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I. INTRODUCTION

Discussed herein is the theoretical analysis of the threshold
characteristics of quasi-linearized phase-locked loop demodulation
for wideband frequency-modulated signals.

In the performance of frequency demodulation the signal recep-
tion deteriorates very rapidly below a certain critical value, called
the threshold, of the input carrier power-to-noise power ratio, and
improve linearly above this value. Therefore, the threshold char-
acteristics is one of the essential elements for optimization of
the minimum input power communications systems design.

Using phase-locked loop demodulation techniques considerable
improvement in the threshold can be obtained compared to that of a
conventional frequency demodulation system. It is also well suited
for tracking narrow-band signals emitted by moving space vehicles.
Therefore, in present day, phase-locked loop demodulation has become
the standard technique in deep-space communication applicationms.

Much of the earlier work on the threshold behavior of phase-
locked demodulations for optimum reception has been discussed in

3,6,9

several papers , which are based on different criterion of thresh-

old behavior,

This thesis presents an analysis éf the performance of phase-
locked-loop behavior based on Viterbi's application of the Fokker-
Plank technique and Booton's Quasi-Linearization technique. The

analysis in this thesis for the threshold criterion follows very



closely the work done by Develet3 in a study of threshold criterion
for phgse—locked demodulation for arbitrary information and noise
spectral densities.

The main purpose of this thesis is to analyze the threshold
characteristics and to observe the effects of the input bandwidth
ratio, the frequency modulation index, and the phase loop parameters
on phase-locked demodulation.

In Chapter 2, the basic loop is described and its fundamental
equations and transfer functions are derived. Chapter 3 develops a
quasi-linearized loop demodulator model in the presence of noise.
Under the assumption of the quasi-linearized model, the mean-square
" phase error is derived in Chapter 4, and finally, the threshold
criterion is discussed in Chapter 5.

The threshold characteristics will be investigated under the
following assumptions: (1) the phase loop is statistically locked-
in, (2) the phase of the signal is a zero-mean Gaussian process,
(3) the incoming signal and the additive white Gaussian noise are
statistically independent, and (4) the input signal is wideband

frequency-modulated by sinusoidal message.



IT. FORMULATION OF THE BASIC LOOP EQUATIONS OF A HIGH-GAIN SECOND-

ORDER PHASE-LOCKED LOOP IN THE ABSENCE OF NOISE

This chapter presents some basic analytical expressions
governing the phase-locked loop as shown in Figure 2-1, such as,
the basic loop equations, the transfer functions, and the loop
parameters.

The description in this chapter will be based on the follow-
ing assumptions: (1) the loop has a high gain, (2) the closed-
loop transfer function has two poles, (3) the loop is locked-in,
and (4) there is no noise present in the loop.

Suppose that the input signal to the loop of Figure 2-1 is a

sinusoidal waveform as
vi(t) =[2 Asin[wct + ¢i(t)] (2.1)

where A denotes rms amplitude of the sinusoid.
The output of the voltage controlled oscillator (VCO) is assumed to
be a sinusoid whose oscillating frequency is equal to the input fre-

quency of the loop. This output can be expressed as

v (£) =[Z cos[u t +¢_(£)] (2.2)

The rms amplitude of the VCO output is assumed to be unity.
The output of the phase detector (multiplier), which is product
of the incoming signal vi(t) and the VCO output vo(t), can be written

as
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vd(t) Kdvi(t) . vo(t)

1]

AKde{sin[¢i(t)-¢o(t)]+sin[2wct+¢i(t)+¢o(t)]}

where Kd is a d.c gain of the phase detector, and Kv is a d.c gain
of the VCO. The multiplier output vd(t) is fed into the loop filter

which removes the second harmonic frequency component. Hence, the

input waveform to the VCO can be expressed as

vf(t) = AKdKfKVL-l{L[sin(¢i(t)—¢o(t))]F(S)}

where Kf is a d.c gain and F(s) is the transfer function of the
loop filter, respectively.
The frequency of the VCO output is controlled by the input

voltage vf(t), and the relation between the output phase ¢o(t) and

the loop filter output is given by

d¢o(t)

at = vaf(t) (2.4)

