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(ABSTRACT)

The standard Shewhart control chart for monitoring process stability is generalized by
selecting a point in time at which the distance between the control limits is reduced. Three
cost models are developed to describe the total cost per unit time of monitoring the mean of
a process using both the standard and the generalized Shewhart control chart. The cost
models are developed under the assumption that the quality characteristic of interest is
normally distributed with known and constant variance. In the development of the first
model, the negative exponential distribution is employed to model the time to process shift.
Then, the uniform distribution and the Weibull distribution are used for the same purpose
in the second and the third model, respectively. The motivation for this effort is to increase

chart sensitivity to small but anticipated shifts in the process average.

Cost models are constructed to allow the optimal choice of change over time and the best
values for the initial and adjusted control limit values. The cost models are analyzed to
determine the optimal control chart parameters including those associated with both the
standard and the generalized control chart. The models are also used to provide a
comparison with conventional implementation of the control chart. It is shown that the
proposed cost models are efficient and economical. Figures and tables are provided to aid

in the design of models for both the standard and the generalized Shewhart control chart.
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CHAPTER 1

Introduction and Background

1.1 Introduction

Shewhart control charts are widely used to display sample data from a production process.
They are used to indicate whether a process is in control. They have also been found
valuable in evaluating process capability, in estimating process parameters, in determining
a process control strategy, and in monitoring the behavior of a production process. A

control chart is maintained by taking samples from a process and plotting in time order
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on the chart some statistic computed from the samples. Control limits on the chart
represent the limits within which the plotted points would fall with high probability if the
process is operating in control. A point outside the control limits is taken as an
indication that something, sometimes called an assignable cause of variation, has happened
to change the process. When the chart signals that an assignable cause is present, rectifying

action is taken to remove the assignable cause and bring the process back into control.

In what follows, consider the situation in which the quality of the output of a process is
defined by some quality characteristic or variable such as the strength or length of an item.
In almost all cases there will be variation from item to item and from sample to sample in
the observed values of this variable. Large variation in the variable usually corresponds to
low quality. For example, if the variable is a dimension with a specified target value, then
the closer the variable is to the target the higher the quality. Any variation above or below
the target lowers the quality. As another example, if the quality variable is the level of
impurities in a chemical, then lower values of this variable usually correspond to higher
quality and thus variation above zero lowers the quality. As a third example, if the variable
is the strength of a material, then high strength usually represents high quality and

variation in the lower direction represents lower quality.

In addition to the common causes which produce random variation, assignable causes can
individually produce a substantial amount of variation. When a special cause of variation is
present the distribution of the quality variable is altered. In most cases it is assumed that the
distribution of the quality metric is indexed by one or more parameters and the effect of the

presence of a special cause is to change the values of these parameters. The purpose of a
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control chart is to detect special causes of variation so that these causes can be found and
eliminated. Because a special cause is assumed to produce a parameter change, the problem
for which a control chart is used can be formulated as the problem of monitoring a process

to detect any change in the parameters of the distribution of the quality variable.

The usual practice in maintaining a control chart is to plot the sample statistic from the
process relative to constant width control limits, say 3-sigma limits. In this dissertation, a
modification to standard practice in which the sampling control limits are not fixed but
instead can vary after the process has operated for a period of time is investigated. The
basis of choice of control limit width is a model for the cost of operating the chart. Models
are developed to describe the total cost per unit time of monitoring the mean of a process
using both the standard and the generalized Shewhart control chart for each of three cases.
The models are developed under the assumption that the quality characteristic of interest is
normally distributed with known and constant variance. The cases correspond to different

assumptions concerning the time to process shift.

In the development of the case 1, the negative exponential lifetime distribution is employed
to describe the shift property of the process. In analyzing the resulting models, it is found
that the negative exponential lifetime distribution can describe the process shift properly. In
addition, the expected total cost per unit time functions constructed under this assumption
for both the standard and the generalized Shewhart control charts are practical and
analytical. The decision variables can be chosen to minimize the expected total cost per unit
time functions for both cases. The motivation for the control limit adjustment strategy is to

increase chart sensitivity to small but anticipated shifts in the process average.
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In case 2, the uniform lifetime distribution is used to model the process shift behavior. The
uniform lifetime distribution is used because it has a failure rate function which is the

function of time t.

In case 3, the Weibull lifetime distribution is used to model the process shift behavior. The
Weibull lifetime distribution is used because it can be defined to display increasing failure
rate (IFR) or decreasing failure rate (DFR) with the shape parameter b > 1 or b < 1,

respectively.

1.2 Description of the Approach

The models developed here depend on a set of assumed conditions. First, it is assumed that
the control chart is applied to monitoring the mean quality characteristic of an item that is
produced on an ongoing basis. The variance of the quality characteristic is assumed known
and constant. When in control, the process generates units for which the quality
characteristic is normally distributed with mean y;. The control chart target value is equal
to this mean. Control limits are assumed to be fixed for the standard Shewhart control

chart and to be adjustable for the generalized Shewhart control chart.

The definition of cost model I for the standard Shewhart control chart proceeds in two
steps. First, the negative exponential lifetime distribution is employed to describe the

random variable t, the time until a process shift. It is assumed that the process is subject to

a shift from the in-control value of the process mean, lL1 to an out-of-control value, L at

a random point in time. Then, the cost of operating a standard Shewhart control chart is
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defined using four cost terms. They are, (1) Inspection cost; (2) False alarm cost; (3) True
signal cost; (4) Cost of producing additional non-conforming items when the process is
out-of-control. In addition, the expected cycle length is determined. Then the expected total
cost per unit time is constructed as the inspection cost plus the ratio of the sum of the three

expected costs to the expected cycle length.

The definition of the corresponding cost models for the generalized Shewhart control chart
proceeds in a similar manner. Assume we plan to start the chart with one set of control
limits and to change the control limits to be tighter after the process has operated for a
period of time that is determined. Specifically, we assume the process is sampled every h
hours and after the mth sample the control limits are changed. (Figure 1.2.1.). The same
four cost terms are constructed but the analysis is quite different because we must
distinguish between events before and after m. The expected cycle length is also

constructed for this case and has a closed form.

Comparable cost models are constructed for both the standard Shewhart control chart and
the generalized Shewhart control chart under the assumptions of a uniform distribution and
a Weibull distribution on the time to process shift. In each case, the same four cost terms

and the expected cycle time are determined.

1.3 Problem Analysis

The objective of the dissertation is to study the relative effectiveness of the standard

Shewhart control chart and the generalized Shewhart control chart. The motivation for
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this effort is to increase control chart sensitivity to anticipated shifts in the process average.
The cost models for the standard Shewhart control chart are defined in terms of the
sample size, n, the time between samples, h, and the width of the control limits k (k=
k1 for the standard case). No constraints are imposed on the minimization other than the
requirement that n and h be integer. The analysis of the cost equations can be difficult
as the functions are in general neither concave nor convex. The convexity of the objective
function depends on the relationship among the cost parameters and the intensity parameter

of the distribution on the time until a process shift.

The solution of the cost models for the generalized Shewhart control chart involves
determining the optimal values for n and h as in the standard chart plus ki and k3, the
control limit widths, and m, the time at which the control limits are changed. The

optimization in both cases is performed using GINO [25].

The analysis of the cost models for the generalized Shewhart control chart could also be
complicated as the function is in general neither concave nor convex. The convexity of the
objective function depends on the relationships among the cost parameters and the

parameter of the distribution on the time until a process shift.

The objective of this research is to compare the costs associated with the standard Shewhart
control chart and the generalized Shewhart control chart. The cost models for the standard
and the generalized Shewhart control chart generate several interesting points. First, the
cost models display invariant behavior relative to some of the process parameters. The

second is that for proper choices of the rate parameters, the generalized Shewhart control

1 Introduction 6



chart is more economic than the standard Shewhart control chart. Finally, the type II error
probability is found to be an important factor in analyzing the properties of the total cost

functions.

1.4 Value of the work

Shewhart control charts are easy to construct and understand but they have the

disadvantage that they can be very slow at detecting small changes in the process mean.

For example, suppose that an x chart uses 3-sigma limits. If a shift from Hito =

1+ 0.5 o/nl/2 occurs at time t then Ko is still well within the control limits and it will

take an average of 155.2 samples to detect this shift. If a shift of this size is big enough to
be of concern then the time corresponding to 155.2 samples would usually be
unacceptably long. The intuitive reason why the x chart takes so long to detect small
shift is that this chart uses only the information in the kth sample mean at ty. If there
is a shift in m then all samples taken after this shift should contain information about the
shift. If the shift is small then the information in a single sample, when looked at in
isolation from other samples, may not be strong enough to produce a signal. Various
modifications of the standard Shewhart control chart have been proposed. Some use past
sample information to make this type of chart more sensitive to small changes in the
parameters. Some of these modifications also make the chart more sensitive to other
process irregularities such as drift or cycles in the process parameters. The basic idea of the
modifications so far is to make it easier for the chart to signal by adding supplementary

rules for signaling [48]. However, the simultaneous use of a large number of rules
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can substantially increase the false alarm rate. A high false alarm rate is undesirable even if

the efficiency is high.

This research deals with a Shewhart control chart adjustment strategy. This strategy has the
following features which provides a new way of studying and analyzing Shewhart control
charts. First, there are no additional run rules and therefore the false alarm rate may be
reduced. The cost models are constructed to allow the optimal choice of change-over time
and the best values for the initial and adjusted control limits. This strategy can increase
control chart sensitivity to small but anticipated shifts in the process average so that the
chart is able to rapidly detect a special cause and bring the process into control. The models
are also used to provide a comparison with conventional implementation of the control

chart.
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CHAPTER 2

Literature Review

Since Walter Shewhart introduced the control chart technique in 1924 [28], control
schemes have found widespread application in improving the quality of manufacturing
processes. Shewhart control charts are widely used to display sample data from a process
for the purposes of determining whether a process is in control, for bringing an
out-of-control process into control, and for monitoring a process to make sure that it stays
in control. A control chart is maintained by taking samples from a process and plotting in
time order on the chart some statistic computed from the samples. Control limits on
the chart represent the limits within which the plotted points shouldfall with high

probability if the process is operating in control. A point outside the control limits is taken
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as an indication that something, sometimes called an assignable cause of variation, has
happened to change the process. When the chart signals that an assignable cause is present,
rectifying action is taken to remove the assignable cause and bring the process back into

control.

Duncan [13] establishes the foundation for the economic design of control charts. He
defines a cost model that will support the choice of the optimal sample size and width for
the control limits. Goel, Jain, and Wu [17] develop an algorithm for solving Duncan's
model while Chiu and Wetherill [9] provide a simplified approach to obtaining an
approximate solution to Duncan's model. Each of these analysis treats the conventional
fixed sample interval control chart. Other authors offer alternate models. Gibra [16] used a
cost model to focus upon the cost of detecting the cause in order to determine the sample

size and the width of the control limits.

De Oliveira and Littauer [15] presented the first non-conventional idea with their
development of warning limits. Montgomery [32] provides a thorough survey of the
analyses of control charts and indicates that common practice is to select a sample size of
five, a sampling interval of one hour, and three standard deviation control limits because of

their ease of implementation.

The usual practice in maintaining a control chart is to take samples from the process at fixed
- length sampling intervals. Reynolds, Amin, Amold, and Nachlas [40]
investigate the modification of the standard practice in which the sampling interval or time
between samples is not fixed but instead can vary depending on what is observed from the

data. The idea of using a variable sampling interval (VSI) control chart is intuitively
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reasonable. The proposed (VSI) control chart uses a short sampling interval if the sample
mean is close to but not actually outside the control limits and a long sampling interval if the
sample mean is close to the target. If the sample mean is actually outside the control limits,
then the chart signals in the same way as the standard fixed sampling interval control chart.
The problem of determining a sampling plan with variable time intervals between samples

is investigated by Arnold [1], Hui and Jensen [21], and Reynolds and Arnold [41].

Nachlas, Clark, and Reynolds [31] develop a model to describe the total cost per unit time
of monitoring the mean of a process using a variable sampling interval (VSI) Shewhart
control chart. The model is developed under the assumption that the quality characteristic of
interest is normally distributed with known and constant variance. A Markov model of the
behavior of the sampling process is defined and used to construct the cost model. The cost
model is then analyzed to determine the optimal control chart parameters including those
associated with the variable sampling intervals. They show that the variable sampling
interval (VSI) control charts are often more economical than standard Shewhart control

charts.

The cumulative sum (CUSUM) control chart is introduced by Page (1954) and has
been widely used for monitoring the mean of a quality characteristic or a production
process. The CUSUM chart has been shown to be more efficient than the simpler Shewhart
control chart in detecting small and moderate shifts in the process mean. The CUSUM chart
is usually maintained by taking samples at fixed time intervals and plotting a cumulative
sum of difference between the sample means and the target value in time order on the chart.
The process mean is considered to be on target as long as the CUSUM statistic computed

from the samples does not fall into the signal region of the chart. A value of the CUSUM
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statistic in the signal region is taken as an indication that the process mean has changed and

that the possible causes of the change should be investigated.

The properties of the CUSUM control scheme are determined by the values of parameters.
Bissel [5] studies a control scheme designed to detect a specific mean shift (unless the
variance shifts with a shift in the mean level). Brook and Evans [8] investigate a standard
CUSUM scheme and an associated head start method. Goel and Wu [18], evaluate ARL's
for CUSUM charts using the ratio of two integral equations. Lucas and Crosier [27] study
the property of fast initial response for CUSUM quality control schemes and they find that
the fast initial response (FIR) feature for CUSUM quality control schemes permits a more
rapid response to an initial out-of-control situation than does a standard CUSUM chart.
This feature is especially valuable at start-up or after a CUSUM has given an out-of-control
signal. They also present the average run length and the distribution of run length
for CUSUM schemes with the FIR feature and compare FIR CUSUM schemes to
standard CUSUM schemes. The comparisons show that if the process starts out in
control, the fast initial response feature has little effect; however, if the process mean is not
at the desired level, an out-of-control signal will be given faster when the FIR feature is

used.

Roberts [44] introduces the exponentially weighted moving average (EWMA) control
scheme. Using simulation to evaluate its properties, he shows that the EWMA is useful for
detecting small shifts in the mean of a process. He developed nomograms of average run
lengths (ARL's) for the case of normally distributed observations. In a subsequent article,
Roberts [45] compares their performance to other procedures including CUSUM and

Shewhart control schemes. More recently, Robinsion and Ho [46] numerically evaluate the
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ARL's of EWMA control schemes using an Edgeworth series expansion. Although they
consider a wider range of parameter values than does Roberts, their results are inaccurate
for small values of the parameter. Crowder [10] evaluates the properties of EWMA's by
formulating and solving a system of integral equations. Tables of the first and second
moments of the run length distribution are given in his article. Hunter [22] suggests writing
the current EWMA as the previous EWMA plus a fraction of the difference between the
current observation and the previous EWMA. Lucas and Saccucci [28] evaluate the run
length properties of EWMA control schemes by representing the EWMA statistic as a
continuous-state Markov chain. Its properties can be approximated by a finite-state Markov
chain following a procedure similar to that of Brook and Evans [8]. This allows the
properties of EWMA's to be evaluated more easily and completely than has

previously been done ( Lucas and Saccucci [28]; Yashchin [53]).

In a short production run environment, data to estimate the process parameters and the
limits for a standard Shewhart control chart are usually not available prior to the start of
production. Since the number of parts needed to set the control limits could exceed the total
number of parts produced in the run, the usual recommendation of gathering around
twenty-five observations for setting valid control limits is also generally not appropriate in a
short-run environment. In addition, as Hillier [19] points out, if a small number of sub

groups is used to set the control limits, an inflated false alarm rate results.

Examples of manufacturing systems in which production runs are short, or equivalently,
lots sizes are small, are numerous. Job shop manufacturing is usually characterized by
manufacturing businesses have adopted shot production runs as a production strategy.

Hillier [20] presents a method that gives valid control limits for Shewhart control charts
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regardless of the number of subgroups. His method, similar to classical control chart
practice, is a two-stage procedure. The first m subgroups are used to assess control of the
subsequent subgroups. This method gives the desired false alarm rate for any value of m,
but the ARL while out of control may be too large if m is too small. This basic tradeoff also
occurs in other control approaches. Therefore Hillier recommends using m 2 5 and
presents factors for setting control limits for the case of subgroups of size n = 5. Recently,
Quesenberry [38] introduced Q charts for the short run problem when the quality variable
follows a normal, binomial or Poisson distribution respectively. For the normal case he

addresses both the case of grouped data and the case of individual measurements.

Much has appeared in the quality-control literature on incorporating economic
considerations into the design of statistical process control (SPC) charts. In such
approaches, a cost model is assumed and control-chart parameters are chosen to minimize
expected cost. Montgomery [32] provides a review of the literature on this topic, and
Saniga [47] discusses the use of economic design with the addition of statistical constraints
on the design. Crowder [12] studies a finite-horizon or short-production-run version of an
economic-process-control model. He derives an algorithm that allows implementation of
this model and adjustment strategy for the short-production-run case. The solution to the
control problem is consistent with traditional statistical process control philosophy in that
process adjustment is called for only when the process mean is substantially off target. He
also shows that the control or adjustment limits for this model are time-varying and depend
on the break-even point between the quadratic cost for being off target and a fixed
adjustment cost. It is shown that the length of the production run can greatly influence the
control or adjustment strategy and the use of control limits based on the assumption of an

infinte-run process can significantly increase total expected cost.

2 Literature Review 15



A process-control model is considered in which quadratic loss is associated with any
deviation from target. Also it is assumed that a fixed cost is associated with any process
adjustment. This is a special case of the cost structure assumed by Bather [3], who referred
to the two costs as "running” costs and "overhaul" costs, respectively. A practical
application of the short-run approach involves the problem of when to overhaul an

expensive piece of manufacturing equipment. In rapidly changing industries,

such as semiconductor manufacturing, equipment may become obsolete and need to be
retired in a relatively short number of years. In such cases, it cannot be assumed that the
equipment will be used over an infinite period of time. In this context, a process adjustment
means an overhaul of the equipment, restoring it to an on-target condition. The fixed
adjustment cost is then the cost of performing the overhaul. More generally, the fixed
adjustment cost could reflect the cost of manual adjustment, maintenance, or occurrence of

process downtime.
In summary, many relevant results have been developed in different areas. Other needed

results, particularly in the area of Shewhart control chart adjustment strategy, do not exist.

Some are developed in this dissertation.
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CHAPTER 3

Development of Cost Model I

3.1 Cost Model I for the Standard Shewhart Chart

3.1.1 Introduction and Assumptions

Assume a process is monitored using an X chart and the process is subject to a shift

from the in control value of the process mean pj to a single out of control value p) ata

random point in time. Assume the time until a process shift is a random variable with

distribution F(t). Assume also that we plan to use the strategy of starting with a set of
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control limits and to change the limits to be tighter after the process has operated for a
period of time that is to be determined. Specifically, the process is sampled every h hours

and after the mth sample the control limits are changed.

The question is to select the control limits to use before and after sample m and to choose a
value for m. The basis of choice is a model for the cost of operating the chart. To start, the
cost of operating a conventional (standard) chart is defined. The resulting model is then

modified to reflect the consequences of the strategy of changing the control limits.

The cost categories considered are:

(1) C; =sampling and inspection cost, unit cost per item = c;

(2) Cg = false alarm cost, unit cost per event = cf

(3) C; = true signal and process correction cost, unit cost per event = ¢,

(4) Cg4= cost of producing substandard product while out-of-control, unit cost/item= cg

(5) Ct = total cost per unit time

The expected total cost per unit time function is defined as:

C;+C, +C,

E|C;|=C +
(] E[t] (3.1.1)

'Where E[t] is the expected cycle length (time to signal) and the following notation is used:

uy = in-control value of the process mean

3 Development of Cost Model I 18



up = out-of-control value of the process mean

oy = the known and constant population standard deviation
UCL = upper control limit, UCL = y; + ko,/n1/2

LCL = lower control limit, LCL = p - ko,/n1/2

U, = upper specification limit

L, = lower specification limit

P = proportion non-conforming when p = py, then

P1 =1__(D|:Ux_p'l:]+(bl:l‘x—u1:|
g g

X X

pp = proportion non-conforming when p = p,, then

by =1- Q[Ex;ui} (D[_I:_:_E_]
(¢} (o]

X X

P=P2-P1

h = time between samples

r = production rate in units/hour

n = number items inspected per sample

m = number samples before changing the control limits

& = number of units of oy from pq topy, so 8= (py - p1)lox
k= number of ¢,/n!/2 from u; to UCL before sample mh
ko= number of 5,/n!/2 from ; to UCL after sample mh

o = the Type I error probability, then

a=1-P(y, —ko, /vn <X <p, +ko, /Vnju=p,)
=1-[®(k)- D(-k)] = 2[1- (k)]

B = the Type II error probability, then

B=P(u1-—kcxl«/—n_5'i5pl+kox/w/;|u=u2)=d>(k—8\/3)—<b(—k—8«/3)

3 Development of Cost Model I
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There are five decision variables in this dissertation, namely, n, h, m, k; and k;. The

optimal values for the five decision variables need to be chosen to minimize the expected

total cost per unit time function as defined in (3.1.1).

