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Robot Autonomous Fire Location using a Weighted Probability Algorithm

Chris Lorena Nogales

(ABSTRACT ACADEMIC)

Locating a fire inside of a structure with no map of the environment or sensor information
about conditions poses a dangerous threat to the safety of firefighters. As a result, robots
are being explored to increase situational awareness inside structures prior to a firefighter
entering. This thesis presents an algorithm that autonomously guides a mobile robot to the
location of a fire by determining a heading based on the highest weighted probability region
in an IR image. This heading is compared with a heading determined from a maximum
temperature algorithm using the IR image. Experimental results have demonstrated the
validity of the proposed algorithms for a series of large-scale fire tests with a robot moving
toward a fire.



Robot Autonomous Fire Location using a Weighted Probability Algorithm

Chris Lorena Nogales

(ABSTRACT PUBLIC)

Finding a fire inside of a structure without knowing its conditions poses a dangerous threat
to the safety of firefighters. As a result, robots are being explored to increase awareness of
the conditions inside structures before having firefighter enter. This thesis presents a method
that autonomously guides a robot to the location of a fire inside a structure. The method
uses classification of fire, smoke, and other fire environment objects to calculate a weighted
probability. Weighted probability is a measurement that indicates the probability that a
given region on an infra-red image will lead to fire. This method was tested on large-scale
fire videos with a robot moving towards a fire and it is also compared to following the highest
temperatures on the image. Sending a robot to find a fire has the potential to save the lives
of firefighters.
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Chapter 1

Introduction

Locating a fire inside of a structure with no map of the environment or sensor information
about conditions poses a serious threat to the safety of firefighters. As a result, robots
are being explored to increase situational awareness inside structures prior to a firefighter
entering. This thesis presents an algorithm that autonomously guides a mobile robot to
the location of a fire. In this research, this was accomplished by classification of the fire
environment and using class features to guide a robot.

1.1 Motivation

As best quoted from the International Fire Service Training Association by Shelley et al. [1]
“Of all the perils at sea, one of the most frightening is fire. Difficult to deal with and
devastating in its effects, fire at sea leaves the mariner caught between two unforgiving
elements”.

The main motivation for this research is to reduce the risk of death for firefighters. According
to the most recent NFPA report on Firefighter Fatalities in the United States, out of the 64
firefighters that died in 2014, 22 died while operating at fire events. From these fatalities,
17 out of the 22 occurred in dwellings and enclosed properties [2]. Firefighters died because
of structural collapse, getting trapped or caught by rapid fire progress, getting lost inside
the structures and inhaling smoke or asphyxiating. Having a robot, or any other similar
mobile platform, serve as fire emergency responders would help decrease firefighter casualties.
Although this research began specifically as a part of the SAFFiR (Shipboard Autonomous
Firefighting Robot) project sponsored by the ONR (Office of Naval Research) for ships, the
goals remains the same for structures. The purpose of this research is to create an algorithm
to autonomously guide a mobile robot to the location of a fire outside its field of view (FOV)
to avoid human exposure to fire emergencies.

1
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1.2 Challenges

Rapid spread of fire, low visibility, structural collapse, high temperatures, and low oxygen
are dangers inherent to confined spaces that are only increased in shipboard firefighting.
Sending a robot deep into the hull of a vessel would ease the severity of these dangers
because loss of the robot would be equivalent to loss of property. However, a shipboard
firefighting environment poses a different set of challenges to the perception system than
that posed to traditional emergency response robots.

The first challenge is reduced visibility. Current state-of-the-art perception technology shows
amazing progress in classification of objects using machine learning techniques. However,
these systems mainly use static RGB cameras. RGB cameras would not be able to pick up
cues necessary for finding a fire in the dark. A second challenge is high density smoke and
its particles. The perception system may correctly classify smoke as such but the smoke
may cover the entire FOV of the robot. Hence, finding a way towards the fire would require
analysis of the surroundings and human understanding of the implication of fire given that
smoke is detected. Finally, one of the most important challenges is having the ability to run
the system in real-time in a changing environment. Should the robot camera have to rotate
or move in novel configurations as the robot traverses the ship, the perception system will
need to account for these movements in real-time.

The main research of this thesis is to provide an algorithm that can autonomously guide
a mobile robot to a fire outside its field of view (FOV) in real-time. To do so, a real-time
classification based system using a single infra-red (IR) camera was chosen to develop the
algorithm in C++ and Robot Operating System (ROS).

1.3 Literature Review

Current firefighting platforms in both research and industry are mainly tele-operated.
Limited research has been performed on autonomous location of fires that are outside the
FOV of a robot, with the majority of robots being remote controlled and relying on the
operator to make decisions on the robot heading. Additionally, state-of-the art techniques
for identification of fire and smoke mainly use static RGB cameras with the goal of early
warning.

1.3.1 How do Firefighters Find Fires?

Typical initial search operations firefighters use during a fire event are divided into two types:
primary and secondary search. It is during the primary search that firefighters prioritize
quickly searching for life and fire. One of the main tools firefighters use to find fires are
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hand-held thermal-imaging devices to see through smoke, measure temperatures, and help
guide them to the highest temperatures. In order keep fires at bay and find their way back,
first responders also go inside a building with a hose line. It is important to identify the
location of the fire in order to prioritize areas in need of search and work away from the fire.
However, when their thermal imaging tools fail they rely on coordinated and land-marked
searches [3] [4].

1.3.2 Robotics and Mechanisms in Firefighting

There are several robots that have been designed to locate and suppress fires, and several
methods are used to find fires. While the ultimate goal for robotics in firefighting is to have
autonomy, previous work shows that robots that put out fires rely on tele-operation from
humans.

Commercial robots for firefighting are usually threaded platforms with hoses fitted on them.
These platforms are tele-operated to get into an appropriate range in order to put out the
fire. Shown in Figure 1.1 are six unmanned commercial robots used around the world.

Figure 1.1: (a) Luf–60 (b) Rainbow5 (c) “Large Fire Fighting Robot” (d) Thermite (e)
CNII-RTC “Fireman” (f) SACI.

Figure 1.1 (a) shows Luf–60 is a wirelessly controlled German robot developed by Rechners
GmbH in Austria capable of climbing stairs and shooting water or foam 60 meters away [5] [6].
Figure 1.1 (b) shows Rainbow5, developed by the Tokyo Fire Department, a tele-operated
platform designed to extinguish unapproachable large fires such as aircarft fires [5]. Figure 1.1
(c) presents “Large Fire Fighting Robot” Fire Truck by JIEDA Fire-Protection in China.
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Figure 1.1 (d) presents a smaller remote-controlled platform called Thermite, developed by
Howe and Howe Technologies in U.S.A., a robotic platform that can be tele-operated from
400 meters away [7]. Figure Figure 1.1 (e) shows tele-operated robot “Fireman” build by
CNII-RTC in Russia [5] [8]. Finally, Figure 1.1 (f) shows SACI 2.0, a robot developed in
Brazil by ARMTEC. This platform can be controlled either wirelessly or by cable [9].

Figure 1.2 shows research platforms that follow the same tele-operation trend as the
commercial platforms but tend to be smaller [10] [11] [12] [13] [14]. Most of the research
platforms for firefighting also rely on tele-operation from humans. KAIST university in
Korea developed a remote controlled robot for indoor underground fires [10]. Another
relevant small remote-controlled robot goes into a fire environment for pre-mapping and
communication; this robot was tested against high temperatures with the goals of portability
and warning of flashover [12]. Such small platforms are designed with the goals of exploration,
communication, and warning but the robotic platforms in this research also have the goal of
fire suppression.

