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Abstract 

The delivery of drugs into solid tumors is not trivial due to obstructions in the tumor 

microenvironment. Innovative drug delivery vehicles are currently being designed to overcome 

this challenge. In this research, computational fluid dynamics (CFD) simulations were used to 

evaluate the behavior of several drug delivery vectors in tumor capillaries—specifically motile 

bacteria, non-motile bacteria, and nanoparticles. Red blood cells, bacteria, and nanoparticles 

were imposed in the flow using the immersed boundary method. A human capillary model was 

developed using a novel method of handling deformable red blood cells (RBC). The capillary 

model was validated with experimental data from the literature. A stochastic model of bacteria 

motility was defined based on experimentally observed run and tumble behavior. The capillary 

and bacteria models were combined to simulate the intracapillary transport of bacteria. Non-

motile bacteria and nanoparticles of 200 nm, 300 nm, and 405 nm were also simulated in 

capillary flow for comparison to motile bacteria. Motile bacteria tended to swim into the plasma 

layer near the capillary wall, while non-motile bacteria tended to get caught in the bolus flow 

between the RBCs. The nanoparticles were more impacted by Brownian motion and small scale 

fluid fluctuations, so they did not trend toward a single region of the flow. Motile bacteria were 

found to have the longest residence time in a 1 mm long capillary as well as the highest average 

radial velocity. This suggests motile bacteria may enter the interstitium at a higher rate than non- 

motile bacteria or nanoparticles of diameters between 200 nm and 405 nm. 
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General Audience Abstract 

The last 50 years have brought significant advancements in cancer treatment. Despite progress, 

cancer still remains one of the leading causes of death. In 2016, an estimated 1.7 million new 

cases of cancer will be diagnosed, and nearly 600,000 people will die from the disease in the 

United States alone. This is due to numerous unsolved challenges in the field of cancer research. 

The present study looks at one of these challenges—specially the delivery of drugs into a solid 

tumor. Several biological factors prohibit chemotherapy drugs from fully penetrating tumors. 

This prevents the drugs from completely killing the cancer, and can lead to ineffective treatment 

or recurrence. Innovative new techniques to help drugs better penetrate tumors are under 

development. One such technique is to harness bacteria to carry drugs inside of tumors. The goal 

of the present research is to evaluate the behavior of drug carrying bacteria with computer 

simulations. Blood vessels carry things in and out of tumors. The smallest blood vessels, the 

capillaries, are the location at which bacteria enter the tumor. The computer simulations found 

potential for swimming bacteria to enter the tumor at greater rates than other methods of drug 

delivery. Behavior of bacteria in capillaries is important, but just one of many aspects of this 

treatment strategy so research is ongoing. Beyond the simulations run for this study, the 

computer software developed during this project could also have other applications in 

engineering and biology research. 
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Nomenclature 

Chapter 2 

𝑢⃗  fluid velocity 〈𝑢, 𝑣, 𝑤〉  

𝑥  position in physical coordinates 〈𝑥, 𝑦, 𝑧〉  

𝑡 time  

𝑝 pressure  

𝜌 density  

𝜇 viscosity  

𝑅𝑒 Reynolds number  

∗ denotes dimensional quantity (superscript)  

𝑟𝑒𝑓 denotes reference quantity (subscript)  

𝑖 solid body vertex index (subscript)  

𝑗 solid body surface element index (subscript)  

𝑘 velocity movement probe index (subscript)  

𝑁𝑖 total number of solid body vertices  

𝑁𝑗 total number of solid body surface elements  

𝑁𝑘 total number of velocity movement probes  

𝐹 𝑐 total force acting on a solid body  

𝑀⃗⃗ 𝑐 total moment about the mass centroid acting on a solid body  

𝑟  radius vector from solid body centroid to a point  

𝑝 𝑖 position of i
th

 solid body vertex in physical coordinates  

𝑠 𝑗 position of j
th

 solid body surface element in physical coordinates  

𝑥 𝑐 solid body centroid position  

𝑣 𝑐 solid body linear velocity  

𝑎 𝑐 solid body linear acceleration  

𝜃 𝑐 solid body orientation  

𝜔⃗⃗ 𝑐 solid body angular velocity about centroid  

𝛼 𝑐 solid body angular acceleration about centroid  

𝑛 denotes time step number (superscript)  
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[𝑅𝜃⃗⃗ 𝑐
] rotation matrix  

𝐼   mass moment of inertia tensor  

^ denotes unit vector (superscript)  
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𝐷 capillary diameter  

𝐴𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦 cross sectional area of the capillary  

𝐻𝑇 tube (capillary) hematocrit  

𝐻𝐷 discharge (system) hematocrit  

𝐿𝑠𝑝𝑎𝑐𝑖𝑛𝑔 axial distance between consecutive RBC centroids  

𝛿𝑝𝑙𝑎𝑠𝑚𝑎 plasma layer thickness  

𝑑𝑅𝐵𝐶 deformed red blood cell diameter  

𝑉𝑅𝐵𝐶 volume of a red blood cell (mean corpus volume)  

𝐴𝑅𝐵𝐶 surface area of a red blood cell  

𝑢𝑐 axial RBC velocity  

𝑢𝑝 axial plasma velocity averaged over a x-slice  

𝑢̅ total axial velocity of RBCs and plasma  

𝑄 total volumetric flow of RBCs and plasma  

∆𝑃 axial pressure drop in capillary  

𝜇𝑎𝑝𝑝 apparent viscosity in the capillary  

𝜇𝑟𝑒𝑙 relative apparent viscosity as compared to plasma viscosity  
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𝜇 mean  

𝜎 standard deviation  

𝑟 random number such that 0 ≤ 𝑟 ≤ 1  

∆𝑡 time step size  

𝑡𝑟𝑢𝑛 duration of run  

𝑡𝑡𝑢𝑚 duration of tumble  
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𝑛∆𝑡,𝑟𝑢𝑛 number of time steps taken during current run  

𝑛∆𝑡,𝑡𝑢𝑚 number of time steps taken during current tumble  

𝑣 𝑟𝑢𝑛 Linear velocity during a run  

𝜔⃗⃗ 𝑡𝑢𝑚 angular velocity during a tumble  

𝑑̂ unit vector pointing in the bacterium’s forward direction  

𝑎̂ unit vector along axis of rotation  

|∆𝜃 𝑡𝑢𝑚| magnitude of the angle change during a run  
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𝑅𝑒𝑒𝑓𝑓 effective Reynolds number  

𝑢̅ total axial velocity of RBCs and plasma  

𝐷𝑐 capillary diameter  

𝑎𝑝𝑝 apparent viscosity (kinematic)  

𝜇𝑎𝑝𝑝 apparent viscosity (dynamic)  

∆𝑃 axial pressure drop in capillary  

𝑙𝑠𝑝𝑎𝑐𝑖𝑛𝑔 axial distance between consecutive RBC centroids  

𝐻𝑇 tube (capillary) hematocrit  

𝑢̅ total axial velocity of RBCs and plasma  

𝑢𝑐 axial RBC velocity  

𝑢𝑝 axial plasma velocity averaged over a x-slice  

𝑄 total volumetric flow of RBCs and plasma  

𝑆𝑡𝑘 particle stokes number  

𝑡0 particle relaxation time  

𝐷𝑝𝑎𝑟 diameter of the particle  

𝜌𝑝𝑎𝑟 density of the particle  

𝜇𝑝 blood plasma viscosity  

𝑃𝑒 Peclet number (advection to diffusion ratio)  

𝐷 Brownian diffusivity  

𝛼2 Womersley number (level of pulsatility in a flow)  

𝜔 flow oscillation frequency in a blood vessel  



 

x 

𝐷𝑒 Dean number (quantification of centripetal effects)  

𝐷𝑣 blood vessel diameter  

𝑘𝐵 Boltzmann’s constant  

𝑇 temperature (Kelvin)  

𝜇
𝑝
 plasma viscosity (dynamic)  

∆𝑡 time step size  

 

Abreviations 

CFD Computational Fluid Dynamics  

RBC Red Blood Cell (erythrocyte)  

IBM Immersed Boundary Method  

GenIDLEST Generalized Incompressible Direct and Large Eddy Simulation of Turbulence  

FVM Finite Volume Method  

BiCGSTAB Biconjugate Gradient Stabilized method  

ALE Arbitrary Lagrangian-Eulerian method  
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FEM Finite Element Method  
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ESL Endothelial Surface Layer  
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1. Pharmacokinetics in Solid Tumors 

Of the three primary modes of cancer treatment—surgery, radiation, and chemotherapy—

chemotherapy is the broadest category with considerable potential for new breakthroughs [1]. 

However, a major challenge for chemotherapy is transporting the drug to the desired location in a 

high enough concentration to be effective. The tumor microenvironment poses many obstacles to 

the delivery of drug molecules. In recent years, there has been considerable research into new 

targeted drug delivery schemes in order to combat delivery challenges. Chemotherapy research 

has expanded into a large cross-disciplinary effort beyond simply biology and medical 

researchers. Recently, it has become apparent that a better understanding of biophysical 

phenomena may lend important insight into solving biological problems such as drug delivery [1, 

2]. One such area of biophysics particularly important in drug transport is fluid dynamics. The 

aim of the present work is to study the intracapillary transport of a novel drug delivery method—

bacteria mediated therapy—from a biophysics perspective focusing specifically on the fluid 

dynamics aspect. This chapter will give a brief summary of tumor characteristics before 

discussing the scope and objectives of the present work. 

 

1.1 Cancer and Its Treatment 

1.1.1 Tumor Physiology 

The human body contains approximately 10
13

 cells [1]. Each cell’s life cycle consists of highly 

regulated dividing, differentiating, and death based on complex signaling networks in the body. 

When these processes are working properly, the cell is said to be in homeostasis. However, every 

day each cell may experiences thousands of DNA damaging events [1]. These corruptions of 

DNA, or mutations, can produce proteins which impact controlled cell death thereby throwing 
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off homeostasis. This, in turn, can result in an uncontrolled proliferation of abnormal cells. 

Typically, such rogue cells are cleared by the immune system before becoming problematic. 

However, successive rounds of mutations and natural selection may result in a population of 

abnormal cells able to evade the immune system [3]. Eventually, a malignant tumor mass is 

formed. Overtime the tumor may continue to grow causing damage to nearby tissue and organs. 

Additionally, some cancer cells may migrate to other areas of the body in a process called 

metastasis which is responsible for 90% of cancer related deaths [4]. 

Cancer is more properly a category of diseases rather than a single disease. There exist over 100 

distinct types of cancer [3]. Each form of cancer presents unique characteristics and treatment 

challenges—no two cancers are identical. However, there are several common functional 

capabilities all cancers have been observed to possess. First, abnormal cancer cells sustain 

proliferative growth signals allowing them to replicate rapidly without needing external signaling 

to do so. Second, the cells are able to ignore anti-growth signals which could stop or slow their 

proliferation. Third, they have the ability to evade apoptosis—that is, they simply do not die 

when a normal cell should die. Fourth, unlike healthy cells which have a limited number of 

divisions, cancer cells can continue dividing indefinitely. Fifth, cancer cells can trigger the 

growth of their own blood vessels in a process called angiogenesis. Lastly, cancer cells can 

metastasize and invade other tissues. [5] 

 

1.1.2 Treatment Strategies and Challenges 

As one of the leading causes of death worldwide, cancer has received much attention from the 

scientific and medical community. There is a wide range of survival rates across types of cancer. 

Some forms of cancer do not respond well to current treatment methods—the need for 
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innovation is clear in these cases. However even for well treatable cancers, new strategies could 

be hugely beneficial in reducing the adverse side effects of current treatments [6]. 

The three major categories of treatment which are currently in use are surgery, radiation, and 

chemotherapy. Surgical removal of the cancer tumor, when accessible, is widely used. However, 

it is normally paired some form of post-surgical treatment. In isolation, surgery has a limited 

impact on long term survival rates of cancer patients [1]. Radiation therapy is used to damage the 

DNA of cancerous cells causing them to die. Like surgery, radiation is often combined other 

treatment methods. In certain cancers radiation can be highly effective, but the method has 

limitations [1]. 

Chemotherapy is the treatment of cancer by drugs. Often, the term chemotherapy is used to refer 

to cytotoxic drugs which directly poison cancer cells. More generally, however chemotherapy is 

an umbrella term referring to any cancer treatment method using an ingested or injected chemical 

compound [1]. When introduced into the body, conventional chemotherapeutic agents 

indiscriminately circulate through the vasculature and into all tissues of the body, not just the 

cancerous region. Thus, the dosage of treatment must be finely tuned to minimize systemic 

toxicity. Even so, adverse side effects are common when undergoing chemotherapy. At the 

maximum tolerable dose, the therapeutic may not even penetrate all regions of the tumor. Poor 

drug penetration into the tumor is primarily due to abnormal vascular structure, elevated 

interstitial fluid pressure, and a dense interstitial structure resulting from cells proliferating in a 

confined volume. Incomplete penetration may lead to ineffective treatment, acquired resistance, 

or resurgence of the tumor later on when the untreated cells start to multiply. [4]. 
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1.1.3 Targeted Drug Delivery 

Targeted drug delivery is a phrase used throughout the literature to not so much describe a 

treatment strategy, but rather a treatment objective. The goal of targeted drug delivery is to 

maximize the effectiveness of a treatment while minimizing the adverse side effects. In order to 

maximize effectiveness, a drug must penetrate into all regions of the tumor—often certain 

regions of the tumor are poorly perfused by blood which prevents transport of therapeutics into 

those regions. In order to minimize side effects, a treatment should act locally to the tumor and 

have a limited impact on healthy tissue. There are many proposed strategies to achieve each of 

these two desired results. 

One strategy which attempts to locally raise the concentration of therapeutic in the tumor 

environment is the use of nanoparticles as a delivery method. Tumor vasculature contains large 

pores or fenestrations as wide as 380 nm to 780 nm in diameter which allow nanoparticles to exit 

into the tumor interstitium [6]. However, the particles cannot easily enter heathy tissue which 

does not have large pores in its vasculature. In practice, less than 5% of nanoparticles—but 

typically under 1%—actually end up in the tumor site with the majority ending up in the liver 

and spleen [6]. Regardless, the technique has shown some limited success in drug trials and there 

are currently several clinically approved nanoparticle chemotherapeutics [7].  

Another proposed strategy for improving drug penetration and lowering systemic toxicity is 

bacteria mediated therapy. Certain strains of Bifidobacterium infantis, Clostridium tetani, and 

Salmonella Typhimurium bacteria have been shown to possess a natural ability to penetrate and 

colonize solid tumors [8-10]. Bacteria alone may have some antitumor properties, but their 

effectiveness in immunocompetent patients is very limited due to the rapid clearing of the 

bacteria by the immune system [11]. Steps can also be taken to improve the effectiveness of 
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bacteria therapies. One such strategy is to attach biofunctionalized nanoparticles to the body of 

bacteria to be carried into a tumor. Another strategy is to use synthetic biology to engineer 

bacteria to release antitumor agents inside the tumor [12, 13]. Further research is needed to bring 

bacteria mediated treatments to clinical trials, but the strategy has shown early promise. 

