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(ABSTRACT)

Microarray technology enables simultaneous gene expression level monitoring for thousands of

genes. While this technology has now been recognized as a powerful and cost-effective tool for large-

scale analysis, the many systematic sources of experimental variations introduce inherent errors in

the extracted data. Data is gathered by processing scanned images of microarray slides. Therefore

robust image processing is particularly important and has a large impact on downstream analysis.

The processing of the scanned images can be subdivided in three phases: gridding, segmentation

and data extraction. To measure the gene expression levels, the processing of cDNA microarray

images must overcome a large set of issues in these three phases that motivates this study.

This study presents automatic gridding methods and compares their performances. Two segmen-

tation techniques already used, the Seeded Region Growing Algorithm and the Mann-Whitney Test,

are examined. We present limitations of these techniques. Finally, we studied the data extraction

method used in MicroArray Suite (MS), a microarray analysis software, via synthetic images and

explain its intricacies.

Keywords: Image Processing, Automatic Gridding, Segmentation, Gene Expression, Mann-

Whitney Test, Seeded Region Growing Algorithm, Data Extraction.
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work is terribly important.
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Chapter 1

Introduction

1.1 Motivation

A gene is defined as a contiguous stretch of DNA that contains the information necessary to build

a protein or an RNA molecule [1]. Any cell of an organism is simultaneously producing numerous

proteins and RNA molecules from the information in genes. The concept of monitoring the expression

level of thousands of genes simultaneously in a single experiment was a simple fiction for geneticists a

decade ago. The advent of new technologies such as microarrays allows today’s geneticists to compare

the relative quantities of mRNA molecules in a cell across a single factor of interest [2, 3, 4, 5]. As

patterns in which a gene is expressed can be temporal, developmental and physiological, the factors

studied could be different types of tissues, drug treatments or timepoints of a biological process.

Microarrays are now widely used to identify differentially expressed genes. However, the exper-

imental process is complex and the results are subject to many sources of variations. The process

consists of four steps: preparation of the biological material, printing, hybridization, image process-

ing, and data analysis. Early literature focused on the process of microarray experiments [4, 5] as

Schena et al. [6] and Hedge et al. [7]. The steps going from the array fabrication to the printing

via PCR amplification, probe preparation and protocols are widely covered. To our knowledge, no

software system supports all the steps of a microarray experiment. The motivation of this study

is the development of Expresso – A Microarray Experiment Management System [8, 9]. Expresso’s

goal is to “close the loop” in the microarray experiment process. After their analysis, results of an

1
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experiment often leads geneticists to find new hypotheses and design new experiments. We propose

that Expresso encompass all the steps from the design of an experiment to the data analysis and

mining. Expresso will also provide multiple methods at each step.

Major work has also been presented in the domain of the analysis of microarray data. Eisen

et al. [2, 10] as well as Lazzeroni and Owen [11] present cluster analysis techniques. Kerr et

al. [12, 13, 14] recently used ANOVAs. Newton et al. [15] as well as Sapir and Churchill [16] present

models to improve the statistical analysis. Data normalization [17, 18, 19] has also been a major

source of work. Dudoit et al. [20, 19] presents design and statistical techniques to normalize the

data.

Davis et al. [17] surveys the sources of variations. To enhance the quality of microarray analysis,

many research groups are currently working on the identification and minimization of these sys-

tematic variations. These variations could occur during the experiment material preparation (e.g.

mRNA preparation, the reverse transcription, the labelling, PCR amplification) during the printing

(e.g. systematic variations in target geometry, random fluctuations in target volume) and also in

the detection process (e.g. scanner properties, labels efficiency, slide inhomogeneities) [18].

While more and more scientists are using this technology, no universal consensus exists on how

to design and analyze an experiment [2]. Few references exist on the image processing of cDNA

microarray images. However, we are convinced that the image processing is a critical step and the

accuracy of the data extracted from it can have a large impact on the downstream analysis (clus-

tering, statistical models). This study constitutes our first investigations about cDNA microarray

image processing.

1.2 Identification of the Problems

The image processing of cDNA microarray experiments aims to locate and reduce hybrids fluores-

cence of varying shape and intensities in the image into a table of intensity measures and ratios for

each hybrid. The many sources of variations (e.g within a slide or from slide to slide, from target or

label incorporation characteristics) validates the need for quality measurements, robust confidence

level and reliable normalization strategies. For reference, we present a list of identified sources of

variations in [18]:

• mRNA preparation
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• Transcription

• Labelling (variations in incorporation, photo-bleaching effect)

• PCR amplification

• Variations in pin geometry

• Random fluctuations in target volume

• Target fixation

• Hybridization parameters (time, temperature, buffering conditions, volume of probe)

• Slide inhomogeneities

• Non-specific hybridization

• Non-specific background and overshining

• Non-linear transmission characteristics

• Saturation effects

• Target shape variations

We add to this list the following:

• Human judgment in the gridding process

• Imperfection of the segmentation algorithm

• Lack of universal consensus on the data extraction, especially ratio computation.

Improving the image processing consist of eliminating these sources of variations. However, no

common manner of processing the images and extracting this information exists.

The work of Dudoit et al. [21] is one of the few references on the image processing of cDNA

microarrays. They presented a formal three-step process:

1. Gridding which aims at overlaying a grid on the arrayed hybrids fluorescence in the image.

Automation of this step is critical to enabling the analysis of numerous experiments.
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2. Segmentation which consists of differentiating the hybrid from the background of the image.

This step fits a mask of pixels to each hybrid fluorescence in the image.

3. Intensity extraction which consists of computing the relative target intensity vs. the back-

ground intensity. This step involves estimating the background intensity, measuring a confi-

dence level in the target quality and calibrating the results with a normalization method.

Many programs exist for processing and analyzing microarray images. However, scanning and

image processing are currently resource-intensive tasks as human intervention is still required to

locate hybrids, flag artifacts or reject faulty hybrids. Automation of this step is an important goal

to achieve. Although ideally a grid overlay should match the hybrids, the reality is much different.

Some hybrids can be misaligned, have various size and shape or the array can even be tilted.

Automatic gridding is therefore not a simple problem. We prefer the term gridding rather than the

term addressing used by Dudoit et al. [21] because it is expected that a grid will match the hybrids

fluorescences. Some existing programs claim semi-automated or automated gridding but still requires

human intervention. The gridding techniques used by these programs are generally unpublished and

undocumented. We undertake in this study the implementation of automatic gridding methods that

truly require no human intervention.

Identification of target boundaries and accurate extraction of target intensity is a second goal

to achieve. Segmentation is the term used by image processing experts to name the process of

subdividing an image into its constituents parts [22]. Once hybrids have been gridded, different

segmentation techniques exist to delineate the hybrid from the background of the image. This

task is complicated by the fact that each hybrid has its own shape, radius size and distribution in

pixel intensities. Several segmentation methods are in use (e.g. Mann-Whitney Test (MWT) [23],

Seeded Region Growing (SRG) [24, 21], fixed circle [10] or adaptive circle (see GenePix)) as well as

background intensity estimation methods (e.g. neighboring square or circle, valleys, morphological

opening). The literature always shows results obtained on clean hybrids despite the fact that noisy

images with artifacts and hybrids of imperfect shapes are quite common.

Our primary concern is to identify a reliable measure(s) and be able to analyze with confidence the

extracted data. Commercial packages use different solutions and we wish to compare the performance

of some segmentation techniques. Though other techniques exist, only two segmentation techniques

are detailed in the literature. They appear to be the most sophisticated techniques to our knowledge.
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Chen et al. [23] propose the Mann-Whitney Test (MWT) [25, 26], a standard statistical method to

differentiate two populations, based on the Wilcoxon rank-sum. Dudoit et al. [21] present the

Seeded Region Growing algorithm (SRG) of Adams and Bischof [24], later improved by Mehnert and

Jackway [27]. The algorithm uses starting pixels called seeds to grow regions of pixels based on a

criteria, measuring the distance between pixel intensities. We compared and discovered limitations

of the SRG and the MWT. We determined cases where these methods are not satisfactory and

recommend cautious use of these algorithms.

Data extraction analysis implies estimation of the ratio of signal to background intensity. It

also involves the development of normalization strategies using standard or specialized statistics.

Many techniques have been presented (e.g. ANOVAs, regression). We examined the method used

in MicroArray Suite, originally developed by Chen et al. [23] and provide additional details.

1.3 Summary of Results

This study examined different techniques for automatic gridding. Four methods have been presented

respectively using the Discrete Fourier Transform (DFT), Circular Hough Transform (CHT), the

Mann-Whitney test and a combination of the DFT and CHT. We made progress toward this goal as

our final hybrid method succeeded in gridding two images of average quality NS3 and NS5 correctly.

However, for images of poorer quality, such as our couple (S4X3,S4X5), none of our methods obtain

satisfactory results.

The study examined two segmentation methods: the Seeded Region Growing algorithm and the

Mann-Whitney test. Our implementation of the SRG does not have a satisfactory rate of good

segmentation. The seed choice is critical in size and location. We experimented with various seed

choice techniques. The seed choice needs to be adapted to the different hybrid fluorescence shape and

size. Each technique performs better or worse than another depending on the particular hybrid. The

random and unconnected seed choice techniques obtain a higher rate of satisfactory segmentation.

The union of the different seed choice outcome gives the most satisfactory results though it includes

extra pixels.

Our MWT obtains more consistent results than our SRG ones. Though it systematically includes

a small number of noise pixels, we did not notice any catastrophic segmentation. However, the

MWT result is dependent on the original mask used. Hybrids of different sizes obtain their best
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segmentation with initial masks of different sizes. Therefore for each hybrid, estimating the radius

(or largest distance between high intensity pixels) is necessary to determine the optimum initial

mask to be used by the MWT.

In the Data Extraction and Analysis chapter, we present the theory proposed by Chen et al. [23]

on ratio computation and the calibration procedure. Its implementation in MicroArray Suite uses

some supplementary assumptions we deciphered. Evaluation of a segmentation technique perfor-

mance is too complex on experimental data. We recommend the use of synthetic images. Our

results show that the MicroArray Suite Mann-Whitney Test performs correctly on perfect targets

with different radius, square targets or doughnut-shape targets. More complicated data remains to

be tested.

1.4 Organization

The rest of this dissertation is structured as follows. After covering some biological basics, chapter 2

presents the principle of cDNA microarray experiments. In chapter 3, automatic gridding techniques

are presented and compared. Chapter 4 deals with the segmentation problem. We implemented our

own SRG and MWT and present some critical issues and improvements. Data extraction and

analysis is discussed in chapter 5. We present the theory and undocumented details of MicroArray

Suite data extraction and assess its validity on experimental and artificial results. We conclude and

discuss possible future directions in chapter 6. For readability, most figures have been included in

Appendices A for chapter 3, B and C for chapter 4 and D for chapter 5.



Chapter 2

cDNA Microarray Background

This chapter introduces a few biological concepts necessary to understand this study in section 2.1

and presents the principles of microarray technology in section 2.2.

2.1 Biological Background

All living organisms consist of cells, which contain nucleic acids and proteins. After reviewing the

basic information on proteins and nucleic acids, this section presents the fundamental mechanisms

of cellular function. We also present a biological reaction involved in microarray experiments, the

Polymerase Chain Reaction (PCR) before introducing the notion of regulation in a living cell. Most

of the material presented here can be found in greater details in [1].

2.1.1 Proteins

A cell relies on its proteins for a wide variety of functions. Proteins are chains of smaller molecules,

called amino acids joined by peptide bonds. They generally consist of 100 to 5,000 residues, the

combination of an amino acid and a peptide bond. Proteins can fold into three dimensions in a

complex and non-symmetric way. Depending on its protein shape, a protein can bind to different

kinds of molecule such as other copies of itself, other protein molecules or be the subunit of an

enzyme.

The production of energy, the biosynthesis of all component macromolecules, the maintenance of

7
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molecular architecture, and the ability to respond to intra and extracellular stimuli are all protein

dependent. Proteins are the workhorse molecules of the cell, involved in cellular structuring, storage

of energy and production or reproduction of other important biomolecules.

2.1.2 Nucleic Acids: DNA and RNA

Nucleic acids are responsible for encoding the information necessary to produce proteins. Two kinds

of nucleic acids exist: deoxyribonucleic acid(DNA) and ribonucleic acid (RNA).

DNA is a double stranded chain of simpler molecules called nucleotides. A nucleotide is the

combination of a phosphate, a sugar and one of four bases: adenine, guanine, cytosine, thymine.

DNA is typically contained in chromosomes, each containing a few hundred genes. Genes are, roughly

speaking, stretches of DNA containing genetic information. Each gene specifies the composition and

structure of a protein but its entire strand is not coding for the protein.

DNA can also replicate itself. The strand used for replication is called the template while the

other strand is called the complementary strand. This complementary strand is of interest for the

understanding of microarray experiments. Indeed, when two separated but complementary strands

are present, the two nucleic acids will eventually bond to form an hybrid. This property of nucleic

acids is called hybridization and is a key reaction on which the microarray technology is based.

RNAs are much like DNA molecules but they are single-stranded. Different kinds of RNAs exist

that have different functions. We are only interested in messenger RNAs (mRNAs) in our context

because they are the form of RNA that carries the information from the DNA for the synthesis of

proteins.

2.1.3 Transcription, Reverse Transcription and Translation

The mechanisms of a living cells consists of four transformations monitoring the flow of information.

The transformations from:

1. DNA to RNA is called Transcription,

2. RNA to DNA is called Reverse Transcription,

3. RNA to Protein is called Translation,

4. DNA to DNA is called Replication.
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Figure 2.1: Cell mechanisms

The mechanism of transcription is started by the recognition of a promoter, a small part of DNA

that indicates that a gene is ahead. A copy of the gene is then made into the messenger RNA or

mRNA. In eukaryotes, organisms that have a nucleus containing the DNA, genes are not continuous.

They have alternating parts termed introns and exons. After the copying of the gene into mRNA,

the introns, not used in protein synthesis, are spliced out from the mRNA. The shortened mRNA

is the molecule that brings the gene information to the ribosome, a structure outside the nuclear

membrane of the cell where proteins are synthesized.

The shortened mRNA can be caught by biologists on its way to the ribosomes and by revers-

ing the transcription process, a complementary DNA (cDNA), spliced complement of a gene is

obtained. This transformation from RNA to DNA is called reverse transcription. Complementary

DNA (cDNA) is the term used to define the spliced gene sequence of a complementary strand of

DNA. An original gene sequence is called genomic DNA. This notion is important as biologists can

reproduce a cDNA strand from the mRNA without using the genomic DNA. A cDNA is an artifact

used instead of genomic DNA in microarray experiments.

Without the biologists’ intervention, our shortened mRNA reaches the ribosome where the pro-

tein is synthesized based on the shortened mRNA information and a few other molecules as enzymes

and tRNAs. This reaction is called translation. The amino acids are bound one by one to form the

final protein and at ends the mRNA is released and recycled.

CentralDogma.eps
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2.1.4 Polymerase Chain Reaction (PCR)

A microarray experiment requires a great amount of cDNA material. PCR amplification is used to

prepare the large quantity of cDNA needed.

DNA is able to replicate itself via a process called replication. Biologists can create many copies of

the same DNA molecule by the polymerase chain reaction (PCR). A primer, a small piece of single-

stranded DNA used to initiate the reaction, and nucleotides are hydrogen bonded to a template

strand via the action of an enzyme called DNA Polymerase that catalyzes the reaction.

The PCR process is made of two phases. First, double-stranded DNA is divided into two strands

by heat. Second, primers and DNA Polymerase, respectively initiate and catalyze the reaction that

leads to convert each single strand to a double-stranded molecule by addition of complementary

bases. By repeating the process, many copies of the same piece of DNA can be obtained.

2.1.5 Regulation

Every cell in an organism contains a complete set of chromosomes for the organism. Consequently,

each cell contains the information to reproduce the entire repertoire of proteins. Cells have differing

properties, resulting from differences in abundance, distribution, and state of its proteins.

Many proteins serve specialized functions required in particular cell types. Differences in protein

abundance are related to the types and levels of mRNA in the cell. The type and abundance of

proteins and mRNAs a cell contains regulate cellular activity. A protein is one factor of regulation

(among many others) in the production of other mRNA(s) or protein(s), which will themselves be

at the origin of the production of other proteins and mRNAs and so on. Regulation is the biological

term associated with this interdependence and interaction mechanism.

2.2 Principle of a cDNA Microarray Experiment

The biological concepts explained in the previous subsection are key elements involved in microarray

technology. After explaining the motivation for the development of the stages of a microaaray

experiment, we describe next the process of a microarray experiment. The reader may refer to

several references [3, 4, 5, 28] for more details on the technology.
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Table 2.1: Cy3-Cy5 wavelength

Absorption Emission Extinction
Cy3 552 nm 568 nm 130,000
Cy5 650 nm 667 nm 250,000

2.2.1 Motivation

Until recently, biologists were limited in their investigations study the presence and abundance of

mRNAs in cells. With the advent of high-throughput technology such as microarrays, they have the

means of observing the behavior of thousands of genes simultaneously and fasten the identification

of gene functions and interactions. The knowledge of when and in what types of cell the protein

product of a gene is expressed is an important goal to achieve for geneticists. It provides them with

clues about the functions of particular genes, allows them to identify clusters of related genes, and

motivates new hypotheses and experiments.

Recently, thanks to the reverse transcriptase and the PCR reaction, the cloning of cDNAs in

a great quantity has been made possible. Libraries of publicly available expressed sequence tags

(ESTs) have been created. ESTs, about a few hundred nucleotides, are small sequences of cDNA

long enough to be unique and characteristic of one gene.

2.2.2 Process of a cDNA Microarray Experiment

Microarray experiment technology provides hybridization-based experiments that allow simultaneous

quantification of the relative amount of each mRNA species in the cellular population.

The process of a microarray experiment starts with the biologist’s hypotheses and selection of a

set of genes of interest. This process is shown in Figure 2.2. After selection, DNA clones of interest

(ESTs) are then amplified by PCR to generate a sufficient amount to allow ‘printing’ onto a glass

microslide.

The printing is made by an arrayer. An arrayer is a robot with a certain number of pins

programmed to deposit EST aliquots in an array configuration. An aliquot is a small quantity of

premade nucleic acid. Different robots may have different numbers of pins as well as different pin

configurations. Therefore microarray experiments do not have a universal layout, but rather the

layout depends on the arrayer used.
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Figure 2.2: Process of a Microarray experiment

The fundamental concept in a microarray experiment is the quantification of cDNA-DNA hybrids.

This binding is used for quantifying the presence of mRNAs in a particular cell. Geneticists isolate

two samples of mRNAs, a control (reference) and a test (experimental) samples. The control sample

contains mRNAs of a cell developed under normal conditions. The treatment sample contains

mRNAs of a cell that has received a specific treatment (drought, chemicals, ...). In this study we

used experiments on loblolly pine trees that have been subjected to different drought conditions.

