I=1,NDOF                                               | EIGN | 500 |
|   | WRITE (6,11) DD(I)                                          | EIGN | 510 |
| 4 | CONTINUE                                                    | EIGN | 520 |
|   | IF (IJOB.EQ.O) GD TO 7                                      | EIGN | 530 |
| C |                                                             | EIGN | 540 |
| С | DETERMINE THE EIGENVECTORS FOR THE ORIGINAL SYSTEM FROM THE | EIGN | 550 |
| C | EIGENVECTORS OF THE K-TILDA SYSTEM                          | EIGN | 5ó0 |
| C |                                                             | EIGN | 570 |
|   | DO 5 I=1,NDOF                                               | EIGN | 580 |
|   | JCDR=0                                                      | EIGN | 590 |
|   | DO 5 K=1, ND OF                                             | EIGN | 600 |
|   | JCOR=JCOR+1                                                 | EIGN | 610 |
|   | DO 5 J=I,NDOF                                               | EIGN | 620 |
|   | JJ=J+(JCOR-1)*NDOF                                          | EIGN | 630 |
| 5 | AZ(I,K)=TLINV(I,J)*Z(JJ,1)+AZ(I,K)                          | EIGN | 640 |
|   |                                                             |      |     |

|    | WRITE (6,12)                                         | EIGN 650 |
|----|------------------------------------------------------|----------|
| С  |                                                      | EIGN 660 |
| С  | WRITE THE EIGENVECTORS                               | EIGN 670 |
| С  |                                                      | EIGN 680 |
|    | DU 6 I=1,NDUF                                        | EIGN 690 |
|    | WRITE (6,13) (AZ(I,J),J=1,NDOF)                      | EIGN 700 |
| 6  | CONTINUE                                             | EIGN 710 |
| 7  | RETURN                                               | EIGN 720 |
| С  |                                                      | EIGN 730 |
| 8  | FORMAT (1H0,5X,31HA DIAGONAL MASS MATRIX WAS USED)   | EIGN 740 |
| 9  | FORMAT (1H0,5X,33HA CONSISTENT MASS MATRIX WAS USED) | EIGN 750 |
| 10 | FORMAT (1H0,///,12H EIGENVALUES)                     | EIGN 760 |
| 11 | FORMAT (1H0,F20.7)                                   | EIGN 770 |
| 12 | FORMAT (1H0,///,13H EIGENVECTORS)                    | EIGN 780 |
| 13 | FORMAT (1H0,10(F9.4,3X))                             | EIGN 790 |
|    | END                                                  | EIGN 800 |

|        | SUBROUTINE CHODEC (AK,P,FTIL,SM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CHOD   | 10  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|
| С      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CHOD   | 20  |
| С      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CHOD   | 30  |
| C      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CHOD   | 40  |
| C      | THIS SUBROUTINE DETERMINES THE SKYLINE VALUES OF THE MASS MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • CHOD | 50  |
| С      | A CHOLESKI DECOMPOSITION IS THEN PERFORMED. THE RESULTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CHOD   | 60  |
| C      | TRIANGULAR MATRIX L IS INVERTED AND THE K-TILDA MATRIX IS FORMED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • CHOD | 70  |
| C      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CHOD   | 80  |
| C<br>C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CHUD   | 90  |
| ι      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 100 |
|        | $ \begin{array}{c} COMMON  AII0_{2}I_{1}AII0_{3}AII0_{3}AII0_{3}EII0_{3}AII0_{3}EII0_{3}AII0_{3}AII0_{3}EII0_{3}AII0_{3}EII0_{3}AII0_{3}EII0_{3}AII0_{3}EII0_{3}EII0_{3}AII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII0_{3}EII$ |        | 120 |
|        | 2ELOCIIO.6 AN RMIIO 7 AN OSTOPIO.AN DOUDIOO AN RMMIIO AN YYYIIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 CHOD | 120 |
|        | 24).V(10.7.4).DISD(20.4).WEICHT(10).D(20.20).C(20.20).TLINV(20.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.CHOD | 140 |
|        | 4TI DAK(20,20) = A7(20,20) = DENS(10) = MCDDE(10,6) = INC(10,2) = MNUM(10,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | 150 |
|        | $5M\Delta(10.4) + 10TYP(10.4) + NM\Delta(4) + EY + NM + NJ + NDRE + MB + INERCA (ESDC) + ITTCON + I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 160 |
|        | 6C. INFOP. ILDAP. IGENCL. MASTYP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | СНОВ   | 170 |
|        | DIMENSION AK(NDUF,MB), P(NDOF), FTIL(NM,6,NLC), SM(NDOF,MB), M(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | O)CHOD | 180 |
|        | 1, PARTK(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CHOD   | 190 |
| C      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CHOD   | 200 |
| С      | INITIALIZE K-TILDA AND L VALUES TO ZERO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHOD   | 210 |
| С      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CHOD   | 220 |
|        | DU 1 I=1,NDOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHOD   | 230 |
|        | DU 1 J=1,NDUF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHOD   | 240 |
|        | D(I,J)=0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CHOD   | 250 |
|        | TILDAK(I,J)=0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CHOD   | 260 |
|        | $TLINV(\mathbf{I},\mathbf{J})=0\cdot0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CHOD   | 270 |
| 1      | G(1, J) = 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHUD   | 280 |
| L<br>C | INITIALIZE SUM THE MALLES TO THE MAXIMUM DOSCIDLE MODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 290 |
| C<br>C | INITIALILE SKILINE VALUES TO THE MAXIMUM PUSSIBLE, NOUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | 300 |
| L      | DO 2 L=1,NDCF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHOD   | 320 |

| 2 M(L)=NDOF                        | CHOD 330 |
|------------------------------------|----------|
| C                                  | CHOD 340 |
| C DETERMINE SKYLINE VALUES         | CHOD 350 |
| C                                  | CHOD 360 |
| DO 5 I=1,NM                        | CHOD 370 |
| LEAST=NDOF                         | CHDD 380 |
| DO 3 J=1,6                         | CHDD 390 |
| K=MCODE(I,J)                       | CHOD 400 |
| IF (K.EQ.0) GO TO 3                | CHOD 410 |
| IF (K.LT.LEAST) LEAST=K            | CHOD 420 |
| 3 CONTINUE                         | CHOD 430 |
| DO 4 JJ=1,6                        | CHOD 440 |
| KK=MCODE(I,JJ)                     | CHOD 450 |
| IF (KK.EQ.0) GO TO 4               | CHOD 460 |
| MM=M(KK)                           | CHOD 470 |
| IF (LEAST.LT.MM) MM=LEAST          | CHOD 480 |
| M(KK) = MM                         | CHOD 490 |
| 4 CONTINUE                         | CHOD 500 |
| 5 CONTINUE                         | CHOD 510 |
| C                                  | CHOD 520 |
| C PERFORM A CHOLESKI DECOMPOSITION | CHOD 530 |
| C                                  | CHOD 540 |
| D(1,1) = SM(1,1)                   | CHOD 550 |
| IF (NDOF.EQ.1) GO TO 11            | CHOD 560 |
| DO 10 J=2, NDOF                    | CHOD 570 |
| K=M(J)                             | CHOD 580 |
| MCC=K-1                            | CHOD 590 |
| JN=J-MCC                           | CHOD 600 |
| G(K, J) = SM(K, JN)                | CHUD 610 |
| L=J-1                              | CHOD 620 |
| IF (J.EQ.2) GO TO 8                | CHCD 630 |
| I=K+1                              | CHOD 640 |

