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(ABSTRACT) 

The standard Shewhart control chart for monitoring process stability is generalized by 

selecting a point in time at which the distance between the control limits is reduced. Three 

cost models are developed to describe the total cost per unit time of monitoring the mean of 

a process using both the standard and the generalized Shewhart control chart. The cost 

models are developed under the assumption that the quality characteristic of interest is 

normally distributed with known and constant variance. In the development of the first 

model, the negative exponential distribution is employed to model the time to process shift. 

Then, the uniform distribution and the Weibull distribution are used for the same purpose 

in the second and the third model, respectively. The motivation for this effort is to increase 

chart sensitivity to small but anticipated shifts in the process average. 

Cost models are constructed to allow the optimal choice of change over time and the best 

values for the initial and adjusted control limit values. The cost models are analyzed to 

determine the optimal control chart parameters including those associated with both the 

standard and the generalized control chart. The models are also used to provide a 

comparison with conventional implementation of the control chart. It is shown that the 

proposed cost models are efficient and economical. Figures and tables are provided to aid 

in the design of models for both the standard and the generalized Shewhart control chart.
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CHAPTER 1 

Introduction and Background 

1.1 Introduction 

Shewhart control charts are widely used to display sample data from a production process. 

They are used to indicate whether a process is in control. They have also been found 

valuable in evaluating process capability, in estimating process parameters, in determining 

a process control strategy, and in monitoring the behavior of a production process. A 

control chart is maintained by taking samples from a process and plotting in time order 
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on the chart some statistic computed from the samples. Control limits on the chart 

represent the limits within which the plotted points would fall with high probability if the 

process is operating in control. A point outside the control limits is taken as an 

indication that something, sometimes called an assignable cause of variation, has happened 

to change the process. When the chart signals that an assignable cause is present, rectifying 

action is taken to remove the assignable cause and bring the process back into control. 

In what follows, consider the situation in which the quality of the output of a process is 

defined by some quality characteristic or variable such as the strength or length of an item. 

In almost all cases there will be variation from item to item and from sample to sample in 

the observed values of this variable. Large variation in the variable usually corresponds to 

low quality. For example, if the variable is a dimension with a specified target value, then 

the closer the variable is to the target the higher the quality. Any variation above or below 

the target lowers the quality. As another example, if the quality variable is the level of 

impurities in a chemical, then lower values of this variable usually correspond to higher 

quality and thus variation above zero lowers the quality. As a third example, if the variable 

is the strength of a material, then high strength usually represents high quality and 

variation in the lower direction represents lower quality. 

In addition to the common causes which produce random variation, assignable causes can 

individually produce a substantial amount of variation. When a special cause of variation is 

present the distribution of the quality variable is altered. In most cases it is assumed that the 

distribution of the quality metric is indexed by one or more parameters and the effect of the 

presence of a special cause is to change the values of these parameters. The purpose of a 
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control chart is to detect special causes of variation so that these causes can be found and 

eliminated. Because a special cause is assumed to produce a parameter change, the problem 

for which a control chart is used can be formulated as the problem of monitoring a process 

to detect any change in the parameters of the distribution of the quality variable. 

The usual practice in maintaining a control chart is to plot the sample statistic from the 

process relative to constant width control limits, say 3-sigma limits. In this dissertation, a 

modification to standard practice in which the sampling control limits are not fixed but 

instead can vary after the process has operated for a period of time is investigated. The 

basis of choice of control limit width is a model for the cost of operating the chart. Models 

are developed to describe the total cost per unit time of monitoring the mean of a process 

using both the standard and the generalized Shewhart control chart for each of three cases. 

The models are developed under the assumption that the quality characteristic of interest is 

normally distributed with known and constant variance. The cases correspond to different 

assumptions concerning the time to process shift. 

In the development of the case 1, the negative exponential lifetime distribution is employed 

to describe the shift property of the process. In analyzing the resulting models, it is found 

that the negative exponential lifetime distribution can describe the process shift properly. In 

addition, the expected total cost per unit time functions constructed under this assumption 

for both the standard and the generalized Shewhart control charts are practical and 

analytical. The decision variables can be chosen to minimize the expected total cost per unit 

time functions for both cases. The motivation for the control limit adjustment strategy is to 

increase chart sensitivity to small but anticipated shifts in the process average. 
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In case 2, the uniform lifetime distribution is used to model the process shift behavior. The 

uniform lifetime distribution is used because it has a failure rate function which is the 

function of time t. 

In case 3, the Weibull lifetime distribution is used to model the process shift behavior. The 

Weibull lifetime distribution is used because it can be defined to display increasing failure 

rate (IFR) or decreasing failure rate (DFR) with the shape parameter b > 1 or b < 1, 

respectively. 

1.2 Description of the Approach 

The models developed here depend on a set of assumed conditions. First, it is assumed that 

the control chart is applied to monitoring the mean quality characteristic of an item that is 

produced on an ongoing basis. The variance of the quality characteristic is assumed known 

and constant. When in control, the process generates units for which the quality 

characteristic is normally distributed with mean 1). The control chart target value is equal 

to this mean. Control limits are assumed to be fixed for the standard Shewhart control 

chart and to be adjustable for the generalized Shewhart control chart. 

The definition of cost model I for the standard Shewhart control chart proceeds in two 

steps. First, the negative exponential lifetime distribution is employed to describe the 

random variable t, the time until a process shift. It is assumed that the process is subject to 

a shift from the in-control value of the process mean, 1), to an out-of-control value, 112, at 

a random point in time. Then, the cost of operating a standard Shewhart control chart is 

1 Introduction 4



defined using four cost terms. They are, (1) Inspection cost; (2) False alarm cost; (3) True 

signal cost; (4) Cost of producing additional non-conforming items when the process is 

out-of-control. In addition, the expected cycle length is determined. Then the expected total 

cost per unit time is constructed as the inspection cost plus the ratio of the sum of the three 

expected costs to the expected cycle length. 

The definition of the corresponding cost models for the generalized Shewhart control chart 

proceeds in a similar manner. Assume we plan to start the chart with one set of control 

limits and to change the control limits to be tighter after the process has operated for a 

period of time that is determined. Specifically, we assume the process is sampled every h 

hours and after the mth sample the control limits are changed. (Figure 1.2.1.). The same 

four cost terms are constructed but the analysis is quite different because we must 

distinguish between events before and after m. The expected cycle length is also 

constructed for this case and has a closed form. 

Comparable cost models are constructed for both the standard Shewhart control chart and 

the generalized Shewhart control chart under the assumptions of a uniform distribution and 

a Weibull distribution on the time to process shift. In each case, the same four cost terms 

and the expected cycle time are determined. 

1.3. Problem Analysis 

The objective of the dissertation is to study the relative effectiveness of the standard 

Shewhart control chart and the generalized Shewhart control chart. The motivation for 
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this effort is to increase control chart sensitivity to anticipated shifts in the process average. 

The cost models for the standard Shewhart control chart are defined in terms of the 

sample size, n, the time between samples, h, and the width of the control limits k (k= 

kj for the standard case). No constraints are imposed on the minimization other than the 

requirement that n and h be integer. The analysis of the cost equations can be difficult 

as the functions are in general neither concave nor convex. The convexity of the objective 

function depends on the relationship among the cost parameters and the intensity parameter 

of the distribution on the time until a process shift. 

The solution of the cost models for the generalized Shewhart control chart involves 

determining the optimal values for n and h as in the standard chart plus ky and kg, the 

control limit widths, and m, the time at which the control limits are changed. The 

optimization in both cases is performed using GINO [25]. 

The analysis of the cost models for the generalized Shewhart control chart could also be 

complicated as the function is in general neither concave nor convex. The convexity of the 

objective function depends on the relationships among the cost parameters and the 

parameter of the distribution on the time until a process shift. 

The objective of this research is to compare the costs associated with the standard Shewhart 

control chart and the generalized Shewhart control chart. The cost models for the standard 

and the generalized Shewhart control chart generate several interesting points. First, the 

cost models display invariant behavior relative to some of the process parameters. The 

second is that for proper choices of the rate parameters, the generalized Shewhart control 
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chart is more economic than the standard Shewhart control chart. Finally, the type II error 

probability is found to be an important factor in analyzing the properties of the total cost 

functions. 

1.4 Value of the work 

Shewhart control charts are easy to construct and understand but they have the 

disadvantage that they can be very slow at detecting small changes in the process mean. 

For example, suppose that an x chart uses 3-sigma limits. If a shift from pj to [tp = 

pj+ 0.5 o/nl/2 occurs at time t then > is still well within the control limits and it will 

take an average of 155.2 samples to detect this shift. If a shift of this size is big enough to 

be of concern then the time corresponding to 155.2 samples would usually be 

unacceptably long. The intuitive reason why the x chart takes so long to detect small 

shift is that this chart uses only the information in the kt) sample mean at th. If there 

is a shift in m then all samples taken after this shift should contain information about the 

shift. If the shift is small then the information in a single sample, when looked at in 

isolation from other samples, may not be strong enough to produce a signal. Various 

modifications of the standard Shewhart control chart have been proposed. Some use past 

sample information to make this type of chart more sensitive to small changes in the 

parameters. Some of these modifications also make the chart more sensitive to other 

process irregularities such as drift or cycles in the process parameters. The basic idea of the 

modifications so far is to make it easier for the chart to signal by adding supplementary 

rules for signaling [48]. However, the simultaneous use of a large number of rules 
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can substantially increase the false alarm rate. A high false alarm rate is undesirable even if 

the efficiency is high. 

This research deals with a Shewhart control chart adjustment strategy. This strategy has the 

following features which provides a new way of studying and analyzing Shewhart control 

charts. First, there are no additional run rules and therefore the false alarm rate may be 

reduced. The cost models are constructed to allow the optimal choice of change-over time 

and the best values for the initial and adjusted control limits. This strategy can increase 

control chart sensitivity to small but anticipated shifts in the process average so that the 

chart is able to rapidly detect a special cause and bring the process into control. The models 

are also used to provide a comparison with conventional implementation of the control 

chart. 
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CHAPTER 2 

Literature Review 

Since Walter Shewhart introduced the control chart technique in 1924 [28], control 

schemes have found widespread application in improving the quality of manufacturing 

processes. Shewhart control charts are widely used to display sample data from a process 

for the purposes of determining whether a process is in control, for bringing an 

out-of-control process into control, and for monitoring a process to make sure that it stays 

in control. A control chart is maintained by taking samples from a process and plotting in 

time order on the chart some statistic computed from the samples. Control limits on 

the chart represent the limits within which the plotted points shouldfall with high 

probability if the process is operating in control. A point outside the control limits is taken 
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as an indication that something, sometimes called an assignable cause of variation, has 

happened to change the process. When the chart signals that an assignable cause is present, 

rectifying action is taken to remove the assignable cause and bring the process back into 

control. 

Duncan [13] establishes the foundation for the economic design of control charts. He 

defines a cost model that will support the choice of the optimal sample size and width for 

the control limits. Goel, Jain, and Wu [17] develop an algorithm for solving Duncan's 

model while Chiu and Wetherill [9] provide a simplified approach to obtaining an 

approximate solution to Duncan's model. Each of these analysis treats the conventional 

fixed sample interval control chart. Other authors offer alternate models. Gibra [16] used a 

cost model to focus upon the cost of detecting the cause in order to determine the sample 

size and the width of the control limits. 

De Oliveira and Littauer [15] presented the first non-conventional idea with their 

development of warning limits. Montgomery [32] provides a thorough survey of the 

analyses of control charts and indicates that common practice is to select a sample size of 

five, a sampling interval of one hour, and three standard deviation control limits because of 

their ease of implementation. 

The usual practice in maintaining a control chart is to take samples from the process at fixed 

-length sampling intervals. Reynolds, Amin, Arnold, and Nachlas [40] 

investigate the modification of the standard practice in which the sampling interval or time 

between samples is not fixed but instead can vary depending on what is observed from the 

data. The idea of using a variable sampling interval (VSI) control chart is intuitively 
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reasonable. The proposed (VSI) control chart uses a short sampling interval if the sample 

mean is close to but not actually outside the control limits and a long sampling interval if the 

sample mean is close to the target. If the sample mean is actually outside the control limits, 

then the chart signals in the same way as the standard fixed sampling interval control chart. 

The problem of determining a sampling plan with variable time intervals between samples 

is investigated by Arnold [1], Hui and Jensen [21], and Reynolds and Arnold [41]. 

Nachlas, Clark, and Reynolds [31] develop a model to describe the total cost per unit time 

of monitoring the mean of a process using a variable sampling interval (VSI) Shewhart 

control chart. The model is developed under the assumption that the quality characteristic of 

interest is normally distributed with known and constant variance. A Markov model of the 

behavior of the sampling process is defined and used to construct the cost model. The cost 

model is then analyzed to determine the optimal control chart parameters including those 

associated with the variable sampling intervals. They show that the variable sampling 

interval (VSI) control charts are often more economical than standard Shewhart control 

charts. 

The cumulative sum (CUSUM) control chart is introduced by Page (1954) and has 

been widely used for monitoring the mean of a quality characteristic or a production 

process. The CUSUM chart has been shown to be more efficient than the simpler Shewhart 

control chart in detecting small and moderate shifts in the process mean. The CUSUM chart 

is usually maintained by taking samples at fixed time intervals and plotting a cumulative 

sum of difference between the sample means and the target value in time order on the chart. 

The process mean is considered to be on target as long as the CUSUM statistic computed 

from the samples does not fall into the signal region of the chart. A value of the CUSUM 

2 Literature Review 12



statistic in the signal region is taken as an indication that the process mean has changed and 

that the possible causes of the change should be investigated. 

The properties of the CUSUM control scheme are determined by the values of parameters. 

Bissel [5] studies a control scheme designed to detect a specific mean shift (unless the 

variance shifts with a shift in the mean level). Brook and Evans [8] investigate a standard 

CUSUM scheme and an associated head start method. Goel and Wu [18], evaluate ARL's 

for CUSUM charts using the ratio of two integral equations. Lucas and Crosier [27] study 

the property of fast initial response for CUSUM quality control schemes and they find that 

the fast initial response (FIR) feature for CUSUM quality control schemes permits a more 

rapid response to an initial out-of-control situation than does a standard CUSUM chart. 

This feature is especially valuable at start-up or after a CUSUM has given an out-of-control 

signal. They also present the average run length and the distribution of run length 

for CUSUM schemes with the FIR feature and compare FIRCUSUM schemes to 

standard CUSUM schemes. The comparisons show that if the process starts out in 

control, the fast initial response feature has little effect; however, if the process mean is not 

at the desired level, an out-of-control signal will be given faster when the FIR feature is 

used. 

Roberts [44] introduces the exponentially weighted moving average (EWMA) control 

scheme. Using simulation to evaluate its properties, he shows that the EWMA is useful for 

detecting small shifts in the mean of a process. He developed nomograms of average run 

lengths (ARL's) for the case of normally distributed observations. In a subsequent article, 

Roberts [45] compares their performance to other procedures including CUSUM and 

Shewhart control schemes. More recently, Robinsion and Ho [46] numerically evaluate the 

2 Literature Review 13



ARL's of EWMA control schemes using an Edgeworth series expansion. Although they 

consider a wider range of parameter values than does Roberts, their results are inaccurate 

for small values of the parameter. Crowder [10] evaluates the properties of EWMA's by 

formulating and solving a system of integral equations. Tables of the first and second 

moments of the run length distribution are given in his article. Hunter (22] suggests writing 

the current EWMA as the previous EWMaA plus a fraction of the difference between the 

current observation and the previous EWMA. Lucas and Saccucci [28] evaluate the run 

length properties of EWMA control schemes by representing the EWMA statistic as a 

continuous-state Markov chain. Its properties can be approximated by a finite-state Markov 

chain following a procedure similar to that of Brook and Evans [8]. This allows the 

properties of EWMA's to be evaluated more easily and completely than has 

previously been done ( Lucas and Saccucci [28]; Yashchin [53]). 

In a short production run environment, data to estimate the process parameters and the 

limits for a standard Shewhart control chart are usually not available prior to the start of 

production. Since the number of parts needed to set the control limits could exceed the total 

number of parts produced in the run, the usual recommendation of gathering around 

twenty-five observations for setting valid control limits is also generally not appropriate in a 

short-run environment. In addition, as Hillier (19] points out, if a small number of sub 

groups is used to set the control limits, an inflated false alarm rate results. 

Examples of manufacturing systems in which production runs are short, or equivalently, 

lots sizes are small, are numerous. Job shop manufacturing is usually characterized by 

manufacturing businesses have adopted shot production runs as a production strategy. 

Hillier [20] presents a method that gives valid control limits for Shewhart control charts 
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regardless of the number of subgroups. His method, similar to classical control chart 

practice, is a two-stage procedure. The first m subgroups are used to assess control of the 

subsequent subgroups. This method gives the desired false alarm rate for any value of m, 

but the ARL while out of control may be too large if m is too small. This basic tradeoff also 

occurs in other control approaches. Therefore Hillier recommends using m 2 5 and 

presents factors for setting control limits for the case of subgroups of size n = 5. Recently, 

Quesenberry [38] introduced Q charts for the short run problem when the quality variable 

follows a normal, binomial or Poisson distribution respectively. For the normal case he 

addresses both the case of grouped data and the case of individual measurements. 

Much has appeared in the quality-control literature on incorporating economic 

considerations into the design of statistical process control (SPC) charts. In such 

approaches, a cost model is assumed and control-chart parameters are chosen to minimize 

expected cost. Montgomery [32] provides a review of the literature on this topic, and 

Saniga [47] discusses the use of economic design with the addition of statistical constraints 

on the design. Crowder [12] studies a finite-horizon or short-production-run version of an 

economic-process-control model. He derives an algorithm that allows implementation of 

this model and adjustment strategy for the short-production-run case. The solution to the 

control problem is consistent with traditional statistical process control philosophy in that 

process adjustment is called for only when the process mean is substantially off target. He 

also shows that the control or adjustment limits for this model are time-varying and depend 

on the break-even point between the quadratic cost for being off target and a fixed 

adjustment cost. It is shown that the length of the production run can greatly influence the 

control or adjustment strategy and the use of control limits based on the assumption of an 

infinte-run process can significantly increase total expected cost. 
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A process-control model is considered in which quadratic loss is associated with any 

deviation from target. Also it is assumed that a fixed cost is associated with any process 

adjustment. This is a special case of the cost structure assumed by Bather [3], who referred 

to the two costs as "running" costs and "overhaul" costs, respectively. A practical 

application of the short-run approach involves the problem of when to overhaul an 

expensive piece of manufacturing equipment. In rapidly changing industries, 

such as semiconductor manufacturing, equipment may become obsolete and need to be 

retired in a relatively short number of years. In such cases, it cannot be assumed that the 

equipment will be used over an infinite period of time. In this context, a process adjustment 

means an overhaul of the equipment, restoring it to an on-target condition. The fixed 

adjustment cost is then the cost of performing the overhaul. More generally, the fixed 

adjustment cost could reflect the cost of manual adjustment, maintenance, or occurrence of 

process downtime. 

In summary, many relevant results have been developed in different areas. Other needed 

results, particularly in the area of Shewhart control chart adjustment strategy, do not exist. 

Some are developed in this dissertation. 
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CHAPTER 3 

Development of Cost Model I 

3.1 Cost Model I for the Standard Shewhart Chart 

3.1.1 Introduction and Assumptions 

Assume a process is monitored using an X chart and the process is subject to a shift 

from the in control value of the process mean ,1] to a single out of control value p12 ata 

random point in time. Assume the time until a process shift is a random variable with 

distribution F(t). Assume also that we plan to use the strategy of starting with a set of 
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control limits and to change the limits to be tighter after the process has operated for a 

period of time that is to be determined. Specifically, the process is sampled every h hours 

and after the m' sample the control limits are changed. 

The question is to select the control limits to use before and after sample m and to choose a 

value for m. The basis of choice is a model for the cost of operating the chart. To start, the 

cost of operating a conventional (standard) chart is defined. The resulting model is then 

modified to reflect the consequences of the strategy of changing the control limits. 

The cost categories considered are: 

(1) Cj = sampling and inspection cost, unit cost per item = Cc; 

(2) Cg = false alarm cost, unit cost per event = c¢ 

(3) C; = true signal and process correction cost, unit cost per event = Cy 

(4) Cq= cost of producing substandard product while out-of-control, unit cost/item= cg 

(5) Cry = total cost per unit time 

The expected total cost per unit time function is defined as: 

C,+C, +C, 
E{C,j;=C; + 

Cr Et] (3.1.1) 

Where E(t] is the expected cycle length (time to signal) and the following notation is used: 

ty = in-control value of the process mean 
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ky = out-of-control value of the process mean 

6, = the known and constant population standard deviation 

UCL = upper control limit, UCL = py, + ko,/n!/2 

LCL = lower control limit, LCL = py - ko,/nl/2 

U,, = upper specification limit 

L, = lower specification limit 

Pj = proportion non-conforming when p = yp), then 

P; = 1—- of =| + of Sat 

0 10) 
x xX 

P2 = proportion non-conforming when p = py, then 

>, =1- 0} amt |, of Est 
Oo Oo 

x x 

P=P2- Pi 

h = time between samples 

r = production rate in units/hour 

n = number items inspected per sample 

m = number samples before changing the control limits 

5 = number of units of cy from py to“7, so § = (2 - H4)/ox 

k,= number of o,/n!/2 from yy, to UCL before sample mh 

ky= number of o,/n\/2 from 1, to UCL after sample mh 

a = the Type I error probability, then 

a= 1-P(y, —ko, /V¥n <x <p, +ko, /Vn|p = U,] 

= 1-[®(k)- ®(-k)] = 2[1- O(k)] 

B = the Type II error probability, then 

B = P(u,—ko, /V¥n $X¥ <p, +ko, /-Vn|p = p,) = O(k—SVn)-0(-k- Syn) 
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There are five decision variables in this dissertation, namely, n, h, m, k, and ky. The 

optimal values for the five decision variables need to be chosen to minimize the expected 

total cost per unit time function as defined in (3.1.1). 

