Acute Toxicity of Ammonia and Nitrite to White Shrimp (L. vannamei) at Low Salinities

Dominic Joseph Schuler

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Master of Science In Environmental Engineering

Dr. Gregory Boardman Dr. Andrea Dietrich Dr. Stephen Smith

April 30th, 2008 Blacksburg, Virginia

Keywords: Pacific White Shrimp, *Litopenaeus vannamei*, ammonia toxicity, nitrite toxicity, salinity

Page

1.	Abstra	ct	1	
2.	Introduction			
3.	Literat	ure Review	4	
	a.	Introduction		
	b.	Exposure to Ammonia and Nitrite		
	c.	Factors affecting toxicity of		
		ammonia and nitrite		
	d.	Conclusions		
	e.	Research Needs		
4.	Acute	toxicity of ammonia and nitrite to	16	
	Pacific	White Shrimp (L. vannamei) at		
	low sal	linities		
	a.	Abstract		
	b.	Introduction		
	c.	Materials and Methods		
	d.	Results		
	e.	Discussion and Figures		
5.	Conclu	usions and Research Needs	44	
6.	Refere	nces	45	
7.	Appendix A: Raw Data			
8.	Appendix B: Toxcalc Summary Reports 59			
9.	Appendix C: Instant Ocean Composition76			

Acute Toxicity of Ammonia and Nitrite to White Shrimp (L. vannamei) at Low Salinities Dominic Joseph Schuler

ABSTRACT

The Pacific white leg shrimp, Litopenaeus vannamei, is a potential species for low salinity inland aquaculture. Due to several independent variables, such as species, age, size, salinity and pH, that must be taken into account, there are gaps in the literature pertaining to the toxicity of ammonia and nitrite to shrimp. This study was conducted to investigate the individual and combined effects of ammonia and nitrite on L. vannamei postlarvae (25-45 days old) at 10 ppt salinity, 28 C and a pH of 7.8. The independent variables were salinity, total ammonia as nitrogen (TAN) and nitrite-N (NO₂-N), separately and combined. The TAN experiments were conducted at 18 and 10 ppt salinity while the NO₂-N test was conducted at 10 ppt salinity. Combined TAN and NO₂ tests were also conducted at 10 ppt salinity. The LC50 values for TAN at 18 ppt salinity, TAN at 10 ppt salinity, and NO₂-N at 10 ppt were observed to be 42.92, 39.72 mg/L (2.26 and 2.09 mg/L unionized ammonia-N), and 153.75 mg/L, respectively. When NO₂-N was adjusted to the LOEC level and TAN concentrations were varied, synergistic effects were observed, with an LC50 calculated to be 28.2 mg/L TAN (1.49 mg/L unionized ammonia-N). However, when the ammonia level was adjusted to the LOEC and nitrite was varied, antagonistic effects were observed with an LC50 calculated to be 163.3 mg/L NO₂-N. The results suggest that further investigations into the combined effects of ammonia and nitrite at varying concentrations and lower salinities will be important in developing "standard operating procedures" for the shrimp industry.

Chapter 1: Introduction

Pacific white leg shrimp (<u>Litopenaus vannamei</u>) are one of the most intensively cultivated shrimp species in the world (Pe'rez Farfante 1997). In the wild, they are found throughout tropical Pacific waters, from Mexico to Peru. In aquacutural settings, their ability to thrive in low salinity seawater has been observed, making them an especially good species for inland aquaculture (Pan et al. 2007). The reduction of salinity for inland aquaculture firms is a major goal. Prepared salts can be purchased and applied or ion supplements can be developed to mimic natural seawater conditions. No matter how the water is salinated, it is expensive. Recirculating aquaculture systems (RAS) reuse 90% of their water daily, but there is a direct proportionality between the salinity and cost of the 10% that is discharged. If shrimp can be cultivated at lower salinities, extensive costs to the producing firm are avoided.

Reducing the salinity of the water can lead to problems. The initial, and most apparent problem, is finding a species that can tolerate a shift in the iso-osmotic balance between the internal and external environments. Many marine species would experience an influx of water due to the osmotic pressure driven by the higher concentration of ions within the shrimp as compared to the surrounding water. Another problem that can result when decreased salinities are applied is decreased resiliency of shrimp to toxins, such as ammonia and nitrite.

Nitrogenous wastes products, such as ammonia and nitrite, can become concentrated in aquaculture systems (Frias-Espericueta et al. 1999). Ammonia is the resulting waste product of the cultured shrimp. It can also accumulate in the water due to the decomposition of organic solids such as excess feed and feces (Lin and Chen 2003).

- 2 -

For intensive RAS, the most common removal technique involves utilizing nitrifying bacteria to convert ammonia-nitrogen to nitrate-nitrogen (Ebeling et al. 2006). Of the resulting species, ammonia is more toxic than nitrite, which in turn is more toxic than nitrate. The total ammonia concentration as nitrogen (TAN) is comprised of two forms, unionized ammonia (NH₃) and ionized ammonium (NH₄⁺) (Armstrong et al. 1978). The form of the TAN is dependent on the pH, salinity, and temperature (Bower and Bidwell 1978). Of the two, unionized ammonia is the more toxic (Smart 1978). The small uncharged particle can easily cross the lipid membrane of aquatic organism's gill cells.

The purpose of this study was threefold. The toxicity of ammonia was first studied at 18 and 10 ppt salinity. Secondly, nitrite was studied individually at 10 ppt. The background tests helped to provide reference data when developing and analyzing combined TAN and NO₂ tests. These studies were directed to validate data of previous studies as well as to generate new data at specific environmental parameters and ages. The third objective was to conduct two experiments at differing combinations of ammonia and nitrite in order to better understand any combined effects resulting from exposure to elevated levels of both agents.

Chapter 2: Literature Review

2.1 Introduction

The control of ammonia and nitrite in aquaculture systems is the second most important factor impacting survival and growth of cultured organisms, following dissolved oxygen (Ebeling et al. 2006). The build up of nitrogenous waste products from feed decomposition and organism excretion can lead to reduced productivity as well as the collapse of an entire aquaculture system. The cycle of nitrogen in intensive recirculating aquaculture systems (RAS) can be easily characterized using a systematic approach that analyzes the inputs, outputs, and recycled materials.

Accumulation of nitrogen in RAS originates from feed being added to the system. The metabolism pathway of protein ultimately leads to the production of ammonia (NH_3) which is excreted (Hargreaves 1998). Total ammonia as nitrogen (TAN) is the measured combination of ammonia (NH_3) and ammonium (NH_4^+), the unionized and ionized versions. Once the TAN has been measured, the concentrations of the two separate species can be calculated based on the pH, temperature, and salinity of the water (Bower and Bidwell 1978).

Of the nitrogen excreted, two forms can be found, dissolved and particulate. According to Folke and Kautsky (1989), of the 75% of nitrogen added as food that becomes excrement, 62% can be classified as dissolved. Dissolved nitrogenous compounds can be taken up by aquatic organisms through the gills during respiration.

Removal processes of dissolved nitrogen compounds, can vary. For intensive RAS, the most common practice involves utilizing nitrifying bacteria to convert ammonianitrogen to nitrate-nitrogen (Ebeling et al. 2006). The nitrification process is

- 4 -

characterized by two oxidation steps, resulting in the transformation of NH₃ (ammonia) to NO₂ (nitrite) and finally NO₃ (nitrate). This process is essential in the natural world to reduce the toxicity of nitrogenous wastes. Conversion of ammonia to nitrite is accomplished by ammonia oxidizing bacteria (AOB). AOB are also commonly knows as Nitrosomonas bacteria. Nitrite oxidizing bacteria (NOB) metabolically oxidize nitrite to nitrate. NOB are also commonly known as Nitrobacter bacteria. The rate limiting step of this process is the oxidation of ammonia (Vadivelu et al. 2007). Incomplete nitrification occurs when a lack of NOB productivity is present, leading to increased concentrations of nitrite.

Volatilization is not a major factor in the removal of ammonia in recirculating aquaculture systems. Significant loss of ammonia due to volatilization only occurs at pHs above 9, when most TAN is in the unionized form. This is relevant for pond aquaculture systems and should be taken into account in nitrogen mass balances due to variation in cyclical pond characteristics (Hargreaves 1998).

2.2 Exposure to Ammonia and Nitrite

2.2.1 Toxic properties of ammonia

The toxic properties of ammonia are based on the irritative properties of the compound (CDC 2004). Unlike mammals that convert nitrogenous wastes to other forms such as urea, fish and crustaceans excrete ammonia in an unaltered state. This is possible due to the fact that in natural conditions ammonia is instantly diluted to safe levels by the

surrounding water. Fish and crustaceans also lack the ability to convert ammonia to the less toxic, carbamoyl phosphate compound. Due to this, aquatic species are especially prone to toxic effects of ammonia at highly concentrated levels. The unionized form of ammonia is the more toxic species to aquatic organisms due to its ability to gain entry through the gills. The uncharged, lipid soluble molecule can readily pass through cell membranes (Boardman et al. 2004), whereas the ionized form does not readily cross hydrophobic microphores in the gill membrane (Svobodova 1993).

The documented physiological changes in aquatic organisms due to ammonia exposure vary. One initial effect of ammonia relates to site specific irritation. The gills of tilapia that had been exposed to chronic ammonia tests were analyzed by Caglan, et al (2005). The authors concluded that ammonia was responsible for gill hyperplasia as well as lamella fusion.

The result of hyperplasia and lamella fusion is restricted water flow over the gills, leading to respiratory stress on the organism. Similar results were found, as well as epithelial pitting of the gills, when rainbow trout were tested and examined using scanning electron microscopy (Kirk and Lewis 1993). Authors have not investigated the histological effects of ammonia on the gills of shrimp.

2.2.2 Effects of Ammonia on Survival and Growth

The lethal effects of ammonia in aquacultural systems are well documented. Several species of shrimp have been used to conduct toxicity experiments in order to determine the lethal concentrations to 50% of a sample population (LC50). Lethal toxicity tests can be acute or chronic depending on the time of exposure. In most cases, acute tests are performed over a period of 2-7 days, while chronic tests are longer than 7 days. Concentrations leading to 50% mortality vary depending on the organism being tested.

The comparison of previous research and data is problematic due to the parameters that can be varied within toxicity tests. Examples of these parameters are age/size of the shrimp, salinity of the water, length of exposure to toxins, temperature and pH. The temperature and pH parameters are especially important because they are the two most influential factors in the proportioning of TAN. Another obstacle is that toxicity data for ammonia is not standardized; some literature presents data in TAN while others provide data in ammonia-N without necessary conversion factors based on the parameters used.

Previous studies have shown that 48 h median lethal concentrations (LC50) for ammonia-N to varying species of shrimp, to range from 30 and 110 mg/L TAN at full strength seawater depending on size and age (Chen *et al.* 1990a, Chen *et al.* 1990b, Ostrensky and Wasielesky 1995, Frias-Espericueta et al. 1999, Kir and Kumlu 2006). For <u>Penaeus monodon</u> and <u>Metapenaeus macleayi</u> juveniles, LC50's were determined using 96 hr acute tests. The results showed the respective LC50's to be 1.69 and 1.39 mg/l NH₃-N (Allan et al. 1990). Other authors, through studies with various genera and species, have concluded that the toxicity of ammonia to specific species is dependent on time and concentration.

A study using <u>Penaeus semisulcatus</u> post larvae (PLs) found that the tolerance to ammonia-N decreased with decreasing salinity. Specifically, the shrimp tested at 40 ppt

- 7 -

salinity were tolerant to ammonia-N levels 2.9 times higher than those at 15 ppt over 48 h (LC50s of 32.5 and 11.2 mg/L TAN, respectively) (Kir and Kumlu 2006).

Elevated ammonia levels can also lead to reduced growth of species raised in intensive aquaculture systems. Wickens (1976) showed that a concentration of 0.45 mg/l NH₃-N led to a 50% decrease in growth of five species of penaid shrimp. The author also concluded that a concentration of above 0.10 mg/L NH₃-N breached maximum acceptable levels for reduced growth over a three week chronic test (Wickins 1976).

2.2.3 Toxic properties of nitrite

Nitrite toxicity is not related to site specific irritation. Instead, the toxicity of nitrite is a function of the effects on the circulatory and immune systems of aquatic organism. Nitrite enters the blood stream and inhibits the binding of oxygen to the iron molecule of hemoglobin (Hargreaves 1998). The oxidation of the iron by nitrite leads to increased levels of methemoglobin and substantially decreased levels of hemoglobin (Tilak et al. 2007). This can lead to 'brown blood syndrome' where the blood loses its reddish color and becomes brown due to a lack of oxygen. Tilak et al. (2007) also saw decreased levels of oxygen consumption in relation to the conversion of hemoglobin to methemoglobin.

The blood of shrimp, as well as other invertebrates, does not contain hemoglobin. Instead, oxygen binds to a copper based molecule at the gills and is then delivered throughout the body. The physiological and histological effects of nitrite on invertebrates is not well study, but it is possible that nitrite effects the copper of invertebrate's circulatory systems as it does the iron of vertebrate's circulatory systems.

2.2.4 Effects of Nitrite on Survival and Growth

Tseng and Chen (2004) examined the effects of nitrite stress on immune responses to <u>Vibrio alginolyticus</u>, a common bacterial disease in marine aquaculture systems. They found that shrimp exposed to nitrite between 5 and 22 mg/l showed significantly reduced resistance to bacterial infection. This study was conducted through analysis of haemocyte (invertebrate red blood cells) counts (Tseng and Chen 2004). In another study <u>Macrobrachium malcolmsonii</u> juveniles were subjected to nitrite stresses in the presence of the bacteria <u>A. hydrophila</u>. The authors concluded that increased nitrite stress led to a reduction in immune response to *A. hydrophila* (Chand and Sahoo 2006).

In aquacultural systems, an increase in ammonia concentration is followed by a decrease in ammonia that is indirectly proportional to a rise in nitrite, as NH₃ is oxidized to NO2. The acute lethal affects of nitrite on aquatic organisms is not as pronounced as ammonia at low concentrations, yet its toxicity is still of concern. A study that explored the acute effects of nitrite on <u>L. vannamei</u> shrimp over 48 h revealed LC50s of 142.2, 244.0, and 423.9 mg/L nitrite-N for 15, 25, and 35 ppt salinity respectively (Lin and Chen 2003). Gross et al. (2004) also explored the acute effects of nitrite to <u>L. vannamei</u> in low salinity waters. When reared in water with 2 ppt salinity, the 48 h LC value was determined to be approximately 15 mg/L NO₂-N (Gross *et al.* 2004), significantly lower than seen in the Lin and Chen (2003) experiments.

- 9 -

2.2.5 Ammonia and Nitrite Combined

Few studies have been conducted with shrimp PLs that investigate the combined effects of ammonia and nitrite on shrimp, especially at lowered salinities. Alcaraz et al. (1997, 1999a, 1999b) studied the combined acute effects of ammonia and nitrite on <u>Penaeus setiferus</u> PLs including factors such as temperature tolerance, survival, and varying dissolved oxygen (DO) all at 30 ppt salinity. It has been suggested that the ratio of ammonia to nitrite is inversely proportional to the critical thermal maximum shrimp can tolerate (Alcaraz et al. 1997). Acute survival studies have suggested synergistic effects at 48 h exposure and antagonistic effects beyond 72 h (Alcaraz et al. 1999a). Decreased respiration rates have also been seen in <u>P. setiferus</u> exposed to ammonia and nitrite (Alcaraz et al. 1999b). Other studies conducted using <u>Penaeus monodon</u> PLs have suggested antagonistic effects at 48 and 72 h with synergistic effects after 96 h (Chen and Chin 1988).

2.3 Factors affecting toxicity of Ammonia and Nitrite

2.3.1 pH

The prevalent form of ammonia found in aquatic environments is heavily dependent on the pH. The pKa of the ammonium ion is around 9.25. As the pH increases, NH_4^+ releases a hydrogen ion resulting in ammonia, NH_3 (Allan et al. 1990). The toxicity of ammonia in relationship to pH is something that has been widely tested in shrimp. Many experiments have shown that an increase in pH up to 9 leads to reduced LC50's for multiple species of shrimp (Magallon Barajas et al. 2006). According to Magallon et al. (2006), most marine aquacultured organisms should be raised in water with a pH between 7 and 8 to avoid ammonia toxicity.

2.3.2 Salinity

For most marine organisms, increased salinity levels leads to greater resilience to elevated ammonia and nitrite concentrations. Test shrimp <u>P. semisulcatus</u>, showed an increased tolerance to ammonia when reared in 40 ppt salt, as compared to 15 ppt. LC50 levels were 2.5 times higher in 40 ppt salt water versus 15 ppt (Kir and Kumlu 2006). The same study revealed that there is a correlation between better growth and ammonia tolerance in higher salinity waters.

The effects of nitrite in relation to salinity are similar to those of ammonia. <u>Litopenaeus vannamei</u> were used to determine LC50's of nitrite at varying salinity levels (15, 25, 35 ppt). Despite <u>L. vannamei</u>'s apparent high tolerance to nitrite, those reared at 15 ppt salt showed LC50's that were 200-300 mg/l nitrite-N lower than those reared in 35 ppt salt (Lin and Chen 2003). These results are similar to other studies with different aquatic species. Another study showed decreases in the tolerance of juvenile black sea bass to nitrite in reduced salinity tanks (Weirich and Riche 2006).

As marine aquaculture facilities continue to move inland, away from natural seawaters, the cost for maintaining salt levels upwards of 40 ppt rises. The cost benefit

ratio of rearing marine species in lower salt concentrations and the effects of ammonia is something that requires more interdisciplinary research.

2.3.3 Dissolved Oxygen (DO)

Dissolved oxygen levels are one of the most important factors for the conversion of ammonia to nitrate. Nitrifying bacteria require adequate levels of oxygen to oxidize waste products. Low oxygen levels can also result in a shift to aerobic heterotrophic bacteria that are better competitors for oxygen than nitrifying bacteria (Hargreaves 1998). Hargreaves (1998) also mentions that the conversion of nitrite to nitrate requires higher levels of oxygen than the conversion of ammonia to nitrite. Therefore, in poorly oxygenated waters, a build-up of nitrite and ammonia can occur, leading to toxic effects on organisms.

Another indirect effect of low dissolved oxygen is an increased respiration rate in aquatic organisms that can lead to increased uptake of dissolved nitrogenous compounds (Thurston et al. 1981). Reduced DO levels have been shown to significantly increase the acute toxicity of ammonia in <u>P. monodon</u> due to increased respiration rates (Allan et al. 1990).

2.3.4 Temperature

Temperature, as well as pH, plays a role in the partitioning of unionized and ionized ammonia in aqueous environments. As temperature increases, the fraction of unionized ammonia in TAN increases (Bower and Bidwell 1978). It has also been shown that an increase in temperature is coupled with increased respiration rates in the freshwater shrimp, <u>M. rosenbergii</u> (Niu et al. 2003). Increased oxygen consumption could be linked to an increase in ammonia/nitrite uptake. An increase in temperature has also been found to increase nitrogenous excretion in crustaceans (Regnault 1986), possibly due to increased metabolic rates.

2.3.5 Age

Generally, as the age of an organisms increases, the tolerance of the organism to toxins increases. Juvenile or larvae-aged species are used in most bioassays to determine the lowest observed effect concentration (LOEC) of a toxic substance. Experiments wth <u>L. vannamei</u> revealed that post larvae 15-20 days old showed a higher LC50 than those which were younger (Magallon Barajas et al. 2006). The stabilization of ammonia and nitrite levels for younger organisms is especially important for transport and breeding situations.

2.4 Conclusions

The toxicity of ammonia and nitrite is heavily dependent on environmental factors, including pH, dissolved oxygen, salinity, and temperature. For aquacultural purposes, these factors play an important role in the development, growth, and survival of species exposed to ammonia and nitrite. Intensive culture in RAS allows for significant control over these factors and therefore the susceptibility of organisms to nitrogenous based toxins.

The manipulation of environmental factors affecting toxicity becomes the most important facet of culturing aquatic species based on location and available resources. If one factor cannot be controlled as well as others, extra measures can be taken to reduce toxicity through other means. For inland systems, the cost of salinating systems must be weighed against the growth responses and toxicity of ammonia and nitrite in low salinity water.

