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Nanocomposite Dispersion: Quantifying the Structure-Function Relationship 

Luke J. Gibbons 

ABSTRACT 

The dispersion quality of nanoinclusions within a matrix material is often overlooked when 

relating the effect of nanoscale structures on functional performance and processing/property 

relationships for nanocomposite materials. This is due in part to the difficulty in visualizing the 

nanoinclusion and ambiguity in the description of dispersion. Understanding the relationships 

between the composition of the nanofiller, matrix chemistry, processing procedures and resulting 

dispersion is a necessary step to tailor the physical properties. A method is presented that 

incorporates high-contrast imaging, an emerging scanning electron microscopy technique to 

visualize conductive nanofillers deep within insulating materials, with various image processing 

procedures to allow for the quantification and validation of dispersion parameters. This method 

makes it possible to quantify the dispersion of various single wall carbon nanotube (SWCNT)-

polymer composites as a function of processing conditions, composition of SWCNT and 

polymer matrix chemistry. Furthermore, the methodology is utilized to show that SWCNT 

dispersion exhibits fractal-like behavior thus allowing for simplified quantitative dispersion 

analysis. The dispersion analysis methodology will be corroborated through comparison to 

results from small angle neutron scattering dispersion analysis. Additionally, the material 

property improvement of SWCNT nanocomposites are linked to the dispersion state of the 

nanostructure allowing for correlation between dispersion techniques, quantified dispersion of 

SWCNT at the microscopic scale and the material properties measured at the macroscopic scale. 
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1.0 CHAPTER ONE: INTRODUCTION 

 

1. The Nanoscale  

History has defined scientific thinking and growth in terms of material categories, such as 

the Stone age, Bronze age and Iron age. Perhaps scientific thinking can also be associated with 

the physical size of materials, in terms of a deviation from the scale in which the human mind is 

most conversant. Thus, leaps in scientific thinking can be attributed to such considerations as the 

stars and heavenly bodies themselves, or questioning what composed physical materials and the 

natural world itself. Scientific thought always begs validation through experimentation, which is 

the definition of scientific growth. As the physical size of the materials in question deviated from 

a familiar scale, new tools such as the telescope and microscope become necessary for 

experimentation and provide another dimension to describe scientific progress in terms of scale. 

As new tools allow for the observation at smaller and smaller scales, new materials and methods 

are developed manipulate matter at smaller scales. Leaps in scientific growth may be measured 

by the tools developed to investigate, understand and manipulate materials at a given scale. With 

regard to the very small, scientific progress today can be defined as existing in the Nanoscale 

age. 
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Figure 1. “Using Sulphur” from 'De Re Metallica' by Georg Bauer, better known as Agricola 

Giclee (1494-1566). The brick making “laboratory” documented in the beginning of the early 

modern period of history shows fundamental similarities with nanoscale laboratories of today. 

 

2. Nanomaterials 

Nanomaterials are typically two to three orders of magnitude smaller than the width of a 

single human hair and may possess truly extraordinary physical properties not attainable outside 

the realm of the nanoscale. An inherent obstacle to the natural advance of the scientific process is 
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to create new tools and devices that utilize the extraordinary properties of the astonishingly tiny 

nanosized materials.  

Fabricating nanocomposites, by combining nanomaterials within a hosting material, is a 

potential method to produce macroscopic material systems which benefit from the nanosized 

constituents. However, methodical distribution of enormous amounts of the nanosized 

constituents proves to be an intrinsic obstacle complicated by attractive forces between the 

nanomaterials themselves. Many nanofiller dispersion techniques have been widely utilized. The 

next step of scientific progress in the field of nanocomposites is the validation of dispersion 

techniques by quantitatively describing the state of nanomaterial dispersion as well as 

performing experiments to investigate the relationship between the state of dispersion at the 

nanoscale and measured physical properties at the macroscale. 

3. Nanocomposite dispersion 

It is known that the dispersion of the nanofiller within hosting material manipulates the 

resulting physical properties of the nanocomposite. Traditionally, nanocomposite dispersion 

methods are categorized in terms of the processing technique. A recent review categorized the 

five general dispersion methods as dispersion-reaction, dissolution-dispersion-precipitation, 

dispersion –dispersion-precipitation, melt mixing, and non-fluid mixing [1]. These techniques 

when utilized to fabricate single wall carbon nanotube (SWCNT) based nanocomposites have 

been thoroughly documented [2-5]. Without elaborating on the details of these methods, for the 

purposes of this research, a simplified description of the dispersion methods are characterized 

from the point of view of the nanotubes. The non-mutually exclusive methods of dispersion 

include kinetic, thermodynamic and modification procedures. Kinetic methods are composed of 

various means of physical mixing. The thermodynamic approach concerns pairing the nanofiller 

and hosting material in order to reduce the enthalpy and entropic penalties of mixing. 

Modification approaches consist of altering the structure of the nanotube or adding dispersive 

agents to enhance the interaction between the nanofiller and hosting material, and thus improve 

the resulting dispersion.  This is admittedly a simplistic view to categorize dispersion techniques 

but allows for the description and analysis of specific dispersion states as an effect of the 

simplified dispersive approach. 
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Nanocomposite formation based upon thermodynamic approaches and/or modification 

approaches generally require some degree of kinetic based mixing. Kinetic based mixing 

methods to disperse nanotubes within the low viscosity monomers include shear mixing and 

sonication [6-11]. The approaches of adding dispersion agents and functionalization may result 

in the presence of unwanted dispersion agents in the final composite and damage to the structure 

of the nanotubes, respectively. This may result in diminished material properties when compared 

to nanocomposites which obtain equivalent dispersion without modification-based methods [12-

38]. However, kinetic based mixing methods may also degrade the nanotubes through 

mechanical deformation as a result of the shear mixing or sonication and lead to shorter or 

damaged nanotubes.  Alternatively, thermodynamic based approaches do not risk damaging the 

extraordinary structure of the SWCNT, which is the foundation of the equally extraordinary 

material properties, which in turn is the original motivation for creating the nanocomposites.  

4. The structure of SWCNT 

The structure of conductive carbon nanotubes is phenomenal. Carbon atoms typically 

bond with four other atoms to fill the outer valence band of electrons to obtain entropic stability. 

However, in a conductive carbon nanotube, defined by the armchair pattern of boding, and 

individual carbon graphene sheets, which are essentially unrolled carbon nanotubes, carbon 

atoms only bond with three other carbon atoms. This process can be explained by orbital 

hybridization, where the first two atomic orbitals combine to form a single orbital seeking a total 

of 8 electrons. The result of this type of bonding, called sp2 bonding in reference to the s and p 

orbital hybridization, in league with the shape generates the unique properties of the carbon 

nanotube. This type of unique bonding is present in aromatic compounds, such as benzene. 

However, carbon nanotubes and graphene sheets are composed solely of this type of bonding.

 The strength of the sp2 bond gives rise to the remarkable mechanical properties. Ballistic 

thermal conduction also originates as a result of the sp2 bonding allowing for bond stability at 

high temperature. The enhanced thermal conduction can be conceptualized as vibrational energy 

being transmitted along rigid sp2 bonds. Perhaps the modification in electronic conduction due to 

the sp2 bonding is the most interesting. The conductive carbon nanotubes and graphene sheets 

can be analyzed as 2D planar objects, and as such are 2D conductors quantified by the quantum 

Hall effect rather than the traditional Hall effect applicable to 3D conductors. Conductive carbon 



5 
 

nanotubes and graphene sheets are the only known materials that exhibit the quantum Hall effect 

close to room temperature, as other 2D conductors reveal this effect only at very low 

temperatures near 0 Kelvin. This can also be explained as a result of sp2 bonding. The sp2 

bonding between carbon atoms effectively delocalize electrons which are not tied to specific 

atoms, such as with other conducting materials. The electron cloud can be considered to 

encompass the entire structure that is formed by sp2 bonding. Thus, in a conductive carbon 

nanotube or graphene sheet, without any structural bonding defects, the conduction of electrons 

can be considered a property of the structure of the material rather than a property of the 

electrons tied to specific atoms within a material. This complete delocalization of electrons as a 

result of the sp2 bonding within the geometrically unique conductive carbon nanotubes and 

graphene sheets yield conduction that surpasses that of silver, nature’s best conducting metal.  

5. The importance of thorough dispersion 

 One motivation to research and fabricate nanocomposites results from the potential of 

constructing macro-sized materials that benefit from the phenomenal properties of the nanofiller. 

The properties of individual SWCNT and the influence upon the resulting material properties of 

the nanocomposite can be found in numerous review articles [2-5]. However, these articles do 

not assess dispersion states of SWCNT within the formed nanocomposite materials beyond 

presenting microscopy images to highlight the difference between “well dispersed” and 

extremely “poor dispersed” specimens. The aim of the proposed research is to provide dispersion 

characterization methods to quantitatively assess and compare the quality of the so-called “well 

dispersed” nanocomposites, where the term well dispersed is applied to specimens with 

homogeneous SWCNT dispersion throughout the nanocomposite. 

One of the thin film nanocomposites presented in this dissertation includes the 

combination of SWCNT with poly(methyl methacrylate) (PMMA), commonly called 

Plexiglas™. This material system provides an opportunity to investigate the motivation for 

thorough SWCNT dispersion. Dielectric absorption in polymer film is a phenomenon where an 

electrically charged material may not completely discharge, but retain some percentage of the 

original voltage. If PMMA is first heavily saturated with electrons then allowed to 

electrostatically discharge, the absorbed electrons, localized to specific atoms, will leave their 

respective locations and travel to electrical ground with such force that the PMMA is fractured 
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down to the molecular level [39]. This phenomenon gives to the Lichtenberg figure within 

PMMA shown below. 

aaaaaa

        

Figure 2. Lichtenberg figure. Courtesy of Robert G. Bryant, NASA Langley Research Center. 
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Lynchburg figures resemble the mechanism of a lightning bolt traveling from an 

electrically charged cloud. Notice how the fractal structure of the electrical pathways exists in 

both the original and magnified images. One motivation for developing SWNCT polymer 

composites is the development of structural electrostatic discharge shielding materials. Thus the 

importance of dispersing a conductive nanomaterial within an insulating matrix down to the 

microscopic (molecular, local or nano) level becomes necessary to avoid dielectric breakdown 

and realize the benefits of nanocomposites in structural applications. Creating nanocomposites 

for other functional purposes will also benefit from the ability to control and measure dispersion 

down to the microscopic level. Furthermore, a method to quantitatively measure and evaluate 

dispersion characteristics at the microscopic level will provide insight into the relationship 

between specific attributes of dispersion at the nanoscale and the resulting physical properties 

measured at the macroscale.  

6. Dispersion Considerations 

Complete realization of the potential of SWCNT polymer composites requires dispersion 

that is not only thorough and homogenous, but also stable over the service life of the composite. 

Maximizing the benefits of the nanofiller is realized by achieving homogeneous dispersion at the 

local (microscale) and global (macroscale) levels with methods that do not damage the sp2 

structure of the SWCNT. This goal is particularly important for materials in aerospace 

applications and extreme environments, where thermal and mechanical cycles can result in the 

re-aggregation of kinetically dispersed carbon nanotubes. To maximize this stability without 

sacrificing the sp2 SWCNT structure, the nanofiller and polymer can be selected to enhance the 

thermodynamic dispersive ability. The general approach is shown through the Gibbs free energy 

of mixing equation below and is the definition of the thermodynamic dispersion method [40]. 

          (1) 

Requiring the change in the Gibbs free energy of mixing to be negative or near zero will 

produce a stable dispersed state but also may efficiently disentangle and disperse the SWCNT. In 

order to create a stable composite system the Gibbs free energy of the final state must be less 

than the free energy of the initial state. This is accomplished by attempting to reduce the change 

in the Gibbs free energy of mixing, ∆G, by decreasing the change in the enthalpy of mixing, ∆H, 
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and increasing the change in the entropy of mixing, ∆S.  For example, reducing the enthalpy of 

mixing is accomplished by selecting a hosting polymer (or copolymer) with either strong donor-

acceptor interactions or an aromatic ring system, such as benzene, that will strongly interact with 

nanotubes [41-45]. Selecting polymer traits to increase the entropy of mixing can be 

accomplished by utilizing a polymer chain that has a similar diameter, helical shape and 

flexibility to the given type of nanotube [46].  

7. Measuring Dispersion 

The ability to select or even design polymers and copolymers that exhibit favorable 

enthalpic and entropic traits to progressively improve nano-filler dispersion and thermodynamic 

stability begs for validation and interpretation. Currently, no method exists to quickly and 

affordably assess dispersion at the nanoscale. Such a method could also be utilized to determine 

the effectiveness of the kinetic and modification dispersive methods.  

The lack of adequate dispersion characterization and the need for the definition of terms 

to distinguish dispersion states has been noted in the two most recent review articles (2010) on 

the subject of carbon nanotube dispersion [1,47]. These articles detail the difficulties and 

limitations associated with the current techniques available to measure and describe carbon 

nanotube dispersion. Such articles are rare, as the majority of review articles do not cover 

techniques to assess dispersion, use a single technique with known limitations or evaluate 

dispersion in a solvent before the nanocomposite is fabricated. Often, articles covering carbon 

nanotube composites assume the dispersion state of the carbon nanotubes and analyze the 

relationship between carbon nanotube network structure and experimental results without respect 

to the actual dispersion at the local level.  

8. Measuring Dispersion at the Nanoscale 

Dispersion at the microscopic level will encourage the adaptation of future 

nanocomposites. Furthermore, dispersion techniques that do not alter the sp2 bonding structure 

are strategically advantageous. However, the relationship between the dispersion methods, 

formed dispersion and physical properties of SWCNT-polymer nanocomposites have not been 

adequately studied because an acceptable dispersion quantification method capable of describing 

specific local attributes of dispersion over relatively large areas, such as average bundle size, did 
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not exist before the development of the techniques presented in this dissertation [1, 43]. 

Understanding this relationship will permit the manipulation of dispersion and, consequently, 

tailoring the physical properties of nanocomposite materials. 
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2.0 CHAPTER TWO: STUDY ONE 

The following study was published in the Institute of Physics – Journal of Nanotechnology as “A 

quantitative assessment of carbon nanotube dispersion in polymer matrices”, and is available 

from stacks.iop.org/Nano/20/325708 
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5. Supplemental Information 

5.1 Supplemental A 

The following supplemental section, supplemental section A, was published online with Study 1, 
“A quantitative assessment of carbon nanotube dispersion in polymer matrices”, and is available 
from stacks.iop.org/Nano/20/325708 
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5.2 Supplemental B 

The geometric relations utilized in Study One and Supplemental A have been verified 

with a grid of known step height that has been certified by NIST. A NIST-certified grid with a 

step height of 105.3 ± 2.4 nm (figure 1 below) was utilized to validate the imaging depth 

procedure under equivalent imaging conditions and the results were within the standard 

deviation.  

  

Figure S1. HR-SEM image of the NIST certified grid used to validate the imaging depth 

procedure at a) θ = 0° and b) θ = 20°. The arrows point to the upper edge and the bottom corner 

of a channel of the grid. The scale bars are 500 nm. 

The contrast inversion seen within the cross section images is also seen in the images of 

low and high kV SWCNT dispersion (figures 3 and 4). Figure 2 below shows sample 5 after 

silver particles were preferentially deposited at the locations where the SWCNT network 

provided the best electrical grounding sites on the surface of the specimen. The surface features 

(captured under the same imaging conditions as low kV imaging but with a faster scan), low kV 

and high kV images were all captured over the same position. Notice how the conductive silver 

particles do not show the same contrast inversion as the subsurface SWCNT.  
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Figure S2. The a) surface feature (1.0 kV), b) low kV (1.0 kV) and c) high kV (15 kV) images of 

the same area over sample 5 after silver particles were preferentially deposited along near 

surface SWCNT. The scale bars in the images are 500 nm. 

 

 

 

 

a) b) 
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3.0 CHAPTER THREE: STUDY TWO 
 

“Carbon Nanotube Dispersion within Polymer Nanocomposites: Systematic Quantification of 

Dispersion using Fractal Geometry”  

 

Abstract 

The dispersion quality of nanoinclusions within the hosting material is often overlooked 

when relating the effect of nanoscale structures on both the functional performance and 

processing/property relationships of nanocomposites. This is due in part to the difficulty in 

visualizing the nanoinclusion within a formed composite and ambiguity in the description of 

dispersion without an understanding of the dispersion in terms of relationships between the 

composition of the nanofiller, matrix chemistry and processing methods. Describing dispersion 

and understanding these relationships are necessary steps towards tailoring the physical 

properties of nanocomposite materials.  The dispersion analysis method presented in Study One 

allows for quantification and validation of dispersion parameters thorough the visualization of 

conductive nanofillers deep within insulating polymer matrices. This method makes it possible to 

quantitatively evaluate the dispersion of certain nanocomposites, such as single wall carbon 

nanotube (SWCNT)-polymer composites, in such specified terms as nanotube/bundle diameter, 

persistence length and spacing/separation distance.  However, the previous study is primarily 

concerned with analyzing dominant lengths present in the material. Here we expand the 

quantitative dispersion evaluation technique in order to describe dispersion quality in a different 

manner that is potentially representative of the overall dispersion throughout the material. This is 

accomplished by analyzing SWCNT dispersion with fractal geometry. The use of fractal 

geometry will provide a parameter proportional to the fractal dimension to describe how the 

nanomaterial is dispersed locally within images captured through high-contrast (poly-transparent, 

high kV or voltage-contrast) imaging via high resolution scanning electron microscopy. High-

contrast imaging allows for the 3D visualization of a conductive network within an insulating 

polymer. Analyzing the dispersion of SWCNT within the hosting polymer through analyzing the 

fractal nature of SWCNT dispersion provides a measure of the structure of dispersion over 

specified dimensions. An approximate value for the fractal dimension of the 2D projection of 
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SWCNT dispersion can be determined directly from the high-contrast images. Here, a 

standardized procedure is developed to repeatedly measure and interpret the images of 

dispersion.  

1. Introduction 

Building upon the previous investigation presented in Study One, an expanded and 

improved dispersion analysis methodology is presented. This study provides a systematic method 

for the quantitative evaluation of single wall carbon nanotube (SWCNT) dispersion within 

polymer matrices of thin film nanocomposites. In an effort to build the framework in which to 

investigate the relationship between dispersion and physical properties, this study will provide a 

dispersion quantification methodology based upon fractal geometry for self-affine and scale-

invariant systems. Self-affinity can be conceptualized as an object composed of pieces scaled by 

different amounts. Scale-invariance of an object is observed when features observed at different 

magnifications are related through a constant scaling parameter. The dispersion will be 

quantified in terms of this scaling parameter, and related fractal dimension, over specified spatial 

dimensions and will be shown to meet the requirements for a self-affine and scale-invariant 

system. It is proposed to use radial power spectral density (RPSD) analysis on high-contrast 

high-resolution scanning electron microscope (HR-SEM) images to directly determine the 

approximate scaling parameter and linked fractal dimension.  

It is proposed that HR-SEM high-contrast images of SWCNT dispersion represent 

“objects” that meet both requirements for the application of fractal geometry; that the object has 

a fractal dimension greater than its Euclidian dimension and that the object exhibits self-

similarity or self-affinity (self-affinity in this case) [1]. Euclidian space is defined as 1D, 2D or 

3D space commonly defined using a Cartesian coordinate system. Interestingly, the three 

physical mechanisms which naturally give rise to fractals [2]:  

i. when a Laplacian field, such as diffusion, causes forced instability 

ii. through Brownian motion  

iii. when descriptive parameters follow a power law distribution 

can each be attributed to the dispersion formation process. Foremost, the SWCNT are diffused 

throughout the hosting component of the nanocomposite. At the microscopic (molecular, local or 
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nano) level, it is Brownian motion that is most likely responsible for dispersing nanotubes. It will 

be shown here that a scaling parameter that describes the shape of the SWCNT network can be 

determined from a power law distribution obtained after analyzing HR-SEM images of 

dispersion. 

2. Materials and methods 

 2.1 Materials 

  2.1.1 PMMA and PMMA/PS nanocomposites 

The sample set consists of thin film nanocomposites created with varying amounts of 

nanotubes with a polymer and its copolymer, which is hypothesized to result in improved 

dispersion through the addition of an aromatic moiety in the form of a phenyl ring. 

Polymethylmethacrylate (PMMA), polystyrene  (PS) and the copolymer of both (PMMA/PS), 

shown below in figures 1, 2 and 3, respectively, were combined with varying amounts of single-

walled carbon nanotubes in hopes of creating nanocomposites with enhanced properties.  The 

two matrices were chosen due to their different hypothesized interaction with SWCNT and the 

resulting dispersion.  

  

Figure 1. Structure of polymethylmethacrylate (PMMA). 

 

  

Figure 2. Structure of polystyrene (PS) showing the aromatic moiety. 
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Figure 3.  Structure of PMMA/PS copolymer. 

 

Several thin film nanocomposite samples were fabricated along with the corresponding 

neat polymers. These samples are summarized in table 1 below.  

 

Table 1. PMMA and PMMA/PS nanocomposite thin films compositions. 

Sample Polymer composition Percent SWCNT (weight %) 

PMMA 0 100 % PMMA 0 

PMMA 1 100 % PMMA 1.0 

PMMA 5 100 % PMMA 5.0 

PMMA/PS 0 70 % PMMA - 30% PS 0 

PMMA/PS 0.1 70 % PMMA - 30% PS 0.1 

PMMA/PS 0.5 70 % PMMA - 30% PS 0.5 

PMMA/PS 1 70 % PMMA - 30% PS 1.0 

 

The PMMA and PMMA/PS batches were purchased from Polyscience Inc. and purified 

high pressure carbon monoxide (HiPCO) SWCNT (diameter 0.7 – 1.3 nm) were purchased 

from Carbon Nanotechnologies, Inc., Houston, Texas. PMMA or PMMA/PS were directly 

dissolved in a dilute (0.075 wt%) SWCNT- dimethylformamide (DMF) solution within a round 

bottom flask equipped with a mechanical shear stirring rod and nitrogen gas flowing in and out 

thorough calcium sulfate drying tubes. The SWCNT-DMF solution was not pre-sonicated before 
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addition to the flask but rather mechanically stirred for 5 minutes before directly mixing the 

PMMA or PMMA/PS and mechanically stirred for an additional 5 minutes before sonication. 

The flask was submerged in a water bath and subjected to ultrasonic sonication (40 kHz) during 

the first four hours of mixing. Additional stirring under nitrogen gas occurred until the presence 

of moisture was absent within the flask, approximately 24 hours. The solid content of the 

SWCNT-polymer solution was 15% in DMF. The mixture was then cast onto glass plates and 

dried in a dry nitrogen-flowing chamber for 48 hours. Finally, the mixture was cured under 

vacuum for 5 hours at 60 ⁰C to remove the DMF and acquire self-supporting films.  