3.1.2 Model Development 

Suppose F(t) = 1 - et, where 2 is the rate parameter for the distribution on the time until a 

shift in the process mean. Then: 

(1) Inspection cost = Cj= {fixed cost + (unit cost)(number inspected)}/ {time between 

samples} 

CG = {Co +nc;}/h (3.1.4) 

(2) False alarm cost = C¢ = (unit cost)(probability of false alarm)= c,P[false alarm]. Let 

A="false alarm," A, = "false alarm on sample i," A» ="no process shift before sample i," 

then 

PIA] = PIA] Plan] 
co oo —Ah 

= ¥ a(1-a)*'(1—F(ih)) = & ¥ (1-a) te ** = —_ 2,2 a)" "(1-F(ih)) a), ( a)e id-ae™ G15) 

c,ae™* = ¢,P[A] =e 
Cr = cPLA 1-(1-a)e™ (3.1.6) 
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(3) True signal cost = C, = (unit cost)(probability of a true signal)= c,P[true signal] (note 

that once a shift has occurred, the probability is 1.0 that a true signal will occur ) Let 

B="true signal," B,="process shift in interval j," By="no false alarm on proceeding j-1 

samples," then the probability of the process terminating with a true signal can be 

constructed as: 

PIB) = © P(B,]P{B.) = DL Flin) —F((i-1)|-0)" 

(-e*) 
j j=l 

= -A(j-1)h —Ajh j-l 
=>dile -e “1-a) =———_—— 
2 ! 1-(1-a)e™ (3.1.7) 

c,(1-e™*) 

1~(1-a)je™ (3.1.8) 

(4) Cost of producing non-conforming items when the process is out of control = Cg= (unit 

cost)(production rate)(increase in proportion non-conforming)(expected time out of 

control). 

Assume the process shifts after the kth sample. Then the time that the process is out of 

control is comprised of the partial sampling interval during which the shift occurs and the 

full intervals that elapse before a signal. To determine the expected value of the partial 

sampling interval, tp during which the process is out of control, let T be the part of interval 

before process shift. Then tp= h-T and E[t,]= h- E[T]. Figure 3.1.1. The problem is 

therefore to construct E[T]. If the shift occurs in interval (jh,G+1)h), then the 

construction of E[T] is: 
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T =t— jh = E[T] = E[t—jh] = | (t— jh)f(t[jh st <(j+Ih)dt 
(3.1.9) 

And we know that: 

. F(t) — F(jh 
F(iihstsG+0h)= 

. ; _ f(t) 
f(tlin sts (i+) = F((j+ 1h) — F(jh) (3.1.10) 

This is the conditional probability density function of the random variable t given that the 

random variable t falls in the interval (jh, G+1)h). Since the random variable t denotes the 

time that the process goes out of control, the above conditional density function represents 

the probability that the process goes out of control at time t given the shift occurs in the time 

interval (jh, (j+1)h). Therefore: 

E[T] = E[t— jh] = [(t—jh}f(t]jh < t <(j+1)h)de 

GeDh, (j+1)h on 

I, (t— jh }F(t)de - J, A(t—jhje™“dt 

[Fj+0h-F(jh)] — [F(j+1)h—F(jh)] 

(ae Ate“ dt — fr hjhe"™at 

  

  

  

_ _1-(+Ah)e™ 
(1— eR" 14 6) A(l-e™*) (3.1.11) 

and finally: 

1-(1+Ah)e*  Ah-(1-e™*) Ejt,|=h-E[T]=h- = = 7 t (1-e **) A(1-e | (3.1.12) 

This is the expected length of partial interval during which the process is out of control. 

Note that the above equation is a function of control interval h and rate parameter A. 
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Figure 3.1.1 Time Intervals Involving T and t, 
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E[time in full interval until a true signal] = E[t,] = h P[no signal at §+1)h] ARL(yy), and so 

E[t,] =h B (1-B)-1, thus if D represents the time out of control, the expected time out of 

control is 

An—(1-e™) | hB 

Al-e*) 1-8 
  E[D] = E[t,|+E[t,] = 

(3.1.13) 

Thus the cost of producing non-conforming items when the process is out of control, that 

is Cg, may also be obtained and it has the following form: 

corp thr lice™) np 
Cy = cn rA(i-e*) + i 
  

(3.1.14) 

(5) To determine the expected cycle length, let E]="false alarm on sample j and no process 

shift before sample j," Eo7="process shift during interval 1, no false alarm before interval 1, 

and true signal on sample j (j-1+15' after shift)," and E[t]= expected cycle length. Therefore 

we obtain: 

E[t] = > jnP[E,]+ > ind, P[E, | 
j (3.1.15) 

P[false alarm on sample j and no process shift before sample j] 

= a(1-a)-1(1-F(jh)) = a(1-o)i-1e-Ash 

P[process shift during interval 1] 

= F(Ih)-F((1-1)h) = e-A@-Dh -e-Alh 

P[no false alarm before interval 1] = (1-a)/! 
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P[true signal on sample j] = Bi1(1-B) 

Now, the expected cycle length, E[t], has the following form which is obtained by using 

the above information: 

E[t] = > nfo 0) e + Sere —e™*\(1—a) "Bp (1- 6) 

= ahe~™ >i(c _ ae" + (1 —_ B)(1 _ eo n> iy eh -Ih (1 _ a) Bi 

__ he (ire ™)h |B (1-B)G-ae™ 
[1-G-aje™*}  [B-G-o)e™*]}1-B  [1-G-aye™*]’ 
  

(3.1.16) 

The objective is to choose the values of the decision variables to minimize equation (3.1.1). 

3.2 Cost Model I for the Generalized Shewhart Chart 

3.2.1 Introduction and Assumptions 

Suppose that a control chart is used to monitor a process and that samples are taken 

every h units of time. Suppose further that the width of the control limits is changed after 

the m sample. Then the following facts may be used to describe control chart behavior: 

Fact 3.1 

(1) a(t) =a, ift < mh 
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=a ift>mh 

(2) B(t) =P, ift<mh 
= 8, ift>mh 

(3) k(t) =k, ift smh 

=k, ift>mh (3.2.1) 

Fact 3.2 

The generalized Shewhart control chart is the same as the standard Shewhart control chart if 

and only if: 

Qj, = a = a; 

By = Bo = B: 

k) = kn= k. (3.2.2) 

The question is again to select the control limits to use before and after sample m and to 

choose a value for m. The basis of choice is a model for the cost of operating the chart. 

The basic cost model I developed in section 3.1.2 is modified to reflect the consequences of 

the strategy of changing the control limits. The results is referred to as general cost model I. 

3.2.2 Model Development 

As discussed in the previous section, the construction of cost model I for the generalized 

Shewhart control chart can be based on the same cost categories. The development 

proceeds as: 

(1) Inspection cost 
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Since the change of control limits does not change the form of the inspection cost, the 

inspection cost remains: 

C = {cg +nc; }/ h (3.2.3) 

(2) False alarm cost = Cr = (unit cost)(probability of false alarm) = c¢ P[false alarm ] The 

expression for the probability of a false alarm in this case is quite different from that in the 

standard control chart since we have to consider t S mh and t > mh separately. The 

probability of false alarm can be constructed as: 

P[A] = DIAL] P[A,| 

= ¥.a,(1-,)“(1—F(ih)) +(1-0,,)" S.az,(1- a)" (1 Fh) 

  

i=l i=m+l 

= 0, 9, (1= 0) te +(1- ch)" Si (1= cn) 
i=l i-m=l 

- ae" {i - [(2 —O, Jem] (1-a,)" ehh, 

1-(1-a,)e™ 1-(1-a,)e™ (3.2.4) 

Therefore: 

a,e7{1 ” [(a —-Q, Je™]"| : (1 _ 0, "emt ho, 

1-(1-a,)e™ 1-(1-a,)e™ 
  

C, =¢, 

(3.2.5) 

Note that the above expression is a nonlinear function of control parameters and it may 

become easier if bounds can be provided for Cs. The bounds should free from m, the 

number samples after changing the control limits. Experiments have shown that the lower 

and upper bounds are convenient for a small workshop. The result is shown below: 
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Lemma 3.1 

The cost of false alarm has upper and lower bounds which are functions of type I error 

probabilities and control interval, and they are free from m. That is: 

cae c,(a, +0, )e™ 
1-(1-a,)e*~ “~ 1-(1-a,)e™ (3.2.6) 

The proof is in Appendix B (1). 

(3) True signal cost = C; = (unit cost) (probability of true signal) = c, P[true signal]. Note 

again that once a shift has occurred, the probability is 1.0 that a true signal will occur. 

Therefore the construction of the cost of true signal proceeds as follows: 

(1) Construct the probability of the process shift in interval J; 

(2) Construct the probability of no false alarm on proceeding j-1 samples; 

(3) Construct the probability of true signal; 

(4) Combine these results to obtain the true signal cost. 

p(B] = P[B,] PBs] 
m+l1 

= SFG) —FG-1)a]a-a,)" + SFG) - FG Dac)" 
j=m+2 

= Sen _ evn la _ o,)" + err _ e* (1 _ Ot, yn 

j=1 
jem+ 

l-a,je“" 1-(1-a,)e* 1-(1-a,)e™ 
“teen 1 _[G-a)e7 _em)e™] 

(3.2.7) 
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=c,(1-e™ 1 _[G- a je Pee )e el 
Sc =al qe 1-(1-a, Je — 1- (1-04 Je | (3.2.8) 
The above expression is a nonlinear function of the control parameters and useful bounds 

    

may be provided for C;. The bounds should not depend on m. Experiments have shown 

that the lower and upper bounds are convenient for hand calculation and the result is: 

Lemma 3.2 

The cost of true signal has upper and lower bounds which are functions of the type I error 

probabilities and control interval, and they are free from m. That is: 

cc, (1- e” eon(i-e™) On c,(1-e™*) 

1-(1-a,)e™ ~ <Tr(-a,e™ (3.2.9) 

The proof is in Appendix B (2). 

(4) Cost of producing non-conforming items when the process is out of control= Cg Lett 

= time that the process goes out of control, then E[time out of control] = E[ty] + Eft]. 

Since E[t)] =h - E[T]. The problem is again to construct E[T] but the analysis is the same 

as for the standard Shewhart control chart. Thus: 

1-(1+Ah)e™  Ah-(I-e™) 
Et, |=h-E[T]=h- ale) = Mise)   

(3.2.10) 

The construction of E[t,] is a bit different as the identity of the interval in which the shift 

occurs affects the signal probability. 
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E[time in full intervals until a true signal] = E[t,] = h P[no signal at G+1)h] ARL(»). It is 

actually the ARL that depends on the time of shift and the signal probability. In our 

analysis, three cases are considered: 

(a) Shift during j < m and signal ati<m; 

(b) Shift during j < m and signal ati > m; 

(c) Shift during j > m. 

For case (a), the equation of E[t,(a)] has the following form (Appendix B(3)): 

E[t,(a)] = VIF jh) — F(j- ym]( i- j)h(1-B, )BY” 
j=! 

  

  

B(t-e™) yp q_gm[mbt rest ppt net 
Hl . | (1- B,) - nB,( B,-e™ (3 -e™ ) 

_BB,(I=e7™) Bp ~e7™ 
(1B) B-e™ (3.2.11) 

For case (b), the equation of E[t,(b)] is as follows and the detail derivation can be found in 

Appendix B (4): 

E[t,(b)] = > [F(ih)-F((j-1)h)) Br" > (i- jhBy "(1 - Bs) 
j=1 i=m+l1 

E[t,(b)] = (1- yn S )_ a = a + is * ne 

(1-e*)hB, Be - 
+ ah 

(1-B,) B,-e (3.2.12) 
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For case (c), it is obvious that: 

1 _ hB,e*™ 

1-B, 1-8, (3.2.13) 

  E[t,(c)] = [1—F(mh)]hB, 

Finally, combining the three cases yields: 

E(t,] = mB")  BBe eee I 1 1 
1-8, 1—-B, B,-e 1-B, 1-B, (3.2.14) 

and then 

  Ca = c4r(a —Pi)(E(te) + ECt)) = ol ee ae 5 + “S| 

sem OO | 

(5) The expected cycle length is different from that of the cost model I for standard 

  

(3.2.15) 

Shewhart control chart. We must again distinguish between events before and after m. The 

expected cycle length can be written as: 

Elt] = 2 jE[E,] + Din FEs| 
(3.2.16) 

To start, the following notations are employed: 

E[t,] = > jne[E,] 
(3.2.17) 
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Then, E[tg] can be written as the following form: 

E[t,] = s jh(1—a,)""a,[1—- F(jh)] +(1-0,)” x jh(1—a,)"" ‘o.,[1 — F(jh)] 
j=l j=m+1 

m 

=a,h> j(1-a,)e™ +(1-0,)" ah x jl-a,)" eo 
j=1 j=m-+l 

e“fi-[-o)e*]"}  m(t—o,)"ee™ 
=o [1-(1-a, Je]? 1-(1-a,)e™ 
  

(1 _ a, "erent m(1 _ a)” e7Mm+1)h 
  +a, h + 

© [P-G-on)e*P  1-(-an)e™ (3.2.18) 

Next, let 

E[t,]= Din E[E, | 
joo1 (3.2.19) 

Three cases must be considered: 

Case (a) s<m,j Sm; 

Case (b) sS$m,j>m; 

Case (c) s>m. 

For case (a), the derivation of E[t,(a)] is in Appendix B(5): 

t,(a)] = > |Fish) - F((s—1)h)|(1- 0.) dint i 

  

— on camyg [IE(e* (= a))” me 0,)[” _ 8, [BP -(e*-a,))"] 
“Me aqca)P ee) Bea) w
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(3.2.20) 

For case (b) 

[t,(b)] = ):[F{sh)- F(s- ph](— a, "Br jh(1-B, BE 

ST -A(s-1)h J -Ash _ ay \S am-stl 1 _m_ = 1-B,)ay fe (s-Dh _ la ot, ) Bi oe 

- ry ~ B,[e™ (1 — Oo )" | =h(1-e » I +n] = 

IPs B, [eo )| (3.2.21) 

For case (c), the equation of E[t,(c)] is (Appendix B(6)): 

E[t,(c)] = (1-a,) * S[Fan)- F((1—1)h)|(1-0.,) ) jh(1—B,)Bi" 

_(10,)"(1-e™)h | [B, +m(1-B, Je" (1-8, )e™* 
(1B) 1-(I-a,)e — ft-(1-a, Je] 

_[B, +m(i-B,)le" 
(1-8, Je™ M2 2 (3.2.22) 

Combining the results from the three cases we obtain the expression for E[t,] for the 

generalized Shewhart control chart under the the shift distribution of negative exponential. 

That is: 

Eft] = a(t sph eet yma] nape =( “eo 
[i-e*(1-0,)] 1-e" (1-0) B, -e"(1-a,) 
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(aon) "(- eh [B2+m(1-B,)feo (1—-B, )e"™ 

1-(I-a@,)e" — f1-(1- a, Je} 

_ [B + m(1- B, )fe™ _ (1-B,)e™ 
  

“2 “2 (3.2.23) 
Now with the definition of E[tg] of the same section, we obtain the expected cycle length 

for the generalized Shewhart control chart as follows: 

  

E[t] = A {i — [( — a, je" ry - m(1 ~o, " en Mm+i)h | 

(1-(-a,)e*] 1-(1-a,)e™ 

  

(1 _ Q, " eo *(m+l)h m(1 _ Q, y e-A(m +h | 

vag ree 1-(1-a.,)e™ 

-(e™ (1- a.,))" _ mfe™*( (1- a, ) I _ mB, [BP -(e “(1- a,))" 

[1- e (1 a, ) #) l-e *(1- I B,-e *(1- a, ) 

1-e“*(1-a,) B, -e-“*(1-a,) 

~th 1 nt _ Be “(1- a, )]" 
+h(1-e ae B, “le (i a, )] | 

(1-a,)"(1-e™ Jh (8, + m(1 —~ Ber (i-B,)e“™ 

) 1-(I-a)e™ —[1-(1-a, e*] 

_ [B. + m(1 -B, je _ (1 -B, ye 

Ot, OF 

  + h(1- o™)p,d- 

    
  

  

  

(3.2.24) 
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Then, the expected total cost per unit time function for the generalized Shewhart control 

chart is well defined and the objective is to choose the optimal values of the decision 

variables to minimize the expected total cost per unit time as defined in (3.1.1). 

Lemma 3.3 

The expected total cost per unit time function for the generalized Shewhart control chart is 

equivalent to that for the standard Shewhart control chart under Fact 3.2. 

The proof of this lemma is in Appendix B(7). 
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CHAPTER 4 

Development of Cost Model II 

4.1 Cost Model II for the Standard Shewhart Chart 

4.1.1 Introduction and Assumptions 

Assume a process is monitored using the same control chart and the process is subject to a 

shift from the in control value of the process mean p11 to a single out of control value pp at 

a random point in time. Assume the time until a process shift is a random variable with F(t) 

= t/6, (0 < @ < o). Assume also that we plan to use the strategy of starting with a set of 

control limits and to change the limits to be tighter after the process has operated for a 
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period of time that is to be determined. Specifically, the process is sampled every h hours 

and after the m‘4 sample the control limits are changed. 

The question is to select the control limits to use before and after sample m and to choose a 

value for m. The basis of choice is a model for the cost of operating the chart. To start, the 

cost of operating a standard chart is defined. The resulting model is then modified to reflect 

the consequences of the strategy of changing the control limits. 

In this section, the cost categories considered are the same as those discussed in the 

previous chapter. The expected total cost per unit time function is defined as in (3.1.1). 

The decision variables are still n, h, m, k, and ky (k=k, for the standard Shewhart control 

chart). The optimal values for the decision variables need to be chosen to minimize the 

expected total cost per unit time as defined in (3.1.1). In addition, the time until the process 

shift is modeled using the uniform distribution because it has a failure rate function which 

is the function of time t. Since the parameter 6 (0 < 6 < o) may take values widely, the 

performance of cost model II may depend upon the choice of the parameter 8. 

4.1.2 Model Development 

Referring to the previous chapter, the development of cost model II for a standard 

Shewhart control chart may be realized by first constructing the cost components. 

However, the range of the time is different here because of the use of uniform distribution. 

That is, since 0 < t < 6 < ce, let N be the maximum value of t, then N = 6/h, and suppose 

that N is an integer. 
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(1) Inspection cost = C;= {fixed cost + (unit cost)(number inspected)}/ {time between 

samples}, therefore: 

G = {co +nc;}/h (4.1.1) 

(2) False alarm cost = Cy = (unit cost)(probability of false alarm)= c¢P[false alarm]. Let 

A="false alarm", A, = "false alarm on sample i", Ay ="no process shift before sample i" 

then the construction of the cost of false alarm Cy proceeds as follows: 

(i) Construct the probability of false alarm; 

(ii) Formulate C¢ = c¢P[A]. 

Therefore: 

P[A] = DPA! PIA: = Yaa- a)‘ [1 —F(ih)] = a} (i ay"(1- 3) 

_ _ i-1 Oh ° _ i-1 _ _h Se _ N =a) (1 cL) ey id or) 1 +l a) 4.1.0 

Thus, the false alarm cost can be constructed as: 

h h N - =¢,{1-—++—-(1- C, =c,P[A] “| 50 go! a (4.1.3) 

(3) True signal cost = C, = (unit cost) (probability of a true signal) = c,P[true signal]. (note 

that once a shift has occurred, the probability is 1.0 that a true signal will occur ). Let 

B="true signal ", B, =" process shift in interval j", B> =" no false alarm on proceeding j-1 
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samples", then the expression for P[B] is: 

  P[B] = > P[B, | P[B,] = 5 [F(ih) —F((j-1)h)|-0)" = 3/2. (j= aC ~ a)" 
J j=l j=! 

hw - h{1-G-a)%]| hh N 
=— l-ay = —}) —— _] = — -—- — (1 - 

9 *) | a ad h *) (4.1.4) 

Thus, the true signal cost has the following form: 

C, =¢, P[B]= | = -1- a)" 
(4.1.5) 

(4) Cost of producing non-conforming items when the process is out of control = Cg= 

(unit cost)(production rate)(increase in proportion non-conforming)(expected time out of 

control). The time intervals at this step can be seen in Figure 3.1.1. The E[time out of 

control] = E[length of partial interval after shift and before sample] + E[time comprised of 

full intervals until a true signal] = Eft] + E[t,]. 

Let t, = length of partial interval during which the process is out of control and let T = part 

of interval before process shift, then to= h-T and this implies E[tp]= h- E[T]. The problem 

is therefore how to construct E[T]. If the shift occurs in (jh,(j+1)h), then the construction 

of E[T] yields a interesting property of the uniform distribution: 

Lemma 4.1 

The expected part of interval before the process shift is equal to the expected length of 

partial interval during which the process is out of control and they are equal to half of 

length of the control chart interval. That is: 
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E[T] = E[t,] = h/2 (4.1.6) 

The proof is in Appendix C. (1). 

Let E[time in full intervals until a true signal] = E[t,] = h P[no signal at G+1)h] ARL(u)). 

