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2 Research Review

One of the major additions to Tmin was the inclusion of analysis of a 2-Dimensional

vertical piping span.  The original plan from Dupont was to include several types of 2-D and

3-D vertical spans.  However, due to time constraints only this piping span was implemented

into Tmin.  This 2-D vertical piping span is only in the x and y-axis and is thus called the 2-D

vertical piping span.  In order for the analysis of a 2-D vertical piping span to be added to

Tmin, certain known mechanical methods had to be applied.  In this chapter, these methods

will be described and explained.  The purpose of this chapter is to identify the known

mechanical methods that are used for evaluation of stresses, which could lead to pipe fatigue.

Some fundamental problems behind the shortened pipe life are internal corrosion and

erosion of the internal pipe, which increase pipe stresses.  Corrosion fatigue can result from

a combination of the corrosive chemicals inside the piping and cyclic stress.  An example of

cyclic stress would be the on—off pressurization of piping by pumps.

The primary purpose of this chapter is to discuss the analysis of piping stress and fatigue.

In Section 2.1, the background of piping stresses and fatigue will be identified.  The

information in this section will be used throughout this thesis.  Since piping stress can be

derived mathematically using several different methods, the primary goals in this chapter will

be to detail the assumptions and mechanical methods followed.  These methods follow

certain standards practiced, national standards, and national codes for beam and piping

analysis.

The American Society of Mechanical Engineers (ASME) has followed the engineering

and mechanical methods for the analysis of piping stresses and fatigue in their Unfired Piping

and Pressure Vessel standards and codes [3].  They have compiled their findings in piping

standards and codes that will be described in Section 2.2.  The primary purpose of the

standards and codes followed in the Unfired Piping and Pressure Vessel standards and codes are

the safety of personnel.
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2.1 Background of Piping Stresses

Jack A. Collins [5] in his book Failure of Materials in Mechanical Design says, “In

designing a machine part, it is necessary to conceive a combination of

material and geometry that will fulfill the design objective without failure.  To

do this a designer must have at his or her disposal a calculable mechanical

modulus that is physically related to the governing failure mode in such a way

that failure is accurately predictable when the mechanical modulus reaches a

determinable critical value.  For most failure modes it is found that which

may utilize stress as a modulus failure can be predicted and, therefore,

averted by a proper design configuration. The concepts of states of stress at a

point…become topics of great importance to the designer.”

Den Hartog [6] explains the stresses that occur in engineering materials in his book,

Strength of Materials by defining the primary causes of stress.  A normal stress is defined as the

force per unit cross-sectional area where the direction of the force is normal to the plane of

the cross section.  There are two principals that can be followed to get the materials

performance.  The first principle is the stress analysis of existing structures, in order to

predict their behavior under specified loading conditions.  The second principle is in the

design of a new structure that will safely perform a specified function [7].

2.1.1   Differential Stress Element Analysis

This project will be using thin-pipe wall theory, described in Section 2.1.4, and only 2-

dimensional (2-axis) states of stress will be used [5].  Besides the use of 2-axis states of stress,

it can be seen that many triaxial (3-dimensional) shear stresses are identical in numerical

value.  As a result, the outer pipe surface is the critical position with a differential stress

element, and can be broken down to a 2-axis state of stress, called a differential stress

element, is seen in Figure 2-1.  The differential stress element seen in this figure will be used

throughout this thesis for analysis of pipe stress.  As seen in this figure, shear elements

follow the face of the cube, while normal stresses are seen normal to the element edges.

Tensile normal stresses are seen as outward normals, while compressive stresses are seen as
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inward normal to the differential stress element.  This normal stress and shear analysis will

be derived in detail in Chapter 4 using various element areas on the piping span.

In order to analyze the differential stress element properly, the design engineer must

follow certain criteria.  Structural elements made of ductile materials must be designed so the

material will not yield under expected loading conditions [7].  Once the engineer has decided

on the task at hand, whether it is upgrading an existing structure, or the replacement of

fatigued pipes, stress states must be analyzed for safety of people.  To do this, the engineer

would need to know the ultimate tensile strength, or another name is tensile strength, SUT,

the yield strength, SY, and the fatigue strength, Sf, of the material.  Upon knowing these

values, the engineer can then begin the design of the project in which they are involved.

Next, a graphical representation is needed to show the state of stress that a piping span may

experience is detailed.