At the most basic level, a system should be designed with the knowledge that:

1. An increase in pH leads to increased ammonia toxicity,

2. A decrease in salinity leads to increased ammonia and nitrite toxicity for most shrimp species,

3. A decrease in DO leads to increased ammonia and nitrite toxicity,

4. An increase in temperature leads to increased ammonia and nitrite toxicity,

5. Younger individuals are more susceptible to toxic effects.

2.5 Research Needs

In order to maximize growth and survival of aquatic species through the minimization of ammonia and nitrite toxic effects, more research is needed to evaluate the combined effects of factors that affect their toxicity. By testing combinations of factors more information can be derived, leading to a complete understanding of how the systems function. This should be coupled with the testing of other water quality factors that might have an affect on nitrogenous toxicity, such as metals and other water contaminants.

Research has been completed to develop a general idea as to how certain groups of aquacultured organisms will react to varying levels of ammonia and nitrite, but it would be beneficial for cultured species to be tested individually to determine specific parameters. Variations between shrimp species and age groups have been documented (Allan et al. 1990), showing the need for data on specific species. Chapter 3: Acute toxicity of ammonia and nitrite to Pacific White Shrimp (L.

vannamei) at low salinities

Acute Toxicity of Ammonia and Nitrite to Litopenaeus vannamei at Low Salinities

Dominic J. Schuler

To be submitted to: The Journal of the World Aquaculture Society

ABSTRACT

The Pacific white leg shrimp, <u>Litopenaeus vannamei</u>, is a potential species for low salinity inland aquaculture. Due to several independent variables, such as species, age, size, salinity and pH, that must be taken into account, there are gaps in the literature pertaining to the toxicity of ammonia and nitrite to shrimp. This study was conducted to investigate the individual and combined effects of ammonia and nitrite on L. vannamei postlarvae (25-45 days old) at 10 ppt salinity, 28 C and a pH of 7.8. The independent variables were salinity, total ammonia as nitrogen (TAN) and nitrite-N (NO₂-N), separately and combined. The TAN experiments were conducted at 18 and 10 ppt salinity while the NO₂-N test was conducted at 10 ppt salinity. Combined TAN and NO₂ tests were also conducted at 10 ppt salinity. The LC50 values for TAN at 18 ppt salinity, TAN at 10 ppt salinity, and NO₂-N at 10 ppt were observed to be 42.92, 39.72 mg/L(2.26 and 2.09 mg/L unionized ammonia-N), and 153.75 mg/L, respectively. When NO₂-N was adjusted to the LOEC level and TAN concentrations were varied, synergistic effects were observed, with an LC50 calculated to be 28.2 mg/L TAN (1.49 mg/L unionized ammonia-N). However, when the ammonia level was adjusted to the LOEC and nitrite was varied, antagonistic effects were observed with an LC50 calculated to be 163.3 mg/L NO₂-N. The results suggest that further investigations into the combined effects of ammonia and nitrite at varying concentrations and lower salinities will be important in developing "standard operating procedures" for the shrimp industry.

Pacific white shrimp (<u>Litopenaeus vannamei</u>) are one of the most intensively cultivated shrimp in the world (Pe'rez Farfante 1997). Their ability to thrive in low salinity seawater makes them an especially good species for inland aquaculture (Pan et al. 2007). The reduction of the salinity in water used within recirculating aquaculture systems (RAS) can lead to production of shrimp at lower costs due to less salt being purchased and easier management of wastewater. The reduction of salt within this process can lead to problems for intensely grown shrimp, such as a decrease in the resiliency of shrimp to agents such as ammonia and nitrite (Chen and Lin 1992, Lin and Chen 2003).

Nitrogenous wastes products can become concentrated in aquaculture systems (Frias-Espericueta et al. 1999). Ammonia is excreted by shrimp, and it can also accumulate in the water due to the decomposition of organic solids, such as excess feed and feces (Lin and Chen 2003). For intensive RAS, the most common removal technique involves utilizing nitrifying bacteria to convert ammonia-nitrogen to nitrate-nitrogen (Ebeling et al. 2006). Of the resulting chemical species, ammonia is more toxic than nitrite, which in turn is more toxic than nitrate. The total ammonia concentration as nitrogen (TAN) is comprised of two species, unionized ammonia (NH₃-N) and ionized ammonium (NH₄⁺-N) (Armstrong et al. 1978). The speciation of the TAN is dependent on the pH, salinity, and temperature (Bower and Bidwell 1978). Of the two, unionized ammonia is more toxic (Smart 1978). The small uncharged particle can easily cross the lipid membrane of aquatic organism's gill cells.

Authors of previous studies have shown 48 h median lethal concentrations (LC50) for TAN to varying species of penaid shrimp to range from 30 and 110 mg/L TAN at full

- 18 -

strength seawater depending on size and age as summarized in Table 1 (Chen *et al.* 1990a, Chen *et al.* 1990b, Ostrensky and Wasielesky 1995, Frias-Espericueta et al. 1999, Kir and Kumlu 2006). Kir and Kumlu (2006) found that the tolerance to TAN decreased with decreasing salinity using <u>Penaeus semisulcatus</u> post larvae (PL). Specifically, the shrimp tested at 40 ppt salinity were tolerant to TAN levels 2.9 times higher than those at 15 ppt over 48 h (LC50s of 32.5 and 11.2 mg/L TAN, respectively) (Kir and Kumlu 2006). Chen and Lin (1992) observed that a decrease in salinity from 30 to 10 ppt led to a shift in 48 h LC50 values from 53.94 to 2.39 mg/L TAN for juvenile <u>Penaeus chinesis</u>.

Authors who have conducted nitrite studies at low salinities (15 ppt) have shown the 48 h LC50 of nitrite to L. vannamei juveniles to be around 143 mg/L NO₂-N (Lin and Chen 2003). Few researchers have conducted studies to investigate the combined effects of ammonia and nitrite on shrimp, especially at decreased salinities. Alcaraz et al (1997, 1999a, 1999b) studied the combined acute effects of ammonia and nitrite on Penaeus setiferus PL, including factors such as temperature tolerance, varying dissolved oxygen (DO), and survival at 30 ppt salinity. After investigating the effects of exposure to ammonia and nitrite on the critical thermal maximum (CTM) shrimp can tolerate, the authors suggested that the ratio of ammonia to nitrite is inversely proportional to the CTM. Specifically, a mixture of 0.4 mg/L NH₃-N and 120 mg/L NO₂-N was seen to decrease the CTM by 7.6% when compared to a control (Alcaraz et al. 1997). Decreased respiration rates have also been seen in P. setiferus exposed to ammonia and nitrite (Alcaraz et al. 1999b). In relation to this study, the acute survival studies were undertaken to determine any combined effects of the two agents. The authors have suggested synergistic effects at 48 h exposure and antagonistic effects beyond 72 h due to an increase in mortality rates of 40% after 48 h (with a NO₂-N concentration of 180 mg/L) and a decrease in mortality rates from 30 to 10% after 72 h (with a NO₂-N concentration of 120 mg/L) (Alcaraz et al. 1999a).

Other investigators experimenting with <u>Penaeus monodon</u> PL have reported antagonistic effects at 48 and 72 h, with synergistic effects after 96 h (Chen and Chin 1988). The fact is that not enough research has been conducted to fully understand the relationship of the two agents. In order to fully understand the relationship, toxicity tests need to be undertaken that examine a broad range of toxin concentrations, the effects of varying environmental parameters, and responses of specific species.

The purpose of this study was threefold. The toxicity of ammonia was first studied at 18 and 10 ppt salinity. Secondly, nitrite was studied individually at 10 ppt. The background tests helped to provide reference data when developing and analyzing combined TAN and NO₂ tests. These studies were directed to validate data of previous studies as well as to generate new data at specific environmental parameters and ages. The third objective was to conduct two experiments at differing combinations of ammonia and nitrite in order to better understand any combined effects resulting from exposure to elevated levels of both agents.

Materials and Methods

<u>Animals</u>

<u>Litopenaeus vannamei</u> PL were obtained from Shrimp Improvement Systems (Plantation Key, Fl, USA). Shrimp were fed a grow-out diet provided by Shrimp Improvement Systems to satiation. Post larvae (13 days old) (PL13) were shipped overnight to Virginia Tech Laboratories in Blacksburg Virginia and were received at 18 C and 30 ppt salinity. The shrimp were acclimated to water in Aquatic Habitat Systems (AHABs) (Aquatic Ecosystems Apopka, FL, USA) over a period of 24 h. The temperature was increased to 28 C over the next 48 h. The parameters that were monitored in the AHAB systems are summarized in Table 2. During the second week (PL20), salinity was adjusted to the desired level for specific tests at a rate less than halving the salinity over 24 h.

<u>Seawater</u>

Municipal water was filtered using a reverse osmosis (RO) filter (Seachem Pinnacle Series, Madison, Ga, USA). Water was stored in a 115 L receptacle where it was heated to 28 C, aerated, and mixed constantly. Instant Ocean® (Aquarium Systems Inc., Mentor, OH, USA) was used to salinate the water in the initial experiment. Crystal Sea Marine Mix® (Marine Enterprises, Baltimore, MD, USA) was used in subsequent experiments at the request of a private shrimp company that uses the Crystal Sea Marine Mix. No difference in shrimp response to the two salt mixes was apparent.

Test Protocol

Toxicity trials were conducted in accordance with recommended EPA Methods (US EPA, 1991). Shrimp were selected arbitrarily and transferred via hand net into 1 L polyethylene beakers to a density of 8 shrimp per beaker. The beakers contained a 50:50 mix of the water from the AHAB unit and salinated RO water. The shrimp were acclimated for 24 h, and then salinated RO water was added to lower ambient levels of ammonia and nitrite. Air was delivered to each beaker via a Pasteur pipette at a rate of one bubble/sec. Test agents (NH₄Cl or NaNO₂) were added from 10,000 mg/L stock

solutions using a micropipette. Test solutions were then mixed well. Shrimp were not fed during experiments, and no water changes were administered.

Each experimental condition was tested in triplicate and each had triplicate controls. The shrimp were monitored every 0.5 h for 2 h and then at 4 h intervals until the 48 h endpoint. Death was determined by a lack of response to a glass rod stimulus. Dead shrimp were removed immediately.

Test solutions were maintained at a temperature of 28 C by using a waterbath. The pH of the test water averaged of 7.8. The alkalinity and hardness of tests conducted at 18 ppt salinity were 10.1 mg/L CaCO₃ (0.2 meq/L CaCO₃) and 310 mg/L CaCO₃ (3.1 mmol/L CaCO₃) respectively. The alkalinity and hardness of tests conducted at 10 ppt salinity was 33.4 mg/L CaCO₃ (0.7 meq/L CaCO₃) and 179 mg/L CaCO₃ (1.79 mmol/L CaCO₃), respectively. The DO was maintained above 5.75 mg/L. Testing methods for all water quality parameters measured are shown in Table 3.

Ammonia Toxicity Trials

Shrimp (PL 42) were first tested at 18 ppt salinity. Test solutions were dosed with target concentrations of TAN at 0, 20, 40, 60, 80, 100 mg/L (actual measured TAN values were 0.3, 19.5, 38.2, 57.8, 75.6, 95.4 mg/L).

Shrimp (PL28) were then tested at 10 ppt salinity. Test solutions were dosed with target concentrations TAN at 0, 10, 20, 30, 40, 50, 60, 70, 80 mg/L (actual measured TAN values were 0.3, 10.3, 20.5, 30.0, 38.7, 50.2, 58.3, 69.4, 78.9 mg/L).

Nitrite Toxicity Trials

Shrimp (PL39) were tested at 10 ppt salinity. Test solutions were dosed with concentrations of nitrite at 0, 90, 110, 130, 150, 170, 190 mg/L NO₂-N (actual data point averages were 0, 90, 115, 133, 149, 170, 187 mg/L NO₂-N).

Ammonia and Nitrite Toxicity Trials

Shrimp (PL45) were tested at 10 ppt salinity with a constant dosage of NO₂-N. The dosage chosen, 133 mg/L NO₂-N, was the lowest observed effect concentration (LOEC) determined from the previous NO₂-N test (Table 4). The TAN concentrations selected were the values determined in the previous TAN study at 10 ppt salinity (LC20, LC40, LC50, LC60, and LC80).

Shrimp (PL47) were then tested at 10 ppt salinity with a constant dosage of TAN. The dosage chosen, 30.0 mg/L TAN, was the LOEC determined from the previous TAN test (Table 5). The NO₂-N concentrations selected were the values determined in the previous NO₂-N study (LC20, LC40, LC50, LC60, and LC80).

Statistical Analysis

Toxicity data were analyzed in accordance with EPA recommended guidelines for analysis of toxicity data (Toxcalc[™] statistical analysis software, Tidepool Scientific®, McKinleyville, CA, USA). Among the tests used were the Shapiro-Wilk's Test to determine normality of data, the Dunnett's Hypothesis Test (1 tail, 0.05 level of significance), and the Maximum Likelihood-Probit Test to develop dose-response curves for each experiment.

Results

The 48 h LC values were calculated from the TAN and NO₂-N at 10 ppt and then used to determine dosages for combined ammonia-nitrite tests are provided in Tables 4 and 5. The LC50 values of all tests are reported in Tables 6 and 7.

Ammonia Toxicity Trials

In tests at 18 ppt salinity, no deaths were recorded in the control over 48 h. At 20 and 40 mg/L TAN, mortalities of 4.2 and 12.5% were observed, respectively, over 48 h. Mortality levels of 46 and 96% were recorded for shrimp exposed to 60 mg/L TAN over 24 and 48 h, respectively, while shrimp exposed to 80 mg/L exhibited 67 and 100% mortality over the same time intervals. All shrimp tested at 100 mg/L were dead after 12 h.

When the salinity was lowered from 18 ppt to 10 ppt, no significant reduction (p>0.05) in LC50 values was observed after 48 h. No shrimp mortalities were recorded for the control and 10 mg/L TAN over 48 h. At 20, 30 and 40 mg/L TAN mortality rates were observed to be 4.2, 25, and 46%, respectively, after 48 h. After 24 h, the mortality rates for 50, 60, 70, and 80 mg/L were observed to be 13, 25, 46, and 71% respectively. Mortality rates for the same experimental conditions after 48 h were observed to be 67, 88, 92 and 100%, respectively, (See Fig. 1).

Nitrite Toxicity Trials

In tests with NO₂-N at 10 ppt salinity, no deaths were observed in the control and at 90 mg/L NO₂-N at 48 h. For 110, 130, and 150 mg/L NO₂-N mortality rates after 48 h were observed to be 8, 25, and 50%, respectively. After 24 h, the mortality rates for 170 and 190 mg/L were observed to be 33 and 29%, respectively. Mortality rates for the

same experimental conditions after 48 h were observed to be 67 and 79%, respectively, (See Fig. 2).

Ammonia and Nitrite Toxicity Trials

The LOEC calculated for NO₂-N at 10 ppt salinity was 133 mg/L NO₂-N. This concentration was administered in all trials, except for the control, along with varying TAN concentrations equal to the LC20, LC40, LC50, LC60, and LC80 of the TAN test at 10 ppt salinity. A mortality rate of 4.2% occurred in the control tests after 48 h. This was identified to be the result of cannibalism, as only part of the mort was found. The mortality rates at 29.1 (LC20), 36.2 (LC40), 39.7 (LC50), and 43.73 (LC60) mg/L TAN were observed to be 33, 42, 79, and 93%, respectively, after 24 h. After 48 h, the same experimental conditions showed mortality rates of 63, 88, 96 and 100%, respectively. All shrimp tested at 54.2 mg/L TAN (LC80) were dead after 12 h, (See Fig. 3).

The LOEC calculated for TAN at 10 ppt salinity was 30.0 mg/L. This concentration was administered in all tests, except for the control, along with varying NO₂-N concentrations equal to the LC20, LC40, LC50, LC60, and LC80 values of the TAN test at 10 ppt salinity. No deaths were observed in the control and 128 mg/L NO₂-N (LC20) experiments after 48 h. The mortality rates at 146 (LC40), 154 (LC50), 162 (LC60), and 185 mg/L NO₂-N (LC80) were observed to be 8, 17, 25, and 42%, respectively, after 48 h, (See Fig. 4).

Discussion

Ammonia Toxicity Trials

The investigators of prior research on the toxicity of ammonia to shrimp have conducted experiments that vary the salinity levels of test solutions, but the information available is not complete. Conditions, such as the species and age of shrimp, as well as the temperature and pH levels of test solutions are important in understanding the toxicity of ammonia to cultured shrimp and the effects such knowledge can have on "Standard Operating Procedures." The 48 h NOEC, LOEC, and LC50 (20.5, 30.0, and 35.9 mg/L TAN, respectively) observed during this experiment are products of certain specified conditions (PL42, 28 C, and 7.8 pH). Compared to Chen and Lin (1992), who found a 48 h LC50 of 2.39 mg/L TAN for juvenile <u>P. chinensis</u> at 10 ppt salinity, <u>L. vannamei</u> exhibit a higher tolerance to ammonia levels. This is also true when compared to <u>P. semisulcatus</u> as studied by Kir and Kumlu (2006), who reported a 48 h LC50 of 11.2 mg/L TAN at 15 ppt salinity.

Nitrite Toxicity Trials

Authors who have conducted nitrite studies at low salinities (15 ppt) have shown the 48 h LC50 of nitrite to <u>L. vannamei</u> juveniles to be around 143 mg/L NO₂-N with a 95% confidence interval of 137.6 to 148.4 (Lin and Chen 2003). This is similar to the data collected in this study due to overlapping confidence intervals. The calculated LC50 with 95% Fiducial Limits was for this study were 154 mg/L NO₂-N and 146 to 163, respectively. This difference could be accounted for due to the stock of shrimp purchased or another unnoted variance in water parameter.

Ammonia and Nitrite Toxicity Trials

Understanding the combined effects of TAN and NO_2 -N on <u>L</u>. vannamei at a pH of 7.8 and temperature of 28 C allows for better control during the production of shrimp

in RAS. Prior research has shown conflicting results as to the synergistic or antagonistic effects of elevated TAN and NO₂-N levels; one suggested that synergistic effects take place up to 48 h and antagonistic beyond, while the other suggested antagonistic effects being followed by synergistic effects after 96 h (Alcaraz et al. 1999a; Chen and Chin 1988). Both studies related the exposure time to varying synergistic or antagonistic effects. A variance of synergistic and antagonistic effects related to the dominant toxin present was observed during this study.

The data collected from this study suggested a synergistic effect (p<0.05) when NO₂-N levels were adjusted to the 48 h LOEC concentrations (138 mg/L NO₂-N determined from previous test) and TAN concentrations were varied, as seen when Figs. 1 and 3 are compared. The LC50 at 48 h calculated from the TAN test at 10 ppt salinity was 11.5 mg/L TAN higher than when TAN was tested with adjusted NO₂-N (39.72 vs. 28.24 mg/L TAN respectively). These results suggested that the elevated NO₂-N levels might weaken the shrimp, resulting in a lower tolerance to elevated TAN levels.

When TAN levels were held constant at the determined 48 h LOEC level and NO₂-N levels were varied between determined LC20 and LC80 values, antagonistic characteristics (p<0.05) were observed, as seen when Figs. 2 and 4 are compared. The LC50 value during this test was calculated to be 33 mg/L NO₂-N higher when compared to the single toxin NO₂-N experiment at 10 ppt salinity, a shift from 154 to 187 mg/L NO₂-N. When compared to other studies involving combined ammonia and nitrite, this study differed due to the species tested as well as the salinity of test solutions. These variables inhibited a direct comparison, because both variables have been shown to effect tolerance to ammonia and nitrite (Chen and Lin 1992, Lin and Chen 2003). Alcaraz et al.

- 27 -

(1999a) and Chen and Chin's (1988) experiments with <u>P. setiferus</u> and <u>P. monodon</u> were conducted at 25 ppt salinity and natural seawater, respectively. The approach to the studies also varied due to exposure concentrations.

<u>Salinity</u>

The reduced salinity concentration used in these tests was chosen to begin the analysis of the effects of low salinity on the tolerance of <u>L. vannamei</u> to combined elevated TAN and NO₂-N levels. It was assumed that the concentrations of essential nutrients incorporated into the salts used would be directly proportional to the amount of salt used. When the salinity was lowered from 18 to 10 ppt for individual TAN experiments, no significant difference (p>0.05) was observed. This was possibly due to a variance in the age of the shrimp.

