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The scattering of acoustic ultra-wideband X-wave pulses by a nonrigid sphere is simulated for
purposes of material identification and characterization. Using the backscattered spectrum of the
X-wave pulses, a procedure is described for estimating the radius, speed of sound, and density of the
sphere. The effectiveness of the suggested technique is verified in the case that the peak of the X
wave is incident on the centers of the sphere, as well as for the off-center incidence ca2@04©
Acoustical Society of America[DOI: 10.1121/1.1715111

PACS numbers: 43.40.Fz, 43.20.FANN] Pages: 2937-2946

I. INTRODUCTION the ultra-wideband spectrum of the backscattered acoustic X
wave. Consequently, the ideas considered in this paper are
The scattering of acoustic ultra-wideband pulses fromrelevant for other ultra-wideband pulses. Nevertheless, X
spheres has important applications in fields such as highwaves have the additional advantage that their extended lo-
resolution imaging, remote sensing, material characterizecalization range ensures that a relatively large amount of
tion, and detection of buried objects. Localized waves, onenergy reaches the scattering spheres. The plan of this work
class of ultra-wideband pulses, have distinct advantages iis as follows. A spectral representation of the incident
such applications. A study along these lines has dealt witiX-wave is provided in Sec. Il. The scattered field is deduced
the scattering of an X wave, a specific class of localizedn Sec. Ill and several features of the backscattered spectrum
waves, from a circular disk in free space or buried in theare considered in Sec. IV. A detailed portrayal of the pro-
ground? The analysis used in that investigation was based oposed identification scheme based on a simulation of back-
high-frequency techniques in combination with a pulsedscattered spectra from six different materials is carried out in
plane wave representation of the X-wave solufidn.spite  Sec. V. Concluding remarks are made in Sec. VI.
of the effectiveness of the methods used in the aforemen-
tioned study, the work did not address the possibility of usingl. THE INCIDENT ACOUSTICAL X-WAVE PULSE
the scgttered. signal n order to |dent|fy or charactenze the A spectral approach will be used to obtain the scattered
scattering object. An important theoretical and expenmenta%ield due to an incident acoustical X wa&XW ). Thus., it is
study of the applicability of localized waves for identifica- . | h th tral : t tion that
tion purposes was undertaken by Power, Donnelly, ancl{nportant to be able to choose the spectral representation tha

. . 2.~ s best suited to the adopted analysis. The AXW can be rep-
Maclsaac, who demonstrated the possibility of identifying resented as a Fourier superposition over plane waves whose

the radii of various types of spheres from the spectrum of the ; -
. ' S wave vectors form a conic surfaé@s shown in Fig. 1. The
backscattered signal; the latter arose from an incident modi- _ . )
. 4 : . ; series solution of a plane wave scattered from a sfluzne
fied power spectruniMPS) pulse” Their analysis considered . .
. . o then be integrated over the Fourier spectrum of the X-wave
acoustical scattering from nonrigid spheres. However, the ;| .=~ . . :
: . . ... Solution in order to obtain the AXW scattered field.
underlying method was applicable only to the identification . . . .
. ) To determine the AXW Fourier representation, consider
of the radii of the spheres, and could not be used to find th . : )
. . . e three-dimensional scalar wave equation
speed of sound or the density of the scattering material.
Our aim in this work is to investigate the possibility of -1 9
2 p(r,t)=0

using the spectrum of the backscattered acoustical X waves (1)
in order to determine the characteristic properties of the ma-
terials of the spheres. By simulating the scattered signalor the pressure field; the latter can be related to a potential
from different spheres, it is demonstrated that an accuratkinction W (r,t) as follows:
estimate of the radii of the spheres, as well as the densities
. ) X . - J .
and the sound speeds of their materials, can be obtained. Itis p(r,t)=—py—W(rt). 2)
important to emphasize that the different characteristic prop- Jt
erties of the spheres are identified using different portions ofrhe density of the surrounding medium is denotedply
The AXW potential of the incident pulse, which is also a
90n leave from the Department of Engineering Physics and MathematicsS0lUtion to the 3D scalar wave equation, can be represented
Faculty of Engineering, Cairo University, Giza 12211, Egypt. in terms of the Fourier superposition

c? ot?