2.1.2 Mohr Circle Analysis

Otto Mohr developed a graphical representation of the equations developed through the

Maximum-Shear-Stress Theory (detailed in Section 2.1.3) in the 1900’s, and is an extension

of the maximum shear stress theory of failure, which is based on a 3-Dimensional graphical

circle [5].  Using coordinates of normal stress, σ, and shear, τ, he had shown that these

σy

 σy

σxσx

 x

y
τyx

 τyx

τxy

  τxy

Figure 2-1. Differential Stress Element with Normal and Shear Stresses
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equations can be represented graphically in a circle, resulting in Mohr’s Circle.  Mohr’s circle

is also dependent on differential stress elements. Figure 2-2 shows the graphical creation of a

3-D Mohr’s circle.  The use of a 3-D Mohr’s circle will enable the engineer to visually see the

largest stress, or failure envelope, that are found in a piping system.  The failure envelope is

defined as the largest Mohr’s circle with a maximum shear of τMax.

As a result of the 3-D Mohr’s circle, each circle will have a representative equation either

in shear or in stress.  The centers of the circles, smallest through the largest are defined as

Equations (2.1) through (2.3).

2
32

1
σσ −

=C (2.1)

2
31

2
σσ −

=C (2.2)

2
21

3
σσ −

=C (2.3)

The radius of each circle, smallest through the largest, are seen in Equations (2.4) - (2.6).

τ
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2
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Figure 2-2.  Mohr’s Circle Representation of Principle Stresses



10

2
32

1
σστ −

= (2.4)

2
31

2
σσττ −

==Max                                                   (2.5)

2
21

3
σστ −

= (2.6)

These equations will be used for analysis of piping stresses, which are discussed in

Section 2.1.4.  In Figure 2-2, the 3-D Mohr’s circle shows stress-states that are positive in

sign are in tension.  When all stress-states are in tension, none of the circles will cross the σ

= 0.0 axis.  However, as seen in Chapter 4, upon evaluation of compressive piping stresses

some stress states will be negative, causing a shift of the Mohr’s circle over the σ = 0.0 axis.

Using the graphical representation of the stress-states, the American Society of Mechanical

Engineers has chosen to use the Maximum-Shear-Stress Theory for failure analysis of piping

spans [8].  As a result of the ASME, the Maximum-Shear-Stress Theory was used as the

criteria theory in this thesis.

2.1.3 Maximum-Shear-Stress Theory

According to Shigley and Mishke [9], “The Maximum-Shear-Stress Theory states that

yielding begins when the maximum shear stress in any element becomes equal to the

maximum shear stress in a tension-test specimen of the same material when that specimen

begins to yield.”  In contrast to other failure theories, the Maximum-Shear-Stress Theory has

been found to be more successful in the prediction of failure of a ductile material under

hydrostatic states of stress [5].  The Maximum-Shear-Stress Theory relies on the use of a

tensile-test specimen.  Tensile tests and the resultant stresses observed are described in

Section 3.1.

The American Society of Mechanical Engineer dictates in the Unfired Piping and Pressure

Vessel standards and code, that the Maximum-Shear-Stress Theory is to be used for

calculation of stresses [8]. The Maximum-Shear-Stress Theory results in several equations
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that are formed upon analysis of the differential element discussed previously.  The criterion

for this theory states that a structural component is safe as long as the maximum value of

shear stress, τMax, of a specimen in tensile remains smaller than the one-half of the yield

strength, SY, seen as Equation (2.7).  As a result of Equations (2.1) through (2.3), the

Maximum-Shear-Stress Theory predicts that failure will occur when Equations (2.7) or (2.8)

are satisfied.  As seen in Equation (2.8), the difference between the principle stresses must be

greater than or equal to the yield strength, which is also equal to the equivalent stress.  The

equivalent stress will be defined in more detail in Chapter 4.

2
Y

Max
S

≥τ (2.7)

σeq = ( ) YS≥− 31 σσ      (2.8)

Through observation of the two previous equations, it was found that the yield strength

is always less than or equal to two times the maximum shear.  Using the Maximum-Shear-

Stress Theory, these two equations will be used as limits observed in a piping system.  To

find what stresses are observed in a piping system, or pressure vessel, pipe-wall theory must

be understood.

