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Abstract

A fundamental problem of science is designing optimal control policies that ma-
nipulate a given environment into producing a desired outcome. Control Physics-
Informed Neural Networks simultaneously solve a given system state, and its
respective optimal control, in a one-stage framework that conforms to physical
laws of the system. Prior approaches use a two-stage framework that models and
controls a system sequentially, whereas Control PINNs incorporates the required
optimality conditions in its architecture and loss function. The success of Control
PINNs is demonstrated by solving the following open-loop optimal control prob-
lems: (i) an analytical problem (ii) a one-dimensional heat equation, and (iii) a
two-dimensional predator-prey problem.

1 Introduction

Scientific Machine Learning (SciML) has arisen as a replacement to traditional numerical discretiza-
tion methods. The main driving force behind this replacement is neural networks (NN), largely
due to their success in natural language processing and computer vision problems [2]. As a vehicle
to approximate the solution to a given partial differential equation (PDE) or ordinary differential
equation (ODE), NNs offer a mesh-free approach via auto differentiation, and break the curse of
dimensionality [12]. Combining scientific computing and ML, SciML offers the potential to improve
“predictions beyond state-of-the-art physical models with smaller number of samples and generaliz-
ability in out-of-sample scenarios” [22]. Willard et al. provide a structured overview of physics-based
modeling approaches with ML techniques, and summarize current areas of application with regard to
science-guided ML in [22].

Physics-informed Neural Networks (PINNs) [18] solve semi-supervised learning tasks while re-
specting the properties of physical laws. This is achieved by informing the loss function about the
mathematical equations that govern the physical system. Raissi et al. utilize PINNs for solving
physical equations, and for data-driven discovery of partial differential equations [18]. The general
procedure for solving a differential equation with a PINN involves finding the parameters of a network
that minimize a loss function involving the mismatch of output and data, as well as residuals of the
boundary and initial conditions, PDE equations, and any other physical constraints required [12].
The recent survey paper by Cuomo et al. [6] provide a comprehensive overview of PINNS and
discusses a variety of customizations “through different activation functions, gradient optimization
techniques, neural network structures, and loss functions”. Since their introduction, PINNs have
been leveraged to solve a wide range of problems including, but not limited to, inverse problems
[4, 9, 12, 16, 17, 19], solution of fractional differential equations [15], and stochastic differential
equations [14, 23–25].

Some recent work has began exploring the application of PINNs to solve optimal control problems
[1, 3, 10, 13, 20]. However, existing approaches to use PINNs for optimal control problems either
feed control data to a PINN, thereby training on precomputed control signals, or use an external
control mechanism in conjunction with the PINN model of the physical system.

This paper presents a new PINN framework, named Control PINNs, for solving open loop optimal
control problems. Control PINNs simultaneously solve the learning tasks of the system state, the
adjoint system state, and the optimal control signal, without the need for either a priori controller data
or an external controller. Moreover, Control PINNs can find optimal control solutions to complex
computational scientific problems more efficiently using a comprehensive one-stage framework.

The remainder of the paper is organized as follows. In 2 we review prior work in the literature that
applies PINNs to control problems, and substantiate the novelty of the Control PINNs approach
developed herein. Section 3 covers the methodology of the novel approach that this paper offers.
Section 4 validates the methodology via implementation of an analytical problem. Section 5 presents
and discusses experimental results of a one-dimensional heat equation. Section 6 offers a more
challenging optimal control problem for a two-dimensional predator-prey reaction diffusion problem.
Section 7 summarizes the results and details the groundwork for future directions.
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2 Current state-of-the-art in optimal control with PINNs

Chen et al. train an input convex recurrent neural network and subsequently solve a convex model
predictive control (MPC) problem on the learned model [3]. The main strength of this approach is
the guarantee of an optimal solution, due to the convex nature of the model. The main limitation is
similar to [10], in that they employ a two-stage framework of system identification and controller
design. Success is evaluated on four different experiments conducted in the paper where the input
convex recurrent neural network results are compared to that of a standard multilayer perceptron
(MLP). The control action is also compared to that of the baselines of conventional optimizations.

