Technical Report €S76002-R

FORMAL DESCRIPTORS FOR HARDWARE SIMULATION
by
J.A.N. Lee and T. C. Brown

' Language Research Laboratory o
Virginia Polytechnic Institute and State University
o Blacksburg, Virginia 24061

1 January 1976

The work reported:herein was sponsored in part by the thiona] Science
Foundation Grant No. DCR74-18108.

PAGE 2

ABSTRACT

This paper reviews the current status of an ongoing effort
to develop a hardware description language which would be
suitable for wuse as both a design toollané a documentor.
Inciuded in the requirements for +this language would be the
necassity for the language to function not only in many
areas, sqch as automated design and veiificaticn, oT testing
and simulationf but also at many levels. Tha£ is, to range
over such applications as circuit design at one end of a
spectrus to the validation of systens configurations at the
other end.

This paper.'views the language requirements from <three
points of view,

i) the subjective (human) elements usually associated
with the'syntactic features of the language,

ii) the minimal semantic elements to be provided and
the sfructures {both program and data) which are
necessary, and |

iii) thé features to Dbe includeﬁ__in arder to
facilitate the formal verificatibn of the conformance
of the descriptor to preselected attributes.

The work described in this paper is based. on continuing
research regarding the nature of fo;mal descriptor
‘téchniques, on their applicability to aﬁtomated theoremn
proving and techniquas for improving -the +teaching of
computer related langmages currently ander way at Virginia

Polytechnic Institute and State University.

PAGE 3

INTRODUCTION

In the fall of 1973, a group of individuals were invited to
participate in a workshop at Rutgers University, on the
topic of computer description languages. This workshop was
spon sored jpiﬁtly by the IEEE Technical Comnittee on
Computer Architecture (TCCA) and the Special Interest Group
on Architecture (SIGARCH) of ACM. W®hilst the workshop
itself discussed many topics inclading languages for the
deseription of Integrated Circuit chips and modulas,
axperiences with using Aardware description langnages and a
comparison of the ‘*“anatomy and physioclogy" of conmputer
description langmages, the major event for which the-
workshop is remembered, is an after hours meeting of the
instigators of most of the well known 'camputer description
languages.

It was at this meeting that it was proposed that an effort
be undartakeﬁ to develép a standard computer description
language which could be used as a means of communication
between designers and which would be susceptible to use as a
design aid. Three distinct uses were identified:

(i) As an aid in describing hardﬁa;e designs formally and
hence as an aid to the more adequate desiqning of systens,

{ii) as a basis for continuing work on the development of
a means for Mautomatically®" verifying the correctness of a
design, and

(iii} as a description for use in fhe simnlation of the
hardware s0 as to test its characterisfics and performance.

In order to achieve this end, an informal organization was

PAGE 4
established named +the Conference on Digital Hardware
Languages (CDHL), an executive board was: named and a
convenor was appointed (J. Lipovski of theuuhiversity of
FPlorida, Gainesville, FL). In the years subsequent %o that
workshop, two other workshops ha ve been held, one in
parmstadt, West Garmany {(1974) and the other in New York in
1975. Additionally, the v"conference" has contipued its
developrental. work under the leadership of Lipovski, by
correspondenée. Much of the work of the group has centered
around estabiishing a base for the development of a new
language. In the maire this has taken the form of attempting
+o reach agreement on two issues: the set of primitives
which should be included in the language {and by implication
the level of the language) and the set of control structures
to be provided.

At the ﬂew York workshop (held in conjunction with the
First Annual International Symposium on Computer Hardvare
Descriptioﬁ iLanguages and their Applications*j the progress
of this vork was reviewed in critical destail so that further
work was entfﬂsted to a group of only five contributors. It
wa s fevealed at this review session that many of ths
dzcisions made by the whole conference in the preavious *WO
years had been comtradictory and further there seemed to he
some resistance to viewing the design process in abstraction
prior to the selection of any syntactic languag2 forms.

