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This paper presents approximations for the rms error of the maximum likelihood estimator of the direction of 
a plane wave incident on a random array. The sensor locations are assumed to be realizations of independent, 
identically distributed random vectors. The second part of the paper presents an asymptotically unbiased 
estimator of the noise wavenumber spectrum from random array data. 

PACS numbers: 43.60.Cg, 43.60.Gk 

INTRODUCTION 

Sonobuoy fields are used to detect submarines. 
Thorn et al. • have proposed that the signals from ran- 
domly deployed -s onobuoys be coherently combined to 
make acoustic measurements. They present the ex- 
pected value and variance of the pattern function, and 
the distribution of the directivity index of a three-dimen- 
sional random array. In their model, the sensor loca- 
tions are observed realizations of random variables that 

may be correlated and have different distributions. They 
define an array to be totally random if the sensor loca- 
tions are realizations of independent, identically dis- 
tributed random variables. Several stochastic proper- 
ties of the side-lobe pattern of a totally random array 
are given by Steinberg. •' 

The ratio of the peak side lobe to the mainlobe and 
the directivity index of an array system are measures 
of its ability to perform its tasks. The generic signal 
processing tasks of an array system are (1) detecting 
and estimating parameters of coherent wave signals 
that impinge on the array; (2) resolving multiple wave 
signals; (3) estimating range, bearing, or velocity of a 
source that generates the detected signal; and (4) esti- 
mating the frequency-wavenumber spectrum of the 
ambient noise field. This description of system tasks 
emphasizes the statistical nature of the problem of 
measuring performance, especially for random arrays. 

This paper presents approximations for the mean- 
square error of the maximum likelihood estimator of the 
bearing of a plane wave impinging on a random array 
from a distant source. The second part deals with es- 
timating the ambient noise's wavenumber spectrum. 

I. RANDOM PLANAR ARRAYS 

Consider a planar array of M sensors where the 
sensor locations {(xk,Yk)} are realizations of independent, 
identically distributed random variables {(Xk, Yk)}. As- 
sume for simplicity that the signal is a single frequency 
plane wave plus stationary, zero mean, Gaussian noise. 
Let 0 o denote the wave's direction of arrival with res- 
pect to the x axis. This angie is the source bearing if 
the medium is horizontally homogeneous. Let COo, X o, 
and A denote the wave's frequency, wavelength, and 
complex amplitude, respectively. The signal at the kth 
sensor is 

a)This work was supported by the Office of Naval Research 
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s(t, x•, y•) = A exp[i(coot - %x• - K•y•)] 

+ e(t, x,, y,) , (1) 

where K, =(2•/X o) COS 0 o and K•=(2•/Xo)SinO o are the x 
and y components of the wavenumber, and e(t, xk, y•) is a 
realization of the noise field. 

The correspondence between beamforming and fre- 
quency-wavenumber processing, and an approximation 
to the maximum likelihood (ML) estimator of 0 o have 
been presented in a previous paper. a If 

and 

p •.. (y• - Y)•' 
are large, where 9 is the power signal-to-noise ratio 
in a narrow band about co o and 

R=M -• •x•, 
Levin 4 shows that the root mean-square errors of the 
ML estimators of • and • are approximately 

rmse _ 
(2) 

rmse • p (y• - • . 

Moreover, the covariance is 

These expected values are conditional on a realized 
array geometry, i.e., they are ex-post the deployment 
of the array. 

To approximate these errors, assume that M is large. 
Since the se•ors m•t lie in some closed and bounded 

set, the random variables (X•, Y•)are bounded. Th• 
the central limit theorem implies that 

and 

where • and • are the variances of X• and Yk, respec- 

97 J. Acoust. Soc. Am. 71(1), Jan. 1982 0001-4966/82/010097-03500.80 (D 1982 Acoustical Society of America 97 

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  128.173.126.47 On: Tue, 12 May 2015 19:54:47

mlohrey
Typewritten Text
Copyright by the Acoustical Society of America. Hinich, M. J. (1982). Estimating signal and noise using a random array. Journal of the Acoustical Society of America, 71(1), 97-99. doi: 10.1121/1.387248

mlohrey
Typewritten Text



tively, and O•(M -•1") means that for any ½>0, there is 
a B• > 0 such that the error is bounded by B•M -•s with 
probability 1- ½. Thus the rms errors of g= and R• are 
approximately 

rmse R= •-(2pM)-•f• '• , 

rinse g• •(2pM)-•t•'cr•, (3) 
for large M. The estimators are approximately •ucoz- 
zelated if the coordinate system is rotated to make the 
covariance %•=0 after rotation. 