 

1.2 Modeling Bacteria Mediated Therapy 

Any cancer therapeutic must be transported by convection and diffusion from the point of 

injection to the tumor site. Thus, fluid dynamics plays a prominent role in the transport process. 

The present work uses computational fluid dynamics (CFD) simulations to uncover biophysical 

insight into the transport of novel cancer treatment agents—specifically, bacteria and 

nanoparticle agents. Upon injection into a blood vessel, a therapeutic must first travel through the 

vasculature into a tumor capillary, then out of the capillary into the interstitium, and lastly 

through the interstitium to each cancer cell. The scope of the present work will be limited to 

intracapillary transport. 

Due to the similar scales of capillaries and red blood cells (RBC)—both on the order of 10 µm—

RBCs play a prominent role in the hydrodynamics of the capillary environment. Thus, the 

elements which will be included inside the capillary domain in the present computational model 

are red blood cells, plasma, and bacteria or nanoparticles. Other blood cells such as platelets and 

white blood cells are neglected due to their low mass fraction in whole blood and therefore 

negligible role in capillary hydrodynamics. The goal is to examine hydrodynamic interactions 

between elements in the capillary with a focus on the location and movement of the bacteria or 

nanoparticles. The primary interest in the present work is on bacteria based therapeutic agents, 

but nanoparticles are also be simulated for comparison. 
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The intracapillary transport of motile bacteria, non-motile bacteria, and nanoparticles will be 

modeled using CFD, the immersed boundary method (IBM) and a stochastic agent based bacteria 

model. Chapter 2 will outline the numerical methodology used in the computational modeling. 

Chapters 3 and 4 will describe the capillary and bacteria models respectively. Chapter 5 will 

describe the setup for the nanoparticle and bacteria transport simulations, and provide results and 

analysis. Questions to be answered by the end of the study are, what is the effect of motility in 

the transport of bacteria agents in a capillary, and how do motile and non-motile bacteria behave 

compared to nanoparticle agents in a capillary? 
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2. Numerical Methodology 

This chapter will discuss the numerical methods used for simulating the transport of bacteria in 

capillaries. An incompressible Navier-Stokes solver (GenIDLEST [14]) was used to model the 

fluid flow of the blood plasma in the domain. The fully developed flow assumption was 

employed for simulating periodic flow through a characteristic repeating section of capillary. 

The immersed boundary method was used for modeling solids in the flow—the cylindrical 

capillary wall, the red blood cells, and the bacteria. Two procedures were used for moving the 

immersed rigid bodies in the flow. One method was based on fluid forces, and was employed to 

develop the capillary model in Chapter 3. The other method was movement based on the 

surrounding fluid velocity which was used for the main simulations discussed in Chapter 5. 

Lastly, solid-solid contact detection and handling will be described. 

 

2.1 Fluid Modeling 

2.1.1 Governing Equations 

The incompressible Navier-Stokes equations are the governing equations for the blood plasma. 

The non-dimensionalized vector form of conservation of momentum (2.1) and mass (2.2) are, 

 

 

2.1 

2.2  

The non-dimensionalized was done using the parameters, 

𝜕𝑢⃗ 

𝜕𝑡
+ 𝑢⃗ ∙ ∇𝑢⃗ = −∇𝑝 +

1

𝑅𝑒
∇2𝑢⃗  

∇ ∙ 𝑢⃗ = 0 
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where * denotes dimensional quantities. The energy equations is neglected since temperature is 

constant and not of interest. 

Flow simulations were conducted using an in-house code, GenIDLEST (Generalized 

Incompressible Direct and Large Eddy Simulation of Turbulence). A brief description of the 

solution method will be provided here but a more full treatment can be found in Tafti 2001 [14]. 

The fluid domain is discretized into a structured mesh, and a mapping is created between 

physical coordinates (x, y, z) and computational coordinates (i, j, k). The governing equations in 

conservative form are discretized using the finite volume method (FVM). A structured non-

staggered formulation is used where the velocities and pressures are stored at the cell centers, 

and contravariant mass fluxes are calculated and stored on the cell faces. A pressure based 

predictor-corrector solution method is used. During the predictor step, the momentum equations 

are iteratively solved without the pressure term to obtain a preliminary velocity field. Once a 

given tolerance is reached, the corrector step is carried out by iteratively solving the pressure 

Poison equation to obtain a divergence free velocity field. The momentum and pressure linear 

systems are solved using a stabilized biconjugate gradient solver (BiCGSTAB) with 

preconditioning. In all calculations in the present work, the predictor momentum equations were 

solved to a tolerance of 110
-10

, and the corrector pressure equation was solved to a tolerance of 

110
-12

. 

𝑥 =
𝑥 ∗

𝐿∗
𝑟𝑒𝑓

, 𝑢⃗ =
𝑢⃗ ∗

𝑈∗
𝑟𝑒𝑓

, 𝑡 =
𝑡∗𝑢∗

𝑟𝑒𝑓

𝐿∗
𝑟𝑒𝑓

, 

𝜌 =
𝜌∗

𝜌∗
𝑟𝑒𝑓

, 𝜇 =
𝜇∗

𝜇∗
𝑟𝑒𝑓

, 𝑝 =
𝑝∗ − 𝑝∗

𝑟𝑒𝑓

𝜌∗
𝑟𝑒𝑓

𝑈∗
𝑟𝑒𝑓

2 ,

𝑅𝑒 =
𝜌∗

𝑟𝑒𝑓
𝑈∗

𝑟𝑒𝑓𝐿
∗
𝑟𝑒𝑓

𝜇∗
𝑟𝑒𝑓
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2.1.2 Boundary Conditions 

The capillary validation simulations run in Chapter 3 used a developing flow framework. The 

boundary condition on the inlet of the capillary cylinder was “inflow”—that is the velocity was 

set to a fixed value. The boundary condition at the outlet of the capillary was “outflow”—that is, 

the gradient in the velocity was set to zero. The capillary wall boundary condition was imposed 

using the immersed boundary method which will be described later in this chapter (section 

2.2.1). The main simulations of therapeutic transport (bacteria or nanoparticles) were done in a 

periodic framework. This was done using the fully developed flow assumption. In this 

framework, a pressure source term is applied in the streamwise direction driving the flow. The 

pressure computed is the fluctuation pressure above or below the local pressure at a slice in x. 

Fluid and solids exiting the domain re-enter the inlet of the domain. A more complete description 

of the process may be found in Patankar et al., 1977 [15] and Zhang et al., 1997 [16]. 

 

2.2 Solid Modeling 

2.2.1 Immersed Boundary Method 

Basic CFD modeling is done by discretizing the fluid domain and applying boundary conditions 

on the exterior of the fluid mesh. One such boundary condition is the no-slip condition which 

simulates a fluid-solid interface. However, it may be desired to have solids moving around inside 

the fluid. There are several common techniques used to achieve this—sliding mesh methods, 

dynamic mesh methods, arbitrary Lagrangian–Eulerian methods (ALE), or immersed boundary 

methods (IBM). In the present work, a sharp interface immersed boundary method is used to 
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simulate moving solids within the flow. Henceforth, this will simply be referred to as IBM, and 

will refer to the implementation in the GenIDLEST code [17]. 

IBM is often used to simulate complex geometries and moving solids in low or moderate 

Reynolds number flows [18]. Conceptually, IBM works by imposing a no slip condition at any 

location in the fluid domain without requiring the fluid mesh to conform to the solid body. For 

example when simulating a cylinder, the difference between body conformed mesh and 

immersed boundary is shown in Figure 2.1. 

 
Figure 2.1. Left: when simulating flow around a cylinder using a body conformed grid, only the fluid volume 

is meshed. Right: the same setup is achieved using the immersed boundary method by defining the fluid-solid 

interface at a location within the fluid mesh. 

When using IBM, the fluid-solid interface is tracked in the flow at each time step with a 

triangular surface mesh within the three dimensional fluid mesh. The corners of each triangle of 

the mesh will be referred to as vertices, and the area centroids of each triangle will be referred to 

as surface elements. Based on the location of the boundary, all the nodes in the fluid mesh will 

be designated as “fluid nodes” on the fluid side of the interface, “solid nodes” on the solid side of 

the interface, or “IB nodes” directly on the interface.  
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Figure 2.2. The basic process for determining properties at the IB nodes is shown. The red line defines the 

solid-fluid interface. 

Based on the velocity of a given surface element, the nearby fluid velocity is adjusted such that a 

no slip condition at the sharp interfaces results as summarized in Figure 2.2. The details of this 

process may be found in Nagendra et al., 2014 [17]. 

A closed surface of triangular elements makes up a solid IB body. In the present work, all the 

solid bodies in the flow are considered rigid bodies. The reasoning behind treating RBCs as rigid 

bodies is explained in Chapter 3. Movement to a rigid body is achieved by changing the 

coordinates of the vertices defining the surface mesh. Surface element centroids are recalculated 

at each time step from the three corresponding vertices. Two methods are used to calculate the 

current position, 𝑥 𝑐
𝑛+1

, and orientation, 𝜃 𝑐
𝑛+1

, of the rigid body centroids based on the nearby 

fluid field—these methods are described in sections 2.2.2 and 2.2.3. Once 𝑥 𝑐
𝑛+1

 and 𝜃 𝑐
𝑛+1

 are 

known, section 2.2.4 describes the process of defining the vertex locations and setting the surface 

element velocity and acceleration. 
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2.2.2 Force Based Movement 

The force based movement method uses the local fluid velocity field to calculate transient 

movement of a rigid IB body. It is used in Chapter 3 to calculate the movement of red blood 

cells. Two fluid forces, the pressure and shear force, act on each surface element of the body. 

The total force, F⃗ c, and total moment about the centroid, M⃗⃗⃗ c, are calculated by integrating these 

forces over the body at each time step, 

 

 

2.3  

 

 

2.4 

 

 

 

The force and moments are approximated to be constant over the duration of a given time step. 

Newton’s second law is applied to calculate the acceleration over the time interval between time 

steps n and n+1, 

 
 

2.5  

Then, acceleration is numerically integrated twice to calculate the updated velocity and position 

of the rigid body, 

 

 

2.6 

 

2.7  

A similar process is used for rotation, 

𝐹 𝑐 = ∑ 𝐹 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒,𝑗 + 𝐹 𝑠ℎ𝑒𝑎𝑟,𝑗

𝑁𝑒𝑙𝑒𝑚

𝑗=1

 

𝑀⃗⃗ 𝑐 = ∑ 𝑟 𝑗 × (𝐹 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒,𝑗 + 𝐹 𝑠ℎ𝑒𝑎𝑟,𝑗)

𝑁𝑒𝑙𝑒𝑚

𝑗=1

 

(𝑟 𝑗 = 𝑠 𝑗 − 𝑥 𝑐) 
 

𝑎 𝑐
𝑛→𝑛+1

=
1

𝑚
𝐹 𝑐  

𝑣 𝑐
𝑛+1

= 𝑣 𝑐
𝑛
+ 𝑎 𝑐

𝑛+1
∆𝑡 

𝑥 𝑐
𝑛+1

= 𝑥 𝑐
𝑛

+ 𝑣 𝑐
𝑛+1

∆𝑡 
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2.8 

2.9 

2.10  

Note that the inverted moment of inertia tensor must be in global physical coordinates. 

Given 𝐼  𝑙𝑜𝑐𝑎𝑙, and a rotation matrix [𝑅𝜃⃗⃗ 𝑐
], the global tensor can be transformed, 

 

 

2.11 

 

 

 

The end goal for this force based movement model is to determine centroid position, 𝑥 𝑐
𝑛+1

, and 

orientation, 𝜃 𝑐
𝑛+1

 which are given by equations 2.7 and 2.10. 

 

2.2.3 Velocity Based Movement 

The velocity based movement method uses the local fluid velocity field to calculate the 

movement of a rigid IB body in equilibrium with the local fluid flow. This method is valid for 

low Stokes number objects. It is used in Chapter 5 to calculate the movement of the bacteria and 

nanoparticles. In this method, the solid body velocity is set to the instantaneous fluid velocity 

near the object. The velocity is measured at k probes normal to the IB surface at a distance of 

approximately 5 background grid cell lengths into the flow. The centroidal velocity of the body 

is set to the average of the probe velocities, 

 

 

2.12  

𝛼 𝑐
𝑛→𝑛+1

= 𝐼  −1𝑀⃗⃗ 𝑐 

𝜔⃗⃗ 𝑐
𝑛+1

= 𝜔⃗⃗ 𝑐
𝑛
+ 𝛼 𝑐

𝑛+1
∆𝑡 

𝜃 𝑐
𝑛+1

= 𝜃 𝑐
𝑛

+ 𝜔⃗⃗ 𝑐
𝑛+1

∆𝑡 

𝐼  𝑔𝑙𝑜𝑏𝑎𝑙 = [𝑅𝜃⃗⃗ 𝑐
] ∗ 𝐼  𝑙𝑜𝑐𝑎𝑙 ∗ [𝑅𝜃⃗⃗ 𝑐

]
𝑇

  

 

where, 𝐼  𝑙𝑜𝑐𝑎𝑙 = [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

] 

𝑣 𝑐
𝑛+1

=
1

𝑁𝑘
∑𝑢⃗ 𝑘

𝑛+1

𝑁𝑘

𝑘
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The rotation is calculated based on the angular velocity of a fluid parcel relative to the solid body 

centroid at each of the probe location averaged over all the probes. 

 

 

2.13 

where 𝜔⃗⃗ 𝑘 at each probe is calculated as, 

 

 

2.14 

 

  

where 𝑣 𝑘,𝑟𝑒𝑙,𝑇 is the tangential component of the velocity of the probe relative to the centroid 

velocity as given by, 

 

 

2.15 

 

 

  

Once the linear and angular velocities are known, the accelerations can be determined by, 

 

 

2.16 

 

 

2.17 

and the displacement and orientation can be found by, 

 

 

2.18 

 

2.19 

𝜔⃗⃗ 𝑐
𝑛+1

=
1

𝑁𝑘
∑𝜔⃗⃗ 𝑘

𝑛+1

𝑁𝑘

𝑘

 

𝜔⃗⃗ 𝑘 =
𝑟 𝑘 × 𝑣 𝑘
|𝑟 𝑘 × 𝑣 𝑘|

|𝑣 𝑘,𝑟𝑒𝑙,𝑇|

|𝑟 𝑘|
 

(𝑟 𝑘 = 𝑝 𝑘 − 𝑥 𝑐) 

 

𝑣 𝑘,𝑟𝑒𝑙,𝑇 = 𝑣 𝑘,𝑟𝑒𝑙 − (𝑣 𝑘,𝑟𝑒𝑙 ∙ 𝑟̂𝑘)𝑟̂𝑘 

(𝑣 𝑘,𝑟𝑒𝑙 = 𝑣 𝑘 − 𝑣 𝑐, 𝑟̂𝑘 =
𝑟 𝑘
|𝑟 𝑘|

) 

 

𝑎 𝑐
𝑛+1

=
𝑣 𝑐

𝑛+1
− 𝑣 𝑐

𝑛

∆𝑡
 

𝛼 𝑐
𝑛+1

=
𝜔⃗⃗ 𝑐

𝑛+1
− 𝜔⃗⃗ 𝑐

𝑛

∆𝑡
 

 

𝑥 𝑐
𝑛+1

= 𝑥 𝑐
𝑛

+ 𝑣 𝑐
𝑛+1

∆𝑡 

𝜃 𝑐
𝑛+1

= 𝜃 𝑐
𝑛

+ 𝜔⃗⃗ 𝑐
𝑛+1

∆𝑡 
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Now that the centroid position, x⃗ c
n+1

, and orientation, θ⃗ c
n+1

, are known, the vertex locations, 

element velocities, and element accelerations may be determined from the process which will be 

described in the next section.  