3.1.2 Model Development

Suppose F(t) = 1 - e"M, where A is the rate parameter for the distribution on the time until a

shift in the process mean. Then:

(1) Inspection cost = C;= {fixed cost + (unit cost)(number inspected)}/ {time between

samples}
Ci = {CO +nci}/ h (3.1.4)

(2) False alarm cost = C¢ = (unit cost)(probability of false alarm)= c¢P[false alarm]. Let
A="false alarm," A = "false alarm on sample i," A, ="no process shift before sample i,"

then

P[A]= Z,P[Ax]P[Az]

—_— N - i-1 —_ 1 = S - i-1,-Ah =__—QC—M
—ga(l o) (1 - E(ih)) aé(l o) e 0™ a1s)
c.oe™
= cP[A]= —SO€
Cr = cPlA] 1-(1-a)e™ (3.1.6)
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(3) True signal cost = C, = (unit cost)(probability of a true signal)= c;P[true signal] (note
that once a shift has occurred, the probability is 1.0 that a true signal will occur ) Let
B="true signal," B;="process shift in interval j," B,="no false alarm on proceeding j-1
samples," then the probability of the process terminating with a true signal can be

constructed as:

P(B]= 3.PIB.]P[B,] = 3[F(in) - (- )h)]1- )"

i =1

~Ah
= N -A(j-1)h _ _-Ah -V = M
;[e € ]( a) 1_(1_a)e—lh (3'1’7)

c(1-e™)
1-(1-a)e™ (3.1.8)

(4) Cost of producing non-conforming items when the process is out of control = Cy4= (unit
cost)(production rate)(increase in proportion non-conforming)(expected time out of

control).

Assume the process shifts after the kth sample. Then the time that the process is out of
control is comprised of the partial sampling interval during which the shift occurs and the

full intervals that elapse before a signal. To determine the expected value of the partial

sampling interval, t, during which the process is out of control, let T be the part of interval
before process shift. Then tp= h-T and E[tp]= h- E[T]. Figure 3.1.1. The problem is
therefore to construct E[T]. If the shift occurs in interval (jh,(j+1)h), then the

construction of E[T] is:
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T =t—jh = E[T] = E[t- jh] = [(t— j)f(t]jh < t < (j+ )h)de

(3.1.9)
And we know that:
. , F(t) - F(jh
F(fjh<t<(j+1)h)= o i?)h) EJngh)
_ : _ £(t)
f(t|3h£ts(3+1)h)_F((j+1)h)_F(jh) (3.1.10)

This is the conditional probability density function of the random variable t given that the
random variable t falls in the interval (jh, (j+1)h). Since the random variable t denotes the
time that the process goes out of control, the above conditional density function represents
the probability that the process goes out of control at time t given the shift occurs in the time

interval (jh, (j+1)h). Therefore:

E[T] = E[t— jh] = [(t— jh)f(djh <t < (j+ Dh)dt

[ (= i) (et j;”’hx(t— jh)e™dt

i

[F(G+1Dh-F(h)]  [E(j+1)h—F(jh)]
( '[;j”’h Aedt — j:”’“ xjhe‘“dt)

_ _1-(+2rh)e™
(l_e-x(m)h_l_{_el}h) K(I—C-M) (3.1.11)
and finally:
1-(1+An)e™  Ah—(1-¢™)
Elt [=h-E[T]=h- e wb -
[t Mi-e™) M1-e™) (3.1.12)

This is the expected length of partial interval during which the process is out of control.

Note that the above equation is a function of control interval h and rate parameter A.
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Figure 3.1.1 Time Intervals Involving T and t,
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E[time in full interval until a true signal] = E[t;] = h P[no signal at (j+1)h] ARL(y), and so
Elt=hB (1-B)~1, thus if D represents the time out of control, the expected time out of

control is

Ah—(l—e'“‘)+ hB
Al-e™) 1-B

E[D] = E[t,|+E[t,]=
(3.1.13)

Thus the cost of producing non-conforming items when the process is out of control, that

is Cq, may also be obtained and it has the following form:

lh—(l—c'“‘)+ hp }

Cd=CdI'p ~2\h
Mi-e™)  (1-B) (3.1.14)

(5) To determine the expected cycle length, let E1="false alarm on sample j and no process
shift before sample j," Eo="process shift during interval 1, no false alarm before interval I,
and true signal on sample j (j-1+15t after shift)," and E[t]= expected cycle length. Therefore
we obtain:

Bl = 3 jnelE]+ 3 AE

j (3.1.15)

P[false alarm on sample j and no process shift before sample j]
= a(1-a)-1(1-F(jh)) = a(1-a)i-le-Ajh

P[process shift during interval 1]

= F(lh)-F((1-1)h) = e-A(-Dh _¢-Alh

P[no false alarm before interval 1] = (1-o)l-1
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P[true signal on sample j} = gi-I(1-B)

Now, the expected cycle length, E[t], has the following form which is obtained by using

the above information:

E[t] = i jh(a(l —o) e 4 2}: (e'm'”h - )(1 —a) B (1- B)J

= gthe™ i]((l -a)e™ )H +(1- [3)(1 —e )hi Ji e MIUR (] _ )
cthe™ (1-e™)h l: B (1-B)1-oc)e™ :l

) [1-(-oe™] i [B-(-0)e™]|1-B [1-(1-aw)e™T

(3.1.16)

The objective is to choose the values of the decision variables to minimize equation (3.1.1).

3.2 Cost Model I for the Generalized Shewhart Chart

3.2.1 Introduction and Assumptions

Suppose that a control chart is used to monitor a process and that samples are taken
every h units of time. Suppose further that the width of the control limits is changed after

the mth sample. Then the following facts may be used to describe control chart behavior:

Fact 3.1
(D) at) =0y if t<mh
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=0y if t >mh
) B® =P, ift<mh
=B, if t>mh
3 k() =k;ift<mh
=kyif t>mh (3.2.1)

Fact 3.2

The generalized Shewhart control chart is the same as the standard Shewhart control chart if
and only if:

a1 = o) = o;

Br=B2=B

ki = k= k (3.2.2)

The question is again to select the control limits to use before and after sample m and to
choose a value for m. The basis of choice is a model for the cost of operating the chart.
The basic cost model I developed in section 3.1.2 is modified to reflect the consequences of
the strategy of changing the control limits. The results is referred to as general cost model 1.
3.2.2 Model Development

As discussed in the previous section, the construction of cost model I for the generalized
Shewhart control chart can be based on the same cost categories. The development

proceeds as:

(1) Inspection cost
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Since the change of control limits does not change the form of the inspection cost, the

inspection cost remains:
C;={cg+nc;}/h (3.2.3)

(2) False alarm cost = C¢ = (unit cost)(probability of false alarm) = c¢ P[false alarm ] The
expression for the probability of a false alarm in this case is quite different from that in the
standard control chart since we have to consider t £ mh and t > mh separately. The

probability of false alarm can be constructed as:

P[A] = ZP[A1 P[A,
= ial(l— o,) " (1-F(ih))+(1-o,)" iaz(l —a,) ™ (1-F(ih))

i=1 i=m+1

m . 00
=0 Y (1-o) e+ (1-a)"0, Y (1-0,) " e
i=l i—-m=1

_ ale‘”‘ {1 - [(1 -, )e-m‘ ]m} N (1 —0, )m e—l(m+l)ha2
1-(1-o,)e™ 1-(1-a,)e™ (3.2.4)

Therefore:

0‘13-%{1 ~[(t-oy )e-u]m} L= ) eHmHig,
1-(1-o,)e™ 1-(1-o,)e™

C =¢
(3.2.5)

Note that the above expression is a nonlinear function of control parameters and it may

become easier if bounds can be provided for Cs. The bounds should free from m, the

number samples after changing the control limits. Experiments have shown that the lower

and upper bounds are convenient for a small workshop. The result is shown below:
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Lemma 3.1

The cost of false alarm has upper and lower bounds which are functions of type I error

probabilities and control interval, and they are free from m. That is:

c,ale™ c (o + o, )e™
—th fs ~Ah
1-(1-a,)e 1-(1-oy)e (3.2.6)

The proof is in Appendix B (1).

(3) True signal cost = C; = (unit cost) (probability of true signal) = ¢, P[true signal]. Note
again that once a shift has occurred, the probability is 1.0 that a true signal will occur.

Therefore the construction of the cost of true signal proceeds as follows:

(1) Construct the probability of the process shift in interval j;
(2) Construct the probability of no false alarm on proceeding j-1 samples;
(3) Construct the probability of true signal;

(4) Combine these results to obtain the true signal cost.

P[B] = ZP[BI] P[B,]

-mZ“[F (i) - F(i-1) ](l—al)j"+jLF(jh)—F(j—l)h](l—az)"“

e evar s Sle-ejar

j=1 j=m+

=(1-e-“’){1 i e -M]m“+[(l'a2)e—mr“}

—{1— ~Ah _{1_ ~Ah
1-o,)e 1-(1-a,) 1-(1-a)e (3.2.7)
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1-(1-o)e™ 1-(1-a)e™  1-(1-q,)e™

(3.2.8)

The above expression is a nonlinear function of the control parameters and useful bounds

may be provided for C,. The bounds should not depend on m. Experiments have shown

that the lower and upper bounds are convenient for hand calculation and the result is:
Lemma 3.2

The cost of true signal has upper and lower bounds which are functions of the type I error

probabilities and control interval, and they are free from m. That is:

c,a,(l-e'*:h <C < cl(l_e-%hlh
1-(1-a,)e 1-(1-ay)e (3.2.9)

The proof is in Appendix B (2).

(4) Cost of producing non-conforming items when the process is out of control = C4_ Lett
= time that the process goes out of control, then E[time out of control] = E[tp] + E[tg].
Since E[tp] = h - E[T]. The problem is again to construct E[T] but the analysis is the same

as for the standard Shewhart control chart. Thus:

1-(1+3h)e™ Ah—(1-¢™)
l(l—e'”‘) B l(l-e’“‘)

E[t,]=h-E[T]=h-
(3.2.10)

The construction of E[tg] is a bit different as the identity of the interval in which the shift

occurs affects the signal probability.
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E[time in full intervals until a true signal] = E[t;] = h P[no signal at (j+1)h] ARL(u,). It is
actually the ARL that depends on the time of shift and the signal probability. In our

analysis, three cases are considered:

(a) Shift during j <m and signal ati <m;
(b) Shift during j < m and signal ati > m;
(c) Shift during j > m.

For case (a), the equation of E[tg(a)] has the following form (Appendix B(3)):

E[t,(2)] = 3 [F(ih)- F( Jl)h]z i~ )h(1-p, )Bi"

=1

(1 e )_ mB1m+e Bm+l e-x(m+1)h
ElL@)]= =gy M=) S5 o B
hBl(l e )Bl -
(1-B,) B—e™ (3.2.11)

For case (b), the equation of E[ty(b)] is as follows and the detail derivation can be found in

Appendix B (4):

E[t,(5)] = $[F(ih) - F(Gi-1)n)] B 3 (i - JhBs =" (1-B,)

j=1 1-m+l

E[1,(6)] = 1- )hﬂl{ mpr ) ?"+"°'“'”””+(m“)e'm}

B, —e™ (B1 —e™™ )2 B, —e™
(1™ )hB, By -
+ “xh
(1-B,) B,-e (3.2.12)
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For case (c), it is obvious that:

1 hB e-l.mh
E[t,(c)] = [1- F(mh)]hB, =—2
[t.)]=] ) 1-B, 1-B, (3.2.13)

Finally, combining the three cases yields:

E[t,]= B, (1) DB +[hﬁl(1_e%)(w -c-m)}[ 1L __1

1-B, 1-8, B, —e 1-8, 1-8 (3.2.14)

and then

C, = Cdr(pz —pl)(E(tp)+E(t’)) = c"rp{ )\(1_6'“) 1-B, ¥ 1-B,

el B )

(5) The expected cycle length is different from that of the cost model I for standard

(), 1) g

(3.2.15)

Shewhart control chart. We must again distinguish between events before and after m. The

expected cycle length can be written as:

£l = TinelE]+ 3T Ee

(3.2.16)
To start, the following notations are employed:

E[t] = ;jhE[EJ

(3.2.17)
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Then, E[tf] can be written as the following form:

jh(1—o,) o [1-F(h)]+ (1-o,)" i jh(1- ;)™ "o, [1 - F(jh)]

j=m+l

e9)
~
~—*
Ayl
A
i"
i agt

=oh) j1-0,) e +(1-a,) a,h ij(l —o,) e

j=1 j=m+

G O G B B L
[i-(-a)e o Im(me)e™

=o,h

(1 _ al)m g~ Mm+Dh m(l _ al)m e Mm+Dh
h

+o

-(-ay)e™] 1-(1-op)e™ 3.218)
Next, let
Eft,]= 2 ih 2 E[E,]

j 1 (3.2.19)

Three cases must be considered:

Case (@) s<m,j<m;
Case(b) s<m,j>m;

Case (¢) s>m.
For case (a), the derivation of E[t,(a)] is in Appendix B(5):

Elt, @] = Y [Fsh) - F(is- D)](1-e)" X jnt - BB

(™10 me(-o)] mB[Br-(e0-a)7]
[1-e™(1-a)] 1-¢™(1-a,) Bi-e™(1-0)
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+h(l-e )Bl{lﬁl {1‘[6%(1‘0‘1)]m_Bin‘(e%(l‘al))m}}

—Bl l1-e” (I-O‘l) Bx_c— (1—(1,) (3.2.20)
For case (b)
[t.(b)] = Z[F(sh) F(s—1)h](1- o, )" pr—= Z jh(1 Jom-1
& [ —A(s=D)h —2sh =1 Am—s+1 1 m
_Bz)hé[e h—e ](1_0‘1) 1 l:(l_B2)2+l—B2:|
) ml _ g [e““‘ ]m
=h(1—-e ”‘)(L+mj: I :|
1= Bi~[e™0- a‘)] (3.2.21)
For case (c), the equation of E[t,(c)] is (Appendix B(6)):
E[t,(c)]=(1-a,) _Z[F(lh) F((1-1)h)J1-a,) ™ ‘Z jh(1 -
_(1mo)"(1-e™)h [[B, +m(1=B)fe™™  (1-B,)e™
(1-B,) 1-(1-a,)e™ [l—(l—az)e'”‘]z
_ [B2 +m(1- Bz)]e““‘ _ (1-B, )e"“‘ }
%2 o (3.2.22)

Combining the results from the three cases we obtain the expression for E[t;] for the
generalized Shewhart control chart under the the shift distribution of negative exponential.
That is:

E[tn1=h(l—e-“*)sl{1[‘(6'“‘“‘%)? nle(-a)" B[P -(0-a)]

l—e‘“‘(l—al)]z 1-e™(1-ay) B, —e™(1-0y)
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-B,| 1-e™(1-a,) B,—e™(l-a,)

+h(1-e™ ! +m B - Bl[c_m(l_ax)]m

- I [ (- a) }

+ (1_a1)m(1—e_m‘)h [ﬂz + m(l—Bz)]c_h“h s (1 _ﬁz)e—knh
(1-B,) I-(1-0g)e™  [1-(1-a)e™]

- [Bz + m(l - Bz)]e_Ml — (1 — Bz)e‘u }

a, o

+h(1_e-m)ﬁl{l B {1-[6?(1—%)]“‘ B G ) ﬂ

(3.2.23)

Now with the definition of E[tf] of the same section, we obtain the expected cycle length

for the generalized Shewhart control chart as follows:

E[t] = alh[ e™ {1 - [(1 -Q, )C‘“‘]m} _ m(1-a, )“‘ e ~Mm+Dh J

[1—(1—0(1){”‘]2 1-(1-a)e™

ok (l_al)me—l(mﬂ)h . m(l_al)me_x(mﬂ)h
S ) A (EC AT

(e (t-a))” mfe(-o) mB[BY - (e (1-e)” ]]

[1 e 1 ocl ]2 1-e” (1 ax) B, —e” (1 ax)

+h(1—e’”’)[51< l_xB { [e jh(l_al)]m - b —(e'_“‘(l—ocl))m ”
| 1

1-e™(1-a,) B—e™(1l-a,)
+h(1-e™ —!—+m ﬁTH—Bl[C-M(l“al)]m
el A
(l—al)m(l_e—u)h [ﬁ2+m(1-—[32)]e°m + (l‘Bz)e_mh
(1-B,) I=(1-o,)e™  [1-(1-o,)e™]

_[B+m(-B, )™ (1- Bz)e'm}

a, o

+ h(l -e™ )B

+

(3.2.24)
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Then, the expected total cost per unit time function for the generalized Shewhart control
chart is well defined and the objective is to choose the optimal values of the decision
variables to minimize the expected total cost per unit time as defined in (3.1.1).

Lemma 3.3

The expected total cost per unit time function for the generalized Shewhart control chart is

equivalent to that for the standard Shewhart control chart under Fact 3.2.

The proof of this lemma is in Appendix B(7).
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CHAPTER 4

Development of Cost Model 1I

4.1 Cost Model II for the Standard Shewhart Chart

4.1.1 Introduction and Assumptions

Assume a process is monitored using the same control chart and the process is subject to a

shift from the in control value of the process mean 1 to a single out of control value py at

a random point in time. Assume the time until a process shift is a random variable with F(t)
=1/8, (0 < 6 < ). Assume also that we plan to use the strategy of starting with a set of

control limits and to change the limits to be tighter after the process has operated for a
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period of time that is to be determined. Specifically, the process is sampled every h hours

and after the mth sample the control limits are changed.

The question is to select the control limits to use before and after sample m and to choose a
value for m. The basis of choice is a model for the cost of operating the chart. To start, the
cost of operating a standard chart is defined. The resulting model is then modified to reflect

the consequences of the strategy of changing the control limits.

In this section, the cost categories considered are the same as those discussed in the
previous chapter. The expected total cost per unit time function is defined as in (3.1.1).
The decision variables are still n, h, m, k; and ky (k=k; for the standard Shewhart control
chart). The optimal values for the decision variables need to be chosen to minimize the
expected total cost per unit time as defined in (3.1.1). In addition, the time until the process
shift is modeled using the uniform distribution because it has a failure rate function which
is the function of time t. Since the parameter 6 (0 < 8 < o) may take values widely, the

performance of cost model II may depend upon the choice of the parameter 6.

4.1.2 Model Development

Referring to the previous chapter, the development of cost model II for a standard
Shewhart control chart may be realized by first constructing the cost components.
However, the range of the time is different here because of the use of uniform distribution.
That is, since 0 <t < 8 < oo, let N be the maximum value of t, then N = 6/h, and suppose

that N is an integer.
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(1) Inspection cost = C;= {fixed cost + (unit cost)(number inspected)}/ {time between

samples}, therefore:
C; = {cg +nc;}/h (4.1.1)

(2) False alarm cost = C¢ = (unit cost)(probability of false alarm)= c¢P[false alarm]. Let
A="false alarm", A, = "false alarm on sample i", A, ="no process shift before sample i",

then the construction of the cost of false alarm Cs proceeds as follows:

(i) Construct the probability of false alarm;
(i) Formulate C¢ = c(P[A].

Therefore:

P[A]=Y P[A,]P[A,]= ia(l —a)~[1-F(ih)] = ai(l -~ a)"‘(l - %)

N ., oh . i-1 h h N
=aY(l-a)' ——Y i(l-a)" =l-—+—(1-0)
Z, Gi; of o (4.1.2)
Thus, the false alarm cost can be constructed as:
h h N]
C;, =cPlAl=c¢c,|/l1-——+—({1-
= cPlA]=c[1- e+ 1-0) i

(3) True signal cost = C; = (unit cost) (probability of a true signal) = c{P[true signal]. (note
that once a shift has occurred, the probability is 1.0 that a true signal will occur ). Let

B="true signal ", B; =" process shift in interval j", B, =" no false alarm on proceeding j-1
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samples"”, then the expression for P[B] is:

J:l j=1

PLE] = 3 P{B,]P[R,] = S[F(0)-F(i-u-or = 3 -0
h
5

Thus, the true signal cost has the following form:

C, =c, P[B]= c[[l——h—(l—a)N}

b of (4.1.5)

(4) Cost of producing non-conforming items when the process is out of control = C4=
(unit cost)(production rate)(increase in proportion non-conforming)(expected time out of
control). The time intervals at this step can be seen in Figure 3.1.1. The E[time out of

control] = E[length of partial interval after shift and before sample] + E{time comprised of

full intervals until a true signal] = E[tp] +E[t].

Let t, = length of partial interval during which the process is out of control and let T = part
of interval before process shift, then tp= h-T and this implies E[tp]= h- E[T]. The problem
is therefore how to construct E[T]. If the shift occurs in (jh,(j+1)h), then the construction

of E[T] yields a interesting property of the uniform distribution:

Lemma 4.1
The expected part of interval before the process shift is equal to the expected length of
partial interval during which the process is out of control and they are equal to half of

length of the control chart interval. That is:
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E[T] = E[tp] =h/2 (4.1.6)
The proof is in Appendix C. (1).
Let E[time in full intervals until a true signal] = E[tg] = h P[no signal at (j+1)h] ARL(uy).