Despite the small form factor, there are three research platforms that are most similar to
this research. First, Figure 1.2 (a) shows a line following robot called AFFMP (Autonomous
Fire Fighting Mobile Platform). The robot follows a line to cover an area and only changes
behavior if its flame sensor detects a small flame [11]. Second, Figure 1.2 (b) shows another
small custom-made robot that uses x-ray films to reduce false detection of fires and computer
vision with thresholding heuristics. The robot aligns itself to the pixel mapping location of
the fire in its FOV [14]. Third, a small LEGO robot uses a voting logic algorithm on several
sensors to guide itself to a fire. The small robot moves in a sinusoidal fashion as it traverses
in order to find a fire [13].

Figure 1.2: (a) Line following robot AFFMP (image credit [11]) (b) An unnamed custom
robot moves in a sinusoidal fashion (image credit [14] c○[2013]IEEE) (c) LEGO robot uses
voting logic (image credit [13] c○[2014]IEEE)).
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In the first approach, the robot takes on a surveillance role but shipboard personnel would
require extra material to cover a floor plan with a line. The use of x-ray film on RGB video
is interesting but obscurity would impede usability in ships. In the latter two cases, the
robots could also take on a surveillance role but would respond to the fire alone.

1.3.3 Methods for Identifying Fire and Smoke

Traditional methods of fire warning, such as temperature and particle sampling, have the
disadvantage of requiring close proximity for detection [15]. While early computer vision
approaches detected fire flames only [16], recent investigations have shifted to detection of
both fire and smoke using machine learning and computer vision.

Most methodologies that rely on computer vision and machine learning approaches have
the goal of early detection and warning of fire and/or smoke for surveillance, see Table 1.1.
Furthermore, the most common sensor used is a color camera to detect fire, smoke, or both in
a static Field of View (FOV). Most of these methods want to leverage the already available
surveillance cameras in order to detect fire early.

Table 1.1: Chronological literature review of recent machine learning algorithms used for
detection of fire and smoke.
Source Year ML

approach
Detection Computer Vision Features

[17] 2015 Bayesian Fire + Smoke +
Reflections

mean, variance, inverse difference
moment, entropy

[16] 2015 n/a Fire + Smoke color, motion
[18] 2014 n/a Smoke spatial data
[15] 2013 NN Smoke color, diffusion, texture
[19] 2013 SVM Fire color, optical flow, orientation
[20] 2012 SVM Smoke color, motion
[21] 2011 HMM Fire spatial, temporal data
[22] 2011 SVM Smoke luminance, texture, temporal data
[23] 2010 NN Fire + Smoke wavelets
[24] 2009 SVM Smoke color, luminance, temporal data
[25] 2009 Fuzzy

Logic
Fire + Smoke wavelets

[26] 2009 SVM Fire spectral, spatial, temporal data
[27] 2008 SVM Smoke spatial data

As shown in Table 1.1, common machine learning methods used for early fire warn-
ing include back propagated Neural Networks [15] [23], Support Vector Machines
(SVM) [19] [20] [22] [24] [26] [27], Hidden Markov Models (HMM) [21], and Fuzzy Logic [25].
Table 1.1 also shows that common computer vision techniques for feature extraction include
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wavelets [24] [23], color [16] [15] [19] [20] [24], luminance [22] [24], temporal [21] [22] [24] [26],
and spatial features [18] [21] [26] [27]. For all these resources, RGB cameras provide the raw
images necessary for the detection algorithms.

A wide variety of computer vision approaches are used to identify fire or smoke. Where
a machine learning algorithm is used, computer vision techniques are relied upon for pre-
processing or extraction of features that can be fed into the classification algorithms. In
cases where no machine learning algorithm is used, thresholding becomes the main decision
heuristic but at the expense of having to manually adjust parameters.

Unfortunately, while these methods can reliably detect fire or smoke for this research the
localization of a fire by a robot platform imposes certain constraints: dynamic environment
from moving camera on robot, obscure environment from dense smoke or possible loss of
power, and unreliable wireless communication with the robot.

While many of these applications are meant for indoor use, most would not be useful for a
robot searching for fire in obscured environments. This research project requires a method
that is real-time, that can work in obscure environments, and that does not rely on a static
camera for processing. Therefore, because of the IR ability to image through dense smoke
and quantify temperatures IR cameras are used in this research.

1.3.4 Fire Localization Outside the Field of View (FOV) of a
Robot

A heuristic algorithm based on maximum temperature from IR images was previously
developed by Kim et al. [28] to predict a robot heading for locating a fire; however, it
was prone to false headings due to fire reflections or other hot objects. Some research has
been conducted to use a Bayesian classification algorithm to distinguish fire, smoke, and
reflections [17]. However, these features were not used to assist the robot in making a
decision on the robot heading that leads it to the fire. The algorithm was not developed in
ROS (Robot Operating System) but instead utilized standard tools for use on the robot.

1.4 Research Objectives

The main objective of this research was to create an algorithm that can guide a robot towards
a large fire in an obscured and enclosed indoor environment. In order to provide a base of
comparison, the algorithm was compared to a temperature following heuristic. Therefore,
the research objectives were

• to develop an algorithm that utilizes classification information in order to guide a robot
towards a fire
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• to compare algorithm in simulation against a simpler temperature following heuristic

The hypothesis of the approach is that one can subdivide the Regions of Interest (ROI)
on the Field of View (FOV) of a camera and use classification information to provide a
heading better than temperature following. This research explores further segmentation of
classified Regions of Interest (ROIs) and weighting the class of the segmented regions to
predict a heading for the robot. The goal of this research is to determine navigation heading
information that lead the robot to a fire. The following chapters provide an overview of
the research, this includes robot classification, heading approach, results with real fires,
simulations, conclusions, and future work.



Chapter 2

Software, Robots, and Simulation

The following chapter presents the details of the localization of fire algorithm, an overview
of the robots used in this research, and the software simulation environment. The software
section presents a high-level view of the algorithm followed by detailed discussion of each
section with images and mathematical background at each stage.

2.1 Software Overview

The localization algorithm was written in C++ and integrated in Robot Operating System
(ROS) Indigo with the goal of creating a software stack that can be easily integrated onto
other robotics platforms. The following is an overview of the code structure, mathematical
background for each sub-module in the algorithm, and the weighted confidence heuristic
calculation.

2.1.1 Localization Algorithm Overview

In this research, a new weighted probability heuristic was developed with the intuition
that humans use a priori knowledge, that is, the presence of smoke indicates the presence
of fire. Similarly, if one sees a fire-reflection on a wall then one can assume a fire is
nearby. Figure 2.1 contains an overview of the localization algorithm and how the weighted
probability measurement aids the robot in determining a final heading angle. This overview
includes five images: the original grayscale image, a binary image that includes large ROIs,
a winter colormap image that includes sub-ROIs, a visualization of the regions with high
weighted probability in green squares, and a masked image showing the final heading.

The localization algorithm can be manually started in a modular manner by calling a launch
file in ROS. Once started, the localization algorithm node waits for an input image from the

8



9

Figure 2.1: Localization algorithm.
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IR camera. As shown in Figure 2.1, the grayscale image is pre-processed to find Regions
of Interest (ROIs) on the FOV of the image. These large first ROIs are classified and then
further segmented. For visualization purposes, a mask and color was added to the original
grayscale image using OpenCV’s WINTER colormap. The color allows the user to observe
fine changes in the grascale images. This blue-green segmentation image also contains squares
to indicate the location of the sub-ROIs, segmentation samples are shown in Figure 2.1 and
later in Figure 2.5.