As ARL(u) = (1-8)"! E[t,] = h B (1-8)-!. Let D="time out of control", then refer to Lemma 

4.1, the expected time out of control is: 

1. hp E[D] = E[t,]+E/t,J=—h+— 
I= FU) +E 2 1-6 (4.1.7) 

Thus the cost of producing non-conforming items when the process is out of control, that 

is Cg may also be obtained and it has the form: 

C, = ¢c,rpE[D] = cal» + | 

2 1-8 (4.1.8) 

(5) Let E;="false alarm on sample j and no process shift before sample j", Ex="process 

shift during interval 1, no false alarm before interval 1, and true signal on sample j (j-1+15¢ 

after shift)", and E[t]= expected cycle length. Therefore: 

E[t] = > jhP[E,]+ > jh> PLE, | 
j j 1 (4.1.9) 

P[false alarm on sample j and no process shift before sample j] = a( 1-a)J-1(1-F(jh)) = a(1- 

os 1(1-jh/e) 

P[process shift during interval 1] = F(lh)-F((1-1)h) = [Ih/6 --1)h/o] = h/e 
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P[{no false alarm before interval 1] = (1-a)'1 

P[true signal on sample j] = B/-!(1-B) 

Now, the expected cycle length, E[t], has the following form: 

» | F-Fo-a80-8)| 
1=1 

  E(t] = jotta)" 1- Bl Sj | 
j=l jel 

= *f1-(1-0)"(on+1)] 
a 

    

6 la a a a? 
_ oth? {3 2 a1-(-o)""]  (w-170-a)" _Nd- nt 

  
  

_ 20-8) B(L-B*)_ pw _@-af1-(-o)"]  Na-a) 

[B-(1—o)J@| G-BY 1-8 a” ot (4.1.10) 
The reduction to this form is shown in Appendix C.(2). 

The expected total cost per unit time function for the standard Shewhart control chart 

corresponds to equation (3.1.1) and the objective is to choose the optimal values of the 

decision variables to minimize the expected total cost per unit time function. 

4.2 Cost Model II for the Generalized Shewhart Chart 

4.2.1 Introduction and Assumptions 

Suppose that a control chart is used to monitora process and that samples are taken 

every h units of time. Suppose further that the width of the control limits are changed after 

the mth sample. Then the following facts may be used to describe control chart behavior: 
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Fact 4.1 

(1) a(t) =a, ift <mh 

= oy if t > mh 

(2) Bit) = By ift smh 

= By ift > mh 

(3) k(t) =k, ift<mh 

=k» ift>mh (4.2.1) 

Fact 4.2 

The generalized Shewhart control chart is the same as the standard Shewhart control chart if 

and only if: 

ky = k= k. (4.2.2) 

4.2.2 Model Development 

As discussed in the previous section, the construction of cost model II for the generalized 

Shewhart control chart may be achieved by analyzing the following costs: 

(1) Inspection cost - Since the change of control limits does not alter the structure of the 

inspection cost, thus the inspection cost remains: 

Cj = (cg + nc;)/h (4.2.3) 
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(2) False alarm cost = Cr = (unit cost)(probability of false alarm) = cr P[false alarm ] Then, 

the problem again is to construct the expression for the of probability of a false alarm. 

Again the expression for the of probability of a false alarm in this case is quite different 

from that for the standard Shewhart control chart because we have to consider t < mh ort > 

mh separately. Therefore: 

PIA]= DIA] PLAL] 

= Yo, (1~0,)7[L-FGh)] +(1-04)" ya, (tc,) [LRG 

  

  

  

  

i=l i=m+l 

=1-(-«,)"-a,)"* -8| Cs) re) | 
8 a, a, 

h (1-a,)"(1-0,)" (No, + | 

° o (4.2.4) 

The reduction of the above form is in Appendix C(3). 

m -m h 1-(i-a@ = 1-a m 

" rsatsleat--5) (ea) “4 oe | 
h es a,)"(1-a,)* "(No + o 

° "2 (4.2.5) 

It is an important fact that the above expression is a nonlinear function of the control 

parameters and therefore bounds may be provided for Cr and it is hoped that the bounds 

may free from m, the number samples after changing the control limits. In fact, this can be 

done and experiments have shown that the lower and upper bounds are convenient for hand 

calculation and the result is the following lemma: 
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Lemma 4.2 

The cost of false alarm has upper and lower bounds which are functions of type I error 

probabilities and the control interval, and are free of m. That is: 

ef -4(2] <C, s efi 2(2 

8\ a, 8\ a, (4.2.6) 

The proof is in Appendix C(4). 

(3) True signal cost = C; = (unit cost) (probability of true signal) = c, P[true signal] 

and the probability of a true signal is: 

= > ?[B,] P[B. 

= D[FGn)- FG 1)h a a) mh Dy jh)- ~1)h)|(1-a,)" 

h 24 

=25(1- a) rae ¥ (1-04) 

  

  

0 4a j=m+2 

“3 (1=a,)"" | (i-a)"" [1-0 I] a: a, a, 
(4.2.7) 

Therefore: 

fon (Veo. Te (-e. ho 

cote (na) | Ero)" [IG e) 
6 a, a, 

(4.2.8) 
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Note that equation (4.2.8) is a nonlinear function of control parameters and therefore 

bounds may be provided for C, It is hoped that the bounds may free from m, the number 

samples after changing the control limits. It has been shown that the so constructed lower 

and upper bounds are convenient for a small workshop and the result is the following 

lemma: 

Lemma 4.3 

The cost of true signal has upper and lower bounds which are functions of type I error 

probabilities and the control interval, and they are free from m. That is: 

c,h % leo, _ Sih f 1 
8 (a, 0 (a, (4.2.9) 

The proof is in Appendix C(5). 

(4) Cost of producing non-conforming items when the process is out of control = Cy. As 

described in Chapter 3, E[time out of control] = E[tp] + E[t,]. E[tp] =h - E[T]. The 

problem is again to construct E[T] but the analysis is the same as for the conventional case. 

Thus E[tp] = h/2. 

The construction of E[t,] is a bit different as the identity of the interval in which the shift 

occurs affects the signal probability. 

E[time in full intervals until a true signal] = E[t,] = h P[no signal at §+1)h] ARL(1). It is 
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actually the ARL that depends on the time of shift and the signal probability 

analysis, three cases are considered: 

(a) Shift during j < m and signal ati < m; 

(b) Shift during j < m and signal ati > m; 

(c) Shift during j > m. 

For case (a), the equation of E[t,(a)] has the form: 

Et .(a)| = 
m 

—1)h)]}(i- 
j=l i=j 

a
y
 

  

_ h’B — ~j-1 one pe] 

_h’B,] m_ Brd-m)_ 1-8, -28? 

Q@ {1-B, 1-8, (1-B,) 

The reduction to this form is in Appendix C(6). 

. In our 

i) h(1 ~ B,) 1? 

(4.2.10) 

For case (b), the method used for obtaining equation of E[t,(b)] is quite the same as that 

used in case (a) except that the range of the summation changes. The expression for 

E[t,(b)] is: 

  

- F((j-1)h)] 8°" Gi 
=1 i=m+1 

1-B" r]-[4 

1-8, 
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~ 2 B, - Br Br 

—B, |» 1- B, 

j) hp: 2 (I —B,) 

] (4.2.11) 
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The resolution of this form is shown in Appendix C(7). 

For case (c), the type II error probability B> is the key factor of E[t.(c)] because the average 

run length after changing the control limits is determined by B>. The form of E[t,(c)] is : 

  E[t,(c)] = [1 F(mh)] hB, - ! = of Be) Af mee | 
—B, (4.2.12) 

Finally, combining the three cases yields: 

el a)|+E[t,(b)]+E[t,(c)] 

3.) =| me h’B,| m_  Brd-m) 1-B,-267 
e{i-p,| 6 |i-B, 1-8, (1-B,) 

fe Tle | | se 1—B, 1-B, , 1—B, 1-B, (4.2.13) 

Therefore we obtain the expression for Cg below and this form is nonlinear function of the 

  t 

   

  

control parameters. That is: 

  cscs aries EL, 
carph’B, || 1-Br 1-82" n-m |_| 1-B)™ B.-Br am 

" Q (Ee o 1-B, NPs H 1—B, |p- 1-B, “P | 

+ sane m ee ke 
B, Q 1—B, (1-B,)" (4.2.14) 
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(5) The expected cycle length must also reflect differences in signal events before and after 

mh. The expected cycle length can be written as: 

E(t) = Dingle, ]+ DHL ELE, 
(4.2.15) 

To start, the following notation is employed: 

E[t,] = >) jhE[E,] 
j (4.2.16) 

and: 

Et, ]= D_ jnE[E, ] 
j (4.2.17) 

Then, Eft] can be written as the following form and the detail derivation of this expression 

is shown in Appendix C(8). 

Eft,] = ¥ iho, (1—o,)f1— Fh 1-a,)" ¥ iho,,(1—0,,)°" [1 — FGih [ts] 2 a, (1-0) [1— F(in)] + ( a)" Diba | a)" [1— F(ih)] 4.2.18) 

_ an Coal so 

ar OQ, 

2 3 
Qh; Oy 

ah? : -(m-1)(1-0,)" +m%(1-0,)"" | 20 at, [= (1- 04)" ] 
0 

  

ttc 21a} (a) 

  

_(N-m-1)'(1- a)” ‘ (N-m) (1-a, 

CL, O, 
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(4.2.19) 

To evaluate E[t,], we must consider three cases: 

Case (a) sSm,jSm; 

Case (b) sSm,j>m; 

Case (c) s>m. 

For case (a): 

Blt.(a)]= = ~ F((s— h)](0~ a4)" jh. BB 

_ (1-B,)h? Line oy Sin 
s=] 

2 o -a,)" B,|(L-o,)" -Br -Njic(-ay m(1 re :) 
a, 1-a, —B, 

4 flat tar 8 {l- 8 4 (4.2.20) 

where the details of the analysis are shown in Appendix C(9). 

For case (b), the form of E[t,(b)] is: 
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m 

E{t,(b)] = >| F(sh) —F((s- 1)h)|(2 —a,) “I pmsl > jn(1- im 
s=] jem+l 

-¥ lm NBN" + 1— jos ) 

0 1-B, 1—a, -B, 

  

  
  

  

(4.2.21) 

For case (c), E[ty(c)] is: 

E[t,(] = (1-04) ¥[Fsh) -F(s—yn)Ja-a,)""" jh .-B 

(1=o,)"h* m—N(I~ 0)", 1=(I-a4)"" vg (1-a,)"" -By™ 
- 9 O, a2 ? 1-a, -B, 

1 a ale 
+ — 

(1-B,) O, 1-a, -B, 
(4.2.22) 

The detail derivations of (4.2.21) and (4.2.22) are in Appendix (A.10) and (A.11) and 

combine the results from the three cases above, the expression for E[t,y] is: 

ep,J= 5 eal _m(1-a,)" -|m+; 1 a “ 

Q Oy Qh, -B, 1-a, -f, 

-B,[tar] Hm NB eS 
1-6, Ot, 0 1-8, 1-a, -§, 

_ (lea, )"? B= N(I-a,). ls (i -vo,/4 -~a,)™ ao 

    

  

3 1-a, -B, 

(4.2.23) 
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And with the definition of E[t,] (4.2.19), the expected cycle length is: 

  

Oty ct, 
E[t] = ay Coal _ seo 

_ ah? E (m~1)(1- a)" +m%(1- a)" 2(1-o,,)[1-(1- 7) 

  

  

  

  

    

8 0? 
w 

rata] 2 N(1-0,)" + I= (=e) =| 

O, O, a, 

job)" | 1 2d -a)ft-(t-on)"] (N-m-9(1-a, 
8 or an; oe 

_A-m)'( : a,j)" 

a, 

a3 OL, on 

epeteoy _ m(1—o.,)" -| ms I a= i 
8 oy Q, 1-8, 1—a, -B, 

  Bw [Oe Tf gem, 1 Bie 1 Bile)" BF] 
“Ae 7 |= NB." + aI mah 

    

  

+ (1a, )"h’ [p=Ni-eol . 1-(1-a,)°" -va a) | 

° “2 03 1-a, -B, 

1 eet (1-0) a] 
+ _ 

(1-B,) Qa, 1-oa,-B, 

(4.2.24) 

Thus, the expected total cost per unit time for the generalized Shewhart control chart is well 

defined. The objective is to choose the values of the decision variables to minimize the 

expected total cost per unit time. 
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Lemma 4.4 

The expected total cost per unit time function for the generalized Shewhart control chart is 

equivalent to that for the standard Shewhart control chart under Fact 4.2. 

The proof of this lemma is in Appendix C(12). 
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CHAPTER 5 

Development of Cost Model III 

5.1 Cost Model III for the Standard Shewhart Chart 

5.1.1 Introduction and Assumptions 

Assume again a process is monitored using the same control chart and the process is 

subject to a shift from the in control value of the process mean , to a single out of control 

value 2 at a random point in time. Assume the time until a process shift is a random 

variable with distribution F(t). Assume also that we plan to use the strategy of starting with 

a set of control limits and to change the limits to be tighter after the process has operated for 
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a period of time that is to be determined. Specifically, the process is sampled every h hours 

and after the m' sample the control limits are changed. 

The question is to select the control limits to use before and after sample m and to choose a 

value for m. The basis of choice will be a model for the cost of operating the chart. To 

Start, the cost of operating a conventional (standard) chart is defined. The resulting model is 

then modified to reflect the consequences of the strategy of changing the control limits. 

The cost categories considered are the same as in chapter 3 and the expected total cost per 

unit time function is defined as in equation (3.1.1). The decision variables are n, h, m, k; 

and ky. The objective is to choose the values of the decision variables to minimize the 

expected total cost per unit time. 

5.1.2 Model Development 

Suppose in this section that the distribution of the time to a process shift is Weibull: 

F(t)=1l-e™ (5.1.1) 

Where a is the scale parameter, a > 0, b is the shape parameter, b>0. 

(1) Inspection cost = C;=(fixed cost + (unit cost)(number inspected) }/{time between 

samples}. Then: 

CG = {cg +nc; }/ h (5.1.2) 
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(2) False alarm cost = Cry = (unit cost)(probability of false alarm)= c,P[false alarm] Let 

A="false alarm", A; = "false alarm on sample i", Az ="no process shift before sample i”, 

then: 

P[A]= YP[A,]P[A,] = Dia(1- oe) (1- FGih)) = (1-0) te” 
i=l i=l (5.1.3) 

Thus 

C; = c,P[A] = ca) (1 _ a) tense 

=I (5.1.4) 

(3) True signal cost = C, = (unit cost)(probability of a true signal)= c,P[true signal] (note 

that once a shift has occurred, the probability is 1.0 that a true signal will occur ). Let 

B="true signal", B,="process shift in interval j", B2="no false alarm on proceeding Jj-1 

samples", then the probability of the process terminating with a true signal can be 

constructed as: 

P[B] = >’ P[B, ] P[B, | 
J 

= > [F(jh) - F((j - 1)h) | -a) = yee bY g-aita® la ~o) 

" " (5.1.5) 

Therefore: 

C= ef Seer” -1-ay"| j=l (5.1.6) 
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(4) Cost of producing non-conforming items when the process is out of control = Cg= (unit 

cost)(production rate)(increase in proportion non-conforming)(expected time out of 

control). 

After a process shift, the time that the process is out of control is impressed of the sampling 

interval during which the shift occurs and the full interval that elapse before a signal. To 

determine the expected value of this period, let tp represent the partial interval during which 

the process is out of control and let T be the part of interval before process shift. (Figure 

3.1.1). Then tp= h-T and Eltp]= h- E[T]. The problem is therefore to construct E[T]. If the 

shift occurs in interval (jh,(j+1)h), then the construction of E[T] is: 

T =t—jh > E[T]=E[t—jh]= f(e—jh)e(|jh <t< (j+1)h)dt 
(5.1.7) 

And we know that: 

F(din ses (i+) = Fy 

(iin sts (+08) = yaa 6.1.8) 

This is the conditional probability density function of the random variable t given that the 

random variable t falls in the interval (jh, G+1)h). Since the random variable t denotes the 

time that the process goes out of control, the above conditional density function 

represents the probability that the process goes out of control given the shift occurs in the 

time interval (jh, (j+1)h). Therefore: 
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for" (t= seat 
jh 

[F(j+ 1)h — F(jh)| 
  E[T] = E[t— jh] = [(t— jh)f(t|jh <t < (j+1)h)dt = 

fo abt '(t— jhe" at 

[F(j+1)h—F(jh)] 
— *3 

_ ab Cb y ae a PUFA Bae | 
~ ean” — enaitha? I, te dt in] toe” dt (5.1.9) 

And finally: 

ab (j+1)h b (j+1)h b 
E =h-E = hk TDD” t° ~ dt — jh ble at | [t, | [t]=h earh? gn a(iePh i ° ) I, rs (5.1.10) 

This is the expected length of partial interval during which the process is out of control. 

Note that the above equation is a function of control interval and parameter a and b. 

E[time in full interval until a true signal] = E[t,] = h P[no signal at G+1)h] ARL(y), and so 

E[t,] = h B (1-B)-!, thus if D represents the time out of control, the expected time out of 

control is: 

E[D] = E[t,]+E[t,] 

hB ab | co 
=h _ 

+ 1-8 evr _ eat) he jn 

b j+])h r 

te" dt— inf tte at | 
i (5.1.11) 

Thus the cost of producing non-conforming items when the process is out of control, that 

is Cq may also be obtained and it has the following form: 
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C, =c,rpht+ cant P| 

c,rpab (jth » op Gt po, Lot ~ elf teat jn eat 
e@ h — ett) h jh jh 

(5.1.12) 

(5) To determine the expected cycle length, let E;="false alarm on sample j and no process 

shift before sample j", E,>="process shift during interval 1, no false alarm before interval |, 

and true signal on sample j (j-1+15t after shift)", E[t]= expected cycle length. Therefore: 

E[t] = >) jhP[E, ]+ > jh P(E, | 
j j i (5.1.13) 

P{false alarm on sample j and no process shift before sample j] = a(1-a)i-1(1-F(jh)) 

= a(1-a) te 

P[process shift during interval 1] = F(lh)-F((1-1)h) 

—efia_1)ORD _ a1 bpd = ena(int)"h — ena 

P[no false alarm before interval 1] = (1-a)/! 

P[true signal on sample j] = p)-!(1-p) 

Now, the expected cycle length, E[t], has the following form and the reduction to this form 

is in Appendix D(1): 

E[t] = x info ~ a) eae 4 Slee — ee la — a) "BL 6) 

= ah (1-0) te +h SLs 1a) hye (1-0) 
l=1 j=l l=1 

B a(1-1)h? 1-1 ( B = _gj>pb 1-1 
+h} — |e (l-a)y~ —h| — (1— a) 

f e 1-B de (5.1.14) 
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The objective is to choose the values of the decision variables to minimize the expected total 

cost per unit time function (3.1.1). 

5.2 Cost Model III for the Generalized Shewhart Chart 

5.2.1 Introduction and Assumptions 

Suppose that a control chart is used to monitora process and that samples are taken 

every h units of time. Suppose further that the width of the control limits are changed after 

the m‘ sample. Then the following facts may be used to describe control chart behavior: 

Fact 5.1 

(1) a(t) =a, ift <mh 

=o, ift > mh 

(2) B(t) = By ift smh 
= B, ift > mh 

(3) k(t) =k, ift<mh 

=k» ift>mh (5.2.1) 

Fact 5.2 

The generalized Shewhart control chart is the same as the standard Shewhart control chart if 

and only if: 

Q) = a = a; 

By = Bo = B; 

ky = ky=k. (5.2.2) 
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The question is again to select the control limits to use before and after sample m and to 

choose a value for m. The basis of choice is a model for the cost of operating the chart. The 

basic cost model III developed in section 5.1.2 is modified to reflect the consequences of 

the strategy of changing the control limits. The results is referred to a general cost model 

III. 

5.2.2 Model Development 

As discussed in the previous section, the construction of cost model III for generalized 

Shewhart control chart can be based on the same cost categories. The development 

proceeds as: 

(1) Inspection cost: Since the change of control limits does not change the form of the 

inspection cost, the inspection cost remains: 

C, = {cotne;}/h (5.2.3) 

(2) False alarm cost = Cr = (unit cost)(probability of false alarm) = c- P[false alarm ]. 

Therefore the problem again is to construct the expression for the probability of a false 

alarm. The expression of the probability of a false alarm in this case is quite different from 

that in the standard control chart since we have to consider t $ mh or t > mh separately. The 

probability of false alarm can be constructed as the following steps: 

(1) Find the partial summation from i= 1 toi =m; 

(2) Find the partial summation from i = m +1 toi =; 
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(3) Construct the probability of false alarm by adding these two partial summations 

together. 

= Sa,(1 —,) (1—F(ih))+(1—«,)” ¥a,(1 ~a,)""(1— F(ih)) 
i=1 i=m+} 

= 0, ( (1- a, ) +e =a? h? (I-04), 3 (=o) er P , » 

Therefore: 

m oo 

C, =c,P[A]= eran $(1- a) e*™ +(1-a,)"a, y 
i=l i-m 

(ia) | 
1 (5.2.5) 

(3) True signal cost = C; = (unit cost) (probability of true signal) = c; P[true signal]. Note 

again that once a shift has occurred, the probability is 1.0 that a true signal will occur. 

Therefore the construction of the cost of true signal proceeds as follows: 

8] = DP(B,] PLB, 
m+l 

wo 
| 

= D[FGh)—FG-Mala— a)" + STRGa)— FG ala a)" 
j=l 

j=m+2 

= Serer ew ama) > [eo er Yaa) 
" emt (5.2.6) 

Therefore we obtain the expression of C,: 

C, =c,P[B] 

=C¢ {Ef ~a(j-1)? n> al ( (1- a) y + x le a(j-1)° he ena” lo-o4)"} 
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(4) Cost of producing non-conforming items when the process is out of control = Cg Lett 

= time that the process goes out of control, then E[time out of control] = E[tp] + E[tg]. 