This paper is partially the result of this aﬁtempted design

—— i e R G W A A WE A e W S A AR A

* Su, S.Y.H. and D.L. Dietmeyer, 1975 International Symp. On
Computer Hardware Description Langnages and Thair
Applications Proceedings, TEEE Computer Society, New vyork,

L ey el

PAGE 5
experience and partially the result of continuing studies at
YPISSU +to improve the effectiveness of computer related
lanquages for many different purposes including design aids

and learning processes,

PAGE 6
SUSJECTIVE CONSIDERATIONS

The dinjtial considerations for any 1language invariably
center on the gsyntactic forms which shall be used. That is,
on the language forms which the user will utilize. Whilst ye
are mnot in agreement with this sequencing of language
development, we present here some considerations for a
hardware description 1angﬁage wvhich are totally subjective.
In +time it is hoped +that some technigues for evaluating
these measures can be produced,

Already some vwork has been initiated to measurs the effects
of certain language forms* and opinions have been expressed
as to what is suitable for inclusion in languages. From the
point of view of a Descriptor lLanguage, it is nécessary that
a close examination be made of the potential clientele. It
has already been established that Hardware Description

languages have a number of uses; as a design aid ,as a

design verification input and as a m=ans of simulating the
characteristics of the design. Within each of these uses
there may . exist a wide band of user potentials from the
d2sign specialist who requires a languaqe. which is close
enough to his logical thinking processes so as to not be a
distraction, to the occasional user of tha description as a

means of verifying procurement specifications.

Tt is important, at this stage, to Aistinguish between the

criteria for judging the purely syntax related elements of

——— R e e S R WAL ol T AP A M A NSt b ame

* gsee Weinberg, G., The Psychology of Programming, Van
Nostrand Reinhold Co., New York, 1971. and Shneiderman, B.,
and Richard Mayer, Towards a Cognitive Model of Programmer

I - T il K ad

PAGE 7
the lanquage fron .its supplied operatiopal features.
Sterling* reports on a workshop held at Stanley Housax*
which developed the criteria for humaniziﬁq information
systens. This workshop specified five elements as part of
their criteriaz

a) Procedures for dealing with users

b) Procedureé for dealing vwith exceptions

c) Action of the system with respet to infbrmation

d) The problem of privacy

2) Guidelines for system design having a bearing on ethics,

whilst the last three of these criteria are peculiar %o
information systems, the other +two are geueraily applicable
to lanquages for man-machine communication, However, of the
thirteen requirements within these two categories only one
refers to the language forms:

"The language of the system should he easy'to understand. ™

Each of the other criteria refer to the operational
characteristics of the system. These criteria might best be
considered in relation with our sSection of semantics;
howaver, since they are not related directl? to the features
provided by the systen but simply to man-machine features*

we shall omit further consideration of the Stanley House

- e W R T A e e e S e ol L e

* Sterling, T.De, Humanizing Computerized Information

Systems,Science, Vol. 190, Fo. #220, 19 Dec 1975,
#% Sterling, T.D., Guidelines for Humanizing Computerized
Information Systenms, Conm.ACH, Vol. 17, No. 11,
pp609-613, 1874 :
* Transactions with the system should be cecurteous,

A system should be quick to react,

A system shoud respond gquickly to users if it is unable to
regolve its intended ptocedure,

A system should relieve the users of unnecessary chores,

A system should ianclude provisions for corrections,

T T . T T . A T i URE. St g L S T

PAGE 8
criteria.

Lipovski (ih cooperation ~with Barbacci, Piloty and L=2e}
tabulated the ranges OV2ar which subjective language measures
might wvarys; in many réspects his measures are meraly
guidelines torlanquage development and may by themselves be
tco 1eading to be acceptable to the whole community.

Thasa criteria are based on requirements initially
established by Barbacci* wvhich he classified differently
than we chooée +o do. That is, Barbacci classifisd his
subjective criteria with respect to ™Mthe réquirements for a
scientific notation used in a design PpProcess (general
propetties);-and .-« {the properties cof) the objects which we
are devising {specific properties) .” Howevér, this
classification schema culs across +he classifications used

here, covering both syntactic and semantic gualities.