 

2.2.4 Determination of Surface Location and Velocity  

At any time step, the physical coordinates of the surface element centroids must be determined. 

This is done using the position and orientation of the solid body centroid. Initially, the surface 

mesh is read into the code giving starting locations of each vertex, 𝑝 𝑖
0
. At each time step the 

position is calculated by, 

 
 

2.20 

The rotation matrix [𝑅𝜃⃗⃗ 𝑐
] is generated using an axis-angle quaternion [19]. This rotation matrix, 

when multiplied by any point or vector will rotate it by |𝜃 𝑐| radians about an axis defined by the 

unit vector 
𝜃⃗⃗ 𝑐

|𝜃⃗⃗ 𝑐| 
. 

Once all i vertices, 𝑝 𝑖
𝑛+1

, are in their proper locations, all j surface elements centroid are 

calculated by, 

 

 

2.21 

In order to apply the fluid boundary conditions at the surface, the velocity and acceleration of the 

surface elements must be known. These can be found by, 

𝑝 𝑖
𝑛+1

= (𝑝 𝑖
0
− 𝑥 𝑐

0
) ∗ [𝑅𝜃⃗⃗ 𝑐

] + 𝑥 𝑐
0
+ 𝑥 𝑐

𝑛+1
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 

𝑠 𝑗
𝑛+1

=
1

3
∑𝑝 𝑖

𝑛+1

3

𝑖=1

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 
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2.22 

 

 

2.23 

 

 

 

 

The surface element locations are then transformed from physical to computational coordinates 

for use in the immersed boundary method. 

 

2.2.5 Solid-Solid Contact 

During a simulation with moving solid bodies, overlap between two solids should not occur. 

However, there is no mechanism inherent in either movement algorithm described in sections 

2.2.2 and 2.2.3 which would prevent solid bodies from moving through each other. Thus, a 

contact detection and collision algorithm was implemented. As will be described further in 

Chapter 3, the red bloods cells move axially down the center of capillary with relatively constant 

cell-to-cell spacing. Based on these assumptions, RBC-wall and RBC-RBC collisions do not 

occur reducing the possible collisions to bacterium-wall or bacterium-RBC. It was assumed that 

there would be no rebound during bacterium collisions due to the material properties of the soft 

bodies involved, and viscous damping from the fluid in the system. At any given time step, n, a 

check was done to determine if the movement of the objects from position n to position n+1 

resulted in solid-solid overlap. If so, the displacement in the direction of the collision was 

reduced to prevent overlap. 

 

𝑑𝑠 𝑗

𝑑𝑡
= 𝑣 𝑐

𝑛+1
+ 𝜔⃗⃗ 𝑐

𝑛+1
× 𝑟 𝑗

𝑛+1
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 

𝑑2𝑠 𝑗

𝑑𝑡2
= 𝑎 𝑐

𝑛+1
+ 𝛼 𝑐

𝑛+1
× 𝑟 𝑗

𝑛+1
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 

(𝑟 𝑗
𝑛+1

= 𝑠 𝑗
𝑛+1

− 𝑥 𝑐
𝑛+1

) 
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2.3 Pseudo-Steady Formulation 

Due to the viscous timescale, O(10
-5

) seconds,  being significantly smaller than the timescale of 

bacteria movement, O(1) seconds, a pseudo steady state formulation is used for the main 

bacteria/nanoparticle transport simulations described in Chapter 5. Note that the capillary model 

validation simulations in Chapter 3 do not use this method because no set simulation duration is 

needed. Trying to solve a physiological problem in a transient framework would be prohibitively 

computationally expensive. 

Using the pseudo-steady formulation, the fluid equations are solved to steady state without 

moving the solids or advancing time. Once convergence in the fluid field is achieved, a time step 

is taken and the solids are moved appropriately based on their respective velocities. Two separate 

quantities are monitored for convergence in the fluid field the L∞ norm of the velocity residuals 

and the change in flowrate. The velocity residual norms are computed by, 

 

 

2.24 

 

2.25 

 

2.26  

where 𝑢𝑖,𝑗,𝑘
𝑛, 𝑣𝑖,𝑗,𝑘

𝑛, 𝑤𝑖,𝑗,𝑘
𝑛, are the velocity values at cell i, k, k at time step n. The change in 

flow rate, ∆𝑄, is evaluated at a x-slice located at the inlet (x = 0, i = 1), 

 

 

2.27  

where, 𝑅, is the radius of the capillary. The convergence tolerances reported in Chapter 5 are 

compared to these four computed values. 

 

𝐿∞(𝑢𝑟𝑒𝑠) = 𝑚𝑎𝑥(|𝑢𝑖,𝑗,𝑘
𝑛 − 𝑢𝑖,𝑗,𝑘

𝑛−1|) 𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝑖, 𝑗, 𝑘 

𝐿∞(𝑣𝑟𝑒𝑠) = 𝑚𝑎𝑥(|𝑣𝑖,𝑗,𝑘
𝑛 − 𝑣𝑖,𝑗,𝑘

𝑛−1|) 𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝑖, 𝑗, 𝑘 

𝐿∞(𝑤𝑟𝑒𝑠) = 𝑚𝑎𝑥(|𝑤𝑖,𝑗,𝑘
𝑛 − 𝑤𝑖,𝑗,𝑘

𝑛−1|) 𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝑖, 𝑗, 𝑘 

 

 

∆𝑄 = 𝜋𝑅2
1

𝑁𝑗𝑁𝑘
∑∑𝑢1,𝑗,𝑘

𝑛 − 𝜋𝑅2
1

𝑁𝑗𝑁𝑘
∑∑𝑢1,𝑗,𝑘

𝑛−1

𝑁𝑘

𝑘

𝑁𝑗

𝑗

𝑁𝑘

𝑘

𝑁𝑗

𝑗
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3. Capillary and Red Blood Cell Modeling 

A capillary is the physiological system which is the site of cancer therapeutics entering the tumor 

interstitum from the blood volume. Thus, modeling the process of drug transport into a tumor 

requires a working model of a human capillary. This chapter will discuss the basics of human 

circulation focusing especially on red blood cells. Then a computational fluid dynamics (CFD) 

based capillary model containing a characteristic section of capillary with red blood cells and 

blood plasma will be defined and validated. 

 

3.1 Human Circulation and Blood 

3.1.1 Biological Transport Phenomena 

Blood is the primary means of transport throughout the human body. Several important transport 

processes in the body include moving oxygen from the lungs to the cells, moving nutrients from 

the intestines to the cells, and redistributing excess heat from the core of the body to the 

periphery. Blood is essential to biological transport because the diffusion of mass and energy in 

tissue is too slow to be practical. Thus, blood provides a means of transport by convection which 

is much faster than diffusion. For example, compare the transport of oxygen by diffusion through 

tissue with the transport of oxygen by convection through a major artery. Using an order of 

magnitude calculation, it can be shown that oxygen is transported several million times faster in 

the arteries. Even the smallest blood vessels, the capillaries, transport oxygen approximately 

twenty times faster than the speed with which oxygen diffuses through tissue [20]. Hence, a 

sophisticated network of blood vessels is required in the body to maintain function. Tissue 

cannot survive without a constant supply of oxygen and nutrients. Every cell in the body must lie 
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within approximately 200 µm of a capillary although this distance is typically closer to 50 µm 

[4]. 

 

3.1.2 Blood Composition 

Blood is composed of many parts, each with a specific function in the body. Red blood cells 

(RBCs), also called erythrocytes, transport oxygen through the body.  Five different types of 

white blood cells, also known as leukocytes, carry out immune function throughout the body. 

Platelets or thrombocytes cause clotting in the blood to plug leaks in the vasculature walls. 

Plasma, which is the liquid portion of blood, convects all the blood components through the 

vasculature. Plasma and red blood cells make up nearly the entire volume fraction of whole 

blood. Thus, these two components drive the hydrodynamic behavior of blood. White blood cells 

and platelets have extremely complicated mechanisms by which they carry out important 

functions in the body. Thus, discussion of them is outside the scope of this work, since 

hydrodynamics are the primary focus in this paper. [21] 

Whole blood is slightly more than half plasma by volume and the remainder is red blood cells. 

The volume fraction of red blood cells is called “hematocrit” and is often abbreviated hct. A 

normal hct level in a human is 36% to 50%, thus hct can vary ± 7% from one healthy person to 

another [22]. Variation can be even more extreme due to outside influences such as living at a 

high elevation. Additionally, various abnormalities such as bleeding, cancer, sickle cell disease, 

or bone marrow suppression can cause low hct (called anemia). High hct (called Polycythemia) 

can be caused by decreased plasma volume or overproduction of red blood cells (called 

Erythrocytosis) [23]. Both elevated and depressed levels of hct are harmful to human health. 
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Hematocrit has a strong effect on the viscosity of blood along with other factors such as red 

blood cell deformability and plasma composition. 

Blood plasma is composed of, by weight, 91% water, 1% ions (Na
+
, Cl

-
, HCO3

-
, Ca

++
, Mg

++
, 

etc.), 7% loose proteins (albumin, globulin, and fibrinogen), and 1% of assorted organic 

molecules (glucose, lipids, creatinine, lactic acid, urea, etc.) [21]. These components have 

important physiological functions, and may also affect blood rheology. Until recently blood 

plasma was considered a Newtonian fluid, however recent research suggests it may contain both 

non-Newtonian and viscoelastic properties [24]. These may have an impact on flow in the 

microvasculature, but it is yet unknown the extent to which these complexities affect the flow of 

plasma. This work uses the standard assumption that plasma is a uniform Newtonian fluid with a 

viscosity of 1.210
-3

 Pas [25]. 

Each microliter, or cubic millimeter, of blood contains approximately 4.2 to 6.1 million red 

blood cells [26]. Even though blood is a dense suspension of particles, when considered in 

aggregate, the blood cells and plasma can be approximated as a uniform non-Newtonian fluid. 

Specifically, the apparent viscosity decreases as the shear rate of the flow increases. Thus, blood 

is considered a shear thinning fluid described by various mathematical relations between 

viscosity and shear rate. This approximation is sufficient for the majority of blood vessels 

however it does not hold at small scales. This is because at small scales individual blood cells—

not millions in aggregate—dominate flow behavior. Consideration of individual blood cells 

becomes important in vessels under 200 µm [27]. Human capillaries are generally classified as 

blood vessels between 5 and 8 µm in diameter so they are well below this threshold. Since red 

blood cells are around 8 µm in diameter they deform to fit in capillaries, and are carried through 
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the flow in a single file fashion. Thus, flow behavior in capillaries is strongly dependent on red 

blood cell properties. 

 

3.2 Red Blood Cell Characteristics 

3.2.1 Red Blood Cell Function 

Red blood cells, in the simplest terms, are tiny carriers of oxygen. In structure, each cell is a fluid 

filled capsule. The internal fluid, or cytoplasm, is a dense hemoglobin solution. Hemoglobin is a 

molecule which can bind oxygen and is also responsible for the red color of blood. Even though 

red blood cells makes up less than half the blood volume, the hemoglobin solution inside them 

carries 98% of the oxygen in blood [28]. This is due to the poor solubility of oxygen in plasma. 

Without red blood cells and hemoglobin, oxygen transport in blood would not be effective. 

Red blood cells have a unique shape which helps them carry out their function of oxygen 

transport. Unlike many other cells in the body, erythrocytes do not contain organelles or a 

nucleus with DNA. Erythrocytes are formed in the bone marrow in a process called 

erythropoiesis. During this multi-step process which takes about seven days, a pluripotent stem 

cell extrudes its organelles and nucleus, and becomes essentially a bag of hemoglobin. During 

erythropoiesis, the cell’s size decreases and its cytoplasmic volume increases, allowing it to 

fulfill its role of carrying oxygen to the tissue. Erythrocytes have a life span of only 120 days, 

thus they are produced at a rate of approximately two million per second to maintain a constant 

supply in the blood stream. [29] 

Red blood cells maintain a biconcave shape when floating freely in plasma. This shape has a 

high surface area to volume ratio which gives the cell two main advantages. First, transport of 

oxygen across the cell membrane is enhanced because of a larger surface area. Second, the cell 
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can deform extensively without significantly stressing its membrane. The three dimensional 

shape of an average normal red blood cell using an empirically derived equation in cylindrical 

coordinates is shown by equation 3.1 [30]. 

 

 

3.1 

A scanning electron microscope image alongside the mathematical representation of a red blood 

cell is presented in Figure 3.1. A volume and surface integration of equation 3.1 yield a surface 

area of 134.1 µm
2
 and volume of 94.1 µm

3
. A sphere of equal volume to a red blood cell only 

has 100 µm
2
 of surface area which is about 25% less. 

 
Figure 3.1. Left: size and shape of a red blood cell based on equation 3.1. Right: scanning electron microscope 

image of a red blood cell (left) along with a platelet (center) and a white blood cell (right) [31]. 

 

3.2.2 Red Blood Cell Membrane Structure 

During their 120 day life span, red blood cells must pass through the microvasculature around 

one million times [32]. Thus their membranes must be able to repetitively hold up to large 

deformations without fatiguing. Additionally these deformations must be fully reversible—that is 

they cannot undergo plastic deformation or creep. In order to accomplish these criteria, red blood 

cell membranes are made of two basic parts—the bilayer and the cytoskeleton. The bilayer is 

made from the hydrophobic sides of two phospholipid sheets binding tail to tail. This creates a 

𝑧
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flexible, semipermeable membrane. The cytoskeleton, a spectrin protein network, is necessary to 

prevent the bilayer from rupturing. The tethering between the cytoskeleton and the phospholipid 

bilayer occurs at junctions between spectrin fibers by transmembrane proteins such actin. 

Spectrin is a tetramer protein which gives the red blood cell membrane its structural integrity. An 

α and β spectrin monomers laterally associate to form a heterodimer. Then these dimers attach in 

a head to head configuration to form tetramers. The resulting tetramer form a structural web as 

shown in Figure 3.2 [33]. 

 

Figure 3.2. Left: schematic of the red blood cell membrane. Spectrin tetramers are tethered to the 

phospholipid bilayer at junctional complexes by actin and other binding proteins [34]. Right: volume 

rendering of cryo-tomography of a cytoskeleton spectrin web in a mouse’s red blood cell [35]. 

The spectrin cytoskeleton can dynamically reorganize during a cell’s journey in and out of tight 

vessels. The spectrin tetramers exist in rapid, dynamic equilibrium with spectrin heterodimers. 

