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I. INTRODUCTION 

Discussed herein is the theoretical analysis of the threshold 

characteristics of quasi-linearized phase-locked loop demodulation 

for wideband frequency-modulated signals. 

In the performance of frequency demodulation the signal recep-

tion deteriorates very rapidly below a certain critical value, called 

the threshold, of the input carrier power-to-noise power ratio, and 

improve l~nearly above this value. Therefore, the threshold char-

acteristics is one of the essential elements for optimization of 

the minimum input power communications systems design. 

Using phase-locked loop dempdulation techniques considerable 

improvement in the threshold can be obtained compared to that of a 

conventional frequency demodulation system. It is also well suited 

for tracking narrow-band signals emitted by moving space vehicles. 

Therefore, in present day, phase-locked loop demodulation has become 

the standard technique in deep-space communication applications. 

Much of the earlier work on the threshold behavior of phase-

locked demodulations for optimum reception has been discussed in 

several papers3 ' 6 ' 9 , which are based on different criterion of thresh-

old behavior. 

This thesis presents an analysis of the performance of phase-

locked-loop behavior based on Viterbi's application of the Fokker-

Plank technique and Booton's Quasi-Linearization technique. The 

analysis in this thesis for the threshold criterion follows very 
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3 closely the work done by Develet in a study of threshold criterion 

for phase-locked demodulation for arbitrary information and noise 

spectral densities. 

The main purpose of this thesis is to analyze the threshold 

characteristics and to observe the effects of the input bandwidth 

ratio, the frequency modulation index, and the phase loop parameters 

on phase-locked demodulation. 

In Chapter 2, the basic loop is described and its fundamental 

equations and transfer functions are derived. Chapter 3 develops a 

quasi-linearized loop demodulator model in the presence of noise. 

Under the assumption of the quasi-linearized model, the mean-square 

·phase error is derived in Chapter 4, and finally, the threshold 

criterion is discussed in Chapter 5. 

The threshold characteristics will be investigated under the 

following assumptions: (1) the phase loop is statistically locked-

in, (2) the phase of the signal is a zero-mean Gaussian process, 

(3) the incoming signal and the additive white Gaussian noise are 

statistically independent, and (4) the input signal is wideband 

frequency-modulated by sinusoidal message. 



II. FORMULATION OF THE BASIC LOOP EQUATIONS OF A HIGH-GAIN SECOND-

ORDER PHASE-LOCKED LOOP IN THE ABSENCE OF NOISE 

This chapter presents some basic analytical expressions 

governing the phase-locked loop as shown in Figure 2-1, such as, 

the basic loop equations, the transfer functions, and the loop 

parameters. 

The description in this chapter will be based on the follow-

ing assumptions: (1) the loop has a high gain, (2) the closed-

loop transfer function has two poles, (3) the loop is locked-in, 

and (4) there is no noise present in the loop. 

Suppose that the input signal to the loop of Figure 2-1 is a 

sinusoidal waveform as 

v.(t) =f2Asin[w t + <jl.(t)] ]_ c ]_ (2.1) 

where A denotes rms amplitude of the sinusoid. 

The output of the voltage controlled oscillator (VCO) is assumed to 

be a sinusoid whose oscillating frequency is equal to the input fre-

quency of the loop. This output can be expressed as 

v (t) =[2cos[w t + <P (t)] 
0 c 0 

(2.2) 

The rms amplitude of the VCO output is assumed to be unity. 

The output of the phase detector (multiplier), which is product 

of the incoming signal v.(t) and the VCO output v (t), can be written 
]_ 0 

as 

3 
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Kdv.(t) . v (t) 
1 0 

= AKdK {sin[¢.(t)-¢ (t)]+sin[2w t+~.(t)+¢ (t)]} v 1 0 c 1 0 

where Kd is a d.c gain of the phase detector, and Kv is a d.c gain 

of the VCO. The multiplier output vd(t) is fed into the loop filter 

which removes the second harmonic frequency component. Hence, the 

input waveform to the VCO can be expressed as 

where Kf is a d.c gain and F(s) is the transfer function of the 

loop filter, respectively. 

