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Abstract 

This study presents a basis for the analytical and experimental procedures as well 

as design techniques required in achieving adaptive structures for active structural 

acoustic control (ASAC). Test structures studied in this work included a baffled 

simply supported beam and a baffled simply supported plate which were subjected 

to a harmonic input disturbance created physically with a shaker and modelled 

by a point force input. Structural acoustic control was achieved with piezoelectric 

actuators bonded to the surface of the test structure. The primary focus of this 

work was devoted to studying alternative sensing techniques in feed forward control 

applications. Specifically, shaped distributed structural sensors constructed from 

polyvinylidene fluoride (PVDF), distributed acoustic near-field sensors constructed 

from PVDF, and accelerometers were explored as alternatives to microphones which 

are typically implemented as error sensors in the cost function of the control ap- 

proach. The chosen control algorithm in this study was the feed forward filtered-x 

version of the adaptive LMS algorithm. A much lower level of system modelling is 

required with this method of control in comparison to state feedback control meth- 

ods. As a result, much of the structural acoustic coupling (i.e. system modelling) 

must be incorporated into the sensor design. 

Results from implementation of the alternative structural and acoustic near-field



sensors chosen in this work demonstrate that the sensors can be designed to incor- 

porate the radiation characteristics of the structure in the sensor response. Levels 

of acoustic attenuation achieved when implementing the chosen alternative sen- 

sors rivaled that achieved when implementing microphone error sensors in the cost 

function of the control algorithm. Thus this work provides a basis for the design 

methodology required to achieve an adaptive or “smart” structure for active struc- 

tural acoustic control with integrated actuators and sensors. Each alternative sensor 

design is reviewed and limitations as well as advantages are discussed in view of the 

desired application.
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Chapter 1 

Introduction 

Only in recent years has our society accepted responsibility for the pollution of our 

environment and made a conscious effort to correct what seems to be an irreversible 

act of negligence. To this end, we have recognized that it is much easier to prevent 

pollution through recycling waste products and regulating industrial and automo- 

tive emissions than by trying to bury our problems in a mountain of landfills. While 

these introductory statements may seem unrelated to the topic of active structural 

acoustic control (ASAC), upon further inspection, one recognizes that noise is con- 

sidered environmental pollution. For example, one must simply reside along a busy 

highway or near an airport to understand the meaning of noise pollution. Certainly 

our industrial workers operating heavy machinery in large open facilities must wear 

ear protection to prevent irreversible damage to their ears. While this “passive” 

means of eliminating noise is very effective on high frequency acoustic transmission, 

much of the low frequency structure-borne noise simply cannot be attenuated by 

passive techniques. The end result is a loss or reduction in hearing for people living 

or working under these conditions as well as a decrease in productivity due to the 

fatigue induced by this constant annoyance. Realizing that this loss of hearing is an 

irreversible process, just as much of the damage to our environment is irreversible,



one recognizes that the solution to this problem lies in prevention. 

Prevention of this low frequency noise pollution can be achieved with active struc- 

tural acoustic control (ASAC). Rather than attempting to eliminate the noise once 

it is airborne by passive techniques (i.e. ear protection, acoustic absorption ma- 

terials, etc.), active structural acoustic control attacks the problem at the source, 

on the surface of the vibrating structure. This concept, which was introduced by 

Fuller (1989(a)), has radically altered our approach to structure-borne noise prob- 

lems. Coupled with recent advances in digital signal processing and flexible control 

approaches afforded by adaptive control algorithms such as the filtered-x version of 

the adaptive LMS algorithm and neural networks, active structural acoustic control 

is now areality. This technology has evolved at an interesting time since the concept 

of “smart structures” emerged almost simultaneously. A “smart structure” is one 

with both actuators and sensors either embedded within the structure or bonded to 

the surface with an adaptive control approach which can compensate for changes in 

input disturbances. In an ideal sense, a “smart structure” is one with a “nervous 

system” (sensors), a set of “tendons and muscles” (control actuators), and a “brain” 

(controller) whereby the structure continuously adapts to its changing input stimuli 

as well as its surrounding environment. 

The concept of smart structures can primarily be attributed to recent advances in 

piezoelectric materials such as lead zirconium titanate (PZT) and polyvinylidene 

fluoride (PVDF) as well as shape memory alloys (SMA). Due to the bandwidth of 

operation, the piezoelectric materials are best suited for dynamic active control and 

will thus be the focus of this work, while the shape memory alloys are better suited



for static or very low frequency applications due to the thermal time constant of 

the material. Much of the research conducted in recent years has been devoted to 

developing smart structures for vibration control implementing the PZT material 

primarily as an actuator and the PVDF material primarily as an error sensor due 

to the fact that PVDF is approximately four times less dense than PZT and over 

thirty times more compliant. (This research will be reviewed in detail in the fol- 

lowing sections devoted to actuators and sensors.) In general, the same concepts 

applied to vibration control can readily be achieved for structural acoustic control 

with the PZT actuators; however, to develop a smart structure with the appropriate 

distributed sensors complicates the problem. 

In the case of vibration control, a sensor configured on the surface of the structure 

yields an electrical output directly proportional to the quantity to be minimized, 

the structural response. However, in structural acoustic control, the quantity to be 

minimized is the radiated sound, and hence the dynamics of the acoustic medium 

must somehow be incorporated into the sensor design or the control approach. The 

primary objective of this work is to evaluate different sensing techniques for active 

structural acoustic control and determine the basis of a design procedure for devel- 

oping sensors which can be embedded within the structure, bonded to the surface 

of the structure, or placed in close proximity (i.e. the acoustic near-field) such that 

a smart structure for ASAC can be achieved.



1.1 Piezoelectric Actuators and Sensors 

It is not the intent of this review to document all applications of piezoelectric- 

ity; however, to introduce this topic without giving credit to the brothers Jacques 

and Pierre Curie would be a disservice to the fathers of this science. By the year 

1880, they observed that an application of pressure along either the transverse or 

longitudinal direction of a crystalline structure would lead to the production of an 

electrical charge in ten types of crystals, including quartz and Rochelle salt (J. Curie 

and P. Curie 1880). In that same year, Lippmann used the Curies’ results to as- 

sert that the converse phenomenon should exist (Lippmann 1881), and the Curies 

experimentally confirmed this assertion by the end of the year (J. Curie and P. 

Curie 1881). This fundamental work formed the foundation for a diverse variety 

of scientific instruments such as stabilizers, oscillators, filters, accelerometers and 

microphone transducers to name a few. Without elaborating in greater detail on 

the diverse applications or history of piezoelectricity, the reader is referred to an 

excellent overview of the science by Collins, Miller and von Flotow (1990). For a 

detailed analysis of the evolution of the science up to 1945, the reader is referred to 

Cady’s text (1964). 

In recent decades, this technology has blossomed in the form of ferroelectric ma- 

terials which are much more sensitive than piezoelectric crystals, yielding greater 

electro-mechanical coupling due to the combination of the applied electric field and 

spontaneous polarization. Specifically, ferroelectric ceramics were determined to 

have greater coupling than quartz, and the polarization is much more stable be- 

cause they are polycrystals (Collins, Miller and von Flotow 1990). In the early



1940’s, Von Hippel and associates at MIT (1946) and Wul of the Soviet Union 

(1945) independently discovered the first ferroelectric polycrystal in the form of a 

ceramic, barium titanate (BaTiO*). While the discovery of this material generated 

much excitement, the Curie temperature of the material was only 120°C, limiting 

the operating range of the material. The ceramic implemented as a control actuator 

in this study, lead zirconium titanate (PZT), was discovered in 1954 by Jaffe. Not 

only does this material exhibit better piezoelectric coefficients than BaTiO*, but it 

has a higher Curie temperature (340°C vs 120°C) (Jaffe 1971). This material has 

thus dominated the piezoelectric market for the past few decades and has been the 

primary material implemented in many recent applications for smart structures. 

In terms of piezoelectric polymers, the Japanese were were the pioneers in terms of 

research and development in the 1950s. Fukada (1955) observed the piezoelectric 

effect in wood and later made the same observation in bone (1957), finding that 

the piezoelectric constant was approximately twice that of wood. He later docu- 

mented the same effect in Skin, blood vessels and tissues of the intestines (1968). In 

1969, Kawai discovered the piezoelectric effect in polarized films, polyvinylidene flu- 

oride (PVDF). This material displayed a piezoelectric constant (d3;) approximately 

3 times greater than that of nine other samples tested and little change in the piezo- 

electric effect was noted in the material over the course of several months. Since 

this discovery, other polymers have been studied (Wada 1976); however, none have 

received the attention of PVDF, and thus it has dominated the market in research 

and applications in current decades. Since this material is 30 times more compliant 

than PZT and 4 times less dense, it has little effect on the dynamics of stiff struc- 

tures constructed from materials such as aluminum and steel. Hence it has been



ideally implemented as an error sensor in applications for smart structures where 

PZT has typically been utilized as a control actuator. These two materials provide 

a method of implementing both control actuators and sensors directly in the design 

of the structure (i.e. smart structures). 

The reality of smart structures arose from theoretical and experimental work by 

Swigert and Forward (1981) which involved an “electronic damper” implementing a 

system of electro-mechanical transducers as elements of electronic feedback loops to 

control the mechanical vibration of an end supported mast. The structure studied 

consisted of a hollow fiberglass cylinder called an omni-antenna mast. The concept 

of applying electronic damping consisted of using piezoceramic sensing transducers 

mounted to the surface of the structure to detect surface strain and simultaneously 

amplifying and phase shifting the output of these sensing transducers such that the 

signals could be used as the input for the driver transducers located elsewhere on 

the structure. This initial study opened the doors for much of the interest and work 

in the area of smart structures today. 

By 1985, Bailey and Hubbard presented research which implemented PVDF as an 

active damper for structural vibration control of a cantilever beam. By implement- 

ing both constant gain and constant amplitude controllers, Bailey and Hubbard 

experimentally demonstrated that the PVDF actuator could significantly increase 

the baseline loss factor (i.e. the natural damping of the structure) when the struc- 

ture was subjected to an initial displacement at its end (1985). In 1986, Fanson and 

Chen addressed the problems of vibration control associated with large flexible space 

structures implementing PZT control actuators, proposing that the “actuators be



built into the structure as dual-purpose structural elements in interest of efficiency 

and design”. In this study, the piezoceramic elements were collocated on the struc- 

ture (i.e. symmetric about the top and bottom of the beam) and were wired 180° 

out of phase such that uniform bending was achieved about the neutral axis of the 

beam when actuated. Crawley and de Luis later modelled the surface-bonded and 

embedded actuators consisting of lead zirconate titanate (PZT) in cantilever beams 

(1987), titling their work Use of Piezoelectric Actuators as Elements of Intelligent 

Structures, thus possibly emphasizing naming the science of adaptive, intelligent or 

smart structures. Following these preliminary works, many studies were devoted to 

vibration control of one-dimensional structures with PZT and PVDF (Burke and 

Hubbard 1987), (Plump et al., 1987), (Miller et al., 1990), (Fuller e¢ al., 1990, 

1991(a))) and (Clark et al., 1991(a,b)) to name a few. 

As the technology evolved, interest in controlling more complicated two-dimensional 

structures emerged. A theoretical study by Dimitriadis, Fuller and Rogers (1991) 

resulted in a dynamic model for rectangular shaped PZT actuators which were im- 

plemented by collocating to piezoceramic elements symmetrically about the top and 

bottom of the plate and wired 180° out of phase to produce uniform bending about 

the neutral axis of the structure. The model was observed to reduce to that of 

distributed line moments about the boundaries of the actuator due to the applied 

voltage. The model was later extended for applications in circular coordinates by 

Dimitriadus and Fuller (1991). During that same period, Lee had been working 

on models for distributed actuators and sensors constructed from PVDF to achieve 

critical damping on a cantilevered plate (1989). This work was later followed by a 

study by Lee and Moon (1990(a,b)) whereby modal sensors and actuators for both



one-dimensional and two-dimensional structures were considered. All experimental 

work was however restricted to the one-dimensional case. In all of these studies, the 

distributed sensors and actuators were restricted to vibration control applications 

in developing smart structures. 

The application for smart structures in active structural acoustic control approaches 

was initiated in 1989(a) by Fuller in a theoretical study which outlined the control 

of sound transmission and radiation from elastic plates with vibration inputs. This 

work was rapidly followed by another theoretical study implementing piezoelectric 

actuators as control inputs for minimizing structure-borne sound (Dimitriadis and 

Fuller 1991, Fuller 1989(b)). Fuller (1989(c)) followed this theoretical study with 

a series of experiments implementing a single piezoelectric actuator bonded to the 

surface of a simply supported plate to control structure-borne sound resulting from 

a disturbance created with a shaker attached to the structure. These studies were 

later followed by a variety of theoretical and experimental investigations implement- 

ing piezoelectric actuators for controlling sound radiation from vibrating structures 

(Wang et al., 1991(c)) and (Clark and Fuller 1990(a,b), 1991(c)). The preliminary 

studies for developing a smart structure for structural acoustic control were in place; 

however, the microphone error sensors used in the cost function must be replaced 

with structural sensors to complete the design. A recent study by Baumann et 

al., (1991) included the structural acoustic coupling by means of radiation filters 

in a broad band state feedback control approach. These radiation filters were con- 

structed in the control algorithm from the response of an array of accelerometers 

distributed on the surface of the structure, converting vibration states to radiation 

states. The goal of this study is to incorporate the radiation filters directly in the



sensor design for feed forward control implementation. 

To this end, the objective of this work is to evaluate both structural and acoustic 

error sensors implemented in the cost function of the multi-channel filtered-x version 

of the adaptive LMS algorithm. Error sensors considered in this studied are as 

follows: 

—
 . Microphones, 

bo
 . Shaped PVDF sensors, 

oo
 . Optimally located and dimensioned rectangular PVDF structural sensors, 

Aw
 . Optimally located rectangular PVDF acoustic near-field sensors. 

5. Accelerometers. 

As outlined earlier, design and implementation of structural error sensors for active 

structural acoustic control approaches must incorporate the coupling between the 

structure and the acoustic medium in the cost function. To accomplish this task, 

prior knowledge of the mechanisms of sound radiation from vibrating structures is 

required. An overview of these mechanisms is presented in the following section 

to provide the reader with the necessary background for understanding the basic 

concepts included in the design process.



1.2 Overview of Sound Radiation from Vibrat- 

ing Structures 

Active structural acoustic control can be distinguished from vibration control by 

one very fundamental parameter, radiation efficiency. In vibration control, one 

must minimize the response of all structural modes if the objective is to reduce 

the overall response of the structure. However, in structural acoustic control, some 

structural modes are termed “efficient” acoustic radiators and some are termed “in- 

efficient” acoustic radiators, thus the design objective is modified such that only 

those structural modes which efficiently couple with the acoustic medium are con- 

trolled. This observation, noted in a prior study by Fuller (1989(a)), greatly reduces 

the dimensionality of the controller. The radiation efficiency of a structure is defined 

as follows: 

P 

o= pocA< v2 >? (1.1) 

where a is the radiation efficiency, P is the radiated acoustic power, p, is the density 

in the acoustic medium, c is the speed of sound in the acoustic medium, A is the sur- 

face area of the vibrating structure, and < v? > is the average mean square velocity 

of the vibrating structure (Fahy 1985). In this particular study, test structures were 

restricted to simply supported beams and simply supported plates since both the 

structural response and acoustic response can be obtained analytically. In this case, 

one can study the radiation efficiency of each structural mode, and this radiation 

efficiency was previously defined by Wallace (1972(b)) as follows: 
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PoCLegLy < |ttmn|? > 
  (1.2) om n 

where Oy, is the radiation efficiency of the mn“ mode, IHmn is the power radiated by 

the mn‘* mode, L, and L, are the dimensions of the panel in the x and y-direction 

respectively, and < |tmn|? > is the temporal and spatial average of the square of 

the velocity of the mn** mode. As an example, the radiation efficiency of a number 

of the primary modes of the simply supported plate used in this study is presented 

in the graph of Figure 1.1. 

As indicated in the graph, when the structural wavenumber, defined by 

Mma nT ky = (=-)? 4 F (1.3) 

is less than the acoustic wavenumber, defined by 

k= =, (1.4) 

the radiation efficiency of all modes approaches one. However, when the structural 

wavenumber is greater than the acoustic wavenumber, the radiation efficiency of 

each mode is readily distinguished from the other. Specifically, when k/k, is less 

than 0.3, the modes with even-even modal indices such as the (2,2) mode are much 

less efficient than modes with odd-odd modal indices such as the (1,1) mode. For- 

tunately, in structural acoustic control applications, this is typically the regime of 
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operation. As a result of this observation, it makes little sense to spend significant 

effort trying to control the (2,2) mode, when it is several orders of magnitude less 

efficient than the (1,1), (1,3) or (3,1) structural modes. Hence the dimensionality of 

the controller is readily reduced, and structural acoustic control is achieved by ei- 

ther modal suppression or modal restructuring. Both of these terms were previously 

defined by Fuller et al., (1989(b)). In the case of modal suppression, the ampli- 

tudes of each structural mode contributing to the response are reduced significantly, 

thereby reducing the vibration response as well as the acoustic response. However, 

in the case of modal restructuring, the phase relationship between structural modes 

is restructured such that destructive interference occurs in the acoustic field. In 

contrast to modal suppression, modal restructuring often results in an increase in 

the vibration response of the structure. This type of analysis is not restricted to 

rectangular panels as both circular plates and cylinders can all be characterized by 

a similar analysis of radiation efficiency. 

Another concept worthy of introduction is the wavenumber transform of the struc- 

tural response. The typical approach used in describing the acoustic field based 

on the structural response is to study the modal amplitudes of the controlled or 

uncontrolled structural response. However, as the number of modes included in the 

structural response increases, physical interpretation of the significance of both the 

phase and magnitude of each mode becomes more difficult. In addition, the station- 

ary parts of the radiating surface are not included in this form of analysis since the 

significance of the baffle is not apparent. To alleviate this problem of interpretation, 

an alternative method of studying the response will be introduced. This method is 

based on a wavenumber transform, which is analogous to obtaining the frequency 
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spectrum from a time-dependent signal (Fahy 1985). To obtain the wavenumber 

transform, a Fourier integral transform of the spatial response is evaluated. 

F(keyky) = ff Fle,u)exp(—shex) exp (shy dude (1.5) 

Replacing f(z, y) with the spatial response of the simply supported plate, given as: 

Mae) (ny 

Ll,’ Ly 
    w(z,y,t) = Win sin( )exp(jwt), (1.6) 

and evaluating the integral over the boundaries of the plate, the wavenumber trans- 

form is obtained for each mode as follows: 

  Woan( key ky) = Winn I “ I ” sin( MAL . NN . . 

7) sin) exp(—jhow)eap(—Jhyy)dyde. (1.7) 
y Zz 

Plotting the magnitude of this function yields physical insight into the structural 

acoustic response. An idealized example of a wavenumber spectrum is presented 

in Figure 1.2 to convey the concepts. In reality, the wavenumber spectrum is de- 

fined in two dimension with both positive and negative components; however, the 

concepts are more readily conveyed in the one-dimensional example presented. The 

acoustic wavenumber, presented in equation (4), is the critical number defining the 

region between structural wavenumber components which radiate acoustic energy 

and components that simply create near-field acoustic disturbances. The radiating 
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region is termed the supersonic region and is the shaded region in Figure 1.2 where 

the structural wavenumber is less than the acoustic wavenumber (Fahy 1985). The 

non-radiating region is termed the subsonic region and is defined when the struc- 

tural wavenumber is greater than the acoustic wavenumber. 