Additionally, spectrin-actin disassociation can occur at the junctional complexes.  Three primary 

factors influence the topography of the spectrin web—mechanical strain energy, thermal 

fluctuation energy, and biochemical activation. Under low shear stress the cytoskeleton 

behaviors as a weak elastic solid, but becomes fluidized under high shear. This allows the cell to 

pass through very small vessels. The spectrin web reorganization possibly accounts for the 
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dissipation of in-plane shear energy. This would explain why only accounting for bending energy 

provides such good membrane shape predictions. [34] 

 

3.2.3 Membrane and Cytoskeleton Mechanical Properties 

Since a red blood cell membrane is a heterogeneous active fabric, characterization of its 

properties in simple mechanical terms can be challenging. For some applications, however, it can 

be modeled as an effective continuum material as indicated in Figure 3.3. Since the membrane is 

thin, it can also be considered a shell. If the membrane is assumed to be area conserving, the 

parameters needed to characterize the material properties are reduced to the shear modulus and 

the bending modulus [36]. 

 
Figure 3.3. Above: the two parts of the red blood cell membrane, the bilayer and the spectrin cytoskeleton, 

are tethered by transmembrane proteins. Below: the combined structure can be modeled as a flexible 

continuum material and characterized by a shear modulus and a bending modulus [36]. 

There are several techniques that are used to determine the properties of red blood cell 

membranes. Micropipette aspiration is a technique in which a small part of the cell membrane is 

sucked into a micropipette. This technique attempts to isolate the membrane’s mechanical 

properties from factors due to cell shape. Pipette tips of 1.0 to 1.5 µm are typically used for this 

experiment [33]. In order to calculate membrane properties, the distance which the cell 
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membrane is sucked in the pipette is measured as a function of suction pressure inside the pipette 

tube. This process is illustrated in Figure 3.4. Independent experiments using this method have 

yielded a shear modulus of 6-910
-6

 J/m
2
 [37]. 

 

Figure 3.4. Suction pressure of the micropipette is increased in a stepwise fashion and the resulting distance 

the cell is sucked into the micropipette tube as a result of each pressure is measured [38]. 

Another method used in determining red blood cells’ mechanical properties is stretching with 

optical tweezers. This method involves pulling the cell from either side with highly focused laser 

beams. High refractive index silica beads of approximately 4 µm diameter are attached to either 

side of the cell’s membrane [36]. One bead is attached to a solid surface and the other is held in 

an optical trap. This optical trap is created by strong electric field gradients which attract the 

bead to the center of the laser beam. The use of a high refractive index bead is critical to generate 

the maximum stretching force possible. The trap is slowly moved and the resulting stretching 

force is on the order of tens to hundreds of picoNewtons [36]. The cell’s response to the 

stretching lends insight into its mechanical properties. This setup is depicted in Figure 3.5. 

Property values obtained from these experiments are a shear modulus of 4-1010
-6

 J/m
2
 and a 

bending modulus of 210
-19

 J [34]. 
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Figure 3.5. Silica microbeads are attached to either side of a red blood cell membrane. The beads are fixed in 

optical traps and pulled apart. The resulting deformation response is captured and analyzed [36]. 

 

3.2.4 Red Blood Cell Shape and Deformation 

The membranes of red blood cells are highly flexible and do not strongly resist deformation. The 

internal cytoplasm provides minimal resistance to deformation as well. Assuming a body 

temperature of 38°C, the viscosity of the internal hemoglobin solution of a red blood cell is 30 

times that of plasma and approximately equal to olive oil. The cytoplasm however is not 

viscoelastic thus it deforms continuously with shear. The driving force behind deformation of the 

cells is shear flow in the surrounding plasma. Shear rates in the larger blood vessels are relatively 

modest compared to in the microvasculature. At the capillary level large deformation are 

required for the cells to even fit through the vasculature. These deformations are achieved 

through shear rates as high as 1000 s
-1

 [21]. 

There is disagreement in the literature as to the exact shape deformed cells take on. This is 

because of the difficulty in determining a three-dimensional shape from two-dimensional images 

such as in Figure 3.6. Some researchers believe the symmetry axis of red blood cells aligns with 

the direction of flow [39] while others argue that it is usually perpendicular often called the 

“edge-on” orientation [40]. This difference is illustrated in Figure 3.7. The orientation of the 
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cells as they enter the capillaries appears to be a factor in the final deformed shape. Studies 

looking at the axial length of the deformed cells seem to indicate that the edge on configuration 

is more prevalent in capillaries. Given the edge-on configuration, the lower the velocity of the 

cells the less axisymmetric they are. Even at larger velocities the symmetry is caused by internal 

shifting of the hemoglobin, not a rotation of the cell. However, there are likely some cells which 

traverse the capillaries with their symmetry axis parallel to the flow and others with it 

perpendicular [41]. As seen in Figure 3.6, 4 to 5 µm vessels cause torpedo shaped cells, 6 to 9 

µm vessels cause parachute shaped cells, and 10 to 12 µm vessels cause staggered slipper shaped 

cells. At the vessel wall, the plasma has a near zero velocity due to the no-slip condition between 

the plasma and the stationary endothelial cells at the capillary wall. This zero velocity ring of 

plasma causes cell shapes which are thought to aid oxygen transport out of the cells by bring the 

oxygen carrying hemoglobin closer to the vessel wall [39]. 

   

Figure 3.6. Left: red blood cell in a 4 µm capillary. The cell enters the capillary with the symmetry axis 

perpendicular to the flow in the “squished doughnut” configuration. Center: red blood cells in a 7 µm 

capillary. The orientation of the symmetry axis is ambiguous in this image. Right: red blood cells in a 12 µm 

capillary. The cells in this staggered configuration are referred to as “slipper” shaped cells. It starts to appear 

in vessels over 10 µm. [40] 
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Figure 3.7. Left: cartoon illustrating the interpretation that the symmetry axis remains parallel to the flow. 

This is referred to as the “parachute” shape [39]. Right: cartoon illustrating the interpretation that the 

symmetry axis is perpendicular to the flow [40]. Notice how the photographs in Figure 3.6 could be 

interpreted either way. 

The internal cytoplasm of the red blood cell can be assumed to be incompressible, so throughout 

the deformation process the cell’s volume is conserved. This limits the possible shapes which a 

cell can take on. It has been hypothesized that in its resting state a red blood cell’s shape 

minimizes the bending energy of its outer membrane [42]. Using this principle the cell’s shape 

can be predicted analytically. This is illustrated in Figure 3.8. 

 
Figure 3.8. The normalized bending energy of different possible cell shapes is plotted. Notice the minimum 

energy state is the biconcave disc. [42] 
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A famous experiment was done by Canham to further verify this idea. As the osmolality of the 

fluid surrounding a cell changes, fluid will seep in or out of the cell. Using this principle, the 

volume of a red blood cell in a lab can be easily modified by adjusting the surrounding 

osmolality. Using the minimization of bending energy hypothesis, the resting shape of a red 

blood cell with various surface to volume ratios were predicted. These compared very closely 

with what was observed in experiment. The comparison is illustrated in Figure 3.9. Additionally, 

the outer membrane is thought to be area conserving. This is a more unexpected phenomenon but 

has held up in many different studies. The idea of minimization of membrane energy can be 

further extended to red blood cells in capillary flow to predict the deformed cell shapes. These 

models require the assumption of axis symmetry, and balance hydrostatic forces with the 

membrane deformations [43]. 

 
Figure 3.9. Cells placed in mediums with different osmolality exhibit different shapes. The number below 

each cell is its sphericity index, a dimentionless parameter ranging from 0 to 1 where 1 is a perfect sphere. 

The dotted line is the shape observed in experiment while the solid line is the shape predicted by minimizing 

the bending energy for the particular surface area to volume ratio. [42] 

 

3.3 Capillary Model Description and Validation 

3.3.1 Past Methods for RBC Modeling 

Early models of blood capillaries focused on a simplified handling of red blood cells. For 

example, the Krogh model described the transport of oxygen from capillaries into tissue without 

considering individual red blood cells—that is the substance in the capillaries was taken as a 
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uniform fluid [44]. Other models relaxed this assumption by modeling red blood cells as perfect 

cylinders or spheres inside the capillaries. There have also been several efforts to analytically 

describe the deformed shape of red blood cells in capillaries [30, 41, 44-46]. Many of these 

models relied upon lubrication theory for the handling of the hydrodynamic effects. 

With the advent of computational fluid dynamics, there have been several models of blood flow 

which resolve the entire blood vessel and red blood cell system [47, 48]. The plasma and internal 

red blood cell fluids are typically resolved using the incompressible Navier-Stokes or the Lattice-

Boltzmann method. The red blood cell membrane is typically resolved using the finite element 

method (FEM) or a similar method to resolve the structure. The fluid and membrane models are 

often coupled using the immersed boundary method (IBM). 

These computational models have appropriate uses, but for many applications they have two 

major drawbacks. First, these models can be computationally intensive. This is because both the 

fluid and the structure governing equations must be solved and then the results must be coupled. 

Secondly and more importantly, the red blood cell membrane is a very complex non-linear, 

anisotropic material which is not currently fully understood [32, 34]. This prohibits accurate 

resolution of the deformation of the membrane structure. For these two reasons, a lower order 

model may be desired. The present work describes a method for modeling a human blood 

capillary with red blood cells which is computationally undemanding, and contains accurate 

handling of the red blood cell membranes—it is called the Fixed-shape Deformed RBC Model. 

 

3.3.2 Fixed-shape Deformed RBC Model 

Red blood cells undergo large deformations as they enter capillaries from the arterioles. 

However, in a constant diameter capillary moving at a fixed velocity, a red blood cell’s shape 
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should reach a fixed shape. This shape is a result of an equilibrium being reached between the 

plasma fluid forces and RBC membrane stress. It is hypothesized that an accurate capillary 

model can be constructed using fixed shapes for red blood cells assuming a constant diameter 

capillary and a fixed blood flow velocity. The biggest challenge for this method is determining 

what shape the deformed red blood cells adopt. A variety of methods were tested to generate the 

deformed red blood cell shapes including using revolved polynomial shapes, analytical models, 

and three dimensional reconstruction of optical images. A sample of each method is shown in 

Figure 3.10. 

 
Figure 3.10. Left: polynomials were used to generate the membrane curvature and then the profile was 

revolved around the center axis. Center: shape was taken from solution to Secomb’s analytical model using 

lubrication theory and minimization of membrane stress [46]. Right: cell profile was lifted from several 

optical images and revolved around the center axis [39, 40, 49]. 

The metrics considered during shape generation were cell volume, cell surface area, and radial 

diameter. All shapes have a surface area of 134 ± 4 µm
2
 and volume of about 94 ± 1 µm

3
. Each 
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deformed shape generated is specific to a particular capillary diameter and flow velocity. The 

axial cell diameter was determined based on the appropriate plasma layer thickness which is 

discussed further in section 3.3.5. Validation of this method to generate deformed red blood cell 

shapes is examined in section 3.3.7. 

 

3.3.3 Capillary Hematocrit and the Fahraeus Effect 

When studying capillary blood flow, it becomes necessary to specify between the hematocrit in 

capillaries versus the hematocrit in the rest of the body. The hematocrit in capillaries is lower 

than the hematocrit in the blood entering the capillaries because the mean plasma velocity is 

lower than the mean red blood cell velocity. This phenomenon is called the Fahraeus effect [50]. 

The hematocrit in capillaries is referred to as the “tube hematocrit” or HT, and the hematocrit of 

the blood exiting into larger vessels is called the “discharge hematocrit” or HD. In typical 

biological and medical discourse, the term “hematocrit” refers to discharge hematocrit. This was 

the hematocrit mentioned in section 3.1.2. The tube hematocrit in capillaries is a local and 

unusual decrease from the hematocrit everywhere else in the body. Mathematical determination 

of the capillary hematocrit, HT, will be further discussed in the following section. 

 

3.3.4 Capillary Model Parameter Definition 

For clarity, the parameters in the present model are laid out in three groups—the capillary 

parameters (Figure 3.11), the red blood cell parameters (Figure 3.12), and the dynamics 

parameters (Figure 3.13). In each figure, a longitudinal slice of a capillary is shown where the 

capillary wall is depicted by bold black lines, and two deformed red blood cells represent a long 

series of consecutive cells. 



 

33 

 
Figure 3.11.  The three parameters defining the capillary portion of the system are depicted. The axial cell-to-

cell spacing is a direct result of the capillary diameter and the tube hematocrit as shown by equation 3.2. 

 

Figure 3.12. The deformation of a red blood cell can be accurately defined by its volume, surface area, and 

plasma layer thickness. The exact shape and curvature have a relatively small effect on the hydrodynamics of 

the system. 
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Figure 3.13. The relative velocity of the cells and plasma is determined by the internal hydrodynamics of the 

system. The average velocity and volume flowrate of the system are functions of the plasma and red blood cell 

velocities. 

 

The three independent variables in the system are the capillary diameter, the average flow 

velocity, and the discharge hematocrit. These parameters can be varied within representative 

physiological ranges for use in the present model. The internal hydrodynamic forces of the 

system determine the plasma layer thickness and the relative cell velocity to plasma velocity 

ratio. The spacing of the cells, lspacing, is determined by, 

 

 

3.2 

where VRBC is the volume of the red blood cells—typically around 94 µm
3
—D is the capillary 

diameter, and HT is the tube hematocrit determined by, 
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𝑙𝑠𝑝𝑎𝑐𝑖𝑛𝑔 =
𝑉𝑅𝐵𝐶

𝜋 (
𝐷
2)

2

𝐻𝑇

 

𝐻𝑇 = 𝐻𝐷

𝑢̅

𝑢𝑐𝑒𝑙𝑙
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where HD is the discharge hematocrit, ucell is the red blood cell velocity, and ū is the average flow 

velocity determined by, 

 
 

3.4 

where uplasma is the average velocity of the plasma integrated over a cross section of the capillary. 

uplasma will always be less than ucell because the cells migrate towards the center, faster regions of 

the flow. The total volume flow rate is given by, 
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where Acapillary is the cross sectional area of the capillary. The volumetric flow rate can be used to 

find an apparent viscosity of the capillary flow, 
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where P/lspacing is the axial pressure drop across a red blood cell. This is not a true viscosity—

instead, Poiseuille's Law has been solved for the viscosity to generate a parameter representing 

viscosity in the two-phase, capillary flow [51, 52]. 

 

3.3.5 Plasma Layer Thickness Determination 

The plasma layer thickness is a critical parameter governing the hydrodynamics in the capillary. 

In the present model, the plasma layer thickness is set when the deformed RBC shape is 

generated. In order for the model to appropriately reflect reality, the plasma layer thickness must 

be correct. Several experiments from the literature were examined and a correlation based on the 

capillary Reynolds number was established. Experimental data with a log fit is shown in Figure 

3.14, and the correlation along with the non-dimensionalized data is shown in Figure 3.15. 

𝑢̅ = 𝑢𝑐𝑒𝑙𝑙𝐻𝑇 + 𝑢𝑝𝑙𝑎𝑠𝑚𝑎(1 − 𝐻𝑇) 

𝑄 = 𝑢̅ 𝐴𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦 

𝜇
𝑎𝑝𝑝

=
∆𝑃

𝑙𝑠𝑝𝑎𝑐𝑖𝑛𝑔

𝜋𝐷4

128 𝑄
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Figure 3.14. Experimentally observed plasma layer thickness data [53] is plotted versus cell velocity for six 

different capillary diameters. The fit lines were generated using logistic regression. 