The frequency of the VCO output is controlled by the input 

voltage vf(t), and the relation between the output phase ¢
0

(t) and 

the loop filter output is given by 

d¢ (t) 
0 
dt = (2.4) 

By taking the Laplace transform of Equation (2.4), the phase of the 

VCO output can be expressed as 

(2.5) 

Thus, it is understood from Equation (2.5) that the VCO output phase 

is proportional to the integral of the input voltage vf. Here, it 

must be noted that the steady state behavior of the loop will be only 

considered through this study. 
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Taking the Laplace transform of Equation (2.3) and substituting 

into Equation (2.5) 

where, K 
0 

¢ (s) 
0 

AK L{sin8(t)}F(s) 
0 s 

e = ~. - ¢ is the phase error. 
J. 0 

(2.6) 

Since it is assumed that the loop is capable of reducing the 

phase error to a small enough value lei < i, the loop is completely 

phase-locked, the phase of the VCO output tracks the phase of the 

input signal closely. Under the locked-in condition, the output of 

the phase detector will be linearly proportional to the phase error, 

i.e., vd « e. Thus, the phase error can be expressed in the frequency 

domain as 

e (s) = ~i(s)-AK [~.(s)-~ (s)]F(s) 
0 J. 0 s 

(2.7) 

This is the fundamental equation for the phase error which specifies 

the behavior of the phase-locked loop in the absence of noise. The 

mathematical model of the loop may be portrayed by the block diagram 

shown in Figure 2-2. 

For the analysis of the loop response, it is necessary to find 

the relationship between input and output signals by means of the 

loop transfer functions. From the mathematical model for the linear-

ized phase-locked loop (Figure 2-2), the closed-loop transfer function 

is obtained as 



<t> 
(s

) 
0 

e (
s)

 
= 

<t
>.

(s
) 

-
<t>

 
(s

) 
1 

0 

1 s 

F
ig

ur
e 

2-
2.

 
M

at
he

m
at

ic
al

 m
od

el
 o

f 
li

n
ea

ri
ze

d
 p

ha
se

-l
oc

ke
d 

lo
op

. 

F 
(s

) 

-..
.J 



8 

0 (s) 
- 0 -,--,_ = H (s) o. (s) 

l. 

AK F(s) 
0 

S + AK F(s) 
0 

(2. 8) 

The relation of the phase error to the input, i.e., the phase-error 

transfer function can be obtained as follows: 

8 (s) 
¢. (s) 

l. 

1 - H(s) 

s = -----:-s + AK F(s) 
0 

(2.9) 

A lag-lead filter will be employed as the loop filter as shown 

in Figure (2-3), and the transfer function of the filter gives 

F(s) = (2.10) 

where, 

For this transfer function, the closed-loop transfer function becomes 

(2.11) 

By letting 
AK 2 0 w =-

n '2 
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and 

2sw = n 

10 

1 + AKO 1 

T 2 

Equation (2.11) can be expressed as 

H(s) 2 2 s + 2sw s + w n n 

(2.12) 

where s denotes the loop damping factor, and w is the loop natural 
n 

frequency. Considering that the loop has a high gain such that 

w2/AK n o << 2sw , n Equation 

H(s) 

(2.12) will 

2sw s + n = 
s2 + 2sw s n 

be reduced to 
2 w n 

2 + w n 
(2.13) 

Equation (2.13) implies that the phase-locked loop is a second-order 

system. Since the loop gain is assumed high and its transfer function 

has two poles, the phase loop may be defined as a high-gain second-

order phase-locked loop. 

The magnitude of the frequency response of this high-gain 

second-order loop for several values of damping factor is illustrated 

in Figure 2-4. From this figure it can be seen that the phase-locked 

loop performs as a low-pass filter for the input phase. Phase error 

response is plotted in Figure 2-5 for the high-gain second-order loop 

withs= 0.707. This demonstrates to us that the phase error approaches 

zero as the normalized frequency w /w is increased. Furthermore, we 
n 

notice that the loop tracks reasonably well in the low-frequency 

region, but it will fail at the high frequencies. 
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In the following chapter an analysis is presented of a quasi-

linearized loop in the presence of noise. This provides a more 

general situation of the phase-locked loop performance. 
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III. DEVELOP}1E:\T OF A nrASI-LINEARIZED 

PHASE-LOCKED LOOP DE;·JODULATOR ~ODEL 

For a simple analysis of the fundamental behavior of the phase-

locked loop, we have assumed that, in Chapter II: (1) the phase 

error is suffiently small such that sine z e, (2) the loop operates 

in the absence of noise. Under these conditions the precise behavior 

of the loop performance may be predicted by the linearized loop model 

as shown in Figure 2-2. 