|    | DO 7 MI=I,L                        | CHOD 650 |
|----|------------------------------------|----------|
|    | SUBG=0.0                           | CHOD 660 |
|    | IBR=M(MI)                          | CHOD 670 |
|    | IF (K.GT.IBR) IBR=K                | CHOD 680 |
|    | IER=MI-1                           | CHOD 690 |
|    | DO 6 MR=IBR,IER                    | CHOD 700 |
| 6  | SUBG=SUBG+D(MR,MI)*G(MR,J)         | CHOD 710 |
|    | MCC=MI-1                           | CHOD 720 |
|    | JN=J-MCC                           | CHOD 730 |
| 7  | G(MI,J)=SM(MI,JN)-SUBG             | CHOD 740 |
| 8  | SUBD=0.0                           | CHOD 750 |
|    | DO 9 LR=K,L                        | CHOD 760 |
|    | D(LR, J) = G(LR, J) / D(LR, LR)    | CHOD 770 |
| 9  | SUBD=SUBD+D(LR,J)*G(LR,J)          | CHOD 780 |
| 10 | D(J,J) = SM(J,1) - SUBD            | CHOD 790 |
| 11 | DO 13 J=1,NDOF                     | CHOD 800 |
|    | D(J,J)=SQRT(D(J,J))                | CHOD 810 |
|    | IF (J.EQ.NDOF) GO TO 13            | CHUD 820 |
|    | KB=J+1                             | CHOD 830 |
|    | DG 12 K=KB, NDOF                   | CHOD 840 |
| 12 | D4J,K)=D4J,K)*D(J,J)               | CHOD 850 |
| C  |                                    | CHOD 860 |
| C  | D IS NOW THE TRIANGULAR MATRIX L   | CHOD 870 |
| С  |                                    | CHOD 880 |
| 13 | CONTINUE                           | CHOD 890 |
| С  |                                    | CHOD 900 |
| С  | INVERT THE TRIANGULAR MATRIX L (D) | CHOD 910 |
| C  |                                    | CHOD 920 |
|    | DO 18 I=1,NDOF                     | CHOD 930 |
|    | IF (I-1) 17,17,14                  | CHOD 940 |
| 14 | ILSS=I-1                           | CHOD 950 |
|    | DO 16 K=1, ILSS                    | CHOD 960 |

|    | SUM=0.0                                          | CHOD 970 |
|----|--------------------------------------------------|----------|
|    | DD 15 J=K,ILSS                                   | CHOD 980 |
|    | SUM=SUM+D(J,I)*TLINV(K,J)                        | CHDD 990 |
| 15 | CONTINUE                                         | CHOD1000 |
|    | TLINV(K,I) = -SUM/D(I,I)                         | CH001010 |
| 16 | CONTINUE                                         | CH0D1020 |
| 17 | TLINV(I,I)=1.0/D(I,I)                            | CH0D1030 |
| 18 | CONTINUE                                         | CH0D1040 |
| С  |                                                  | CH0D1050 |
| С  | DETERMINE THE K-TILDA MATRIX                     | CHOD1060 |
| C  |                                                  | CH0D1070 |
|    | DG 22 I=1,NDOF                                   | CH0D1080 |
|    | DC 20 K=1,NDCF                                   | CHOD1090 |
|    | PARTK(K) = 0.0                                   | CH0D1100 |
|    | DO 20 J=1,I                                      | CH0D1110 |
|    | MCC=J-1                                          | CH0D1120 |
|    | K N= K – MC C                                    | CH0D1130 |
|    | IF (J.GT.K) G0 TO 19                             | CH0D1140 |
|    | IF (KN.GT.MB) GO TO 20                           | CH001150 |
|    | PARTK(K)=TLINV(J,I)*AK(J,KN)+PARTK(K)            | CH0D1160 |
|    | GO TO 20                                         | CHOD1170 |
| 19 | MC=K-1                                           | CH0D1180 |
|    | JN=J-MC                                          | CH0D1190 |
|    | IF (JN.GT.NB) GO TO 20                           | CH0D1200 |
|    | PARTK(K)=TLINV(J,I)*AK(K,JN)+PARTK(K)            | CH0D1210 |
| 20 | CONTINUE                                         | CH0D1220 |
|    | DO 21 KK=1, NDOF                                 | CH0D1230 |
|    | DO 21 JJ=1,KK                                    | CHOD1240 |
| 21 | TILDAK(I,KK)=PARTK(JJ)*TLINV(JJ,KK)+TILDAK(I,KK) | CH0D1250 |
| 22 | CONTINUE                                         | CH0D1260 |
|    | RETURN                                           | CH0D1270 |
|    | END                                              | CH0D1280 |

•

|   | SUBROUTINE SYMST                                                         | SYMS      | 10  |
|---|--------------------------------------------------------------------------|-----------|-----|
| С | و چې چې چې چې چې چې چې چې چې چې چې چې چې                                 | SYMS      | 20  |
| С |                                                                          | SYMS      | 30  |
| C |                                                                          | SYMS      | 40  |
| С | THIS SUBROUTINE TRANSFORMS THE K-TILDA MATRIX TO THE SYMMETRIC           | SYMS      | 50  |
| С | STORAGE MODE USED BY THE IMSL SUBROUTINE EIGRS.                          | SYMS      | 60  |
| С |                                                                          | SYMS      | 70  |
| С |                                                                          | SYMS      | 80  |
| С | ید های خونی و و بون و می به می و می و می و می و می و می و می و می        | SYMS      | 90  |
|   | COMMON X(10,2),A(10),XI(10),E(10),XL(10),C(10),S(10),ALPH(10),BE         | TASYMS    | 100 |
|   | 1(10), SSKTIL(210), WON(10,4), WTW(10,4), WTH(10,4), WFO(10,4), PP(30,4) | J.SYMS    | 110 |
|   | 2FLOC(10,6,4), BM(10,7,4), PSTOR(20,4), PDUP(20,4), BMM(10,4), XXX(10,   | 7.SYMS    | 120 |
|   | 34),V(10,7,4),DISP(20,4),WEIGHT(10),D(20,20),G(20,20),TLINV(20,20)       | 1) . SYMS | 130 |
|   | 4TILDAK(20,20), AZ(20,20), DENS(10), MCODE(10,6), INC(10,2), MNUM(10,4   | J,SYMS    | 140 |
|   | 5MA(10,4),LDTYP(10,4),NMA(4),FY,NM,NJ,NDOF,MB,INFOC,IFSDC,ITTCUN,        | NLSYMS    | 150 |
|   | 6C, INFUP, ILDAP, IGENCL, MASTYP                                         | SYMS      | 160 |
|   |                                                                          | SYMS      | 170 |
|   | DU 2 I=I,NDUF                                                            | SYMS      | 180 |
|   |                                                                          | STMS      | 190 |
|   | SSKIIL(K)=IILUAK(J,I)                                                    | SYMS      | 200 |
| • |                                                                          | SYMS      | 210 |
| 1 | CUNTINUE                                                                 | SYMS      | 220 |
| 2 |                                                                          | SYMS      | 230 |
|   | KEIUKN                                                                   | SYMS      | 240 |
|   |                                                                          | STMS      | 200 |

