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ABSTRACT

This paper describes a new method to be wused in the
recognition of three-dimensional objects with curved
surfaces from two-dimensional perspective views. The method
requires for each three-dimensinal object a stored model
consisting of a closed space curve representing some
characteristic connected curved edges of the object. The
input is a two-dimensional perspective projection of one of
the stored models represented by an ordered sequence of
points, The input is converted to a spline representation
which is sampled at equal intervals to derive a curvature
function. The Fourier transform of the curvature function
is used to represent the shape. The actual matching is
reduced te a minimization problem which is handled by the
Levenberg-Marquardt algorithm [3].

index terms: scene analysis, three-dimemsional objects,
space curves, perspective projections, spline fitting,
Fourier tranform, minimization



I. Introduction

Recognizing three-dimensional objects frbm two-
- dimensional perspective projections is an important current
problem in scene analysis. The épproaches to this problem
éan be divided into two major categories: 1) determine a
pumber of'charactefistic views of the object aﬁd match the
twb-dimensional perspective proﬁection against a database of'
two~dimensiona1 views, and 2). match the two—dimensional
perspective prbjection directly against a database of three-
dimensional models. We are cﬁncerned only with approach 2).
The method of matching depends on the representation of the
three-dimensional model. The work on three—dimensional'
mbdeling has been extensive and has recently been reported
at the Workshop én' Representation of Three-Dimensional
Objects sponsofed by the National Science Foundation {23];

Some of the major representations include surface

representations (points, polygons, or surface patches} and

volume,représentations (polyhedra, ellipsoids, generalized

cylinders, spheres). For a thorough survey of these

representations, see Badler and Bajcsy [21.

After standard segmentation procedures are applied to an
imége, the result is a partition of the image into regions
of nearly uniform gray-level. Although in very simple

images these regions may each correspond to an object, it is
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éafer to assume that several adjacent regions together
correspond to a single object. 1If certain assumptions about
the structure of the three-dimensional objects are made, it
is possible to label the edges between pairs of regions as
interior edges or boundary edges and thus to deterﬁine
possible boundaries of objects. See Huffman ([13], Clowes
[5], Waltz [(22], and more recently Xanade [14,15], ~among

others.

In this paper, we will assumé that werare giVen the
ekterior boundary and some interior edges of the two-
dimensional perspective projection of a three-dimensional
object. We will further assume that we have a database of
three-dimensional object models, and that this database
contéins_ a model of each object that may appear in the
scene. While our matchihg techniques are independent of
sige, position, and view, the three-dimensional models are
exact in that a'chair.withodt arms will not match a model of
an armchair. In particular, these models each consist of a
set of space curves repfeéenting important characteristic
edges of the three-dimensional object., Figure 1 illustrates
some of these characteristic edges for a group of chair
modelé- - Note that- although shown in 2D, these

characteristic edges are three~dimensional curves.




Figure 1 - Five chairs.
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The problem we tackle in this paper is: given a set of

n space curves represénting characteristic edges of n thrée-
dimensional objects, and given a two-dimensional curve which
is part of the perséective projection of one o% the n
objects, determine which object is most 1likely to have
produced thé two-dimensional curve. The technique developed
here is intended to be used as part of an integrated scene
analysis system and not as a stand alone technique. We
propose that this algorithm be used when the number of
possible threé~diménsiona1 models has already been feduced
to a smali set by gross matching techniques and it is now

desired to perform higher resolution matching in order to

determine the exact object in the scene.

II. Related Literature

Qur approach to the prdblem, which is given in Sections
111, Iv, V, and VI uses several well-knqwn__mathematical

techniques. " First, we will approximate the two-dimensional

curves (initially given as ordered sets of points) by

periodic cubic splines. For a comprehensive treatment of

splines, see deBoor [71. Second, in thé process of finding

the best three-dimensional curve for a given two-dimensional

curve, we will require a rotation-invariant technique for

comparing two two-dimensional curves. We have chosen to use

S
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the Fourier domain for this compafison and will dicuss a
number of related papers in this section. Finally, we have
" reduced the matching problem to a minimization problem and
will be using a relatively new teéchnique, the Levenberg-

Marquardt algorithm [3], to achieve the minimization.