In order to choose which sub-ROIs can most likely lead to a fire, the algorithm chooses the
region with the highest calculated weighted probability heuristic. Figure 2.1 highlights the
sub-ROIs that survived the threshold as green squares. Finally, the algorithm calculates the
appropriate angle in order to move the robotic platform with respect to the FOV of the
image. A Kalman filter on the angle smooths the signal and the final angle in Radians is
sent through ROS in order to move the robot. The highlighted blue boxes in Figure 2.1 will
be presented in detail in the next sections.

2.1.2 Finding Regions of Interest

An common and important step when analyzing images in computer vision is segmentation.
The goal of segmentation is the extraction of candidate ROIs to remove information that
does not pertain to the task at hand. In an IR image, each pixel intensity corresponds
to a temperature value. Therefore, agglomerations of high intensity values are chosen for
the classification of fire, smoke, and heat-reflection tasks. Figure 2.2 shows an overview
of this pre-processing step with corresponding images. Figure 2.2 (a) is the RGB image
taken from the entrance of a hallway and Figure 2.2 (b) is the raw IR image of the same
entrance. In order to extract ROIs, the pre-processing step starts with Otsu’s method of
auto-thresholding.

Figure 2.2: Pre-processing sub-routine that finds ROI in the original grayscale image.
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2.1.2.1 Otsu’s Method

Otsu’s method iterates over all possible threshold values that divide a grayscale image’s
histogram into two classes: a background and a foreground. For each threshold, the method
calculates spreads, or variances, of both foreground and background pixel distributions.
The optimum threshold is where the sum of foreground and background spread is at its
minimum [29] [30]. Otsu’s method is used to create an initial binary mask that reduces the
search space over which the algorithm needs to classify. The foreground, in this case, are
higher intensity regions that correspond to high temperatures. Shown in Figure 2.2 (d) is
the binary image outputted by Otsu’s method and a morphological closing operation.

The sum of intra-class variances that is minimized by σ2
W = Wbσ

2
b + Wfσ

2
f where Wb and

Wf are the weights, or proportion of pixels in the background and foreground respectively,
and σ2

W is the within class variance.

2.1.2.2 Morphological Closing

In the following equations, A represents an image and B is a smaller binary structuring
element applied to the image. Erosion which shrinks objects was done by A	B =

⋃
b∈B

A−b.

Dilation which expands ROIs was done by A⊕B =
⋃
b∈B

Ab.

In dilation, if B is contained inside A then pixels values are added. In erosion, if B is
completely contained inside A then pixels values are retained, otherwise they get deleted. A
closing operation is a dilation followed by erosion.

To reduce gaps in each ROI, a morphological closing operation was performed on the mask. A
morphological closing operation is operation of dilation of the image followed by erosion [31].
Again, the closing operation result is also shown in Figure 2.2 (d) which acts as a background
filter on the original 16 bit image.

2.1.2.3 Distance Transform

The binary mask was passed onto a distance transform routine [32] which was used to find
contours that separate and identify the location of each ROI.

The distance transform produces a distance map for each pixel in the image with the distance
to the nearest obstacle pixel. The obstacle pixels in binary images are the contours between
foreground and background [32]. The peaks become markers for the foreground objects, also
known as ROIs.

Equation 2.1 shows the generalized formula for a distance transform where G is an image
represented by a grid, P is a set of points defined by a binary image, I(q) in Equation 2.2
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indicates membership of P , and DP is the resulting distance transform image. The distance
between two points is represented by d(p, q) and in this research Euclidean distance between
two pixels is used. A particular pixel is represented by (x, y), its row and column indexes.
The distance to another pixel at (x′, y′) is calculated by Euclidean distance. Equation 2.3
shows how the formula can be used for images [32].

DP (p) = min
q∈G

(d(p, q) + I(q)) (2.1)

I(q) =

{
0 if q ∈ P
inf if otherwise

(2.2)

Df (x, y) = min
x′,y′

(d(x, x′) + d(y, y′) + f(x′, y′)) (2.3)

The distance transform is shown in Figure 2.2 (e) where pixels inside the ROI have higher
intensities if they are farther away from boundary points. The transform is used for binary
image segmentation and identification of the number and center of ROIs in OpenCV [33].
The distance transform used in this research helps encompass and identify ROIs even if
they are overlapping or close to each other by defining a clear contour around each ROI.
This contour is used to prioritize each ROI by size. Each ROI was sorted from largest to
smallest and ROIs with an area below 200 pixels were discarded to ensure successful feature
extraction.

2.1.3 Classification of Regions of Interest

Based on the classification of work of Kim et al. [17], four key features (mean, variance,
inverse difference moment, and entropy) were determined to be key features needed for
classifying fire, smoke, and heat reflections. Using these features, a Bayesian classifier
was trained to assign a class to a given ROI. The Naive Bayesian classifier also provides
a probability percentage indicating how certain it is that the classification is correct. This
percentage is referred to as confidence.

Shown in Figure 2.3 is an overview of the classification process. The possible classes a
ROI could fall into were fire, fire reflection, smoke, smoke reflection, hot object, objects,
or background. Although these are the labels given to the classes, each class was actually
represented by a number.
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Figure 2.3: Classification of a ROI.

2.1.3.1 First-Order Statistical Features

The two first-order statistical features used in the classifier, mean and variance, were taken
using a mask over the original grayscale image.

N =
∑

I:mask(I)6=0

1

M =

∑
I:mask(I)6=0

src(I)

N
(2.4)

V =

∑
I:mask(I)6=0

N

(src(I)−M)2
(2.5)

where I is a pixel in the ROI and N is the number of pixels that are not masked out from
a ROI [34]. In this thesis, the mean feature was represented by the variable M and the
variance was represented by the variable V .

2.1.3.2 Gray Level Co-Occurrence Matrix (GLCM)

GLCM is a square matrix that acts as a histogram of co-occurring discrete pixel values at a
given offset in all cardinal directions. Because of its symmetry, only four cardinal directions
are needed to construct it by transposing and adding the matrix to itself [35]. As shown in
Figure 2.4, the GLCM was created using a distance of d = 2 chosen by Kim et al. [17]. In this
case, K is the number of possible discrete values in the image, that is the maximum number
allowable by a 14 bit image is K = (14)2− 1. P (i, j) is a square matrix of size K that keeps
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track of the number of times that two pixels are adjacent for different cardinal directions. It is
obtained by P (i, j) = P (i, j, d, 0◦) +P (i, j, d, 45◦) +P (i, j, d, 90◦) +P (i, j, d, 135◦), where the
matrix P (i, j, d, a◦) keeps track of the number of pixels intensity pairs adjacent to each other
at a particular distance and for each angle. The normalized sum of matrices in Equation 2.6
is the GLCM and it is represented by p(i, j).

p(i, j) =
P (i, j)

K
(2.6)

Figure 2.4: A Gray Level Co-occurrence Matrix is created by counting occurrences of
adjacent pixels for each pixel in the image.

Entropy and Inverse Difference Moment (IDM) are two texture features that can be extracted
from the GLCM. Entropy as shown in Equation 2.7 intuitively shows how much randomness
there is in a ROI.

E = (−1) ∗
∑
i

∑
j

p(i, j) log(p(i, j)) (2.7)

IDM, shown in Equation 2.8, expresses how much local homogeneity exists in a ROI [35].
In this thesis, the entropy feature was represented by the variable E and the IDM was
represented by the variable I.