J. Acoust. Soc. Am. 115 (6), June 2004 0001-4966/2004/115(6)/2937/10/$20.00 © 2004 Acoustical Society of America 2937


mlohrey
Typewritten Text

mlohrey
Typewritten Text

mlohrey
Typewritten Text

mlohrey
Typewritten Text
Copyright by the Acoustical Society of America. Moawad, M. F., Shaarawi, A. M. & Besieris, I. M. (2004). Characterization of a nonrigid sphere using the backscattered fields of acoustic X waves. Journal of the Acoustical Society of America, 115(6), 2937-2946. doi: 10.1121/1.1715111


(TaNTay
N~
v

y

FIG. 1. Wave vectors of the normally incident X-wave lying on a conic
surface having an apex angie

qf‘AXW(F,t)=f d3|ZJ d(wlc)e kT
R3 0

X ek, ) S w—|K|c), (33

in wh|ch the AXW spectrum has the following specific
form:’

(K, w)=ie (@03 k92506, — &) (3b)

Cpo sm§

in a spherical coordinate systeﬁr(k,ﬁk@k). The fixed

ing to the 1&* point is given by the expressionm.=(q
+4)c/a. The AXW pulse, given in Eq(5), has a high-
intensity central portion buried in an extended sparse back-
ground field. The localized central portion of the X wave has
lateral and axial waists equal &sin¢ anda/cosé, respec-
tively. For an AXW pulse generated from a source having a
diameter equal td, the peak of the pulse travels without
any dispersion to a distand®/2 tan¢ from the source.

lll. THE SCATTERED X-WAVE PULSE

Consider an AXW pulse incident on a sphere of an un-
known material immersed in a fluigk.g., water, where the
center of the sphere is situated at the origin. In order to
calculate the scattered AXW pulse, we shall consider the
general expression for a plane wave incident in a direction
specified by a propagation vector (k, 6, , ¢,) . Assuming a
harmonic time dependence of the form ex), the spatial
part of the plane-wave solution appearing in E).is given

by
q)i(r ¢ 0):e7il24r):efikr Cosy (6)

where y denotes the angle between the position vector
=(r,6,¢) and the wave vectok= (k, 8¢, dy). The specific
choice 6,=¢&, required in Eq.(4), results in the angle
v defined by the relationship cog=cosécosd
+siné& sin 6 cos(@y— ).

Following the standard technique for calculating the

angle¢ is referred to as the axicon angle. One should notécattering of plane waves from spheres, the incident plane

that the spectrum given in E(Bb) restricts the Fourier spec-

wave is expanded in terms of Legendre polynomials and

tral components to plane waves propagating along directiongpherical Bessel functions, viz.,

forming a conical surface defined by the conical argléhe
substitution of the spectrunt(k,w) in Eq. (39 yields

i2
W (F)) = fdkf dakf A sin b OsTng

X k9-25( 6, — g)e—kae—iIZ~Feikct. (42
Integrating overd, and ¢, we obtain
. 2 [ L
\PIAXW(F:'[): cro fo dk kqe_kae_'k're'kCt_ (4b)

For integer values o, the integration ovek in the axisym-
metric (with respect to thez axis) incident X-wave pulse,
viz.,

i2m o9

\PiAXW(pizvt) = CPo Baq
x{p?sir? é+[a+i(zcosé—ct)]? Y2
5

Here,p denotes the radial variable in cylindrical coordinates,
the positive parametea determines the width of the pulse,

and g characterizes the order of the X wave. The axial and

lateral widths of the AXW pulse are equal &dcosé and

al/sin¢, respectively. The spectral bandwidth is determined
by the two parametera and gq. The peak of the spectrum
OCCUrS aiwpeq=gc/a. The maximum frequency correspond-
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(I) (r,0,¢,t)=e ikr COS’ykeIkCt

-3,

X Pp(cosy,)ja(kr)eket,

"(2n+1)

()
The functionP,(cosy) can be separated according to the
expression

(n—m)!
E o SM(n+m)l

xcogm(¢x— )],

wheree,,=1 for m=0 ande,,=2 for m#0.