Application to Wild Populations

Although this research was conducted in a controlled laboratory, the results can be applied to wild populations of <u>L. vannamei</u>. The life cycle of <u>L. vannamei</u> includes an oceanic planktonic stage, an estuarine post larval stage and finally, and adult oceanic stage that involves maturation and reproduction (Valles-Jimenez *et al.* 2004). The effects of low salinities on PL explored during this study can be related to estuarine environments, where the salinity of the water varies according to tides and precipitation. Elevated nitrogenous waste product levels are possible in such regions due to industrial processes and wastes, as well as natural decomposition of organic matter. Stagnant water, due to slack tides, or natural pools are examples of areas where concentrated ammonia and nitrite could be observed.

Acknowledgments

The authors would like to acknowledge funding for this study from United States Department of Agriculture Cooperative State Research Education and Extension Services (USDA-CSREES), and the Edna Bailey Sussman Foundation.

References

- Alcaraz, G., Chiappa-Carrara, X., Espinoza, V. & Vanegas, C. 1999a. Acute Toxicity of Ammonia and Nitrite to White Shrimp Penaeus setiferus Postlarvae. Journal of the World Aquaculture Society, 30, 90-97.
- Alcaraz, G., ChiappaCarrara, X. & Vanegas, C. 1997. Temperature tolerance of Penaeus setiferus postlarvae exposed to ammonia and nitrite. Aquatic Toxicology, 39, 345-353.
- Alcaraz, G., Espinoza, V., Vanegas, C. & Carrara, X. C. 1999b. Acute effect of ammonia and nitrite on respiration of Penaeus setiferus postlarvae under different oxygen levels. Journal of the World Aquaculture Society, 30, 98-106.
- Armstrong, D. A., Chippendale, D., Knight, A. W. & Colt, J. E. 1978. Interaction of Ionized and Un-Ionized Ammonia on Short-Term Survival and Growth of Prawn Larvae, Macrobrachium rosenbergii Biological Bulletin, 154, 15-31.
- Bower, C. E. & Bidwell, J. P. 1978. Ionization of Ammonia in Seawater Effects of Temperature, Ph, and Salinity. Journal of the Fisheries Research Board of Canada, 35, 1012-1016.
- Chen, J.-C. & Chin, T.-S. 1988. Joint Action of Ammonia and Nitrite on Tiger Prawn Penaeus monodon Postlarvae. Journal of the World Aquaculture Society, 19, 143-148.
- Chen, J.-C. & Lin, C.-Y. 1992. Lethal effects of ammonia on Penaeus chinensis Osbeck juveniles at different salinity levels. Journal of Experimental Marine Biology and Ecology, 156, 139-148.

- Chen, J.-C., Liu, P.-C. & Lei, S.-C. 1990a. Toxicities of ammonia and nitrite to Penaeus monodon adolescents. Aquaculture, 89, 127-137.
- Chen, J. C., Ting, Y. Y., Lin, J. N. & Lin, M. N. 1990b. Lethal Effects of Ammonia and Nitrite on Penaeus-Chinensis Juveniles. Marine Biology, 107, 427-431.
- Ebeling, J. M., Timmons, M. B. & Bisogni, J. J. 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture, 257, 346-358.
- Frias-Espericueta, M. G., Harfush-Melendez, M., Osuna-Lopez, J. I. & Paez-Osuna, F.
 1999. Acute toxicity of ammonia to juvenile shrimp Penaeus vannamei Boone.
 Bulletin of Environmental Contamination and Toxicology, 62, 646-652.
- Kir, M. & Kumlu, M. 2006. Acute toxicity of ammonia to Penaeus semisulcatus postlarvae in relation to salinity. Journal of the World Aquaculture Society, 37, 231-235.
- Lin, Y.-C. & Chen, J.-C. 2003. Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture, 224, 193-201.
- Ostrensky, A. & Wasielesky, W. 1995. Acute Toxicity of Ammonia to Various Life Stages of the Sao-Paulo Shrimp, Penaeus-Paulensis Perez-Farfante, 1967. Aquaculture, 132, 339-347.
- Pan, L.-Q., Zhang, L.-J. & Liu, H.-Y. 2007. Effects of salinity and pH on ion-transport enzyme activities, survival and growth of Litopenaeus vannamei postlarvae. Aquaculture, 273, 711-720.

- Pe'rez Farfante, I., Kensley, B. 1997. Penaeid and sergestoid shrimps and prawns of the world: keys and diagnoses. Me'moires du Muse'um National D'Histoire Naturelle, Paris, 233 pp.
- Smart, G. R. 1978. Investigations of the toxic mechanisms of ammonia to fish-gas exchange in rainbow trout (Salmo gairdneri) exposed to acutely lethal concentrations. Pages 93-104.
- Tilak, K. S., Veeraiah, K. & Raju, J. M. P. 2007. Effects of ammonia, nitrite and nitrate on hemoglobin content and oxygen consumption of freshwater fish, Cyprinus carpio (Linnaeus). Journal of Environmental Biology, 28, 45-47.
- Tseng, I. T. & Chen, J. C. 2004. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus under nitrite stress. Fish & Shellfish Immunology, 17, 325-333.
- Valles-Jimenez, R., Cruz, P. & Perez-Enriquez, R. 2004. Population Genetic Structure of Pacific White Shrimp (Litopenaeus vannamei) from Mexico to Panama: Microsatellite DNA Variation. Marine Biotechnology, 6, 475-484.

Species	Age	Size	48 h LC50 (mg/L TAN)	Author
P. monodon	Juvenile	4.87 g	88	Chen <i>et al</i> . 1990a
P. chinensis	PL	0.36 g	51.1	Chen <i>et al</i> . 1990b Ostrensky and Wasielesky
P. paulensis P.	Juvenile	5.45 g	43.1	1995
semisulcatus	PL	.028 g	32.5	Kir and Kumlu 2006
L. vannamei	Juvenile	0.99 g	92.5	Frias-Espericueta et al. 1999
L. vannamei	Juvenile	3.8 g	110.6	Frias-Espericueta et al. 1999

Table 1: 48 h LC50 values for varying species and ages of shrimp

AHA	AHAB Water Quality Parameters									
рН	7.9 ± 0.2									
Temp	29 ± 1.1 C									
DO	> 5.5 mg/L									
Salinity	28 ppt									
NH₃	< 0.8 mg/L NH₃-N									
NO ₂	< 1.0 mg/L NO ₂ -N									

Table 2: Water quality maintained in AHAB systems

Parameter	Equipment	Method
	Hach Spectrophotometer	Hach – Nessler
Ammonia	DR2800	8038
	Hach Spectrophotometer	
Nitrite	DR2800	Hach - 8507/8153
Alkalinity	Hach Digital Titrator 16900	Hach – 8203
Hardness	Hach Digital Titrator 16900	Hach – 8213
DO	YSI 85	
Salinity	YSI 85	
Temperature	YSI 85	
pН	YSI PH10	

Table 3: Methods for monitoring water quality.

	48 h LC va	lues for TAN						
	mg/L TAN	95% Fiducial Limits						
LOEC	30.0	-	-					
LC20	29.1	24.5	32.7					
LC40	36.2	32.1	39.7					
LC50	39.7	35.9	43.4					
LC60	43.6	39.8	47.8					
LC80	54.2	49.4	61.3					

Table 4: LC results for Ammonia-N at 10 ppt salinity

	48 h LC value	es for NO ₂ -N	
	mg/L NO2-N	95% Fiducia	I Limits
LOEC	132.8	-	-
LC20	128.0	116.4	136.1
LC40	145.5	137.0	153.7
LC50	153.7	145.6	163.3
LC60	162.5	153.8	174.6
LC80	184.6	172.2	207.1

Table 5: LC results for NO₂-N at 10 ppt salinity

	LC50's (with 95% Fiduci	al Limits) mg/L TAN	
		Endpoints	
Experiment	12 h	24 h	48 h
Ammonia 18ppt	67.9 (62.1 - 73.7)	63.0 (57.4-68.1)	42.9
Ammonia 10ppt	N/A	69.9 (63.7-80.4)	39.7 (35.9-43.4)
Ammonia/Nitrite 10ppt ^a	52.0 (47.7-61.3)	34.2 (31.5-36.2)	28.2 (22.9-30.8)

^a Nitrite stable at 133 mg/L NO₂-N with ammonia-N concentration varying

Table 6: LC50 results for TAN at varying salinities

LC50's (with 95% Fiducial Limits) mg/L NO ₂ -N												
Endpoints												
Experiment	24 h	48 h										
Nitrite 10ppt	199 (183-248)	154 (146-163)										
Nitrite/Ammonia 10ppt	-	187 (175-219)										

Table 7: LC50 results for NO₂-N tests with and without TAN at 30.0 mg/l

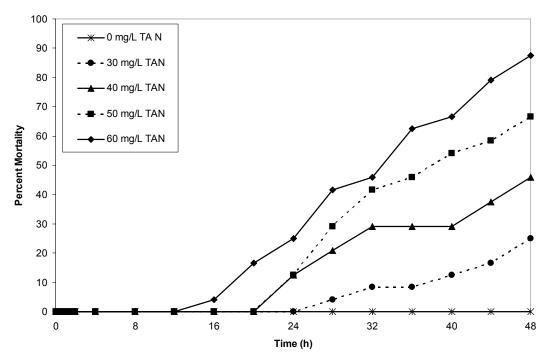


Figure 1: Percent mortality over time due to varying TAN-N concentrations at 10 ppt salinity.

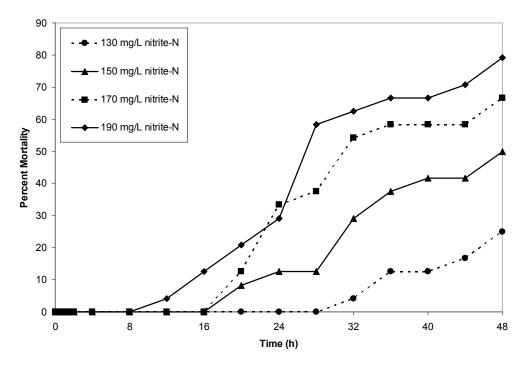


Figure 2: Percent mortality over time due to varying NO₂-N concentrations at 10 ppt salinity.

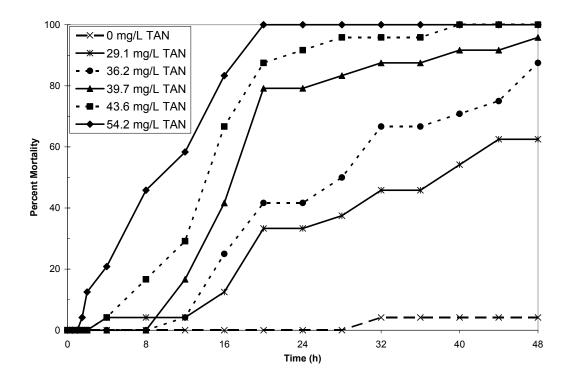


Figure 3: Percent mortality over time due to varying TAN-N concentrations with an adjusted concentration of NO₂-N at 133 mg/L and 10 ppt salinity.

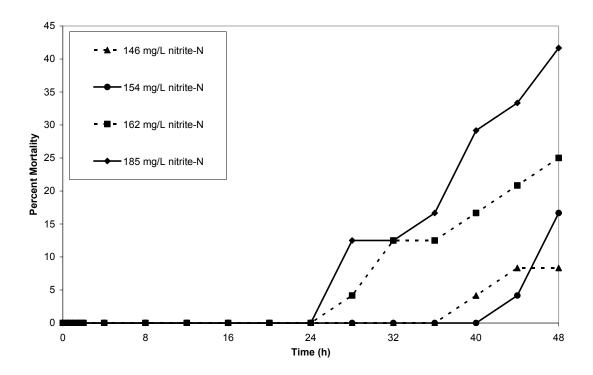


Figure 4: Percent mortality over time due to varying NO₂-N concentrations with an adjusted concentration of TAN-N at 30.0 mg/L and 10 ppt salinity.

Chapter 4: Conclusions

The objectives of this study were fulfilled. The background study conducted at 18 ppt salinity provided data that verified the protocol and system design. Experiments that addressed the individual toxicity of ammonia and nitrite at low salinities resulted in data, which not only verified previous data within the literature but also addressed new issues. The experiments involving combined adjusted levels of ammonia and nitrite led to valuable insight as to the mutualistic effects of the two agents. All of the knowledge gained can be directly applied to the "standard operating procedures" of Virginia Shrimp Farms (VSF) in Martinsville, Va in an effort to evaluate production losses due to elevated ammonia and nitrite.

Future research should focus on gathering data for younger shrimp. Since shrimp had to be shipped from Florida and then acclimated, there was a limit as to how young shrimp could be for experiments. With VSF now on-line, younger shrimp can be obtained and tested to provide VSF with valuable knowledge that encompasses not only the acute effects of ammonia and nitrite, but also any chronic effects such as reduced growth. The breeding program at VSF could also benefit from experiments that focused on larval shrimp and any problems with development due to elevated ammonia and nitrite levels.

References

- Alcaraz, G., Chiappa-Carrara, X., Espinoza, V. & Vanegas, C. 1999a. Acute Toxicity of Ammonia and Nitrite to White Shrimp Penaeus setiferus Postlarvae. Journal of the World Aquaculture Society, 30, 90-97.
- Alcaraz, G., ChiappaCarrara, X. & Vanegas, C. 1997. Temperature tolerance of Penaeus setiferus postlarvae exposed to ammonia and nitrite. Aquatic Toxicology, 39, 345-353.
- Alcaraz, G., Espinoza, V., Vanegas, C. & Carrara, X. C. 1999b. Acute effect of ammonia and nitrite on respiration of Penaeus setiferus postlarvae under different oxygen levels. Journal of the World Aquaculture Society, 30, 98-106.
- Allan, G. L., Maguire, G. B. & Hopkins, S. J. 1990. Acute and Chronic Toxicity of Ammonia to Juvenile Metapenaeus-Macleayi and Penaeus-Monodon and the Influence of Low Dissolved-Oxygen Levels. Aquaculture, 91, 265-280.
- Armstrong, D. A., Chippendale, D., Knight, A. W. & Colt, J. E. 1978. Interaction of Ionized and Un-Ionized Ammonia on Short-Term Survival and Growth of Prawn Larvae, Macrobrachium rosenbergii Biological Bulletin, 154, 15-31.
- Boardman, G. D., Starbuck, S. M., Hudgins, D. B., Li, X. Y. & Kuhn, D. D. 2004.Toxicity of ammonia to three marine fish and three marine invertebrates.Environmental Toxicology, 19, 134-142.
- Bower, C. E. & Bidwell, J. P. 1978. Ionization of Ammonia in Seawater Effects of Temperature, Ph, and Salinity. Journal of the Fisheries Research Board of Canada, 35, 1012-1016.

- Caglan, A., Benli, K. & Koksal, G. 2005. The acute toxicity of ammonia on tilapia
 (Oreochromis niloticus L.) larvae and fingerlings. Turkish Journal of Veterinary
 & Animal Sciences, 29, 339-344.
- CDC 2004. Agency for Toxic Sustances and Disease Registry Public Health Statement -Ammonia CAS#: 7664-41-7. Pages 7. Department of Health and Human Services.
- Chand, R. K. & Sahoo, R. K. 2006. Effect of nitrite on the immune response of freshwater prawn Macrobrachium malcolmsonii and its susceptibility to Aeromonas hydrophila. Aquaculture, 258, 150-156.
- Chen, J.-C. & Chin, T.-S. 1988. Joint Action of Ammonia and Nitrite on Tiger Prawn Penaeus monodon Postlarvae. Journal of the World Aquaculture Society, 19, 143-148.
- Chen, J.-C., Liu, P.-C. & Lei, S.-C. 1990a. Toxicities of ammonia and nitrite to Penaeus monodon adolescents. Aquaculture, 89, 127-137.
- Chen, J. C., Ting, Y. Y., Lin, J. N. & Lin, M. N. 1990b. Lethal Effects of Ammonia and Nitrite on Penaeus-Chinensis Juveniles. Marine Biology, 107, 427-431.
- Ebeling, J. M., Timmons, M. B. & Bisogni, J. J. 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture, 257, 346-358.
- Frias-Espericueta, M. G., Harfush-Melendez, M., Osuna-Lopez, J. I. & Paez-Osuna, F.
 1999. Acute toxicity of ammonia to juvenile shrimp Penaeus vannamei Boone.
 Bulletin of Environmental Contamination and Toxicology, 62, 646-652.

- Gross, A., Abutbul, S. & Zilberg, D. 2004. Acute and chronic effects of nitrite on white shrimp, Litopenaeus vannamei, cultured in low-salinity brackish water. Journal of the World Aquaculture Society, 35, 315-321.
- Hargreaves, J. A. 1998. Nitrogen biogeochemistry of aquaculture ponds. Aquaculture, 166, 181-212.
- Kir, M. & Kumlu, M. 2006. Acute toxicity of ammonia to Penaeus semisulcatus postlarvae in relation to salinity. Journal of the World Aquaculture Society, 37, 231-235.
- Kirk, R. S. & Lewis, J. W. 1993. An Evaluation of Pollutant Induced Changes in the Gills of Rainbow-Trout Using Scanning Electron-Microscopy. Environmental Technology, 14, 577-585.
- Lin, Y.-C. & Chen, J.-C. 2003. Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture, 224, 193-201.
- Magallon Barajas, F. J., Servin Villegas, R., Portillo Clark, G. & Lopez Moreno, B. 2006.
 Litopenaeus vannamei (Boone) post-larval survival related to age, temperature,
 pH and ammonium concentration. Pages 492-499. The Authors Journal
 Compilation. Blackwell Publishing Ltd.
- Niu, C. J., Lee, D., Goshima, S. & Nakao, S. 2003. Effects of temperature on food consumption, growth and oxygen consumption of freshwater prawn
 Macrobrachium rosenbergii (de Man 1879) postlarvae. Aquaculture Research, 34, 501-506.

- Ostrensky, A. & Wasielesky, W. 1995. Acute Toxicity of Ammonia to Various Life Stages of the Sao-Paulo Shrimp, Penaeus-Paulensis Perez-Farfante, 1967. Aquaculture, 132, 339-347.
- Pan, L.-Q., Zhang, L.-J. & Liu, H.-Y. 2007. Effects of salinity and pH on ion-transport enzyme activities, survival and growth of Litopenaeus vannamei postlarvae. Aquaculture, 273, 711-720.
- Pe'rez Farfante, I., Kensley, B. 1997. Penaeid and sergestoid shrimps and prawns of the world: keys and diagnoses. Me'moires du Muse'um National D'Histoire Naturelle, Paris, 233 pp.
- Regnault, M. 1986. Nitrogen-Excretion in Crustaceans Influence of Physiological-State. Cahiers De Biologie Marine, 27, 361-373.
- Smart, G. R. 1978. Investigations of the toxic mechanisms of ammonia to fish-gas exchange in rainbow trout (Salmo gairdneri) exposed to acutely lethal concentrations. Journal of Fish Biology, 93-104.
- Svobodova, Z., Lloyd, R., Machova, J. 1993. Ammonia. Water Quality and Fish Health. EIFAC Tech. Paper, 54, 11-16.
- Thurston, R. V., Phillips, G. R., Russo, R. C. & Hinkins, S. M. 1981. Increased Toxicity of Ammonia to Rainbow-Trout (Salmo-Gairdneri) Resulting from Reduced Concentrations of Dissolved-Oxygen. Canadian Journal of Fisheries and Aquatic Sciences, 38, 983-988.
- Tilak, K. S., Veeraiah, K. & Raju, J. M. P. 2007. Effects of ammonia, nitrite and nitrate on hemoglobin content and oxygen consumption of freshwater fish, Cyprinus carpio (Linnaeus). Journal of Environmental Biology, 28, 45-47.