  2.1.2 Motivation for PMMA and PS nanocomposite study 

The homopolymer PMMA and copolymer PMMA/PS were chosen for this material study 

to investigate the potential of selecting a matrix with traits to encourage SWCNT dispersion. 

PMMA was chosen due to its optical clarity and the hypothesized molecular attraction between 

the carboxyl group (O = C – C) of PMMA and both the open ends of the SWCNT and defect 

locations along the surface of the SWCNT [3, 4]. The copolymer with PS was chosen due the 

enhanced dispersibility of SWCNT instigated by the intermolecular attraction between the 6 

member sp2 bonded ring on the SWCNT surface and the aromatic moiety in the form of a 

benzene ring side chain [4]. A benzene ring also contains a 6 membered sp2 bonded carbon ring 

which is attracted to the 6 membered sp2 bonding carbon rings along the SWCNT surface.  The 

70/30 PMMA/PS concentration was chosen due to the unique ability to disperse SWCNT.  The 

more prevalent PMMA will attract the ends of the SWCNT and the less prevalent PS attracts the 

surface of the SWCNT. Thus the ends of SWCNT will preferentially be seated in the more 

prevalent PMMA and be drawn to seek PS in relatively more localized regions within the 

copolymer.   

2.2 Methods 

2.2.1 Imaging and measuring SWCNT dispersion  

The previous chapter, published in the Institute of Physics Journal of Nanotechnology in 

August 2009, described the development of microscopy techniques for dispersion analysis of 

high-contrast HR-SEM images.  High-contrast imaging is the SEM imaging technique that 

allows for imaging of the nanofiller deep within the hosting material as long as the nano-filler is 
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conductive, the matrix is insulative and a sufficient electrical percolation threshold has been 

reached.  The depth of visualization of the nanofiller with the hosting material is dependent upon 

the individual sample and SEM capabilities but is generally around 1 μm for samples that have 

adequately realized an electrical percolation network and are imaged in a HR-SEM [5]. Study 

One was cited multiple times in a recent article on high-contrast imaging method and the 

potential imaging depth [6]. In the case of imaging with a Hitachi S-5200 with a through the lens 

secondary electron detector, the imaging depth is only predicted to be 50 nm from theoretical 

secondary electron generation. However, the high-contrast technique detailed in the previous 

study allows for visualization of the nanofiller at a depth 20 times deeper. Visualization to this 

depth provides an adequate depiction of local dispersion (sampling volume) and, for the first 

time, the ability to quantitatively characterize dominant lengths can be utilized to characterize the 

dispersion. An additional image analysis technique, using Minkowski functionals can be called 

upon to verify the quantified parameters. However, the previous dispersion analysis method is 

dependent upon selecting dominant lengths to analyze and correlating the dominant lengths to 

features present in the HR-SEM images. 

In February 2011, the author of one of the most recent review papers on nanotube 

dispersion entitled “Recent developments concerning the dispersion of carbon nanotubes in 

polymers “ contacted the authors of Study One for permission to use image number 4 in an 

upcoming book concerning carbon nanotube polymer composites. Additionally, based upon the 

author’s comment in the review  article ”At this time, there is no way to make this [dispersion 

quantification  measure in terms of characteristic parameters, such as average bundle size] 

measurement in bulk polymers and, aside from laborious transmission electron microscopy 

(TEM) procedures, it will be very difficult in the foreseeable future to be able to make such 

measurements”, the future publication may recognize the previous dispersion analysis method as 

the only available method to assess dispersion in terms of quantifiable parameters [7].  

2.2.1.1 Fractal geometry 

Fractal geometry is a branch of mathematics that is used to describe irregular shapes 

found in the natural world [1].  Here, it is proposed to use fractal geometry to help quantify 

SWCNT dispersion within the hosting polymer by analyzing high-contrast HR-SEM images of 

thin film nanocomposites. In the previous study, the RPSD was used to measure dominant 
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attributes of SWCNT dispersion. Measuring the “shape” of a network of SWCNT requires a 

different analysis method. A measurement of shape for an object often requires a measurement 

of the objects perimeter. However, consider the following dilemma that Richardson faced in 

1961 when attempting to measure the shape of coastlines [8]. The measured length of a coast 

was dependent upon the length of measurement stick used to measure the coast. Thus the 

perimeter of an island cannot be explicitly measured and is dependent upon the scale of the map 

and the size of the measurement device. Richardson compared the measurements of the 

perimeter of coastlines as a function of the measurement unit. For example, comparing the 

perimeter measured using a kilometer measurement scale to an inch based measurement system, 

Richardson noticed a region of constant slope when the perimeter versus measurement unit 

length was logarithmically plotted, as shown in figure 4. Strikingly, the measured slope varied 

from coastline to coastline measured. Therefore, the perimeter of California’s coast, or more 

descriptively called roughness, could be distinguished from the roughness of Virginia’s coast 

based upon the slope the so-called Richardson plots. A larger slope corresponds with highly 

irregular coastlines while Euclidean boundaries, such as straight lines, produce Richardson plots 

of zero slope.  

  

Figure 4. Representation of the Richardson plot for coastline length (L) measured with a varying 

stride length for the African coast, the English coast, the Australian coast and a circle (inspired 

by the original data of L.F. Richardson [8]). 
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Richardson’s work was one of the earliest observations of fractal behavior.  Regardless of 

the map scale or measurement unit, a parameter directly proportional to the slope of the 

Richardson plot can be used to describe the shape of a class of objects in which traditional 

descriptions of shape do not apply. The work of Richardson motivated B.B. Mandelbrot to coin 

the term fractal in 1975 to describe objects and shapes that exhibit such scale-invariant behavior. 

A fractal shape is defined by its distinction from the traditional Euclidean shapes characterized in 

terms of a distinguishing size or scale. Therefore, a Euclidean shape can be defined in terms of a 

characteristic feature, such as the perimeter of a circle, where a fractal shape, such as a coastline, 

must be defined in terms of a scale-invariant characteristic, such as the slope of the Richardson 

plot.   

A fractal is a geometric shape that exhibits self-similarity over a wide length range, 

meaning that a similar structure is observed at different magnifications. Regardless of the 

appropriateness of the definition for a fractal, it is obvious to any observer of nature that 

traditional Euclidian shapes are not often useful in describing the shape of a natural object, such 

as a mountain range and the structure of organization found in nature such as the growth of tree 

limbs. Fortunately, since the inception of fractal geometry, fractals and scale-invariant systems 

have been extensively used to describe and model many natural and man-made phenomena, 

ranging from music, fracture surfaces, diffusion limited aggregation and coastlines [1]. 

A fractal can be conceptualized as its difference from 1D and 2D Euclidian objects. A 1D 

straight line between two points can be described by the distance between those points. The 

dimension of an object can be defined in terms of its scaling property. For example a straight line 

can be divided into N equal parts and thus is scaled by the scaling ratio, r: 

          (1) 

Similarly, the shape of a filled 2D square can be described in terms of the side length. A 2D 

square can be divided into N equal parts scaled by: 

          (2) 

A 3D cube can be divided into N equal parts scaled by: 



33 
 

          (3) 

Following the same procedure, an object exhibiting scale–invariant properties can be divided 

into N equal parts of itself is scaled by: 

          (4) 

where Df is the fractal dimension of the object such that: 

          (5) 

In this case, the scaling parameter is the fractal dimension. 

Furthermore, a line between two points can be drawn with a repeated pattern that never 

crosses itself. Imagine that such a line can be drawn with such precision that as the magnification 

along any seemingly straight section of the line is increased the same repeated pattern is 

observed at finer and finer scales, such as the coastline length studies by Richardson. The 

dimension of such a line is greater than the dimension of a 1D straight line but less than that of a 

filled 2D square and may therefore be characterized by the deviation from these Euclidian 

definitions of shape. The dimension of such a “curve”, or coastline, therefore ranges between the 

1st and 2nd Euclidean dimensions and is measured as: 

            (6) 

          (7) 

where E is the Euclidian dimension and H is a scaling parameter, called the Hurst parameter, 

which characterizes the degree of fractal nature regardless of the dimension and ranges from 0 < 

H < 1. A low value of H corresponds to a very wiggly line or rough surface. A value of H closer 

to 1 describes a less fractal object and thus conceptually H is inversely proportional to Df.  

 The fractal dimension is a term for a measure that describes how completely a fractal fills 

space over a given length range and is often used a measure of the texture or roughness of a 

fractal object. As fractal curves approach a fractal dimension of 2 the curves loose a linear 

appearance and increasingly fill planar space, eventually resembling a filled 2D shape. A similar 

argument holds when describing fractal behavior between the 2nd and 3rd Euclidian dimensions 
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and is useful when describing such natural phenomenon as clouds, snowflakes and landscapes.

 Multiple definitions and methods to determine the fractal dimension for a system (object, 

function or process) exist and fall into two general classes. The first type includes the previously 

mentioned Df, also known as the Hausdorff dimension, and is defined by the division of shapes 

as a function of scale. The partitioning method of the Study One falls under this category [9]. 

The second concerns the characterization of the random character of a fractal. These methods 

include the semivariogram and power spectrum methods, both which are based upon the fractal 

character of brown noise [10]. 

2.2.1.2 The power spectrum and noise  

The power spectrum, in general terms, is a measure of how often (called the power or 

intensity) a specific variable (such as length or time) occurs as a measure of the variable itself. In 

the case of the Richardson plot, the specific variable was the length of the measurement stick and 

the power was the measured perimeter. A logarithmic plot of the intensity of length features 

verses the length of the features themselves will provide an approximate measure proportional to 

the fractal dimension of the system along any region of constant slope. In this case the system is 

said to exhibit fractal or scale-invariant behavior over the range of constant slope. The same 

methodology holds true for analysis of changes in time rather than space.  

The concept of characterizing noise in the time domain provides an analogy for the 

dispersion analysis process in the special domain. The term noise is used to describe random 

changes of some attribute of a system with time. One can analyze a function with random 

fluctuations in time, such as noise, in the time domain or transform the signal into the temporal 

frequency domain. Similarly, one could analyze a random spatial system, such as a fracture 

surface, in the spatial domain or the spatial frequency domain. Figure 5 shows a representation of 

white, pink and brown nose in the time domain on the left and the logarithmic frequency domain 

on the right. The y-axis of the frequency domain plot is termed spectral density. The power 

spectrum is the plot of the spectral density, or power spectral density (PSD), as a measure of how 

often specific frequencies are present in the analyzed noise signal. In the time domain, these 

frequencies represent the deviation from the x-axis, or more specifically, the amplitude of the 

signal at any given point in time.  
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Figure 5. Representations of a) white, pink and brown noises and b) the power spectrum for 

each (inspired from [11]). 

 

White noise is the most random type of noise and is completely uncoordinated from point 

to point. Analogous to characterizing coastlines, the noise can be described in terms of the slope 

of the logarithmic power spectrum. For the case of white noise, all frequencies are equally 

represented and thus the power spectrum is flat and the scaling ratio (r) varies as: 

          (8) 

where f is the frequency in figure 5. White noise was termed “white” because of the resemblance 

to the white light’s equal distribution of PSD over the visible range of the electromagnetic 

spectrum. Pink noise, also known as 1/f noise, is characterized by a power spectrum where the 
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PSD is inversely proportional to the frequency. Thus, for the case of pink noise the power 

spectrum varies as: 

          (9) 

Brown noise, also known as Brownian noise and more descriptively appropriate as red 

noise, can be generated by reproducing Brownian motion in the spatial domain, also called a 

random walk.  Brownian motion is technically the integral of white noise and, like pink noise, is 

characterized by more low frequency than high frequency deviations. A random walk is a 

mathematical method to describe a random trajectory, such as the fluctuations of the stock 

market, the foraging of an animal or the motion of a particle moving in a liquid. Consider the 

case of a particle moving thorough a liquid, as it will be an analogy called upon to describe the 

dispersion of SWCNT as the motion of nanotubes within the solvent or polymer during the 

fabrication of SWCNT-nanocomposites. The motion of the particle is due to the random 

collisions with the surrounding liquid molecules. The power spectrum can be thought of as a 

measurement of the length of travel between collisions. As the distance between collisions 

increases, the probability of the particle colliding with a liquid molecule also increases, thus 

giving rise to the slope of the power spectrum and the Brownian characterization of weighted 

low frequency deviations. Such a type of seemingly random, yet coordinated, motion is very well 

understood in mathematics and varies as: 

          (10) 

Pink noise can be used as an analogy to describe and measure a fractal object. 

Interestingly, pink noise with a 1/f scaling represents the most common form of “structure” in 

nature, and is found in the luminosity of stars, the flow of the river Nile and the sand flow of an 

hour glass [12]. The origin of this 1/f scaling in nature remains mysterious but has been recently 

examined as a possible tool to describe systems in terms of equally mysterious unifying or 

critical features [13]. In fact, the self-organized criticality model was developed to understand 

fractals and 1/f noise [14]. The physics and origin of white and brown noise are well understood 

and are presented here as 1D noise and 2D noise. Pink noise, like fractals which fall in between 

Euclidian dimensions, fall in between the two well defined categories of white and brown noise. 
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Furthermore, the specific “shade of noise” between white and brown can be further described in 

terms of: 

          (13) 

where J, like the Hurst parameter H, is a scaling parameter but with the range, 0 < J < 2. 

Similar to the Richardson plots, here the scaling parameter of the system is determined by 

the slope of constant region on the logarithmic power spectrum, as shown in figure 5. The 

logarithmic region of constant slope describes scale-invariant behavior in the system. As with the 

Richardson plots, the shade of noise, or dimension of noise, can be directly determined from a 

power spectrum of the form: 

          (14) 

where the constant B represents the scaling parameter describing the dimension of the system. 

Therefore, the relationship between the variable (such as spatial or temporal frequency) and the 

occurrence of the variable (the power or intensity) follow a power law relationship. In fact a 

power law is a mathematical relation that describes scale-invariance for a given system. A useful 

equation to describe power law follows: 

          (15) 

where r is a scaling constant and B is the scaling parameter (positive or negative). Thus scaling 

by a constant proportionately scales the function itself, which is the definition of scale-

invariance: 

          (16) 

Thus rescaling by moving position or scale (magnification) changes the constant of 

proportionality, z, yet retains the overall structure of the original function including the scaling 

parameter, B. When plotted on a logarithmic scale, the power law argument takes the form: 

          (17) 
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with logarithmic slope B. Thus regardless of the position or scale of a self-affine function, the 

scaling parameter B can be approximated. 

2.2.1.3 The scale-invariant mystery of measuring nature 

The underlying method to investigate the power spectrum and describe some very 

mysterious phenomena has historically been accomplished utilizing what is known as Zipf’s law. 

Zipf’s law is basically the analysis of the slope of a power spectrum when such a region of 

constant slope exists on a logarithmic scale and can be fit with by a power law. Zipf’s law takes 

the general form: 

            (18) 

where r is a constant and B is the scaling parameter. The equation for Zipf’s law is equivalent to 

equation 15 describing a general power law with a negative exponent. 

Benford’s law also shows similarities to the more general concept Zipf’s law [15]. 

Benford’s law was been used to describe many forms of natural numerical behavior from stock 

market data to census results to material properties [17, 18]. Through use of Benford’s law, it has 

been shown that spatial power spectrums of natural images generally scale as: 

          (19) 

where k is the magnitude of the spatial frequency and A is a constant dependent upon the overall 

image contrast [20]. Most natural images scale with n=0.19 in the spatial domain over multiple 

decades of spatial frequency, revealing limited scale-invariant behavior [20, 21]. This scaling is 

attributed to the occlusion that occurs when a 3D volume is captured in a 2D image and that the 

occurrence of lengths features associated with arrangement in natural environments simply 

follow a power law relation [20]. Each of these laws utilizes a logarithmic plot to determine the 

scale-invariant nature of the system of interest.  

2.2.1.4 The power law and dispersion 

A system follows a power law if the frequency of an occurrence varies as a power of 

some measure of the occurrence, and the scaling parameter is directly proportional to the slope of 
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the logarithmic power spectrum. A measure of the fractal dimension of the SWCNT dispersion 

will effectively describe the nature of the dispersion in terms of, essentially, the degree of 

randomness, or how crumpled and crinkled the images of the dispersion appear. Proving that 

nanocomposites dispersion has some degree of fractal nature by measuring a scale-invariant 

parameter representative of the fractal dimension over a sufficiently large length range and 

volume will allow for the estimation of the dispersion quality throughout the overall 

nanocomposites, and thus eliminate the need for labor-intensive dispersion imaging and 

evaluation. There have been many studies concerning the fractal behavior of various systems 

including some which have shown that surfaces of most materials have a fractal surface at the 

microscopic scale [22, 23]. Previous work has shown the usefulness of analyzing a power 

spectrum to gather information on the system being analyzed. Small angle studies have also been 

used to characterize the fractal dimension SWCNT dispersion in suspensions [24-26], within 

formed epoxy and ceramic based nanocomposites [27, 28] as well as analyze the characteristic 

size of colloidal dispersed silica particles [29].  

2.2.1.5 Mathematically modeling a fractal system 

One method to model a fractal-like system is the fractal Brownian motion model, fBm, 

which is an extension of the more general random walk model. Interestingly, it was Einstein in 

1905 that first predicted that Brownian motion, or the seemingly random motion observed when 

particles are immersed in liquid, is due to the random hyperactive nature of molecules observed 

at the local scale [30]. Einstein’s model of Brownian motion validated his molecular theory of 

liquids, confirmed Avogadro’s number and predicted the size of the theoretical molecules [30]. 

In fact, through Einstein, the Brownian motion model led to the general acceptance of the 

existence of molecules and atoms [31]. One of Einstein’s accomplishments in developing his 

model of Brownian motion was to realize that the motion of the particles could be observed and 

measured in terms of their mean-square displacements instead of the more difficult 

measurements, such as velocity.  

Specifically, it is the variance of fBm with time or space that produces the slope of the 

power spectrum. Preforming the logarithmic function on a plot such as a power spectrum and 

measuring differences (such as lengths) effectively converts the data from a measure of absolute 

difference into a relative difference (akin to a percentage). Therefore, the scaling parameter of 
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the fBm can be determined regardless of the scale of measurement, such as with the Richardson 

plots. The fBm can be approximated thorough the use of various algorithms in order to determine 

the scaling parameter. The scaling behavior of fBm is quantified by the same scaling parameter 

H as in equation 6. Consider the trace of pink noise in figure 5 not as noise but as a trace of fBm 

motion or the ridgeline of white, pink and brown mountain ranges. The scaling parameter H 

defines the relationship between the change in the amplitude, A, over a change in space, x, and is 

scaled by: 

          (20) 

This type of scaling defines fBm and the general concept of self-affinity. Self-affinity 

differs from the self-similarity described through the coastline analogy in that self-similar shapes 

are statistically repeated as the scale (or magnification) of the system is altered. Alternatively, 

when a variable in a self-affine fBm system, such as length, is scaled by a scaling ratio, r, to 

become rx, the fBm function, A(x), does not also scale with r (as is the case in self-similar 

systems) but rather with the following scaling ratio, r0: 

          (21) 

where H is again the Hurst scaling parameter defined in equation 6. A simple comparison of self-

similar and self-affine functions is shown below in figure 6. 

  

Figure 6. Representation of self-similar versus self-affine behavior (inspired from [11]). 
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2.2.1.6 Modeling fractals as generalized fractional Brownian motion by the 

power spectrum method 

Of the various methods to model fractal behavior, the most adequate model for the 

random fractals found in nature is the fBm model [32-34]. The fractal dimension of a function 

that varies with time can be evaluated in terms of temporal components (in time, t) or the 

temporal frequencies (t -1). Similarly, the fractal dimension of an object can be analyzed in terms 

of spatial components (in space, k) or the spatial frequencies (k -1). In terms of the HR-SEM 

images of dispersion, the spatial components are the grid of pixels that compose the image and 

the frequency components compose the Fourier power spectrum. A Fourier transform function 

transforms an original function (or HR-SEM image) described in spatial or temporal components 

into/from a function described in terms of the spatial or temporal frequency components. From 

the fBm model, the power spectrum method, also called the Fourier filtering method, was 

developed in 1991 to estimate the fractal dimension based upon the slope of the power spectrum 

of brown noise. Knowing the slope of the logarithmic power spectrum of brown (or Brownian) 

noise allows for the relation of the slope of the logarithmic power spectrum to the known Hurst 

parameter for brown noise (H = ½). By analyzing Brownian motion in multiple dimensions, the 

relationship between the Hurst parameter, H, and the logarithmic power spectrum slope, B, has 

been shown to be related by [32, 33]: 

          (22) 

where E is the dimension of analysis. The relation above can be used in conjunction with 

equation 6 to approximate the fractal dimension for systems with Hurst parameter ranging from 0 

< H < 1: 

          (23) 

Therefore, in general, a function of one variable, f(x) with a power spectral density, S(k), 

proportional to: 

          (24) 

represents fBm with a logarithmic spectral density slope defined by: 
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          (25) 

where a function of one variable, S(k), and 0 < H < 1 with E < D < E + 1 yields spectral density 

slopes from 1 < B < 3.  A spectral density slope of 2 corresponds to brown noise, a slope of 1 

corresponds to pink noise and a slope of 0 corresponds to the white noise. A spectral density 

slope of 3 would correspond to the situation when H = 1 and the subsequent Euclidian dimension 

can describe the system. Therefore, the fractal dimension can be gleaned from the spectral 

densities of random functions in time or space and characterized by the deviation from the 

spectral density of the characteristic Brownian function with H = ½ and B = 2, pink noise 

observed when each octave is equally represented in the spectrum and white noise when the 

system is not fractal.  

2.2.7 Fourier analysis 

Spectral densities, S(k), can be utilized to characterize random functions in space or time 

[35, 36]. The PSD has been used to determine dominant feature sizes for ion-sputtered surfaces 

and used as a measure of detection of interstitial lung disease in radiographic images [37, 38] and 

was utilized to determine the dominant feature sizes of SWCNT dispersions in Study One [5].  

The slope of the logarithmically plotted PSD has been used to characterize the nature of a system 

and is generalized as Zipf’s law. Examples in the literature have been used to provide a measure 

of the fractal nature include radiographic and X-ray computed tomography images of bone, 

images of landscapes, optical microscope images of premalignant lesions, cytologic images of 

cell nuclei, SEM images of particle surfaces, cluttering statistics in cosmology plus the small 

angle scattering studies previously mentioned [39-46]. 

Algorithms such as the discrete Fourier transform (DFT) can be used to approximate the 

PSD. As previously stated, the evaluation of self-affine SWCNT networks is based upon a 2D 

fBm model based upon the work of Mandelbrot and later expanded by J.C. Russ [1, 2]. The HR-

SEM high-contrast images capture this 3D network as a 2D projection and can be interpreted as a 

2D self-affine surface. Therefore, in Cartesian coordinates, the 2D self-affine surface can be 

analyzed as a series of horizontal slices, f(x), through the (2+1) dimensional self-affine surface. 