| SUBROUTINE EIGRS (A, N, IJOB, D, Z, IZ, WK, IER)                | EIRS  | 10       |
|-----------------------------------------------------------------|-------|----------|
| ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                           | -E1K2 | 20       |
|                                                                 | EIKS  | 50       |
| THIS SUDDOLITING AND ALL DEMAINING SURDOLITINGS ADD USED IN THE | EIRS  | 40<br>50 |
| CALCHLATIONS OF EICENWALHES AND EICENVECTODS THEY ARE A DADT OF | EIND  | 50<br>60 |
| THE INTERNATIONAL MATHEMATICAL AND STATISTICAL LIBRARIES. INC.  | FIRS  | 70       |
| I INCLI IN HOUSTON, TEXAS, THEY ARE REPRODUCED HERE WITH THE    | FIRS  | 80       |
| DEDMISSION OF INCLAND MAY NOT BE EXTRACTED AS A RASIS FOR ANY   | EIDC  | 00       |
| SOFTWARE DEVELOPMENT.                                           | FIRS  | 100      |
|                                                                 | FIRS  | 110      |
|                                                                 | FIRS  | 120      |
| -EIGRSS/DIIBRARY 1                                              | -FIRS | 130      |
| FUNCTION - TO CALCULATE EIGENVALUES AND (OPTIONALLY)            | EIRS  | 140      |
| EIGENVECTORS OF A REAL SYMMETRIC MATRIX.                        | EIRS  | 150      |
| USAGE - CALL EIGRS (A.N.IJOB.D.Z.IZ.WK.IER)                     | EIRS  | 160      |
| PARAMETERS A - THE INPUT REAL SYMMETRIC MATRIX OF ORDER N.      | EIRS  | 170      |
| STORED IN SYMMETRIC STORAGE MODE.                               | EIRS  | 180      |
| WHOSE EIGENVALUES AND EIGENVECTORS                              | EIRS  | 190      |
| ARE TO BE COMPUTED. INPUT A IS                                  | EIRS  | 200      |
| DESTROYED IF IJOB IS EQUAL TO O OR 1.                           | EIRS  | 210      |
| N - THE ORDER OF THE MATRIX A.(INPUT)                           | EIRS  | 220      |
| IJOB - INPUT OPTION PARAMETER, WHEN                             | EIRS  | 230      |
| IJOB = 0, COMPUTE EIGENVALUES ONLY                              | EIRS  | 240      |
| IJOB = 1, COMPUTE EIGENVALUES AND EIGEN-                        | EIRS  | 250      |
| VECTOR S.                                                       | EIRS  | 260      |
| IJOB = 2, COMPUTE EIGENVALUES, EIGENVECTORS                     | EIRS  | 270      |
| AND PERFORMANCE INDEX.                                          | EIRS  | 280      |
| IJOB = 3, COMPUTE PERFORMANCE INDEX ONLY.                       | EIRS  | 290      |
| IF THE PERFORMANCE INDEX IS COMPUTED, IT IS                     | EIRS  | 300      |
| RETURNED IN WK(1). THE ROUTINES HAVE                            | EIRS  | 310      |
| PERFORMED (WELL, SATISFACTORILY, PCORLY) IF                     | EIRS  | 320      |

| С |     | WK(1) IS (LESS THAN 1, BETWEEN 1 AND 100,   | EIRS 330 |
|---|-----|---------------------------------------------|----------|
| С |     | GREATER THAN 100).                          | EIRS 340 |
| C | D   | - THE OUTPUT VECTOR OF LENGTH N,            | EIRS 350 |
| C |     | CONTAINING THE EIGENVALUES OF A.            | EIRS 360 |
| C | Z   | - THE OUTPUT N BY N MATRIX CONTAINING       | EIRS 370 |
| С |     | THE EIGENVECTORS OF A.                      | EIRS 380 |
| C |     | THE EIGENVECTOR IN COLUMN J OF Z CORRES-    | EIRS 390 |
| C |     | PONDS TO THE EIGENVALUE D(J).               | EIRS 400 |
| C |     | IF IJOB = $0, Z$ IS NOT USED.               | EIRS 410 |
| C | IZ  | - THE RGW DIMENSION OF THE MATRIX Z IN THE  | EIRS 420 |
| C |     | CALLING PROGRAM. IZ MUST BE GREATER THAN    | EIRS 430 |
| C |     | OR EQUAL TO N IF IJOB IS NOT EQUAL TO ZERO. | EIRS 440 |
| C | WK  | - WORK AREA, THE LENGTH OF WK DEPENDS       | EIRS 450 |
| C |     | ON THE VALUE OF IJOB, WHEN                  | EIRS 460 |
| C |     | IJOB = 0, THE LENGTH OF WK IS AT LEAST N.   | EIRS 470 |
| C |     | IJOB = 1, THE LENGTH OF WK IS AT LEAST N.   | EIRS 480 |
| С |     | IJOB = 2, THE LENGTH OF WK IS AT LEAST      | EIRS 490 |
| С |     | N(N+1)/2+N.                                 | EIRS 500 |
| C |     | IJOB = 3, THE LENGTH OF WK IS AT LEAST 1.   | EIRS 510 |
| C | IER | - ERROR PARAMETER                           | EIRS 520 |
| C |     | TERMINAL ERROR                              | EIRS 530 |
| С |     | IER = 128+J, INDICATES THAT EQRT2S FAILED   | EIRS 540 |
| C |     | TO CONVERGE ON EIGENVALUE J. EIGENVALUES    | EIRS 550 |
| C |     | AND EIGENVECTORS 1,, J-1 HAVE BEEN          | EIRS 560 |
| C |     | COMPUTED CORRECTLY, BUT THE EIGENVALUES     | EIRS 570 |
| C |     | ARE UNORDERED. THE PERFORMANCE INDEX        | EIRS 580 |
| C |     | IS SET TO 1000.0                            | EIRS 590 |
| С |     | WARNING ERROR (WITH FIX)                    | EIRS 600 |
| C |     | IER = 66, INDICATES IJOB IS LESS THAN O OR  | EIRS 610 |
| C |     | IJOB IS GREATER THAN 3. IJOB SET TO 1.      | EIRS 620 |
| C |     | IER = $67$ , INDICATES IJOB IS NOT EQUAL TO | EIRS 630 |
| C |     | ZERO, AND IZ IS LESS THAN THE ORDER OF      | EIRS 640 |

| C | MATRIX A                                                 | A. IJOB IS SET TO ZERO.            | EIRS 650         |  |
|---|----------------------------------------------------------|------------------------------------|------------------|--|
| С | PRECISION - SINGLE/DOL                                   | JBLE                               | EIRS 660         |  |
| C | REQD. IMSL ROUTINES - EHOBKS, EHO                        | DUSS,EQRT2S,UERTST                 | EIRS 670         |  |
| С | LANGUAGE - FORTRAN                                       |                                    | EIRS 680         |  |
| С | و به به به بین از با با با با با با با با با با با با با |                                    | -EIRS 690        |  |
| C | LATEST REVISION - MARCH 9, 1                             | 1977                               | EIRS 700         |  |
| С |                                                          |                                    | EIRS 710         |  |
| С |                                                          |                                    | EIRS 720         |  |
|   | DIMENSION A(1), D(1), WK(1), Z(1                         | [2,1]                              | EIRS 730         |  |
| C | DOUBLE PRECISION A,D,WK,Z,ANO                            | RM, ASUM, PI, SUMZ, SUMR, AN, S    | EIRS 740         |  |
| С | DOUBLE PRECISION TEN, RDELP, ZEP                         | RO, ONE, THOUS                     | EIRS 750         |  |
| С | DATA RDELP/Z341000                                       | 000000000/                         | EIRS 760         |  |
| С | 2 DATA ZERO, ONI                                         | E,TEN,THOUS/0.0D0,1.0D0,10.0D0,100 | <b>OEIRS 770</b> |  |
|   | DATA RDELP/Z3C100000/                                    |                                    | EIRS 780         |  |
|   | DATA ZERO, ONE/0.0, 1.0/, TEN/10.0                       | /,THOUS/1000.0/                    | EIRS 790         |  |
| С | IN                                                       | ITIALIZE ERROR PARAMETERS          | EIRS 800         |  |
|   | IER=0                                                    |                                    | EIRS 810         |  |
|   | JER=0                                                    |                                    | EIRS 820         |  |
| _ | IF (IJOB.GE.O.AND.IJOB.LE.3) GO                          | TO 1                               | EIRS 830         |  |
| C | WAF                                                      | RNING ERROR - IJOB IS NOT IN THE   | EIRS 840         |  |
| C | F                                                        | RANGE                              | EIRS 850         |  |
|   | IER=66                                                   |                                    | EIRS 860         |  |
|   | I JOB=1                                                  |                                    | EIRS 870         |  |
| - | GO TO 2                                                  |                                    | EIRS 880         |  |
| 1 | IF (IJOB.EQ.0) GO TO 4                                   |                                    | EIRS 890         |  |
| 2 | IF (IZ.GE.N) GO TO 3                                     |                                    | EIRS 900         |  |
| С | WAF                                                      | RNING ERROR - IZ IS LESS THAN N    | EIRS 910         |  |
| C | 1                                                        | EIGENVECTORS CAN NOT BE COMPUTED,  | EIRS 920         |  |
| С |                                                          | IJOB SET TO ZERO                   | EIRS 930         |  |
|   | IER=67                                                   |                                    | EIRS 940         |  |
| _ | I JOB=0                                                  |                                    | EIRS 950         |  |
| 3 | IF (IJOB.EQ.3) GO TO 12                                  |                                    | EIRS 960         |  |