- Tseng, I. T. & Chen, J. C. 2004. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus under nitrite stress. Fish & Shellfish Immunology, 17, 325-333.
- Vadivelu, V. M., Keller, J. & Yuan, Z. G. 2007. Effect of free ammonia on the respiration and growth processes of an enriched Nitrobacter culture. Water Research, 41, 826-834.
- Weirich, C. R. & Riche, M. A. 2006. Tolerance of juvenile black sea bass Centropristis striata to acute ammonia and nitrite exposure at various salinities. Fisheries Science, 72, 915-921.
- Wickins, J. F. 1976. Tolerance of Warm-Water Prawns to Recirculated Water. Aquaculture, 9, 19-37.

Appendix A:

Raw Data

						Dose	e (mg/L	Ammon	ia-N) w	ith Rep	licates							
		0.274			19.46			38.42			57.8			75.55			95.37	
Time (h)	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
0	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
0.5	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
1	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
1.5	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
2	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	7	8	8
4	8	8	8	8	8	8	8	8	8	8	7	8	8	6	7	5	5	6
8	8	8	8	8	8	8	8	8	8	7	2	6	5	4	4	1	0	0
12	8	8	8	8	8	8	8	8	8	7	2	6	5	4	4	0	0	0
16	8	8	8	8	8	8	8	8	8	5	2	6	3	4	3	0	0	0
20	8	8	8	8	8	8	8	8	8	5	2	6	2	3	3	0	0	0
24	8	8	8	8	8	8	8	8	8	5	2	6	2	3	3	0	0	0
28	8	8	8	8	8	8	8	8	8	5	2	6	1	3	2	0	0	0
32	8	8	8	8	8	8	8	7	8	5	2	5	1	2	0	0	0	0
36	8	8	8	8	8	7	7	7	8	3	2	4	0	0	0	0	0	0
40	8	8	8	8	8	7	7	7	8	1	2	2	0	0	0	0	0	0
44	8	8	8	8	8	7	7	7	8	0	1	0	0	0	0	0	0	0
48	8	8	8	8	8	7	7	6	8	0	1	0	0	0	0	0	0	0

Ammonia 18 ppt - Mortalities

Ammonia	10	ppt -	Mortalities
---------	----	-------	-------------

								D)ose	(mg	g/L A	ттс	nia-N	l) with	Repl	licates											
		0			10			20			30			40			50			60			70			80	
Time (h)	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
0	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
0.5	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
1	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
1.5	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
2	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
4	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
12	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	7	8	7	8	8	8
16	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	7	8	6	7	5	6	6	5
20	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	7	7	6	6	5	2	3	4	4
24	8	8	8	8	8	8	8	8	8	8	8	8	7	6	8	7	7	7	6	7	5	6	5	2	2	3	2
28	8	8	8	8	8	8	8	8	8	7	8	8	6	6	7	6	6	5	4	5	5	5	4	2	2	1	0
32	8	8	8	8	8	8	8	8	8	7	7	8	6	4	7	4	5	5	4	4	5	4	4	1	2	0	0
36	8	8	8	8	8	8	8	8	8	7	7	8	6	4	7	4	4	5	3	3	3	2	3	1	2	0	0
40	8	8	8	8	8	8	8	8	8	7	6	8	6	4	7	3	4	4	2	3	3	2	2	1	1	0	0
44	8	8	8	8	8	8	8	7	8	7	6	7	5	4	6	3	4	3	1	3	1	1	2	1	1	0	0
48	8	8	8	8	8	8	8	7	8	5	6	7	4	3	6	3	3	2	1	2	0	1	1	0	0	0	0

						D	ose (r	ng/L N	litrite-l	V) with	Repli	cates									
		0			90			110			130			150			170			190	
Time (h)	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
0	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
0.5	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
1	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	;
1.5	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	
2	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	
4	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	
8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	
12	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	7	
16	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	7	
20	8	8	8	8	8	8	8	8	8	8	8	8	6	8	8	8	6	7	7	7	
24	8	8	8	8	8	8	8	8	8	8	8	8	6	8	7	5	6	5	6	6	
28	8	8	8	8	8	8	8	8	8	8	8	8	6	8	7	4	6	5	3	4	
32	8	8	8	8	8	8	8	8	8	7	8	8	5	6	6	3	4	4	3	4	
36	8	8	8	8	8	8	8	7	8	6	8	7	4	6	5	3	3	4	3	3	
40	8	8	8	8	8	8	8	7	7	6	8	7	4	5	5	3	3	4	3	3	
44	8	8	8	8	8	8	8	7	7	6	7	7	4	5	5	3	3	4	3	2	
48	8	8	8	8	8	8	8	7	7	6	7	5	4	5	3	2	3	3	2	2	

Nitrite 10ppt – Mortalities

						Dos	e (mg/l	L Ammo	onia-N)	with Re	eplicate	s						
Time (h)		0			29.1			36.2			39.7			43.6			54.2	
	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
0	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
0.5	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
1	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
1.5	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	7	8
2	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	7	6	8
4	8	8	8	7	8	8	8	8	8	8	8	8	7	8	8	7	6	6
8	8	8	8	7	8	8	8	8	8	8	8	8	7	7	6	5	4	4
12	8	8	8	7	8	8	8	8	7	7	6	7	6	6	5	4	3	3
16	8	8	8	7	6	8	6	7	5	4	5	5	3	2	3	2	1	1
20	8	8	8	5	5	6	4	5	5	0	3	2	1	2	0	0	0	0
24	8	8	8	5	5	6	4	5	5	0	3	2	0	2	0	0	0	0
28	8	8	8	5	4	6	4	3	5	0	2	2	0	1	0	0	0	0
32	8	7	8	5	4	4	2	2	4	0	2	1	0	1	0	0	0	0
36	8	7	8	5	4	4	2	2	4	0	2	1	0	1	0	0	0	0
40	8	7	8	5	3	3	2	1	4	0	1	1	0	0	0	0	0	0
44	8	7	8	4	3	2	2	1	3	0	1	1	0	0	0	0	0	0
48	8	7	8	4	3	2	1	0	2	0	0	1	0	0	0	0	0	0

AvNs 10 ppt - Mortalities

AsNv	10	ppt –	Mortalities
------	----	-------	-------------

						D	ose (mg	g/L Nitri	te-N) w	ith Rep	licates							
		0			128			146			154			162			185	
Time (h)	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
0	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
0.5	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
1	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
1.5	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
2	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
4	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
12	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
16	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
20	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
24	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
28	8	8	8	8	8	8	8	8	8	8	8	8	8	7	8	6	8	7
32	8	8	8	8	8	8	8	8	8	8	8	8	7	6	8	6	8	7
36	8	8	8	8	8	8	8	8	8	8	8	8	7	6	8	6	7	7
40	8	8	8	8	8	8	8	8	7	8	8	8	7	6	7	5	6	6
44	8	8	8	8	8	8	7	8	7	8	7	8	6	6	7	4	6	6
48	8	8	8	8	8	8	7	8	7	7	7	6	6	5	7	4	5	5

Appendix B:

Toxcalc Summary Reports

				Acute Shrimp Te	st-12 hr Survival	
Start Date:	12/18/2007 18	:00	Test ID:	1A	Sample ID:	ASTOCK-Ammonium Chloride Stock
End Date:	12/20/2007 18	:00	Lab ID:	CATML-Telonicher Marine	Sample Type:	AMCL-Ammonium Chloride
Sample Dat	12/18/2007		Protocol:	ASTM94-ASTM (1994)	Test Species:	LV-Litopenaeus vannamei
Comments:						
Conc-mg/L	1	2	3			
'4 D-Control	1.0000	1.0000	1.0000			
19.46	1.0000	1.0000	1.0000			
38.24	1.0000	1.0000	1.0000			
57.8	0.8750	0.2500	0.7500			
75.55	0.6250	0.5000	0.5000			
95.37	0.0000	0.0000	0.0000			

				Transform	: Arcsin Squ	are Root			1-Tailed		Number	Total
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
'4 D-Control	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3				0	24
19.46	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3	0.000	2.470	0.3299	0	24
38.24	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3	0.000	2.470	0.3299	0	24
*57.8	0.6250	0.6250	0.9267	0.5236	1.2094	38.677	3	3.492	2.470	0.3299	9	24
*75.55	0.5417	0.5417	0.8275	0.7854	0.9117	8.815	3	4.235	2.470	0.3299	11	24
95.37	0.0000	0.0000	0.1777	0.1777	0.1777	0.000	3				24	24

Auxiliary To	ests						Statistic		Critical		Skew	Kurt
Shapiro-Wil	k's Test indic	ates non-noi	rmal distribut	on (p <= 0.0	1)		0.718479		0.835		-1.270504	6.1775356
Equality of v	ariance canr	ot be confirr	ned									
Hypothesis	: Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Te	est		38.24	57.8	47.01353		0.2050351	0.2116492	0.2432848	0.0267587	0.0022965	4, 10
Treatments	vs 0.274 D-C	ontrol										
					Maximur	n Likelihoo						
Parameter	Value	SE	95% Fiducia			Control	Chi-Sq	Critical	P-value	Mu	Sigma	Iter
Slope	9.4665168	1.6962854		12.791236		0	9.0345291	9.4877291	0.06	1.8320405	0.1056355	7
Intercept	-12.34304	3.131866	-18.4815	-6.204585								
TSCR												
Point	Probits	mg/L	95% Fiducia									
EC01	2.674	38.574086		45.663111								
EC05	3.355	45.528738	35.42465	51.890576								
EC10	3.718	49.735123		55.64469								
EC15	3.964	52.790573	44.117614	58.399576								
EC20	4.158	55.352271	47.252999	60.749337								
EC25	4.326	57.648825		62.9053								
EC40	4.747	63.867227		69.142906								
EC50	5.000	67.926698	62.13257	73.702132								
EC60	5.253	72.244194		79.105505								
EC75	5.674	80.036953		90.266606								
EC80	5.842	83.35767		95.473808								
EC85	6.036	87.402659		102.10284								
EC90	6.282	92.772188	83.77268	111.31339								
EC95	6.645	101.34338		126.83399								
EC99	7.326	119.61493	102.32593	162.72616								

				Acute Shrimp Te	st-24 hr Survival	
Start Date: 1	2/18/2007 18	:00	Test ID:	1A	Sample ID:	ASTOCK-Ammonium Chloride Stock
End Date: 1	2/20/2007 18	00	Lab ID:	CATML-Telonicher Marine	Sample Type:	AMCL-Ammonium Chloride
Sample Dat 1	2/18/2007		Protocol:	ASTM94-ASTM (1994)	Test Species:	LV-Litopenaeus vannamei
Comments:						
Conc-mg/L	1	2	3			
4 D-Control	1.0000	1.0000	1.0000			
19.46	1.0000	1.0000	1.0000			
38.24	1.0000	1.0000	1.0000			
57.8	0.6250	0.2500	0.7500			
75.55	0.2500	0.3750	0.3750			
95.37	0.0000	0.0000	0.0000			

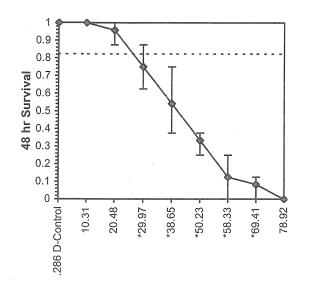
				Transform:	Arcsin Squ	are Root			1-Tailed		Number	Total
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
'4 D-Control	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3				0	24
19.46	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3	0.000	2.470	0.2551	. 0	24
38.24	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3	0.000	2.470	0.2551	0	24
*57.8	0.5417	0.5417	0.8275	0.5236	1.0472	32.842	3	5.477	2.470	0.2551	11	24
*75.55	0.3333	0.3333	0.6139	0.5236	0.6591	12.739	3	7.546	2.470	0.2551	16	24
95.37	0.0000	0.0000	0.1777	0.1777	0.1777	0.000	3				24	24

Auxiliary T	ests						Statistic		Critical		Skew	Kurt
Shapiro-Wi	lk's Test indic	ates non-noi	mal distributi	on (p <= 0.0	1)		0.7532141		0.835		-1.175823	5.4787565
Equality of	variance canr	not be confirm	ned									
Hypothesis	s Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's T	est		38.24	57.8	47.01353		0.1446376	0.1493033	0.4239927	0.0159952	2.6E-05	4, 10
Treatments	vs 0.274 D-C	Control										
					Maximun	n Likelihoo	d-Probit					
Parameter	Value	SE	95% Fiducia	d Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	iter
Slope	10.035093	1.742805	6.6191949	13.450991		0	4.4211213	9.4877291	0.35	1.7988541	0.0996503	6
Intercept	-13.05167	3.1757941	-19.27622	-6.827111								
TSCR												
Point	Probits	mg/L	95% Fiducia	I Limits								
EC01	2.674	36.90055	26.932091	43.413002								
EC05	3.355	43.146338	33.968398	49.0272								
EC10	3.718	46.897221	38.384667	52.390174								
EC15	3.964	49.610455	41.641519	54.844809								
EC20	4.158	51.878367	44.387321	56.926917								
EC25	4.326	53.906483	46.847521	58.825377								
EC40	4.747	59.375597	53.387766	64.230817								•
EC50	5.000	62.929474	57.441803	68.087372								
EC60	5.253	66.696067	61.461902	72.576847								
EC75	5.674	73.462754	67.905632	81.739532								
EC80	5.842	76.334684	70.38949	86.00127								
EC85	6.036	79.82428	73.262631	91.420731								
EC90	6.282	84.4425	76.883249	98.934987								
EC95	6.645	91.783422	82.346691	111.54008								
EC99	7.326	107.3187	93.199568	140.37364								

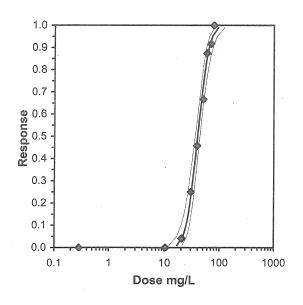
				Acute Shrimp Tes	st-48 hr Survival		
Start Date: 1	2/18/2007 18	:00	Test ID:	1A	Sample ID:	ASTOCK-Amm	nonium Chloride Stock
End Date: 1	2/20/2007 18	:00	Lab ID:	CATML-Telonicher Marine	Sample Type:	AMCL-Ammon	ium Chloride
Sample Dat 1	2/18/2007		Protocol:	ASTM94-ASTM (1994)	Test Species:	LV-Litopenaeu	s vannamei
Comments:							
Conc-mg/L	1	2	3				
'4 D-Control	1.0000	1.0000	1.0000				
19.46	1.0000	1.0000	0.8750				
38.24	0.8750	0.7500	1.0000				
57.8	0.0000	0.1250	0.0000				
75.55	0.0000	0.0000	0.0000				
95.37	0.0000	0.0000	0.0000				

				Transform:	Arcsin Squ	are Root		_	1-Tailed		Number	Total
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
'4 D-Control	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3				0	24
19.46	0.9583	0.9583	1.3319	1.2094	1.3931	7.961	3	0.655	2.420	0.2262	1	24
38.24	0.8750	0.8750	1.2166	1.0472	1.3931	14.225	3	1.888	2.420	0.2262	3	24
*57.8	0.0417	0.0417	0.2389	0.1777	0.3614	44.379	3	12.346	2.420	0.2262	23	24
75.55	0.0000	0.0000	0.1777	0.1777	0.1777	0.000	3				24	24
95.37	0.0000	0.0000	0.1777	0.1777	0.1777	0.000	3				24	24

Auxiliary T	ests						Statistic		Critical		Skew	Kurt
Shapiro-Wi	lk's Test indic	ates normal	distribution (p > 0.01)			0.9740677		0.805		0.0750676	-0.046793
Equality of v	variance canr	not be confirm	ned									
Hypothesis	- Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's T	est		38.24	57.8	47.01353		0.1232334	0.1272086	0.8826425	0.0131086	5.1E-06	3, 8
Treatments	vs 0.274 D-0	Control										
					Maximur	n Likelihoo	od-Probit					
Parameter	Value	SE	95% Fiducia	al Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	8.9370387	5.567157	-6.519867	24.393945		0	43.442045	9.4877291	8.4E-09	1.6326952	0.1118939	7
Intercept	-9.59146	9.329007	-35.49294	16.310016								
TSCR												
Point	Probits	mg/L	95% Fiducia	al Limits								
EC01	2.674	23.571708										
EC05	3.355	28.096103										
EC10	3.718	30.852998										
EC15	3.964	32.864317				·						
EC20	4.158	34.555954										
EC25	4.326	36.076457										
EC40	4.747	40.211213										
EC50	5.000	42.923503										
EC60	5.253	45.818742										
EC75	5.674	51.070069										
EC80	5.842	53.317213										
EC85	6.036	56.061631										
EC90	6.282	59.716306										
EC95	6.645	65.575893										
EC99	7.326	78.162656										
Significant h	otorogeneity	datacted (n	- 8 38E-00)									


.

Significant heterogeneity detected (p = 8.38E-09)