The HR-SEM image is composed of a given amount, Y, of vertically stacked horizontal slices 

dependent upon the pixel density of the image. Each slice is effectively a profile of the self-
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affine surface at a given position (row) from the bottom to the top of the surface (0 to Y). 

Therefore the DFT, as represented in the spatial domain, can be stated as: 

          (26) 

where the surface is evaluated from 0 to Y and k is the spatial frequency component 

corresponding to the spatial length component, x.  A useful property of DFT is the fact that it is a 

linear transform operator. It has been proven that a linear transform of fBm produces another 

fBm function yet preserves the original fractal dimension [47]. Therefore, the fractal dimension 

can be determined in either the original domain of the signal (space or time) or the frequency 

domain representation of the signal. Another very useful aspect of the chosen 2D fBm model, 

and self-affinity in general, is that the 1D slices experience the same Hurst scaling parameter as 

the 2D surface. This relationship can be conceptualized by the ridgeline analogy of mountains in 

that mountain terrain and the projected ridgeline of any “slice” of the terrain are characterized 

with the same Hurst scaling parameter. Considering the surface as self-affine constrains the 

description of the slice to: 

          (27) 

where r is a scaling parameter. Combing with the previous equation yields: 

          (28) 

and substituting for q = rx gives 

          (29) 

Examining the relationship between equations 27 and 29 yields: 

          (30) 

The spectral density, also called the power spectrum or power spectrum density (PSD) function, 

S(k), is defined by the relation: 
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          (31) 

Inputting equation 30 into 31 yields: 

          (32) 

which takes the form of equation 24: 

          (33) 

where B = 2H +1 and H is the Hurst scaling parameter as described in equation 6. Thus the slope 

of the 1D power spectrum can be used to approximate the fractal dimension. Equation 23 will be 

modified to take in to account how the PSD is determined: 

          (34) 

where E0 is the dimension of the PSD function. The dimension of the PSD is determined by the 

amount of variables. Thus, analyzing a self-affine surface as a series of 1D slices produces a 1D 

PSD. In this case, E0 = 1 and the following relationship can be used to determine the fractal 

dimension: 

          (35) 

The transfer function, FT, is represented in terms of magnitude and phase where 

magnitude is representative of the quantity associated with the component and the phase 

represents the location of the component. The PSD is defined as the squared magnitude of the 

DFT, as shown above in equation 31. Therefore, the PSD retains information regarding the 

quantity associated with the frequency component (length) while removing the association of the 

location (position), allowing for the analysis of 2D spatial information in a 1D plot. The ability to 

separate the association with position will allow for direct determination of dominant 

frequency/length components. In fact, this method was applied in Study One to determine the 

dominant lengths form the HR-SEM images of SWCNT dispersion. 
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The PSD is defined both as the squared magnitude of the DFT (equation 31) or the FT of 

the autocorrelation function. The autocorrelation function in 2D Cartesian coordinates is 

evaluated in as: 

          (36) 

where a1 and a2 represent the measured values at locations (x1,y1) and (x2,y2) , m = (x1 – x2) n 

= (y1 – y2) , and P(a1,a2,m,n) is the 2D probability density function. The probability density 

function of a random variable measures the potential of the random variable residing at a given 

location. The 1D autocorrelation function of a horizontal slice of a 2D fBm system with 

Gaussian distribution is: 

          (37) 

where c is the root mean square deviation of the measured value locations (x1, y1) and (x2,y2) 

and L is the autocorrelation length. The root mean square deviation is expressed in units of 

length and therefore the 1D autocorrelation function with Gaussian distribution has units of 

length squared. The assumption of Gaussian distribution is relevant because fBm is defined as a 

Gaussian process. 

The 2D PSD of a process, stated in terms of the Fourier transform of the autocorrelation 

function, is the frequency domain representation of the process: 

          (38) 

The 1D PSD of a horizontal slice of a 2D fBm system is evaluated as: 

          (39) 

As previously mentioned, the PSD can be approximated with an algorithm, such as the DFT 

(equation 31). The DFT can be efficiently computed utilizing a fast Fourier transform (FFT) 

algorithm. In this case the FFT yields: 

          (40) 
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where h is the pixel width, M and N represent the horizontal and vertical pixel number in the 

image and Vl (kx) is the Fourier coefficient of slice l: 

          (41) 

Assuming the 2D fBm surface has Gaussian distribution yields: 

          (42) 

where units in terms of length cubed.  

The radial PSD (RPSD), utilized in Study One, is the generation and integration of the 

1D PSD function in terms of radial slices as opposed to horizontal or vertical slices. The 1D 

RPSD can also be calculated along radial slices of a 2D fBm surface as: 

          (43) 

and with Gaussian distribution yields: 

          (44) 

which also has units of length cubed and contains the same information as the 1D Cartesian PSD. 

Gwyddion, a free open source software for scanning probe microscopy image analysis, is 

perfectly suited to determine the 1D PSD and RPSD in the specified manner [48]. Gwyddion was 

developed by the initiative of Czech Metrology Institute and is supported by a worldwide group 

of volunteers. It has been utilized for image analysis in various instances included the 

investigation of the fractal dimension of silica glass [49], to characterize cellulose nanocrystals 

[50], quantification of nanoscale surface features [51], grain size distribution [52], and to 

characterize the geometry of stretched collagen fibrils [53]. 

Plotting the RPSD is a process that can be conceptualized by examining the 2D PSD of 

image shown below in figure 7. The 360 x 360 pixel image consists of a circle drawn with a 3 

pixel wide line. 
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Figure 7. The a) 360x360 image of a circle and b) the corresponding 2D PSD. 

 

Each radial line composing the 2D PSD can be thought of as the 1D radial slice 

composing the image.  Each slice of the image is represented in the 2D PSD as a wedge or slice 

of pie in the figure below. 

  

Figure 8. Representation of the PSD in terms of radial PSD slices. 
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A 360 pixel by 360 pixel image will require 360 slices to fully map the surface. In this 

case figure 8 would be composed of 360 radial slices of 1 degree. The 1D PSD for each radial 

slice of the image conceptually represents a radial line in the 2D PSD as shown below in figure 

9. All 1D PSD radial slices are averaged to plot the RPSD.  

 

Figure 9. The RPSD is generated from integrating the PSD of all radial slices to produce the 

average spatial frequency profile of the image. The 2D PSD of the circle (a) can be used to 

conceptualize building the RPSD (b). 

 

Each slice of the image is converted into a numerical sequence (equation 27), a process 

referred to as sampling. Generating the RPSD is a method of sampling the original image and 

therefore is subject to the Nyquist sampling theorem. The Nyquist sampling theorem states that a 

function is completely determined when the sampling rate is at least twice the highest waveform 

frequency. The Nyquist frequency (Nf) is the highest frequency needed to fully reconstruct the 

original signal: 

          (45) 

where Y is the sampling rate. In the case of analyzing a 360 x 360 pixel image, the sampling rate 

is 360 and the Nyquist frequency is 180. Therefore 180 Fourier components are necessary to 

describe the original image in terms of 180 spatial frequencies. The 180 frequencies within the 

2D PSD of the 360 x 360 pixel image can each be represented as a ring in figure 10.  
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Figure 10. Representation of the PSD in terms of spatial rings. 

 

The distance from the origin represents the spatial frequency with higher frequency 

components near the origin and low spatial frequency components neat the outer edge. This 

relationship is shown below in figure 11. In this case, the image of sample 5 from Study One was 

used [5]. Higher spatial frequency components correspond to finer detail in the images of the 

generated fBm surface. Notice that the frequencies nearest to the center of 2D PSD correspond to 

the spatial lengths that contain the information relevant to SWCNT dispersion. Furthermore, all 

frequency components corresponding to a length greater than one pixel is located near the origin.  
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Figure 11. The a) FFT generated image and the corresponding full 2D PSD for sample 5 of 

Study One, b) – d) FFT generated image from the bounded 2D PSD containing components of 

decreasing spatial frequency. 

 

When a 360 by 360 pixel image is sampled at the Nyquist frequency, the plot of the 1D 

RPSD is a measure of 180 spatial frequencies in relation to their intensity, as determined by 

equation 44. The intensity is a measure of how often a given spatial frequency is present in each 

slice of the image. The inverse of the spatial frequency yields the spatial length and, as has been 

demonstrated, the logarithmic slope of the spatial frequency or spatial length PSD and the 

intensity of each component in either domain (spatial or frequency) is preserved. The RPSD of 

the representative original image from figure 11 is presented below in terms of both spatial 

frequency and spatial length. In terms of spatial length, the RPSD can be used to describe 

dominant lengths in an image and was utilized in Study One [5]. In Study One, the symbol W 

was used in figure 5 to denote intensity on the RPSD. Here, in Study Two the symbol I is used to 

indicate intensity. Notice that the intensity is plotted on the y-axis in units of length cubes, as 

described in equation 44, and the 180 spatial components are plotted on the x-axis. Also, notice 

how the spectrum components are more heavily weighted in the high spatial frequency (low 

spatial length) region. 
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Figure 12. RPSD generated from sample 5 in Study One in terms of a) spatial frequency and b) 

spatial length. 

 

In summary, the 3-D volume containing SWCNT dispersion is captured in 2-D high-

contrast images that can be broken down into its periodic structures, and the length versus 

intensity information can be analyzed in 1-D. Therefore, direction independent structural 

information, in term of the fractal dimension, can be extracted and analyzed.  

2.2.2 Fitting the data and statistical weighting 

Fittingly, the classical Freundlich equation, which is famous for its use in describing 

allometry, or the study of relationship between body shape, size and function, is utilized to fit the 

data. The classical Freundlich equation utilized to fit the data is: 

          (46)

where k is the spatial frequency, A is a constant coefficient associated with the contrast and SEM 

instrumentation and B is the scaling parameter. In the spatial domain, this equation can be 

represented by the fitting function: 

          (47) 

where x is the spatial length, C is a new constant coefficient and B is the same scaling parameter. 

Thus the data can be fit in either the spatial length or spatial frequency domain, shown 
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previously in figure 12. If we assume a negative scaling parameter, -B, the fitting equation shows 

the familiar form:

          (48)

Reducing the chi-square function is a measure of the quality of the fit of the data using an 

appropriate power law function, such as the Freundlich equation. The chi-square function 

quantifies the deviation of the actual values with values predicted using the appropriate fitting 

equation, in this case equation 48. The probability, PG, of predicting the actual intensity value, 

S(ki), for the given ki, and assuming Gaussian distribution is given by: 

          (49) 

where , S(ki) is the observed mean intensity for the given spatial frequency given by equation 48, 

σi
2 is the variance of the measurement error for S(ki), and F(ki) is predicted relationship (equation 

48).  The assumption of Gaussian distribution is appropriate because the data was obtained by 

modeling the SWCNT network as a fBm surface. A data set of N (xi,yi) elements is defined in 

terms of the total probability, PTG,  as the product of the probability at each individual element: 

          (50) 

where N is the number of data points and the data set (k,F(k)) is the result of equation 48 over all 

spatial frequencies, ki. The chi-square function, χ2, is defined as the sum operation in the 

previous equation: 

          (51) 

The variables in the chi squared equation are ki, the independent data set (spatial 

frequency or spatial length), ki, the dependent data set (intensity of occurrence), S(ki) from 

equation 44 and F(ki), the fitting function (equation 48) with 2 fitting parameters (A and B). The 

term reduced chi-square value is the value of the chi-square value divided by the degrees of 

freedom, v = N – P: 
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          (52) 

where N represents the number of data points and P represents the number of fitting parameters. 

Solving the reduced chi-square function is essentially performing a weighted ordinary least 

squares approach to regression analysis with weighting factor, wi: 

          (53) 

where: 

          (54) 

To better understand how to use these weighting functions, a quick observation how 

spectrophotometric measurements are determined is necessary. Spectrophotometry measures the 

transmission and reflection of a material by quantitatively characterizing electromagnetic 

radiation (light) intensity as a function of the wavelength of the light source. For example, 

spectrophotometric data is said to show heteroscedastic properties when the variance of 

measuring small objects is less than the variance of measuring large objects in a given image and 

is observed when different wavelengths are scattered or absorbed differently. The word 

heteroscedastic originates form the Greek terms "hetero" and "scedasis" meaning “different” and 

“dispersion”, respectively. Here, the heteroscedasticity originates from the fact that the large 

spatial length (or frequency) components are more poorly sampled in the limited region 

contained in each HR-SEM image when compared to smaller length (or larger frequency) 

components.  

A heteroscedastic data set can affect the values of constants when fitting the data to an 

equation and assuming that the error term is homoscedastic, or has zero variance. Applying the 

weighting operator of the reduced chi-square function may counteract this discrepancy. 

Alternatively, other weighting functions, such as the statistical weighting function, can be 

utilized. The statistical weighting function will reduce bias associated with X- or Y-values and is 

a technique used when analyzing spectral information in spectrophotometry [54]. Preforming the 

logarithmic function on a data set effectively removes some of the heteroscedasticity, although in 

this case further stabilization of the variance between the coordinates X and Y may be 
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advantageous. The RPSD data can be fit to the non-linear Freundlich function, equation 48, by 

minimizing the weighted function in equation 53 where wi in this case is the statistical weighting 

function:  

          (55) 

By applying a statistical weighting function when fitting the RPSD data with the power law one 

can set the Y-values, S(k),  to be the arbitrary intensity factor and therefore place more “weight” 

on the X-values, which are the dominant spatial frequencies in the image, k.  

The quality of the fit can be measured utilizing the coefficient of determination (R^2). 

The coefficient of determination is a measure of the closeness of fitting the data with the 

particular parameters A and B of equation 48. A coefficient of determination closer to 1 indicates 

a better fit. Monitoring the coefficient of determination is a method often used in statistics when 

investigating how well a given function predicts future occurrence by measuring how well a 

function accounts for the variance in a data set [55]. A coefficient of determination closer to 1 

indicates a better fit. 

2.2.3 Specimen characterization 

             A field emission Hitachi S-5200 high resolution scanning electron microscope, with a 

through the lens (TTL) detector, was utilized to capture high-contrast images as described in the 

previous study and in Appendix A.  

3. Results 

3.1 Concerning dispersion within HR-SEM images  

The aim of this study is to demonstrate that the high-contrast HR-SEM images do not all 

scale with the same power, as is the case with most natural images under Benford’s law [20]. 

Alternatively it is proposed here that the HR-SEM images of dispersion are specimen specific 

and that a parameter directly proportional to the fractal dimension describing SWCNT dispersion 

can be obtained from the slope of the RPSD of the HR-SEM images of dispersion.  
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The following subsections describe the application of the proposed methods to the HR-

SEM high-contrast images of dispersion. 

  3.1.1 The fractal properties of dispersion 

Notice the similarity between all the above equations. Many show similar scale invariant 

behavior that can be approximated with a power law function of the form: 

          (56) 

Where A is a constant B is the scaling parameter, represented by a straight line on a logarithmic 

power spectrum. The scaling parameter B is related to a fractal measurement, Df, of the structure 

of dispersion through equation 34. It is hypothesized here that the constant A is a related to the 

contrast in the image, similar to image analysis using Benford’s Law, and the effect of SEM 

instrumentation. Thus the information pertaining to the structure of the network should be 

contained in the scaling parameter, B. 

The RPSD is determined by first analyzing the static high-contrast HR-SEM image as a 

stochastic process, or random field, where each pixel is assigned a value proportional to the 

intensity at each point image. Again, the image is effectively analyzed as signals that represent 

radial slices of the 2D image. The PSD of the image is evaluated to describe how the power, or 

pixel intensities, of the image are distributed in terms of spatial frequency and effectively 

identify the periodic structures in the image. The inverse of the spatial frequencies represent 

lengths present in the high-contrast image. The radial power spectral density is the collapsed 

PSD obtained by averaging all possible directional spectra and creating an independent mean 

power spectrum. HR-SEM high-contrast images of the PMMA and PS/PMMA based 

nanocomposites are provided below in figures 13 to 21. Figures 13 to 17 show the high 

resolution images (1792 x 1792 pixel) and figures 18 to 21 depict the lower resolution images 

(896 x 896 pixel). 
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  3.1.2 High-contrast images of dispersion 
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Figure 13. HR-SEM high-contrast images (1792 x 1792 pixel) of 1.0 wt% SWCNT dispersion 

within PMMA nanocomposites at a) – c) 5000 (17.92 μm x 17.92 μm) and d) – e) 10000 times 

magnification (8.96 μm x 8.96 μm). The imaging technique allows for the imaging of the SWCNT 

network within the hosting polymer.  
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Figure 14. HR-SEM high-contrast images (1792 x 1792 pixel) of 5.0 wt% SWCNT dispersion 

within PMMA nanocomposites at a) – b) 5000 (17.92 μm x 17.92 μm), c) – d) 10000 times 

magnification (8.96 μm x 8.96 μm) in a poor imaging area, e) 10000 times magnification (8.96 

μm x 8.96 μm)  in a good imaging area.  
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Figure 15. HR-SEM high-contrast images (1792 x 1792 pixel) of 0.1 wt% SWCNT dispersion 

within PS/PMMA nanocomposites at a) – b) 5000 (17.92 μm x 17.92 μm) and c) – d) 10000 

times magnification (8.96 μm x 8.96 μm).  
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Figure 16. HR-SEM high-contrast images of (1792 x 1792 pixel) 0.5 wt% SWCNT dispersion 

within PS/PMMA nanocomposites at a) – b) 5000 (17.92 μm x 17.92 μm) and c) 10000 times 

magnification (8.96 μm x 8.96 μm).  
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Figure 17. HR-SEM high-contrast images of (1792 x 1792 pixel) 1.0 wt% SWCNT dispersion 

within PS/PMMA nanocomposites at a) 5000 (17.92 μm x 17.92 μm) and b) 10000 times 

magnification (8.96 μm x 8.96 μm).  

 

Notice how the high-contrast imaging technique reveals that each specimen type has a 

distinct state of dispersion and that the PMMA/PS copolymer yields perceived better dispersion. 

The PMMA and PMMA/PS nanocomposites were more susceptible to beam damage during 

high-contrast imaging than the samples imaged in Study One. In fact, the images of the 0.1 wt % 

SWCNT PMMA/PS nanocomposite were captured at the limit of the microscope’s operational 

capabilities. In order to capture the 0.1 wt% SWCNT images, maximum settings for current and 

voltage (50 μA and 30 kV) were used at highest resolution (1792 x 1792 pixel) during the 

slowest scan speed possible (80 seconds per image). The effect of the intense electron beam on 

the specimen can be seen most prevalently in the 0.1 wt% SWCNT PMMA/PS images. Notice 

the how some regions of polymer in figure 15 are visible and begin to overshadow the contrast 

between the light color SWCNT and dark background.  This effect, which greatly diminishes the 

visualization depth, occurs during the capture of the image. In fact, the microscope was focused 

over an adjacent area then quickly positioned over the areas in figures 13 to 17 to immediately 

capture the images. More than one scan (slow and intense enough to visualize the SWCNT 

network via the high-contrast imaging technique) irreversibly damaged the sample to the point 
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where subsequent images over the same location proved only to capture regions of electrically 

saturated polymer. The same trend has been noticed in every high-contrast image; however, the 

unfavorable consequences are most prevalent in the specimens with low SWCNT concentration 

or poor dispersion. Thus, the ability to simply capture high-contrast images is in itself is a crude 

measure of the quality of dispersion. 

Essentially, the electron beam can be conceptualized as traveling through the thickness of 

the specimen along the conductive SWCNT network. With an adequate electrical percolation 

network, the specimen can be subjected to high-contrast imaging with negligible damage. 

However without an adequate network, the quality of the path to electrical ground is reduced and 

results as leakage current into the polymer. The regions with extremely poor dispersion or 

without an adequate amount of nanofiller for the given imaging area will experience more 

degradation from beam damage and can contaminate the microscope’s chamber. In such cases, 

the imaging conditions should be altered to avoid seriously damaging the specimen or 

contaminating the chamber. One method is to take faster images at lower resolution. Others can 

be found in the high-contrast imaging procedure in Appendix A.  

Without an adequate conductive SWCNT network dispersed throughout the sample, the 

energy from the electron beam essentially cannot travel to ground faster than the polymeric 

regions reluctantly absorb the additional energy. The additional energy resulting from dielectric 

absorption causes various reactions in the specimen including polymer saturation (charging) 

even polymer melting (causing the HR-SEM image to move and contort). Samples with good 

dispersion but low conductive filler content often suffer from polymer saturation while samples, 

regardless of the filler content, suffer from polymer saturation and degradation in areas without 

the necessary electrically conductive percolation network as can be seen in the 0.1 wt % SWCNT 

PMMA/PS specimen. This effect can also be seen in the images of the 5.0 wt% SWCNT PMMA 

specimen in figure 14c and d. During the image capture, the polymer in these regions physically 

deformed.  The melting was very minimal, but at 10000 times magnification with an 80 second 

image capture speed, the movement of the sample surface distorts the image. Notice that this did 

not occur in images (figure 14e) where it is assumed that the imaged area contains a SWCNT 

network better connected to the electrical ground. Magnifications below 5000 times resulted in 

excessive polymer charging in the 5.0 wt % SWCNT PMMA specimen and unusable images.  
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On the other hand, the 1.0 wt% SWCNT PMMA, 0.5 wt% SWCNT PMMA/PS and 1.0 

wt% SWCNT PMMA/PS higher resolution images (1792 x 1792 pixel) proved to produce 

exceptional high-contrast images, provided they were obtained during the first scan over the 

captured area. The polymeric saturation after multiple scans, although evident, was not as 

noticeable when compared to the previously mentioned samples. The higher resolution 1792 x 

1792 pixel images in figures 13 to 17 contain a limited set of images due to the evident beam 

damage. All the higher resolution images were captured at 30 kV with an 80 second scan speed 

in an effort to standardize the process for subsequent image analysis. The current of the electron 

beam was kept at 20 μA for all images except those of the 0.1 wt% SWCNT PMMA/PS 

specimen.  In practice, it is perhaps more effective to tailor the setting for each sample, as was 

the case for the samples in Study One, in order to minimize the damage to the specimens [5]. 