2.1.4 Pipe-Wall Theory

There are two different types of pipe-wall theories that are known to the engineering

community, thin-wall and thick-wall theory.  Both of these theories have been shown

through experimental analysis in early engineering years as valid for use.  Thick-wall piping

theory will not be used in this thesis.  Thick-wall piping theory relies on the assumption of a

gradient radial normal stress through the pipe thickness that results in a multi-axial stress

state being present n a 3-D differential stress element [10].  Since this thesis will be using

only 2-D differential stress elements, thin-wall piping theory will be used on the pressure

vessel when the piping thickness, t, to the radius, r, of the pipe is less than 1/20 [7].  When

an internal pressure is placed inside the pressure vessel, stresses occur along the length of the

pipe and around its radius.
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The stress in the circumferential direction on the pressure vessel is called the hoop stress,

σH, and is seen as Equation (2.9).  It is called the hoop stress because it is the type of stress

that is found in hoops to hold together the slats of a wooden barrel [7].  The stress in the

longitudinal direction of the pressure vessel is defined as the longitudinal stress, σL, seen as

Equation (2.10).  In a closed cylinder the longitudinal stress exists because of pressure on the

ends of the pressure vessel [9].

t
tDP o

H 2
)2( −

=σ                           (2.9)

t
tDP o

L 4
)2( −

=σ (2.10)

It can be observed that the longitudinal stress is half of the hoop stress.  This explains

why piping systems fail along the longitudinal line and rarely show a tear along the radius of

the circle [6].  Figure 2-3 shows a differential stress element with the effect of hoop and

longitudinal stresses acting on a pressure vessel.  As seen in this figure, the pressure P, is the

gage pressure of the internal fluid, Do, is the outside diameter of the pipe, and t, is the pipe-

wall thickness.

The next Figure 2-4 shows the relationship between 3-D Mohr’s circle and the

aforementioned hoop and longitudinal stresses.

Figure 2-3.  Hoop and Longitudinal Stresses acting on a Differential Element

σL

σL

σH

σH

x
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t
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The relationship between hoop and longitudinal stresses are more obvious upon drawing

the Mohr’s circle.  In addition to pressurization stresses one has additional stresses by body

force loading and external force loading.  Thus, shear and moment diagrams must be

analyzed for each piping system and are described in more detail in Chapter 4.

Shear is defined as the shear force, V, over the cross-sectional area of the pipe as seen in

Equation (2.11) [6].  This shear equation will be used in Chapter 4 when the analysis of shear

and moment diagrams of the vertical piping span is detailed.

A
V

Shear
2=τ       (2.11)

A stress distribution created by torsion is seen in Figure 2-5.  They are at a maximum at

the outer edge of the rod, while tending toward zero in the center [6].  A pipe or cylinder has

a similar distribution, but cannot tend toward zero at the center since there is no mass in the

center of a pipe.

σ

σL

σH

HL σσ 2=

Hσ
2
1

HMax στ =

τ

Figure 2-4.  Relationship between use of Mohr’s Circle with Hoop
and Longitudinal Stresses

σL
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There are even more stresses for consideration.  To see the effects of these stresses

acting on a point, Figure 2-6 shows two differential stress elements, seen as a and b, on a bar,

being affected by transverse and axial forces.  A transverse force is seen as the downward

force F.  This downward force is multiplied by the distance of the bar to cause bending

stresses through summation of moments.  The pulling force, P, acting over the area of the

bar causes an axial stress.

As a result of the effect of the downward force, F, a bending moment occurs.  The

bending moment at any point on a beam or bar is positive when the external forces bend or

squeeze the fibers at this section of the beam at the point being analyzed [7].  The effect is

seen in Figure 2-7, where the moment, M, is seen to bend the beam at a given point.  In this

Figure 2-5.  Stress Distribution Created by Torsion Acting on a Cross- Section of a Bar

F

P

b

a

Figure 2-6.  A Cantilever Bar Subjected to Downward and Axial Forces.

Differential Stress Elements a and b are Shown

x

  y

z
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figure, the top of the beam experiences a compressive moment, while the bottom of the

beam fibers experiences a stretching, or a tensile moment.

The stress that occurs because of the bending moment is seen as Equation (2.12).  The

bending stress sign is either positive (tensile moment) or negative (compressive moment)

depending on the direction of this stress in relation to the differential stress element [7].  An

additional stress seen on the bar using differential stress elements is axial stress, given in

Equation (2.13).