As ARL(yy) = (1-8)"1 E[t] = h B (1-)-1. Let D="time out of control", then refer to Lemma

4.1, the expected time out of control is:

N | =

E[D] = E[t,]+E[t,]==h +%

(4.1.7)

Thus the cost of producing non-conforming items when the process is out of control, that

is C4, may also be obtained and it has the form:

C, = c,pE[D] = cdrph(:—lw*-ijl
2 1-B (4.1.8)

(5) Let E;="false alarm on sample j and no process shift before sample j", E,="process
shift during interval 1, no false alarm before interval 1, and true signal on sample j (j-1+15t
after shift)"”, and E[t]= expected cycle length. Therefore:
E[t] =Y jhP[E ]+ Y jh> P[E,]

i i 1 (4.1.9)
P[false alarm on sample j and no process shift before sample j] = a(1-ap-1( 1-F(jh)) = a(1-
a)-1(1-jh/6)
P[process shift during interval 1] = F(lh)-F((1-1)h) = [th/8 -(I-1)h/6] = h/6
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P[no false alarm before interval 1] = (1-a)l-1

P[true signal on sample j] = pi-i(1-p)

Now, the expected cycle length, E[t], has the following form:

P )

1=1

_—_gjha(l—oa)j_l[l Jh ] Z ih

)_.

= E[1 ~(1-a)" (N +1)
o

mﬁ{%+2U—am—ﬂ—aw4LJN—DﬂbﬂuN+N%Ljnm}
o

o o’ o?

L, 00-p) [B(-BY) Ng_(-ofi-0-a)] Na-o
B-(-oe| 1-B) 1-B o’ a (4.1.10)

The reduction to this form is shown in Appendix C.(2).

The expected total cost per unit time function for the standard Shewhart control chart
corresponds to equation (3.1.1) and the objective is to choose the optimal values of the
decision variables to minimize the expected total cost per unit time function.

4.2 Cost Model II for the Generalized Shewhart Chart

4.2.1 Introduction and Assumptions

Suppose that a control chart is used to monitor a process and that samples are taken

every h units of time. Suppose further that the width of the control limits are changed after

the mth sample. Then the following facts may be used to describe control chart behavior:
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Fact 4.1
(1) a(t) =g ift<mh
= o if t > mh
(2) B(t) =B, ift<mh
=B, if t >mh
3 k() =kift<mh
=k, if t>mh (4.2.1)

Fact 4.2

The generalized Shewhart control chart is the same as the standard Shewhart control chart if
and only if:

a; = oy = o;

B
ki = k= k (4.2.2)

n
=
(]

I

4.2.2 Model Development

As discussed in the previous section, the construction of cost model 1I for the generalized

Shewhart control chart may be achieved by analyzing the following costs:

(1) Inspection cost - Since the change of control limits does not alter the structure of the

inspection cost, thus the inspection cost remains:

Ci = (cg + ncp/h (4.2.3)
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(2) False alarm cost = C¢ = (unit cost)(probability of false alarm) = c¢ P[false alarm ] Then,
the problem again is to construct the expression for the of probability of a false alarm.
Again the expression for the of probability of a false alarm in this case is quite different
from that for the standard Shewhart control chart because we have to consider t <mh ort >

mh separately. Therefore:

P[A]= ZP[Al] P[Az]

= 2.0 T-Fh))+ (1-0)" Y oy (1- 0, ) ™ 1= F(i)]
(1 \B(q_ o WN-m_h 1-(1-a)" (1-a,)"
=1-(1-0o,)"(1-t,) 9[ - + o
b [(1-%)'"(1-%)”"“(1\1% +1)}
° % (4.2.4)
The reduction of the above form is in Appendix C(3).
m -m h 1-{l-« i 1--(11 i
+E[(1—al)m(l—a2)N_m(Na2+l)]}
’ % (4.2.5)

It is an important fact that the above expression is a nonlinear function of the control
parameters and therefore bounds may be provided for Cgand it is hoped that the bounds
may free from m, the number samples after changing the control limits. In fact, this can be
done and experiments have shown that the lower and upper bounds are convenient for hand

calculation and the result is the following lemma:
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Lemma 4.2

The cost of false alarm has upper and lower bounds which are functions of type I error

probabilities and the control interval, and are free of m. That is:

qkﬁ%gkqsqn%ij
O\ Ola, (4.2.6)

The proof is in Appendix C(4).

(3) True signal cost = C; = (unit cost) (probability of true signal) = c¢; P[true signal]

and the probability of a true signal is:

P[B]= ZP[Bx] P[Bz]

m+1

hm+1 j-1 h N j=1
==Y (1-a) += D (1-0,)
91:1 ej=m+2
_b[1=(=a)™ (=)o (-a)™]
—9 Q, o,
(4.2.7)
Therefore:
_ _ m+1 1_ m+l 1_ 1_a N-m-1
0 = cpip)= S| 1mima)™ (-e) T i-(-a) ]
0 o, 16.59
(4.2.8)
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Note that equation (4.2.8) is a nonlinear function of control parameters and therefore

bounds may be provided for C; It is hoped that the bounds may free from m, the number
samples after changing the control limits. It has been shown that the so constructed lower
and upper bounds are convenient for a small workshop and the result is the following

lemma:
Lemma 4.3

The cost of true signal has upper and lower bounds which are functions of type I error

probabilities and the control interval, and they are free from m. That is:

ket
6 (o 0 (o (4.2.9)

The proof is in Appendix C(5).

(4) Cost of producing non-conforming items when the process is out of control = C4. As
described in Chapter 3, E[time out of control] = Eltp] + Eltg]. E[tp] = h - E[T]. The

problem is again to construct E[T] but the analysis is the same as for the conventional case.

Thus E[tp] = h/2.

The construction of E[t,] is a bit different as the identity of the interval in which the shift

occurs affects the signal probability.

E[time in full intervals until a true signal] = E[tg] = h P[no signal at (j+1)h] ARL(i1p). It is
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actually the ARL that depends on the time of shift and the signa1 probability. In our

analysis, three cases are considered:

(a) Shift during j £ m and signal at1 <m;
(b) Shift during j £ m and signal ati > m;

(c) Shift during j > m.
For case (a), the equation of E[tg(a)] has the form:

E[t,(a)] = i[F( jh)—E( )]2(1 - i)
B (9 Bl)i(z( —J) Bi—H]

=T\ i=]

_hB| m  pra-m) 1-B,-2p7
1 Bx I_Bl (1_[31)2

(4.2.10)
The reduction to this form is in Appendix C(6).

For case (b), the method used for obtaining equation of E[tg(b)] is quite the same as that

used in case (a) except that the range of the summation changes. The expression for
E[tg(b)] is:

E[t,(6)] = 32 [F(ih) ~ F((G-)h)] B 3 (1~ §) b1~ B,)

j=1 i=m+l

_W [[=Br ] 1B avem | [1B T BB
6 ”1“[31][ 1-B, N } [1 B, Im 1-B, Bl]} 4.2.11)
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The resolution of this form is shown in Appendix C(7).

For case (c), the type II error probability B, is the key factor of E[tg(c)] because the average

run length after changing the control limits is determined by B;. The form of E[ty(c)] is :

E[t,(c)] = [1 - F(mh)] 11[321_1B =h[ 2 )_Ez_(m_ﬁz]

1-B,) 0 -B (4.2.12)

Finally, combining the three cases yields:

Elt,]

E[t,(a)]+ E[t,(b)] + E[t,(c)]

=h(_ﬂz_)+£[maz]+hzm[ m _B;"(l—m)_l—Bl—zgr}
1-8,) 6|1-B,| o [1-B, 1-B (1-By)

T ]
o |[1-B, 1-B, 1-B, 1-B, (4.2.13)

Therefore we obtain the expression for Cy below and this form is nonlinear function of the

control parameters. That is:

Cu= upfely ] o5+ PS030

c,rph?p, J[ 1-BF 1I-B3™  onem | [1=B" T BB om
" 0 {[I_BI][m+ I_Bz NP ] [ I’Bx J_m 1—51 1:”

+ cdrphZBl[ m Bi“(l-m)_ 1-B,-2p7
0 I_Bl 1"[31 (I—Bl)z

(4.2.14)
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(5) The expected cycle length must also reflect differences in signal events before and after

mh. The expected cycle length can be written as:

Eli)= Y ne(E ]+ S E[E;)

(4.2.15)
To start, the following notation is employed:
E[t;] =D FhE[E,]
j (4.2.16)
and:
E[tn] = ZJhE[EZ]
j (4.2.17)

Then, E[tf] can be written as the following form and the detail derivation of this expression

is shown in Appendix C(8).

E[t,]= 3 ihe, (1- o) L FGR)]+ (1 -, )" " i ,(1-a,) ™ [1-F(ih
[t:] = 2 ihoq (1~ au) "1~ F(ih)]+ (1-a, )" D thay(1- ;)™ 1~ F(ih)] @218)
=a1h|:1—(1—a,)m m(l'al)m:|

oy o

2 3

_op?[ 1= (-1 -0 )" +mi(1-a)™ 20-a)1-(1-a)"]
o; oy |

o ,

N—m—l]

2 ] 3
0 o o

L ouh(i-o)" {LJrz(l—az)[l-(l—az)

N-m+!

_(N-m- )*(1- az)N-m + (N-m)*(1-ay,)
o a;
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(4.2.19)

To evaluate E[t,], we must consider three cases:
Case (@) s<m,j<m;
Case (b) s<m,j>m;

Case (¢) s>m.

For case (a):

+h_2_{ B, [(1_a1)m:|}
O [I-B| o (4.2.20)

where the details of the analysis are shown in Appendix C(9).

For case (b), the form of E[ty(b)] is:
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m

Ele,(0)] = 3, [Flsh) - F(s- D) g 3 ini-p B

_ % [m_Nﬁg_m . 11__;3;:-1&[(1:21)_6—&]}
g b (4.2.21)
For case (c), E[ty(c)] is:
E[tn(c)] =(1 —al)m i[F(Sh) -F((s- l)h)](l —az)s—m—lijh(l -B. B
- (1_0‘1)mh2 m_N(l_az)N-m + 1- (l_az)N—m “NB (l_az)N_m _B§-m
- 0 o, o; : 1-o, =B,
| {B2(1—(1-a2)N"“) (l—az)N'm—B;’"’“}}
+ p—
(1-B,) a, l1-a,—B,
(4.2.22)

The detail derivations of (4.2.21) and (4.2.22) are in Appendix (A.10) and (A.11) and

combine the results from the three cases above, the expression for E[ty] is:

E[t,
[ 0 alz oy ‘_Bl l_al—Bl

Byl e e ]

]=£{l—(1—a])m_m(l—al)m_[m+ 1 }{Bl[(l—al)m—ﬁf‘]}
1

1—B1 a, 1-B2 1"‘11_[31

N (1—a,)’“h2{m—N(1—a2)N"“ . 1-(1-a,)" ™" _NBZ[(I—az)N'm —B?"“‘]

a, ol l-o,-B,

(4.2.23)
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And with the definition of E[t¢] (4.2.19), the expected cycle length is:

a; oy

B[] = alh[l —(1-0)" m(l—al)m]

_ b’ [1-(“1—1)2(1-&1)’“ rmi(l-a)™ 2(1—(11)[1—(1—&1)"‘_1]}

0 oy o,
+a,h(l a‘)‘“[ﬂ_N(l““z) - 1‘(1“?2) m}
o, o, ol
oh’(i-a) | 1 21-e)1-(1-0) "] (N-m-1) (10,
0 ol o) ol
(N—m)*(1- 2)N_m+1
o
O TN AR i 5, “‘]}
o o, o
+h_2{1-—(1—a1)m_m(1—a1)m_[m+ I ]{Bl[(l-al)“‘—ﬁi“]}
9 of o 1-B, 1-o, =B,

B, [0 N 0] e, 1B B[(1-a)" 87
+1_B1[ a, jl}"‘?'im NB2 ¥ I—BzH 1—(11-]31

+ (1-o,)"h? {m"N(l“az)N_m + 1-(1-a,)"" —NBZ[(I—az)N_m - g—m]

1 lﬁz(l—(l—az)N““) (-, —B?’“‘}

T8, }

a, l1-a,-B,
(4.2.24)

Thus, the expected total cost per unit time for the generalized Shewhart control chart is well
defined. The objective is to choose the values of the decision variables to minimize the

expected total cost per unit time.
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Lemma 4.4

The expected total cost per unit time function for the generalized Shewhart control chart is

equivalent to that for the standard Shewhart control chart under Fact 4.2.

The proof of this lemma is in Appendix C(12).

4 Development of Cost Model II 52



CHAPTER 3§

Development of Cost Model III

5.1 Cost Model III for the Standard Shewhart Chart

5.1.1 Introduction and Assumptions

Assume again a process is monitored using the same control chart and the process is
subject to a shift from the in control value of the process mean p; to a single out of control
value pj at a random point in time. Assume the time until a process shift is a random
variable with distribution F(t). Assume also that we plan to use the strategy of starting with

a set of control limits and to change the limits to be tighter after the process has operated for
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a period of time that is to be determined. Specifically, the process is sampled every h hours

and after the mth sample the control limits are changed.

The question is to select the control limits to use before and after sample m and to choose a
value for m. The basis of choice will be a model for the cost of operating the chart. To
start, the cost of operating a conventional (standard) chart is defined. The resulting model is

then modified to reflect the consequences of the strategy of changing the control limits.
The cost categories considered are the same as in chapter 3 and the expected total cost per
unit time function is defined as in equation (3.1.1). The decision variables are n, h, m, k;

and kj. The objective is to choose the values of the decision variables to minimize the

expected total cost per unit time.

5.1.2 Model Development

Suppose in this section that the distribution of the time to a process shift is Weibull:
F(t)=1-¢™" (5.1.1)
Where a is the scale parameter, a > 0, b is the shape parameter, b>0.

(1) Inspection cost = C;={fixed cost + (unit cost)(number inspected)}/{time between

samples}. Then:

C; = {cg +nc;)/ h (5.1.2)
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(2) False alarm cost = Cg = (unit cost)(probability of false alarm)= c¢P[false alarm] Let
A="false alarm", A; = "false alarm on sample i", A; ="no process shift before sample i",

then:

P[A]=) P[A,]P[A,]= ia(l -a) " (1-FE(ih)) = ai(l — )t
i = = (5.1.3)

Thus

Cf = CfP[A] = cfaZ(l - a)i'l e‘a(ih)b
< (5.1.4)

(3) True signal cost = C; = (unit cost)(probability of a true signal)= c,P[true signal] (note
that once a shift has occurred, the probability is 1.0 that a true signal will occur ). Let
B="true signal”, B;="process shift in interval j", B,="no false alarm on proceeding j-1
samples"”, then the probability of the process terminating with a true signal can be

constructed as:

P[B]= 3. P[B,]P[B,]

= i[F( i) -F((G-h)]1-a) = Z[e"‘j“)” b e ](1 —a)™
j=1 i=1 (5.1.5)

Therefore:

C = cl{i[e"("‘”b“" - - a)j_l}
=1

(5.1.6)
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(4) Cost of producing non-conforming items when the process is out of control = C4= (unit
cost)(production rate)(increase in proportion non-conforming)(expected time out of

control).

After a process shift, the time that the process is out of control is impressed of the sampling

interval during which the shift occurs and the full interval that elapse before a signal. To

determine the expected value of this period, let tp represent the partial interval during which

the process is out of control and let T be the part of interval before process shift. (Figure
3.1.1). Then tp= h-T and E[tp]= h- E[T]. The problem is therefore to construct E[T]. If the

shift occurs in interval (jh,(j+1)h), then the construction of E[T] is:

T = t—jh = E[T] = E[t - jh] = [(t~ jh)f(tfjh < t < (j+1)h)dt

(5.1.7)
And we know that:

F(jh<t<(j+1)h)= F((?iti);;:fj;zjh)

fldh < t< 5+ On) = F((j+ 1§£3)- F(jh) (5.1.8)

This is the conditional probability density function of the random variable t given that the
random variable t falls in the interval (jh, (j+1)h). Since the random variable t denotes the
time that the process goes out of control, the above conditional density function
represents the probability that the process goes out of control given the shift occurs in the

time interval (jh, (j+1)h). Therefore:
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[ (- s (e)ar

jh

[F(j+1)h - F(jh)]

E[T] = E[t- jh] = [(t-jh)(f)jh < t<(j+Dh)dt =

h

[F(i+1)h - F(jh)]

J— ab J.(j+1)h b "Il d hJ(J+l)h b- 1e—lthdt
= .bha _e—l(j+1)bhb ih J ih

_[‘(M)habt"“(t - jh)e““bdt
- )

o (5.1.9)
And finally:

L _ ab by o DR g }
E[tp] =h E[t] =h- e.jahn _e_.(j+1)bhb |:Lh de— J‘jh t dt (5_1’10)

This is the expected length of partial interval during which the process is out of control.

Note that the above equation is a function of control interval and parameter a and b.

E[time in full interval until a true signal] = E[tg] = h P[no signal at (j+1)h] ARL(u), and so
E[t,] = h B (1-B)1, thus if D represents the time out of control, the expected time out of

control is:

E[D] = E[t,|+E[t,]

—heSB [j”””‘ t%e™" dt — hj"”’"t""e'“"dt]
jh

1"B eu"h' _ e-;(m)“h" i

(5.1.11)

Thus the cost of producing non-conforming items when the process is out of control, that

is Cq, may also be obtained and it has the following form:

S Development of Cost Model III 57



B
C, =c,rph+c,rph| —
d drp drp [1_B
cyrpab DRy —a® g o (DR e
TR G Uﬁ. e dr—jnf e dt] (5.1.12)

(5) To determine the expected cycle length, let Ey="false alarm on sample j and no process
shift before sample j", E;="process shift during interval I, no false alarm before interval 1,
and true signal on sample j (j-1+15t after shift)", E[t]= expected cycle length. Therefore:
E[t]= Y jhP[E,]+ D jh > P[E,]
i j 1 (5.1.13)

P[false alarm on sample j and no process shift before sample j] = a(1-a)-1(1-F(jh))
=al-a) e

P[process shift during interval 1] = F(1h)-F((1-1)h)

EZERELIN —_a1by b
en(ll)h_edh

P[no false alarm before interval 1] = (1-o)l-1

P[true signal on sample j] = -(1-B)

Now, the expected cycle length, E[t], has the following form and the reduction to this form

is in Appendix D(1):

E[t] = ijh(a(l —o) e 4 i(e“(l'l)bhu e )(1 —o) B (1 B)]

=ahY (1-o) e +hY 1e ™ (1—a) —h Y 1™ (1- @)
=1 1=1

1=1

B ] S -a(1-1)°n® 1-1 ( B ] C —al®h® 1-1
+hl — (1-a)” —h|— (1-o)
(1‘5 2 = (5.1.14)
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The objective is to choose the values of the decision variables to minimize the expected total

cost per unit time function (3.1.1).

5.2 Cost Model III for the Generalized Shewhart Chart

5.2.1 Introduction and Assumptions

Suppose that a control chart is used to monitor a process and that samples are taken
every h units of time. Suppose further that the width of the control limits are changed after

the mth sample. Then the following facts may be used to describe control chart behavior:

Fact 5.1

(1) at) = oy if t <mh
=y if t > mh

2)B(t) =B, ift<mh
=B, if t >mh

3)k(t) =k;ift<mh

=k, if t > mh G.2.)

Fact 5.2

The generalized Shewhart control chart is the same as the standard Shewhart control chart if
and only if:

;= ay = o

B1 =B =B

k; = k= k. (5.2.2)
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The question is again to select the control limits to use before and after sample m and to
choose a value for m. The basis of choice is a model for the cost of operating the chart. The
basic cost model III developed in section 5.1.2 is modified to reflect the consequences of
the strategy of changing the control limits. The results is referred to a general cost model

III.

5.2.2 Model Development

As discussed in the previous section, the construction of cost model III for generalized
Shewhart control chart can be based on the same cost categories. The development

proceeds as:

(1) Inspection cost: Since the change of control limits does not change the form of the

inspection cost, the inspection cost remains:

C; = {cg+nc;}/h (5.2.3)

(2) False alarm cost = C¢ = (unit cost)(probability of false alarm) = c¢ P[false alarm ].
Therefore the problem again is to construct the expression for the probability of a false
alarm. The expression of the probability of a false alarm in this case is quite different from
that in the standard control chart since we have to consider t < mh or t > mh separately. The

probability of false alarm can be constructed as the following steps:

(1) Find the partial summation fromi=1toi=m,;

(2) Find the partial summation fromi=m +1 to i = os;
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(3) Construct the probability of false alarm by adding these two partial summations

together.

P[A]= gp[Ax] P[Az]

= Yo (1-0,) (1-FGih) + (1-0,)" Doty (1-0,) ™™ (1 Fi))

i=1 i=m+!
= i(l o) Tlematt (1-o,)"a, i (1-o, )i—m'1 gt
i=1 i~m=1 (5.2.4)

Therefore:

m

C; =cP[A]= cf{al(l— o) e 4 (1- o), D1 —az)""“"e-ﬂ"h"}
! (5.2.5)

i=1 i-m=

(3) True signal cost = C; = (unit cost) (probability of true signal) = c¢; P[true signal]. Note
again that once a shift has occurred, the probability is 1.0 that a true signal will occur.

Therefore the construction of the cost of true signal proceeds as follows:

P[E] = 3. P[B,] P[B,]

- "Z”[F(jh)— F(G-hl(- )"+ SRR - FG-Dhi- o)
= K ‘I(J‘ e-d h® |1 _ j1 C e—-(j—l)"h" _e_.jhhb —a, j-1
JZ*[ Jo=e: +i=:;+2[ Jo=o2 (5.2.6)

Therefore we obtain the expression of Cy:

C, =c,P[B]
m+l 1Yo pd b b b b i
= C;{Z[c—a(rl) h —e h ] 1 (11 2 [e—n(J-l) h® e h ](1 az)J 1}
= jmm+2 (5.2.7)
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(4) Cost of producing non-conforming items when the process is out of control = C4_ Let t
= time that the process goes out of control, then E[time out of control] = E[tp] + E[tg].