One of the early and successul attempts to use Fourier
descripfors'in matching plane closed curves is the work of
zahn and Roskies [24]. They represent a curve by a function
0 that gives cumulative change in direction.as.a function of
arc length. The curve is described by the coefficients of
the polar Fourier serles expansion of ¢, which limits the
applicability of this method since 0® is periodic only for

simple closed curves. The Fourier expansion is given by

@ _
O*(t) = uy + Z A, cos(kt-ay)
k=1
where the pairs (Ak,a#) are used to describe the curve.
Features constructed from the first few pairs of
coefficients can then be used in recognition algorithms.
Granlund [10] also uses features constructed from (a
different set of) Fourier descriptors to characterize two-
dimensional curves for hand-printed character recognition.
_Carl and Hall {4] use 1ow-pass-filtered Foﬁrier or Walsh-
séectral_ components to describe alphabet data in their

character recognition experiments.

hl
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Persoon and Fu [18] also look at the problem of using
Fourier descriptors to represent two—dimensional boundary

curves. They propose the distance measure

%

M
2

d(a,8) = |} la -b_1
n=-M
n#0
where o and B are two planar curves, {an} are the complex
Fourier descriptors of o to be used and {bn} are the complex
Fourier descriptors of B8 to be used. If B is the curve in
the training set and « the unknown curve, then in matching,

values of the scale factor s, rotation angle §, and starting

point A must be determined so that

4 . A 2
Ian—selsn. +g)bn]

n=-M

n#0
is minimized. Persoon and Fu reduce this problem to that of
numerically finding the roots of a periodic function.' The

nethod was tested on characters and on top views of machine

parts.

Richard and Hemami [19] discuss a method'fo: identifying
three-dimensional objects  (aircraft) using  Fourier
- descriptors of their silhouettes. Like Perscon and Fu, they

use a complex parametric representation of the two-
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dimensignal curves; expana it to a Pourier series with
complex coefficients, and define a distance measure based on
the Fourier coefficients. Solid objects are represented by
wire frame models. FOr a discrete set of orientations and
positions in space, each model is projected ontd the image
plaﬁe, the boundary points traced, and 39 lbw-order Fourier
coefficients stored for each view. The views are then
matched against an unknown silhouette. In a related paper
(Hemami, Weimer, and Advani [111), a sequential matching
algorithm for identifying silhouettes of three-dimensional
objects is described. The algorithm tries to determine the
best vector .Prof six tfanslation and rotation parameters
tha£ produced a given view from a three-dimensional object.
An initial guess of P starts the process. Then partial
derivatives of an error function E with respect to each of
the six parameters are computed. The parameters are
iteratively changed to reduce E. Uniform random search is
uéed to rule out ‘1ocal minima ahd to generate initial
values. The authors comment that the method works well, but
requires substantive computation.

Pattern recognition of shapes'using moments is another

area related to our work. Hu [12] and alt [11 have

presented methods for recognitioh of two-dimensional shapes
using moment invariants. sadjadi and Hall [20] have

extended the work to three dimensions. They have developed



PAGE 7
a set of phree—dimensional moment invariants which are
invariant under size, -orieﬁtation, " and position change.
They experimentally verified ﬁhat these were true invariants
using séveral solid objects: a réctangular solid, a
cylinder, and a pyramid. For each object, a discrete set of
three—-dimensional coordiﬁates was obtained for a small
number of different positions (nine positions for the
réctangular solid and four positions.for the others). In
each case, the values éomputed for the three-dimensional
invariants were close ©o constant for a gi&en object. They
did not give any algorithms for actually recognizing the

three-dimensional objects, given two-dimensional views.