However, in practical cases like a deep-space communications 

systems, it may not be expected that the phase error is always small 

such as I e I < TT /6. In addition,, there exists a significant additive 

noise through the transmission channel plus noise caused internally 

in the loop. When the phase error is considerable, the loop can no 

longer be regarded as a linearized loop, and it will have a sinusoidal 

nonlinear phase gain. 

The exact solution for the second-order phase-locked loop with 

nonlinearity is extremely difficult to obtain. Therefore, it is 

desirable that the nonlinear element, Asine, in Equation (2.6) should 

be converted to an equivalent linear element. One way to convert the 

nonlinear gain to an equivalent linear gain is by Beeton's quasi-

1 . . . h . 3 1near1zat1on tee nique . Thus, by using this technique, a mathemati-

cal model of phase-locked loop in the presence of noise will be 

established, and then the corresponding equation and transfer function 

14 
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will be derived by the same procedure as explained in the previous 

chapter. 

A basic phase-locked demodulator, which contains an IF band-

pass filter followed by the phase-locked loop (Figure 2-1) is con-

sidered. It is assumed that the received signal contains the message 

component plus additive white Gaussian noise. The noise density 

spectrum is uniform over the bandwidth of the IF filter. 

Under these operating conditions, an analytical block diagram 

of the phase-locked loop demodulator may be represented as shown in 

Figure 3-1. Consider the output of the IF filter as 

v. (t) = [2 Asin[w t+¢. (t)] + n(t) 
1. c 1. 

(3 .1) 

where, n(t) = /'[" x(t)cosw t + [2 y(t)sinw t is white Gaussian noise. c c 

The quadrature components of noise, x(t) and y(t) are statistically 

independent, and stationary Gaussian processes. Their probability 

density functions are: 2 x 
--2 

1 2a 
p (x) x 

= 2 e 
./TITa x 

2 
J_ 

- 2 
1 2a 

p (y) y (3. 2) = 2 e 
j2i,a y 

2 2 in which a or a is the variance of noise component. x y 

As mentioned in the previous chapter the VCO output is 

v (t) =[Y cos[w t + ~ (t)] 
0 0 0 

(3. 3) 
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where w is radian frequency of the VCO output. The output wave-o 

form of the phase detector can be shown as 

= 2Kd{Asin[w t+¢.(t)]+n(t)} . cos[w t+¢ (t)] c 1 0 0 
(3.4) 

If we assume that the incoming signal to the loop is tracked-in, 

say, the carrier frequency is initially tuned at the VCO frequency, 

then w c w • The waveform to the loop filter can be represented by 
0 

vd(t) = AKd{sin[¢.(t)-¢ (t)]+sin[2w t+¢.(t)+¢ (t)]} 
1 0 c 1 0 

+ Kdx(t){cos¢ (t)+cos[2w t+¢ (t)]} 
0 c 0 

+ Kdy(t){-sin¢ (t)+sin[2w t+¢ (t)]} 
0 c 0 

(3.5) 

After suppressing the double frequency components, the output of the 

loop filter becomes 

+ x(t)cos¢ (t)-y(t)sin¢ (t)]F(s)} 
0 0 

(3.6) 

Letting n.(t) = x(t)cos¢ (t)+y(t)sin¢ (t), vf(t) can be simplified 
1 0 0 

as 

(3.7) 

where 8(t) = ¢.(t) - ¢ (t) is the phase error. It is noticed that 
1 0 

Equation (3.6) is nonlinear due to the presence of the sinusoidal 

term. The nonlinearity should be converted to the equivalent linear 

form so that a quasi-linearization technique may be applied for 
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obtaining an approximate solution. 