There are two views of a language which must be considered;

the lanquaqge from the point of view of the originator of a
jescription and that from +he viewpoint of the racipient or
user of the the description; That 1is, the user of the
language and the user of +t+he message. Let us not presume to
map these into a single criterion; rather we should be aware

that what may be 7®simple® (a term which 'is yet to be

..-—-.-——‘q-—-o---.»——-——--o-_

A system should recognize as much as possible that it
deals with different classes of individuals,

A system should recognize that special considerations
might occur that require special actions by it,

A system’ must allow for alternatives in input and
procassing,

A system should give individuals choices on how to deal
with it, '

A procedure must exist to override the systeR.
% Barbacci,M.R., A Comparison of Register Transfer Languages
wesy IEEE Trans. on Computers, Vol. c-24, No. 2, February

L gy AER g

PAGE 9
defined) for a language user may not be as clear to the
recipient. Hence the language should be both {relatively)
2sasy to use and understand. Unfortunately these <criteria
refer to different users and possibly users with differing
backqrounds. Obviouslf the originator of a descritpion has a
vastly different concept of the device he is explaining than
the person for wvhom the description is inténded. Take for
example, the understanding of a machine langnage from two
sipilar points of view. That is, the understanding of a
gachine language by a programmer who was initially exposed
to the architecture of +the machine and the understanding
possessed by a programmer who views machine language meraly
as the underpinanings of a high level language, are widely
different. Experience shows that even their styles of
programming is different, the machine oriented programmer
making more use of ~ the subtleties of the machine
organization and being far more awvare of the advantages that
may be taken of the timing of certaln actions.

It is daifficult to describe a language in exactly the ternms
that Barbacci used and not recognize that the criteria
ovarlap. Obviously the c¢riteria of writeability and

readability are interrelated. However, that feature which

"may be suited to writing is not nacessarily the best

criterion for reading, Take, for example,'the problem of
conciseness. At one extreme, conciseness assists the
programmer in that he can express with the minimum of effort
compléx operations; that same conciseness can egqually well
obscure the purpose of the program or description from the

il

reader. In the past, there has been much attention paid to

PAGE 10
the idea of writing programs in "Engiish" cﬁ_ some subsat
thereof, COBdL attempted this _in the name of Mself
-documentinq, proqrams“ which became a nightmare for the
PLOQranmers. The keypunching of such verbose* programs alone

accounts for the majority of errors; consider that the

average programmer is not amn expert typist and <can rarely

type more than 25 characters without an error. On the other
hand, the reception of a progranm written in a verbose fora
makes the understanding of that progran more easily
ascertained_hf the reader, Hence theré have been aevelopéd
short cuts to COBOL style programming by which the
programmer can be as concise or cryptic as he desires and
subsequently a preprccessér expands this code into the more
verbose form. Lipovski has suggested that the acceptable
criterion for this quality lies somewhere in the range:
cryptic - concise - prosalc - verbose

where the natural languages would be classified as verbose
and a language such as APL would be cryptic..

dher> a new language is being proposad (as in the case of
the consensus languwage of CDHL) it 1is essential that the
lanquage be acceptable to the domain of potential users,
This reguires the 1language to have threze essential
qualities; it should be readily learant, it should be in a
style which is familiar and it should be patently applicable
to the problem in hand.

Language styles are important to the potential user; if the
style of language permits him to recognize familiar

- . e SR e e e e T

* Lipovski dacribes COBOL as being prosaic (that is, is like

PAGE 11
constructs gnd those constructs have meanings which match
‘those of the prior use of a similar- language, then the
transition to tﬁe na¥ language is considefably ephanced,
The programming language literature abounds with references
~to "Algol-like" or YFortran-like" Jlanguages without a clear
definition of what these terms indicate. Similarly, in
natural 1an§ua§es it is possible to recognize a language not
from a knowledgs of sither its vocabulary or grammar, but
simply from its ®style®, However, a synrtactic style cén
mask semantics and the use of familiar syntactic (or even
lexical) férms for new and unrelated operational purposes
will lead only to confusion and henée to a resistance to
learning.