Since Eftp] =h - E[T]. The problem is again to construct E[T] but the analysis is the same 

as that for the standard Shewhart control chart. Thus: 

_ _ ab (j+1h be G+Dh yo ab 
E[t,]=h-E[t]=h-p— | dt in] te dt “bob af} bib “ 

euh —e a(j+)"h jh 
(5.2.8) 

The construction of E[t,] is a bit different as the identity of the interval in which the shift 

occurs affects the signal probability. Let E[time in full intervals until a true signal] = E[t,] = 

h P[no signal at (j+1)h] ARL(19). It is actually the ARL that depends on the time of shift 

and the signal probability. In our analysis, three cases are considered: 

(1) Shift during j < m and signal ati < m; 

(2) Shift during j < m and signal ati > m; 

(3) Shift during j > m. 

For case (1), the expression for E[t,(1)] is: 

ELC] = DLFGn)-F(G—1)n)) 6 - Da -B, BF 
_ bp ~1(mh)? ] _ -a(ja-n)” _ ain)? sy qm-ie ip owe 0 m= Br 

ho le a(jn-h)® __~a(jn)? m~j+l 
e 

“1- > jel (5.2.9) 

The detail derivation of this expression is in Appendix D(2). 
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For case (2), the expression for E[t,(2)] is below and the reduction to this form is in 

Appendix D(3). 

[F(jh) - F((j-1)h)| BP" >} (i-3) nBy™ "(1 —-B,) 
i=m+l 

fe“ 9 fn = 
E[t,(2)] = ©

:
 

Kt pan
y 

J 

=h M
s
 

ui -_
 

J 

AS ene h)? _ eh) ] mitt e Bi 
“Te 5 2t | (5.2.10) 
  

For case (3), the expression for E[t,(3)] is: 

1 _ hBew 
-B, 1-8, (5.2.11) 
  E[t,(3)] = [1 - F(mh)|hB, ; 

Finally, combining the three cases yields: 

Fft,)=— hp, +he won| B, Bs 

  

1B, 1-B, 1-f, 

oferty Ble ee 
Pe TP is (5.2.12) 

Therefore: 

C,= carp{E[t, | + E[t,] \. = can PL ae Ir carph + cyrphe™ a Fe - ma 

c.rpab (j#Dh yy GDh yo Ly 

vp’ I te" dt — jhf tre at] 
j eth — entity? he? jh 

veoh oa = op ek worn — oO Br =| j=l 

  

(5.2.13) 
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(5) The expected cycle length is different from that of the cost model III for the standard 

Shewhart control chart. We must again distinguish between events before and after m. The 

expected cycle length can be written as: 

E[t] = > jhE[E, ]+ DinDelE, 
j (5.2.14) 

(5.2.15) 

Then, E[tg] can be written as the following expression: 

E{t,]= 5 (1-«,)'o,[1-F(jh)]+(1-0,)” ¥{(1-a,)"” @,[1— F(jh)] 
j=l j=m+1 

2 j=m+l (5.2.16) 

Next, let: 

= > ih EE, ] 
; I (5.2.17) 

Three cases must be considered: 

Case (1) sS$m,j sm; 

Case (2) sSm,j>m; 

Case (3) s>m. 
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For case (1), E[t,(1)] has the form (Appendix D (4)): 

[F(sh) — F((s—1)h)|(1- of, jh(1 -B, BF" 
j=s 

M
s
 

Et, (1)] = 

M
s
 # 

=h sete” —e sen la -a,) 
s=1 

-1| ms 1-8, 5 Sk —a((s—1)h)” — e72 (sn)? la ~<a, " ge 

hB, ~a((s—1)h)° ~a(sh)° s-1 
+—— - 1l-a, 

1-8, [er “ | %) 

    

(5.2.18) 

For case (2), the detail derivation of the following expression is in Appendix D (5): 

  

E[t,(2)] = ¥[Flsh)- F(-h](1-a,)"Br* > jh(1-B, Br" 
1 le ' ' 4 

= h| m+ e 7 a(G-Dh) _ ev 2(sh) 1— 0, s gms 

| =r | ! (5.2.19) 

For case (3), the detail derivation of the following expression is in Appendix D (6): 

E[t, (3)] = (1-c,)” S¢[F(sh) - F(s—1)h) (1 a, Sint 5. pe 
s=m+1 j=8 

= of Be Bo pe a, ) "> le ~((s-1)h)” __ -a(sh)’ la- a)" 

1 ~ B, s=m+1 

+h(1—a,)” x fe “{(s-ph)” mash? |a-a a 

s=m* (5.2.20) 

Combine the results from the three cases we obtain the expression for E[tp] as: 
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Et, | = by. sferste-¥? _ ena(sh)? lo a, \n 

s=1 

oo 

+h(1-o,)” y fenton? — enact) la _ 0)" 

s=mt+l 

1 1 = - _ b _ b s-} +4 h _ e a((s—1)h) ~e a(sh) 1- a m-s+l 

ie a el \ y 

  

s=1 

+ HB fet _ e7a(sh)” la _ a) 

! ™ B, s=l 

+(1-a,)° (2 | > | [eno ~ gotten)? la a," 

  

(5.2.21) 

And together with the definition of E[tg}, (5.2.16), the expected cycle length is: 

Eft] = oF (1-a,) ew +(1-a,)"on (Lae) er 
j=l jeme+l 

aS fener Yay 
s=] 

+h(1- a)" x jee — ents la _ aor" 

s=m+l 

11 Daten ote apr 
1 ~ B, 1 ~ B, s=1 I ] 

B, ps ~((s-1)h)° eo) s-1 
+ h —_— e —e 1 -—Q 

' ~ B, s=1 ( 2) 

+ (1 - a, ) y" Hf B. -|3 le -((s-1)h)? ~a(sh)° ja- a)" 

Ba pene (5.2.22) 

The objective is again to choose the values of the decision variables to minimize the the 

expected total cost per unit time function as defined in (3.1.1). 
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Lemma 5.1 

The expected total cost per unit time function for the generalized Shewhart control chart is 

equivalent to that for the standard Shewhart control chart under Fact 5.2. 

The proof is in Appendix D(7). 
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CHAPTER 6 

Analysis and Results 

The objective of this research is to compare the costs associated with the standard Shewhart 

control chart and the generalized Shewhart control chart. The motivation for this effort is to 

increase control chart sensitivity to a small but anticipated shift in the process average. 

Algebraic manipulation of the cost models is not trivial. The cost terms are functions of the 

decision variables, cost parameters and the distribution parameters. Two of the decision 

values of m and n are constrained to be integers, while k, and ky may take real values. As 

Montgomery [32] indicates that a sampling frequency of one hour is common for many 

charts, h = one unit of time is used through this research. The behavior of the expected total 

cost per unit time is analyzed algebraically and numerically. Mathematica [52] and GINO 

[25] are used to examine the behavior of the cost models over reasonable parameter sets 
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and the generalized reduced gradient (GRG) algorithm is used to attempt to minimize the 

expected total cost per unit time function for those parameter sets. The parameter ranges 

evaluated are described below. 

The first group of model parameters are A, 6, a and b which govern the distribution of the 

time to shift. The range for A is taken to be between 0.01 and 0.25. This range is 

commonly used in the literature, see Duncan [13]. The range for 6 is between 8 and 200. 

This range provides the same range of the mean values of the time to shift for both the 

negative exponential and the uniform distributions. The range for a is between 0.01 and 

0.25 and the values for b are 1.25 and 1.5. 

The next model parameter considered is 5, the magnitude of the shift in the mean when a 

shift occurs. The value of 6 is assumed to be 0.522. This value is selected because it 

corresponds to an increase in the proportion nonconforming from 0.01 to 0.02. 

The range of values considered for c;, the sampling and inspection cost is between 1.0 and 

5.0. These represent small and large inspection costs relative to the other cost parameters. 

The range for the cost of producing nonconforming product, cg is between 1 and 10 which 

corresponds to a relatively small cost to a relatively large cost of producing nonconforming 

product. The value for r, the rate of production is 200. 

The cost of investigating a false alarm, cr, is arbitrarily assigned a value of 100. The cost of 

investigating and correcting a true signal, c,, is assigned a value of 10 over the range of 8 as 

there is no apparent reason that the cost of investigating a true signal should increase with 

the shift magnitude. 
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The above parameter ranges define the scenarios under which the economic performance of 

the standard and the generalized Shewhart control chart are investigated. The numerical 

analysis of the behavior of the expected total cost per unit time function with respect to the 

decision variables for a family of the parameter ranges is examined. 

The expected total cost model is convex in k for all ranges of the other model parameters. 

Small values of k create large expected total cost because an excessive number of false 

alarms is given. This may dominate any cost savings due to rapid shift detection. 

Intermediate values of k produce the smallest expected total cost because they balance the 

costs of nonconforming production against the false alarm cost. Large values of k provide 

reduced shift detection probabilities and thus increasingly large nonconforming production 

cost. The total effect is that the expected total cost decrease to a minimum and then rises 

again as k increases. 

The expected total cost is also convex in n for all ranges of the other model parameters. 

Small values of n imply low sampling costs but high nonconforming costs since shifts are 

not rapidly detected. Intermediate values of n balance the sampling cost against the 

nonconforming product cost to achieve the lowest expected total cost. Large values of n 

imply large sampling costs, which may dominate the savings in nonconforming product 

costs achieved through greater detection probabilities. These interpretations vary depending 

upon the relative importance of each of the cost categories but the overall effect is that the 

expected total cost is convex in n. 

The above results for n and k are anticipated for the standard Shewhart control charts in 

general and confirmed for the generalized Shewhart control charts. The generalized 
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Shewhart control chart has features that the standard Shewhart chart does not. The 

properties that result from these additional features are now explored. 

Model behavior in terms of the decision variables m, k, and ky is characterized by three 

cases. The relative magnitudes of the cost parameters in each case determine which 

behavior is observed. 

In case one, the expected total cost per unit time function, Cy, displays convex behavior in 

each of the decision variables m, k; and ky and a minimum occurs in the interior of the 

convex feasible region. This means that the minimum cost control chart is some form of the 

generalized Shewhart chart. See figure 6.1. 

In case two, Cr is still convex but it has a minimum corresponding to a boundary of m = 0 

and ky = k, and it increases strictly in each of those variables. This means that the 

minimum cost control chart a standard chart with no control limit changes. See Figure 6.2. 

In case three, Cry strictly decreases in both m and ky and has a minimum at the boundary k, 

= ky and m is unbounded. This means that the minimum cost control chart is a standard 

chart with no control limit changes. See Figure 6.3. 

In order to determine why the Cy behaves this way, each of the four cost categories as well 

as the expected cycle length is examined for the nature of its contribution to the expected 

total cost. Note that the analysis below is for cost model I and it is also true for a uniform 

distribution since we can always choose the values of the rate parameter such that the mean 

value of the time to a shift is common for negative exponential and uniform distributions. 
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Note again that since h is defined as an arbitrary unit of time, its influence should be 

apparent in the effects of other parameters and variables so it need not to be examined 

specifically. 

The inspection cost for a standard Shewhart control chart (3.1.4) is: 

Cj = {cg + ne; }/h (6.1) 

oC, _ 2 
dc, h (6.2) 

oC, _& 
on oh (6.3) 

which is to say C; is linear in c; and n, respectively. Given the above algebraic results, 

numerical evaluation of the expressions should provide an indication of the relative 

magnitude of the impact of the values of the parameters. Consider the following values: 

Co = 1.00, c; = C1, 2, 3, 4, 5), n = (3, 5, 8, 10). (6.4) 

Then we obtain the values for Cj, see Table 6.1. These results are the same for the 

generalized Shewhart control chart. 

The false alarm cost for a standard Shewhart control chart (3.1.6) is: 

_ coe" — Co 
‘ 1-(1-a)e™ e“ -1+a (6.5) 

  

Thus Cr depends on the input parameters 4 and cr and the decision variable k. Therefore: 

ac, _ a 
dc, e"-1l+a (6.6) 
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which is to say Cris linear in cp with a slope is less than 1. Consider the parameter i: 

  

  

oC, _  —c,ahe™ <0 
™ 2 

Oh  (e*-1+4) (6.7) 

and: 

oC, e“-1 da <0 = — 
dk (e* -14+0)° Ok 6.8) 

since k is a standard normal coordinate, da/dk < 0. Consider the following example values 

which yield the values for P[A] that are shown in Table 6.2. 

A = (01, .05, .1, .2) 

k = (2.5, 2.75, 3.0) which imply a = (.0124, .006, .0026) (6.9) 

Note that the numerical results conform to the behavior indicated by the derivatives. It 

appears that the influence of both 4 and k is substantial. Finally as Cris linear in cg, 

increasing Cr will magnify the changes shown above. 

Next consider the corresponding analysis for the generalized chart. In this case, the false 

alarm cost (3.2.5) 1s: 

m 

C= ef a, (0- a) e™* + (1-a4,)" ar, x =a) 
i=l i-m= 

__ faft-0-aye*] 0, 
=Cc   

(6.10) 

For this function, a) and a replace a, kj and ky replace k, and m is added. The 

parameters A, h, and cr are the same as in the model for the standard chart. Observe that the 
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derivative analysis for cr is the same as Cris linear in cp. Thus ce will tend to emphasize the 

effects of the other model quantities. The following inequalities are true: 

(l—a,)" <e,(m), i=1,2 

B? <e,(m), i=1,2 

e*™ < ¢,(m) 

(l-a,)"e"™ <e,(m), i= 1,2 (6.11) 

Note that €,(m), j = 1, 2, 3, 4 are small values depending on m. The analysis of the 

influence of 4 can achieved most easily by analyzing the first equation of (6.10). Thus: 

oC e|-he,  ( —a,)e™* —h(1-0,)"o, silt - an) te | <0 
oh = ivmel (6.12) 

The above summations are all positive with neagtive coefficents. In the case of k; and ky, 

we study the third equation of (6.10) and obtain the derivatives: 

  

  

  

  

ac, __ [(e*=2ft-(@-a)"e*"] may (12, Pe 
ok, f (c*-14+0,)' 

e*—1+a, 

_ma,(1- a, )"e™ | day, 
e"-l+a, Ok, (6.13) 

which reduces to: 

ac, _, [(e*=tfi- 0-0)" ] Jaa, 
ok, (e™ —1+ a,) ok, 

sem(l-o,)emm| Sed f 1 ee» —1+a, e“-1l+a, ok, (6.14) 

Note that the first term of the above equation is positive and can be large because of the 
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form of the denominator. The second term is negative and small because a < G2 by 

construction and therefore: 

  

QO, < O, 

e“—1+a, e“ -1+a, (6.15) 

Thus, the second term is negative but the magnitude is not great since the fourth equation of 

(6.11) is true and the difference between O, and Q is not too large. Therefore the first term 

dominates the second one. Then: 

  
3c, __ fler-ti- 0a)" ]] a, ——t 0 
ok, (e* -1+a, y’ dk, * 

(6.16) 

Because a, and ay are tail probabilities of a normal distribution, it is clear that da;/dk; < 0, 

i= 1,2. As aconsequence, both of the above derivatives are negative. Considering the 

influence of m. We study the third equation of (6.10) and obtain: 

OC, _ ot,|-(1- 04)” log(1— a, je" + Ah(1- a, rem") 
=c,— 

| 
  

  

  

om e“-1+a, 

o,|(1 —a,)" log(1—- a, Je-"™" — Ah(1- a, rer) 
+ , : 

“t e™ —-1+a, (6.17) 

which reduces to: 

aC, m _Amh a a 
—=c,(l-a —log(l—a,)+Ah — 2 om Ce ( 1) € [ og( 1) |= rd (6 18) 

Now apply (6.15) and keep in mind that log(1- a,) < 0. Thus the above derivative is 

negative. In order to obtain a sense of the trends indicated by all of the above derivatives, 

consider numerical cases in which: 

A= (.01, .05, .1, .2) 

ky = (2.5, 2.75, 3.0) which imply a, = (.0124, .006, .0026) 

ky = (1.75, 2.0, 2.25, 2.5) which imply a) = (.0802, .0556, .0244, .0124) 

m = (10, 20, 40) (6.19) 
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For these values of the model variables, the associated values of P[A] are listed Table 6.3. 

Observe that the numerical results illustrate the fact that Cr is decreasing in all A, ky, ky and 

m. Note also that increasing m enhances the effects of A and k; and ky. Furthermore, ky 

appears to have a greater effect on P[A] than does k,. Note that setting k, = ky at any value 

should result in the same values of P[A] as occur in the standard case and that this is 

confirmed in the evaluation of the cases having kj = k; = 2.5. Finally, observe that the 

value of Cris greater for the generalized chart than for the standard chart because the 

probability of a false alarm is greater for the generalized chart. This is a desirable feature of 

the generalized chart. The implied increment in cost should be offset by reduction in defect 

production costs. 

The true signal cost for a standard Shewhart control chart (3.1.8) is: 

_ ¢,(1-e*) _ et _] 

t “mn ot l-(l-aje™ =e“ -1+0 (6.20) 

Thus C, depends on the input parameters 4 and c,; and the decision variable k. Therefore: 

ac, __e=1 = ——_—_ 
oc, e’ —-l+a (6.21) 

which is to say C; is linear in c, with a slope that is less than 1. Consider the parameter A: 

ac, othe“ 
=C <= =¢,_—*"__ 50 

mu (e140) 
(6.22) 

This is to say that C, is increasing in 4 as should be expected in that 1/ is the expected time 

to system shift so a large value of 4 implies less time before a shift. Next, among the 

decision variables, C, depends only on k. Thus: 
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ac, ac, _, -le*=1_ aa 
ok 
en 50 
(140) ok 

=C 

(6.23) 

Since k is a standard normal coordinate, da/dk < 0 for any positive value of k. 

Given the above algebraic results, numerical evaluation of the expressions should provide 

an indication of the relative magnitude of the impact of the values of the parameters. 

Considering the the same values, (6.9), the values for P[B] are listed in Table 6.4. Note 

that the numerical results conform to the behavior indicated by the derivatives. It appears 

that the influence of both A and k is substantial. However, this should be considered 

relative to the other cost terms. It is also true that the effect of 4 is diminished as k is 

increased. Finally as C, is linear in c,, increasing c, will magnify the changes shown above. 

Next consider the corresponding analysis for the generalized chart. In this case, the true 

signal cost (3.2.8) is: 

C= e(l- ae 1 _ [le ouje™ YP" [Aone] 
l-a,)e™ = 1-(1-a,)e"  1-(1-a,)e™ 

_ m+l A(m+1)h _ m+l A(m4+))h wo(e-if ate Haye tea 
e —1+0, e ~—1+a, e —1+a, 

(6.24) 

For this function, a; and a2 replace a, kj and ky replace k, and m is added. The 

parameters A, h, and c; are the same as in the model for the standard chart. Observe that the 

derivative analysis for c; is the same as C;, is linear in c,. Thus c; will tend to emphasize the 

effects of the other model quantities. The influence of 4 is: 

m+1 m+lI 

gc, = c,a,he™" _ c,he™ Ol, (1 _ a, ) _ a,(1 ~~ O,) 

on (e* —l+a, )’ eMmtyh (e* —1+4a, ’ (e™ —1+ a,) 

c(t Dh(e™ ~1)} (1-04 yr (l-a,)"™ 
ehatvh e“-lt+a, e"-l+a, 

  

(6.25) 
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While this form may appear complicated, it is not too cumbersome because the first term 

corresponds to the partial derivative constructed for the standard chart. In addition, since a 

> a, by construction, then: 

    

    

  

  

a,(1-o)"" — o(t-o)"" - a(1-o,)" -a,(1- 04)" 

(e*-1+0,) (e*-1+0,) - (e*-1+0,) 

< a.,(1-a,)"" —a,(1-a,)"" < (1-a,)"" (a, — Ot) < (1-a,,)"(o, -o,) 

(e140) ~ (e-1+0,) (e140) (6.26) 
and: 

(1-0,)"" _. (l-a,)"" > (1-a,)"" -(1-0,)"" > (1-o,)"" -(1-a,)"" 

e“-—1+a, e"-l+a, _ e“-1+a, - (e" -1+0,)° 

> (1-0.,)"" = (1-a, )(1-0,)" > (1—a,)"(a, - a) 
~ (e*-1+0,)° - (e*-1+0,)° (6.27) 

The above inequalities mean that the magnitude of the third term of (6.24) is greater than 

that of the second term of (6.24), therefore the derivative is positive. In the case of k, and 

ky, we obtain the derivatives: 

oC, | c,(e" —1) 
= _at(m4lh 1— m+1 

dk, Sata perl ° * (lo) 

+(m+1)(1-a,)"(e* -1 + 01,) [% 
dk, (6.28) 

and: 

  

ac, _ c,(e* _ Lente 

Oks (Pm atvm yy ECan nt asP (02-14) Se 
(6.29) 

Because a, and a» are tail probabilities of a normal distribution, it is clear that da;/dk; < 0, 

i= 1, 2. In (6.28), both the second term and the third term are very small for suitably large 

values of m, therefore the first term dominates the others. As a consequence, both of the 

above derivatives are positive. 
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Next, consider the time of the change in the width of the control limits, m. We obtain: 

  

  

oC, _ —(e*-1) (1-a,)"" [log —a,)— (m+ Dh] 
om Teh y+ a, eh(m+))b 

(e“-1) (1-0,)""[log(1—a,)—(m +h] 
+O. _ A(m+Dh 

oho 
(6.30) 

Factor this as: 

  
aC, _ (e* =1) (1-a,)"" [-log(d- a) + (m+ Dh] 
om e“—1l+a, ehimeDh 

(1-a,)"" [-log(1-a,)+(m+Dh] 
  

  

Aho A(m4 Dh 
e 1+a, e (6.31) 

This quantity is small and positive. Since a; < aj by construction, 

(1-a,)"” 5 (1-a,)"” 

e"-l+a, e*-l+a, (6.32) 

and since -log(1- a1) > -log(1- a2) > 0, the first term of (6.31) dominates the second one. 

This means that tha above derivative is positive. Refering to (6.27), we conclude that it is 

small. That is, increasing m increases C,. 