Z
M

B =σ                                            (2.12)

A
P

A =σ                    (2.13)

Analysis of the differential elements a and b in Figure 2-6 yield stress equations and shear

in the x, y, and z-axis.  In general, the summation of stresses at point a is seen as Equations

(2.14) through (2.16).  More specifically, the shear stress at point a is zero because shear

stress passes through the center of the differential stress element.  As a result, the shear is

zero on the top and bottom of the bar.  However, looking at the previous Figure 2-6 the

shear created by the downward force F, at point b passes parallel to the face of the

differential stress element and is not zero.

ABx σσσ +=           (2.14)

0=zσ      (2.15)

M M

Figure 2-7.  Effect of External Force Results in a Bending Moment
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0== Shearxy ττ                                      (2.16)

To continue the evaluation of Figure 2-6, the summation of stresses and shear at point b

as seen as Equations (2.17) through (2.19).

ABx σσσ +=       (2.17)

0=yσ              (2.18)

Shearxy ττ =                                     (2.19)

In Chapter 6, a detailed numerical analysis of the stresses that occur to the piping system

will be shown in more detail for the 2-D vertical piping span.  In this major section, the

definitions of the mechanical methods and criteria used for the development of the Tmin 2-

D vertical piping span analysis was shown.  In order to justify these theories for use in piping

spans and to make this a trustworthy computer program, certain criteria must be followed

using standardized codes developed by ASME [3].  These standardized codes were put in

effect to create a safer working environment for personnel working around these piping

systems.  The next major section documents the standards and codes that were followed

during the development of this computer program.

2.2   Piping Codes and Standards Requirements

The purpose of this section is to identify the known mechanical methods that are used

for evaluation of piping stresses.  The methodology used for the calculation these stresses

have been documented in a National Code written by the American Society of Mechanical

Engineers [11].  The evaluation of piping used in the industry for pressure vessels was

written by the ASME to ensure that a unified code structure exists.  As a result, the codes

and standards written by ASME must be followed and properly applied.
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2.2.1 Unfired Piping and Pressure Vessel Code

One primary addition to Tmin was the inclusion of fatigue curves (S-N) in its internal

Microsoft Access database.  To allow for cyclic operations that may occur in the piping

system, Appendix 5 of Section VIII in the ASME Unfired Piping and Pressure Vessel

standards and codes must be followed [11].  The title of Appendix 5 of Section VIII of the

1999 standards and codes is called “Mandatory Design Based on Fatigue Analysis.”  From

this title alone, it can be seen that this appendix must be followed for fatigue analysis.  A

quote taken from paragraph 5-100 in this section states, “The stability of a [piping] vessel

component for a specified operating conditions involving cyclic application of loads and

thermal conditions shall be determined by the methods herein” [12].

In the Unfired Piping and Pressure Vessel standards and codes Section VIII, paragraph

5-101 explains that conditions and procedures in AD-160 and 5-110 are based on the

comparison of stresses with fatigue data [11].  The aforementioned paragraph states that

peak stresses are based on a comparison of peak stresses using strain-based fatigue data [10].

In Appendix 5 of Section VIII of the Unfired Piping and Pressure Vessel standards and

codes, the ASME provides several S-N curves in this appendix and explains that the stress

amplitude, σa, is calculated under the assumption of fully-elastic behavior [12].  However, the

ASME explains that this type of strain-based S-N fatigue curve does not represent a real

stress when the elastic range is exceeded [12].

The S-N fatigue curves in Appendix 5 of Section VIII of the Unfired Piping and

Pressure Vessel standards and code were obtained through fully reversed uniaxial strain

cycling as well as compression stress-based fatigue curves [12].  A fully reversed uniaxial

strain cycling S-N curve is defined as an R-ratio equal to minus one (R =-1).  R-ratio and

fully reversed fatigue curves will be explained in more detail in Chapter 3.  To create the S-N

curves in this section, ASME has multiplied the imposed strains by the elastic modulus and

then has taken half of the product to reach a pseudo elastic alternating strength.  Doing this

creates a design margin to make the calculated stress intensity, SI, amplitude and the

allowable stress amplitude directly comparable [12].  The stress intensity is the equivalent

intensity of combined stress, or is twice the maximum shear stress; which is algebraically the

difference between the largest principal stress and the smallest principal stress at a given
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point [10].  Many of the concepts that ASME uses are described in Chapter 3, such as how

strain-based and stress-based fatigue data are obtained.