On the positive side, consider the number of students now
being introduced to programming through the use of BASIC,
Whilst there is a ({unfortunate, in our opinion) trend
towards extending BASIC +to encompass the features of other
languages, such as file management, stfinq manipulaiion and
graphics, it has been shown that these programmpers can
2asily asSimilate the concepts of PORTRAN and PL/I. However,
the prograsnmer who has been weaned on APL finds the
transition to be overwhelming even though the power of APL
outstrips that of BASIC by several orders of magnitude. The
applicability of a language {which iz really the
applicability of its operational facilities rather than its
syntactic forms) is a measure of the ease with which
commonly used solution elements can be exprésseﬁ in the
lanquagqe. There exist two extremes of this guality. If the

langunaqe is primitive (tending toward the abstract notion of

PAGE 12
a machine) then it 1is possible to show tha£ anything is
computable; hquever, the amount of effort that must b=e
expended to express a solution or to describe a situation
may be unacceptable or even impossible, At the other
axtreme, where a language has been "humanized"™ in the manner
of Sterling, too often the applicability éf-the language has
been reducsad to the point where only one <c¢lass of
applications is possible. ‘Take, for example, a language
éuch as LISP which obviously has all features nacaessary to
support the claim that it can compute all functions ; that
is, the language contains the minimal set of operators and
data stractures necessary to simulate a Turing machine. But
LISP is much more powerful than simply a Turing machine; it
contains features uhiﬁh have permitted programmers to encode
many esoteric artificial intelligence préjects which are
landmarks in programming history. Yot LISP would not be
best suited to many data procéssinq applications and by no
means would it be suited to the description of hardware.
The special purpose languages, developed to be of the
greatest use to certain specialized segments df industry,
such as COGO (for surveyors) and STRESS (for structural
enginesers) of the various statistical application packages
sach as BIOMED, would not be applicable in.our sense of the
guality. Eguaily, the generality of a language <c¢an be a
burden when a restricted range of problems is to be solved,
of =aqual cohéern here should be the failing that a language
which 4is intended for use as either a descriptor or a
simylation may dwell too much on the niceties of description

or simulation to the detriment of the purported goal, in the

PAGE 13
same manner as a machine language can be overly close to the
nachine being .used. That is, a language may be developed
which is convenient to express the concepts of the process
of description :or of simulation and thus be one too many
steps away from the desired level at which the description
or the simulation is to be written. |

As was expiessed ét the Stanley House workshop, a system
should relieve the user of any unnecessary chores. Such
chores should include at least such features as not worrying
about the operating system within which the simulation is to
be run or the descriptiom is to be verified. Most annoying
of many systems today is the clain of igystem transparency¥
which apparently means that the nuser must see through the
system to the undetlyinq Support features. We would prefer
to use the term “transparent“ to indicate that such machine
or operating system features are not seen by the user. Thus
in contrast to the Stanley House criterion it would be more
appropriate here to suggest that the language (and its host
system) not require the user to bhe aware of features which
are not essential to the description or simulatién.

Finally theré are two interrelated properties which are
necessary. WwWhilst the syntax of a language must be powerful
snough to express complex concepts in a concise manner, the
syntax must be well enough organized so as to devalop a
logical relationship between the elements of a description.
That 1is, language elements which have similar purposes
should have similar constructs. For example, if a language
is to contain several means of ({say) output there ought to

he some commonality between the various forms so as to ease

PAGE 14
the understanding of the language elementé and better to
eliminate confusion between the forms which posseés
operational coﬁhonality. In the extreme, the commqnality
hetween faatures may result in a single syntéctic form such
as has been developed for APL. In such a systeam the nsed for
conformance to a single syntax restricts the use of
meaningful mnenonics or ({as im APL) to the.iﬁtroauction of
special character instances to represent certain operations.
A languaqge such as PL/T on the other hand is a conglomerate
of forms, any attempt at conformance being tenuous.