In order to obtain a sense of the trends indicated by all of the above derivatives, consider 

the same numerical cases (6.19). The associated values of P[B] are listed in Table 6.5. 

Observe that the numerical results illustrate the fact that C; is increasing in all 4, ky, ky and 

m. Note also that increasing m enhances the effects of A and kj and kp. Furthermore, k» 

appears to have a greater effect on P[B] than does ky. Note that setting k; =k» at any value 

should result in the same values of P[B] as occur in the standard case and that this is 

confirmed in the evaluation of the cases having ky =k, = 2.5. Finally, observe that the 

value of C; is greater for the generalized chart than for the standard chart because the 

6 Analysis and Results 79



probability of a true signal is greater for the generalized chart. This is a desirable feature of 

the generalized chart. The implied increment in cost should be offset by reduction in defect 

production costs. 

The nonconforming production cost for a standard Shewhart control chart (3.1.14) is: 

    
Ah—-(i-e™) np (Ah—De“+1 bP 

C,= d nh = C4 ah rah 7 (1-e*) el ° | =i) 0-8) (6.33) 
Thus Cg depends on the input parameters 4, 5 and c; and the decision variables n and k. 

Therefore: 

oC, _ (Ah—Je™ +1 hB 

O(carp) Afe*-1) = (1-B) (6.34) 
  

which is to say Cy is linear in cgrp with a slope that is greater than 0. 

Consider the parameter A: 

aC, 1 = h?e* 
dW | (gh 

(e* 1) (6.35) 
This derivative is negative for very small values of 4 and it is positive for all the values of 4 

in this analysis. This is to say that Cg is increasing in A as should be expected in that 1/A is 

the expected time to system shift so a large value of 4 implies less time before a shift. Next, 

consider the decision variables. Cg depends on k. Thus: 

Oy h Boo 
atP 2 

ok (1-B) ok (6.36) 
  

Because k is a standard normal coordinate, 08/dk > 0 for any positive value of k. 
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Cg also depends on the sample size, n. Thus: 

aC, hap. 
CyIp 

én * (1-8) an (6.37) 
    

because OB/dn < 0 for any n. 

Given the above algebraic results, numerical evaluation of the expressions should provide 

an indication of the relative magnitude of the impact of the values of the parameters. 

Consider the the following values: 

§ = 0.522 

n = (5, 10) 

= (.01, .05, .1, .2) 

k = (2.5, 2.75, 3.0) which imply a = (.0124, .006, .0026) 

B = (.9087, .9433, .9667), when n =5 

B = (.8021, .8644, .9113), when n =10 (6.38) 

Note that the numerical results confirm to the behavior indicated by the derivatives. See 

Table 6.6. It appears that the influences of both n and k are greater than that of 2. 

However, this should be considered relative to the other cost terms. Finally as Cg is linear 

in Cgrp, increase Cgrp will magnify the changes shown above. 

Next consider the corresponding analysis for the generalized chart. In this case, the cost of 

nonconforming production (3.2.15) is: 

___ fAh-(i-e™*) bB(t-e*™) Be 
c= Mi-e*) ~ 1-B ‘I-8, 

sof 20s | 
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(6.39)



For this function, 8; and Bz replace B, k, and ky replace k, and m is added. The parameters 

A, h, and cgrp are the same as in the model for the standard chart. Observe that the 

derivative analysis for cgrp is the same as Cg is linear in cyrp. Thus cyrp will tend to 

emphasize the effects of the other model quantities. Next, consider the influence of A: 

dC, 1 h’e™ 2,-amn| PB B 
on cal 2 (e™ _ 1) | + C,Ip € 1 _ B, 1 _ B, 

+c,rp8,| ~--—2 h’m e“-1 

vPT—B, 1—B, Je*™ Bre -1 

™ mh 2 +e 1 1 Bs ~1h?(1-f, )e™ 
1-B, 1-B,| e’™" (@e"-1) (6.40) 

  

    

  

Since 0 <8; < 1,1=1,2, and 8, > 8B» by construction, 

  

BSB, 
1-B, 1-6, (6.41) 
and: 
11 

1-B,  1-B, (6.42) 
While (6.40) may appear complicated, it is not too cumbersome because the first term 

corresponds to the partial derivate constructed for the standard chart. In addition, the 

second term is positive because (6.41) is true. Next, taking the third and the fourth term 

together we obtain: 

1 1 i{h’m e*-1 i 1 |Bme’*™-1h’(1- Bye" 

ca | a tet ete eo Be*—1y 

- 08, 

      

1 1 | h? 
~ aU + V) 

1-B, 1-B, Je**(B,e* -1) (6.43) 
  

where: 

U = (c*~1] m(B,* -1)-[(Be*)" -1]], v= (Be -1)[(8,")” -1] 
(6.44) 
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Note that U is negative for the values of the parameters in our analysis and V is always 

positive because both components have same sign. Clearly: 

[Ul > [VI (6.45) 

Therefore U+V <0 and (6.43) is positive since (6.42) is true. Finally, (6.40) is positive. 

In the case of k; and kp, we obtain the derivatives: 

    

  

ac, ___ h(l-e"™) ag, any B —* = eyrp————— —* + cyrph({1-e™" || WJ 
dk, *~ (1-B,)) ak, * ( ok, (6.46) 

where 

w- Aas 1 1 Roe B, 
B,-e™ 1-8, 1-8, B,-e" (1-B,)" 

mp? 1 aes B, 
B,-e™ 1-8, 1-B, B,-e™ B,-e™ (6.47) 

It is clear that the first term of (6.46) is positive. And: 

m —Amh 

Bie" —< >0 
B,-e (6.48) 

Note that (6.48) is true as numerator and denominator have the same sign. Thus the first 

term of (6.47) is positive and the second term is negative. The third and the fourth term 

always have different signs. Refering to (6.11) we conclude that the magnitude of (6.47) is 

small in any cases and therefore (6.46) is positive. 

aC, _ rp he + hB,(1-e™* few - Br) op, 

dk, "“|(I-B,) — (1-B,) (e*-B,) Jak, (6.49) 

  

Because B; and B» are Type II error probabilities of a normal distribution, it is clear that 

OB;/ok; > 0, i = 1, 2. As a consequence, (6.49) is positive. 
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Cy depends on the sample size, n. However, the analysis is similar to the analysis of (6.46) 

and (6.49) except that the derivatives changed. In this case, 08./on < 0, i = 1, 2. Thus the 

partial derivative with respect to n is negative. It means that Cg decreases as sample size 

increases which is expected. 

Next, consider the time of the change in the width of the control limits, m. We obtain: 

      

oC, _ ah 1 1 _=«{ BM logB, +Ahe*™™ 

am = CHPHB(I-e Fes | B,-e™ 
+C, hr B, _ B, —Amh 

Ps 1-B, | (6.50) 

Refering to (6.41) it is apparent that the second term of (6.50) is posotive. The analysis of 

the following form is: 

B™ logB, +Ahe*™™ 
  

B, _ es 
(6.5 1 ) 

and let: 

X(m) = BT logB, , Y(m) = Ahe*™™ (6.52) 

Note that (6.51) is negative because: 

(1) If the denominator of (6.51) is positive then X(m) dominates Y(m); 

(2) If the denominator of (6.51) is negative then Y(m) dominates X(m). 

Thus the first term of (6.50) is also positive since (6.42) is true. Therefore (6.50) is 

positive which implies increasing m increases Cy. 
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In order to obtain a sense of the trends indicated by all of the above derivatives, consider 

the following numerical cases: 

§ = 0.522, n = (5, 10), m = (10, 20, 40), A = (.01, .05, .1, .2) 

k, = (2.5, 2.75, 3.0) which imply a, = (.0124, .006, .0026) 

ky = (2.25, 2.5) which imply ag = (.0244, .0124) 

By = (.9087, .9433, .9667) when n= 5 

B, = (8021, .8644, .9113) when n = 10 

Bo = (.8708, .9087) when n =5 

Bo = (.7481, .8021) when n = 10 (6.53) 

The associated values of E[D] are listed in Table 6.7. Observe that the numerical results 

illustrate the fact that Cy is increasing in all A, ky, ky and m and Cy is decreasing in n. Note 

also that increasing m enhance the effect of 4 and k, and k» and that increasing n reduce the 

effect of 2 and k, and k». Furthermore, ky appears to have a greater effect on E[D] than 

does k,. Note that setting k, = ky at any value should result in the same values of E[D] as 

occur in the standard case and that this is confirmed in the evaluation of the cases having k» 

=k, = 2.5. Finally, observe that the value of Cy is less for the generalized chart than for the 

standard chart because the expected time out of control is less for the generalized chart. 

This is a desirable feature of the generalized chart. 

The expected cycle length for a standard Shewhart control chart (3.1.16) is: 

E[t] = s inf — a) e+ y (ee Na) BL 6) 
j=l 

= che 5 (1a) + (1 B)(I-e* AID, MMB 
j=l jet i=l 

othe" (ime™*)h |B (1-B)(-a)e™ 
1-8 [i-G-aje™}  [B-(-a)e™| [1-(1- ae] (6.54) 
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Thus E(t) depends on the input parameters 4 and the decision variables n and k. Note that 

the influence of 4 is analyzed by using the second equation of (6.54). Thus: 

  =“ = -oth? S P((1- are) +(1-B)hY JY 1-0)! *B"'[Z] 
j=l 

j=l 1=] 
(6.55) 

where: 

=—(|— ~A(I-1)h “Ath pana(l-al(y _ -ah\y Z =-(1-1)he +the7™" = he (1 eI 1 6.56) 

and: 

(1-e™*)1-1<0 (6.57) 

It is clear that the first term of (6.55) is negative while Z may have either sign. However, 

for any i, (6.57) is negative until 1 gets relatively large. By the time | gets large, the 

contribution of the second term will be very small since (6.11) is true. Thus (6.55) is 

negative in general. This means that E(t) is decreasing in A as should be expected in that 1/1 

is the expected time to system shift so a large value of 4 implies less time before a shift. 

Next, consider the decision variables, E(t) depends on k. Refering to the second equation 

of (6.52), thus: 

  

j=l 

oE(t) a “ah we. an \i-l 
= 2 YS j((1-a)e *) | 

-(i- ve -e™ as 5y (1- Le (1- a)? gi 

ne 
(6.58) 

It is clear that the second term is negative. Now we analyze the first term: 

oo - he~* 

ahe* ¥' j(1-aje™)” = a 
2 | | [1-d-aje™] (6.59) 

Therefore: 
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0 ~Ah — ~ah \J7} 0 h mm 
2 ae we: _- a)je ) = 2 tte 

j=l [1-(-aje™*] 

he*[1-(1- ae Hf -(1-a)e™] - 200} 

- 1 -—(1- ae] 
  

= he 5 [1 —~e ae™ | 

[1-(-aje™] (6.60) 

This derivative is negative for most values of 4 and a in our analysis. For large values of A 

(6.60) is positive. Howevwe, by the time A gets large, the second term of (6.58) dominates 

the first one because the second term represents the time of getting a true signal, large 

values of A implies large values of P[B]. Therefore (6.60) is negative and the numerical 

results confirm this analysis. Refering to the third equation of (6.52) we obtain the 

following expressions: 

de(t) 1 (l-e™*h gB (1-e*)h 
a8 (1-B)' [B-(i-a)e™] 1-B[p-(-a)e*] 

,_ Uren Geaje™ (Ive) (1-B)(-a)e™ 
[B-(-a)e™][1-C-aje™]  [B-a-ae™]° [1-1 ane]? 

    

  

(6.61) 

and with: 

B-(1-a)e™ (6.62) 

and: 

JB-G-aje™|, [1-G—-a)e™| (6.63) 

Note that if (6.62) is positive, then only the second term of (6.61) is negative. The fourth 

term of (6.61) donimates the second one because of the form of its denominator. For small 

values of B and A, (6.62) is negative. In this case, both forms of (6.63) are very small and 

therefore the fourth term of (6.61) donimates the others because of the form of its 
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denominator. In summary, the derivative (6.61) is positive. Because k is a standard normal 

coordinate, da/dk < 0 and dB/dk > 0 for any positive value of k. Finally: 

OE(t) _ GE(t) 00 JE(t) 0B 50 

Since E(t) also depends on the sample size, n. Thus: 

OE(t) _ E(t) 0B <0 

This is obvious because (6.61) is true and dB/dn < 0 for any n. 

Given the above algebraic results, numerical evaluation of the expressions should provide 

an indication of the relative magnitude of the impact of the values of the parameters. 

Consider the same values (6.38). We obtain the values for E(t). See Table 6.8. Note that 

the numerical results conform to the behavior indicated by the derivatives. It appears that 

the influence of n and k is greater than that of i. 

Next consider the corresponding analysis for the generalized Shewhart control chart. By 

defination, E(t) = E(tp) + E(t,). Therefore the analysis of the monotone behavior of E(t) can 

be achieved by analyzing the monotone behaviors of E(t,) and E(t). The expression for 

E(t, (b)) (3.2.21) is: 

— -h(s- - s—l Am—s+ ~ : j-m~- 
E[t, (b)] = (1-B,)h > fe*e* —e* (1-0, BP Dj (1-B, Bie" 

= h(l-e# 1 m re B, [e™ (1 ~ a,)]" 

= h(t en B, -[e*(1-a,)| | 

Using the second equation of (6.63) we obtain: 

    

(6.66) 
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dE|t, (b)] —a.-anf 1 r Bile “(1- at, )]" 
— >, =-—h“e He)" B, -|e *(1- Oo A) | 

“lt ee™ tem | Ble GP" — Bile PD 
Ml lice (i -[e"0-a)]p | 

enli-e®(—t am mhB,[e™*(1—-0,)]"[B, -[e*(1-@,)]] 
(1 rf —B, 6, _ (e* (i-a, iT | 

    

  

    

(6.67) 
Refering to (6.48), it is clear that: 

m—pfemO-a)) _, B-[e*G-a)f 
= 8B, - ——>0O 

B, -[e*(1-a,)| B, -|e =a] (6.68) 
Therefore the first term is negative and referring to (6.68) that the second term and the third 

term always have different coefficients. Thus the two terms balance together and therefore 

the first term donimates the others. In the case of k), analyzing the first equation of (6.66): 

dF[t, (b)] 
oa, 

- B,)hy fem _ e** l(s—- 1)(1-«,) 2 gmt vj j(1-B, pr" < 

  

  

j=m+1 (6.69) 

and: 

dE|t, (b)] 

op, 

—B,)h > fe” — em —s +1)(1- a, BP* 35 (1-B, BE™ > 0 
s=l jJ=m+l (6.70) 

Thus: 

az[t(b)] _ aE[t,(b)] aq, , AEft.(b)] aB, . 
ok, oa, ok, op, ok, (6.71) 
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In the case of ky, analyzing the second equation of (6.66) we obtain: 

ae(t (6) | IP Be" (-e)) |   

  

  

~ 2 - 2B. = (1-B,) | Bi-[e*G-a)] 6.72) 

The above derivative is positive because (6.68) is true and therefore: 

aE{t, (by) _ 9E[t4(b)] aB, | 
ok, op, ok, (6.73) 

In the case of the sample size n: 

OF[t,(b)] _ FE[t,(b)] 2B, | AE[t,(b)] 0B, 
on op, on op, on (6.74) 

It is clear that the above derivative is negative because both (6.70) and (6.72) are true and 

O8;/dn <0, i= 1, 2. The influence of m is analyzed using the second equation of (6.66): 

dE[t,(b)] _ an \| Br’ = Byfe™* (1-4) 

dm =h(l=e \? B, -[e7 “(1- at,)| | 

“th 1 \Br* logB, + (Ah -log(1- at, )) )B,[e™ (1- a,)]" 
h{i- +h(l-e (& +m F B, -[e™*(1—-a.,)| (6.75) 

The first term of the above derivative is positive since (6.68) is true. Now consider: 

    

™* logB, + + (Ah —log(1— Q, ))B,[e"*( (1- o,)]" 

B, -[e**(1-a,)| (6.76) 

Note that the above form could be negative for some values of the model parameters since 

  

logB, < 0. However, (6.76) is a very small value because (6.11) is true and the conclusion 

is that the derivative (6.75) is positive. Note that the above natures are also true for E(t,(a)) 

and E(t,(c)) since by defination that they have same properties except that the range of the 

summation changed. Note also that E(t,) = E(t,(a)) + E(t,(b)) + E(t,(c)) by defination, 
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therefore we have studied the monotone behavior of E(t,). Next, the form of E(t) (3.2.18) 

is: 

m 

E[t,] = jh(1- or, )"04[1- F(jh)] +(1-0,,)" ¥ jh(1-c,)"""o.,[1 - F(jh)] 
j=l j=m+1 

= a,h¥ j(1-a,)e™* +(1-a, "oh Y j(l-o,)™ te 
j=l j=m+l 

“ffe-eT} mi-ayren 
=a,h - 

-t-a Pa 
  

(1 _ o,)” en em+l)h m(1 _ a)” en tm+t)h 
  +a,h —;z + Tr 

[-t-ajeap 0-3) 6 
Refering to the second equation of (6.74), we obtain: 

Et m — . j-m-l _ 
Elid. - = ash SF ( (1-0, )e™* — (1-0, )"0,h? SP (l-a,)' tenth 

jem+l (6.78) 

The above derivative is negative since the two summations are all positive with negative 

coefficients. In the case of k): 

  oElt] _ Ze n> j( j(l-a,) ne- m(1—«,)" ah x j(l-a,)>"-e™ 
da, 0a, ia jem+ (6.79) 

It is clear that the second term is negative, the first term is: 

3 : 
fan $i0- 1) " j=l 

  = — ——- — 

do, |[1-(I-a,Je™] [1 - (1-0, Je] 1-(1—-a,)e 6.80) 

Note that the magnitudes of both the second term and the third term of (6.77) are small 

since (6.11) is true. Thus the first term dominates the others and we obtain: 
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a | o,he™ | _ he [1 -ae"- e™| 

[1-( OO, 1-a,)e*]" [1 -(1- a, Je] 
(6.81) 

Note that the above derivative is analyzed before, see (6.60). Thus (6.79) is negative for 

suitable values of the parameters. In the case of k», refering to the third equation of (6.77) 

we obtain: 

  

dE{t,| | mt ~e™*)(1-0,, "errr | 

da, [i-(-a,Je*] 

[1-(1-a, Je] (6.82) 

The first term of (6.82) is positive. The second term is negative for small values of 4 and it 

dominates the first term because of its denominator. Again, for large values of A, the 

second term of (6.82) is positive and by the time A gets large, the magnitude of (6.82) is 

very small because (6.11) is true. In summary, (6.82) is negative. Because a, and a are 

tail probabilities of a normal distribution, it is clear that do,/dk; < 0, i = 1, 2. Thus: 

dE[t,| _ dE[t, | da, 
  

  

>0Q 
dk, act, ok, (6.83) 

and: 

aE ft] _ aElt,] a0, . , 
dk, da, dk, (6.84) 

Next, consider the time of the change in the width of the control limits, m. Refering to the 

third equation of (6.77), we obtain: 
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dE(t, | 
om 

= (th? —hloef1— Men tmtna OQ, _ a, 

Paonia She) wats aos 

  

  

[Amh? +h — mhlog(1—«,)|(1-a,)” exw Oh, _ Ot, 
  

To determine wether the above derivative is positive or negative, the following forms are 

  

analyzed: 

OH (e™* = 10a =) <0 i-(l-a,je™ 1-(l-a,je™ (1-(1-a,)e™)(1- (1-0, e™) (6.86) 

and: 
0, a, _ a,[1-(1-a., ye)" —02,[1— (1-1, Je™ I   
  

[1~ (1a, Je] : [i-(-a,)e™}  fl-(- a,)e™] [1- (1-a, Je" 
_ (a, — O )(o,0,e7" +2e* 92h 

_ 1) 

[i-(1-o, Je] [1-1-0 Je] (6.87) 

It is clear that (6.86) is true since e“4 < 1 and a < by construction. While (6.87) is not 

  

that clear but for suitable values of the parameters it is positive. In addition, refering to 

(6.11) that the magnitudes of both terms of (6.85) are small, and since E(t,) is increasing in 

m this imply E(t) is increasing in m even though (6.85) could be negative for some values 

of the model parameters. Thus, the monotone behavior of E(t) is clear. In order to obtain a 

sense of the trends indicated by all of the above derivatives, consider the same numerical 

cases (6.53) and we obtain the associated values of E(t) are listed in Table 6.9. The 

numerical results conform to the above analysis and the conclusion is summarized below: 

First observe that the numerical results illustrate the fact that E(t) is increasing in all ky, ky 

and m and E(t) is decreasing in 4 and n. Note also that increasing n orm enhance the effect 
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of 2 and k, and ky. Furthermore, ky appears to have a greater effect on E(t) than does k). 

Note that setting k, = ky at any value should result in the same values of E(t) as occur in 

the standard case and that this is confirmed in the evaluation of the cases having kz = k; = 

2.5. Finally, observe that the value of E(t) is less for the generalized chart than for the 

standard chart because the expected cycle length is less for the generalized chart. This is 

equivalent to say that 1/E(t) is greater for the generalized chart than for the standard chart 

because the inverse of the expected cycle length is greater for the generalized chart. This is 

a desirable feature of the generalized Shewhart control chart. 