Some trees had been under severe or mild drought conditions whereas the control trees were grown

in normal moisture conditions. The mRNA samples are reverse transcribed into cDNA samples that

are then tagged with two different fluorescent dyes. The two samples are typically tagged with Cy3

and Cy5, fluorescent dyes with different wavelengths (see Table 2.1) visualized with green and red

pseudo-color.

The two samples are mixed into water and the solution is dropped on the glass microslide.

After 4 to 6 hours, the slide is washed to remove unbound cDNAs. The DNA-cDNA hybrids are

then the only aggregates expected on the microslide. The slide is then placed in a laser scanner.

Two scans are performed in the wavelength of each dye. The detector receives photons emitted by

Hybridization.eps
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the fluorescent dyes as the scanner excites the hybrids. Two images reporting the fluorescence of

hybrids on the slide are generated. The image processing, motivation of this study, is performed to

quantify the fluorescence at the site of each immobilized hybrid. The fluorescence intensities signal

the relative presence of an hybrid compound in one sample and not the other or vice versa. This

information allows the evaluation of the change and level of change in mRNA expression between

the two samples.

Biologists speak of gene expression level as for the mRNA abundance in a cell corresponding to

the level at which a gene has been expressed. Technically, the gene expression level is measured by

the intensity mean of an immobilized hybrid compound in the red and the green channel. Channel is

the term commonly used to refer to the image of hybrid fluorescent compounds for a particular dye.

The ratio (or the log of a ratio) of the channel 2 over channel 1 is exported in a table and used to

evaluate each gene expression level. Data analysis can then be performed. For reference, log ratios

typically range from -4 to 4. Positive values indicate higher expression in the test(red) versus the

control cell, and vice versa for negative values. The motivation for taking the log (red/green) ratio

of the intensities in the two channels is due to the likely experimental variations as well as undesired

contribution from the background intensities that can vary within the slide.



Chapter 3

Gridding

As the need to analyze a greater number of experiments in less time is emerging, automatic gridding

is a desirable property for a microarray analysis package. No human intervention is a property that

would hasten the analysis and avoid introducing a new source of variation. Semi-automatic gridding

or “almost” automatic gridding methods already exist (see Spot [29] and DigitalGENOME [30]

(http://www.molecularware.com/digigenome.htm)). However, examples shown always appear to

result from images of relatively good quality. The experimental reality is different. Noisy images

and artifacts appear to be very common elements the biologists are confronted with.

In this chapter, we introduce gridding techniques that require no user intervention. We first for-

malize the gridding problem and present the specifics of our experiments in section 3.1. In section 3.2,

we present a technique based on a frequency analysis of the image realized with the Discrete Fourier

Transform (DFT). We then present a method based on the Circular Hough Transform (CHT) in

section 3.3 and an other one based on the Mann-Whitney Test (MWT) in section 3.4. We show

improvements brought by a preprocessing of the images in section 3.5 and a final hybrid method

using both the DFT and the CHT in section 3.6. A discussion and future work is developed in

section 3.7.

3.1 The Gridding Problem

The next paragraphs detail the gridding problem and introduce some vocabulary.

14
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3.1.1 Formalization

We have seen in section 2.2 that an arrayer prints EST aliquots on a microslide via a few pins. Each

pin is printing aliquots so that they are evenly spaced and in a grid with a definite number of rows

and columns. These aliquots hybridize later with the two-sample cDNA mix dropped on the slide.

Because of this organized printing, locating the hybrid compounds fluorescence on the image result

from a process of gridding, which places a grid over the hybrid compounds fluorescence in the image

so that each hybrid fluorescence is contained within a patch. This patch will actually be a square if

we assume the pin-array is not tilted.

We next give a few definitions for a better understanding. An image has a finite number of pixel

rows and columns, and we will refer to the dimensions of an image as its height H and width W . A

pixel will be typically denoted by a pair (x, y) where x and y are its pixel coordinates or if needed

by a triple (x, y, i) where i is the intensity of the pixel. The origin (0, 0) is typically the top left pixel

of the image and all image coordinates are non negative.

A target is the set of pixels corresponding to an hybrid compound fluorescence in the image. A

target patch is a small image area expected to contain a target and its surrounding background (see

Figure 3.1). Targets are expected to be evenly spaced along both image dimensions. We define by

the term spacing S the deviation from one target center to another. Targets are expected to be

placed in a regular pattern with an horizontal spacing Sh and a vertical spacing Sv. Sh and Sv are

often the same.

Gridding consists therefore of fitting an array of target patches over each target in an optimal

way. However, existing arrayers have different printing designs. An arrayer uses a certain number

of pins P , and each pin is printing its own array of aliquots. We refer to the array (or microarray)

as the whole mapping of targets. However, a pin-array is the individual array of targets resulting

from what one pin prints.

Figure 3.2 and Figure 3.3 show two possible experiment layouts. Figure 3.2 shows the layout

obtained with an four-pin arrayer while Figure 3.3 shows the layout as it would be with an arrayer

that would have three pins in a one-column configuration. Gridding consists actually of fitting an

array of target patches on each pin-array in an optimal way.

Each pin-array also has a definite number of rows and columns. We will refer to them later on

as the pin-array row-count PR and pin-array column-count PC.

Each pin-array has a relative position in the image due to the printing layout. Each pin array
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Figure 3.1: Gridding patches.

Figure 3.2: A 4-pin printing layout
(a) The four pin-arrays annotated A1, A2, A3 and A4. (b) the 4-pin configuration.

gridpatches.eps
4pin.eps
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Figure 3.3: A 3-pin printing layout
B1, B2 and B3 are the three pin-arrays. The 3-pin configuration is shown on the right.

is self-contained in a rectangular part of the image of width RW and height RH. If no tilting is

assumed, a grid can be simply defined by the coordinates of the top left corner target. Patches are

the same for each target in a pin-array and pin-arrays have a finite row-count PR and column-count

PC. Therefore the only top left target center coordinates (x0, y0) of a pin-array suffices to define

the pin-array position in the image.

Each pin-array also has a relative position compared to other pin-arrays. The distance between

the top left target of a pin-array to another pin-array top left target D is definite and depends on

the distance between two robot pins.

Once a grid is overlayed over the targets, we have an estimation of the target and its surrounding

background location. The methods presented in this Chapter assumed an a priori knowledge of:

1. The number of pin-arrays P ,

2. The position of a pin-array in a rectangular part of the image with a width RW and a height

RH; and

3. The row-count PR and column-count PC of pin-arrays.

These parameters are the only input used for our gridding methods. They are a reasonable

3pin.eps
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amount of information that a microarray designer package could easily transmit.

3.1.2 The Specifics of our Experiments

We would like first to mention a few problems we encountered with the gridding. First, a pin-array

can be tilted. This problem needs to be taken into account by the gridding method. Target patches

do not need to be square and can be quadrilaterals. The grid can also be tilted appropriately. A

second problem occurs with misaligned targets because the arrayer may fail to print correctly. This

problem introduces the need of a target adjustment method to optimize the target patch position.

The arrayer used for our experiments was built on the plans of Pat Brown’s robot at Stanford

Medical School (http://cmgm.stanford.edu/pbrown/index.html). Figure 3.2 shows the printing

layout of our experiments. Since this arrayer has 4 pins, our images have four pin-arrays that we

will refer to as A1, A2 , A3 and A4.

Unless remarked otherwise, our pin-arrays typically have 16 rows and 24 columns which means

PR = 16 and PC = 24. Experimental observations show that the spacing S of targets generally

averages about 25 pixels on both vertical and horizontal dimension. Therefore Sv = Sh = 25.

Our gridding problem is then defined as follows. Assuming that tilting is not occurring, targets

are perfectly aligned, spaced by S = 25 pixels, our gridding problem consists of overlaying a 16× 24

grid of S timesS square target patches S pixels large over the four pin-arrays A1, A2, A3 and A4

laid out in a square configuration. With knowledge of S, PR, PC as well as the assumption of no

tilting effect, the top left target patch center (x0, y0) suffices to define a grid location.

Target pixels usually have relatively high intensities ranging from 10000 to 65535 whereas back-

ground pixels should have lower values between 1 and 5000. Note that 0 is not an expected value

for background pixels as the glass is imperfect and emits a few photons. Therefore, background

pixels are expected to have small but non-zero intensities. Any isolated background pixel that has

an abnormally high intensity is categorized as background noise. We also use the term artifacts to

designate aggregates of high-intensity pixels that do not correspond to any hybrid fluorescence.

We present our results on the image (NS3, NS5), a pair of images that are not too noisy and

present few artifacts. Most of the targets are quite circular and well expressed. We also present our

results on images (S4X3, S4X5) of a poorer quality. These images mostly have low expressed targets

of non-circular shape. They also are extremely noisy and present huge artifacts.

http://cmgm.stanford.edu/pbrown/index.html
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3.2 A Method Based on the DFT

The following method takes advantage of the DFT to address the target location. After a brief

introduction to the theory of the DFT we present the principle of our method and show the results

obtained.

3.2.1 The Discrete Fourier Transform (DFT)

The Discrete Fourier transform (DFT) is one of the most advanced method of discrete signal pro-

cessing. The Fourier transform X of a complex or real function x is

X(w) =
∫ ∞

−∞
x(t)e−jwtdt. (3.1)

X allows the spectral analysis of the function x.

In a discrete domain, a DFT D is defined as the Fourier transforms of a finite sequence of complex

or real numbers d. If xi, i = 0, 1, 2, ..., N − 1 is a sequence d of N finite complex numbers, then D

is given by a sequence of values Xk, where

Xk =
1
N

N−1∑
i=0

xie
−j2πik/N (3.2)

D=X0, ...,XN−1 is a sequence of complex numbers that reflects the frequencies of the original

sequence d. The FFT algorithm is a fast algorithm for the computation of DFTs. The term Fast

Fourier Transform (FFT) was first used in [31] and its basic properties were first described in [32].

The FFT reduces the number of multiplications and additions required to implement equation 3.2

from O(N2) to O(N ln N). More details about the theory and computations can be found in [22, 33].

3.2.2 Principle of our Method

The motivation for this method lies in the fact that targets are expected to be evenly spaced by Sv

or Sh pixels along rows and columns. However, Sv and Sh can vary from experiment to experiment.

The DFT allows us to compute Sv or Sh from an image.

If we sum the pixel intensities along rows and respectively columns, we obtain two vectors xv

and xh of real numbers. A visualization of these vectors (see Figure A.2) show respectively PR and

PC peaks spaced by respectively Sv and Sh pixels. In the frequency domain, this regular spacing
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should result in a local maximum M at the frequency fM but the DFTs Xv and Xh may have many

local maxima.

However, M should be in a band-limited frequency domain [fmin, fmax]. The band limits are

corresponding to two extremes cases of distribution of the targets. In the first case, Sv or Sh is

maximum. The targets are spread over RH or RV in a regular but maximum spacing. This case

corresponds to a minimum frequency limit fmin. In a second case, targets are juxtaposed. A

maximum frequency limit fmax is deduced. Figure A.1 shows Xv, the DFT obtained in our image

NS3.

Once fM has been determined along a dimension of size R (= RH or RW ), the period pM is

computed by:

pM =
R

fM
(3.3)

At this point, we have pMv
= Sv or pMh

= Sh. We now need to determine (x0, y0), the offsets of

the pin-array. By offset, we mean the pixel coordinate of the first target center to the edge of the

image.

As mentioned above, xv and xh, the vectors of the sum intensities along rows or respectively

columns, present an expected number of peaks PR and PC. The peaks also have a regular spacing

pMv
= Sv and pMh

= Sh. However, Figure A.5 shows other peaks might appear corresponding to

artifacts or noise in the image. Figure A.5 has a big peak on the left corresponding to a noisy left

edge on the image NS3.

To determine the offset, we therefore used the following method. If N is the number of peaks

expected along a dimension x, we compute the optimal sum Opt of N values evenly spaced by Sx.

Opt is expected to occur with the N local maxima of the peaks peakmax.

The grid position has been determined. Indeed we now have the spacing pMv
= Sv, pMh

= Sh

and (x0, y0) the offset of the pin-array from the left and top border. Assuming the pin-array is not

tilted, we can compute the relative position of each targets.

For obvious reasons as the tilting effect and the misalignment of targets, the current grid place-

ment is not perfect. Therefore we developed an adjustment method

To adjusted the grid position, we move the grid template pixels by pixels in order to find the

position that has a maximum intensity sum. We believe that rotating a template over a range of

±4 degrees should take care of the tilting problem but we did not implement it so far. Figure 3.4
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1 P ← 4 (or other number of pin-array in the image)
2 PC ← 24
3 PR ← 16
4 Raster[W ][H] ← readTIFF (Image)
5 For i = 0 to P
6 RW [i] ← width/2
7 RH[i] ← height/2
8 Rtop[i] ← 0 or height/2
9 Rleft[i] ← 0 or width/2
10 Rbottom[i] ← height/2 or height
11 Rright[i] ← height/2 or height
12For i = 0 to P
13 For j = Rtop[i] to Rbottom[i]
14 For k = Rleft[i] to Rright[i]
15 RRaster[i][j − Rtop[i]][k − Rleft[i]] ← Raster[j][k]
16xv[P ][RH] ← NULL
17xh[P ][RW ] ← NULL
18For i = 0 to P
19 For j = 0 to RH

20 xv[i][j] ← ∑Rright[i]
k=Rleft[i] RRaster[i][j][k − Rleft[i]]

21 Xv[i] ← FFT (xv[i])
22 pM [i] ← RH/max{Xv[i][k], k = [fmin, fmax]}
23 For j = 0 to RH
24 x0[i] ← v

25 with v = {s | Opt(s) = max{∑PR
k=0 xv(s + k × Sv), s ∈ [Sv/3, RH − pM [i] × PR − Sv/3]}

26 Do the same on columns.
27 (x0[i], y0[i]) ← Adjust (find maximum intensity sum).
28 For j = 1 to PR
29 For k = 1 to PC
30 target[i][j][k] ← (x0[i] + j × pM [i], y0[i] + k × pM [i])

Figure 3.4: Algorithm of the Discrete Fourier Transform based method.
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Table 3.1: Manual Gridding of (NS3,NS5) with ScanAlyze.

Coord
A1 (167,123)
A2 (63,117)
A3 (180,224)
A4 (79,214)

The Table above and the following show the coordinates (x0, y0) for the top left targets of each
pin-array.

present the algorithm described previously.

3.2.3 Results

In order to compare the results obtained by our algorithms, we performed manual gridding on the

same images with ScanAlyze [10]. Table 3.1 shows (x0, y0) for each pin-array. These values will serve

as reference. It takes about 45 minutes to grid the combined image manually while the DFT based

method grids the 4 pin-array in approximately one second. Table 3.2 and Table 3.3 present the

results obtained on the images NS3 and NS5. To assess the performance of each method presented,

we also compute the distance between the results of our method and the ones of ScanAlyze. Given

(x1, y1) the couple obtained with ScanALyze and (x2, y2) the one obtained by our automatic gridding

method, we define the distance δ as:

δ =
√

(x2 − x1)2 + (y2 − y1)2 (3.4)

While all pin-arrays of the image NS3 have been correctly gridded within a few pixels, all pin-

arrays of the NS5 image have been incorrectly located. The NS5 image has more low-expressed

targets and more noise. A poor dye incorporation, a different wavelength and a different scanner

laser used are potential factors involved in this problem. In this case, the algorithm failed to locate

the left pin-arrays A1 and A2 correctly because of a noisy edge on the left border of the image.

As stated in the previous subsection, this is resulting in a big peak our method fails to ignore. We

identified this edge as the border of the microslide and we noticed the presence of this same noisy

left edge on other images.

Figure A.3 shows the results obtained on the top left pin-array A1 of the NS3 image. Similar

results are obtained for each pin-array. Figure A.4, top left pin-array A1 of the NS5 image is
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Table 3.2: Results on NS3 with the DFT based method.

Period Fourier Adjustment ScanAlyze δ
A1 (25,25) (165,119) (165,119) (167,123) 4.47
A2 (25,25) (62,116) (62,116) (63,117) 1.41
A3 (25,25) (182,223) (182,223) (180,224) 2.24
A4 (25,25) (79,209) (79,209) (79,214) 5.00

The “Period” column shows (pMv
, pMh

), periods found by the DFT method. The “Fourier” column
shows (x0, y0), offsets found by the DFT method. The “Adjustment” column shows the new off-
sets after the adjustment method has been applied. The “ScanAlyze” column reminds the results
obtained by manual gridding with ScanAlyze. The distance δ represents the results obtained with
equation 3.4 between the “Adjustment” and “ScanAlyze” results

Table 3.3: Results on NS5 with the DFT based method.

Period Fourier Adjustment ScanAlyze δ
A1 (25,25.64) (165,12) (165,12) (167,123) 111.02
A2 (25,25.64) (61,10) (61,10) (63,117) 107.02
A3 (25,25) (131,223) (131,223) (180,224) 49.01
A4 (25,25) (29,184) (54,184) (79,214) 39.05

showing the bad behavior of this algorithm in the case of the left noisy edge. The noisy edge is

difficult to see on the figure.

Figure A.5 shows the column sums of the top left pin-array A1 of the NS5 image. The noisy edge

on the left is corresponding to the big peak on the left. As this high-intensity edge is expanding along

the whole height of the image, the peak is 2 to 3 times bigger than expected peaks. Our method

to evaluate the offset is failing on this edge and does not identify correctly the location of expected

peaks. This method does not take into account the geometry of the image. We implemented a

scoring algorithm that would advantage a succession of peaks with a deviation of the appropriate

period. The method was unsuccessful and results are not shown here. Cropping the left border

of the image is not satisfactory with our goal since it requires a human judgment. We turned our

investigations to other methods but there may be place for improvements in future works.
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Table 3.4: Manual Gridding of (S4X3,S4X5) with ScanAlyze.

Coord
A1 (256,215)
A2 (153,220)
A3 (263,315)
A4 (163,314)

Table 3.5: Results on S4X3 with the DFT method.

Period Fourier Adjustment ScanAlyze δ
A1 (25,25) (252,261) (252,286) (256,215) 71.11
A2 (25,25) (151,265) (576,365) (153,220) 447.16
A3 (25,24.59) (258,72) (258,22) (263,315) 293.04
A4 (25,25) (567,31) (567,31) (163,314) 493.26

As expected the result on the experiment S4X are worse. The manual gridding results are

presented in Table 3.4 and the results on the S4X3 image (Cy3 dye) in Table 3.5. Only 2 offsets

are correct within a few pixels out of 8. The rest of the results are incorrect. We attribute these

results to noisy areas. In this case, the adjustment method is failing and actually does not improve

the results given by the Fourier procedure. If the algorithm could correctly identify the pin-arrays

location in the NS3 image, it appeared not robust enough for our goals to fully automate the

addressing of poor quality images as the one of the S4X experiments. However, in the case of poor

quality image, combining the images may play a determining factor that we did not test yet.