Antonelo et al. introduce a new framework called Physics-Informed Neural Nets for Control (PINC)
[1]. PINC uses data from the control action and initial state to solve an optimal control problem.
One strength of this approach is the ability make predictions beyond the training time horizon for
an indefinite period of time without a significant reduction in prediction capability. A limitation of
this approach is offline learning the control separately from the solution operator. In other words,
PINC is essentially a PINN that is amenable to being trained on the actions of an external controller,
instead of learning the optimal control unsupervised. Success is evaluated through Mean Squared
Error (MSE) validation error of the solution on the Van der Pol Oscillator problem.

Wang et al. leverage physics-informed DeepONets “as a fast and differentiable surrogate for tackling
high-dimensional PDE-constrained optimization problems via gradient-based optimization in near
real-time” [20]. The foundational idea behind their approach is to optimize a network that associates
an outcome with a set of controllable variables. The strength of the approach comes from leveraging
DeepONets in a physics-informed fashion. This allows smaller training datasets, as their framework
makes for an effective emulator. The limitation of their approach involves learning the control
separately from the system state. The paper proposes sequentially training a neural network to learn
the solution operator of a given PDE system, and then passing that information to another neural
network to learn to associate the input system state with a certain control action. This approach, like
others mentioned previously, is a two-stage framework. Moreover, the challenge of incorporating
adjoint equations into their framework is circumvented, where indeed there is empirical evidence
in favor of using adjoint information [5]. Here, one measure of performance considered is training
time of PINNs compared to that of traditional numerical solvers. This benchmarking is conducted for
both optimal control of heat transfer, and drag minimization of obstacles in Stokes flow. Moreover, a
numerical solver is utilized to validate and test the inferred control solution versus the found solution.

Hwang et al. propose a two-stage framework for solving PDE-constrained control problems using
operator learning [10]. They first train an autoencoder model, and then infer the optimal control
by fixing the learnable parameter and minimizing their objective function. One strength of their
approach is the ability to apply their framework to both data-driven and data-free cases. The main
downside to their approach is the two-stage nature of the framework, as the control is found only
after a surrogate model has been trained. Success is measured through tracking the relative error
against numerical simulation in the case of data-driven experiments, and the relative error against an
analytical solution in the case of data-free experiments. Additionally, visual inspection of the trained
solution operators is conducted.

Mowlavi and Nabi conduct an evaluation of the comparative performance between traditional PINNs
and classic direct-adjoint-looping (DAL) to solve optimal control problems [13]. Their optimal control
problem is separated into two subproblems. At each state of the system, the PDE is solved with one
neural network. That information is then used by another neural network to solve for the optimal
control at that given state of the PDE. Afterwards, the adjoint PDE is solved in backwards time. The
strength of Mowlavi and Nabi’s approach is providing an evaluative comparison between PINNs and
DAL frameworks for solving PDE-constrained optimal control problems. Their comparison provides
a frame of reference for PINNs. Success is measured via validation and evaluation steps. Validation is
done by monitoring residual, boundary, and initial loss components with a known solution. Evaluation
is done by comparing the control cost objective with a solution found by a high-fidelity numerical
solver. One limitation of this approach is using the more easily solvable steady state Navier-Stokes,
instead of unsteady state Navier-Stokes. Moreover, manual derivation is used in their DAL approach,
which is unnecessary because DAL can use automatic differentiation (AD). Consequently, to a certain
extent, the optimal control problem is being solved manually. Furthermore, the control of the system
is being dampened over time. This is suspicious, as it might mean this dampening approach was
added post hoc because of struggling results. It should be noted that the adjoint PDE is not being
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solved in their cost function, and thus the respective adjoint formulas are not present in said cost
function. This brings us to the the main contributions of this paper.

The proposed framework in this paper goes beyond the approaches in [1, 3, 10, 13, 20]. Control
PINNs do not rely on data from an external controller. Instead, Control PINNs solve simultaneously
for the optimal solution and the optimal control signal with respect to a given cost function, and
constrained by the system governing equations. This approach is different from building accurate
PINNs and using them as differentiable surrogate models in the optimization solution for control
applications. Rather, we propose a framework that can be considered a new taxonomical entity
within the genus of PINNs, wherein the PDE-constrained optimization is fused with the training loss
function to create a one-stage approach to directly learning both the solution and the optimal control.