Since E[tp] = h - E[T]. The problem is again to construct E[T] but the analysis is the same

as that for the standard Shewhart control chart. Thus:

_ _ ab (+Dh t®e -a® G+Dh ) b
E[t,]=h-E[t]=h- eI [ [, tetdi—jhf T dt}

(5.2.8)

The construction of E[tg] is a bit different as the identity of the interval in which the shift

occurs affects the signal probability. Let E[time in full intervals until a true signal] = E[tg] =
h P[no signal at (j+1)h] ARL(u5). It is actually the ARL that depends on the time of shift

and the signal probability. In our analysis, three cases are considered:

(1) Shift during j < m and signal ati <m;
(2) Shift during j <m and signal ati > m;
(3) Shift during j > m.

For case (1), the expression for E[ty(1)] is:

Bl1.(0] = S FOM) - F(G- O[3 - Jn(i BB

- 1hﬁé [ — e t(mh)’ ] — h;[c-l(m—h)' _ c—l(ﬁl)" ](m _ j)B{n-jﬂ

e t(ih-h)® _ -a(m)® pm-itt
1= BUZ[ ] 1 (5.2.9)

The detail derivation of this expression is in Appendix D(2).
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For case (2), the expression for E[ty(2)] is below and the reduction to this form is in
Appendix D(3).

[F(3h) - F((G-1)h)| BP~ 3 (i-3) 5™ (1-B,)

i=m+l

[e-l(ﬁ\—h)" ety ](m — B

s

1
—

E[t,(2)]=

J

=h

=

i
—

J

h Z[e a(jh- h -a(jh ]B1 -j+l
1 B, = (5.2.10)

For case (3), the expression for E[ty(3)] is:

1 hBe™™
-B,  1-B, (5.2.11)

E[t,(3)] = [ - F(mh)]hB, I

Finally, combining the three cases yields:

hB, -l(mh)b Bz __[51_
E[t’] _B1+h _I“Bz l—BxJ

1 1 | N o
P
[I—BZ 1_B; Z !

Ji=t (5.2.12)

Therefore:

C. = cop{E[t, [+ E[t.]} = Cdrph[ B‘B }+ c,ph +c,rphe ™™ [TE’_E; - T%I}

cdrpab. [J'(j'”’h =" dt — hj:mhtb 1e-n°dt:|
i

aj°h® _e—.(yr;)"h“ i

€

1 <[ -a(jh- 0" -a(jh)‘ m—j+l
+°“mh{[1—sz - BIJZ[ P }

=1

(5.2.13)
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(5) The expected cycle length is different from that of the cost model III for the standard
Shewhart control chart. We must again distinguish between events before and after m. The

expected cycle length can be written as:

E[t]= zjhE[Ex] + ZJhZE[E:’.]

(5.2.14)

To start, let:
E[t,] = X jhE[E,]

j (5.2.15)
Then, E[tf] can be written as the following expression:
Eft]= Y (1-0) [l F(jn)]+ (1-04)" ¥ (1= 0, )" 0, [1-F(jh)]

=1 j=m+1
=, ) (1-ca) e +(1-0,) 0, i(l —q,) e

j=1 j=m+1 (52. 16)
Next, let:
E[tn] = ZJhZE[EZ]

j 1 (5.2.17)

Three cases must be considered:

Case (1) s<m,j<m;

Case (2) s<m,j>m;

Case (3) s>m.
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For case (1), E[ty(1)] has the form (Appendix D (4)):

M

E[t,(1)] = Y [F(sh) - F((s- Dh))(1-a,) "‘ZJh -B, B

s

o []<>

* ‘—hﬁl ) [e"“s‘”“)” - (- 0y

1-B, & (5.2.18)

i
—_

For case (2), the detail derivation of the following expression is in Appendix D (5):

E[t, (2)] = 3 [F(sh) - Fs=Dh](1— o, )BT jh(1-B, "

s=1 j=m+l

) h[m " —1[3 Ji[e"“““*"" — e ](1 —o,) 7B
2

s=1 (52.19)

For case (3), the detail derivation of the following expression is in Appendix D (6):

E[t,(3)] = (1= )" 3 [F(sh)~F((s— Dh)](1—t,) ™" jm(1~ B, )B5™

s=m+l j=s

Bz } [ —((s=1)n)® _.(sh)" ] s—m-1
=h 1-a,) 1-o
(1 - BZ 1 s—m+1 ( 2)
+ h(l - al)m 2 S[e"((!-l)h)b _ e—l(sh)h ](1 _ az)s—m—l

s=m+l (5.2.20)

Combine the results from the three cases we obtain the expression for E[t,] as:
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- his[e—a((s—l)h)b _ e-l(sh)" ](1 _ al )s-l

s=1

s=m+l

1 1 e S .
+h —_—— e"(("'l)h) —e a(sh) -« Bm—s+l
':1—62 1‘131:‘2[ ]( 1) :

s=1

(5.2.21)
And together with the definition of E[tf], (5.2.16), the expected cycle length is:
B = o, 3 (1-o) e (1-a)a, 3 (1-a,) e
= j=m+l
+h et (DR _ o-a(sh)® | a -1
2 K
rhl-o)” ¥ R T
s=m+l
' h[ 5 —l—}i[c““’"""’” —ent ](1 —a,) B
1- BZ 1 - Bl s=1
RO
- s=1
+(1-a, mh( B, JZ [ (-DB)" _ g-a(sh)® ](1 )s—m-l
Py Jim (5.2.22)

The objective is again to choose the values of the decision variables to minimize the the

expected total cost per unit time function as defined in (3.1.1).
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Lemma 5.1

The expected total cost per unit time function for the generalized Shewhart control chart is

equivalent to that for the standard Shewhart control chart under Fact 5.2.

The proof is in Appendix D(7).
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CHAPTER 6

Analysis and Results

The objective of this research is to compare the costs associated with the standard Shewhart
control chart and the generalized Shewhart control chart. The motivation for this effort is to
increase control chart sensitivity to a small but anticipated shift in the process average.
Algebraic manipulation of the cost models is not trivial. The cost terms are functions of the
decision variables, cost parameters and the distribution parameters. Two of the decision
values of m and n are constrained to be integers, while k; and k may take real values. As
Montgomery [32] indicates that a sampling frequency of one hour is common for many
charts, h = one unit of time is used through this research. The behavior of the expected total
cost per unit time is analyzed algebraically and numerically. Mathematica [52] and GINO

[25] are used to examine the behavior of the cost models over reasonable parameter sets
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and the generalized reduced gradient (GRG) algorithm is used to attempt to minimize the
expected total cost per unit time function for those parameter sets. The parameter ranges

evaluated are described below.

The first group of model parameters are A, 6, a and b which govern the distribution of the
time to shift. The range for A is taken to be between 0.01 and 0.25. This range is
commonly used in the literature, see Duncan [13]. The range for 6 is between 8 and 200.
This range provides the same range of the mean values of the time to shift for both the
negative exponential and the uniform distributions. The range for a is between 0.01 and

0.25 and the values for b are 1.25 and 1.5.

The next model parameter considered is 3, the magnitude of the shift in the mean when a
shift occurs. The value of § is assumed to be 0.522. This value is selected because it

corresponds to an increase in the proportion nonconforming from 0.01 to 0.02.

The range of values considered for c;, the sampling and inspection cost is between 1.0 and

5.0. These represent small and large inspection costs relative to the other cost parameters.

The range for the cost of producing nonconforming product, cq is between 1 and 10 which
corresponds to a relatively small cost to a relatively large cost of producing nonconforming

product. The value forr, the rate of production is 200.

The cost of investigating a false alarm, cy, is arbitrarily assigned a value of 100. The cost of
investigating and correcting a true signal, ¢, is assigned a value of 10 over the range of 5 as
there is no apparent reason that the cost of investigating a true signal should increase with

the shift magnitude.
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The above parameter ranges define the scenarios under which the economic performance of
the standard and the generalized Shewhart control chart are investigated. The numerical
analysis of the behavior of the expected total cost per unit time function with respect to the

decision variables for a family of the parameter ranges is examined.

The expected total cost model is convex in k for all ranges of the other model parameters.
Small values of k create large expected total cost because an excessive number of false
alarms is given. This may dominate any cost savings due to rapid shift detection.
Intermediate values of k produce the smallest expected total cost because they balance the
costs of nonconforming production against the false alarm cost. Large values of k provide
reduced shift detection probabilities and thus increasingly large nonconforming production
cost. The total effect is that the expected total cost decrease to a minimum and then rises

again as k increases.

The expected total cost is also convex in n for all ranges of the other model parameters.
Small values of n imply low sampling costs but high nonconforming costs since shifts are
not rapidly detected. Intermediate values of n balance the sampling cost against the
nonconforming product cost to achieve the lowest expected total cost. Large values of n
imply large sampling costs, which may dominate the savings in nonconforming product
costs achieved through greater detection probabilities. These interpretations vary depending
upon the relative importance of each of the cost categories but the overall effect is that the

expected total cost is convex in n.

The above results for n and k are anticipated for the standard Shewhart control charts in

general and confirmed for the generalized Shewhart control charts. The generalized
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Shewhart control chart has features that the standard Shewhart chart does not. The

properties that result from these additional features are now explored.

Model behavior in terms of the decision variables m, k; and k; is characterized by three
cases. The relative magnitudes of the cost parameters in each case determine which

behavior is observed.

In case one, the expected total cost per unit time function, Cr, displays convex behavior in
each of the decision variables m, k; and ky and a minimum occurs in the interior of the
convex feasible region. This means that the minimum cost control chart is some form of the

generalized Shewhart chart. See figure 6.1.

In case two, Cr is still convex but it has a minimum corresponding to a boundary of m =0
and k; = kj and it increases strictly in each of those variables. This means that the

minimum cost control chart a standard chart with no control limit changes. See Figure 6.2.

In case three, C strictly decreases in both m and k; and has a minimum at the boundary k;
= kp and m is unbounded. This means that the minimum cost control chart is a standard

chart with no control limit changes. See Figure 6.3.

In order to determine why the Ct behaves this way, each of the four cost categories as well
as the expected cycle length is examined for the nature of its contribution to the expected
total cost. Note that the analysis below is for cost model I and it is also true for a uniform
distribution since we can always choose the values of the rate parameter such that the mean

value of the time to a shift is common for negative exponential and uniform distributions.
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Note again that since h is defined as an arbitrary unit of time, its influence should be
apparent in the effects of other parameters and variables so it need not to be examined

specifically.

The inspection cost for a standard Shewhart control chart (3.1.4) is:

C; = {cg+nc;}/h 6.1)
9C _n
dc, h (6.2)
G s
on h (6.3)

which is to say C; is linear in c; and n, respectively. Given the above algebraic results,
numerical evaluation of the expressions should provide an indication of the relative

magnitude of the impact of the values of the parameters. Consider the following values:
cg=1.00,¢;=(1,2,3,4,5),n=(3,5, 8, 10). (6.4)

Then we obtain the values for C;, see Table 6.1. These results are the same for the
generalized Shewhart control chart.
The false alarm cost for a standard Shewhart control chart (3.1.6) is:

. ocue™  co
f 1—(1‘—(1)6—;'h et -1+a (6.5)

Thus C¢ depends on the input parameters A and c¢ and the decision variable k. Therefore:

oC, o

Bcf e“‘—1+a (66)
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which is to say Cgis linear in c¢ with a slope is less than 1. Consider the parameter A:

oC, _  —c.ahe™ <0
- 2
oA (e”‘—l+a) (6.7)
and:
oC,  e"-1 oa <0
= =
& (@ _1+a) ok .

since k is a standard normal coordinate, do/ok < 0. Consider the following example values

which yield the values for P[A] that are shown in Table 6.2.

A = (01, .05, .1, .2)
k = (2.5, 2.75, 3.0) which imply o = (.0124, .006, .0026) (6.9)

Note that the numerical results conform to the behavior indicated by the derivatives. It
appears that the influence of both A and k is substantial. Finally as Cgis linear in cy,

increasing c¢ will magnify the changes shown above.

Next consider the corresponding analysis for the generalized chart. In this case, the false

alarm cost (3.2.5) is:

C, = cf[a,iu-al)“‘e-m (1o e, i(l—az)i_m-le'”‘]
i 1

i=t i-m=

a1[1 -(1- Oh)mt’a'm] .\ (1-a,)"e™"a,

e —1+a, e’ -1+a,

=c;
(6.10)

For this function, a; and ay replace a, k; and kj replace k, and m is added. The

parameters A, h, and cg are the same as in the model for the standard chart. Observe that the
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derivative analysis for c¢ is the same as Cyis linear in ¢ Thus cg will tend to emphasize the
effects of the other model quantities. The following inequalities are true:

(1-o,)" <g(m),i=12

BR <ey(m), i=12

e ™™™ < g,(m)

(1-o,)"e™ <g,(m), i=12 (6.11)

Note that Ej(m), j=1,2,3, 4 are small values depending on m. The analysis of the
influence of A can achieved most easily by analyzing the first equation of (6.10). Thus:

%}iﬁ =c, [—ha, ii(l —o) e ™ —h(l-0y) e, ii(l - az)i’m'lc‘““] <0
i=1 i

i-m=l (6.12)
The above summations are all positive with neagtive coefficents. In the case of kj and kj,

we study the third equation of (6.10) and obtain the derivatives:

9C, _ c (e)‘h - 1)[1 ~(1- a1)me—m] + may, (1~ al)m—le—m
ok, (e“‘—1+ax)2 e’ —1+0,
_ma,(l-g )""e™™ | 3a,
e)'h—l-i-(lz ok, (6.13)
which reduces to:
e S el
ok, (*-1+0,) ok,
) o
+ 1—q, )" g hmb % - o, 1
cm(l-0ay,)" e LM T1vo, P —l+a, |0k, (6.14)

Note that the first term of the above equation is positive and can be large because of the
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form of the denominator. The second term is negative and small because o; < oy by
construction and therefore:

o, < a,
e“‘—-1+al CM—1+(12 (6.15)

Thus, the second term is negative but the magnitude is not great since the fourth equation of

(6.11) is true and the difference between o; and o, is not too large. Therefore the first term
dominates the second one. Then:

aC, __ (e™ —1)[1—(1—a1)’“e‘“‘““] oo,

— 0
ok, ‘ (e”‘ -1+ 02)2 ok, <

(6.16)
Because o and ay are tail probabilities of a normal distribution, it is clear that day/dk; < 0,
i=1,2. As aconsequence, both of the above derivatives are negative. Considering the

influence of m. We study the third equation of (6.10) and obtain:

ac,  o[-(1-o,)" log(1—a,)e™™ + Ah(1- 0, ) e

Jdm o e“‘—1+a,
+C (12[(1 -0 )m Iog(l - al )e—lmh - ;\'h(l —% )me-w]
£ e™ 1+ o, (6.17)
which reduces to:
oC; m __Amh @ N
—_— 1- -1 1- h 1 - -
v ¢ (1-0,) e[~ log(l-a)+2 ][e“‘—lﬂx1 e“‘—1+az] (6.18)

Now apply (6.15) and keep in mind that log(1- a;) < 0. Thus the above derivative is

negative. In order to obtain a sense of the trends indicated by all of the above derivatives,
consider numerical cases in which:

A= (.01, .05, .1, .2)

ky = (2.5, 2.75, 3.0) which imply a; = (.0124, .006, .0026)

ky = (1.75, 2.0, 2.25, 2.5) which imply oy = (.0802, .0556, .0244, .0124)
m = (10, 20, 40) (6.19)
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For these values of the model variables, the associated values of P[A] are listed Table 6.3.

Observe that the numerical results illustrate the fact that Cy is decreasing in all &, ky, k, and
m. Note also that increasing m enhances the effects of A and k; and k;. Furthermore, kj
appears to have a greater effect on P[A] than does kj. Note that setting k; = k; at any value

should result in the same values of P[A] as occur in the standard case and that this is

confirmed in the evaluation of the cases having kj = k; = 2.5. Finally, observe that the
value of Cyis greater for the generalized chart than for the standard chart because the
probability of a false alarm is greater for the generalized chart. This is a desirable feature of
the generalized chart. The implied increment in cost should be offset by reduction in defect

production costs.

The true signal cost for a standard Shewhart control chart (3.1.8) is:

ct(l_e-u‘) e -1

. = — =Ct
1—(1—(1)6 An c“—-1+a (620)

Thus C; depends on the input parameters A and c; and the decision variable k. Therefore:

oC,  e¥-1
de, e*-l+a (6.21)

which is to say C, is linear in c; with a slope that is less than 1. Consider the parameter A:

oC, _ . athe™ 50
A Ted-1+ oz)2

(6.22)

This is to say that C, is increasing in A as should be expected in that 1/A is the expected time

to system shift so a large value of A implies less time before a shift. Next, among the

decision variables, C; depends only on k. Thus:
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A
oC, _ —{e™ -1] a_oc>

P s L P

(6.23)

Since k is a standard normal coordinate, da/dk < O for any positive value of k.

Given the above algebraic results, numerical evaluation of the expressions should provide
an indication of the relative magnitude of the impact of the values of the parameters.
Considering the the same values, (6.9), the values for P[B] are listed in Table 6.4. Note
that the numerical results conform to the behavior indicated by the derivatives. It appears
that the influence of both A and k is substantial. However, this should be considered
relative to the other cost terms. It is also true that the effect of A is diminished as k is

increased. Finally as C, is linear in c,, increasing c; will magnify the changes shown above.

Next consider the corresponding analysis for the generalized chart. In this case, the true

signal cost (3.2.8) is:

e rsitoef e L L e

‘ l1-—oy)e™ 1-(1-oy)e™  1-(l-a,)e™

_ m+1 A(m+1)h _ m+l A(m+1)h
e —1+0 e -1+0q, e —l+a,

(6.24)
For this function, a; and a, replace a, k; and k; replace k, and m is added. The
parameters A, h, and c; are the same as in the model for the standard chart. Observe that the
derivative analysis for c, is the same as C, is linear in c,. Thus c; will tend to emphasize the
effects of the other model quantities. The influence of A is:

m+l

oC, - c,0,he® _ c.he™ al(l_al)m+l _ o,(1-a,)
N (M-1+a,) (M -1+0,) (M -1+0,)

L GmaDh -D| (1-0)™  (1-0,)™

ghtmrbn e —1+a, e¥-1+a,

(6.25)
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While this form may appear complicated, it is not too cumbersome because the first term
corresponds to the partial derivative constructed for the standard chart. In addition, since ap

> oy by construction, then:

o, (1-a,)™" _ o, (1-0,)™" . o, (1-a,)™" oy (1-0 )™

(e”‘—1+012)2 (e”’—1+a,)2— (e”‘—1+a2)2

< o,(1-0,)"" =0, (1-0, )™ . (1-0)"" (o, - 0t,) (o) (o —ay)

B (e -1+a,) T (et -1voy) (e""—l+oc2)2 (6.26)
and:

(o)™ (1-0)™ | (=0)™ —(1-0,)™" | (1-0)™ ~(1-0)™
e*-1+a, e¥-1+a, e -1+, - ™ -1+a,)

(=)™ —(1-o)(1-ey)" | (1-0)"(oy ~ar,)

- (€™ —1+0,) T (M -1+ay) 6.27)

The above inequalities mean that the magnitude of the third term of (6.24) is greater than
that of the second term of (6.24), therefore the derivative is positive. In the case of kj and
k9, we obtain the derivatives:

daC, _ c,(e™-1)
ok, (elh -1+ )Zel(m“)h

[_el(mﬂ)h + (1 —o )m+l

+Hm+1)(1-o,)" (e”‘ -1+ al)]i‘ﬁ

ok, (6.28)

and:

dC, _c, (e —1e™Mm*h
ok, (f:;'h -1+a, )2

= (s D= (e - 1 ) 202

(6.29)

Because o) and aj are tail probabilities of a normal distribution, it is clear that da;/ok; <0,
i=1, 2. In (6.28), both the second term and the third term are very small for suitably large
values of m, therefore the first term dominates the others. As a consequence, both of the

above derivatives are positive.
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Next, consider the time of the change in the width of the control limits, m. We obtain:

oC, __ —(e™ -1) (1-a,)""[logl - &t,) ~ (m + D)h]
odm s e“‘ -1+ o, el(m+1)h
(*-1) (1-a,)""[log(l - a,)— (m+Dh]
o A(m+Dh
e” -1+ o, e (6.30)

Factor this as:

9C _ c (e™ - 1) (10 )™" [~log(1~0) + (m+ 1)h]
am ' e“’ -14 0‘1 el(m+l)h

(1-0,)™" [~log(l— 0,) + (m+1)h]

A A(m+1)h
€ 1+a, € (6.31)
This quantity is small and positive. Since o < ap by construction,
m+1 m+l
(L‘ o) > (ih_ o, )
€ —1+a, € —1+a2 (6.32)

and since -log(1- o) > -log(1- ap) > 0, the first term of (6.31) dominates the second one.
This means that tha above derivative is positive. Refering to (6.27), we conclude that it is

small. That is, increasing m increases C;.