I =
∑
i

∑
j

p(i, j)

1 + (i− j)2
(2.8)

2.1.3.3 Naive Bayes Classifier

The Naive Bayes Classifier is a supervised learning algorithm that has been successful in
classification despite its strong assumptions [17]. Each class and feature is assumed to have
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a normal distribution. Therefore, the probability of a feature given a certain class follows a
normal distribution as well, as shown in Equation 2.9.

Fi ∼ N(µFi
, σ2

Fj
)

Cj ∼ N(µCj
, σ2

Cj
)

p(Fi|Cj) ∼ N(µFi|Cj
, σ2

Fi|Cj
)

p(Fi|Cj) =
1√

2πµFi|Cj

e
− 1

2
(Fi−µFi|Cj

)ᵀ(Fi−µFi|Cj
)σ−2

Fi|Cj (2.9)

pk(Cj|F1F2...Fq) =
pk(Cj)p(F1F2...Fq|Cj)
k∑
Cj

pk(Cj)p(F1F2...Fq|Cj)
(2.10)

pk(F1F2...Fq|Cj) =

q∏
i=1

(Fi|Cj) (2.11)

c = argmax
Cj

(p(Cj|F1F2...Fq)) (2.12)

p = max(p(Cj|F1F2...Fq)) (2.13)

Following Bayes rule, the probability of a certain class given a set of features can be given
by Equation 2.10. Using a strong conditional independence assumption allows the evidence
term to be simplified as a product in Equation 2.11. Using maximum likelihood estimation,
the class can be predicted by Equation 2.12. Furthermore, the Naive Bayes classifier outputs
a probability, also known as confidence, by Equation 2.13. In this, i keeps track of the total
number of q features, j keeps track of the number of classes, and k is the number of candidates
or samples. A single sample will have a feature vector F and a class C assigned to it. The
predicted class is represented by c and the confidence is represented by p. Confidence is a
value between 0 and 1 that indicates how confident the classifier is that its class prediction
is a true positive.

2.1.4 Weighted Probability

In this research, a weighted probability measurement is created by combining the predicted
class and confidence of classification from the Naive Bayes classifier. The weighted prob-
ability is obtained by WP = wC ∗ p where wC represents the normalized weight of a
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particular class and p represents the confidence obtained from the classifier. The confidence
and normalized weight are both measurements between 0 and 1.

Normalized weights, wC , were assigned to each class by wC =

L∑
i
W (i)

L
. W (i) is a priority

heuristic assigned to each class and L is the total number of labels. In order to differentiate
between classes, arbitrary numbers were assigned to each class at the beginning. These
arbitrary numbers were re-organized based on the intuitive priority of leading to fire. The
first column in Table 2.1 indicates the priority given to each class, where fire has the largest
numeric value and background has the lowest. The classes ranged from 0 to 7 and default
of 0 indicates there is nothing to follow in a ROI. wC in the second column of Table 2.1 is
the resulting normalized weight for each class.

Table 2.1: Details on the classes used to calculate normalized weights assigned.

Name Class by priority, W(i) Normalized Weight, wC

FIRE 7 1
FIRE-R 6 0.85
SMOKE 5 0.71
SMOKE-R 4 0.57
HOT OBJ 3 0.42
OBJ 2 0.28
BACKGROUND 1 0.14
NOTHING 0 0

The weighted probability was conceived from the intuition that humans organize objects
classes by priority of how likely they are to lead to fire. Intuitively, following smoke would
lead to a fire because the existence of fire implies smoke and high temperatures in objects.
Hence, to the naked eye, a human would follow smoke until he or she found light reflections
from the fire and the fire itself. Although heat reflections cannot be perceived by the naked
human eye, firefighters that use hand-held IR cameras can identify hot objects, smoke, and
fire.

The weighted probability is then treated as a new probability and a heuristic threshold of
t = 0.5 was used so that only values above 50% are considered for calculating a heading.
This threshold on the weighted probability is calculated for each ROI by Equation 2.14.

WPROI =

{
0 if WP ≤ t

WP if WP > t
(2.14)

This final weighted probability calculation is encompassed alongside the ROI raw data and its
location inside a data structure. By normalizing the priority and treating it as a weight, both
confidence and probability are combined in a weighted probability. The weighted probability
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WP balances the need for high confidence and the need to follow a class of high priority.

2.2 Robot Heading

An important realization from looking at the training data for the classifier is that a ROI
could take large amounts of space making it difficult to determine a heading. Figure 2.5
(a) contains a hallway filled with smoke which make it difficult for a person to navigate.
Figure 2.5 (b) contains the corresponding raw IR image in grayscale.

Figure 2.5: (a) Original RGB image (b) FLIRA35 grayscale IR image (c) Partitioning of a
ROI (d) Resulting heading angle to guide the robot

The original grayscale image was remapped to a winter colorspace because it is easier to
distinguish details in color. The bar below Figure 2.5 (c) indicates that high temperatures
are green and low temperatures are blue; this image was used for visualization purposes.
In Figure 2.5 (c), the region highlighted in a red box is the original ROI found by auto-
thresholding. The label in the middle of the ROI shows that it is classified as smoke with
100 percent confidence. This large region encompasses half of the image and following the
center of this ROI would lead us to the wall or the corner of the room. Through subdivision
of the ROI, the heading is towards the center of the wall at the back of the hallway.

2.2.1 Weighted Probability Heading

This large ROI can be sub-divided into column-wise sub-ROIs and re-classified. In Figure 2.5
(c), the green columns are an overlay made to visualize these partitions. The weighted
probability measurement is calculated for each column sub-ROI and partitions that did
not have a weighted probability of at least 50% are not shown. The weighted probability
calculated for each sub-ROI allows for base of comparison. In Figure 2.5 (d) it is shown that
the final heading angle is the sub-ROI with the greatest weighted confidence.
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2.2.2 Maximum Temperature Heading

A simple maximum temperature heading was also calculated in this research for comparison
with the proposed weighted probability heading. The intensity values in the IR images
correspond to temperatures in the FOV; therefore, the intensities were used to determine
the maximum temperature heading. The processing included summing the intensities in each
column of the image and selecting the column with the maximum intensity. This maximum
intensity column corresponded to the heading in that image. To reduce the amount of
variation in the heading, a filter was similarly applied to the heading to smooth the result.

2.3 Robots and IR Camera Overview

2.3.1 Tele-operated robot

Real fire data in a room and hallway environment was collected using a mobile robot platform.
The robot was equipped with a long wavelength FLIRA35 IR (7–14 micron) camera placed
170 cm above the ground. A human-operator tele-operated the robot by remote control to
enter a hallway, move down the hallway, and go into a room containing a fire [17].

2.3.2 Rene

The mobile robotic platform called Rene, shown in Figure 2.6, was used to test the
software stack perceiving a fire environment. Rene is an advanced robotic platform capable
of manipulation also built by students at Terrestrial Robotics Engineering and Controls
(TREC) lab. Rene’s upper body is the same as ESCHER; however, its lower body is
composed of a PioneerLX mobile platform which communicates with the rest of the system
using Robot Operating System (ROS). Rene has been fitted with the two custom seven
degree of freedom ROBOTIS Dynamixel Pro arms.

A single long wavelength FLIRA35 IR camera with a temperature range from –40 to +550
Co and a 9mm lens is used for this research. The small focal length provides a wide Field
of View (FOV), 47.92 degrees horizontally and 39 degrees vertically (48x39). The raw input
for the algorithm is a 14 bit unsigned grayscale image embedded in 16 bits. The camera
transmits 320x256 grayscale images at a rate of 60 Hz, weights 0.2 Kg, and consumes 3.5
W [36]. An Ethernet camera driver called camera aravis was used to interface the camera
through ROS.
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Figure 2.6: Rene was build at TREC for the SAFFiR project.