Here, in an attempt to standardize the image capture process, additional images were captured at 

lower resolution (896 x 896 pixel) with faster scan rate (40 seconds per image) but also at 30 kV 

and 20 μA in order to collect a larger sample set for analysis while limiting contamination to the 

microscope and damage to the imaged surfaces. Figures 18 through 21 provide the lower 

resolution images (896 x 896 pixel) captured at a faster scan speed (40 seconds per image).  
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Figure 18. HR-SEM high-contrast images (896 x 896 pixel) of 1.0 wt% SWCNT dispersion 

within PMMA nanocomposites at a) 250 times magnification (358.4 μm x 358.4 μm), b) 500 

times magnification (179.2 μm x 179.2 μm), c) 1000 times magnification (89.6 μm x 89.6 μm), d) 

– f)  5000 times magnification (17.92 μm x 17.92 μm) and g) – i) 10000 times magnification 

(8.96 μm x 8.96 μm). 
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Figure 19. HR-SEM high-contrast images (896 x 896 pixel) of 5.0 wt% SWCNT dispersion 

within PMMA nanocomposites at a) – b)  5000 times magnification (17.92 μm x 17.92 μm), c) – 

d) 10000 times magnification (8.96 μm x 8.96 μm) in a poor imaging area and e) 10000 times 

magnification (8.96 μm x 8.96 μm) in a good imaging area.  
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Figure 20. HR-SEM high-contrast images (896 x 896 pixel) of 0.5 wt% SWCNT dispersion 

within PS/PMMA nanocomposites at a) 100 times magnification (896 μm x 896 μm), b) 250 

times magnification (358.4 μm x 358.4 μm), c) – d) 500 times magnification (179.2 μm x 179.2 

μm), e) 1000 times magnification (89.6 μm x 89.6 μm), f) 1500 times magnification (59.73 μm x 

59.73 μm), g) – i) 2500 times magnification (35.84 μm x 35.84 μm), j) – l)  5000 times 

magnification (17.92 μm x 17.92 μm), m) – o) 7000 times magnification (12.8 μm x 12.8 μm) 

and p) – u) 10000 times magnification (8.96 μm x 8.96 μm). 
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Figure 21. HR-SEM high-contrast images (896 x 896 pixel) of 1.0 wt% SWCNT dispersion 

within PS/PMMA nanocomposites at a) 250 times magnification (358.4 μm x 358.4 μm), b) 500 
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times magnification (179.2 μm x  179.2 μm), c) 1000 times magnification (89.6 μm x 89.6 μm), 

d) – e) 2500 times magnification (35.84 μm x 35.84 μm), f) – g) 5000 times magnification (17.92 

μm x 17.92 μm), and h) – j) 10000 times magnification (8.96 μm x 8.96 μm).  

 

The faster scan rate and lower resolution reduces the time the beam interacts with the 

sample and the resulting image degradation, although evidence of poor imaging conditions is still 

present in some of the captured images. Specifically, the deformation observed in the 5.0 wt % 

SWCNT PMMA specimen (figure 14c and d) is again observed during the capture of the lower 

resolution images (figure 19c and d). Conversely, the lower resolution images obviously do not 

contain equivalent information at finer detail and the faster scan rate may limit the depth of 

visualization. The ability to capture relevant information on SWCNT dispersion will be 

compared for each specimen as well as for a variety of situations. Such situations include the 

comparison between imaging at high (with slower scan rate) and low (with faster scan rate) 

resolution, different specimen locations, different specimen surfaces, different magnifications 

and poor (figure 14c and d) versus good imaging areas (figure 14e).  

  3.1.3 Generating the power spectrum 

Again, it is proposed to use the scaling parameter of the 1D RPSD to determine the 

fractal dimension that describes the structure of SWCNT dispersion within HR-SEM images, 

which capture a 3D volume projected onto a 2D plane. Each image of dispersion will be 

analyzed as a self-affine fractal-like 2D surface representing the projected SWCNT network. The 

images will be analyzed in radial slices to produce a RPSD that presents the direction 

independent spectrum of the dominant lengths in a 1D plot to determine the scaling parameter.  

Equation 35 can then be used to determine the fractal dimension from the scaling parameter.  

The images of dispersion here consist of 896 x 896 pixels and are therefore appropriately 

sampled at a Nyquist frequency of 448 to create 448 frequency components. The HR-SEM 

images would require 896 wedges and 448 rings to recreate figures 8 and 10, respectively. The 

full RPSD for the 1.0 wt% SWCNT PMMA/PS nanocomposite corresponding to the HR-SEM 

high-contrast image in figure 17d is below in figure22.  
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Figure 22. Logarithmic RPSD of the 1.0 wt% SWCNT PMMA/PS nanocomposite in terms of 

spatial length. The 10,000 times magnification image shown in figure 17b is 8.96um by 8.96 um. 

At 1792 x 1972 pixels, the pixel size is 5nm by 5nm. 

 

The limited range highlighted in the logarithmic plot of the spatial density shown below 

in figure 23 displays a region of constant slope, similar to the Richardson plot in figure 4. The 

scale invariant nature again reveals itself on a logarithmic plot. Notice the similarity between the 

plot of the self-affine function, pink noise and spectral density plotted in figures 5, 6 and 23, 

respectively. 
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Figure 23. Logarithmic RPSD of the 10k magnification image of the 1.0 wt% PMMA/PS 

nanocomposites in figure 17b highlighting the general regions to analyze scale invariance and 

dominant lengths. 

 

Examining the features (dominant lengths) in spatial terms represented in the RPSD is 

analogous to describing a musical chord by examining the individual notes played. The previous 

study called upon the RPSD to wash out information concerning the dominant lengths present in 

the high-contrast images, which reveal themselves as peaks in the RPSD plotted in terms of 

length rather than spatial frequency, as described in Study One [5]. 

Alternatively, information can be garnered by also examining the variance of the 

intensity of all lengths present in the image. As previously stated, it is proposed to analyze HR-

SEM images of dispersion assuming SWCNT dispersion has self-affine properties with the 

power spectrum method derived from the self-affine fBm model.  
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The RPSD in figure 22 contains the full power spectrum (all 896 frequency components) 

before filtering the non-scale-invariant data and noise. The region utilized to determine the 

prominent peaks is apparent from figures 22 and 23. The method to analyze the peaks is 

presented in Study One [5]. The region of self-affine and scale-invariant behavior is not 

necessarily obvious but must be determined and bounded in order to suitably measure the slope. 

The following section will provide a standardized method to determine the upper and lower 

cutoff limits for determining the RPSD slope regardless of the given image type or 

magnification. 

3.1.4 Fractal length and magnification windows  

From the power spectrum in figure 22 it is apparent that the system does not display 

monofractal behavior due to the lack of a region of constant slope across the entire spectrum. 

The power spectrum shows obvious noise at the very high frequency range and evidence of 

limited sampling at the low spatial frequency range. Additionally, the logarithmic slope within 

those ranges is not constant indicating that the system is either multifractal or monofractal of 

limited range. Within the power spectrum, the range of reliable data falls within certain fractal 

analysis windows, of length and magnification to determine either multiple bounded fractal 

regions in the case of a multifractal system or a single bounded fractal region in the case of a 

monofractal system. This study will focus on describing a single fractal region within the power 

spectrum of the high-contrast images of dispersion.  

In order to determine the scaling parameter, the RPSD data over an appropriate fractal 

window is fit using a power law function. The closeness of fit when fitting the data with the 

power law can be used as a tool to determine the appropriate fractal length window. A close fit 

corresponds to an appropriate fractal window.  

Notice the region of constant slope in figure 23 above. This region, described here as the 

fractal analysis length window is bounded by the small length scale features corresponding to 

either the limit of resolution in the image or the smallest length feature able to be measured in the 

image. In an ideal case, the lower bound is constrained by dominant nanotube diameters or 

nanotube to nanotube separation distances. In actuality, the lower bound is constrained by the 

resolution and instrumentation of the microscope. Obviously, the absolute lower bound could be 
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defined by the pixel size, but the specific components of the microscope affect the image and can 

be assumed to take the form of a transfer function of the form: 

          (57) 

where S(f) is the actual spectral density and the modulation transfer function (MTF) contains the 

effects of the specific microscope [2]. The MTF bias affects the power spectrum at high 

frequency and can either be directly filtered or removed thorough comparison of the power 

spectrum generated from high-contrast images produced from imaging the same volume with 

multiple microscopes. The noise, present at lengths below the pixel length of 5 nm in figure 22 is 

effectively filtered when accounting for the MTF bias.   

The upper bound of the fractal length window corresponds to limited sampling of low 

frequency components (the non-scale-invariant region); described as the point where the periodic 

or fractal behavior measured with the RPSD is overcome by the larger dominant length features, 

and is often associated with large-scale agglomeration of polymer or SWCNT. Furthermore, 

when conceptualized in terms of spatial length the upper limit should be less than the crossover 

scale, which is the persistence length of the length feature analyzed, or the point where vertical 

and horizontal displacements are equal. In the previous analogy utilizing mountain terrain, the 

crossover length scale would correspond to the tallest peak heights in the 2D projection of 

mountain ridgeline. A measure similar to the crossover scale is represented as the quantified 

SWCNT dispersion parameter defined as persistence length in Study One. Thus, from table 1 in 

Study One, it is shown the SWCNT persistence length, and therefore the crossover scale, is 

dependent upon the type SWCNT-polymer composite and the processing conditions [5]. 

Furthermore, the variance of the crossover scale from sample to sample may be garnered from 

analyzing the Minkowski connectivity’s estimation of cylindrical structure length, as described 

in Study One [5, 56-59]. 

The fractal magnification window is determined by capturing a series of HR-SEM images 

at various magnifications. At the upper limit of the fractal magnification window the fractal 

length window will be too narrow to reliably determine the scaling parameter. At the lower limit 

of the fractal magnification window, the magnification will be too small to discern the features of 

the nanofiller (such as nanotube diameter, bundle size, bundle separation distance, etc.) and any 
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periodic or fractal behavior present in the image is overtaken by large-scale dominant length 

features.  The scaling parameter of the RPSD over appropriate fractal length windows for a series 

of magnifications can be compared to determine the appropriate fractal magnification window. 

The measured fractal dimension will deviate as the scale (magnification) is decreased (or 

increased) at the point edge of the fractal region for a bounded monofractal or multifractal 

system if the spectrum is not first altered by the imaging limitations of the SEM. 

The fractal length window can by interpreted as one of the rings in figure 10, which 

represents a region of interest relevant to SWCNT dispersion on the 2D PSD (such as the area 

bounded in figure 11b and c). The fractal window should be as expansive as possible without 

deteriorating the quality of the fit and without encroaching on the upper and lower limits or the 

regions constrained by the crossover scale or the MTF at very low spatial lengths. Detailed 

instructions for filtering the data and determining the slope of the spectral density is provided in 

the latter sections. 

3.1.5 The fractal dimension and RPSD scaling parameter of SWCNT dispersion 

Analyzing the scaling parameter of the RPSD is an intuitive measure of the dispersion 

characteristic because the slope of the RPSD can be examined to glean the structure of a 3D 

network in terms of a single number. As defined in equation 25, a scaling parameter, b, with a 

range from 1 < B < 3 is related to the Hurst parameter, H, and utilized to characterize a fractal. In 

actuality, the slope, B, ranges from 0 for a single rod or white noise through a region useful to 

analyze the SWCNT dispersion (approximately 0.5 to 2.5) to 3 for images of detailed 2D objects 

or 3D projections. Ideally, a steeper slope corresponds to SWCNT dispersion with a greater 

amount of large dominant lengths and fewer small dominant lengths indicating more SWCNT 

agglomeration on a larger scale and less single separated tubes at a smaller scale. Conceptually, 

the SWCNTs represent many individual 1D rods. As the SWCNTs increasingly agglomerate the 

slope will become steeper and approaches a scaling parameter of 3, the network becomes better 

represented by a 3D object. A shallower slope describes SWCNT dispersion with a greater 

amount of small length scale features and less large length scale features indicating less 

agglomeration on a larger scale and more debundling of SWCNT at smaller scales. As the 

agglomerations are minimized overall, the slope of the PSD approaches 1, and the improved 

dispersion is modeled better as a network of 1D rods. Thus, a steeper slope originating from 
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poorer dispersion is revealed by a larger absolute value of the scaling parameter. Alternatively, a 

shallower slope resulting from better dispersion is revealed by a lower absolute value. As the 

SWCNT dispersion improves the system becomes more periodic and the slope of the power law 

fit of the RPSD would decrease as is indicated in figure 24 below. 

Figure 24. Schematic showing the conceptual association of noise, dispersion and the measured 

scaling parameter. The upper and lower10000 times magnified (8.96 μm x 8.96 μm) HR-SEM 

high-contrast images represent the 1.0 wt% SWCNT dispersion within PS/PMMA and PMMA 

nanocomposites. 

 

Different methods to determine the fractal dimension produce a wide variety of results 

but each method shows similar relative measurements when compared [49]. The direct 

computation of the fractal dimension of HR-SEM images of SWCNT dispersion produce a wide 

range of values depending upon the analysis method. Therefore, as an alternative to comparing 

various analysis methods, it is more important to carefully define the method and assumptions 

used to select an appropriate fractal length window in order to determine the scaling parameter 

and the related fractal dimension.  
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3.2 Dispersion quantification procedure 

When comparing the scaling parameter of various RPSDs of the same sample, it becomes 

apparent that the length and magnification windows analyzed directly affect the resulting value 

of the scaling parameter. Thus, it is important to detail the overall procedure to prepare the 

images, filter the results and fit the data. In an effort to standardize the overall image analysis 

methodology, the technique detailed in figure 25 was developed. Figure 25 highlights the general 

procedure to analyze HR-SEM high-contrast images of dispersion.  

 

Figure 25. Schematic representation of the image analysis process. 

 

Specifically, the image analysis procedure can be broken into the following steps. 

3.2.1 Capturing HR-SEM high-contrast images of dispersion 

First, the HR-SEM high-contrast images are obtained following the high-contrast 

imaging procedure in Appendix A. The Hitachi S-5200 HR-SEM captures images at 2560 x 

1920 (or 1280 x 960) pixels when including the status bar (figure 26). 
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Figure 26. Original high-contrast HR-SEM image of the (2560 x 1920 pixel) of the 1.0 

wt% SWCNT PMMA/PS specimen. 

 

The imaging depth can be determined using the methodology presented in Study One [5]. 

Additionally, if the images used to determine the imaging depth are captured at opposing angles 

(such as ± 25 degrees), altering the color of the SWCNT to be red in one image and blue in 

another then recombining produce 3D representational images of dispersion. With red and blue 

3D glasses the true nature of the SWCNT dispersion within samples 1, 3, 5 and 6 from Study 

One reveals itself (figure 27). 
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Figure 27. 3D images of SWCNT dispersion within nanocomposites for a) sample 1 b) 

sample 3, sample 5, and sample 6 from Study One. The images were created by 

combining red and blue tinted images captured at opposing angles (±25 degrees with the 

red and blue lens covering the left and right eye, respectively). The images are 12.8 um x 

8.96 μm. 

 

3.2.2 Cropping the image and offsetting the contrast 

The images are then squarely cropped to remove the SEM status bar and create a 1792 x 

1792 (or 896 x 896) pixel image. Next, the contrast is offset so the lightest pixel is associated 

with maximum brightness and the darkest pixel is associated with absolute darkness. The images 

should also be scaled properly to account for the magnification of the image, thus assigning a 

length scale to every pixel as well as the overall image in general. For the 5,000 times magnified 

1792 x 1792 pixel image below in figure 28 the pixel sixe is approximately 10nm x 10nm. This 

relationship can be determined by dividing the length of the image (17.92 μm) by the pixel 

length (1792 pixels) to determine the length/pixel ratio. The same pixel size of 10 nm by 10 nm 
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can also be obtained with a 10,000 times magnified 896 x 896 pixel image. The relationship 

between magnification, resolution, pixel size and the range of spatial component lengths is 

shown in table 2. 

 

Figure 28. The 5,000 times magnification image of the 1.0 wt% SWCNT PMMA/PS 

nanocomposite after resizing and offsetting the contrast. Each pixel in the 17.92 um by 

17.92 um area is approximately 10 nm x 10 nm. 
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Table 2. The relationship between image resolution, magnification and the resulting 

parameters. 

Resolution 
(pixels) Mag. 

Image size      
(μm) 

Pixel size 
(nm/pixel) 

Full spatial 
range (μm) 

Spatial range after 
filtering (nm) 

896 100 896 x 896 1000 0 - 145 1352 – 4087 

896 250 358.4 x 358.4 400 0 - 57 540 – 1635 

896 500 179.2 x 179.2 200 0 - 29 270 – 817 

896  1000 89.6 x 89.6 100 0 - 14 135 – 409 

896  1500 59.73 x 59.73 66.7 0 - 9.5 90 – 272 

896  2500 35.84 x 35.84 40 0 - 5.7 54 – 163 

896  5000 17.92 x 17.92 20 0 - 2.9 27 – 82 

896  7000 12.8 x 12.8 14.3 0 - 2.0 19 – 58 

896  10000 8.96 x 89.6 10 0 - 1.4 13.5 – 40 

1792  5000 17.92 x 17.92 10 0 -2.9 13.5 – 40 

1792  10000 8.96 x 8.96 5 0 - 1.4 7 – 20 

 

3.2.3 Producing the RPSD at the Nyquist frequency 

A 1792 x 1792 (896 x 896) pixel image should be sampled with a Nyquist frequency of 

896 (448). Sampling at this Nyquist frequency produces 448 Fourier components corresponding 

to 448 spatial frequencies. For example, inverting into spatial length provides 448 spatial length 

components ranging from approximately 1 nm to 1000 nm for a 10,000 times magnification 

image, shown in figure 12. Inverting into spatial lengths for the higher resolution image produces 

896 spatial length components also ranging from approximately 1 nm to 1000 nm as in figure 22. 

3.2.4 Filtering the data and determining the fractal windows 

Determining an appropriate fractal analysis window may be specimen specific depending 

upon the nature of the sample. Generally, the following method produces an appropriate fractal 

length window to use when fitting the data and analyzing the results. First, the data in the noise 

regime should be filtered, as shown in figure 25. Filtering the noise regime effectively removes 
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all components below the pixel size. The remaining components, 200 (100) for the 1796 x 1796 

(896 x 896) pixel image, correspond to the lower spatial frequency (larger length) components. 

In an effort to standardize the image analysis process the following spectrum splitting 

procedure is presented. The remaining 200 (100) spatial length components should be divided 

into four quarters, 1-49, 50-100,  101-150 and 151-200 (1-24, 25-50, 51-75 and 76-100). Next, 

the areas afflicted by the microscope’s MTF at high spatial frequency (small length) and the non-

scale-invariant region at low spatial frequency (large length) can be easily filtered by retaining 

only the intermediate components, 50th to 150th (25th to 75th),  as described in figure 25. 

Correspondingly, attempting to filter the high frequency components afflicted by the 

microscope’s MTF may also be accomplished by fixing the lower bound to approximately 21/2 

times pixel length, which is the pixel diameter. In the 5,000 times magnified 1792 x 1792 image 

of figure 28, the 10 nm pixel width corresponds to a pixel-diameter based lower bound of 

approximately 14 nm. In this example, 14 nm approximately corresponds with the lower bound 

set by the spectrum splitting method of 13.5 nm, the 150th (or 75th for a 10000 times magnified 

896 x 896 pixel image) component of the spectrum. Utilizing the presented spectrum splitting 

routine provides a standardized method for comparing high-contrast images of SWCNT 

dispersion. However, the method may need alteration dependent upon the specific image, scale, 

imaging conditions and type of nanofiller. Furthermore, this method can be expanded to analyze 

a wide variety of other material and natural systems.  

The full spectrum in figure 29a corresponds to the image presented in figure 28 and 

highlights the four general regions for noise, MFT bias, scale-invariant and non-scale-invariant 

data. The scale-invariant region represents the approximate fractal length window. Within the 

non-scale-invariant region the sampling error becomes greater as the spatial length increases. 

However, the non-scale-invariant region can also be analyzed in the RPSD for the 5000 times 

magnified image in figure 28 if desired. Alternatively, if the fractal magnification window is 

large enough, the scaling parameter may be determined from a less magnified image in which the 

spatial range after filtering is contains the region of interest.  Filtering for the non-scale-invariant, 

MTF, and noise regions using the presented approach produces the data shown in figure 29b. 
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Figure 29. The a) full RPSD showing the general noise, MTF bias, scale-invariant and 

non-scale-invariant regions and b) filtered RPSD of the scale-invariant region for the 

image in figure 28.  

 

3.2.5 Fitting the data to determine the scaling parameter and fractal 

dimension 

The intermediate frequency components of the RPSD should be fit to the classical 

Freundlich equation with negative exponent as in equation 48 with application of the statistical 

weighting function in equations 53 and 55. The difference in results determined by using the 

traditional reduced chi-square approach and the presented statistical weighting approach 

typically provide similar results. However, samples that produce more heteroscedastic spectral 

density may provide scaling parameters that correlate from image to image and across various 

magnifications better when determined using the statistical weighting approach. Fitting the data 

in figure 29b with equation 44 produces the result in figure 30 below. Table 3 below shows the 

arbitrary constant (A), the slope of the line (scaling parameter B) and the coefficient of 

determination (R^2) resulting from reduced chi-square and statistical weighting approaches to 

fitting the data. Notice in this case the fit from statistical weighting produces slightly different 

results with a marginally improved value for coefficient of determination, but with a much larger 

variance when determining the scaling parameter. 
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Figure 30. Effect of weighting function on the resulting parameters and quality of fit for 

the bounded spectrum from the image in figure 28. 

 

Table 3. Comparison of chi-squared and statistical weighting approaches to fitting the 

data in figure 30. 

Fitting function Scaling parameter (B) R^2 

chi-square       0.94 ±0.03 0.926 

statistical weighting       0.99  ±0.37 0.930 

 

Choosing the statistical weighted scaling parameter yields a fractal dimension of 3.01 

through equation 35. This value does not describe the dispersion in a straightforward manner due 

to the fact that many aspects within the images affect the parameters measured from the image, 

such as the effect from edges, occlusions, pixilation, SWCNT type, SWCNT loading amount and 
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even the type of polymer. The comparison of scaling parameters of different specimens is most 

appropriate when equivalent type and concentration of nanofiller is utilized, however, scaling 

parameters of material systems with different types or amounts of nanofiller can be compared to 

assess general differences of dispersion qualities. It will be shown that the scaling parameter, and 

thus the fractal dimension, is indeed determined by the quality of the dispersion and that the 

scaling parameter is conserved over a fractal magnification window. Furthermore, the measured 

scaling parameter from multiple HR-SEM high-contrast images of dispersion throughout the 

specimens (different surfaces and positions) also show reasonable correlation.  Thus, the 

variance of the scaling parameter or fractal dimension can also be used to compare different 

samples. 

3.3 Analyzing test images 

In an effort to correlate the scaling parameter with the “shape” of the system being 

measured, the test images in figure 31 can be analyzed following the procedure in the previous 

section. The test images include a straight line, a curve of 1, 3, 5 and 8 pixels wide, a line drawn 

in a circle 1, 3, and 5 pixels wide plus an 18 pixel diameter disk.  
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Figure 31. Test images consisting of a) 1 pixel wide straight line, b - e) 1, 3, 5 and 8 pixel wide 

curves, f-h) circle drawn with 1, 3 and 5 pixel wide lines and i) 18 pixel diameter 2D disk. 