Table 3.6: Results on S4X5 with the DFT method.

Period Fourier Adjustment ScanAlyze δ
A1 (25,24.39) (278,420) (278,420) (256,215) 206.18
A2 – Fail – – –
A3 – – – – –
A4 – – – – –
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3.3 A Method Based on the Circular Hough Transform

In the following section we present a method based on the circular Hough Transform (CHT) to

address the targets location of each pin-array. After an introduction to the theory of the Hough

Transform, we explain the principle of our method and show the results obtained.

3.3.1 The Hough Transform (HT)

The Hough Transform is an image processing technique originally used to detect lines and circles.

However, the method has been generalized so that it can detect objects of arbitrary shapes of a

reasonable size [34]. In our context, we took interest in the method to find circles, the Circular

Hough Transform (CHT).

Duda and Hart [35] present the Hough Transform. In a first step, the HT is computing an

intensity gradient image at all pixel locations. A gradient image is an image of the first derivative

of each pixel with its neighboring pixels. It is obtained by convolution of a small operator with the

image and aims at detecting edges in an image. A large number of operators exist including the

Sobel, Roberts, Prewitt ones [22]. The gradient image is then thresholded to keep the significant

edge points. In a second step, a parameter space is computed. In the case of the Linear Hough

Transform, for each edge pixel (x, y) all the line going through this point in the (m,c) space with

y = mx + c are plotted. The polar (r, q) space with r = x × cos q + y × sin q is more often used. r

is the length of a normal from the origin to this line and θ is the orientation of r with respect to

the X-axis. The highest accumulator points in (r, q) space correspond to the strongest line edges in

the image. In the circular Hough Transform, for each edge point, all the possible center locations

at a distance R are accumulated in a parameter space R where R is an anticipated radius for our

circles. A pixel that has been accumulated a large number of times is most probably a target center.

Figure 3.5 shows the higher accumulation at the center of a circular target.

3.3.2 Principle of our Method

The Hough Transform is generally applied on the gradient image. The gradient image is thresh-

olded and only the high values of the gradient image are used to compute the Hough space. Our

implementation is more computationally intensive as we compute a Hough Space by going over all

the pixels in the image without applying any gradient operator in the first place. We estimated a
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Figure 3.5: Circular hough transform accumulation principle for a circular target.

The circular target is in yellow. We show 3 edge points of the target and their accumulated points
describing circles of radius R centered on one of the 3 edge points. The center of the target is the
only point to be accumulated three times.

CHT.eps
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Table 3.7: Results on NS3 with the CHT based method.

Hough ScanAlyze δ
A1 (167,119) (167,123) 4.00
A2 (62,113) (63,117) 4.12
A3 (155,221) (180,224) 25.18
A4 (80,209) (79,214) 5.10

Table 3.8: Results on NS5 with the CHT based method.

Hough ScanAlyze δ
A1 (167,119) (167,123) 4.00
A2 (62,14) (63,117) 103.00
A3 (155,221) (180,224) 25.18
A4 (56,209) (79,214) 23.53

radius R = 7 that appeared to be the one occurring the most in our image. Once the parameter

space had been computed, we searched the optimal sum of 16 × 24 values in the parameter space

with a constant deviation equal to the period. The Figure 3.6 shows the algorithm implemented.

3.3.3 Results

Table 3.7 and Table 3.8 present the result obtained on the (NS3,NS5) images. Three out of 4 pin-

arrays in the NS3 image have been correctly placed. The pin-array A2 is off by 25 pixels, a row,

due to a quite non-expressed row at the bottom of the pin-array. We noticed our images often have

low-expressed rows or columns in the borders of the pin-array that leads to such results.

The NS5 image shows also an interesting result. Unlike the Fourier Transform based method,

the pin-array A0 has been correctly located despite the noisy left edge. The pin-array A1 was not

correctly located and again because of the noisy left border of the microslide. The pin-array A3 and

A3 are both off by a row. Note however that no grid template adjustment is used in this method.

We show the image obtained after our Hough Transform in appendix 3.3. The algorithm per-

formed quite correctly on the NS3 image but we still encountered the same problem on the bottom

left pin-array A2 of the image NS5 with the noisy left edge as shown in Figure A.8.

Table 3.9 and Table 3.10 show the results obtained with the Hough Transform based method

on the images (S4X3,S4X5). The results are better than the ones obtained with the Fourier method
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1 T ← treshold
2 R ← radius
3 P ← 4 (or other number of pin-array in the image.)
4 Period ← 25 (by using DFT eventually)
5 PC ← 24
6 PR ← 16
7 Raster[W ][H] ← readTIFF (Image)
8 For i = 0 to P
9 For j = Rtop[i] to Rbottom[i]
10 For k = Rleft[i] to Rright[i]
11 RRaster[i][j − Rtop[i]][k − Rleft[i]] ← Raster[j][k]
12 For i = 0 to RH
13 For j = 0 to RW
14 If RRaster[i][j] ≥ T
15 For each RRaster[u][v] = RRaster[i][j] + R
16 houghSpace[u][v] = houghSpace[u][v] + RRaster[i][j]
17 For u = R to RH − Period × PR − R
18 For v = R to RW − Period × PC − R
19 For r = 0 to PR
20 For s = 0 to PC
21 a ← u + r × Period
22 b ← v + s × Period
23 score ← score + houghSpace[a][b]
24 If score > maxscore
25 x0(i) ← u
26 y0(i) ← v
27 For j = 1 to PR
28 For k = 1 to PC
29 target[i][j][k] ← (x0[i] + j × Period, y0[i] + k × Period)

Figure 3.6: Algorithm of the Circular Hough Transform based method.

Table 3.9: Results on S4X3 with the CHT based method.

Hough ScanAlyze δ
A1 (254,257) (256,215) 42.05
A2 (608,416) (153,220) 495.42
A3 (254,8) (263,315) 307.13
A4 (608,41) (163,314) 522.07
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Table 3.10: Results on S4X5 with the CHT based method.

Hough ScanAlyze δ
A1 (251,215) (256,215) 5.00
A2 (605,416) (153,220) 492.66
A3 (254,407) (263,315) 92.44
A4 (605,41) (163,314) 519.51

but still unsatisfactory. The pin-array A1 has been correctly placed in S4X5 and A3 is off by 4

columns. A2 and A4 pin-arrays are always incorrectly located because of a noisy bottom edge on

the experiment S4X. The method is performing slightly better than the Fourier Transform based

method. However, the performance are still unsatisfactory for an automatic addressing of a noisy

image.

3.4 A Method Based on the Mann-Whitney Test

In this section, we present a method using the Mann-Whitney test to address the targets. The

Mann-Whitney test is not presented in this Chapter but is presented in details in section 4.5.1. The

following paragraphs present first the principle of our method and secondly the results obtained.

3.4.1 Principle of our Method

The Mann-Whitney Test is used to segment the targets by MicroArray Suite. Our motivation was

to use it as an optimization function to find the optimum addressing position. We built a template

of 16 × 24 circles of radius 8 evenly spaced by 25 pixels. Each circle representing a potential target

mask. We then run the Mann-Whitney Test (MWT) on each circular mask and sum the number of

pixels kept by the MWT. The algorithm then iterates over every position the template could possibly

fit in the rectangular area where the pin-array is. It keeps the iteration that has the maximum pixels

over all targets and induce the offset of the pin-array from the top and left border of the image.

3.4.2 Results

The results shown in Table 3.11 and Table 3.12 show the MWT is not robust enough. None of the

pin-array has been located correctly. However, this method seems less sensitive to the noisy left
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1 R ← radius (user specified)
2 P ← 4 (or other number of pin-arrays in the image)
3 Period ← 25 (or use FFT)
4 PC ← 24
5 PR ← 16
6 Raster[H][W ] ← readTIFF (Image)
7 For i = 0 to P
8 For j = Rtop[i] to Rbottom[i]
9 For k = Rleft[i] to Rright[i]
10 RRaster[i][j − Rtop[i]][k − Rleft[i]] ← Raster[j][k]
11 For u = R to RH − Period × PR − R
12 For v = R to RW − Period × PC − R
13 score ← 0
14 For r = 0 to PR
15 For s = 0 to PC
16 a ← u + r × Period
17 b ← v + s × Period
18 score ← score + MWT (a, b)
19 If score > maxscore
20 maxscore ← score
21 x0[i] ← u
22 y0[i] ← v
23 (x0[i], y0[i]) ← Adjust()
24 For j = 1 to PR
25 For k = 1 to PC
26 target[i][j][k] ← (x0[i] + j × Period, y0[i] + k × Period)

Figure 3.7: Algorithm of the Mann-Whitney Test based method.
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Table 3.11: Results on NS3 with the MWT based method.

Score MWT ScanAlyze δ
A1 45279 (143,143) (167,123) 31.24
A2 43151 (38,113) (63,117) 25.32
A3 40378 (128,173) (180,224) 72.84
A4 43874 (53,158) (79,214) 61.74

The “Score” column presents the optimum number of pixels kept by the MWT.

Table 3.12: Results on NS5 with the MWT based method.

Score MWT ScanAlyze δ
A1 38989 (143,143) (167,123) 31.24
A2 39142 (38,113) (63,117) 25.32
A3 34812 (203,173) (180,224) 55.95
A4 35400 (83,233) (79,214) 19.42

edge. This noisy left edge has been efficiently avoided and no pin-array is off by more than one row

or column. This behavior is however recurrent and the biggest problem comes out of the efficiency

of this algorithm. It takes about 40 minutes to grid the 4 pin-array whereas the Fourier Transform

based method is executing in a second and the Hough-transform based in about 30 seconds.

The major issue on time performance kept us to spend more time in that direction. Therefore

the results on the S4X images are not reported. However, we noticed the method tend to make a

good adjustment of the targets and we think once a gridding has been performed, the MWT method

could be used to adjust the gridding either at a pin-array or a target level. Figure 3.8 shows the

result obtained by MicroArray Suite on a target that is misaligned. We think errors due to target

misalignment could be avoided by evaluating the MWT at multiple positions or multiple radii.

Table 3.13: Results on S4X3 with the MWT based method.

Score MWT ScanAlyze δ
A1 27970 (278,188) (256,215) 34.83
A2 30220 (128,263) (153,220) 49.74
A3 27337 (233,308) (263,315) 30.81
A4 28645 (158,308) (158,308) 7.81

The “Score” column presents the optimum number of pixels kept by the MWT.
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Table 3.14: Results on S4X5 with the MWT based method.

Score MWT ScanAlyze δ
A1 20176 (278,338) (256,215) 124.95
A2 20410 (203,263) (153,220) 65.94
A3 21108 (233,308) (263,315) 30.81
A4 20154 (158,383) (163,314) 69.18

Figure 3.8: Mediocre segmentation on a misaligned target

3.5 Preprocessing of the Images

In this section, we first point out a few problems we noticed in our images and lead us to preprocess

the images. We then present the result obtained after histogram equalization and thresholding.

3.5.1 Image Data Analysis

As the previous methods were unable to avoid the left border noisy edge, we investigated methods

to reduce the noise by preprocessing the image. We looked more closely at the pixel intensities

distribution in order to find a way to turn around this problem. We report the following issues as it

is likely to be a common issue for many cDNA microarray images.

The Figure A.9 shows the histogram of our 16-bit image S3 (Cy3 dye). We observe a decreasing

exponential in other images too. We believe this is due to exponential noise. This type of noise

appears to be a typical noise in scanned images and it is difficult to eliminate.

This issue also have shown us our image had a large number of zero values across the entire

image as well as a certain number of saturated values at 65535 for highly-expressed cDNA targets.

The zero values can be attributed to the exponential noise. The 65535 values are the maximum

values that can be obtained in a 16-bit image. They are the expression of a saturation effect. The

saturation effect is undesirable in particular for the next image processing step, the segmentation.

Saturated values are the expression of the limitations of CCD cameras. When using too much power,

S3MWspot6.eps
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the number of photons emitted by the hybridized cDNA increases. Though the targets become more

visible on the image, the cells of the CCD camera are limited in the number of photons they can

correctly translate. CCD cells are capturing all photons during an integration time period. Above a

certain threshold of photons captured during this time period, the CCD cells will transmit the same

maximum electric voltage, which results in the 65535 value observed. The cell reached a saturation

level. Obviously, the saturation effect is resulting in a truncation of the target intensity information

and erroneous data. Calibration of the scanner and careful use of the power voltage is recommended.

3.5.2 Thresholding

By applying an histogram equalization, we were able to assess visually the contrast on our images.

The concept of histogram equalization is described in [22]. The principle is to redistribute the

pixel intensities to obtain an even distribution of the number of pixels for each intensity from 0 to

65535. This preprocessing technique enhanced the contrast of our images and allowed us to visualize

hidden noise. We then were able to notice that target pixel intensities are strongly concentrated

in the highest 20% of intensity values, an information that was not contained by the histogram in

Figure A.9. We then tried a tresholding preprocessing, which consists of keeping only pixels with

intensities above or under a predetermined threshold.

The motivation for thresholding is to remove a good part of the exponential noise but keep

most of the target intensities. Notice that it also remove the background pixels and therefore the

image obtained after tresholding can only be used for addressing the target locations but not for the

segmentation or extraction of the data.

3.5.3 Results

We kept only the 20% highest intensities on our image and then resubmitted the images to our

different algorithms. Table 3.15 and Table 3.16 presents the result obtained after equalization.

On the NS3 image, the results are quite similar. The Fourier method was already performing well

and the results after tresholding remain correct. However, the results on the NS5 image are quite

improved for the image NS5. The Fourier method in itself still did not avoid the noisy left edge.

However, the adjustment method did identify the pin-array A0 quite correctly and estimated the

pin-array A1 location with an error of 32 pixels or a little bit more than a column. The tresholding
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Table 3.15: Results on NS3 equalized and thresholded with the DFT based method.

Period Fourier Adjustment ScanAlyze δ Prev. Fourier Prev. δ
A1 (25,25) (165,119) (165,119) (167,123) 4.47 (165,119) 4.47
A2 (25,25) (64,116) (64,116) (63,117) 1.41 (62,116) 1.41
A3 (25,25) (179,223) (179,223) (180,224) 1.41 (182,223) 2.24
A4 (25,25) (80,209) (80,209) (79,214) 5.10 (79,209) 5.00

The “Prev. Fourier” column reminds the result obtained previously without preprocessing.

did also helped in locating the pin-array A4 correctly and got the pin-array location of A2 wrong at

26 pixels instead of 59 pixels with the non-tresholded image.

Figure A.10 shows that preprocessing was beneficial for the pin-array A1 on NS5. We obtain a

satisfactory addressing compared to the one obtained with no preprocessing shown in Figure A.4.

Figure A.11 and Figure A.12 show however the unsatisfactory results on pin-array A2 and A3. As

the noisy edge had not been removed by the preprocesisng, we actually noticed that the offset was

still not correctly determined before the adjustment function.

The positive result of the preprocessing is actually due to the adjustment function. The function

is summing all the pixel intensities in each square over a 25×25 squared 16×24 grid template. The

template is moved in every possible positions the grid could fit around the initial position and the

algorithm keep the optimal position. It seems that the pixels between the edge and the first column of

targets were bringing an important contribution to the sum computed by our adjustment function.

This adjustment function is however not robust enough and can fail as shown in Figure A.11

and Figure A.12.

Table 3.17 and Table 3.18 shows the result obtained with the Hough transform based method.

The four pin-arrays of image NS3 are yet almost correctly gridded. The pin-array A1 is yet correctly

gridded compared to the non-equalized method and only the pin-array A2 is still a row off. However,

the gridding of image NS5 has not been improved by the thresholding. The pin-array A1 is still

wrongly located because of the noisy left edge and the pin-array A2 and A3 are still a row off.

Table 3.5, Table 3.9, and Table 3.10 present results obtained from the preprocessed images

(S4X3,S4X5). Once again the results are slightly improved. The pin-array A1 and A3 are correctly

located along the rows dimension but still off along the columns. The results on pin-array A2 and

A4 are still very far from a satisfactory results.
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Table 3.16: Results on NS5 equalized and thresholded with the DFT based method

Period Fourier Adjustment ScanAlyze δ Prev. Fourier Prev. δ
A1 (25,25.64) (164,11) (164,113) (167,123) 10.44 (165,12) 111.02
A2 (25,25) (62,9) (62,85) (63,117) 32.02 (61,10) 107.02
A3 (25,25.64) (154,223) (154,223) (180,224) 26.02 (131,223) 49.01
A4 (25,25) (79,209) (79,209) (79,214) 25.50 (54,184) 39.05

Table 3.17: Results on NS3 equalized and thresholded with the CHT based method

Hough ScanAlyze δ Prev. Hough Prev. δ
A1 (167,119) (167,123) 4.00 (167,119) 4.00
A2 (65,116) (63,117) 2.24 (62,113) 4.12
A3 (155,221) (180,224) 25.18 (155,221) 25.18
A4 (80,209) (79,214) 5.10 (80,209) 5.10

Table 3.18: Results on NS5 equalized and thresholded with the CHT based method

Hough ScanAlyze δ Prev. Hough Prev. δ
A1 (167,119) (167,123) 4.00 (167,119) 4.00
A2 (62,14) (63,117) 103.00 (62,14) 103.00
A3 (155,221) (180,224) 25.18 (155,221) 25.18
A4 (56,209) (79,214) 23.53 (56,209) 23.53

Table 3.19: Results on NS3 equalized and thresholded with the MWT based method

MWT ScanAlyze δ Prev. MWT Prev. δ
A1 (143,143) (167,123) 31.24 (143,143) 31.24
A2 (38,113) (63,117) 25.32 (38,113) 25.32
A3 (128,173) (180,224) 72.84 (128,173) 72.84
A4 (53,158) (79,214) 61.74 (53,158) 61.74

Table 3.20: Results on NS5 equalized and thresholded with the MWT based method

MWT ScanAlyze δ Prev. MWT Prev. δ
A1 (113,68) (167,123) 77.08 (143,143) 31.24
A2 (38,113) (63,117) 25.32 (38,113) 25.32
A3 (128,173) (180,224) 72.84 (203,173) 55.95
A4 (53,158) (79,214) 61.74 (83,233) 19.42
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Table 3.21: Results on S4X3 equalized and thresholded with the DFT based method.

Period Fourier Adjustment δ ScanAlyze Prev. Fourier Prev. δ
A1 (25,25) (252,261) (252,286) 71.11 (256,215) (252,286) 71.11
A2 (25.64,25) (580,390) (580,390) 459.59 (153,220) (576,365) 447.16
A3 (25,25) (258,309) (258,384) 69.58 (263,315) (258,22) 293.04
A4 (24.33,25) (584,334) (584,384) 426.77 (163,314) (567,31) 493.26

The “Prev. Fourier” column reminds the result obtained previously without preprocessing.

Table 3.22: Results on S4X5 equalized and thresholded with the DFT based method.