The maximum likel•ood estimator of the bearing 'm 
• =tan-•(•/g•)rad. The linear approximation of 
tan-•(g•/e•) - tan-•(•,/•) • 

(4) (1 +• - - - - . 

Since g• and • are approximately uncorrelated if %• =0, 
it follows from (3) and (4) that when pM• and pM• are 
large, 

- So) = sin 0o cos 0o). (5) 

Thus if % =cry =or, then from (5) 

rmse •o • Xo(2pM)-•l•'(2•r•)-• rad. (6) 
= • (-6 dB). For example, let O/Xo. 12, M =90, and p =• 

Then from (6), rmse0 o=0.11 ø (1.98x10 -a rad). If •/X o 
= 100, M = 40, and p =- 10 dB, then rinse •o = 0.03 ø. 

Now suppose that X, and Y• are independent uniform 
variates whose range is (0, L), i.e., the sensors are 
uniformly distributed on the square {0•< x<• L, 0•< y•< L}. 
Then o • = L •'/12. Let us compare the rinse •o of this 
random array with that of the square lattice array whose 
M =N s sensors are at the points {(jd,/d):j, l = 1,... ,N}. 
If the length of the square's sides is L, then the sensor 
spacing is d = L/(N-1). 

From (2), (4), and (5), we only have to compare 

M-•E(x,_•)•'=M-•E(y,_y)•. 
with o •. Since 

M-• • (x•_.•) •. =M-•d•.N 

12 12 N- 1 

= L•'/12 =o • , (7) 

expression (6) holds for the square lattice array. The 
approximate rinse of the maximum likelihood bearing 
estimator for a uniform random array on a square is 
equal to the approximate rinse 0 o for a uniformly spaced 
lattice array on the same square. 

II. THREE-DIMENSIoNAL RANDOM ARRAYS 

For a given coordinate s•stem let x• (x•,y•,z• , '-- )! 
denote the vector location of the kth sensor in a three- 

dimensional array. Let 0 o denote the azimuth angie of 
propagation with respect to the x axis, and let t• o denote 
the elevation angie with respect to the z axis. Thus the 
signal at the •h sensor is 
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s(t, x•) = A exp[i(coot - •'x•)] + •(t, x,), 

where •'=(g,, g,, g•) is the vector of wavenumber com- 
ponents g, =(2•/Xo) cos 0o, g, =(2•r/Xo) sin 0o, and g• 
= (2•/Xo) cos ao. 

The correspondence between beamforming and fre- 
quency-wavenumber processing holds in three dimen- 
sions. The ML estimators of the wavenumber com- 

ponents are the •,, •,, and •, that maximize 

4• •__•s(t,, ,, y,,z,)exp[i(g'x•-wot,) ] IS, 
where N is the number of simultaneous discrete-time 

observations of the M channels. 5 The rms errors of 

/?, and •?• are approximated by (2), and 

(8) 

rmsee. (2p __••(z•-•) • . 
•Once again, the ML estimator of the source bearing is 
0 o =tan-•(g•/•,), and thus (5) holds for a totally random 
three-dimensional array of M sensors. 

III. ESTIMATING THE WAVENUMBER SPECTRUM 

Consider the problem of estimating the frequency- 
wavenumber spectrum of the ambient, zero mean, 
Gaussian noise field around a random array. Since 
an u-dimensional array is not much harder to analyze 
than a linear array, let x• = (x•,..., x•,)' denote the 
vector position of the kth sensor with respect to a 
fixed coordinate system. Assume that the x• are real- 
izations of independent random vectors {X• =(X•,..., 
X•,)'} that have a common continuous multivariate 
density f(x). Rotate the coordinate system so that the 
covariance matrix of •r• is diagonal, and for simplicity 
let • ..... • =o •, i.e., a s is the variance of each X• 
after rotation. 

Let e(t, x) be the noise at point x at time t. If the 
noise field is stationary in t and x, the covariance func- 
tion c•(?,y)=Ee(t +r,x+y)e(t,x) is independent of t and 
x. The frequency-wavenumber spectrum is defined as 

S,• (•o, •c) = f c• (r, y ) exp[i0c'y - •or)]dy, (9) 
assuming that c• is absolutely integrable. The power 
spectrum of the noise is S• (o•,.0). 