Thus whilst syntactic simplicity may be subject to some
quantificafion, such as by measuring the maximum depth of a
derivation tree necessary to produce commor forms of
sentences, semantic simplicity may have a converse effect.
The simplicity of semantic features, as expressed earlier,
may result in the need for complex implementation of comamon
feaures. However, the presence of semantic simplicity
combined with the ahility to introduce named -functions or
procedures; espe¢ially when such comrmonly used procedures or
functions are available in a readily avaiiable library,

provides a compromise which is acceptable.

PAGE 15

SEMANTIC REQUIREMENTS

The subijective gualities described in the previous section
are applicable to computer lanquages in general; however it
is the operational characteristics of a language which set
it apart from the total set of languages. Provided that a
language has. met the subjecti#e requirements then its
potential user is ready to investigate its semantic

characteristics further.

Tn the particular case of hardware description languages,
there has been a need for specialized languages recognized
for some considerable time. In a survey of the
characteristics of existing languages* it was observed that
the early languages were described first in 1962 and that
there has been a steady proliferation since that peint in
time. Of these languages only a few have actually Dbeen
implementad either as a language by which a syétem can be
airectly modelled or as a descriptor which can be used as
the basis for a simulation. That is, some languages have
been restricted in their usage to simply human-to-human
compunication, such as the mapner that ALGOL was initially

proposed (and used for several years in Comm. ACH.)

Following considerable experience in describing machine
architectures the Language Research group at VPIEsU,

reviewed the needs which had not been met in several (nine)

PEE—————— A S R it

_ PAGE 16
different, but well ostblished languages. At this point it
is important to note that this survey was conducted ir the
light of efforts to describe not complete systens, bhut
instead simple architectures such as that of the DEC PDP-3,
the PDP-11, PFoster's "Edindburg #Hachine” and his stack
oriznted computer USOCRATESY, and the microprocesor
described by Qeisbecker# amonqst. others. In each of <the
attempted description generations certain shortcomings of
the languages were observed with respect to. +two =lements;
sither it was impossible to model a certain feature of the
prototype, cr no facility existed to verify the correctness
of +the description of a design or more importantly, the

design itself.

Four distinct semantic requirements were established as
being necessary for inclusibn in the‘ minimally acceptable
language;

facilities for the description of
concurrency of actions
the timing of events
and the hierarchy of both functions and
ccmponents
and the provision of facilities to verify the

integrity of the componrents of the prototype.

surprisingly enough, _of the mnine language -survayed (DDL,
CpL, LOTIS, ISP, CASSANDRE, CASD, RTL, LOGAL and AH?L) not

—— kb D U S N W A e bt

¥=isbecker,Jd., A Practical Low~-Cost Home/School
L T e e v v . . P O T AN Nh T T2 K |

PAGE 17
one satisfied all the establishead ¢riteria. That is, whilst
all but one.(CASD) had at least some elementary facility to
provide the execation of concurrent . processes, only one
{LOTIS) provided for the lock out of processes from the
gating of an already operational slements such as the menory
or a register being used by some subprocess. However, it is
nécessary that we point out that LOTIS has not vet (since
its original pablication in 1964} been implemented. A
further requirement is the inclusion of a facility to
describe the actual data paths between functional eclements.
That is, to provide a means by which data path utilization
can be checked, In at least one effort +o describe a
processor, the absence of a data path hetween iwo regisiters
was identified only after considerable affort had been
expenda2d (manually) to determine that two concurrent
operations_did not use the sane bus. In the majority of
existing hardware description langunages, the movement of
data between elements was assumaed to be unimpeded, Only
when a descriptor is given the facility t§ know which paths
{(vhich may contain several segments) ate utilized in
register to register data transfers, can the integrity of

lata paths be verified.