Using this technique to describe the relationship between the structural and acoustic 

response of the structure yields physical insight into the mechanisms of sound radia- 

tion. In essence, one simply needs to design an error sensor which yields an electrical 

response proportional to the area under the supersonic region of the wavenumber 

transform to control the sound radiated to the acoustic far-field. This statement 

is more readily made than accomplished; however, methods of designing sensors to 

accomplish this task will be outlined in this work. 

Synthesizing the discussion of mode radiation efficiency and the wavenumber anal- 

ysis leads to the topic of different “types” of radiation. Reviewing a classical work 

by Maidanik (1962), reveals physical insight into these different “types” of mode 

radiation. Consider the four types of mode radiation for a plate with simply sup- 

ported boundary conditions presented in Figure 1.3. These four types of radiation 

are termed corner mode radiation, x-edge mode radiation, y-edge mode radiation 

and surface mode radiation. The corresponding requirement for each of these four 

conditions is defined as follows: 

a. k*>k? +k*: surface mode radiation, 

b. k< ky, k > ky: x-edge mode radiation, 

C. k > kn, k < ky: y-edge mode radiation, 
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d. k < km, k < ky: corner mode radiation, 

where k,, = mr/L, and k, = nr/L,. Surface mode radiation corresponds to the 

regime in presented in Figure 1.1 where k/k, > 1 and hence the radiation efficiency 

of the mode approaches 1. A schematic of this form of radiation is conveyed in the 

cross hatched region of Figure 1.3(a). The two types of edge radiation, x-edge mode 

radiation and y-edge mode radiation are presented in Figure 1.3(b) and Figure 1.3(c) 

respectively. In each of these two cases, the term edge mode radiation stems from 

the observation that the strips of half-cell width along the edges normal to the axis 

for which the primary wavenumber (i.e. km or k,, depending on direction) is less 

than the acoustic wavenumber remain largely uncanceled (Smith 1964). The least 

efficient of the four types of mode radiation is corner mode radiation which derives 

its name from the fact that only the corner quarter-cells contribute significantly to 

the far-field sound radiation. Hence, for structural acoustic control, conditions 2-4 

listed above corresponding to edge-mode and corner mode radiation are the primary 

radiation modes of interest since we restrict the operating regime to k/k, < 1. 

To tie the three concepts together, we will discuss the relationship between the ra- 

diation efficiency and the modes of radiation to that of the wavenumber transform. 

Consider the “controlled” wavenumber transform of Figure 1.2. If the driving fre- 

quency is increased while maintaining the same wavenumber spectrum, one observes 

that the supersonic region is thus expanded. One can view the spectral line cor- 

responding to the wavenumber, k, as a cursor. When this “cursor” is moved past 

the structural wavenumber corresponding to the second mode illustrated in Figure 

1.2, the radiation efficiency of that mode approaches 1 as indicated in Figure (1.1), 

and this type of radiation is termed surface mode radiation as indicated in Figure 

18



1.3(a). 

Knowledge of the radiation efficiency, wavenumber transform, and different types of 

mode radiation greatly enhances our understanding of the structural acoustic prob- 

lem and hence provides insight into the transducer design process. One might postu- 

late in advance that sensors need not observe the less efficient even-even structural 

modes to effectively control the sound radiation from the structure. In addition, 

based on the concept of edge radiation, one might also hypothesize that the edge 

of the plate would be an ideal location for a sensor constructed from a rectangular 

strip of PVDF. Each of these assumptions based upon the physical mechanisms of 

sound radiation will be supported later in the results from this study. 

1.3. Control Approach 

To this point, all components necessary to create an adaptive structure for active 

structural acoustic control have been discussed, including an overview of the phys- 

ical mechanisms of sound radiation which must be incorporated into the design. 

However, in addition to the appropriate sensors and actuators, an appropriate con- 

troller is required to achieve the overall design objective, which is to minimize the 

total far-field radiated sound power in the presence of a potentially changing input 

disturbance. A feed forward active controller is chosen to accomplish this task in 

the form of the time domain filtered-x version of the adaptive LMS algorithm. In 

contrast to feedback control approaches, a much lower level of system modelling is 

required to implement the controller (a frequency domain LMS controller requires 

no system modelling). Since a model of the system dynamics is not required to pre- 
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dict selected states as is the case for feedback control, the time domain feed forward 

implementation simply requires a model of the transfer function between each error 

sensor and control actuator. These transfer functions are measured experimentally 

and implemented thru finite impulse response (FIR) filters. 

A conceptual schematic of a feed forward active controller is presented in Figure 1.4 

in its most general form. The adaptive plant includes the structure with coupled 

radiation field, control actuators, error sensors and control dynamics. The reference 

plant consists of the models or plants required to create the desired response at the 

chosen error sensor locations. The adaptive plant essentially modifies its behavior 

(AP(k)) to achieve the same response as that of the reference plant (R(k)), by 

driving the error E(k) to a minimum. This is accomplished with the active con- 

trol algorithm by optimizing the control inputs in order to minimize the least mean 

square of the error signal, which is the difference between the control input AP(k) 

and the desired response R(k). 

Note that when it is required to totally attenuate the response of the adaptive plant 

at the error sensors, the reference plant is set open loop. Since R(k) will equal zero 

in this case, E(k) is simply equal to the output of the adaptive plant AP(k). 

1.4 Scope and Objectives 

The primary objective of this work is to study different types of error sensors im- 

plemented in active structural acoustic control and determine their respective ad- 

vantages and limitations. These four basic error sensors were previously itemized 

in the actuator/sensor subsection of this introduction. Upon determining the ad- 
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vantages and limitations of each error sensor, a design approach for achieving an 

adaptive structure for active structural acoustic control will be outlined based upon 

the simple structures used in this study. In addition to developing analytical models 

of each type of sensor, experiments were conducted to evaluate both the models and 

the global levels of sound attenuation which can be achieved. Models for the piezo- 

electric actuators were taken from a previous study by Dimitriadus et al., (1991) 

and hence were not specifically evaluated in this study. However, experiments have 

been previously conducted by Fleming (1990) and Clark et al., (1991(a,b)) suggest- 

ing that the dynamic models can be used with reasonable accuracy to predict the 

response of either a simply supported plate or a simply supported beam. 

In order to reduce the number of variables considered in the study, this work is 

limited to control of a steady state harmonic structural disturbance. Hence this 

work is intended as a foundation for future studies implementing multi-frequency 

or broad-band input disturbances. Many structures of practical interest in struc- 

tural acoustics can be represented by isotropic rectangular plates. Hence a simply 

supported, rectangular baffled plate was implemented as the plant for evaluating 

different types of structural acoustic error sensors. This plant was chosen since the 

behavior of both the structural response and acoustic response are well known from 

closed form analytical methods. In addition, the physical mechanisms of the control 

approach can be readily demonstrated as discussed earlier. 

In the analytical study, linear quadratic optimal control theory (LQOCT) is utilized 

to minimize the response at the chosen error sensors and resolve the required optimal 

control voltage corresponding to each piezoelectric actuator. The optimal control 
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voltage was computed based on LQOCT as opposed to the LMS algorithm due to 

greater computational efficiency. The two methods were analytically determined to 

yield the same optimal solution; however, when implementing the LMS approach, 

the algorithm must converge to the least mean square solution over a number of 

iterations, just as is accomplished in the lab. Hence the number of computations 

required to determine the optimal solution are much greater in this case. All an- 

alytical studies were conducted with the IBM VM1 computing system as well as 

an AT compatible personal computer at VPI&SU. In the experimental studies, the 

filtered-x version of the adaptive LMS algorithm was implemented on a TMS320C25 

digital signal processing board resident in an AT compatible personal computer. 

1.5 Organization 

To provide the necessary background for developing the analytical models required 

to predict the structural acoustic response of the simply supported beam and sim- 

ply supported plate, all theoretical models are presented in chapter 2. The lin- 

ear quadratic optimal control approach used to predicted the controlled structural 

acoustic response is outlined in chapter 3 along with an overview of the filtered-x 

version of the adaptive LMS algorithm which was used in the experimental studies 

to achieve control of the test structure. Based upon the sensor models developed 

in chapter 2 and the control approach presented in chapter 3, design approaches for 

achieving unique sensors constructed from polyvinylidene fluoride are developed in 

chapter 4. At this point, the method of constructing the test structures as well as 

the instrumentation required to conduct experiments is reviewed in chapter 5 for 

practical implementation of the sensor designs. Experimental and analytical results 
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for all types of sensors are discussed in the results which are presented in chapter 6. 

Upon presenting the results, a discussion of the important concepts resulting from 

this work is presented in the conclusions of chapter 7. 
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Chapter 2 

Actuator/Sensor Models for 
Simply Supported Beams and 

Plates 

For the extent of this work, the simply supported beam and simply supported plate 

served as test structures for studying the behavior of different types of structural 

and acoustic error sensors. Since a shaker was utilized as the input disturbance and 

piezoceramic patches were implemented as control actuators on each test structure, 

appropriate analytical models of each input were derived. In addition, analytical 

models for each of the different types of error sensors were formulated to develop 

an overall design approach for the smart structure system. Since the analysis was 

conducted for a harmonic steady state input disturbance, modal analysis was used 

to express the response of the structure in terms of the input disturbance and con- 

trol actuators. The overall system response is thus obtained from a superposition 

of the modal response resulting from the disturbance and each control actuator. 

The analytical model for each error sensor was also expressed in terms of the modal 

coordinates to simplify computations. 
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In the following analytical expressions, many of the derivations of material which 

has been documented in past studies will be omitted from the text in an effort to 

maintain some control over the length of this dissertation. However, in each case, 

the reader is referred to the appropriate reference for all supporting details. All 

expressions for the structural and acoustic response of both the simply supported 

beam and simply supported plate presented in this work are valid only for the case 

of light fluid loading and are hence not applicable in the fully coupled case. Deriva- 

tions which are unique to this work will be presented in an appropriate appendix to 

Maintain consistency in the flow of this work. 

2.1 Theory 

The total structural response of a lightly damped simply supported beam can be 

expressed as a summation of the modal amplitudes as follows (Meirovitch 1967): 

w(z,t) = s Wn Sin(¥mz) exp(jwt). (2.1) 
m=1 

Since one cannot readily evaluate an expression over an infinite sum, the number 

of modes utilized in the summation will be limited to 10. Due to the frequency 

response characteristics of the structure, the response of the higher order modes to 

low frequency excitation is negligible. Similarly, the response of a simply supported 

plate can be expressed in terms of its modal coordinates as follows (Meirovitch 

1967): 
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w(z,y,t) = S> 3 Wan 8in(Ym2) sin(y,y) exp(jwt), (2.2) 
m=1n=1 

As in the case of the simply supported beam, the range of summation will be re- 

stricted to a finite number of modes. However, due to the increased modal density 

(i.e separation between resonant frequencies) the first 25 modes are included in the 

response, letting m = 1,2,..,5 and n = 1,2,..,5. 

Given the response of the beam and plate in terms of the modal coordinates, the 

response of each structure is readily obtained for a variety of input disturbances. 

For the purpose of this study, a model for the response of each structure to a point 

force disturbance as well as a distributed input due to a piezoelectric actuator is 

required. 

2.1.1 Point Force Model 

The shaker implemented in the experiments was attached to each structure via a 

stinger configured with a force transducer. The analytical model most closely ap- 

proximating this configuration is the point force input disturbance. 

2.1.1.1 Simply Supported Beam 

The modal response of a simply supported damped beam to a harmonic point force 

of magnitude F and located at a spatial coordinate of zz from the origin of the 

structure depicted in Figure 2.1 can be expressed as follows (Meirovitch 1967): 
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  (2.3) 

The resonant frequencies of the simply supported beam expressed in the previous 

equation are given by: 

D.,mn 
2 = —*(—_) 2.4 

Win p’ L. ) ’ ( ) 

where the beam flexural stiffness is defined by 

_ Eh?we 
D. ; 

12 
  (2.5) 

and 
E = Young’s modulus of beam 

h = thickness of beam 

w, = width of beam 

n = damping ratio 
p’ = mass density of beam per unit length. 

2.1.1.2 Simply Supported Plate 

Solving the equation of motion for the plate subjected to harmonic excitation of a 

point force located at spatial coordinates (xq, yq) depicted in Figure 2.2 yields the 

following expression for the modal amplitudes (Meirovitch 1967). 
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Figure 2.2: Coordinate System for Plate 
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Why = pAb inns 09 p" LL, (w2,,, — w? + J2qwwWyn) 

The resonant frequencies of the simply supported plate expressed in the previous 

equation are given by: 

Ww, = =m) + (1n)?P, (2.7) 

where the plate flexural stiffness is defined by 

and 

Eh? 
D. = =; 2.8 Da) (2:8) 

Yn = 7 

Yn = a 

E = Young’s modulus of plate 
h = thickness of plate 
v = Poisson’s ratio of plate 

n = damping ratio 

p” = mass density of plate per unit area. 

2.1.2 Piezoelectric Actuator Model 

The piezoceramic elements implemented in the control experiments were constructed 

from G-1195 lead zirconium titanate with material properties itemized in Table 2.1. 

Each piezoelectric actuator was constructed from two piezoceramic elements bonded 

symmetrically to the top and bottom surface of the structure and wired 180° out 
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Table 2.1: Material Properties of Piezoceramic Material G-1195 

  

  

  

  

  

Name Symbol Value Units 

Piezoelectric Strain Coefficient ds} 166 x 10-' | m/V 

Density p 7600 kg/m? 

Elastic Modulus E33 4.9x 10% | N/m? 
Elastic Modulus Ey, 6.3 x 10!° | N/m?           
  

of phase such that, when contraction was induced in one element, expansion was 

induced in the other, resulting in uniform bending about the neutral axis of the 

structure. A schematic diagram of the electrical configuration of this basic actuator 

is presented in Figure 2.3. Previous work by Crawley and de Luis (1987), Dimi- 

triadus et al., (1991) and Clark et al., (1991(a)) demonstrated that these distributed 

strain actuators can be approximated by applying line moments at the boundaries 

of the actuators. Experimental studies dedicated to characterizing the nature of the 

inputs Fleming (1990), Clark et al., (1991(a,b)) revealed that the analytical model 

for the response of the piezoelectric actuator resulted in a reasonable prediction of 

the dynamic response of the structure. The reader is referred to these studies for 

greater details of the following actuator related derivations. 

2.1.2.1 Simply Supported Beam 

If we solve the equation of motion for the simply supported beam configured with 

a piezoelectric actuator attached as detailed previously at spatial coordinates of 

(x1, 22) depicted in Figure 2.1, the resulting modal response can be derived (Clark 

1991a). 
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Figure 2.3: Electrical Configuration of PZT Actuator 
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2 €peWpe MT 
Wr = : 

™ —— wyp! L?2(w?2, — w? + 72nw pw) (cos(Ym2t) — cos(m22)) (2.9)   

Constants used in the above equation are defined as follows. 

d3,V" 
  

  

pe = (2.10) 

C,= pe (2.11) 

P= =P K, (2.12) 

K= TR oR? (2.138) 

where: 

w, = width of beam 

Wpe = Width of piezoelectric actuator 
zi = x-coordinates of left corner of p actuator 
x = x-coordinates of right corner of p*” actuator 
V? = complex voltage of p” actuator 
t = thickness of piezo patch 

Ene = Young’s modulus of piezo patch 
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2.1.2.2 Simply Supported Plate 

Similarly, an expression for the modal response of the simply supported plate con- 

figured with a piezoelectric actuator located at spatial coordinates of (#1, y,) and 

(x2, y2) illustrated in Figure 2.2 can be derived as follows (Dimitriadus et al., 1991): 

wr. = 4Co€pe im + In 
mn Pp’ Le Ly(Wing — W? + J2NWmnw) Ym Yn 

x [(cos(Ym21) — CO8(Ym22)) (COS(Yn¥1) — COS(YnY2)))- (2.14) 

Constants used in the above equation are defined as follows 

Pp 

Eve = doV? (2.15)   

_ _Eh(l+yv) P 
Co=— Gv) [tv 0 tm) Py (2.16) 
  

Eye (1 — v?) 
P= = (7) (2.17) 

_ 6th(h +t) 
~ (A3 + 8t3) + 6ht?’ (2.18) 
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where: 

(xf, y?) = coordinates of lower left corner of p** actuator 

(x, y2) = coordinates of upper right corner of p“ actuator 
V? = complex voltage of p‘* actuator 

t = thickness of piezo patch 
Ene = Young’s modulus of piezo patch 

Vye = Poisson’s ratio of piezo patch. 

2.1.3 Total Structural Response 

The total structural response of the simply supported beam or the simply supported 

plate can hence be obtained from a superposition of the modal response computed for 

the point force input disturbance and each piezoelectric control actuator as follows. 

The modal] amplitudes for the simply supported beam are obtained as follows: 

P 

Wn =WE+ 5° Wwe. (2.19) 
p=1 

The modal amplitudes are obtained similarly for the simply supported plate: 

P 

Winn = WE +57 WP 
mn 

(2.20) 
p=1 

where P defines the number of piezoelectric actuators used in the response. Given 

the total structural response as a function of the modal coordinates, appropriate 

models for sensors can be developed. 
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2.1.4 Polyvinylidene Fluoride (PVDF) Sensor Models 

The material chosen for designing shaped structural error sensors as well as acous- 

tic near-field sensors in this study was polyvinylidene fluoride. This material was 

chosen due to its high sensitivity as well as its low compliance and mass density in 

comparison to typical material properties of structures for proposed applications. 

The electrical response of this material is proportional to the integral of strain in- 

duced within the volume of the sensor. The three directions in which strain can 

be applied are indicated in the schematic diagram of Figure 2.4. Associated with 

the x, y and z-direction of the material are the piezo stress constants d3,, d32 and 

ds3 ((C/m?)/(N/m?)) respectively. Values for each of these constants as well as 

material properties of PVDF are included in Table 2.2. 

PVDF sensors implemented in this study were either bonded to the surface of the 

structure or shaped as a segment of a shell of large radius and placed in the acoustic 

near-field of the structure. The analytical models required to predict the response 

of each type of sensor are outlined below. 

2.1.4.1 Structural Error Sensor 

An expression for the electrical response of an element of PVDF distributed over 

the surface of a structure was previously formulated by Lee and Moon (1990(b)) 

from laminated plate theory. This expression was derived in terms of charge and 

is a function of the strain induced in the structure. The expression is written as 

follows: 
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Figure 2.4: Schematic of PVDF Coordinate System 
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Table 2.2: Material Properties of Polyvinylidene Fluoride 

  

Name Symbol Value Units 

Strain per charge | dy 23 x 107)? | (C/m?*)/(N/m?) 
Strain per charge | d32 3x 107 | (C/m*)/(N/m?*) 
Strain per charge | d33 | —33 x 107'* | (C/m*)/(.N/m?*) 

  

  

  

  

  

  

  

  

            
Stress per charge €31 23 x 107)? C/m? 
Stress per charge €32 3 x 107? C/m? 
Stress per charge €33 ~33 x 107 C/m? 

Density p 1780 kg/m? 
Elastic Modulus E 2x 10° N/m? 

Permitivity E 106 x 1077? F/m 
  

  

_ (hp the) Ow oe q(t) = 9 I P,(z, y) F(x, yes + €32 Oy? 

+2e ow \drdy exp(jwt) (2.21) 36 dzdy Y Exp(Jwt), ° 

where q is the response of the PVDF in units of charge, h, is the thickness of the 

PVDF laminae, A, is the thickness of the structure, F(z, y) is the function describ- 

ing the effective surface electrode, P,(x,y) represents the polarization profile, es1, 

€39 and é€ag are the piezoelectric field intensity constants and w is the response of 

the structure as a function of the x and y-direction. 