The scattered field is usually represented as a series of
concentric spherical waves diverging from the scatterer by
means of the mathematical expression

P.(cosyy) = P.'(cosf)P)'(cosé)

®

D(r,0,p,t)= Z AnPn(cosy)hP (kr)elket, 9

where h{?) denotes a spherical Hankel function. The field
'inside a nonrigid sphere can be represented as follows:

©

cbi“(r,e,qs,t):rgocnPn<cosyk>jn<ker>eike“. (10)

The coefficientsA, and C, in Egs. (9) and (10) are
determined from the appropriate boundary conditions. How-
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ever, we shall only be interested in the former for evaluating
the backscattered field. At the surface of a sphere of rdlius Z
the boundary conditions are chosen such that the normal
component of the fluid velocity at the surface of the sphere is
the same as that of the surface proper and that the pressure X 6
on the two sides of the interface between the fluid and the s Soft
sphere is a continuous function. These two conditions can be Sphere
written explicitly as
Zy
an(r = R, 0,¢,t) = Vnz(r = R, 6, ¢,t),
.. - P
v(r,t)=vVao(r,t), (11 _\/\'_
Source
and and detector

FIG. 2. Backscattered scheme due to pulse incident off center by a distance
X=—Xg-

pl(r: ngvd)it): pZ(r = R107¢1t)1

- 2
p(r,t)=—po= P(r,1). (12
o Waxw(r.0,¢,t)

472 (= — Kaik - .
= f dk Kle kaglket> _ (_j)n(2n+1)
Cpo Jo n=0

Utilizing these boundary conditions, one obtains

Jn(kKR) +ianjn(kR)
h(2"(kR)+ia,h'P(kR)

(13 er(kR)"Hanjn(kR)
h'2"(kR)+iap,h'?(kR)

A,=—(—)"(2n+1)

h2 (k) 2 (1) "en

where a,=i(poC/peCe)jn(keR)/jn(keR)]. Here, pg is the (n—m)!
density of the medium surrounding the sphere, whileis X(n_m)g
the density of the sphere. Similarly¢ and c.=Bpe

= 1/(pek,) are the speeds of wave propagation outside and . i ~
inside the sphere, respectively. The latter is expressed ith the backscattered angle defined a8=(w/2)

_1 . . .
terms of the density of the sphere and the adiabatic com: €S ~(%/r), as shown in Fig. 2. One should note that, in

pressibility ., which, in turn, is the reciprocal of the bulk the configuration considered in Fig. 2, the de_tector p_oint is
modulusB. Finally, k= w/c andk.= w/c, are the wave num- placed close to the generator of the AXW. This off-axis de-

bers outside and inside the sphere, respectively. tection position results in the two summations oxreandn
If the center of the scattering sphere lies on the axis of? Ed- (19- In addition, due to the lack of azimuthal symme-
propagation of the AXW pulse, the problem is azimuthallytry the integration overpy yields theJn(kxo sing) term.

symmetric; thusm=0 is the only surviving term and the
scattered potential becomes

PM(cosf) PM(cosé)dn(kxosing),  (15)

axw (1560, ,1)
3 i 472

Cpo

IV. ANALYSIS OF THE BACKSCATTERED SPECTRUM

The scattered pressure pulse, calculated from(Bgis
given by

f dk Kle~ ket > —(—i)"(2n+1)
0 n=0

Jn(kR) +ianjn(kR)
X
h2"(kR) +ia,h'?(kR)
X P, (cosf)P,(cosé). (149

h{?(kr) P (T, 0, ,1)

=47TZJ dk Katle kagiket > (i \n(2n+1)
0 n=0

Consider, on the other hand, an AXW incident off-center on
the sphere. Specifically, an AXW moving along théirec-
tion with its axis of propagation shifted to a line parallel to
thez axis and passing through the poitt X, andy=0. The
incident AXW will be the same as given in E@la), but with
x replaced byx—xg. In this case, the scattered potential

Jn(KR) +ianjn(kR)
h'2"(kR)+ia,h'?(kR)
X P(cosé) (16)

h'?(kr)P,(cosé)

assumes the form
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for the on-axis incidence case, and by
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TABLE |. Tabulated bulk modulus, density, and the calculated speed of 4
sound propagation in different materia{®ef. 10.