Chapter 3

Fire Tests

3.1 Room-Hallway Large-Scale Tests

In order to collect real fire environment data, a human-operator tele-operated a mobile robot
platform to enter a hallway, move down the hallway, and go into a room containing a fire [17].
The environment itself is shown in Figure 3.1. Seven different real fire environment data were
utilized in this thesis in order to extract features to train the classification algorithm and
provide data to test the heading algorithm.

Figure 3.1: Lab room, hallway, and fires used to collect variations of fire-environment data.

3.1.1 Data from seven different fire environments

Variation in the data set ensures that training a classification algorithm, such as the Naive
Bayesian classifier, would not over fit. A total of ten raw-data videos containing different
fire and smoke conditions were collected by Kim et al [17]. Seven videos stored in .DAT
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Table 3.1: Fire test data details.
Name Fuel Type Total Time Temperature Smoke Visibility

2 HG Latex Below Smoke Latex 177 (s) Low Low
3 HG Latex Below Smoke Latex 179 (s) Low Low
4 HG Latex Lights Switched Latex 169 (s) Low Low
7 HG Wood Wood 112 (s) Low Medium
11 HG Latex Late Latex 69 (s) Medium Medium
13 HG Propane 25kW Propane 80 (s) Medium High
14 HG Propane 75kW Propane 72 (s) High High

formats were translated to Rosbag files and used for feature extraction and training the
classification algorithm in C++ and Robot Operating System (ROS). Table 3.1 contains fire
and smoke conditions used in the experiments. The temperatures range from at least 0 Co

to 550 Co in the different tests. Smoke visibility is the distance a person can see an object
through the smoke, with low visibility resulting from more dense smoke. Minimum visibility
in the tests ranged from 0 m to over 6 m. Latex fires, which correspond to the first three
videos, are known to have low smoke visibility and low-temperature fires. The file titled
4 HG Latex Lights Switched in particular was taken with the lights switched off. The file
titles 7 HG Wood was a wood crib fire started using acetone. Wood fires produced low to
medium gas temperatures with medium density smoke. Finally, the last two videos are two
propane fires resulted in medium and high gas temperatures. Both propane fires produced
low amounts of smoke resulting in high visibility.

3.2 Feature Extraction

As discussed in Chapter 2, each image was segmented in order to find ROIs in the grayscale
image. The ROIs extracted for training were not sub-divided. Instead, these ROIs were taken
after the first classification step, shown in Figure 2.1, and they were identified by order of
size; larger ROIs would be processed first. In addition, each ROI can be described by a
rectangular polygon and a mask, and for each ROI the four key features were extracted in
the same manner as described in Equation 2.7, Equation 2.8, Equation 2.4, and Equation 2.5.
The ROI identifier and its four features were saved to .csv files for each training video. In
order to correctly identify where the ROI came from, the time of the frame and the mean
of the overall grayscale image were also saved. With a total of 9,110 samples, the grayscale
images were correlated to RGB videos taken at the fire lab for each test and labeled as
belonging to one of 7 classes. Class 8 was reserved in order to erase a sample that was
difficult to classify or meaningless, for example, when the camera shutter would black out an
image. Table 3.2 includes the number of samples labeled for each class number and the name
field contains the translation of the numeric identifier to the name of the class. The class
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ID in Table 3.2 were originally used to distinguish between classes and thus were arbitrarily
assigned to train the classifier. Something important to note about the video data is that
most of the training images contained a single ROI. This is because smoke covers half of the
image and this region is encapsulated into one region.

Table 3.2: Different object classes and the number of ROI in each class for the training set.

Name Original Class ID Number of ROIs

HOT OBJECT 7 82
BACKGROUND 6 1687
FIRE-REFLECTION 5 338
FIRE 4 1517
SMOKE 3 4844
SMOKE-REFLECTION 2 393
OBJECT 1 249

3.3 Laboratory Tests

Because the training data was taken at the same environment, an additional four fire tests
were set up in order to test for over-fitting and the successful detection of classes. Figure 3.2
contains details on how the each of the four tests were set up. The tests consisted of placing
one of the burning materials on a metal pan below a fume hood. The burning materials
are not visible but they are held up by the black metal frame in Figure 3.2. The two
burning materials chosen were latex foam and a wet paper towel covered over by white
paper. Furthermore, a ceramic backboard was used as a variable to test the effect of the
environment in the original training data. The conditions of each test are summarized in
Table 3.3. Two camera video feeds, RGB and IR, recorded each fire test for comparison.
High density and low density smoke similar to that in the training data were used to validate
that the classifier could detect fire, smoke, and heat-reflections successfully. The backboard
was used to test whether or not the algorithm was over-fitting to the environment of the
training data.

Table 3.3: Description of the laboratory fire tests.

Name Total Time Smoke Density

Wet paper with backboard 291 (s) Medium
Wet paper no backboard 259 (s) Medium
Latex fire with backboard 108 (s) High
Latex fire no backboard 91 (s) High
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Figure 3.2: Indoor laboratory fires tests to validate classification in a different fire-
environment.



Chapter 4

Classification Training and Validation

4.1 Classifier Model

The Naive Bayes classifier forms an model for each class using Gaussian parameters. The
classifier uses four features (entropy, IDM, variance, and mean) distributions to determine
which class a new sample would belong to. The following three tables contain the parameters
that describe the model for the Naive Bayes classifier produced based on the training data.
Table 4.1 includes the Gaussian averages µ values for each feature and for each class.
Table 4.2 contains the Gaussian standard deviations σ for each feature and for each class.
Finally, Table 4.3 contains the a priori beliefs that a certain class will show up for each class.

Table 4.1: Mean of the distributions µ for each feature.

CLASS MEAN VARIANCE ENTROPY IDM

Smoke-ref 3057.6 51289.1 1.9693 0.6363
Smoke 4085.5 263234.5 1.6796 0.8438
Fire 12278.5 5070916.3 2.0873 0.6272
Fire-ref 10004.1 1563246.1 1.8673 0.7168
Background 2663.5 9052.7 1.7152 0.7850
Hot Object 2875.9 23332.0 1.8780 0.6127
Object 2906.4 37910.4 1.8147 0.7302

4.1.1 Classifier Model Distributions

The Gaussian distributions are provided in Figure 4.1 for four key classes as well as
the the four features (entropy, mean, variance, and IDM). The four key classes are fire,
fire-reflections, smoke, and smoke-reflections. The first feature, mean, represents average
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Table 4.2: The standard deviation σ for each feature.
CLASS MEAN VARIANCE ENTROPY IDM

Smoke-ref 437.2 201215.7 0.2056 0.1187
Smoke 776.0 275434.9 0.1858 0.0711
Fire 1571.9 1533091.5 0.1438 0.0838
Fire-ref 1476.3 2565756.4 0.2565 0.1241
Background 479.5 38168.2 0.1591 0.0379
Hot Object 336.7 119713.9 0.2693 0.1091
Object 282.3 36656.6 0.2335 0.0599

Table 4.3: The prior probabilities for each class.