Before using this technique, we will try to obtain the proba-

bility density of the phase error. It is not wise to come to the 

conclusion that the probability distribution of the phase error is 

Gaussian with zero mean. However, according to Viterbi's work by 

using Fokker-Plank techniques 1~nd Charles-Lindseys' experimental 

2 results, it is known that the probability distribution of the phase 

error of the second-order loop is essentially Gaussian with zero 

mean for large signal-to-noise ratio in the loop bandwidth. 

Thus, under these operating conditions, the nonlinear element 

Asin8(t) of Equation (3.7) can be replaced by the average gain3 

where 

A e f
00 f (8 )p (8)d8 

-oo 

A oo = ~~- f cos8 • e 2 -oo [2TI CJ 

82 
--2 

2CJ d8 

A equivalent element gain, e 

2 
CJ Variance of phase error, 

f(8) = Acos8, 
62 

1 2CJ
2 

p(8) - 2 e 
.f2TI CJ 

From Equation (3.8) we have 

A e Ae 

2 
CJ 

2 

(3.8a) 

(3. 8b) 
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Substituting Equation (3.8b) into (3.7), we get 

(3. 9) 

Hence, the loop equation for the phase error of a quasi-linearized 

phase locked-loop is obtained as 

e (s) = ¢.(s)-A K [l+N(s)]F(s) 
i e o s (3.10) 

where N(s) denotes the density spectrum of the normalized noise 
n. (t) 

1. 

A e 
This equation shows that, under the equivalent linearized 

conditions, the steady state loop behavior of phase error can be 

analyzed. 

Thus, an alternative mathematical model of the quasi-linearized 

phase-locked loop is portrayed in Figure 3-2. In this model ¢.(s) 
1. 

is the input phase spectrum produced by the modulating signal, and 

¢ (s) denotes the noise phase spectrum of the VCO phase jitter n 

<P (t). 
n 

The closed-loop transfer function of Figure 3-2 can be 

expressed as 

H(s) 
A K F(s) 

e o 
S + A K F(s) e o 

(3 .11) 

Therefore, the closed-loop transfer function of the high gain loop 

employing the filter of Figure 2-3 may be written as 

2 
2~w S + w n n H(s) 2 2 S + 2~w S + w n n 

where, 

(3.12) 
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2 
Af{ 'J 

0 
-4-

is loop natural frequency, w = e n T2 
2 

0 

1 1 + Af{ le 2 is loop damping factor. 
0 

l; = 2w n 

Letting w no is relative loop natural frequency, 

and 

z:o = is relative loop damping factor, 

then the loop natural frequency and damping can be written as 

and 

2 
- (j 

4 w = w e n no 

l; e 
0 

2 
- (j 
-4-

, respectively. 



PHASE-LOCKED LOOP DEXODULATOR 

This chapter is devoted to obtain the mean-square phase error 

of the quasi-linearized phase-locked loop under the operating con-

ditions mentioned in the previous chapter. 

Throughout this thesis, when the power spectral density 

involving bandwidth is considered, it must be noted that the single-

sided spectrum is employed. The single-sided spectrum is related 

to the double-sided spectrum which is uniformly distributed over 

the bandwidth (-f , f ). That is 
0 0 

where, 

= J 
0

2Gll (f) 
Gl (f) t 

f > 0 

f < 0 

c1 (f) = single-sided spectrum over the 

bandwidth 0 < f < f , 
- - 0 

c11 (f) = double-sided spectrum over the 

bandwidth -f < f < f • 
0 0 

As shown in Figure 3-2, the total phase error produced at the 

output of the phase detector is 

9 (t) = ¢.(t) - ¢ (t) - 9 (t) e i o n 
(4 .1) 

Since the signal and noise are statistically independent processes, 

the total mean-square phase error can be obtained by using 

22 
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Parseval's theorem as 

(4. 2) 

From Equation (4.2), it is observed that the first term represents 

the mean-square phase error due to modulation and the second the 

mean-square phase error due to noise. 

In order to analyze the random behavior of the loop, it is 

worthwhile to express Equation (4.2) in terms of the closed-loop 

transfer function, H(s). Then the mean-square phase error due to 

modulation can be written as 

1 +·oo 2 
= - f J G (s) I 1-H (s) I ds 27Tj o n 

(4. 3) 

where, 

i.e., magnitude square of the input phase transform function is the 

same as the power spectral density of the input signal phase. 