 
Figure 3.15. Non-dimensionalized plasma layer thickness data from Figure 3.14 plotted versus Reynolds 

number. The final correlation used to determine the plasma layer thickness is only a function of Reynolds 

number. 



 

37 

Equations 3.7 and 3.8 give the final form of the plasma layer thickness correlation. 

 

 𝛿𝑝𝑙𝑎𝑠𝑚𝑎
∗ =

𝛿𝑝𝑙𝑎𝑠𝑚𝑎

𝐷
= 0.044 𝑙𝑛(𝑅𝑒) + 0.37 3.7  

 
𝑅𝑒 =

𝜌𝑝𝑙𝑎𝑠𝑚𝑎 𝑢̅ 𝐷

𝜇𝑝𝑙𝑎𝑠𝑚𝑎
 

3.8 

This is a novel correlation developed in the present work using existing experimental data from 

the literature.  

 

3.3.6 Capillary Model Setup 

The present model generates pressure and velocity fields in the plasma fluid domain such that 

any desired heat or mass transfer problems may be explored in the capillary system. Several 

simulations with varying parameters were run to validate the model. In each simulation, five 

deformed red blood cells were placed in plasma flow approximating a long series of cells. The 

plasma field was resolved using the incompressible Navier-Stokes solver described in Chapter 2. 

For each simulation, the system was non-dimensionalized by the capillary diameter, Lref, the 

mean plasma velocity, Uref, and the kinematic viscosity of the plasma, ref. The Reynolds number 

of the system was around 0.01 but varied based on the exact input parameters chosen. The 

parameters tested are shown in Table 3.1. 
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Table 3.1. The input parameters used for the capillary validation simulations. 

 

 

The boundary conditions at the fluid-solid interfaces were enforced by the immersed boundary 

method described in Chapter 2 [17]. These interfaces included both the capillary wall and the red 

blood cell membranes (Figure 3.16 and Figure 3.17). The cells remain in a fixed, deformed shape 

and translated axially based on the pressure and shear forces of the plasma on each cell. These 

forces were integrated over the surface of each cell every time step. The resulting force was used 

to find the acceleration which was integrated in time to find the cell position at the next time 

step. The integration error was small due to the small time step required to resolve the highly 

viscous, low Reynolds number flow. 

A structured Cartesian fluid mesh was used for maximum computational efficiency. Each 

simulation required approximately 2,000,000 fluid elements and 200,000 immersed boundary 

surface elements. The fluid elements were distributed into sixty-three blocks—organized into a 7 

by 3 by 3 configuration and one processing core was used for each block.  Message passing 

interface (MPI) was used to share information between block boundaries as described in Chapter 

2. A typical simulation ran for 20,000 to 30,000 time steps at which point it reached steady state. 

Case Capillary Diameter Plasma Velocity Hematocrit (HD) 

1 6.0 µm 1.0 mm/s 45% 

2 7.0 µm 1.0 mm/s 36% 

3 7.0 µm 2.0 mm/s 35% 

4 8.0 µm 0.5 mm/s 35% 

5 8.0 µm 1.0 mm/s 35% 

6 9.0 µm 0.1 mm/s 33% 

7 9.0 µm 1.0 mm/s 33% 

8 9.0 µm 4.0 mm/s 29% 

9 9.0 µm 1.0 mm/s 13% 

10 10.0 µm 1.0 mm/s 26% 
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Figure 3.16. The background Cartesian fluid mesh is shown along with the red blood cells’ surface meshes. 

The surface meshes define the IBM fluid-solid interfaces. The red blood cells shown here correspond to 

deformation within a 7 µm diameter capillary. 

 
Figure 3.17. Looking axially into the capillary cylinder. The background Cartesian mesh as well as the 

surface mesh defining the capillary wall are visible. The red blood cell meshes are hidden for visualization 

purposes, but lie inside the center of the capillary. 
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Figure 3.18. Surface mesh of a red blood cell which has been deformed characteristically of a cell entering a 9 

µm diameter capillary. When using the immersed boundary method, fluid-solid interfaces are defined by 

edge connected vertices as shown. 

 

Figure 3.19. Surface mesh location of both the cells and the capillary wall. The plasma flow enters from the 

left, and propels the cells axially down the tube. 

 

3.3.7 Capillary Model Results and Validation 

Once the average axial velocity of the red blood cells became constant, data was collected for 

validation of the model. Figure 3.20 and Figure 3.21 show the cell force and cell velocity data for 

a characteristic simulation run. The cells are restricted from moving for the first 3000 time steps 



 

41 

to allow the flow to fully develop first. Once a steady cell velocity was reached, the force and 

acceleration of each of the cells approached zero. 

           
Figure 3.20. The fluid force on the red blood cells is maximum when the cells are initially stationary. As they 

approach a steady state velocity, the force approaches zero. 

 

                
Figure 3.21. The axial velocity of the red blood cells from a typical simulation is plotted over time. The 

average velocity reaches a steady state, and the ucell value can be read off the plot. 

Since the flow was dominated by viscous forces, the system reached a steady state very quickly. 

The cells did not have a chance to exit the domain. The first and last cells were used as dummies, 
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but the three inner cells behaved as if they were in a long series of cells representative of 

physiological conditions. u-velocity and pressure contours are plotted in Figure 3.24, Figure 

3.25, and Figure 3.26 to provide a qualitative understanding of the flow patterns around the red 

blood cells. When the relative velocity of the plasma with respect to the red blood cells is plotted, 

recirculation flow patterns emerge in the wake of the cells. This can be seen in Figure 3.23. The 

pocket of plasma in between consecutive red blood cells is called bolus flow. Bolus motion of 

intracellular plasma in recirculation patterns has been observed in experimental investigations of 

capillary blood flow [54]. 

 

Figure 3.22. Shown is a slice of u-velocity contours in the context of the Cartesian mesh. The outlines of the 63 

blocks are visible. The flow travels in the positive x direction. Because of the viscous dominated flow, a 

parabolic profile quickly develops after the inlet as well as in the space beyond the cells. 
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Figure 3.23. The cell velocity is subtracted from the plasma velocity field to get the relative plasma velocity. 

Streamlines in this relative velocity field reveal recirculation zones in the wake of the red blood cells. The top 

image is a 7 µm diameter capillary with a mean flow velocity of 2 mm/s. The bottom image is a 9 µm diameter 

capillary with a mean flow of 1 mm/s. 

 
Figure 3.24. A qualitative comparison of u-velocity contours for four different capillary diameters. The 

surface and volume of the cells are constant across all four simulations and the plasma layer thicknesses are 

determined from the Reynolds number and calculated by equation 6. 
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The axial pressure drop across each cell is averaged for the calculation of apparent viscosity. 

Pressure is relatively constant in each cross-section, and the pressure drop across each cell is 

relatively constant as well. This can be seen in Figure 3.25 and Figure 3.26. In order to calculate 

apparent viscosity the pressure drop across the middle three cells was averaged and substituted 

into equation 3.6 along with the mean volume flowrate. The resulting apparent viscosity can be 

non-dimensionalized by the plasma viscosity to achieve relative apparent viscosity. This is a 

common parameter studied in capillary blood flow. 

 
Figure 3.25. A qualitative depiction of streamwise pressure drop for a 9 µm diameter capillary. The pressure 

drop is used to calculate the relative apparent viscosity of the system. 

 
Figure 3.26. Pressure and velocity contours are depicted for two hematocrit values. The diameter of both 

capillaries is 9 µm and the average plasma velocity is 1.0 mm/s. 
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Figure 3.27 and Figure 3.28 compare the data retrieved from the present model with existing, 

well established experimental trends for hematocrit ratio and relative apparent viscosity in 

narrow glass tubes [49, 52, 55, 56]. Narrow glass tubes are commonly used in vitro analogues for 

human capillaries. Both the trends and magnitudes of hematocrit ratio and apparent viscosity 

compare favorably to experimental data. Uncertainty can be incurred in the experimental data 

from measurement challenges and procedural uncertainty. Uncertainty can be incurred in the 

present computational model from numerical error and uncertainty in the plasma layer thickness 

input. Due to the low Reynolds number flow and the refined mesh required for the immersed 

boundary method, numerical error is likely negligible compared to the uncertainty in the plasma 

layer thickness data used to generate equation 6. Since real physiological capillary systems have 

a high degree of variability in cell size and membrane properties, the results of the present model 

are quite good. 

 
Figure 3.27. The hematocrit ratio (HT/HD) is plotted for capillaries of different diameters along with an 

experimentally determined relationship from Pries et al., 2005 [49]. 
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Figure 3.28. The relative apparent viscosity (νapp/νplasma) is plotted for capillaries of different diameters along 

with an experimentally determined relationship from Pries et al., 2005 [49]. 

This in silica model of a capillary uses the same strategy as in vitro capillary models use—that 

is, it approximates the capillary as a straight tube. A possible improvement to the present 

computational capillary model would be to account for the differences between in vitro and in 

vivo flow. Several researchers have investigated the presence of an endothelial surface layer on 

the inside of capillary walls which is not captured in vitro. One method of incorporating this into 

the present model would be to use a reduced “effective” capillary diameter. Another possibility 

would be to include a thin porous layer near the capillary wall [49, 52, 57]. The fundamental 

setup and procedure of the simulations would remain the same. 
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4. Bacteria Modeling 

Since the objective of this work is to examine the transport of bacteria in tumor capillaries, a 

computational model of bacteria must be developed. Escherichia coli, a model gram-negative 

strain of bacteria, is among the most studied and well understood microorganisms. Their process 

of locomotion has been thoroughly characterized. Phylogenetically, they are closely related to 

Salmonella Typhimurium which have shown promise in cancer therapy studies, as discussed in 

Chapter 1 [10]. For these reasons, E. coli will be the bacteria species computationally modeled in 

the present work. This chapter will introduce biological characteristics of E. coli focusing 

especially on the propulsive organelle, the flagella, as well as discuss swimming motility. Then a 

computational model of a single E. coli bacterium which can be incorporated into the previously 

developed capillary model will be described. 

 

4.1 Bacteria Biology 

4.1.1 Introduction to Escherichia coli 

Escherichia coli is a common species of bacteria which is found in the intestines of humans and 

animals. As the most well studied bacteria species, it is often used as a model organism in 

microbiology research. A full sequence of its genome was first published in 1997, and many but 

not all of its approximately 5000 genes have known functions [58, 59]. E. coli has a rod shaped 

cell body which is around 2.5 µm long and 0.8 µm in diameter. The cell is about 70 percent 

water and is slightly denser than water. The total cell weight is approximately 1 picogram [60]. 

E. coli bacteria reproduce rapidly with a doubling time of approximately 20 minutes in ideal 

conditions. Thus, given adequate nutrients a population can expand very rapidly [60]. 
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Many but not all strains of E. coli possess swimming motility. Motility can provide several 

advantages to an organism. For example, a bacterium can search for food, correct pH, light, or 

favorable temperature by swimming around its environment [61]. Due to the low Reynolds 

number experienced by a bacterium, motility is achieved not by flapping its tail, but rather by 

rotating a corkscrew like propeller [62]. E. coli and S. Typhimurium form this propeller by 

rotating a bundle of thin helical protrusions called flagella. They are peritrichously flagellated— 

that is, they have 6 to 8 flagellar filaments which are evenly distributed around their cell body. 

Other bacteria species, however, can have one single flagellum or a flagellum on each end of 

their body as illustrated in Figure 4.1. 

 
Figure 4.1. The four main flagella arraignments. E. coli fall under the peritrichous arraignment, meaning 

they have several flagella randomly distributed around their body. 

Each filament is approximately 20 nm in diameter, and 5 to 10 µm long. At its base, is a rotary 

motor which can spin clockwise or counter clockwise. Each filament is made from 20,000 

subunits of a protein called flagellin [59]. This protein gives the filament a stiffness two orders of 

magnitude higher than actin, a common structural protein found in eukaryotic cells. This makes 

the flagella quite suitable to be a propeller despite the filaments’ thin diameter. The filaments 

have a coefficient of flexural rigidity on the order of 10
-24 

N/m
2
, and a coefficient of torsional 
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rigidity on the order of 10
10

 N/m
2 

[59]. Each filament is helical in shape with a pitch of 2.0 to 2.5 

µm, and a helix diameter of 0.4 to 0.6 µm [59]. Typically, the helix is left handed however it also 

has a polymorphic state which is right handed. This is called the “curly” state and is activated by 

external torques, such as when the flagella motor reverses [63]. This polymorphic transition is 

essential to the unbundling of the multiple flagella allowing the bacteria to reorient itself while 

swimming. 

 

4.1.2 E. coli Motility 

The process of locomotion at the scale of a single E. coli bacterium has been thoroughly 

characterized in the literature [60, 64, 65]. E. coli swim by cycling between two modes of 

motion—a forward swimming mode called “running” and a reorientation mode called 

“tumbling.” 

 

Figure 4.2. E. coli bacteria swim by switching back and forth between “running” and “tumbling” modes. 

During the run mode, which typically last around 0.9 seconds, the bacterium’s flagella motors all 

rotate counter clockwise causing the 6 to 8 filaments to bundle together into a corkscrew. 

Depending on the species and strain of bacteria, the run speed can vary from 10 µm/s to 50 µm/s. 
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At some point during the run, one or more flagella motors may reverse and start spinning 

clockwise. The reversal of the flagellar motor causes the filament to enter its curly polymorphic 

state. This disrupts the bundle causing the filaments to separate. Once the bundle is dispersed, a 

combination of Brownian motion and fluid forces causes the bacterium to reorient into a new 

direction. At the conclusion of the tumble, typically about 0.1 seconds later, the bacterium re-

enters the run mode by resuming counter clockwise rotation of all flagella motors. 

 
Figure 4.3. Left three: Bacteria in run mode with flagella bundled into a corkscrew. Right three: Bacteria in 

tumble mode. The flagella have come unbundled causing the bacteria to stop translation and reorient. 

Imaging of  fluorescently labeled flagella was conducted by Turner et al., 2000 [66]. 

The tumble angle is defined as the difference between the pre-tumble and post-tumble direction 

of the bacteria as shown in Figure 4. 4.4. 

 

Figure 4.4. The tumble angle is calculated as the scalar angle between the final bearing and initial bearing. 

Repeated cycling between running and tumbling causes the bacterium to engage in the so called 

random walk. Over time, the bacterium can move away from its original location however not in 
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an efficient manner. The displacement of the bacterium over time scales proportionally to the 

square root of the time interval over which the bacterium is swimming. In order to make 

favorable progress in a desired direction, E. coli engage in chemotaxis. This is the process in 

which a bacterium samples its environment and extends its run if it is headed in a favorable 

direction. Chemotaxis biases the random walk allowing the bacteria to progress in a favorable 

direction such as towards a desired food source or away from a toxin [61, 67]. 