Period Fourier Adjustment δ ScanAlyze Prev. Fourier Prev. δ
A1 (25,25) (278,212) (278,212) 51.89 (256,215) (278,420) 206.18
A2 – Fail – – (153,220) Fail –
A3 – – – – – – –
A4 – – – – – – –

The “Prev. Fourier” column reminds the result obtained previously without preprocessing.

Table 3.23: Results on S4X3 equalized and thresholded with the CHT based method

Hough δ ScanAlyze Prev. Hough Prev. δ
A1 (248,284) 69.46 (256,215) (254,257) 42.05
A2 (608,416) 495.42 (153,220) (608,416) 495.42
A3 (263,332) 17.00 (263,315) (254,8) 307.13
A4 (608,17) 535.00 (163,314) (608,41) 522.07

Table 3.24: Results on S4X5 equalized and thresholded with the CHT based method

Hough δ ScanAlyze Prev. Hough Prev. δ
A1 (248,260) 45.7 (256,215) (251,215) 5.00
A2 (605,416) 492.66 (153,220) (605,416) 492.66
A3 (230,407) 97.74 (263,315) (254,407) 92.44
A4 (611,44) 524.63 (163,314) (605,41) 519.51

Table 3.25: Results on S4X3 equalized and thresholded with the MWT based method

MWT δ ScanAlyze Prev. MWT Prev. δ
A1 (278,263) 52.80 (256,215) (278,188) 34.83
A2 (128,263) 49.74 (153,220) (128,263) 49.74
A3 (233,308) 30.81 (263,315) (233,308) 30.81
A4 (158,308) 7.81 (163,314) (158,308) 7.81
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Table 3.26: Results on S4X5 equalized and thresholded with the MWT based method

MWT δ ScanAlyze Prev. MWT Prev. δ
A1 (278,263) 52.80 (256,215) (278,338) 124.95
A2 (128,263) 49.74 (153,220) (203,263) 65.94
A3 (263,308) 7.00 (263,315) (233,308) 30.81
A4 (188,308) 25.70 (163,314) (158,383) 69.18

3.6 A Hybrid Method

The methods tried so far are not robust enough to find the exact place of the grids and fail because

of noise or low expression but in particular because of a noisy left edge of the microslide. In this

section, we present first the principle of a method that uses both the FFT and the CHT. We then

show the results obtained in a second paragraph.

3.6.1 Principle of our Method

The methods attempted are almost able to automatically grid images (NS3,NS5). The main problem

we are confronted with is the noisy left edge of the image. A method that could find a correct region

of interest in a first step and would really ignore the noisy edge before refining its decision in a

second step seems more likely to work.

We noticed our DFT method never failed to give us a period close to 25. We then used the

following approach. In a first step, we use the DFT to find the offsets of the grid. The principle

consists of considering small slices of the image large like a target. If we find a slice which period is

equal to the period of the pin-array predetermined by the DFT and if a number of the following slices

also have the same period as the pin-array, then we can consider these slices are part of the array.

By applying this process on rows and columns, the first slices found respectively on the top and on

the left should therefore give approximate offsets of the array. We would have therefore determined

a region of interest where our grid should be. In a second step, we would use our method based on

the circular Hough Transform to adjust the grid position.
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1 P ← 4 (or other number of pin-arrays in the image)
2 .
3 .
4 .
5 For i = 0 to P
6 pMv

[i] ← RH/max{Xv[k] | k = [fmin, fmax]}
7 last ← RH − pMv

[i] × PR − R
8 bool ← 1
9 For off = R to last
10 For row = off to off + 2 × R
11 For col = 0 to RH
12 rslice[row − off ][col] ← RectRaster[row][col]
13 rslicePeriod ← max{FFT (rsliceSum[k]), k = [min,max]}/Qheight
14 If rslicePeriod == pM [i]&&bool == 0
15 cnt ← 1
16 For k = 0 to PR
17 off ← off + k × pM [i]
18 rslicePeriod(off) ← max(FFT (rsliceSum(off)))
19 If rslicePeriod[u] == pM [i]
20 cnt ← cnt + 1
21 If cnt ≥ PR − X
22 x0[i] ← off
23 bool ← 1
24 Do the same on columns and find pMh

[i].
25 RectRaster ← rectangle(x0[i] − pMv

[i], y0[i] − pMh
[i])

26 (x0[i], y0[i]) ← HoughTransform(RectRaster)
27 For j = 1 to MArrayheight
28 For k = 1 to MArraywidth
29 target[i][j][k] ← (x0[i] + j × pMv

[i], y0[i] + k × pMh
[i])

Figure 3.9: Algorithm of the hybrid method.
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Table 3.27: Results on NS3 with the hybrid method.

Period Fourier Hough ScanAlyze δ
A1 (25,25) (154,106) (166,119) (167,123) 4.12
A2 (25,25) (55,94) (63,114) (63,117) 3.00
A3 (25,25) (193,200) (181,222) (180,224) 2.24
A4 (25,25) (65,187) (81,209) (79,214) 5.39

3.6.2 Results

This algorithm succeeded to do an effective gridding of the (NS3,NS5) images after preprocessing.

The method missed however to place correctly the pin-array A2 of the not preprocessed NS5 image

from 54 pixels (about 2 columns).

This method is based on the assumption that the target spacing is unlikely to be improperly

estimated. Unfortunately this assumption appears to be wrong. Table 3.32 shows the period can

be wrongly estimated and have values as 66.67. Big artifacts on the (S4X3, S4X5) images may have

a local maximum frequency in the appropriate band bigger than the frequency corresponding to the

regular spacing of targets. It is also possible that the slices of the image taken fail to identify the

correct period because that one may not be strong enough in any slice.

The method suffers from being dependent on the period estimation. In the case of bad images

where targets have low expression levels and irregular shapes, we sometime obtained a period that

would be twice the expected period of 25. In a number of cases, our implementation may place 2 or

3 pin-arrays accurately as the data in Table 3.33 shows it.

In Figure A.13, we show the results for the bottom left pin-array A2 of the preprocessed NS5

image. All previous algorithm failed on that pin-array because of the noisy left edge. Results on the

set of images (S4X3,S4X5) are also better after thresholding. We show the pin-array A1 off by one

column placed as in Figure A.14 and pin-array A3 correctly placed in Figure A.15. Figure A.16

shows the artifacts responsible for the systematic misplacement of pin-array A2 and A4 with the

previous algorithm. The hybrid method is doing better by correctly identifying the position of the

pin-array along the rows. The results are only off by a few columns. Overall, this method obtains

much better results, particularly after preprocessing, than previous methods but is dependent on a

good period estimation.
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Table 3.28: Results on NS5 with the hybrid method.

Period Fourier Hough ScanAlyze δ
A1 (25,25.64) (169,110) (165,119) (167,123) 4.47
A2 (25,25) (66,96) (60,63) (63,117) 54.08
A3 (25,25) (208,204) (181,222) (180,224) 2.24
A4 (25,25) (66,196) (81,209) (79,214) 5.38

Table 3.29: Results on NS3 equalized and thresholded with the hybrid method.

Period Fourier Hough δ SA P. Fourier P. Hough P. δ
A1 (25,25) (153,99) (167,119) 4.00 (167,123) (154,106) (166,119) 4.12
A2 (25,25) (58,93) (64,115) 2.23 (63,117) (55,94) (63,114) 3.00
A3 (25,25) (189,202) (181,222) 2.23 (180,224) (193,200) (181,222) 2.24
A4 (25,25) (64,187) (81,209) 5.38 (79,214) (65,187) (81,209) 5.39

SA: ScanAlyze results

Table 3.30: Results on NS5 equalized and thresholded with the hybrid method.

Period Fourier Hough δ ScanAl. P. Fourier P. Hough P. δ
A1 (25,25.64) (168,102) (166,118) 5.10 (167,123) (169,110) (165,119) 4.47
A2 (25,25.64) (58,94) (63,114) 3.00 (63,117) (66,96) (60,63) 54.08
A3 (25,25) (195,203) (181,222) 2.23 (180,224) (208,204) (181,222) 2.24
A4 (25,25) (65,251) (80,209) 5.10 (79,214) (66,196) (81,209) 5.38

P. states for the previous results with the original image.

Table 3.31: Results on S4X3 with the hybrid method.

Period Fourier Hough ScanAlyze δ
A1 (25,25) (238,196) (250,233) (256,215) 18.97
A2 (25,25) (137,39) (155,63) (153,220) 157.01
A3 (25,25) (248,19) (254,57) (263,315) 258.16
A4 (25,25) (145,320) (164,307) (163,314) 7.07

Table 3.32: Results on S4X5 with the hybrid method.

Period Fourier Hough ScanAlyze δ
A1 (25,24.39) (242,0) (252,8) (256,215) 207.03
A2 (66.67,32.26) (168,0) Fail (153,220) –
A3 – – – – –
A4 – – – – –
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Table 3.33: Results on S4X3 equalized and thresholded with the hybrid method.

Period Fourier Hough δ SA P. Fourier P. Hough P. δ
A1 (25,25) (238,197) (250,232) 18.00 (256,215) (238,196) (250,233) 18.97
A2 (25,25) (137,39) (146,55) 165.10 (153,220) (137,39) (155,63) 157.01
A3 (25,25) (248,297) (263,311) 4.00 (263,315) (248,19) (254,57) 258.16
A4 (25,25) (146,325) (165,361) 47.00 (163,314) (145,320) (164,307) 7.07

Table 3.34: Results on S4X5 equalized and thresholded with the hybrid method.

Period Fourier Hough δ SA. P. Fourier P. Hough P. δ
A1 (25,25) (267,0) (251,8) 207.06 (256,215) (242,0) (252,8) 207.03
A2 (66.67,25) (171,0) Fail – (153,220) (168,0) Fail –
A3 – – – – – – – –
A4 – – – – – – – –

3.7 Discussion

We have made progress toward automation but none of the algorithms presented is robust enough

for bad images. The DFT based and CHT based method perform quite equally. It is important to

notice our CHT based method did not exploit all the potential of the HT (no use of the gradient

image) and we did not try the Linear HT. The preprocessing brought improvements in the addressing

and appear to be a necessary step. The hybrid method was able to correctly address the pair of

preprocessed image (NS3,NS5) and go over the problem of the noisy edge but it failed to address

pin-arrays on images containing big noisy areas as shown in Figure A.14.

Improvements on these methods can be made. A 2-dimensional DFT could be more efficient

at locating the grid since this DFT would take into account periodicity in both dimensions. The

Circular Hough Transform implemented did not use the gradient image and though we are unsure

the results would be better, it is an easy improvement to implement for this method. If the CHT did

not give us the best results, it always obtained results and never failed as the DFT based methods

which are dependent on a good period estimation.

We continue to investigate other methods. In the context of our study, Paul Ignatius Echevarria

and Jerome Punzalan, two undergraduate students at Ateneo de Manila University, Phillipines

implemented an other method using morphological operators and considering the tilting effect. This

method at least located the pair of images (NS3,NS5) correctly.
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Table 3.35: Summary Table on the distances obtained for the NS3 image.

δ
DFT CHT MWT Hybrid

Pin-Array NT T NT T NT T NT T
A1 4.47 4.47 4 4 31.24 31.24 4.12 4
A2 1.41 1.41 4.12 2.24 25.32 25.32 3 2.23
A3 2.24 1.41 25.18 25.18 72.84 72.84 2.24 2.23
A4 5 5.10 5.10 5.10 61.74 61.74 5.39 5.38

Mean 3.28 3.10 9.6 9.13 47.78 47.78 3.69 3.46

NT : Image non-tresholded ; T: Image thresholded

Table 3.36: Summary Table on the distances obtained for the NS5 image.

δ
DFT CHT MWT Hybrid

Pin-Array NT T NT T NT T NT T
A1 111.02 10.44 4 4 31.24 77.08 4.47 5.1
A2 107.02 32.02 103 103 25.32 25.32 54.08 3
A3 49.01 26.02 25.18 25.18 55.95 72.84 2.24 2.23
A4 39.05 25.50 23.53 23.53 19.42 61.74 5.38 5.1

Mean 76.52 23.50 38.92 38.92 32.98 59.25 16.54 3.86

NT : Image non-tresholded ; T: Image thresholded

We believe the following algorithms will be implemented in the future. The connected component

algorithm of Rosenfeld [36] first surveys aggregation of targets that are quite uniform in the image

and then eliminates all aggregation that do not have a satisfactory number of pixels (too small or

too large). The use of a shrinking algorithm could be an other preprocessing operation implemented

to eliminate noise and small artifacts.



CHAPTER 3. GRIDDING 43

Table 3.37: Summary Table on the distances obtained for the S4X3 image.

δ
DFT CHT MWT Hybrid

Pin-Array NT T NT T NT T NT T
A1 71.11 71.11 42.05 69.46 34.83 52.80 18.97 18.0
A2 447.16 459.59 495.42 495.42 49.74 49.74 157.01 165.1
A3 293.04 69.58 307.13 17 30.81 30.81 258.16 4
A4 493.26 426.77 522.07 535 7.81 7.81 7.07 47.0

Mean 326.14 256.76 341.67 279.22 30.79 35.29 110.30 58.5

NT : Image non-tresholded ; T: Image thresholded

Table 3.38: Summary Table on the distances obtained for the S4X5 image.

δ
DFT CHT MWT Hybrid

Pin-Array NT T NT T NT T NT T
A1 206.18 51.89 5 45.7 124.95 52.80 207.03 207.06
A2 Fail Fail 492.66 492.66 65.94 49.74 Fail Fail
A3 - - 92.44 97.74 30.81 7 - -
A4 - - 519.51 524.63 69.18 25.70 - -

Mean - - 277.40 290.18 72.72 33.81 - -

NT : Image non-tresholded ; T: Image thresholded



Chapter 4

Segmentation

Segmentation is the process of partitioning an image into its constituent parts. The segmentation

step of microarray image analysis plays a major role in the downstream data analysis as it is the

step where the data is generated. While the gridding of targets can be done manually or semi-

automatically, segmentation can not and is always done with automated segmentation techniques.

Our primary concern is to evaluate the performance of the segmentation algorithms already in use.

Ultimately we wish to identify a reliable means to segment in order to have more confidence in the

extracted data.

After defining the segmentation problem in section 4.1, we provide a classification of segmentation

techniques already used in section 4.2. We present the fixed circle segmentation and its use in the

program ScanAlyze in section 4.3. We have implemented the SRG and MWT, two algorithms more

sophisticated than the simple approach of the fixed circle segmentation and have examined their

performance. We present our results with the SRG in section 4.4 and the MWT in section 4.5. We

discuss the performances in section 4.6 and future work in section 4.7.

4.1 The Segmentation Problem

In the context of microarrays, the segmentation consists of identifying the target from the back-

ground. In section 3.1, we introduced the notion of a target patch. A target patch is a small area

expected to delineate a target and its surrounding pixels after gridding of a pin-array. A target

patch however does not really isolate the target from the background.

44
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Figure 4.1: A target patch.

In the case of a perfect experiment, targets should be circular. One approach is therefore to take

a circle of radius R in the center of the patch as the target boundary. The circle and its inside area

define a region called the target mask TM (see Figure 4.1). However, as targets have various shapes

and sizes, this approach is inadequate. Indeed the target mask may contain pixels that really belong

to the background or on the contrary part of the target may be outside the target mask (circle) as

for a big target or a misaligned target for instance.

To improve the accuracy of extracted data, the segmentation needs to go further than the naive

approach. It has to remove background pixels from the naive target mask (circle) and add target

pixels initially in the background mask. The goal is to obtain a target mask that perfectly matches

the target. We call the target site, the final target mask. Target pixels are any pixels inside the

target mask and its boundary. A background pixel is any pixel outside the target mask but inside

the target patch. The set of all the background pixels constitutes the background mask BM . We

illustrate these definitions in Figure 4.1.

Whether the target site needs to be connected or not is controversial. Some targets are made of

disconnected areas. In this case, not allowing the target site to be disconnected is critical as a part

of the target is left by the segmentation as part of the background. On the contrary, allowing the

target site to be disconnected has the disadvantage of introducing an opportunity for considering

small artifacts and surrounding noise as target pixels. In the context of this controversy, it is

interesting to examine and classify the different segmentation techniques already in use.

Spotpatchbis.eps


CHAPTER 4. SEGMENTATION 46

In the future, a target is defined by a quadruple (pin−array, row, column, dye). The quadruple

(1, 7, 4, Cy3) corresponds to the target of the pin-array A1 at the 7th row and the 4th column of the

image resulting from the scan in the Cy3 dye wavelength.

4.2 A Classification of Some Segmentation Techniques

Dudoit et al. [21] categorized some segmentation methods in four groups according to the geometry

of the targets they produce. The classification groups are the followings:

1. fixed circle

2. adaptive circle

3. adaptive shape

4. histogram-based

The fixed circle segmentation technique is used in ScanAlyze, a program written by Mark

Eisen [10]. It corresponds to naive segmentation using a square target patch with a circular target

mask. We illustrate this technique by presenting ScanAlyze in section 4.3.

The adaptive circle technique consists of adjusting automatically the radius of each circular target

mask. This technique is then able to adapt to various target sizes in case they are quite circular.

The technique is used by Genepix. Unfortunately we do not have access to Genepix or any program

performing this kind of segmentation.

To our knowledge two references only detail the segmentation technique they use. Chen et

al. [23] proposed a segmentation technique based on the Mann-Whitney test(MWT) [25, 26]. Based

on the Wilcoxon rank-sum, the MWT is a standard distribution-free statistical method used to

differentiate two populations. The MWT is implemented in the program MicroArray Suite (MS).

Dudoit et al. [21] categorized MS in the histogram segmentation group. The histograms are actually

used as a data calibration tool. The actual segmentation is made by the MWT. This statistical test

is potentially able to adapt to the size and shape of the targets. Therefore we prefer to categorize

the MWT as an adaptive shape segmentation technique.

The second segmentation technique we identified in the literature has been proposed more re-

cently by Dudoit et al. [21]. They presented a segmentation technique based on the seeded region
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growing algorithm of Adams and Bischof [24], later improved by Mehnert and Jackway [27]. The

technique is used in the program Spot [29] and falls in the category of the adaptive shape segmen-

tation technique. This study looked at the performance of the two adaptive shape segmentation

techniques: the SRG and MWT.

Dudoit et al. [21] classifies QuantArray as an histogram-based technique. Quantarray defaults

the background mean to be the mean of the 5th and 20th percentiles of the histogram and the target

mean to be the mean of the 80th to 95th percentiles.

4.3 Fixed Circle Segmentation

ScanAlyze [10] was developed by Mark Eisen in 1998-1999 at Stanford University. It supports 8 and

16-bit TIFF images and provides a semi-automated gridding. ScanAlyze can generate different grid

sizes but the user must interactively place the grid. Target positions and diameters can be adjusted

manually but Dudoit et al. [21] do not categorize ScanAlyze as an adaptive circle segmentation

technique because of the manual intervention required. However, after the user has placed a grid,

ScanAlyze can optimize the gridding or particular target positions through a refine option that uses

a Sobel operator. ScanAlyze also provides the option to rotate the grid and manage the tilting effect.