 

   3.3.1 Determining the RPSD 

The presented image analysis method applied to these images can also be used to 

interpret the results of the HR-SEM high-contrast images of dispersion. The images were 

processed such that 1 pixel equals 1 nm, however, the images will be interpreted in terms of units 

of pixels. Interpreting these images in terms of pixels will prove useful when analyzing the 
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images of dispersion. The 360x360 pixel test images sampled at the Nyquist frequency produce 

180 frequency components with the pixel length corresponding to the 40th component. Dividing 

into four quarters and retaining the intermediate components yields an analysis window from 

about 1.4 to 4 pixels as shown in the logarithmic plot of the RPSD in figure 32. 

 

Figure 32. Logarithmic RPSD of the test images of a) 1 pixel wide straight line, b - e) 1, 3, 5 and 

8 pixel wide curves, f-h) circle drawn with 1, 3 and 5 pixel wide lines and d) 18 pixel diameter 

2D disk. 

 

Fitting the results with statistical weighting produces the results shown in figure 33 and table 4. 
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Figure 33. Fitting the RPSD for each test image shows distinct slopes when viewed 

logarithmically. 
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Table 4. Results of fitting the RPSD to the Freundlich equation with negative exponent and 

statistical weighting. 

Shape 
Pixel 
size 

Scaling 
Parameter (B)  R^2 

Line 1 0 0 

Curve 1 0.03 0.89 

Circle 1 0.02 0 

Curve 3 0.3 0.92 

Circle 3 0.32 0.75 

Curve 5 0.94 0.91 

Circle 5 0.91 0.9 

Curve 8 2.87 0.82 

2D disk 18 2.02 0.95 

 

   3.3.2 Interpreting the RPSD 

The test images in figure 31 provide an opportunity to investigate the effect of the width 

and how different shaped objects are measured. Interpreting the RPSD proves to be complex 

because it is a product of multiple factors within the image. The dimension of the object plays a 

large role. For example, consider the noise analogy previously presented. The 1D straight line (or 

rod) of 1 pixel in figure 31 represents a perfect 1D object of diameter 1 pixel. Because it is 

perfectly straight, the line will have only two characteristic length features, the width of 1nm and 

the length which is well outside the bounds of analysis. Furthermore, the methodology of 

applying an effective analysis widow to the HR-SEM images utilized for the test images 

produces an analysis window of approximately 1.4 – 4 nm. The 1 pixel wide line is outside the 

lower bound results in the measurement of random white noise for the 1D straight line. The 

image of the 1 pixel wide curve, however, does not yield a measurement of noise, as is indicated 

by the value of the coefficient of determination.  The coefficient of determination value of 0.87 is 

much closer to 1 than the value of 0 which was measured not only for the 1 d line of 1 pixel but 

also for the circle drawn with a 1 pixel line. The PSD of the 1 pixel circle with a center 

positioned at the origin when analyzed radially also represents a 1 d line and yields the same 
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measurement of noise as for the 1D line. The 1 pixel wide curve provides a measurable result in 

the range between 1.3 and 4 pixels because the radial slices not only measure the width of the 

object, as was the case with the other two 1 pixel wide objects, but will also measure along 

various angles to effectively measure strings of pixels (between 1.3 and 4 pixels long) that differ 

in contrast from the background. Thus the RPSD essentially ranks the prevalence of lengths 

present in the image between 1.3 and 4 pixels, and based upon the slope, the shape of objects 

measured over the limited analysis window can be measured. The RPSD over this limited 

analysis window is greatly affected by the pixel width of the imaged object, as is apparent when 

comparing the results of the curved lines or circles of increasing width. Here, an object width of 

3 to 5 pixels produced a useful measurement because it lies within the length window of analysis 

and results in the measurement of a fractal like object. In terms of the noise analogy, this type of 

object would correspond to pink, or 1/f, noise. When the line width is increased to a pixel level 

outside the analysis length window, the RPSD is essentially a measurement of the structure of 

the edge of the imaged object. In this case, the RPSD would analyze the effect of pixilation along 

the edge of the drawn line composing the curve and circle. However, as the width of the object is 

further increased and analyzed over the same length window, the RPSD will increasingly 

measure lengths of pixels within the width of the object. This thought process is also relevant to 

the case of HR-SEM images of increasing magnification. As the magnification (or pixel width of 

the object) is increased, the RPSD measurements will progress from capturing information of the 

characteristic shape of an object (1 and 3 pixel curve, 3 pixel circle) to the edge shape (5 pixel 

curve and circle) to measuring lengths contained within the characteristic shape (8 pixel curve 

and disc). When the width of the characteristic shape is increased to the point of measuring 

within the shape, the scaling parameter approaches 2 in the case of measuring a perfect 2D 

object, as can be seen with the test image of the 2D disk. If the 2D disk were to gain surface 

features to resemble a 3D like object, the scaling parameter approaches 3. The fact that the 

scaling parameter increased to 2.78 for the 8 pixel curve from 2.02 for the disc can be interpreted 

as increasing the surface like features through increasing the surface area along the edge of the 

curve, with the curve itself a 2D object of width outside the upper bound of the analysis length 

window. When applying the noise analogy, the so-called 2D and 3D measured objects over a 

given analysis length window can be conceptualized as ordered structures corresponding to 

brown noise. 
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Notice that the plot of the 8 pixel curve is not logarithmically linear over the analysis 

window, thus showing multifractal behavior. The fitting procedure will affect how the scaling 

parameter is defined over this region. For example, fitting the curve closer to 4 nm will provide a 

scaling parameter closer to 2 (as shown in figure 33) and fitting the curve closer to 1 nm will 

provide a scaling parameter closer to 3 (as shown in table 4) because of the observed increase in 

complexity from pixilation at that scale. Thus interpreting the scaling parameter of the 8 pixel 

wide curve could be more appropriate over a different analysis window, perhaps between 6 and 

10 nm (although the region would be sampled over a non-scale-invariant region due to the 

limited sampling size). Nevertheless, such multifractal systems often can be characterized by a 

global scaling parameter that takes into account the various effects within the image. In the case 

of the 8 pixel curve, the global measure of 2.87 provides an adequate measure of the global 

scaling parameter as analyzed here. 

   3.3.3 The effect of pixilation 

Understanding the effect of pixilation within the test images should be utilized when 

analyzing images of dispersion, where pixilation is an unavoidable and inherent within the 

captured images of SWCNT dispersion. The observation that the 1 pixel wide circle produces a 

logarithmic power spectrum with a very slight slope and more variance highlights the effect of 

pixilation. The diagonal 1D line in figure 31d was drawn a 45 degree angle so that the effect of 

pixilation is minimized. Alternatively, the effect of pixilation is present in the remaining images, 

including the circle drawn with a 1 pixel line, and produces a measurable effect. The same effect 

of pixilation may be responsible for yielding the scaling parameter of 2.02 instead of 2.0 for the 

2D disc but, like the 1 pixel wide circle, is responsible for the greater variance across the analysis 

window when compared to the other test images. The variance due to pixilation is more 

prevalent in RPSD for the 3 pixel wide curve (figure 33) when compared to the images of larger 

characteristic width because over an 1.4 – 4 nm analysis window, the effect of edges are included 

within the characteristic shape, rather than add to the description of the characteristic shape, as is 

the case for objects wider than the analysis window.  

The pixilation effect can also be understood in terms of the Fourier components that 

determine the RPSD. The Fourier transform describes the image in terms of individual 

frequencies. Subsequently, each Fourier component, determined for the Cartesian PSD from 
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equation 41, corresponds to a specific spatial length component. Each Fourier component is 

essentially determined in terms of cosine functions used to convert the image into the frequency 

domain. Thus the pixilation effect is caused by cosine waves attempting to fit square pixels. 

Therefore, if the image is captured under conditions where the characteristic size of interest is 

approximately 3 pixels, the cosine wave used to describe the shape will be less influenced by the 

square pixels when compared to the case when the characteristic width is larger. When the object 

of interest is larger than 3 pixels, multiple spatial components will be used to describe the 

feature; cosine waves which not only represent the characteristic width but also correspond to 

fitting the square pixels along the edge of the object of interest. Unfortunately, due to 

complications arising from Gibbs phenomenon, utilizing square wave instead of cosine wave 

bases Fourier components cannot be implemented to determine the effect upon the RPSD and 

associated measurements.  

The use of harmonic functions to convert the image leads to the Fourier sampling process 

to be described as an investigation of the harmonics or periodicities within the image. 

Furthermore, the harmonic description of features leads to resonance in the PSD. This can be 

conceptualized with a musical analogy in that the PSD describes music in terms of individual 

chords. Multiple Fourier components can be used to describe the same feature, similar to how 

two instruments of different timbre produce musical notes of the same pitch (frequency) and 

loudness (amplitude). Thus a feature of 25 nm will appear at 25 nm in the PSD but also appear at 

50 nm with reduced intensity. 

Similar effects, which include the effects of edges, corners and occlusions, also influence 

the RPSD and will prove relevant when considering the images of SWCNT dispersion.  The 

addition of pixilation, edge effect, corners and occlusions all contribute to more complexity in 

the image, and thus will result in an increased measurement of the scaling parameter. 

Furthermore, the RPSD produces a measure of the periodicities or harmonics in the image, such 

that a large characteristic length will produce resonant harmonics with decreasing spatial length. 

It is important to note that the culmination of many effects, including object shape, object width, 

analysis length window, pixilation, edges and others, produce the RPSD. Thus, analyzing images 

similar in context provides the most effective form of comparison. However with careful 

analysis, the RPSD can yield useful information across wider sample sets. 
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3.4 Analyzing images of SWCNT dispersion 

 3.4.1 RPSD Results 

The images shown in figures 13 – 21 were processed following the developed 

methodology. The full RPSD for representative 5000 times magnified higher resolution (1792 x 

1792 pixel) images are shown below in figure 34. 

 

Figure 34. RPSD of representative images (1792 x 1792 pixel) from figures 13 to 17. 

 

Following the presented methodology for developing the analysis length window, the filtered 

data from figure 34 is provided in figure 35. Notice how each specimen type shows a distinct 

slope when fit with equation 48. 
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Figure 35. RPSD analysis length window of the spectrum in figure 34. 

 

These slopes, characterized as the scaling parameter of dispersion, can be analyzed and 

compared as a technique to quantify the SWCNT network. The RPSD results for the 1.0 wt% 

SWCNT PMMA, 5.0 wt% SWCNT PMMA, 0.1 wt% SWCNT PMMA/PS, 0 .5 wt% SWCNT 

PMMA/PS and  1.0 wt% SWCNT PMMA/PS nanocomposites provided in tables 5, 6, 7, 8 and 9, 

respectively. Tables below provide information regarding the imaging surface (the side against 

the glass casting plate or the side exposed to air) in the order presented in figures 13 – 21, 

magnification, resolution, pixel size, analysis length window (range) as well as the scaling 

parameter and coefficient of determination obtained from both the traditional chi-squared fit and 

from statistical weighting. 
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Table 5. RPSD results for the 1.0 wt% SWCNT PMMA samples shown in figures 13 and 18. 

1.0 wt% 
SWCNT 
PMMA 

Surf. Mag. Res. 
Pixel 
(nm) 

Range 
(nm) 

Scaling 
Parameter 
(chi 
square) 

           
R^2 

Scaling 
Parameter 
(statistical 
weight) 

           
R^2 

Air 250 896 400 
540-

1635 
1.49 0.98 1.51 0.98 

Air 500 896 200 
270-

817 
1.12 0.95 1.1 0.96 

Air 1000 896 100 
135-

409 
1.21 0.91 1.14 0.91 

Glass 5000 896 20 27-82 1.12 0.89 1.15 0.9 

Air 5000 896 20 27-82 0.87 0.84 0.92 0.86 

Air 5000 896 20 27-82 0.977 0.9 1 0.91 

Air 5000 1792 10 14 - 40 1.52 0.98 1.54 0.98 

Air 5000 1792 10 14 - 40 1.43 0.97 1.46 0.97 

Air 5000 1792 10 14 - 40 1.51 0.97 1.58 0.97 

Glass 10000 896 10 14 - 40 1.6 0.97 1.72 0.96 

Air 10000 896 10 14 - 40 1.7 0.95 1.84 0.95 

Air 10000 896 10 14 - 40 1.68 0.97 1.77 0.97 

Air 10000 1792 5 7 – 20 1.52 0.98 1.49 0.98 

Air 10000 1792 5 7 – 20 1.73 0.98 1.74 0.98 
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Table 6. RPSD results for the 5.0 wt% SWCNT PMMA samples shown in figures 14 and 19. 

5.0 wt% 
SWCNT 
PMMA 

Surf. Mag. Res. 
Pixel 
(nm) 

Range 
(nm) 

Scaling 
Parameter 
(chi 
square) 

           
R^2 

Scaling 
Parameter 
(statistical 
weight) 

           
R^2 

Air 5000 896 20 27-82 0.72 0.88 0.71 0.88 

Air 5000 896 20 27-82 0.56 0.82 0.58 0.82 

Air 5000 1792 10 14 - 40 1.06 0.95 1.09 0.96 

Air 5000 1792 10 14 - 40 0.81 0.95 0.84 0.94 

Air 10000 896 10 14 - 40 1.3 0.92 1.4 0.93 

Air 10000 896 10 14 - 40 1.21 0.94 1.26 0.94 

Air 10000 896 10 14 - 40 1.07 0.93 1.11 0.93 

Air 10000 1792 5 7 - 20 2.78 0.98 2.9 0.97 

Air 10000 1792 5 7 - 20 2.42 0.99 2.48 0.98 

Air 10000 1792 5 7 - 20 2.37 0.98 2.49 0.98 

 

Table 7. RPSD results for the 0.1 wt% SWCNT PMMA/PS samples shown in figure 15. 

0.1 wt% 
SWCNT 
PMMA/PS 

Surf. Mag. Res. Pixel 
(nm) 

Range 
(nm) 

Scaling 
Parameter 
(chi 
square) 

           
R^2 

Scaling 
Parameter 
(statistical 
weight) 

           
R^2 

Air  5000 1792 10 14 - 40 1.74 0.96 1.86 0.96 

Air  5000 1792 10 14 - 40 1.6 0.96 1.74 0.96 

Air  10000 1792 5 7 - 20 2.24 0.99 2.3 0.99 

Air 10000 1792 5 7 - 20 3 0.99 3.26 0.99 
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Table 8. RPSD results for the 0.5 wt% SWCNT PMMA/PS samples shown in figures 16 and 20. 

0.5 wt% 
SWCNT 
PMMA/PS 

Surf. Mag. Res. 
Pixel 
(nm) 

Range 
(nm) 

Scaling 
Parameter 
(chi 
square) 

           
R^2 

Scaling 
Parameter 
(statistical 
weight) 

           
R^2 

Glass 100 896 1000 
1352-

4087 
0.18 0.27 0.17 0.24 

Glass 250 896 400 
540-

1635 
1.03 0.93 1.08 0.94 

Glass 500 896 200 
270-

817 
1.22 0.96 1.21 0.95 

Air 500 896 200 
270-

817 
1.22 0.94 1.24 0.95 

Glass 1000 896 100 
135-

409 
1.03 0.94 1.03 0.94 

Air 1500 896 66.7 90-272 1.02 0.94 1 0.94 

Glass 2500 896 40 54-163 0.83 0.87 0.82 0.88 

Air 2500 896 40 54-163 1 0.93 1.01 0.92 

Air 2500 896 40 54-163 0.79 0.88 0.82 0.89 

Glass 5000 896 20 27-82 1.27 0.92 1.34 0.96 

Air 5000 896 20 27-82 0.98 0.9 1.02 0.9 

Air 5000 896 20 27-82 0.87 0.85 0.93 0.86 

Air 5000 1792 10 14 - 40 1.21 0.94 1.29 0.94 

Air 5000 1792 10 14 - 40 1.16 0.95 1.23 0.94 

Glass 7000 896 14.3 19-58 1.13 0.89 1.22 0.9 

Air 7000 896 14.3 19-58 1.3 0.96 1.37 0.95 

Air 7000 896 14.3 19-58 1.08 0.87 1.17 0.88 

Glass  10000 896 10 14-40 1.5 0.89 1.7 0.9 

Glass 10000 896 10 14-40 1.42 0.93 1.6 0.93 
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Table 9. RPSD results for the 1.0 wt% SWCNT PMMA/PS samples shown in figures 17 and 21. 

1.0 wt% 
SWCNT 
PMMA/PS 

Surf. Mag. Res. 
Pixel 
(nm) 

Range 
(nm) 

Scaling 
Parameter 
(chi 
square) 

           
R^2 

Scaling 
Parameter 
(statistical 
weight) 

           
R^2 

Air 250 896 400 
540-

1635 
1.43 0.96 1.45 0.96 

Air 500 896 200 
270-

817 
1.43 0.96 1.39 0.95 

Air 1000 896 100 
135-

409 
0.98 0.96 0.99 0.95 

Air 2500 896 40 54-163 0.8 0.88 0.77 0.87 

Air 2500 896 40 54-163 0.62 0.84 0.64 0.85 

Air 5000 896 20 27-82 0.67 0.86 0.68 0.86 

Air 5000 896 20 27-82 0.79 0.9 0.82 0.91 

Air 5000 1792 10 14 - 40 0.94 0.93 0.99 0.93 

Air 10000 896 5 14 - 40 1.2 0.93 1.25 0.93 

Air 10000 896 5 14 - 40 1.24 0.89 1.33 0.9 

Air 10000 896 5 14 - 40 1.06 0.87 1.17 0.88 

Air 10000 1792 5 7 - 20 1.15 0.93 1.24 0.93 

 

As previously discussed, the spectral density of the 8 pixel curve shows multifractal 

behavior with multiple regions that could be fit with equation 48. Ideally, the windowed region 

to analyze the SWCNT composites is specified to contain a monofractal region, but often such a 

Glass 10000 896 10 14-40 1.66 0.94 1.82 0.95 

Air 10000 896 5 7 - 20 1.39 0.9 1.55 0.91 

Air 10000 896 5 7 - 20 1.58 0.91 1.82 0.91 

Air 10000 896 5 7 - 20 1.5 0.95 1.64 0.94 

Air 10000 1792 5 7 - 20 1.61 0.96 1.76 0.96 
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region produces an ambiguous scaling parameter. The coefficient of determination, shape of the 

logarithmic curve and result for the scaling parameter are often enough to determine if a direct 

interpretation of the bounded RPSD is applicable. Additionally, the increase in the amount of 

variance at larger lengths often produces a poor fit and possibly a poor representation of the true 

scaling parameter. In the tables above, any scaling parameter determined with a coefficient of 

determination below 90% in shown red text. 

Notice, in general, that each specimen type is described by a scaling parameter that is 

reasonable conserved for each sample over a magnification window between 1000 and 5000 

times magnification, and/or another between 5000 and 10000 times magnification. Also, the 

results from both fitting techniques (chi-square and statistical weighting) show reasonable 

correlation. Essentially, either fitting technique can be utilized to determine the scaling parameter 

over the defined analysis window. However, if the data shows greater variance at the larger 

length range (near the dominant feature region in figure 23), fitting with statistical weighting 

yields more accurate correlation and will be utilized throughout the remainder of the study.  

Notice that the scaling parameters show relatively consistent trends that are specific to 

each sample, particularly when taking into account the coefficient of determination. The 1.0 wt% 

SWCNT PMMA/PS specimen is found to contain the lowest scaling parameter of the sample set. 

The value for the scaling parameter is progressively followed by the 0.5 wt% SWCNT 

PMMA/PS, 1.0 wt% SWCNT PMMA, 5.0 wt% SWCNT PMMA and 0.1 wt% SWCNT 

PMMA/PS specimens, respectively. 

The overall trend is not very intuitive because of the effect of all the variables involved in 

determining the spectral density slope. However, with careful analysis the results can be 

adequately interpreted. First, notice that the 0.1 wt% SWCNT PMMA/PS specimen shows the 

highest overall trend of the measured scaling parameter with increasing magnification. This is 

counterintuitive to the expected result based upon the images of dispersion if figure 15. Figure 15 

shows well dispersed straight tubes and thus should correspond to a lower scaling parameter. 

However, the low SWCNT loading does not provide a conductive nanotube network adequate 

for unblemished high-contrast imaging. As previously mentioned, the images of the 0.1 wt% 

SWCNT PMMA/PS specimen were captured at the absolute limit of the microscopes operational 

range. This proved to inadequately deliver the resolution necessary for dispersion analysis 
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because the lack of a thorough conductive network yields to electrical saturation of the polymeric 

regions surrounding a single SWCNT or bundle of SWCNT. As the polymer saturates, it 

increasingly stores electrical charge as the area progressively materializes within HR-SEM high-

contrast images. This effect can be seen in the images of figure 15. Notice how the polymeric 

regions surrounding the nanotubes are more visible than the rest of the specimens and begin to 

represent the surface of a 3D object. The tubes are analyzed in this case as surface features of a 

rough 3D agglomeration of polymer and SWCNT and therefore cannot directly be compared to 

the other specimens. The 5.0 wt% SWCNT PMMA specimen also shows unintuitive results. 

Again, a thorough investigation yields an appropriate interpretation of the image. Upon closer 

analysis, the analysis length window (the range in the figures above) for the 5.0 wt% SWCNT 

PMMA specimen (7 - 87 nm) does not adequately capture information on large agglomerated 

structures.  

Alternatively, the 1.0 wt% SWCNT PMMA/PS, 0.5 wt% SWCNT PMMA/PS and 1.0 

wt% SWCNT PMMA specimens provide an excellent opportunity not only to measure and 

describe dispersion within these images, but also investigate the ability to compare scaling 

parameters over different specimens.  However, first it is advantageous to investigate the 

transition in the scaling parameter between the general regions of 1000 to 5000 times 

magnification and the scaling parameter obtained from the majority of images above 5000 times 

magnification. 

3.4.1.1 Determining the length window for analysis 

Determining the appropriate analysis length window is a factor of many variables, 

including magnification, resolution, imaging conditions and the characteristic size of the object 

of interest.  The test images have shown that the presented methodology for image analysis and 

the spectrum splitting technique that optimal measurements of the scaling parameter are obtained 

when the characteristic length is approximately 3 pixels wide. From the higher resolution (1792 

x 1792 pixel) images, we can determine the approximate width of the imaged characteristic tube 

or bundle width in terms of nanometers or pixels. In order to investigate the ability for the 

PMMA and PMMA/PS polymers to interact with and disperse individual SWCNT, the 

characteristic length (and thus the focus of the analysis length window) will be set to what appear 

to be the width of single SWCNT. High-contrast imaging of conductive nanofiller with an 
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insulating material proves to greatly exaggerate the size. The difference in the imaged size of the 

SWCNT (assuming the tubes are individually dispersed) can be determined by enlarging the 

image to determine the characteristic width of the imaged SWCNT in terms of pixels. Figure 36 

below shows enlarged SWCNT within the 5000 times magnified 0.5 wt% SWCNT PMMA/PS 

and 10000 times magnified 1.0 wt% SWCNT PMMA/PS (1792 x 1792 pixel) images, 

respectively. Equivalent results are obtained for the PMMA based nanocomposites. 