In order to determine if the generalized Shewhart control charts are economically attractive 

for any given set parameters, the conclusion is the following: 

The convex behavior with an interior minimum that is characteristic of case one is apparent 

when the increasing behavior of the model terms and the decreasing behavior of the model 

terms are in balance. This means that the rate of increase of the increasing model terms will 

produce is offset by a similar rate of decreasing in the decreasing model terms to produce 

the minimum in the interior of the feasible region. The convex increasing behavior of the 

expected total cost per unit time that is characteristic of case two is apparent when the 

increasing behavior of the model terms dominate the decreasing behavior of the model 

terms. The convex decreasing behavior of the expected total cost per unit time that is 

characteristic of case three is apparent when the decreasing behavior of the model terms and 

the increasing behavior of the model terms. In both case two and case three above, the Cr 

curve appears to display strictly increasing or decreasing behavior over ranges of ky, ka n, 

and m, the generalized Shewhart control charts are probably not advantageous. This 

analytical results can be seen in Table 6.10. Where the up arrow means that the 

corresponding term is increasing and the down arrow means that the corresponding term is 
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decreasing. In addition, the GRG approach is used as direction may not yield integer values 

for m and n, and the following rounding method can be used to get integer values. This 

method functions as the following steps: 

(1) Use GRG to obtain a continuous solution for m and n; 

(2) Study the 23 = 8 different combinations of the neighborhood integer values of (m, n); 

(3) Choose the values of (m. n) which minimize the expected total cost. 

Finally, the optimization problem for the general cost models can be solved using the two- 

step optimization technique and the following parameter values are used: 

m = (10, 20, 30, 40) 

n = (2, 4, 6, 8) 

6 = 20, 8 = 0.5, = 0.1, a = 0.05, b =1.25 

Cq = 1.0, r = 200, p = 0.01, cg = 1.0, cj =1.0, cp =100, c, = 10 (6.88) 

For each (m, n) determine the optimal values of (k;, ky) and the optimal value of the 

expected total cost. At this step, the optimal value of the expected total cost occurs when 

(k;, k}) = (2.79, 2.52), call this Cy[1]. As an example, the plot of Cy(m = 20, n = 6, k;, 

k5) can be seen in Figure 6.4. Next, plot Cy[1](m, n) and let C7[2] be the optimal value of 

C+[1](m, n). Then Cy[2] occurs at (m’, n°) = (19, 6). See Figure 6.5. Finally, the 

optimal value of the expected total cost per unit time function for the general cost model I, 

Cy = Cy[2] = 8.6472 and (k;, k,, m’, n°) = (2.79, 2.52, 19, 6). The detail results of the 

cost models are listed in Table 6.11. 
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Cr(k) 

Cr(k) 

Cr(m) 

    
Figure 6.1 Cy as a Function of m, kj, or ky, Case 1. 
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Crk1) 

Cr(k2) 

CtT(m) 

      
Figure 6.2 Cy as a Function of m, k,; or k,, Case 2. 
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Cr(k1) 

Cr(k2) 

Cr(m)     
Figure 6.3 Cy as a Function of m, k,; or k5, Case 3. 

6 Analysis and Results 98



  

Figure 6.4 Cy as a Function of (m=20, n=6, kj, k) 
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Figure 6.5 Cy;[{1] as a Function of (m, n) 
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Table 6.1 Values for C; 
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11 

17 

21 

10 

16 

25 

31 

13 

21 

33 

41 

16 

26 

41 

31 
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Table 6.2 Values for P[A]. The Standard Case 
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Wk 

01 

05 

.10 

.20 

2.50 

5527 

1947 

1055 

0530 

2.75 

.3738 

1047 

.0570 

.0264 

3.0 

.2055 

0482 

0421 

.0116 
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a\Ky 
01 
05 
10 
20 

ky 
01 
05 
10 
20 

aNKy 
01 
05 
10 
20 

NK, 
01 
05 
10 
20 

ky=1.75, m=10 
2.50 

8208 

4170 

2117 

0785 

ky=2.0, m=10 
2.50. 
7654 
3423 
1694 
0671 

ky=2.25, m=10 
2.50 

6772 

.2635 

1325 

.0586 

ky=2.50, m=10 
2.50 

5527 

1947 

.1055 

0530 

Table 6.3 Values of P[A]. The Generalized Case 

2.75 

8123 

3930 

1848 

.0568 

2.75 

7531 

3133 

.1397 

.0446 

2.75 

.6590 

2291 

.1004 

.0355 

2.75 

5260 

.1560 

.0716 

.0296 

3.0 

.8078 

3804 

.1708 

0455 

3.0 

.7466 

2981 

1242 

0329 

3.0 

6494 

2111 

0836 

.0236 

3.0 

.5120 

.1356 

.Q539 

.0175 
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ky=1.75, m=20 
Nk, 2.50 2.75 
1 .7668 .7473 

5.3138 .2691 

10 .1401 .0991 

20 .0562 .0301 

ky=2.0, m=20 

Wk, 2.50 2.75 

01 .7226 .6969 

05.2738 = .2236 

10 .1263 .0835 

20 .0548 .0286 

ky=2.25, m=20 
ky 2.50 2.75 
OL .6521 .6167 

5.2316 .1756 

10 .1144 .0698 

20 .0538 .0274 

ky=2.50, m=20 

Nk, 2.50 2.75 
01.5527 .5034 

05 .1947 .1337 

10 .1055 .0599 

20 .0530 .0266 

3.0 

.7367 

2451 

0773 

.0164 

3.0 

.6828 

1965 

.0605 

.0148 

3.0 

5972 

1451 

.0464 

.0136 

3.0 

.4762 

. 1006 

.0354 

.0127 

ky=1.75, m=40 
Nk, 2.50 2.75 
01 .6892 .6447 

05 .2290 .1580 

10 .1092 .0591 

20 .0532 .0263 

k»=2.0, m=40 

Wk, 2.50 2.75 

01 .6610 .6080 

05 .2176 .1431 

10 .1078 .0572 

20 .0531 .0263 

k»=2.25, m=40 
Nk, 2.50 2.75 
01 .6610 .6080 

05 .2055 .1274 

10 .1078 .0572 

20 .0531 .0263 

ky=2.50, m=40 
Nk, 2.50 2.75 
1 5527 .4675 

O5 .1947 .1138 

10 .1055 .0534 

20 .0530 .0262 

3.0 

6189 

.1180 

.0317 

0121 

3.0 

5771 

1011 

0296 

0121 

3.0 

IT 

0832 

.0296 

0121 

3.0 

4168 

.0676 

.0264 

0121 
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Table 6.4 Values for P[B]. The Standard Case 

6 Analysis and Results 

Wk 

O1 

05 

.10 

.20 

2.50 

4477 

8053 

8945 

.9470 

2.75 

6262 

8952 

9560 

.9736 

3.0 

1947 

9517 

9759 

.9884 
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ky=1.75, m=10 
Nk, 2.50 
01.1378 
05 .4900 
10 .7103 
20 8879 

k»=2.0, m=10 

Nk, 2.50 
O01 .1712 
05 .5478 
10.7510 
20.9027 

ky=2.25, m=10 
Nk, 2.50 
1 2972 
05 .6981 
10 .8409 
20 .9316 

ky=2.50, m=10 
Nk, 2.50 
Ol .4477 
05 .8053 
10 .8945 
20 9470 

Table 6.5 Values of P[B]. The Generalized Case 

2.75 

.1049 

5015 

71266 

9051 

2.75 

.1743 

5593 

.7674 

9199 

2.75 

3003 

£1097 

8572 

.9484 

2.75 

4508 

.8168 

.9109 

.9641 

3.0 

1246 

5078 

£7355 

9144 

3.0 

1759 

5657 

.7763 

9292 

3.0 

.3020 

.7160 

.8661 

9580 

3.0 

4525 

8231 

.9198 

.9734 
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k»=1.75, m=20 
Wk, 2.50 2.75 
1 .1840 .1945 

05.6120 .6427 

10.8223 .8559 

20 .9379 .9627 

ky=2.0, m=20 
Wk, 2.50 2.75 
OL .2058 .2162 

05 .6389 .6697 

10 .8343 .8680 

20 .9396 .9688 

ky=2.25, m=20 
ky 2.50 2.75 

1 .3092 .3193 

05.7296 .7603 

10 .8694 .9031 

20 .9441 .9668 

k»=2.50, m=20 
Nk, 2.50 2.75 
01 .4477 .4581 

05 .8053 .8360 

10 .8945 .9283 

20 .9470 .9717 

3.0 

.2004 

.6600 

.8747 

.9763 

3.0 

2221 

.6869 

8868 

9780 

3.0 

3255 

7775 

9219 

9824 

3.0 

4640 

8532 

9470 

9853 

ANky 
O1 

05 

.10 

.20 

Ky 
O1 

05 

.10 

20 

ky 
01 

05 

.10 

20 

Ky 
01 

05 

.10 

20 

ky=1.75, m=40 
2.50 2.75 

2719 .3039 

.7447 8068 

8860 .9341 

9468 .9734 

k»=2.0, m=40 
2.50 2.75 

2793 .3112 

7490 8111 

.8867 .9348 

9468 .9734 

ky=2.25, m=40 
2.50 2.75 

3399 .3718 

71748 .8369 

8905 .9387 

.9468 .9734 

k»=2.50, m=40 
2.50 2.75 

4477 .4796 

8053 .8673 

8945 9427 

9470 .9736 

3.0 

3230 

8433 

.9616 

9882 

3.0 

.3303 

8475 

.9624 

9882 

3.0 

3909 

8733 

.9662 

9882 

3.0 

4987 

.9034 

9702 

.9883 
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Table 6.6 Values for E[D]. The Standard Case 

(n=5) Ak 2.50 

O1 11.457 

.O5 11.460 

10 11.464 

.20 11.473 
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2.75 

18.957 

18.960 

18.964 

18.973 

3.0 

32.902 

32.905 

32.909 

32.918 

(n=10) Ak 2.50 

Ol 

05 

.10 

.20 

5.0841 

5.0874 

5.0916 

5.0999 

2.75 

7.7491 

7.7525 

7.7566 

7.7649 

3.0 

12.326 

12.329 

12.333 

12.342 
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Table 6.7 Values of E[D]. The Generalized Case 

n=5, ky=2.25, m=10 
Nk, 2.50 2.75 3.0 
01 6.0025 6.1022 6.1785 
05 6.7837 7.2214 7.5579 
10 7.4925 8.2454 8.8273 
20 8.3570 9.5122 10.413 

n=5, ky=2.5, m=10 
Nk, 2.50 2.75 3.0 
1 11.467 11.633 11.769 
05 11.460 12.226 12.821 
10 11.464 12.769 13.789 
20 11.473 13.443 15.001 

n=10, ky=2.25, m=10 
Nk, 2.50 2.75 3.0 
01 3.6135 3.7023 3.7866 
05 4.1196 4.5069 4.8776 
10 4.5677 5.2293 5.8685 
20 5.0920 6.0950 7.0789 

n=10, k»=2.5, m=10 
Nk, 2.50 2.75 3.0 
O01 5.0841 5.2058 5.3232 
05 5.0874 5.6129 6.1250 
10 5.0916 5.6129 6.8535 
20 5.0999 6.4194 7.7443 

6 Analysis and Results 

n=5, ky=2.25, m=20 

Mk; 2.50 2.75 3.0 

.O1 6.4483 6.8205 7.1432 

05 8.3409 9.7950 11.074 

10 9.5867 11.818 13.811 

20 10.575 13.518 16.203 

n=5, ky=2.5, m=20 
ak, 2.50 2.75 3.0 
O1 11.467 12.013 12.504 
O5 11.460 13.587 15.502 
10 11.464 14.658 17.588 
20 11.473 15.561 19.414 

n=10, ko=2.25, m=20 
Nk, 2.50 2.75 3.0 
O1 3.8351 4.1106 4.4222 
05 4.8415 5.8923 7.1071 
10 5.4534 7.0246 8.8839 
20 5.8728 7.8669 10.305 

n=10, ky=2.5, m=20 
Nk, 2.50 2.75 3.0 
01 5.0841 5.4115 5.7897 

05 5.0874 6.3110 7.7616 

.10 5.0916 6.8838 9.0671 

.20 5.0999 7.3124 10.113 

n=5, ky=2.25, m=40 
Wk, 2.50 2.75 3.0 
Ol 7.4445 8.6724 9.9652 
05 10.655 14.399 18.710 
10 11.731 16.695 22.319 
20 12.129 17.698 24.228 

n=5, k»=2.5, m=40 

Wk, 2.50 2.75 3.0 

O1 11.467 12.992 14.655 

05 11.460 16.073 21.322 

10 11.460 17.236 24.074 

20 11.473 17.770 25.532 

n=10, k»=2.25, m=40 

Ak, 2.50 2.75 3.0 

01 4.2409 4.9282 5.8731 

05 5.6237 7.6313 10.528 

10 5.9998 8.4456 12.117 

20 6.0923 8.6881 12.723 

n=10, k»=2.5, m=40 

Nk, 2.50 2.75 3.0 

01 5.0841 5.8235 6.8548 

05 5.0874 7.1874 10.274 

10 5.0916 7.5999 11.441 

20 5.0999 7.7262 11.888 
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Table 6.8 Values for E(t). The Standard Case 

(n=5) Ak 2.50 

Ol 49.852 

05 25.326 

.10 19.197 

20 15.598 
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2.75 

74.675 

34.903 

27.411 

23.344 

3.0 

104.75 

50.258 

41.835 

37.461 

(n=10) \k 2.50 

O01 

05 

.10 

.20 

47.002 

20.196 

13.498 

9.5631 

2.75 

52.536 

21.446 

14.320 

10.243 

3.0 

88.540 

30.172 

21.774 

17.132 
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Table 6.9 Values of E(t). The Generalized Case 

n=5, ky=2.25, m=10 
Wk, 2.50 2.75 3.0 
01 18.955 19.099 20.636 
OS 13.124 14.523 14.997 
10 10.314 11.332 11.967 
.20 8.1170 8.5474 9.0523 

n=5, k»=2.5, m=10 

NK, 2.50 2.75 3.0 

O1 49.852 50.677 51.934 

Q5 25.326 25.503 26.079 

10 19.197 21.229 24.002 

20 15.598 17.322 19.140 

n=10, ky=2.25, m=10 
Wk, 2.50 2.75 3.0 
01 18.537 18.921 19.059 
05 11.902 12.077 12.884 
10 8.7082 9.3277 9.9963 
.20 6.2021 7.5992 8.2424 

n=10, k»=2.5, m=10 

Nk, 2.50 2.75 3.0 

.0O1 47.002 48.535 49.222 

05 20.196 21.723 22.274 

10 13.498 15.277 17.556 

.20 9.5631 11.448 13.221 

6 Analysis and Results 

n=5, k»=2.25, m=20 

Wk, 2.50 2.75 3.0 

01 20.931 21.957 22.241 

05 15.490 17.001 18.583 

10 12.053 13.638 15.244 

20 9.8860 11.629 14.156 

n=5, ky=2.5, m=20 
Nk, 2.50 2.75 3.0 
01 49.852 51.766 52.685 
05 25.326 26.770 28.196 
10 19.197 21.651 25.535 
20 15.598 18.521 21.668 

n=10, ky=2.25, m=20 
Nk, 2.50 2.75 3.0 
O1 19.677 20.447 21.003 
05 12.763 13.099 15.788 
10 9.4889 11.353 13.269 
20 6.8839 9.0226 11.848 

n=10, k»=2.5, m=20 

Mk, 2.50 2.75 3.0 

01 47.002 48.608 49.955 

05 20.196 22.008 24.533 

10 13.498 16.232 19.135 

.20 9.5631 12.002 15.728 

n=5, kp=2.25, m=40 

Ak, 2.50 2.75 3.0 

01 22.174 23.077 26.104 

05 17.667 19.478 22.710 

10 13.731 15.421 22.366 

.20 11.882 14.930 21.007 

n=5, ky=2.5, m=40 
Wk, 2.50 2.75 3.0 
01 49.852 52.588 56.532 
05 25.326 27.658 33.920 
10 19.197 25.821 31.273 
20 15.598 19.916 27.061 

n=10, ky=2.25, m=40 

Wk, 2.50 2.75 3.0 

01 20.964 21.005 22.169 

05 13.443 15.723 18.206 

10 11.584 13.998 16.832 

.20 9.9767 12.021 15.993 

n=10, k»=2.5, m=40 

Wk, 2.50 2.75 3.0 

01 47.002 49.992 51.194 

05 20.196 23.409 26.236 

10 13.498 17.207 21.778 

.20 9.5631 12.311 17.650 
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Table 6.10 The Behavior of the Cost Terms 
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Table 6.11 A Set of Results of the Cost Models 

Model I 

Standard Generalized 

n 6 

m 0 

ky 

ky 

k 2.78 

Cr 8.9655 
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6 

19 

2.79 

2.52 

8.6472 

M 

Standard 

5 

0 

2.79 

8.8242 

el II 

Generalized 

6 

16 

2.78 

2.54 

8.6187 

M 

Standard 

5 

0 

2.77 

8.9122 

11 

Generalized 

5 

14 

2.78 

2.53 

8.7637 
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CHAPTER 7 

Conclusions and Discussion 

7.1 Conclusions 

This dissertation develops cost models for the standard and the generalized Shewhart 

control chart. The models assume that the quality characteristic of interest is distributed 

normally with known variance and that the time between shifts are negative exponential, 

uniform and Weibull distributed. The analysis for the three cost models presented in this 

dissertation yield several interesting points. The first of these is that the analysis of the 

costs of operating any type of control chart should be treated very carefully as the cost 

function may not always have the commonly assumed regularity. The choice of cost 

coefficients, the time of shift distribution and time shift distribution parameters have a direct 

influence on the performance of the expected total cost per unit time function. The behavior 
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of the models are analyzed algebraically and numerically using calculus and Mathematica 

[52] and GINO [25]. The important results of the analysis performed show that the 

generalized Shewhart charts for means may be economically attractive when the inspection 

cost, the true signal cost and the nonconforming product cost together balance the expected 

cycle length and the false alarm cost. When this is the case, the expected total cost per unit 

time function is convex with an interior minimum and an opportunity for optimization of 

the generalized Shewhart control chart. When one or more of the model terms dominates 

the others, the expected total cost per unit time will display the same increasing or 

decreasing behavior as the dominating factor and the generalized cost model as studied in 

this research will be unattractive. 

The second conclusion is that all model parameters and variables are important to the 

expected total cost per unit time function. The control limits k, and kz have a greater effect 

than do the distribution parameters and k» has a greater effect than does kj. It is also true 

that the sample size, n, and the time of the change in the width of the control limits, m, 

enhance the effect of the distribution parameters and k, and k». 

The final conclusion is that there are control chart applications for which the cost models 

are useful. Values of the production process parameters that display more commonly 

encountered relationships leads to the generalized Shewhart control chart having lower cost 

than the corresponding standard Shewhart control chart. For the example case analyzed in 

the previous chapter, see Table 6.12, the savings is $8.97 - $8.65 = $0.32 per 

item produced. Since the production rate assumed is 200/hour, the savings is $64 per 

hour for cost model I. For cost model IJ, the savings is $8.82 - $8.62 = $0.20 per item 
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produced when 9 = 1000. Since the production rate assumed is 200/hour, the savings is 

$40 per hour. For cost model III, the savings is $8.91 - $8.76 = $0.15. Since the 

production rate assumed is 200/hour, the savings is $ 30 per hour. These savings are 

dramatic and therefore the cost models are worth pursuing. Thus, the cost models can be 

appealing and the control chart adjustment strategy presented in this dissertation is robust. 

7.2 Extensions 

The Shewhart control chart adjustment strategy by its very structure creates an exhaustive 

range of possibilities for future research. Potential expansions are discussed below, 

practical and analytical. 

(1) From the theoretical point of view, analysis of the cost models is interesting if some of 

the assumptions on distribution are relaxed. For example, the population distribution is not 

normal or the variance of the quality characteristic is not constant. In this case, the sample 

variance must be employed to estimate the population variance . In addition, both skewness 

and kurtosis should also be considered in the process average. One advantage of this 

analysis would be that a more general production process could be analyzed. Although 

more numerical methods will be involved, the model may be used to analyze a general 

production process as well. 

(2) One extension of this dissertation is to change the distribution of the time until a process 

shift. Another candidate life time distribution may be Gamma. The cost model constructed 
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using the Gamma distribution should also be very interesting and it can represents the 

behavior of the time to process shift adequately. Cost categories can be constructed under 

the Gamma life distribution and if there is a cost term for which the formula has no closed 

form, numerical method and computer programming techniques may be used in obtaining 

the optimal solution for the corresponding cost model. 

(3) The control chart adjustment strategy can be extended to the case of the variable 

sampling interval (VSI) Shewhart control chart. For VSI Shewhart control chart, the 

parameters that are optimized in order to specify a chart design are the width of the control 

limits, the sample size, the lengths of the delay intervals, the changed control limits, and the 

probabilities that the various delay intervals are selected. It is obvious that the 

corresponding cost model so constructed may be complicated. However, it is worth to 

study the control chart adjustment strategy for the VSI Shewhart control chart since it has 

been shown by Nachlas et. al. [31] that the VSI control charts are often more economical 

than fixed interval control charts. 

(4) The control chart adjustment strategy can be extended to the other control charts, say 

CUSUM chart and EWMA chart, and the corresponding analysis could be interesting. 

In summary, the Shewhart control chart adjustment strategy developed in this dissertation 

is found to be robust and economical. It has many extensions and applications for 

analyzing a production process. Under this strategy, the sensitivity to small but anticipated 

shifts can be increased in the process average and therefore the corresponding assignable 

cause can be detected. 
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Appendix A. 

Useful Formulations 

In constructing the mathematical expressions for cost models of this dissertation, the 

following useful formulations are used frequently. Where O<x<1,0<y<1andx/y<1l 

for all equations with N = ce: 

in} 
ux ~ J=x 

  

  

=I (A.1) 

yx _ 1—x" 

isl 1—x (A.2) 

¥ xi = I 5 
a (1-x) (A.3) 
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Six. 