In terms of segmentation, ScanAlyze uses a fixed circle segmentation. All pixels inside a circle

constitutes what is called the target mask. All these pixels are then part of the target regardless of

their actual intensity. The background contains every external pixels that is not in the target mask

and is in a square area for which the radius can be user-defined. The radius defaults to 20 and these

settings generate background areas containing about 1300 pixels. Notice that background areas are

significantly larger than the ones determined by MicroArray Suite (approximately 400 pixels).

ScanAlyze provides several ratio estimates in addition to a quality control parameter. The first

ratio RAT2 is called an uncorrected mean ratio. Let µ be the mean of a population and θ its median.

For a particular target mask si and the corresponding background regions bki, where i represents

the channel, RAT2 is:

RAT2 =
Ch2(red)

Ch1(green)
=

µs2 − θbk2

µs1 − θbk1

(4.1)
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It is argued in the ScanAlyze manual that the median is a good estimator for the background

region if we assume a uniform distribution for the background pixels. However, the median is a

bad estimator for targets sites, as the amount of DNA across a target cannot be assumed to be

uniformly distributed. Therefore the manual advises the use of the mean for targets and median for

background. However, the target mean is susceptible to inaccuracies due to noise or artifacts.

A second estimation of the ratio is given by the median of the background–corrected pixel ratios.

ScanAlyze computes, for every pixel x in the target mask with the intensities i1 and i2 in the

respective channel 1 and 2, the following formulae called the background corrected pixel ratio:

Ch′
2

Ch′
1

(x) =
i2 − θbk2

i1 − θbk1

(4.2)

(4.3)

The final ratio exported as MRAT in the ScanAlyze output is the median of all the background

corrected pixel ratios that is:

MRAT = θ(A) where A = {Ch′2
Ch′1

(x) | ∀x ∈ target} (4.4)

(4.5)

ScanAlyze provides 2 other estimators based on linear regression and least-square minimum

as well. They are based on the assumption that a plot of Channel 2 pixel intensity against the

corresponding pixel intensity in Channel 1 will fall approximately on a line of slope equal to the

ratio. The slope estimated by linear regression or least-square minimum provides the two estimators

exported as REGR and LRAT in the ScanAlyze output. ScanAlyze also provides estimates of the

quality of a target. Correlation between target and background, fraction of pixels in the target

greater than the background or values of the Kolmogorov-Smirnov statistic to identify weak targets

are the estimates provided.

The method is simple to reproduce and yields results that are identical when the gridding and

target adjustment are correctly done. This segmentation method is naive assuming a perfect target

and therefore includes extra pixels.

4.4 Seeded Region Growing Algorithms (SRG)

Adams and Bischof [24] present the seeded region growing algorithm (SRG) as a robust and fast

segmentation technique that is parameter free. However, the algorithm is dependent on the order
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in which pixels are processed. Mehnert and Jackway [27] present an improved algorithm which is

order-independent. The following section presents issues encountered with our implementation of

the SRG of Adams and Bischof. The section is organized as follows. After a presentation of the

algorithm, we introduce the features of our implementation. We demonstrate that the seed choice is

critical in size and location and present improvements resulting in a more appropriate seed choice.

4.4.1 Principle of the SRG Algorithm

The Adams and Bischof algorithm relies on the assumption that the pixels within a region (e.g target

or background) are quite similar. Therefore, for regions that are small and of very similar intensity,

the dependence on order is undesirable. Mehnert and Jackway [27] propose an alternate seeded

region growing algorithm we are not discussing, which has the same advantages as the original one

but also is pixel order independent. We are conscious our implementation is order-dependent but

are unsure whether the problem described below can be addressed with the Mehnert and Jackway

approach.

The SRG algorithm uses a small set of pixels, called seeds, as the initial points of a region. Each

region is assigned a unique label. The seeds for a single region can be of various sizes and do not

need to be connected. At each iteration the algorithm will consider simultaneously the neighbors of

every region grown from a seed. These neighbors are stored in a sorted linked list(SSL) for efficiency

reasons. They are sorted in increasing order by a criterion δ, the distance of a pixel intensity to the

mean intensities of the neighboring region under the assumption that the noise is of equal variance.

Therefore for a pixel x of intensity I(x), neighbor of a region U of N pixels y, we have :

δ(x) =| I(x) − 1/N
∑
y∈U

I(y) | . (4.6)

Other criteria may be used if the assumption of equal variance of the noise is not justified [24].

The algorithm iterates until all pixels have been assigned to a region or labelled as a boundary

pixel. At each iteration, the first element in the list L, or the neighboring pixel z the closest to

a neighboring region U is considered such that δ(z) = min{δ(x) | x ∈ L}. The algorithm then

labels z as a region or as a boundary pixel between two regions. The SRG algorithm will decide to

add z to the region if the only neighboring pixels of z that are already labelled are the pixels of a

single region. Therefore if z has only one neighbor that belongs to an other region, z is marked as
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1 Label seed points according to their initial grouping
2 Put neighbors of seed points (the initial T) in the SSL
3 While the SSL is not empty
4 Remove first point y from the SSL
5 Test the neighbors of this point:
6 If all neighbors of y which are already labelled

(other than boundary label) have the same label -
7 Set y to this label
8 Update running mean of corresponding region
9 Add neighbors of y which are either already set nor already in the SSL

to the SSL according to their value of δ
10 Otherwise
11 Label y with the boundary label.

Figure 4.2: The Seeded Region Growing Algorithm .

boundary pixel. We reproduced in Figure 4.2 the pseudo-code of the algorithm as it is in Adams

and Bischof [24].

4.4.2 Adaptation of the SRG Algorithm to the Segmentation Problem

Recently, Dudoit et al. [21] used the SRG algorithm for their package Spot. They choose the target

seeds as n×n square regions centered on the maximum intensity pixel in the square regions obtained

by the gridding. Background seeds are crosses at the intersection of the fitted grids. Dudoit et al. [21]

grow every background and foreground regions simultaneously. They argue their seed choice allows a

local estimation of the background and prevents each target from bleeding into another one [29, 21].

To gauge the performance of this algorithm, we implemented our own seeded region growing

algorithm. Our initial seeded region growing implementation is equivalent to the one developed by

Dudoit et al. in the following ways. The foreground seeds are small n × n square region centered

on the pixel of maximum intensity in the target patch (n specified by the user). Background seeds

are n–wide crosses at the fitted grid intersection points. By growing all targets simultaneously, this

initial implementation exhibited a catastrophic behavior, as we typically experienced the bleeding of

one background seed over the whole image. This background region will be grown first and target

regions were almost not grown. Though our implementation may be different from the Spot one, we

are skeptical about the appropriateness of the Dudoit et al. [21] seed choice. We are not convinced
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it really avoids the bleeding effect in the case of a mediocre image where targets are not highly

expressed and of non-uniform intensity.

In a second implementation, we considered a 25×25 target patch and executed the SRG algorithm

on one target at a time. This eliminates the bleeding effect and still provides enough background

pixels to do a local estimation (as much as in MicroArray Suite in fact). Our background seed is

comprised of four starting half-crosses in the corners of our squared image. No information is given

by Dudoit et al. on the criteria δ they used or whether they implemented the improved version of

Mehnert and Jackway or the original version of Adams and Bischof. We implemented the order-

dependent version of Adams and Bischof with a δ using the previous formula: δ(z) = min{δ(x) |
x ∈ L}. Other possible differences between the two implementations are the following. On the

first hand, the Spot implementation seems to be applied to the combined image. The seed choice is

therefore susceptible to be made on the combined image whereas our implementation chooses a seed

for each channel. The Spot implementation may also grow the regions from the combined image

whereas we grow a region for both channels and take the union of the two regions to compute our

results.

4.4.3 A Critical Seed Choice

Dudoit et al. [21] mention that poor performance is expected if the region is not homogeneous in

intensity. This case actually occurs quite often in mediocre images, and this issue raises a major

doubt on the utility of this algorithm. Indeed, we know targets can have a mountain, doughnut,

crescent or other shape. In this section, we show the influence of the seed choice in the results

obtained for particular targets. We present results obtained with different seed choice(s).

4.4.3.1 Seed size sensitivity

We use the term “beignet”1 for the type of target resembling to the target (1, 7, 4, Cy3) of our

experiment S3 and shown in Figure B.1. This target has a circular shape but does not have a good

uniformity of intensities. Though the target is comprised of high intensity values that make it easily

distinguishable from the background, there are big discrepancies between the target pixel values.

Table 4.1 presents the distribution of intensities in this target after the SRG was run with a seed size

1“Beignet” is the french term for a pastry that is circular, of a uniform color and does not have a hole like the
doughnut. It is often filled with marmelade.
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Table 4.1: Intensities of the beignet (seed size = 2)
R C 10 15 20
6 B:428 B:2s B:2s B:83 B:0 B:0 B:197 B:0 B:974 B:1s B:3s B:439 B:50

B:267 B:2s B:0 B:0 B:22 B:572 B:505 B:2s B:0 B:45 B:1s B:330 B:0
B:909 B:1s X:79 X:1s X:1s X:292 B:0 B:428 B:1s B:3s B:5s B:1s B:3s
B:152 B:472 X:2s S:6s S:45s X:50s X:54s X:44s X:61s X:52s B:17s B:4s B:0

10 B:2s B:110 X:3s S:45s S:65s S:52s S:53s S:43s S:53s X:65s B:43s B:6s B:630
B:88 B:1s X:17s S:16s S:21s S:22s S:23s S:24s X:16s X:13s B:26s B:31s B:38s
B:190 B:9s X:56s X:22s X:20s X:11s X:19s X:25s X:24s B:18s B:35s B:15s B:37s
B:1s B:14s B:48s B:18s B:20s B:18s B:14s B:10s B:15s B:13s B:14s B:17s B:25s
B:2s B:10s B:36s B:30s B:32s B:20s B:19s B:8s B:9s B:26s B:8s B:13s B:10s

15 B:1s B:5s B:37s B:25s B:22s B:20s B:18s B:24s B:18s B:25s B:19s B:30s B:30s
B:46 B:4s B:49s B:24s B:18s B:24s B:19s B:12s B:12s B:20s B:24s B:21s B:39s
B:40 B:156 B:2s B:30s B:62s B:54s B:41s B:35s B:28s B:37s B:25s B:21s B:51s
B:0 B:3s B:1s B:20s B:55s B:65s B:56s B:45s B:57s B:35s B:37s B:46s B:14s
B:0 B:0 B:674 B:139 B:41 B:1s B:5s B:6s B:9s B:8s B:9s B:1s B:306

20 B:940 B:2s B:1s B:351 B:974 B:1s B:4s B:5s B:21s B:930 B:1s B:1s B:88
B:1s B:886 B:832 B:1s B:1s B:1s B:3s B:872 B:1s B:475 B:195 B:2s B:2
B:0 B:0 B:0 B:715 B:352 B:0 B:0 B:1s B:3s B:235 B:379 B:786 B:18

Each pixel is defined by a couple “Label:Intensity”. The labels B, X and S correspond to the label
assigned by our SRG algorithm as for background, boundary, or target. A pixel intensity between
61 000 and 61999 is denoted 61s.

of 2. The target is comprised of a pixel area of high-intensity ranging from the 45s to the 60s. Note

that this area is also close to the boundary of the target. We then observe a jump in the intensities

and most of the target pixels intensity have values comprised in the 20s except for another small

high-intensity regions.

We obtained various results by changing the seed size on a certain number of targets with the

same characteristics as the previous beignet. Figure B.2 and Figure B.3 show the results obtained

for a seed size of 2 and 3 on our beignet. Though the initial seed is in the same location, the results

are radically different.

One undesirable behavior occurs when a high–intensity pixel may be isolated near the edge of

the target but right next to background pixels. In that case the seed choice can include background

pixels. We believe this unfortunate effect may actually be the reason why the seed size 3, by including

more background pixels, was able to grow a region larger than the high-intensity region. We explain

in the next paragraphs how the algorithm obtained the result of the target (1, 7, 4) with an initial

seed size equal to 2 shown in Figure B.2.

We show first the initial labelling reflecting the seed choice for the target and background. The

target seed is centered on the pixel (10,12,65535), a saturated pixel. This target has only 3 pixels

that have the saturation value 65535. We took care to choose a target that is relatively circular

and sufficiently expressed so that it is easily distinguishable from the background. The initial seed

region consist of the set of pixels (9, 11, 6985), (9, 12, 45807), (10, 11, 45931), (10, 12, 65535).
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BB0000000000000000000000BB
B000000000000000000000000B
00000000000000000000000000
00000000000000000000000000
00000000000000000000000000
00000000000000000000000000
00000000000000000000000000
00000000000000000000000000
0000000000SS00000000000000
0000000000SS00000000000000
00000000000000000000000000
00000000000000000000000000
00000000000000000000000000
00000000000000000000000000
00000000000000000000000000
00000000000000000000000000
00000000000000000000000000
00000000000000000000000000
00000000000000000000000000
00000000000000000000000000
00000000000000000000000000
00000000000000000000000000
00000000000000000000000000
00000000000000000000000000
B0000000000000000000000B0B
BB0000000000000000000000BB

Figure 4.3: Labels at Iteration 1 of the SRG on the beignet.
B: Background; 0: Not labelled yet; S: Target (Spot); X: Boundary.
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BB0B00BB0BB00BBBBBB00000BB
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00B0BBBBB0B0B0B00BB000B00B
00B0000B000BB00BBB00B0B0B0
000BB00B00000B0BB0B00B00B0
00BB000B0000BB0000BB0000B0
000BB0BBB00000BB0000BB0000
BBBBBB0BB0SS0000000BBBBBBB
BB000BB000SS0000000B0BBBB0
0BB00000B000000000000B00BB
000BB0BB0000000000000BBBBB
0B0BBB0B0000000000000BBBBB
0B00B00000000000000000B0BB
B000B0BB0000000000000B0BBB
0B0B00BB0000000000000BBBBB
0BB00B0BB000000000000BBBBB
0BB00B000000000000000BBB00
0B00B0B00BBBB00000BBBBBBBB
BBBBB0BB0BBBB000BBBBBBBBBB
000BB0BBBBBB00BBBB0BB0B0BB
000BB00000BBBB00BBBBBBBBBB
000BB0B0BBB0BBBBBBBBBBBB00
B00000BBB00B0B0BB0BBB0000B
B00BBBBBBB0B0B0BBBBBB0BB0B
BB0BBB0BBB000BBBBBBBB000BB

Figure 4.4: Labels at Iteration 300 of the SRG on the beignet.

The SRG starts growing the background first as for any target. This behavior is a consequence

of the small values and differences among most background pixels. After a few hundred iterations,

the target region though not yet labelled is distinguishable. We show the layout of our labelling

at iteration 300 ( Figure 4.4) and 545 ( Figure 4.5). In the last one, we can recognize the target

that has not yet been labelled. It is easy to check that the pixel values not labelled are perfectly

matching the target.

Let us see now how the algorithm fails from that iteration. Table 4.2 shows that pixels of

intensities in the range of 16,000 to 20,000 are labelled as background. A look at the labelling layout

in Table 4.1 allows one to understand how it happens. The seed region has a very high mean (in the

40,000) while many of its neighboring pixels are in the 15,000 and 20,000. This unfortunate barrier of

middle range targets delays the growing of the target region to the profit of the background. Indeed,
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Figure 4.5: Labels at Iteration 545 of the SRG on the beignet.
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Table 4.2: Table of the SRG Iterations 545 to 571 on the beignet.

Iteration Target δ Pixel Int. Label Mean of the Region
545 (1,18) 6268 B
546 (11,20) 6313 6959 B 646
547 (18,16) 7345 8022 B 677
548 (11,8) 8407 9297 B 890
549 (18,17) 8858 9535 B 677
550 (18,15) 9013 9690 B 677
551 (8,12) 50698 X 42991.2
552 (15,20) 9790 10442 B 652
553 (13,8) 10104 14555 B 4451
554 (9,12) 11661 52726 S 41065
555 (9,13) 8634 53248 S 44614
556 (9,14) 2300 43547 S 41247
557 (9,15) 8101 53661 S 45560
558 (12,8) 13665 14555 B 890
559 (17,19) 14113 14795 B 682
560 (8,17) 16840 17320 B 480
561 (10,12) 18536 22528 S 3992
562 (9,16) 46018 X
563 (17,10) 19444 20230 B 786
564 (14,20) 19509 20161 B 652
565 (13,19) 9659 10794 B 1135
566 (13,18) 12014 13166 B 1152
567 (13,17) 7318 8491 B 1173
568 (12,16) 12096 13282 B 1186
569 (13,15) 7972 9179 B 1207
570 (13,14) 7193 8414 B 1221
571 (12,14) 8998 10219 B 1221

a neighboring pixel in the 15,000 is closer to the background mean in the range of 500 than it is from

the 40,000. When the background is starting to add pixel intensities in the range of the 6,000 and

10,000, the mean of the background region is increasing. The mean is then closer to target pixels in

the 15s, the next kind of target to be added and so on. Iteration 571, shown in Figure 4.6, shows

that the background region is growing a path into the target by the lowest values of the target.

This result is a consequence of a small high-intensity region of the target. As this region is

grown, it maintains a very high mean, and the nearby middle-range intensity pixels are added to

the list with a big value of delta. These middle-range intensity targets will only be examined very
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Figure 4.6: Labels at Iteration 571 of the SRG on the beignet.
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late. These targets create a “barrier”to the expansion of the target region allowing the background

to insert and add neighboring pixels with high intensity but a lower δ. A target with a big δ can

still be added to a region it clearly does not happen to be a member of. The pitfall of the SRG

is that its decision to add a pixel to a region is based on the label of surrounding pixels. If all

of them are background pixels, then regardless of the value of the considered pixel it will insert it

in the background region. This undesirable effect is occurring quite often when we have a local

high-intensity region picked as the initial seed. It is a known fact that targets do not have uniform

pixel values. Therefore this behavior is occurring often for highly-expressed targets that have a

wider distribution of intensities and especially in saturated images. We argue the problem lies in

considering the maximum intensity as the initial seed. If we take a lower value but in the middle

of the range of the target intensity values, this problem should not occur. We avoid considering a

particular region of very high-intensity but this region will still be grown by a seed region starting

with a lower average since the background should still create bigger δ’s.

4.4.3.2 Seed Location

The location of the seed also has a crucial effect on the result of the SRG algorithm. We experimented

with different methods to choose the target seed.

If n is the seed size, we call a “Maximum” seed, an n×n area centered on the maximum intensity

pixel in the entire target patch. This seed choice is the one used by Dudoit et al. [21]. We call a

“Maximum Mean” seed, an n × n square area of maximum mean in the target patch. This seed

choice can be justified by our willingness to avoid taking a high-intensity noise pixel as the initial

seed. Indeed, Figure 8 in [21] shows some initial seeds are in extreme positions of the target patch

and away from the center of the target patch. We noticed this behavior in our implementation too

and remarked that the “Max” seed in these cases is often a high-intensity noise pixel disconnected

from the target.