Before attempting the actual computation of Equation (4.4), the 

following assumptions will be made to obtain the meaningful results: 

(1) the power spectral density of the input signal phase is uniformly 

distributed over the base-band f , (2) the loop natural frequency is m 

so large that w /w << 1. m n 

In these assumptions, the first one is usually the case in 

practice. The second assumption restricts the validity of computations 

to more interesting region of the high output signal-to-noise ratio 

of the demodulator. 



24 

Hence, for the closed-loon transfer function given by Equation 

(3.12) we obtain 

- _l_ J+jco 2 G 11-H(s) I ds 2n j o m 

G f 4 
~ 2~~ f m w4 df(2nj) 

"] 0 w 
n 

4 a2 
G f w e mm m 

5w4 
no 

(4.4) 

Since the noise spectrum density was assumed to be uniformly 

distributed with the normalized amplitude over the bandwidth of IF 

filter, the mean-square phase error due to noise through the loop 

filter H(s) will be given by 

where, 

G n 

2 
G +· 21',;w + w = _____..!!. f J co I n n 

2nj 0 s2 + 21',;w + 
n 

G w (1 + 41'; 2) 
n n =-------81',; 

w 

2 
21 ds 
n 

(4.5) 

(4. 6) 

In Equation (4.5) Sif and Gif denote the signal and noise power 

spectra over the IF filter bandwidth. The signal and noise processes 

are assumed to be zero-mean Gaussian, and the mean-square is given 
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by the variance. Therefore, from Equation (4.4), (4.5), and (4.6) 

the total mean-square phase error ¢2 (t) of Equation (4.3) can be e 

given as 

2 a = 
4 a2 

f G w e m m ;:i 

5 w4 
no 

+ 
8r; s.f 0 1 

2 
_a_ 2 

2 )ea 
(4. 7) 



V. IXVESTIGATIO~ OF :-:!L'\I;.:l,"}f DE:.:ODCLATI~G SENSITIVITY 

LI?-lIT WITH HIGH STABILITY 

This chapter is intended to determine the limitation of the 

maximum demodulating sensitivity with high stabici.ty. In this 

thesis, the maximum demodulating sensitivity limit is defined as 

the threshold of the demodulator. 

It has been recognized that the phase-locked loop performs 

a band-pass filtering operation on phase inputs produced by modu-

lating message and noise. Hence, one of the important criteria 

for high demodulating sensitivity is minimization of the mean-

square phase error, 2 
(J • Inspec~ion of Equation (4.7) shows that 

it is also affected by such significant factors as the relative 

loop natural frequency w and damping factor ~ • Therefore, it no o 

is obvious that these three factors, i.e., w , ~ , and a play no o 
important roles to improve high demodulating sensitivity. 

Since the signal power spectrum over IF filter bandwidth Sif 

can be assumed to be equal to the input signal power S, of the 
l. 

demodulator, from Equation (4.7), the input signal power of the 

demodulator can be represented as: 

s. 
l. 

26 

(5 .1) 
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Conse~uently, it is sug~ested that the maximum demodulating sensi-

tivity can be derived by minimizing the input signal power. 

Assuming the parameters: 0, s
0

, G. _, G , and w are as con-
it m m 

stants, we may find an expression for w ] . to give a minimum S. no min i 
by taking the first derivative of Equation (5.1) with respect to 

w and equating the result to zero. That is, no 

w l . no min 

Substituting this into Equation (5.1), we have 

2 
- 0 

2 -2-
5TI[l+4s e ) 

s . l . = ---3-2-~---i min ., 
0 

a2 5 1 
E! - -
(-2)4 (G f )4 (2G.ff 3) mm i m 

(j 

(5. 2) 

Thus, one of the criteria for maximum demodulating sensitivity is 

achieved. 