When the lamina is placed on the structure with no skew angle as depicted in the 

schematic of Figure 2.5, es, = 0, which is the case for the present study. Upon 

substituting the response of the given test structure (i.e simply supported plate or 

simply supported beam) into equation (2.21), the electrical response of the sensor 

can be computed as a function of the dynamic response of the structure. Since this 
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Figure 2.5: Schematic of PVDF Configured on a Structure 
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expression was formulated in terms of charge, the resulting voltage can be obtained 

by dividing the expression by the sensor capacitance. The sensor capacitance is 

typically much greater than that of the instrument used to measure the output volt- 

age; therefore, the capacitance of the instrument can be ignored when computing 

the voltage. Appropriate circuits to assure this condition will be discussed later in 

chapter 5 which is devoted to the experimental arrangement. 

2.1.4.1.1 Simply Supported Beam 

Since the response of the simply supported beam is expressed as a function of the 

x-direction only, equation (2.21) can be written as follows assuming a constant 

polarization profile: 

a(t) = Pet BD I p(a)(e5, dv expt) (2.22) 

Upon substituting the expression for the response of the simply supported beam 

into the above equation, the electrical response of the sensor can be expressed as a 

function of the modal coordinates: 

(hp + h,)es1 ow Ls MT 9. MAL 
> exp(jwt) Xu Wn f F(z)( L )* sin( Le )dz. (2.23) 

zx 

  q(t) = 

One must simply choose the desired sensor shape (i.e. F(z)) to compute an exact 

electrical response. This will be done in the following chapter for both rectangular 

sensors and modal sensors. 
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2.1.4.1.2 Simply Supported Plate 

As in the case of the simply supported beam, substituting the expression for the 

response of the simply supported plate into equation (2.21) yields the electrical 

response of the PVDF sensor in terms of the sensor shape and modal response of 

the structure: 

a) = OY Wm [Flew eal F) +e ) 
ant) sin(——)dardy exp(jwt). (2.24) L; L, 
  x sin( 

Both rectangular shaped sensors and modal sensors will be discussed in the follow- 

ing chapter. 

2.1.4.2 Near-field Sensors 

In addition to locating distributed PVDF sensors on the surface of the structure, 

acoustic near-field sensors were constructed from PVDF and placed in close prox- 

imity to the structure as an alternative design approach. The initial design concept 

was based upon a membrane type sensor. In this case, the PVDF was stretched 

uniformly in both directions and bonded to a rectangular frame to create the mem- 

brane. The dominant strain component is nonlinear due to the fact that the strain 

induced in a membrane due to a harmonic forcing function results in a strain due 

to tension whether the membrane is displaced in a negative sense or positive sense. 
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In other words, a harmonic pressure of frequency f applied to the surface of the 

sensor will result in an electrical response at a frequency of 2f. Another component 

of strain was observed at the desired input frequency; however, this term was due to 

nonlinearities in the structural response of the membrane, resulting in a poor signal 

to noise ratio. The response of this component was greatest near the first mode 

of the membrane due to the curvature induced in the sensor as a function of the 

harmonic pressure applied over the surface. 

As a result of this observation, the logical method of increasing the response of 

the sensor at the desired frequency was to design a sensor with curvature such 

that the out of plane displacement with respect to the x-y axis and hence strain 

in the x-y plane induced in the sensor would increase. To this end a sensor was 

shaped in the form of a segment of shell (i.e. a cylindrical plate) as depicted in 

Figure 2.6. Design techniques for achieving this sensor shaped will be presented 

in the chapter outlining the experimental arrangement. The boundaries in the 

x-direction and ¢-direction are assumed to be simply supported. The equations 

of motion for this cylindrical plate as well as the solution for the response are 

presented in Appendix A. It should be noted that an exact analytical solution to the 

differential equations does not exist; however, the solution is expanded in terms of a 

set of admissible functions which satisfy both the natural and geometric boundary 

conditions to obtain an approximate response of the shell segment. These admissible 

functions were previously given by Timoshenko (1940) and Junger and Feit (1986) 

as follows: 

43



ds “ dx 

-
 

=
 

  

  

Figure 2.6: Coordinate System for Near-Field Sensor 
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M WN 

= > SS Ann sin( (mae) cos( 
m=ln=1 

  me )exp(jut), (2.25) 

N _ M nto. , ,.Marz 
= S> YS Bran cos( a ——) sin( Z 

n= 

  \exp(jwt), (2.26) 

3 
i
v
e
 

  

N 

d€ mn sin( (a) ) sin( =) exp(jut), (2.27) 
ln 3 Il 

where a and LI are the respective ¢-direction and x-direction dimensions, and uy, 

u2 and ug express the response of the shell segment as indicated in Figure 2.6. The 

solution for the response of each mode is obviously coupled in three dimensions. 

Hence for each mn mode, an eigenvalue problem must be solved. The details of this 

solution are presented in Appendix A. The strain resulting from this approximate 

solution can be computed as follows: 

  é, = ou =— x 5 me mr A mn sin( (728) sin(™E), (2.28) 
m=i1n=1 Tr L 

and 

_ Ou UZ 

Hence, 
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MN nro MTZ 

Qa 
Eg = _* » (Bin + Cin) sin(—) sin(——), (2.30) 

m=l1n=1 

where ¢€g is the strain induced in the ¢-direction, ¢€, is the strain induced in the 

x-direction, and a and L are the respective dimensions of the sensor in the corre- 

sponding directions. An expression for the electrical response of the PVDF sensor 

as a function of the strain induced in the x and y-direction was presented previously 

in equation (2.24). The formulation for the response of the acoustic near-field sensor 

follows this format since the electrical response of the material is proportional to 

the integral of strain over the surface of the sensor. In this case, the material is 

oriented such that the strain in the x-direction is aligned with e32 and the strain in 

the ¢-direction is aligned with e3;. Consider a differential element of the cylindrical 

plate presented in Figure 2.6. The elemental area dA is represented by the product 

of dr and dS, where dS = ad@¢. Hence, given an expression for the strain in each 

respective dimension, the response of the PVDF acoustic near-field sensor can be 

obtained by integrating the surface strain of the element depicted in Figure 2.6 with 

respect to the stress/charge constants, e3,; and e32 as follows: 

L fa 

a(t) = | I (€31€g + €32€, )adgdz exp(jut), (2.31) 

Substituting equations (2.28) and (2.30) into equation (2.31), and integrating over 

the surface of the sensor, the electrical response in units of charge can be expressed 

as a function of the modal coordinates of the sensor: 
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MN aeé32Q a c= SS [8h on (Lt +(e 
x(1 — cos(n7))(1 — cos(m7)) exp(jwt). (2.32) 

As is obvious from the above expression, only those modes of the sensor for which 

both m and n are odd will contribute to the electrical response. The coefficients 

Amn, Bmn and Cy, are functions of the frequency response characteristics of the 

shell segment as well as the nature of the input. Expressions for computing these 

modal coefficients as a function of a uniform pressure or a summation of distributed 

pressures applied over the surface of the sensor are included in Appendix A. A dis- 

cussion of the specifics of the implementation of these acoustic near-field sensors is 

presented in chapter 4 of this work. In general, the design of the acoustic near-field 

sensor is not unique to any specific type of structure. The response is simply de- 

pendent upon the acoustic pressure radiated from the surface of the structure. If 

this response can be computed analytically or estimated from experimental data, 

an expression for the electrical response of the near-field sensor can be obtained. 

2.1.5 Structural Response (Accelerometer Sensor Model) 

For harmonic excitation of a structure, the acceleration is proportional to the dis- 

placement as a function of —w*. Based upon this result and the knowledge of the 

displacement response of the structure, a model for an accelerometer error sensor is 

readily obtained for both the simply supported beam and simply supported plate, 

assuming that the sensor is small with respect to the structural wavelength. These 

models are used for comparing analytical results with experimental results when 
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implementing accelerometers as error sensors on the surface of the structure. 

2.1.5.1 Simply Supported Beam 

Multiplying the displacement response of the simply supported beam by —w” yields 

an expression for the acceleration response (as long as the sensor is small with 

respect to the wavelength) as follows: 

w(z,t) = —w? > W,, sin(7mz) exp(jwt), (2.33) 
m=1 

where w(z,t) is the time dependent acceleration at position x. 

2.1.5.2 Simply Supported Plate 

Similarly, the acceleration response of the simply supported plate can be obtained: 

w(2,y,t) = —w? x s Wrnan Sin(YmZ) sin(qny) exp(jwt), (2.34) 
m=1n=1 

where w(z,y,¢) is the time dependent acceleration at spatial coordinates (z, y). 

2.1.6 Acoustic Response (Microphone Sensor Models) 

As outlined earlier, the simply supported beam and simply supported plate were cho- 

sen in this study since an analytical expression for both the structural and acoustic 
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response exists. Due to the low frequency excitation of the structures and the finite 

dimensions of the anechoic chamber, microphone error sensors could not be located 

in the acoustic far-field as required to satisfy the basic assumptions for far-field 

conditions (Bies 1976): 

A 
k> On? (2.35) 

R>Il (2.36) 

and 

al? 
R> Oy” (2.37) 

where Ft is the distance from the source to the acoustic field point, is the wave- 

length of the radiated sound, and / is the maximum source dimension. As a result, 

for the purpose of comparing analytical and experimental results Rayleigh’s integral 

was evaluated at the appropriate acoustic field point with respect to the test struc- 

ture. For low frequency excitation, the microphone can be approximated as a point 

acoustic sensor. Rayleigh’s integral formulation is given as follows: 

vn(r;) exp(—jkR) ~ }u oO (Ft) = 22 f - dS, (2.38)   
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where 7 is the position vector of the acoustic field point, r, is the position vector 

along the elemental surface, $, with normal velocity, 6,(7,), and R is the magni- 

tude of the vector r—r,. The coordinate system used to compute the acoustic 

pressure for both the beam and the plate was the same as that adopted by Wallace 

(1972a,1972b) and is depicted in Figure 2.1 and Figure 2.2 respectively. The expres- 

sions for the point pressure radiated from each respective structure follows, and it 

should be noted that these expressions were numerically integrated at the desired 

acoustic field point to obtain the acoustic pressure due to the vibrating response 

of the structure. Each of these expressions can be used to model the response of a 

microphone positioned at the chosen field point since a microphone acts as a point 

sensor at low frequencies of excitation. 

2.1.6.1 Simply Supported Beam 

Differentiating equation (2.1) once with respect to time yields an expression for 

the velocity of the simply supported beam which can be substituted into Rayleigh’s 

integral. The resulting expression for the acoustic response can be written as follows: 

wp M wy fl: | mre 
- - ‘it = — t W, / | i p(x", y’,2’,t) a exP(iw ) mf f, sint L. ) 

exp(—jky/ (x! — 2)? + (y’ — y)? + (z')?) 
x d 

V(2’ — 2)? + (y’ — 9)? + (2’)? 

    

  

rdy, (2.39) 
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and: 

(z', y', z') = spatial coordinates of acoustic field point 

(z,y,0) = spatial coordinates on beam 

k = wavenumber in acoustic medium 

c = speed of sound in acoustic medium 

Po = density of acoustic medium. 

Coordinates relating to this expression are found in Figure 2.1 and are also discussed 

in the reference by Wallace (1972(a)). 

2.1.6.2 Simply Supported Plate 

Differentiating equation (2.2) once with respect to time to obtain an expression 

for the velocity of the simply supported plate and substituting this expression into 

Rayleigh’s integral yields an equation for the radiated sound at a chosen field point: 

    

  

wp NM Le tly | mraz nTy ‘, ‘ ‘t — _ o . t Wran . . BAD 
p(x’, y’, 2’, t) Om exp(jw dy dy [ [ sin( L. ) sin( L, 

—ik i 2 + A _ 2 + 1\2 oxp(=sky (2! = 2)? + (y=) +) dude, (2.40) 
  

  

(a! — 2)? + (y! — y)? + (2? 

and: 

(c', y’, 2’) = spatial coordinates of acoustic field point 

(x,y, 0) = spatial coordinates on plate 

k = wavenumber in medium 

c = speed of sound in medium 

Po = density of medium. 

All coordinates used in the previous expression are depicted in Figure 2.2 and greater 

details of the analysis can be found in the reference by Wallace (1972(b)). 
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2.1.7 Wavenumber Transform 

To implement the wavenumber transform of the structural response as a cost func- 

tion in the control approach, an expression relating the modal amplitudes of the 

structural response to the amplitudes of the wavenumber spectrum must be ob- 

tained. Using this technique to describe the relationship between the structural and 

acoustic response of the structure provides a unique method of developing a cost 

function to minimize the radiated sound. The wavenumber transform was presented 

in equation (1.5) and is recalled below: 

+090 too . . 

P(bey ky) =f . f(x,y) exp(—jk,x) exp(—jkyy)dydzx 

Although the number of components in the spectrum is obviously infinite, even 

within the supersonic region, a finite number of spectral amplitudes at particular 

wavenumber values may be chosen for computational purposes. Physically this cor- 

responds to minimizing the sound at corresponding radiation angles as previously 

outlined by Fuller and Burdisso (1992(a)). While this is an esoteric approach for 

developing a cost function for structural acoustic control, it is physically realizable 

through model reference control, as will be detailed later in chapter 4. 

2.1.7.1 Simply Supported Beam 

An expression for the wavenumber transform of the spatial response of the simply 

supported beam is obtained by substituting equation (2.1) into equation (1.5) pre- 

sented in chapter 1. The response of the beam is expressed as a function of one 
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dimension; however, the wavenumber transform is computed over two dimensions 

to represent the decay in acoustic response as a function of the y-dimension. Re- 

placing f(x) with the spatial response of the beam of equation (2.1), and evaluating 

the integral over the boundaries of the beam (since the out-of-plane response of the 

baffle is zero), the wavenumber transform can be expressed as follows Fahy (1985): 

_ Sy, (mn/Le)[(-1)" exp(—jkeLe) — 1] sin(“) 
Wks) = 2 Wn Ti — (mx/Ene] CS 2 

  (2.41) 

Note that the shape of the wavenumber transform along the k,-axis remains un- 

changed over the k,-axis except for the magnitude of the wavenumber spectrum. 

As indicated in the equation above, the amplitude of the wavenumber spectrum 

decays as a function of k, uniformly for all k,. Thus the wavenumber spectrum in 

the k,-direction serves to predict the attenuation in the acoustic response as the 

angle of radiation from the normal to the structure increases. Any spectral line of 

the wavenumber transform can be implemented in the cost function of the control 

algorithm. However, only those components for which —k < k, < k correspond 

to radiation in the acoustic far-field. Hence, the obvious choice is to restrict ones 

region of analysis to this regime. For example, choosing to minimize the spectral 

line corresponding to k, = 0 results in a reduction of sound at an angle of 6 = 0 as 

outlined previously be Fuller and Burdisso (1992(a)) since 

k, = ksin(6). (2.42) 
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2.1.7.2 Simply Supported Plate 

A similar expression for the wavenumber transform of the spatial response of the 

simply supported plate can be obtained by substituting the expression for the struc- 

tural response of the plate presented in equation (2.2) into equation (1.5). 

  W(kz, ky) = > > Wan f sin(F—) sin([* 
m=iln=1 

x exp(—jk,r) exp(—j b,y)dyda (2.43) 

Evaluating the two-dimensional integral over x and y results in the following expres- 

sion (Fahy 1985): 

  Wke, ky) = y YS Win SN 

dnt [Ly){(=1)" exp(—jkyLy) = 1 (2.44) 
  

[ky — (n/Ly)?] 

As in the case of the simply supported beam, the supersonic region of this transform 

corresponds to sound radiation to the acoustic far-field. Since the transform is 

defined in two dimensions, this corresponds to the following expression: 

—k< Jki+k? <k, (2.45) 

where k, is the structural wavenumber in the x-direction and k, is the structural 

wavenumber in the y-direction. 
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2.2 Time-Averaged Acoustic Intensity 

For the purpose of evaluating the flow of acoustic power away from the radiating 

structure, the time-averaged acoustic intensity has proven to be a powerful tool in 

both analytical and experimental studies. Since this technique will be used to inter- 

pret results in chapter 6, the method of computing this quantity is outlined based 

upon the two microphone technique discussed by Petterson (1979). The technique 

is based upon a finite difference approximation of the gradient of the pressure com- 

puted at two acoustic field points in the direction chosen to compute the power flow. 

Due to Euler’s inviscid equation of motion in a fluid, the velocity of the fluid can 

be obtained from the density of the medium and the gradient of the pressure for 

harmonic motion as follows: 

jwpod = —Vp, (2.46) 

where: 
Po = density of fluid 
vU = velocity of fluid 
p = acoustic pressure. 

Hence the pressure is averaged to determine the approximate pressure between the 

two acoustic field points as follows: 

  

+ 

Pir ~ Pr 5 Pp (2.47) 

and the velocity is estimated between the two field points by the finite difference 

technique as follows: 
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nw —(P2 = Pi) (2.48) 

where: 

Aig = distance between acoustic field points 

Pi2 = pressure between the two field points 

V12 = velocity between the two field points. 

One should note that both p, and p2 are in general complex quantities. Based 

upon these approximations to the velocity and pressure, the time-averaged acoustic 

intensity can be approximated as follows: 

- _ Ipallpel 
the ~ 2p,w Ara sin(¢y 2), (2.49) 

where I,2 is the time averaged acoustic intensity between the two field points and 

@, and ¢2 are the phase angles associated with the respective pressures p; and po. 

2.3 Summary 

At this point, all analytical expressions required to model the disturbance, control 

input and error sensors for either the simply supported beam or simply supported 

plate have been presented. In addition, all expressions necessary to compute physical 

quantities such as the acoustic directivity pattern, structural response and time 

averaged acoustic intensity have been outlined. All that remains is to couple these 

analytical models approximating the chosen sensors and control actuators with an 

appropriate control approach for predicting both the controlled acoustic response 

and structural response of the two structures utilized in this study. The control 
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approaches used in both the simulations and experiments are outlined in chapter 3. 

Specifics of the design approach and implementation of the PVDF error sensors and 

PZT control actuators are included in chapter 4. 
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Chapter 3 

Control Approaches 

Feed forward control was implemented in this study by two distinctly different con- 

trol approaches. In each approach, the cost function (i.e. functional to be mini- 

mized) was the same: the sum of the square of the modulus of the time varying 

signal output of each error sensor. The first approach is based upon the multi- 

channel version of the filtered-x adaptive LMS algorithm and was implemented on 

a TMS320C25 digital signal processing board for the purpose of conducting exper- 

iments. In the second approach, linear quadratic optimal control theory (LQOCT) 

is used to compute the optimal control solution for the chosen design problem an- 

alytically. While both approaches result in the identical optimal control solution, 

LQOCT requires much less computational time in the analytical studies. For ex- 

ample, in minimizing the acoustic response of a simply supported plate with three 

inputs (PZT actuators) and three outputs (microphones), the LMS algorithm typ- 

ically converged to the optimal control solution in approximately 3.2 million iter- 

ations. While this can be accomplished in a matter of milli-seconds on a digital 

signal processing board experimentally, over one hour of CPU time was required on 

the IBM VM1 computer to simulate the experiment. Since LQOCT can be used to 

compute the identical optimal control response in approximately 2 minutes of CPU 
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time, this control approach was chosen for conducting the analytical studies and in 

the sensor design algorithms. Both control approaches are outlined below including 

a model reference implementation which can be used in conjunction with structural 

sensors such as accelerometers to achieve acoustic control. 

3.1 The Filtered-x Adaptive LMS Algorithm 

The method of control chosen for practical implementation is the multi-channel 

filtered-x version of the adaptive LMS algorithm. The standard implementation of 

the MIMO LMS algorithm is initially reviewed whereby the response due to the 

disturbance at the chosen error sensors is minimized with the control inputs. Upon 

outlining this method of control, the equations will be modified for implementation 

of model reference control whereby the response of the system is driven to some 

predetermined value at the chosen error sensors. 