In order to obtain a sense of the trends indicated by all of the above derivatives, consider
the same numerical cases (6.19). The associated values of P[B] are listed in Table 6.5.
Observe that the numerical results illustrate the fact that C, is increasing in all A, ky, k and
m. Note also that increasing m enhances the effects of A and k; and k,. Furthermore, kj
appears to have a greater effect on P[B] than does k;. Note that setting ki =k, at any value
should result in the same values of P[B] as occur in the standard case and that this is
confirmed in the evaluation of the cases having k; = k; = 2.5. Finally, observe that the

value of C, is greater for the generalized chart than for the standard chart because the

6 Analysis and Results 79



probability of a true signal is greater for the generalized chart. This is a desirable feature of
the generalized chart. The implied increment in cost should be offset by reduction in defect

production costs.

The nonconforming production cost for a standard Shewhart control chart (3.1.14) is:

B A—(1-e™) g | (Ah—=1e™+1  hB
R Ry +(1‘B)}_Cd [ ACEEMED (6.33)

Thus C4 depends on the input parameters 2, 8 and c; and the decision variables n and k.

Therefore:

9C, _ (Ah-De™+1 hp
acp) A -1)  (1-B)

(6.34)
which is to say Cy is linear in c4rp with a slope that is greater than 0.
Consider the parameter A:
G D S
P (e -1)
(6.35)

This derivative is negative for very small values of A and it is positive for all the values of A
in this analysis. This is to say that Cg4 is increasing in A as should be expected in that 1/A is
the expected time to system shift so a large value of A implies less time before a shift. Next,

consider the decision variables. C4 depends on k. Thus:

3, _ .o b B

= 0
ok PlTpy ok

(6.36)

Because k is a standard normal coordinate, df3/dk > 0O for any positive value of k.
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C4 also depends on the sample size, n. Thus:

oC, _ c.p h o <
on ‘ (1—[3)2 on (6.37)
because dff/dn < O for any n.

Given the above algebraic results, numerical evaluation of the expressions should provide
an indication of the relative magnitude of the impact of the values of the parameters.

Consider the the following values:

3 =0.522

n= (5, 10)

A = (.01, .05, .1, .2)

k = (2.5, 2.75, 3.0) which imply o = (.0124, .006, .0026)

B = (.9087, .9433, .9667), whenn =5

B = (.8021, .8644, .9113), when n =10 (6.38)

Note that the numerical results confirm to the behavior indicated by the derivatives. See
Table 6.6. It appears that the influences of both n and k are greater than that of A.
However, this should be considered relative to the other cost terms. Finally as Cg is linear

in c4rp, increase c4rp will magnify the changes shown above.

Next consider the corresponding analysis for the generalized chart. In this case, the cost of

nonconforming production (3.2.15) is:

Ah—(1-e™) . hB,(1—e™™) | hBe
K(l-—e””’) 1-B, 1-B,

SRl ) .
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For this function, B and B, replace B, k; and k, replace k, and m is added. The parameters
A, h, and cy4rp are the same as in the model for the standard chart. Observe that the
derivative analysis for c4rp is the same as Cy is linear in cyrp. Thus cgrp will tend to

emphasize the effects of the other model quantities. Next, consider the influence of A:

2,2
o€, =Cdrp[1 h’e 2}+cdrpmh2e"’“"[ B. _ B, }

oA 'Xf'(ew_l) 1-B, 1-B,
e B— 1 1 |h’m e -1
P lLl_Bz 1-B, Je*™ Be™ -1
1 1 |Bre™™ —1h*(1-B,)e™
+C PPy ~———+ } 1 l
T 1-8, 1-B, ] ™ B -1? (6.40)

Since 0 <B;<1,i=1,2,and By > By by construction,

B, B
1-B, 1-B, (6.41)
and:

1 S 1
1= 1-B, (6.42)

While (6.40) may appear complicated, it is not too cumbersome because the first term
corresponds to the partial derivate constructed for the standard chart. In addition, the
second term is positive because (6.41) is true. Next, taking the third and the fourth term
together we obtain:

1 1 |n’m e™-1 1 1 |Bre™ —1h*(1-B,)e™
cdrpﬁl[l_ﬁz 1_B1]cknh Be® 1 +cdrpl31[ —p, 1—[31] e (B —1)
1 1 h*
= CdrpBI[ - ] —————[U+V]
1-B, 1By Je*(Be™ -1) (6.43)
where:
U= (e”‘ ~ 1)[111(1316“‘ - 1) - [(Bleu‘)m - 1]] , V= (ﬁlem - 1)[(Bleu)m B 1] (6.44)
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Note that U is negative for the values of the parameters in our analysis and V is always
positive because both components have same sign. Clearly:

Ul > V] (6.45)

Therefore U+V <0 and (6.43) is positive since (6.42) is true. Finally, (6.40) is positive.

In the case of k; and k,, we obtain the derivatives:

9GC, _ c h(l—e' )8[31 +cdrph(1—e'”’)[W]ﬂ3L

= CyIp
Ak, (1-B) 9, ok, (6.46)
where:
W_Bi“—e"‘“"[ 11 }_Bi"-e"‘“‘*‘ B,
Bl—e—}‘h I_Bz 1_[31 Bl"enh1 (1“31)2
mpy [ 11 ]_B;"—e'““*‘ B,
Bl_e—lh l—ﬁz 1_[31 E’x-e—u‘ Bl"e_kh (6.47)
It is clear that the first term of (6.46) is positive. And:
m _ _-Amh
—Bl——e—_lh— >0
Bi—e (6.48)

Note that (6.48) is true as numerator and denominator have the same sign. Thus the first
term of (6.47) is positive and the second term is negative. The third and the fourth term
always have different signs. Refering to (6.11) we conclude that the magnitude of (6.47) is

small in any cases and therefore (6.46) is positive.

a& —c,mp he™*™" + hBl(I_e-M)(e~w —B;n) dB,
k, (=B, (1-B)(e™-B) ok (6.49)

Because B, and B, are Type II error probabilities of a normal distribution, it is clear that

0Bi/dk; > 0,1 =1, 2. As a consequence, (6.49) is positive.
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C4 depends on the sample size, n. However, the analysis is similar to the analysis of (6.46)
and (6.49) except that the derivatives changed. In this case, d8;/dn < 0, i = 1, 2. Thus the
partial derivative with respect to n is negative. It means that Cy decreases as sample size

increases which is expected.

Next, consider the time of the change in the width of the control limits, m. We obtain:

aC,
om

m -Amh
=cdrph[31(l—e’“‘){ 1 1 }Bl logP, + Ahe

1-[32—1'B1 Bl”c—u‘

+ cdrphzk[——ﬁ—‘—— - —EL]e""’"‘

1-B 1-B (6.50)

Refering to (6.41) it is apparent that the second term of (6.50) is posotive. The analysis of

the following form is:

B™ logP, + Ahe ™"

B,—c (6.51)
and let:
X(m) =B} logB, , Y(m)=Ahe™™ (6.52)

Note that (6.51) is negative because:

(1) If the denominator of (6.51) is positive then X(m) dominates Y(m);

(2) If the denominator of (6.51) is negative then Y(m) dominates X(m).

Thus the first term of (6.50) is also positive since (6.42) is true. Therefore (6.50) is

positive which implies increasing m increases Cy.

6 Analysis and Results 84



In order to obtain a sense of the trends indicated by all of the above derivatives, consider

the following numerical cases:

§ =0.522, n = (5, 10), m = (10, 20, 40), » = (.01, .05, .1, .2)

k; = (2.5, 2.75, 3.0) which imply o = (.0124, .006, .0026)

kp = (2.25, 2.5) which imply ap = (.0244, .0124)

By = (.9087, .9433, .9667) whenn =5

B; = (.8021, .8644, 9113) when n = 10

By = (.8708, .9087) whenn =135

Bp = (.7481, .8021) whenn = 10 (6.53)

The associated values of E[D] are listed in Table 6.7. Observe that the numerical results
illustrate the fact that Cy is increasing in all A, kq, ky and m and Cj is decreasing in n. Note
also that increasing m enhance the effect of A and k; and k; and that increasing n reduce the
effect of A and k; and k;. Furthermore, k; appears to have a greater effect on E[D] than
does k;. Note that setting k; = k; at any value should result in the same values of E[D] as
occur in the standard case and that this is confirmed in the evaluation of the cases having ko
=k; =2.5. Finally, observe that the value of Cj is less for the generalized chart than for the
standard chart because the expected time out of control is less for the generalized chart.

This is a desirable feature of the generalized chart.

The expected cycle length for a standard Shewhart control chart (3.1.16) is:

E[t]= ijh(a(l —o) e 4 i (e — e )(1-a) ' (1 - B)]

=1

= cthe ™ i (a-ce™) ™ +(1-p)(1- e’“‘)hi _]i e MR (] o)~ B!
athe™ (1=e™h | B (1-B-we™
1-B [1— (1- oc)e"“‘]2

2+ -2h
[1-(-ae™] [B-(-a)e™] (6.54)

6 Analysis and Results 85



Thus E(t) depends on the input parameters A and the decision variables n and k. Note that

the influence of A is analyzed by using the second equation of (6.54). Thus:

B0 a3 (-0 )+ (1S 0-a) B2
oA i =1 1=t (6.55)

where:

- _(1— —A(1-1)h A _ g —AI-DR[ (-
Z=—(1-)he ™" +1he™ = he M [(1-e ™)1~ 1] (6.56)

and:

(1-e™)1-1<0 (6.57)
It is clear that the first term of (6.55) is negative while Z may have either sign. However,
for any A, (6.57) is negative until 1 gets relatively large. By the time 1 gets large, the
contribution of the second term will be very small since (6.11) is true. Thus (6.55) is
negative in general. This means that E(t) is decreasing in A as should be expected in that 1/A
is the expected time to system shift so a large value of A implies less time before a shift.
Next, consider the decision variables, E(t) depends on k. Refering to the second equation

of (6.52), thus:

9E®) _ i[ahe'“‘ i j((l —a)e™ )H}

do.  da e

o j )
_ (1 _ B)(l _ c—i\h )hZJZ(l _ lk—l(l—l)h (1 _ a)l—ZB]—l
=1 1=l (6.58)
It is clear that the second term is negative. Now we analyze the first term:

~kh

ahe™ i j((l —-a)e™ )j—l = ahe

=1 ) [1—(1—006'“‘]2 (6.59)

Therefore:
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0 - syt 9 othe™
o ahe™ Y j(1-o)e™) :]—aoa[ }

=1 [1—(1-—0()6-”1]2
he ™ [1-(1-a)e ™ [{[1- (1 - o)e™ ] - 207}
- [1-(-a)e™]

he™

B [1-(1-a)e™]

s[1-e™ —ae™]

(6.60)

This derivative is negative for most values of A and « in our analysis. For large values of A
(6.60) is positive. Howevwe, by the time A gets large, the second term of (6.58) dominates
the first one because the second term represents the time of getting a true signal, large
values of A implies large values of P[B]. Therefore (6.60) is negative and the numerical
results confirm this analysis. Refering to the third equation of (6.52) we obtain the
following expressions:

GE()_ 1 (l=e™ph p (1-c™h

B (1-B[B-(1-)e™] 1-B[p-(1-c)e™[

, (1=e™h  g-oge™ | (1-eh (-p)i-ape
[B-(-ee™][1-(-0)e™]  [B-(1-we™] [1-(1-we™]

(6.61)
and with:

B—(1-a)e™ (6.62)
and:

B-(1-0)e™|, |t-(-)e™| (6.63)

Note that if (6.62) is positive, then only the second term of (6.61) is negative. The fourth
term of (6.61) donimates the second one because of the form of its denominator. For small

values of B and A, (6.62) is negative. In this case, both forms of (6.63) are very small and

therefore the fourth term of (6.61) donimates the others because of the form of its
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denominator. In summary, the derivative (6.61) is positive. Because k is a standard normal

coordinate, do/dk < 0 and df/dk > O for any positive value of k. Finally:

JE(1) _ aE(t)ig+ aE(t)ﬁ 50
ok Jdo ok 8[3 ok (6.64)

Since E(t) also depends on the sample size, n. Thus:

OE(t) _ FEMP _
dn 3B on (6.65)

This is obvious because (6.61) is true and 0p/dn < 0 for any n.

Given the above algebraic results, numerical evaluation of the expressions should provide
an indication of the relative magnitude of the impact of the values of the parameters.
Consider the same values (6.38). We obtain the values for E(t). See Table 6.8. Note that
the numerical results conform to the behavior indicated by the derivatives. It appears that

the influence of n and k is greater than that of A.

Next consider the corresponding analysis for the generalized Shewhart control chart. By
defination, E(t) = E(tg) + E(t,). Therefore the analysis of the monotone behavior of E(t) can
be achieved by analyzing the monotone behaviors of E(t,,) and E(tg). The expression for
E(ty(b)) 3.2.21) is:

m =A(s- - s=l om-s+ . : j-m-
E[tn(b)]=(1—[32)hz[e Me-Dh _ g "“"](1-01,) mosr 2_] (1-p, B ™"

e, BBl -
—h(l )(1—Bz+ 1: B1_[e-u(l—a1)] :l

Using the second equation of (6.63) we obtain:

(6.66)
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JE[t, (b)]
oA

— _hze';‘h[__l__
1- Bz

o '51[3

.

Bl - [e-

-“(1—a1)]'“}

“‘(l—al)]

_ h(l—e’“’)[l i +mj:

+h(l—e™ )(1 —13 +

Refering to (6.48), it is clear that:

m“—Bl[ R (1- ax)]m

h(l - )‘3—M1 (ﬁ;n“ -B, [e'—xh (1 —-Q, )]m ):I

(B, ~[e™(-o)]]

m
/

Br—[e™(1-a,)

[B~[e™

Bl_[ (1 a)]

=B1

(1-o, )]]2

g [e(1- )" [B, [0 ax)]]}
(6.67)

(6.68)

Therefore the first term is negative and referring to (6.68) that the second term and the third

term always have different coefficients. Thus the two terms balance together and therefore

the first term donimates the others. In the case of kj, analyzing the first equation of (6.66):

oE[t, (b)]

oo,

S

and:
OE[t, (b)]
9B,
e
Thus:
oE[t, (b)] _ 2E[t,(b)] 30y,  FE[1,(b)]3B, _
ok, da, ok, B, Ik,
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“ls-p1-a,)” g 2_]

j=m+l

“](m—s+1)(1- ) 8P 3 (1-

j=m+l

J—m‘ <0
(6.69)

JBE™ 50
(6.70)
(6.71)
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In the case of ky, analyzing the second equation of (6.66) we obtain:

aquwn_hu—fmq‘“‘ﬁ[€M1 “)]}>0

- 2
The above derivative is positive because (6.68) is true and therefore:
aE[tn (b)] — aE[tn(b)] aBZ > 0
ok, B, ok, (6.73)
In the case of the sample size n:
OE[t, (b)] _ 9E[t,(b)] 9B, . oE[t,(b)] 9B,
on 8[31 on 8[32 on (674)

It is clear that the above derivative is negative because both (6.70) and (6.72) are true and

dB;/on <0, i =1, 2. The influence of m is analyzed using the second equation of (6.66):

aquwﬂque%{"“ B0 aﬂ]

dm [e (1- ocl]

N B! logB, + (Ah —log(1-0,))B,[e ™ (1-a,)]”
h{1- m
* ( ) )(1—[32+ } Bl—[ " (1= ax)] (6.75)

The first term of the above derivative is positive since (6.68) is true. Now consider:

™! logB, + (kh—log(l o, )B [e (1- al)]
B, ~[e™(1-a,)] (6.76)

Note that the above form could be negative for some values of the model parameters since

logB; < 0. However, (6.76) is a very small value because (6.11) is true and the conclusion
is that the derivative (6.75) is positive. Note that the above natures are also true for E(t,(a))
and E(t,(c)) since by defination that they have same properties except that the range of the

summation changed. Note also that E(t,) = E(ty(a)) + E(t,(b)) + E(t,(c)) by defination,
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therefore we have studied the monotone behavior of E(t). Next, the form of E(t) (3.2.18)
is:

E[t.]= jh(1—e,) o [1-F(jh)]+ (1- o)) Zjhl o, )" a,[1 - F(jh)]

j=1 j=m+1

—oh ¥ il-a) e+ (1- o) gk 31—y e
j=1

j=m+l

oo T] oo

T e S (s

=qo,h

(1 _ a‘)m e~Mm+Dh m(l _ al)m e~ Mm+Dh

+a,h + —
[T RS -
Refering to the second equation of (6.74), we obtain:
o[t _ oyh Z P-0) e - (1=, oph? ¥ F1—a) ™ e
o == (6.78)

The above derivative is negative since the two summations are all positive with negative

coefficients. In the case of k;:

aE[‘fLi[ hz_]l o,) e-*ﬁ*} m(1-o,)"" oh ij(l-—az)j'm'lc'””
Jo, o p= j=m+i (6.79)

It is clear that the second term is negative, the first term is:

d LN -1 _a
aTZ[“‘hZJ(l—al)‘ K ]

j=1

_d [ a,he™ a,h(1-a, )m g M mo,h(l- (xl)m g Hmbn

= YT Sr12 —h
9o [1-(t-en)e™]  [1-(1-cy)e™] 1=(1-a)e (6.80)

Note that the magnitudes of both the second term and the third term of (6.77) are small

since (6.11) is true. Thus the first term dominates the others and we obtain:
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Y l: o he ™ } _ he'“‘[l —oe™ - e'”’]

o, [1—(1—0L1)<:"“‘]2 - [1;(1—0‘1)5“‘]3

(6.81)

Note that the above derivative is analyzed before, see (6.60). Thus (6.79) is negative for

suitable values of the parameters. In the case of kj, refering to the third equation of (6.77)

we obtain:

oE[t,] [mh(l —e™ )(1 ~ o, )" e Hmh }

do, [1-(1- ocl)e“”‘]2

+ h(l - al)m e-l(mﬂ)h 1- aze"“‘ - e—l.h}
[1-(1-a,)e™]

(6.82)

The first term of (6.82) is positive. The second term is negative for small values of A and it
dominates the first term because of its denominator. Again, for large values of A, the
second term of (6.82) is positive and by the time A gets large, the magnitude of (6.82) is
very small because (6.11) is true. In summary, (6.82) is negative. Because a; and o, are

tail probabilities of a normal distribution, it is clear that dey/dk; < 0,1 = 1, 2. Thus:

OE[t,] - 9E[t,] 9a, S

0
ok, oo, ok, (6.83)
and:
ole]_aE[t]oa,
8k2 8(12 akz (684)

Next, consider the time of the change in the width of the control limits, m. Refering to the

third equation of (6.77), we obtain:

6 Analysis and Results 92



oE[t, ]

Jm

2 _hlog(l—q — o )™ e MmrDh o, _ o,

[Amh? + h - mhlog(1 - ot,)](1-ot,)" e—x(mmh{ o o

T

To determine wether the above derivative is positive or negative, the following forms are

analyzed:
a, _ o, - (™ =1~ ) <0
I-(1-oy)e™ 1-(l-oy)e™ (1-(1-o)e™)(1-(1-a,)e™) (6.86)
and:
., o, _ofi-(-a)e* - oufi-(1-0)e ]

[i-(-a)e™] [=0-a)e™]  [i-(-a)e - (-o)e™]
_ (01.2 - )(alaze’m +2e M _o 2 _ 1)

[ (e )e - (o] (6.87)

It is clear that (6.86) is true since e < 1 and o < a1y by construction. While (6.87) is not

that clear but for suitable values of the parameters it is positive. In addition, refering to

(6.11) that the magnitudes of both terms of (6.85) are small, and since E(t,) is increasing in
m this imply E(t) is increasing in m even though (6.85) could be negative for some values
of the model parameters. Thus, the monotone behavior of E(t) is clear. In order to obtain a
sense of the trends indicated by all of the above derivatives, consider the same numerical
cases (6.53) and we obtain the associated values of E(t) are listed in Table 6.9. The

numerical results conform to the above analysis and the conclusion is summarized below:

First observe that the numerical results illustrate the fact that E(t) is increasing in all ky, ko

and m and E(t) is decreasing in A and n. Note also that increasing n or m enhance the effect

6 Analysis and Results 93



of A and k; and k,. Furthermore, k, appears to have a greater effect on E(t) than does k;.
Note that setting k; = k; at any value should result in the same values of E(t) as occur in
the standard case and that this is confirmed in the evaluation of the cases having k, = k; =
2.5. Finally, observe that the value of E(t)is less for the generalized chart than for the
standard chart because the expected cycle length is less for the generalized chart. This is
equivalent to say that 1/E(t) is greater for the generalized chart than for the standard chart
because the inverse of the expected cycle length is greater for the generalized chart. This is

a desirable feature of the generalized Shewhart control chart.

In order to determine if the generalized Shewhart control charts are economically attractive

for any given set parameters, the conclusion is the following:

The convex behavior with an interior minimum that is characteristic of case one is apparent
when the increasing behavior of the model terms and the decreasing behavior of the model
terms are in balance. This means that the rate of increase of the increasing model terms will
produce is offset by a similar rate of decreasing in the decreasing model terms to produce
the minimum in the interior of the feasible region. The convex increasing behavior of the
expected total cost per unit time that is characteristic of case two is apparent when the
increasing behavior of the model terms dominate the decreasing behavior of the model
terms. The convex decreasing behavior of the expected total cost per unit time that is

characteristic of case three is apparent when the decreasing behavior of the model terms and

the increasing behavior of the model terms. In both case two and case three above, the Ct
curve appears to display strictly increasing or decreasing behavior over ranges of kj, k; n,
and m, the generalized Shewhart control charts are probably not advantageous. This
analytical results can be seen in Table 6.10. Where the up arrow means that the

corresponding term is increasing and the down arrow means that the corresponding term is
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decreasing. In addition, the GRG approach is used as direction may not yield integer values
for m and n, and the following rounding method can be used to get integer values. This

method functions as the following steps:

(1) Use GRG to obtain a continuous solution for m and n;
(2) Study the 23 = 8 different combinations of the nei ghborhood integer values of (m, n);

(3) Choose the values of (m. n) which minimize the expected total cost.

