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Abstract

For model-based frequentist statistics, based on a parametric statistical modelMθ�x�, the trust-
worthinessof theensuingevidencedependscruciallyon (i) thevalidityof theprobabilistic assump-
tions comprising Mθ�x�, (ii) the optimality of the inference procedures employed, and (iii) the
adequateness of the sample size (n) to learn fromdata by securing (i)–(ii). It is argued that the criti-
cismof thepostdata severity evaluationof testing results basedona smallnbyRochefort-Maranda
(2020) is meritless because it conflates [a] misuses of testing with [b] genuine foundational prob-
lems. Interrogating this criticism reveals several misconceptions about trustworthy evidence and
estimation-based effect sizes, which are uncritically embraced by the replication crisis literature.

1. Introduction

1.1 Frequentist statistics as model-based inference
Fisher’s (1922) model-based statistics was a revolutionary recasting of Karl Pearson’s
data-driven descriptive statistics (Yule 1916) into modeling the stochastic mechanism
that gave rise to the data x0 :� �x1; x2; :::; xn� in the form of a parametric statistical
model, generically specified as:

Mθ�x� � ff �x; θ�; θ 2 Θ � Rmg; x 2 Rn
X ; n > m;

where f �x; θ�; x2Rn
X denotes the joint distribution of the sample X :� �X1; . . . ;Xn�;

Rn
X denotes the sample space, and Θ the parameter space. Mθ�x� is chosen with a

view to account for all the chance regularities in data x0 (see Spanos 2013a).

Example 1. The simple Normal model is specified by:

Mθ�x�: Xt� NIID�µ; σ2�; xt 2 R; E�Xt� � µ 2 R;Var�Xt� � σ2 > 0; t � 1; 2; ::; n; . . . ;

(1)

*Thanks are due to two anonymous reviewers for many valuable comments and suggestions that
helped to improve the discussion significantly.
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where NIID stands for Normal, Independent, and Identically Distributed with mean
µ and variance σ2, which denote the probabilistic assumptions comprising (1).

The model-based approach to statistics began with Fisher (1922, 1925) providing—
almost single-handedly—an optimal theory of point estimation (see Hald 2007).
Neyman and Pearson (N-P) (1933) supplement that with the N-P theory of optimal
testing by reformulating Fisher’s significance testing, and Neyman (1937) provided
an optimal theory of confidence intervals. The Fisher-Neyman-Pearson (F-N-P) para-
digm has dominated modern frequentist statistics since the 1930s, but it has been
plagued by several issues/problems:

[a] abuses/misapplications/misinterpretations of inferential procedures/results, such
as p-hacking, multiple testing, cherry-picking, low-power studies,
statistical misspecification, poor implementation of inference procedures,
and unwarranted evidential interpretations of testing results (p-value,
accept/reject H0), and

[b] genuine foundational problems, such as “the large (small) n problem,”
establishing the statistical adequacy (the validity of the probabilistic assump-
tions comprising Mθ�x� (Spanos 1986), and a sound evidential interpretation
of testing results.

These issues and problems have bedeviled the proper implementation of
frequentist inference since the 1930s. Unfortunately, the current literature on the
replication crisis often conflates [a] and [b], giving rise to additional confusions
(see Ioannidis 2005). One of the aims of the discussion that follows is to distinguish
clearly between [a] and [b] and explain how the error-statistical perspective on
frequentist statistics can shed light on both.

1.2 Error statistics: A brief summary
In an attempt to address the statistical adequacy of Mθ�x�, error statistics refines the
F-N-P approach to frequentist inference by separating the modeling from the inference
facet. The modeling facet includes estimation, misspecification testing, and respecification
in order to secure the statistical adequacy ofMθ�x�; before the inference facet, where
one poses substantive questions of interest to the data (see Mayo and Spanos 2004,
Spanos 2018). In an attempt to address the evidential interpretation of testing results,
error statistics extends the F-N-P approach by distinguishing between predata and
postdata facets of frequentist testing with a view to supplement the original framing
with a postdata severity evaluation of testing results to provide a sound evidential
account (see Mayo 1996, Mayo and Spanos 2006, 2011).

The paper focuses primarily on Rochefort-Maranda (2020) calling into question the
cogency of the postdata severity evaluation when practitioners use underpowered
tests. It is argued that this is a case of conflating [a] with [b] above. Unpacking this
argument has broader ramifications since it reveals several fundamental misconcep-
tions, which are broadly held in the current literature on the replication crisis.

Section 2 discusses the question of what constitutes trustworthy evidence and how
to secure it. Section 3 revisits Rochefort-Maranda’s (2020) numerical example with a
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view to demonstrate the difference between trustworthy and untrustworthy evidence
stemming from misapplying frequentist testing. Section 4 considers the claim that
“the more powerful the test the better the evidence against the null.” Section 5
discusses the difference between estimation-based effect sizes and testing-based
effect sizes and calls into question the trustworthiness of the former.