3.1.1 Standard Implementation 

A schematic diagram of the filtered-x version of the adaptive LMS algorithm is 

presented in Figure 3.1 for reference with the following discussion. The multi-channel 

version of this algorithm was previously described by Elliot et al., (1987), and will 

be briefly reviewed in this section. The output of an error sensor can be modelled 

at the n’th time step as: 

M N-1 

e(n) =er(n)+ >> > Pim; wm — j)a(n —1t— 9), (3.1) 
m=1 j=0 
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where: 

n = time step number 

m = actuator number 

! = error sensor number 

1 = filter coefficient number 

eP(n) = error due to the disturbance at the J" error sensor 

z(n) = input reference source 
Wmi = coefficients of the adaptive fixed impulse response (FIR) for the 

m** actuator and the i" coefficient 
P1mj = j** coefficient of the transfer function between the output of the m™ 
adaptive filter and the [*" error sensor 

M = number of control actuators 
N = number of filter coefficients. 

In the LMS algorithm, the mean square error signal is defined by: 

J=E > en) ; (3.2) 

where E is the expectation operator. Since this error function is quadratic, only one 

minimum solution exists. The outputs of the fixed filters, Pi,;, at each time step 

n, were used by the LMS algorithm to minimize the mean square error signal by 

modifying the coefficients of the adaptive filter as follows: 

L 
Wmi(n + 1) = wmi(n) — Hd e(n)rim(n — 2), (3.3) 

and 

N-1 
Tim(n —2) = a Pimjt(n —t— 7). (3.4) 
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Upon achieving control, the adaptive fixed filter coefficients converge to a steady 

state value. In the standard feed forward implementation, the desired response at 

the [** error sensor is zero. Hence the adaptive filter coefficients, when multiplied 

by the reference signal, yield a response equal in magnitude and opposite in sign to 

the disturbance present at each error sensor, (i.e. e?) when the number of actuators 

equals the number of error sensors. The response at each error sensor is thus driven 

to some minimum value depending on the computational accuracy of the machine 

or digital signal processing board being used. 

3.1.2 Model Reference Implementation 

For the case of model reference control, the desired response at. the [** error sensor is 

no longer zero, but rather some predetermined system response, e?°*. The schematic 

diagram of 3.1 can be modified to include this reference plant model as illustrated in 

3.2. Thus the standard implementation of the LMS algorithm presented in equation 

(3.1) can be modified to include the desired response at the [** error sensor as follows: 

M N-1 N-1 

cin) = €P(n) + ef*(n) + LS Pini mil s)e(n 7-3), (BS) 

The desired response at each error sensor is created from a finite impulse response 

(FIR) filter just as the system time delays and frequency response characteristics 

are included in the filtered-x FIR coefficients, Pi,,;. These coefficients are required 

to incorporate the transfer functions between the error sensors and the control ac- 

tuators as well as the inherent time delays in the system into the control algorithm. 

The filtered-x coefficients are measured by driving each control actuator sequentially 
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with a constant phase and amplitude harmonic signal and measuring the transfer 

h function between the output of the /*" error sensor and the m* control actuator. 

A similar technique is used to experimentally determine the desired response e?** 

at each chosen error sensor. This response is computed from a set of FIR filter 

coefficients as follows: 

ef*(k) = di,2(k) + di, 2(k — 1), (3.6) 

where d;, and dj, are the two filter coefficients required to model the desired har- 

monic response at the /** error sensor. These coefficients can be obtained either 

analytically or experimentally. If obtained analytically, an accurate model of the 

plant must be used as in state feedback methods; however, an alternative option 

exists with the feed forward approach. 

For example, if the objective is to eliminate microphone error sensors in favor of 

structural error sensors such as accelerometers, the microphone error sensors can 

initially be implemented in the control approach. The desired response at these 

error sensors is typically zero, unless minimizing the response at the chosen mi- 

crophone locations results in significant spillover in the residual acoustic field (i.e. 

regions other than where the microphones are positioned). However, in typical ap- 

plications, microphone positions are chosen such that this undesired characteristic is 

not prevalent and thus the desired response e#** is zero at each of the 1,, microphone 

positions. Upon obtaining the desired control response, the structure is configured 

with a number of accelerometers at least equivalent to the number of control actu- 

ators and located at unique structural coordinates. (The number of error sensors 
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must be at least equivalent to the number of contro] actuators and located at unique 

coordinates on the structure for the controlled response to be unique.) The transfer 

function between the response at each accelerometer and the reference signal z(k) 

is measured and stored as a set of FIR coefficients, dj, and dj, at each of the ’A 

structural error sensor positions. 

Upon measuring the transfer function at the spatial coordinates of each structural 

error sensor, the necessary information for creating the model reference response is 

experimentally obtained. The control based upon the microphone error sensors can 

now be eliminated. The difference in this control approach is that the structural re- 

sponse at each error sensor is driven to that corresponding to the controlled acoustic 

response as opposed to driving the response of each structural error sensor to zero. 

The resulting acoustic directivity pattern is identical to that achieved when imple- 

menting the microphone error sensors as demonstrated in Appendix B, yielding a 

unique method of achieving structural] acoustic control. 

3.2 Linear Quadratic Optimal Control 

While the previously outlined control approach was modeled for analytical studies, 

it was primarily used for practical experimental implementation. Linear quadratic 

optimal control theory was utilized to compute the optimal control voltages for the 

present analytical studies. These two control approaches were observed to yield the 

same optimal solution in a previous study by the authors (Clark and Fuller (1991(f)). 

The standard approach for implementing LQOCT is outlined whereby the response 

at each error sensor modeled is minimized. Upon describing this method of control, 

65



the equations will be modified to yield the controlled model reference response of 

the chosen structure. 

3.2.1 Standard Implementation 

As in the LMS algorithm, the cost function is formulated as a sum of the squares of 

the response at each point error sensor as follows: 

C = > ene, (3.7) 

b=1 

where: 

€, = output of error sensor 

€; = complex conjugate of e, 

ne = number of error sensors. 

The error sensor output can be formulated in terms of the transfer functions between 

the sensors and both the disturbance and the control actuators as follows: 

ep = (D> TbsVs) + Tio F (3.8) 
s=1 

where: 

T,, = transfer function between s‘* actuator and b** error sensor 

T,p = transfer function between the disturbance and b** error sensor 

V, = complex voltage of s** actuator 
F = input force 
na = number of control actuators. 

The transfer functions listed above are not to be viewed as specific to any particular 

type of error sensor. For example, if the structural response is taken as an error 
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signal, the transfer function between the chosen error sensor and the disturbance 

can be constructed by substituting equation (2.3) into equation (2.33): 

M F 
a Wr Tip = —w" DF 

m=1 

sin(Ym2s)- (3.9) 

Similarly, the same transfer function can be created for the resulting radiated pres- 

sure by substituting equation (2.3) into equation (2.39): 

  

wp M wF wp pls my = SEEM | bD Qn Xu F Jo Jo 
m=1 
  

sin(mrz,/ Lz) exp(—jhy/ (2! — ty)? + (y! — yo)? + (2')? 
dzdy, (3.10 

(a! = 25)? + (y! — ye)? + (2? » G19) 
  

  

or a spectral line of the k-transform respectively by substituting equation (2.3) into 

equation (2.41): 

TR = M WF (mx/L,)[(—1)™ exp(—jkz,Lz) _ 1] sin(k,w,/2) 

Oo ann FP [kz, — (ma/Le)?|(ky/2) 
  (3.11) 

The transfer functions for the control actuators, 7,,, can be constructed from equa- 

tions (3.9), (3.10), and (3.11) by simply replacing the force, F, with the applied 

voltage V, and the modal amplitudes corresponding to point force excitation, W5, 

with the modal amplitudes corresponding to excitation by the p** piezoceramic ac- 

tuator, WP. 
™m 

Proceeding with the solution, we take the partial derivative of the cost function of 
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equation (3.7) with respect to each control input, which is represented in equation 

(3.8). By taking the partial derivative of the cost function with respect to the 

real and imaginary part of each control voltage input and equating each respective 

expression with zero, one obtains a system of equations whose solution yields the 

optimal control inputs since the minimium of the cost function has zero slope. This 

system of linear equations can be expressed in general form as follows: 

{S0- Tw Vi + TipF)T;, = o} > s=l,na. (3.12) 
b=1 [=1 

The previous set of equations can be represented with linear algebra. 

[AJ[V] = [8], (3.13) 

where [A] is the matrix defining the transfer functions between the error sensors and 

control actuators, [V] is the vector containing the complex optimal control inputs 

and [6] is the vector containing the input disturbance. Since the number of unknowns 

is equivalent to the number of equations, the solution is obtained as follows: 

[V] = [A]"714). (3.14) 

3.2.2 Model Reference Approach 

To include a reference response in the model, the cost function defined in equation 

(3.7) must be modified. As opposed to minimizing the response at the coordinates 

of a chosen error sensor, the difference between the response at that error sensor and 
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the desired response is minimized. In other words, the response at the error sensor 

is driven to the model reference response. The cost function presented in equation 

(3.7) is thus modified as follow: 

ne 

Cres = d(es — ref(zs))(es — ref(20))*, (3.15) 
b=1 

where ref (zy) is the desired response at the b** error sensor. The system of linear 

equations presented in equation (3.12) can be modified to include the reference 

response as follows: 

> (3° TuVi + Teo F — rép(a) T;. = o} ; s=l1,na. (3.16) 
b=1 Nl=1 

Obviously if the reference response, re f(x»), is set equal to zero, the above expres- 

sion reduces to equation (3.12). 

3.3. Discussion of Practical Implementation and 

Summary 

Two basic control approaches have been outlined, the filtered-x version of the 

adaptive LMS algorithm and linear quadratic optimal control theory. The linear 

quadratic optimal control approach was presented as a method of predicting the 

controlled response of the system primarily for the purpose of sensor design which is 

outlined in the following chapter. The MIMO filtered-x adaptive LMS algorithm was 

discussed in view of practical implementation of feed forward control for conducting 
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experiments on test structures. In typical applications of the LMS algorithm, the 

control inputs are utilized to simply minimize the response of the disturbance at the 

chosen error sensors. However, as demonstrated in this chapter, the LMS algorithm 

is readily implemented in model reference control applications. Hence structural 

acoustic coupling can be included in the cost function of the controller to achieve 

the desired structural acoustic response when implementing point structural error 

sensors such as accelerometers. 

Model reference control was implemented with accelerometers configured as struc- 

tural error sensors on the simply supported plate as illustrated in the schematic 

diagram of Figure 3.3. As demonstrated in Appendix B, when the number of actu- 

ators is at least equal to the number of reference sensors (i.e. accelerometers), then 

the reference response of a structure with a set of unique eigenfunctions is uniquely 

defined using the model reference approach. This result is very useful since the orig- 

inal cost function can be formulated with as many error sensors as desired; however, 

the number of error sensors resulting in the desired control condition can be reduced 

to a number of structural sensors equivalent to the number of control actuators im- 

plemented as previously discussed by Clark and Fuller (1991(d)). The method of 

implementation is represented in the schematic diagram of Figure 3.3 to graphically 

convey the concept. While a significant number of microphone error sensors are 

depicted in the acoustic field, the number of structural sensors (accelerometers) im- 

plemented in the model reference control approach must simply equal the number 

of control actuators used to achieve the desired response (i.e. two in this case). The 

cost function is then constructed from the residual structural response at a number 

of coordinates at least equivalent to the number of control actuators, and the re- 
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sponse is driven to the predetermined value at each coordinate. Thus for example, if 

global sound attenuation is achieved with two control actuators and the microphone 

error sensors illustrated, then only two uniquely positioned structural error sensors 

are required to achieve the same acoustic directivity pattern and hence the same 

performance as proved in Appendix B. 
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Chapter 4 

Design Approaches for PZT 

Actuators and PVDF Sensors 

Previous studies by Clark and Fuller (1990(a,b)) have demonstrated both analyt- 

ically and experimentally that increasing the number of control channels yields a 

further increase in the levels of far-field sound attenuation. With this brute force 

approach, the only limitation placed on the level of attenuation is the number of 

control channels and corresponding transducers which can be feasibly implemented. 

While this approach has merit, an alternative design approach exists. In many cases, 

by positioning the control actuators on the structure with some prior knowledge of 

the structural modes contributing to the sound radiation, the number of control 

channels can be significantly reduced. As the. modal density of the structural re- 

sponse increases, this task of choosing “optimal” locations for control actuators 

becomes more difficult. One could write an algorithm which tests every possible 

location; however, this approach would require an unacceptable amount of com- 

puter time. As an alternative, optimal design approaches can be implemented to 

choose appropriate locations for control actuators through nonlinear optimization 

techniques. This approach was previously investigated analytically for structural 

acoustic control applications by Wang et al., (1991(a)) and has since been demon- 
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strated experimentally by Clark and Fuller (1991(e)). 

In addition to optimizing the positions of the control actuators, the position and 

dimensions of rectangular structural PVDF error sensors can be optimized such that 

when implemented in the cost function of an appropriate control algorithm, mini- 

mizing the electrical response of these sensors results in a reduction of the far-field 

sound radiated. This nonlinear optimization of sensor position and dimensions has 

been investigated both analytically and experimentally by Clark and Fuller (1991(e)) 

on the test structures of this study and is proposed as a design approach for elim- 

inating microphones located in the acoustic field as error sensors. In addition, the 

positions of acoustic near-field sensors constructed from PVDF have been optimized 

to meet the same objective. These sensors are proposed for applications which re- 

strict attaching the sensor material to the structural surface or when the surface is 

covered by a matrix support material such as foam. While optimization of sensor 

position is readily achieved for harmonic applications, this technique is complicated 

by multi-frequency input disturbances. 

To address this problem and provide a foundation for future work, a technique for 

optimizing the weighting of the electrical outputs of an array of distributed PVDF 

sensors bonded to the structural surface is discussed. In this application, the same 

sensors can be implemented regardless of the frequency of the input disturbance. 

The smart sensor is created by weighting the response of each sensor element with 

a number between 1 and —1 and summing this weighted response to create the 

“optimal” sensor response. While more signal processing will be required with this 

approach (possibly a neural network), greater flexibility is afforded in the design pro- 
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cess. Each of the previously mentioned sensor design approaches are documented 

in this chapter with an overview of the nonlinear optimization algorithm used to 

achieve the desired design objectives. 

In addition to the rectangular structural error sensors and acoustic near-field sensors 

constructed from PVDF, shaped or “weighted” PVDF error sensors are studied as 

an alternative method of eliminating microphones located in the acoustic field in 

the control approach. These “weighted” sensors are shaped, in the one-dimensional 

case, as a function of the mode shapes to obtain the desired polarization profile 

which results in an electrical response proportional to the acoustic response to be 

minimized. A previous study by Clark et al. (1992(b)) demonstrated both analyti- 

cally and experimentally that PVDF sensors can be shaped for structural acoustic 

control applications. In the two-dimensional case, the design approach for achieving 

the “weighted” sensor is outlined; however, the two-dimensional sensor is not readily 

constructed due to the complexity of the required polarization profile. 

4.1 Overview of Rectangular Shaped Structural 

PVDF Sensors 

Before proceeding with optimization techniques for obtaining the appropriate di- 

mensions and position of rectangular PVDF structural error sensors, the basic char- 

acteristics of this sensor are outlined. The discussion will be restricted to applica- 

tions on the simply supported plate, realizing that the same concepts apply to the 

one-dimensional simply supported beam. The plate is the more complicated of the 

two design problems since its structural response is a function of two dimensions as 
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outlined in equation (2.2). Recalling equation (2.24), which represents the response 

of an element of PVDF bonded to the surface of the plate, one must simply define 

the area of application, F(z,y), to obtain the corresponding electrical response of 

the sensor as a function of the structural response. In the case of rectangular error 

sensors, this function is defined simply as follows: 

F(z,y) = (u(x — #3) — u(z — x4))(uly — ys) — u(y — ya), (4.1) 

where u(*) is defined to be the spatial step function in the appropriate dimension. 

Substituting this expression into equation (2.24) and integrating over the boundaries 

yields the following result: 

nL, 

mL, 
  

(hp + hg) M ON > mL 3 
qu(t) = — » 2d, Wales + €32 ] 

(cos(Ym2q) — Co8(Ymx3)) X (cos(Yn¥4) — COs(Yn¥3))exp(jwt), (4.2) 
m=1n=1 x 

where (x4, y%) are the coordinates of the lower left corner of the u** PVDF strip, 

and (xt, y%) are the coordinates of the upper right corner of the u’* PVDF strip. 

Observe that while the previous equation represents the response of a single rectan- 

gular strip of PVDF, sensors of arbitrary shape can be modeled with this equation 

by simply dividing the irregular shape into subdivisions of rectangular elements and 

summing the response from each element, with the correct phasing, similar to nu- 

merical integration. 

In equation (4.2) one should recognize that the frequency response characteristics 
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of the structure are included in the modal amplitudes defined by Wyn. As a result, 

if one considers the response of the sensor as a function of the modal coordinates, 

omitting the specific response of the structure (i.e. the modal amplitudes W,,,), 

the modal weighting of each sensor as a function of the chosen spatial coordinates 

of the structure can be derived: 

o mL oO Nhe u u 

Mann = les + €39 mL, (os Ima4) — c0s(Ym23 )) 

x (cos(Ynys) — COS(Yn¥3))s (4.3) 

where Min», are the modal weighting coefficients of the rectangular sensor. The first 

observation which can be made about this expression is that the modal weighting 

is always a real number. Hence the phase relationship between each structural 

mode remains unaltered by the spatial window created by the rectangular PVDF 

sensor. As a result of this observation, the phase relationships between structural 

modes cannot be specified in the sensor design when implementing a single element 

of PVDF. The second observation pertains to the position of the sensor on the 

structure. The cosine functions serve to partly define the relative contribution of 

each structural mode in the electrical response of the sensor as a function of the 

chosen spatial coordinates. If the sensor is centered over a nodal line of the structure, 

the resulting electrical response as a function of all modes with the corresponding 

nodal line will be zero. This observation can be used to the designer’s advantage 

since some structural modes are inefficient acoustic radiators and hence do not 

require control in the presence of more dominant radiating structural modes. The 

relative weighting of each structural mode is also controlled by the modal indices 
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since the PVDF sensor is a strain sensing device. Consider the following component 

of equation (4.2): 

nbhe 

mL, 

mL 
oO y oO 

[e31 —— + €39 nLe I 

As indicated in the expression, the weighting of each mode is dependent upon the 

dimension of the structure as well as the modal indices. As a simplified example, 

consider a square plate with L, = Ly. Considering only the weighted response of the 

sensor as a function of the above expression, one recognizes that all modes for which 

the modal indices m and n are equal have the same weighting. In addition, the 

greater the separation between modal indices, the greater the contribution of that 

structural mode to the electrical response of the sensor as a function of the above 

expression. For example, if structural modes with indices ranging from m = 1,..,5 

and n = 1,..,5 are the only modes included in the response of the structure, the 

(1,5) and (5,1) modes will have the greatest contribution to the electrical response 

of the sensor based upon the above expression. If desired, the level of response to 

these higher order modes can be attenuated to some degree by positioning the sen- 

sor on or near nodal lines as discussed earlier. However, this quality of being more 

sensitive to modes with greater separation between the modal indices is not totally 

undesirable due to the mechanisms of sound radiation. As outlined in chapter 1, 

modes with a large separation in the modal indices are considered edge radiators 

when k/k, <1 and are of greater concern than the corner radiators. 

Based upon the observations outlined above, a preliminary study was conducted 

implementing rectangular PVDF structural error sensors configured on the surface 
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of a simply supported plate as illustrated in Figure 4.1. Since the radiation eff- 

ciency of the plate modes for which both modal indices m and n are even are the 

least efficient acoustic radiators for k/k, < 0.25, the initial design concept was to 

place two rectangular elements of PVDF across the surface of the plate in the x 

and y-direction respectively as depicted in Figure 4.1. The modal weighting for the 

x-direction and y-direction sensor was computed from equation 4.3 and is illustrated 

in Figure 4.2 and 4.3 respectively for each sensor. In each case, the modal weighting 

was normalized with respect to the dominant mode displayed in the sensor response. 