3 Methodology

Hairer and Wanner provide an overview of control problems, and more specifically, optimal control
problems in [8, pp. 461-463]. Here, we present the problem as an ordinary differential equation of
the form y′ = f(y,u) where u = u(x, t) represents a time-varying distributed control applied to the
system. We are interested in optimal control solutions (y∗,u∗) that satisfy the ODE equation while
minimizing a given cost function Ψ that may depend on the solution, control, or both.

Formally, we seek to solve the PDE-constrained control problem:

u∗ = arg min
u

Ψ(u) =

∫ tf

t0

g (y,u) dt+ w(y|tf ),

subject to
y′(t, x) = f (y,u) , ∀t ∈ [t0, tf ], ∀x ∈ Ω,

y(t0, x) = y0, ∀x ∈ Ω,

y(t, x) = b(t, x), ∀t ∈ [t0, tf ], ∀x ∈ ∂Ω.

(1)

We denote by y = y(t, x) the solution of the semi-discretized PDE , and by u = u(t, x) the control
signal. y|t is shorthand for y(t, x). The cost function in eq. (1) includes penalty terms for the
solution trajectory as well as a desired final-time solution. The Lagrangian for this optimization is
written as:

L =

∫ tf

t0

[
g (y,u)− λ(t)T (y′ − f(y,u))

]
dt+ w(y|tf ), (2a)

∂L

∂u
=

∫ tf

t0

[
gy (y,u)yu + gu (y,u)− λ(t)T (y′u − fu (y,u)− fy (y,u)yu)

]
dt+ wy(y|tf yu|tf ).

(2b)

Using integration by parts to eliminate y′u in eq. (2b) we have∫ tf

t0

λ(t)Ty′u dt = λ(t)Tyu

∣∣∣∣tf
t0

−
∫ tf

t0

λ′(t)Tyu dt . (3)

Setting λ(tf ) = wy(y|tf ) in eq. (3) and substituting in eq. (2b)

∂L

∂λ
=

∫ tf

t0

[(y′ − f(y,u))] dt ,

∂L

∂u
=

∫ tf

t0

[(
λ′(t)T + gy (y,u) + λ(t)T fy (y,u)

)
yu

]
dt

+

∫ tf

t0

[
gu (y,u) + λ(t)T fu (y,u)

]
dt .

(4)

The first order optimality condition requires ∂L
∂u = 0, and, ∂L

∂λ = 0. The integrals in eq. (4) can be
numerically approximated using a quadrature scheme. Alternatively, we can enforce the stronger
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point-wise equations:

y′ = f (y,u) , y(0) = y0, ∀t ∈ [t0, tf ], (5a)

λ′(t) = −λ(t)T fy (y,u)− gy (y,u) , λ(tf ) = wy(y|tf ), ∀t ∈ [tf , t0], (5b)

0 = λ(t)T fu (y,u) + gu (y,u) , ∀t ∈ [t0, tf ]. (5c)

Note that eq. (5a) may also contain boundary conditions similar to eq. (1). Equations (5a) to (5c) can
be thought of respectively as the equations for system state, the system controller , and the optimality
equation. As an example, in the context of an autonomous vehicles, the system state (the velocity and
the position of the vehicle) are determined by the equations of motion. By the same token, the system
controller would be the software that governs the steering wheel, acceleration, and braking. Finally,
the system push back would be the response of the vehicle to the software’s choices of direction and
speed.

We design a neural network that generates triples (y,u,λ) from input data (t, x), equipped with
PINN loss functions that capture the first order optimality conditions according to eq. (5). The process
of solving the control problem eq. (1) is outlined in algorithm 1. The main technical challenge
involves learning the state of a dynamical system while at the same time finding its optimal control.
We create a path in the computational graph for the back propagation of derivatives by placing the the
deep layers that generate u after the layers that generate y and, similarly for λ. This ensures that all
necessary derivatives for eq. (5) can be computed using automatic differentiation.

Moreover, there is a tension between different terms in the loss function defined in algorithm 1.
For example, satisfying the boundary conditions may oppose adhering to the constraints imposed
by the physical laws. This is addressed by scaling factors in the loss function and treating them as
hyper-parameters. We further note that as Control PINN is applied to increasingly more complex
problems, a unique solution to the problem may not be available. We discuss the validation of the
solution found by the PINN model as well as its optimality further in section 5.