By taking the Laplace transform of Equation (2.4), the phase of the

VCO output can be expressed as

Vf(s)
Qo(s) = Kv s ' (2.5)

Thus, it is understood from Equation (2.5) that the VCO output phase

is proportional to the integral of the input voltage v Here, it

£
must be noted that the steady state behavior of the loop will be only

considered through this study.



Taking the Laplace transform of Equation (2.3) and substituting

into Equation (2.5)

5 (s) = AK Lisind(t)} &) (2.6)
[¢] o] s
where, K0 = KdKva is the open-loop gain,
6 =

¢i - ¢o is the phase error.

Since it is assumed that the loop is capable of reducing the
i
_6—’
phase-locked, the phase of the VCO output tracks the phase of the

phase error to a small enough value [6] < the loop is completely
input signal closely. Under the locked-in condition, the output of
the phase detector will be linearly proportional to the phase error,
i.e., v, « 8, Thus, the phase error can be expressed in the frequency

d

domain as

0(s) = 0, ()-AK [0, ()-0, ()1 2.7)

This is the fundamental equation for the phase error which specifies
the behavior of the phase-locked loop in the absence of noise., The
mathematical model of the loop may be portrayed by the block diagram
shown in Figure 2-2,.

For the analysis of the loop response, it is necessary to find
the relationship between input and output signals by means of the
loop transfer functions. From the mathematical model for the linear-
ized phase-locked loop (Figure 2-2), the closed-loop transfer function

is obtained as
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¢O(S)
oi(s) = H(s)
AKOF(S)
='§f:7ﬁqﬁjgy (2.8)

The relation of the phase error to the input, i.e., the phase-error
transfer function can be obtained as follows:

6(s) _

oi(s) =1-Hs)

S

"5+ AK F(s) (2.9)

A lag-lead filter will be employed as the loop filter as shown

in Figure (2-3), and the transfer function of the filter gives

l+TlS
F(s) = 1775 (2.10)
2
where,
T = RyCy
T, = (Rl + R2)C2.

For this transfer function, the closed-loop transfer function becomes

(AKOTl/TZ)S + AKO/T2

2
s” + (1+AK0T1)S/T1 + AKO/T2

H(s) = (2.11)

By letting
.o
wn- Tzs



*133713 peo-8e1 ‘g-g °and1yg




10

and

Equation (2.11) can be expressed as

(2;wn - wi/AKO)S + wi
H(s) = 5 5 (2.12)
S+ 2w S + w
n n

where [ denotes the loop damping factor, and 0 is the loop natural
frequency. Considering that the loop has a high gain such that
wi/AKo << 2§wn, Fquation (2.12) will be reduced to

2CwnS + wi

2

5 (2.13)
ST+ 2tw S + w
n n

H(s) =

Equation (2.13) implies that the phase-locked loop is a second-order
system. Since the loop gain is assumed high and its transfer function
has two poles, the phase loop may be defined as a high-gain second-
order phase-locked loop.

The magnitude of the frequency response of this high-~gain
second-order loop for several values of damping factor is illustrated
in Figure 2-4. From this figure it can be seen that the phase-locked
loop performs as a low~-pass filter for the input phase. Phase error
response is plotted in Figure 2-5 for the high-gain second-order loop
with ¢z = 0,707. This demonstrates to us that the phase error approaches
zero as the normalized frequency wn/w is increased. Furthermore, we
notice that the loop tracks reasonably well in the low-frequency

region, but it will fail at the high frequencies.
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In the following chapter an analysis is presented of a quasi-
linearized loop in the presence of noise. This provides a more

general situation of the phase~locked loop performance.
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IITI. DEVELOPMENT OF A NUASI-LINEARIZED

PHASE-~-LOCKED LOOP DEMODULATOR MODEL

For a simple analysis of the fundamental behavior of the phase-
locked loop, we have assumed that, in Chapter II: (1) the phase
error is suffiently small such that sin6 = 8, (2) the loop operates
in the absence of noise. Under these conditions the precise behavior
of the loop performance may be predicted by the linearized loop model
as shown in Figure 2-2.