Bulk modulus density Speed - Air
B Pe Ce= VB/pe 3 ( . —— Water
Material (10 N/m?) (10° kg/nr®) (m/9) '

Titanium 1.051 4.51 4827.40
Manganese 0.596 7.47 2824.64
Nickel 1.860 8.91 4568.96
Molybdenum 2.725 10.22 5163.66
Aluminum 0.722 2.70 5171.14
Chromium 1.901 7.19 5141.93
Copper 1.370 8.93 3916.83
Iron 1.683 7.87 4624.39
Lead 0.430 11.34 1947.28
Silver 1.007 10.50 3096.85 o

Abs (spectrum)

o (1,6, .t D 10 20 00 400 500 &
prw( QS) 0 100 200 300 400 500 600 700

=4772J dk Ka+lekaghket ' _(_j)n(2n41)
0 n=0 (a)

jr’1(kR)+ianj n(kR)
X
h2"(kR) +ia,h'?(kR)

h? (k) 2 (1) "em

3 { y —— Water

(n—m)t ~ _
mPn(cose)Pn(cosé)Jm(kxosmg) (17

for the off-axis incidence case.

Our aim in this section is to examine some general fea-
tures of the spectra of backscattered fields from various types
of spheres. In particular, we will consider the absolute spec-
trum, which is the square root of the sum of the squares of
the real and imaginary parts of the integrand in Edf) or
(17). We assume that the spheres are made of materials with
the properties listed in Table I. A comparison of Fig$a)3
and 3b) shows that spheres made of Mn and Pb have differ-
ent backscattered spectra when placed in water, whereas
the_re_ is a small dlffe_rencg Whe_n they are 5|tua_1ted in air. Ex- o 100 200 300 400 500 600 00
amining the expression given in E(.3), we notice thatx, ()

—0 if the ratiopgC/ pcCe IS vVery small. For spheres placed in

air, po= 1.2 kg/n? andc=350m/s, while for spheres in wa- (b)

ter, po=1.0x10°kg/m® and c=1500m/s approximately. FIG. 3. Backscattered spectra by Mn sphere andb) Pb sphere having
Thus, the producpyc is approximately equal to 400 for air R=35mm, placed in air and immersed in water, for150 mm, a

and 1.5<1C° for water. All the materials of Table | have =15mm, andé=2°.

peCe~(10—50)x 10P; thereforea,,— 0 for spheres placed in

air. In this case, the coefficient given in Ed.3) reduces to

that of a rigid sphere. For the same spheres immersed irespectively. Figures 4—6 show thAk,, varies with the
water «, cannot be neglected. Sineg, depends ork,, Ce, radius of the scattering sphere irrespective of the material. In
and pe, we expect that these quantities could be extracte@ddition, A and Ak}, change with the density of the sphere
from the backscattered AXW spectrum. This explains theand the speed of wave propagation inside the sphere, respec-
reason for Fig. 3 exhibiting different backscattered AXW tively. However, it is important to note th# not only de-
spectra when the Mn and Pb spheres are immersed in watgrends on the density of the material but also the radius, the

In Figs. 4—6, we provide the backscattered spectra foobservation distance, and the power of the received signal,
spheres made of four different materials, namely, Ti, Mn, Ni,which is proportional to the power of the source.
and Mo. These spectra are calculated for radii of 30, 35, and In Ref. 9, it has been demonstrated that more details
40 mm. From these plots, we specify three parameteks;, appear in the backscattered spectrum if the radius of the
A, andAk;,, which are the average spacing of the spectrabphere becomes larger, keeping the pulse width constant. In
dips at low frequency, the amplitude of the first peak, and theddition, as the radius of the sphere increases, the average
average spacing of the spectral dips over the entire spectrurapacing of the spectral dips becomes smaller and the ampli-

Abs (spectrum)
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FIG. 5. Backscattered spectra @ Ti and Ni, (b) Mn and Mo spheres
having radiiR=35 mm, immersed in water for= 150 mm,a=15 mm, and
=2,

FIG. 4. Backscattered spectra @& Ti and Ni, (b) Mn and Mo spheres
having radiiR=30 mm, immersed in water for= 150 mm,a=15 mm, and
£=2°.