Finally, the optimization problem for the general cost models can be solved using the two-

step optimization technique and the following parameter values are used:

m = (10, 20, 30, 40)

n=(2,4,6,8)
6=20,8=05,12=0.1,a=0.05b =125
cqg=1.0,r=200, p =001, cg = 1.0, ¢; =1.0, ¢£=100, ¢, = 10 (6.88)

For each (m, n) determine the optimal values of (kj, k) and the optimal value of the

expected total cost. At this step, the optimal value of the expected total cost occurs when
(k;, k3) =(2.79, 2.52), call this Cy[1]. As an example, the plot of Cy(m = 20, n = 6, k;,
ko) can be seen in Figure 6.4. Next, plot Cy[1](m, n) and let C7[2] be the optimal value of
Ct[1]1(m, n). Then Ct[2] occurs at (m’, n*) = (19, 6). See Figure 6.5. Finally, the

optimal value of the expected total cost per unit time function for the general cost model I,

C; = Crl[2] = 8.6472 and (k{, k;, m’, n*) = (2.79, 2.52, 19, 6). The detail results of the

cost models are listed in Table 6.11.
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Cr(k)

Cr(k2)

Ct(m)

Figure 6.1 Cy as a Function of m, ky, or k,, Case 1.
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Cr(k)

Cr(kz)

Ct(m)

Figure 6.2 Cp as a Function of m, kg or k,, Case 2.
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Cr(k)

Cr(k)

Cr(m)

Figure 6.3 Cp as a Function of m, k; or k,, Case 3.
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Figure 6.4 Ct as a Function of (m=20, n=6, ki, kj)
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Figure 6.5 Ct[1] as a Function of (m, n)
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Table 6.1 Values for C;

11

11
17
21

10
16
25
31

13

21
33
41

16
26
41
51
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Table 6.2 Values for P[A]. The Standard Case

6 Analysis and Results

JAV'e

.01
.05
.10
20

2.50

5527
1947
.1055
0530

2.75

3738
.1047
.0570
.0264

3.0

.2055
.0482
.0421
.0116
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ANk,
01
05
.10
20

N
01
.05
10
20

VS
01
.05
.10
20

ANk
01
.05
.10
20

kp=1.75, m=10

2.50

.8208
4170
2117
0785

ky=2.0, m=10
2.50
7654
3423
1694
0671

ky=2.25, m=10

2.50

6772
2635
1325
0586

ky=2.50, m=10

2.50

5527
.1947
.1055
.0530

Table 6.3 Values of P[A]. The Generalized Case

275
.8123
3930
.1848
.0568

2.75
7531
3133
1397
0446

2.75
.6590
2291
.1004
.0355

2.75
.5260
.1560
.0716
.0296

3.0

.8078
.3804
1708
.0455

3.0

7466
2981
1242
.0329

3.0

.6494
2111
0836
0236

3.0

5120
1356
.0539
.0175

6 Analysis and Results

k,=1.75, m=20

Nk 2.50 275

01 7668 .7473
05 3138 .2691
.10 .1401 .0991
20 .0562 .0301

kp=2.0, m=20
Nk 250 275

01 7226 .6969
05 .2738 .2236
.10 1263 .0835
20 .0548 .0286

kp=2.25, m=20
Nk, 250 275

01 .6521 .6167
.05 .2316 .1756
10 1144 0698
20 .0538 .0274

k2=2.50, m=20
Nk; 2.50 275

.01 5527 .5034
05 .1947 .1337
.10 .1055 .0599
.20 .0530 .0266

3.0

7367
.2451
0773
0164

3.0

.6828
.1965
.0605
0148

3.0

5972
.1451
0464
0136

3.0

4762
.1006
.0354
0127

k,=1.75, m=40

Nk 250 275

01 .6892 .6447
05 .2290 .1580
10 1092 .0591
20 .0532 .0263

k,=2.0, m=40
Nk, 250 275

01 .6610 .6080
05 .2176 .1431
10 .1078 .0572
20 .0531 .0263

kp=2.25, m=40
Nk 250 275

01 .6610 .6080
05 .2055 .1274
10 1078 .0572
20 .0531 .0263

kp=2.50, m=40
Nk, 250 275

01 5527 .4675
05 .1947 .1138
.10 .1055 .0534
20 .0530 .0262

3.0

6189
1180
0317
0121

3.0

5771
1011
0296
0121

3.0

5771
0832
0296
0121

3.0

4168
0676
0264
0121
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Table 6.4 Values for P[B]. The Standard Case

6 Analysis and Results

Nk

.01
.05
10
20

2.50

4477
.8053
.8945
9470

2.75

.6262
.8952
9560
9736

3.0

7947
9517
9759
9884
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ANk
01
05
.10
20

ANk,
01
05
10
20

Nk
01
05
10
20

ANk,
01
05
10
20

k,=1.75, m=10

2.50

1378
4900
7103
.8879

k2=2.0, m=10

2.50

1712
5478
7510
5027

k,=2.25, m=10

2.50

2972
.6981
.8409
9316

k,=2.50, m=10

2.50

4477
.8053
.8945
9470

Table 6.5 Values of P[B]. The Generalized Case

2.75

.1049
5015
7266
9051

2.75

.1743
.5593
7674
9199

2.75

.3003
7097
8572
9484

2.75

4508
8168
9109
9641

3.0

.1246
.5078
7355
9144

3.0

1759
5657
7763
9292

3.0

.3020
7160
.8661
9580

3.0

4525
.8231
9198
9734

6 Analysis and Results

kp=1.75, m=20
Nk; 2.50  2.75

01 .1840 .1945
05 .6120 .6427
10 .8223 .8559
20 9379 .9627

kp=2.0, m=20
Nk 2.50 275

01 2058 .2162
05 .6389 .6697
.10 .8343 8680
20 .9396 .9688

k,=2.25, m=20
Nk, 2.50 275

01 3092 .3193
.05 7296 .7603
.10 .8694 .9031
20 .9441 .9668

k,=2.50, m=20
Nk 250 2.75

01 4477 .4581
05 .8053 .8360
.10 8945 .9283
20 9470 9717

3.0

.2004
.6600
8747
9763

3.0

2221
.6869
.8868
9780

3.0

3255
J775
9219
9824

3.0

4640
.8532
9470
9853

ky=1.75, m=40
Ny 2.50 275

01 2719 .3039
05 .7447 8068
10 .8860 .9341
20 9468 .9734

k,=2.0, m=40
Nk, 2.50 275

01 .2793 3112
05 .7490 8111
10 8867 .9348
20 9468 9734

k2=2.25, m=40
Nk 2.50 275

01 .3399 3718
05 .7748 .8369
10 .8905 .9387
20 .9468 .9734

k,=2.50, m=40
Nk 250 275

01 .4477 .4796

05 .8053 .8673
10 .8945 .9427
20 .9470 9736

3.0

.3230
.8433
9616
9882

3.0

3303
.8475
9624
9882

3.0

.3909
.8733
9662
9882

3.0

4987
9034
9702
9883
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Table 6.6 Values for E[D]. The Standard Case

(n=5) Ak 2.50
01 11.457
.05 11.460
.10 11.464
.20 11.473

6 Analysis and Results

2.75

18.957
18.960
18.964
18.973

3.0

32.902
32.905
32.909
32918

(n=10) N\  2.50

01
05
.10
.20

5.0841
5.0874
5.0916
5.0999

275

7.7491
7.7525
7.7566
7.7649

3.0

12.326
12.329
12.333
12.342
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Table 6.7 Values of E[D]. The Generalized Case

n=5, ky=2.25, m=10
N 250 275 3.0
01 6.0025 6.1022 6.1785
.05 6.7837 7.2214 7.5579
.10 7.4925 8.2454 8.8273
20 8.3570 9.5122 10.413

n=5, k,=2.5, m=10

Nk, 250 275 3.0
01 11.467 11.633 11.769
05 11.460 12.226 12.821
.10 11.464 12769 13.789
20 11.473 13.443 15.001

n=10, k,=2.25, m=10
Nk, 250 275 3.0
01 3.6135 3.7023 3.7866
05 4.1196 4.5069 4.8776
.10 4.5677 5.2293 5.8685
20 5.0920 6.0950 7.0789

n=10, k,=2.5, m=10
N, 250 275 3.0
.01 5.0841 52058 5.3232
.05 5.0874 5.6129 6.1250
.10 5.0916 5.6129 6.8535
20 5.0999 6.4194 7.7443

6 Analysis and Results

n=5, k,=2.25, m=20
Nk 250 275 3.0
01 6.4483 6.8205 7.1432
05 8.3409 9.7950 11.074
.10 9.5867 11.818 13.811
20 10.575 13.518 16.203

n=5, ky=2.5, m=20

Nk; 250 275 3.0
01 11.467 12.013 12.504
05 11.460 13.587 15.502
.10 11.464 14.658 17.588
20 11.473 15.561 19.414

n=10, k,=2.25, m=20
Nk 250 275 3.0
01 3.8351 4.1106 4.4222
05 4.8415 5.8923 7.1071
.10 5.4534 7.0246 8.8839
20 5.8728 7.8669 10.305

n=10, ky=2.5, m=20
Nk 250 275 3.0
01 5.0841 5.4115 5.7897

05 5.0874 6.3110 7.7616
.10 5.0916 6.8838 9.0671
20 5.0999 7.3124 10.113

n=5, k,=2.25, m=40
Ne; 250 275 3.0
01 7.4445 8.6724 9.9652
05 10.655 14.399 18.710
10 11.731 16.695 22.319
20 12,129 17.698 24.228

n=5, ky=2.5, m=40

ANk 250 275 3.0
01 11.467 12992 14.655
05 11.460 16.073 21.322
10 11.460 17.236 24.074
20 11.473 17.770 25.532

n=10, ky=2.25, m=40
ANk 250 275 3.0
01 4.2409 4.9282 5.8731
05 5.6237 7.6313 10.528
.10 5.9998 8.4456 12.117
20 6.0923 8.6881 12.723

n=10, k,=2.5, m=40
Nk, 250 275 3.0

01 5.0841 5.8235 6.8548
05 5.0874 7.1874 10.274
10 5.0916 7.5999 11.441
20 5.0999 7.7262 11.888
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(n=5) "k 2.50
01 49.852
.05 25.326
.10 19.197
.20 15.598

Table 6.8 Values for E(t). The Standard Case

275

74.675
34.903
27411
23.344

6 Analysis and Results

3.0

104.75
50.258
41.835
37.461

(n=10) Nk  2.50

01
.05
.10
.20

47.002
20.196
13.498
9.5631

2.75

52.536
21.446
14.320
10.243

3.0

88.540
30.172
21.774
17.132
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Table 6.9 Values of E(t). The Generalized Case

n=5, kp=2.25, m=10
Nk, 250 275 3.0
.01 18.955 19.099 20.636
05 13.124 14.523 14.997
.10 10.314 11.332 11.967
.20 8.1170 8.5474 9.0523

n=5, kp=2.5, m=10
ANk 250 275 3.0
.01 49.852 50.677 51.934
.05 25.326 25.503 26.079
.10 19.197 21.229 24.002
20 15.598 17.322 19.140

n=10, k,=2.25, m=10
Nk, 250 275 3.0

01 18.537 18.921 19.059
.05 11.902 12.077 12.884
.10 8.7082 9.3277 9.9963
20 6.2021 7.5992 8.2424

n=10, k,=2.5, m=10
Nk 250 275 3.0
01 47.002 48.535 49.222
05 20.196 21.723 22.274
10 13.498 15.277 17.556
20 9.5631 11.448 13.221

6 Analysis and Results

n=5, k,=2.25, m=20
Nk, 250 275 3.0

01 20.931 21.957 22.241
05 15.490 17.001 18.583
10 12.053 13.638 15.244
20 9.8860 11.629 14.156

n=5, ky=2.5, m=20

Nk; 250 275 3.0
01 49.852 51.766 52.685
05 25.326 26.770 28.196
10 19.197 21.651 25.535
20 15.598 18.521 21.668

n=10, ky=2.25, m=20
Nk, 250 275 3.0

01 19.677 20.447 21.003
05 12.763 13.099 15.788
.10 9.4889 11.353 13.269
20 6.8839 9.0226 11.848

n=10, k,=2.5, m=20
Nky 250 275 3.0

01 47.002 48.608 49.955
.05 20.196 22.008 24.533
.10 13.498 16.232 19.135
20 9.5631 12.002 15.728

n=5, ky=2.25, m=40

ANk; 250 275 3.0
01 22.174 23.077 26.104
05 17.667 19.478 22.710
.10 13.731 15.421 22.366
.20 11.882 14.930 21.007

n=5, kp=2.5, m=40

Nk; 250 275 3.0
.01 49.852 52.588 56.532
05 25.326 27.658 33.920
.10 19.197 25.821 31.273
.20 15.598 19.916 27.061

n=10, ky=2.25, m=40
Nk 2.50 275 3.0

01 20.964 21.005 22.169
05 13.443 15.723 18.206
10 11.584 13.998 16.832
20 9.9767 12.021 15.993

n=10, k,=2.5, m=40

Nky 250 275 3.0
01 47.002 49.992 51.194
05 20.196 23.409 26.236
.10 13.498 17.207 21.778
20 9.5631 12.311 17.650
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Table 6.10 The Behavior of the Cost Terms
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Table 6.11 A Set of Results of the Cost Models

Model I

Standard Generalized

n 6

m 0

k

ky

k 2.78
Cr  8.9655

6 Analysis and Results

6

19
2.79
2.52

8.6472

M
Standard
5
0

2.79
8.8242

el II
Generalized
6

16
2.78

2.54

8.6187

M
Standard
5
0

277
8.9122

1111
Generalized
5
14
278
2.53

8.7637
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CHAPTER 7

Conclusions and Discussion

7.1 Conclusions

This dissertation develops cost models for the standard and the generalized Shewhart
control chart. The models assume that the quality characteristic of interest is distributed
normally with known variance and that the time between shifts are negative exponential,
uniform and Weibull distributed. The analysis for the three cost models presented in this
dissertation yield several interesting points. The first of these is that the analysis of the
costs of operating any type of control chart should be treated very carefully as the cost
function may not always have the commonly assumed regularity. The choice of cost
coefficients, the time of shift distribution and time shift distribution parameters have a direct

influence on the performance of the expected total cost per unit time function. The behavior
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of the models are analyzed algebraically and numerically using calculus and Mathematica
[52] and GINO [25]. The important results of the analysis performed show that the
generalized Shewhart charts for means may be economically attractive when the inspection
cost, the true signal cost and the nonconforming product cost together balance the expected
cycle length and the false alarm cost. When this is the case, the expected total cost per unit
time function is convex with an interior minimum and an opportunity for optimization of
the generalized Shewhart control chart. When one or more of the model terms dominates
the others, the expected total cost per unit time will display the same increasing or
decreasing behavior as the dominating factor and the generalized cost model as studied in

this research will be unattractive.

The second conclusion is that all model parameters and variables are important to the

expected total cost per unit time function. The control limits k; and k, have a greater effect

than do the distribution parameters and k; has a greater effect than does k;. It is also true

that the sample size, n, and the time of the change in the width of the control limits, m,

enhance the effect of the distribution parameters and k; and kj.

The final conclusion is that there are control chart applications for which the cost models
are useful. Values of the production process parameters that display more commonly
encountered relationships leads to the generalized Shewhart control chart having lower cost
than the corresponding standard Shewhart control chart. For the example case analyzed in
the previous chapter, see Table 6.12, the savings is $8.97 - $8.65 = $0.32 per
item produced. Since the production rate assumed is 200/hour, the savings is $64 per

hour for cost model I. For cost model II, the savings is $8.82 - $8.62 = $0.20 per item
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produced when 8 = 1000. Since the production rate assumed is 200/hour, the savings is
$40 per hour. For cost model III, the savings is $8.91 - $8.76 = $0.15. Since the
production rate assumed is 200/hour, the savings is $ 30 per hour. These savings are
dramatic and therefore the cost models are worth pursuing. Thus, the cost models can be

appealing and the control chart adjustment strategy presented in this dissertation is robust.

7.2 Extensions

The Shewhart control chart adjustment strategy by its very structure creates an exhaustive
range of possibilities for future research. Potential expansions are discussed below,

practical and analytical.

(1) From the theoretical point of view, analysis of the cost models is interesting if some of
the assumptions on distribution are relaxed. For example, the population distribution is not
normal or the variance of the quality characteristic is not constant. In this case, the sample
variance must be employed to estimate the population variance . In addition, both skewness
and kurtosis should also be considered in the process average. One advantage of this
analysis would be that a more general production process could be analyzed. Although
more numerical methods will be involved, the model may be used to analyze a general

production process as well.

(2) One extension of this dissertation is to change the distribution of the time until a process

shift. Another candidate life time distribution may be Gamma. The cost model constructed
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using the Gamma distribution should also be very interesting and it can represents the
behavior of the time to process shift adequately. Cost categories can be constructed under
the Gamma life distribution and if there is a cost term for which the formula has no closed
form, numerical method and computer programming techniques may be used in obtaining

the optimal solution for the corresponding cost model.

(3) The control chart adjustment strategy can be extended to the case of the variable
sampling interval (VSI) Shewhart control chart. For VSI Shewhart control chart, the
parameters that are optimized in order to specify a chart design are the width of the control
limits, the sample size, the lengths of the delay intervals, the changed control limits, and the
probabilities that the various delay intervals are selected. It is obvious that the
corresponding cost model so constructed may be complicated. However, it is worth to
study the control chart adjustment strategy for the VSI Shewhart control chart since it has
been shown by Nachlas et. al. [31] that the VSI control charts are often more economical

than fixed interval control charts.

(4) The control chart adjustment strategy can be extended to the other control charts, say

CUSUM chart and EWMA chart, and the corresponding analysis could be interesting.

In summary, the Shewhart control chart adjustment strategy developed in this dissertation
is found to be robust and economical. It has many extensions and applications for
analyzing a production process. Under this strategy, the sensitivity to small but anticipated
shifts can be increased in the process average and therefore the corresponding assignable

cause can be detected.
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Appendix A.

Useful Formulations

In constructing the mathematical expressions for cost models of this dissertation, the
following useful formulations are used frequently. Where 0 <x<1,0<y<1landx/y <1

for all equations with N = oo:

i1 —X (A.1)
ixi—l - 1-xN
it 1-x (A.2)

(A.3)
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iixi'lz I—XN _.NXN
o (1-x)* 1-x (A.4)

iiz xl= 1 + 2x
(1-x) (1-x)’

i=1 (A.5)
zN:iz RSUE S 2x(1-x") (N1 N
5 (1-x)  (1-xy  (1-x (1-x) (A.6)
- « _i-m-1 m+1 X
Yix ™= + 5
i=m+l I-x  (1-x) (A.7)
il iemg . M+1 N X(l - XN-m_l) _ Nx"™ m N 1-xN"m N NxN-=
i 1-x (l—x)2 1-x  1-x (1-—)()2 1-x (A.8)
.2 iema  1+2m 2x m?
i = =+ —+
it (1-x)" (1-x) 1-x (A.9)
iiz R S 2x(1-xN") _ (N-m-1)’x"" N (N - m)*xN™*
e (1-x)" (1-x) (1-x)* (1-x)*
_ yN-m — N-m m2 I_XN‘"'
+2m[1 X - (N-m)x }_ [ ]
(]."X) l—x ]."'X (AIO)
iixN-i _ N _ XN _ X""XN
= 1-x 1-x (1-x) (A.11)
ixi—l —iel _ Y
i=1 y—x (A.12)
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ixi-lyN-iH - y(xN - YN)

=1 X=y

' (A.13)
ixi—lyN—i - xN — YN
= Xy (A.14)
i xi—m-—lyN-i+m+1 — Y(XN_m - YN—m)
i=m+1 X—y (A,IS)
N . 2x(1—- XN" — <)% N-s+l _ 2 N-s+2
Ziz ot = 1 + _(N s)°x +(N s+1)"x
1-%°  (1-x)’ (1-x)’ (1-x)’
£2(s— 1){1— N (N=s+ 1);8‘-5“]+ (s+1(1—xN"")
(1=xy I-x 1-x (A.16)
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Appendix B.