As illustrated in Figure 4.2, the x-direction sensor (PVDF2) does not observe any 

mode with an even modal indice. The even modes in the y-direction of the plate 

were eliminated from the sensor response by placing the sensor on the center-line of 

the plate with respect to the y-direction. Similarly, the even modes in the x-direction 

were eliminated by centering the sensor on the center-line of the plate with respect 

to the x-direction. As illustrated in Figure 4.3, the y-direction sensor (PVDF1) does 

not observe modes for which the modal indice n is even. Minimizing the response of 

each of these error sensors will place more emphasis on modes for which both m and 

n are odd and to a lesser degree modes for which one modal indice is odd and the 

other is even. Tests were conducted for both on and off-resonance operating condi- 

tions and results from this design approach will be discussed in Chapter 6. While 

this simple design approach based upon the physical mechanisms of structure-borne 

sound was conducted for the purpose of evaluating the rectangular PVDF struc- 

tural error sensors, more complicated design approaches were achieved through the 

nonlinear optimization techniques outlined below. 
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Figure 4.1: Schematic of Plate with PVDF Sensors and PZT Actuators 
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4.2 Nonlinear Optimization of Actuator and 

Sensor Location/Dimension 

The optimal location of single and multiple piezoelectric actuators for controlling 

structure-borne sound was theoretically obtained as previously outlined by Wang et 

al., (1991(b)) utilizing an acoustic objective function consisting of the sum of the 

mean square radiated sound pressures by a finite number of microphones approxi- 

mating the total radiated acoustic power. This objective function was implemented 

in the optimization routine as opposed to the expression for the radiated acoustic 

power to reduce computational time. A flow chart of the solution strategy, which 

is similar to that presented earlier by Wang et al., (1991(b)), is presented in Figure 

4.4, As illustrated, two alternative paths exist in the flow chart. In the first path, 

the optimal location of the control actuator(s) is determined, and upon converging 

to a solution meeting the required accuracy test, the second path of the algorithm 

is executed. The size of the actuator is not optimized since excessive voltage levels 

are required to drive the actuator as the size is decreased, thus constraining the 

lower dimension, and limitations on practical manufacturing of the PZT material 

constrain the upper dimension. In the second path, the optimal size and location of 

a rectangular PVDF error sensor(s) is determined with the same acoustic objective 

function and the previously computed coordinates for the optimal location of the 

rectangular control actuator(s). 

4.2.1 Formulation of Generic Optimization Problem 

The core algorithm for determining the optimal piezoelectric actuator location or 

the optimal PVDF error sensor size and location are identical. Linear quadratic 
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optimal control theory is used to compute the optimal control voltage for the given 

control actuator/sensor configuration in step 1, regardless of whether path 1 or path 

2 is taken. Linear quadratic optimal control theory was discussed in detail in chapter 

3, and the main concept is to realize that, given a set of error sensors and control 

actuators configured with a plant (i.e. the simply supported plate), the optimal 

control voltages to the actuators can be computed with this technique. Upon deter- 

mining the optimal control voltage for the given actuator/sensor configuration, the 

objective function and constraints are evaluated in step 2. The objective function is 

the functional expression containing the overall design objective, which in the case 

of structural acoustic control is an expression of the total sound power radiated. 

In step 3, the gradients of the objective function and constraints are computed for 

the current actuator location or current error sensor size and location, depending 

on whether path 1 or path 2 is taken respectively. Upon determining the gradients, 

the optimization algorithm is invoked in step 4, and the actuator or sensor design 

parameters are updated depending on the chosen path. The accuracy test is com- 

pleted based upon the updated parameters and the program either terminates or 

proceeds. 

If path 1 of the algorithm depicted in Figure 4.4 is executed, the error sensors cho- 

sen in the cost function of the control approach are microphones with coordinates 

corresponding to those implemented in the objective function. Microphones were 

chosen in this path since they provide the best estimate of the desired cost function, 

which in this case is the same as the objective function (i.e. far-field sound power). 

Note that the cost function is used to describe the functional to be minimized in 

the actual control implementation while the objective function is used to describe 
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the functional to be minimized in the nonlinear optimization approach. Upon con- 

verging to a solution, the optimal location of the control actuator for minimizing 

far-field sound radiation is obtained. 

If path 2 of the algorithm is executed, the piezoelectric actuator location obtained 

from path 1 is used as the control input, and as opposed to microphone error sensors, 

the PVDF error sensors are implemented in the cost function since the electrical re- 

sponse of these sensors is the quantity to be minimized in the control algorithm. 

As opposed to optimizing the actuator position, the location and dimensions of the 

rectangular PVDF sensors are the variables to be optimized in this path of the de- 

sign optimization. Optimization of the sensor design parameters continues until the 

objective function is reduced to the same level as that obtained in path 1. At this 

point, the maximum control authority of the actuator over the acoustic field has 

been obtained. Further optimization of the PVDF sensor design parameters cannot 

increase the level of acoustic control achieved with the given optimally located con- 

trol actuators. 

4.2.1.1 Design Variables 

Whether the piezoelectric actuator location is being optimized or the PVDF error 

sensor size and shape are being optimized the format of the design variables is 

identical. A schematic of the simply supported plate configured with a rectangular 

piezoelectric patch whose location and size is to be optimized is presented in Figure 

4.5. The dimensions of the rectangular element in the x and y-direction of the 

coordinate system will be denoted w,, and wy, respectively. The spatial coordinates 
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Figure 4.5: Schematic of Optimal Design Variables 
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of the center of the rectangular element will be denoted Z; and y,; with respect to 

the x-y axis. These variable parameters are independent of whether the rectangular 

element is termed an actuator or a sensor. If path 1 of the algorithm is chosen, the 

total radiated sound pressure can be written as a function of the coordinates of the 

control actuator(s) as well as the control voltage as follows: 

Pt= P1(Za;3 Ya; Wea, ; Wya, 9 Vai)s (4.4) 

where the subscript a indicates coordinates of an actuator, and the subscript 2 

refers to the 2" actuator. In this section of the algorithm, the actuator dimension 

was fixed, and only the location of the actuator was optimized. Actuator size was 

omitted from the design parameters due to physical limitations imposed by the size 

of commercially available material as well as maximum voltage limitations imposed 

as actuator size decreases. The optimal control voltage, V.,; is a function of the 

location of the actuator as well as the dimensions, and hence, rewriting equation 

(20) as a function of the variables included in the optimization, we obtain: 

P= Pr(Za,, Yas Va, (Za; ’ Ya;)): (4.5) 

Now, if path 2 of the optimization algorithm is chosen, and hence the PVDF error 

sensor size and location is optimized, the total pressure can be expressed as follows: 

Pt = Di(Ts;5 9s; Wr..y Wy, Vals; 5 ¥sis We, 9 Wys, )). (4.6) 
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where the subscript s indicates coordinates of the PVDF error sensor, and the sub- 

script 7 refers to the 7*" sensor. At this point in the design approach, the optimal 

actuator location has been computed. However, at each step in the algorithm the 

optimal control voltage to the actuator is updated, resulting in the minimization of 

the error sensor response for the current sensor design parameters. As a result, the 

control voltage to the actuators is now a function of the sensor design parameters. 

4.2.1.2 Objective Function 

The desired goal is to locate the actuator and sensor in such a way that the total 

far-field sound radiation from the structure is minimal. Based on this goal, the 

logical choice for an objective function is one based on the sound power. Wang, 

Dimitriadis and Fuller (1991(c)) chose the integral of the square of radiated sound 

pressure over a hemisphere of the structure as the objective function. This objective 

function can be formulated as follows: 

1 2x pr/2 2: 

®, = 5 [ I Ip,|? sin(6)d0d¢. (4.7) 

In view of practical implementation, Wang et al., (1991(c)) proposed a finite sum of 

the mean square radiated sound pressures measured by a limited number of micro- 

phones as an approximation to the above objective function. This method of im- 

plementation is a discretized version of the total sound power presented in equation 

(4.7), and the objective function can be represented by the following summation: 
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Nymic 

Ue = >) Ipe( Ri, 9:, 91)’. (4.8) 
t=1 

In implementing equation (4.8), a reasonable number of pressure sensors should be 

chosen such that the global estimate of the objective function is not lost; however, 

the number of pressure sensors should not be so great as to significantly increase 

the computational time of the program. 

4.2.1.3 Equality and Inequality Physical Constraints 

The optimal design parameters for both the actuator and sensor were constrained to 

meet physical limitations such as plate boundaries as well as limitations on control 

voltage to the actuator. If path 1 of the algorithm was chosen, the position of the 

piezoelectric actuator must be constrained within the boundaries of the plate. For 

the case of multiple actuators, the design parameters were further constrained to 

prevent overlap between actuators. Finally, the allowed control voltage was limited 

to 400 volts peak to peak in accordance with previous tests conducted demonstrating 

the approximate point of failure of actuators with the same dimensions and material 

properties (Clark et al., 1991(a)). Design variable constraints are listed below. 

1. Constrain piezoelectric actuator to plate boundaries: 

Za; — Wz,,/2 > 0 

Za; + We,,/2 < Le 

Ya; ~ Wy, /2 > 0 
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Ya; + Wyo, /2 < Ly (4.9) 

2. Constrain overlap between control actuators: 

_ _ _ _ 1 
(Zaria) ~~ Za,)° + (Gaci41) ~~ Ja,)?)? ~ 5l(wz., + wy)? 

—(w2 tw? s+) 50 (4.10) 
Fa(i+1) Yaci41) 

3. Constrain voltage to piezoelectric actuator: 

[Va;| $400 (volt p-p) (4.11) 

It should be noted that the above constraint on the control voltage further con- 

strains the dimensions of the control actuator, which is the reason that the actuator 

size was not chosen as a design parameter. 

In path 2 of the algorithm, the sensor size and location must be constrained such 

that the sensor resides within the plate boundaries. In addition, for the case of 

multiple sensors, the solution was constrained to prevent overlap between sensors. 

All sensor constraints are listed below. 

1. Constrain PVDF error sensor dimensions to that of the plate: 

0< we, < Le/? 

O<wy,, < Ly/2 (4.12) 
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2. Constrain PVDF error sensor to plate boundaries: 

Zs, — We, /2 >0 

Ls, + Wz, /2 <L, 

Ys; — Wy,, /2 20 

Ys, + Wy,, /2<L, (4.13) 

3. Constrain overlap between PVDF error sensors [17]: 

_ _ _ _ 1 
l(Zacaay — £5)" + (Faia) ~ ro — 5l(we,, + wy, 

~(w2 +wu? +d) 50 (4.14) 
Pei41) Yeri4a) 

4.2.1.4 Review of Optimization Procedures 

Upon determining the constraints on the design parameters, the optimization rou- 

tine is invoked. An IMSL subroutine named NOONF (IMSL User’s Manual, 1989), 

which solves a general nonlinear programming problem, was implemented to com- 

pute the optimal solution for both path 1 and path 2 of Figure 4.4. The gradient 

of the design parameters was estimated within the successive quadratic program- 

ming algorithm by means of an IMSL (IMSL User’s Manual, 1989) subroutine called 

CDGRD, which applies the central finite difference method to approximate the gra- 

dient. The general constrained optimization problem can be stated mathematically 

with the objective function (Arora 1989): 

F(Z) = f (x1, 22,...52n), (4.15)



subject to the equality constraints 

hj(z)=0; for j=1,m. 

and the inequality constraints 

9;(£) > 0; for j=1,me41,m 

(4.16) 

(4.17) 

where m, is the number of equality constraints, and m is the total number of con- 

straints. Both the objective function, f, and the constraint functions, h; and g;, 

are assumed to be continuously differentiable. The solution technique is based on 

the iterative formulation and solution of quadratic programming subproblems. The 

subproblems are obtained by using a quadratic approximation of the Lagrangian 

and linearizing the constraints as follows: 

_ i - ~ 
min =d"[Hi]d + Vf(z)7d 
dern 2 

subject to 

Vhj(#x)7d + hj(Z,) =0; for j=1,m. 

and, 
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Voi(#,)'d + 9;(%,) =0; for j=1,mey1.m (4.20) 

where [H,| is a positive definite approximation of the Hessian, and <;, is the current 

iterate. If d, is chosen as the solution of the subproblem, then a line search can be 

used to find the new point z, (IMSL User’s Manual 1989). 

Ear = 2, +Ad,, € (0,1), (4.21) 

such that a “merit function” will have a lower function value at the new point. 

The augmented Lagrange function is used as the merit function for this problem 

(Schittkowski 1989). This iteration process is continued until the accuracy test is 

passed, otherwise the design parameters are updated and the algorithm is executed 

for another consecutive iteration. 

4.2.2 Summary of Optimal Design Procedure 

The previous sections outlining the nonlinear optimization algorithm were written 

with optimization of multiple actuator/sensor configurations in mind. For the pur- 

pose of this work, the nonlinear optimization approach is used first to choose the 

optimal location of a single PZT control actuator and secondly to simultaneously 

choose three PZT control actuators configured on the surface of the simply supported 

plate. In addition, for each of the corresponding actuator designs, the nonlinear op- 

timization algorithm is used initially to design a single structural PVDF error sensor 
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Table 4.1: Material Properties of Steel Plate 

  

  

  

  

  

Name Symbol Value Units 
Elastic Modulus E 20.4 x 107° | N/m? 

Density p 7700 kg/m* 
Poisson’s Ratio Ub 0.28 - 

Damping Ratio n 0.001 -             

and secondly to simultaneously design three structural PVDF error sensors for the 

respective control actuator designs. 

In addition to the structural PVDF error sensors, nonlinear optimization is used to 

choose the appropriate locations of the acoustic near-field sensors constructed from 

PVDF. In the case of the acoustic near-field sensors, optimization was restricted to 

position only since the input to each sensor must be obtained numerically from the 

near-field acoustic response of the structure and is hence computationally intensive 

as will be discussed later in this chapter. 

4.2.3 Optimal Design of Piezoelectric Actuator Locations 

The optimal design approach is specific in nature to the constituent material prop- 

erties of the structure and geometry chosen in the study. Hence, dimensions and 

material properties of the structure to be tested must be determined before ex- 

ecuting the optimal design approach. For the purpose of this study, the simply 

supported plate was constructed of steel and measured 380 mm x 300 mm x 1.96 

mm as indicated in Figure 4.1. Constituent material properties of the steel plate 

are itemized in Table 4.1 for reference. Based upon these material properties, the 
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Table 4.2: Theoretical and measured plate resonant frequencies, finn. 

  

  

      

Theoretical | Measured 
Mode | Frequency | Frequency 

(m,n) (Hz) (Hz) 
(1,1) 87.6 87 

(2,1) 188.5 187 

(1,2) 249.7 247 

(2,2) 350.6 347 

(3,1) 396.5 392 

(3,2) 518.6 517 

(1,3) 519.9 520 

(4,1) 591.7 590 

(2,3) 620.7 615 

(4,2) - 753.8 750 

(3,3) 788.7 779     

resonant frequencies of the simply supported plate can be computed from equation 

(2.7). The predicted resonant frequencies are compared to the measured resonant 

frequencies for the test structure of interest for the first 11 structural modes. As 

indicated in Table 4.2, the measured and predicted resonant frequencies of the test 

structure are within 1.3% of each other. For the purpose of this study, the excita- 

tion frequency of the disturbance input was chosen at 550 Hz, which lies between 

the resonant frequencies of the (1,3) and (4,1) modes. This off-resonance driving 

frequency was chosen such that the structural response would be “modally rich” 

(i.e. composed of a variety of structural modes as opposed to one dominant mode 

which is the case for on-resonance excitation). 

The objective function implemented in the optimization algorithm was expressed 

as a function of nine discrete pressure field points over one hemisphere of the plate 
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Figure 4.6: Coordinate System for Objective Function 
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based upon equation (4.8). The coordinates chosen to evaluate the pressure are 

documented in Table 4.3 with the corresponding coordinate system displayed in 

Figure 4.6. Notice that in this coordinate system, the origin is located at the center 

of the plate. This was done to convey to the reader that the discrete pressure points 

used in the objective function were positioned symmetrically in the hemisphere of 

the plate. These coordinates are readily converted into the chosen coordinate system 

by the appropriate coordinate transformation for computing the acoustic response 

of the structure as previously outlined in Figure 2.2. The pressure at each chosen 

acoustic field point in the objective function of equation (4.8) is evaluated with the 

far-field expression for the acoustic radiation from a baffled simply supported plate, 

which was given by Wallace (1972b) as follows: 

  

  

P(r, 9, ,t) Apeclsty Thee 2 exp(— jkr) oo » = ta ae — 

ay exp(—j@) — 1 
x (B/nm)? -1 exp(jwt), (4.22) 

where: 

a = kL, sin(@) cos(@), (4.23) 

6B = kL, sin(@) sin(¢). (4.24) 
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Table 4.3: Coordinates for Evaluating Objective Function 

  

Position | R 8 g 

(m) | (deg.) | (deg.) 
1.8 | 75° 180° 

1.8 | 465° 180° 

1.8 0° 0° 

1.8} 45° 0° 

1.8 | 75° 0° 

1.8 | 75° 90° 

1.8 | 465° 90° 

1.8 | 45° 270° 

1.8 | 75° 270° 
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With a means of computing the objective function, the optimization approach for 

the PZT control actuators was invoked. 

The first design involved determining the optimal location of a single piezoelec- 

tric actuator bonded to the surface of the simply supported plate. The actuator 

measured 38 mm in the x-direction by 30 mm in the y-direction, and the optimal 

position was computed at center coordinates of (330,247.3) mm for a point force 

disturbance positioned at plate coordinates of (240,130) mm and an excitation fre- 

quency of 550 Hz. The relative positions of the optimal actuator and disturbance 

are illustrated in the schematic of Figure 4.7, and the optimal actuator is labeled 

550A1. To verify that the nonlinear optimization program converged to the correct 

solution, a program was written whereby the optimal position was determined by a 

“brute force” approach. In other words, the actuator was incrementally traversed 

over the surface of the plate and upon computing the optimal control voltage at 
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Figure 4.7: Schematic of Plate Configured with Optimal PZT Actuators 
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each position, the total acoustic power radiated from the structure was computed. 

The position corresponding to the most attenuation in total acoustic power was 

the same as that obtained through nonlinear optimization techniques. Since this 

approach was identical to that implemented by Wang et al., (1991(c)), the solution 

was expected to converge to the optimal position. 

In the second case, the positions of three actuators were simultaneously optimized 

such that the total sound power radiated from the structure was minimized. The ac- 

tuators were of the same dimension as that used in the single actuator optimization 

case, and they are depicted in Figure 4.7. Each of the actuators for the three con- 

trol actuator optimization case is labeled 550A3 to distinguish them from the single 

optimally located actuator labeled 550A1. The corresponding center coordinates of 

these control actuators were (302,234.5) mm, (48.5,250) mm and (82.5,196) mm. 

By implementing three optimally positioned control actuators as opposed to one, a 

6 dB improvement in the attenuation of total sound power was observed based on 

the objective function. 

In the case of the three actuator design problem, one of the actuators is located 

very near the optimal design position for the single control actuator design position. 

As was previously noted by Wang et al., (1991(c)), this phenomenon suggests that 

the design process should be executed sequentially, increasing the number of control 

actuators implemented in the optimization routine until all have been optimized. 

Hence, upon finding the optimal location for a single control actuator, this position 

was used as a trial location for one of the actuators in the two actuator optimization 

case. Upon determining the optimal location of two PZT control actuators, these 
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positions were used as guesses for two of the actuators in the three actuator optimal 

design. The primary difference in the approach implemented in this study was that 

the optimal position from each previous design case was simply used as a guess. 