 

4.2 Computational Modeling of Bacteria 

4.2.1 General Bacteria Modeling Strategies 

Many strategies exist for computationally modeling bacteria. The simplest method is to use a 

continuum approach. Since the run and tumble together form a random walk, an effective 

diffusivity can be calculated for a particular species of bacteria. Then a convection-diffusion 

equation can be solved to determine the concentration of bacteria in the domain over time. This 

can be solved in a two or three dimensional domain. In absence of a convective flow, it is only 

necessary to solve the diffusion equation. This is a low cost computationally strategy which is 

effective for large domains (greater than approximately 1 mm) and mid to high concentrations of 

bacteria. The Keller-Segel model is a classic continuum bacteria model which represents the 

population distribution in time based on the effects of chemotaxis, cell division, and cell death 

[68]. 

Another approach is to use an agent based strategy where bacteria are discretely modeled as 

infinitesimally small point-particles [69]. The location and movement of each bacterium is 

individually simulated unlike in the continuum model. A stochastic model can be applied to 

determine the run and tumble of each bacterium. Like the continuum model, an agent based 
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model can be solved in a two or three dimensional domain. Agent based models can be used with 

Navier-Stokes solvers or with only diffusion solvers if convection is negligible. Chemical 

species transport equations can be incorporated in order to track the concentration of chemotactic 

substances in the domain. Then, the run and tumble behavior of each bacteria will be modified 

based on the local chemoattractant gradient. 

Besides continuum and agent based models, a third strategy is to fully resolve the bacteria cell in 

the simulation. Resolved models are appropriate for very small domains on the order of the 

bacteria length—5 µm to 50 µm. Most resolved models do not include the actual flagellar 

filaments due to their thin diameter. To date, modeling of flagella has been confined to lower 

order flagella models typically isolated from the bacterium body and in very small fluid domains 

[70-72].  The strategy used in the present work is to use an agent based model which resolves the 

bacteria body in the flow, but models the flagella propulsion. This is an appropriate balance of 

resolution and computational efficiency for a domain consisting of a section of capillary with a 

diameter of 8-12 µm. 

 

4.2.2 Stochastic Motility Model for Agent Based Simulations 

Bacteria motility can be reproduced in silica using an agent based stochastic model. The goal of 

the motility model is to accurately recreate the behavior of a single swimming bacterium. The 

implementation of this model will be briefly described in this section. In the beginning of a run, 

the duration of the run is randomly chosen from a log normal distribution with mean of 0.86 

seconds and a standard deviation of 1.2 seconds—these experimentally determined parameters 

were reported for E. coli by Berg et al., 1972 [73]. 
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Figure 4.5. Left: log-normal probability distribution function of run durations. Right: histogram of 1 million 

computer generated run durations as generated by equation 4.3 using 𝝁 = 𝟎. 𝟖𝟔 𝒔𝒆𝒄, 𝝈 = 𝟏. 𝟐 𝒔𝒆𝒄. The mean 

and standard deviation were reported by Berg et al., 1972 [73]. 

Log-normally distributed random numbers with a given mean, 𝜇, and a standard deviation, 𝜎, 

can be generated from a simple set of equations. First parameters A and B are calculated, 

 

 

4.1  

Then, a normally distributed number is generated from two random numbers, 𝑟1 and 𝑟2, using the 

Box-Muller transformation shown in equation 4.2 [74]. Note that 𝑟1 and 𝑟2 are uniformly 

distributed random numbers over the open interval from 0 to 1. 

 
 

4.2  

Lastly, 𝒓𝒏𝒐𝒓𝒎𝒂𝒍 is transformed into a log-normally distributed number with a mean of 𝝁 and a 

standard deviation of 𝝈 by, 

 
 

4.3  

𝐴 = ln(
𝜇2

√𝜎2 + 𝜇2
) , 𝐵 = √ln (1 +

𝜎2

𝜇2
) 

𝑟𝑛𝑜𝑟𝑚𝑎𝑙 = √−2 ln 𝑟1 cos(2 𝜋 𝑟2) 

𝑟𝑙𝑜𝑔 𝑛𝑜𝑟𝑚𝑎𝑙 = 𝑒𝑥𝑝(𝑟𝑛𝑜𝑟𝑚𝑎𝑙 𝐵 + 𝐴) 
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After the run duration is calculated, it is divided by the time step size in order to get the number 

of time steps for the run. 

 
 

4.4  

The quantity is rounded to obtain an integer number of time steps, however for sufficiently small 

time steps the error will be small—in the present work, the round off error is below 1%. For 

example, using a time step size of 0.001 seconds, a bacterium run of 0.7426 seconds would take 

743 time steps, and the rounding error would only be 0.05%. A variable time step size may be 

needed if a large time step is being used. During the run phase the slip velocity is calculated by, 

 
 

4.5  

where 𝒅̂ is the bacterium’s forward direction unit vector. The magnitude of the run velocity, 

|𝒗⃗⃗ 𝒓𝒖𝒏|, is a constant in the model based on the bacteria species and strain. In the present work, 20 

µm/s was used. Depending on the application of the model, a variable run velocity chosen from a 

distribution could also be used. In a stagnant fluid, the slip velocity equals the bacterium 

velocity. However in moving fluid, the bacterium velocity is the local fluid velocity plus the slip 

velocity as illustrated in Figure 4.6.  

 

Figure 4.6. The run velocity is the slip velocity, not the absolute velocity. The vector sum of the local fluid 

velocity and the run velocity gives the total bacterium velocity as illustrated by the two examples above. 

𝑛∆𝑡,𝑟𝑢𝑛 = 𝑟𝑜𝑢𝑛𝑑 (
𝑡𝑟𝑢𝑛

∆𝑡
) 

𝑣 𝑟𝑢𝑛 = |𝑣 𝑟𝑢𝑛| 𝑑̂ 
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Upon 𝒏∆𝒕,𝒓𝒖𝒏 time steps passing, a tumble is initiated. At the beginning of a tumble, first a 

random axis about which the bacterium will rotate is chosen. This axis is restricted to be 

perpendicular to the forward direction vector, 𝒅̂, based on the definition of the tumble angle in 

Figure 4.4. 

 
Figure 4.7. At the beginning of each tumble, an axis of rotation perpendicular to the red direction vector, 𝒅̂, is 

randomly chosen and stored as the unit vector, 𝒂̂. Ten possible axes of rotation are shown superimposed. 

 

Second, the tumble angle or the magnitude of the angle change is randomly selected from a 

normal distribution using a mean of 68 degrees and a standard deviation of 36 degrees [73]. 
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Figure 4.8. Once a tumble axis is chosen, the magnitude of the tumble angle is picked randomly from the 

distribution shown in Figure 4.. In the model, the bacterium pivots over the course of many time steps. After 

the tumble, the red direction vector is updated. 

 

 
 

Figure 4.9. Left: log-normal probability distribution function of tumble angles. Right: histogram of 1 million 

computer generated tumble angles as generated by equation 4.3 using 𝝁 = 𝟔𝟖°, 𝝈 = 𝟑𝟔°. The mean and 

standard deviation were reported by Berg et al., 1972 [73]. 

Third, an angular velocity magnitude is chosen from the distribution shown in Figure 4.10. 
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Figure 4.10. Left: log-normal probability distribution function of angular velocities. Right: histogram of 1 

million computer generated tumble angular velocity magnitudes as calculated by equation 4.3 using 𝝁 =
𝟕𝟎𝟔°/𝒔, 𝝈 = 𝟑𝟔𝟓°/𝒔. The mean and standard deviation were reported by Berg et al., 1972 [73]. 

The duration of the tumble is calculated by solving equation 4.6 for 𝑡𝑡𝑢𝑚𝑏𝑙𝑒. 

 

 

4.6  

Once the duration of the tumble is determined, the number of time steps is calculated by, 

 
 

4.7  

At each time step during the tumble, the vectoral instantaneous angular velocity is calculated by 

multiplying the random angular velocity magnitude by a unit vector along tumble axis generated 

in the beginning of the current tumble. At the conclusion of the tumble a new run begins using 

the updated forward direction vector and the process repeats. 

 

 

 

 

|𝜔⃗⃗ 𝑡𝑢𝑚𝑏𝑙𝑒| =
|∆𝜃 𝑡𝑢𝑚𝑏𝑙𝑒|

𝑡𝑡𝑢𝑚𝑏𝑙𝑒
 

𝑛∆𝑡,𝑡𝑢𝑚𝑏𝑙𝑒 = 𝑟𝑜𝑢𝑛𝑑 (
𝑡𝑡𝑢𝑚𝑏𝑙𝑒

∆𝑡
) 
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The motility model can then be summarized as follows, 

1. A random run duration is generated. 

2. The bacterium swims forward for the duration of the run. 

3. A randomly selected tumble axis, tumble angle, and angular velocity are generated. 

4. The tumble duration is calculated based on the tumble angle and the angular velocity. 

5. The bacterium rotates for the duration of the tumble. 

6. The process repeats from step 1. 

 

The model was implemented and tested in a large open domain without fluid interaction. Two 

characteristic bacterium paths are shown in Figure 4.. The model is three dimensional, so the 

paths depicted are planar projections of the actual path. 

 

Figure 4.11. Two dimensional projections of the path of two different bacteria. The initial and final locations 

are denoted by the green and red dots respectively. Each simulation was run for 30 seconds. The run speed 

was 20 µm/s. 

 

4.2.3 Interaction of Bacteria and Solid Objects 

The behavior of a swimming bacterium when it encounters various solid surfaces has not been 

fully characterized in the literature. Chemical gradients [61, 67, 68], light [75], energy [76], and 

magnetism [77] are a few factors which are known to modify the run and tumbling cycle of 

certain specific bacteria species. Physical objects such as walls [78-81], porous media [82-85], 
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other bacteria [86], and cylindrical pipes [87-89] are known generally to affect the swimming of 

bacteria. However, it is not clear in all cases whether the mechanism by which these factors 

affect the swimming trajectory of a bacterium is mechanical, hydrodynamic, or biochemical. 

Understanding the mechanism of interaction is critical from a modeling standpoint—without 

complete characterization of a phenomenon, replication of reality in silica is hopeless. 

In the present bacteria model, it was determined that contact with solid surfaces should not 

modify the run or tumble durations of a bacterium. That is, there is no communication between 

external contact of the membrane and the biochemical timers governing the runs and tumbles. 

Thus, the capillary walls and red blood cells affect the bacteria through hydrodynamic interaction 

only. If a bacterium hits an obstruction in the run phase, the flagellar propulsion will continue but 

the bacterium will remain in place. This is called an “idle” and has been observed experimentally 

of bacteria in porous media [84, 85]. Bacterium-solid collisions that happen are resolved using a 

zero coefficient of restitution (COR) assumption. Reorientation my happen as a result of contact, 

but that is not a tumble as strictly defined, because the flagella motors do not reverse direction. 

 

 

 

 

 

 

 

 

 



 

60 

5. Capillary Transport Simulations 

This chapter will describe the procedure for running simulations using the capillary model 

discussed in Chapter 3 along with the bacteria model discussed in Chapter 4. In total, three 

categories of simulations were run—nanoparticle transport in a capillary, non-motile bacteria 

transport in a capillary, and motile bacteria transport in a capillary. The main interest is to 

compare motile bacteria transport with the other two control cases. This chapter will first 

describe the simulation setup and process. Then results will be shown and analyzed followed by 

discussion and conclusions. Lastly, possible future directions of the research will be described. 

 

5.1 General Setup of Simulations 

5.1.1 Fluid Domain Setup 

Fixed capillary parameters were used for all nanoparticle and bacteria transport simulations to 

allow for direct comparison between the data from different runs. A 9.0 µm diameter capillary 

with a mean flow of 1.1 mm/s and a tube hematocrit of 20.5% were selected as characteristic of 

an average capillary [90]. This gave an effective Reynolds number of approximately 0.006 as 

calculated by equations 5.1, 5.2, and 5.3. 

 

 
5.1  

where Dc is the capillary diameter, ū is the mean flow velocity as given by, 

 
 5.2  

and app is the apparent kinematic viscosity as given by,  

 

 

5.3 

𝑅𝑒𝑒𝑓𝑓 =
𝑢̅ 𝐷𝑐

𝑎𝑝𝑝
 

𝑢̅ = 𝑢𝑐𝐻𝑇 + 𝑢𝑝(1 − 𝐻𝑇) 

𝑎𝑝𝑝 =
𝜇𝑎𝑝𝑝

𝜌𝑏𝑢𝑙𝑘
=

1

𝜌𝑟𝑏𝑐𝐻𝑇 + 𝜌𝑝(1 − 𝐻𝑇)

∆𝑃

𝑙𝑠𝑝𝑎𝑐𝑖𝑛𝑔

𝜋𝐷𝑐
4

128 𝑄
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A periodic fluid domain was chosen to allow for 1 to 2 second simulation times without 

requiring an excessively long spatial domain. To illustrate the need for a periodic framework, 

consider a flow where red blood cells are traveling axially through a 9 µm diameter capillary on 

the order of 1 mm/s. If it is desired to simulate 1 second of real time in a non-periodic flow 

domain, the aspect ratio of the cylinder would have to be 100 to 1. This is unfavorable and would 

require an excessive number of fluid elements. On the other hand, the periodic framework allows 

for simulation of an infinitely long capillary using a short domain. In the present work, a cylinder 

with an aspect ratio of 2.4 to 1 was used. Three RBCs were placed in the domain to achieve the 

desired hematocrit. In the periodic framework, the total effective distance traveled by a RBC 

with a fixed velocity is controlled by the duration of the simulation. Since capillaries are 

typically 1 mm or shorter [90], simulations were run on the order of 1 second of simulated time. 

The time duration required for a particle to travel from the capillary entrance at the arteriole to 

the exit at the venule will be referred to as the residence time. 

Based on calculations done in the developing flow framework, a mean plasma velocity of 1.03 

mm/s and red blood cell velocity 1.35 mm/s provided the target mean blood velocity of 1.10 

mm/s. The RBC velocity was directly set to 1.35 mm/s throughout the simulation and imposed 

by both the displacement of the immersed boundary surfaces defining the RBCs as well as the 

velocity boundary conditions at the immersed surfaces. The plasma velocity was imposed by 

adjusting the Reτ parameter until the dimensional ubulk reached 1.0 mm/s. As described in Chapter 

2, flow was induced in the periodic domain by adding a stream wise pressure gradient into the 

governing equations. 
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5.1.2 Fluid Meshes 

A uniform Cartesian background fluid mesh was generated containing 48 total blocks in a 344 

configuration. Each fluid block contained 65,536 fluid nodes in a 643232 configuration. Thus, 

the total number of elements was about 3.1 million. This number of fluid elements yielded a 

mesh sufficiently fine to resolve the flow in the thin spaces between the RBCs, bacteria, and 

capillary wall. The simulations were run on 48 processing cores so one fluid block was assigned 

to each core. The configuration of the blocks is shown in Figure 5.1. Each block contained 16 

cache blocks in a 324 configuration for a total of 4096 elements per cache block. 

 
Figure 5.1. Left: periodic fluid domain with block structure. The red box is a single block. Right: 

characteristic block with elements. The green box is a single cache block. 

The capillary walls were imposed using the immersed boundary method. An unstructured 

triangular capillary surface mesh was created by diagonalizing a structured cylindrical mesh 

depicted in Figure 5.2. 
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Figure 5.2. The cylindrical surface mesh which defines the capillary wall is placed inside the fluid domain. 