We call a “Center” seed an n×n area centered on the maximum intensity pixel in a s× s square

area S where s is small and S is in the center of the target patch. The principle is again to restrict

the target seed to be close to the center of the target patch. We show in Figure B.4 to Figure B.9

the different results that have been obtained for different targets with different seed choices.

The Figure B.4 to Figure B.9 show that neither method is better than the other. Depending

on the shape and intensities of a target, either of the methods may work better. For some targets,
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the result will always be unsatisfactory. Doughnut–shaped targets are the hardest to segment.

We assume this shape is occurring when the pin is coming too close to the glassslide to drop the

material. Therefore the material may be spread out all around. Justifying this assumption can

be accomplished by direct experimentation. As Figure B.4 shows, doughnut–shaped targets are

typically badly segmented by the SRG algorithm when taking the maximum intensity as an initial

seed. Taking a centered seed, as in Figure B.5 yields better results for this type of targets. In the

case of a doughnut–shaped target, a central seed will start growing a region whose mean is below

the high-intensity values. The δ of these high-intensity values will therefore be closer to this mean

than the background ones. Unfortunately if the crown has a hole and we get a target in the shape

of a “Croissant”, the background seed will step into the target area as in section 4.4.3.1.

4.4.4 Improve the Seed Choice

The SRG algorithm behavior is unreliable as it is seed-size and seed-location dependent. These

examples shows the SRG performance are unsatisfactory in many cases. While the seed choice is

critical in size and location, the SRG can be very efficient at segmenting target in a few cases.

A good segmentation technique is expected to perform well on all targets except a few. We

argue the seed choice must be adapted to the different target shape. However, most of the time no

a priori knowledge of a target shape is initially available. Improving the SRG requires finding an

appropriate seed choice that would adapt to the various targets. We present in the following section

seed choices we tried to improve the SRG performance.

4.4.4.1 A random and unconnected seed

Dudoit et al. [21] choose a square region centered on the maximum intensity pixel in the target

patch. This seed choice is not appropriate for multiple reasons. First, it can choose a small artifact

or noise as the initial target seed. Second, it can also pick a target seed in a region of very high

intensities that does not represent the range of all intensities in the target. It would then only grow a

region of very high intensity and fail to grow the rest of the target as shown previously. Figure B.10

to Figure B.19 show some results for this seed choice.

We tried to choose as a target seed random pixels that satisfy the two following criteria:

1. Any target seed pixel must be located inside a circle of radius 9 centered on the target patch;
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and

2. Any seed pixel should have an intensity value in the 20 percent highest values of the target

within the circle.

We justify the threshold of 20 percent by experimental observation. Experimental observations

showed that with a larger percentage, noise pixels or artifacts are susceptible to be mistaken as target

pixels whereas a smaller percentage is too restrictive and does not allow the algorithm to consider

a sufficient intensity range for an average target. It can also be argued that the histogram-based

segmentation technique used by QuanArray is using the 80th to 95th percentiles for determining

the target mean. QuantArray also uses the 20 percent highest intensity values. Obviously, the right

percentage is target-dependent. We present the results of this seed choice on a set of interesting

targets from Figure B.20 to Figure B.29.

These examples show the choice of a few random pixels in the highest intensities generally lead

to a better result. It can be argued that this method takes additional background pixels as target

pixels. The Figure B.20 to Figure B.29 show the doughnut-shaped segmentation is still unperfect

as the segmentation of low-expressed targets. However, the results are still more satisfactory.

4.4.4.2 Union Method

When segmentation fails with either seed choice, the result is most often a subset of the expected

target site. We decided to take the union of the results obtained by these different seed choices. As

each seed choice is successful on some set of targets, the union consists generally of the best solution

and a few extra pixels. We show the results on the same target as previously.

The results appear to be quite satisfactory. The doughnut-shaped and low-level expression target

especially have yet interesting segmented region. Some target like the target (2, 6, 15, Cy3) or (1,

3, 17, Cy3) have extra pixels. No target can be detected on the location (2, 15, 7, Cy3) and this

method grew the whole background. Perhaps this union of seed choice can also be used to find

unexpressed target and decide whether a target exists or not based on the size of the target area

grown.
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4.5 Mann-Whitney Test (MWT)

The Mann-Whitney test is also called the Wilcoxon two-sample test [25]. Historically Wilcoxon

did present a similar test first but Mann and Whitney coined a name U for their statistic and

accompanied their work with tables [26]. After a presentation of the theory of the Mann-Whitney

Test and its application in the context of MicroArray Suite, we present some results showing the

limits of the MWT.

4.5.1 Principle of the MWT

The Mann-Whitney test is a distribution free statistical test aimed at finding a significant difference

between the population distributions of two sets A and B. In statistical terms, it is a test of the null

hypotheses H0 that two independent samples of observations X1, ...,Xm and Y1, ..., Yn have come

from populations having the same distribution [25]. Let µX and µY be the mean of X and Y , two

independent samples of two sets A and B. We can then also define the null hypotheses as H0: µX

= µY .

The test is based on Wilcoxon’s rank sum W defined as the sum of the rank of the elements of

a sample Y that has been ordered with the X. To illustrate the previous definition, let us take a

random sample R of n observations ordered as follows R1 < R2 < ... < Rn and S be the subset

{S1, S2, S3}={R1, R2, Rn}. The rank sum of S against R − S is WS = rk(S1) + rk(S2) + rk(S3) =

1 + 2 + n = n + 3.

The principle of the MWT is as follows. To compare the set A and B, the MWT pick a sample

of observations X of size n in A and a sample of observations Y of size m in B. The MWT then

order the (n + m) observations. The statistic UX is the sum of the counts of observations of X that

precedes each observation of Y . Therefore the MWT can also be viewed as a one-tail test to detect

the shift of the X (Y ) distribution to the right of the Y (X) distribution. Initially observations

of X (Y ) are all placed left from the observations of Y (X) and the way samples are marked does

not influence the ranks. If we consider two independent samples X and Y of n and m observations

respectively, it can be shown that:

UX = n × m + n × (n + 1)/2 − WX (4.7)

and

UY = n × m + m × (m + 1)/2 − WY (4.8)
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Figure 4.7: Principle of the Mann-Whitney Test used for microarray images segmentation.

Notice that UX(UY ) is small when WX(WY ) is large. Therefore UX(UY ) is small when the population

distribution of the X(Y ) measurements is shifted to the right of the population distribution of Y (X).

The MWT rejects H0 based on a significance level α. The desired significance level α serves

as the dividing point between rejection and non-rejection. With α, n and m, we can find U0 in

probability tables such that P (U < U0) ≤ α. This probability yields the confidence in rejecting the

null hypotheses H0 when U < U0.

U is sometime called a non-parametric statistic because the dependent variables are the ranks.

Though the Mann-Whitney test is a distribution free test (there is no assumption on the distribution

of the original sets A and B), notice that the statistic U is close to being normally distributed for

samples as small as 8.

4.5.2 Adaptation of the MWT to our Segmentation Problem

Chen et al. [23] present the Mann-Whitney test for cDNA microarray target segmentation as follows.

Manual or automatic gridding yields square target patches. The method first determines a pre-

defined target mask T for each pin-array. T will be used as the original mask for the MWT of every

MWT.eps
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target in the corresponding pin-array. T is obtained as follows. Given σ the standard deviation

of pixel intensities in a pin-array, w a user specified weight defaulted to 3 and µb the mean of the

background, any target patch pixel (x, y, i) such that i > wσµb is included in the mask T. We can

also view T as the initial population A for the MWT. The set of pixels outside the target mask make

up the target background or also the population B for the MWT.

The MWT then takes two independent samples from the two population A and B. Chen et

al. [23] take the n smallest pixel values from the target mask as sample X and m random pixels

from the background as sample Y . They advise to take 8 pixels for each sample as the MWT

statistic U is approximately normal for this size of sample. We followed that advice and therefore

X = (x1, y1, i1), ..., (x8, y8, i8) and Y = (x
′
1, y

′
1, i

′
1), ..., (x

′
8, y

′
8, i

′
8)

The MWT [25] [26] is applied to each target mask as follows. The two samples are ordered and

the shift of the pixel intensities i1 to i8 in sample X to the right of the pixel intensities i
′
1 to i

′
8 is

assessed. As long as U ≥ U0, the null hypotheses is not rejected. The MWT proceeds to remove the

pixels of smallest intensity from the target mask. New samples X and Y are chosen and iteratively

the pixel values are removed from the mask until H0 is rejected. When U < U0, H0 is rejected with

the confidence α We typically used a confidence α of 95 percent or 99.9999 percent. After the MWT

rejected H0, the segmented regions are called target site.

The final state of the algorithm yields an unchanged background area (consisting of all pixels

that were not contained in the original target mask) and a target site consisting of the original target

mask minus the pixels rejected by the MWT. The algorithm proceeds then to compute the ratio.

In [23], the gene expression level is measured as the median of the target site minus the median of

the background area. MicroArray Suite actually evaluates the expression level by the mean of the

target site minus the mean of the background.

4.5.3 Limitations of the MWT

The subsection is divided in two parts. In a first part, we present critical results obtained with

MicroArray Suite. In a second part, we show a few observations obtained from our own version of

the MWT.
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4.5.3.1 MicroArray Suite Performance

As we confronted our implementation to the results of MicroArray Suite, we became aware of

the limits of MicroArray Suite MWT. It is possible to visualize the target site resulting from the

Mann-Whitney Test. We already showed in Figure 3.8 that a misaligned target could be badly

segmented. This result is the consequence of a bad addressing more than a bad segmentation.

However, the Figure 3.8 also shows the segmentation was not well done as a large part of the target

site seems to belong to the background. Figure 3.8 is a case where the original target mask is not

covering the whole target. Only half of the target is in the final target mask and half the mask is

containing invalid pixels. By assessing the other segmentations, the original target looked however

to be quite circular.

Figure C.1 shows segmentation results on a few targets by MS, all extracted from the top left

pin-array of the image S3. Though the first three targets obviously appear to have no hybridization,

the final target site are quite different and of a consequent dimension. The same original target

mask is normally used. The fourth target shows what we think is close to the original target mask

chosen by MS. This site was actually the biggest target site found on the whole grid. This mask is

abnormally big due to a large noisy area on our image. This example demonstrates that the original

target mask choice used by MicroArray Suite can be unsatisfactory. The last target picture shows

a typical result for a target of good quality. As Dudoit et al. [21] pointed out, we confirm here the

MicroArray Suite MWT usually selects extra pixels as being part of the target.

4.5.3.2 Critical Observations on the MWT

We have observed that targets typically have a circular shape of a radius varying between 6 and

8 pixels for an average microarray hybridization. Even in the case of bad microarray images, the

target mask considered should be a circle. Our implementation differs from the Chen et al. [23]

one as our target patches are circle centered on the square region. We believe the MWT should

be able to handle the different target shapes regardless of the original target mask. As long as the

target patch is big enough to include all the target pixels, the MWT should be strong enough to

eliminate background pixels. In our attempts to obtain closer results to the MicroArray Suite’ ones,

we modified parameters such as the radius of the target patch and the confidence level.

Our first observation is that the trend to take extra pixels is less important in our implementation

than it seems to be in the MicroArray Suite one. Our result are all consistent and we do not obtain
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large target areas. We are conscious our implementation is using the most restrictive significance

level (99.9999%) but the MicroArray Suite results shown were at a 95%.

Unless noted otherwise all these pictures result from a MWT with 8 pixel samples and a confidence

level that is maximum (U0 = 0). The Figures on the segmentation of the target (1, 7, 4) and (1,

7, 23) from the target mask with different radius show that the MWT is radius-dependent and

more precisely mask-dependent. Secondly the best segmentation is obtained with a radius of 7 for

the target (1, 7, 4) and a radius of 9 gives the best segmentation with the target (1, 7, 23). We

could show other targets whose best segmentation is obtained with a radius of 5, 6, or some other

value. This result shows the target mask must be adapted to the target shape. This result shows

an adaptive circle addressing can give better results than the current method used by MicroArray

Suite of computing an average target mask. This issue also raises doubts about the validity of the

data extracted.

Intrigued by the target site obtained by MicroArray Suite on apparently non-hybridized areas,

we looked at the effect of the MWT on a background area outside the array. On a statistical point of

view, the MWT should not detect any difference in the distributions of the target mask and target

background even with the presence of noise supposedly random.

The Figures C.14 to C.17 show that the MWT is extracting noise pixels in a no-target area. A

few pixels, generally about 30, are still selected by our implementation. This behavior is occurring in

both channels and under the maximum significance level. This result suggests the MWT results needs

to be used cautiously as this behavior will influence the estimation of weak targets. Figures C.18

to C.20 shows the radius of the target mask still has an influence on the result. Figures C.21 and C.22

show the expected dependency of the result on the confidence level.

4.6 Comparison of Performances

We present next data obtained from the segmentation of our SRG (Union method with a seed size

of 3) and MWT algorithms. The size of the union of the target sites obtained in each channel was

chosen as the criterion to evaluate the performance of our segmentation technique. We compare our

results to the one obtained by MicroArray Suite (MS). We also compare the background corrected

ratios (RAT2 of ScanAlyze) of our implementations to the one of MS.

Table 4.3 shows our SRG implementation typically undersegments a target. In many cases, the
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Table 4.3: Sizes of the target site obtained with our SRG (Union method) on S3 images.

Pin-Array Row Col Our SRG site MS site
1 2 22 68 118
1 3 8 64 116
1 3 14 122 117
1 3 17 70 114
1 3 24 165 113
1 4 5 53 114
1 5 3 62 118
1 5 8 67 113
1 7 4 140 117
1 7 5 63 118
1 7 9 298 109
1 7 10 82 117
1 7 23 66 118
1 7 24 59 116
1 11 22 222 109
1 11 23 81 101
1 15 3 127 109
1 16 24 65 113
1 17 5 87 110
1 17 7 120 116
1 18 22 91 110
1 19 4 132 118
2 3 11 118 131
2 6 15 88 130
2 15 7 117 117
3 3 11 68 120
3 6 15 38 123
3 15 7 68 127
4 10 14 69 197
4 11 20 646 217
4 14 9 89 320
4 15 6 301 322

Table 4.3 and Table 4.4 show the results obtained on the same spots by our SRG and MWT
implementations.
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union target site is much smaller than the one obtained by MS. MS typically oversegment targets

and our SRG still tend to undersegment targets in many cases. We also think MS site sizes are

suspiciously close from each other in a common pin-array and have no idea why this occur.

The SRG can also have extreme behaviors and grow a site of 646 pixels (vs 217) or 298 (vs

109). When the target is low-expressed, the SRG can fail to locate the target and misinterpret and

grow a large background area as the target. The first case can be explained as the pin-array A4

was overlayed by a large artifact. However, in the second case (1, 7 , 9) is a reasonable target to

segment. The target is small and slightly low-expressed and the patch is not very noisy.

Table 4.4 show our MWT systematically has larger site. We think this result is due to the fact

that we applied our segmentation to both channel and then took the union of the segmented regions

whereas MS computes its site on the combined image. The intersection of MS regions is close to the

union. However, our implementation has a bigger number of pixels that are not in the intersection

and are in the union. Paradoxically, our results visually appear to match more closely the targets

than the one shown by MS.

Table 4.5 and Table 4.6 present the background corrected ratios obtained with our SRG and

MWT against the background corrected (uncalibrated) ratio of MWT. The background corrected

ratio is commonly used (Refer to equation 4.1). It is hard to hold a judgment on these results as

even MS ratios can not be considered as a safe reference. However, the SRG shows some extreme

behavior with negative ratios or values as big as 30. A negative value can be obtained when the

background mean is bigger than the target site mean. This behavior occurs with weak targets as

for (1, 11, 22, Cy3) and (1, 15, 3, Cy3) or noisy patches as for (4, 11, 20). The MWT has a more

consistent behavior and all ratios obtained are in a trustful range. Our ratios are typically smaller

than the MS ratios and we think it is due to the fact our background means are bigger than those

obtained by MS. We are actually unsure how MS obtains such small background means.

4.7 Discussion

The results obtained with the MWT are more reliable than the ones obtained with the SRG. The

SRG can in some cases make a quite perfect segmentation. However, in too many cases the seed

choice is critical and the result is catastrophic. We have shown the performance of the SRG can be

improved by a more appropriate seed choice. However, the union method that appears to perform
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Table 4.4: Sizes of the target site obtained with our MWT on images of the S3 experiment.

Pin-Array Row Col Our MWT site MS Union Area
1 2 22 167 118
1 3 8 136 116
1 3 14 174 117
1 3 17 124 114
1 3 24 120 113
1 4 5 116 114
1 5 3 130 118
1 5 8 133 113
1 7 4 170 117
1 7 5 138 118
1 7 9 110 109
1 7 10 124 117
1 7 23 195 118
1 7 24 179 116
1 11 22 102 109
1 11 23 74 101
1 15 3 100 109
1 16 24 124 113
1 17 5 158 110
1 17 7 135 116
1 18 22 137 110
1 19 4 163 118
2 3 11 100 131
2 6 15 112 130
2 15 7 104 117
3 3 11 80 120
3 6 15 79 123
3 15 7 80 127
4 10 14 72 197
4 11 20 41 217
4 14 9 105 320
4 15 6 104 322
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Table 4.5: Background corrected Ratios of our SRG vs MS ones.

Pin-Array Row Col Our SRG ratios MS ratios
1 2 22 0.223 0.324
1 3 8 0.132 0.207
1 3 14 0.135 0.187
1 3 17 0.056 0.355
1 3 24 0.138 0.389
1 4 5 0.146 0.267
1 5 3 0.232 0.295
1 5 8 0.073 0.178
1 7 4 0.074 0.148
1 7 5 0.106 0.168
1 7 9 -0.0220 0.435
1 7 10 0.131 0.264
1 7 23 0.046 0.149
1 7 24 0.139 0.369
1 11 22 -8.776 4.345
1 11 23 0.494 7.252
1 15 3 30.655 1.759
1 16 24 0.128 0.184
1 17 5 0.050 0.190
1 17 7 0.262 0.467
1 18 22 0.161 0.285
1 19 4 0.100 0.150
2 3 11 0.124 3.080
2 6 15 0.140 0.726
2 15 7 1.636 7.423
3 3 11 1.534 1.794
3 6 15 1.181 1.394
3 15 7 3.124 1.641
4 10 14 0.223 0.551
4 11 20 -0.016 0.502
4 14 9 0.055 1.451
4 15 6 0.036 1.952
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Table 4.6: Background corrected Ratios of our MWT vs MS ones.