2. Frequentist testing and trustworthy evidence

2.1 Power and the large n problem
As a prelude to the discussion that follows, consider testing the hypotheses:

H0: µ ≤ µ0 vs :H1: µ > µ0; (2)

in the context of the simple Normal model in (1). An α-significance level Uniformly
Most Powerful (UMP) test is defined by (Lehmann and Romano 2005):

Tα :� fτ�X� �
��
n

p �Xn�µ0�
s ; C1�α� � fx: τ�x� > cαgg; (3)

where cα is the α-significance level threshold based on a Student’s t distribution with
�n � 1� degrees of freedom (St�n � 1�): P�τ�X� > cα; µ � µ0�� α; based on the
central Student’s t distribution:

τ�X� �
��
n

p �Xn�µ0�
s �µ�µ0 St�n � 1�:

The power of Tα, defined by:

P�µ1��P�τ�X� > cα; µ�µ1�; for all µ1 > µ0;

is based on the noncentral Student’s t distribution:

τ�X� �
��
n

p
Xn�µ0� �
s �µ�µ1 St�δ1; n � 1�; δ1 �

��
n

p
µ1�µ0� �
σ

; for all µ1>µ0; (4)

where δ1 is the noncentrality parameter (see Lehmann and Romano 2005).
The predata role of power. As emphasized by Neyman (1952) and Cohen (1988),

inter alia, the proper implementation of N-P testing requires one to use the (predata)
power to determine the appropriate choice of the sample size n needed to ensure that
test Tα has sufficient capacity, say 0:8, to detect discrepancies of interest γ1 by solving
for n in δ1 �

��
n

p
µ1�µ0� �
σ

the equation:

P�µ1��P�τ�X� > cα; µ�µ1�� 0:8:

The large n problem. The distribution in (4) indicates that the power of the t-test
increases monotonically with (i) discrepancies γ1 � µ1 � µ0� � for all µ1 > µ0,
(ii)

���
n

p
, and (iii) decreases monotonically with σ: For a “good” (consistent) test

Tα the power P�γ� !
n!∞

1 for any discrepancy γ ≠ 0; however small. This gives rise

to the large n problem since for some γ ≠ 0, there will always be a large enough n to
reject H0; for any α > 0 (see Mayo 2018, Spanos 2019).

The small n problem. There is always a “small enough” n ≥ 1 to accept H0; for
any α > 0 because test Tα does not have sufficient power to detect a particular
discrepancy γ ≠ 0 of interest.

These problems have been framed in terms of two fallacies (Mayo & Spanos 2006).
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The fallacy of rejection: evidence against H0 is (mis)interpreted as evidence for the
specific alternative H1 considered in the framing of the hypotheses.

The fallacy of acceptance: no evidence against H0 is (mis)interpreted as evidence
for it. This can arise when the test has very low power to detect substantively large
discrepancies from H0:

Mayo and Spanos (2006) proposed the postdata severity evaluation of testing
results as a way to provide a coherent evidential interpretation of the coarse
accept/reject H0 results that circumvents fallacious reasoning, including the fallacies
of acceptance/rejection, as well as the foundational issue of statistical versus substan-
tive significance (see Spanos 2019).

2.2 Trustworthy evidence and the “small n” problem
The main objective in frequentist inference revolving around Mθ�x� is to learn from
data by narrowing down Θ as much as possible, ideally: M��x��ff �x; θ��g; x 2 Rn

X ;
where θ� denotes the “true” value of θ in Θ; shorthand for saying that M��x� could
have generated data x0. The trustworthiness of evidence in model-based statistics is
anchored on the reliability and effectiveness of inference (see Spanos 2019).

[i] The reliability of inference depends on establishing the statistical adequacy of
the inductive premises,Mθ�x�; using comprehensive misspecification testing. This is
crucial because a misspecified Mθ�x� renders pointless any discussion of power,
significant results, p-hacking, multiple testing, and postdata severity evaluations,
since the nominal error probabilities are likely to be different from the actual ones
(see Spanos and McGuirk 2001). An important precondition for that is to ensure
that n is sufficiently large for the misspecification testing to be effective; for
examples 1 and 2, testing the NIID assumptions will require n ≥ 40. Why?

Typical realizations of the NIID data are given in figures 8–9 for n � 150. Leaving
Normality aside, a typical departure from the (ID) assumption often comes in the form
of a trending mean (compare figures 2 and 3), and for the (I) assumption
as irregular cycles (figure 2, from Yule 1926) (see Spanos 2019, ch. 5). To detect

Figure 1. t-plot of zt.
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the irregular cycles pattern in figure 1, a large enough n is needed for the cycles to
recur (unfold) several times to establish a pattern; a chance regularity. For n � 10;
figure 1 would give the misleading impression of a trending mean, as opposed to
n ≥ 40; where the cycles are clear.