The surface meshes for the nanoparticles, bacteria, and red blood cells are shown in Figure 5.3. 

 
Figure 5.3. Left: 405 nm, 300nm, 200 nm particle meshes. Center: Rod shaped E. coli surface mesh. Right: A 

deformed red blood cell mesh for a 9 µm diameter capillary flowing at 1.1 mm/s. The RBC shape was 

determined using the process described in Chapter 3. 

All the mesh parameters are aggregated in Table 5.1. The immersed surfaces were meshed with 

edge lengths to be of the same order as the average fluid element length. 
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Table 5.1 The fluid and IBM surface mesh parameters which were used are shown below.  represents the 

average edge length of a fluid or surface element. The non-dimensional and dimensional values are provided 

Mesh Elements Vertices average (nd) average (nm) 

fluid 3,145,728 3,211,713 0.010 93 nm 

capillary 118,008 60,000 0.014 125 nm 

red blood cells 7,434 3,831 0.023 207 nm 

bacteria 3,110 1,602 0.0077 69 nm 

200 nm particle 276 166 0.0035 32 nm 

300 nm particle 276 166 0.0053 48 nm 

405 nm particle 276 166 0.0074 67 nm 

 

Typical fluid and surface meshes for a simulation are shown in Figure 5.4 and Figure 5.5 in their 

initial locations. The capillary surface mesh remained stationary, while the RBC, bacteria, and 

nanoparticle meshes move based on interactions with the fluid. 

 

Figure 5.4. Fluid and surface meshes for a standard simulation setup. View is in the +y direction. 
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Figure 5.5. Fluid and surface meshes for a standard simulation setup. View is in the +x (streamwise) 

direction. 

 

5.1.3 Assumptions and Justifications 

This section will define and provide justification for the key assumptions underlying the 

simulations described in this chapter. The first assumption is that the fluid timescale is much 

smaller than the timescale of the bacteria. Physically, this is due to the highly viscous nature of 

the system. The viscous timescale is given by the square of the capillary radius over the 

kinematic viscosity, 
𝑅2


, and is O(10

-5
) seconds. This is 5 orders of magnitude lower than the 

bacteria timescale, O(1) seconds. Thus, fluid field adjusts almost instantaneously to any 

perturbation caused by movement of the red blood cells or bacterium. The pseudo-steady method 

described in Chapter 2 is appropriate for the present simulations. 

The second assumption is that the Stokes number of the bacteria and nanoparticles is 

negligible—that is, Stk << 1. The Stokes number is defined as, 
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5.4 

where 𝑢𝑝 is the plasma velocity, 𝐷𝑝𝑎𝑟  is the effective particle diameter, and 𝑡0 is the relaxation 

time defined as, 

 

 

5.5  

where 𝜌𝑝𝑎𝑟 is the particle density, and 𝜇𝑝 is the plasma viscosity. The Stokes numbers in the 

present simulations are 𝑆𝑡𝑘𝑏𝑎𝑐𝑡 ≈ 10−4 ≪ 1, and 𝑆𝑡𝑘𝑛𝑝 ≈ 10−5 ≪ 1 when taking the bacteria to 

be a 2 µm sphere with a density of 1105 
𝑘𝑔

𝑚3, and taking the particles to be polystyrene spheres 

with diameters of 300 nm. The very low Stokes numbers means all the solid particles will move 

along the streamlines, and that there is no time lag for the particles to adjust to a transient fluid 

field. Numerically, this means that the particles directly take on the local fluid velocity at each 

time step—this process was described in detail as velocity based IB movement in section 2.2.3. 

The third assumption is that Browning motion is not a major factor in the intracapillary transport 

of therapeutics. In the context of mass transport, the Peclet number is defined as the ratio of the 

rate of advection to the rate of mass diffusion as shown in equation 5.6. When Pe >> 1 advection 

dominates over diffusion. 

 

 
5.6  

where 𝐷𝑐 is the diameter of the capillary, 𝑢𝑝 is the plasma velocity, and 𝐷 is the Brownian 

diffusivity of the particle. With respect to bacteria, 𝑃𝑒 ≈  5 × 104 and with respect to 300 nm 

particles, 𝑃𝑒 ≈ 104. Thus, diffusivity should not be a dominant force in the system. Since we are 

primarily interested in the radial distribution of therapeutics, it could be argued that the 

𝑆𝑡𝑘 =
𝑡0 𝑢𝑝

𝐷𝑝𝑎𝑟
 

𝑡0  =
𝜌𝑝𝑎𝑟  𝐷𝑝𝑎𝑟

2

18 𝜇𝑝
 

𝑃𝑒 =
𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛

𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛
=

𝐷𝑐 𝑢𝑝

𝐷
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maximum radial velocity should be used in place of the plasma velocity as the characteristic 

velocity. Even for smaller particles and using the radial velocity—𝑢𝑟𝑎𝑑𝑖𝑎𝑙 ≈ 50
𝜇𝑚

𝑠
 and 𝑟𝑝𝑎𝑟 ≈

50 𝑛𝑚—the Pe is still order 100. That is, advection is two orders of magnitude higher than 

diffusion. 

The fourth assumption is that collisions between a bacterium and RBC or a bacterium and the 

capillary wall do not result in rebounding. Mathematically, the coefficient of restitution (COR) 

of the collisions can be assumed to be zero. This is because the kinetic energy of a swimming 

bacterium is extremely low, as well as because there is so much viscous damping by the fluid in 

the system. A bacterium colliding with an object results in total loss of relative velocity between 

the bacteria and the object.  Additionally, a bacterium colliding with an RBC is assumed not to 

affect the trajectory of the RBC. This is because the RBC has about 60 times the mass of the 

bacterium. 

The fifth assumption is that the pressure drop from the arteriole to the venule is relatively 

constant in time. That is, pulsatile effects are negligible. In biofluid mechanics, the Womersley 

number is often used to quantify the level of pulsatility in a flow. It is defined as, 

 

 

5.7  

where ω is the frequency of oscillations, 𝐷𝑐 is the vessel diameter, and  is the kinematic 

viscosity. Several references in the literature report α ≈ 10−4 [90, 91]. Thus, pulsatility can 

safely be neglected. 

The sixth assumption is that any curvature in an actual capillary can be neglected in the current 

model with no effect on the solution. The Dean number is defined as, 

𝛼2 =
𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 𝑒𝑓𝑓𝑒𝑐𝑡𝑠

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑒𝑓𝑓𝑒𝑐𝑡𝑠
=

𝜔 𝐷𝑐
2


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5.8  

where 𝐷𝑣 is the diameter of the blood vessel and 𝑅𝑐𝑢𝑟𝑣𝑒 is the radius of the bend. Even for a 

highly curved capillary—i.e. a 180° u-bend—the Dean number cannot exceed the Reynolds 

number because geometrically, 𝑅𝑐𝑢𝑟𝑣𝑒 ≥ 𝐷𝑣. Regardless of the curvature, in a low Reynolds 

number system the Dean number will be small. Thus, the effects of curvature do not impact the 

flow field inside the capillary. [90] 

 

5.2 Nanoparticle Simulations 

5.2.1 Nanoparticle Simulation Setup 

The nanoparticle simulations contained 18 nanoparticles with diameters 200 nm to 405 nm 

placed in a periodic domain. Since the fluid field was mostly axisymmetric, the starting location 

of the nanoparticle was defined in terms of a radius from the centerline. The goal of the initial 

setup was to vary the radius across the sample of nanoparticles. The initial configuration is show 

in Figure 5.6. 

𝐷𝑒 =
𝑐𝑒𝑛𝑡𝑟𝑖𝑝𝑒𝑡𝑎𝑙 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 ∗ 𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑒𝑓𝑓𝑒𝑐𝑡𝑠

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑒𝑓𝑓𝑒𝑐𝑡𝑠
= √

𝐷𝑣

2 𝑅𝑐𝑢𝑟𝑣𝑒
𝑅𝑒 
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Figure 5.6. 18 nanoparticles are distributed in the domain with their respective initial distance from the 

centerline, R, varying from 0.0 to 0.425—the non-dimensional the capillary radius is 0.5. 

The fluid parameters were set as described in section 5.1.1—that is, the RBC velocity was fixed 

at 𝑢𝑟𝑏𝑐 = 1.35 
𝑚𝑚

𝑠
, while the average plasma flow velocity equilibrated to 𝑢𝑏𝑢𝑙𝑘 ≈ 1.0 

𝑚𝑚

𝑠
. The 

simulations were run for durations of 0.3 sec to 1.1 seconds required for streamwise travel of 

approximately 400 µm to 1.5 mm. An average capillary is around 0.5 mm to 1.0 mm long [90]. 

Despite the initial prediction that Brownian motion would have a limited effect on particle 

transport, several simulations were run with non-zero diffusivity to verify this hypothesis. In 

order to implement Brownian motion, the Stokes-Einstein equation was used to calculate the 

diffusivity of the particle as shown in equation 5.9. 

 

 

5.9  
𝐷 =

𝑘𝐵𝑇

6 𝜋 𝜇𝑝  
𝐷𝑝𝑎𝑟

2
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where 𝑘𝐵 is Botzmans constant, 𝑇 is temperature, 𝜇𝑝 is the plasma viscosity, and 𝐷𝑝𝑎𝑟 is the 

particle diameter. Over the interval of one time step, ∆𝑡, the root mean squared displacement due 

to Brownian motion was calculated as, 

 

 

5.10  

This estimated root mean squared displacement was applied to each particle in a random 

direction at each time step. 

Figure 5.7 gives an overview of the computational procedure used for the nanoparticle 

simulations. Detailed explanation for the numerical implementation can be found in Chapter 2. 

Additionally, a subroutine call graph is provided in the Appendix for reference. 

 

Figure 5.7. The basic process for the nanoparticle simulations is shown. Further details are described in 

Chapter 2.  

√〈𝑟2〉 = √6 𝐷 ∆𝑡 
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5.2.2 Results from Nanoparticle Simulations 

Eleven simulations with were run with the input parameters shown in Table 5.2. Each simulation 

was run using the initial positions of the 18 nanoparticles as shown in Figure 5.6. 

Table 5.2. Eleven nanoparticle simulations were run using the parameters shown. The two convergence 

tolerances correspond to the velocity infinity norm and the change in flowrate as defined in Section 2.3. A 

zero diffusivity means that no Brownian motion was used. 

Run 

Number 
Time step 

Convergence 

Tolerances 

Particle 

Diameter 
Diffusivity Duration 

1 5e-4 sec 1e-5/2e-5 300 nm 0.0  m
2
/s 0.36 sec 

2 1e-3 sec 1e-6/2e-5 300 nm 0.0  m
2
/s 0.34 sec 

3 1e-3 sec 1e-5/2e-5 200 nm 0.0  m
2
/s 1.00 sec 

4 1e-3 sec 1e-5/2e-5 300 nm 0.0  m
2
/s 1.00 sec 

5 1e-3 sec 1e-5/2e-5 405 nm 0.0  m
2
/s 0.85 sec 

6 1e-3 sec 1e-5/2e-5 200 nm 1.9e-12 m
2
/s 0.89 sec 

7 1e-3 sec 1e-5/2e-5 300 nm 1.3e-12 m
2
/s 0.61 sec 

8 1e-3 sec 1e-5/2e-5 405 nm 9.4e-13 m
2
/s 0.86 sec 

9 1e-3 sec 1e-5/2e-5 200 nm 1.9e-12 m
2
/s 0.87 sec 

10 1e-3 sec 1e-5/2e-5 300 nm 1.3e-12 m
2
/s 1.11 sec 

11 1e-3 sec 1e-5/2e-5 405 nm 9.4e-13 m
2
/s 0.84 sec 

 

Runs 1 and 2 were carried out to determine an appropriate time step and fluid convergence 

tolerance. Runs 3 through 5 were run to study the particle motion due to the fluid dynamics 

without Brownian motion. Runs 6 through 11 were run to test the effect of Brownian motion for 

comparison to runs 3, 4, and 5. 

Velocity contours and streamlines of a characteristic nanoparticle simulation are shown for both 

absolute and relative velocity of blood plasma in Figure 5.8 and Figure 5.9. The plots are taken 

from simulation 4 which contained 300 nm particles. 
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Figure 5.8. Contours of absolute velocity with streamlines. A well-defined ring of low velocity plasma can be 

seen in the cross-sectional slice. 

 

Figure 5.9. Contours of relative velocity with streamlines. The relative velocity field is generated by 

subtracting the absolute velocity field by the reference frame velocity (which is the RBC velocity). 
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Initial observation of the qualitative data indicated that nanoparticles situated between the RBCs 

tended to remain there at a nearly identical velocity as the RBCs. Nanoparticles in the outer 

plasma layer tended to stay in the near wall region at a significantly lower axial velocity. 

Conversely, nanoparticles in the intermediate region moved around more as they were impacted 

by the radial fluid velocity appearing in the RBC wakes. The nanoparticles in the simulations 

with Brownian motion had a noticeable jiggle as expected, but it was unclear as to the actual 

impact on the particle transport or the particle distribution in the capillary looking at the 

qualitative data. 

Figure 5.10 to Figure 5.13 show the paths of the 18 nanoparticles during a characteristic 

simulation. The location trace is designated by the radial and streamwise components separately. 

 

Figure 5.10. Radial position traces for 300 nm particles. No Brownian motion was used. 
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Figure 5.11. Radial position traces for 300 nm particles. Brownian motion was used (D = 1.310
-12

 m
2
/s). 

 

 

Figure 5.12. Streamwise position traces for 300 nm particles. No Brownian motion was used. 



 

75 

 

Figure 5.13. Streamwise position traces for 300 nm particles. Brownian motion was used (D = 1.310
-12

 m
2
/s). 

There is some difference in the fluctuations when the Brownian motion is used, but the general 

trends are similar. Figure 5.14 through Figure 5.16 show time averaged results plotted versus the 

starting positions of the nanoparticles. 

 

 

Figure 5.14. Time averaged results are shown for 405 nm particles. Results are averaged from multiple 

simulations. 
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Figure 5.15. Time averaged results are shown for 300 nm particles. Results are averaged from multiple 

simulations. 

  

Figure 5.16. Time averaged results are shown for 200 nm particles. Results are averaged from multiple 

simulations. 

 

5.3 Non-motile Bacteria Simulations 

5.3.1 Non-motile Bacteria Simulation Setup 

Several cases were run with non-motile bacteria. These bacteria are passively convected through 

flows and have no propulsion. The movement of the immersed bodies was done using the 

velocity based approach as described in Section 2.2.4. This movement method is appropriate due 

to the low Stokes number of the bacterium “particle” in the flow. Additionally, Brownian forces 

were neglected due to the low Peclet number. 
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A range of starting locations was used just as in the nanoparticle simulations. The starting 

positions are shown in Figure 5.17. The initial non-dimensional radii, R, at which the bacteria 

centroids were placed are 0.0, 0.1, 0.2, 0.3, and 0.4. Four orientations, ±x-facing and ±z-facing, 

were used. The starting axial (x-dir) position was shifted to prevent initial contact between the 

bacterium and RBC.  