However, in practical cases like a deep-space communications
systems, it may not be expected that the phase error is always small
such as lel < 7/6, 1In addition,, there exists a significant additive
noise through the transmission channel plus noise caused internally
in the loop. When the phase error is considerable, the loop can no
longer be regarded as a linearized loop, and it will have a sinusoidal
nonlinear phase gain.

The exact solution for the second-order phase~locked loop with
nonlinearity is extremely difficult to obtain. Therefore, it is
desirable that the nonlinear element, Asin®, in Equation (2.6) should
be converted to an equivalent linear element. One way to convert the
nonlinear gain to an equivalent linear gain is by Booton's quasi-
linearization technique3. Thus, by using this technique, a mathemati-
cal model of phase-locked loop in the presence of noise will be

established, and then the corresponding equation and transfer function

14
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will be derived by the same procedure as explained in the previous
chapter.
A basic phase~locked demodulator, which contains an IF band-

pass filter followed by the phase-locked loop (Figure 2-1) is con-

sidered. It is assumed that the received signal contains the message

component plus additive white Gaussian noise. The noise density
spectrum is uniform over the bandwidtn of the IF filter.

Under these operating conditions, an analytical block diagram
of the phase~locked loop demodulator may be represented as shown in

Figure 3-1. Consider the output of the IF filter as

vi(t) =/_7-Asin[wct+¢i(t)] + n(t) (3.1)

where, n(t) = /2 x(t)coswct +‘[7_y(t)sinwct is white Gaussian noise.
The quadrature components of noise, x(t) and y(t) are statistically

independent, and stationary Gaussian processes. Their probability

density functions are: 2
X
1 20>2c
p(x) = e
210
2
2
1 T 20
ply) = e 7 (3.2)
210
y

, 2 2, . .
in which o, or o is the variance of noise component.

As mentioned in the previous chapter the VCO output is

vo(t) =/_2_cos[mot + ¢o(t)] (3.3)
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where Wy is radian frequency of the VCO output. The output wave-
form of the phase detector can be shown as

vd(t) = 2Kd{Asin[wct+¢i(t)]+n(t)} . cos[wot+¢o(t)] (3.4)

If we assume that the incoming signal to the loop is tracked-in,
say, the carrier frequency is initially tuned at the VCO frequency,

then W, = W The waveform to the loop filter can be represented by
v (t) = AR, {sin[¢, (£)-¢_(t) +sin[2u t+¢, (£)+¢_(£)]}
+ de(t){cos¢0(t)+cos[2wct+¢o(t)]}
+ Kdy(t){—sin¢o(t)+sin[2wct+¢o(t)]} (3.5)

After suppressing the double frequency componerits, the output of the

loop filter becomes

K.K L—l{L[Asin(¢i(t)-¢o(t)]

ve () = K4Ke

+ x(t)coscbo(t)—y(t)sincbo(t)]F(s)} (3.6)

Letting ni(t) x(t)cos¢0(t)+y(t)sin¢o(t), vf(t) can be simplified

as

vf(t) KdKfL-l{L[Asine(t)+ni(t)]F(s)} (3.7)

where 8(t) = ¢i(t) - ¢o(t) is the phase error. It is noticed that
Equation (3.6) is nonlinear due to the presence of the sinuscidal
term. The nonlinearity should be converted to the equivalent linear

form so that a quasi-linearization technique may be applied for
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obtaining an approximate solution.