We would also like to refer the reader to the work of
pirilten and Newman [4] on pattern matching under affine
transformations by developing a set of invariants under the
group of orthogonal transformations, and to the recent work
of Freeman ([9] ﬁsing incremental curyature for describing

two-dimensional shapes.

II1I. Two—Dimensional (closed) Curve Matching

Conceptually, we are given a smooth closed planar curve
v which is a perspective projection of one of the given

3-dimensional space curves. In practice; only a finite set

— e

im it g R
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of points {(Xi,Yi)} N on ¥ 1is given. The number and =
placement of these polnts obviously depend on the fineness {
of the discrimination required to distinguish between the
qiveh space curves. Assume that the ‘points (Xi'Yi) used
censtitute an adequate representation‘of the smooth closed

‘planar curve Y, and that¥ is C2.

Let (XO,YO) = (XN’YN)’ Sg = 0, and

= - 2 : ) _
sk B i;O [(Xi'l‘l_xi) + (Yi+l—Yi)] r k- - 1;2;...,3}].

Let o(t)« {t) be the unique periodic cubic splines

interpolating the given data points, i.e.

a(s;) = Xir t(s;) = Y., i=0,l,..0/N
periodic cubic splines are C2 periodic piecewise cubic
‘polynomials, uniquely determined by the above interpolation
conditions, and are efficiently and accurately calculated as

a linear combination of B-splines [71. The parametric

equations
X = o(t), vy = t(t), 0 &€ LSy | (3.1)

define a smooth closed curve T in the plane, intended as 2

sufficiently good approximation to Y. (This spline curve
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approaches Y as max(s;, ,-S;) --> 0.) The curvature of T is
1
given by
do _do [ds _g'1" = T'o"
(8 = 22 " ac Iﬂ—:= (3.2)
ds dt | dt (0,2 + 1'2)3/2

where & is the tangent angle and s is arc length (note that

the variable t is not arc length aloﬁg T, but approaches the

arc length as N --> =), Note that the normalized curvature
function

Sx .
p(g) = 'ggf?(sNE/Zﬂ)

1) continuous and 2n-periodic;
2) invariant under rotation of T;
3) invariant under translation of T;

4} invariant under dilation of T.

Now consider two closed (spline) curves T and A in the
plane, with hprmalized curvature functions (&) and V(&)
respectively. If A is a rotation, translation, and dilation

of T;,then

We) = xelaxe) | | (3.3)
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for some a, 0 < a % 2 7. (The minus sign occurs if T and 4
have opposite orientation. For other than closed Jordan
curves, the-orientation is nontrivial to determine.} Let

¢ ¢, denote the (complex) Fourier coefficients of ¢, ¥,

nf
respectively. If (3.3) holds with the plus sign, then

27 A
1 - - L . - -
e, = _5;£”M5)e intge= 74 !‘M5+a)e it se =
27
ina L ® -inu _ ina
e 27 (u)e du = &’ T 7 (3.4)
-0

If (3.3 ) holds with the minus sign, then

o—ina - -linag (3.5)

chus if T and A& are really the same curve, the Fourier,

coefficients of their normélized curvature functions are
simply related by (3.4) or (3.5). This jeads naturally to

the distance measure

W(T,4) = mm{mf Z |z ~e’ ina, 42,

n
n=—®
gt ;_m‘en‘e—inaaniz} | (3.6)

for any two smooth closed planar curves T and ‘A, where c_,
e, are the Fourier coefficients of the curvature functions
¢y Wrof T', A, respectively- Note that wo(T ,A) = 0 if and only

1f Ais a rotation, translatlon, and dilation of ['. w is a

pseudoﬂmetric (a metrlc except that w{ T, A) = 0 does not

1
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imply T=2) on the set of c2 closed curves in the plane,
and a metric on equivalence classés of curves (where tﬁo
curves are equivalent if oné is a translation, rotation, and

dilation of the other) .