The timing of events within the description of a processor
would seem to be of such fundamental importance, that every
description language would provide the bharest of facilities.
Obviously, where nothing RoYT2 than sequential
(non-concurrent) events are permitted, thenm there is no need

for any special timing facilities., ®¥hilst every description

PAGE 18
systemr surveyed provided asynchronous timing facilitieé,
synchronous 6perations vere not as well supported. In the
main, where synchronous actions were provided, this was
accomnplished by nmeans of a pulse identification technigue,
That 1is, actions were labelled by identifiers, the
copmonality 6f identifiers establishing the corraspondence
of timed events. Conversely, the actual timing {(with respect
to some clpék) of the duration of events is provided in only
tvo systems; LOTIS and CASD. In these systems the number of
cycles necessary'to complete an operation may be specified
and other actions may be predicated on the amount of *tinme

elapsed since a specified event cccurred.

In summary then, the minimum semantic features to be
hrovided by a hardware description language should include:
CORCUrrency |
synchronization by pulse identification and by
cycie counting
asyachronous operations
‘integrity of operations by the lock out of
secondary activities and the preservation of the
sole use of data paths, |
énd the ability to describe a hierarchy of
coﬁpoaents and functions so as. t6 provide the
means for developing descriptions in a top-doun
manner and to provide the capacity for describing

intrinsic elements which are to be used cormnonly.

PAGE 19

The following table (taken from Les et al) .indicates the

lack of facilities in existing hardware description
languages: |
PblC I1lcC RIL |A
DID 514 TI01H
LlL P|s LiG P
5 A |5
A L
N
D
R
B
CONCURRENCY Yi v YiY Y ¥ Y
TINING { Synch by | pulse id Yy Y| Y Y[Y ¥
counting Y| N NN NIN Y
Asynchronous YI¥Y Y| Y YiY |y
INTEGRITY BY Locking out Ni{N NI ¥ R B IRN
Data Path Def. Y| I I|{C Ifric
HIERARCHY OF | Functions Y| Y Y| Y Hlvyj]y
Compaonents Yir v Y| ¥ NI N]Y
Lagend:
Y - ves
¥ - no
I - implied
¢ - claimed but no examples given

PAGE 20

VERIFICATION ELEBENTS

This section describes the kinds of verification which
a hardware description requires and relates these to the
state of the art in program verification research.

Prom the subjective requirement that a hardware
description be easy to understand it follows +that the
description shoiald bhe hierarchical, with a natural
distinction between functional units and their realization
at the next lower level of description. This regunirement

sugqests tvo distinct stages of verification:

'I. Verification that a given level of description
satisfies specified behavioral properties {input-output
relations, preservation of invariant relations,

deadlock-free, etc.).

IT. Verification that the functional requirements of
one 1level of description are satisfied by the naxt

lower level of description,

Stage I is directed toward proving that the systeﬁ under
consideration conforms to the deéiqner!s behavioral
intentions. .Staqe IT is directed toward proving that the
functional r guirements of a description element are
realized by a corresponding system at the next lower level.
These two stages aée consdidered separately below in order

to more cClearly assess their impact on hardware description

PAGE 21
language design.

Stage I Verification

Input to the Stage T verifier will comnsist 6f a system
description and a specification. The description will
consist in essence of a system of typed variables and
concurrent processes operating on these variables subject to
synchronization <constraints expressed or impiied. The
specification will be a system of input-output relations
defined on certain system variables--one for each operator
or process of the description. Output of the 3Stage I
verifier will consist of éome or all of the foliowing:

(i) a proof that the systenm description satisfies its
specification, or é counterexample;

{ii) a request for more detailed specifications for
desiqnated system components;

(iii) a proof that the system is deadlock free; and

(iv) an analysis of which variables are local to a
strictly segquential process and which are potentially

shared by two or more concurrent processes.

Hardware semantics vwas found +to entail several forms of
concurrent process synchronization which the description and
specification language must be able to express and the Stage
1 verifier-mﬁst be able to analyze:

{i} Synchronization by event (e.g., c¢lock pulse
identification) and by time interval (pulée counfing}.
~{ii) A shared variable may b2 cancurrently accessed

by processes which do not reset it.