Before using this technique, we will try to obtain the proba-
bility density of the phase error. It is not wise to come to the
conclusion that the probability distribution of the phase error is
Gaussian with zero mean. However, according to Viterbi's work by
using Fokker-Plank techniqueslgnd Charles-Lindseys' experimental
resultsg it is known that the probability distribution of the phase
error of the second-order loop is essentially Gaussian with zero
mean for large signal-to-noise ratio in the loop bandwidth.

Thus, under these operating conditioné, the nonlinear element
AsinB (t) of Equation (3.7) can be replaced by the average gain3:

A, = 1. £(8)p(8)de

e2

7
=2 % cose . e 27 a0 (3.8a)

where

Ae = equivalent element gain,
02 = Variance of phase error,
f(0) = Acos8,
_ e
2
1 2
p(e) = —=5e

/7}'0

From Equation (3.8) we have

2
-
2

A = Ae (3.8b)

e
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Substituting Equation (3.8b) into (3.7), we get

v (£) = K KfL-l{L[Ae+ni(t)]F(s)} (3.9)

d

Hence, the loop equation for the phase error of a quasi-linearized

phase locked-loop is obtained as

8(s) = @i(s)—AeKo[l+N(s)]E§§l (3.10)

where N(s) denotes the density spectrum of the normalized noise
ni(t)

A
e

conditions, the steady state loop behavior of phase error can be

. This equation shows that, under the equivalent linearized

analyzed.

Thus, an alternative mathematical model of the quasi-linearized
phase-locked loop is portrayed in Figure 3-2. In this model ®i(s)
is the input phase spectrum produced by the modulating signal, and
¢n(s) denotes the noise phase spectrum of the VCO phase jitter
¢ (6.

The closed-loop transfer function of Figure 3-2 can be

expressed as
AeKOF(s)

(3.11)
S + AeKOF(s)

H(s) =

Therefore, the closed-loop transfer function of the high gain loop
employing the filter of Figure 2-3 may be written as
2tw S + w2
n n

H(s) = > (3.12)
ST+ 2tw S + w
n n

where,
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Letting w
no

and

and

21

_ 2
0 4 .
— e is loop natural frequency,
T2
2
- <
1 1+ AKo 18 2 is loop damping factor.
2w
n
—;9- is relative loop natural frequency,
2
‘1
_ —?9- is relative loop damping factor,

2

natural frequency and damping can be written as

2
o
4
w e s
no
2
-9
4 .
L e , respectively.
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PHAST-LOCKED LOOP DEMODULATOR

This chapter is devoted to obtain the mean-square phase error
of the quasi-linearized phase-locked loop under the operating con-
ditions mentioned in the previous chapter.

Throughout this thesis, when the power spectral density
involving bandwidth is considered, it must be noted that the single-
sided spectrum is employed. The single-sided spectrum is related
to the double-sided spectrum which is uniformly distributed over

the bandwidth (—fo, fo). That is

{
26, . (f) £>0

Gl(f) - 11
0 f <0

where,
Gl(f) = single~sided spectrum over the
bandwidth 0 < £ < f_,
Gll(f) = double-sided spectrum over the

bandwidth ~-f < £ < f .
o— — o

As shown in Figure 3-2, the total phase error produced at the

output of the phase detector is
8,(8) = ¢, (£) = ¢_(£) - ¢ (t) (4.1)

Since the signal and noise are statistically independent processes,

the total mean-square phase error can be obtained by using

22
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Parseval's theorem as

2 _ L ey, _ 12 1+
¢’e(t) T 27mj fo I*i(s) Qo(s)l ds+§;§ fo

m}“ (s)lzds (4.2)

"n
From FEquation (4.2), it is observed that the first term represents
the mean-square phase error due to modulation and the second the
mean-square phase error due to noise.