In practice the Fourier coefficients ¢ are approximated

by a discrete Fourier transform, and w(T.,r) is calculated as
a(nn = nin{minll (@)=} 11%,
a
. -ina= 2
mginli(ﬁn)—(e Cn)ll }a (3.7)

where (xn) denotes a vector with nth component L The one-—
diménsional' minimizations .with respect to a pose' no
theoreticai difficulties,  but are very expensive
computationally; Appendix 1 "putlines an altefnative to
(3.7) which is much more efficient computationaliy, but less

mathematically rigorous and elegant than (3.7).

1v. Two-Dimensional (open) Curve Matching

The main difficulty in matching closed curves is
obtaining a functional representation of the curve which

does not depend on a "starting point". This difficulty

P T
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disappears if the curve has end points, because the end.

points constitute the only logical choices for the "starting
point”. I1f the 3-dimensional space curve has end points,
then with probability one & z-dimensionalrperspective view

of it also has end points. In other words, perspective

projections preserve end points, which can therefore be used

as uniquely determined sgtarting points® in a fgnctionai
representation.of the curve. The phrase “probability‘one "
- means that the set of open space curves whose perspective
projections are closéd planar curves is nowhere dense in the
set of all open space curves. Equivalently, with

probability zero an open curve will‘ broject to a closed

Curve.

For the case of open curves, the entire discussion in
gection 3 applies with the _following exceptions: the
inﬁerpolating cubic splines alt)y, tt) in (3.1) are not
périodic.- The end conditions recommended by deBoor [?7] are
used. The curvature function ¢(€) ig not periodic. ﬂ3.3)

is replaced by
p(g) = ¢(€) or - (2m-E) . ' ‘ {4.1)
(3.4) is replaced by

®_ = C_. _ (4.2)

R )
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(3.5)lis replaced by
& = c¢_. (473)
§3.7) is replaced by
atr,0) = min{11(2) = (e 115 4 113y - @) 1171 (4.4)
which is trivial cbmpared to (3.7).

V. Generating Projections of Rigid Motions

The space cﬁrves, one of which produced the given
2-dimensional' perspective fview, are specified in some
standard position. ‘The most difficult part of identifying
the space curve is that the given 2—dimensidnal cufve is a
perspgctive view‘of rhe space curve, rotated and translated
from its (known) standard position. If the rotations ang
translations were known, identification would simply consist
of computing perspective projections of all the space curves
and then doing‘zﬂdimensional curve matching. Computing the
unknown rotations and translations is discussed in Section
6, but first an arbitrary rigid motion must be

characterized.

S et e
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A rigid movement in 3-dimensional space {€inite
composition of translations and rotations) is given by

Rx + g : (5.1)

where R is a 3 x 3 orthogdnal matrix (preoducing a single

rotation about some axis) and ¢q 1s a 3-yector (producing a .

single translation). This fact follows £from the classical

geometry of rigid symmetries [6 ]. Let

1 0 0 cos8 - 0O sink
A= 0 CoSo ~sino ' B = 0 1 0 '
-Q sina cos -ging O cosB
cosv -—-sinv 0 .
Cc =[ sinv cosv g .
0 0 1
Then
R =8 acatst | (5.2)

where BA 1is the transition matrix from an Orthonormal basis
¢y ¢2, ¢3 to the standard basils e;., €45/ ey and C 1is a

rotation around the axis direction ¢3.

Note that a rigid motion- (5.1) is completely determined

by six parameters -— & g, v and the vector d.

S ——
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Asshme that the space curve (in some convenient standard

positign) is given by (the vector)

vz} _0 <z £ Z. - (5.3)
A rigid motion then produces the s?acé curve

9(z) = Rv(g) + Qs 0 < ¢ < 2. | ' (5.4)

‘Take‘ the origin as the,rcenter of pefspectivity (focal
point), ahd project ¥(%) onto the plane z = 1. This
produces the planar curve ¥, which 1is perspective with
{corresponds to) the  space. curve: ¥(Z ). vy is given
parametricaily by

x = 9,(2)/95(0) ¥ = () /V3(0), O < ¢ < Z.