Pin-Array Row Col Our MWT ratios MS ratios
1 2 22 0.133 0.324
1 3 8 0.172 0.207
1 3 14 0.167 0.187
1 3 17 0.174 0.355
1 3 24 0.195 0.389
1 4 5 0.198 0.267
1 5 3 0.242 0.295
1 5 8 0.126 0.178
1 7 4 0.089 0.148
1 7 5 0.121 0.168
1 7 9 0.158 0.435
1 7 10 0.152 0.264
1 7 23 0.065 0.149
1 7 24 0.158 0.369
1 11 22 0.935 4.345
1 11 23 1.826 7.252
1 15 3 0.759 1.759
1 16 24 0.163 0.184
1 17 5 0.083 0.190
1 17 7 0.236 0.467
1 18 22 0.215 0.285
1 19 4 0.067 0.150
2 3 11 1.024 3.080
2 6 15 0.231 0.726
2 15 7 1.610 7.423
3 3 11 1.104 1.794
3 6 15 0.596 1.394
3 15 7 1.000 1.641
4 10 14 0.401 0.551
4 11 20 1.305 0.502
4 14 9 0.418 1.451
4 15 6 0.629 1.952
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the best generally takes extra noise or even background pixels in the target site. The results are

still unsatisfactory compared to the MWT ones. If the MWT systematically includes noise or small

artifact pixels in the target site, it does not fail to identify a major part of a target unless the original

mask is too small to cover the entire target. The MWT is dependent on the original target mask

(circle), but we believe it is possible to adjust the target mask in size and location to cover the target

in an appropriate way. An improvement is also needed to compensate for the noise. Perhaps we can

restrict the target area to be the biggest connected area after the application of the MWT.

The MWT variance of the result is less important than the SRG ones. Future work can include

an implementation of the Mehnert and Jackway SRG version and further investigations to make the

SRG more reliable on different target shapes. We are more optimistic about improving the MWT

segmentation. Future work could consist of the implementation of the Wilcoxon–Wilcox multiple

comparison test involving K samples. The randomness involved in the choice of the background set

in the application of the MWT devised by Chen et al. [23] is influencing the result. It may be able

to reduce the number of extra pixels in the final segmented target site by running multiple MWT.

An alternative method may be designed to reinsert target pixels originally outside the target site

because the original target mask was not covering the real target correctly.

Analysis of the data obtained is complex because of the numerous parameters involved in a

microarray experiment. The difficulty of this research is the lack of reference. No software system can

serve as a reference. Only the similarity of results between many system can bring some confidence

in a result. A reliable way to evaluate a segmentation technique is to create synthetic images. Such

images have results known in advance that can serve as a reference. We started to create and look

forward to creating more complex synthetic image.
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Data Extraction and Analysis

Many methods exist to analyze the extracted data. The background corrected ratio (see Equa-

tion 4.1), also called the raw ratio is commonly used. It is accepted that background corrected

ratios need to be calibrated because of the difference in dye incorporation at least. Many methods

exist to normalize the data and obtain calibrated ratios. However, we have been interested so far by

the method used by MicroArray Suite (MS). As going from the theory to the practice still requires an

effort to understand how the data was obtained, we present our work to decipher the MS calibration

method. We present the theory and iterative procedure used by MicroArray Suite to calibrate ratios

in section 5.1. In section 5.2, we present experiments made with synthetic images made to test and

confirm this calibration procedure. We present a few results revealing how MicroArray Suite selects

target and pixel outliers. In section 5.3, we present the results obtained by MS on various artificial

data.

5.1 Principle of the MicroArray Suite (MS) Procedure

MicroArray Suite (MS) [37] was initially developed by Dr. Chen based upon work carried out at

the Cancer Research Lab at NHGRI. Further development has been done by ScanAlytics Inc. which

developed a commercial version of MS that is included in IPLab. One key features govern the way

MS operates: the use of designated control (housekeeping or reference) genes to normalize the data.

From a user point of view, the MS process is the following. Gridding is done manually. A

manual registration (large X-Y shift) of the two images is sometimes necessary. We experienced

72
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once a failure of MS to correctly register the images with the automatic registration (small X-Y

shift) and the combined image were off by a column. MS provides a picture of the target site after

the MWT. The program undertakes a sequence of calculations summarized below:

1. Compute the mean of the total target intensities ;

2. Compute the mean of the local background;

3. Determine the corrected mean target intensity (subtract local background mean);

4. Calculate the background corrected ratios for all the R/G targets;

5. Determine the calibration factor M with the iterative procedure computing the “calibrated”

ratios of the control genes; and

6. Divide each background corrected ratio by M to obtain a calibrated ratio for each gene.

The next paragraph present some computational details and the calibration procedure. Given si

target site and bki background site in the channel i, the background corrected mean ratio is:

Ratio =
Ch2(red)

Ch1(green)
=

µs2 − µbk2

µs1 − µbk1

. (5.1)

The motivation to subtract the mean of the background pixels from the mean of target site

pixels is to eliminate any background contribution such as the glass slide or noise. The background

corrected mean µsi
−µbki

is corresponding to the gene expression. It represents the expression level

of the gene in this channel of this particular experiment. We wish to outstand the fact that the

MS data file is confusing at this point. The reported S#1 Mean and S#2 Mean are not target site

means µsi
but background corrected mean (see Table 5.2) such that:

S#iMean = µsi
− S#iBkMean. (5.2)

Because of the incorporation of dyes and the characteristics of the scanner at least, gene ex-

pression may differ significantly for the red and the green samples. The background corrected ratio

of Equation 5.1 is an unsatisfactory measure. Chen et al. [23] developed a statistical method to

calibrate the ratio distribution used in MicroArray Suite. Chen et al. [23] point out that even if red

and green measurements are identically distributed, the mean of the ratio distribution will not be

1. Indeed the ratio distribution is dependent on the genes printed. The expression of these genes
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is unknown and subject to variations. There is therefore no reason for the mean of all ratios to be

equal to 1. Because of the differences in the characteristics of dyes, it is unacceptable to consider

a desired null hypotheses H0:µRk
= µGk

where Rk and Gk are genes of the red and green channel.

Chen et al. [23] assume it momentarily to explain the basis of their theory but then argue a mRNA

abundance is dependent on the abundance of the factors leading to its selection. Assuming the

variations for any particular mRNA are normally distributed and independent of other transcripts,

Chen et al. consider a constant coefficient of variation c for the entire gene set printed such that

σRk
= cµRk

and σGk
= cµGk

. Assuming Rk and Gk, independent and identically distributed normal

random variables and c, a constant coefficient of variation, Chen et al. [23] derive an asymmetric

density function f peaking close to 1. f is used to derive a maximum-likelihood estimator ĉ for c,

ĉ =

√√√√ 1
n

n∑
i=1

(ti − 1)2

(1 + t2i )
(5.3)

and a polynomial approximation of the mean µ given by

µ = 0.364c3 + 1.279c2 − 0.0427c + 1.001. (5.4)

However, in practice the null hypotheses of equal means is not an appropriate assumption. Chen

et al. put forward the assumption that red and green mean signals are related by a constant gain

(or calibration) factor m such that µRk
= mµGk

. The ratio density function f of the uncalibrated

case now depends on m and c which leads to a recurrence relation. Given f(., c, 1) the density

function satisfies f(t, c,m) = 1
mf(t/m, c, 1). Intuitively, the calibration consists of moving the ratio

histogram mode to 1. The mode is actually the ratio occuring with the highest frequency , that

is also the abscise of the maximum in the histogram. As the ratio density function is skewed, the

simple approach of moving the histogram maximum to 1 is not correct. c is a parameter of the

ratio density function and therefore influence the peak of the ratio density. Therefore an iterative

procedure is proposed by Chen et al. [23] to estimate the calibration factor. Figure 5.1 illustrate the

procedure as described in [23].
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1 Initialize mean estimate µ̂0 of the ratio density to 1.
2 While i < T (convergence is usually satisfactory after 5 iterations)
3 m̂i = 1

ˆµi−1
( 1

n

∑n
j=1 tj)

� Calibrate ratio samples by m̂i so that the red and green signals are approximately equal.
4 (t

′
1, ..., t

′
n) = (t1/m̂i, ..., tn/m̂i)

5 Use Equation 5.3 to calculate ĉi

6 Use Equation 5.4 to calculate µ̂i

7 Compute the confidence limits interval (θ1.m̂, θ2.m̂)

Figure 5.1: MicroArray Suite Iterative Procedure to calibrate ratios

Table 5.1: Target considered as Outliers by MS and tossed out to calibrate ratios

No. CloneID Ratio Cal. Ratio S#1 Mean S#2 Mean Array Pos.
1 STF00009 0.4 0.491 4000 10000 [1-4-1]
2 STF00006 0.3 0.368 3000 10000 [1-3-1]
3 STF00003 0.2 0.246 2000 10000 [1-2-1]
4 STF00000 0.1 0.123 1000 10000 [1-1-1]

5.2 Handling Outliers

The next paragraph presents implementation details of the MS calibration method. MS provide

the user a way to indicate control genes of an experiment via a file (GIPO file). Control genes are

not always part of an experiment. In that case, MS uses all the genes to calibrate ratios except for

outliers. In MS, any target with a ratio outside the ratio limits [0.5, 2.0] is considered an outlier.

We created artificial data and Table 5.1 presents the outliers chosen by MicroArray Suite on two

synthetic images shown in Appendix by Figure D.2. These images have uniform targets of radius 8

of different intensities. The expected ratios are 0.1, 0.2, 0.3, ..., 1.2. As we did not specify any control

genes, the targets (1, 1)(2, 1)(3, 1)(4, 1) of respective ratios 0.1, 0.2, 0.3 and 0.4 are considered to be

outliers as expected.

MS also discard “outlier” pixels, pixels of extreme intensities from the calculations. Dr. Chen

invented a special algorithm to determine how many high and low pixels should be tossed out from

each target based upon how strong it was. We do not know the details of this algorithm but we

report results obtained with synthetic images designed in the purpose of determining how outlier

pixels were chosen. The MS data exported in T. Int. columns is the sum of all “valid” pixels within
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Table 5.2: Results given by MS for the 4 highest-lowest pixels rejection

Finger# Row Column S#1 T.Int. S#1 Mean Union Area S#1BkMean
1.00 2.00 1.00 2130000 9000 221 1000
1.00 3.00 1.00 639000 2000 221 1000
1.00 4.00 1.00 2343000 10000 221 1000

Notice that S#1 Mean is 9000 instead of 10000 as expected. S#1 Mean is the background corrected
mean or gene expression. S#1BkMean has been subtracted.

Table 5.3: Ratios, Cal. ratios, calibration factor M Obtained by MS

Finger # Row Column Union Area Ratio Cal. Ratio M
1 1 2 221 0.5 0.6141602 0.8141198
1 1 3 221 0.9 1.1054880 0.8141198
1 2 2 221 0.6 0.7369923 0.8141198
1 2 3 221 1.0 1.2283200 0.8141198
1 3 2 221 0.7 0.8598243 0.8141198
1 3 3 221 1.1 1.3511530 0.8141198
1 4 2 221 0.8 0.9826564 0.8141198
1 4 3 221 1.2 1.4739850 0.8141198

the target site outline and “Union Area” (common pixels in both channels). However, experimenting

with our synthetic images revealed that the Total Intensity is the sum of “valid” pixels minus 8 pixels.

After investigation, we noticed MicroArray Suite eliminates the 4 pixels with the highest intensity

and the 4 pixels with the lowest intensity in the Union Area. Table 5.2 shows the results obtained

with MS on the images of Figure D.4. The channel 2 image contains perfect targets but the Channel

1 has three targets with exactly 4 pixels of higher and 4 pixels of lower intensity in the center of

the target. The Union Area has 221 pixels as expected for a perfect target of radius 8. However,

Table 5.2 shows that the T. Int. for the target (1, 2, 1) are 2 130 000 which means only 213 pixels of

intensity 10000 were considered. Eight pixels have been tossed out and it is necessarily the 4 highest

pixels (of intensity value 20000) and the 4 lowest pixels (of intensity value 2000).

By removing the target and pixel outliers, we were able to reproduce the MS results and find

the calibration factor M from all the target minus the outliers (see Table 5.4 and Table 5.3). For

reference, Table 5.5 and Table 5.6 present T. Int, Mean, Area size obtained.
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Table 5.4: Iterative procedure results

Finger # Row Column Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5
1.00 1.00 2.00 0.5882353 0.6144570 0.6141634 0.6141602 0.6141602
1.00 1.00 3.00 1.0588235 1.1060227 1.1054942 1.1054884 1.1054884
1.00 2.00 2.00 0.7058824 0.7373484 0.7369961 0.7369923 0.7369923
1.00 2.00 3.00 1.1764706 1.2289141 1.2283268 1.2283205 1.2283204
1.00 3.00 2.00 0.8235294 0.8602399 0.8598288 0.8598243 0.8598243
1.00 3.00 3.00 1.2941176 1.3518055 1.3511595 1.3511525 1.3511525
1.00 4.00 2.00 0.9411765 0.9831313 0.9826615 0.9826564 0.9826563
1.00 4.00 3.00 1.4117647 1.4746969 1.4739922 1.4739846 1.4739845

ci 0.1961425 0.1951433 0.1951324 0.1951323 0.1951323
µi 1.0445770 1.0440778 1.0440724 1.0440724 1.0440724
mi 0.8137265 0.8141156 0.8141198 0.8141198 0.8141198

Table 5.5: Results given by MS for the channel 1 of Figure D.2

Finger # Row Column S#1 T. Int. S#1 Mean S#1 Area S#1 BkMean
1 1 2 1278000 5000 221 1000
1 1 3 2130000 9000 221 1000
1 2 2 1491000 6000 221 1000
1 2 3 2343000 10000 221 1000
1 3 2 1704000 7000 221 1000
1 3 3 2556000 11000 221 1000
1 4 2 1917000 8000 221 1000
1 4 3 2769000 12000 221 1000

Table 5.6: Results given by MS for the channel 2 of Figure D.2

Finger # Row Column S#2 T. Int. S#2 Mean S#2 Area S#2 BkMean
1 1 2 2343000 10000 221 1000
1 1 3 2343000 10000 221 1000
1 2 2 2343000 10000 221 1000
1 2 3 2343000 10000 221 1000
1 3 2 2343000 10000 221 1000
1 3 3 2343000 10000 221 1000
1 4 2 2343000 10000 221 1000
1 4 3 2343000 10000 221 1000
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5.3 Analysis of MS Performances

Table 5.7 presents the result obtained by MicroArray Suite and ScanAlyze on the images of our

experiment S3. The two programs gives alternatively the same and different results. This behavior

justify the work done in this study to improve gridding, and segmentation. The results given by a

particular program have to be interpreted with caution.

The formula of RAT2 and Ratio differ from taking the median instead of the mean of the

background to correct the target site means. Some results are close but need to be proof-checked

over a few replicas. ScanAlyze inherently has biased results due to its simple segmentation approach.

Except a general feeling of a possible consistency, it is hard to interpret these results. Any assumption

has a counterexample.

We are convinced that assessing the performance of a segmentation technique and its data ex-

traction method can only be made with synthetic images whose correct results are known in advance.

Table 5.8, Table 5.9 and Table 5.10 are reporting the MS results obtained for the synthetic images

in Figure D.6, Figure D.8 and Figure D.10, experiments designed to test the effect of targets with

different radius, targets shape (square) and doughnut-shape targets.

For the different radius, the results are the one expected. MS does take a larger original target

mask in the case of a bigger target and the union area are corresponding to the size of the mask of

biggest radius.

In the case of the square targets, MS also detect the only half square and find relevant targets

sizes.

The results are also mostly correct for the doughnut-shape targets. The doughnuts of the pin-

array A1 are correctly segmented with a union size of 44 but the T. Int. are not appropriate. We

are unsure if MS take these pixels for outliers or not.
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Table 5.7: Ratios given by MS and ScanAlyze on the same targets of S3 experiment

Pin-array Row Column RAT2 MRAT Ratio Cal. Ratio
1 2 22 0.18 0.33 0.32 0.30
1 3 8 0.17 0.31 0.21 0.19
1 3 14 0.18 0.22 0.19 0.18
1 3 17 0.23 1.47 0.36 0.33
1 3 24 0.21 0.67 0.39 0.36
1 4 5 0.20 0.45 0.27 0.25
1 5 3 0.29 0.56 0.30 0.28
1 5 8 0.15 0.38 0.18 0.17
1 7 4 0.11 0.19 0.15 0.14
1 7 5 0.14 0.23 0.17 0.16
1 7 9 0.22 0.47 0.44 0.41
1 7 10 0.20 0.31 0.26 0.25
1 7 23 0.08 0.13 0.15 0.14
1 7 24 0.13 0.27 0.37 0.35
1 11 22 1.21 4.73 4.35 4.06
1 11 23 1.18 2.85 7.25 6.77
1 15 3 0.49 1.11 1.76 1.64
1 16 24 0.19 0.84 0.18 0.17
1 17 5 0.15 0.26 0.19 0.18
1 17 7 0.31 0.54 0.47 0.44
1 18 22 0.23 0.38 0.29 0.27
1 19 4 0.11 0.16 0.15 0.14
2 3 11 0.46 1.62 3.08 2.88
2 6 15 0.62 1.81 0.73 0.68
2 15 7 0.11 1.43 7.42 6.93
3 3 11 1.30 2.36 1.79 1.67
3 6 15 0.34 1.49 1.39 1.30
3 15 7 1.91 2.28 1.64 1.53
4 10 14 0.43 0.59 0.55 0.52
4 11 20 0.00 -1.06 0.50 0.47
4 14 9 0.39 1.08 1.45 1.35
4 15 6 0.64 1.35 1.95 1.82
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Table 5.8: Micr. Suite Results on synthetic images of perfect targets with different radius.

Signal #1 Signal #2
F R C TInt M A BkM TInt M A BkM U R CR
1 1 1 10650000 49500 221 500 10650000 49500 221 500 221 1.00 0.77
...
1 4 2 10650000 49500 221 500 10650000 49500 221 500 221 1.00 0.77
1 4 3 1 1 0 500 1 1 0 500 0 1.00 0.77
2 1 1 10912000 31500 221 500 17050000 49500 349 500 349 0.64 0.49
...
2 4 2 10912000 31500 221 500 17050000 49500 349 500 349 0.64 0.49
2 4 3 1 1 0 500 1 1 0 500 0 1.00 0.77
3 1 1 10650000 49500 221 500 6294000 29049 129 500 221 1.70 1.31
...
3 4 2 10650000 49500 221 500 6294000 29049 129 500 221 1.70 1.31
3 4 3 1 1 0 500 1 1 0 500 0 1.00 0.77
4 1 1 10650000 49500 221 500 2928000 13246 61 500 221 3.74 2.87
...
4 4 2 10650000 49500 221 500 2928000 13246 61 500 221 3.74 2.87
4 4 3 1 1 0 500 1 1 0 500 0 1.00 0.77

F: Finger(Pin-Array), R: Row, C:Column, TInt: Target Total Intensity, M: Mean , A: Target Site
Area (Size), BkM: Background Mean, U: size of the union of target sites, R: Ratio, CR: Calibrated
Ratio

Table 5.9: Micr. Suite Results on square 16 times16 targets except one.