In order to analyze the random behavior of the loop, it is
worthwhile to express Lquation (4.2) in terms of the closed-loop
transfer function, H(s). Then the mean-square phase error due to

modulation can be written as

2 _ 1 +jo _ 2
b0 = 723 G_(s)|1-H(s)|“ds | (4.3)
where,
2
G (s) = [2,(s)]%,

i.e., magnitude square of the input phase transform function is the
same as the power spectral demnsity of the input signal phase,

Before attempting the actual computation of Equation (4.4), the
following assumptions will be made to obtain the meaningful results:
(1) the power spectral density of the input signal phase is uniformly
distributed over the base-band fm’ (2) the loop natural frequency is
so large that wm/wn << 1,

In these assumptions, the first one is usually the case in
practice. The second assumption restricts the validity of computations

to more interesting region of the high output signal-to-noise ratio

of the demodulator.
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Hence, for the closed-loop transfer function given by Equation

(3.12) we obtain

62 ()

[
a
Gl
(.

(4.4)

1
=
=]

Since the noise spectrum density was assumed to be uniformly
distributed with the normalized amplitude over the bandwidth of IF
filter, the mean-square phase error due to noise through the loop

filter H(s) will be given by

G
n t+jo 2
prey fo H(s)|“ds

¢§(t)

2

Gn +jm| 2cwn + w
2nj "o 52 + 2w+ w

n n

|2ds

ann(l + 4c2)
= 8% (4.5)

where, 2

c = —if (4.6)

In Equation (4.5) Si and Gi denote the signal and noise power

f £

spectra over the IF filter bandwidth. The signal and noise processes

are assumed to be zero-mean Gaussian, and the mean-square is given



by the variance. Therefore, from Lquation (4.4), (4.5), and (4.6)

2 ) .
the total mean-square phase error ¢e(t) of Equation (4.3) can be

given as 2
- ¢
4 2 2 2 02
£ G w'e’ G..w (1+4z"e Je
mm if rno o)
8¢ S,
oi

(4.7
£



V. INVESTIGATION OF MAXIVUM DEMODULATING SENSITIVITY

LIMIT WITH EIGH STABILITY

This chapter is intended to determine the limitation of the
maximum demodulating sensitivity with high stabiiity. In this
thesis, the maximum demodulating sensitivity limit is defined as
the threshold of the demodulator.

It has been recognized that the phase~locked loop performs
a band-pass filtering operation on phase inputs produced by modu-
lating message and noise. Hence, one of the important criteria
for high demodulating sensitivity is minimization of the mean-
square phase error, 02. Inspection of Equation (4.7) shows that
it is also affected by such significant factors as the relative
loop natural frequency w o and damping factor [ Therefore, it
is obvious that these three factors, i.e., oo Co’ and ¢ play
important roles to improve high demodulating sensitivity.

Since the signal power spectrum over IF filter bandwidth Sif
can be assumed to be equal to the input signal power Si of the
demodulator, from Equation (4.7), the input signal power of the

demodulator can be represented as:

2
2 57/2, 0
Gif[l+4;0e le” w

s, = 1o (5.1)

2
2 b, o b
8(;0 [0 fmmeme /swno]

26



27

Consequently, it is suggested that the maximum demodulating sensi-
tivity can be derived by minimizing the input signal power.

Assuming the parameters: ¢, Co’ Gi , Gm, and w are as con-

=t

stants, we may find an expression for wno]nin to give a minimum Si
i

by taking the first derivative of Equation (5.1) with respect to

Yoo and equating the result to zero. That is,

Substituting this into Equation (5.1), we have

2
-

5ﬁ[l+4§§e 2 ] 02 5 1

&L 2 1
in = 37c_ ( 02)4 (Gmfm)4 (zciffms) (5.2)

|

i

Thus, one of the criteria for maximum demodulating sensitivity is

achieved.