   

Figure 36. The effect of high-contrast imaging: enlarged SWCNT within the a) 5000 times 

magnified 0.5 wt% SWCNT PMMA/PS and b) 10000 times magnified 1.0 wt% SWCNT 

PMMA/PS (1792 x 1792 pixel) images. Each pixel is a) 10nm and b) 5nm wide. 

 

From figure 36a, the width of the SWCNT bundle at (1792 x 1792 pixel) 5000 times 

magnification is approximately 3 pixels depending upon angle of measurement with respect to 

the square shaped pixels. From figure 36b, the width of the SWCNT bundle at (1792 x 1792 

pixel) 10000 times magnification is approximately 5 to 6 pixels. From table 2 the characteristic 

SWCNT width within the high-contrast images can be estimated to be approximately 25 to 30 

nm. The manufacturer claims the tubes are 1 ± 0.3 nm in diameter. Thus, the high-contrast 

imaging process is assumed to enlarge the width of SWCNT bundles within the PMMA/PS 

copolymer almost 30 times the diameter of an individual SWCNT. This either indicates high-
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contrast imaging causes the individual SWCNTs to appear over 30 times larger, or more 

realistically, that individual bundles of SWCNT appear 25 – 30 nm in diameter. 

Therefore, to measure the characteristic length of SWCNT dispersion within the images 

specimens, an appropriate analysis length window would center around 25 – 30 nm. The 

previous tables providing the results of PRSD analysis, it can be seen that the analyzed length 

range between 7 – 20 nm for the higher resolution (1792 x 1792 pixel) 10000 times magnified 

images is too limited to capture information relevant to SWCNT dispersion and, in fact, is 

weighted by pixilation information (as was the case with the test images constructed with thicker 

lines).  Therefore, the appropriate analysis window for these samples is better captured with 

lower resolution or lower magnification (when compared to the higher resolution 10000 times 

magnified images) in order to capture a length window which contains the characteristic length, 

which in this case is the apparent SWCNT bundle diameter of 25 – 30 nm.  

Interestingly, even though the 10000 times magnified lower resolution (896 x 896 pixel) 

and 5000 times magnified higher resolution (1792 x 1972 pixel) images contain the same pixel to 

length ratio (with the exception of the 1 wt% SWCNT PMMA/PS specimen), the 10000 times 

magnified lower resolution (896 x 896 pixel) images follow the same trend as the higher 

resolution (1792 x 1972 pixel) 10000 times magnified images. Similarly, the 5000 times 

magnified higher resolution (1792 x 1972 pixel) images follow the trend of the 5000 times 

magnified lower resolution (896 x 896 pixel) images. From the RPSD results, the 5000 times 

magnifies higher and lower resolution images appear to provide the most appropriate measure 

for the local scale parameter at the microscopic level for SWCNT dispersion without noticeable 

influence of measuring pixilation along the edge of an object considerably wider than 3 pixels. 

The higher resolution (1792 x 1792 pixel) 10000 times magnified images prove to contain too 

limited of a range of information relevant to local SWCNT dispersion and should be omitted. 

The potential of expanding the large scale boundary of the analysis length window for the 10000 

times magnified (896 x 896 pixel) images to attempt capturing the same information as the 5000 

times magnified images is examined in the following section.  
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3.4.1.2 Expanding the length window of analysis 

It is of interest to investigate the limits of the upper bound of the fractal length window in 

order to determine if it is possible to capture information that is perhaps more descriptive of 

SWCNT dispersion in the higher magnification images, such as the images above 5000 times 

magnification that yield an increased measurement of the scaling parameter due to the 

unavoidable effect of pixilation.  Expanding the analysis window of higher magnified images 

will allow for comparison with the measured scaling parameter over an equivalent analysis 

window for an image of lesser magnification. The results for expanding the magnification 

window of the lower resolution (896 x 896 pixel) 10000 times magnified images are provided in 

table 10 below. This test provides insight into the overall scale invariant nature of the imaged 

dispersion and the potential to measure the scaling parameter over the non-scale-invariant region.   

 

Table 10. Comparison of the scaling parameter obtained over various analysis length widows 

for the 896 x 896 pixel 10000 times magnified images in figures 18 – 21.  

Sample Surface Range 
(nm) 

Scaling 
Parameter 
(statistical 

weight) 

        
R^2 

1.0 wt% 
SWCNT 
PMMA 

Glass 

  

  

  

14-40 1.72 0.96 

27-80 0.93 0.88 

20-60 1.22 0.91 

14-80 1.37 0.92 

Air 

  

  

  

14-40 1.84 0.95 

27-80 0.94 0.86 

20-60 1.32 0.94 

14-80 1.33 0.92 

Air 

  

  

14-40 1.77 0.97 

27-80 1.11 0.94 

20-60 1.19 0.97 
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  14-80 1.38 0.95 

5.0 wt% 
SWCNT 
PMMA 

Air 

  

  

  

14-40 1.4 0.93 

27-80 0.61 0.75 

20-60 0.91 0.85 

14-80 1.02 0.89 

Air 

  

  

  

14-40 1.11 0.93 

27-80 0.5 0.7 

20-60 0.67 0.81 

14-80 0.8 0.89 

Air 

  

  

  

14-40 1.26 0.94 

27-80 0.55 0.66 

20-60 0.79 0.81 

14-80 0.91 0.88 

0.5 wt% 
SWNT 
PMMA/PS 

Glass 

  

  

  

14-40 1.7 0.9 

27-80 0.87 0.87 

20-60 1.16 0.91 

14-80 1.24 0.92 

Glass 

  

  

  

14-40 1.6 0.93 

27-80 0.57 0.79 

20-60 0.99 0.89 

14-80 1.23 0.85 

Glass 

  

  

  

14-40 1.82 0.95 

27-80 0.61 0.78 

20-60 0.9 0.83 

14-80 1.14 0.88 

Air 

  

  

  

14-40 1.55 0.91 

27-80 0.5 0.53 

20-60 1 0.83 

14-80 1.14 0.82 
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Air 

  

  

  

14-40 1.82 0.91 

27-80 0.67 0.73 

20-60 1.06 0.93 

14-80 1.15 0.86 

Air 

  

  

  

14-40 1.64 0.94 

27-80 1.4 0.88 

20-60 1.05 0.88 

14-80 1.4 0.93 

1.0 wt% 
SWCNT 
PMMA/PS 

Air 

  

  

  

14-40 1.25 0.93 

27-80 0.5 0.51 

20-60 0.84 0.83 

14-80 0.88 0.84 

Air 

  

  

  

14-40 1.33 0.9 

27-80 0.33 0.48 

20-60 0.68 0.79 

14-80 0.88 0.82 

Air 

  

  

  

14-40 1.17 0.88 

27-80 0.35 0.51 

20-60 0.4 0.63 

14-80 0.78 0.82 

 

The results from table 10 show that the scaling parameter determined over equivalent 

length regions that do not necessarily contain the so-called scale invariant region can be 

reasonably compared from sample to sample when the captured images contain relevant 

information at characteristic lengths of approximately 5 to 6 pixels. The best coefficient of fit for 

the 10000 times magnified (896 x 896 pixel) images is obtained when including only the scale 

invariant region (14 nm – 40 nm) within the length range, followed by the largest overall length 

region containing the full scale invariant region (14 nm – 80 nm). Thus, as expected the 

coefficient of determination deceases as the amount of scale invariant length components are 

removed. Furthermore, the results obtained when expanding the upper end of the analysis length 
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window show more similarity with the images of lower magnification. Thus expanding the 

length range for analysis effectively reduces the effect of pixilation for these images and 

produces more relevant results. 

Similarly notice that the expanded length range can account for the discrepancy in the 

scaling parameter measured between the poor and good quality images the 10000 times 

magnified images (896 x 896 pixel) of the 5 wt% SWCNT PMMA specimen (figure 19 and table 

6). Thus, expanding the length range for analysis in an effective method to remove some of the 

ambiguity produced from certain imaging effects as well as from the increased effects of 

pixilation as the characteristic size of the object increases. This technique can also be utilized to 

account for poor focus at the finer length scales and compare high-contrast images taken over 

different magnifications, with different microscopes or of different material systems (due to the 

fact that a given type of polymer may impart specific characteristics, such as the apparent 

nanotube thickness, electron saturation and the associated limitations in resolution, into the 

image).  

3.4.1.3 Investigation of self-affinity 

Essentially, the images have been captured following the schematic representation of 

capturing images over the same surface at increasing magnification shown below in figure 37. 
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Figure 37. Schematic representation of capturing images of dispersion at increasing 

magnification in order to investigate the self-affine nature. 

 

 Sets of images captured in this manner provide an opportunity to test the self-affine 

nature of the imaged dispersion by comparing the result over a range of magnification.  

Attempting to prove that the dispersion is self-affine by is an important consideration during the 

analysis of these images. This is important because the power spectrum method and fBm are 

both built upon the assumption that the system being measured is self-affine.  If the scaling 

parameter is reasonably stable over appropriate fractal length and magnification windows but 

different from specimen to specimen analyzed, the assumption of measuring a scaling parameter 

describing a self-affine system is further supported. Similar to observing that a similar scaling 

parameter can be measured across various magnifications, the scaling parameter at various 

locations along a surface can also be investigated for consistency. The final investigation of self-

affinity involves comparing the scaling parameter determined from a 1D PSD obtained when 

slicing the image in 3 different ways; radially, horizontally and vertically. 

The results from the previous sections show that the scaling parameter on both the glass 

and air surface for multiple locations and magnifications is relatively consistent when following 

the presented methodology and taking into account the coefficient of determination, omitting the 



107 
 

1792 x 1792 pixel 10000 times magnified images and expanding the length range for analysis of 

the 896 x 896 pixel 10000 times magnified images. Thus a somewhat consistent scaling 

parameter can be obtained over the appropriate analysis windows across different surfaces, 

positions, magnifications and combinations of the three which indicates self-affinity.  

Furthermore, the scaling parameters are shown to be relatively specimen specific, signifying the 

usefulness of the presented dispersion analysis technique. 

Notice that overall the scaling parameter numerically increases with increasing 

magnification, especially between 5000 and 10000 times magnification. The trend shows an 

increasing scaling parameter with increasing magnification and associated pixilation effects, a 

result expected from the previous investigation of the test images. The absence of this trend over 

the 1000 to 5000 times magnified images indicates that the imaged dispersion is a self-affine 

system over this magnification window.   

In an effort to further validate the self-affine assumption of the fBm, the scaling 

parameters from the radial 1D PSD (RPSD) and the standard 1D are compared. Table 11 below 

shows the relationship between the scaling parameters obtained from two standard 1D PSDs, 

determined from the averages of horizontally, vertically or radially slicing the image. 

 

Table 11. The scaling parameters obtained from the 1D horizontal, vertical and radial PSDs for 

the 5000 times magnified images in figures 13 – 21.  

 
Sample 

Surface 
PSD 
direction 

Scaling 
Parameter 
(statistical 
weight) 

                     
R^2 

1.0 wt% 
SWCNT 
PMMA 

Air 

  

  

radial 1.54 0.98 

horizontal 1.3 0.99 

vertical 1.34 0.98 

Air 

  

  

radial 1.46 0.97 

horizontal 1.31 0.99 

vertical 1.21 0.98 
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Air 

  

  

radial 1.58 0.97 

horizontal 1.37 0.98 

vertical 1.31 0.98 

5.0 wt% 
SWCNT 
PMMA 

Air 

  

  

radial 1.09 0.96 

horizontal 1.19 0.97 

vertical 1.06 0.97 

Air 

  

  

radial 0.84 0.94 

horizontal 0.99 0.96 

vertical 0.94 0.97 

0.1 wt% 
SWCNT 
PMMA/PS 

Air 

  

  

radial 1.86 0.96 

horizontal 1.58 0.97 

vertical 1.75 0.97 

Air 

  

  

radial 1.74 0.96 

horizontal 1.59 0.98 

vertical 1.56 0.97 

0.5 wt% 
SWCNT 
PMMA/PS 

Air 

  

  

radial 1.29 0.94 

horizontal 1.36 0.97 

vertical 1.34 0.98 

Air 

  

  

radial 1.23 0.94 

horizontal 1.19 0.97 

vertical 1.22 0.97 

1.0 wt% 
SWCNT 
PMMA/PS 

Air 

  

  

radial 0.99 0.93 

horizontal 1 0.97 

vertical 1.06 0.97 

 

This relative stability of the scaling parameter for each image and for different images of 

each specimen also validates the assumption that the proposed method is characterizing a self-

affine surface. Notice that the horizontal streaking in the 0.1 wt% SWCNT PMMA/PS images in 

figure 15b does not appreciably affect the resulting scaling parameter.  As was the case with 
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previous investigation of self-affinity, it is assumed that the slight discrepancies between the 

results is not due to the inappropriate application of self-affinity, but rather can be attributed to 

the fact that the images imperfectly represent a partially captured fractal-like self-affine network.  

The relative stability of scaling parameter regardless of position, magnification or computation 

orientation reinforces the validity of a self-affine surface and characterizing SWCNT dispersion 

in terms of a fractal nature.  Therefore, the scaling parameters determined for different specimens 

can be considered representative of the overall dispersion within the nanocomposite and 

compared. 

3.4.1.4 Interpretation of the RPSD results 

In the case of the 0.1 wt% PMMA/PS specimen, the nanotubes are analyzed as surface 

features of a rough 3D agglomeration of polymer and SWCNT resulting from and inadequate 

high-contrast electrical percolation network. Therefore the nature of dispersion, in very general 

terms, may be compared with the other samples by conceptualizing the dispersed SWCNT as 

surface features captured in a 2D projection of a 3D object and comparing the measured fractal 

dimension as if it was determined for a 3D object. This is accomplished by simply determining 

the fractal dimension of the conceptualized 3D object in three Euclidian dimensions, using 

equation 34, rather than two Euclidian dimensions (equation 35).  Thus the scaling parameters 

provided in table 7 can be compared with the others by simply subtracting 1. A more intuitive 

overall trend with respect to all specimens is observed when the adjusted scaling parameter is 

used for images that suffer from so-called saturation caused from low filler loading. 

Alternatively, such images can be adjusted in order to remove the saturated areas to retain 

information on the SWCNT only. However, the purpose here is to standardize the image analysis 

process without individual image modification. 

Lower magnification 5.0 wt% SWCNT PMMA images (2500 times magnified and 

below) indicated a strong measure of white noise due to excessive charging of the polymer in the 

captured area and did not produce measurable results. This affliction, to a lesser degree, is also 

present in the lower resolution (896 x 896 pixel) 5000 times magnified images, as indicated by 

the lower values for coefficient of determination. The higher resolution (1792 x 1792 pixel) 5000 

and 10000 times magnified images of the 5.0 wt% SWCNT PMMA specimen only capture 

information relevant to the straight SWCNT present outside the agglomerated regions, as can be 
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seen in figure 14e. Thus the observed scaling parameter for the 5.0 wt% SWCNT PMMA 

specimen is adequately measuring dispersion, just not over the length scale necessary to quantify 

the dispersion of higher weight percent SWCNT specimen and compare with the other samples. 

The 1.0 wt% SWCNT PMMA, 0.5 wt% SWCNT PMMA/PS and 1.0 wt% SWCNT 

PMMA/PS specimens produce relevant scaling parameters for direct comparison. The average 

scaling parameter with a coefficient of determination above 0.90 from the 5000 times magnified 

images from tables 5 to 9 and 11 with the associated fractal dimension (equation 34) is provided 

below in table 12.  

 

Table 12. Average scaling parameter and fractal dimension from the high-contrast 5000 times 

magnified PMMA and PMMA/PS nanocomposite images. 

Sample 
Average Scaling 
Parameter (stat. 
weight) 

Standard Deviation 
of Scaling 
Parameter 

Average Fractal 
Dimension 

1.0 wt % SWCNT 
PMMA 

1.37 0.17 2.82 

0.5 wt% SWCNT 
PMMA/PS 

1.22 0.14 2.89 

1.0 wt% SWCNT 
PMMA/PS 

0.97 0.09 3.01 

 

The higher resolution 5000 times images were compared in order to sample the spectrum 

around the high-contrast influenced SWCNT characteristic width of 25 – 30 nm with limited 

pixilation effect. The average scaling parameters determined from the PSDs are shown to fall 

from the highest average value of 1.37 for the 1.0 wt% SWCNT PMMA specimen followed by 

1.22 for the 0.5 wt% SWCNT PMMA/PS specimen to 0.97 for the 1.0 wt% SWCNT PMMA/PS 

specimen. Through equation 35, these values correspond to fractal dimensions of 2.82, 2.89 and 

3.01 for the 1.0 wt% SWCNT PMMA, 0.5 wt% SWCNT PMMA/PS and 1.0 wt% SWCNT 

PMMA/PS specimens, respectively. The addition of PS to PMMA is shown to improve the 

resulting dispersion as a result of the addition of an aromatic moiety along a side chain.  
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The scaling parameter of the 0.5 wt% PMMA/PS specimen was higher than the 1.0 wt% 

PMMA/PS specimen. The effect of percentage filling material upon the measured scaling 

parameter is a difficult trend to define. Therefore, an interpretation based upon the given results 

is presented. The percent-filler trend from 0.5 to 1.0 wt% SWCNT can perhaps be attributed to 

the observation that a larger percentage of filler material within the same imaged volume yields 

more occlusion which is reflected in the power spectrum. As the percent filling material 

increases from 0.5 to 1.0 wt% SWCNT in PMMA/PS, additional occlusion gives rise to surplus 

information regarding corners, pixilation and edge effects but also relatively more information 

regarding the nature of the characteristic length of interest and the associated self-affinity. Thus 

the RPSD is less weighted by the effects of pixilation, edges and corners with additional filling 

material. This trend is specific to SWCNT (due to the large aspect ratio) and only appropriate 

over a given range of filling material. The trend will reverse before 5.0 wt% SWCNT filler is 

reached and is observed as further occlusion produces larger imaged agglomerations. The 

measured scaling parameter will begin to increase at some point between 1.0 and 5.0 wt % 

SWCNT when the power spectrum becomes more weighted by pixilation, edges and corners than 

information pertaining to the characteristic width and related self-affinity. As the percent filler is 

further increased the sizes of agglomerations amass to an extent outside the range of analysis for 

the 5000 times magnified images and the trend is again reversed, as indicated in the analysis of 

the 5 wt% SWCNT PMMA specimen. Also, the effect of saturation and imaging induced 

damage results in the additional measurement of white noise. These two effects both effectively 

lower the measured scaling parameter after a given threshold between 1.0 and 5.0 wt% SWCNT 

has been reached. Therefore, comparison between specimens of different loading amounts can be 

accomplished after taking the intricate percentage-filler trend into account. The measured scaling 

parameter indicates an improvement of SWCNT dispersion originating from the favorable 

interaction between SWCNT and PMMA/PS copolymer over the PMMA homopolymer, a trend 

visually observed in the images dispersion.   

4. Summary  

The standardized procedure developed for analyzing high-contrast images of dispersion 

provides an essential tool not only to quantitatively measure and compare dispersion within 

formed nanocomposites but to do so without bias. The measured shape of dispersion, in terms of 
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the scaling parameter, for these materials was shown to meet the requirement of self-affinity in 

order to employ the proposed method. Finally, the techniques developed to describe SWCNT 

dispersion with scaling parameters (Study Two) are consistent with the characteristic lengths 

(Study One). This in turn will facilitate the modeling and processing of these and similar 

materials as well as enable the formation of nanocomposites with enhanced physical properties. 
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4.0 CHAPTER FOUR: STUDY THREE 

 

“Carbon Nanotube Dispersion within Polymer Nanocomposites: Validation of the Fractal 

Quantification Method and the Relationship with Enhanced Physical Properties”  

 

Abstract 

The previous studies provide innovative methods to consistently measure single wall 

carbon nanotube (SWCNT) dispersion within a hosting material, given that the nanocomposite is 

susceptible to high-contrast (poly-transparent, high kV or voltage-contrast) imaging and contains 

relatively low filler content. In an effort to improve the usefulness of those dispersion analysis 

techniques, the dispersion measured directly from high resolution scanning electron microscopy 

(HR-SEM) high-contrast images is compared to the measurement of dispersion determined from 

one state-of-the-art techniques in SWCNT dispersion characterization: small angle neutron 

scattering (SANS).  The approach presented in Study Two provides a measurable quantity 

proportional to the fractal dimension of the dispersion measured directly from the power 

spectrum of the high-contrast HR-SEM images and produces an intuitive method and 

measurement of the SWCNT dispersion quality. This method will be compared to one of the 

only available methods to measure SWCNT dispersion within a formed composite, SANS. 

Subsequently, the relationship between the dispersion quality and resulting physical property 

improvements (Young’s modulus and glass transition temperature) as a function of SWCNT 

content will be investigated for SWCNT-nanocomposites composed of two different hosting 

polymers; a homopolymer and its copolymer with a monomer containing an aromatic moiety, 

which is hypothesized to improve the dispersion interaction between polymer and nanotube. The 

hosting polymer with better theorized SWCNT dispersion qualities is shown to more readily 

benefit from the addition of SWCNT and indicates that SWCNT dispersion is achieved at the 

microscopic level. 
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1. Introduction 

The novel dispersion quantification methods previously described would benefit from the 

validation from one state-of-the-art technique in dispersion characterization, small angle 

scattering analysis. Similar comparisons have been made to compare dominant length feature 

measurements between small angle x-ray scattering (SAXS) and Fourier analysis of both TEM 

images of nanoparticle assemblies [1] and scanning transmission electron microscopy of 

nanoclay-polymer nanocomposites [2]. Small angle studies have also been used to characterize 

the fractal dimension SWCNT dispersion in suspensions [3-5], within formed epoxy and ceramic 

based nanocomposites [6, 7] plus differentiate the characteristic size of colloidal dispersed silica 

particles [8]. Here, the measured dispersion quality obtained from the method presented in Study 

Two and small angle neutron scattering (SANS) analysis of the series of thin film SWCNT-

polymer nanocomposites are compared.  