Consider the wideband frequency-modulated carrier to the input 

of the IF filter as: 

v. = 2 Asin[w t + 8cosw t] (5. 3) 
l.S c m 

where, 

3 
M is frequency modulation index, -
f m 

M = peak frequency deviation, 

w 
f m is maximum frequency of sinusoidal message. = m 21T 
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An approximation of the requirement bandwidth of the IF 

filter for distortionless transmission is 

il = 2M (5.4) if m 

If the IF bandwidth is assumed to be 2Gf the single-sided power 
m 

spectral density of the input signal phase in the loop is given by 

G 
m " L 

m 

where w. = s.f/f is the input bandwidth ratio. 
l. i m 

Since the input noise power to the loop can be given as 

X. = 2G.ff B the input signal-to-noise power ratio is 
l. l. m 

(S/N). 
l. 

s. 
l. 

2G.ff B 
l. m 

(5.5) 

(5. 6) 

From inspection of Figure 3-2, G f is the mean-square signal power mm 

and G f the noise power in the demodulator output, respectively. nm 
Therefore, the output signal-to-noise power ratio of the demodulator 

can be expressed by Equation (4.6), (5.5), and (5.6) as: 

(~) N o 
2s 3 

2 a e 

(~). ., l. 
(5.7) 

Thus, using Equation (5.2), (5.5), (5.6), and (5.7), we can write as 

follows: 

2 
6 2 - a 
5° 5 [1+4t; 2e 2 ] 4 s l 

(S/N) . e 0 (5. 8) = 
2Ba 2 16t; 5 CN") 5 

l. • 0 
0 

As was done in Equation (5.1) for w (S/N). may be minimized no' i 

2 from Equation (5.8) with respect to the mean-square phase error a • 
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Assuming th;it (S/?.\) is fixed, a r.dnir..ur:i value of (S/N). will be 
0 1. 

obtained for a particular value of damping factor. From the curves 

of the frequency response of the loop shown in Figure 2-4, it can 

be seen that the suitable range for the loop stability may be from 

0. 3 to 1. 0. V.'i thin thi:" range, as s!1mm in Figure 5-1, the damping 

factor for minimum (S/?.\). is approximately 0.707 and hence, maximum 
l 

demodulating sensitivity occurs at 0
2 = 1.0201 radians. Substitu-

tion of this value into Equation (5.8) yields the following threshold 

relation: 

(S/N)i,th.ls 0.707 
I o 

= 6.1 + (1/5) (S/N) (db) 
0 

(5.9) 

I s = 1 

where (S/N)i,th. Jr; = 0 . 707 deno~es the input threshold in the value 
0 

of decibels for the damping factor 0.707. The threshold character-

istics are depicted in Figure 5-2 for damping factors: 0.3, 0.5, 

O. 707, and 1.0. 

From Equation (5.7), by putting Z = (S/N)./(S/N) , we have 
l 0 

Substituting this into Equation (5.8), the input signal-to-noise 

ratio can be obtained by 

3 2 
J 2 r 571" 4s o 1 

[W.Z/4] i 16 [l + 3 l/2]J 
·

1 (W.Z/4) 
l (5.10) = 

5/4 

Derivation of Equation (5.10) from (5.1) is shown in Appendix A. 
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GLDhs (S/'f.) -versus- (S/Y.) . are s'."iown in Fibure 5-3, 5-4, and 5-5 
• 0 l 

for da~ping factors 0.3, 0.5, 0.707, and 1.0, respectively. By 

the rligital coffi~uter IBX 7040 the curves of threshold [Equation 

(5.9)], and (S/N) -versus-(S/Y.). [Equation (5.10)) for various s , 
0 i 0 

W., and Sare plotted in Figure 5-2 to 5-5. The FORTR&.~ program 
i 

is shown in Appendix B. 
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Figure 5-1. Input signal-to-noise ratio versus mean-square phase 
error for various damping factors. 



0 ,-.. 
z -(/) .._, 

32 

70 

60 

50 

40 

30 

20 

10 11 12 13 14 15 16 17 18 19 

(S/N). l 
1, t 1, db 

Figure 5-2. Threshold characteristics for various damping 

factors. 