[ii] The effectiveness of inference for an estimatorbθ�X� is usually evaluated in
terms of how well it pinpoints θ�; which is framed using optimal properties relating

to its sampling distribution f �θ̂�x�; θ�; x 2 Rn
X; with E�bθ�X�� and Var�bθ�X�� often as

measure of its location and precision, respectively. The effectiveness of an N-P test or
a Confidence Interval (CI) is also evaluated using their respective sampling
distributions to calibrate their optimality in terms of the relevant error probabilities,
type I, II, power for a test, and coverage for a CI. All these measures of effectiveness,
however, presuppose [i] Mθ�x� is statistically adequate so that all the relevant
nominal (assumed) error probabilities (predata and postdata) approximate closely
the actual ones. A crucial contributor to the ineffectiveness of inference is a “small
n,” i.e., insufficient data information. Condition [ii] is needed to ensure that there is
sufficient information in the particular data set x0 for the inference procedure to have
adequate capacity to shed light on the substantive questions of interest. In particular,
for an optimal N-P test Tα the predata error probabilities (type I and power) ensure
that Tα has sufficient generic capacity (power) to detect discrepancies from the H0,
especially the ones of substantive interest.

In conclusion, evaluating the postdata severity of untrustworthy evidence
(stemming from :[i], or/and :[ii], where “:” denotes negation) is pointless since
the relevant actual error probabilities (including the p-value and severity) are
likely to be different from the nominal (derived assuming Mθ�x� is statistically
adequate) ones.

2.3 Statistical adequacy and misspecification (M-S) testing
Establishing the statistical adequacy of Mθ�x� calls for testing the validity of its
probabilistic assumptions vis-a-vis data x0, such as NIID in the case of (1). The most
effective way to secure statistical adequacy is to separate the modeling, which includes
(a) specification—the initial choice ofMθ�x�, (b)M-S testing, and (c) respecification when
any of its assumptions are found wanting, from the inference facet because (i) the
latter presumes the statistical adequacy of Mθ�x� and (ii) they pose very different
questions to the data (see Spanos 2006). The modeling facet aims to secure the validity
of Mθ�x�, presumed by the inference facet in ensuring the optimality of inference
procedures with a view to secure the reliability and precision of inferential results.
Treating the two as a single combined inference problem is akin to conflating the
construction of a boat to given specifications (modeling) with sailing it in a competi-
tive race (inference). The two are clearly related since the better the construction the
more competitive the boat, but imagine trying to build a boat from a pile of plywood
in the middle of the ocean while racing it.

Since inference presupposes the validity of Mθ�x�; statistical adequacy needs
to be secured before optimal inference procedures can be reliably employed.
Neyman-Pearson (N-P) constitutes testing within Mθ�x� aiming to narrow down Θ

to a much smaller subset, presupposing its validity. In contrast, M-S testing poses
the question whether the particular Mθ�x� could have given rise to data x0 for
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any value of θ 2 Θ and constitutes testing outside Mθ�x� since the default null Mθ�x�
is valid versus its negation :Mθ�x�:� P�x� �Mθ�x�	 
; i.e., some other statistical
model in P�x� �Mθ�x�	 
; where P�x� is the set of all possible statistical models that
could have given rise to x0: The problem in practice is how to operationalize
P�x� �Mθ�x�	 
 to render possible comprehensive M-S testing (see Spanos 2018).
In addition to the above arguments, the separation of the modeling and inference

facets can be formally justified in the case of statistical models whose underlying
distribution belongs to the Exponential family, which includes the Normal, exponen-
tial, gamma, chi-square, beta, Bernoulli, Poisson, etc. As shown in Spanos (2010), in
that case f �x; θ�; in terms of which Mθ�x� is specified, simplifies to:

f �x; θ� � Jj j � f �s; r; θ� � Jj j � f �s; θ� � f �r�;8 s; r� � 2 Rm
S × Rn�m

R ; (5)

where Jj j denotes the Jacobian of the transformation X ! �S�X�; R�X��;
(a) R�X�:� �R1; :::;Rn�m�; is a complete sufficient statistic, (b) S�X�:� �S1; :::; Sm�
a maximal ancillary statistic, and (c) S�X� and R�X� are independent.

The clear separation of f �s; θ� and f �r� in (5) stemming from (c) implies that infer-
ence can be based exclusively on f �s; θ�, since the likelihood function reduces to
L�θ; x0�∝ f �s; θ�; 8θ 2 Θ: In contrast, f �r� can be used to validate Mθ�x� using
M-S testing since it is free of θ, in terms of which all inferences are framed. It turns
out that in the case of the simple Normal model in (1), S�X� � �Xn; s2� and
R�X� � �bv3; ::;bvn�; bvk � � ���

n
p �Xk � Xn�=s�; k� 3; 4; ::; n; are the studentized resid-

uals; see Spanos (2018).

3. The Rochefort-Maranda example revisited
The case against the postdata severity evaluation by Rochefort-Maranda (2020) is
based on the following numerical example based on simulated data.