ID & CLASS PROBABILITY

1 Smoke-ref 0.0273
2 Smoke 0.0431
3 Fire 0.5316
4 Fire-ref 0.1664
5 Background 0.0370
6 Hot Object 0.1853
7 Object 0.0089

temperature intensities for each class. Fire has the highest average temperature whereas
fire-reflections, hot objects near fire or containing fire elements, have the second highest
temperature. Smoke-reflections are hot objects that exist in the presence of smoke such as
heated walls. In a similar manner, smoke has higher temperatures than smoke-reflections.
In terms of variance of pixel values, both fire and fire-reflections have a wider range than
both smoke and smoke-reflections. The texture features also show key differences to aid the
classification of the four classes. Entropy represents the randomness in the ROI and IDM
represents the local homogeneity. Because heat-reflections include objects like the heated
wall, both are similar in texture and in between the values for smoke and fire. Fire has more
entropy than smoke while smoke has a higher IDM than fire.

4.2 Evaluation

4.2.1 Confusion Matrix

The performance of the classification of fire, smoke, and heat reflections is analyzed using
precision, recall, f-measure, and g-measure. These four classes are emphasized because they
drive the localization algorithm. The measurements are extracted from a confusion matrix
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Figure 4.1: Gaussian distribution models for the four key classes.
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as shown in Figure 4.2.

Figure 4.2: A confusion matrix of the classified fire environments.

4.2.2 Precision, Recall, F-score, G-score

Precision is a measure of the proportion of correctly classified objects, or true positives, out
of the total number of objects predicted to belong to that class. The total number includes
incorrect predictions, or false positives, that should have belonged to other classes. It is a
way to measure how often the predicted results are correct.

Recall is a measure of the proportion of correctly classified objects out of the total number
of objects that actually belong to that class. Some of the objects that belong to the class
of interest may have been misclassified as other classes; hence the sum of false positives and
true positives represents the actual number of objects belonging to a particular class.

The precision and recall were calculated by Equation 4.1 and Equation 4.2 using the data
from the confusion matrix.

precision =
TP

TP + FP
(4.1)



28

recall =
TP

TP + FN
(4.2)

Equation 4.3 provides a weighted combination of precision and recall (F-measure) while
Equation 4.4 includes the geometric mean of precision and recall (G-measure).

F = 2 ∗ precision ∗ recall
precision+ recall

(4.3)

G =
√
precision ∗ recall (4.4)

Table 4.4 includes recall, precision, F-measure, and G-measure for the four classes. The
evaluating measurements and confusion matrix show that smoke-reflection is the least reliable
classification model because it is often classified as smoke or a hot object. Fire reflections
are often misclassified as fire but has higher recall, precision, f-measure and g-measure than
smoke-reflections. However, smoke and fire have strong values across all four measurements.

Table 4.4: Evaluation of fire environment classification.
class recall precision F-measure G-measure

smoke-r 41.7 29.2 34.4 34.9
smoke 87.2 98.1 92.3 92.5
fire 83.5 98.6 90.4 90.7
fire-r 90.8 50.7 65.0 67.8

A way to improve the algorithm would be to obtain more samples. As shown in the confusion
matrix in Figure 4.2, smoke-reflection has 485 labeled samples and fire-reflection has 606
samples. By comparison, smoke has 3905 labeled samples and fire has 1284 samples. Fire-
reflections are often misclassified as fire and have a precision of 50%. Smoke-reflections
are often misclassified as smoke and have a precision of 29%. For smoke-reflections in
particular, there are more samples misclassified as smoke than the number of true positives.
By comparison Kim et al. obtained more samples of both heat reflections by extracting out
more ROIs [17].

4.3 Laboratory Test Validation

The four fire tests were designed to test how well the classifier could classify fire-related
elements in a different environment. Previous empirical tests with incense smoke demon-
strated that smoke was a difficult element to detect in a laboratory setting. As mentioned
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in Chapter 3, wet paper fire produced medium density smoke whereas latex fire generates
higher density smoke.

The following image, Figure 4.3, contains plots from each laboratory test. These plots
were created by recording the class and weighted probability of the optimal sub-ROI chosen
by the algorithm in each frame. A threshold of 0.5 ensures that only predictions with
weighted probabilities above the threshold can be used for the localization algorithm. Tests
where a background placed behind the fire is present improve the variance and number
of classifications. Particularly for Class 3, smoke, having denser smoke from latex foam
improves the variance of smoke classifications. The weighted probabilities varied from the
lowest allowed value of 0.5 to the highest 1.0.

Figure 4.3: Weighted probability vs. class in each of the laboratory tests.

Figure 4.4, includes plots of classes and weighted probability perceived for each laboratory
experiment. These plots were generated by recording the class of the optimal sub-ROI
chosen by the algorithm and its respective weighted probability for each frame. Each fire
test described in Chapter 3 had a burning material that eventually burned out. The plots
successfully shows the progression from fire to smoke as the fire dies down except in the case
with wet paper with no background.

The total number of detections and variance in the plots and Table 4.4 show that the drywall
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Figure 4.4: Classifications over time of sub-ROIs with the highest WP chosen to calculate
heading.

Table 4.5: Number of classifications of chosen heading ROI in four laboratory test settings.

Wet paper Latex Fire
background present? no yes no yes

smoke-r 1891 15177 6954 2926
smoke 19 546 83 516
fire 581 829 604 1438
fire-r 10 1419 50 428
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background improves the detections of smoke and fire. Furthermore, as the fire dies down,
the probability of correct classification decreases and as the smoke diminishes the probability
also decreases. These empirical observation results are based on comparisons to the RGB
camera video feed. Images from each tests are shown in Figure 4.5, Figure 4.6, Figure 4.7,
and Figure 4.8. In the wet paper with no background case in particular, the image froze
after the fire went out and the smoke was not perceived.

Laboratory tests show that when perceiving smoke, it is necessary to have a heated
background to successfully extract features and encompass smoke in a ROI. This is an
important discovery of a limitation of this algorithm because it shows that the algorithm
would not work in an open environment with low amounts of smoke such as incense smoke.

Figure 4.5: Wet paper with no background case.
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Figure 4.6: Wet paper with background case.
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Figure 4.7: Latex with background case.



34

Figure 4.8: Latex with no background case.



Chapter 5

Robot Heading Using Hallway Test
Data

5.1 Overview

The heading from the weighted probability algorithm was evaluated using IR data previously
collected by [17] using a mobile robot in the room-hallway fire test facility shown in Figure 3.1.
The videos were played as though a robot was perceiving them to determine a heading angle
with the weighted confidence algorithm. These headings were compared with a maximum
temperature intensity algorithm and a perceived tele-operated heading.

5.1.1 Yaw Heading Angles from Maximum Temperature and Es-
timates

The maximum temperature heading was obtained by following the highest column-wise sum
of pixels on the IR image. The highest sum of pixels indicates the highest temperature.
The angle calculated for the temperature heading were smoothed out by a running average
of five temporal images. As for the manually estimated heading, angles were determined
from rectified IR images with a maximum and minimum of positive/negative 20 degrees.
By convention, the center of the image signifies a yaw of 0 degrees; turning left corresponds
to a positive yaw angle and turning right corresponds to a negative yaw angle as shown in
Figure 5.1.

35



36

Figure 5.1: Robot yaw allows for a heading angle to control the robot. A positive angle
corresponds to turning left and a negative angle corresponds to turning right.

5.2 Results

Predictions were conducted using the training data videos which included wood crib, latex
foam, and propane fires in the fire lab. Details of each video are discussed in Chapter 3 and
Table 3.1. Each of the following images contains a time lapse of fire test, taken by an IR
camera and the RGB camera of the test, as well as a plot comparing the three headings:
Figure 5.2 Figure 5.3 Figure 5.4 Figure 5.5 Figure 5.6 Figure 5.7 Figure 5.8. The plots
have been cropped to analyze only the hallway data. The headings obtained by weighted
confidence are shown in green, the headings obtained by maximum temperature are shown in
red, and the manually acquired estimated headings are shown in black. Estimated headings
were determined by manual review provided and these estimated headings were used as
ground truth. All videos ran in real-time and the average computation time of the weighted
probability algorithm, from acquiring the image to the output of the heading, was 9.51 ms
per image.