Consider the wideband frequency-modulated carrier to the input

of the IF filter as:

v, = 2 Asinf[w t + Bcosw t] (5.3)
is c jul
where,
B = ra is frequency modulation index,
m
Af = peak frequency deviation,
“m
fm =5 is maximum frequency of sinusoidal message.
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An approximation of the requirement bandwidth of the IF

filter for distortionless transmission is

Big = 25fm (5.4)
If the IF bandwidth is assumed to be 281’.n the single-sided power

spectral density of the input signal phase in the loop is given by

22
Gm = ?F— (5.5)
m
where W, = 8,_/f is the input bandwidth ratio.
i if' 'm
Since the input noise power to the loop can be given as
Ni = ZGifme the input signal-to-noise power ratio is
Si
/%) =553 3 (5.6)
ifm

From inspection of Figure 3-2, Gmfm is the mean-square signal power
and anm the noise power in the demodulator output, respectively.
Therefore, the output signal-to-noise power ratio of the demodulator

can be expressed by Equation (4.6), (5.5), and (5.6) as:

3
S 28~ S
(ﬁ)o = ————02 (E)i (5.7)

e

Thus, using Equation (5.2), (5.5), (5.6), and (5.7), we can write as

follows:
6 2 —_—
30 s atle P14 1
(s/N)i = 5 T6c 5 (N—.)os (5.8)
280 o

As was done in Equation (5.1) for 0 o (8/¥), may be minimized

from Equation (5.8) with respect to the mean-square phase error o .
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Assuming that (S/N)O is fixed, a minimum value of (S/N)i will be
obtained for a particular value of damping factor. From the curves
of the frequency response of the ioop shown in TFigure 2-4, it can

be seen that the suitable range for the loop stability may be from
0.3 to 1.0, Within this range, as shown in Figure 5-1, the damping
factor for minimum (S/N)i is approximately 0.707 and hence, maximum
demodulating sensitivity occurs at 02 = 1.0201 radians. Substitu-
tion of this value into Equation (5.8) yields the following threshold

relation:

(S/mi,th.iCo _ o.707 = 0-1+ (1/5)(s/N)_(db) (5.9)

1

| 8

where (S/N), denotes the input threshold in the value

i,th.

L, = 0.707
of decibels for the damping factor 0.707. The threshold character-

istics are depicted in Figure 5-2 for damping factors: 0.3, 0.5,
0.707, and 1.0,

From Equation (5.7), by putting Z = (S/N)i/(S/N)o, we have

2 3
g = ln[ZB Z]

Substituting this into Equation (5.8), the input signal-to-noise

ratio can be obtained by

3 2
3., 70 sn 4, ]
W)Z2/417 § = [1 + ————7]
. i i 16 (W?Z/A)l/Z f
@ = (5.10)
= 5/4

714 ¢ w.in[w?z/al}
1 1

Derivation of Equation (5.10) from (5.1) is shown in Appendix A.



Graphs (S/N)o—versus—(S/.\Z)i are shown in Figure 5-3, 5-4, and 5-5
for damping factors 0.3, 0.5, 0.707, and 1.0, respectively. By
the digital computer IBM 7040 the curves of threshold [Equation
{(5.9)], and (S/N)O—versus-(S/N)i [Equation (5.10)] for various Ty
wi, and 8 are plotted in Figure 5-2 to 5-5. The FORTRAN program

is shown in Appendix B.
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Figure 5-1. Input signal-~to-noise ratio versus mean-square phase

error for various damping factors.
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db

(s/x)

33

; v o o= 0,707
70 o)

60

50

40

30

20

10

0 10 12 14 16 18 20 22 24
(s/N), db
1
Figure 5-3. OQutput signal-to-noise ratio versus input-signal-

to-noise ratio for wvarious input bandwidth
ratio at Co = 0.707.
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Figure 5-4. Cutput signal-to-noise ratio versus {nput signal-
to-noise ratio for various wmodulation indices at

Ly = 0.707,
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Figure 5-5. Output signal-to-noise ratio versus input signal-to-noise

ratio for various input bandwidth and damping factors.