tude of the spectrum becomes larger. The low-frequency poiscattered spectra of three different spheres having radii equal
tion of the backscattered spectruapproximately up to 30 to 30, 40, and 50 mm. The spectra of the scattered fields for
kHz) for a nonrigid sphere is similar to that of a rigid sphere.these radii are evaluated for=150 mm, a=15mm, pq
Nevertheless, in the high-frequency portion of the spectrums=1.0xX 10°kg/n°, pe=7.8x10°kg/m°>, ¢=1500m/s, and

one notices more pronounced dips for nonrigid sph&fes. c,=3000m/s. The points are plotted using MS Excel and a
Figure 3 shows that the average spacing of the spectral digsend line is drawn, vyielding the equationR

in the low-frequency range is almost identical for Mn and Pb=1041.1QAk,,) ~ %%’ for the calibration curve. In all calcu-
spheres placed in water. However, the average spacing bktions, we have used the spectra derived from(E€), with
tween the dips in the high-frequency ranges are differentthe parameter values=15mm, q=0, and£=2°.

Using the backscattered spectra of AXW pulses resulting  For scattering spheres having the same radii and situated
from spheres of different materials placed in water, we carat the same observation distance, the simulated backscattered
extract information about the size of the spheres if we have apectra of spheres made of different materials show that each
“calibration” curve that relates the average spacing of thematerial gives a different amplitude. However, the ampli-
spectral dips calculated from the low-frequency range andudes are not only dependent on the density of the material
the radii of the spheres. In Fig. 7, we provide such calibrabut also the radius of the sphere, the observation distance,
tion curves using the low-frequency dip separations for theand the power of the received signal. The latter is obviously
four materials whose spectra are provided in Figs. 4—6proportional to the power of the source. Therefore, if we
namely, Ti, Mn, Ni, and Mo. The calibration curves provided know the power of the source and the observation distance,
in Fig. 7 for the four materials are very close to each otherwe can relate the density of the material to the amplitude of
Consequently, we can choose to start with an arbitrary calithe backscattered spectrum for spheres having different radii.
bration curve that does not depend on the material. Such dn particular, we have observed that the relation between the
arbitrary “radius calibration” curve is shown in Fig. 8. This amplitude and the density takes the formiof 1/\/p., where
curve has been created using the average spacing of the spécis the amplitude angd, is the density of the material of the
tral dips obtained from the low-frequency range of the backsphere. In addition, we argue that the amplitude of the first
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FIG. 6. Backscattered spectra @ Ti and Ni, (b) Mn and Mo spheres
having radiiR=40 mm, immersed in water for= 150 mm,a=15 mm, and

&=2°.

100 200 300 400 500 600 700

R (mm)

35

30

25 4

20 T T T T T 1
20 25 30 35 40 45 50
Average spacing of the spectral dips (m™)

FIG. 8. Calibration curve between the radius of the sphere and average
spacing of the spectral dips of the backscattered spectrum=fa50 mm,
po=1.0<10° kg/m®, ¢=1500 m/s, p,=7.8x 10° kg/m®, c,=3000 m/s,a
=15mm, andé=2°.

lines are drawn to give mathematical forms for these curves.
For example, the equation of the line fé&t=35mm, r
=150mm, a=15mm, p=1.0x10%kg/m®>, and c,
=1500m/s is given by 1/@= —0.0228\+0.0603. In Fig.

10, we present typical calibration curves between density and
amplitude at different observation distances. The relationship
between the amplitude and observation distance, shown in
Fig. 11, is the expectedl«1/r as indicated by the trend lines
of the MS Excel plot.

Although varying the speed of wave propagation inside
the sphere affects the average spacing of the spectral dips in
the high-frequency range, we can deduce from Fig. 7 that the
speed also has a small effect on the low-frequency range
because the four curves do not overlap completely. There-
fore, we recommend that the average spacing of the spectral
dips of the whole backscattered spectrum be calculated when