Assuming that the channels are sampled at times 
t• =jA for j=0,... ,N- 1, define the discrete Fourier 
transform 

(½(x,)=• e(jA)exp(-icojA)' k = I,. . . ,M) . $=0 

If S•(co, 0) is bandlimited at v/a, then N-•E[e(x•)] •' 
--- A-•S•(co, 0) for large N. • Let us work with the 
e(x•) to obtain an estimator of S•(•, co) for a given co, 
which will be denoted S•(•) to simplify notation. The 
properties of the estimator depend on the lollowing 
theorem. 

Theorem' Define the u-dimensional Fourier trans- 

form, ? 
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U(K): • E(x•) exp(iK'xk). 
Assume that D((•) = ff•'(x)dx = O((•-") and when • • 0, 
I•(•) [< co-" for some constantc, where ½(•) = E exp(it•'Xk) 
is the characteristic function of Xn. These assump- 
tions hold for the multivariate normal and uniform den- 
sities. Then 

lim (DM2)-•E I u(g)12 = S• (g) 

and U(K•) and U(g•.) are asymptotically uncorrelated for 
K.t• K 2. 

Proof: The array transfer function is 
M 

R(K) =•__• exp(i•'x•). 
For large M, M-•R(•) = ½(•) + 0•(M-•I•') by the central 
limit theorem. Thus 

(DM2)-•R(K•)R,(•2) =D-•qb(K•)qb*(K2) +O•(M -•l•') (10) 
(star denotes complex conjugate) since D-•l½(•)l=O(1) 
in the cross product by the above assumptions. Thus 

lim (DM•)-•(2•) -"f IR(•)[•' d• =D-'(2•)-" f [q•(K)[•' d• 
:D -•ff2(z)dz=l. (11) 

From (10), 

lim (DM•) -• [R(0)[•' =D-• [ q b(0)[•' = D '• = O(o"). 
M_• •o 

Thus (11) implies that as M and c•-% (DM•)-•[R(K) [•' 
- 6(•), a Dirac delta function. If 

(DM")-•R(K•) R *(•2) = 0(0-") + O•(M-1l"). (12) 
These limit results are used as follows' 

E[UCtq)U*(r..)]: j••__• c•(x,-:x ,)exPtiC•:x,- •';x•)] 
f $•(v)exp[-iv(x,-x•)] 

x exp[i(•'• xj - • x•)]dv (13) 

from the inverse of (9). Gathering terms, 

= - v)s (v)dv. 
Thus from the above limits and (14), 

lim (DMZ)-•E I U(•)[•' = (2•)-"f 5(K - v)S•(v)dv = S• (•). M •o 

If K• 4 •., then 

lim (DM•')-•E[U(•OU*(•.)]:O 
M, O--• •o 

from (12). Thus U(tq) and U(K•.) are asymptotically un- 
correlated. For finite M<< o •, the correlation is 
OJ[M - • /•' ). 

This theorem provides a basis for estimating S•(•). 
One method is to divide the (time) sample into J seg- 
ments of successive observations, N•=N/J, and com- 
pute U(•) for each segment. These Uj(•)'s will be 
approximately uncorrelated if N• is large. Thus from 
the theorem, 

•(•) = J-• • (DM 2)-' I 
for large J, M, and (•. Since U•(•) have a complex 
Gaussian distribution for each j (the noise is Gaussian), 
2(DM•)-•[ U•(K) I •'/S•(tr) is approximately chi-squared 
with two degrees of freedom and thus the variance of 
•(g) is approximately J-•(•). 

IV. A PLANAR ARRAY EXAMPLE 

Continuing with the vector notation, suppose that the 
sensors are uniformly distributed on the square 
{-L/2 •< x• •< L/2, -.L/2 •< x 2 •< L/2}. Thus J•x)= 1/L 2 for 
x in the square, • =• =o • = L"/12, and D = ff2(x)dx 
= L '2. The assumptions for the theorem hold since 
D =O((y -2) and qb(•) =4(•2L2) -• sin (•L/2) sin (•2L/2) 
= 0(o-"). Thus (L/M)2EI rJ(•)12• S•(•) for large M and 
L in this example. The estimator of S•(K) is then 

I 
using the time segmentation method. 
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•In practice the xk coordinates would be rounded to the nearest 
point on then-dimensional grid (lid,...l•d• where d is a 
space unit and l• are integers. If we set ½ (x•) = 0 if there is 
no sensor at x• on the grid, then the FFT algorithm can be 
used to compute U(•). 
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