VI. CONCLUSIOXS

Utilization of Figure 2-4 makes it possible to predict that
& proper range of damping factor for a suitable response of the
high-gain second-order loop is between 0.3 and 1.0. For this range,
the curves in Figure 5-1 sihows that the mean-square phase error
never exceeds its minimum value by more than 8.0 percent.

From Figure 5-4, the minimum threshold is bounded at (S/N)i =
+7.2 db. t 1s also seen from Figure 5-2 that the difference of the
input threshold is approximately 1.2 db for 0.3 5_;0 < 1.0. Hence,
we can conclude that for suitable performance the damping factor
may be chosen in any of the abov? range.

In the above threshold, it can be seen from Figure 5-3 to 5-5
that (S/N)O versus (S/N)i approach the characteristics of a conven-
tional FM demodulation asymptotically. Also, as seen from these
figures, near threshold, there is a risk of the demodulating sensi-
tivity being degraded rapidly. Therefore, to avoid this possibility
of degradation, the input threshold should be chosen about +2 db
above threshold for linear democdulation. It is also noted that the
input bandwidth ratio or modulation index does not affect linearly
on (S/N)o. If a minimum power optimization is desirable, the lower
input bandwidth ratio or modulation index is suitable.

In conclusion it must be mentioned that by utilizing quasi-

linearization techniques, the satisfactory performance of the high-

36



zain second-order phasc-locked loop demouulation may be expected

‘or value of output signal-tu-noisc ratio above +5 db for
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X. APPENDICES

APPENDIX A

Derivation of Equation (5.10) from (5.1)

From Equation (5.1) we have

wnolmin = 2

Substituting w into Equation (5.1),

nolmin

2
2 -9 2 1
o] 2 2 4 o 2.4
) Gife [1+4coe ](Gmfmwme [ao™)
i'min 2
. 2 4 o 4 2,2
-G AO'
8§0[0 Cmfmwme /S(Gmfmwme /o]
2
-9
snlltarie © 1 o L
= 16z ( ) (Giffm)(cmfm)
o] 2
o
2
-0
5n[1+4§§e ] eoz %—
= 32¢ =) (G £ (26,.F 8)
o o]
)
S if
Since ), = 0
N i ZBGiffm
and cg) - 2Gmfm - 28Gmfm ( Sif y = 28Gmfm Cg)
No 2G f 2 2G, . f B 2 N7i’?
nm o] ifm o}

e

(5.2)



o2 (§
_e N'o
Then Gmfm T (§) (5.7a)
N4
Therefore, (%)i can be expressed as
2 4/5
6/502 Sw[l + 4z2e”® /2
S, -8 d S Y5 (5.8
N7 i 2302 16?;o N'o
From Equation (5.3) and (5.4),
2¢?(t) 2[Bcosw t]2 2
G = —=— = m_ & (5.5)
m f f f )
m m m
Thus, substituting this into (5.7a), we have
3
S, _ 28 S
(N)O - 02 (N)i (5.7)
e

Substituting Equation (5.5) into (5.7a), by putting Z = (S/N)i/(S/N)O,
we have

02 = 2n[2832]

Then, substituting this inte Equation (5.8), (§). can be expressed as

N i
2
S - [28°2] STy o
N 21/4{282n[2832]}5/4 LGCo (2832)1/2
nwlz/41°/? - i’ ]
= - 1+ (5.10)
zl/q{wizn[wi’z/ﬂ}s/4 16z, (wiz/A)l/2
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APPENDIX B

Fortran Program Variables Names

DAMP
M@D
WIDTH
ISNR
@SNR
IPSNR
ISNRDB
@SNRDB
ITHDB

$THDB

Qutput threshold in decibels, (S/N)