Algorithm 1: The procedure to train a Control PINN model
Result: Training of a Control PINN that learns the optimal solution and the optimal control

function for the given problem in (1)
1. Construct a network with inputs t, x, and outputs y, u, and λ based on the architecture in

fig. 1
2. Using back-propagation, compute the necessary derivatives of the outputs w.r.t to the inputs

and other outputs. These derivatives will be used in the loss function to compute the
residuals in eq. (5)

3. With yi
∗ denoting the training data for the input (ti, xi), and yi,ui,λi corresponding

outputs of the network, θk representing the weights of the network at iteration k, and ‖ · ‖
as L2 norm, we seek to minimize the loss function:

L (θk) =
∑
i

‖yi
∗ − yi‖2

+
∑
i

‖∂y
i

∂t
− f

(
yi,ui

)
‖2

+
∑
i

‖∂λ
i

∂t
+ (λi)T

∂

∂yi
f
(
yi,ui

)
+

∂

∂yi
g
(
yi,ui

)
‖2

+
∑
i

‖
(
λi
)T ∂

∂ui
f
(
yi,ui

)
+

∂

∂ui
g
(
yi,ui

)
‖2.

(6)

4. Update the weights of the network using the optimizer according to the loss function eq. (6).

θk+1 = Adam(∇θL (θk)).

5. Repeat until convergence.

4



t

x

y u λ

[y,u,λ]

Figure 1: Control PINN architecture: Time t and space x are inputs to the model, whereas the system
state y, control u, and system push back λ are the outputs to the model. The boxes with wave lines
represent hidden layers. The dashed lines indicate the outputs. Note that the system state y is passed
into both the control u and the system push back λ. This enables for the automatic differentiation of
second order and mixed derivatives.

Figure 2: Results of the analytical problem: The optimal solutions of the system state, control, and
system push back on the control are respectively denoted by y∗, u∗, and λ∗. Their corresponding
learned solutions found by the Control PINN model are denoted by y, u, and λ. After 300 epochs
the Control PINN has reached convergence on the analytical solution, and the solutions remain
unchanged upon further training.

Control PINN architecture. A visual representation of the Control PINN architecture is found
in fig. 1. Adaptive moment estimation (Adam) is used as the optimizer. The activation function of
exponential linear unit (ELU) is used. The neural density is 100 neurons per layer. There are five
hidden layers that proceed the input layer that takes in time (t) and space (x). The information of the
system state (y) is passed to the controller (u) both directly and indirectly by a skip connection and
three hidden layers, respectively. The aggregate information of the system state (y) and controller
(u) is handled similarly in the context of the system’s push back on the controller (λ), except with
only two hidden layers. This architecture enables for the automatic differentiation of second order
and mixed derivatives. This is necessary to impose the custom loss function detailed in algorithm 1.
All three experiments presented in this paper use the same architecture, further demonstrating the
robustness of the Control PINN framework as increasingly more challenging problems are tackled.
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4 Analytical problem

As a proof of concept, and to provide a foundation for methodology validation, consider the following
ODE control problem [7, Ch. 6, pp. 272-273, eqn. 65],

u∗ = arg min
u

Ψ(u) =

∫ tf

t0

(
y2(t) +

1

2
u2(t)

)
dt ,

subject to

y′(t) =
1

2
y + u, ∀t ∈ [t0, tf ],

y(t0) = y0 = 1,

λ′(t) = −1

2
λ(t)− 2y, ∀t ∈ [tf , t0], λ(tf ) = 0,

0 = −λ(t)− u, ∀t ∈ [t0, tf ],

(7)

where t0 = 0, tf = 1. An analytical form of the optimal solution is available:

y∗(t) =
2e3t + e3

e3t/2(2 + e3)
, u∗(t) =

2(e3t − e3)

e3t/2(2 + e3)
, λ∗(t) = −u∗(t). (8)

After 300 epochs of training, the Control PINN converges on the optimal solution. This is shown
in fig. 2, wherein y∗, u∗, and λ∗ respectively represent the reference solution for the system state
y, the reference solution for the system controller u, and the reference solution of the system push
back on the controller λ. An animation of the convergence of the outputs to the reference solution as
training progresses can found at: https://github.com/ComputationalScienceLaboratory/
control-pinns/blob/main/animations/AnalyticalProblem_Convergence.gif.