Each of the following images contains a time-lapse of the hallway tests and the resulting
headings. The images also contain the perceived class and weighted probability chosen by
the localization algorithm for the heading of the robot. To the bottom right is a frame
reference counter that can be used to match the timing on the plot. An important note
is that the timelapse screen shots were taken with a threshold of 50% on the weighted
confidence. This threshold was not applied on the latex late (11 HG) test in order to obtain
a heading. In all videos, the estimated heading follows door of the room with fire. Although
the original videos do not guarantee that starting points for the tele-operated robot, the
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robot followed the same pattern of movement: a left turn at the beginning to face the center
of the hallway, a traversal down the hall, and a final left turn to face the fire.

5.2.1 Yaw Heading Angles From (02 HG) Latex Fire

The weighted probability heading is seen in Figure 5.2 has the same trend as the estimated
heading but consistently produces a lower heading angle. Compared with the estimated
heading during the 100–149 second period, the weighted probability had an average degree
difference of 10.8 degrees while the temperature heading had an average degree difference of
12.9 degrees. During the 149–183 second period, temperature heading performed better with
an average difference of 1.3 degrees compared with the weighted probability which differed
by 7.6 degrees. During the last stage (183–205 seconds), the temperature heading differs by
30.6 degrees but weighted probability differs by 12.7 degrees. The jump in angle from the
temperature heading at 150 and 183 seconds is caused by the hot gases accumulated at the
corner of the end of the hallway. As the robot got closer at 150 seconds, the temperature
heading angle followed the door containing the fire because its temperature was high. At
183 seconds, the door was not on the field of view so the gases at a corner of a room became
the hottest region to follow. Temperature heading is prone to false headings from hot smoke
accumulations which would not lead to the fire.

Figure 5.2 (b), (c), (d), and (e) includes time-lapses for the latex fire (02 HG) run, the
images on top were taken from a color camera and the images on the bottom are annotated
IR images input into the algorithm. Figure 5.2 (a) both headings agree on a left positive
angle to enter the hallway. In Figure 5.2 (f) both headings agree on the location of the
fire. While temperature heading can accurately output headings that lead to the fire, it is
more erratic than the weighted probability heading. In this case, the weighted probability
outperforms the temperature heading by providing a more consistent left yaw.

5.2.2 Yaw Heading Angles From (03 HG) Latex Fire

Figure 5.3 contains headings for the 03 HG Latex Fire tested in the hallway-room environ-
ment which produced dense smoke and low gas temperatures. This test is similar to 02
HG and can be considered a repetition. In the Latex Fire (03 HG) plot (90–140 seconds)
both headings do not match well with the estimated heading as temperature deviates on
average by 12.9 degrees and weighted probability heading deviates by 10.4 degrees. Between
140–210 seconds, the temperature heading agrees better with the estimated heading with
a 0.32 degree deviation compared to a 10.0 degree deviation from weighted probability. At
the end (210–213 seconds) of the hallway, the temperature heading points to the hot gases
at the right end of the hallway by comparison the weighted probability heading keeps the
same left yaw. Again, the jump in temperature heading at 140 seconds is due to the fact
that the robot is close enough to the door for this region to become the hottest object in
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Figure 5.2: Latex fire (02 HG) time lapse and headings comparison.
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the FOV. The second jump at 113 seconds for temperature heading occurs because the door
is no longer visible at the end of the hallway. Generally, the weighted probability heading
looks similar to the estimated optimal heading but shifted by around 10 degrees. Due to the
erratic behavior of the temperature heading, the weighted probability heading outperforms
the temperature heading.

At 145 seconds in Figure 5.3, the temperature heading switched towards the correct door
as shown in the 159 second image. At the end of the hallway, as shown at 213 seconds
in Figure 5.3, both the temperature and weighted confidence have a preference for the left
side but they are not shown because the weighted confidence heading fell below the 50%
threshold. Additional images in Figure 5.3 show the progression of the robot entering the
hallway and also correctly classifying fire.

5.2.3 Yaw Heading Angles From (04 HG) Latex Fire With Lights
Switched Off

Figure 5.4 contains the Latex Fire (04 HG) plot from 100–147 seconds, the weighted
probability performs better (2.9 degree deviation) than temperature heading (12.6 degree
deviation). From 147–199 seconds, the temperature heading does better (0.16 degree
deviation) than the weighted probability heading (11.5 degree deviation). Once again, the
robot is close enough to the room with fire for the temperature heading to detect it as the
hottest place on the FOV. In a similar manner as the previous examples, the temperature
heading switches at 199–206 seconds because of the hot gases on the right side of the hallway.
From 190–210, the temperature heading has changed from positive 20 degrees to negative 20
degrees, a 40 degree change, compared to the weighted probability with a 5 degree change.
The weighted probability is less prone to high deviations which would guide a robot smoothly
and would keep the room with fire on the FOV. In Figure 5.4 at 206 seconds, the RGB camera
shows dense smoke but the IR image clearly shows the end of the hallway.

5.2.4 Yaw Heading Angles From (07 HG) Wood Crib Fire

Figure 5.5 contains the wood fire (07 HG) plot which has a similar trend to the (04 HG)
plot. From 69–97 seconds the weighted probability does better (1.7 degree deviation) than
temperature heading (14.3 degree deviation) at the beginning. Then, at 97- 128 seconds
the temperature heading performs better (0.62 degree deviation) than weighted probability
(7.9 degree difference). As shown Figure 5.5 at 63 and 112 seconds, the switch from the
temperature heading angle happens because, again, the robot is close enough to the room
with fire. The temperature heading tracks the room with fire as long as it remains in its
field of view. However, as the robot faces the wall at the end (128–145 seconds) the weighted
probability heading performs better (14.4 degree deviation) than temperature (30 degrees
deviation). Even when faced with the ambiguity of the wall with smoke, the weighted
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Figure 5.3: Latex fire (03 HG) time lapse and headings comparison.
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Figure 5.4: Latex fire with lights switched (04 HG) time lapse and headings comparison.
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probability heading outputs a positive degree angle throughout the room. The weighted
probability heading outperforms the temperature heading because it would lead the robot
towards the left where the room with fire resides.

5.2.5 Yaw Heading Angles From (11 HG) Latex Late Fire

The latex late fire (11 HG) data in Figure 5.6 had to be taken with no threshold because
weighted probabilities were low for the hallway event. This test in particular had higher
density smoke but lower temperatures compared to propane gas at 25kW (13 HG). The
difference in temperature made it difficult to detect classes by the weighted probability
algorithm. Results show that in this test, the weighted probability did not perform as
well as the temperature heading and that the weighted probability heading had an almost
constant positive 4 degree heading. This test shows that the algorithm would not work
in cases of low temperatures such as at the beginning of a fire event. Because other work
explores using RGB cameras for detection, sensor fusion could be an option to explore in
order to obtain classification information. Images in Figure 5.6 had been set up to show
a heading only when a weighted temperature heading exists, however, the plot shows that
temperature heading outperformed the weighted probability heading. This is because the
room with fire was the hottest region in the FOV and the temperature of smoke did not reach
temperatures that could compete with the temperatures at the door. A hybrid approach
could benefit the weighted probability algorithm in cases where classifications are not found.