The actuator was not constrained to this position while searching for the optimal 

location of the next actuator. Greater stability was noted in the solution based 

upon this design approach, and the computational effort was significantly reduced 

by performing this sequential addition of control actuators in the optimal design 

technique. 

Upon reviewing the positions of the optimal control actuators, one should recognize 

that all of the actuators are located near the boundaries of the plate. Since the 

position and dimensions of the control actuators create a “spatial” window when 

attached to the surface of the structure, the position dictates the relative magnitude 

of response for individual modes as indicated by the cosine terms in equation (2.14) 

which is recalled below. 

  

wr = AC o€pe 

m= ple Ly (wig — w? + J2NWmnw) 

Yn + Ye 
Ta (cos(¥m2z) — CO8(Ym22)) (COS(Yn¥i) — COS(YnY2))| - 

As the actuator draws closer to the boundaries of the plate, fewer nodal lines of 

structural modes are covered by the actuator. Hence, the control actuator can ef- 

fectively couple into a greater number of structural modes. For example, a control 

actuator capable of coupling into all structural modes would be very small and po- 

sitioned in one of the corners of the plate. This design approach is impractical since 
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an extremely high control voltage would be required to elicit response due to the 

high structural input impedance at this location. Further interpretation of the op- 

timal actuator positions will be restricted to chapter 6 when the experimental and 

analytical results are compared. This preliminary discussion is provided to convey 

the physical mechanisms involved in studying the structural acoustic control prob- 

lem. 

4.2.4 Optimal Design of PVDF Sensor Location and Di- 

mensions 

Upon determining the appropriate piezoelectric control actuator positions, path 2 

of the algorithm presented in Figure 4.4 was executed and the optimal position and 

dimensions of the rectangular PVDF structural error sensors was computed. In 

addition to finding the optimal design for the structural sensors, path 2 was exe- 

cuted for the design of the acoustic near-field error sensors. Each of these design 

approaches are outlined in the following sections. 

4.2.4.1 PVDF Structural Sensors 

The optimal positions and dimensions of the rectangular PVDF structural error 

sensors based upon an excitation frequency of 550 Hz are presented in Table 4.4 

and are illustrated in the schematic of Figure 4.8. Similar to the notation used in 

Figure 4.7, the single optimally positioned PVDF sensor is labeled 55051, and the 

three optimally positioned PVDF sensors are labeled 55083 to differentiate between 

the two designs. As discussed earlier in this chapter, a “spatial window” is created 

as a result of the position and dimensions of the structural PVDF error sensor. 
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Figure 4.8: Schematic of Plate Configured with Optimal PVDF Sensors 
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Table 4.4: Positions of Optimally Designed PVDF Sensors 

  

  

  

  

      

Sensor Design | center (mm) | x-dimension (mm) | y-dimension (mm) 
55091 (139,11) 259 29 

550S3-1 (142,9) 244 18 

55083-2 (264,131) 68 27 
550S3-3 (309,215) 31 36         

Considering the single sensor optimization, upon studying the relative weighting of 

the first 9 structural modes, insight is gained into the physical mechanisms resulting 

from the design optimization. 

The modal weighting of the first 9 modes was normalized with respect to the mag- 

nitude of the dominant mode observed by the single optimally configured PVDF 

sensor. As illustrated in Figure 4.9, the (1,3) mode is dominant in terms of modal 

weighting in the sensor response. For an excitation frequency of 550 Hz, the res- 

onant frequencies of the (1,3) mode and the (4,1) mode are below and above this 

frequency respectively. While the (3,2) mode has a resonant frequency very close 

to that of the (1,3) mode, the mode is essentially unobserved by the PVDF sensor. 

This stems from the fact that the sensor was optimally positioned very near the 

nodal line corresponding to all modes in the (3,*) family (i.e. the (3,1), (3,2), (3,3) 

mode, etc.), At this particular excitation frequency, the radiation efficiency of the 

(3,2) mode is approximately 5 times less than that of the (1,3) mode as illustrated 

in Figure 1.1 for k/k, = 0.3, hence significant spillover into the structural response 

at this mode will have very little effect on the total sound power radiated due to its 

relatively poor radiation efficiency and so it is not necessary to observe this struc- 

tural mode. In addition to the observation of relative radiation efficiency, one should 
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recognize that the position of the PVDF sensor is on the boundary of the plate. The 

(1,3) mode is considered a y-edge radiator as depicted in Figure 1.3(c), suggesting 

that to control the sound radiated from this structure at an excitation frequency of 

550 Hz, the sound radiation from this edge radiating mode must be reduced by way 

of both modal suppression and modal restructuring. Further interpretation of the 

optimal sensor design positions will be restricted to chapter 6 when the complete 

set of experimental and analytical results are presented. 

4.2.4.2 PVDF Acoustic Near-Field Sensors 

Before discussing the optimal locations of the PVDF acoustic near-field sensors, the 

method of computing the electrical response of these sensors induced by the acoustic 

radiation from the structure will be discussed. Consider the schematic diagram of 

the acoustic loading of the sensor resulting from the sound radiation from the plate 

presented in Figure 4.10. As opposed to a microphone diaphragm, the dimensions 

of the acoustic near-field sensor are large (i.e. several orders of magnitude greater 

than that of the microphone diaphragm). Hence when placed in close proximity to a 

structure with some velocity profile, the acoustic loading must be computed by inte- 

grating the load over the surface of the error sensor. Ideally, one would evaluate the 

pressure over infinitesimal regions of the sensor and compute the electrical response 

based upon the superposition of these harmonic acoustic disturbances. However 

the pressure over each discrete region must be obtained by numerical integration 

of Rayleigh’s integral for the chosen structure. As a result of this numerical inte- 

gration, the sensor must be divided into a practical finite number of subregions to 

evaluate the response. In this study, each sensor was subdivided into 100 elements, 
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as further subdividing the sensor resulted in little improvement in the numerical 

results. The pressure was computed at the center of each element as depicted in 

Figure 4.10. As discussed in chapter 2, the near-field sensor was constructed in the 

shape of a shell segment; as depicted in Figure 4.10. The pressure at each point was 

assumed to be uniformly distributed over the respective element of interest, and the 

response of the sensor was computed as a result of the superposition of 100 acoustic 

disturbances. 

A modal expression for computing the response of the sensor was given in equation 

(2.32) and is recalled below. 

  a(t) = = [CE Ae te {(—~) Brn + (5) Cun 
m=1n=1 

(1 — cos(n7))(1 — cos(mz)) exp(jwt). 

As discussed earlier, the modal response is coupled in three dimensions, resulting 

in three separate modal amplitudes for the response in each respective direction, 

x, y and z of the shell as illustrated in Figure 2.6. For a linear system (which is 

assumed in this case), the electrical response of the sensor can be computed from a 

superposition of the modal response of the structure due to each respective pressure 

input computed. In other words, for each of the 100 subregions of the sensor, a 

separate set of modal amplitudes A’, Bi, and Cl, can be computed where the 

superscript | is used to designate the subregion. Hence the electrical response of the 

sensor can be expressed as follows: 
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  at) = EY [EAL + ens (Ape + ASC] 
mnnr2 

x(1 — cos(n7))(1 — cos(mz)) exp(jwt). (4.25) 

The modal coefficients are obtained in the discrete pressure case as outlined in Ap- 

pendix A. 

In performing the optimal design, the position of a near-field sensor was optimized 

in the x-y plane of the structure. The position in the z-direction was fixed at 2.54 

cm, and the dimensions of the sensor were fixed as well. For the single sensor design 

optimization, the projection of the sensor measured 101.6 x 50.8 mm in the x and 

y-directions respectively. The radius of curvature, a, depicted in Figure 2.6 used to 

create the shell segment was 190 mm. A nonlinear optimization algorithm converged 

to the solution for the optimal location of this sensor in 6 hours of computational 

time on the IBM VM1 computing system. The amount of CPU time required is a 

direct result of the 100 discrete pressure inputs which must be computed numeri- 

cally from Rayleigh’s integral. 

The projection of the sensor on the surface of the plate is illustrated in Figure 4.11. 

The acoustic near-field sensor was centered about the coordinates (132,59.5) mm in 

the x-y plane of the plate. The objective was to sequentially increase the number 

of error sensors to achieve a design for three channels of control; however, upon 

computing the optimal design for two PVDF near-field sensors, this objective was 

abandoned. In determining the optimal location of two error sensors simultane- 
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ously, the central processing unit (CPU) time increased from 6 hours to 24 hours 

before converging to a solution. The projection of the second PVDF sensor mea- 

sured 76.2 x 50.8 mm in the x and y-directions respectively. The size of the second 

sensor was varied slightly in the design optimization to determine if this variation 

would afford greater design flexibility. Typically the size is included as a design 

parameter as was the case for the structural PVDF error sensors; however due to 

the CPU time required simply to compute the optimal position of the sensor, this 

approach was abandoned. Results from this design optimization were compared to 

those with sensors having identical dimensions. Little if any difference was observed 

in the resulting controlled acoustic response of the structure. The optimal locations 

for the chosen acoustic near-field sensors were determined at center coordinates of 

(193,24.5) mm and (102,60.5) mm for the first and second PVDF near-field sensor 

respectively, and the projection of each sensor on the surface of the plate is illus- 

trated in Figure 4.11. Approximately 36 hours of CPU time was spent on the IBM 

VM1 computing system trying to determine the optimal location for three PVDF 

near-field sensors; however, in view of the success achieved with the structural sen- 

sors and the CPU time required to optimize the position of two near-field sensors, 

this approach was halted. Further interpretation of sensor design is restricted to the 

results section of chapter 6 where the predicted and measured acoustic response of 

the structure are compared. 

Since the distance of the PVDF sensor from the surface of the plate was fixed in the 

optimal design approach, several designs were conducted while varying the distance 

from the plate surface from 2 to 10 cm. In general, little variation was observed 

in the optimal design location of the respective sensors. However, as the sensor is 
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moved further from the plate, the number of subregions required to compute the 

acoustic disturbance over the surface of the sensor decreases. In fact if the sensor is 

moved several acoustic wavelengths from the source and kR > L, and kR > Ly, 

a uniform pressure can be computed and applied over the surface of the sensor. At 

this point, the sensor can no longer be considered a near-field sensor, but rather an 

acoustic far-field sensor, yielding a response similar to that of a large microphone 

centered at the same field point. 

4.2.5 Optimization of Discrete/Distributed PVDF Sensor 

As observed in the previous discussion of optimal design approaches for PVDF struc- 

tural and near-field sensors, each resulting design is frequency dependent. Hence 

as the harmonic disturbance changes, a new optimal sensor design is required. To 

address this problem and provide a foundation for future work, an alternative design 

approach was considered. As opposed to optimizing the dimensions and positions 

of the structural PVDF error sensors, the plate was configured with an array of 

sensors as depicted in Figure 4.12. In this case the response of each element of the 

PVDF array was computed based on equation (4.2) and assigned a weighting factor 

ranging between 1 and -1. Ideally this weighting would be incorporated with an 

analogue circuit or digitally with a digital signal processing board. The weighting 

factor for each element of the PVDF sensor array was chosen as a design variable to 

be optimized in the nonlinear optimization approach outlined earlier. By summing 

the weighted response of the PVDF sensor array, a single error response was com- 

puted. Upon converging to the optimal solution, minimizing the weighted response 

of the sensor array results in a corresponding reduction of the structural acoustic 
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response. 

As an example, the weights for the sensor array presented in Figure 4.12 are the 

results of a design optimization for minimizing the structural acoustic response of 

the simply supported plate at an excitation frequency of 550 Hz as in the previous 

optimal design approaches. The normalized modal weighting of the sensor array 

after completing the design optimization is presented in Figure 4.13. Comparing 

the modal filtering characteristics of the weighted PVDF sensor array presented in 

Figure 4.13 with that of the single optimally positioned PVDF sensor presented 

in Figure 4.9, one quickly observes that the modal filtering characteristics are very 

different. With the exception of the (2,3) mode, the relative weighting of each struc- 

tural mode is nearly uniform. Based on the modal filtering characteristics of this 

sensor, one would assume from the graph of Figure 4.13 that modal suppression is 

the desired method of control. However, further inspection reveals that the (1,2) 

mode and the (3,1) mode are filtered 180° out of phase with respect to the other 

structural modes. Hence modal restructuring also plays an important role in the 

filtering characteristics of this optimal sensor design. Since the summed response 

of each element of the PVDF sensor array is weighted with a number between +1 

and —1, favorable phase relationships between modes can be incorporated into the 

structural acoustic sensor design. 

The primary difference between this sensor design approach and that outlined ear- 

lier for optimally positioning and dimensioning the structural PVDF sensors is that 

the array of PVDF sensors affords more flexibility in the design. Modal restructur- 

ing for destructive interference can be included in the design since relative phase 
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tionships between structural modes are now included in the design process as well 

as relative weighting of individual modes. In addition, if the disturbance excitation 

frequency changes, the optimal weights for the array of sensors can be adjusted 

to compensate for this change. Hence, one need not configure the structure with 

another sensor for each excitation frequency. Ideally the optimal weights for the 

PVDF sensor array could be controlled by a variable parallel weighting scheme such 

as a neural network. This is beyond the scope of this work; however, in light of the 

observations made, it is worthy of pursuit in future studies. 

4.2.6 Summary of Computational Effort 

As outlined by Wang (1991(a)) in his dissertation, over 70% of the CPU time for 

optimizing the position of the piezoelectric actuators is devoted to evaluating the 

gradient of the objective function and the constraints in the nonlinear optimization 

algorithm. Similar results were observed in this study for optimization of either the 

PZT actuator position or the PVDF structural error sensor size and dimensions. As 

previously mentioned by Wang (1991(a)), the percentage of CPU time required in 

this step increases as the number of actuators or sensors to be optimized increases. 

In the case of the acoustic near-field sensor optimal design, similar percentages of 

CPU time were observed; however, the amount of actual CPU time required to find 

the optimal location of the near-field sensor was 2 orders of magnitude greater than 

that required for the structural actuators and sensors. This increased time is a di- 

rect result of the numerical integration required to compute the acoustic near-field 

response of the structure over each element of the sensor. While acoustic near-field 

sensors can be realized, based upon computational time required in optimal design 
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approaches, if given a choice between structural sensors and acoustic near-field sen- 

sors, the obvious choice is the structural sensor. However, some applications may 

dictate the sole use of acoustic near-field sensors. 

4.3 Modal Shaped PVDF Strain Sensor Design 

Theory 

The objective is to design a shaped PVDF sensor bonded to the surface of the 

structure, whereby minimizing the electrical response of the sensor is equivalent to 

minimizing the sound radiated at one or more chosen microphone locations in the 

acoustic field. The key to the following design approach is to recognize that choos- 

ing one or more microphone locations for minimizing the far-field sound radiation is 

independent of where the control actuator is located on the structure. This observa- 

tion stems from the fact that the modal weighting of an acoustic sensor positioned 

at a fixed field point is constant for a fixed frequency of excitation (i.e. the radiation 

filters are fixed). Hence the corresponding structural error sensor required to yield 

the same controlled acoustic directivity pattern must exhibit the same characteris- 

tic. 

4.3.1 Design Approach 

Without concerning ourselves with the details of the control implementation at this 

point, let us assume that given some primary disturbance represented in modal 

coordinates by WF, we can minimize the sound radiation at some chosen acoustic mn? 

field point (r,6,¢). This is accomplished with linear quadratic optimal control 
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theory as discussed in chapter 3, and the optimal control input to the structure due 

to excitation with a piezoelectric actuator is represented in modal coordinates by 

WP. Hence the controlled modal response of the structure can be expressed as 

follows: 

Wran = Wee + Winn (4.26) 

where W<,, is the controlled modal response obtained by superposition of the input 

disturbance and the optimal control input. Now, if the shaped PVDF sensor is 

chosen such that the design is a function of the system eigenfunctions, then the 

sensor shape can be expressed as follows: 

N 

P(z,y) = 2) Snbn(zs4); (4.27) 

where N represents the number of modes included in the response and ¢,(z2,y) 

represents the system eigenfunctions. Recalling the expression for the electrical 

response of the PVDF: 

_ (Ap + hs) O*w 0? w Ow 
q(t) = _ 9 [, Pola, y) F(a, ylea aa + 32H y2 + ress a9, ardy- 

As outlined earlier, F(z, y) describes the effective surface electrode and P,(z, y) rep- 

resents the polarization profile. Both of these factors become important for practical 

implementation of shaped sensors. 
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If we let FP,(z,y) = ['(2,y) and egg = 0 (i.e. no skew angle) and substitute into the 

previous equation, we obtain the sensor response as a function of the mode shape 

_ (hp ths) p & O?w Ow a(t) = PF [LO Sidale len zee + eo Ga )dedy. (4.28) 
n=l 

For a simply supported beam, letting ¢,(z,y) = sin(nwz/L,) one can readily show 

(Clark et al., 1992(b)): 

ee 5 (mam)?S, WE (w) exp(jwt). (4.29) 
m=1 

q(t) = 

An important observation can be made at this point upon viewing equation (4.29). 

The sensor response as a function of modal coordinates is weighted as a function of 

m? since the electrical output is proportional to the second derivative of the struc- 

tural response (i.e. strain). Hence small changes in the physical shape of the sensor 

for modes with large modal indices result in significant changes in the electrical 

response of the sensor. This result stems from the fact that the PVDF senses the 

integral of strain over the area of application, making it much more sensitive to 

the higher modes. This observation will prove important when studying the sensor 

shapes. 

For the simply supported plate, an expression for the electrical output can be de- 

veloped similarly. At this point it is convenient to define the assumed sensor shape 

function in terms of the separable eigenfunctions of the structural response: 
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  (2) = D2 Ye sin(F) sin(F—) (4.30) 
r=1 s=1 y 

Using this terminology, the response of a shaped PVDF sensor applied over the 

surface of the plate can be expressed as follows 

LD, Ly(hp + hs) M N 

qt) = - 3 S So [es1(mar/L,) + €39(n7/L,)*] 
m=l1n=1 

X SimnW- _,(w) exp(jwt). (4.31) 

where both the modal sensor weighting S,,, and the controlled modal response W,,, 

are defined in terms of the separable eigenfunctions. As in equation (4.29) for the 

sensor response as a function of the strain in the simply supported beam, the sensor 

response for the simply supported plate of equation (4.31) is weighted more heavily 

with increasing modal indices. Again this factor is important when interpreting the 

sensor shape. One should also recognize that while the PVDF sensor is not homo- 

geneous in the x and y-direction (i.e. e3; # €32), this non-homogeneous property is 

included in the expression for the sensor response as illustrated in equation 4.31. 

For a multi-input/single-output control case, the shaped PVDF sensor must be 

designed such that the electrical response of the sensor is zero when the desired 

controlled structural acoustic response is obtained. This is accomplished by com- 

puting the controlled structural acoustic response when implementing one or more 

microphone error sensors at chosen acoustic field points. In the case of the simply 

supported beam, this condition is satisfied when the following expression is satisfied: 
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M 
> (mr) SnWs =0, (4.32) 
m=1 

and for the simply supported plate 

M N 

y p> [e31(ma/Le)? + e32(nt/Ly)*|SimnWen = 0. (4.33) 

m=1 

In both cases, if the equation is normalized with respect to the first modal sensor 

shape (5, for the beam and 5}; for the plate), then there are M — 1 unknowns for 

the sensor design equation (4.32) of the simply supported beam and M x N —1 

unknowns for the sensor design equation (4.33) of the simply supported plate. To 

obtain the remaining M — 2 or M x N — 2 respective equations necessary to solve 

for the sensor weights, we solve for the controlled modal response with the control 

actuator located at different spatial coordinates on the structure. Minimizing the 

acoustic response at one or more chosen coordinates for the microphones is inde- 

pendent of the chosen actuator coordinate for a controllable and observable system 

as will be illustrated in section 4.3.2 on practical implementation. 