Approximating Y by a cubic interpolatory spline curve
leads to the normalizéd curVaturé function $ (&), 0 < &€ £ 2w,
Mote that ¢ (&) is co@pletely, determined by the parameters
a, B, v, and q.bf'(S.l)_and-kS.Z): @, By Vr 9 determine the
rigid movement ¥ in (5.4), ¢ detefmines its 7perspective
projection Y, which determines‘thé spline curve T (given by-.
(3.1)) with normalizéd cﬁrvature fﬁnctiqn $(g) -{given by

(3.2)) .



. PAGE 16
It is now clear how curvature functions corresponding to
perspective projectiens of arbitrary rigid motions of the

given space curves can be generated.

Vvi. Nonlinear Least Squares Optimization

i

Let v(l)(g),...,v(m)(a) be the given space curves,

ol
"
A< R

be the parameters in (5.1) and (5.2), and

olg; P, K)
be the normalized curvature function representing thé spline
approximation.r(t;p,k) to the perspective projection of the
rigid movement of v(k)(g)_specified by p. Let ¥(g) be the
cngature function, of the spline curve A approximating the
given Zﬂdimensibnai'perspective view 6. The problem then is
to find a Qectbr P aﬁd index k which minimizé

a(T(t;pok) 8) — e (6.1)
defined in (3.7). p may pqt;be unique since dilations and
rotétions of T may correspond‘to translatiohs and'roéations'
of wlk), and QU T 4 8) 'is computed moduio dilation and
rotétion. Also k may not be'uniqug,since several v(ky may

produce the same view A. The point is to find some p and k
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(k)

. which minimize @(T,A), because then & is identified as ¥

(assuming enough data points have been used to discriminate

(l)) '

between the ¥V
Thus the overall problem 1is

min min Q(F(tipsk),A)
k P

Mo . M .
. . . . _ Jina, 2 . _ .—inag 20 -
mlzén min | min4 nin Z g - e Cc 1%, min y lg,-e e, | } =
P : B n=0 . n=0 ,

ina_ ,2 . —ina= ,2 |
m1n min {:ﬁ E: !C - e cnl , min z: Ién - e cnI . (6.2)

a,p

The two-outer minimizations are discrete and trlvxal. The
inner minimizations

min Z & - emac'nzz; (6.3)

min £(a,p)}

0

min g({a,p) min E: l‘an - e-inéanlz , (6.4)
are highly nonllnear and very dlfflcult (6.3-4) are solved .
by the follow1nq iterative algorlthm. _ |
1) Choose starting values a(o) p(O)'for the sca1ar a
and vector p. | |
2) For k =-0,l,2;... until convergence do:
3) With p{¥) fixed, £find the globél minimum of
f(a,p(k)) and g(a, p( )) with respect to a, 0 X
a < 27. Let al®*1) pe the point correspondlngh

to the smaller of these two minima.
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{k+1) (k+l)

4) With a = a
(k+1)
r

fixed, minimize f(a , P} and

5(a (k+1) o

p) with respect to p. Let p
the point corresponding to the smaller of these

two minima.

Step 3) is done by a 51mpIe one-dimensional search (as in
[ 9]),f and 4) is done by the Levenberg Marquardt algorithm
[3] developed at Argonne Natlonal Laboratory [171]. Note
that (6.3) and (6.4} are in terms of the 2-norm in M— .
dimensional complex space. Since ali norms are eguivalent
{induced topologies are 1dent1cal) in finite dimensional

spaces, the 2-norm can be replaced by the 4-norm, yleldlng

£(a,p) tnag |4 | - (6.5)

i
=
i
A=
o
=
'
®
a
3

f
i~l=
™
I
(1]

i
[
1
jof]
_;h-

g(a,p} = (6.6)

Thls is necessary because of technlcal requirements 1in the
Levenberg~Marquardt algorlthm. (See appendix 1 for an
alternative to 6.5-6.6.)