peak in the spectrum yields acceptable results. Figure 9 projoing the calibration curve for the speed of sound in the
vides calibration curves relating the amplitudes of the firstyaterial. Figure 12 provides a typical calibration curve for
peaks in the backscattered spectra of four different materialge average spacing of the spectral dips of the entire spec-
(Ti, Mn, Ni, and Mo to their densities for radii of 30, 35, tym with the speed of wave propagation inside the sphere
and 40 mm. The data are plotted using MS Excel and trend
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FIG. 7. Calibration curves relating the radius of the sphere to the averag€IG. 9. Calibration curves relating the density of the material to the ampli-
spacing of the spectral dips by four different materials, Ti, Mn, Ni, and Mo, tude of the backscattered spectrum for different radii 150 mm, p,=1.0
immersed in water for =150 mm,a=15 mm, andé=2°.
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X 10° kg/m®, ¢=1500 m/s,a=15 mm, andé=2°.
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FIG. 10. Calibration curves relating the density of the material to the am-FIG. 12. Calibration curves relating the speed of wave propagation inside of
plitude of the backscattered spectrum for different observation distanceshe sphere to the average spacing of the spectral dips of the backscattered
R=35mm, py=1.0x 10° kg/m®, ¢=1500 m/s,a=15 mm, and¢=2°. spectrum for different radii, r=150 mm, po=1.0x10°kg/n®, ¢

=1500 m/s,a=15 mm, andé=2°.

for different radii. Again, we have used the backscattered
spectra of Ti, Mn, Ni, and Mo with the same aforementionedthe estimated radius to choose the correct calibration curve

pulse parameters. relating the amplitude and density of the material, we iden-
tify the density of the scatterer.
V. PROPOSED IDENTIFICATION SCHEME Consider the backscattered spectra for 35-mm spheres

_ ) ) o made of the following materials: Al, Cr, Cu, Fe, Pb, and Ag
In the preceding section, we established calibration rela-

tions for the radius, density, and speed of wave propagation,
using the backscattered spectra produced by spheres made
four different materials: Ti, Mn, Ni, and Mo. In this section,
we are going to show how we can use these relations tc
identify the sizes and material properties of unknown spheri-
cal scatterers using their simulated backscattered spectrez
Making use of the results of Sec. IV, we can outline a pro- £
cedure for identifying the size and material of an unknown % "
spherical scatterer. First, we can estimate the radius using a%
arbitrary “radius calibration” curve, which is almost material
independent(cf. Figs. 7 and 8 This arbitrary calibration 1
curve relates the average spacing of the spectral dips at lov
frequencies and the radius of the sphere. Using the estimate

3

24

value of the radius, we choose the appropriate calibration o 0o 200 300 00 500 &0 700
curve between the average spectral dip spacing obtaine: k(m™)
from the entire spectrum and the speed to determine the (a)

speed of wave propagation inside the sphere. Similarly, using

2.4 Ma,

NidS

2.3 1

2.2 1

Abs (spectrum)
L

Amplitude of First Spectral Peak
[\e]

2 4
0
1.9 4
1.8 ‘ . . . . . . ‘ . . . : ‘
135 140 145 150 155 160 165 0 100 200 300 400 500 600 700
r (mm) km™)
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FIG. 11. Calibration curves relating the amplitude of the backscattered spec-
trum to the observation distance for different materials, Ti, Mn, Ni, and Mo, FIG. 13. Backscattered spectra f@ Al, Cr, Ag, (b) Cu, Fe, Pb forr
immersed in water foR=235 mm, a=15 mm, andé=2°. =150 mm, po=1.0x 10 kg/n?®, c=1500 m/s,a=15 mm, andé=2°.
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TABLE Il. The estimated and actual radii of the spheres as have been calculated from the average spacing of the spectral dips of the simulageedbackscatt
spectra obtained for different materials due to on-center incidence, as well as for off-center incidence at digtahBesm andx,=45 mm.