As an example, the system of equations required to design the shaped PVDF sensor 

for the simply supported beam can be expressed as follows 

[A][S"] = [B] (4.34) 

where: 
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a? wel 3°wel CW .» Mw 
a2 We 3We ewe ee IM we 

[AJ= | 2ws ws PWS ee MWe |, (4.35) 
e e e e @ 

o2yelM-1) 32welM—-) 42 yom} e Mew» 

5S) 
3 

Isj=| 3 |, (4.36) 
e 

Sv 

and 

—l?wel 

-?we 

[B)=| -LPwe |. (4.37) 
e 

~ 12 yey») 

Since the sensor shape is normalized with respect to the first modal weight, the so- 

lution for the remaining sensor weights is designated by S’. In addition, since M —1 

equations are required to solve for the desired modal sensor weights, the symbol for 

the modal response W“ was modified to include the indice 7 to represent the M —1 

independent coordinates chosen for the control actuator. 

One should note that the solution to the system of equations presented in equation 

(4.34) is in general complex. Hence a complex sensor design is required to achieve 

the desired response characteristics. A complex sensor is one which requires modal 
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weighting with both a real and imaginary part. Upon first consideration one might 

abandon this approach as a result of this observation; however as will be outlined 

in the discussion of the instrumentation in chapter 5, a method of achieving this 

complex sensor design is discussed. Essentially, two separate sensors are designed, 

one to measure the real part and one to measure the imaginary part. The phase 

of the sensor shaped to measure the imaginary part must simply be shifted by 90° 

and summed with the sensor shaped to measure the real part to create the desired 

“complex” sensor response. 

4.3.2 Practical Implementation 

Two shaped PVDF sensors were designed for the simply supported beam and were 

physically implemented on the test structure as will be outlined in the results of 

chapter 6. The first sensor was designed as a structural sensor to control only the 

first mode of the beam. The second sensor was designed to represent an acoustic 

field point located in the far-field. The far-field expression for the acoustic radiation 

from a simply supported beam was previously derived by Wallace (1972(a)): 

  

ik; Wp un (mm p(rs8, 4.0) = So we —eeeershr) pf 5 MEE 
m=1 

x me + p= side exp(jwt), (4.38) 

where (r, 6, ¢) is the polar coordinate of the observation point as shown in Figure 

2.1. 
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a = kL, sin(@) cos(¢), (4.39) 

and 

6 = kw, sin(6) sin(¢). (4.40) 

If the field point is chosen at an angle of @ = 0 in the acoustic far-field, the resulting 

modal components of the expression for the acoustic radiation at this point are 

observed to be independent of frequency as illustrated below: 

M 

p(r, 0, ¢, t) =» Wi *pexp(—jkr) at) l [Osa 

m=1 

  ~ )\ddy exp(jwt). (4.41) 

Upon evaluating this integral, the acoustic response can be expressed as follows: 

—jwpockwpLe, MWe 
p(r,0, ¢,t) = exp (—jkr) » 

m=1 m 

  (1—(-1)™)exp(jwt). (4.42) 

Consider the following component of equation (4.42): 

(L-(-1)") 
m 

This term is defined as the radiation filter for the chosen acoustic field point and 

as observed, this modal filter is independent of both frequency and the position of 
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either the disturbance or control actuator with respect to the beam coordinates. 

Hence a PVDF sensor must exhibit the identical filtering characteristic to yield the 

equivalent controlled structural acoustic response. Burdisso and Fuller (1992(b)) 

previously outlined a method for designing a weighted sensor for vibration control 

and the design approach is very similar to that outlined in this work. In the case 

of the single-input /single-output system, the sensor shape is given simply by this 

radiation filter and hence the sensor design can be obtained as follows (Clark et al., 

1992(b)): 

Sin = Q=(=)") (4.43) 

Hence one need not solve the system of equations presented in equation (4.34) to 

obtain the desired sensor shape. However, for the multi-input/single-output control 

case, the PVDF sensor shape will be a function of multiple radiation filters, and the 

equation (4.34) must be solved to determine the appropriate design. In addition, 

the far-field coordinate chosen for the sensor design presented is unique since it is 

the only acoustic field point for which the sensor design is independent of frequency. 

In general, the sensor shape will be a function of frequency as indicated in equation 

(4.39) and equation (4.40). However, for the case presented, the sensor design is 

applicable for broad band as well as harmonic control applications. 

For comparison, the PVDF structural acoustic sensor is superposed against a mode 1 

PVDF sensor in the schematic of Figure 4.14 to emphasize that a very small change 

in the shape of the sensor significantly alters the designed response characteristics. 

The modal weighting required to create the two shaped sensors is given in Table 4.5. 
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Figure 4.14: Schematic of Modally Shaped 1-D PVDF Sensor 
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Table 4.5: Design Normalized Modal Sensor Weighting Distribution for Simply Sup- 
ported Beam. 

  

  

  

  

  

  

  

  

  

  

  

Mode | Real Part | Imaginary Part 

1 1.00 0.00 

2 0.00 0.00 

3 3.70E-2 0.00 

4 0.00 0.00 

5 8.00E-3 0.00 

6 0.00 0.00 

7 2.91E-3 0.00 

8 0.00 0.00 

9 1.37E-3 0.00 

10 0.00 0.00           
To achieve the mode 1 sensor, one simply must set all terms but the mode 1 term 

equal to zero in the table. In the case of the structural acoustic sensor, the modal 

filters were expressed in equation (4.43) and are normalized with respect to 5; in 

Table 4.5. The contributions of modes with increasing modal indices appears to 

decrease rapidly; however, one must remember that each mode is further weighted 

by the square of the modal indices as demonstrated in equation (4.32). Practical 

design techniques are discussed in chapter 5; however, it should be noted that the 

change in polarization profile as a function of the x-dimension of the beam can be 

achieved by shaping the sensor as a function of the desired modal weighting. This 

stems from the fact that the structural response of the beam is a function of the 

x-dimension only. 

For purpose of comparison, a shaped sensor was designed for the simply supported 

plate at the same corresponding far-field coordinates (i.e. 9 = 0). The far-field 
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expression for the acoustic radiation from the simply supported plate was previously 

derived by Wallace (1972(b)) and was presented earlier in equation (4.22). The 

expression is recalled here for convenience. 

  

  

rested) = Sap ent) SS [ahr 
ye | CED” exp(= eo 

(B/nx)? —1 

where: 

a = kL, sin(0) cos(¢), 

6 = kL, sin(@) sin(¢). 

Letting 9 = 0 in equation (4.22) results in the following expression for the acoustic 

radiation: 

p(r,6,¢) = sPotraty oly exp(—jkr) ys A ( 
m=i1n=-1 

x a ; (4.44) 
n 
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in which the modal components are independent of frequency as was the case for 

the simply supported beam. Again since only one acoustic field point was chosen 

in the sensor design, the modal filtering characteristics are totally described by the 

following radiation filters: 

  

Hence the PVDF shaped sensor can be expressed as a function of the desired modal 

radiation filters, the stress per charge constants of the PVDF material and the 

dimensions of the plate as follows: 

EABPaEe® smn = . 
m= esi(72)? + esa(F)? 
  (4.45) 

The shaped PVDF sensor for the simply supported plate which yields an equivalent 

controlled response to a microphone positioned at the chosen acoustic field point is 

illustrated in Figure 4.15. The scale has been suppressed from the schematic since 

the modal weighting was simply normalized with respect to 51;. One should recog- 

nize that this sensor shape is very similar to the shape of the first structural mode of 

the plate, which is not surprising considering that the sensor response is a function 

of strain (i.e. the square of the modal indices), While the response characteristics 

of this sensor are desirable in the development of smart structures for active struc- 

tural acoustic control, practical implementation of this sensor is complicated by the 

required variation in polarization profile in two dimensions. As a result, physical 

implementation of this sensor is an extremely difficult problem to solve. 
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4.4 Summary 

In the preceding sections, several design approaches have been outlined as methods 

of achieving smart structures for active structural acoustic control. Each of the 

previously discussed design approaches will be evaluated analytically and experi- 

mentally in chapter 6. PVDF sensors shaped as a function of the structural mode 

shapes appear to provide a unique method for achieving directional control in the 

acoustic field for simple one-dimensional structures. However, this design approach 

offers little promise for more complex two dimensional structures such as the sim- 

ply supported plate since the polarization profile is a function of two dimensions, 

and thus a three dimensional “weighted” sensor must be constructed to achieve the 

design objective. 

As a result of this observation, optimal design techniques, whereby rectangular sen- 

sors are optimally located and dimensioned on the surface of the structure such that 

the “spatial” window created by the sensor yields an electrical response represen- 

tative of the sound radiated from the structure, appear to be more appropriate for 

structures whose response is a function of two spatial dimensions. Acoustic near- 

field sensors were designed for similar applications; however, the required CPU time 

to achieve the desired design objective makes them less appealing. However, some 

design implementations may dictate a sensor which does not contact the structural 

surface and hence require the implementation of acoustic near-field sensors. Per- 

haps the best design compromise exists in the array of distributed PVDF sensors in 

which the response of each element of the array is individually processed, optimally 
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weighted and summed with the response of the remaining elements to achieve the 

desired optimal sensor design. 
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Chapter 5 

Experimental Arrangement 

The purpose of this work was not simply to suggest alternative sensors for active 

structural acoustic control, but to implement them on structures such as the simply 

supported beam and simply supported plate to evaluate and experimentally confirm 

their respective performance. As a result of this design objective, the experimental 

arrangement must be discussed in detail such that these preliminary design con- 

cepts can be extended to more complex structures. Methods of attaching both PZT 

actuators and PVDF error sensors to the structure will be outlined in addition to 

the appropriate instrumentation required to implement each. An overview of the 

controller as well as the signal processor required to implement the multi-channel 

version of the filtered-x adaptive LMS algorithm is presented. Instrumentation re- 

quired to measure both the structural response and structural acoustic response 

is discussed in this chapter as well. Upon completing an overview of the electro- 

mechanical equipment, the test structures and methods of achieving the desired 

boundary conditions are reviewed. 
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5.1 Electro-Mechanical Equipment 

5.1.1 PZT Actuators 

The piezoceramics used in all experiments were obtained from Piezo Systems, an 

advanced group for Piezo Electric Products, Inc. The piezoceramics were G1195 

(Navy Type-II) material constructed from a lead zirconate titanate composition 

with material properties previously listed in Table 2.1. Mounting of the piezoce- 

ramic patches required a number of procedures of which the first was to cut the 

patch. Each piezoceramic patch was cut to the desired dimensions with a razor 

blade and sanded along its cut edges until smooth. A small rectangular electrical 

lead made of brass shim stock (1/1000 in. thick) was then soldered to one face of 

the crystal. This lead would provide an electrical connection to the underside of the 

patch so that a voltage could be applied across the poling axis of the piezoceramic 

(Clark et al., 1991(b)). Before each piezoceramic patch was bonded to the plate, a 

thin insulating glue layer was applied to the plate surface. This was to insure that 

the piezoceramic and plate would not be connected electrically once the piezoce- 

ramics were attached. A cyanoacrylate based adhesive, M-Bond 200, was used to 

attach the piezoceramic to the plate. 

After the insulating layer was examined for completeness, additional glue was spar- 

ingly applied over the layer and the piezoceramic was placed onto the plate such 

that the brass lead was on the underside of the patch. Finally, a thin wire was sol- 

dered to the lead and a second wire directly to the top surface of the piezoceramic 

patch as illustrated in Figure 2.3. Typical adhesive layer thickness was measured 

in the range of 0.08 mm to 0.14 mm (Fleming 1990). Piezoceramic patches were 
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always bonded to the plate in pairs. For every patch adhered to the front face of the 

plate, a patch of the same size was bonded directly behind it on the other side of 

the plate. The electrical leads of each patch pair were connected such that the front 

patch would be activated by a voltage 180 degrees out of phase with the voltage 

activating the rear patch, causing the simultaneous expansion of one patch and con- 

traction of the other, resulting in pure bending about the neutral axis of the beam 

or plate. Piezoceramic patches wired in this configuration are termed actuators as 

outlined by Dimitriadis et al., (1991), and a schematic of the actuator configuration 

was previously presented in Figure 2.3. 

Since the voltage required to drive the test structures used in this study ranged 

from 50 to 200 Volts amplitude, a power amplifier configured with a transformer 

was required to drive each actuator. The output from the controller, which ranged 

from 0 to 1 volt amplitude, was amplified with an NEC variable gain stereo power 

amplifier and the output of this amplifier was passed through a transformer which 

increased the voltage output by a factor of 17.1. The actuators were observed to re- 

spond in a linear manner as long as the voltage supplied was below 200 Vrms (Clark 

et al., 1991(a)). Previous studies by Fleming (1991) and Clark et al., (1991(b)) 

were devoted to characterizing the response of these actuators with respect to the 

structures used in this study. The models previously documented in equation (2.9) 

and equation (2.14) were observed to result in a reasonable prediction of the modal 

response of the structure (i.e within 10%) over the frequency range of interest for 

this study (0-800 Hz). Greater details of this work can be found in the previously 

listed references. 
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5.1.2 PVDF Sensors 

The sensors used in this study were purchased from the Pennwalt Corporation and 

were constructed from sputtered NiCu PVDF film sheets measuring 28um thick. 

The corresponding properties of this material were previously listed in Table 2.2. 

Two types of sensors were constructed from the PVDF material, a structural sensor 

and an acoustic near-field sensor. The design and physical implementation of each 

respective sensor is outlined separately; however, the equivalent electrical circuit and 

the required signal conditioning for the sensors are the same. Hence this material is 

unified in sections corresponding to each topic. 

5.1.2.1 Physical Implementation of Structural Sensors 

The PVDF material was attached to the structure with Tuck carpet tape, and elec- 

trical connections were made with copper tape. This is an excellent method for 

quickly achieving prototype sensors; however, more permanent techniques should 

be used for design implementation. Suffice to say that the sensor can be perma- 

nently attached to the structure with 3M Super 77 spray adhesive, and leads can be 

permanently attached with conducting epoxy. For a detailed outline of more per- 

manent lead attachment and sensor attachment, the reader is referred to a report 

by Collins, Miller, and von Flotow (1991). When attaching leads to the sensors with 

copper tape, one must be sure to make all solder connections to the copper tape in 

advance of attaching the tape to the sensor as soldering after attaching the copper 

tape will result in a melted sensor. 

In shaping the PVDF sensors, based upon a rectangular format or on some modal 
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pattern as depicted in Figure 4.14, two different options exist. The first technique 

involves transferring the desired shape of the sensor from a computer generated pat- 

tern on the metallization of the PVDF and simply cutting the sensor with scissors. 

The second method of obtaining the desired shape involves etching the surface elec- 

trode with PCB etchant. The desired modal pattern is first transferred to double 

sided tape, and this pattern is then attached to the PVDF, with respect to the 

coordinate system of the sensor. Upon attaching the tape pattern to the sensor, the 

etchant can be used to remove the metallization on one surface of the sensor. Pre- 

vious studies by Lee et al., (1991(a,b)) have demonstrated that the active portion 

of the material is that which remains covered by the metallization electrodes. Both 

techniques were used to achieve the desired shaped sensor and tests were conducted 

comparing theory and experiment. Before providing examples, the equivalent elec- 

trical analogies and required signal conditioning for the PVDF sensors are detailed. 

5.1.2.2 Physical Implementation of Acoustic Near-Field Sensors 

In designing the acoustic near-field sensors, a frame was required to support the 

material at the boundaries. This frame was constructed from spruce wood due to 

ease in cutting and shaping the material. Spruce is used by many model builders 

due to its structural rigidity, light weight and relative ease in shaping. As depicted 

in Figure 2.6, a shell segment was required to achieve the prototype sensor. A pic- 

ture of the prototype sensor is presented in Figure 5.1. As required, the support 

boundaries were curved in one dimension and straight in the other. The curvature 

was created from a cylindrical pattern with a radius of 0.190 m and spruce wood was 

used to create the curved boundary of the frame. The PVDF material was bonded 
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Figure 5.1: Picture of Prototype Near-Field Sensor 
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to the boundaries of the frame with M-bond 200 adhesive and leads were attached as 

outlined in the previous section. A comparison between the predicted and measured 

response of the pictured prototype sensor is presented later in the section devoted to 

practical implementation; however, appropriate signal conditioning of the electrical 

response must first be considered. 

5.1.2.3 Equivalent Electrical Analogies 

Since the goal of this work is not simply to outline the theoretical aspects of sensor 

design theory, but to implement sensors on structures, a review of the equivalent 

electrical analogies for PVDF should be considered before designing a sensor and 

placing it on the structure. A schematic of the equivalent circuit for the PVDF 

sensor is depicted in Figure 5.2. The sensor response can be viewed in terms of a 

charge source with a capacitor and resistor in parallel. Both the capacitance and 

resistance of the sensor can be computed based on material properties given in the 

Kynar Piezo Film Technical Manual (1987). The resistivity of the sensor is very 

high (1.5 x 10!° ohm-m), and hence is typically ignored in the equivalent sensor cir- 

cuit. However, the resistance of the circuit is extremely important upon considering 

signal conditioning techniques. 

5.1.2.4 Signal Conditioning 

Depending on whether the desired response is in terms of strain or rate of strain, a 

voltage amplifier or a current amplifier can be used to increase the electrical response 

of the sensor. If rate of strain is required, the reader is referred to the previously 
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Figure 5.2: Schematic Diagram of PVDF Electrical Circuit 
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outlined discussion on current amplifiers by Lee et al., (1991(b)). Regardless of the 

chosen circuit, care must be taken in choosing the appropriate amplifier due to the 

high output impedance of the sensor. Based on work conducted at VPI&SU, an op- 

erational amplifier with an input impedance on the order of giga ohms is suggested 

(i.e. much larger than that of the sensor). This amplifier is required to eliminate 

impedance mismatch and hence loading of the circuit. If a response proportional to 

strain is desired, a circuit can be designed with a voltage follower implementing the 

high impedance amplifier, and then a lower quality amplifier can be used to provide 

gain and protect the high impedance amplifier from loading due to the typically low 

impedance electrical cables which are connected to the amplifier output. A circuit 

diagram for this voltage amplifying signal conditioner is presented in Figure 5.3. 

An important concept raised earlier by Lee et al., (1991(a)) concerns that of shield- 

ing the sensor. The PVDF sensor acts as an antenna when not properly shielded, 

and Lee suggests folding the sensor upon completing the shape such that the side of 

the sensor which encloses the inner surface can be tied to ground to provide electrical 

shielding. In addition to this method of shielding, the sensor can be protected from 

the electric fields created by the piezoelectric actuators and other sources by ground- 

ing the test structure (as long as the test structure is electrically conducting). Both 

methods of shielding were studied during the course of this work and were found to 

yield the identical electrical response both in phase and magnitude. It should be 

noted that if electrical shielding is not used, both the phase and magnitude of the 

electrical response can be erroneous. 

When designing modal sensors, to achieve the required orthogonality condition be- 
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tween the spatial window created by the sensor and the mode shape of the structure, 

180° phase changes are required between nodes of the sensor, with the exception of 

the mode 1 sensor which has nodes at the boundaries of the structure only. It is 

best to view each element of the sensor which requires a phase change as a separate 

sensor element. For the sensor design chosen in this study no phase changes were 

required due to the characteristics of the radiation filter at the chosen acoustic field 

point; however, details of this general sensor design approach are outlined for future 

implementation. 