End Date: Sample Da			Test ID: Lab ID: Protocol:	1A10 CATML-Telo ASTM94-AS	nicher Marine TM (1994)		Sample ID: Sample Typ Test Specie	e:	AMCL-Amm	nmonium Ch onium Chlori eus vanname	de	
Comments Conc-mg/L		2	3									
36 D-Contro	I 1.0000	1.0000	1.0000									
10.31	1.0000	1.0000	1.0000									
20.48	3 1.0000	1.0000	1.0000									
29.97	1.0000	1.0000	1.0000									
38.65		0.7500	1.0000									
50.23		0.8750	0.8750									
58.33		0.8750	0.6250					· · ·				
69.41		0.6250	0.2500									
78.92	0.2500	0.3750	0.2500									
Conc-mg/L	. Mean	N-Mean	Mean	Transform Min	: Arcsin Squa Max	re Root CV%	N	t-Stat	1-Tailed Critical	MSD	Number Resp	ן אנ
36 D-Control	and the second statement with the second statement of	1.0000	1.3931	1.3931	1.3931	0.000	3	ાન્ગાલા	GHUGA	Wisd	nesp 0	
10.31		1.0000	1.3931	1.3931	1.3931	0.000	3	0.000	2.580	0.2553	0	
20.48		1.0000	1.3931	1.3931	1.3931	0.000	3	0.000	2.580	0.2553	0	
29.97		1.0000	1.3931	1.3931	1.3931	0.000	3	0.000	2.580	0.2553	0	
38.65		0.8750	1.2166	1.0472	1.3931	14.225	3	1.784	2.580	0.2553	3	
50.23	0.8750	0.8750	1.2094	1.2094	1.2094	0.000	3	1.856	2.580	0.2553	3	
*58.33	0.7500	0.7500	1.0561	0.9117	1.2094	14.113	3	3.406	2.580	0.2553	6	
*69.41	0.5417	0.5417	0.8275	0.5236	1.0472	32.842	3	5.717	2.580	0.2553	11	
*78.92	0.2917	0.2917	0.5688	0.5236	0.6591	13.751	3	8.332	2.580	0.2553	17	
Auxiliary T							Statistic		Critical		Skew	
•				ion (p <= 0.01)		0.8129228		0.894		-0.61145	3,0
	variance cann		NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	
Dunnett's T	and the second	0.03)	50.23		54.128698	10		0.1494518			4.7E-07	5
Treatments		ontrol	00.20	00.00	04.120000		0.1441010	0.1404010	0.2001070	0.0140021	4.1 2-01	
	V3.200 D-CC	1101			Maximum	Likelihoo	d-Probit					
Parameter	Value		95% Fiducia	al Limits	Maximum	Likelihoo Control	d-Probit Chi-Sq	Critical	P-value	Mu	Sigma	
	Value		95% Fiducia 3.9979784					Critical 14.067141	P-value 0.72	Mu 1.8446505	to a complete the second second	
Parameter	Value 6.2970073	SE	3.9979784			Control	Chi-Sq				to a complete the second second	
Parameter Slope Intercept TSCR	Value 6.2970073 -6.615778	SE 1.1729739 2.0900758	3.9979784 -10.71233	8.5960361 -2.519229		Control	Chi-Sq				to a complete the second second	
Parameter Slope Intercept TSCR Point	Value 6.2970073 -6.615778 Probits	SE 1.1729739 2.0900758 mg/L	3.9979784 -10.71233 95% Fiducia	8.5960361 -2.519229 al Limits		Control	Chi-Sq				to a complete the second second	
Parameter Slope Intercept TSCR Point EC01	Value 6.2970073 -6.615778 Probits 2.674	SE 1.1729739 2.0900758 mg/L 29.868503	3.9979784 -10.71233 95% Fiducia 19.676519	8.5960361 -2.519229 al Limits 36.572794		Control	Chi-Sq				to a complete the second second	
Parameter Slope Intercept TSCR Point EC01 EC05	Value 6.2970073 -6.615778 Probits 2.674 3.355	SE 1.1729739 2.0900758 mg/L 29.868503 38.321153	3.9979784 -10.71233 95% Fiducia 19.676519 28.906089	8.5960361 -2.519229 al Limits 36.572794 44.244252		Control	Chi-Sq				to a complete the second second	
Parameter Slope Intercept TSCR Point EC01 EC05 EC10	Value 6.2970073 -6.615778 Probits 2.674 3.355 3.718	SE 1.1729739 2.0900758 mg/L 29.868503 38.321153 43.765608	3.9979784 -10.71233 95% Fiducia 19.676519 28.906089 35.343298	8.5960361 -2.519229 al Limits 36.572794 44.244252 49.167087		Control	Chi-Sq				to a complete the second second	
Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15	Value 6.2970073 -6.615778 Probits 2.674 3.355 3.718 3.964	SE 1.1729739 2.0900758 mg/L 29.868503 38.321153 43.765608 47.869524	3.9979784 -10.71233 95% Fiducia 19.676519 28.906089 35.343298 40.33412	8.5960361 -2.519229 al Limits 36.572794 44.244252 49.167087 52.982782		Control	Chi-Sq				to a complete the second second	
Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20	Value 6.2970073 -6.615778 Probits 2.674 3.355 3.718 3.964 4.158	SE 1.1729739 2.0900758 mg/L 29.868503 38.321153 43.765608 47.869524 51.403935	3.9979784 -10.71233 95% Fiducia 19.676519 28.906089 35.343298 40.33412 44.631968	8.5960361 -2.519229 al Limits 36.572794 44.244252 49.167087 52.982782 56.43545		Control	Chi-Sq				to a complete the second second	
Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25	Value 6.2970073 -6.615778 Probits 2.674 3.355 3.718 3.964 4.158 4.326	SE 1.1729739 2.0900758 mg/L 29.868503 38.321153 43.765608 47.869524 51.403935 54.643408	3.9979784 -10.71233 95% Fiducia 19.676519 28.906089 35.343298 40.33412 44.631968 48.480506	8.5960361 -2.519229 al Limits 36.572794 44.244252 49.167087 52.982782 56.43545 59.824314		Control	Chi-Sq				to a complete the second second	
Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC20 EC25 EC40	Value 6.2970073 -6.615778 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747	SE 1.1729739 2.0900758 mg/L 29.868503 38.321153 43.765608 47.869524 51.403935 54.643408 63.740812	3.9979784 -10.71233 95% Fiducia 19.676519 28.906089 35.343298 40.33412 44.631968 48.480506 58.178082	8.5960361 -2.519229 al Limits 36.572794 44.244252 49.167087 52.982782 56.43545 59.824314 71.124141		Control	Chi-Sq				to a complete the second second	
Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC20 EC25 EC20 EC25 EC40 EC50	Value 6.2970073 -6.615778 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000	SE 1.1729739 2.0900758 mg/L 29.868503 38.321153 43.765608 47.869524 51.403935 54.643408 63.740812 69.927907	3.9979784 -10.71233 95% Fiducia 19.676519 28.906089 35.343298 40.33412 44.631968 48.480506 58.178082 63.711652	8.5960361 -2.519229 al Limits 36.572794 44.244252 49.167087 52.982782 56.43545 59.824314 71.124141 80.426454		Control	Chi-Sq				to a complete the second second	
Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC20 EC25 EC40 EC25 EC40 EC50 EC60	Value 6.2970073 -6.615778 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253	SE 1.1729739 2.0900758 mg/L 29.868503 38.321153 43.765608 47.869524 51.403935 54.643408 63.740812 69.927907 76.715563	3.9979784 -10.71233 95% Fiducia 19.676519 28.906089 35.343298 40.33412 44.631968 48.480506 58.178082 63.711652 69.130388	8.5960361 -2.519229 al Limits 36.572794 44.244252 49.167087 52.982782 56.43545 59.824314 71.124141 80.426454 91.7889		Control	Chi-Sq				to a complete the second second	
Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC20 EC25 EC40 EC50 EC60 EC75	Value 6.2970073 -6.615778 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674	SE 1.1729739 2.0900758 mg/L 29.868503 38.321153 43.765608 47.869524 51.403935 54.643408 63.740812 69.927907 76.715563 89.487686	3.9979784 -10.71233 19.676519 28.906089 35.343298 40.33412 44.631968 68.178082 63.711652 69.130388 78.36053	8.5960361 -2.519229 al Limits 36.572794 44.244252 49.167087 52.982782 56.43545 59.824314 71.124141 80.426454 91.7889 115.52961		Control	Chi-Sq				to a complete the second second	
Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC40 EC50 EC60 EC75 EC80	Value 6.2970073 -6.615778 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842	SE 1.1729739 2.0900758 mg/L 29.868503 38.321153 43.765608 47.869524 51.403935 54.643408 63.740812 69.927907 76.715563 89.487686 95.127196	3.9979784 -10.71233 19.676519 28.906089 35.343298 40.33412 44.631968 48.480506 58.178082 63.711652 69.130388 78.36053 82.201372	8.5960361 -2.519229 al Limits 36.572794 44.244252 49.167087 52.982782 56.43545 59.824314 71.124141 80.426454 91.7889 115.52961 126.81146		Control	Chi-Sq				to a complete the second second	
Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC20 EC25 EC40 EC50 EC60 EC75	Value 6.2970073 -6.615778 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036	SE 1.1729739 2.0900758 mg/L 29.868503 38.321153 43.765608 47.869524 51.403935 54.643408 63.740812 69.927907 76.715563 89.487686	3.9979784 -10.71233 19.676519 28.906089 35.343298 40.33412 44.631968 48.480506 58.178082 69.130388 78.36053 82.201372 86.849405	8.5960361 -2.519229 al Limits 36.572794 44.244252 49.167087 52.982782 56.43545 59.824314 71.124141 80.426454 91.7889 115.52961 126.81146 141.46904		Control	Chi-Sq				to a complete the second second	
Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC40 EC50 EC60 EC75 EC80 EC85	Value 6.2970073 -6.615778 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036 6.282	SE 1.1729739 2.0900758 mg/L 29.868503 38.321153 43.765608 47.869524 51.403935 54.643408 63.740812 69.927907 76.715563 89.487686 95.127196 102.15085	3.9979784 -10.71233 19.676519 28.906089 35.343298 40.33412 44.631968 48.480506 58.178082 63.711652 69.130388 78.36053 82.201372 86.849405 92.996338	8.5960361 -2.519229 al Limits 36.572794 44.244252 49.167087 52.982782 56.43545 59.824314 71.124141 80.426454 91.7889 115.52961 126.81146 141.46904 162.47559		Control	Chi-Sq				to a complete the second second	

					Acute Shrim	Test-48	hr Survival					
Start Date:	2/18/2006 1	3:00	Test ID:	1A10			Sample ID:		ASTOCK-An	nmonium Ch	loride Stock	
	2/20/2008 1		Lab ID:		nicher Marine		Sample Typ	e:	AMCL-Amm			
Sample Dat			Protocol:	ASTM94-AS			Test Specie		LV-Litopena			
Comments:								-				
Conc-mg/L		2	3									
36 D-Control		1.0000										
10.31		1.0000										
20.48		0.8750										
29.97		0.7500										
38.65		0.3750										
50.23		0.3750										
58.33		0.2500										
69.41		0.1250										
78.92		0.0000										
10.02	0.0000	0.0000	0.0000	Transform	n: Arcsin Squa	re Root			1-Tailed		Number	Total
Conc-mg/L	. Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
36 D-Control	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3				0	24
10.31	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3	0.000	2.560	0.2560	0	24
20.48	0.9583	0.9583	1.3319	1.2094	1.3931	7.961	3	0.612	2.560	0.2560	1	24
*29.97	0.7500	0.7500	1.0561	0.9117	1.2094	14.113	3	3.370	2.560	0.2560	6	24
*38.65	0.5417	0.5417	0.8306	0.6591	1.0472	23.836	3	5.626	2.560	0.2560	11	24
*50.23	0.3333	0.3333	0.6139	0.5236	0.6591	12.739	3	7.793	2.560	0.2560	16	24
*58.33	0.1250	0.1250	0.3542	0.1777	0.5236	48.854	3	10.390	2.560	0.2560	21	24
*69.41	0.0833	0.0833	0.3001	0.1777	0.3614	35.327	3	10.931	2.560	0.2560	22	24
78.92	0.0000	0.0000	0.1777	0.1777	0.1777	0.000	3				24	24
Auxiliary To	oete										M	
	6313						Statistic		Critical		Skew	Kurt
	lk's Test indic	ates normal	distribution (p > 0.01)			Statistic 0.9453489		Critical 0.884		0.0747641	-0.096561
Shapiro-Wil				p > 0.01)					0.884		0.0747641	-0.096561
Shapiro-Wil Equality of v	lk's Test indic	not be confirr	ned NOEC	LOEC	ChV	TU	0.9453489 MSDu	MSDp	0.884 MSB	MSE	0.0747641 F-Prob	-0.096561 df
Shapiro-Wil Equality of v Hypothesis Dunnett's To	lk's Test indic variance canr • Test (1-tail, est	ot be confirm 0.05)	med		ChV 24.774697	TU	0.9453489 MSDu	MSDp 0.1500055	0.884 MSB	MSE 0.0149947	0.0747641	-0.096561
Shapiro-Wil Equality of v Hypothesis Dunnett's To	lk's Test indic variance canr Test (1-tail ,	ot be confirm 0.05)	ned NOEC	LOEC	24.774697		0.9453489 MSDu 0.1453178		0.884 MSB		0.0747641 F-Prob	-0.096561 df
Shapiro-Wil Equality of v Hypothesis Dunnett's To Treatments	lk's Test indic variance canr s Test (1-tail, est vs .286 D-Co	not be confirm 0.05) ontrol	ned NOEC 20.48	LOEC 29.97	24.774697 Maximum	Likelihoo	0.9453489 MSDu 0.1453178 d-Probit	0.1500055	0.884 MSB 0.6175069	0.0149947	0.0747641 F-Prob 4.6E-09	-0.096561 df 7, 16
Shapiro-Wil Equality of v Hypothesis Dunnett's To Treatments Parameter	lk's Test indic variance canr s Test (1-tail, est vs .286 D-Cc Value	not be confirr 0.05) ontrol SE	ned NOEC 20.48 95% Fiducia	LOEC 29.97 al Limits	24.774697 Maximum	Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069 P-value	0.0149947 Mu	0.0747641 F-Prob 4.6E-09 Sigma	-0.096561 df 7, 16 Iter
Shapiro-Wil Equality of v Hypothesis Dunnett's To Treatments Parameter Slope	lk's Test indic variance canr s Test (1-tail, est vs .286 D-Cc Value 6.2246443	not be confirm 0.05) ontrol SE 0.7915181	ned NOEC 20.48 95% Fiducia 4.6732688	LOEC 29.97 al Limits 7.7760197	24.774697 Maximum	Likelihoo	0.9453489 MSDu 0.1453178 d-Probit	0.1500055 Critical	0.884 MSB 0.6175069	0.0149947	0.0747641 F-Prob 4.6E-09	-0.096561 df 7, 16
Shapiro-Wil Equality of M Hypothesis Dunnett's To Treatments Parameter Slope Intercept	lk's Test indic variance canr s Test (1-tail, est vs .286 D-Cc Value 6.2246443	not be confirr 0.05) ontrol SE	ned NOEC 20.48 95% Fiducia 4.6732688	LOEC 29.97 al Limits 7.7760197	24.774697 Maximum	Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069 P-value	0.0149947 Mu	0.0747641 F-Prob 4.6E-09 Sigma	-0.096561 df 7, 16 Iter
Shapiro-Wil Equality of v Hypothesis Dunnett's To Treatments Parameter Slope Intercept TSCR	Ik's Test indic variance canr s Test (1-tail, est vs .286 D-Cc Value 6.2246443 -4.953169	not be confirm 0.05) ontrol SE 0.7915181 1.3052026	ned NOEC 20.48 95% Fiducia 4.6732688 -7.511366	LOEC 29.97 al Limits 7.7760197 -2.394972	24.774697 Maximum	Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069 P-value	0.0149947 Mu	0.0747641 F-Prob 4.6E-09 Sigma	-0.096561 df 7, 16 Iter
Shapiro-Wil Equality of V Hypothesis Dunnett's To Treatments Parameter Slope Intercept TSCR Point	Ik's Test indic variance canr s Test (1-tail, est vs .286 D-Cc Value 6.2246443 -4.953169 Probits	not be confirm 0.05) ontrol SE 0.7915181 1.3052026 mg/L	med NOEC 20.48 95% Fiducia 4.6732688 -7.511366 95% Fiducia	LOEC 29.97 al Limits 7.7760197 -2.394972 al Limits	24.774697 Maximum	Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069 P-value	0.0149947 Mu	0.0747641 F-Prob 4.6E-09 Sigma	-0.096561 df 7, 16 Iter
Shapiro-Wil Equality of V Hypothesis Dunnett's To Treatments Parameter Slope Intercept TSCR Point EC01	Ik's Test indic variance canr s Test (1-tail, est vs .286 D-Cc Value 6.2246443 -4.953169 Probits 2.674	not be confirm 0.05) 0.05) 0.05) 0.05) 0.7915181 1.3052026 mg/L 16.798178	ned NOEC 20.48 95% Fiducia 4.6732688 -7.511366 95% Fiducia 12.02285	LOEC 29.97 al Limits 7.7760197 -2.394972 al Limits 20.671275	24.774697 Maximum	Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069 P-value	0.0149947 Mu	0.0747641 F-Prob 4.6E-09 Sigma	-0.096561 df 7, 16 Iter
Shapiro-Wil Equality of V Hypothesis Dunnett's To Treatments Parameter Slope Intercept TSCR Point EC01 EC05	Ik's Test indic variance can s Test (1-tail, est vs .286 D-Cc Value 6.2246443 -4.953169 Probits 2.674 3.355	not be confirm 0.05) ontrol SE 0.7915181 1.3052026 mg/L 16.798178 21.614512	ned NOEC 20.48 95% Fiducia 4.6732688 -7.511366 95% Fiducia 12.02285 16.732191	LOEC 29.97 al Limits 7.7760197 -2.394972 al Limits 20.671275 25.426734	24.774697 Maximum	Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069 P-value	0.0149947 Mu	0.0747641 F-Prob 4.6E-09 Sigma	-0.096561 df 7, 16 Iter
Shapiro-Wil Equality of V Hypothesis Dunnett's To Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10	Ik's Test indic variance can s Test (1-tail, est vs .286 D-Cc Value 6.2246443 -4.953169 Probits 2.674 3.355 3.718	not be confirm 0.05) ontrol SE 0.7915181 1.3052026 mg/L 16.798178 21.614512 24.723534	ned NOEC 20.48 95% Fiducia 4.6732688 -7.511366 95% Fiducia 12.02285 16.732191 19.924997	LOEC 29.97 al Limits 7.7760197 -2.394972 al Limits 20.671275 25.426734 28.438482	24.774697 Maximum	Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069 P-value	0.0149947 Mu	0.0747641 F-Prob 4.6E-09 Sigma	-0.096561 df 7, 16 Iter
Shapiro-Wil Equality of V Hypothesis Dunnett's To Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15	Ik's Test indic variance can s Test (1-tail, est vs .286 D-Cc Value 6.2246443 -4.953169 Probits 2.674 3.355 3.718 3.964	not be confirm 0.05) ontrol SE 0.7915181 1.3052026 mg/L 16.798178 21.614512 24.723534 27.07006	ned NOEC 20.48 95% Fiducia 4.6732688 -7.511366 95% Fiducia 12.02285 16.732191 19.924997 22.393104	LOEC 29.97 7.7760197 -2.394972 al Limits 20.671275 25.426734 28.438482 30.7018	24.774697 Maximum	Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069 P-value	0.0149947 Mu	0.0747641 F-Prob 4.6E-09 Sigma	-0.096561 df 7, 16 Iter
Shapiro-Wil Equality of V Hypothesis Dunnett's To Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20	Ik's Test indic variance can s Test (1-tail, est vs .286 D-Cc Value 6.2246443 -4.953169 Probits 2.674 3.355 3.718 3.964 4.158	not be confirm 0.05) ontrol SE 0.7915181 1.3052026 mg/L 16.798178 21.614512 24.723534 27.07006 29.09284	NOEC 20.48 95% Fiducia 4.6732688 -7.511366 95% Fiducia 12.02285 16.732191 19.924997 22.393104 24.549198	LOEC 29.97 7.7760197 -2.394972 al Limits 20.671275 25.426734 28.438482 30.7018 32.657297	24.774697 Maximum	Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069 P-value	0.0149947 Mu	0.0747641 F-Prob 4.6E-09 Sigma	-0.096561 df 7, 16 Iter
Shapiro-Wil Equality of V Hypothesis Dunnett's To Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25	Ik's Test indic variance can s Test (1-tail, est vs .286 D-Cc Value 6.2246443 -4.953169 Probits 2.674 3.355 3.718 3.964 4.158 4.326	not be confirm 0.05) ontrol SE 0.7915181 1.3052026 mg/L 16.798178 21.614512 24.723534 27.07006 29.09284 30.948249	NOEC 20.48 95% Fiducia 4.6732688 -7.511366 95% Fiducia 12.02285 16.732191 19.924997 22.393104 24.549198 26.541047	LOEC 29.97 Al Limits 7.7760197 -2.394972 Al Limits 20.671275 25.426734 28.438482 30.7018 32.657297 34.46323	24.774697 Maximum	Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069 P-value	0.0149947 Mu	0.0747641 F-Prob 4.6E-09 Sigma	-0.096561 df 7, 16 Iter
Shapiro-Wil Equality of V Hypothesis Dunnett's To Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC20 EC25 EC40	Ik's Test indic variance can s Test (1-tail, est vs .286 D-Cc Value 6.2246443 -4.953169 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747	not be confir 0.05) ontrol SE 0.7915181 1.3052026 mg/L 16.798178 21.614512 24.723534 27.07006 29.09284 30.948249 36.16541	NOEC 20.48 20.48 95% Fiducia 4.6732688 -7.511366 95% Fiducia 12.02285 16.732191 19.924997 22.393104 24.549198 26.541047 32.134761	LOEC 29.97 ALLIMITS 7.7760197 -2.394972 ALLIMITS 20.671275 25.426734 28.438482 30.7018 32.657297 34.46323 39.680348	24.774697 Maximum	Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069 P-value	0.0149947 Mu	0.0747641 F-Prob 4.6E-09 Sigma	-0.096561 df 7, 16 Iter
Shapiro-Wil Equality of V Hypothesis Dunnett's To Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC25	Ik's Test indic variance can s Test (1-tail, est vs .286 D-Cc Value 6.2246443 -4.953169 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000	not be confir 0.05) ontrol SE 0.7915181 1.3052026 mg/L 16.798178 21.614512 24.723534 27.07006 29.09284 30.948249 36.16541 39.71861	NOEC 20.48 20.48 95% Fiducia -7.511366 95% Fiducia 12.02285 16.732191 19.924997 22.393104 24.549198 26.541047 32.134761 35.851698	LOEC 29.97 29.97 2.394972 20.671275 25.426734 28.438482 30.7018 32.657297 34.46323 39.680348 43.434352	24.774697 Maximum	Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069 P-value	0.0149947 Mu	0.0747641 F-Prob 4.6E-09 Sigma	-0.096561 df 7, 16 Iter
Shapiro-Wil Equality of V Hypothesis Dunnett's To Treatments Parameter Slope Intercept TSCR Point EC01 EC01 EC05 EC10 EC15 EC20 EC25 EC20 EC25 EC40 EC50 EC50 EC50 EC60	Ik's Test indic variance can s Test (1-tail, est vs .286 D-Cc Value 6.2246443 -4.953169 Probits 2.674 3.355 3.718 3.364 4.158 4.326 4.747 5.000 5.253	not be confir 0.05) ontrol SE 0.7915181 1.3052026 mg/L 16.798178 21.614512 24.723534 27.07006 29.09284 30.948249 36.16541 39.71861 43.620909	NOEC 20.48 20.48 95% Fiducia 4.6732688 -7.511366 95% Fiducia 12.02285 16.732191 19.924997 22.393104 24.549198 26.541047 32.134761 35.851698 39.762302	LOEC 29.97 29.97 2.394972 20.671275 25.426734 28.438482 30.7018 32.657297 34.46323 39.680348 43.434352 47.826006	24.774697 Maximum	Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069 P-value	0.0149947 Mu	0.0747641 F-Prob 4.6E-09 Sigma	-0.096561 df 7, 16 Iter
Shapiro-Wil Equality of V Hypothesis Dunnett's To Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC25 EC40 EC50 EC50 EC50 EC60 EC75	Ik's Test indic variance canr s Test (1-tail, est vs .286 D-Cc 6.2246443 -4.953169 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674	not be confirm 0.05) 0.7915181 1.3052026 mg/L 16.798178 21.614512 24.723534 27.07006 29.09284 30.948249 36.16541 39.71861 43.620909 50.974386	NOEC 20.48 95% Fiducia 4.6732688 -7.511366 95% Fiducia 12.02285 16.732191 19.924997 22.393104 24.549198 26.541047 32.134761 35.851698 39.762302 46.555626	LOEC 29.97 7.7760197 -2.394972 al Limits 20.671275 25.426734 28.438482 30.7018 32.657297 34.46323 39.680348 43.434352 47.826006 56.942948	24.774697 Maximum	Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069 P-value	0.0149947 Mu	0.0747641 F-Prob 4.6E-09 Sigma	-0.096561 df 7, 16 Iter
Shapiro-Wil Equality of V Hypothesis Dunnett's To Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC25 EC40 EC50 EC60 EC75 EC80	Ik's Test indic variance canr s Test (1-tail, est vs .286 D-Cc Value 6.2246443 -4.953169 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842	not be confir 0.05) ontrol SE 0.7915181 1.3052026 mg/L 16.798178 21.614512 24.723534 27.07006 29.09284 30.948249 36.16541 39.71861 43.620909 50.974386 54.225301	NOEC 20.48 95% Fiducia 4.6732688 -7.511366 95% Fiducia 12.02285 16.732191 19.924997 22.393104 24.549198 26.541047 32.134761 35.851698 39.762302 46.555626 49.350694	LOEC 29.97 7.7760197 -2.394972 al Limits 20.671275 25.426734 28.438482 30.7018 32.657297 34.46323 39.680348 43.434352 47.826006 56.942948 61.287987	24.774697 Maximum	Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069 P-value	0.0149947 Mu	0.0747641 F-Prob 4.6E-09 Sigma	-0.096561 df 7, 16 Iter
Shapiro-Wil Equality of V Hypothesis Dunnett's To Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC25 EC40 EC50 EC50 EC60 EC75 EC80 EC85	Ik's Test indic variance can s Test (1-tail, est vs .286 D-Cc Value 6.2246443 -4.953169 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036	not be confirm 0.05) ontrol SE 0.7915181 1.3052026 mg/L 16.798178 21.614512 24.723534 27.07006 29.09284 30.948249 36.16541 39.71861 43.620909 50.974386 54.225301 58.277229	NOEC 20.48 95% Fiducia 4.6732688 -7.511366 95% Fiducia 12.02285 16.732191 19.924997 22.393104 24.549198 26.541047 32.134761 35.851698 39.762302 46.555626 49.350694 52.701905	LOEC 29.97 7.7760197 -2.394972 al Limits 20.671275 25.426734 28.438482 30.7018 32.657297 34.46323 39.680348 43.434352 47.826006 56.942948 61.287987 66.923978	24.774697 Maximum	Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069 P-value	0.0149947 Mu	0.0747641 F-Prob 4.6E-09 Sigma	-0.096561 df 7, 16 Iter
Shapiro-Wil Equality of V Hypothesis Dunnett's To Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC25 EC40 EC55 EC40 EC55 EC60 EC75 EC80 EC75 EC80 EC85 EC90	Ik's Test indic variance can s Test (1-tail, est vs .286 D-Cc Value 6.2246443 -4.953169 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036 6.282	not be confir 0.05) ontrol SE 0.7915181 1.3052026 mg/L 16.798178 21.614512 24.723534 27.07006 29.09284 30.948249 36.16541 39.71861 43.620909 50.974386 54.225301 58.277229 63.808352	NOEC 20.48 95% Fiducia 4.6732688 -7.511366 95% Fiducia 12.02285 16.732191 19.924997 22.393104 24.549198 26.541047 35.851698 39.762302 46.555626 49.350694 52.701905 57.097365	LOEC 29.97 29.97 -2.394972 al Limits 20.671275 25.426734 28.438482 30.7018 32.657297 34.46323 39.680348 43.434352 47.826006 56.942948 61.287987 66.923978 74.948916	24.774697 Maximum	Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069 P-value	0.0149947 Mu	0.0747641 F-Prob 4.6E-09 Sigma	-0.096561 df 7, 16 Iter
Shapiro-Wil Equality of V Hypothesis Dunnett's To Treatments Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC50 EC50 EC50 EC50 EC50 EC50 EC75 EC80 EC85	Ik's Test indic variance can s Test (1-tail, est vs .286 D-Cc Value 6.2246443 -4.953169 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.253 5.674 5.842 6.036 6.282 6.645	not be confirm 0.05) 0.7915181 1.3052026 mg/L 16.798178 21.614512 24.723534 27.07006 29.09284 30.948249 36.16541 43.620909 50.974386 54.225301 58.277229 63.808352 72.986518	NOEC 20.48 95% Fiducia 4.6732688 -7.511366 95% Fiducia 12.02285 16.732191 19.924997 22.393104 24.549198 26.541047 32.134761 35.851698 39.762302 46.555626 49.350694 52.701905	LOEC 29.97 29.97 -2.394972 al Limits 20.671275 25.426734 28.438482 30.7018 32.657297 34.46323 39.680348 43.434352 47.826006 56.942948 61.287987 66.923978 74.948916 88.95467	24.774697 Maximum	Likelihoo Control	0.9453489 MSDu 0.1453178 d-Probit Chi-Sq	0.1500055 Critical	0.884 MSB 0.6175069 P-value	0.0149947 Mu	0.0747641 F-Prob 4.6E-09 Sigma	-0.096561 df 7, 16 Iter