Example 2. Rochefort-Maranda. Consider the statistical model:

Mθ�x�: X1t � NIID µ1; σ
2

� �
; X2t � NIID µ2; σ

2
� �

; t � 1; 2; :::; n; :::; (6)

which for Yt � X1t � X2t� � becomes a special case of example 1 in (1):

Mθ�y�: Yt � NIID γ; 2σ2
� �

; t � 1; 2; :::; n; :::; (7)

where γ � µ1 � µ2� �, and the hypotheses of interest are:

H0: γ ≤ γ0 vs: H0: γ > γ0; for γ0 � 0: (8)

Hence, the test for (8) is a special case of the t-test in (3) with:

τ�Y� � 	 ��
n
2

p �bγ � γ0�=sp
; C1�α� � fy: τ�y� > cαg; γ � µ1 � µ2� �: (9)

Rochefort-Maranda (2020) prespecified the significance level to
be α � 0:05; cα � 1:833; and his statistical analysis is based on simulated data
�x1t; x2t�; t � 1; 2; :::; nf g for n � 10 using R (see his appendix), assigning
the following values to the unknown parameters in (6),
µ1 � 1:0; µ2 � 1:01; σ2 � 36; γ � 0:01: The resulting estimates of the parame-
ters are:
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y � x1 � x2� � � 2:689 � ��1:561� � 4:25; sp � 4:965; (10)

yielding τ�y0� �
��
5

p �4:25�
4:965 � 1:914, with a p-value, p�y0� � 0:036, rejecting H0:

A closer look at these numerical values raises several issues relating to the poten-
tial untrustworthiness of evidence that render the above example problematic on
statistical adequacy and inference effectiveness grounds.

First, there is the issue relating to the statistical adequacy of Mθ�y� in (7).
Although the data come from simulation, there is always a chance that Mθ�y� is
misspecified for particular data y0 as a result of a “bad draw,” especially when
n � 10. A simple way to detect a “bad draw” is to look at the t-plot of the
Rochefort-Maranda (2020) data in figure 2, which indicates a mean-trend (decreasing)
shown by the inserted trend line. To corroborate that, a simple regression of a scaled
trend ts 2 	�1; 1
 on yt yields:

yt � 4:25
�1:85�

� 5:26
�2:90�

ts �bεt; s � 5:861; (11)

where the standard errors, given in brackets underneath the estimates, indicate that
both coefficients are statistically significant for α � 0:05. Corroborating evidence for
trending data comes from comparing figures 2 and 3, the t-plot of the residuals from
(11), as well as the t-plots of NIID data in figures 8–9. Although n � 10 is too small for
effective misspecification testing, the above results are indicative of a departure from
the ID assumption (see Spanos 2018).

More formally, the results in (11) indicate that Mθ�x� in (6) is misspecified (ID is
invalid), and the Rochefort-Maranda (2020) estimates, y � 4:25 and sp � 4:965;
are based on inconsistent estimators since E�Yt� � δ0 � δ1ts and Var�Yt� �
E�Yt � δ0 � δ1ts�2, whose values from consistent estimators are: bE�Yt� � 4:25
�5:26ts and bσ � 5:861; note that bσ is much closer to the true value σ � 6 than
sp. These inconsistencies will induce sizeable discrepancies between the actual and
nominal error probabilities in testing and interval estimation (Spanos and McGuirk
2001), rendering his inference results untrustworthy.

Figure 2. t-plot of yt = (x1t – x2t), t= 1, 2, : : : , n.
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Second, another way to corroborate that y0 in figure 2 is a “bad draw” is to eval-
uate the fragility of the Rochefort-Maranda (2020) rejection result to two minor
changes. The first is to increase n one observation at a time using his simulation
program to see how p�y0� changes. As shown below, p�y0� changes drastically,
reversing the rejection of H0 when n increases by one data point, even though
any data set y0 with n ≤ 18 is equally vulnerable to the “small n problem.”

n� 10 11 12 13 14 15 16 17 18
p�y0�� 0:036 0:067 0:174 0:125 0:447 0:583 0:675 0:658 0:534

(12)

A second potential contributor to a “bad draw” and the ensuing fragility of an
inference result with a small n is a bad choice of the “seed” for the pseudorandom
number generator (algorithm). The seed used by Rochefort-Maranda (2020) for the
data in figure 2 is “31,” which is an unfortunate choice due to its smallness
(see Devroye 1986). It’s not obvious why the author did not use the seed “31” when
simulating other NIID data in the same paper and instead replaced it with better
choices “735653281” and “7356581”; much larger numbers. Replacing “31” with the
other two seeds and simple variations on “7356581” by adding a digit, all the
t-tests reverse the author’s result of rejecting H0, indicating how odd the choice
of “31” is.

seed� 31 735653281 7356581 73956581 73536581 73516581
p�y0�� :036 0:132 0:844 0:432 0:582 0:671

(13)

Figure 3. Residuals from (11).
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Third, even if one were to ignore the fact that Mθ�y� in (6) is misspecified, the
Rochefort-Maranda (2020) estimation and testing results will be highly uninformative
even with a “good draw” of data for n � 10. Why? The point estimator
x1 � x2� � � 4:25 is 425 times larger than γ� � 0:01, and the one-sided 0.95 observed
CI: CIL�γ; y0� � 	:4; ∞ � excludes γ� � 0:01, rendering the point estimates hope-
lessly uninformative for any learning from data about γ�: The testing results are also
uninformative since the power of the t-test in (9) to detect γ� � 0:01 for α � 0:05 is
P�0:01� � 0:05034 α � 0:2 P�0:01� � 0:204 α � 0:5 P�0:01� � 0:505; i.e., the power
for a discrepency 0.01 is slightly greater than α (figure 4), since the noncentrality
parameter is tiny, δ1 � 0:0045.