| 4  | NA=(N*(N+1))/2                     |                                      | EIRS 970   |
|----|------------------------------------|--------------------------------------|------------|
|    | IF (IJOB.NE.2) GC TO 6             |                                      | EIRS 980   |
|    | DO 5 I=1, NA                       |                                      | EIRS 990   |
|    | WK(I) = A(I)                       |                                      | EIRS1000   |
| 5  | CONTINUE                           |                                      | EIR \$1010 |
| С  |                                    | SAVE INPUT A IF IJOB = $2$           | EIRS1020   |
| 6  | ND=1                               |                                      | EIRS1030   |
|    | IF (IJOB.EQ.2) ND=NA+1             |                                      | EIRS1040   |
| C  |                                    | REDUCE A TO SYMMETRIC TRIDIAGONAL    | EIRS1050   |
| С  |                                    | FORM                                 | EIRS1060   |
|    | CALL EHOUSS (A,N,D,WK(ND),WK       | (ND))                                | EIRS1070   |
|    | I I Z=0                            |                                      | EIRS1080   |
|    | IF (IJOB.GT.O) IIZ=IZ              |                                      | EIRS1090   |
|    | IF (IIZ.EQ.0) GO TO 9              |                                      | EIRS1100   |
| С  |                                    | SET Z TO THE IDENTITY MATRIX         | EIRS1110   |
|    | DO 8 I=1,N                         |                                      | EIRS1120   |
|    | DO 7 $J=1,N$                       |                                      | EIRS1130   |
|    | Z(I,J)=ZERO                        |                                      | EIRS1140   |
| 7  | CGNTINUE                           |                                      | EIRS1150   |
|    | Z(I,I)=CNE                         |                                      | EIRS1160   |
| 8  | CONTINUE                           |                                      | EIRS1170   |
| С  |                                    | COMPUTE EIGENVALUES AND EIGENVECTORS | EIRS1180   |
| 9  | CALL EQRT2S (D, WK (ND), N, Z, II) | Z,JER)                               | EIRS1190   |
|    | IF (IJOB.EQ.O) GO TO 18            |                                      | EIRS1200   |
|    | IF (JER.GT.128) GO TO 10           |                                      | EIRS1210   |
| С  |                                    | BACK TRANSFORM EIGENVECTORS          | EIRS1220   |
|    | CALL EHOBKS (A,N,1,N,Z,IZ)         |                                      | EIRS1230   |
| 10 | IF (IJOB.LE.1) GO TO 18            |                                      | EIRS1240   |
| C  |                                    | MOVE INPUT MATRIX BACK TO A          | EIRS1250   |
|    | DO 11 I=1,NA                       |                                      | EIRS1260   |
|    | A(I)=WK(I)                         |                                      | EIRS1270   |
| 11 | CONTINUE                           |                                      | EIRS1280   |

|    | WK(1)=THOUS                           | EIRS1290   |
|----|---------------------------------------|------------|
|    | IF (JER.NE.O) GO TO 18                | EIRS1300   |
| C  | COMPUTE 1 - NORM OF A                 | EIRS1310   |
| 12 | ANORM=ZERO                            | EIRS1320   |
|    | IBEG=1                                | EIRS1330   |
|    | DO 14 I=1,N                           | EIRS1340   |
|    | ASUM=ZERO                             | EIRS1350   |
|    | IL=IBEG                               | EIRS1360   |
|    | KK=1                                  | EIRS1370   |
|    | DO 13 L=1,N                           | EIR \$1380 |
| C  | 1 ASUM = ASUM+DABS(A(IL))             | EIRS1390   |
|    | ASUM=ASUM+ABS(A(IL))                  | EIRS1400   |
|    | IF (L.GE.I) KK=L                      | EIRS1410   |
|    | IL=IL+KK                              | EIRS1420   |
| 13 | CONTINUE                              | EIRS1430   |
| С  | 1 ANORM = DMAX1(ANORM, ASUM)          | EIRS1440   |
|    | ANORM=AMAX1(ANORM,ASUM)               | EIR \$1450 |
|    | IBEG=IBEG+I                           | EIRS1460   |
| 14 | CONTINUE                              | EIRS1470   |
|    | IF (ANORM.EQ.ZERO) ANORM=ONE          | EIRS1480   |
| C  | COMPUTE PERFORMANCE INDEX             | EIRS1490   |
|    | PI=ZERO                               | EIRS1500   |
|    | 00 17 I=1,N                           | EIRS1510   |
|    | IBEG=1                                | EIRS1520   |
|    | S=ZERO                                | EIRS1530   |
|    | SUMZ=ZERO                             | EIRS1540   |
|    | DO 16 L=1,N                           | EIRS1550   |
|    | LK=IBEG                               | EIRS1560   |
|    | KK=1                                  | EIRS1570   |
| С  | $1 \qquad SUMZ = SUMZ + DABS(Z(L,I))$ | EIRS1580   |
|    | SUMZ=SUMZ+ABS(Z(L,I))                 | EIRS1590   |
|    | $SUMR = -D(I) \neq Z(L, I)$           | EIRS1600   |

|    | DO 15 K=1,N                              | EIRS1610    |
|----|------------------------------------------|-------------|
|    | SUMR=SUMR+A(LK)*Z(K,I)                   | EIRS1620    |
|    | IF (K.GE.L) KK=K                         | EIRS1630    |
|    | LK=LK+KK                                 | EIRS1640    |
| 15 | CONTINUE                                 | EIRS1650    |
| C  | S = S + DABS(SUMR)                       | EIRS1660    |
|    | S=S+ABS(SUMR)                            | EIRS1670    |
|    | IBEG=IBEG+L                              | EIRS1680    |
| 16 | CONTINUE                                 | EIRS1690    |
|    | IF (SUMZ.EQ.ZERO) GO TO 17               | EIRS1700    |
| С  | $1 \qquad PI = DMAX1(PI,S/SUMZ)$         | EIRS1710    |
|    | PI=AMAX1(PI,S/SUMZ)                      | EIRS1720    |
| 17 | CONTINUE                                 | EIRS1730    |
|    | A N=N                                    | EIRS1740    |
|    | PI=PI/(ANORM*TEN*AN*RDELP)               | EIRS1750    |
|    | WK(1)=PI                                 | EIRS1760    |
| 18 | CONTINUE                                 | EIRS1770    |
|    | IF (IER.NE.O) CALL UERTST (IER,6HEIGRS ) | EIRS1780    |
|    | IF (JER.EQ.0) GO TO 19                   | EIRS1790    |
|    | I ER=JER                                 | EIRS1800    |
|    | CALL UERTST (IER,6HEIGRS )               | EIRS1810    |
| 19 | RETURN                                   | E IR S 1820 |
|    | END                                      | EIRS1830    |