2. 6

Test ID: 1A10 Sample ID: Ammonium Chloride Stock Sample Type: Ammonium Chloride Method: Dunnett's Test

Test ID: 1A10

Sample ID: Ammonium Chloride Stock Sample Type:Ammonium Chloride Method: Maximum Likelihood-Probit

					Acute Shrim	Test-24	hr Survival					
Start Date:	2/25/2006 13	3:00	Test ID:	1N10			Sample ID:		NO2STOCK			
End Date:	2/27/2008 13	3:00	Lab ID:	CATML-Teld	onicher Marine		Sample Typ	e:	NANO2			
Sample Dat	2/25/2008		Protocol:	ASTM94-AS	STM (1994)		Test Specie	s:	LV-Litopena	eus vannam	əi	
Comments:												
Conc-mg/L	1	2	3									
.0 D-Control	1.0000	1.0000	1.0000									
90.4	1.0000	1.0000	1.0000									
114.6	1.0000	1.0000	1.0000									
132.8	1.0000	1.0000	1.0000									
148.8	0.7500	1.0000	0.8750									
170.2	0.6250	0.7500	0.6250									
187	0.7500	0.7500	0.6250									
				Transform	n: Arcsin Squa	re Root			1-Tailed		Number	Total
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
.0 D-Control	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3				0	24
90.4	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3	0.000	2.530	0.1604	0	24
114.6	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3	0.000	2.530	0.1604	0	24
132.8	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3	0.000	2.530	0.1604	0	24
*148.8	0.8750	0.8750	1.2166	1.0472	1.3931	14.225	3	2.785	2.530	0.1604	3	24
*170.2	0.6667	0.6667	0.9569	0.9117	1.0472	8.173	3	6.882	2.530	0.1604	8	24
*187	0.7083	0.7083	1.0020	0.9117	1.0472	7.805	3	6.170	2.530	0.1604	7	24
Auxiliary Te					4)		Statistic		Critical		Skew 0.1292139	Kurt 3.8688993
•	d's Test indica ariance canno			ion (p <= 0.0	1)		0.812308		0.873		0.1292139	3.0000993
	Test (1-tail, (NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Te	st		132.8	148.8	140.57254		0.0787503	0.0812906	0.1152028	0.0060258	5.3E-06	6, 14
Treatments	vs 0.0 D-Cont	rol										
					Maximum							
Parameter		SE	95% Fiducia			Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	10.666049	2.82458	5.1298719	16.202226		0	3.4863561	9.4877291	0.48	2.2988409	0.0937554	6
Intercept	-19.51955	6.2716133	-31.81191	-7.227187								
TSCR												
Point	Probits	and the second second second second second	95% Fiducia									
EC01			84.162104	136.1086								
EC05			113.17352									
EC10			131.47534									
EC15			144.12602									
EC20			153.48587									
EC25 EC40	4.326 4.747		160.57534 175.19671	222.60015								
EC40 EC50			182.94834									
EC50 EC60			190.51142									
EC60 EC75			203.17396									
EC75 EC80			203.17396	357.58024								
EC80 EC85			208.30931	389.80585								
EC05 EC90			214.40439	434.635								
-030												
EC.95	6 645	283 82777	734 34484	510 947XX								
EC95 EC99	6.645 7.326	283.82777	234.34984 258.61624									

					Acute Shrim	p Test-48	hr Survival					
Start Date:	2/25/2006 1	3:00	Test ID:	1N10			Sample ID:		NO2STOCK	C C C C C C C C C C C C C C C C C C C		
End Date:	2/27/2008 1	3:00	Lab ID:	CATML-Teld	nicher Marine		Sample Typ	e:	NANO2			
Sample Dat	t 2/25/2008		Protocol:	ASTM94-AS	TM (1994)		Test Specie	s:	LV-Litopena	ieus vannam	ei	
Comments:	and the second se											
Conc-mg/L		2	3									
.0 D-Control		1.0000										
90.4		1.0000										
114.6		0.8750	0.8750									
132.8		0.8750	0.6250									
148.8		0.6250										
170.2		0.3750						,				
187	0.2500	0.2500	0.1250									
				Transform	i: Arcsin Squa	ire Root			1-Tailed		Number	Total
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
.0 D-Control	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3				0	24
90.4	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3	0.000	2.530	0.1980	. 0	24
114.6	0.9167	0.9167	1.2706	1.2094	1.3931	8.345	3	1.564	2.530	0.1980	2	24
*132.8	0.7500	0.7500	1.0561	0.9117	1.2094	14.113	3	4.306	2.530	0.1980	6	24
*148.8	0.5000	0.5000	0.7854	0.6591	0.9117	16.086	. 3	7.765	2.530		12	24
*170.2	0.3333	0.3333	0.6139	0.5236	0.6591	12.739	3	9.956	2.530	0.1980	16	24
*187		0.2083	0.4695	0.3614	0.5236	19.949	3	11.801	2.530	0.1980	19	24
Auxiliary To							Statistic		Critical		Skew	Kurt
•	k's Test indic			p > 0.01)			0.9499284		0.873		0.0501515	-0.278105
· · · · · · · · · · · · · · · · · · ·	ariance canr											
control and a second seco	: Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's T			114.6	132.8	123.36482		0.1033895	0.1067246	0.430958	0.009187	1.8E-08	6, 14
Treatments	vs 0.0 D-Cor	ntrol										
_					Maximum			·				
Parameter	Value	SE	95% Fiducia			Control	Chi-Sq	Critical	P-value	Mu	Sigma	Iter
Slope	10.588202			13.889801		0	0.6462051	9.4877291	0.96	2.1868099	0.0944447	3
Intercept	-18.15439	3.6658691	-25.33949	-10.96928								
TSCR	0		ACO/ Etd.	111.								
Point EC01	Probits	mg/L	95% Fiducia 73.927552									
EC01 EC05	2.674		91.339047									
EC05 EC10	3.355			125.62159								
EC10 EC15	3.964		102.08593	131.2994								
EC15 EC20				136.14286								
EC20 EC25			122.19708	140.60052								
EC40		145.50656										
EC50			145.58119						,			
E000	5.000	400.45054	452,0000	474 04074								

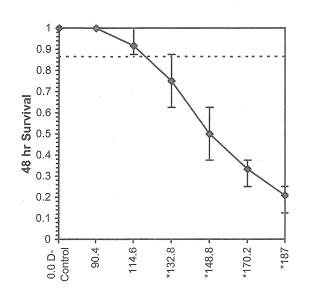
5.253 162.45654 153.8232 174.64671

5.674178.03767167.01495197.035285.842184.62758172.22677207.09432

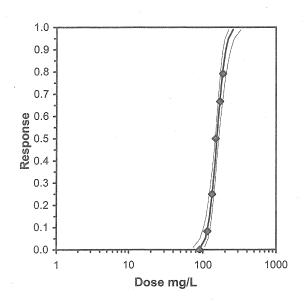
6.036 192.61742 178.36244 219.6477

6.282 203.16349 186.2346 236.73178

6.645219.86578198.32405264.823497.326254.98888222.72424327.45819


EC60 EC75

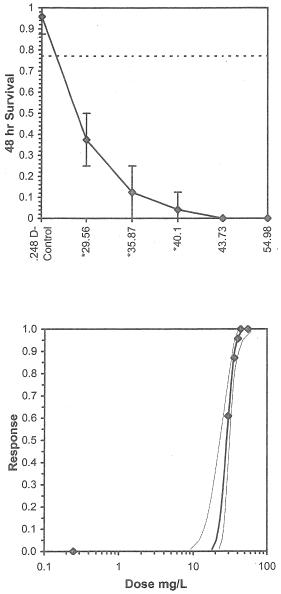
EC80


EC85

EC90 EC95

EC99

Test ID: 1N10 Sample ID: NO2STOCK Sample Type: NANO2 Method: Dunnett's Test

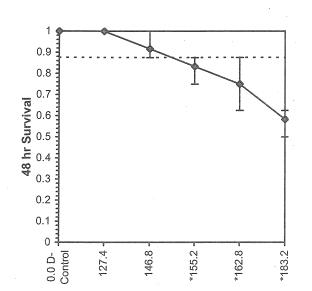


Test ID: 1N10 Sample ID: NO2STOCK Sample Type: NANO2 Method: Maximum Likelihood-Probit

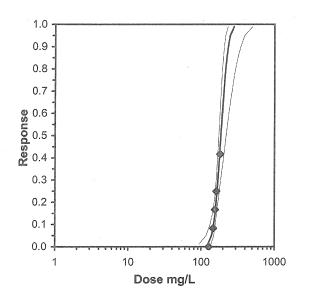
					Acute Shrim	p Test-12 l	nr Survival					
Start Date:	3/1/2008 13:	00	Test ID:	1AvNs		Cardina Charges and a second second second second	Sample ID:		NH3NO2			
End Date:	3/3/2008 13:	00	Lab ID:	CATML-Teld	nicher Marine		Sample Typ	e:	NH3NO2			
Sample Dat	t.		Protocol:	ASTM94-AS	TM (1994)		Test Specie	s:	LV-Litopena	eus vannam	ei	
Comments:												
Conc-mg/L	. 1	2	3									
18 D-Control	1.0000	1.0000	1.0000									
29.56	0.8750	1.0000	1.0000									
35.87	1.0000	1.0000	0.8750									1 - A
40.1		0.7500										
43.73		0.7500										
54.98	0.5000	0.3750	0.3750									
				Transform	i: Arcsin Squa	ire Root			1-Tailed		Number	Total
Conc-mg/L	Contraction of the second s	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
18 D-Control		1.0000		1.3931	1.3931	0.000	3				0	24
29.56		0.9583		1.2094	1.3931	7.961	3	0.889	2.500	0.1722	1	24
35.87		0.9583		1.2094	1.3931	7.961	3	0.889	2.500	0.1722	1	24
*40.1		0.8333		1.0472	1.2094	8.107	3	3.452	2.500	0.1722	4	24
*43.73		0.7083		0.9117	1.0472	7.805	3	5.677	2.500	0.1722	7	24
*54.98		0.4167	0.7012	0.6591	0.7854	10.403	3	10.046	2.500	0.1722	14	24
Auxiliary To	Management of the second states of the second state						Statistic		Critical		Skew	Kurt
	k's Test indica /ariance canno			ion (p <= 0.0	1)		0.8542656		0.858		-0.707522	-0.984641
Concernant and the second second second second second	Test (1-tail, I		NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's To	est		35.87	40.1	37.926073		0.0862667	0.0890495	0.2091414	0.0071161	2.5E-06	5, 12
Treatments	vs .248 D-Co	ntrol										
					Maximum	Likelihoo	d-Probit					
Parameter	Value	SE	95% Fiducia			Control	Chi-Sq	Critical	P-value	Mu	Sigma	Iter
Slope		1.8119857	4.8035696	11.906553		0	1 3179099	9.4877291	0.86	1.7161032	0.1196879	3
Intercept	-9 338148						1.0110000					
TSCP	0.000140	2.9740109					1.0110000					
TSCR		2.9740109	-15.16721	-3.509087			1.0110000					
Point	Probits	2.9740109 mg/L	-15.16721 95% Fiducia	-3.509087 al Limits			1.0110000					
Point EC01	Probits 2.674	2.9740109 mg/L 27.394759	-15.16721 95% Fiducia 19.152953	-3.509087 al Limits 31.923232			1.0110000					
Point EC01 EC05	Probits 2.674 3.355	2.9740109 mg/L 27.394759 33.054768	-15.16721 95% Fiducia 19.152953 26.324053	-3.509087 al Limits 31.923232 36.736621								
Point EC01 EC05 EC10	Probits 2.674 3.355 3.718	2.9740109 mg/L 27.394759 33.054768 36.535663	-15.16721 95% Fiducio 19.152953 26.324053 31.019866	-3.509087 al Limits 31.923232 36.736621 39.806732								
Point EC01 EC05 EC10 EC15	Probits 2.674 3.355 3.718 3.964	2.9740109 mg/L 27.394759 33.054768 36.535663 39.089011	-15.16721 95% Fiducia 19.152953 26.324053 31.019866 34.467622	-3.509087 al Limits 31.923232 36.736621 39.806732 42.24743								
Point EC01 EC05 EC10 EC15 EC20	Probits 2.674 3.355 3.718 3.964 4.158	2.9740109 mg/L 27.394759 33.054768 36.535663 39.089011 41.245003	-15.16721 95% Fiducia 19.152953 26.324053 31.019866 34.467622 37.262606	-3.509087 al Limits 31.923232 36.736621 39.806732 42.24743 44.550835								
Point EC01 EC05 EC10 EC15 EC20 EC25	Probits 2.674 3.355 3.718 3.964 4.158 4.326	2.9740109 mg/L 27.394759 33.054768 36.535663 39.089011 41.245003 43.18918	-15.16721 95% Fiducia 19.152953 26.324053 31.019866 34.467622 37.262606 39.599694	-3.509087 al Limits 31.923232 36.736621 39.806732 42.24743 44.550835 46.910208								
Point EC01 EC05 EC10 EC15 EC20 EC25 EC40	Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747	2.9740109 mg/L 27.394759 33.054768 36.535663 39.089011 41.245003 43.18918 48.504346	-15.16721 95% Fiducia 19.152953 26.324053 31.019866 34.467622 37.262606 39.599694 44.8852	-3.509087 al Limits 31.923232 36.736621 39.806732 42.24743 44.550835 46.910208 54.941377								
Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50	Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000	2.9740109 mg/L 27.394759 33.054768 36.535663 39.089011 41.245003 43.18918 48.504346 52.011962	-15.16721 95% Fiduci 19.152953 26.324053 31.019866 34.467622 37.262606 30.599694 44.8852 47.738822	-3.509087 al Limits 31.923232 36.736621 39.806732 42.24743 44.550835 46.910208 54.941377 61.256247								
Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC50 EC60	Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253	2.9740109 mg/L 27.394759 33.054768 36.535663 39.089011 41.245003 43.18918 48.504346 52.011962 55.773235	-15.16721 95% Fiducia 19.152953 26.324053 31.019866 34.467622 37.262606 39.599694 44.8852 47.738822 50.519848	-3.509087 al Limits 31.923232 36.736621 39.806732 42.24743 44.550835 46.910208 54.941377 61.256247 68.640343								
Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC50 EC60 EC75	Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674	2.9740109 27.394759 33.054768 36.535663 39.089011 41.245003 43.18918 48.504346 52.011962 55.773235 62.637082	-15.16721 95% Fiducia 19.152953 26.324053 31.019866 34.467622 37.262606 39.599694 44.8852 47.738822 50.519848 55.208253	-3.509087 al Limits 31.923232 36.736621 39.806732 42.24743 44.550835 46.910208 54.941377 61.256247 68.640343 83.383663								
Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC60 EC60 EC60 EC75 EC80	Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842	2.9740109 27.394759 33.054768 36.535663 39.089011 41.245003 43.18918 48.504346 52.011962 55.773235 62.637082 65.589624	-15.16721 95% Fiducia 19.152953 26.324053 31.019866 34.467622 37.262606 39.599694 44.8852 47.738822 50.519848 55.208253 57.129801	-3.509087 al Limits 31.923232 36.736621 39.806732 42.24743 44.550835 46.910208 54.941377 61.256247 68.640343 83.383663 90.16799								
Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC60 EC75 EC60 EC75 EC80 EC85	Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036	2.9740109 mg/L 27.394759 33.054768 36.535663 39.089011 41.245003 43.18918 48.504346 52.011962 55.773235 62.637082 65.589624 69.207285	-15.16721 95% Fiducia 19.152953 26.324053 31.019866 34.467622 37.262606 39.599694 44.8852 47.738822 50.519848 55.208253 57.129801 59.428525	-3.509087 al Limits 31.923232 36.736621 39.806732 42.24743 44.550835 46.910208 54.941377 61.256247 68.640343 83.383663 90.16799 98.818358								
Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC50 EC50 EC75 EC80 EC75 EC80 EC85 EC90	Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036 6.282	2.9740109 mg/L 27.394759 33.054768 36.535663 39.089011 41.245003 43.18918 48.504346 52.011962 55.773235 62.637082 65.589624 69.207285 74.043932	-15.16721 95% Fiducia 19.152953 26.324053 31.019866 34.467622 37.262606 39.599694 44.8852 47.738822 50.519848 55.208253 57.129801 59.428525 62.423154	-3.509087 al Limits 31.923232 36.736621 39.806732 42.24743 44.550835 46.910208 54.941377 61.256247 68.640343 83.383663 90.16799								
Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC60 EC75 EC60 EC75 EC80 EC85	Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036 6.282	2.9740109 mg/L 27.394759 33.054768 36.535663 39.089011 41.245003 43.18918 48.504346 52.011962 55.773235 62.637082 65.589624 69.207285 74.043932 81.841268	-15.16721 95% Fiducia 19.152953 26.324053 31.019866 34.467622 37.262606 39.599694 44.8852 47.738822 50.519848 55.208253 57.129801 59.428525 62.423154 67.097449	-3.509087 at Limits 31.923232 36.736621 39.806732 42.24743 44.550835 46.910208 54.941377 61.256247 68.640343 83.383663 90.16799 98.818358 110.94353								