33 

70 

I 

I 
60 I 

.r:. 
"O 

40 

0 ,-... 
z -CJ) 
~ 

30 

0 10 12 14 16 18 20 22 24 

(S/"'f.). 
l. 

db 
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VI. co:;c.rsrn:~s 

Utilization of Figure 2-4 ffia~cs it possible to predict that 

D pr;)pcr range of du:;1ping factor- for a suit.'.lble response of the 

high-gain second-order loop is between 0.3 and 1.0. For this range, 

the curves in Figure 5-1 shows that the mean-square phase error 

never exceeds its rninimurn value by more than 8.0 percent. 

?ro;n Figure 5-4, the rninimur.1 threshold is bounded at (S/~). = 
l. 

+7.2 db. It is also seen from Figure 5-2 that the difference of the 

input threshold is approximately 1. 2 db for 0. 3 < s < 1. 0. Hence, 
- 0 -

we can conclude that for suitable ?erformance the damping factor 

may be chosen in any of the above range. 

In the above threshold, it can be seen from Figure 5-3 to 5-5 

that (S/K) 0 versus (S/N)i approach the characteristics of a conven-

tional F.1 demodulation asymptotically. Also, as seen from these 

figures, near threshold, there is a risk of the demodulating sensi-

tivity being degraded rapidly. Therefore, to avoid this possibility 

of degradation, the input threshold should be chosen about +2 db 

above threshold for linear demodulation. It is also noted that the 

input bandwidth ratio or modulation index does not affect linearly 

on (S/N) • If a minimum power optimization is desirable, the lower 
0 

input bandwidth ratio or modulation index is suitable. 

In conclusion it must be mentioned that by utilizing quasi-

linearization techniques, the satisfactory performance of the high-

36 
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ga~n second-order phase-loc~~d loo? de~o.;ulation ~ay be expected 

only for v~lue of output si;nal-t.J-nois~ ratio above +5 db for 

da~?in6 factor 0.707. 
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X. APPENDICES 

APPENDIX A 

Derivation of Equation (5.10) from (5.1) 

From Equation (5.1) we have 

2 
CJ 

1 
4 

Substituting w I . into Equation (5 .1), no min 

Since 

and 

s. I . = i min 
2 4 CJ 2 4 2 2 8s [CJ -G f we /5(G f w eCJ /a)] o mmm mmm 

2 - a 
2 2 ] 2 5 1 5TI [1+t1s e CJ --

(G.ff ) (G f ) 4 0 (~)4 = 16s 2 i m mm 
0 a 

2 - a 
2 2) 2 1 5TI [l+l1s e a 

(G f )7; 0 (~) (2G. ff S) = 32s 2 mm i m 
0 a 

s sif 
(N)i = -----

2SG.ff i m 

2SG f mm 

e 
2 a 

(5. 2) 



Then 
2 a e G f =-mm 2S 
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s Therefore, (N)i can be expressed as 

6/5a 2 
e 

From Equation (5.3) and (5.4), 

2~: ( t) 
G = _1 __ 

m f m 

161'; 
0 

2 2[Bcosw t] m 
f 
m 

Thus, substituting this into (5.7a), we have 

4/5 

(~) 1/5 
N o 

(5. 7a) 

(5. 8) 

(5.5) 

(5.7) 

Substituting Equation (5.5) into (5.7a), by putting Z (S/N). I (S/N) ' 
]. 0 

we have 

2 3 a = £n[2S Z] 

s Then, substituting this into Equation (5.8), (N)i can be expressed as 

[W~Z/4)3/2 I 4 2 l = --,----i ___ Sn_ [ 1 + ____ ,_s_o___,_1 
z114£W.£n[W~Z/4]} 5 / 4 16~0 (W~Z/4) 1 / 2 

]. 1 1 

(5 .10) 
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APPENDIX B 

Fortran Program Variables Names 

DAf1P 

WIDTH 

ISNR 

¢SNR 

I¢SNR 

ISNRDB 

¢SNRDB 

ITHDB 

¢THDB 

Relative damping factor, ~o 

Frequency modulation index, B 

Input bandwidth ratio, W. 
l. 

Input signal-to-noise power ratio, (S/N). 
l. 

Output signal-to-noise power ratio, (S/N) 
0 

Input-to-output signal-to-noise power ratio, (S/N)./(S/N) 
l. 0 

Input signal-to-noise power ratio in decibels, (S/N). (db) 
l. 