| SUBROUTINE  | EHOBKS  | (A, N, M1, M2, Z, IZ)                           | EHOB  | l  |
|-------------|---------|-------------------------------------------------|-------|----|
| -EHOBKS     | S/D-    | LIBRARY 1                                       | -EHOB | 2  |
|             |         |                                                 | EHOB  | 3  |
| FUNCTION    |         | - PERFORM A BACK TRANSFORMATION TO FORM THE     | EHOB  | 4  |
|             |         | EIGENVECTORS OF THE ORIGINAL SYMMETRIC          | EHOB  | 5  |
|             |         | MATRIX FROM THE EIGENVECTORS OF THE             | EHOB  | 6  |
|             |         | TRIDIAGONAL MATRIX.                             | EHOB  | 7  |
| USAGE       |         | - CALL EHOBKS (A,N,M1,M2,Z,IZ)                  | EHOB  | 8  |
| PARAMETERS  | Α       | - THE ARRAY CONTAINS THE DETAILS OF THE HOUSE   | EHOB  | 9  |
|             |         | HOLDER REDUCTION OF THE ORIGINAL MATRIX A A     | SEHOB | 10 |
|             |         | GENERATED BY IMSL ROUTINE "EHOUSS".             | EHOB  | 11 |
| l           | N -     | - ORDER OF THE REAL SYMMETRIC MATRIX.           | EHOB  | 12 |
| i           | M1 -    | - M1 AND M2 ARE TWO INPUT SCALARS SUCH THAT     | EHOB  | 13 |
|             |         | EIGENVECTORS M1 TO M2 OF THE TRIDIAGONAL        | EHOB  | 14 |
|             |         | MATRIX A HAVE BEEN FOUND AND NORMALIZED         | EHOB  | 15 |
|             |         | ACCORDING TO THE EUCLIDEAN NORM.                | EHOB  | 16 |
| i           | M2 -    | - SEE ABOVE - M1                                | EHOB  | 17 |
|             | Ζ -     | - A TWO DIMENSIONAL ARRAY OF SIZE N X (M2-M1+1) | EHOB  | 18 |
|             |         | WHICH CONTAINS EIGENVECTORS M1 TO M2 OF         | EHOB  | 19 |
|             |         | TRIDIAGONAL MATRIX T, NORMALIZED ACCORDING      | EHOB  | 20 |
|             |         | TO EUCLIDEAN NORM. INPUT Z CAN BE PRODUCED      | EHOB  | 21 |
|             |         | BY IMSL ROUTINE "EQRT2S", THE RESULTANT         | EHOB  | 22 |
|             |         | MATRIX OVERWRITES THE INPUT Z.                  | EH08  | 23 |
|             | IZ -    | - ROW DIMENSION OF Z IN CALLING PROGRAM.        | EHOB  | 24 |
| PRECISION   |         | - SINGLE/DOUBLE                                 | EHOB  | 25 |
| LANGUAGE    |         | - FORTRAN                                       | EHOB  | 26 |
|             |         |                                                 | -EHOB | 27 |
| LATEST REVI | SION    | - JULY 21, 1972                                 | EH08  | 28 |
|             |         |                                                 | EHOB  | 29 |
|             |         |                                                 | EHOB  | 30 |
| DIMENSION A | (1), Z( | [2,1]                                           | EHOB  | 31 |
| DOUBLE PREC | ISION   | A • Z • H • S                                   | EHOB  | 32 |

|   | IF (N.EQ.1) GO TO 5             | EHO                                      | B 330 |
|---|---------------------------------|------------------------------------------|-------|
|   | DO 4 I=2.N                      | EHO                                      | B 340 |
|   | L=I-1                           | EHO                                      | 8 350 |
|   | I A=I*L/2                       | EHO                                      | B 360 |
|   | H = A(IA + I)                   | EHC                                      | B 370 |
|   | IF (H.EQ.O.) GO TO 4            | EHO                                      | 8 380 |
| С |                                 | DERIVES EIGENVECTORS M1 TO M2 OF EHO     | B 390 |
| С |                                 | THE ORIGINAL MATRIX FROM EIGENVECTORSEHO | B 400 |
| C |                                 | M1 TO M2 OF THE SYMMETRIC EHO            | B 410 |
| С |                                 | TRIDIAGONAL MATRIX EHO                   | B 420 |
|   | DO 3 $J=M1,M2$                  | EHO                                      | 8 430 |
|   | S=0.0                           | EHO                                      | B 440 |
|   | DO 1 $K=1, L$                   | EHO                                      | B 450 |
|   | $S=S+A(IA+K) \neq Z(K, J)$      | EHO                                      | B 460 |
| 1 | CONTINUE                        | EHO                                      | B 470 |
|   | S=S/H                           | EHO                                      | B 480 |
|   | DO 2 $K=1,L$                    | EHO                                      | B 490 |
|   | Z(K, J) = Z(K, J) - S * A(IA+K) | EHO                                      | B 500 |
| 2 | CONTINUE                        | EHC                                      | 8 510 |
| 3 | CONTINUE                        | EHO                                      | B 520 |
| 4 | CONTINUE                        | EHO                                      | B 530 |
| 5 | RETURN                          | EHO                                      | B 540 |
|   | END                             | EHO                                      | B 550 |

|   | SUBROUTINE                                       | EHOUS | S(A,N,D,E,E2)                                            | EHOU   | 10  |
|---|--------------------------------------------------|-------|----------------------------------------------------------|--------|-----|
| С | -EHDUSS                                          | S     | /DLIBRARY 1                                              | -EHOU  | 20  |
| С |                                                  |       |                                                          | EHOU   | 30  |
| С | FUNCTION                                         |       | - REDUCE A SYMMETRIC MATRIX A TO SYMMETRIC               | EHOU   | 40  |
| C |                                                  |       | TRIDIAGONAL FORM USING HOUSEHOLDER'S                     | EHOU   | 50  |
| С |                                                  |       | REDUCTION.                                               | EHOU   | 60  |
| C | USAGE                                            |       | - CALL EHOUSS(A,N,D,E,E2)                                | EHOU   | 70  |
| С | PARAMETERS                                       | Α     | - THE GIVEN N X N, REAL SYMMETRIC MATRIX A,              | EHOU   | 80  |
| С |                                                  |       | WHERE A IS STORED IN SYMMETRIC STORAGE MODE              | -EHOU  | 90  |
| C |                                                  |       | THE INPUT A IS REPLACED BY                               | EHOU   | 100 |
| С |                                                  |       | THE DETAILS OF THE HOUSEHOLDER                           | EHOU   | 110 |
| С |                                                  |       | REDUCTION OF A.                                          | EHOU   | 120 |
| С |                                                  | N     | - ORDER OF A AND THE LENGTH OF D,E, AND E2               | EHOU   | 130 |
| С |                                                  | Ð     | - THE OUTPUT ARRAY OF LENGTH N, GIVING THE               | EHOU   | 140 |
| C |                                                  |       | DIAGONAL ELEMENTS OF THE TRIDIAGONAL MATRIX              | (.EHOU | 150 |
| C |                                                  | ε     | - THE OUTPUT ARRAY OF LENGTH N, GIVING THE SUB-          | - EHOU | 160 |
| С |                                                  |       | DIAGONAL IN THE LAST (N-1) ELEMENTS, E(1) I              | SEHOU  | 170 |
| С |                                                  |       | SET TO ZERO.                                             | EHOU   | 180 |
| С |                                                  | E2    | - OUTPUT ARRAY OF LENGTH N. E2(I) = E(I)**2.             | EHOU   | 190 |
| C | PRECISION                                        |       | - SINGLE/DOUBLE                                          | EHOU   | 200 |
| С | L ANGUAGE                                        |       | - FORTRAN                                                | EHOU   | 210 |
| С | ويستعد الأله والمراقبة التاريخ والموارية التاريخ |       | و شوی به به به به به به به به به به به به به             | -EHOU  | 220 |
| С | LATEST REVI                                      | SION  | - APRIL 11,1975                                          | EHOU   | 230 |
| С |                                                  |       |                                                          | EHOU   | 240 |
| С |                                                  |       |                                                          | EHOU   | 250 |
|   | DIMENSION A                                      | (1),  | D(N), E(N), E2(N)                                        | EHOU   | 260 |
| С | 1 DOUBLE                                         | PREC  | ISION A, D, E, E2, ZERO, H, SCALE, ONE, SCALE1, F, G, HH | EHOU   | 270 |
|   | REAL A, D, E,                                    | E2,ZE | RO,H,SCALE,ONE,SCALE1,F,G,HH                             | EHOU   | 280 |
| С | 1 DATA                                           |       | ZER0/0.0D0/.0NE/1.0D0/                                   | EHOU   | 290 |
|   | DATA ZERO/C                                      | .0/,0 | NE/1.0/                                                  | EHCU   | 300 |
|   | NP1=N+1                                          |       |                                                          | EHOU   | 310 |
|   | NN= (N*NP1)/                                     | 2-1   |                                                          | EHOU   | 320 |