					Acute Shrimp	o Test-24	hr Survival					
	3/1/2008 13		Test ID:	1AvNs			Sample ID:		NH3NO2			
End Date: Sample Dat	3/3/2008 13	:00	Lab ID: Protocol:	CATML-Telo ASTM94-AS	nicher Marine		Sample Typ		NH3NO2		oi.	
Comments:			1 1010001.	A011034-A0	1101 (1994)		Test Specie	5.	LV-Litopena	eus vannam	ei	
Conc-mg/L		2	3									
18 D-Control		1.0000	1.0000							-		
29.56 35.87		0.6250 0.6250	0.7500									
40.1		0.8250	0.6250 0.2500				· · · ·					
43.73		0.2500	0.0000									
54.98	0.0000	0.0000	0.0000									
				Transform	: Arcsin Squa	re Root			1-Tailed		Number	Total
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
18 D-Control		1.0000	1.3931	1.3931	1.3931	0.000	3				0	24
*29.56		0.6667	0.9569	0.9117	1.0472	8.173	3	3.555	2.470	0.3031	8	24
*35.87 *40.1	0.5833 0.2083	0.5833 0.2083	0.8696 0.4535	0.7854 0.1777	0.9117 0.6591	8.388 54.740	3 `3	4.266 7.657	2.470 2.470	0.3031 0.3031	10 19	24 24
*43.73		0.0833	0.2930	0.1777	0.5236	68.155	3	8.965	2.470	0.3031	22	24
54.98	0.0000	0.0000	0.1777	0.1777	0.1777	0.000	3				24	24
Auxiliary Te			-11-4-11				Statistic		Critical		Skew	Kurt
	k's Test indic ariance canr			p > 0.01)			0.9640511		0.835		-0.105777	0.8349011
	Test (1-tail,		NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Te			<29.56	29.56			0.1826463	0.1885381	0.5685885	0.0225861	3.3E-05	4, 10
Treatments	vs .248 D-Cc	ontrol										
					88. *		1 8 1 4					
Parameter	Value	SE	95% Fiducia	al Limits	Maximum			Critical	P-value	Mu	Sigma	lter
Parameter Slope	Value 11.006073	SE 2.0237516	95% Fiducia 7.0395199	al Limits 14.972626		Likelihoo Control 0	d-Probit Chi-Sq 4.6723968	Critical 9.4877291	P-value 0.32	Mu 1.5339736	Sigma 0.0908589	lter 3
Slope Intercept	11.006073	2.0237516		14.972626		Control	Chi-Sq			ACCOUNT OF A DESCRIPTION OF A DESCRIPTIO	New York Construction of State Construction	
Slope Intercept TSCR	11.006073 -11.88303	2.0237516 3.1757052	7.0395199 -18.10741	14.972626 -5.658643		Control	Chi-Sq			ACCOUNT OF A DESCRIPTION OF A DESCRIPTIO	New York Construction of State Construction	
Slope Intercept TSCR Point	11.006073 -11.88303 Probits	2.0237516 3.1757052 mg/L	7.0395199 -18.10741 95% Fiducia	14.972626 -5.658643		Control	Chi-Sq			ACCOUNT OF A DESCRIPTION OF A DESCRIPTIO	New York Construction of State Construction	
Slope Intercept TSCR	11.006073 -11.88303 Probits 2.674	2.0237516 3.1757052 mg/L	7.0395199 -18.10741 95% Fiducia 15.172278	14.972626 -5.658643		Control	Chi-Sq			ACCOUNT OF A DESCRIPTION OF A DESCRIPTIO	New York Construction of State Construction	
Slope Intercept TSCR Point EC01 EC05 EC10	11.006073 -11.88303 Probits 2.674 3.355 3.718	2.0237516 3.1757052 mg/L 21.018615 24.239516 26.153702	7.0395199 -18.10741 95% Fiducia 15.172278 18.912636 21.253641	14.972626 -5.658643 al Limits 24.602877 27.39116 29.027023		Control	Chi-Sq			ACCOUNT OF A DESCRIPTION OF A DESCRIPTIO	New York Construction of State Construction	
Slope Intercept TSCR Point EC01 EC05 EC10 EC15	11.006073 -11.88303 Probits 2.674 3.355 3.718 3.964	2.0237516 3.1757052 mg/L 21.018615 24.239516 26.153702 27.529882	7.0395199 -18.10741 95% Fiducia 15.172278 18.912636 21.253641 22.982322	14.972626 -5.658643 al Limits 24.602877 27.39116 29.027023 30.201834		Control	Chi-Sq			ACCOUNT OF A DESCRIPTION OF A DESCRIPTIO	New York Construction of State Construction	
Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20	11.006073 -11.88303 Probits 2.674 3.355 3.718 3.964 4.158	2.0237516 3.1757052 mg/L 21.018615 24.239516 26.153702 27.529882 28.675089	7.0395199 -18.10741 95% Fiducia 15.172278 18.912636 21.253641 22.982322 24.444452	14.972626 -5.658643 al Limits 24.602877 27.39116 29.027023 30.201834 31.184026		Control	Chi-Sq			ACCOUNT OF A DESCRIPTION OF A DESCRIPTIO	New York Construction of State Construction	
Slope Intercept TSCR Point EC01 EC05 EC10 EC15	11.006073 -11.88303 Probits 2.674 3.355 3.718 3.964	2.0237516 3.1757052 mg/L 21.018615 24.239516 26.153702 27.529882	7.0395199 -18.10741 95% Fiducia 15.172278 18.912636 21.253641 22.982322 24.44452 25.76056	14.972626 -5.658643 al Limits 24.602877 27.39116 29.027023 30.201834		Control	Chi-Sq			ACCOUNT OF A DESCRIPTION OF A DESCRIPTIO	New York Construction of State Construction	
Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25	11.006073 -11.88303 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747	2.0237516 3.1757052 mg/L 21.018615 24.239516 26.153702 27.529882 28.675089 29.695467 32.430581	7.0395199 -18.10741 95% Fiducia 15.172278 18.912636 21.253641 22.982322 24.44452 25.76056	14.972626 -5.658643 al Limits 24.602877 27.39116 29.027023 30.201834 31.184026 32.067238 34.518672		Control	Chi-Sq			ACCOUNT OF A DESCRIPTION OF A DESCRIPTIO	New York Construction of State Construction	
Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC50 EC60	11.006073 -11.88303 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253	2.0237516 3.1757052 mg/L 21.018615 24.239516 26.153702 27.529882 28.675089 29.695467 32.430581 34.195864 36.057236	7.0395199 -18.10741 95% Fiducia 15.172278 18.912636 21.253641 22.982322 24.444452 25.76056 29.303248 31.536102 33.754378	14.972626 -5.658643 24.602877 27.39116 29.027023 30.201834 31.184026 32.067238 34.518672 36.230288 38.234871		Control	Chi-Sq			ACCOUNT OF A DESCRIPTION OF A DESCRIPTIO	New York Construction of State Construction	
Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC50 EC60 EC75	11.006073 -11.88303 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674	2.0237516 3.1757052 mg/L 21.018615 24.239516 26.153702 27.529882 28.675089 29.695467 32.430581 34.195864 36.057236 39.378302	7.0395199 -18.10741 95% Fiducia 15.172278 18.912636 21.253641 22.982322 24.444452 25.76056 29.303248 31.536102 33.754378 37.182087	14.972626 -5.658643 24.602877 27.39116 29.027023 30.201834 31.184026 32.067238 34.518672 36.230288 38.234871 42.501959		Control	Chi-Sq			ACCOUNT OF A DESCRIPTION OF A DESCRIPTIO	New York Construction of State Construction	
Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC60 EC75 EC80	11.006073 -11.88303 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842	2.0237516 3.1757052 mg/L 21.018615 24.239516 26.153702 27.529882 28.675089 29.695467 32.430581 34.195864 36.057236 39.378302 40.779545	7.0395199 -18.10741 95% Fiducia 15.172278 18.912636 21.253641 22.982322 24.444452 25.76056 29.303248 31.536102 33.754378 37.182087 38.440304	14.972626 -5.658643 24.602877 27.39116 29.027023 30.201834 31.184026 32.067238 34.518672 36.230288 38.234871 42.501959 44.551288		Control	Chi-Sq			ACCOUNT OF A DESCRIPTION OF A DESCRIPTIO	New York Construction of State Construction	
Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC50 EC60 EC75	11.006073 -11.88303 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.326 4.747 5.000 5.253 5.674 5.842 6.036	2.0237516 3.1757052 mg/L 21.018615 24.239516 26.153702 27.529882 28.675089 29.695467 32.430581 34.195864 36.057236 39.378302 40.779545 42.475922	7.0395199 -18.10741 95% Fiducia 15.172278 18.912636 21.253641 22.982322 24.444452 25.76056 29.303248 31.536102 33.754378 37.182087	14.972626 -5.658643 24.602877 27.39116 29.027023 30.201834 31.184026 32.067238 34.518672 36.230288 38.234871 42.501959 44.551288 47.181136		Control	Chi-Sq			ACCOUNT OF A DESCRIPTION OF A DESCRIPTIO	New York Construction of State Construction	
Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC60 EC75 EC80 EC85 EC90 EC95	11.006073 -11.88303 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036 6.282 6.645	2.0237516 3.1757052 21.018615 24.239516 26.153702 27.529882 28.675089 29.695467 32.430581 34.195864 36.057236 39.378302 40.779545 42.475922 44.710957 48.241767	7.0395199 -18.10741 95% Fiducia 15.172278 18.912636 21.253641 22.982322 24.444452 25.76056 29.303248 31.536102 33.754378 37.182087 38.440304 39.862451 41.622228 44.241531	14.972626 -5.658643 24.602877 27.39116 29.027023 30.201834 31.184026 32.067238 34.518672 36.230288 38.234871 42.501959 44.551288 47.181136 50.839164 56.959599		Control	Chi-Sq			ACCOUNT OF A DESCRIPTION OF A DESCRIPTIO	New York Construction of State Construction	
Slope Intercept TSCR Point EC01 EC05 EC10 EC25 EC40 EC50 EC60 EC75 EC80 EC85 EC90	11.006073 -11.88303 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036 6.282 6.645	2.0237516 3.1757052 21.018615 24.239516 26.153702 27.529882 28.675089 29.695467 32.430581 34.195864 36.057236 39.378302 40.779545 42.475922 44.710957 48.241767	7.0395199 -18.10741 95% Fiducia 15.172278 18.912636 21.253641 22.982322 24.444452 25.76056 29.303248 31.536102 33.754378 37.182087 38.440304 39.862451 41.622228	14.972626 -5.658643 24.602877 27.39116 29.027023 30.201834 31.184026 32.067238 34.518672 36.230288 38.234871 42.501959 44.551288 47.181136 50.839164 56.959599		Control	Chi-Sq			ACCOUNT OF A REAL PROPERTY OF A	New York Construction of State Construction	
Slope Intercept TSCR Point EC01 EC05 EC10 EC25 EC40 EC50 EC60 EC75 EC80 EC90 EC95	11.006073 -11.88303 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036 6.282 6.645	2.0237516 3.1757052 21.018615 24.239516 26.153702 27.529882 28.675089 29.695467 32.430581 34.195864 36.057236 39.378302 40.779545 42.475922 44.710957 48.241767	7.0395199 -18.10741 95% Fiducia 15.172278 18.912636 21.253641 22.982322 24.444452 25.76056 29.303248 31.536102 33.754378 37.182087 38.440304 39.862451 41.622228 44.241531	14.972626 -5.658643 24.602877 27.39116 29.027023 30.201834 31.184026 32.067238 34.518672 36.230288 38.234871 42.501959 44.551288 47.181136 50.839164 56.959599		Control	Chi-Sq			ACCOUNT OF A REAL PROPERTY OF A	New York Construction of State Construction	
Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC60 EC75 EC80 EC85 EC90 EC95	11.006073 -11.88303 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036 6.282 6.645	2.0237516 3.1757052 21.018615 24.239516 26.153702 27.529882 28.675089 29.695467 32.430581 34.195864 36.057236 39.378302 40.779545 42.475922 44.710957 48.241767	7.0395199 -18.10741 95% Fiducia 15.172278 18.912636 21.253641 22.982322 24.444452 25.76056 29.303248 31.536102 33.754378 37.182087 38.440304 39.862451 41.622228 44.241531	14.972626 -5.658643 24.602877 27.39116 29.027023 30.201834 31.184026 32.067238 34.518672 36.230288 38.234871 42.501959 44.551288 47.181136 50.839164 56.959599		Control	Chi-Sq			ACCOUNT OF A REAL PROPERTY OF A	New York Construction of State Construction	
Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC60 EC75 EC80 EC85 EC90 EC95	11.006073 -11.88303 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036 6.282 6.645	2.0237516 3.1757052 21.018615 24.239516 26.153702 27.529882 28.675089 29.695467 32.430581 34.195864 36.057236 39.378302 40.779545 42.475922 44.710957 48.241767	7.0395199 -18.10741 95% Fiducia 15.172278 18.912636 21.253641 22.982322 24.444452 25.76056 29.303248 31.536102 33.754378 37.182087 38.440304 39.862451 41.622228 44.241531	14.972626 -5.658643 24.602877 27.39116 29.027023 30.201834 31.184026 32.067238 34.518672 36.230288 38.234871 42.501959 44.551288 47.181136 50.839164 56.959599		Control	Chi-Sq			ACCOUNT OF A DESCRIPTION OF A DESCRIPTIO	New York Construction of State Construction	
Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC60 EC75 EC80 EC85 EC90 EC95	11.006073 -11.88303 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036 6.282 6.645	2.0237516 3.1757052 21.018615 24.239516 26.153702 27.529882 28.675089 29.695467 32.430581 34.195864 36.057236 39.378302 40.779545 42.475922 44.710957 48.241767	7.0395199 -18.10741 95% Fiducia 15.172278 18.912636 21.253641 22.982322 24.444452 25.76056 29.303248 31.536102 33.754378 37.182087 38.440304 39.862451 41.622228 44.241531	14.972626 -5.658643 24.602877 27.39116 29.027023 30.201834 31.184026 32.067238 34.518672 36.230288 38.234871 42.501959 44.551288 47.181136 50.839164 56.959599		Control	Chi-Sq			ACCOUNT OF A DESCRIPTION OF A DESCRIPTIO	New York Construction of State Construction	
Slope Intercept TSCR Point EC01 EC05 EC10 EC25 EC40 EC50 EC60 EC75 EC80 EC90 EC95	11.006073 -11.88303 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036 6.282 6.645	2.0237516 3.1757052 21.018615 24.239516 26.153702 27.529882 28.675089 29.695467 32.430581 34.195864 36.057236 39.378302 40.779545 42.475922 44.710957 48.241767	7.0395199 -18.10741 95% Fiducia 15.172278 18.912636 21.253641 22.982322 24.444452 25.76056 29.303248 31.536102 33.754378 37.182087 38.440304 39.862451 41.622228 44.241531	14.972626 -5.658643 24.602877 27.39116 29.027023 30.201834 31.184026 32.067238 34.518672 36.230288 38.234871 42.501959 44.551288 47.181136 50.839164 56.959599		Control	Chi-Sq			ACCOUNT OF A REAL PROPERTY OF A	New York Construction of State Construction	

				A	cute Shrir	np Test-48	hr Survival					
Start Date:	3/1/2008 13:0	00	Test ID:	1AvNs		and the second se	Sample ID:		NH3NO2			
End Date:	3/3/2008 13:0		Lab ID:	CATML-Telonio	cher Marin		Sample Typ	e:	NH3NO2			
Sample Dat			Protocol:	ASTM94-ASTM			Test Specie		LV-Litopena	eus vanname	ei	
Comments:					. ,							
Conc-mg/L	. 1	2	3									
18 D-Control	1.0000	0.8750	1.0000									
29.56	0.5000	0.3750	0.2500									
35.87	0.1250	0.0000	0.2500									
40.1	0.0000	0.0000	0.1250									
43.73	0.0000	0.0000	0.0000									
54.98	0.0000	0.0000	0.0000									
				Transform: /	Arcsin Squ	Jare Root			1-Tailed		Number	Total
Conc-mg/L	. Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
18 D-Control	0.9583	1.0000	1.3319	1.2094	1.3931	7.961	3				1	24
*29.56	0.3750	0.3913	0.6560	0.5236	0.7854	19.958	3	6.276	2.420	0.2606	15	- 24
*35.87		0.1304	0.3542	0.1777	0.5236	48.854	3	9.079	2.420	0.2606	21	24
*40.1		0.0435	0.2389	0.1777	0.3614	44.379	3	10.149	2.420	0.2606	23	24
43.73		0.0000	0.1777	0.1777	0.1777	0.000	3				24	24
54.98		0.0000	0.1777	0.1777	0.1777	0.000	3				24	24
Auxiliary To							Statistic		Critical		Skew	Kurt
•	k's Test indica						0.9559686		0.805		-0.061091	-1.190493
	est indicates ec					ana 5. K	0.5693772	1100	11.344867	HOF	E D. 1	.55
	Test (1-tail, 0).05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's T			<29.56	29.56			0.1/34414	0.1837321	0.7213504	0.017394	3.2E-05	3, 8
Treatments	vs .248 D-Cor				Maximur	n Likelihoo	d-Probit					
Parameter	Value	SE	95% Fiducia	al Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	11.851343			17.949151		0.0416667	0.461398	9.4877291	0.98	1.4509388	0.0843786	4
Intercept	-12.19557		-21.51311	-2.878036								
TSCR .	0.0418119	0.0288892	-0.014811	0.0984347								
Point	Probits	mg/L	95% Fiducia	al Limits								
EC01	2.674	17.974001	9.1705304	22.422353								
EC05	3.355	20.518628	12.020933	24.521863								
EC10	3.718	22.019287	13.879723	25.733309								
EC15	3.964	23.093299	15.288726	26.592824								
EC20	4.158	23.98413	16.505575	27.303492								
EC25	4.326		17.622077									
EC40	4.747		20.749266									
EC50	5.000		22.849658	30.770699								
EC60.			25.096558	32.029557								
EC75			28.971386	34.662198								
EC80			30.435474									
EC85			31.994388	38.003587								
EC90			33.708989	41.059337								
EC95		38.880271	35.910881	46.699948								
EC99	7.326	44.384657	39.70374	60.55181								