Derivations and Proofs for Cost Model I

(1) Proof of Lemma 3.1

For any integer m 2 0, the following inequalities are hold:

1)0<a, o, <1;

2Q)1-o, 21-0y;

@G l-o,2(1-0,)", 1-0, 2 (1-0,)™
4) (1-0,)" 2 (1~ ;)"

(5)e™ <1. (B.1)

Then, the upper bound for P[A] can be constructed as:
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e {1 -l al)e-u]m} (1-a,) e thg,

P[A] =

1-(1-o)e™ 1-(1-o,)e™
oe™ {1 -[a- al)c'“‘]m} (1= )" e Mm g
< +
1-(1-o,)e™ 1-(1-o,)e™

. e +(1-a,) e ™Ma, e oe™
1-(].—-(:‘1)6-3'h - 1—-(1—al)e'u' (Bz)

Similarly, the lower bound for P[A] is:

o™ {1 - [(1 -, )e"‘h ]m} (1-a )m e—l(m+l)ha2

P[A]= +
[A] 1-(1-oy)e™ I-(1-a,)e™
S a,e‘“‘{l - [(l - a,)e‘”‘] } N (1-q, )m c—l(mﬂ)haz
- 1-(1-a,)e™ 1-(1-a,)e™
S ae™(1- (1—a1)]+0 __ ak™
T I-(1—oy)e™ 1-(1-ay)e™ (B.3)

Therefore Lemma 3.1 is true.
(2) Proof of Lemma 3.2

Note that:

1

—ah ]+ m+l _ah -~ m+l _ .
[A-o)e™]™ =(1-o)™ e™e™ <(1-a,)"e™,i=1,2 Ym20 (B.4)

So that the upper bound for P[B] can be constructed as:
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P[B]

(1-a,) 1-(1-a,)e™

e Sl L T

m+1 m+1
gy 1[0 -e)e™ T [(1-an)e™] N 1
<(i-e ){ I-(l—o)e ™ 1- (1 a,) o s(i-e )1—(1—a,)e"”‘
(B.5)
Sinilarly, P[B] has the lower bound as:

P[B] = (1-¢™ ){1_1[(1-%)6“]“’” 0-) -“]m+l}

~(1-a)e™ 1-(l-oy)e™

(1_6-11.){1—[(1—(11)6%]“1+[(1“°‘2)°—M]m1}2(1—c'“’)[1 1-d-oy) ]

1-(1-a,)e™ 1-(1-o,)e™ —(1-a,)e™

2(1-e™ ){1 - (1-a<;2)e'“ ]

\%

(B.6)

Thus Lemma 3.2 is true.

(3) Derivation of E[tg(a)] for Cost Model I

For case(a) of cost model I, the generalized Shewhart control chart, the derivation of

E[tg(a)] can be achieved through the following steps:

(1) Evaluate the partial summation;
(2) Take derivative with respect to the partial summation;

(3) Exchange derivative and summation;
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First we may write E[tg(a)] as the following form:

[E(3h)- E(i=Dh]3 (i - h(1-B, )Bi~

i=j

[ ~A(j-Dh __ —Mh]h g
[ A(J—x)h_c—xm]hBl( 2(1 J —1—1

i53=0 (B.7)

M

E[t,(a)]=

.
|
-~

I}
Ma

E[t.(a)]

.
I
—

1l
Ma

E[t,(a)]

.
I
-

Refer to equation (A.4), we have

i gt 2 B0+ 1]

i-j=0 (1"B1)2 (B.S)

Therefore we obtain:

E[t, ()] = :zl[e-w-“h g (1-B) ﬁi“"'[(gl_— é)gi—w 1]

[t (a)]:( Bf} )F(mh) hBlz[e—K(rl)h -xm](m J)Bmﬂ

- - é )Z[e"“’“”‘ —ehh }3;::—;

1) = (B.9)

3

—.

Now the summation terms can be resolved as follows:

[~ m = T = (1) 2 [0 - B

=1

S[e ™ m B = m (e B - S i) o

= P p= (B.10)

3
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Let:

Ma

u=e_lh: V=B1, S=

o) B = v

1 j=1

.
il

u it . .
= —=S=) julv!
v ‘=1
m-~1

m m
j=1ym=j siym=i-l - m-1 1, m-1-1 MU
S —_S _]U - ]U v =V + uv R ——

1=1 v

S__S___zul m-1 _ mu” =_1_zu1vm_1_(m+1)u

Then

(vm+l _ um+l) _ (m+ l)u"‘ _ ;n+l _ e—’;\.(m+l)h (m + l)e"""h

(V—u)2 v-u B (Bx"‘e_m)z Bx"e—u

Next, let

R=m3 [e*] B = m3 urvm

=1 =

_____z[ _M]J -1 m-; =_n_‘1_i[ —M]J IB i v m” _m m v™H — g™
U =1 U =0 1 u v-u
R m(vm+l __umH) m(Bl —e )
B v—1u - [31 —e'Ml
Then we obtain:
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NgE

[e—l(j—l)h](m_ J)Bf‘_“ —R-S= m(ﬁ;n - e”"“h) _ ;n+1 — g Mm+Dhh s (m + l)e—lmh

1 B - e (Bl - e—ul)z B, - e
m [c_;,(j.q)h](m _]) moj _ mﬁ;“ +C Bm+1 e Mm+Dh

j=1 Bl - C (Bl - C—M‘ )2 (B. 14)

.
1]

hB, ¢ “Mj=Dh _ o-Ahgm-i hB, -An =i
S o= oS
™)

ﬁx—e'“‘ (B.15)

Finally we obtain:

mB1 + e—lmh Bm+1 -k(m+1)h

B, - e (Bl )2

B[t (2)] = (_1_‘.‘_%3(1 — ) g, (1-e)

N ()
(l‘ﬁl)( ) )Bl“f’-u1 (B.16)

(4) Derivation of E[tg(b)] for Cost Model I

For case(b) of cost model I, the generalized Shewhart control chart, the derivation of

E[tg(b)] can be achieved through the following steps:

(1) Evaluate the partial summation;
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(2) Construct the double summation;

(3) Add the partial summations together to obtain E[tg(b)].

Therefore:

E[t,(b)] = i[ F(jh)~ F((i-DR)Br™ 3 (i- )hps™(1-

i=m+l1

3 ‘ﬁMa

- 3 [5(m-r(- 1)h)}‘*“'j+lh[(m'j) )

and since

m _ —Amh 1 —A(m+1)h
ien—x (m—j)Br = m(p} —e )_Bi“ —e T,

B,)

i-m-~1=0

i-m=1

j=1 B, —e™ (Bl —e™™ )2
Refer to equation (A.14), we obtain:

Sl =B

i=1 B,—e .

it follows that:

m m—j+l
= hZ[ ~A(j~Dh _ e ] m— Jﬁm j+1 +hZ[e°1(J“'1)h _c-w’](ll_;} )
j=1 j=1 2
(m+1)e™>™
B, - e
hnh) ;n+l — g ~Mm+Dh (m+1)e”

E[t,(b)] = (1 —e™™ )hﬁl{ m(g: —_C‘ih (ﬁ —e )2
(1- e'”’)hﬁl BR —e
(1 - Bz) B, - e

<+
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B - e

|

) 0- 8- 5 g Soomtie ]

(B.17)

(B.18)

(B.19)

(B.20)
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(5) Derivation of E[t,(a)] for Cost Model I

For case(a) of cost model I, the generalized Shewhart control chart, the derivation of

E[ty(a)] can be achieved through the following steps:

(1) Evaluate the partial summation;

(2) Construct the double summation;

(3) Add the partial summations together to obtain E[t,(a)].

First we know that:

(a) i[F(Sh) F((s—=1h ] (1- al S‘lth ﬁlp{'—s

s=1 j=s

= ie'“"”h[l 11— 0, )Y jh(1- B, B

s=1 j=s

=h(1- 1= e - a) 5B

s=1

Next, let x = 1 , then refer to equation A.8 we obtain:

ZJ Bi = 1=p, [s mfy ! Bl 1_;‘“]

j—!

Thus

[t (a)] [ ]2 e-m—l)h o) x{l_lﬁl [s mp™ 4 B, -

s=]

Appendix B.

(B.21)

(B.22)
m-u—l
l‘Bl :I}
(B.23)
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Finally we obtain:

m

[t.(2)] = Y [F(sh)— F((s - Dh)](1- al“zjhl— B, B

=1 J=S

e 1= mfet oo mB BT (- )
_h(l € )Bl [1—6—}&(1—(11)]2 1_6—1.}1(1__(11) 'ﬁl_e-n(l_al)

l—e'u(l-—al) B—e™(1-ay)

a

(B.24)

(6) Derivation of E[th(c)] for Cost Model I

For case(c) of cost model I, the generalized Shewhart control chart, the derivation of

E[tn(c)] can be achieved through the following steps:

(1) Evaluate the partial summation;

(2) Add the partial summations together to obtain E[ty(c)].

By the definition of E[t,(c)] we have:

Bt (0)] = (1-a)™ 3 [F(h)—F(@=Dh)|(1-a,) ™™ T jh(1-B,)Bs"

l=m+1 =1
=(1- -B,)1- al) h Z[C—Ml—!)h ]1 az 1 m- xz B
l=m+1 j=1
L B e e
o 1=B, (B.25)
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Then:

(1-a,)"(1-¢™)h

E|t = A+B
(@] =g (A+]
A= Bz{ ie-wmh(l_az )l_m—l - ie—m(l - az)l—m_l}
_ Bz[ g~hmh . e—xh]
1—(1—(12)6 0C2 (B.26)
Similarly:

=(1—B2){e" z *(1-a,) l_ml— zle (1-a, HH}

(1 me ™™ g ~hmh _me™ ™
-0 BZ)L ST [-(-a)e™] @ o } (B.27)
Therefore:
_ (- (1=e™)h |[B, +m(1-B )l (1-p,)e
E[tn(c)] (1_[32) { 1—(1-—(12)(3_:\'h ¥ [1—(1"(12)6—”‘]2
- [Bz +m(1- Bz)]c—u - oB)e }
o, ol (B.28)

(7) Proof of Lemma 3.3

To prove Lemma 3.3, the following steps are necessary:

(a) Show that equation (3.2.5) is the same as equation (3.1.6) under Fact 3.2;
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(b) Show that equation (3.2.8) is the same as equation (3.1.8) under Fact 3.2;
(c) Show that equation (3.2.15) is the same as equation (3.1.14) under Fact 3.2;

(d) Show that equation (3.2.24) is the same as equation (3.1.16) under Fact 3.2.

For case (a):

o™ {1 - [(1 —o, )e™ ]m} (1-0, )" e g,
+
1-(1—ay)e™ —(-o,)e ™

[ m T
ae™ {1 - [(1 - a)e‘“‘] } +(1- o)™ e, o

1-(1-o)e™ TI-(—a)e™
: (B.29)

For case (b):

T -—

l1—o)e™ 1-(1-o)e™  1-(1-a,)e™

= ct(l - e—xh ){1 - [(1 - G)C-M ]’Ml + [(1 _ a)e_;u, ]m+1 } ) ct(l B e—u)

e 1-O-e)e (B.30)
For case (c):
Ah—(1-e™) hp(1-e*™ ~Amh
cd=cdrp(E(tp)+E(t,))=cdm{ 1(1(—e‘j“ ))+ B(l—[; )+h[113,fﬁz }
hB,(1-e™)Br —e™*)[ 1 1
+Cdrp”i B—e™ [I—BZ—I—BIJ
Ah—(1-e7™) hB}
= C4Ip vt
{ l(l—-e ) 1-B (B.31)
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For case (d):

[1-(-a)e™T I-(1-a,)e™

E[t] = alh[ e {1 -[1-a)e™ ]"‘} {1 o, )" Am0» }

‘o h (1 _ al )m e—l(m+l)h N m(]. _ al )m e-l(m-&-l)h
i-(-o)e™] 1-(1-op)e™

‘I"h(l_f:-m)ﬁl< [1_3'”‘(1—(11)]2 l—e—m(l—al) Bl_e—)‘h(l—al)

1-(e(1-a) me-o) mB[BT (- ))“‘]}

1-B,| 1-e™(1-a,) B -e™(l-a,)

—e™™ 1 m B;Ml _ ﬁ‘ [c“u(l _ a‘,)],m
+h(1 )(1_52'*' I Bl_[e-a.h(l_al)] }

N (1-a,)"(1-e™)h {[Bz +m(1-B,))e™" . (1-B,)e™™

(1-B.) 1-(1-,)e™ [1-(1-0,)e™]

_[B+m(1-p,)]e™ _(I—Bz)e'”‘}

a, ol
(B.32)
The first two terms can be reduced to the following expression under Fact 3.2:
athe™
YeT)

[1-(-a)e™] (B.33)
The rest expressions can be reduced to:

(1 - e‘”‘)h [ B (1-B1-a)™ ]

—(l-ae™l1-8 - P
[B-(-we™]|1-B [1-(1-a)e™] (B.34)

Therefore Lemma 3.3 is true.
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Appendix C.

Derivations and Proofs for Cost Model 1I

(1) Proof of Lemma 4.1

Proof:
Note that the part of interval before the process shift can be written as:
T = t—jh = E[T] = E[t— jh] = [(t— jh)f(t]jh < t < (j+1)h)dt e

And we know that:: -

F(t)-F(jh)
F((j+1)h) - F(jh) (C2)

F(fjh<t<(j+1)h)=
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Thus the condinitional probability density function of t given the shift occurs in (jh, (j+1))

can be constructed as:

1
=090 = ) GO
) 0
Therefore:
E[T]= £:+1)h(‘ ~n) F((G+ 1§1(1t))— F(jh) de= I;jmh(‘_ i) % de= %h
And then as:

1. 1
E[tp]=h—E[T]=h—§h=5h

Thus Lemma 4.1 is true.

(2) Derivation of E[t] for Cost Model II

(C.3)

(C.4)

(C.5)

For the standard Shewhart control chart of cost model II, the derivation of E[t] can be

achieved through the following steps:

(1) Evaluate the partial summation;

(2) Construct the double summation;

(3) Add the partial summations together to obtain E[t].
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First, we may write E[t] as:

E[t] = ZJhcxl a)™ [1 J} }:h()i[lh ( el)h}( ) "B B)J

=1 i=1

= jﬁ:;jh(l(l —a)j"l _lejha(l_ a)j~l(%_J+ j: Jh(%J[i(l _a)l—l ﬁj—l(l_B)]
-ali-0-w <aN+1>]-£i a-ay +E) Bim"’[i( B ) ]

j=1 1=1

(C.6)
Then, let x = (1-a)/B in equation (A.2), we have:
-« a
. 1- 1-
ey s A5
=\ B B—(l"a) p-(1-a) (C.7)
Similarly, let x = 1-a in equation (A.5), we obtain:
201 -o)1=(1- )V C12(1 — )N 201 _ \N¥1
ZJ (o) = L (1-a) 3( "' (-1 (-0 | N(1-)
i=1 @ ¢ ¢ (C.8)

So that:

S (35

1 {B(I—BN)_NBN”_(l—a)[l—(l—a)N]+N(1—a)N“}
(C.9)

B-(1-o)| (1-B)" 1-B o a

Therefore the form for E[t] is:
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E[t] = 2[1 ~ (1) (N +1)]

0 |a? o’ o? o?

_on? {L+ 21-o)1-(0-0)""] (N-1Pa-o) .\ N’(l-—a)N“}

h2(1-B) {B(l—ﬁ”) _Np¥ (1—a)[1-(1-a)N] .\ N(l—a)“*‘}
[B-(1-a)]6 | (1-B) 1-B a o (C.10)

(3) Derivation of P[A] for Cost Model II

We may write P[A] as:

P[A]= ZP[AI] P[Az]
o, (1-0, ) " [1=F(ih)] + (1 - o)™ iaz (1-a,) ™ [1- E(in)]

izm+l

al(l-al)“’[l—lg] +(1-0y) 2a2 ) [1—%1]

i=m+1

1-(1-o,)" h& }

a‘ =1

M= i

1

1

I
l*_’]

o,

+a2(1—a1)"‘[ i(l_ i-me1 R z x-m-l]

i=m+l l—m+1

(C.10)

Let x = 1- o in equation (A.3), we obtain:

ii (I_al)i-l — l_(l_a1)m m(l—al)m

o oy o, (C.11)

Let x = 1- a5 in equation (A.2), we obtain:
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N-m

N

i=m+ R (C.12)

Let x = 1- ap in equation (A.4), we obtain:

N-m-1 -m
al o ! =m+1+(1_a2)[1—(1—a2) ]_N(l—az)N

L o, o; o, (C.13)

Thus we have:

PlA]=1-(1-a)"(1-a, )™ _%{1 - (1(; @) | (1—;,)“‘]

+ _ll (1 _ al)m(l — az)N—m(Naz + 1)}

G2 (C.14)

(4) Proof of Lemma 4.2

Refer to the inequalities used in (B.1), the upper bound for P[A] can be constructed as the

following steps:

P[A]=1—(1-a1)“‘(1_a2)N‘m_%[1“(1“0‘1)m+(1“°‘1)m:|

o, o,
+g[(l—al)“(l—az>”""(Naz+1>]Slg[(l—_m)i]snz(ij
3} a, 0 o, 0\a, (C.15)

Similerly, the lower bound for P[A] can be constructed as:
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P[A]=1-(1-0) (1= o)™ _g[l—-(l—al)’“ L(-a)

h{(l—al)m(l—az)N-m(Naz +1)]2 11— - 1-(1-a)" (1—a1)‘“]

6 o, ) o, o,
1-(1-o,)" (1-¢o,)"
0 o, o, 0\a,
(C.16)
Therefore Lemma 4.2 is true.
(5) Proof of Lemma 4.3
To prove Lemma 4.3, the following steps are necessary:
(1) Construct the upper bound for P[B];
(2) Construct the lower bound for P[B].
First, the upper bound for P[B] can be constructed as:
h|1-(1-o,)™" (1-0,)™ [1 -(1- az)N—m-ll
P[B] = — ~ — ,
0 o, o,
B m+1 m+1 m+1 m+1
S-ll 1-(1-a,) +(1—0£2) Ws_ll 1-(1-a)™ +(1"a2)
6 o, o, 0 Q, o,
[ m+1 m+1 ]
h1=(-e)™ (t-o)™ | h1
(:')L o, o, | 0 a, (C.17)

Similarly, the lower bound for P[B] is:
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P[B]=% 1—-(1;(1,)“1_*_(1‘0‘2) [l;z(l_az) ]

v

E 1— (l _al)mﬂ . (1_ az)m+1 _ E 1_[(1_a1)m+1 _ (1 ._az)mﬂ]
0 o, o, ) o,

_ (2)1'(0‘2 "al)[(l"ax)m "'(1—0‘1)“1—1(1_OLz)'*“"'+(1'0‘1)(1_‘12)“‘—l +(1_az)m]
0 o,
(b 1= (o =0 )1+ (1= 0,) + (1= )+ 4 (1= )" # (1= 2,)"]
_(5) o, |
1
h 1—((12—(!1);2' hal
=('9') o, L

(C.18)

Therefore Lemma 4.3 is true.

(6) Derivation of E[tg(a)] for Cost Model II

For case(a) of cost model II, the generalized Shewhart control chart, the derivation of

E[tg(a)] can be achieved through the following steps:

(1) Evaluate the partial summation;

(2) Construct the double summation;

(3) Add the partial summations together to get E[tg(a)];

First we may write E[tg(a)] as the following form:
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Eft,(2)] = S[F(in) - (G- )] (- ) (1 - BB

j=1 i=]

-IBOBIS S - o

=1\ i=j

(C.19)

Then refer to equation (A.4) we obtain:

N (i-—j) B’—j—l — 1_Bin_j _ B;n_j(m"j) 1 _ ;n-j - mB;n_j + jB;n_j
~ b-B) 1B (-B) (-B) =B 1B (o

i

Let x = P in equation (A.11) we get:

& g _m__B-B B
E‘J 1-B, (1-B) 1-B (C.21)

Thus we have:

(& _ngm|o_ L | m _Br(-m) 1-B -2p7
2[2( B ) 1-[31[1—151 1-B, (I—Bx)z}

(C.22)

Therefore:

E[ts(a)]glsl[ m _B;"(l—m)_l—ﬂl—zﬁ;"]

8 |1-B, 1-P (1-B,) (C.23)

(7) Derivation of E[tg(b)] for Cost Model II

For case(b) of cost model II, the generalized Shewhart control chart, the derivation of

E[tg(b)] can be achieved through the following steps:
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(1) Construct the partial summation fromj=1toj=m
(2) Construct the partial summation fromj=m+1toj=N;

(3) Construct the double summation;

(4) Add the partial summations together to obtain E[tg(b)].

First, we may write E[tg(b)] as:

E[t,(b)]=i[F(jh) F((j—1)h)] gp-* 2(1— hBs ™ (1-B,)

j=1 i=m+l
BZ —j+1 o : : i-m-1
9 Z Bl Z - J) 2
i=me1 (C.24)

Therefore we obtain:

Sa-ipr = Sigios 3 g

i=m+i i=m+1 i=m+1
N-m __ RN-m
1-B, _Bz 1-B, (C.25)

Refer to equation (A.11) we obtain:

m-j _ 1 m— Bx B: m
JZIB "31[ 1- Bl Bl:l

(C.26)

To construct the double summstion below, we may first write it as the following

expression:
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i=m +1 j=1

"[32— m-j
_Bl[ 1-B, /5 JB

= '31 I—B;n BN—m N-m |_ I—Bl;-m Bl Bl m
‘1—132‘{[1—31}“ s, } [l—ﬁl }[m 1-B, B*]
Finally:

E[t(0)] = -2 {[—llzﬂm B NB’;-"'] [1 IBB:mIm Y ]}

(C.28)

(C.27)

(8) Derivation of E[tf] for Cost Model 1I
To construct E[tf] for Cost Model 11, the following steps are necessary:

(1) Express E[tf] as a combination of S1 S S3 and S4;
(2) Construct S1, S2, S3 and Sy
(3) Construct E[ts].