In paragraph AD-160 of Appendix 6 in the Unfired Piping and Pressure Vessel

standards and codes, explains whether or not fatigue analysis will be required [14].

Paragraph AD-160 states that pressure vessels must follow conditions of the next two

sections, AD-160.1 and AD-160.2.  AD-160.1 states that piping supports used shall be

opposed to the integral strength of the pressure vessel.  In paragraph, AD-160.2, conditions

must be followed as rules to determine the need for fatigue analysis.  The following list

documents Condition A from paragraph AD-160.2 [14]:

� Condition A: Fatigue analysis is not necessary for materials whose yield strength

exceeds 80,000 psi when the total number of cycles of types (a) plus (b) plus (c), defined

below, does not exceed 1000 cycles, in addition to the following sub-conditions.

a) Is the expected (design) number of full-range pressure cycles including startup

and shutdown

b) Is the expected number of operating pressure cycles in with the range of pressure

variation exceeds 20% of the design pressure.  (Cycles in which the pressure

variation does not exceed 20% of the design pressure are not limited in number.

Pressure cycles caused by fluctuations in atmospheric conditions need not to be

considered.)

c) Is the effective number of changes in metal temperature between any two

adjacent points in the pressure vessel.

According to the 1969 ASME Criteria Document, described in Section 2.2.2, the fatigue

curves that are used must be adjusted for two items [8]. An adjusted S-N fatigue curve can

be seen in Appendix B.  This figure was adapted from the ASME Unfired Piping and

Pressure Vessel standards and codes Appendix 5, Section VIII, Figure 5-110.2.1 [12].  In this

figure, the ASME has adjusted the strain-based data.  The fatigue curve has an adjustment

for maximum possible mean stress under a state of perfect plasticity, and independent

adjustment for factors of 2 on stress, and 20 on number of cycles; again, these concepts are

described in more detail in the next section.
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If only stress based fatigue curve data are available, the data should also be adjusted for

the maximum effects of mean stress. In Figure 2-8, a reproduction of Figure 5-110.2.2 is

shown [12].  In this figure, curve B is stress based, and C has been adjusted for the

maximum effects of mean stress.  Mean stress adjustment will be discussed in Section 2.2

and mean stress effects will be documented in Chapter 3.  Because the fatigue curves have

been mean-stress adjusted, ASME requires that paragraphs 4-135 and 4-137 of Appendix 4,

Section VIII in the Unfired Piping and Pressure Vessel standards and code be satisfied [15].

The first paragraph, 4-135, states that the stress intensity, derived as the highest value at

any point across the thickness of a section, is to be compared to 2 times the value of the

allowable values taken from an S-N fatigue curve [15].   The criteria of paragraph 4-137

states that the mathematical sum of the three principal stresses must not exceed four times

the tabulated value of mean stress, σM [15].

al

102

Reproduction of Curve B from Figure 5-1100.2.2, Appendix 5.
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To fully understand the adjustment to the SN curves by the ASME for factors of

safety, the ASME Criteria Document must be followed [8].

2.2.2 Criteria Document

The Criteria Document of the 1969 ASME Unfired Boiler and Pressure Vessel

standards and codes was developed from a footnote that appears in Division 1, Section VIII

on page 9.  The footnote gives the following statement, “the maximum hoop stress will not

exceed the allowable stress” [8].  This means that Section III and VIII of the ASME Unfired

Boiler and Pressure Vessel standards and codes does not call for a detailed stress analysis of

a piping system, but just will require the minimum pipe-wall thickness needed to sustain the

hoop stress.  The criteria document was developed in 1969 and has since been abolished

with its some of its contents added to Section III and Section VIII of the ASME Unfired

Boiler and Pressure Vessel standards and codes 1999 version [31].  However, DuPont has

requested the criteria document format of the adjustment of the S-N fatigue curves is to be

followed.  In the criteria document, an adjustment of the S-N fatigue curve for the
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maximum mean stress, a factor of 2 on allowable stress, and a factor of 20 on the number of

cycles are proposed [8].  The following section will detail these adjustments.

Most S-N curves supplied by the industry are in various formats, from load-based to

strain-based.  The ASME allows both load-based to strain-based S-N fatigue curves, as

detailed in the previous sections.  In the criteria document they developed a general equation

to fit this data.  This equation is termed the “best-fit” equation, seen as Equation (2.20) [8].