Test ID: 1AvNs Sample ID: NH3NO2 Sample Type: NH3NO2 Method: Dunnett's Test

Test ID: 1AvNs Sample ID: NH3NO2 Sample Type: NH3NO2 Method: Maximum Likelihood-Probit


Me

					Acute Shrim	n Test-48	ar Survival					
Start Date:	3/3/2008 17:0	0	Test ID:	1AsNv			Sample ID:		NH3NO2			
	3/5/2008 17:0		Lab ID:	CATML-Telor	nicher Marine		Sample Typ		NH3NO2			
Sample Dat			Protocol:	ASTM94-AST			Test Specie			eus vanname	ei	
Comments:			1.10100001									
Conc-mg/L	1	2	3									
.0 D-Control	1.0000	1.0000	1.0000									
127.4	1.0000	1.0000	1.0000									
146.8	0.8750	1.0000	0.8750									
155.2	0.8750	0.8750	0.7500									
162.8	0.7500	0.6250	0.8750									
183.2	0.5000	0.6250	0.6250									
100.2	0.0000	0.0200	0.0200									
				Transform:	Arcsin Squa	re Root			1-Tailed		Number	Total
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
.0 D-Control	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3				0	24
127.4	1.0000	1.0000	1.3931	1.3931	1.3931	0.000	3	0.000	2.500	0.1817	0	24
146.8	0.9167	0.9167	1.2706	1.2094	1.3931	8.345	3	1.684	2.500	0.1817	2	24
*155.2	0.8333	0.8333	1.1554	1.0472	1.2094	8.107	3	3.271	2.500	0.1817	4	24
*162.8	0.7500	0.7500	1.0561	0.9117	1.2094	14.113	3	4.636	2.500	0.1817	6	24
*183.2	0.5833	0.5833	0.8696	0.7854	0.9117	8.388	3	7.201	2.500	0.1817	10	24
Auxiliary Te							Statistic		Critical		Skew	Kurt
•	d's Test indica			p > 0.01)			0.9567849		0.858		0.0905005	0.2721209
Equality of y	ariance canno	the confirm										
terre in the second				-						4.2.0.00		
Hypothesis	Test (1-tail, 0		NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Hypothesis Dunnett's Te	Test (1-tail, 0 est	1.05)			ChV 150.94158	TU	MSDu 0.0924715	MSD p 0.0954545		MSE 0.0079253	F-Prob 6.1E-05	df 5, 12
Hypothesis Dunnett's Te	Test (1-tail, 0	1.05)	NOEC		150.94158		0.0924715	and the second			and the second se	and a local data and a
Hypothesis Dunnett's Te Treatments	Test (1-tail, 0 est vs 0.0 D-Contr	rol	NOEC 146.8	155.2	150.94158 Maximum	Likelihoo	0.0924715 d -Probit	0.0954545	0.1264531	0.0079253	6.1E-05	5, 12
Hypothesis Dunnett's Te Treatments Parameter	Test (1-tail, 0 est vs 0.0 D-Conti Value	rol SE	NOEC 146.8 95% Fiducia	155.2	150.94158 Maximum	Likelihoo Control	0.0924715 d-Probit Chi-Sq	0.0954545 Critical	0.1264531 P-value	0.0079253 Mu	6.1E-05 Sigma	5, 12 Iter
Hypothesis Dunnett's Te Treatments Parameter Slope	Test (1-tail, 0 est vs 0.0 D-Conti Value 13.155528	1.05) rol SE 3.4329235	NOEC 146.8 95% Fiducia 6.4269978	155.2 al Limits 19.884058	150.94158 Maximum	Likelihoo	0.0924715 d -Probit	0.0954545 Critical	0.1264531	0.0079253	6.1E-05	5, 12
Hypothesis Dunnett's Te Treatments Parameter Slope Intercept	Test (1-tail, 0 est vs 0.0 D-Conti Value	1.05) rol SE 3.4329235	NOEC 146.8 95% Fiducia	155.2	150.94158 Maximum	Likelihoo Control	0.0924715 d-Probit Chi-Sq	0.0954545 Critical	0.1264531 P-value	0.0079253 Mu	6.1E-05 Sigma	5, 12 Iter
Hypothesis Dunnett's Te Treatments Parameter Slope Intercept TSCR	Test (1-tail, 0 est vs 0.0 D-Contr Value 13.155528 -24.88245	1.05) rol SE 3.4329235 7.5936706	NOEC 146.8 95% Fiducia 6.4269978 -39.76605	155.2 al Limits 19.884058 -9.998858	150.94158 Maximum	Likelihoo Control	0.0924715 d-Probit Chi-Sq	0.0954545 Critical	0.1264531 P-value	0.0079253 Mu	6.1E-05 Sigma	5, 12 Iter
Hypothesis Dunnett's Te Treatments of Parameter Slope Intercept TSCR Point	Test (1-tail, 0 est vs 0.0 D-Contr Value 13.155528 -24.88245 Probits	.05) rol 3.4329235 7.5936706 mg/L	NOEC 146.8 95% Fiducia 6.4269978 -39.76605 95% Fiducia	155.2 al Limits 19.884058 -9.998858 al Limits	150.94158 Maximum	Likelihoo Control	0.0924715 d-Probit Chi-Sq	0.0954545 Critical	0.1264531 P-value	0.0079253 Mu	6.1E-05 Sigma	5, 12 Iter
Hypothesis Dunnett's Te Treatments of Parameter Slope Intercept TSCR Point EC01	Test (1-tail, 0 est vs 0.0 D-Contr Value 13.155528 -24.88245 Probits 2.674	.05) rol <u>SE</u> 3.4329235 7.5936706 <u>mg/L</u> 124.34854	NOEC 146.8 95% Fiducia 6.4269978 -39.76605 95% Fiducia 92.969318	155.2 al Limits 19.884058 -9.998858 al Limits 137.42601	150.94158 Maximum	Likelihoo Control	0.0924715 d-Probit Chi-Sq	0.0954545 Critical	0.1264531 P-value	0.0079253 Mu	6.1E-05 Sigma	5, 12 Iter
Hypothesis Dunnett's Te Treatments of Parameter Slope Intercept TSCR Point EC01 EC05	Test (1-tail, 0 est vs 0.0 D-Contr Value 13.155528 -24.88245 Probits 2.674 3.355	rol SE 3.4329235 7.5936706 mg/L 124.34854 140.10176	NOEC 146.8 95% Fiducia 6.4269978 -39.76605 95% Fiducia 92.969318 117.93244	155.2 al Limits 19.884058 -9.998858 al Limits 137.42601 149.65282	150.94158 Maximum	Likelihoo Control	0.0924715 d-Probit Chi-Sq	0.0954545 Critical	0.1264531 P-value	0.0079253 Mu	6.1E-05 Sigma	5, 12 Iter
Hypothesis Dunnett's Te Treatments S Parameter Slope Intercept TSCR Point EC01 EC05 EC10	Test (1-tail, 0 est vs 0.0 D-Contr 13.155528 -24.88245 Probits 2.674 3.355 3.718	.05) rol <u>SE</u> 3.4329235 7.5936706 <u>mg/L</u> 124.34854 140.10176 149.29989	NOEC 146.8 95% Fiducia 6.4269978 -39.76605 92.969318 117.93244 133.1983	155.2 al Limits 19.884058 -9.998858 al Limits 137.42601 149.65282 157.40482	150.94158 Maximum	Likelihoo Control	0.0924715 d-Probit Chi-Sq	0.0954545 Critical	0.1264531 P-value	0.0079253 Mu	6.1E-05 Sigma	5, 12 Iter
Hypothesis Dunnett's Te Treatments V Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15	Test (1-tail, 0 est vs 0.0 D-Contr 13.155528 -24.88245 Probits 2.674 3.355 3.718 3.964	.05) rol <u>SE</u> 3.4329235 7.5936706 <u>mg/L</u> 124.34854 140.10176 149.29989 155.84463	NOEC 146.8 95% Fiducia 6.4269978 -39.76605 92.969318 117.93244 133.1983 143.72418	155.2 al Limits 19.884058 -9.998858 al Limits 137.42601 149.65282 157.40482 163.85249	150.94158 Maximum	Likelihoo Control	0.0924715 d-Probit Chi-Sq	0.0954545 Critical	0.1264531 P-value	0.0079253 Mu	6.1E-05 Sigma	5, 12 Iter
Hypothesis Dunnett's Te Treatments V Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20	Test (1-tail, 0 est vs 0.0 D-Contr 13.155528 -24.88245 Probits 2.674 3.355 3.718 3.964 4.158	.05) rol 3.4329235 7.5936706 mg/L 124.34854 140.10176 149.29989 155.84463 161.25019	NOEC 146.8 95% Fiducia 6.4269978 -39.76605 95% Fiducia 92.969318 117.93244 133.1983 143.72418 151.57203	155.2 al Limits 19.884058 -9.998858 al Limits 137.42601 149.65282 157.40482 163.85249 170.40125	150.94158 Maximum	Likelihoo Control	0.0924715 d-Probit Chi-Sq	0.0954545 Critical	0.1264531 P-value	0.0079253 Mu	6.1E-05 Sigma	5, 12 Iter
Hypothesis Dunnett's Te Treatments V Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25	Test (1-tail, 0 est vs 0.0 D-Contr 13.155528 -24.88245 Probits 2.674 3.355 3.718 3.964 4.158 4.326	.05) rol 3.4329235 7.5936706 mg/L 124.34854 140.10176 149.29989 155.84463 161.25019 166.03686	NOEC 146.8 95% Fiducia 6.4269978 -39.76605 92.969318 117.93244 133.1983 143.72418 151.57203 157.50378	155.2 al Limits 19.884058 -9.998858 al Limits 137.42601 149.65282 157.40482 163.85249 170.40125 177.50507	150.94158 Maximum	Likelihoo Control	0.0924715 d-Probit Chi-Sq	0.0954545 Critical	0.1264531 P-value	0.0079253 Mu	6.1E-05 Sigma	5, 12 Iter
Hypothesis Dunnett's Te Treatments V Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC20 EC25 EC40	Test (1-tail, 0 est vs 0.0 D-Contr 13.155528 -24.88245 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747	.05) rol 3.4329235 7.5936706 mg/L 124.34854 140.10176 149.29989 155.84463 161.25019 166.03686 178.73808	NOEC 146.8 95% Fiducia 6.4269978 -39.76605 92.969318 117.93244 133.1983 143.72418 151.57203 157.50378 169.35291	155.2 al Limits 19.884058 -9.998858 al Limits 137.42601 149.65282 157.40482 163.85249 170.40125 177.50507 201.56545	150.94158 Maximum	Likelihoo Control	0.0924715 d-Probit Chi-Sq	0.0954545 Critical	0.1264531 P-value	0.0079253 Mu	6.1E-05 Sigma	5, 12 Iter
Hypothesis Dunnett's Te Treatments V Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC20 EC25 EC40 EC50	Test (1-tail, 0 est vs 0.0 D-Contr 13.155528 -24.88245 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000	.05) rol 3.4329235 7.5936706 mg/L 124.34854 140.10176 149.29989 155.84463 161.25019 166.03686 178.73808 186.84219	NOEC 146.8 95% Fiducia 6.4269978 -39.76605 92.969318 117.93244 133.1983 143.72418 151.57203 157.50378 169.35291 175.43826	155.2 al Limits 19.884058 -9.998858 al Limits 137.42601 149.65282 157.40482 157.40482 163.85249 170.40125 177.50507 201.56545 219.40417	150.94158 Maximum	Likelihoo Control	0.0924715 d-Probit Chi-Sq	0.0954545 Critical	0.1264531 P-value	0.0079253 Mu	6.1E-05 Sigma	5, 12 Iter
Hypothesis Dunnett's Te Treatments V Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC50 EC50 EC60	Test (1-tail, 0 est vs 0.0 D-Contr 13.155528 -24.88245 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253	.05) rol 3.4329235 7.5936706 mg/L 124.34854 140.10176 149.29989 155.84463 161.25019 166.03686 178.73808 186.84219 195.31374	NOEC 146.8 95% Fiducia 6.4269978 -39.76605 92.969318 117.93244 133.1983 143.72418 151.57203 157.50378 169.35291 175.43826 181.30637	155.2 al Limits 19.884058 -9.998858 al Limits 137.42601 149.65282 157.40482 163.85249 170.40125 177.50507 201.56545 219.40417 239.39581	150.94158 Maximum	Likelihoo Control	0.0924715 d-Probit Chi-Sq	0.0954545 Critical	0.1264531 P-value	0.0079253 Mu	6.1E-05 Sigma	5, 12 Iter
Hypothesis Dunnett's Te Treatments V Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC25 EC40 EC50 EC50 EC60 EC75	Test (1-tail, 0 est vs 0.0 D-Contr 13.155528 -24.88245 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674		NOEC 146.8 95% Fiducia 6.4269978 -39.76605 92.969318 117.93244 133.1983 143.72418 151.57203 157.50378 169.35291 175.43826 181.30637 191.02766	155.2 al Limits 19.884058 -9.998858 al Limits 137.42601 149.65282 157.40482 163.85249 170.40125 177.50507 201.56545 219.40417 239.39581 277.42166	150.94158 Maximum	Likelihoo Control	0.0924715 d-Probit Chi-Sq	0.0954545 Critical	0.1264531 P-value	0.0079253 Mu	6.1E-05 Sigma	5, 12 Iter
Hypothesis Dunnett's Te Treatments V Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC50 EC50 EC60 EC75 EC80	Test (1-tail, 0 est vs 0.0 D-Contr 13.155528 -24.88245 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842		NOEC 146.8 95% Fiducia 6.4269978 -39.76605 92.969318 117.93244 133.1983 143.72418 151.57203 157.50378 169.35291 175.43826 181.30637 191.02766 194.9388	155.2 al Limits 19.884058 -9.998858 al Limits 137.42601 149.65282 157.40482 163.85249 170.40125 177.50507 201.56545 219.40417 239.39581 277.42166 294.27153	150.94158 Maximum	Likelihoo Control	0.0924715 d-Probit Chi-Sq	0.0954545 Critical	0.1264531 P-value	0.0079253 Mu	6.1E-05 Sigma	5, 12 Iter
Hypothesis Dunnett's Te Treatments S Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC50 EC60 EC50 EC60 EC75 EC80 EC85	Test (1-tail, 0 est vs 0.0 D-Contr 13.155528 -24.88245 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036	no5) rol <u>SE</u> 3.4329235 7.5936706 <u>mg/L</u> 124.34854 140.10176 149.29989 155.84463 161.25019 166.03686 178.73808 186.84219 195.31374 210.25454 210.25454 216.49589 224.00518	NOEC 146.8 95% Fiducia 6.4269978 -39.76605 92.969318 117.93244 133.1983 143.72418 151.57203 157.50378 169.35291 175.43826 181.30637 191.02766 194.9388 199.55902	155.2 al Limits 19.884058 -9.998858 al Limits 137.42601 149.65282 157.40482 163.85249 170.40125 177.50507 201.56545 219.40417 239.39581 277.42166 294.27153 315.27107	150.94158 Maximum	Likelihoo Control	0.0924715 d-Probit Chi-Sq	0.0954545 Critical	0.1264531 P-value	0.0079253 Mu	6.1E-05 Sigma	5, 12 Iter
Hypothesis Dunnett's Te Treatments S Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC25 EC40 EC50 EC50 EC50 EC50 EC60 EC75 EC80 EC85 EC90	Test (1-tail, 0 est vs 0.0 D-Contr 13.155528 -24.88245 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036 6.282	.05) rol SE 3.4329235 7.5936706 mg/L 124.34854 140.10176 149.29989 155.84463 161.25019 166.03686 178.73808 186.84219 195.31374 210.25454 210.2557 210.2557 210.2557 210.2557 210.2557 210.2557 210.2557 210.2557 210.2557 210.2557 210.2557 210.2557 210.2557 210.2557 210.25577 210.25577 210.25577 210.255777 210.255777 210.25577777777777777777777777777777777777	NOEC 146.8 95% Fiducia 6.4269978 -39.76605 92.969318 117.93244 133.1983 143.72418 151.57203 157.50378 169.35291 175.43826 181.30637 191.02766 194.9388 199.55902 205.48269	155.2 al Limits 19.884058 -9.998858 al Limits 137.42601 149.65282 157.40482 163.85249 170.40125 177.50507 201.56545 219.40417 239.39581 277.42166 294.27153 315.27107 343.91126	150.94158 Maximum	Likelihoo Control	0.0924715 d-Probit Chi-Sq	0.0954545 Critical	0.1264531 P-value	0.0079253 Mu	6.1E-05 Sigma	5, 12 Iter
Hypothesis Dunnett's Te Treatments S Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC50 EC60 EC75 EC80 EC85	Test (1-tail, 0 est vs 0.0 D-Contr 13.155528 -24.88245 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036 6.282 6.645	.05) rol SE 3.4329235 7.5936706 mg/L 124.34854 140.10176 149.29989 155.84463 161.25019 166.03686 178.73808 186.84219 195.31374 210.25454 210.25454 210.25454 210.25454 210.49589 224.00518 233.82469 249.17605	NOEC 146.8 95% Fiducia 6.4269978 -39.76605 92.969318 117.93244 133.1983 143.72418 151.57203 157.50378 169.35291 175.43826 181.30637 191.02766 194.9388 199.55902	155.2 al Limits 19.884058 -9.998858 137.42601 149.65282 157.40482 163.85249 170.40125 177.50507 201.56545 219.40417 239.39581 277.42166 294.27153 315.27107 343.91126 391.33694	150.94158 Maximum	Likelihoo Control	0.0924715 d-Probit Chi-Sq	0.0954545 Critical	0.1264531 P-value	0.0079253 Mu	6.1E-05 Sigma	5, 12 Iter

to at the

Test ID: 1AsNv Sample ID: NH3NO2 Sample Type: NH3NO2 Method: Dunnett's Test

Test ID: 1AsNv Sample ID: NH3NO2 Sample Type: NH3NO2 Method: Maximum Likelihood-Probit Appendix C:

Instant Ocean Composition

	Instant Ocean	Seawater
lon	(ppm)	(ppm)
Chlorida	10.000	10.252
Chloride	19,290	19,353
Sodium	10,780	10,781
Sulfate	2,660	2,712
Magnesium	1,320	1,284
Potassium	420	399
Calcium	400	412
Carbonate/bicarbonate	200	126
Bromide	56	67
Strontium	8.8	7.9
Boron	5.6	4.5
Fluoride	1	1.28
Lithium	0.3	0.173
lodide	0.24	0.06
Barium	less than 0.04	0.014
Iron	less than 0.04	less than 0.00 [°]
Manganese	less than 0.025	less than 0.007
Chromium	less than 0.015	less than 0.007
Cobalt	less than 0.015	less than 0.007
Copper	less than 0.015	less than 0.007
Nickel	less than 0.015	less than 0.00 ²
Selenium	less than 0.015	less than 0.00 ²
Vanadium	less than 0.015	less than 0.002
Zinc	less than 0.015	less than 0.00 [°]
Molybdenum	less than 0.01	0.01
Aluminum	less than 0.006	less than 0.00 [°]
Lead	less than 0.005	less than 0.00 ⁷
Arsenic	less than 0.004	0.002
Cadmium	less than 0.002	less than 0.00 ⁷
Nitrate	None	1.8
Phosphate	None	0.2

Provided by Instant Ocean