  

  

    

    

  

  

  

  

=m (I-x)’ 1-x (A.4) 

2 1 2X i? xi} _ + 

2 (l-xy  (1-x)’ (A.5) 

si? xi} = 1 + 2x(I _ x") _(N- 1)°x™ N’xs" 

iat (l-x)  (1-x)’ (l-x))  (l-x)’ (A.6) 

Six = m+1. x 

moet I-x  (1~x) (A.7) 

Nem) Mtl x(1 - xem) NxX™ m9 1—xNo™ Nx 
Si X = 2 _ = + > 

imal 1—x (1-x) I-x 1-x (1-x) 1-x (A.8) 

oy emt  1+2m 2x m? YP xe = = + ;+ 
ifm? (I-x)) (l-xy 1-x (A.9) 

Ne, 1 2x(t-xX-™ 7) (N= m—1)?x™ (N= m)?x8 yi? xirmel _ + _ + 7 

i=m+l (l- x)” (1- x) (1- x)" (1-x) 

_ yN-m _ N-m |] m*/1—xN-™ +n X _(N-m)x I [ 

(1—-x) 1-x 1-x (A.10) 

None N xX x—xX 
si Xx = — ™ F 

a I-x 1l-x (1-x) (A.11) 

yx ~in _ CY 

i=l y—x (A.12) 
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5 xt _ y(x* — y*) 
— x—-y (A.13) 

N N N 
YS xitysi _ xX —y 

i=l X—y (A.14) 

y xicmalyN-itmel _ y(x™ ~ y.™) 

i=m+l x—y (A.15) 

Sixt =! Qx(I-x"*) (N~s)’xS (N-s4+1)?xN? 
    

  

ee aay ex (=x) 
+245-1) Rosse (s+1)(1-x%*") 

(1—x) l-x 1-x (A.16) 
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Appendix B. 

Derivations and Proofs for Cost Model I 

(1) Proof of Lemma 3.1 

For any integer m 2 Q, the following inequalities are hold: 

(1)O <a, sa, $1; 

(2) 1-a, 21-a,; 

(3) 1-a, 2(1-a,)", 1-a@, =(1-a,)"; 

(4) (1-a,)" 2(1-a,)"; 

(S)e“™ <1. (B.1) 

Then, the upper bound for P[A] can be constructed as: 
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ae {i _- (1 —-Q, Je™ rt (1 ~O, y" en timtngy | 

  

  

PLA) = 1-(1-a,)e™ 1-(1-a,)e™ 

me {i-[(l-on)e™]P} ao.) 
1-(1-a,)e™ 1-(1-a,)e™ 

< ae" +(1-a,)"e""a, < ae" +0,e™" 
1-(1-a,)e™ 1-(i-a,)e™ (B.2) 

  

Similarly, the lower bound for P[A] is: 

ae" {1 — [(a —a,)e™ rt (1-a,)" enMmtthgy, 
  

  

  

P[A] = + 
A] 1-(1-a,)e™ 1-(1-a,)e™ 

> ae" {1 - [(a —d, Je] 1: (1 -O, " emthey 

- 1-(1-a,)e™ 1—(1-a,)e™ 

5 a,e [1 —(1-«, )| +0 _ o2e™ 

1-(1-a,)e™ 1-(1-a,)e™ (B.3) 

Therefore Lemma 3.1 is true. 

(2) Proof of Lemma 3.2 

Note that: 

[(— ane YP” = (1- a, eMeP™ < (1-,)"™e™, 1 = 1,2; Vm 20 
(B.4) 

So that the upper bound for P[B] can be constructed as: 

Appendix B. 126



1-(i-a,)e* = 1-(1-0,)e™ 
P[B] = geen 

oe) [(a- ar, )e™*] | 

I-[0-a)e4] [aoe] “ah <(j-e-my—__ 1 

(B.5) 

  

Sinilarly, P[B] has the lower bound as: 

+ : 

1-(1-0,)e™ 1-(1-a0,)e™ 
P[B] = (ey 

or) 
[(1- a1, )e™] | 

  

apes) Soe) _[e-e)e™) Lst-ey, =a), 
- 1-(1-a,)e™ 1-(1-a,)e™ —(1-a,)e™ 

2(1-e™ || 

(B.6) 

Thus Lemma 3.2 is true. 

(3) Derivation of E[t,(a)] for Cost Model I 

For case(a) of cost model I, the generalized Shewhart control chart, the derivation of 

E[t,(a)] can be achieved through the following steps: 

(1) Evaluate the partial summation; 

(2) Take derivative with respect to the partial summation; 

(3) Exchange derivative and summation; 
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First we may write E[t,(a)] as the following form: 

E[t.(@)] = So [Fih)- FG- Da] (i jaCt 8.) 
i= ij ~

 

m 

E[s.(a)]= Lene ~e*(L-B) NG BP 
j=l 

Efe, (a)] = 5 [e2 ep, 1-8.) FG - B™ 
j=] i-j=0 

Refer to equation (A.4), we have 

Siegert _1-BPo[lem—NlA-B,) +1 
xe “JB (1-B,) 

Therefore we obtain: 

  
  E[t,(a)] = YE “AUDA _ e** HB (1—B,) 1- Br [(m— j(1-B,) +1 

jel (1—B, ’ 

E[t,(a)] = (I = y Poh) mB Dero - elm - j)pr- 

__bB, . e MicDh _ a-Aih Qm-i 

ia) a B iF 

  

Now the summation terms can be resolved as follows: 

j=l 

[e -A(j- v(m - jp" = m> (e*)" mi Siem) mi 

1 j=l j=l 

3 

Me
 

= 
o
e
s
 a 

i 
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[er em BPO = (I=). fe Om - jP- 

(B.7) 

(B.8) 

(B.9) 

(B.10) 
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Let: 

Ye u=e™, v=8,, S= 

i h
e
e
 

tl 

m u . 4 ie 
= —S _ ¥ juiv” j-l 

V i=l 

fer) Bei = Suv mt 
jel 

m-l m m 
" 

a ea _ _). mu s-"s= div v PIS juve svt Yule a 

j=l 
=1 l=1 v 

  

  

  
  

m-1 m m s-=s= 3 yy me == Si ulynt ON 
vo ve Vv (B.11) 

Then 

ym _ yt = (v _ u)>, wy 

1=0 

S= (ve'—u™!) (n+ Du™ Bre’ (m+ em 
aye _ ~ ~ah\2 -e™ (v—u) v-u (B, -e™*) B,-e (B.12) 

Next, let 

R=myfe*} prt =my uve 
j=! jl 

in 
m1 m+} m m eon j-l me —ah -j -UY 74 ” =>R=— t= 

- 
a dle Tole I Br uo v-u u 

ae m(v"* _ u*) m(B" -e ron) 

v—-u B,-e* 
(B.13) 

Then we obtain: 
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Sf a-eG-Da Yn Nami — pee m(B? =e") _ renee (mt en 

dle : Im y po SRess B, ~e™ (B, -e**)’ * B,-e™ 

_ prt - eo t(m+Dh 

  

[e*s-* (mm - jp" = mpi +e ™ 

B-e™ —(B,-e (B.14) —
 Ul os
 M
:
 

Similarly: 

  

    

S -_R _(br-e"™) 

“¥¢ as B-e™ (B.15) 
Finally we obtain: 

hB, te) pe (1 mB™ +e" _ prt en e(m+1)h 

E[t, (a)]= (1 “B) e ) B,(1-e my B,-e* (6, -e*) 

_- hp, l-e™ (pr -e*™) 

iB) on") B,-e™ (B.16) 

(4) Derivation of E[t,(b)] for Cost Model I 

For case(b) of cost model I, the generalized Shewhart control chart, the derivation of 

E[t,(b)] can be achieved through the following steps: 

(1) Evaluate the partial summation; 
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(2) Construct the double summation; 

(3) Add the partial summations together to obtain E[t,(b)]. 

Therefore: 

E[t,(b)] = 2 [Fa)-F(i-Dh pr Y= ppBy 
i=m+1 Tl e

 
M
a
s
 
M
s
 

tt — J 

m 

and since 

  

1-B,) 

i-m-1=0 

  
ST gn A(J-1)h m=j Xe (m — j)By B-e™ (3,-e*) 

Refer to equation (A.14), we obtain: 

it follows that: 

    

i-m=l 

; . m-j+1 —] l [F(jh) — F((j-1)h) BF  ( I+ AB) 
_ hfe en Minh _ goa *|(m- jpr it tnd fe “Mie on 

m(Br—e*") prt —eMmk (mm 4 1)e™ 
B, -e™ 

(pre) porte Om (emo si.) =e} Boe (8, -e*) 

(1-e™)hB, Bp ~e%* 
(1 - B,) B; - e* 

+ 
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B,- e™ "| 

FG)" 8 son ) £ arm's Samar 

(B.17) 

(B.18) 

(B.19) 

(B.20) 
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(5) Derivation of E[t,(a)] for Cost Model I 

For case(a) of cost model I, the generalized Shewhart control chart, 

E[ty(a)] can be achieved through the following steps: 

(1) Evaluate the partial summation; 

(2) Construct the double summation; 

(3) Add the partial summations together to obtain E[t,(a)]. 

First we know that: 

3 

Et »(a)] = > [F(sh) —- F((s - 1)h)|(1 — o,) ¥ ja(l ~B, pi 

s=1 j=s 

e GDL] — ™|( (1-«,) > jh(t jh(1—B, B;* 
1 js 

Ve
 

= h(1-B,)[1- eS eR] a, . jpr* 

  

the derivation of 

s=1 j=s (B . 2 1 ) 

Next, let x = By , then refer to equation A.8 we obtain: 

m-s+l 
sj Bit = _ el mpn —s+l 4 Biz Br aa 

j=s 1-f, 1-B, (B.22) 

Thus 

_ _ aw ah — ~A(s-1)h s—l 1 m-s+1 B, ~ Br 7 E{t, (a)] = h(1—-B, )f1-e™ |e "(1 ,) s—mpP + 
s=] 1- B, 1- B, 

(B.23) 
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Finally we obtain: 

m 

esc} = SoH) -F(6-ma)ft-0)"EH0-BB s=1 j=s 

1-(e*(1-a,))”  mle*(1—a.,))” mB, -(e*(1-a,))"] 
=h(I-e™ )p, 7 1=e™(1-a,)  B, -e*(1-a,) 
    

  

(B.24) 

(6) Derivation of E[t,(c)] for Cost Model I 

For case(c) of cost model I, the generalized Shewhart control chart, the derivation of 

E[ty(c)] can be achieved through the following steps: 

(1) Evaluate the partial summation; 

(2) Add the partial summations together to obtain E[t,(c)]. 

By the definition of E[t,(c)] we have: 

Et, (]] = (1-0,)" S[FOh)—F(—1h)|1—a,) jn B, BP 
l=m+1 j=l 

=(1~B,)(1-o,)"a Soe —e™* I-04)" BE 
=m+l jel 

=(1-a,)"h y fer es la a, ye eas 
l=m+1 (B.25) 
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Then: 

  

  

Eit,(c)} = A+B [t.(c)| <p A+B 

A= | Se teen(y a)" _ Se**(1 _ a, 

= | c* ah a 

to (Iv an}e Os (B.26) 

Similarly 

B=(I-B,)/e™ y e“n- " mt yie™ (1-a,) rh 
l=m+1 l=m+1 

  

  

  

tt. me7™" em _me“* e™ 

Therefore: 

_ (1-a,)" (1-e™ Jh |[B, + m(1- B,)je*™ (1-B,)e*™ 
Flt, (©)]= (i-B,) 1-(1-a,)e™ . [1- (1-0, )e™ y 

_ [B. + m(1 Z B, )je™ _ (1 —B, je™ 

Ot, 03 (B.28) 

(7) Proof of Lemma 3.3 

To prove Lemma 3.3, the following steps are necessary: 

(a) Show that equation (3.2.5) is the same as equation (3.1.6) under Fact 3.2; 
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(b) Show that equation (3.2.8) is the same as equation (3.1.8) under Fact 3.2; 

(c) Show that equation (3.2.15) is the same as equation (3.1.14) under Fact 3.2; 

(d) Show that equation (3.2.24) is the same as equation (3.1.16) under Fact 3.2. 

For case (a): 

    

    

‘oe {i —_ (1 — a, je™ rt (1 ~4, " enti ngy 

C, =C, —— sr + A = 
1-(1-a, Je 1-(1-a, Je 

foe *{1-[a-aje™]"}+a-ayre ra] cet 
A 1-(1—aje™ ~ 1-(1-ae™ 

(B.29) 

For case (b): 

I-a,je* 1-(i-a,je" ~§ 1-(1-0,)e™ C= cle" 1 [roel tool 
  -o(-eay eco ToT} ee 

  

  

  

/ I= (-aje™ (B.30) 

For case (c): 

Ah—(1-e™) h 1- os vm c. anf} 2()) 629 eae pes Lie 

hB,(I-e*)\(Br-e™™)P 1 1 
rs Be — |e 

Ah—-(1-e™*) | 
= C,Tp ihy A(i—e ) 1-8 

(B.31) 
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For case (d): 

[I-(Q-cnJeMP  t-(-an)e™ 
cal PT) ear 

Lo h (1 _ a, y" ee t(m+Dh ‘ m(1 _ Ct, y" e7him+ih 

° [1- (1-0, )e™] 1-(1-a,)e™ 

  +h(l-e™)B 1-(e™(1-a))"_mfe*a-a,)f”_mB,[or—(e*0-«,))" 
‘| [i-e*Q-a,)P  I=e*(I-a) Be (l= a4) 

sine) 8 aoe _pr-(e™(1-a,)} | 
~—B,} 1-e“(1-a,) B, -e““(1-a,) 

etcetera 

  

    

  1—B, B, -[e*(1-a,) 

1 (1-a,)” (1 -e™ h (B. +m(1- B,)le*™ + (1-B,)e™™ 

(1-B,) 1-(1—a, Je [1-1 a, Je] 

_[B. +m(1—B,)e™ _ (1-8, )e™ 

< 

  

  

2 

  

a, OM, 

(B.32) 

The first two terms can be reduced to the following expression under Fact 3.2: 

ahe™™ > 
[1-G-aje™] (B.33) 

The rest expressions can be reduced to: 

(1 - eh | | B (1-B)a-aje™ | 

~(1—-qe" 111-8 © ~~? [(B—G-a)e™]}1-B [i-G—a)e™] (B34) 

Therefore Lemma 3.3 is true. 
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Appendix C. 

Derivations and Proofs for Cost Model II 

(1) Proof of Lemma 4.1 

Proof: 

Note that the part of interval before the process shift can be written as: 

T = t— jh = E[T] = E[t— jh] = [(t— jhyf(tljh <t <(j+i)n)ae C1 

And we know that:: 

F(t) — F(jh) F(t|jh < t <(j+1)h) = F(G+Dh)- FGh) (C.2) 
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Thus the condinitional probability density function of t given the shift occurs in Gh, G+1)) 

can be constructed as: 
1 

f(t) _ @ i 
F((j+1)h)-F(jh) (j+i)h jh oh 

6 0 (C.3) 

f(t]jh <t <(j+1)h) =   

Therefore: 

Gjelh, f(t) G+Dh, v1 1 
E[T]= t — jh) ———_———_ dt = t—jh)—dt=—h [T] J; (t-j )5(G+1)h) — FG) J (t-j )y > (C.4) 

And then as: 

1 1 
Ejt,|=h-E{T]=h-—-h=— 

[t, [ | 2 2 (C.5) 

Thus Lemma 4.1 is true. 

(2) Derivation of E[t] for Cost Model IT 

For the standard Shewhart control chart of cost model II, the derivation of E[t] can be 

achieved through the following steps: 

(1) Evaluate the partial summation; 

(2) Construct the double summation; 

(3) Add the partial summations together to obtain E[t]. 
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First, we may write E[t] as: 

l=] 

E(t] = > ina - a)* 1- a “Din {> [2 - Gs Co la ay"B 0-8) 

j=l 

= 5 jho(1- —a) - > jnacs- a(S sed i. le - a) B(1 a) 

== 1-(-a)\(on+0]-< yi ay + “Py on} 358 B *) | 

Then, let x = (1-@)/B in equation (A.2), we have: 

i-a)" 

352)". gp ait B 
B ~B-(-a)  B-(-a) 

J 

1=1 

Similarly, let x = 1- in equation (A.5), we obtain: 

> 71-0)" = =+ 2(1—af1-(-a)""]_ (N-1°-0)" hon oO: on 

So that: 

Sier[Z(52) 
  

j=l 

  

1=1 

274 py\Nel NG a) 
or” 

  

B-(1-—«a) (1—B)” 1-8 a? 

Therefore the form for E[t] is: 
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fonts) nor dco ta 

(C.6) 

(C.7) 

(C.8) 

+ N(1 _ a)" 

° (C.9) 
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E(t] = = —(1-a)*(aN + 1)] 

  

6 ja a a? a? 

alas 2(1-a)[1-(1-a)*"| . (N-1)?(1-0)™ . vice" 

+ 
h?(1-B) B(1-B*) _ NBN*! _ (i -a)[1-(1-a)"] . ia" 

(B-G—a)j6| -pyY 1-8 oe 7 cum 

(3) Derivation of P[A] for Cost Model II 

We may write P[A] as: 

P[A]= DPIAL] P[A, | 

= Ya,(1- o,)'[1—F(ih)] +(1—,)” ¥ 0,,(1- o,)” [1— F(ih)] 

  

i=l i=m+1 

= Yia,(1-0,)|1-2 ]+( +(1-a,) ” ¥'0,(1- er yo 
i=l 8 i=m+1 8 

=O I(r PS a 
Q, 0i5 

m N \" -m-l a" 

+0,(1-a,)"| }(1-o, —= BS it 
i=m+l ism+l (C.10) 

Let x = 1- a in equation (A.3), we obtain: 

Sit yo 1-(1-0,)" _ m(1—a,)" 

i=l ar a, (C.11) 

Let x = 1- Q in equation (A.2), we obtain: 
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jam O, (C.12) 

Let x = 1- & in equation (A.4), we obtain: 

teaprremen treitay"] ecg 
Yill - a) = + L - } 

= ” ” 2 (C.13) 
  

Thus we have: 

  P[A]=1-(1-a,)"(1-0,)" 4H = oe ou)" rol 

  

+ h (1 ~ a)" (1 _ on)" (No, + 2 

8 OQ, 
(C.14) 

(4) Proof of Lemma 4.2 

Refer to the inequalities used in (B.1), the upper bound for P[A] can be constructed as the 

following steps: 

  HA}=1-(1-1,)"-0,)"* 2] Ue Oa] 
  

  

8 a, a, 

RE ATE Ye a < v3 Ora <i+8(2] 

8 a, 8} a, 8\a, (C.15) 

Similerly, the lower bound for P[A] can be constructed as: 
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  P[A]=1-(1-a,)"(1-a,) "-= 
N-m hh 1-(1-a,)” (1-a,)" oat 

    

  

+ — 

6 a, 8 a, 

1-(1-a,)” (1l-a,)” 

6 a, a, Ola, 

Therefore Lemma 4.2 is true. 

(5) Proof of Lemma 4.3 

To prove Lemma 4.3, the following steps are necessary: 

(1) Construct the upper bound for P[B]; 

(2) Construct the lower bound for P[B]. 

First, the upper bound for P[B] can be constructed as: 

  P/B 
(B] 8 a, a. 

_ ¥ - (1-4) (1-a.,)""[1-(1 or 

ee coal") <aftctea)” oa 

  

6 a, a, 6 a, a, 

ch 1-(1-0,)"" | =a)" hi 

6 a, O, 6 a, 

Similarly, the lower bound for P[B] is: 
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(C.18) 

Therefore Lemma 4.3 is true. 

(6) Derivation of E[t,(a)] for Cost Model II 

For case(a) of cost model II, the generalized Shewhart control chart, the derivation of 

E[t,(a)] can be achieved through the following steps: 

(1) Evaluate the partial summation; 

(2) Construct the double summation; 

(3) Add the partial summations together to get E[t,(a)]; 

First we may write E[t,(a)] as the following form: 
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Else) = ¥ [Fn = F((j—n)] 6-3) 01-88 
j=l i 

- MAU PIS Sy ar 

  

  

  

  

j=l Vis} (C.19) 

Then refer to equation (A.4) we obtain: 

Baia 1-B™! = BP H(m— j) 1 romper? jr” 
i-j)Br7 = ~ = ~ ~ + 2 (1-By II-B (-B)y (-ByY 1-8, 1-8 (Egg) 

Let x = By] in equation (A.11) we get: 

 . ym} m B, - BP BY 
jBr? = - - 

2 '  1-B, (1-B,) 1-8, (C.21) 

Thus we have: 

SL Ny: 8) gigi 1 m By(i-m) 1-8,-2B° 
(i- 3) BY? |- | = “TF | 

3($ 1-B,;1-B, 1-8, (1-B,)" (C.22) 

Therefore: 

h’B,} m _Brd-m)_ 1-8, -2B? E[t,(a)] = | _ Pi _ 1 rl | 

6 }1-B, 1-8, (1—-B,) (C.23) 

(7) Derivation of E[t,(b)] for Cost Model II 

For case(b) of cost model II, the generalized Shewhart control chart, the derivation of 

E[t,(b)] can be achieved through the following steps: 
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(1) Construct the partial summation from j = 1 toj=m 

(2) Construct the partial summation from j = m+]1 toj = N; 

(3) Construct the double summation; 

(4) Add the partial summations together to obtain E[t,(b)]. 