The “best-fit” equation incorporates the reduction area of the material, “A,” in percent as

well as the elastic modulus, “E,” the endurance limit, Se, of the material, which they define as

“B.” An example of the best-fit equation of Aluminum 1100 is seen in Figure 2-9 using a

value of 10x106 PSI for the elastic modulus, 45% for reduction area percent, A, and an

endurance limit of 7000 PSI for B.  As seen in this figure, the “best-fit” equation is a poor fit

for this data.

B
A

Log
N
ES +�

�

�
�
�

�

−
=

100
100

4
10  (2.20)

However, since this criteria document has been abolished, a new best-fit curve to the

experimental data has been adapted.  The new curve fit format is found in Article III-2200

of Section III in the Unfired Boiler and Pressure Vessel standards and codes, and is obtained

by applying the method of least squares to the logarithms of the stress values [16].  One

possible reason for the abolishment of the criteria document “best-fit” Equation (2.20) is

that this equation will not create an accurate reproduction of the stress values when applied

on some materials such as Aluminum, which does not have a true endurance limit.
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Upon application of the least squares to the logarithms of the stress values, a more

accurate representation of the stress values can be obtained.  In contrast to the “best-fit”

equation, an example S-N curve created by the least squares to the logarithms shows that the

curve does indeed follow the supplied data and is seen as Figure 2-10.  As seen in this figure,

the least squares to the logarithms curve fit is a better fit to the stress data.  The least square

to the logarithms is explained more in Chapter 3.

Figure 2-9.  Example of Criteria Document “Best-Fit” Equation to Aluminum
1100 (stress data from NASA, Technical Note -157 [17])
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Since Dupont required an inclusion of four additional S-N fatigue curves, they needed to

be ASME compliant.  This meant that the least squares to the logarithms of the stress values

must be applied to the stress data.  In this next Figure 2-10, the least squares to the

logarithms curve fit shows a better fit to the stress data in comparison to the use of the

criteria document best-fit curve fit equation.

In the ASME 1999 version of the Unfired Boiler and Pressure Vessel standards and

codes, Section III, Article III-2200, which is a revision of a section in the criteria document,

they propose to use a conversion factor using the engineering materials ultimate and yield
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Figure 2-10.  Example of Least Squares to the Logarithms Best-Fit Equation to
Aluminum 1100 (stress data from NASA, Technical Note-1574 [17])
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strengths [8, 16].  However, in order to use these two strengths, the ASME proposes the use

of the Modified-Goodman criteria [8].

The Modified-Goodman criterion uses a diagram as a graphical representation of the

multiple stress combinations that will act as a failure criterion.  The Modified-Goodman

diagram has been termed conservative for use by the ASME [5]. All of the stress-states used

in the following pages are defined in Chapter 3.  The yield strength in the Modified-

Goodman diagram comes from the assumption of perfect plasticity of the material.  Perfect

plasticity of a material limits the stress in a stress-strain diagram.  This relation can be seen in

Figure 2-11.

As a result of the perfect plasticity assumption, a relation between the mean stress, and

the stress amplitude, seen as Equation (2.21).  In this equation, these stresses are equated to

the yield strength.

YaM S=+σσ     (2.21)

An adaptation of the Modified-Goodman diagram from Shigley and Mishke [9] is seen in

Figure 2-12.  On the vertical axis is the stress amplitude σa, the yield strength, and the stress

at any life, SN.  On the horizontal axis, is the mean stress, σM, the yield strength, and the

ultimate strength of the material are seen.
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Figure 2-11.  Yield Stress Limitation on a Stress-Strain Diagram
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To create the Goodman fracture line, the stress amplitude and mean stress, the

endurance and the ultimate strengths are put into a relation, seen as Equation (2-22) [8, 9].

1=+
Ut

M

N

a

SS
σσ

(2-22)

Equation (2.22) is the Goodman line.  ASME created a new relation based upon the

maximization of maximum stress at the yield strength of the material.  This attempts to

correct the allowed stress at any cyclic life for the maximum means stress that could exist

based upon a perfectly plastic material model where the total stress is limited to the yield

strength of the material.  Using the new relation based on the maximum stress at the yield

strength of the material, Equation (2.21) is solved for mean stress, and then substituted back

into Equation (2.22).  The new variable seen in this equation is '
NS .