5 One-dimensional heat equation

Fourier’s famous heat equation ∂u
∂t = α2 ∂2u

∂x2 is the origin of the Fourier series theory [8, p. 30],
and is thus a well known and established problem with which to illustrate the robustness of Control
PINN. Imagine an infinitesimally thin steel beam being heated by a heat pad. This heat pad will be
controlled in heating the steel beam such that a given uniform temperature will be reached at the final
time. The problem set up is as follows:

u∗ = arg min
u

Ψ(u) =

∫
Ω

(
(y(u(x, t0), t0)− y∗(x, t0))

)2
dx

+

∫
Ω

(y(u(x, tf ), tf )− y∗(x, tf ))
2

dx

+

∫
Ω

∫ tf

t0

(u(x, t))
2

dtdx,

subject to

∂y

∂t
= 0.1

∂2y

∂x2
+ u(x, t), ∀t ∈ [t0, tf ], Ω = [0, 1],

y(x, t0) = sin (πx) sin (2πx), ∀x ∈ Ω,

y(x, t) = 0, ∀t ∈ [t0, tf ], x ∈ {0, 1},

y∗(x, t) = k

(
exp
{
−π2t

}
− cos (

πt

2
) + 2π sin (

πt

2
)

)
sin (πx), k = 2/(π + 4π3).

(9)

The cost function in eq. (9) consists of desired initial and final time solutions and an l2 regularization
term that favors minimal smooth control functions u over space and time. Figure 4 illustrates the
results of the model finding the solutions of the system state and the control over the time span [0, 1].
A reference solution for the system push back (λ) is not known, and is therefore not included in the
plot for comparative purposes. There is an exact match between the reference solution and learned
solution of the system state. Table 1 lists the relative error between the learned solution of Control
PINN to that of the direct numerical simulation.
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Figure 3: Explanatory diagram: A one-dimensional steel beam is heated by a controllable heat pad
over the space x from x0 to xf such that at the final time a uniform temperature of the beam will be
realized.

Figure 4: One-dimensional heat equation results: Left: Comparison of the learned system state y
and the reference system state y∗. Right: Comparison of the learned control u and the reference
control u∗ . Note that this problem has a non-unique solution. Control PINN found a different
control that minimizes the control action on the system state.

Of note is the shape of the optimal control found by the model. The optimal control of the reference
solution reaches a parabolic curve over the domain as time approaches t = 1. The trajectory of the
model’s solution dips more sharply downward towards the end of the feature space. This begs the
question of if the model’s solution of the control is valid.

To validate the solution found by the Control PINN, we generated high resolution offline data of the
control and the solution outputs at different values of time and space. A direct numerical solver (DNS)
using finite differences was then used along with the control data to generate DNS solutions for this
problem . Figure 7 shows the validation of the solution for this problem. We see good agreement
between the two approaches. Table 1 shows the error computed as the L2 norm of the difference
between the PINN model and DNS on the spatial domain (discretized uniformly with 1000 points)
for a number of different timepoints.

If this framework was implemented in the field there would often be cases of non-unique solutions.
With this in mind, it is not a problem that the model found a different non-unique solution. Figure 7
shows the analytical solution with respect to the numerical solution with the learned control. In other
words, Control PINN found the control u, whose data in turn was used to solve the PDE in eq. (9).
Figure 7 validates that the control learned by Control PINN is less than that of the analytical solution.
This means for a problem with a non-unique solution, Control PINN was able to find a solution with
the smallest amount of control.

6 Two-dimensional predator-prey problem

We next look at a two-dimensional predator-prey (Lotka-Volterra) problem formulated as a reaction-
diffusion problem[11]. On a two-dimensional Cartesian grid, the system characterized by eq. (10)
defines the interaction of two populations: the predator and the prey. The rate of birth for each
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population follows an exponential law based on the current population and is also affected by the
competing population. We are interested in controlling the prey population (over time and space) by
inserting predators at different times and locations. For this example we have considered a starting
profile of preys which is then “herded” into a desired profile over a specified timespan. The predator
population in eq. (10) is denoted by y1, whereas y2 represents the prey. Similarly, u1 and u2 are
predator and prey control functions, respectively. We have used u1(t,x) = 0 for this problem.