Off center
On center Xo=15mm Xo=45mm
Est. Est. Est.
Aky, R % Ak, R % Ak, R %
Material ) (mm) error (m™ (mm) error (m™Y) (mm) error
Al 40.50 32.45 7.29 41.00 32.06 8.41 43.00 30.56 12.68
Cr 37.50 35.06 0.17 38.00 34.59 1.16 39.00 33.7 3.70
Cu 37.25 35.29 0.83 37.50 35.06 0.17 38.50 34.14 2.45
Fe 37.50 35.06 0.17 37.75 34.82 0.50 39.00 33.70 3.70
Pb 37.50 35.06 0.17 38.00 34.59 1.16 39.50 33.28 4.92
Ag 37.00 35.53 1.51 37.00 35.53 1.51 38.50 34.14 2.45

due to an AXW pulse incident on their centers. From Fig. 13tering spheres. It can be seen that for the on-center case, the
we calculate the average spacing of spectral dips at low fregercentage errors in estimating the densities are smaller than
quencies(up to approximately 35 kHz Using these values 6% for all materials except for Al and Ag that have approxi-

in the arbitrary “radius calibration” curve given in Fig. 8, we mately 12.2% and 8.2% errors, respectively. Due to the rela-
can estimate their radii, obtaining values that are approXitionship (amplitude¥ 1/y/(density), the determination of the
mately equal to 35 mnicf. Table I). Subsequently, we ob- gensity is very sensitive to errors in the estimated radius of
tain from the backscattered spectra the amplitudes of the firgge sphere. Therefore, errors for 45-mm off-center incidence

peaks and the average spacings of the spectral dips of th&mp up to unacceptable values, e.g., we obtain 39% error in

entire SPEC"“m- According to the e_stim.ated radi, we use thf’ne estimated density of Al. Other spheres have density esti-
apgriprlatg dens!ty aﬂd jpee_d caflll:;]ratlon cgr(‘lmésl(:jlgs. gd ates exhibiting errors that are greater than 9%. The 15-mm
and 13 to eterm|ngt N ensity of the material and speed o ff-center incidence yields acceptable estimates with errors
sound propagation inside the spheres. Table Il shows the e

. . . ) 1at are smaller than 10%, except for Al. This indicates that
timated radii of the different materials and the percentag% . ; . . .

.. ) he density values determined using this method are reliable
error. The radii are estimated for on-center and oI’“f-cente[)nI when the focused part of the incident pulse hits the
incidences. For on-center incidence, the estimated radii for {t . h Th P d din th P terial of th
all the materials have accuracy levels better than 98%, exceﬁ?a erlr_19 sP erg. € sound spee |n_ € ma} enal ot the
for Al, which has an accuracy level of 92% because its back—Sphere is determined from the average dip spacings over the
scattered spectrum does not contain enough detail. In org¥f10l€ spectrum. n Table 1V, we provide estimates of the
to obtain better results for Al, we should use a smaller puls€°uUnd speeds for on- and off-center incidences. For the three
width. This is equivalent to having a wider spectral band-C2Ses under consideration, error margins smaller than 5% are
width. However, the pulse width should not be smaller tharAchieved except for Al that has an on-center percentage error
five times the radius. For off-center incidence, the errors irPf 6.7% and climbs up to 11.1% for the 45-mm off-incidence
the estimated radii do not vary much wheg=15mm. case. Thus, itis seen that the percentage errors in estimating
However, as the axis of propagation of the X wave moveghe speed of wave propagation are small whether the pulse is
out of the body of the spher@t x,=45 mm), the errors in incident on center or off center. Our discussion shows that
the estimated radii start increasing, especially for Pb fothe information extracted from the separation of dipky,
which the percentage error increases to 5% and for Al it risesr Ak},) is highly reliable and yields good estimates of the
to 12.63%. radii and wave speeds for the spheres. On the other hand, the

Table 11l contains estimates of the densities of the scataccuracy by which the density is determined is highly sensi-

TABLE Ill. The estimated densities of the spheres Fo+35 mm as calculated from the amplitudes of the simulated backscattered spectra obtained for
different materials due to on-center incidence as well as off-center incidence by distgrcEs mm andxy=45 mm.