|   | NBEG=NN+1-N                |      |     |        |     |      |     | EHOU         | 330 |
|---|----------------------------|------|-----|--------|-----|------|-----|--------------|-----|
|   | DO 14 II=1.N               |      |     |        |     |      |     | EHOU         | 340 |
|   | I=NP1-II                   |      |     |        |     |      |     | EHOU         | 350 |
|   | L=[-]                      |      |     |        |     |      |     | EHOU         | 360 |
|   | H=ZERO                     |      |     |        |     |      |     | EHOU         | 370 |
|   | SCALE=ZERO                 |      |     |        |     |      |     | EHOU         | 380 |
|   | IF (L.LT.1) GO TO 2        |      |     |        |     |      |     | EHOU         | 390 |
| C | S                          | CALE | ROW | (ALGOL | TOL | THEN | NOT | NEEDED) EHOU | 400 |
|   | NK=NN                      |      |     |        |     |      |     | EHOU         | 410 |
|   | DO $1 K=1, L$              |      |     |        |     |      |     | EHOU         | 420 |
| C | 1 SCALE = SCALE+DABS(      | A(NK | ))  |        |     |      |     | EHOU         | 430 |
|   | SCALE=SCALE+ABS(A(NK))     |      |     |        |     |      |     | EHOU         | 440 |
|   | NK=NK-1                    |      |     |        |     |      |     | EHOU         | 450 |
| 1 | CONTINUE                   |      |     |        |     |      |     | EHOU         | 460 |
|   | IF (SCALE.NE.ZERO) GO TO 3 |      |     |        |     |      |     | EHOU         | 470 |
| 2 | E(I) = ZERO                |      |     |        |     |      |     | EHOU         | 480 |
|   | E2(I)=ZERO                 |      |     |        |     |      |     | EHOU         | 490 |
|   | GO TO 13                   |      |     |        |     |      |     | EHOU         | 500 |
| 3 | NK=NN                      |      |     |        |     |      |     | EHOU         | 510 |
|   | SCALE1=ONE/SCALE           |      |     |        |     |      |     | EHOU         | 520 |
|   | DO 4 K=1,L                 |      |     |        |     |      |     | EHOU         | 530 |
|   | A(NK) = A(NK) * SCALE1     |      |     |        |     |      |     | EHOU         | 540 |
|   | H=H+A(NK)*A(NK)            |      |     |        |     |      |     | EHOU         | 550 |
|   | NK=NK-1                    |      |     |        |     |      |     | EHOU         | 560 |
| 4 | CONTINUE                   |      |     |        |     |      |     | EHOU         | 570 |
|   | E2(I)=SCALE*SCALE*H        |      |     |        |     |      |     | EHOU         | 580 |
|   | F=A(NN)                    |      |     |        |     |      |     | EHOU         | 590 |
| С | 1 $G = -DSIGN(DSQRT(H),F)$ |      |     |        |     |      |     | EHOU         | 600 |
|   | G = -SIGN(SQRT(H), F)      |      |     |        |     |      |     | EHOU         | 610 |
|   | E(I) = SCALE * G           |      |     |        |     |      |     | EHOU         | 620 |
|   | H=H-F*G                    |      |     |        |     |      |     | EHGU         | 630 |
|   | A(NN) = F - G              |      |     |        |     |      |     | EHOU         | 640 |

|   | IF (L.EQ.1) GO TO 11                       |                     | EHOU 650 |
|---|--------------------------------------------|---------------------|----------|
|   | F=ZERO                                     |                     | EHDU 660 |
|   | JK 1=1                                     |                     | EHOU 670 |
|   | DO 8 J=1,L                                 |                     | EHOU 680 |
|   | G=ZERO                                     |                     | EHOU 690 |
|   | IK=NBEG+1                                  |                     | EHOU 700 |
|   | JK=JK1                                     |                     | EHOU 710 |
| C |                                            | FORM ELEMENT OF A*U | EHOU 720 |
|   | DO 5 $K=1, J$                              |                     | EHOU 730 |
|   | G=G+A(JK)*A(IK)                            |                     | EHDU 740 |
|   | JK=JK+1                                    |                     | EHOU 750 |
|   | IK = IK + 1                                |                     | EHDU 760 |
| 5 | CONTINUE                                   |                     | EHOU 770 |
|   | JP1=J+1                                    |                     | EHOU 780 |
|   | IF (L.LT.JP1) GO TO 7                      |                     | EHOU 790 |
|   | JK=JK+J-1                                  |                     | EHDU 800 |
|   | DO 6 K=JP1,L                               |                     | EHOU 810 |
|   | G=G+A(JK)*A(IK)                            |                     | EHOU 820 |
|   | JK=JK+K                                    |                     | EHOU 830 |
|   | $\mathbf{I} K = \mathbf{I} K + \mathbf{I}$ |                     | EHOU 840 |
| 6 | CONTINUE                                   |                     | EHOU 850 |
| С |                                            | FORM ELEMENT OF P   | EHOU 860 |
| 7 | E(J)=G/H                                   |                     | EHOU 870 |
|   | F=F+E(J)*A(NBEG+J)                         |                     | EHOU 880 |
|   | JK1=JK1+J                                  |                     | EHOU 890 |
| 8 | CONTINUE                                   |                     | EHOU 900 |
|   | HH=F/(H+H)                                 |                     | EHOU 910 |
| С |                                            | FORM REDUCED A      | EHOU 920 |
|   | JK=1                                       |                     | EHOU 930 |
|   | DO 10 J=1,L                                |                     | EHOU 940 |
|   | F=A(NBEG+J)                                |                     | EHOU 950 |
|   | G=E(J)-HH*F                                |                     | EHOU 960 |

|    | E(J)=G                         | EHOU 970 |
|----|--------------------------------|----------|
|    | DO 9 $K=1, J$                  | EHOU 980 |
|    | A(JK)=A(JK)-F*E(K)-G*A(NBEG+K) | EHOU 990 |
|    | JK=JK+1                        | EH0U1000 |
| 9  | CONTINUE                       | EH0U1010 |
| 10 | CONTINUE                       | EH0U1020 |
| 11 | DO 12 K=1,L                    | EH0U1030 |
|    | A(NBEG+K)=SCALE*A(NBEG+K)      | EH0U1040 |
| 12 | CONTINUE                       | EH0U1050 |
| 13 | D(I) = A(NBEG+I)               | EH0U1060 |
|    | A(NBEG+I)=H*SCALE*SCALE        | EH0U1070 |
|    | NBEG=NBEG-I+1                  | EHOU1080 |
|    | NN=NN-I                        | EHOU1090 |
| 14 | CONTINUE                       | EHOU1100 |
|    | RETURN                         | EHOU1110 |
|    | END                            | EH0U1120 |