To evaluate the extent of the t-test’s ineffectiveness, one can use a predata calculation
to reveal the n needed to ensure high enough power, say P�0:01� � 0:8; that yields:

P�0:01��P�	
���
n
2

r
�bγ�=sp
 > � 0:8834; γ1 � 0:01�� 0:8 ! n� 3637900 (14)

There is worse, since σ � 6 is known one can evaluate the “true”
power for P�0:01� � 0:8, which will increase the needed sample size to
n� � 5312800: The difference, n� � n � 1674900, induces discrepancies between the
true (σ � 6—solid line) with the estimated (sp � 4:965—dashed line) power curves
in figure 4 which increase with γ1.

The above unreliability and ineffectiveness associated with the Rochefort-Maranda
(2020) example renders learning from data about γ� an impossible task.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0

discrepancies from H0

POW

Figure 4. Power curve (—true σ, - - -estimated σ) for γ> 0.

Table 1. Power of t-test (9) with actual σ � 6

� > 0 0.01 0.1 0.2 0.5 1 2

P��� � 0.0503 0.0530 0.0562 0.067 0.0891 0.153
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3.1 Severity curve and underpowered tests

Example 2. (continued). For τ�y0� � 1:914; reject H0; the severity curve is:

SEV�Tα; y0; γ > γ1��P�τ�Y�  τ�y0�; γ� γ1�; for all γ1�0; (15)

where the probability is attached to the relevant inferential claim γ > γ1, and not to
γ1: In contrast to the power, this postdata evaluation is data-specific in the sense that
it depends crucially on τ�y0�. Instead of deriving the severity curve in (15) (figure 5,
table 2), Rochefort-Maranda (2020) cherry-picks a particular discrepancy γ1 � 0:1;
SEV�γ > 0:1� � :961, and misinterprets the assignment of probability 0:961 meant
for the inferential claim γ > 0:1 as an endorsement for γ1 � 0:1; it is not! Also,
the criticism ignores the fact that the severity curve (figure 5) reflects fully the unin-
formativeness and imprecision of the power curve (figure 4).

In addition, despite its uninformativeness, stemming from n � 10; the severity
curve gives a coherent account of evidence for all inferential claims γ > γ1
since: (i) SEV�γ > 0:01� � 0:964 is larger than 0:961; as it should be.
(ii) SEV�γ > 4:25� � 0:5; which is clearly no endorsement of an “estimation-based
effect size” γ1 � 4:25; that would require severity 0.9 and above. (iii) The severity
curve (figure 5) reflects a similar discrepancy between the true and estimated
σ curves, in the power curve (figure 4), whose insensitivity/uninformativeness is
naturally reflected in the severity curve.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0

discrepancies from H0

SEV

Figure 5. SEV curves (—true σ, - - -estimated σ) for γ> 0.

Table 2. Severity of Reject H0: γ � �µ1 � µ2� � 0 vs. H1: γ > 0’ with (Tα; y0�
� > 0 0.01 0.02 0.04 0.08 0.1 0.2 0.4 0.6 1.0 4.25 8.0

Sev�� > 0� � 0.964 0.9636 0.9629 0.962 0.961 0.958 0.95 0.941 0.92 0.5 0.054
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3.2 Untrustworthy evidence: Rochefort-Maranda example
The main conclusion about the Rochefort-Maranda (2020) example is that the “bad
draw” of simulated data (figure 2), with n � 10, illustrates how one can generate
untrustworthy evidence (stemming from inconsistent estimators of γ and σ and
an underpowered test) and declare severity as the culprit for the ensuing dubious
results and their evidential interpretation. His discussion ignores the two precondi-
tions, [i] securing the statistical adequacy of Mθ�y�, in combination with [ii]
employing optimal inference procedures based on sufficiently large sample size n,
to ensure the trustworthiness of evidence. Hence, the estimation and testing statis-
tics, including τ�y0�; p�y0�, P�:01�, and SEV�γ > 0:01�, are both unreliable and impre-
cise, which is clearly reflected in the fragility of the p-value in (12).

Worse still, Rochefort-Maranda (2020) proposes to address the low-power problem
by increasing n, which will render the severity equally effective as the power! He also
suggests that the use of replication can eliminate untrustworthy evidence. Replicating
n � 10 many times, say N � 10; 000; will not address the inherent problem of
untrustworthiness since the same preconditions, [i] statistical adequacy of Mθ�y�,
and [ii] effectiveness of inference procedures for a given n, for each replication,
are required to secure the trustworthiness of the replication results. Implementing
conditions [i]–[ii] and increasing n, however, will eliminate at the outset the problem
of underpowered tests. This is also relevant for meta-analysis where the results of
several individual studies are aggregated. Combining inferential results based on
statistically adequate with those based on misspecified statistical models will result
in untrustworthy evidence.