First, we may write E[t,(b)] as: 

‘ord (h)-F((j—1)h)] BP" ~ 3) nS -B,) 

ae pn rm 5( i-j) : 
ismtl (C.24) 

Therefore we obtain: 

Si-gpre= Sipe iD or 
i=m+l i=m+41 i=m+l 

Nom _ RN-m 

1-8, 1- TB 1—B, (C.25) 

Refer to equation (A.11) we obtain: 

  

m~j 1 m- B,-Br BY m 

> =a IB, “6 (C.26) 

To construct the double summstion below, we may first write it as the following 

expression: 
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i=m+i 

1-By™ mj 

6S B, Dif 

= _B, 1- 1-Br ms FEE py ee | B, - B, - Br “6° | 

1-B, || 1-8, 1-B, ; 1-8, 1-B, 

Finally: 

sole bits | Fee Te 

m-j4l j) pret = | np LB _ gee |S pee 28 >i Bs tat] ip, NB: Sor 

  

(C.27) 

(C.28) 

(8) Derivation of E[t¢] for Cost Model II 

To construct E[t¢] for Cost Model II, the following steps are necessary: 

(1) Express E[t¢] as a combination of S1, S2_ S3 and Sq. 

(2) Construct S1, Sz, S3 and S4. 

(3) Construct E[tg]. 

First, we may write E[t¢] as: 

m . N . 

E[t,] = }viho,(1-o,)""[1-FGih)] + (1-0,)” iho. (1- a)" [1- FGih)] 
i=l i=m+1 

2 m,  ©,h?(1-a,)” 
= 0,hS, oh S, +a,h(1-«,)"S,— ayh’(I= a) 

8 0 (C.29) 
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Refer to equation (A.4) and (A.6), we have: 

  

ma 1 1-(1-a,)" mf(l-a,)” 
S,= Dill-a) te S 1) _ mf 7 1) exw, 

  

i-l _ 1-(m—1°(1-a,)" +m?*(1—a,)"" _20-a)f1-@-a,)""]
 

S, = i?(1-a,) ; 

  

i=l OM, a; 

(C.31) 

Refer to equation (A.8) and (A.10), we obtain: 

N im N(i-a,)"™” 1-(1-a,)"™ 
S;= dD il- 1) — ( 2) ( %2) 

ism+1 Qa, Q, O, (C.32) 

  

      

and 

N i-m-1 
S, _ yri- i) m 

i=m+l 

“4 _2=a,)1=(t- on)" ] (N= m-1)*(1- a) , N=m)(1- a) 
a3 a; a 3 

_ tre \Nom —m\l—-a,)%"™] m}1-(1-a,)°" +29 (1 On) _(N-m)(1-a,) } | (1-0) | 
QO, QO, Qy 

(C.33) 

Therefore we obtain: 
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ay ct, 
eft,]- on Coal - seo 

_ayh?} 1-(m-1)(1-a,)" +m*(1-0,)"" . 2(1-a,)f1-(1-@,)""] 
0 a? a? 

  
  

m N(l-a,)" 1-(l-a,) ” 
+a,h(1-a, 2 - + 

Q, a, 3 

  

oatteay [1 20-oufi-(-a""] emai 
  

  

  

Q an a? ao; 

(N-m)(1-a,)""" 

a, 
N-m N-m 2 1-(1- N~m foe (N-m)(1-a,) | m’{1-(1-a.,) 

+2m 5 — 
a; a, a, 

(C.34) 

(9) Derivation of E[t,(a)] for Cost Model II 

For case(a) of cost model II, the generalized Shewhart control chart, the derivation of 

E[t,(a)] can be achieved through the following steps: 

(1) Evaluate the partial summation; 

(2) Construct the double summation; 

(3) Add the partial summations together to obtain E[t,,(a)). 

First we know that: 
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m 

E[t, (a)] = }[F(sh) - F((s—1)h) (1-0, 3 HB, )B 

s=] 

  

1-B,)h? 2 
_ | BY y(1- a, ) > B: , 

s=1 (C.35) 

  » Bt = a -| mot aan +A} 
—B, 1-B, 1-B, (C.36) 

Thus: 

  - Fo [Sa0-0y-[met Beo- 0) BR +S 1-4) | 

    

  

    

~ Pi | s=t s=1 1- B, s=1 

21 fi-Q-a)" moa)" fo 1 7 Bilt-o)" Br] 
~ 1-8, a? Oy " 1-B, 1-a, —B, | 

seat 1—B, O, 

(C.37) 

Finally 

n? {1-(1-a,)”_ m(1-a,) 1 78 [(Q-a,)"-B?| 
| (@)f= Oy a, =a 1—a, —B, 

ea] I~BiL (C.38) 
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(10) Derivation of E[t,(b)] for Cost Model II 

First we may write E[t,(b)] as: 

m 

E[t,(b)] = )\[F(sh)— F((s— 1h) |(1-0,) "BP y jh(1-B, Br" 
s=1 j=m+l 

= CBE Saar Spe 
0 s=1 j=m+1 

  

Refer to Equation (A.8), we obtain: 

~ jrm-1 1 _ N-m l- BO 

2 - |m NP2 ° 1-B, | 

Refer to Equation (A.13), we obtain: 

Finally: 

eco) = "BS 0-a 6 oe | mona 
2 

= elm -Npyn + Fa fe Se -o,) "BP 

= | m— NB + ape a 
6 2 

1-B, 1—o, —B, 

s=1 

D
|
—
 

s=l1 
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(C.39) 

(C.40) 

(C.41) 

(C.42) 
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(11) Derivation of E[t,(c)] for Cost Model II 

For case(c) of cost model II, the generalized Shewhart control chart, the derivation of 

E[tp(c)] can be achieved through the following steps: 

(1) Evaluate the partial summation; 

(2) Construct the double summation; 

(3) Add the partial summations together to obtain E[t,(c)]. 

By the definition of E[t,(c)] we have: 

N 

E[t,(c)] = 1-0)” S:[FGH) -F((6—1)h) a," nC BBE 
s=m+l j=s 

_ (1—a,) at Y(i-a,)" > Bi 

samt irs (C.43) 
  

And refre to equation (A.8), we obtain: 

N ics S NBS ** B, _ at 

jB;* = - + 
» * 1-8, 1-8, (1-B,)’ (C.44) 

Refer to equation (A.13), we get: 

  S(1-a,)"" "pe = 0 —ta) "= Be = A 1-a, —B, (C.45) 

Therefore the double summation is: 
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5 ( (1- O,) i - ‘Lier 

aoass pia(xo,)" -xp =e =] 
  

  

  

    

  

1-B, Qa, a3 1-a, —B, 

! phir) (1 | 
+ — 

(1-B,) O, 1-a, -B, 

(C.46) 

Finally: 

E[t, (c)) = ¢= tops do a.) ry Bi 

_(-a)H [m=Nfiman)" (tn) 9 [lime] 89 
7 8 a, 05 ; 1-a, -B, 

1 |B(1-(-a,)"") (-a,)*"-pe* 
(1-B,) O, 1-a, —B, 

(C.47) 

(12) Proof of Lemma 4.4 

To prove of Lemma 4.4, the following steps are needed: 

(a) Show that equation (4.2.5) is the same as equation (4.1.3) under Fact 4.2; 

(b) Show that equation (4.2.8) is the same as equation (4.1.5) under Fact 4.2; 
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(c) Show that equation (4.2.14) is the same as equation (4.1.8) under Fact 4.2; 

(d) Show that equation (4.2.24) is the same as equation (4.1.20) under Fact 4.2. 

For case (a): 

geal foo 
C, = c,P[A] = c, 1-(1~a,)"(1-a,)"™ = 5 0 oO 

i 2 

he a) "(1 _ 0,)" (Not, + | 

8 Qa, 

= oy] I= + a 

  

  

ad (C.48) 

For case (b): 
m+ m+1 N-m-1 

C, - sete) $B] be) _ Ora)" (on) 
6 a, a, 

m+1 m+l N oA | 0-9 +(1-a) too) [ 5-2 a-ay"] 

For case (c): 

c, = caf elt, J+ ELt I}= cari + +b) caoh [2 

Sae8| m__ B*(i-m)_1-B,-27 
1-B, 1-8, (1-B,)’ 

+ eaerb 1— Bi wick _NRN-m | _ 1-B 7" B, -Br Br m 

ee |e i-p, | ee |r- 1-8, -6"]| 
raf i- I 

  

  

(C.50) 
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For case (d): 

  E[t] = oy Coal _ sooo 
om Ot, 

  

2 3 
0 QO, a; 

_ Oh? : ~(m-1)P(1-a,)" +m?(1-a,)"" ; 2(1-a, \) -(1- a 

  

im N(1— N-m 1-(i- N-m 

+a,h(1 — a, ) = - ( oa + ( aa) | 

2 2 2 

  

  

  

    

  

    

  

4 oaht(l- -a,)" i. (l= a.) —(t- a, )5 | _(N-m- 1)°(1- a)" 
6 a a3 a 

iN =m)'(1=0,) 

Qs 

san (1-9) _(N=m)(1-0,)"™ } ae 

a, a, a, 

fetoay ala) tn. 1 [eo 

° ory ae 1—B, 1-a, -B, 

By (1 0)" h? _  TRN-m 1-p3-" B,[(1-o,)* - BP] 
“| a, I 5 fn NB," + iB, | ime, 2B 

_G-o)"h? eb + 1-(1-a,)"" -np,| (oar a 

On Oh 1-a, -B, 

1 _]B:(-@-o0)"") (1a) Be" 
(1-B,) QL, 1-a, -B, 

h N = —[1-(-0)*(@an +1)] 
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ah 2(1 ~a)[1- (i- a)" - (N- 171 —c)* . “oe 

    

8 | an’ a” oe 

‘B= OE) we Cal ica B-G- je G-By 1B 0 0 (C.51) 

Therefore Lemma 4.4 is true. 
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Appendix D. 

Derivations and Proofs for Cost Model III 

(1) Derevation of E[t] for Cost Model III 

To construct the expression for E[t], we may write E(t] as: 

E{t] = x inf —q) teh 4 y (ero -eu Ja —aypra- 6) 
j=l 

= ahd. (1—a)e™” + (1 — BS Bry (es -ee Ja — a) 
jal j=l 1=1 (D.1) 

Then refer to Equation (A.7), we obtain: 
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int B B 
Dib = ptoR al ins (2) 

Therefore the expression for E[t] is: 

E[t J= ahd (1- ajtewe thy ye" (1 —@) ny et (1a) 
j=l 

BL ST ent HPh® 7p ytd BL 7 -alh? _ pyr 
vi{ Ble (1-—«a) of 2) (1-a) 

1=1 1=1 (D.3) 

(2) Derivation of E[t,(1)] for Cost Model II 

To construct the expression for E[t,(1)], the following steps are necessary: 

(1) Construct the partial summation; 

(2) Construct the double summation; 

(3) Construct the expression for E[t,(1)]. 

First, we may write E[t,(1)] as: 

E[t,(1)] = L[FGH)- F(- DNL i-3 (1 B, Br” (D.4) 

Refer to equation (A.8) we can have: 
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~ /: i-j 1 B, Bee — 7)\R™7I+1 

26-3 1— lis 1-8, (m Bi | 

  

  

(D.5) 

Finally: 

= en mh ~a h aly m-—j+l ef) = BBL free" fos? er" fn 9p 
oN Semen)? _ g-alin)? Jgm-iet 

1—-B, j=t le Bi (D.6) 

(3) Derivation of E[t,(2)] for Cost Model III 

In order to find the expression for E[t,(2)], we may write it as: 

E[t.(2)] = 2 [FGn)- F(G— Dh) Br  Sin3 ij) hBy""'(1-B,) 

= DFG) —F((j-1)h) pr'(1-B pe m — j) > Bye" + > i-m)B | 
j=l i-m~i=0 i-m=1 

(D.7) 

Then refer to equation (A.1), we obtain: 

> Bim = 

i-m-1=0 oF; (D.8) 

Refer to equation (A.3), we have: 

> (i-m)Br ets 2 
inet ~ (1-B,) (D.9) 
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Therefore we obtain: 

  

E[t,(2)] = yer" — ean pr “4 -jj+— | 
j=l (1 _ B) 

=h e 7 ttihe h)° enn)” m—j+1 4h ~ ent (hoh)? — ev aliny? m-j+1 

I< |(m- iB; 1-B, | B; 1.10) 

(4) Derivation of E[t,(1)] for Cost Model III 

First we know that: 

m 

ele a ~F(s-h)]O-a,)" S jh-B, 
~B,)> [F(sh) - F( F((s—1)h)|(1- «,) Sj pr 

s=1 

  

  

jes (D.11) 

Then refer to equation (A.8), we obtain: 

m~-s+1 
sj Bit = _ |e mp” m-s+l Bir BY a 

m IB, 1B, (D.12) 

Finally, the expression for E[t,(1)] is: 

<7 f -a((s-1yh)® —_—a(shy® atl , Piz meri ec) aS [eet — "asap EAE s=] B, 

= nS gfertOmt eH" 1a, 
s=] 

1 ~ B, s=l ; ' 

hB, . ~a((s-1)h)” en (sh) s-l 
+——- e l-a 

no Yo-e) (D.13) 
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(5) Derivation of E[t,(2)] for Cost Model III 

For case (2) of cost model III, we may first write E[t,(2)] as: 

E{t,(2)] = Di[Flsh)— F(s~1)h](1-a,)"Br*" ih(1-B BFP 

  

j=m+1 (D.14) 

And we know from equation (A.7) that: 

=~ : 1 1 
pret = |" + | 

p> , 1-8, 1-B, (D.15) 

Therefore: 

  

1 

1—B, Jeni (D.16) 

(6) Derivation of E[t,(3)] for Cost Model II 

For the case (3) of cost model II, we can express E[t,(3)] as: 

F[t,(3)] = (1-a,)” S\[Flsh)- F(s—1)h)|(1-0,)""" 5: jh(1- BBE" 
s=m+1 j=s 

_ (1 _ B, (1 -o, " h x fee _ en a(sh)? la -a, a yj pi 

s=m+1 jms (D. 17) 

Then refer to equation (A.7) again, we obtain: 
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we ee B, 
2 iB: - 4+] 

(D.18) 

Finally we obtain: 

aoerfbe oar § fe otf tcagt™ 
1- B, s=m+l 

+h(1-a,)" s sje“ ently? | 1a, ye bao 

s=m+1 

(7) Proof of Lemma 5.1 

To prove Lemma, the following steps are necessary: 

(a) Show that equation (5.2.5) is the same as equation (5.1.4) under Fact 5.2; 

(b) Show that equation (5.2.7) is the same as equation (5.1.6) under Fact 5.2; 

(c) Show that equation (5.2.13) is the same as equation (5.1.12) under Fact 5.2; 

(d) Show that equation (5.2.22) is the same as equation (5.1.14) under Fact 5.2. 

For case (a): 

C, = ¢,P[A] = eon SC —~ yee +(1- 1)" at > (1 —Q, yore | 
i=] i-m=1 

=o.) 1-a,)"e" 

2 ’ (D.20) 

For case (b): 
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P 

«15 Jesu — es" 1a.) yay le er -e™ la ot) } jal jem+2 

=o) Jesu — es V0, 4 
m (D.21) 

For case (c): 

  cll ca ooo [iB 
1-B, 1- B, 

c,rpab (i#0h pn? GHDN tana 

ee ore dt —jhJ “at | 

  

  

  

eh —e ih 

LD gen? _ ge] gamit +cat -| le (nb) _¢ |B ">= Cc, rph 
° 1-B, 1-8, 2 1 d 

+e ml B } c,rpab eo Pe at _ ih i jth peat] 

ee LIHB yet — esate Ltn i (D.22) 

For case (d): 

E[t] = o 2 a- 0) j rh -aj Pn? +(1-a,)"a, Yi(l-a,)o" ee 

j=emel 

+h) serio” — ety " — 04)" 
s=1] . 

+ h(1- a, ) ‘2 sje ((s—1)h en 3(sh) "| _ a, a 

s=m+l 

l b s~1 
+h ~a((s-1)h)” en tlsh) l-a Bz 

| B, 1-8, jew k 1) 1 

h 5 Be _ et [1 a," 

+ (1 _ a, " {2 B, 5 le —((s-1)h)” en a(sh)? la- a,)" 

2 A=m+4l 
(D 2 3) 
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=oh> (1-a) te thy et a) py et (-a) 
jel I=1 1=1 

BL 5 an a(lnt)h® _agyo _ Bp <a’h? yy yl +i{ Bo lSe (1—a) (FE (1-«) 
i=l 1-1 (D.24) 

Therefore Lemma 5.1 is true. 
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Appendix E. 

GINO and Mathematica Program Listing 

! Generalized reduced gradient (GRG) algorithm. 

! Minimize the expected total cost per unit time function. 

! The standard cost model. 

MODEL: 

MIN = COSTI + (COSTF + COSTT + CSOTD)/E(T); 

COSTI = (CO + N*CD/H; 

COSTF = CF*(ALPHA*(1-ALPHA)(-1))*X; 

COSTT = CT*(1-ALPHA)\(-1)*Y; 

COSTD = CD*R*P*(E(TP)+E(TS)); 
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E(TP) = H-(F(9+1)*H)-FOH))(-1)*Z; 

E(TS) = H*BETA/(1-BETA), 

E(T) = ALPHA*H*X/(1-ALPHA)+H*DOUBLE; 

K 20; 

H=1; 

ALPHA = 2*(1-PSN(k)); 

BETA = PSN(K - DELTA*(N“0.5)) - PSN(-K - DELTA*(N‘0.5)); 

DELTA = 0.522; 

N 20; 

END; 

! Generalized reduced gradient (GRG) algorithm. 

! Minimize the expected total cost per unit time function. 

! The generalized cost model. 

MODEL: 

MIN = COSTI + (COSTF + COSTT + COSTD)/E(T); 

COSTI = (CO + N*CD/H; 

COSTF = CF*(ALPHA1*(1-ALPHA1)4(-1))*X1+ALPHA2*(1-ALPHA2)4M*X2; 

COSTT = CT*(1-ALPHA1)\(-1)* Y1+(1-ALPHA2)(-1)* Y2; 

COSTD = CD*R*P*(E(TP)+E(TS)); 

E(TP) = H-(F(J+1)*H)-FGH))“(-1)*Z; 

E(TS) = H*(1-BETA1)*Z1+H*(1-BETA2)*Z2+H*BETA2*(1-F(MH))/(1-BETA2); 

E(T) = H*ALPHA1*Z3+H*ALPHA2*(1-ALPHA1)4M*Z4+H*(1-BETA1)*Z5+TT; 

TT = H*(1-BETA2)*Z6+H*(1-ALPHA1)4M*(1-BETA2)*Z7; 

K1 20; 
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K2 20; 

H=1; 

ALPHA 1= 2*(1-PSN(K1)); 

ALPHA 2= 2*(1-PSN(K2)); 

BETAI = PSN(K1 - DELTA*(N‘“0.5)) - PSN(-K1 - DELTA*(N40.5)); 

BETA2 = PSN(K2 - DELTA*(N40.5)) - PSN(-K2 - DELTA*(N40.5)); 

DELTA = 0.522; 

N 2 0; 

M 2 0; 

END; 

[ 

X = SUM[((1-ALPHA)‘D*(1-F(IH)), (1,1, INF}]; 

Y = SUM[((1-ALPHA)‘J)*(FUJH)-F((J-1)*H)), (J,1,INF}]; 

Z = INTEGRATE[(T-JH)*G(T), {TJH,JH+H}]; 

G(T) = DERIVATIVE[F(T)]; 

DOUBLE = SUM{[J*Y, {J,1,INF}]; 

N[(%%, 7); 

X1 = SUM(((1-ALPHA1)4D*(1-F(H)), {1,1,M}]; 

X2 = SUM[((1-ALPHA2)4(-M-1)*(1-F(IH)), {1,1,INF}]; 

Y1 = SUM[((1-ALPHA1)‘J)*(F(JH)-F((J-1)*H)), {J,1,M+1}]; 

Y2 = SUM[((1-ALPHA2)4J)*(FUJH)-F((J-1)*H)), {J,1,INF}]; 

Z1 = SUM[(FVH)-F(J-1)*H))*SUM1, {J,1,M}]; 

SUM1 = SUM[(I-J)*BETAIA(I-J), {1,J,M}]; 

Z2 = SUM[SUM2*(F(JH)-F((J-1)*H)), {J,1,.M}]; 
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SUM2 = SUM[(I-J*BETA24(I-M-1), {1,M+1,INF}]; 

Z3 = SUM[J*((1-ALPHA1)4J-1))*(1-FCH)), {J,1,M}]; 

Z4 = SUM[J*((1-ALPHA2)4(J-M-1)*(1-F(IH)), {J,M+1,INF}]; 

Z5 = SUM[((1-ALPHA1)4(J-1)*(FUH)-F(J-1)*H))*SUM3, {J,1,M}]; 

SUM3 = SUM[J*BETAIA(I-J), {1,J,M}); 

Z6 = SUM[((1-ALPHA1)4(J-1)* FQH)-F(J-1)*H))*SUM4, {J,1,M}]; 

SUM4 = SUM[I*BETA24(I-M-1), (1,M+1,INF}]; 

Z7 = SUM[((1-ALPHA2)4J-M-1)*(F(JH)-F((J-1)*H))*SUMS, {J,1,INF}]; 

SUMS = SUM[I*BETA24(1-J), (1,J,INF}]; 

] 

N[%%, 7]; 

[ 

LIST 1 = {}; 

F[W_] = 1-EXP[-LEMDA*W]; 

LIST = TABLE[N[%], {LEMDA, 0.01,0.02,0.05,0.1,0.2,0.5,0.75}]; 

F(W_] = W/THETA; 

LIST1 = TABLE[N[%], {THETA, 8,20,40,80,100,200}]; 

F[W_] = 1-A*T4(A*(B-1))*EXP[-A* WB]; 

LIST1 = TABLE[N[%], {A, 0.01,0.05,0.1,0.2},{B,1.05,1.25,1.5}]; 

W = I*H; 

FOR[I = 1, I <= LENGTH[LIST1], ++I, APPENDTO[LIST2, F[W_]]; 

LIST2 = {}; 

SHOW[N[%], LIST1, LIST2, -> AUTOMATIC]; 

] 

N[%%, 7); 
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