First, we may write E[ts] as:

E[t,]= iihal(l ~a,) " [1-F(@ih)]+(1-a,)" i ihot, (1-0,) ™ [1 - F(ih)]

i=1l i=m+l1

_ o, h?(1-a,)" s
P ¢ (C.29)
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Refer to equation (A.4) and (A.6), we have:

= $i(1-o) 12Uz mO-a)”

- % % (C.30)

-

and
m . - - 2 _ m 2(1_ m+l 2MW-al1-(1-a m-1
5, = $ (1o g)” = L@V lw) e mi(i-a)™ (1-a,) 3( )]
i=t o o,
(C.31)
Refer to equation (A.8) and (A.10), we obtain:
al imme —a. ™ 1-(1-o )™
= igoa)e o m Nize)™ 1-(c)
o moo® % (C.32)

and
N -m-1
S,= Yit(1-a,)"
i=m+l
__-_1_4-2(1-—0:2).1—(l—oc;,,)N.m_l]_(N—m—l)z(l—ocz)N'rn dl_(N-—m)z(l-—ocz)N’m+1
ol o) o) o;
-m —m 2[4 _ _ N-m
+2m[1-(1—?2)N _(N—m)(l-—a2)N }er [1 (1-a,) ]
a, a, o,

(C.33)

Therefore we obtain:
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_ah? | 1-(m-1(1-0)" +m’(1-)™ 2(0- o )[1-(1 —ax)m'll
0 ol o)

m N(l-o,) " 1-(1-0a,)

+oh(1-a,)" [— - + - }

a, o, a:

L aahi=a ) 1 2(1—a2)[1-(1—a2)N'm'1]_(N—m—1)2(1—a2)"'"‘

a;
+2m[1—<1-?2>“ " (N-m)(l-a,)" ] m[1-(1-0,)""]
o o, o,

(C.34)

(9) Derivation of E[ty(a)] for Cost Model II

For case(a) of cost model II, the generalized Shewhart control chart, the derivation of

E[tn(a)] can be achieved through the following steps:

(1) Evaluate the partial summation;

(2) Construct the double summation;

(3) Add the partial summations together to obtain E[t(a)].

First we know that:
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E[t,(a)] = Z[F(Sh) F((s- l)h)](l a, —IZ’Jh B, )R
= (I_Bl)hz i 1- al ZJ Bl_

6 = (C.35)

Next, let x = By, then refer to equation (A.8) we obtain:

ZJ BJ—S = { [m+ ..L_] ;“'“1 +£._}
= -B, 1-B, 1-B, (C.36)

Thus:

m

_ i__1__ {Zs(l_al)”‘—[m+l—l—}g(l o) B + 1113,2(1 al)"‘}

s=]

1 [1=0-0)" m-a) [ 1 8{0-o)" -]
“1°8 | & o "TITR T 1B

(C.37)
Finally
2 - (1-ay |
E[tn(a)]g_{l CORL N 1 Irs[(1 o ]}
B, [(l—al)m]}
+
1-p| o (C.38)
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(10) Derivation of E[th(b)] for Cost Model II

First we may write E[t,(b)] as:

m

t,(b)] = Y [F(sh)— F((s— Dh)|(1- o, 7" th

=1 j=m+l

- (1—[;2)11 i(l 0‘1 " Bl m-s+l Zﬁj-m-l

s=1 j=m+l
Refer to Equation (A.8), we obtain:

N-m l—ﬁ?—m
S ﬁ[ TR ]

j=m+l1

Refer to Equation (A.13), we obtain:

Finally:

O e

1-B,

N-m | m

s=1

s=1

__llz_ _ N-m I—Bz _ =l A m—s+1
= —{ m— NP} +——1_[32 jlz(l o) B

0 1-B, 1-a, —B,

Appendix C.

N T Nﬁx[u—a,)"‘ -57]

|

j—m-1
2

1- BN-m
1-B,

=3

(C.39)

(C.40)

(C.41)

(C.42)
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(11) Derivation of E[th(c)] for Cost Model II

For case(c) of cost model II, the generalized Shewhart control chart, the derivation of

E[ty(c)] can be achieved through the following steps:

(1) Evaluate the partial summation;
(2) Construct the double summation;

(3) Add the partial summations together to obtain E[ty(c)].

By the definition of E[t,(c)] we have:

E[t,(©)] = (1-0)" 3[F(sh)—F((s— D)J(1- o) ™'Y ih(1-B, B

s=m+l i=s
1- " 1“‘ h2 N s—m-— N « -
=( o) é B.) Z(l‘az) IZJ pi-
s=m+1 j=s (C43)

And refre to equation (A.8), we obtain:

N s yice s NB?—:H Bz - B;X—ﬁl
iB = - + 7)
jg' *1-B, 1-B,  (1-B,) (C.44)

Refer to equation (A.13), we get:

O A

b 1-0,-B, (C.45)

Therefore the double summation is:
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> (1-0u) ™Y i

_ 1 [meN-ep) ™ 1-(1me) [0 -y
—1—[32{ o, ¥ ol NBZ_ 1-o,—B, :l
1 Bz(l_(l_az)N—m) (1 az)N—m_Bz-m \
+ - \
(1-B,) o, 1-0, =B, J
(C.46)
Finally:
E[tn(c)]=(1 %) él B )b ﬁ:(l—az) liJB”
—(l_al)mhl m_N(l_az)N—m+l— 1_a2)N—m_NB (1 az) Bz_m
- 0 o, % 2 l1-a,-B,
1 Bafl-(1-0)") (1-a) gy
(1-B,) o, 1-o, - B,
(C.47)

(12) Proof of Lemma 4.4

To prove of Lemma 4.4, the following steps are needed:

(a) Show that equation (4.2.5) is the same as equation (4.1.3) under Fact 4.2;

(b) Show that equation (4.2.8) is the same as equation (4.1.5) under Fact 4.2;
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(c) Show that equation (4.2.14) is the same as equation (4.1.8) under Fact 4.2;

(d) Show that equation (4.2.24) is the same as equation (4.1.20) under Fact 4.2.

For case (a):

m -m h 1_ 1—0( " l—a ™
C; = cP[A]= i1~ (1-0,)" (1~ 0t,)" -6{ (Ot . +( o .
1 2

+g[(l-ax>m(l—a2)"“(Naz+1)]}

0 o,

= cf[l—ahé+——(1 o) ]

o0 (C.48)
For case (b):
me m+l N-m-1
_cP[B]-ﬂ{1 LY S U ]}
o, «,
m+1 m+l N
B 1ml vl el | [ Ry
) o o ab (C.49)

For case (c):

) g h?| m 2
Cd=cdrP{E[tp]+E[t'} "rph(z IBB) Crg {1332]

+cdrph’ﬁ,[ m__Br(l-m) 1-p,-2B7
6 [1-B, 1-B (1-B,)

c,ph’B, [ 1-BF I—B;I-m_ N-m | _ 1-p; B, -B" BT am
* 0 {[I-BJM 1-B, e ][1—-[31 :[m 1-B, Bl]}

ol

(C.50)
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For case (d):

Emzalh[l—u—zal)m _m(l—a&‘“}

o, o

6 2

_ayh? [1 ~(m-1*(1-0o,)" +m*(1-a,)"" .\ 2(1-ay )[1 -(1- a,)m_lq
o o’

- 1_ N-m _ _ N-m
+o,h(l1-o) [g—- N( ;2) + -1 a?Z) }
2 2 2

+0L2h2(1—0t1)m _1_+2(1—a2)[1—(1—a2)N—m—1]_(N_m_l)z(l_az)u-m
0 o? ol 7 o3
LN- m)’(1 . o) "
«,
+2m[1—(1—<212) " (N-m)(1-a,) "“]+m [1—(1‘0‘2) ]}
a2 az a2

hz{l—(l—al)m m(l—a,)m_[nH_ 1 lﬁx[(l-al)m—ﬂf‘]}
1

—Bx l—al—Bl

- %[1-(1—a)”(aN+1)]
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e 3 2 2

_ont[1 20~ [i-0-0)""] (N-1pP-a) L N-o™
o? o o o

h2(1-B) |B(1-BY) Np¥ (1-o)1-(1-0)"] Na-o)™
+ = — - - L+
[B-(1-a)jo| (1-B) 1-B o o

(C.51)

Therefore Lemma 4.4 is true.
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Appendix D.

Derivations and Proofs for Cost Model III

(1) Derevation of E[t] for Cost Model III

To construct the expression for E[t], we may write E[t] as:

Zﬂ{a(l o) e +2( - ‘“"“')(l-a)"‘B"“(l—B))

=1

= ahz (1 a))"l -a2j®n® + h ZJ BJ—IZ( ~a(1-1)°n® _ —d"h' )(1_ a)l-l
j= = (D.1)

Then refer to Equation (A.7), we obtain:
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a1 B _1[ B
2,ip "1—B+1—Bz'1—ﬁ[l+1—ﬁ]

(D.2)
Therefore the expression for E[t] is:
E[t]=chY (1-o) e +h Y 1e D (1-a) " b Y 1e™™ (1-a)”

j=1 1=1 1=1

B L -a(1-1)°h® N B -tk !

+hl — Y (1-a)™ —h{ =D e (1-a)
I—B 1=t I—B 1=1 (D.3)

(2) Derivation of E[tg(1)] for Cost Model III
To construct the expression for E[tg(1)], the following steps are necessary:
(1) Construct the partial summation;
(2) Construct the double summation;
(3) Construct the expression for E[tg(1)].
First, we may write E[tg(1)] as:
E[t, ()] = Y [F(ih) - F(G-Dh)[Y. (i - )h(1-B, B}

p i) (D.4)

Refer to equation (A.8) we can have:
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i(i—J) i-j — 1 [: Bx _B;n-)+ —(m-—j) ;Yl-jﬂ}

i-j 1 1- Bl I—Bl I—Bl (D.S)
Finally:
_ -a(mh) -a(jh-h)® a(jh)® _ m-j+1
E[t,(D] = —B[ - h;[ -0 |(m - j)p;
h [ -elmeb) _ ma()? Jgm-jot
-———> e —e
1-B; JZ:[ P (D.6)
(3) Derivation of E[tg(2)] for Cost Model III
In order to find the expression for E[tg(2)], we may write it as:
E[t,(2)] = X [F(jh) - F((j-1)n) By~ Zg j) BB (1-B,)
j=1 i=m+
= > [F(ih) - F((j- )h)pr-(1- [ (m-j) 3 oprmte 3(i-mp J
j=1 i-m=1=0 i-m=1
(D.7)
Then refer to equation (A.1), we obtain:
Bx—m—-l
i mz{ -0 Bz (D.8)
Refer to equation (A.3), we have:
1
2 (i- m)Bl T = p)
i-m=1 (1_B2) (D.g)
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Therefore we obtain:

E[ts(Z)] = i[e-l(jh—h)b _ e-fi(ﬂ‘i)b Fin—j“hl:(m _ _]) + 1 ]

(1 - Bz)
41k . h o b _ b .
=h -ﬂ(Jh h)® ‘l(lh) (m__ j)Bm—JH — e-!(ih—h) —e a(p)” [am-j+1
fv‘l[ ] b= 2121[ }31 (D.10)
(4) Derivation of E[t,(1)] for Cost Model III
First we know that:
E[t,(1)] = Y. [F(sh) - F((s - Dh)](1- o, Y jh(1 - B, BI*
s=1 j=s
= h(1-B,)3 [F(sh)—F((s = Dh)](1- o, )3 5 B~
s=1 j=s (D.11)
Then refer to equation (A.8), we obtain:
— m-s+1
ZJ BJ—: - [ _ mﬁ;n-sﬂ + Bl Bl ]
j=s 1- Bl I—Bl (D.12)
Finally, the expression for E[t,(1)] is:
_ 2 —a{(s-1)h)® —a(sh)® s-1 m-s+1 B1 m-m
E[t,(1)] = hZ[e -e ](1—a,) s—mp;
s=1 1- ﬁl
=h R s e—.((--x)h)" _e-a(sh)' 1—
X I
—hlm+ 1 i[e-:(h—l)h)b _ e—a(sh)" ](1 -aq, )"1 B;n—sﬂ
1- Bl s=1
hB1 X ~a((s~1)h)® ~a(sh)® s-1
+——Yle -e (1-o,)
1-B, 2;[ Jo-e, (D.13)
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(5) Derivation of E[t,(2)] for Cost Model III

For case (2) of cost model III, we may first write E[t,(2)] as:

E[t,(2)] = 3. [F(sh) - E(s— DhJ(1- ) B~ 3 ju(1-B, 5"

s=1

And we know from equation (A.7) that:

gt 1 1
Z.ﬁz —I—Bz[m+1"ﬂz:l

j=m+l

Therefore:

E[t.(2)] = h[m + 1_1 3 ]i [c"“"”")b —e) ](1 -a,)"”

s=1

(6) Derivation of E[t,(3)] for Cost Model III

m-s+1
1

For the case (3) of cost model III, we can express E[t,(3)] as:

E[t,3)]=(1-o,)" i[F(sh)—F((sol)h)](l—az)"'“"ijh(l—rsz)

s=m+l

= (=B o) 3 [T - - 00) B

s=m+l

Then refer to equation (A.7) again, we obtain:

Appendix D.

j=s

(D.14)

(D.15)

(D.16)

(D.17)
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S ; i 1 ﬂz
JZ‘JBZ 1—{32[“1-[52] (D.18)

Finally we obtain:

E[t, (3)] = “(‘BL}I-%)'“ 3 [ e (1o

1 - BZ s=m+l

+h(l-a,)" i S[e—((w)h)" o) ](1 ~a, )s—m—l
e (D.19)

(7) Proof of Lemma 5.1

To prove Lemma, the following steps are necessary:

(a) Show that equation (5.2.5) is the same as equation (5.1.4) under Fact 5.2;
(b) Show that equation (5.2.7) is the same as equation (5.1.6) under Fact 5.2;
(c) Show that equation (5.2.13) is the same as equation (5.1.12) under Fact 5.2;

(d) Show that equation (5.2.22) is the same as equation (5.1.14) under Fact 5.2.

For case (a):

i=1 i-m=1

C, =cP[A]= cf{a12(1 ~o) e 1 (1- 0, )maz‘ i(l —a,) e }

=y (1-a ) e
f é( ) (D.20)

For case (b):
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I—_J

||
r——-—"—\'U

}-—1 -a_; o ](l—al)j—] + i [e—a(j-l)bhb _ e—aj"hh ](1_ az)j'l}

j=m+2

"‘(J‘l) —aj"h" ](1 ~—a, )j—l

(D.21)
For case (¢):

Ci= Cdrp{E[tP] + E[ts]} = Cdrph[ BIB jl'*‘ c rph + Cdrphe_'(mh)b li-—ﬁz— - —Bl-—]

I“Bz I_Bl
c,rpab (#Dh . p L opGHDR
LY o [J' te™ dt—_]hj t*le™ dt]
el)h _e—u()+1) h jh ih

1 1 N -1(jh-h)" -a(jn)” | qm-j+1
+cC h —_—— e —e ) =c h
P {[1"B2 I—BI}Z[ ]'31 atP

=1

B c,rpab G+#DR o b o (DR L e
+cdrphI:1_B _e'jb"b— ST [Lh te dt—]th t e " dt

© (D.22)

For case (d):

- o, 3 (1= e -, 3 1m0, e

=1
+h3 S[c“““”“)’ —ee ](1 -, )"
s=1

+h(1 a [ ~((s-1)h)* _ o) ](1 az).-m_l

j=m+1

s=m+l

! ——1 S [ - (s-m)* -a(sh)® s-1
+h - e a((s-Dh)° _ e ash) l-o st
[1_B2 I—BI]E[ ]( 1) 1

+ h(—B;)i[e_«H)h)b _ e-.(sh)" ](1 —a, ):—1
1- Bl s=1

* (1 ) al m h[l BZBZ 1—;-1[ -((’-l)h - e ](1 - az)'_m_l

(D.23)
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=ohY (1-a) e ™ +hY 1 (- —h Y 1™ (1- o)
j=1 1=1 1=1

_B_ S . -a(1-1)°h® e Lo O __B_ —ath? g -l
+h(1‘51§e (=) h(l—ﬁ)ge (=) (D.24)

Therefore Lemma 5.1 is true.
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Appendix E.

GINO and Mathematica Program Listing

! Generalized reduced gradient (GRG) algorithm.

! Minimize the expected total cost per unit time function.

! The standard cost model.

MODEL:
MIN = COSTI + (COSTF + COSTT + CSOTD)/E(T);
COSTI = (CO + N*CI)/H;
COSTF = CF*(ALPHA*(1-ALPHA)A(-1))*X;
COSTT = CT*(1-ALPHA)A(-1)*Y;
COSTD = CD*R*P*(E(TP)+E(TS));
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E(TP) = H-(F(J+1)*H)-FUH)A-1)*Z;

E(TS) = H*BETA/(1-BETA);

E(T) = ALPHA*H*X/(1-ALPHA)+H*DOUBLE;

K=0;

H=1;

ALPHA = 2*(1-PSN(k));

BETA = PSN(K - DELTA*(N7Q.5)) - PSN(-K - DELTA*(N”0.5));
DELTA =0.522;

N=20;

END;

! Generalized reduced gradient (GRG) algorithm.
! Minimize the expected total cost per unit time function.
! The generalized cost model.
MODEL:
MIN = COSTI + (COSTF + COSTT + COSTD)/E(T);
COSTI = (CO + N*CD/H;
COSTF = CF*(ALPHA1*(1-ALPHA1)A(-1))*X1+ALPHA2*(1-ALPHA2)AM*X2;
COSTT = CT*(1-ALPHADA(-1)*Y1+(1-ALPHA2)M(-1)*Y?2;
COSTD = CD*R*P*(E(TP)+E(TS));
E(TP) = H-(F((J+1)*H)-FUH)A(-1)*Z;
E(TS) = H*(1-BETA1)*Z1+H*(1-BETA2)*Z2+H*BETA2*(1-F(MH))/(1-BETA2);
E(T) = H*ALPHA1*Z3+H*ALPHA2*(1-ALPHA1)"M*Z4+H*(1-BETA1)*Z5+TT;
TT = H*(1-BETA2)*Z6+H*(1-ALPHA1)"M*(1-BETA2)*Z7,
K120;
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K220

H=1;

ALPHA 1=2*(1-PSN(K1));

ALPHA 2= 2*(1-PSN(K2));

BETA1 = PSN(K1 - DELTA*(NAQ.5)) - PSN(-K1 - DELTA*(NA0.5));
BETA2 = PSN(K2 - DELTA*(NA0.5)) - PSN(-K2 - DELTA*(NA*0.5));
DELTA =0.522;

N20;

M20;

END;

[

X = SUM[((1-ALPHA)AI)*(1-F(IH)), {I,1,INF}];

Y = SUM[((1-ALPHA)AN)*(F(JH)-F((J-1)*H)), {J,1,INF}];
Z = INTEGRATE[(T-JH)*G(T), {T,JH,JH+H}];

G(T) = DERIVATIVE[F(T)];

DOUBLE = SUM[J*Y, (J,1,INF}];

N[%%, 71;

X1 = SUM[((1-ALPHAD)AD)*(1-F(IH)), {I,1,M}];

X2 = SUMI[((1-ALPHA2)M(I-M-1)*(1-F(IH)), {I,1,INF}];

Y1 = SUM[((1-ALPHA D)AN)*(F(JH)-F((J-1)*H)), {J,1,M+1}];
Y2 = SUM[((1-ALPHA2)AN)*(F(JH)-F((J-1)*H)), {J,1,INF}];
Z1 = SUM[(FUH)-F((J-1)*H))*SUM1, {J,1M}];

SUM1 = SUM[(I-))*BETAIA(I-]), {LIM}];

Z2 = SUM[SUM2*(F(JH)-F((J-1)*H)), {J,1, M}];
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SUM2 = SUM[(-I)*BETA2A(I-M-1), {LM+1,INF}];

Z3 = SUM[J*((1-ALPHAA(J-1))*(1-F(IH)), {J,1.M}];

Z4 = SUM[J*((1-ALPHA2)A(J-M-1)*(1-F(IH)), {J,M+1,INF}];

Z5 = SUM[((1-ALPHA 1)A(J-1)*(F(JH)-F((J-1)*H))*SUM3, {J,1,M}];
SUM3 = SUM[J*BETA1/(I-]), {LLJ,M}];

Z6 = SUM[((1-ALPHA1)A(J-1)*(F(JH)-F((J-1)*H))*SUM4, {]J,1,M}];
SUM4 = SUM[I*BETA2A(I-M-1), {ILM+1,INF}];

Z7 = SUM[((1-ALPHA2)*(J-M-1)*(F(JH)-F((J-1)*H))*SUMS5, {J,1,INF}];
SUMS = SUM[I*BETA24(I-]), (IJ,INF}];

]

N(%%, 71;

[

LIST1={};

F[W_] = 1-EXP[-LEMDA*W];

LIST = TABLE[N[%], {LEMDA, 0.01,0.02,0.05,0.1,0.2,0.5,0.75}1;
F[W_]=W/THETA;

LIST1 = TABLE[N[%], {THETA, 8,20,40,80,100,200}];

F[W_] = 1-A*TAA*(B-1))*EXP[-A*W/B];

LIST1 = TABLE[N[%], {A, 0.01,0.05,0.1,0.2},(B,1.05,1.25,1.5}];
W =1*H;

FOR[I = 1, I <= LENGTHI[LIST1], ++I, APPENDTO[LIST2, F[W_]];
LIST2 = {};

SHOWI[N[%], LIST1, LIST2, -> AUTOMATIC];

]

N[%%, 7];
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