In concluding the discussion, it is important to emphasize the fact that even when
Mθ�y� is statistically adequate, detecting a tiny discrepancy µ1 � µ2� � � 0:01 will
still be a hopeless task with n � 10. Intuitively, this amounts to attempting to use
n � 10 data points to distinguish between two almost identical densities
N 1:01; 36� � and N 1; 36� � (figure 6). Such a task seems worse than finding a needle
in a haystack. Hence the huge sample size (n� � 5312800) called for.

3.3 Trustworthy evidence: An example
To further illustrate the problems associated with the Rochefort-Maranda (2020)
example 2, consider contrasting its inference results with a better designed simula-
tion example (figure 7), which is chosen to ensure that the inferential task is not as
hopeless as that of figure 6.

Example 3. Consider the following simple Normal model:

Mθ�y�: X1t � NIID 1:3; 1� �; X2t � NIID 1:0; 1� �; t � 1; 2; :::; n; :::; (16)

where n � 150; µ1 � 1:3;µ2 � 1; σ2 � 1; and discrepancy γ� � 0:3: Note that
n � 150 ensures that P�γ� � µ1 � µ2� � � 0:3� ≥ 0:8:
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To avoid problems relating to (i) bad draws and (ii) nontypical realizations, one
needs to plot the simulated data and perform a few misspecification tests to ensure
the approximate validity of the NIID assumptions in (16).

Statistical adequacy. Looking at t-plots of the data in figures 8–9 one cannot
detect any obvious departures; a conclusion affirmed by formal misspecification
testing of NIID (see Spanos 2019).

Figure 7. N(1, 1) vs. N(1.3, 1).

Figure 6. N(1, 36) vs. N(1.01, 36).
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Effective inference. The relevant statistics for testing the hypotheses in (8) are:

n � 150; α � 0:05; cα � 1:645; x1 � x2� � � 1:294 � 0:9434� � � 0:351; sp � 1:026: (17)

The numerical values in (17) yield: τ�y0� �
����
75

p �0:351�
1:026 � 2:963; p�y0� � 0:002;

rejecting H0 for any α > 0:002:
In contrast to the Rochefort-Maranda (2020) example 2:
(i) The power of the t-test, based on (17), to detect the true discrepancy γ� � 0:3 is

high, P�γ� � 0:3� � 0:812, in contrast to example 2 where P�γ� � 0:01� � 0:05034:
It is also considerably more sensitive to discrepancies γ1 2 �0; 0:6�:

Figure 9. t-plot of x2t, t= 1, 2, : : : , n.

Figure 8. t-plot of x1t, t= 1, 2, : : : , n.
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P�γ1 � 0:15� � 0:353; P�γ1 � 0:2� � 0:517; P�γ1 � 0:25� � 0:679; P�γ1 � 0:3� �
0:812, P�γ1 � 0:5� � 0:994, P�2γ�� � 1; see figure 10.

(ii) The one-sided 0:95 CIL�γ; y0� � 	:156; ∞ �; includes γ� � 0:3, in contrast to
example 2.

(iii) The severity curve (figure 11) is considerably more sensitive to small
discrepancies on either side of γ� � 0:3: SEV�γ > 0:15� � 0:955; SEV�γ > 0:2� �
0:9; SEV�γ > 0:25� � 0:802; SEV�γ > 0:3� � 0:667; SEV�γ > 0:4� � 0:339;
SEV�γ > 0:5� � 0:104:

Features (i)–(iii) describe what trustworthy evidence look like.
In conclusion, it is important to emphasize that the large (small) n problems create

serious conundrums when testing results are to be transformed into evidence for or

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0
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Figure 10. Power curve for example 3 in (17).
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Figure 11. SEV curve for γ> 0 based on (17).
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against H0. Worse, detaching accept/reject H0, at some α � 0:025; 0:05; 0:001; from
its particular statistical context:

�i� Mθ�y�; �ii� H0 : θ 2 Θ0 vs: H1 : θ 2 Θ1; �iii� Tα :� fd�Y�;C1�α�g; �iv� data y0;

(18)

renders any evidential interpretation dubious. This has generated numerous misin-
terpretations of the p-value and contributed significantly to the misuse of frequentist
testing (Spanos 2014), including underpowered tests. A key difference between
severity and other attempts to provide an evidential interpretation of testing results
is that the outputting of the warranted discrepancy γ takes into account the statistical
context in (18) that includes the power and n.