5.2.6 Yaw Heading Angles From (13 HG) Propane Gas Fire at 25
kW

The propane fire (13 HG) data in Figure 5.7 follows the same trend as the latex fire (04
HG) data. The weighted probability performs better at the beginning (60–95 seconds) with
2.6 degree deviation compared to the temperature heading with a 13.0 degree deviation.
In contrast, the temperature heading does better when the robot gets closer to the room
with fire (95–128 seconds) with 0.4 degree deviation compared to 10.1 degree deviation from
weighted probability. The temperature at the door exceed that of the surroundings and the
robot is close enough for the temperature heading to point towards the door. During this
period, the weighted probability heading retains a positive heading angle that would lead
towards the door on the left. At the very end of the hallway (128–139 seconds) the weighted
probability heading performs better (12.9 degree deviation) than the temperature heading
(29.4 deviation). The door goes out of the FOV and the robot faces the wall as shown
at 206 seconds in Figure 5.7. When faced with the wall, the weighted probability heading
points correctly towards the left but the temperature heading points towards the right. The
weighted probability heading performs better because it remains mostly positive and it does
not have high changes in degrees, as shown in Figure 5.7.
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Figure 5.5: Wood crib fire(07 HG) time lapse and headings comparison.
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Figure 5.6: Latex late fire (11 HG) time lapse and headings comparison.
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Figure 5.7: Propane fire at 25kW (13 HG) time lapse and headings comparison.
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5.2.7 Yaw Heading Angles From (14 HG) Propane Gas Fire at 75
kW

Figure 5.8 contains the propane fire (14 HG) plot and both algorithms do not perform well
at the beginning. From 59 to 89 seconds the average deviation for temperature is 15.9
degrees while weighted probability had a 10.8 degree deviation. From 89–107 seconds, the
temperature heading consistently points towards the room with fire with a 0.43 average
degree deviation and the weighted probability heading focuses on the smoke coming out of
the room and has 6.9 degree deviation. Finally, when the robot FOV does not contain the
door and faces the wall (107–122) the temperature performs worse (32.4 degree deviation)
than the weighted probability (6.4 degree deviation).

At 59 seconds in Figure 5.8, the weighted probability heading begins by pointing towards the
room with fire on the left hand side. Then at 77 seconds the weighted probability heading
slowly turns towards the accumulation of gases at the other side and does not go beyond.
Later, the weighted probability heading increases and follows the correct estimated heading
with a 6.9 degree deviation. This behavior shows that the weighted probability can focus on
an incorrect section and that it does not make changes quickly.

At 110 seconds, the doorway leading towards the room with fire is not visible and the robot
faces the wall. As shown in Figure 5.8 at 122 seconds, the weighted probability algorithm
points left but the temperature heading points right. Once again, in an ambiguous situation
the weighted probability heading outperforms temperature heading.

5.2.8 Overall Comparison

In order to compare performance, the average degree difference between estimated points and
each heading was calculated for the duration of each test. The data in Figure 5.9 indicate
that the weighted probability heading performed better in (02 HG), (07 HG), (13 HG), and
(14 HG), while the temperature headings performed better in (03 HG), (04 HG), and (11
HG). Therefore, a combination of the two approaches is worth exploring in future work.
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Figure 5.8: Propane fire at 75kW (14 HG) time lapse and headings comparison.
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Figure 5.9: Comparison of both methods to the estimated tele-operator degrees.



Chapter 6

Conclusion and Future Work

6.1 Conclusions

Laboratory test results show that the classification method works better in environments
where a heated background, such as a wall, can provide thermal information for smoke. In
comparison, having no background to detect smoke with IR imaging proves more challenging.
The analysis of the classification method highlights the need for more training data to
improve classifications accuracy for thermal reflections and possibly fusion of the IR results
with RGB.

Simulation tests were used to compare the weighted probability heading to a maximum
temperature heading. In addition, comparisons were made to estimated tele-operator
heading from training videos. Simulation results show that the maximum temperature
algorithm headings led in false directions and were sometimes erratic due to the dynamics
of the fire and fire reflections. By weighting the fire environment classes and implementing
a Kalman filter, the weighted probability algorithm provided a less erratic heading which
would lead the robot toward a fire outside its FOV.

This thesis started with the goal of developing an algorithm that uses classification informa-
tion to guide a robot to a fire. A robot heading was determined using a weighted probability
measurement from fire, smoke, and heat reflection classifications. This heading is determined
in each ROI from IR images by finding the highest weighted probability of leading to the fire.
ROS (Robot Operating System) enables the algorithm to provide autonomy to more than
one type of robotic platform. Both a wheeled platform, named Rene, and a bipedal platform,
called ESCHER, are used to test the algorithm in a series of real-life and simulation tests
respectively.

When compared to the temperature heading and an estimated robot-operator heading, the
weighted probability algorithm does assist the robot with the best direction for it to move
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toward the fire. Temperature heading performs better as the robot got closer to the room
with fire but it also displayed more erratic behavior. At a distance, the weighted probability
heading has a tendency to prioritize smoke and the room with fire may have a lower priority
class, such as a hot object. A future fusion of the weighted probability and maximum
temperature methods could provide a more robust heading.

6.2 Future Work

Fire causes losses in life, property, and poses an environmental hazard. Robots are
explored as a firefighting measure aboard ships in order to reduce reduce these risks. For
the application of shipboard firefighting, the limitations imposed by the ship’s physical
environment and the fire require a real-time system such as the one presented in this thesis.
A progression of tests that could follow this research are first, to test in a room-hallway
environment using the wheeled platform Rene and second, test the humanoid platform
ESCHER at the room-hallway environment using raised sills. Recording the starting point
and proprioception data from these new tests would improve the analysis of robot movement
and yaw headings. These tests would also help determine the optimal threshold parameter
for the weighted probability. Another way to improve analysis is to synchronize the camera
images and provide a ground truth to the all classifications. Traditionally IR images are
used to see through smoke and with the successful classification of smoke and fire, one can
conclude that the classification algorithm works best when a background is present.

Three important modules that must be incorporated alongside the heading algorithm are
a higher decision-making system, a collision avoidance system, and a navigation feedback
system. The heading provides a way to find a fire but a separate module must veer the robot
away from walls and objects it could collide with. The higher decision-making system, such
as a state machine, should decide when a heading does not lead towards an open path or
what to do when a fire is found. For now, the algorithm simply stops sending movement
commands once a fire is found. Finally, a navigation feedback system would help discover
how closely the robot followed the path intended and correct for it. Because a single IR
camera is necessary for this algorithm, there is also the potential of creating a separate alert
system.

In addition, this thesis shows the beginning of a labeled database of IR images which does
not currently exist today. Two advantages of having such a database are that it would allow
researchers to avoid common machine learning problems, such as over fitting, and it would
allow researchers to explore additional machine learning algorithms to detect fire, smoke,
and heat reflection. This creates the opportunity to test the algorithm against other types
of smoke that have not been tried, for example, hot water vapor. An interesting alternative
would be to create artificial samples of fire, smoke, and heat reflections in simulation. The
Naive Bayes classifier in this research is a generative classification algorithm that can create
new samples; its model is created based on the data it trained on.
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For future work, Robot Operating System (ROS) allows for portability the weighted
probability algorithm. The DARPA Robotics Challenge held on 2015 proved that robotics
can take larger strides by making algorithms easily integrable to robotic platforms. Because
the localization algorithm presented in this thesis packaged in a ROS node, it can be open
sourced and integrated onto any robotic platform that uses ROS.
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