One motivation to provide and validate a SWCNT dispersion quantification method is to 

investigate the potential to improve the material properties of a nanocomposite through the 

selection of hosting materials with traits that encourage improved dispersion [9-15] and physical 

kinetic mixing [16-21]. Thus the risk of damage to individual SWCNT through excessive kinetic 

based mixing methods or the addition of catalysts/surfactants intended to produce enhanced 

dispersion is curtailed [22-48]. The relationship between polymer chemistry, nanofiller and 

fabrication method with the resulting SWCNT dispersion can be utilized as a tool to evaluate the 

potential for designing nanocomposites with favorable or tailored physical properties measured 

at the macro level through attempting to control dispersion at the microscopic level. 

Furthermore, certain material characteristics of SWCNT nanocomposites, such as the ability to 

resist dielectric breakdown, may only be realized when dispersion between the nanotubes and 

individual polymer chains is accomplished at the microscopic (local, nano or molecular) level.  

In an effort to correlate dispersion with resulting material properties and investigate the 

potential to achieve SWCNT dispersion at the microscopic level, the relationship between 

dispersion quality and material property improvement is investigated for the samples presented 

in Study Two. Correlating SWCNT dispersion with measured physical properties is inherently 

difficult when considering nanocomposites composed of percolated networks in which the 

amount of the hosting material vastly surpasses the counterpart, particularly when the less 
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prevalent counterpart influences the material properties of interest. Thus, it is desirable to present 

the relationship between the quantified dispersion and measured physical properties through 

considering material properties that are conceivably altered directly by the SWCNT dispersion 

quality and can be measured utilizing methods which adequately correlate a measured parameter 

with dispersion at the appropriate level.  

Here, the relationship between SWCNT content, dispersion quality at the local level and 

the relative global improvements in glass transition temperature and stiffness are investigated in 

an attempt to provide a straightforward and fundamental analysis.  An improvement in the 

stiffness, measured in terms of Young’s modulus, indicates enhanced reinforcement obtained 

through inclusion of the structural filler. An improvement in the globally measured Young’s 

modulus may indicate that the SWCNT rather than the polymer chains more prevalently 

distribute the mechanical load to help retain the thin film nanocomposite’s structural integrity. 

The improvement in the glass transition temperature at low SWCNT loadings can indicate that 

the SWCNT are readily dispersed through appreciating that the SWCNT efficiently absorb 

additional thermal energy and store the energy within the sp2 bonding structure of SWCNT 

instead of the individual copolymer chains. The ability for the nanocomposite to store this 

thermal energy as vibrations rather than allow the thermal energy to heat individual polymer 

chains safely allow the nanocomposite to experience higher temperatures without melting and 

thus realize an improvement in the global glass transition temperature.  

2. Materials and Methods 

 2.1 Materials 

2.1.1 PMMA and PMMA/PS nanocomposites 

The sample set contains the same sample set as analyzed in sample 1. The thin film 

nanocomposites were created with varying amounts of nanotubes with a polymer and its 

copolymer, which is hypothesized to result in improved dispersion thorough the addition of an 

aromatic moiety in the form of a phenyl ring. Polymethylmethacrylate (PMMA), polystyrene  

(PS) and the copolymer of both (PMMA/PS), shown in figures 1, 2 and 3 of Study Two, were 

combined with varying amounts of single-walled carbon nanotubes in hopes of creating 
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nanocomposites with enhanced properties.  The two matrices were chosen due to their different 

hypothesized interaction with SWCNT and the resulting dispersion.  

Several thin film nanocomposite samples were fabricated along with the corresponding 

neat polymers. These samples are summarized in table 1 below. 

 

Table 1. PMMA and PMMA/PS nanocomposite thin films compositions. 

Sample Polymer composition Percent SWCNT (weight %) 
PMMA 0 100 % PMMA 0 

PMMA 1 100 % PMMA 1.0 

PMMA 5 100 % PMMA 5.0 

PMMA/PS 0 70 % PMMA - 30% PS 0 

PMMA/PS 0.1 70 % PMMA - 30% PS 0.1 

PMMA/PS 0.5 70 % PMMA - 30% PS 0.5 

PMMA/PS 1 70 % PMMA - 30% PS 1.0 

 

The PMMA and PMMA/PS batches were purchased from Polyscience Inc. and purified 

high pressure carbon monoxide (HiPCO) SWCNTs (diameter 0.7 – 1.3 nm) were purchased 

from Carbon Nanotechnologies, Inc., Houston, Texas. PMMA or PMMA/PS were directly 

dissolved in a dilute (0.075 wt%) SWCNT- dimethylformamide (DMF) solution within a round 

bottom flask equipped with a mechanical shear stirring rod and nitrogen gas flowing in and out 

thorough calcium sulfate drying tubes. The SWCNT-DMF solution was not pre-sonicated before 

addition to the flask but rather mechanically stirred for 5 minutes before directly mixing the 

PMMA or PMMA/PS and mechanically stirred for an additional 5 minutes before sonication. 

The flask was submerged in a water bath and subjected to ultrasonic sonication (40 kHz) during 

the first four hours of mixing. Additional stirring under nitrogen gas occurred until the presence 

of moisture was absent within the flask, approximately 24 hours. The solid content of the 

SWCNT-polymer solution was 15% in DMF. The mixture was then cast onto glass plates and 
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dried in a dry nitrogen-flowing chamber for 48 hours. Finally, the mixture was cured under 

vacuum for 5 hours at 60 ⁰C to remove the DMF and acquire self-supporting films.  

 

2.1.2 Motivation for PMMA and PS nanocomposite study 

The homopolymer PMMA and copolymer PMMA/PS were chosen for this material study 

to investigate the potential of selecting a matrix with traits to encourage SWCNT dispersion. 

PMMA was chosen due to its optical clarity, use as “bone cement” in orthopedic surgery and the 

hypothesized molecular attraction between the carbonyl group (O – C = C) of PMMA and both 

the open ends of the SWCNT and defect locations along the surface of the SWCNT [49,50]. The 

copolymer with PS was chosen due the enhanced dispersibility of SWCNT instigated by the 

intermolecular attraction between the 6 member sp2 bonded ring on the SWCNT surface and the 

aromatic moiety in the form of a benzene ring side chain [50]. A benzene ring also contains a 6 

member sp2 bonded carbon ring which is attracted to the six-member sp2 bonded carbon rings 

along the SWCNT surface.  The 70/30 PMMA/PS concentration was chosen due to the unique 

ability to disperse SWCNT.  The more prevalent PMMA will attract the ends of the SWCNT and 

the less prevalent PS attracts the surface of the SWCNT. Thus, the ends of SWCNT will 

preferentially be seated in the more prevalent PMMA and be drawn to seek PS in relatively more 

localized regions within the copolymer.   

2.2 Methods  

2.2.1 Measuring Dispersion with SANS 

SANS has been effectively employed to approximate the fractal dimension of dispersion 

for nanotube-solvent suspensions by evaluating the region of constant slope of the SANS 

logarithmic scattering spectrum. SANS effectively probes the microstructure of materials over 

the length range of tens of Angstroms to hundreds of nanometers, but access is limited due to 

cost and accessibility [51]. Dimensional power laws, also known as dimensional scattering laws, 

are well defined for small angle scattering studies and describe how a given network causes an 

input signal (a neutron beam in the case of SANS) to scatter with a pattern proportional to the 

structure of the network. The structure is identified in terms of characteristic dimensional shapes 
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that form the network and scatter the beam [52]. The shapes are described by the dimension such 

that a rod is 1D, a disk is 2D and a sphere is 3D. This implies that an object can be characterized 

by a relation proportional to the characteristic size of the objects composing the network raised 

to the dimension of the shape. The power law scattering that results is thus defined by the 

dimension of the scattering objects in terms of a relationship between the scattering angle and 

scattering intensity I(q) as a function of Bragg size, r: 

          (1) 

at a given scattering angle, 2q, where q is r -1, N is the number of scattering domains, [N (q -1)] is 

the number of individual scattering elements in a volume and [n2 (q -1)] is the number of 

electrons in an atom at low angles squared. The Bragg size of the object originates from Bragg’s 

law and can be conceptualized as the characteristic size of the scattering object, r. The scattering 

of a rod with characteristic size r is a function of the diameter, D and length, L. The number of 

scattering elements in a rod is L/r and the number of electrons per scattering element is rD2. 

Converting to q and inputting into equation 1 yields: 

          (2) 

Thus, the scattering intensity follows a q -1 decay in intensity for a 1D object. The scattering of a 

disk with characteristic size r is a function of the diameter, D, length, L, and thickness, t. The 

number of scattering domains, N, is rD2 and the number of electrons per scattering domain is the 

volume of the domain, tr2. Converting to q and inputting into equation 1 yields: 

          (3) 

The scattering intensity follows a q -2 decay in intensity for a 2D object. The same trend can be 

shown for 3D objects. Therefore, small angle scattering studies approximate the fractal 

dimension thorough the following relation: 

          (4) 

where Df is the fractal dimension of the individual scattering objects. Generally accepted fractal 

exponents for various morphologies and networks used to analyze small angle scattering data is 

shown below in table 2. 
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Table 2. Fractal exponents associated with different shapes used to describe SWCNT dispersion 

with SANS. 

Fractal exponents for “shapes” in SANS 

1D rigid rod 1 

Chain with excluded volume 5/3 

2D object 2 

3D objects 3 

 

2.2.2 Specimen characterization 

SANS measurements were obtained at the NIST Center for Neutron Research with an 8 

meter SANS instrument with incident neutron wavelengths of 10 Angstroms and a target to 

detector distance of 3.84 meters. After passing through the thin films, the scattered neutrons were 

summated with a 2D neutron detector. The intensity of the scattered neutrons were radially 

averaged to produce the total scattering cross section for each specimen.  

The tensile properties of the films were evaluated at room temperature and humidity 

using an Instron 5848 MicroTester outfitted with a 1000 Newton load cell. In an attempt to 

control the variance in temperature and humidity, the samples were tested sequentially in a 

closed room. The samples were carefully cut into 3 mm wide rectangular strips using Thwing-

Albert Instrument’s JDC precision sample cutter. The specimens were tested according to ASTM 

882 with a 30 mm gauge length and an extension rate of 3mm/min. However, only 3 specimens 

were tested for each composite film due to the limited supply of material also analyzed with 

SANS. The glass transition temperatures were determined using differential scanning 

calorimetry (DSC). Three DSC scans were performed on six mg samples with a Setaram DSC 

131 in nitrogen atmosphere from room temperature to 120 ⁰C at a rate of 2 ⁰C/min. 
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3. Results 

3.1 Determining the Fractal Dimension from SANS 

As previously discussed, SWNTs thoroughly dispersed in surfactant solutions have been 

shown to represent rigid rods, as reflected in the power spectrum of the SANS scattering 

spectrum [3-5].  Furthermore, most scattering measurements of SWNT/polymer composites yield 

power law dependence with a scaling exponent ranging from 2 to 3 and ascribed to SWNT 

bundles with a varied distribution of sizes and structures [3-5].  Similar to the RPSD’s 

measurement of a scaling parameter, a lower absolute value for the scaling parameter 

corresponds to improved dispersion. The neutron scattering intensity as a function of momentum 

transfer is typically reported in units of inverse Angstroms. Here, the neutron scattering intensity 

is presented as a function of spatial length to facilitate direct comparison with the previous RPSD 

plots.  The spatial length is expressed here as the inverse of the momentum transfer.  

3.1.1 Systematic measurement of the fractal dimension 

The neutron scattering intensity as a function of spatial length over the entire measured 

spectrum after removal of incoherent background data and correcting for detector efficiency for 

the samples measured with SANS (0.1 wt% SWNT PMMA/PS, 0.5 wt% SWNT PMMA/PS and 

1.0 wt% SWNT PMMA) are shown in figure 1 below.   
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Figure 1. The neutron scattering intensity as a function of spatial length (inverse of momentum 

transfer) over the entire measured spectrum for the 0.1 wt% SWNT PMMA/PS, 0.5 wt% SWNT 

PMMA/PS and 1.0 wt% SWNT PMMA specimens. 

 

In an effort of standardization, the analysis length window developed to measure the PSD 

will be utilized to determine the scaling parameter from the SANS scattering spectrum. The full 

spectrum (112 components) was quartered and the intermediate components (components 

between 28 to 84). This yields an analysis length window between 1.35 to 3.55 nm. The slope 

was fit with the same power law function and determined through statistical weighting in the 

manner utilized for the PSD of the high-contrast images. The SANS scaling parameters (defined 

as the fractal dimensions of the scattering networks) are determined from the bounded region in 

figure 2 below to be 1.86, 2.29 and 2.64 for the 0.1 wt% SWNT PMMA/PS, 0.5 wt% SWNT 

PMMA/PS and 1.0 wt% SWNT PMMA specimens, respectively. 
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Figure 2. The neutron scattering intensity as a function of spatial length (inverse of momentum 

transfer) for the 0.1 wt% SWNT PMMA/PS, 0.5 wt% SWNT PMMA/PS and 1.0 wt% SWNT 

PMMA specimens over a bounded spectrum obtained following the procedure developed for 

PSD analysis from high-contrast images. 

 

  3.1.2 Comparison of SANS and RPSD results 

 To aid in the interpretation of the relationship between dispersion and material property 

improvement, the dispersion within the 10,000 times HR-SEM high-contrast images for the 1 

wt% SWCNT PMMA homopolymer and PMMA/PS copolymer in terms of the dispersion 

parameters presented in Study One (table 3). 
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The resulting trends between specimen and the dispersion parameters measured using 

HR-SEM RPSD image analysis (from the images analyzed in table 12 of Study Two) and SANS 

show direct similarities, as demonstrated in table 3.  

 

Table 3. Average RPSD scaling parameter from the high-contrast 5000 times magnified HR-

SEM images in Study Two and the fractal dimension determined from SANS. 

Sample Polymer composition 
Percent SWCNT 
(weight %) 

Scaling 
Parameter 
(RPSD avg.) 

Fractal 
Dimension 
(SANS ) 

PMMA 0 100 % PMMA 0 _ _ 

PMMA 1 100 % PMMA 1.0 1.37 2.64 

PMMA 5 100 % PMMA 5.0 _ _ 

PMMA/PS 0 70 % PMMA - 30% PS 0 _ _ 

PMMA/PS 0.1 70 % PMMA - 30% PS 0.1 _ 1.86 

PMMA/PS 0.5 70 % PMMA - 30% PS 0.5 1.22 2.29 

PMMA/PS 1 70 % PMMA - 30% PS 1.0 0.97 _ 

 

The scaling parameter rather than the fractal dimension derived from the scaling 

parameter as described in Study Two is utilized for comparison with the fractal dimension 

derived from the SANS scattering spectrum. As discussed in Study Two, the measured value of 

fractal dimension can only be interpreted as a measure specific to the given definition for fractal 

dimension. For example, the fractal dimension described in Studies One and Two describe the 

order of randomness within the HR-SEM images of SWCNT dispersion with an increase in 

randomness, as indicated by an increased value of fractal dimension, indicating improved 

dispersion. Alternatively, the scaling parameter in Study Two describes the dimensionality 

within the image, with a lower dimension indicating better dispersion in terms of straight 

nanotube lengths and minimal agglomeration.  

Study Two proved that the interpretation of the measured values along with a thorough 

understanding of the analysis method is required to adequately interpret the RPSD results. The 
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SANS fractal dimension, like the RPSD scaling parameter derived from the HR-SEM images, is 

a measure of the dimensionality of the structure within the sampled volume, where an 

improvement in dispersion is reflected by a lower numerical measure. Therefore, the scaling 

parameter from the RPSD and the fractal dimension determined from the SANS scattering 

spectrum, or perhaps more appropriately termed as the SANS scaling parameter, will be utilized 

here for comparison. 

The RPSD derived scaling parameter of the 0.5 wt% SWCNT PMMA/PS specimen was 

observed to be lower than the 1.0 wt% SWCNT PMMA specimen, a trend also seen in the SANS 

measurements for fractal dimension. Notice the discrepancies between the percent-filler trends 

between the RPSD scaling parameter and the SANS fractal dimension. As described in Study 

Two, the percent-filler trend from 0.5 to 1.0 wt% SWCNT in PMMA/PS is attributed to the 

observation that a larger percentage of filler material within the same imaged volume yields 

more occlusion contained within the power spectrum of the HR-SEM images. As the percent of 

the filling material increases, additional occlusion gives rise to surplus information regarding 

corners, pixilation and edge effects but also relatively more information regarding the nature the 

SWCNT dispersion. The RPSD is therefore less weighted by the effects of pixilation, edges and 

corners with additional filling material, a trend specific to SWCNT due to the large aspect ratio 

and only appropriate over a given range of filling material. The trend will reverse before 5.0 wt% 

SWCNT filler is reached and is observed as further occlusion produces larger agglomerations 

contained in the HR-SEM images. The measured scaling parameter will begin to increase at 

some point above 1.0 wt % SWCNT when the RPSD power spectrum becomes more weighted 

by pixilation, edges and corners than information pertaining to the characteristic width and 

related self-affinity. As the percent filler is further increased the sizes of agglomerations amass to 

an extent outside the range of analysis and the trend is again reversed.  

Comparison of the dispersion measured from HR-SEM images between specimens of 

different loading amounts can be accomplished after taking the intricate percentage-filler trend 

into account. SANS is not effected by occlusion in the same manner because HR-SEM images 

contain the 2D projection of a 3D network while SANS probes the actual 3D volume. 

Accounting for this observation reinforces the result obtained through RPSD analysis of the HR-

SEM images in Study Two; that applying the dispersion argument leads to the conclusion that 
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PMMA/PS copolymer yields more effective SWCNT dispersive properties than the PMMA 

homopolymer. Furthermore, the results, when taking into account the effects of occlusion, 

indicate that low SWNT loading favors better dispersion. The SANS data from the 0.1 wt % 

SWCNT PMMA/PS specimen demonstrates a consistent trend with RPSD results obtained after 

assuming the SWCNT for this particular specimen represent features upon a three dimensional 

surface (as previously described in Study Two). The average scaling parameter from the 5000 

times magnified high-resolution images is 1.8. Applying the previous argument could allow for 

interpretation of the scaling parameter as representative of surface features yields a value of 0.8. 

Consequently, the scaling parameters obtained through SANS follow the same trend as and 

validate the proposed RPSD method after accounting for the difference in the percentage-filler 

trends associated with each dispersion quantification method.  

Interestingly, the SANS length region containing the assumed characteristic width of the 

SWCNT (diameter 0.7 – 1.3 nm) in figure 38 indicates the measurement of white noise. Thus, 

bounding the length analysis region again removes components afflicted by noise. The analysis 

length window of 1.35 – 3.55 nm measures the scattering regime above the assumed 

characteristic length. This is an option available with the proposed RPSD method when the 

appropriate image is analyzed. In this case, the most appropriate scaling parameters for 

comparison are attained from lower resolution 5000 times magnified images with an associated 

analysis length window of 27 – 84 nm (from table 2 of Study Two) for an apparent high-contrast 

characteristic width between 25 – 30 nm. The difference in the characteristic width between the 

actual SWCNT and the apparent high-contrast characteristic width is emphasized in the cross-

section image below. 
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Figure 3. Cross-section image showing the typical difference in apparent SWCNT diameter 

between SWCNT pulled out of the specimen and those located within the polymer captured 

through high-contrast imaging.    

 

The exposed SWCNT in figure 3 are also artificially swollen due to the effect of HR-

SEM imaging and the presumptive coating of crystalized polymer surrounding the extracted 

SWCNT. Additionally, notice that after extraction individual SWCNTs immediately rebundled 

with one another. Although the intrinsic rebundling was encouraged by the energy input from the 

electron beam of the SEM, this highlights the difficulty of separating individual SWCNTs and 

keeping them separated. 

To support the previous results and aid in the interpretation of the relationship between 

SWCNT network structure and material property improvement, the dispersion within the 1 wt% 

SWCNT PMMA homopolymer and PMMA/PS copolymer specimens in terms of the dispersion 



130 
 

parameters presented in Study One. The 10,000 times HR-SEM high-contrast images were 

analyzed following the methodology presented in Study One and the results are shown in table 4 

below. 

 

Table 4. Dispersion parameters for the 1 wt% SWCNT PMMA and PMMA/PS specimens. 

Sample Bundle 
diameter (nm) 

Segment 
length (nm) 

Bundle 
spacing (nm) 

1 wt% SWCNT 
PMMA 

73 ± 45 205 ± 162 483 ± 138 

1 wt% SWCNT 
PMMA/PS 

34 ± 17 372 ± 135 115 ± 15 

 

The results from table 4 support the previous results and show that the copolymer yields 

dispersion parameters which indicate much better dispersion than the homopolymer. The smaller 

bundle diameter associated with the copolymer indicates better SWCNT separation. The segment 

length measured from the copolymer system indicates a SWCNT network with straighter and 

longer SWCNT. The copolymer’s ability to resist the agglomeration and produce uniform 

dispersion in demonstrated by the lower bundle spacing and smaller overall variance for the 

parameters measured in table 4. Finally, the stability in the parameters measured from HR-SEM 

images of dispersion captured over a period of 4 years indicates that the composites are 

thermodynamically stable overtime when exposed to standard room conditions. 

3.2 Material properties 

3.2.1 Tension test 

Determining the mechanical properties of the PMMA and PMMA/PS polymer 

nanocomposites were limited by premature failure. The integration of SWCNT into a copolymer 

of PMMA/PS and evaluating their mechanical properties with a tension test proved difficult due 

to the severe brittleness of the samples.  Cracks would often form during fabrication of the 

PMMA/PS copolymer samples compounding the difficulty of handling associated with loading 
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the specimens into the testing module. Conversely, cracks did not form in the fabrication of the 

homopolymer, PMMA, and the tensile strength was revealed to remain relatively constant with 

increasing carbon nanotubes percentages, hovering around 50 MPa. Premature failure as a result 

of handling difficulty due to brittleness can underestimate the ultimate tensile strength and 

failure strain. The tensile strength and strain measurements of the copolymer specimens 

produced erratic results due to the limited amount of sample material available for tensile testing 

(three samples of each specimen). Therefore, only the Young’s modulus in terms of SWCNT 

percent filler by weight is presented for both PMMA and PMMA/PS based nanocomposites 

(figure 4).  

 

Figure 4. Young’s modulus as a function of SWCNT content (weight percent) for the PMMA and 

PMMA/PS nanocomposites. 
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The Young's modulus of the PMMA-based specimens gradually increased 1.8% through 

the addition of 1.0 wt% SWCNT, but remained rather stagnant as the percentage of SWCNT was 

increased to 5.0 wt%.  Notice the variance in the measurements for the 5.0 wt% sample. This 

observation, along with the fact that the overall modulus dropped, can be attributed to the 

agglomerations and associated inconsistency of SWCNT dispersion within PMMA at higher 

loading (5.0 wt%). Alternatively, the Young's modulus of the PMMA/PS-based specimens 

increased dramatically (11.5%) from 0 wt% to 0.1 wt% SWCNT and reached an overall increase 

of 17% for the 1.0 wt% SWCNT PMMA/PS specimen.  