PAGE 22

{iiif' 4 shared variable nmust be sequentially

{exclusively) accessed by a process or operator which
may reset it.

(iv) Certain concarrent processes may have global

priority over others (e-g9.,interrupts or hardware

ON~conditions).

Hardware semantics does not entail a &escription-lanquage
control structure which éimicks the object-machine control
structure: the existence of branch instructions at the
micro-program or machine instruction level Adoes not
necessitate the existence of go-to statements in the
de2scription language, whose procedural component exists
simply to define PIOCasses over the system variables.

The following paragraphs illustrate how the above
requirements can be fylfilled by a description and
specificatioh language which is consistent with-the state of
the art in formal program_verification.

Abstract data types. A given lével of description contains
a2 set of primitive <types (either atomic or defined at a
lower level) and a set of abstract data types defined on the
primitive basis. An abstract data type, or data abstraction
* names a system of selectors and cperatérs, ipcluding a
designated initialization operator., The abstract type
includes a specification for each of these,.but not their

definitions as functions or procedures. Assignment may or

Y R e o e D Gk -

* Liskov, B.H., and S.N. Zilles, Specification Techniques
for Data Abstractions, IEEE Trans. on Software Engireering 1
{Harch 1975),7-19.

PAGE 23
may not be an allowed operator for a given type.

Thus, the basic data transfer statement is the action of an
operator on a variable of its type.

Verificaticn .of a description containing abstract data
types is now a well anderstood process: one assiqns a
conijectured invariant relation I (%) to an object x of type T
and then verifiés that each operation either establishes or
preservas I{x) -« A correct and sufficient choice of I{x)
for a gqiven S5tage I verification task remains a difficult
search problem, and may require user guidance (as in ojtput
{ii) of +the Verifier).

Sequential control., The Bohm~-Jacopini svsten consisting of
sequential composition (51;52), conditional {Tf B then S1
elss 52), and repitition (While B do 3) has an adequate
system of verification rules based on Hoare's axiomatic
approach. However, finding an adequate loop invariant for
(While B do S) can be a difficult search problem in
practice, requiring a combination of mechanical analysis and
human guidance., #*

Concurrency ang synchronization., Hardware systems have a
fivxed number . of concurrently operating elements, The
Cobegin ST1se02,5n Coend construcfion is therefore
appropriate for describing the concurrent processes realized
by such elements. Several solutions to the putual exclusion
and synchronization problems have been proposed .l A recent
milestone in the analysis of concurrent proéesses haé heen
the demonstration by Owicki * +that a program verification

TS N R e cim s m - —p mn . - -

* Wegbreit, B.,The Synthesis of Loop Predicates, Coumm. ACH
{(February 1974y . 109-147

PAGE 24
calculus for RPL, a language with the above sequential
control statements augmented by Cobegin...Coend and
conditional critical regioﬁs, is consistent with a
VDL-styled operational semantics and complete relative io
any axiomatization of the language's data structures.

It is appérant_ that the results for RPL could be extended
to a hardware description language with conditional critical
reqions for shared variables.‘ Concurrent and sequential
access to a variable could be modelled by a'correSPORdinq
built-in sepaphore {for concurrent acCess)'wLich would be
blocked from further incrementation by a nonempty regquest
queue for seguential access to the - sape éariable. R
(¥henever B do S5) statement could model -an interrupt
triggered by event B throaghout its containing block: this
is 2quivalert to inserting (While B do S5} between each pair
of statements in the block,

Recursion. For sequential programs, _verification of
recursively defined Procedures can ba éccomplisheé by
complete computational induction and simpilar methods =,
Verification .of recursively defined data types can be
accomplisked similarly by structural inducfion. Howevar,
adequate verification methods for recursive procedures
containing Cobegin...Coend statements have. not yet been
developed, Horeover, it is doubtful that 2ither recursive

concurrent procedures or recursive data types are essential

T L e e v A —— e 1 - k. o

* Owicki, S. S., Axiomatic proof Taochniques for Parallel
Programs., Doctoral Thesis, (Department of Computer Science,
Cornell University, July 1975). g

* Hanna, Z., Mathematical Theory of Computation,
(McGraw~-Hill, 1974y . i

PAGE 25

for hardvare description.