Relative damping factor, Z

Frequency modulation index, 8

Input bandwidth ratio, Wi

Input signal-to-noise power ratio, (S/N)i

Output signal-to-noise power ratio, (S/N)0

Input-to-output signal-~to-noise power ratio, (S/N)i/(S/N)o
Input signal-to-noise power ratio in decibels, (S/N)i (db)
Output signal-to-noise power ratio in decibels,(S/N)O (db)

Input threshold, in decibels, (S/N), (dab)

i, th.

o,th, (db)
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Fortran IV Digital Computer Program

DIMENSI¢IN DAMP (7), WIDTH(9), M@D(9), IPSNR(75),

C ISNR(75), @SNR(75), ISNRDB(75), @SNRDB(75),
C ITHDB(75), @THDB(75)

READ(5, 10) (DAMP (T), I=1, 4)
10 FPRMAT (4F10.5)
READ (5, 20)  (WIDTH(J), J=1, 9)
20 FPRMAT (9F8.5)
READ (5,30) (IPSNR(K), K=1, 75)
30 FYRMAT (5F10.7)
WRITE (6, 1)
1 FYRMAT (1H1, 11X, 4HDAMP, 13X, SHWIDTH, 13X, 3HM@D, SHIPSNR,
C 15X, 6HISNRDB, 15X, GH@SNRDB, 15X, SH@THDB, ///)
D@ 100 I=1, 4
DF 200 J=1, 9

D¢ 300  K=1l, 75

S = DAMP (1)
W = WIDTH(J)
B = M@gD(J)
Z = IPSNR(K)
Al = Wx*3

R1 = 0.25%A1%Z
IF (R1 .LE. 1.0) G@ T 300

R2 = 7%0.25
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A2 = ALPG (R1)

R3 = WXA2

A3 = 16.%S

R4 = 5.%3.14159/A3
AL = S¥%2

R5 = 4.%A4

A51

R1#%%0.5

1t

A52 = R1#%1.5

R6 = 1. + R5/A51
A6 = R3%1.25

AR = A51/R2%A6
BR = R4*R6

R = ISNR(K)

RR = @SNR(K)

RDB = ISNRDB(K)

RRDB = @SNRDB(K)

M@D(J) = W/2.

i

ISNR(K) = AR*BR
@SNR(K) = R/RR

RLGG = ALPGLO(R)

RDB = 10.*RB¢G

RRLPG = ALPG10(RR)
@SNRDB(K) = 10.*RRL@AG

T1

ITHDB (K)

]

T2 = @THDB(K)
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ITHDB = ISNRDB

Til = T1 - 6.97481
T12 = T1 - 6.19258
T13 = T1 - 6.10048

Tl4 = T1 - 6.40822

1

IF (S .EQ. 0.3) OTHDB(K) = T11%5,

IF (S .EQ. 0.5) PTHDB(K) = T12%5.

IF (S .EQ. 0.707) ATHDB(K) = T13%5,
IF (S .EQ. 1.0) HTHDB(K) = T14%5,
WRITE (6, 2) DAMP(I), WIDTH(J), MAD(J), IHSNR(K),
C ISNRDB(K), HSNRDB(K), ITHDB(K), OHTHDB(K)
2 FARMAT (1X, 7F16.7)
300 CHNTINUE
200 CHNTINUE
100 CPNTINUE
ST@P

END



ABSTRACT

AN ANALYSIS OF THRESHOLD CHARACTERISTICS OF QUASI-LINEARIZED

PHASE-LOCKED LOOP DEMODULATION FOR WIDEBAND FREQUENCY-MODULATED SIGNALS

An analytical threshold criterion in approximation has been
developed for the basic phase-locked loop demodulator utilizing
quasi-linearization technique. The analysis is based on assumptions
that the loop is excited by an input FM signal and additive white
Gaussian noise. This paper defines the threshold criterion by the
characteristics of maximum demodulating sensitivity limit. Finally,
the effects of the modulation indecies and loop parameters on the
threshold characteristics are discussed from a theoretical and

practical point of view.
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