The interaction between hosting polymer and SWCNT can be generalized as the 

mechanism which allows the transfer of some properties of the nanomaterial to the bulk 

nanocomposite. Accordingly, the improvement in Young’s modulus can be attributed to the 

notion that enhanced dispersion of SWCNT within the hosting polymer increases the interfacial 

area and yields superior energy transfer between individual SWCNTs and polymer chains. Thus, 

the results from tension testing also indicate that the PMMA/PS copolymer is dispersing the 

SWCNT better than the PMMA homopolymer.  

3.2.2 Glass transition temperature analysis 

The change in glass transition temperature (Tg) as a function of the SWCNT filler 

content is shown below in figure 5. 
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Figure 5. Glass transition temperature as a function of SWCNT content (weight percent) for the 

PMMA and PMMA/PS nanocomposites. 

 

The glass transition temperature of the homopolymer PMMA increased over 16% from 

88 ⁰C to 102 ⁰C through the addition of 5 wt% SWCNT.  The copolymer PMMA/P showed 

dramatic glass transition temperature increase of almost 29%, increasing from 76 ⁰C to almost 98 

⁰C through the addition of 1 wt% SWCNT.  Notice that the largest variance is present in the 5.0 

wt% SWCNT PMMA specimen, again indicating the largest global variance in SWCNT 

dispersion and the associated agglomerations of polymer and SWCNT. 

The dramatic increase in the glass transition temperature at low SWCNT loadings within 

PMMA/PS copolymer indicates that the SWCNT are dispersed better at the microscopic level. 

The glass transition temperature is considered as the temperature at which the glassy regions of 
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the polymer lose their rigidity. This transition occurs when the molecules composing the polymer 

in the glassy regions begin to rotate about their backbone. The addition of the SWCNT into the 

polymer inhibits the rotational motion of the polymer molecules and increases the glass 

transition temperature. Thus, the glass transition temperature results also indicate that the 

copolymer PMMA/PS copolymer disperses SWCNT better than the PMMA homopolymer. 

4. Summary  

The scaling parameters measured from high-contrast images were validated with a 

current state of the art SWCNT dispersion analysis method, SANS, but in a very rapid manner 

that is not as limited by cost or availability. The results from the tension and glass transition 

temperature experiments show correlation of superior dispersion not only with improved 

Young’s modulus and glass transition temperature but with much more rapid improvement with 

much less nanofiller. The measured scaling and dispersion parameters, results of physical 

property characterization and the observation that the copolymer-based nanocomposite realized a 

dramatic increase in glass transition temperature with an order of magnitude less SWCNT filler 

content when compared to the homopolymer-based nanocomposite, equivalent in terms of 

fabrication method and SWCNT amount, indicates that SWCNTs are dispersed within the 

copolymer at the microscopic level. This can be conceptualized by attributing the polymer’s 

resistance to melting at the molecular level to the SWCNT’s ability to inhibit the motion of the 

polymer backbone. Accordingly, the effect of dispersion upon the glass transition temperature is 

an effective experimental method to validate SWCNT dispersion at the microscopic level.  
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5.0 CHAPTER FIVE: CONCLUSIONS 

 

The numerous motivations and effectiveness of incorporating nanotubes into polymers to 

form unique nanocomposites with material properties derived from both constituents have been 

well documented. The relationship between the fabrication methods and resulting materials 

properties has also been investigated. However, understanding the influence of dispersion upon 

the resulting material properties of the nanocomposites has been hindered by the lack of an 

appropriate imaging technique to visualize the SWCNTs and the ability quantify dispersion in 

terms of parameters descriptive characteristic features. The incorporation of high-contrast 

imaging and the quantification techniques presented here facilitates the assessment of the 

nanostructure’s influence upon the material properties. Analyzing the power spectrum of 

SWCNT polymer nanocomposites obtained from high-contrast HR-SEM images provides a 

unique method to quantitatively asses SWCNT dispersion in terms of descriptive length 

parameters.  

Evaluating the scaling parameters associated with the images of dispersion within formed 

nanocomposites allows for a measurement describing the shape of SWCNT dispersion. A 

relatively consistent scaling parameter obtained over numerous locations provides a single 

descriptive measure of the bulk dispersion, and the variance of scaling parameters is suitable to 

interrogate the variance of dispersion throughout the material. The technique to measure the 

scaling parameters was validated with one of the state of the art dispersion quantification 

techniques, SANS. Notably, analogous information was obtained from high-contrast HR-SEM 

images of dispersion collected from electrons emitted from the SWCNT network and neutrons 

scattered by the SWCNT network as they traveled through bulk nanocomposite material. The 

developed method’s inclusion of images with the analysis of dispersion may prove to corroborate 

dispersion analysis methods that, similar to SANS, do not have the ability to visualize the 

interrogated system and therefore may aid in the interpretation of results. 

The utilization of the presented quantification methods will facilitate measuring the 

dispersion of other types of nanomaterials, quantifying alignment and analyzing other forms of 

data.   These methods may also prove useful in validating models that describe such nano-
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percolated composites near the percolation threshold in terms of characteristic lengths, such as 

bundle width and separation distance, and a measure of the scaling parameter. Such models 

would further the effectiveness of other dispersion interrogation techniques which to not include 

a method to visualize the nanostructure, such as ellipsometry or nuclear magnetic resonance 

imaging.  

The relationship between the dispersion quantified using the proposed methods and 

experimentally measured physical property improvement as a function of SWCNT amount was 

investigated. It was shown that the developed quantification methods adequately represent 

SWCNT dispersion quality and superior dispersion parameters correlate with enhanced material 

property improvement for the sampled nanocomposites. 
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APPENDIX A: High-Contrast Imaging Procedure 

A.1. General HR-SEM Procedure – Specific to Hitachi S-5200 High Resolution Scanning 

Electron Microscope. 

The following is the general procedure to operate the Hitachi S-5200 high-resolution 

scanning electron microscope, originally written by Peter T. Lillehei of NASA Langley Research 

Center in and slightly modified here to account for operational changes since 2007. 

1. Prepare sample. 

- Mount on specimen stub using silver paste or load a thin film specimen into the TEM 

grid holder.  

- If the sample has silver and you need to do EDS use gold paste.  

- Do not use graphite paste, or conductive carbon tape.  

- Use the appropriate specimen stub for the sample. The various stubs have starting 

heights from - 2.0 mm to +1 mm.  

- Maximum sample height is +2.0 mm. 

- Use a thin sample stub if your sample is thick to prevent losing the sample in the 

exchange or vacuum chamber 

- All paste must dry for a minimum of 24 hours prior to use. 

 

2. Record sample height from height gauge. 

 

3. Insert sample into sample rod. 

- Shake the sample rod to make sure the sample is secure.  

- If anything is loose at this point stop.  

- Give the sample a puff of air to make sure it will not dislodge. This step is especially 

important on powder samples. 

 

4. Fill the LN2 trap with liquid nitrogen following appropriate safety protocol. 

 

5. Log into the computers. 
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6. Start the software on the main computer.  

 

7. Open the Stage Control window. 

 

8. Set the restriction to the appropriate holder. 

- STD Holder = S-5200 Standard, S-5200 STEM, S-5200 FIB. 

- Cross-Sect Holder = S-5200 Cross Section. 

 

9. Set tilt on the Restriction if necessary. 

- Maximum T for STD = +/- 35 <- NOTE: MAXIMUM LIMITS FOR SAFE 

OPERATION. It is possible to set +/- 40 but may result in an electrical short and 

automatic shutdown. 

- Maximum T for Cross-Sect = +/- 10. 

 

10. Make sure the Stage is in the Home position. 

- Press the home icon on the main panel. 

- Alternatively, press the Go to Home button on the Stage Control. 

 

11. Insert sample rod. 

- Remove shipping rod - gently pull straight back, turn clockwise, pull straight back 

more, turn counter clockwise, wait for evacuation (evac) light to flash, toggle switch 

to air, wait for pressure to equalize, remove the shipping rod.  

- Inset sample rod, toggle switch to evac, wait for light to flash, turn clockwise, gently 

guide rod into the chamber, turn counter clockwise, and move rod to final position.  

- If the evac light stops flashing while at the exchange position toggle to air and then 

back to evac to start the process again. The light must be flashing to make the 

clockwise turn.  

- If any alarms sound during this process please stop. 

 

12. Open the Column Set-Up 

- Enter the height of the sample. 
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- Select the appropriate Lens combinations. 

- 7,2 good for most imaging (best for STEM). 

- 12,2 good for high resolution imaging in SE. 

- Higher Lens numbers mean smaller beam spot sizes and better resolution, but a less 

intense beam and more tedium when adjusting the focus and stigmatism. 

 

13. Check the remaining settings 

- Image Set-Up: Set Capture Speed/Integration to desired parameters, make sure auto 

increment is checked. 

- Data Display: Time, Auto Increment, Back Ground Image, “For photograph” should 

not be checked, all others should. 

- Signal Select: All dropdown menus should read SE (select TE here later if doing 

STEM). 

- Signal Processing: 8, 256, SE, Off. 

- If using Energy-dispersive X-ray spectroscopy (EDAX), Enable Analysis mode: then 

check DBC box. 

 

14. Click in the Vacc box to bring up the HV Control 

- Flash now if needed (check log book for error messages). 

 

15. Select appropriate Vacc and Ie settings. 

- NT/poly: 0.5 - 1.5 keV, 10 - 30 uA. Best for E-field imaging. 

- Conductive samples: 5 keV - 15 keV, 10 - 30 uA. 

- Non-conductive samples: < 1 keV, 5 - 30 uA (sometimes low voltage high current 

works). 

- EDAX: find heaviest element's spectral line of interest and multiply by at least 2 to 

set Vacc, use as high of a current as the sample will tolerate. For most samples 

normal probe current is sufficient, this is set in the Column Set-Up. 

- STEM: 20 - 30 keV, 10 - 30 uA. 

 

16. Turn the high voltage (HV) on. 
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- Verify the settings on the warning box and note the operating limits. 

- Notice the HV light is lit on the column of the HR-SEM (always ensure this light is 

off when changing samples). 

 

17. Record all data in the log book. 

 

18. Open the Alignment window. 

 

19. Set focus and stigmatism as best as possible then select Beam Align. 

 

20. Center beam spot in lens aperture (not necessarily aligned with software target). 

 

21. Select Aperture Align. 

- Adjust settings until image movement is as small as possible. 

 

22. Select off and re-adjust focus and stigmatism. 

 

23. Select Stigma Align X. 

- Adjust settings until image movement is as small as possible. 

 

24. Repeat for Stigma Align Y. 

 

25. Select Off. 

 

26. Adjust focus and stigmatism at a magnification higher than the max you will be using. 

 

27. Start imaging: 

- Use the track ball to move to new locations. 

- Use the image shift if the motor's movement is too large. 

- Use the Raster Rotation to rotate the image. 

- Use the Signal Select to select TE for STEM imaging. 
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- Use the Signal Control for COMPO imaging or to filter the SE. 

- Use the Set Detectors to select the main SE/BSE detector, the dedicated YAG-BSE, 

or to mix the detectors (Note: the main SE detector collects BSE as well and this is 

used for the COMPO and filtered SE). 

- Monitor the current, which will vary after flashing (this will happen for the first few 

hours after a flash) re-adjust as necessary. 

- Note: Do not click the ‘Preset’ button above the ‘H/L’ button. It will destroy all the 

current alignment parameters and they will all have to be re-aligned. Also, do not 

change mechanical apertures for alignment except the STEM aperture. If you think 

they need adjusting please stop and notify the person in charge of the equipment.  

 

28. Start taking lots of pictures. 

- Save pictures to your directory. 

- Use an appropriate file name, preferably using less than 8 characters (do not use the 

underscore "_" in the name). 

- Don't close the Captured Image window until files are saved to the disk, the images 

will be lost. 

 

29. When finished turn off HV. 

 

30. Return to the home position. 

 

31. Remove the sample rod. 

- Gently pull straight back, turn clockwise, pull straight back more, turn counter 

clockwise, wait for evac light to flash, toggle switch to air, wait for pressure to 

equalize, remove the sample rod. 

 

 

32. Inset Shipping rod 

- Toggle switch to evac, wait for light to flash, turn clockwise, gently guide rod into the 

chamber, turn counter clockwise, and move rod to final position. 
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- If the evac light stops flashing while at the exchange position toggle to air and then 

back to evac to start the process again. The light must be flashing to make the 

clockwise turn. 

- If any alarms sound during this process please stop and notify the person in charge of 

the equipment. 

 

33. Remove sample from the sample rod. 

 

34. Make sure all images are saved. 

 

35. Close the SEM software. 

 

36. Log out of the computer 

 

37. Record any comments in the log book. 

 

38. Clean up 

A.2. High-contrast (high-kV or voltage-contrast) Imaging Procedure - Procedure for 

high-contrast imaging builds off of the previous HR-SEM Procedure 

 

High-contrast (high kV or voltage-contrast) imaging is a method to observe embedded 

nano-structures, such as Single Wall Carbon Nanotube (SWNT) networks, within a polymer 

matrix.  Imaging the interior of a nano-composite housing a conductive nano-array within a 

polymer matrix can be achieved by means of a Hitachi S-5200 High Resolution Scanning 

Electron Microscope (HR-SEM). High-contrast imaging allows one to see through the polymer 

matrix as if it were invisible making the SWNT network clearly observable deep within the 

composite. Under optimum conditions, it is feasible to image the nano-structure as deep as 

roughly 1 micron into the host polymer.  High-contrast imaging yields a much more accurate 

depiction of actual SWNT dispersion when compared with more traditional HR-SEM electric 
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field imaging. This procedure has been repeated on a variety of other scanning electron 

microscopes. 

1. Follow the procedure for mounting the sample and calibrating the HR-SEM software as 

described procedures for high resolution scanning electron microscopy.   

- For most situations, the operator should select 7 for the first lens option and 2 for the 

second.   

- Additionally, a 160 second scan will yield the clearest, deepest images. 

 

2. The nano-composite conductive substructure will be visible under a narrow range of 

voltage settings.   

- The conductivity of the material is a controlling factor for the required voltage.   

- The voltage that will be necessary to image the substructure increases with the 

resistively of the composite.  

 

3. Tune the HR-SEM to a current of 20 A and the approximate high-contrast viewing 

voltage – between 15 kV – 30kV – depending upon your sample.  

- If the sample is not thoroughly conductive it will burn in the chamber so be careful 

when imaging a new material.  

- Turn on the electron beam. 

 

4. Select a slow scan option to slow the beam down and increase your intensity/area.   

- Before aligning the beam attempt to roughly focus the image.   

- The conductive substructure will appear white and the polymer will appear black.   

 

5. Aligning the beam and tuning the stigmatism is difficult under the high voltages 

necessary for high-contrast imaging.  

- After roughly focusing the image as best as possible at a low magnification, navigate 

to either a visible surface feature, such as a particle of debris, or some other visual 

component of the nano-component such as a nano-structure element located upon or 

near the surface.   
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6. Under the fast scan viewing option, tune the alignment and stigmatism so that visible 

feature comes to rest.   

- This may be difficult because the conductive structural feature will not be easily 

recognizable because it may does not emit many secondary electrons under the fast 

scan setting.   

- In general, as the electron beam voltage increases, the amount of secondary electrons 

generated decreases.   

- Therefore, it is a better to first tune the alignment and stigmatism using a particle of 

debris before navigating to a conductive structural component.   

 

7. Now that some structural component is aligned and the beam is stable, it is time to focus 

upon the object.   

- Select the slow scanning option and adjust the focus until the conductive subsurface 

objects become visible as white features within a black host polymer.   

- The polymer should appear as invisible allowing one to see relatively deep into the 

nano-composite. 

 

8. If the polymer is still visible and effectively blocks the operator from imaging the sub-

surface features, try a higher voltage or current and repeat the previous steps.   

- If the substructure is not distinctly visible or the polymer rich areas are saturated with 

trapped electrons causing the polymer rich areas to fade to gray and eventually block 

the visualization of the subsurface components, try to decrease the voltage or current 

and repeat the above steps until the subsurface features become distinct.   

- In order to utilize high-contrast imaging an optimum setting for voltage and, to a 

lesser extent, current for each sample must be determined.   

- The optimum settings lie somewhere between imaging the polymer surface and 

imaging a gray, fuzzy, electron saturated polymer.   
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9. After successfully imaging of some subsurface feature at a relatively low magnification 

the operator should increase the magnification to about twice the desired imaging 

magnification and repeat the steps for tuning the alignment, stigmatism, and focus. 

 

10. Before capturing any pictures, the operator should use the auto contrast and brightness 

command to capture the entire range of contrast over the imaging window, which will 

ensure that deepest subsurface features can be recognized.  

 

- However, the auto contrast and brightness command should be utilized over an area 

of which the operator is not capturing pictures and that contains no particles of debris.   

- This command can quickly saturate the polymer material with electrons creating a 

gray, fuzzy image as the polymer becomes somewhat visible.   

- Using this command while a particle of debris is located in the imaging window will 

effectively set the brightest element in the frame to the particle and not the nearest, 

most conductive subsurface element.   

- The auto contrast and brightness command should be employed during the slowest of 

the slow scans.   

 

11. Capturing images of the subsurface material is best accomplished by means of the 

slowest slow scan and may take a few minutes.   

- However, if the polymer becomes saturated with electrons and fades to gray, the 

voltage or current may need to be reduced.   

- This is a sign that the sample is too resistive for the current electron beam.   

- Alternatively, the operator can choose to capture an image using a faster slow scan 

but will sacrifice picture quality.   

- Sometimes it may be desired to image the surface characteristics as well as the 

uppermost subsurface features. This can be accomplished by using the slower fast 

scan where the image slowly materialized into the imaging window.   

- Finally, be sure not to perform the fine-tuning of the alignment, stigmatism, and focus 

on the desired screenshot area in order to prevent polymer saturation.  It is 
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recommended that the fine-tuning of the alignment, stigmatism, and focus be carried 

out over an adjacent area that is of the same general height. 

 

A.2.1. Considerations  

In order to capture the clearest high-contrast images, it is important to realize that the 

time the electron beam is aimed on an imaging area and the voltage/current of the electron beam 

directly relate to the amount of electrons absorbed by the polymer over that given area.  As the 

scanning time, voltage or current of the electron beam increases, the polymer increasingly 

absorbs electrons that have no channel to ground.  As the electron saturation of the polymer 

increases, the polymer becomes progressively more opaque and the image will gradually lose 

focus.  The ability to observe the nano-structures within the sample will be seriously limited as 

the polymer saturates.  The operator must then move to another location or remove the sample 

from the HR-SEM for a given period of time (hours) and let the polymer naturally de-saturate in 

order to capture clear images.   

The high voltage electron beam necessary to permit high-contrast imaging is directly 

related to the conductivity of the sample.  If the subsurface structural component is not 

adequately conductive, dispersed throughout the composite, or connectively networked to 

ground, it may not be possible to utilize high-contrast imaging with the present maximum 

electron beam voltage and current limitations of HR-SEM.   

A.3. Procedure for Constructing Three Dimensional High-contrast Images 

 

3-D imaging of the subsurface network is accomplished by means of HR-SEM with stage 

tilting capabilities.  Two images captured at opposite tilt incidences, painted appropriately and 

morphed together will yield a picture that can be viewed three dimensionally using the 

appurtenant 3-D viewing device. 

 

1. Follow the procedure for high-contrast imaging in order to view the subsurface structure of a 

selected area. 
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2. Choose an area to reconstruct as a 3-D image.   

 

- Be sure to choose a magnification large enough to adequately reconstruct the 3-D 

image.   

- A suggestion would be to choose a magnification so that the imaging screen width is 

about one to five times the maximum imaging depth.   

- Choose an area with some recognizable subsurface features.   

- It is a good idea to choose an imaging area where at least one of the recognizable 

features is located in a corner and the center of the viewing window.   

- Be sure to capture an image of the desired screenshot area for reference.  

 

3. Using the Raster Rotation, rotate the screen by 90 or –90 degrees.   

- This will allow the beam to scan the imaged area in a fashion that is necessary for 

upright 3-D reconstruction with red/blue or red/green glasses.   

- An alternative to rotating the sample is so simply rotate the finished 3-D image by 90 

or –90 degrees.   

- Rotating the sample prior to capturing the images will yield a wider 3-D image. 

 

4. Using the tilt control function, tilt the sample by some prescribed angle.   

- It is recommended to use the same tilt angles (25  & -25 ) so that both images are 

compressed by the same amount, assuming that the surface is relatively level.   

- Most 3-D reconstruction literature recommends a total change in tilt of 7 .  However, 

it has been determined that a 50  difference (25  & -25 ) creates the most dramatic 

high-contrast 3-D images.   

- A suggestion would be to capture a series of screenshots over a range of tilts in order 

to determine the optimum difference in tilt for a specific composite.   

- As the sample is tilted, the operator must use the scrolling control to keep the desired 

screenshot area in view. 
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5. After the stage has been titled, follow the procedure for tuning the alignment, stigmatism, 

focus, contrast, and brightness as described in the procedure for high-contrast imaging.   

- It is recommended that the center of the image be given the most consideration when 

focusing.   

- See the considerations within the procedure for high-contrast imaging.   

- Make sure the area utilized for fine-tuning the alignment, stigmatism, focus, contrast, 

and brightness is adjacent to the desired screenshot area but also is located the same 

distance from the axis of rotation in order to maintain the same general distance from 

the final lens and prevent polymer saturation.   

- For best results, capture an image of the desired screenshot using the slowest of the 

slow scans. 

 

6. Using the tilt control function, tilt the stage by the opposite amount (-25  image was 

previously captured).   

- Again, as the sample is tilted, the operator must use the scrolling control to keep the 

desired screenshot area in view.   

- Again, follow the procedure for tuning the alignment, stigmatism, focus, contrast, and 

brightness as described in the previous step.   

- Capture an image of the desired screenshot. 

 

7. Reconstructing the 3-D picture can be accomplished by means of any number of imaging 

programs.   

- Most red/blue and red/green glasses position the red lens over the left eye.  

- Therefore the image captured under negative tilt should be painted red while the 

image captured under the positive tilt should be captured as blue or green.   

- These two images should then be morphed together and aligned to each other.   

- Attention should be given to ensure that the centers of the images are perfectly 

aligned.   

- The images come to three-dimensional life while wearing the appropriate 3-D optics. 
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A.3.1. Considerations  

In order to reconstruct paramount 3-D pictures, the electron beam must scan the imaged 

area minimally in order to curtail the polymer saturation.  A 3-D image created from captured 

images with electron-saturated polymer will appear foggy, out of focus and will dramatically 

limit the optical depth.  Finally, in order to reconstruct the full screenshot, it is important to 

ensure that some artifact is located in the direct center of both stereo pair images.   

 

 