Signal #1 Signal #2
F R C TInt M A BkM TInt M A BkM U R CR
1 1 1 496000 1000 256 1000 496000 1000 256 1000 256 1 1
1 1 2 496000 1000 256 1000 496000 1000 256 1000 256 1 1
1 1 3 2400000 19000 128 1000 2400000 19000 128 1000 128 1 1
1 2 1 496000 1000 256 1000 496000 1000 256 1000 256 1 1
...

F: Finger(Pin-Array), R: Row, C:Column, TInt: Target Total Intensity, M: Mean , A: Target Site
Area (Size), BkM: Background Mean, U: size of the union of target sites, R: Ratio, CR: Calibrated
Ratio
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Table 5.10: MicroArray Suite Results on doughnut-shape targets.

Signal #1 Signal #2
F R C TInt M A BkM TInt M A BkM U R CR
1 1 1 1 1 44 1000 1 1 44 1000 0 1.00 1.000971
...
1 4 2 1 1 44 1000 1 1 44 1000 0 1.00 1.000971
1 4 3 1 1 0 1000 1 1 0 1000 0 1.00 1.000971
2 1 1 117160 10 124 1000 117160 10 124 1000 124 1.00 1.000971
2 1 2 580000 4000 124 1000 580000 4000 124 1000 124 1.00 1.000971
2 1 3 1740000 14000 124 1000 1740000 14000 124 1000 124 1.00 1.000971
2 2 1 127600 100 124 1000 127600 100 124 1000 124 1.00 1.000971
2 2 2 1160000 9000 124 1000 1160000 9000 124 1000 124 1.00 1.000971
2 2 3 1740000 14000 124 1000 1740000 14000 124 1000 124 1.00 1.000971
2 3 1 174000 500 124 1000 174000 500 124 1000 124 1.00 1.000971
2 3 2 1740000 14000 124 1000 1740000 14000 124 1000 124 1.00 1.000971
2 3 3 1740000 14000 124 1000 1740000 14000 124 1000 124 1.00 1.000971
2 4 1 232000 1000 124 1000 232000 1000 124 1000 124 1.00 1.000971
2 4 2 1740000 14000 124 1000 1740000 14000 124 1000 124 1.00 1.000971
2 4 3 1 1 0 1000 1 1 0 1000 0 1.00 1.000971
3 1 1 84840 10 92 1000 84840 10 92 1000 92 1.00 1.000971
3 1 2 420000 4000 92 1000 420000 4000 92 1000 92 1.00 1.000971
3 1 3 1260000 14000 92 1000 1260000 14000 92 1000 92 1.00 1.000971
3 2 1 92400 100 92 1000 92400 100 92 1000 92 1.00 1.000971
3 2 2 840000 9000 92 1000 840000 9000 92 1000 92 1.00 1.000971
3 2 3 1260000 14000 92 1000 1260000 14000 92 1000 92 1.00 1.000971
3 3 1 126000 500 92 1000 126000 500 92 1000 92 1.00 1.000971
3 3 2 1260000 14000 92 1000 1260000 14000 92 1000 92 1.00 1.000971
3 3 3 1260000 14000 92 1000 1260000 14000 92 1000 92 1.00 1.000971
3 4 1 168000 1000 92 1000 168000 1000 92 1000 92 1.00 1.000971
3 4 2 1260000 14000 92 1000 1260000 14000 92 1000 92 1.00 1.000971
3 4 3 1 1 0 1000 1 1 0 1000 0 1.00 1.000971
4 1 1 153520 10 160 1000 153520 10 160 1000 160 1.00 1.000971
4 1 2 760000 4000 160 1000 760000 4000 160 1000 160 1.00 1.000971
4 1 3 2280000 14000 160 1000 2280000 14000 160 1000 160 1.00 1.000971
4 2 1 167200 100 160 1000 167200 100 160 1000 160 1.00 1.000971
4 2 2 1520000 9000 160 1000 1520000 9000 160 1000 160 1.00 1.000971
4 2 3 2280000 14000 160 1000 2280000 14000 160 1000 160 1.00 1.000971
4 3 1 228000 500 160 1000 228000 500 160 1000 160 1.00 1.000971
4 3 2 2280000 14000 160 1000 2280000 14000 160 1000 160 1.00 1.000971
4 3 3 2280000 14000 160 1000 2280000 14000 160 1000 160 1.00 1.000971
4 4 1 304000 1000 160 1000 304000 1000 160 1000 160 1.00 1.000971
4 4 2 2280000 14000 160 1000 2280000 14000 160 1000 160 1.00 1.000971
4 4 3 1 1 0 1000 1 1 0 1000 0 1.00 1.000971



Chapter 6

Conclusions and Future work

This study is motivated by the development of a Microarray Experiment Management System,

Expresso [8, 9]. Expresso is aimed at supporting all the stages of a microarray experiment from design

to analysis. At each stage, our goal is to provide the user with a choice of multiple methods. Expresso

image processing tools will include various gridding, segmentation and data extraction/analysis

methods.

This study first examined automatic gridding methods. We defined gridding as the process of

overlaying a grid of patches over the hybrid compounds fluorescence called targets over the different

pin-arrays in the image. We presented methods based on the Discrete Fourier Transform, Circular

Hough Transform, Mann-Whitney Test and a final method that combined the use of the Discrete

Fourier Transform and Circular Hough Transform, we called the hybrid method. Our images typ-

ically are subject to an exponential noise, artifacts and saturation. Thresholding was applied to

lessen the noise effect.

The hybrid method obtained the best results. Technically, after thresholding, the hybrid method

is able to grid the four pin-arrays when the image is of an average quality. The Discrete Fourier

Transform and Circular Hough Transform based methods perform a good gridding on 7 out of 8

pin-arrays in the image (NS3, NS5). They are more time efficient but miss the address of a pin-

array by a few columns or rows apart. For images of poorer quality, none of our methods obtained

satisfactory results.

During this phase, we were confronted with four problems: the noisy edges of the image, the

82



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 83

tilting of pin-arrays, the misalignment of targets, and the different sizes and shape of targets. We

look forward to improving these methods by adjusting methods for these problems. We look forward

to implementing other methods. We are currently experimenting a method using morphological

operators and taking into account the tilting effect and the targets sizes. In the future, we are

planning to examine a 2-dimensional Discrete Fourier Transform, a shrinking algorithm [22] to

reduce noise, artifacts and identify a region of interest for each pin-array. The connected components

algorithm from Rosenfeld [36] identifies all components of an image (target, artifacts, noisy edges)

and selection of components can be done by defining criterion later on. The algorithm is efficient at

counting small stomata in a leaf cell.

In the segmentation phase, we examined two adaptive shape segmentation techniques, the Seeded

Region Growing algorithm and the Mann-Whitney Test. We did not obtain satisfactory results with

our Seeded Region Growing algorithm implementation but this implementation is order-dependent.

We avoided the bleeding effect by limiting our segmentation to one target at a time. We showed

that the target seed choice and location are critical and can lead to very different segmentation

results. We tried to improve the target seed choice, and the random unconnected seed is performing

the best. The best seed choice is target dependent. Therefore the union of the different results

obtained for different seed choices provides the best result. For targets that are not uniform and

connected, bad segmentation is expected. These targets are common in images of poor quality.

A transformation could be applied to such images so that the pixels ranging from an arbitrary

threshold T to 65535 intensity values are concentrated in a smaller band of intensities. The Seeded

Region Growing algorithm should perform a better segmentation as the target will be more uniform.

However, the problem of unconnected targets is not solved. We showed the Mann-Whitney Test has

more consistent results. The problems involved with the Mann-Whitney Test are the choice of the

original target mask and the extra noise or small artifacts pixels systematically in the final target

mask. The Mann-Whitney Test segmentation is dependent of the original target mask. We tried

circular target masks of different radii and showed different targets obtained their best segmentation

with different radii. This result suggests the mask selection proposed by Chen et al. [23] is not

optimal. We believe that circular target mask with different radii should be used and in the future

an adjustment method in between the gridding and segmentation should estimate target radii. The

Mann-Whitney Test is also including systematically a few extra noise pixels. We are convinced an

unconnected target mask method is more appropriate than a connected one. However, a criteria
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may be used with the Mann-Whitney Test to limit the unconnected area to consist of a minimum

number of pixels.

We undertook to look at the performance of MicroArray Suite. After showing non-obvious details

of its data extraction method, we convinced ourselves the use of synthetic images is necessary to

evaluate the performance of a segmentation technique. We developed simple synthetic images and

MS obtained satisfactory results. We look toward developing more complicated data.

To summarize, progress have been made toward automatic gridding. In the future, our methods

may be good enough as the quality of images improve. Our goal is to automatically grid bad quality

images. The Mann-Whitney Test is the most satisfactory segmentation technique to our knowledge.

An intelligent choice of the original target mask is however required as well as a refined method to

eliminate the extra noise pixels. No consensus exists on the data extraction method. We examined

the MS method. The calibration procedure used is the most sophisticated method to our knowledge

and we plan to generate more complex synthetic images to study the performance of MS and the

Mann-Whitney Test.

We look forward to improve and provide multiple gridding, segmentation, and extraction methods

in Expresso – A Microarray Experiment Management System [8, 9].
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Figure A.1: Frequency band of Xv for pin-array A1 in NS3
In this example, the frequency band [fmin, fmax] of Xv for the pin-array A1 in NS3.

[fmin, fmax] = [15, 62] and RH = RW = 1000. M is occurring at frequency fM = 40. Therefore,
pM = RH/fM = 25.

NS3_Q0_freq_Four1.eps
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Figure A.2: Sum of the row intensities on A1 of NS3

NS3_Q0_Row_sum_Four1.eps
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Figure A.3: Gridding on A1 of NS3 with the FFT method

Figure A.4: Gridding on A1 of NS5 with the FFT method.
The noisy edge tend not to appear on this image.

NS3Q0Result_Four1.eps
NS5Q0Result_Four1.eps
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Figure A.5: Column sums on A1 of NS5.
We observe the noisy edge on the left. Our method by using this column sum fails to recognize the

succession of 24 peaks. It does not take into account the geometry of the image.

Q0_csum0_Four1.eps
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Figure A.6: Hough Transform result on A1 of NS5.

Q0_NS5hough_7.eps
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Figure A.7: Gridding on A1 of NS5 with the CHT method.
The gridding is correct but the image is not too noisy and the target have nice shape. Our

program is not taking care of the tilting of the pin-array. An adjustment is needed.

NS5Quadrant1_Hough.eps
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Figure A.8: Gridding on A2 of NS5 with the CHT method.
The gridding is completely off to the left border of the image because of a strong noise in this area.

NS5Quadrant2_Hough.eps


APPENDIX A. ADDRESSING FIGURES 96

Figure A.9: Histogram of NS3, channel 1(Cy3 dye).

Cy3hist.eps
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Figure A.10: Gridding on A1 of NS5 after preprocessing with the FFT method.

Q0_NS5Fequalize.eps
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Figure A.11: Gridding on A2 of NS5 image after preprocessing with the FFT method.
The result is off by a column. We attribute this result to the tilting problem. In the last right

columns the circles are almost not overlapping the targets.

Q1_NS5Fequalize.eps
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Figure A.12: Gridding on A3 of NS5 after preprocessing with the FFT method.
The result is off by a row. The tilting effect is again the possible problem.

Q2_NS5Fequalize.eps
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Figure A.13: Gridding on A1 of NS5 with the hybrid method.

Figure A.14: Gridding on A1 of S4X3 thresholded with the hybrid method.

NS5Quadrant2_Hough.eps
S4X3finalequalResultA1.eps
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Figure A.15: Gridding on A3 of S4X3 thresholded with the hybrid method.

S4X3finalequalResultA3.eps
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Figure A.16: Artifacts leading to wrong gridding of A2 and A4 – (S4X3,S4X5) thresholded.
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Figure B.1: Target (1, 7, 4, Cy3) or “beignet” zoomed in.
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Figure B.2: SRG result on the target (1, 7, 4, Cy3) with a seedsize of 2.

Figure B.3: SRG result on the target (1, 7, 4, Cy3) with a seedsize of 3.
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Figure B.4: SRG result on the target (1, 7, 23, Cy3) with a “Max” seed

Figure B.5: SRG result on the target (1, 7, 23, Cy3) with a “Center” Seed
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Figure B.6: SRG result on the target (1, 5, 3, Cy3) with a “Max” seed

Figure B.7: SRG result on the target (1, 5, 3, Cy3) with a “Maximum Region” seed
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Figure B.8: SRG result on the target (1, 7, 10, Cy3) with a “Maximum Region” seed

Figure B.9: SRG result on the target (1, 7, 10, Cy3) with a “Max” seed
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Figure B.10: SRG result on the target (1, 3, 14, Cy3) with a “Max” seed.

Figure B.11: SRG result on the target (1, 3, 17, Cy3) with a “Max” seed.
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Figure B.12: SRG result on the target (1, 5, 3, Cy3) with a “Max” seed.

Figure B.13: SRG result on the target (1, 7, 10, Cy3) with a “Max” seed.
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Figure B.14: SRG result on the target (1, 7, 4, Cy3) with a “Max” seed.

Figure B.15: SRG result on the target (1, 7, 9, Cy3) with a “Max” seed.
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Figure B.16: SRG result on the target (2, 15, 7, Cy3) with a “Max” seed.

Figure B.17: SRG result on the target (2, 6, 15, Cy3) with a “Max” seed.
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Figure B.18: SRG result on the target (1, 7, 23, Cy3) with a “Max” seed.

Figure B.19: SRG result on the target (1, 7, 24, Cy3) with the “Max” seed.
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Figure B.20: SRG result on the target (1, 3, 14, Cy3) with a “Random” seed

Figure B.21: SRG result on the target (1, 3, 17, Cy3) with a “Random” seed
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Figure B.22: SRG result on the target (1, 5, 3, Cy3) with a “Random” seed

Figure B.23: SRG result on the target (1, 7, 10, Cy3) with a “Random” seed
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Figure B.24: SRG result on the target (1, 7, 4, Cy3) with a “Random” seed

Figure B.25: SRG result on the target (1, 7, 9, Cy3) with a “Random” seed
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Figure B.26: SRG result on the target (2, 15, 7, Cy3) with a “Random” seed

Figure B.27: SRG result on the target (2, 6, 15, Cy3) with a “Random” seed
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Figure B.28: SRG result on the target (1, 7, 23, Cy3) with a “Random” seed

Figure B.29: SRG result on the target (1, 7, 24, Cy3) with a “Random” seed
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Figure B.30: SRG result on the target (1, 3, 14, Cy3) with a “Union” seed.

Figure B.31: SRG result on the target (1, 3, 17, Cy3) with a “Union” seed.
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Figure B.32: SRG result on the target (1, 5, 3, Cy3) with a “Union” seed.

Figure B.33: SRG result on the target (1, 7, 10, Cy3) with a “Union” seed.
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Figure B.34: SRG result on the target (1, 7, 4, Cy3) with a “Union” seed.

Figure B.35: SRG result on the target (1, 7, 9, Cy3) with a “Union” seed.
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Figure B.36: SRG result on the target (2, 15, 7, Cy3) with a “Union” seed.

Figure B.37: SRG result on the target (2, 6, 15, Cy3) with a “Union” seed.
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Figure B.38: SRG result on the target (1, 7, 23, Cy3) with a “Union” seed.

Figure B.39: SRG result on the target (1, 7, 24, Cy3) with a “Union” seed.
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Figure C.1: Target areas obtained by MS after the application of the MWT on the image Cy3 S3
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Figure C.2: Result of the MWT on the target (1, 7, 4, Cy3) with R = 5 and U0 = 0

Figure C.3: Result of the MWT on the target (1, 7, 4, Cy3) with R = 6 and U0 = 0
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Figure C.4: Result of the MWT on the target (1, 7, 4, Cy3) with R = 7 and U0 = 0

Figure C.5: Result of the MWT on the target (1, 7, 4, Cy3) with R = 8 and U0 = 0
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Figure C.6: Result of the MWT on the target (1, 7, 4, Cy3) with R = 9 and U0 = 0

Figure C.7: Result of the MWT on the target (1, 7, 4, Cy3) with R = 10 and U0 = 0
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Figure C.8: Result of the MWT on the target (1, 7, 23, Cy3) with R = 5 and U0 = 0

Figure C.9: Result of the MWT on the target (1, 7, 23, Cy3) with R = 6 and U0 = 0
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Figure C.10: Result of the MWT on the target (1, 7, 23, Cy3) with R = 7 and U0 = 0

Figure C.11: Result of the MWT on the target (1, 7, 23, Cy3) with R = 8 and U0 = 0
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Figure C.12: Result of the MWT on the target (1, 7, 23, Cy3) with R = 9 and U0 = 0

Figure C.13: Result of the MWT on the target (1, 7, 23, Cy3) with R = 10 and U0 = 0
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Figure C.14: Noise segmentation above the target (1, 1, 8, Cy3) with R = 7 and U0 = 0.

Figure C.15: Noise segmentation above the target (1, 1, 8, Cy5) with R = 7 and U0 = 0.
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Figure C.16: Noise segmentation above the target (1, 1, 14, Cy3) with R = 7 and U0 = 0.

Figure C.17: Noise segmentation above the target (1, 1, 14, Cy5) with R = 7 and U0 = 0.
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Figure C.18: Noise segmentation left to the target (1, 7, 1, Cy3) with R = 7 and U0 = 0.

Figure C.19: Noise segmentation left to the target (1, 7, 1, Cy3) with R = 8 and U0 = 0.

Figure C.20: Noise segmentation left to the target (1, 7, 1, Cy3) with R = 9 and U0 = 0.
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Figure C.21: Noise segmentation left to the target (2, 7, 1, Cy3) with R = 8 and U0 = 0.

Figure C.22: Noise segmentation left to the target (2, 7, 1, Cy3) with R = 8 and U0 = 8.
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Figure D.1: Image of perfect targets used as Channel 1

Figure D.2: Image of perfect targets used as Channel 2

setCy31.eps
setCy51.eps


APPENDIX D. DATA EXTRACTION AND ANALYSIS 138

Figure D.3: Targets used as Channel 1 to check the 4 highest-lowest pixels tossing hypothesis.

Figure D.4: Targets used as Channel 2 to check the 4 highest-lowest pixels tossing hypothesis.
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Figure D.5: Targets in Channel 1 to test the radius influence on MS results.

Figure D.6: Targets in Channel 2 to test the radius influence on MS Results.
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Figure D.7: Targets in Channel 1 to test the square shape influence on MS Results.

Figure D.8: Targets in Channel 2 to test the square shape influence on MS Results.
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Figure D.9: Targets in Channel 1 to test the square shape influence on MS Results.

Figure D.10: Targets in Channel 2 to test the square shape influence on MS Results.
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