4. “The more power the better” for what?
4.1 Predata versus postdata error probabilities
This distinction was introduced by Hacking (1965, 88), in the form of the initial
(before-trial bets) versus final precision (after-trial bets) of N-P testing, calling into
question the appropriateness of the predata error probabilities (type I and power)
when used to evaluate evidentially the accept/reject H0 results postdata. The
Neyman-Pearson (1933) recasting of Fisher’s significance testing is sometimes
presented as an inconsistent hybrid “burdened with conceptual confusion”
(Gigerenzer 1993, 323). There is an element of truth in this claim as it relates to
the traditional recasting of the accept/reject H0 rules in terms of the p-value:

[i] if p�y0� > α; accept H0; [ii] if p�y0� ≤ α; reject H0:
As argued in Spanos (2019), however, the apparent inconsistency arises because

the traditional definition of the p-value as “the probability of obtaining a result ‘equal
to or more extreme’ than the one observed,” y0, when H0 is true, is misleadingly
linked with N-P predata considerations since the clause “equal to or more extreme”
is invariably interpreted with respect to H1. The link and the inconsistency disappear
by adopting a postdata definition of the p-value as “the probability of all sample real-
izations y that accord less well with H0 than y0 does, when H0 is true”. This ensures
that p�y0� is always one-sided because the sign of τ�y0� (and not H1) indicates the
relevant direction of departure from H0 (see Spanos 2013b, 2014).

4.2 The sample size (n) and evidence for or against H0

The Rochefort-Maranda (2020) slogan “the more power the better” is a sensible
strategy predata, but postdata one needs to safeguard the results from the fallacies
of acceptance and rejection by taking into account the generic (for any y2Rn

Y�
capacity of the particular test Tα, in outputting the warranted discrepancy γ for data
y0. Intuitively, a test with high power could pick up even tiny discrepancies H0. In
contrast, a test with low power could only detect sizeable discrepancies. When both
find statistically significant discrepancies from H0, the less powerful test provides
better evidence for the presence of a discrepancy.

Indeed, his followup claim that “the more powerful a test that rejects H0, the more
the evidence against H0,” constitutes a misconception. This claim is based on misun-
derstanding the difference between aiming for “a large n” predata to increase the
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power of the test (a commendable strategy) and what the particular power implies,
postdata (for a given y0�; in terms of evidence for or against H0.

Pratt (1961, 166) pinpointed this misconception, arguing that: “the more powerful
the test, the more a just significant result favors the null hypothesis.”

Example 4. To illustrate Pratt’s correct answer, consider testing the hypotheses in
(2) for µ0 � 0:5 in the context of (1) with σ � 2 and α � 0:025 (cα � 1:96), where:

A � 	n � 547480; bµ � 0:5053;
����������������
Var�bµ�p

� 0:0027

and B � 	n � 50; bµ � 1:0572;

����������������
Var�bµ�p

� 0:28284

the two practitioners A and B with different n and bµ find just significant results:

�A� d1�x0� �
���������������
547480

p �:5053 � 0:5�=2 � 1:97; �B� d2�x0� �
�����
50

p �1:0572 � :5�=2 � 1:97:

According to Rochefort-Maranda (2020), test (A) provides stronger evidence against H0:
µ0 � 0:5 because n1 > n2. Does it? Instead of using severity, which will clearly
confirm Pratt’s claim, consider their 0:95 one-sided observed CIs for µ:

�A� CIL�µ; x0� � 	:50001; ∞ �; �B� CIL�µ; x0� � 	:50283; ∞ �:
The CIL�µ; x0� for (A)-(n � 547480� confirms Pratt since its lower bound is closer to
H0: µ0 � 0:5 than that of (B)-(n � 50� (see also Mayo 2018).

5. Estimation-based versus testing-based effect sizes
The Rochefort-Maranda (2020) example revolves around x1 � x2� � � 4:25; which is
viewed as the “inflated effect-size” relating to an underpowered test, which yields
a high Cohen’s

d � 	�x1 � x2�=sp
 � 4:25=4:965
� � � 0:856:

His discussion, however, is based on two misconceptions.
Misconception: Conflating estimation-based effect sizes with testing-based effect

sizes outputted by the postdata severity evaluation of testing results.
This distinction is important because the former are grounded on another miscon-

ception that the latter is devised to circumvent.
Misconception: For a particularMθ�x�; an optimal point estimatorbθ�X� of θ does

not entail the inferential claimbθ�x0� ’ θ� for a large enough n, wbere “’” denotes
“approximately equal to.”

Example 1. (continued). For the simple Normal model in (1), the optimal estimatorbµML�X� � 1
n

P
n
i�1 Xi is consistent, unbiased, and fully efficient, but does not entailbµ�x0� ’ µ� because the estimate bµML�x0� represents just a single value of bµML�X�.