|   | SUBROUT INE | EQRT2S | ( D | ),E,N,Z,IZ,IER)                               | EQRT  | 10  |
|---|-------------|--------|-----|-----------------------------------------------|-------|-----|
| C | -EQRT2S     | S/1    | D   | LIBRARY 1                                     | -EQRT | 20  |
| C |             |        |     |                                               | EQRT  | 30  |
| С | FUNCTION    |        |     | - FIND THE EIGENVALUES AND (OPTIONALLY)       | EQRT  | 40  |
| С |             |        |     | EIGENVECTORS OF A TRIDIAGONAL MATRIX, T,      | EQRT  | 50  |
| С |             |        |     | USING THE QL METHOD.                          | EQRT  | 60  |
| C | USAGE       |        |     | - CALL EQRT2S (D,E,N,Z,IZ,IER)                | EQRT  | 70  |
| С | PARAMETERS  | D      |     | - ON INPUT, THE VECTOR D OF LENGTH N CONTAINS | EQRT  | 80  |
| С |             |        |     | THE DIAGONAL ELEMENTS OF THE TRIDIAGONAL      | EQRT  | 90  |
| С |             |        |     | MATRIX T.                                     | EQRT  | 100 |
| C |             |        |     | ON OUTPUT, D CONTAINS THE EIGENVALUES OF      | EQRT  | 110 |
| С |             |        |     | T IN ASCENDING ORDER.                         | EQRT  | 120 |
| С |             | E      |     | ON INPUT, THE VECTOR E OF LENGTH N CONTAINS   | EQRT  | 130 |
| C |             |        |     | THE SUB-DIAGONAL ELEMENTS OF T IN POSITION    | EQRT  | 140 |
| C |             |        |     | 2,,N. ON OUTPUT, E IS DESTROYED.              | EQRT  | 150 |
| С |             | N      | -   | ORDER OF TRIDIAGONAL MATRIX T.(INPUT)         | EQRT  | 160 |
| C |             | Z      | -   | ON INPUT, Z CONTAINS THE IDENTITY MATRIX OF   | EQRT  | 170 |
| С |             |        |     | GRDER N.                                      | EQRT  | 180 |
| С |             |        |     | ON OUTPUT, Z CONTAINS THE EIGENVECTORS        | EQRT  | 190 |
| С |             |        |     | OF T. THE EIGENVECTOR IN COLUMN J OF Z        | EQRT  | 200 |
| C |             |        |     | CORRESPONDS TO THE EIGENVALUE D(J).           | EQRT  | 210 |
| C |             | IZ     | -   | ROW DIMENSION OF Z IN THE CALLING PROGRAM.    | EQRT  | 220 |
| C |             |        |     | IF IZ IS LESS THAN N, THE EIGENVECTORS ARE    | EQRT  | 230 |
| С |             |        |     | NGT COMPUTED. IN THIS CASE Z IS NOT USED.     | EQRT  | 240 |
| С |             | IER    | -   | ERROR PARAMETER                               | EQRT  | 250 |
| С |             |        |     | TERMINAL ERROR                                | EQRT  | 260 |
| С |             |        |     | IER = 128+J, INDICATES THAT EQRT2S FAILED     | EQRT  | 270 |
| C |             |        |     | TO CONVERGE ON EIGENVALUE J. EIGENVALUES      | EQRT  | 280 |
| C |             |        |     | AND EIGENVECTORS 1,, J-1 HAVE BEEN            | EQRT  | 290 |
| C |             |        |     | COMPUTED CORRECTLY, BUT THE EIGENVALUES       | EQRT  | 300 |
| С |             |        |     | ARE UNORDERED.                                | EQRT  | 310 |
| C | PRECISION   |        |     | - SINGLE/DOUBLE                               | EQRT  | 320 |

| С | REQD. IMSL ROUTINES - UERTST                          | EQRT  | 330         |
|---|-------------------------------------------------------|-------|-------------|
| С | LANGUAGE – FORTRAN                                    | EQRT  | 340         |
| C |                                                       | -EQRT | 350         |
| С | LATEST REVISION - MARCH 11, 1977                      | EQRT  | 360         |
| С |                                                       | EQRT  | 370         |
| С |                                                       | EQRT  | 380         |
|   | DIMENSION D(1), E(1), Z(IZ,1)                         | EQRT  | 390         |
| С | DOUBLE PRECISION D,E,Z,B,C,F,G,H,P,R,S,RDELP,ONE,ZERO | EQRT  | 400         |
| С | 1 DATA RDELP/Z34100000000000/                         | EQRT  | 410         |
|   | DATA RDELP/Z3C100000/                                 | EQRT  | 420         |
| C | 1 DATA ZERO, ONE/0.0D0, 1.0D0/                        | EQRT  | 430         |
|   | DATA ZERD, ONE/0.0,1.0/                               | EQRT  | 440         |
| С | MOVE THE LAST N-1 ELEMENTS                            | EQRT  | 450         |
| С | OF E INTO THE FIRST N-1 LOCATIONS                     | EQRT  | 460         |
|   | IER=0                                                 | EQRT  | 470         |
|   | IF (N.EQ.1) GO TO 18                                  | EQRT  | 480         |
|   | DO 1 I=2,N                                            | EQRT  | 490         |
|   | E(I-1) = E(I)                                         | EQRT  | 500         |
| 1 | CONTINUE                                              | EQRT  | 510         |
|   | E(N)=ZERO                                             | EQRT  | 520         |
|   | B=ZERO                                                | EQRT  | 530         |
|   | F=ZERO                                                | EQRT  | <b>5</b> 40 |
|   | DO 12 L=1,N                                           | EQRT  | 550         |
|   | J=0                                                   | EQRT  | 560         |
| C | 1 H = RDELP*(DABS(D(L))+DABS(E(L)))                   | EQRT  | 570         |
|   | H=RDELP*(ABS(D(L))+ABS(E(L)))                         | EQRT  | 580         |
|   | IF (B.LT.H) B=H                                       | EQRT  | 590         |
| С | LOOK FOR SMALL SUB-DIAGONAL ELEMENT                   | EQRT  | 600         |
|   | DO 2 M=L,N                                            | EQRT  | 610         |
|   | K=M                                                   | EQRT  | 620         |
| С | 1 IF (DABS(E(K)) .LE. B) GO TO 15                     | EQRT  | 630         |
|   | (F (ABS(E(K)).LE.B) GO TO 3                           | EQRT  | 640         |

| 2 | CONTINUE                              | EQRT 650 |
|---|---------------------------------------|----------|
| 3 | M=K                                   | EQRT 660 |
|   | IF (M.EQ.L) GO TO 11                  | EQRT 670 |
| 4 | IF (J.EQ.30) GO TO 17                 | EQRT 680 |
|   | J=J+1                                 | EQRT 690 |
|   | L1=L+1                                | EQRT 700 |
|   | G=D(L)                                | EQRT 710 |
|   | P=(D(L1)-G)/(E(L)+E(L))               | EQRT 720 |
| С | R = DSQRT(P*P+ONE)                    | EQRT 730 |
| C | $2 \qquad D(L) = E(L)/(P+DSIGN(R,P))$ | EQRT 740 |
|   | R=SQRT(P*P+ONE)                       | EQRT 750 |
|   | D(L)=E(L)/(P+SIGN(R,P))               | EQRT 760 |
|   | H=G-D(L)                              | EQRT 770 |
|   | DO 5 I=L1,N                           | EQRT 780 |
|   | D(I)=D(I)-H                           | EQRT 790 |
| 5 | CONTINUE                              | EQRT 800 |
|   | F=F+H                                 | EQRT 810 |
| C | QL TRANSFORMATION                     | EQRT 820 |
|   | P=0(M)                                | EQRT 830 |
|   | C=ONE                                 | EQRT 840 |
|   | S=ZERO                                | EQRT 850 |
|   | MM1=M-1                               | EQRT 860 |
|   | MM1PL=MM1+L                           | EQRT 870 |
|   | IF (L.GT.MM1) GO TO 10                | EQRT 880 |
|   | DO 9 II=L,MM1                         | EQRT 890 |
|   | I=MM1PL-II                            | EQRT 900 |
|   | G=C*E(I)                              | EQRT 910 |
|   | H=C*P                                 | EQRT 920 |
| С | 1 IF (DABS(P).LT.DABS(E(I))) GO TO 30 | EQRT 930 |
|   | IF (ABS(P).LT.ABS(E(I))) GO TO 6      | EQRT 940 |
|   | C=E(I)/P                              | EQRT 950 |
| C | R = DSQRT(C*C+ONE)                    | EQRT 960 |