 

Figure 5.17. Nine different starting positions of bacteria are shown superimposed. Each bacterium position 

represents two possible configurations—forwards or backwards facing resulting in 17 possible initial 

conditions. Forwards versus backwards only makes a difference in motile bacteria—thus, there are only 9 

possible initial conditions for non-motile bacteria. 

 

Figure 5.18 gives an overview of the computational procedure used in the non-motile bacteria 

simulations.  
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Figure 5.18 An overview of the computational process for the non-motile bacteria simulations is shown. 

Further details are described in Chapter 2.  

 

The same basic procedure is used as in the nanoparticle simulations with a few key differences. 

First, rotation is needed due to the capsule shape of the bacteria. Second, contact is explicitly 

resolved using the algorithm described in Chapter 2. Lastly, no Brownian velocity is applied, 

since the effect of thermal noise on bacteria motion is negligible. 

 

5.3.2 Results from Non-motile Bacteria 

Nine different non-motile bacteria simulations were run with varying starting locations and 

orientations. Only one simulation was run for each case since the outcome was deterministic 



 

79 

based on the initial condition. This is in contrast with the motile bacteria simulations which have 

a stochastic component to their movement. The run parameters are shown in Table 5.3. 

Table 5.3 Nine non-motile bacteria simulations were run using the parameters shown. The two convergence 

tolerances correspond to the velocity infinity norm tolerance and the flowrate convergence. 

Case 

Number 
Time step 

Convergence 

Tolerance 

Initial 

Radius 
Orientation Duration 

1 5e-4 sec 1e-5/2e-5 0.0 +z 0.72 sec 

2 5e-4 sec 1e-5/2e-5 0.1 +z 0.52 sec 

3 5e-4 sec 1e-5/2e-5 0.2 +z 0.56 sec 

4 5e-4 sec 1e-5/2e-5 0.3 +z 0.14 sec 

5 5e-4 sec 1e-5/2e-5 0.0 +x 0.54 sec 

6 5e-4 sec 1e-5/2e-5 0.1 +x 1.24 sec 

7 5e-4 sec 1e-5/2e-5 0.2 +x 0.56 sec 

8 5e-4 sec 1e-5/2e-5 0.3 +x 0.16 sec 

9 5e-4 sec 1e-5/2e-5 0.4 +x 0.01 sec 

Since there is no front or back to a non-motile bacterium, “+z” orientation simply refers to 

vertical or radial alignment, while “+x” refers to horizontal or streamwise alignment. 

Characteristic results of the velocity field in the capillary along with the bacteria and red blood 

cells are shown in Figure 5.19 and Figure 5.20. The bacteria are larger than the nanoparticles 

thus they have more of an impact on the flow. For example, in the relative velocity plot the 

bacterium can be seen disrupting the circular relative flow structure. 
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Figure 5.19. Contours of absolute velocity with streamlines. A well-defined ring of low velocity plasma can be 

seen in the cross-sectional slice. 

 
Figure 5.20. Contours of relative velocity with streamlines. The plasma velocity is normalized by the red 

blood cell velocity. Visualization of relative velocity flow structures gives insight into the radial movement of 

an object traveling at a similar velocity to the RBCs. 
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In the non-motile simulations, the bacteria velocity reached a steady state typically within 0.2 

seconds. Thus, long simulation times were not needed for these cases. This can be seen in the 

position plots where the bacterium path is designated by the radial and streamwise components 

separately. 

 

Figure 5.21. Radial position traces for six different non-motile bacterium. The point of divide in the initial 

positions between bacteria moving towards the center and wall can be seen around R = 2 µm. 
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Figure 5.22. Streamwise position traces for six different non-motile bacterium. Non-motile bacterium which 

start near the center tend to the center and move at the same velocity as the RBCs. Thus, the purple line 

overlays four other traces. 

The non-motile have no stochastic motion and are not strongly affected by small scale 

perturbations in the fluid field. For this reason, only a few simulations were run for short 

durations. Figure 5.21shows the bacteria position reaching a steady state in about 0.1 or 0.2 

seconds. 

 

5.4 Motile Bacteria Simulations 

5.4.1 Motile Bacteria Simulation Setup 

For the motile bacteria simulations the starting configurations were the same as the non-motile 

case. A swimming bacterium has a forward direction, so the orientations “+x”, “-x”, “+z”, “-z” 

were all used. The bacterium was initiated in a tumble phase and the run/tumble cycle proceeded 

after that as described in Chapter 4. Several simulation runs were conducted for each starting 

orientation due to the stochastic nature of the motility model, and the results were averaged over 

the cases. The basic simulation procedure is shown in Figure 5.23. 
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Figure 5.23 An overview of the computational process for the motile bacteria simulations is shown. Further 

details are described in Chapter 2. 

 

5.4.2 Results from Motile Bacteria 

Seventeen cases were run simulating motile bacteria, and several runs were conducted for each 

case. The parameters for each case are shown in Table 5.4. 
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Table 5.4. Seventeen non-motile bacteria cases were run using the parameters shown. The two convergence 

tolerances correspond to the velocity infinity norm tolerance and the flowrate tolerance. 

 

 

 

 

 

 

 

Figure 5.24 and Figure 5.25 show relative and absolute velocity contours along with streamlines 

for a typical motile bacteria case. 

Case 

Number 

Number of 

Runs 
Time step 

Convergence 

Tolerance 

Initial 

Radius 

Initial 

Orientation 

1 6 5e-4 sec 1e-5/2e-5 0.0 +z 

2 2 5e-4 sec 1e-5/2e-5 0.1 +z 

3 4 5e-4 sec 1e-5/2e-5 0.2 +z 

4 6 5e-4 sec 1e-5/2e-5 0.3 +z 

5 2 5e-4 sec 1e-5/2e-5 0.1 -z 

6 2 5e-4 sec 1e-5/2e-5 0.2 -z 

7 2 5e-4 sec 1e-5/2e-5 0.3 -z 

8 2 5e-4 sec 1e-5/2e-5 0.0 +x 

9 10 5e-4 sec 1e-5/2e-5 0.1 +x 

10 3 5e-4 sec 1e-5/2e-5 0.2 +x 

11 3 5e-4 sec 1e-5/2e-5 0.3 +x 

12 2 5e-4 sec 1e-5/2e-5 0.4 +x 

13 4 5e-4 sec 1e-5/2e-5 0.0 -x 

14 4 5e-4 sec 1e-5/2e-5 0.1 -x 

15 4 5e-4 sec 1e-5/2e-5 0.2 -x 

16 2 5e-4 sec 1e-5/2e-5 0.3 -x 

17 2 5e-4 sec 1e-5/2e-5 0.4 -x 
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Figure 5.24. Contours of absolute velocity with streamlines. A bacterium in the plasma layer may travel at 

less than half the speed of the RBCs. 

 

Figure 5.25. Contours of relative velocity with streamlines. The plasma velocity is normalized by the red 

blood cell velocity. 
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The fluid velocity field is very similar between the non-motile bacteria and motile bacteria cases 

differing only due to the instantaneous bacteria location. This is to be expected since inertia is 

quite low and insignificant in the system. The motion and location of the bacterium varied 

dramatically between the non-motile and motile cases. Motile bacteria tended to migrate radially 

eventually reaching the plasma layer regardless of starting location. Conversely, the non-motile 

bacteria tended to settle either at the capillary centerline or the plasma layer depending on their 

starting location. Radial and streamwise bacteria traces are shown in Figure 5.26 and  Figure 

5.27. 

 

Figure 5.26. Radial position traces for fourteen different motile bacterium are shown. The trend is for a 

bacterium to move predominately in the streamwise direction until a rapid event causes the bacterium to 

quickly shift into the plasma layer near the wall. 
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Figure 5.27. Streamwise position traces for fourteen different motile bacterium. A similar trend can be 

observed as in Figure 5.26. 

 

 

5.5 Discussion of Results 

In order to better understand trends in bacteria and nanoparticle transport, three regions of the 

flow are defined in Figure 5.28. 

 

Figure 5.28. Three regions of flow are defined—the plasma layer, the intermediate zone, and the bolus flow. 
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The first observation is that the viscous dominated system can force rapid shifts in position and 

orientations of the solids. These changes can happen in durations on the order of 0.1 seconds or 

smaller. This was observed in the movement of both nanoparticles and bacteria. If the flow 

through time in a capillary is less than a second, many complex phenomena can be observed in 

that window of time. 

Nanoparticles are smaller than the flow structures in the intermediate zone so they move around 

more than the bacteria. A nanoparticle in this region may end up either in the bolus region or the 

plasma layer—conversely, a non-motile bacterium predictably moves from the eddy region to 

the bolus region. 

Both nanoparticles and bacterium in the bolus region or plasma layer tend to stay in those 

respective regions. Brownian motion increases instances of nanoparticles moving into a different 

region, however they can move through all three regions of the capillary due to fluid forces 

alone. Motile bacteria can swim out of the bolus region but tend to get stuck in the plasma layer 

due to the quickly passing RBC pushing them back to the wall. 

Non-motile bacteria reach an equilibrium position on the order of 0.1 seconds as illustrated by 

Figure 5.21. Bacteria starting 0 < r < 0.35 (bolus and intermediate zone) predictably end up in 

the bolus region, while bacteria starting 0.35 < r < 0.5 stay in the plasma layer. Diffusion is 

negligible due to the large size of bacteria as described earlier. 

Motile bacteria which start in the bolus or eddy region move out to the plasma layer during the 

run phase. If pointed towards an RBC, the bacteria may “idle” for a run cycle but will eventually 

exit after a subsequent tumble reorients it. When a bacterium tried to swim in the +x direction 

into the back of an RBC, it was observed to get caught and idle for one or more run cycles. The 
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bacteria could not pass the RBCs in the capillary so their residence time was always equal to or 

longer than the RBC residence time. 

The mean radial velocity across all motile bacteria simulations yielded a net outward radial 

velocity of 2.8 µm/s. The mean radial velocity for the nanoparticles was 0.2 µm/s, and for the 

non-motile bacteria was -0.5 µm/s. This confirms the qualitative observation that the motile 

bacteria end up on the periphery of the capillary at a higher frequency than the other agents. The 

mean residence time of motile bacteria in a 1 mm capillary was found to be 0.78 sec. The 

average residence time for non-motile bacteria was 0.76 sec, and for nanoparticles 0.67 sec. 

These values are relatively close however it shows that motile bacteria, on average, stay in a 

capillary for slightly longer than the other agents. Both the higher radial velocity and longer 

residence time suggests that motile bacteria may by more likely to exit a capillary into the 

interstitium. At the population level, this may result in higher concentrations of therapeutic in the 

tumor. 

 

5.6 Future Work 

A fundamental strategy for modeling human capillaries and bacteria in a dynamic fluid 

environment has been laid out in the present work. However, there are several possible 

improvements to the model which could be made. Also, there are several additional paths to 

carry the work forward in new directions. This section will feature six modifications to the 

current model, followed by two examples of other problems which could be examined using 

ideas and methods from the present work. 

Once aspect of therapeutic transport not explored in this work is the effect of varying parameters 

in the simulations. A characteristic value for capillary diameter, flow velocity, and hematocrit 
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were chosen, however these parameters could be varied to see how transport changes in 

capillaries with different properties. Additionally, the bacteria motility parameters could be 

varied to model other strains or species of bacteria. The size of nanoparticles could also be varied 

over a larger range, especially including smaller particles in the 10–100 nm range. 

Additionally, several modifications could be made to the capillary model. The first and simplest 

modification would be to relax the assumption of uniformly space RBCs in the axial direction. 

From optical images of capillary flow it is clear that the RBCs are not perfectly spaced. A given 

hematocrit can be maintained while varying the spacing between consecutive red blood cells in a 

line. This could be parameterized by taking the standard deviation of gap length. For uniformly 

spaced cells, the standard deviation would be minimum at zero. It would be interesting to look at 

how plasma flow patterns and drug transport are impacted by varying the standard deviation of 

gap length for a fixed hematocrit. A three RBC periodic framework may not be sufficient for this 

study since the number of gap lengths to modify is small. A five to eight RBC periodic domain 

may be effective for this study. 

A second modification would be to relax the assumption of axisymmetric RBC shape. Red blood 

cells approach axis symmetry at low capillary diameters and high flow velocities. This 

assumption was validated (see Chapter 3), however physiological capillary diameters and flow 

velocities in tumors are on the edge of the range at which axis symmetry can be assumed. 

Further, the present human capillary model works for non-axisymmetric RBCs.  Asymmetry can 

be parameterized by the ratio of the cell length at the shortest and longest points. An 

axisymmetric cell would have a ratio of 1. It would be insightful to look at plasma flow and drug 

transport at varying degrees of asymmetry. 
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A third modification would be to model fenestration in the capillary wall. The effect of 

fenestration could be studied by modeling flow seeping in or out of a smooth capillary wall. 

Another way to implement fenestration would be to resolve actual pores in the capillary wall. 

A fourth modification would be to model the endothelial surface layer (ESL). This is a thin layer 

of protein fibers which lie near the capillary wall. There have been several studies quantifying 

the properties of the ESL as well as several studies examining how it can be modeled [49, 57]. 

A fifth modification would be to model branching capillaries. When a capillary branches, it may 

have a significant effect on the local flow field. This may impact the distribution of bacteria or 

nanoparticles in blood vessel. 

The sixth and last modification presented here would be to model actively deforming red blood 

cells. This could be done either using a coupled finite element solver (fluid structure interaction), 

or by some simplified fluid force-membrane stress balance. 

The present work on intracapillary therapeutic transport could be used as the basis for studying 

penetration into a solid tumor on a larger scale than simply the capillary level. One method of 

doing this would be to model approximately 100 μm of tissue surrounding the capillary. A 

porous media model could be applied to approximate the extra cellar matrix (ECM) in the 

interstitium. Bacteria or nanoparticles could exit the capillary through fenestration and swim or 

diffuse through the interstitium. Chemotaxis or quorum sensing could be modeled in this 

framework by solving species equations to track the transport of chemoeffectors [68]. 

Another possible set up would be to model the tumor on a macro scale. Species equations could 

be solved to model the distribution of VEGF in the tumor. An angiogenesis model could be 

implemented to grow blood vessels based on the local concentration of VEGF [92]. Results from 

capillary simulations such as in the present work could be used to determine the rate at which 
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therapeutics enter the interstitium. This could be variable and based on the flow rate and 

diameter of a given blood vessel. The tumor could be modeled using a variable property porous 

media. The geometry could be reconstructed from imaging data. Additional species equations 

could be solved to model chemoeffectors in the tumor. Bacteria could be modeled as point 

particles with effects of chemotaxis included in their motility model. 
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Appendix 

Below is the general structure of GenIDLEST with the IBM section to the left. The portion 

modified for the present work is indicated in red. 
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These modifications are shown in more detail below in a subroutine call graph. The subroutine 

ibm_solid_movement() is called from the top level program (genidlest.f) and contains all the 

movement, bacteria motility, and contact related code. 

 

Blue subroutines are contained in the file ibm_solid_movement.f90, purple subroutines are 

contained in the file peter_cap_bact.f90, and green subroutines are contained in various files 

from the existing body of code comprising GenIDLEST. 
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