u∗ = arg min
u

Ψ(u) =

∫
Ω

∫ tf

t0

‖y(x, t)− y∗(x, t)‖22 dtdx +

∫
Ω

∫ tf

t0

‖u(x, t)‖22 dtdx,

subject to

0 =
∂y1

∂t
− ∂2y1

∂x2
− u1(x, t) + y1(x, t), ∀t ∈ [t0, tf ],∀x ∈ Ω,

0 =
∂y2

∂t
− ∂2y2

∂x2
− u2(x, t)− y2(x, t), ∀t ∈ [t0, tf ],∀x ∈ Ω,

y1(x, 0) = sin(πx1) sin(πx2), ∀x ∈ Ω,

y2(x, t) = t (sin(2πx1) sin(2πx2))
2 ∀t ∈ [t0, tf ],∀x ∈ Ω,

+ (1− t) sin(πx1) sin(πx2), where Ω = [0, 1]2.

(10)

Figure 10 plots the reaction and diffusion of predator and prey populations at three different time
points t = [0.0, 0.5, 1.0]. The first column illustrates the reference solution of the predator popula-
tion. The second column shows the model’s learned solution of the predator population. Like-
wise, the next two columns respectively show the same for that of the prey population. The
last column is the optimal control found by the model. The main takeaway from Figure 10 is
that Control PINN is able to minimize the control needed on the prey population y2 such that at
the final time the desired population density of both the predator and prey populations are real-
ized. Figure 5 is a comparison between the analytical and learned solutions of both the predator
and prey populations in the form of a two-dimensional contour plot. The absolute error of the
two selected timepoints shows how Control PINN reaches its objective at the end of the times-
pan. An animation of the Control PINN model converging on the optimal solution can be found
at https://github.com/ComputationalScienceLaboratory/control-pinns/blob/main/
animations/ControlPINN_Predator_Prey_Absolute_Error.gif. Figure 6 puts forth a gran-
ular comparison of the analytical solution and the learned solution of the prey population at the final
time, along with the corresponding control. The four cones are nearly identical between the analytical
and learned solutions. Of note is the challenge faced of Control PINN to learn the boundary solution
exactly, shown in the y2 subplot as the wavy boundary at the base of the four cones. [20] also makes
note of their struggles to wrangle their framework’s ability to balance solving the overall problem
while maintaining satisfactory respect of the boundary conditions.

Figure 9 shows Control PINN learning the optimal control of the prey population from a top down
two-dimensional grid perspective. Figure 11 illustrates the same solution with more timepoints, and
additionally shows the prey push back λ in response to the control u2. Figure 12 offers a zoomed
in view of the tail-end of the timespan, which illustrates how Control PINN minimizes the control
needed to reach the desired population states by waiting until near the end to enact significant control
on the prey population.
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Figure 5: Two-dimensional predator-prey results: Left: Comparison of both the numerical simulation
and the learned system states of the predator y1 and prey y2 populations at the time t = 0.8. The
absolute error of the two comparisons is displayed in the third column. Right: Comparison of both
the numerical simulation and the learned system states of the predator y1 and prey y2 populations at
the time t = 1.0. The absolute error of the two comparisons is displayed in the third column. Note
the decrease in absolute error at the final time t = 1.0. An expanded looked into the absolute errors
throughout the timespan t = [0.0, 1.0] is found in appendix B.

Figure 6: Two-dimensional predator-prey problem: Left: Prescribed prey population at the final time
tf = 1.0. Middle: Learned solution y2 prey population at the final time tf = 1.0. Right: Control
signal u2 on the predator population y2 determined by the Control PINN at the final time tf = 1.0.
The three-dimensional surface plot is projected downward to a two-dimensional contour plot for
increased discrepancy of comparative purposes. Note the differences in the bases of the surface plots,
which illustrates the challenges of boundary condition enforcement.

7 Conclusions

This work provides a novel approach for solving the optimal control problem for PDEs using PINNs.
In contrast to previous approaches, we integrate the optimality conditions from the control problem
directly in a theory-guided and physics-informed manner. We dub this approach Control PINNs.