Using this new relation, the ASME had derived a way to create an S-N curve that can be

mean stress adjusted.  The following Equation (2.23) shows the conversion factor used for

creating an S-N curve that incorporates mean stress [8].  However, upon analysis of this

equation in the Criteria document, a new variable Sn was found [8].  This variable has similar
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Figure 2-12.  Modified Goodman Diagram (adapted from Shigley
and Mishke [4])
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to the SN found in the Modified Goodman equation, but had a lower case “n” instead of an

upper case “N.”

�
�

�
�
�

�

−
−

=
NUT

yUT
nN SS

SS
SS '                               (2.23)

This discrepancy in equations could have arisen from the mislabeling of variables, and

lack of error checking by ASME.  However, upon application of Equation (2.23), it was

found that to use this conversion factor, the factor needed to be multiplied by the stress at

any life, SN, in order for the mean stress adjustment to be applied to the S-N curve.  As a

result, Equation (2.23) was used, but with the variable Sn replaced with the variable SN.

Finally, the mean stress adjustment to an S-N curve could be implemented to the fatigue

data that was input into Tmin.

By creating Equation (2.23), and using the ultimate and yield strengths, the mean-stress

adjusted S-N curve is forced to deviate from the original S-N curve when SN equals SY.

When the yield strength equals the stress at any life, N, the mean-stress adjusted curve falls

below the original S-N curve for life cycles greater N.  This is shown as Curve B in Figure 2-

13.  The mean-stress adjustment prepares the S-N curve for the further adjustment

according to ASME standards and codes.
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The previous mean stress adjusted S-N curve can be seen to lower the endurance limit of

the material, thus creating a conservative fatigue curve.  Next, the design stress values were

obtained from the best-fit curve by dividing a factor of two on stress or a factor of twenty

on cycle.   This second procedure implemented by ASME into their codes and standards for

S-N fatigue curves.  This has been dubbed the 2/20 format.  Figure 2-14 shows an S-N

curve that has been adjusted for mean-stress, and also has been adjusted according to the

2/20 format.  These newly adjusted S-N curves are used to develop a master curve, which

takes more conservative point at each number of cycles [8].

Figure 2-13.  Design Fatigue Curve of Series 3XX Alloy Steel. Curve A is a Load-Based
Curve, and Curve B is the Mean Adjusted Curve (adapted from Appendix 5, Section VIII,

Figure 5-110.2.2 [12])
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Adapted from Figure 5-110.2.2, Appendix 5.
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Some discrepancy was found in the Criteria Document as to whether or not the 2/20

format was a mandatory ASME design.  As discussed previously in Article III-2000 of

Section III of the ASME Unfired Boiler and Pressure Vessel standards and codes, this

section documented this procedure [16].  The summary of this article is as follows, the data

from the S-N fatigue curves are obtained, then the least squares to the logarithm curve fit of

the fatigue data was then performed.  The curves were then adjusted for mean stress.  Once

these operations were complete, the 2/20 format was applied.  Finally, an order of

operations can be created from the known ASME standards and codes on how to create a

“safe” S-N curve.  This order of operations is seen as follows:

1. Obtain tension compression S-N fatigue source data

2. Use least squares to the logarithms curve fit to create a curve of the data
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Figure 2-14.  Fatigue Curve of Aluminum 6061-T6 with Mean Stress
Adjustment, and Sal Divided by a Factor of 2, and Number of Cycles Divided by

a Factor of 20
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3. Apply the mean-stress adjustment from Equation 2.23 to the least squares to the

logarithms curve fit

4. Reduce the mean stress adjusted curve fit, curve by a factor of 2

5. Divide the number of cycles, N, of the mean-stress adjusted curve fit curve by a

factor of 20

6. Retrieve the allowable stress values from the adjusted ASME curves, that are

more conservative of the two new 2/20 curves

The above ASME procedure can be applied to piping materials that are not documented

within Appendix 5, in Section VIII of the Unfired Boiler and Pressure Vessel standards and

codes [12].  Use of this procedure will produce new ASME curves for use in the ASME

fatigue design process.  The end result is an S-N curve that will be more conservative than

the original recorded data.  In the next few the creation of S-N curves and the

implementation of other topics covered in this chapter will be presented.