|    | R=SQRT(C*C+ONE)                    | EQRT 970 |
|----|------------------------------------|----------|
|    | E(I+1)=S*P*R                       | EQRT 980 |
|    | S=C/R                              | EQRT 990 |
|    | C=ONE/R                            | EQRT1000 |
|    | GO TO 7                            | EQRT1010 |
| 6  | C=P/E(I)                           | EQRT1020 |
| С  | R = DSQRT(C*C+ONE)                 | EQRT1030 |
| -  | R=SQRT(C*C+ONE)                    | EQRT1040 |
|    | E(I+1)=S*E(I)*R                    | EQRT1050 |
|    | S=ONE/R                            | EQRT1060 |
|    | C=C*S                              | EQRT1070 |
| 7  | P=C*D(I)-S*G                       | EQRT1080 |
|    | D(I+1)=H+S*(C*G+S*D(I))            | EQRT1090 |
|    | IF (IZ.LT.N) GO TO 9               | EQRT1100 |
| C  | FORM VECTOR                        | EQRT1110 |
|    | DU 8 K=1,N                         | EQRT1120 |
|    | H=Z(K,I+1)                         | EQRT1130 |
|    | Z(K,I+1)=S+Z(K,I)+C+H              | EQRT1140 |
|    | Z(K,I)=C*Z(K,I)-S*H                | EQRT1150 |
| 8  | CONTINUE                           | EQRT1160 |
| 9  | CONTINUE                           | EQRT1170 |
| 10 | E(L)=S*P                           | EQRT1180 |
|    | D(L)=C*P                           | EQRT1190 |
| С  | 1 IF (DABS(E(L)) .GT.E) GO TO 20   | EQRT1200 |
|    | IF (ABS(E(L)).GT.B) GO TO 4        | EQRT1210 |
| 11 | D(L)=D(L)+F                        | EQRT1220 |
| 12 | CONTINUE                           | EQRT1230 |
| C  | CRDER EIGENVALUES AND EIGENVECTORS | EQRT1240 |
|    | DG 16 I=1,N                        | EQRT1250 |
|    | K=I                                | EQRT1260 |
|    | P=D(1)                             | EQRT1270 |
|    | IP1=I+1                            | EQRT1280 |

|    | IF (IP1.GT.N) GO TO 14     | EQRT1290 |
|----|----------------------------|----------|
|    | DO I3 J=IP1,N              | EQRT1300 |
|    | IF (D(J).GE.P) GO TO 13    | EQRT1310 |
|    | K=J                        | EQRT1320 |
|    | P=D(J)                     | EQRT1330 |
| 13 | CONTINUE                   | EQRT1340 |
| 14 | IF (K.EQ.I) GO TO 16       | EQRT1350 |
|    | D(K)=D(I)                  | EQRT1360 |
|    | D(1)=P                     | EQRT1370 |
|    | IF (IZ.LT.N) GO TO 16      | EQRT1380 |
|    | DO 15 J=1,N                | EQRT1390 |
|    | P = Z(J, I)                | EQRT1400 |
|    | Z(J,I)=Z(J,K)              | EQRT1410 |
|    | Z(J,K)=P                   | EQRT1420 |
| 15 | CONTINUE                   | EQRT1430 |
| 16 | CONTINUE                   | EQRT1440 |
|    | GO TO 18                   | EQRT1450 |
| 17 | IER=128+L                  | EQRT1460 |
|    | CALL UERTST (IER,6HEQRT2S) | EQRT1470 |
| 18 | RETURN                     | EQRT1480 |
|    | END                        | EQRT1490 |

.

|   | SUBROUTINE UERTST (IER,NAME)                                  | UERT   | 10  |
|---|---------------------------------------------------------------|--------|-----|
| C | -UERTSTLIBRARY 1                                              | UERT   | 20  |
| C |                                                               | UERT   | 30  |
| C | FUNCTION - ERROR MESSAGE GENERATION                           | UERT   | 40  |
| С | USAGE - CALL UERTST(IER,NAME)                                 | UERT   | 50  |
| С | PARAMETERS IER - ERROR PARAMETER. TYPE + N WHERE              | UERT   | 60  |
| С | TYPE= 128 IMPLIES TERMINAL ERROR                              | UERT   | 70  |
| 0 | 64 IMPLIES WARNING WITH FIX                                   | UERT   | 80  |
| C | 32 IMPLIES WARNING                                            | UERT   | 90  |
| С | N = ERROR CODE RELEVANT TO CALLING ROUTI                      | NEUERT | 100 |
| С | NAME - INPUT VECTOR CONTAINING THE NAME OF THE                | UERT   | 110 |
| С | CALLING ROUTINE AS A SIX CHARACTER LITERAL                    | UERT   | 120 |
| C | STRING.                                                       | UERT   | 130 |
| С | LANGUAGE – FORTRAN                                            | UERT   | 140 |
| C |                                                               | UERT   | 150 |
| С | LATEST REVISION - JANUARY 18, 1974                            | UERT   | 160 |
| С |                                                               | UERT   | 170 |
| С |                                                               | UERT   | 180 |
|   | DIMENSION ITYP(5,4), IBIT(4)                                  | UERT   | 190 |
|   | INTEGER*2 NAME(3)                                             | UERT   | 195 |
|   | INTEGER WARN, WARF, TERM, PRINTR                              | UERT   | 200 |
|   | EQUIVALENCE (IBIT(1), WARN), (IBIT(2), WARF), (IBIT(3), TERM) | UERT   | 210 |
|   | DATA IIYP/4HWARN,4HING,4H ,4H ,4H ,4HWARN,4HING(,4HWIT        | H,UERT | 220 |
|   | 14H FIX,4H) ,4HTERM,4HINAL,4H ,4H ,4H ,4H ,4HNON-,4HDEFI,4    | HNUERT | 230 |
|   | 2EU ,4H ,4H /,1B11/32,64,128,0/                               | UERT   | 240 |
|   | DATA PRINTR/6/                                                | UERT   | 250 |
|   | IER2=IER                                                      | UERT   | 260 |
| • | IF (IER2.GE.WARN) GO TO 1                                     | UERT   | 270 |
| L | NUN-DEFINED                                                   | UERI   | 280 |
|   |                                                               | UERT   | 290 |
| _ | GU TU 4                                                       | UERT   | 300 |
| 1 | IF LIERZ-LI-IERM) GU TO Z                                     | UERT   | 310 |

| C | TERMINAL                                                 |          | UERT | 320 |
|---|----------------------------------------------------------|----------|------|-----|
|   | IER1=3                                                   |          | UERT | 330 |
|   | GU TO 4                                                  |          | UERT | 340 |
| 2 | IF (IER2.LT.WARF) GU TO 3                                |          | UERT | 350 |
| С | WARNING(WITH FIX)                                        |          | UERT | 360 |
|   | IER1=2                                                   |          | UERT | 370 |
|   | GG TO 4                                                  |          | UERT | 380 |
| С | WARNING                                                  |          | UERT | 390 |
| 3 | IER1=1                                                   |          | UERT | 400 |
| С | EXTRACT 'N'                                              |          | UERT | 410 |
| 4 | IER2=IER2-IBIT(IER1)                                     |          | UERT | 420 |
| С | PRINT ERROR MESSAGE                                      |          | UERT | 430 |
|   | WRITE (PRINTR,5) (ITYP(I,IER1),I=1,5),NAME,IER2,IER      |          | UERT | 440 |
|   | RETURN                                                   |          | UERT | 450 |
| С |                                                          |          | UERT | 460 |
| 5 | FORMAT (26H *** I M S L(UERTST) *** ,5A4,4X,3A2,4X,I2,8H | (IER = , | UERT | 470 |
|   | 1I3,1H))                                                 |          | UERT | 480 |
|   | END                                                      |          | UERT | 490 |

## The vita has been removed from the scanned document

## THE MASS MATRIX IN DYNAMIC STRUCTURAL ANALYSIS

bу

Thomas J. Enneking

## (ABSTRACT)

This thesis is concerned with the use and development of mass matrices. A literature study is performed to determine the role of the mass matrix in the current state of the art of dynamic structural analysis. For simplicity and efficiency, the information obtained from the literature study is presented in a tabular format.

A comparison study of three different types of mass matrices on the basis of frequency prediction is conducted. In order to perform the comparison study, a computer code was developed using beam-column elements to assemble the system mass matrix and calculate the eigenvalues and eigenvectors. This code was then added to the code developed in CE4002 -Matrix Structural Analysis and CE5980 - Computer Aided Structural Design. Test problems are presented and comparisons made with exact solutions and solutions from the literature.