VII. Computational Results

The data base of three- dlmen51onal curves con51sted of a

characteristic edge curve from each of the ‘five chairs in
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Figure 1. These chairs were motivated by the collection of
chairs illustrated in [16]. Spline fits to two-dimensional
perspective views of these five space curves are shown in
Figures 2-6. The experiment was to take each space curve,
move it from its standard position, compute its perspective
projection, and then match  this ﬁwo—dimensional curve -
against all five glven space curves. On each trial, a
starting point. was chosen at random, and ifr the program
reported a successful match, the process terminated. If the
program reported failure due_to converging to a local
minimum, a new starting point was randomly chosen, and the
proéess Qas repeated. This was done 50 times for each
chair. The computer code used for the minimization was
subroutine LMfol from Argonne National Laboratory [17], and

the spline codes are from deBoor (71.

The results of our experiments are shown in Table 1.
The first number in row i, column j of Table 1 indicates the
number of times that a perspective projection of <chair i
successfully matched the three-dimensional model of chair j.
The second number (in parentheses) in row i, column j gives
the number of times that, for some starting point, the
minimization routine failed when trying to match a view of
chair i to the model of chair j. As shown in the table, all
the views of chairs 1 and 4 successfully matched chairs 1

and 4, respectively. Forty-eight out of fifty of the views



Figure 2 - Spline fit of characteristic
edges of chair 1.
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Figure 3 ~ Spline fit of characteristic
edges of chair 2.
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Figure 4 - Spline fit of characteristic
edges of chair 3.

} 1
34




%ﬁi

edges of chair 4.

Figure 5 - Spline fit of characteristic

iy




Figure 6 - Spline fit of characteristic
edges of chair 5.
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of chairs 2 and 5 successfully matched 2 and 5,
respectively. However, only seventeen views of chair 3
successfully matched chair 3, and fifteen views of chair 3
were identified as chair 5. We believe these errors are due
to the program converging to a local minimum, but not

recognizing the fact.

Most recognition experiments of this type have been run
using very dissimilar objects. We purposely chose. to use
five very similar objects-in our experiments. For instance,
in chairs 1 and 2, the only difference is the height-of the
back and the curvature of tﬁe sides of the Dback. Under
these circumstances, we feei that the program has done very
well, . While not a solution to all object recognition
problems, our.method should be useful in applications where
distinguising between shapes on the bésis of curvature is

required. We expect, in future work, to tackle the local

minima problem in more depth.
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Matches Chair

2D Curve |

From Chair I it ! 2 I 3 [ 4 | 5 !
I | ! | | !

I ! I ‘ I I |

1 | 50 (12) | 0 (4) | O (5) | 0(3) | 0(8) |

[ | I | I !

| | | f [ |

2 i G (2) I 48 (7) i 1 (0) 1 1 {0) E 0 (3) {

| [ I l I f

3 { 7 {0) : 3 {2) i 17 (2) I 8 (1) ; 15 (9) %

| I ! I I I

4 f 0 (0) E o (10) | 0 {0) | 50 (0) i 0 (10) ;

{ I I I | !

5 I 1 ¢(3) | 1)y | o) | o {1y | 48 (0) |

Table 1 shows the number of times that a two-dimensional
perspective projection of chair i successfully
matched the three-dimensional model of chair Jj and
(in parentheses) the number of times that, for some
starting point, the minimization routine failed when
trying to match a view of chair i to the model of
chair j.
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Appendix 1.

A necessary condition for the two planar curves and ,
to match is that their power spectra match,
le | = 1& | for all n.

This suggests using the distance measure (which is at best a

pseudo-metric)

M.
- 2 2,2
Q(r,A). = j{: (lﬁnf\ icnl )
n=0
which involves no minimizations at all. Note that q{r,a) =

0 is not a sufficient condition for T and 4 to match.
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