Off center
On center Xo=15mm Xo=45 mm
Est. Est. Est.
Pe % Pe % Pe %
Material A (kg/m®) error A (kg/m?® error A (kg/m?) error
Al 1.7587 3.03x 10° 12.2 1.7601 3.1x%x 16° 16.1 1.7719 3.76 10° 39.3
Cr 2.1334 7.36x 10° 2.3 2.1338 7.7& 10° 9.5 2.1373 9.4 10° 9.7
Cu 2.1817 8.45 10° 5.3 2.1819 8.9% 10° 0.6 2.1841 1.0% 10* 19.8
Fe 2.1546 8.0x 10° 1.7 2.1549 8.16< 10° 3.72 2.1579 1.0x% 10 30.9
Pb 2.2216 1.0% 10 4.9 2.2217 1.1% 10* 1.4 2.2225 1.4% 10t 29.6
Ag 2.2120 9.64x 10° 8.2 2.2121 9.64 10° 8.2 2.2137 1.24 10* 18.1
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TABLE IV. The estimated acoustic speeds of propagation inside the spher@s-f8%s mm as have been calculated from the average spacing of the spectral
dips of the backscattered spectra obtained for different materials due to incidence off center by a distance to on-center incidence as wad ascideoer
by distancexy,=15 mm andx,=45 mm.

Off center
On center Xo=15mm Xo=45mm
Est. Est. Est.
Ak, Ce % Akgy Ce % Ak, Ce %
Material (m™Y) (m/9) error (m™Y (m/9 error (m™Y (m/9) error
Al 128.67 4824.48 6.7 128.83 4758.39 8.0 129.33 4595.40 11.1
Cr 129.33 5162.10 0.39 129.33 5118.45 0.46 129.50 5005.17 2.66
Cu 94.62 3943.13 0.67 94.62 3939.62 0.58 94.62 3831.04 2.19
Fe 114.50 4639.71 0.33 114.67 4616.91 0.16 114.67 4488.26 2.94
Pb 40.62 2037.29 4.62 40.62 1945.39 0.1 40.62 1883.56 3.27
Ag 72.25 3139.45 1.38 72.12 3134.66 1.22 72.12 3037.62 1.91

tive to any initial inaccurate estimation of the radius of theeven in the off-center incidence case, provided that the off-

sphere. center distance does not exceed the radius of the sphere if the
density is estimated. On the other hand, the off-center dis-
VI. CONCLUDING REMARKS tance can be increased to approximately 40% of the obser-

: . . vation distance if the wave speed is evaluated. Although this
In this paper, we discussed the scattering of an AXW . L

S work has been carried out for an incident X wave, we should
pulse by a sphere. We represented the incident AXW pulse as

i, point out that the advocated procedure for size identification
a spectral superposition over plane waves. Subsequently, we

. . and material characterization is not restricted to X-wave
used the series solution of a plane wave scattered by a sphere

in order to synthesize the scattered AXW pulse. The specgﬂ:zgz and can be applied to other types of ultra-wideband

trum of the scattered field was shown to carry specific infor- - . .

. ) . . . Finally, we would like to point out that several theoret-
mation regarding the size and material properties of the scalt(—:al studies of the scattering of electromaanetic X waves
tering sphere. We have undertaken a detailed study of th g 9

. : - " ffom conducting wedges and disks have been publish&d.
backscattered spectra for spheres having different radii anl% these studiegJ the gcattered fields were evalﬁated by com-
made out of diverse materials. Our work indicates that on ’

. ining the pulsed plane-wave representation of X wates
can use the spectra of a few spheres of known materials and. g P P P

. _ . . 2
specified radii to generate a set of calibration curves. Thes%'éhwrg?kh g:gggﬁg %yi:?zgggggrtiﬁzréqvﬁing(;r::(ra?‘r%tt?o Use
curves can then be used to characterize unknown spherlc&]e backscattered fields in identifying any of the attributes of

scatterers. In particular, we can estimate the radius of th . . . . . o
. . L ﬁwe scattering objects. It is of interest to extend the identifi-
scatterer using an arbitrary calibration curve that does no

. . L cation technique introduced in this paper such that the fea-

gi? peannddovr\;;cg r:aéigagfsgngeﬁgfeez:gmﬁﬁﬂsogzo?ngfn?e [éres of scatterers having different geometries could be de-

Y € sp . P . P " Wmined from their backscattered spectrum. Another

utilize the estimated radius together with appropriate Callbrai'nteresting situation is to be able to acoustically identify the
tion curves for the density and the speed in order to identify

. : . attributes of a scattering object when it is immersed in water
the material. The gffects_of the ob_ser\(anon dlstgnce and thgr is buried underground while the source of the AXW is
power of the received signal, which is proportional to the

: . situated in a second medium.
power of the source used, must be taken into account in the
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