Stage ITI Verification

Verification that a set of selector and. operator
definitions satisfy +the specifications of an absﬁract data
type is a straightforward application of Stage T
verification methods, However, the synchronization
operations of the higher level must be enforced by the next
lower level. This could be most easily done by directly
modelling the semaphores and finite queues built into the
descriptién languaqge semantics, It is in the
synchronization area that the description language ©can be
expacted to exert the most profound influence on hardware

design.

PAGE 26
CONCLUSIONS

Our principle conclusion is that Syntax, semantics, ani
verification elements must all be considered in the design
of a hardware description ang simulation language. pecent
Tesearch * has made i+t apparent that ap adequate hardware
dagign language must encompass severil levels of description
and must have powerful facilitijes for verifying that one
level correctly simulates the next higher level, These
facilities will probablly bpe interactive, combining both
prograr verification methods aﬁd algebraic simulation

theory.,

u—-—-——-p--.-—--u_f-—‘—-—*-q--

* Leenan, Jr.,6.8., W.C. Carter, and i, Birman, "Some
Techniques for Microprogranm Validation,n Information
Processing 74 {North Holland. 1978y 6. on

PAGE 27

REFERENCES

Barbacci,®.R., A Comparison of Register Transfer Languages
«ssy; IEEE Trans. on Computers, vol, C-24, No. 2, Fabruary
1975,

Lee, J.A.N., D. Bacock, p., Marks, T.C.Hésselkamper, The
Requirements for Effective Hardware Description Languagas,
Language Research Lab., Dept. of Computer Science Eeport Cs
75011-R, VPIESU, Blacksburg, VA, December 1975,

Leeman,Jr,,G.B., ¥.C.Carter and a, Bifman, Some Technigues
for Microprogram Validation, Information Processing 74,
North Holland pub. Co., 1974, pp 76-80.

Lipovski, J., Memorandum 3,1, Conference on Digital
Hardware Langnages, {Internal Memorandum), 1975 Gctober 10,
University of Florida, Gainesville, PI. {to be published),

Liskov, B;H., and S.N, Zilles, Specification Teckniques for
Data Abstractians, LIEEE Trans. on Software Engineering SE-1

Manna,Z., Mathematical Theory of Computation, McGraw-Hill
Co., Hew York, 1974,

Martin, J.J., Sonme Theoretical Foundations of Progran
Testing, Dept, of Computer Science Report C575029-R,
VPIS&SY, Blacksburg, Vi, December 1975,

Owicki, Susan Speer, Axiomatic Proof Techniques for
Paralle} Programs, Doctoral Thesis ‘(Dépt. of Computer
Science, Cornell University, July 1975)

Shneiderman,B., and R, Mayer, Towards a Cognitive Model of
Programmer Behavior, Report TR37, Dept. of Computer Science,
Indiana Univ., August 1975,

Sterling, T.D., damanizing Computerized Information

PAGE 28
Systens, SCIENCE, Vol. 190, No. 4220, 19 pecember 1975,

------------- ¢ Buidelines for Humanizing Computerized
Information Systems, Conm. ACH, Vol. 17, ¥o. 11, pp 609-613;
November, 197#.

S, S.Y¥.U. and D.L.Dietmeyer, 1975 International-Symposium
on Computer - Hardware Description Languages and their
Applications, Proceedings, I®EE Computer Society, New York,
1375,

Wegbreit, B., The Synthesis of Loop Predicates, Comm. ACH
17 {(February 1974) ,pp. 102-112.

Heinberqg,G., The Psychology of Programming, van Nostrand
Reinhold Pub. Co., New York, 1971;

deisbecker,d., A Practical Low-Cost Heme/School

Hicroprocessor System, IEEE Computer, August 1974, pp 20-31.