Output signal-to-noise power ratio in decibels,(S/N) (db) 
0 

Input threshold, in decibels, (S/N)i,th. (db) 

Output threshold in decibels, (S/N)o,th. (db) 
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Fortran IV Digital Cof!Puter Progiam 

DIMENSI¢N 

c 

c 

READ(S, 10) 

10 F¢RMAT (4Fl0.5) 

DAMP(7), WIDTH(9), M¢D(9), I¢SNR(75), 

ISNR(75), ¢SNR(75), ISNRDB(75), ¢SNRDB(75), 

ITHDB(75), ¢THDB(75) 

(DAMP (I), I=l, 4) 

READ (5, 20) (WIDTH(J), J=l, 9) 

20 F¢PJ1AT (9F8.5) 

READ (5,30) (I¢SNR(K), K=l, 75) 

30 F¢RMAT (5Fl0.7) 

WRITE (6, 1) 

1 F¢RHAT (llU, llX, 4HDAMP, 13X, 5HWIDTH, 13X, 3HN¢D, 5HI¢SNR, 

C 15X, 6HISNRDB, 15X, 6HV)SNRDB, 15X, 5H¢THDB, ///) 

D¢ 100 I=l, 4 

D¢ 200 

D¢ 300 

J=l, 9 

K=l, 75 

S = DAMP (I) 

W = WIDTH(J) 

B = M¢D(J) 

Z = I¢SNR(K) 

Al = W**3 

Rl = 0.25;':Al~:z 

IF (Rl .LE. 1.0) G¢ T¢ 300 

R2 = Z*0.25 



A2 = AV/JG (Rl) 

R3 = W'f<A2 

A3 = 16.*S 

R4 = S.*3.141S9/A3 

A4 = S**2 

RS = 4.*A4 

ASl = RF*O.S 

AS2 = Rl**L S 

R6 = 1. + RS/ AS l 

A6 = R3*1. 25 

AR = A51/R2~~A6 

BR = R4*R6 

R = ISNR(K) 

RR = ~SNR(K) 

RDB = ISNRDB(K) 

RRDB = ~SNRDB(K) 

M(flD(J) = W/2. 

ISNR(K) = AlZ*RR 

¢SNR (K) = R/RR 

RL¢G = AL(j5G10(R) 

RDB = 10. 'l'<RBQlG 

RRL<j5G = AL~GlO(RR) 

(j5SNRDR(K) = 10.*RRL0G 

Tl = ITHDB(K) 

T2 = ¢TIIDB (K) 

46 



ITHDB = ISNRDB 

Tll = Tl - 6.97481 

T12 = Tl - 6.19258 

T13 = Tl - 6.10048 

T14 = Tl - 6.40822 

47 

IF (S .EQ. 0.3) (JTHDB(K) = Tl1*5. 

IF (S .EQ. 0.5) (JTHDB(K) = T12*5. 

IF (S .EQ. 0,707) (JTHDB(K) = Tl3*5. 

IF (S .EQ. 1.0) (.lTHDB(K) = Tl4*5. 

WRITE (6, 2) DAMP(!), WIDTI-l(J), M{.lD(J), If)SNR(K), 

C ISNRDB(K), (JSNRDB(K), ITHDB(K), f)THDB(K) 

2 F(JRMAT (IX, 7Fl6.7) 

300 CONTINUE 

200 CVNTINUE 

100 C0NTINUE 

ST¢P 

END 



ABSTRACT 

AN ANALYSIS OF THRESHOLD CHARACTERISTICS OF QUASI-LINEARIZED 

PHASE-LOCKED LOOP DEMODULATION FOR WIDEBAND FREQUENCY-MODULATED SIGNALS 

An analytical threshold criterion in approximation has been 

developed for the basic phase-locked loop demodulator utilizing 

quasi-linearization technique. The analysis is based on assumptions 

that the loop is excited by an input FM signal and additive white 

Gaussian noise. This paper defines the threshold criterion by the 

characteristics of maximum demodulating sensitivity limit. Finally, 

the effects of the modulation indecies and loop parameters on the 

threshold characteristics are discussed from a theoretical and 

practical point of view. 
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