The Control PINN methodology is able to simultaneously learn the system state solution and the
optimal control for a general class of PDEs. We illustrate the validity of our approach on a diverse set
of problems: a simple control problem for which an analytical solution is known, a one-dimensional
heat equation for which a control that is not optimal is known, and a two-dimensional predator-prey
problem which might not even have an optimal control. In higher dimensional problems, a tension
exists in Control PINNs between respecting the boundary conditions of the given system state while
learning the solution and corresponding optimal control. Adaptive methods for choosing the scaling
of the terms in the loss similar to [21] are of future interest.

One potential application is leveraging Control PINNS as agents in deep reinforcement learning
(DRL) [6]. In DRL, finding the state of a robot after a given action requires solving a number of
physical equations (e.g. equation of motion and balance of force). This issue can be circumvented
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by leveraging PINNs as an agent because PINNs penalize deviations from physical constraints by
design. Furthermore, an agent that can simultaneously solve a system state and a corresponding
optimal control, such as Control PINN, would be useful in Q-learning to efficiently optimize the
value of action-state policies. Future work will also involve extending Control PINNs to operate on
closed-loop control problems.
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A One-dimensional heat equation

Table 1: One-dimensional heat equation relative error: Error of the trained Control PINN relative to
direct numerical simulation.

Time Relative Error

0.1 1.2309
0.2 0.2646
0.3 0.1805
0.4 0.2010
0.5 0.1843
0.6 0.1514
0.7 0.1168
0.8 0.0843
0.9 0.0535
1.0 0.0232

Figure 7: Validation of 1-D Heat Equation: Comparison of the control from the analytical solution
to that of Control PINN. The mean of control action of Control PINN is less than that of the analytical
solution.
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B Two-dimensional predator-prey problem

Figure 8: Two-dimensional predator-prey results: Expanded comparison of the absolute error
between the learned and analytical solutions for the timepoints t ∈ [0.0, 0.25, 0.50, 0.75, 0.95, 0.98].
First column of each subplot: The analytical solutions for the predator y∗1 and y∗2 populations. Second
column of each subplot: The learned solutions for the predator y∗1 and y∗2 populations. Third column
of each subplot: The absolute error between the analytical and learned solutions for the predator y∗1
and y∗2 populations.
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Figure 9: Two-dimensional predator prey problem: Contour plot comparison at varying time points
between the analytical solutions and the learned solutions by Control PINN of the predator and prey
populations. First column: The analytical solution of the predator y∗1 population at varying time
snapshots. Second column: The learned solution by Control PINN of the predator y1 population at
varying time snapshots. Third column: The analytical solution of the prey y∗2 population at varying
time snapshots. Fourth column: The analytical solution by Control PINN of the prey y2 population at
varying time snapshots.

Figure 10: Two-dimensional predator-prey problem: Snapshots from the beginning, middle, and end
of the timespan. First column: The reference solution of the predator population y∗1 . Second column:
The learned solution of the predator population y1 by Control PINN. Third column: The reference
solution of the prey population y∗2 . Fourth column: The learned solution of the prey population y2 by
Control PINN. Fifth column: The learned control u2 of the prey population y2 by Control PINN.
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Figure 11: Two-dimensional predator prey problem: Surface plot comparison at varying time points
with included system push back λ. First column: The analytical solution of the predator y∗1 population
at varying time snapshots. Second column: The learned solution by Control PINN of the predator y1

population at varying time snapshots. Third column: The analytical solution of the prey y∗2 population
at varying time snapshots. Fourth column: The analytical solution by Control PINN of the prey y2

population at varying time snapshots. Fifth column: The system push back λ from the control u2 on
the prey population y2 by Control PINN. Sixth column: The control u2 of the prey population y2 by
Control PINN.
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Figure 12: Two-dimensional predator prey problem: Surface plot comparison at varying time points
near the end of the time span with included system push back λ. First column: The analytical solution
of the predator y∗1 population at varying time snapshots. Second column: The learned solution by
Control PINN of the predator y1 population at varying time snapshots. Third column: The analytical
solution of the prey y∗2 population at varying time snapshots. Fourth column: The analytical solution
by Control PINN of the prey y2 population at varying time snapshots. Fifth column: The system push
back λ from the control u2 on the prey population y2 by Control PINN. Sixth column: The control u2

of the prey population y2 by Control PINN.
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