Figure 12 depicts an approximation of f �bµML�x0�; θ�; x 2 Rn with n � 100; µ � 1
and σ2 � 36 using N � 10; 000 replications, where bµML�x0� can be anywhere within
the range 	�2:1; 3:9
.
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That explains why a point estimate is often reported asbθ�x0� ± 2
����������������������
Var�bθ�X��q

; to
indicate its approximate range of possible values. This is remedied by interval esti-
mation and hypothesis testing, both of which calibrate the relevant uncertainty using

error probabilities based on f �bθ�x�; θ�; x 2 Rn
X ofbθ�X�:

To shed light on what it takes to get a value ofbθML�X� that is close enough to µ�;
consider the above simulation example to illustrate what “unbiasedness” E�bθ�X�� � θ�

means intuitively in terms of the empirical counterpart to f �bθ�x�; θ�; x2Rn. For that
one needs to use a large number N of replicas of the original data x0; say

x1; x2; :::; xN ; say N � 10; 000, to estimate bθ�xi�; i � 1; 2; :::;N; whose histogram in

figure 12 approximatesbfN�bθ�x1; ; x2; :::; xN�; θ�, the empirical counterpart to f �bθ�x�; θ�:
The empirical mean 1

N

P
N
i� 1

bθ�xi� will approximate θ� closely, i.e., 1
N

P
N
i� 1

bθ�xi� �
0:998 ’ θ� � 1; but no singlebθ�xi�; i � 0; 1; 2; :::;N will, unless by happenstance.

Example 2. (continued). The discussions on replication revolve around effect sizes

that (implicitly) invoke the unwarranted claim bθ�y0� ’ θ�: For instance, Cohen’s

(1988) d is just a single value (an estimate) bθ�y0� of the point estimator:bθ�Y� � 	�X1 � X2�=sp
 of θ � 	�µ1 � µ2�=σ
: Numerous recent papers replicate previ-
ously published results and use the point estimate as a good approximation of the
“true” effect size θ�: Rochefort-Maranda’s (2020) claim: “it is now well documented
that significant tests with low power display inflated effect sizes.” His poorly designed
numerical example to make his case suggests that such “inflated effect sizes” are
often a reflection of the untrustworthiness of the particular evidence and the unwar-
rantedness of the associated inferential claim.

Figure 12. Approximation of Xn � N�µ; σ2n �; n � 100; N � 10; 000.
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In contrast, the postdata severity evaluation provides a testing-based effect size in
the form of the discrepancy from H0 warranted by y0 and Tα. As shown in table 2, the
estimation-based effect sizebγ � 4:25; reported by Rochefort-Maranda (2020), yields
SEV�γ > 4:25� � 0:5; which does not sanction an “inflated estimation-effect size,” as
claimed since 0.5 is not high enough. The key difference between the two measures is
that SEV�γ > 4:25� places the evaluation in its proper statistical context (18), as
shown in (15) by using the sampling distribution of the test statistic
τ�Y� � � ��

n
2

p �X1 � X2�=sp� for γ > 0 to inform the outputting of the warranted
discrepancy γ by assigning different probabilities to γ1 > 0; for each γ1. This avoids
the unwarranted claimbθ�y0� ’ θ�, which is especially pernicious when n � 10.

6. Summary and conclusions
Rochefort-Maranda’s (2020) case against the postdata severity evaluation, built on a
numerical example using a “bad draw” of simulated data with n � 10, illustrates how
one can generate untrustworthy evidence (inconsistent estimators and an underpowered
test) and declare severity as the culprit for the ensuing dubious results. His discussion is
based on several misconceptions about the proper implementation and interpretation of
frequentist testing. They include: (a) failing to appreciate the two preconditions,
[i] securing the statistical adequacy ofMθ�y�, in combination with [ii] employing optimal
inference procedures based on sufficiently large sample size n that ensure the trustwor-
thiness of evidence, as well as conflating (b) abuses/misapplications of frequentist testing
with foundational problems, (c) predata with postdata error probabilities and their
respective roles, and (d) estimation-based with testing-based effect sizes.

How can one explain the fact that in testing the presence of a tiny (γ � 0:01)
discrepancy between two means the optimal t-test requires n � 5312800 to have suffi-
cient power, say 0:8, but does detect it anyway with n � 10 and power 0:05? It could be
easily explained as stemming from a “bad draw,” giving rise to unreliable and fragile
inferences. As shown in (12), adding a single observation one at a time between 11 and
18 reverses the rejection of H0 in all cases. Similarly, the table in (13) shows that
choosing a better seed for the simulation algorithm also reverses the rejection in every
case. A potential explanation of the results in (13) is a form of “simulated data-
dredging” that describes the practice of simulating hundreds of replications of size
n by changing the “seed” of the pseudorandom number algorithm in search of a desired
result. Applying such “simulated data-dredging” arising from modifying the author’s
seed “7356581” by adding a digit between 1 and 9 at different places of that number,
as in the last three entries of (13), none of the results reject H0; showing how rare and
fragile the author’s result is with seed “31” in example 2 above.

The best case for the Rochefort-Maranda (2020) argument is that some practi-
tioners are likely to abuse severity by misapplying it to untrustworthy evidence,
the same way they misapply the significance level, the p-value, and the power of
an N-P test. This, however, is a meritless case that stems from ignoring preconditions
[i]–[ii] for a proper implementation of frequentist testing, and conflating the abuse
and misintepretation of its results with legitimate foundational issues. Indeed, this
argument could potentially better explain the apparent nonreplication of many other
published studies.
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