For example, a sensor designed to measure only the response of the third mode of 

the simply supported beam can be viewed as three independent sensors since two 

nodal points exist within the boundaries of the structure The polarity of the middle 

element must be reversed as indicated in Figure 5.4. This can be accomplished by 

ordering material with a different polarization profile across the surface, which is 

very expensive, or by electrically reversing the polarity of sensor elements with ap- 

propriate wiring techniques. If we consider the electrical equivalent of each element 

of the PVDF sensor and wire them in parallel, reversing the polarity on the middle 

sensor to achieve the appropriate phasing, an equivalent circuit can be drawn as in 

the top portion of Figure 5.5. Treating the charge sources as current sources when 

developing equivalent networks, the sensor response can be expressed in terms of a 

single charge and a single impedance as indicated in the bottom portion of Figure 

5.5. The equivalent impedance of the circuit can be expressed as follows: 

1 
Le = OTe 

’ Ry + Hy + I38C pw 
(5.1) 
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where: 
Ry = resistance of each sensor element 
R; = resistance of instrumentation amplifier 

C'; = capacitance of each sensor element. 

If we assume harmonic excitation of the sensor, the charge can be expressed as 

follows: 

q(t) = qexp(jwt). (5.2) 

The current is expressed as the derivative of the charge: 

i(t) = jwg exp(jwt). (5.3) 

If we assume that Ry << R; and Ry;Cyw >> 1, as is typically the case, then 

  

1 
Leq = j3C yw’ (5.4) 

and 

q . 
t)= —— . . V(t) = Gee exp( wt (5.5) 

This parallel configuration of the individual sensor elements is equivalent to the de- 

sired analytical design of the modal sensor due to the summing nature of the charge 

over each sensor element. With this said, a comparison between the predicted and 
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measured transfer functions between a distributed PVDF sensor and harmonic point 

force input is in order. 

5.1.2.5 Practical Implementation 

The sensor pattern depicted in Figure 5.4 was transferred to the PVDF material and 

the modal sensors were attached to the simply supported beam as outlined earlier. 

(Details of both the simply supported beam and simply supported plate are in- 

cluded in section 5.2.) Due to the one-dimensional nature of the beam response, the 

“variation in the polarization profile” over the area of application can be achieved 

by creating a two-dimensional sensor varying in width proportional to the desired 

weighting. A shaker configured with a stinger and force transducer was attached 

to the beam 170 mm from the left side. The structure was driven with a pseudo 

random input, and the frequency response function between the PVDF sensor and 

measured force was computed. The output of the PVDF sensor was conditioned 

with a high input impedance voltage amplifier for reasons outlined previously. 

For comparison, the frequency response function for the chosen sensor design (in 

units of volts) and input disturbance (in units of Newtons) was computed based 

upon equation (2.3) and equation (4.29). The appropriate coordinates for the shaker 

(170 mm from the left of the beam) as well as PVDF sensor dimensions (380 mm x 

40 mm) were substituted into each expression along with the physical dimensions of 

the test structure (380 mm x 40 mm x 4.67 mm). The modal response of equation 

(2.3) was then substituted into the expression for computing the electrical response 

of the shaped PVDF sensor of equation (4.29). Both the phase and magnitude of 
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the frequency response function were computed from the following expression: 

qd _ _2(hy + hs)es1 sin( 7 )(mr)? (5 6) 

F 4p! L2(w?, — w2 + 72nwwm) ’ 
  

where the magnitude of equation (5.6) is converted to units of Volts/Newtons by 

dividing the expression by the capacitance of the sensor. 

The magnitude is presented in Figure 5.6 and the phase is presented in Figure 5.7. 

By comparing the magnitude of the predicted response to that of the measured 

response, one ascertains that the properties of the material are within reasonable 

calibration. The on-resonance response value should not be considered in the cal- 

ibration as the amount of damping (0.01%) used in the theoretical model directly 

affects this response characteristic. The phase response is as important as the mag- 

nitude since the assumption was that the output is a function of strain and hence 

should exhibit similar characteristics. As illustrated, the phase characteristics are 

nearly identical to those predicted, confirming that the response of the sensor is 

proportional to strain as modeled. The phase changes between —180° and +180? in 

the experimental data can be ignored since there is no difference between the sine 

of these two angles. In signal processing, this is commonly denoted “phase wrap”. 

As the imaginary part of the frequency response function approaches zero with a 

negative real component contribution, the chosen path to represent the phase can 

be 180° or —180°. The cosine of these two angles is identical. 

In addition to comparing the measured and predicted response of a structural er- 

ror sensor, the acoustic near-field sensor design was tested. The prototype sensor 
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pictured in Figure 5.3 measured 28.5 mm in the y-direction by 25.4 mm in the x- 

direction as defined in the coordinate system of Figure 2.6. To test the sensor, a 

standing wave tube was used to create the input disturbance since a uniform pres- 

sure wave results when driving the source. A schematic of the apparatus used to 

test the PVDF acoustic near-field sensor is presented in Figure 5.8. By exciting 

the sensor with a harmonic uniform pressure wave, the frequency response function 

between the input pressure, measured with a microphone positioned at the same 

axial position as the PVDF acoustic near-field sensor in the standing wave tube, 

and the PVDF near-field sensor was obtained. The analytical response to this type 

of uniform pressure excitation can be computed from equation (A.33) in Appendix 

A. 

As indicated in Figure 5.9, results compare reasonably well in the low frequency 

range and are observed to deviate significantly at higher excitation frequencies. 

This deviation results from a number of assumptions made in developing the ap- 

proximate model. First, the exact solution for the system of equations is unknown. 

Hence an approximate solution was assumed with a set of admissible functions which 

were assumed to satisfy the geometric and natural boundary conditions. The ge- 

ometric boundary conditions require that there be no deflection at the boundaries 

and the natural boundary conditions require that the be no moments at the bound- 

aries. Secondly, in designing the prototype sensor, the PVDF was attached to the 

boundaries of the sensor frame with a very thin layer of M-bond 200 adhesive for 

lack of a better method of attachment. Boundary conditions resulting from this 

method of attachment are obviously not perfectly simply supported (in particular, 

the natural boundary condition is violated) as was assumed in the solution. Fi- 
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nally, upon reviewing literature concerning fluid loaded plates (Crighton, 1980), one 

readily ascertains that the PVDF near-field sensor can be characterized as a fluid 

loaded structure even in the presence of air, hence a fully coupled model is required 

to accurately describe the dynamics of the system. A simply supported cylindrical 

plate was chosen to model the sensor dynamics, and hence the same methods used 

to characterize fluid loading on flat plates will be used to determine the significance 

of fluid loading due to air on the PVDF acoustic near-field sensor. 

Fluid loading is characterized by the Mach number, which is defined as follows: 

ko +. (5.7) M=—2= 
ky We 

where k, is the acoustic wavenumber, k, is the structural wavenumber, w is the 

excitation frequency and w, is the critical frequency. The Mach number is compared 

to the instrinsic fluid loading parameter (Crighton, 1980) which is defined as follows: 

_fo|_ Ei’ 
Ps meat - | 68) 

where p, is the density of the fluid, p, is the density of the structure, E is the 

Young’s modulus of the structure, c, is the speed of sound in the fluid and v is Pois- 

son’s ratio for the structure. For the given material properties of the PVDF and air, 

M = 121x10~° and € = 755 x 1076. Hence the mach number is of the same order of 

magnitude as the intrinsic fluid loading parameter, which indicates significant fluid 

loading (Crighton, 1980). Thus to accurately predict the response of the sensor, 
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a fully coupled analytical model is required. Considering the computational effort 

required to achieve this model and the fact that the boundary conditions are not 

ideal, a finite element model is suggested to improve the prediction of the dynamic 

response as opposed to attempting further improvements on the analytical model 

used in this study. 

With the exception of the phase wrap at 180° and —180°, the measured and predicted 

phase of the PVDF near-field sensor again compare reasonably well as indicated in 

Figure 5.10. The general trends as well as values for the phase are in accordance, 

particularly in the low frequency range. The predicted response of the sensor cer- 

tainly deviates from that measured as the frequency of excitation increases; however, 

in general, the predicted response proved accurate enough for design optimization 

over the frequency range of interest. 

Better correlation between theory and experiment for the PVDF near-field sensor 

could possibly be obtained by including the fluid loading in the structural analysis 

as well as formulating a finite element model of the structure. However, as will be 

demonstrated in the results section, the model was sufficiently accurate in choosing 

the optimal location of the sensor for controlling the structure-borne sound from 

the simply supported plate. In view of the intense CPU time required to determine 

the optimal location of the PVDF near-field sensors coupled with the complexity of 

developing a fluid loaded model for the shell segment, this method of analysis is not 

recommended. 

In general, each PVDF error sensor implemented in this study was first tested as 
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previously outlined to assure that the measured and predicted frequency response 

functions were in agreement. By performing this experiment in advance of con- 

ducting control experiments, sensors with poor response characteristics due to inap- 

propriate structural attachment, shaping or lead attachment were identified. This 

method of design review is suggested whenever implementing any form of PVDF 

shaped sensor or acoustic near-field sensors. 

5.1.3 Controller 

As briefly mentioned earlier, the multi-channel version of the filtered-x adaptive 

LMS algorithm was implemented on a TMS320C25 digital signal processing board 

in assembly language to achieve the desired feed forward control approach. The 

processing board, which was manufactured by Spectrum, was resident in an AT 

compatible host computer which was used to program the board as well as execute 

the controller. An interface program was written in C language which allowed the 

user to execute or halt the controller, set the sampling rate, perform system identi- 

fication and adjust the convergence parameter of the algorithm. The controller was 

originally configured with three outputs and three inputs, in addition to the input 

required to monitor the reference signal. It was later modified to accommodate 

three additional inputs for the purpose of implementing the model reference control 

approach. All signal processing was performed on the TMS320C25 board; however, 

all input/output was conducted with two separate four channel I/O boards which 

were also manufactured by Spectrum. 

Each four channel I/O board was configured with four separate input channels ca- 
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pable of performing simultaneous sample and hold. Each sampled input was sequen- 

tially converted from analogue to digital and passed to the digital signal processor 

(DSP) where the control algorithm was implemented. In addition to the four in- 

put channels, each I/O board was configured with two digital to analogue outputs. 

Upon determining the appropriate control response at the DSP, the desired elec- 

trical response was sent to each actuator via these digital to analogue converters. 

In each case, D/A or A/D, the conversion was limited to 12 bits (i.e. a dynamic 

range of 66 dB). A warning is provided in the manual by Spectrum (1987) that the 

input signals should be limited to +3 volts to avoid damaging the quad sample and 

hold chip as the dynamic range is applicable in the +2.5 volt range. Due to this 

constraint, and concern over damaging the boards, the error signal was limited to 

+1.0 volt to assure that the +3 volt range was not exceeded in case the controller 

became unstable. This reduced the dynamic range by 8 dB, but was considered a 

small price to pay in comparison to permanently damaging the I/O board. 

All signal processing performed on the TMS320C25 was also limited to 12 bit accu- 

racy, further restricting the dynamic range. In implementing the control algorithm, 

the input and output data was scaled to attempt to utilize the full dynamic range 

of the DSP; however, this was not entirely possible due to the number of multiplica- 

tions performed during the implementation process. This trade off is best explained 

by example. In implementing the filtered-x LMS algorithm, one can expect 3 mul- 

tiplications. The filtered-x coefficients must be multiplied by the reference input to 

obtain the filtered-x response. This response must be weighted by the updated coef- 

ficients (i.e. the adaptive coefficients which converge to achieve the optimal control 

voltage output) and further multiplied by the convergence parameter. The dynamic 
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range of each of these variables must be within the 12 bit dynamic range of the DSP, 

and the product must as well be restricted to this dynamic range. Hence the prob- 

lem is obvious. If the data is scaled such that each variable utilizes the full dynamic 

range of the board, the product will exceed this range and hence saturate. Based 

on this observation, all variables must be scaled such that all resulting products are 

within the dynamic range of the board. This limit in the dynamic range coupled 

with that imposed by the +1.0 volt input limit resulted in a working dynamic range 

of approximately 40 dB. This is an important factor to consider when comparing 

theory and experiment, and the effect of this limited control level will be discussed 

in the results of chapter 6. 

5.1.4 Instruments Used in Experiments 

For the noise input, both test structures were driven with a Ling shaker attached 

to the back of the structure configured with a stinger and a Kistler force trans- 

ducer. The simply supported plate, which was the base structure for the majority 

of the tests, was instrumented with 9 Bruel and Kjaer mini accelerometers, weighing 

less than 0.65 grams each, and a modal analysis of the uncontrolled and controlled 

response was obtained by solving a set of simultaneous equations to recover the am- 

plitudes of independent modes on the panel (Fuller et al., 1991(b)). This method is 

further discussed in Appendix C. The directivity pattern was obtained by traversing 

the acoustic field with a Bruel and Kjaer microphone in 9° increments about the 

horizontal mid-plane of the test structures at a radius of 1.6 m. For the frequency 

range of interest, this radius was not at a coordinate location where the far-field re- 

lations could be accurately used; however, this was the greatest radius possible due 
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to the finite dimensions of the anechoic chamber. The sound radiation directivity 

pattern was mapped both with and without control. In addition, a few microphones 

were randomly lccated in the chamber (i.e. out of the traverse plane) to provide a 

measure of the global attenuation. The output of all transducers was sampled and 

signal processed with a model 2032 Bruel and Kjaer spectrum analyzer. 

In executing the control, several filters and amplifiers were required to condition the 

input and output, signals. To prevent aliasing problems, a programmable low pass 

filter manufactured by Frequency Devices was used to condition each input from 

the chosen error sensors. The corner frequency of the filter was typically chosen an 

order of magnitude lower than the sampling frequency of the board, which was set 

at a factor of 10 greater than the frequency to be controlled. For example, if the 

disturbance input to the structure was chosen at 320 Hz, the sampling rate was set 

at 3.2 kHz. This sampling rate is suggested by Ackerman (1985) and was deter- 

mined to be the most appropriate for consistent and stable convergence of the LMS 

algorithm. A schematic diagram of the instrumentation used in conjunction with 

the controller is presented in Figure 5.11. In addition to the filters required on each 

input signal, Ithaco amplifiers with variable gain adjustment were used to obtain 

the desired +1.0 volt input level. One should recognize that all sensors should be 

calibrated with respect to each other, and the gain should be adjusted based upon 

the channel with the maximum response. As a result, in the multi-channel control 

case, the response of some sensors will be less than £1.0 volt due to the different 

relative positions of each sensor in the acoustic field or on the structure. In addition 

to conditioning the input, the control output was also filtered and amplified. Since 

the resulting analog output is based upon a digital to analog conversion, the elec- 
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trical signal must be low pass filtered to eliminate the high frequency chirp created 

by the zero order hold. An Ithaco low pass amplifier was used to accomplish this 

objective and the corner frequency was adjusted to the same frequency as that used 

on the input. In addition, since the output, which was limited to +2.5 volt was used 

to drive the PZT actuators, the signal was passed through an NEC power amplifier 

and the voltage was further increased by a factor of 17.1 with a transformer. The 

harmonic input used to create the reference for the controller as well as drive the 

disturbance was created with a signal generator resident in the B&K model 2032 

spectrum analyzer. 

5.2 Structural Equipment 

Sensor designs and control approaches were evaluated with two basic test struc- 

tures, a simply supported plate and a simply supported beam. Each test structure 

was located in the anechoic chamber for performing the structural acoustic control 

experiments. The simply supported beam and simply supported plate used in this 

study were constructed from steel with material properties listed in Table 4.1. The 

beam measured 380 mm in the x-direction by 40 mm in the y-direction by 4.56 mm 

in the z-direction as illustrated in the coordinate system of Figure 2.1. A picture of 

the beam configured with a PVDF sensor in illustrated in Figure 5.12. The plate 

measured 380 mm x 300 mm by 1.96 mm in the corresponding directions, and a 

picture of the plate configured with PZT actuators and PVDF sensors is presented 

in Figure 5.13. 

The simply supported boundary conditions were achieved by attaching thin shim 
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Figure 5.12: Picture of Simply Supported Beam 
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Figure 5.13: Picture of Simply Supported Plate 
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Table 5.1: Theoretical vs. Experimenta] Resonant Frequencies for Simply Supported 
Beam. 

  

  

  

  

  

  

  

  

  

Mode | Theoretical f,, (Hz) | Experimental fin (Hz) 
1 76 78 
2 303 304 
3 681 680 
4 1210 1208 
5 1891 1880 
6 2724 2704 
7 3707 3664 
8 4841 4752           

spring steel to the boundaries of the plate or beam with small set screws and a 

sealing compound. The shims were then attached to a rigid steel frame, allowing 

the edge of the plate to rotate relatively freely but restricting out of plane motion 

at the boundaries. Previous testing has shown that this arrangement adequately 

models the simply supported boundary conditions (Ochs and Snowdon 1975). In 

addition a modal analysis of the beam (Clark et al., 1991(a)) and the plate was pre- 

viously performed, and the modal response of each structure was determined to be 

in accordance with the assumed boundary conditions. The measured and predicted 

resonant frequencies for the simply supported plate were presented previously in Ta- 

ble 4.2, and were determined to be within 1% of each other over the frequency range 

of interest. The resonant frequencies for the simply supported beam are presented 

above for the first 8 modes in Table 5.1 with a similar 1% accuracy. Establishing the 

simply supported boundary conditions is crucial to the modal decomposition which 

was detailed previously by Fuller et al., (1991(b)) and is presented in Appendix C 

for reference. 
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In conducting the structural acoustic control experiments, the plate or beam, de- 

pending on which was being tested, was placed in the anechoic chamber at VPI&SU. 

The chamber measures 4.2 m x 2.2 m x 2.5 m and has a cut-off frequency of 250 

Hz. The test structure (i.e. beam or plate) was rigidly supported on a steel frame 

configured with a 4.2 m x 2.2 m x 19 mm wooden baffle. The test structure was 

placed in the plane of the baffle to reduce the dipole effect created by the front and 

back of the plate as well as to facilitate later analytical comparisons. As illustrated 

in Figure 5.14, the plate resides in the center of the baffle. An adapter was built to 

extend the baffle when testing the simply supported beam. Since the beam was the 

same dimension in the x-direction (380 mm), the extension was required to fill the 

gap in the y-direction and was attached to the supporting frame above and below 

the simply supported beam. 

5.3 Summary 

Methods of attaching both PZT actuators and PVDF error sensors have been docu- 

mented for physical implementation of the design approach. In addition, calibration 

tests were performed to assure that both the sensors and actuators were performing 

in accordance with the analytical predictions. This was done to provide a prelim- 

inary foundation for this work as well as to assure that each sensor or actuator 

implemented in the structural acoustic control experiment performed as per design 

specifications. Any errors in wiring or positioning of sensors was evident upon con- 

ducting these preliminary tests. The boundary conditions of the structure were 

established to assure that the analytical model for the simply supported beam and 

plate can be used in comparing theory and experiment. In addition, all appropriate 
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Figure 5.14: Picture of Plate/Baffle 
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signal conditioning required to drive the structure with PZT actuators or measure 

the response of the structure with PVDF sensors has been outlined. Having outlined 

the equipment necessary to conduct the tests as well as that required to evaluate 

the response of the uncontrolled and controlled response, the results of this work 

follow. 
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Chapter 6 

Experimental and Analytical 

Results for ASAC 

Each unique sensor design and implementation previously discussed in Chapter 3 

and Chapter 4 was first studied with the analytical models and later implemented 

on the chosen test structures for single frequency harmonic excitation. Before initi- 

ating experiments to study the different types of structural and acoustic near-field 

sensors, several tests were conducted with microphone error sensors, and results 

were compared to theory. In computing the theoretical uncontrolled and controlled 

acoustic response of the structure, Rayleigh’s integral was evaluated numerically to 

obtain the pressure at the chosen acoustic field point. Comparing results from these 

fundamental experiments with the predicted structural acoustic response provided 

a foundation for determining the dynamic range and limitations of the feed forward 

controller as well as the applicability of the analytical models for predicting the 

acoustic response of the structure based upon excitation with piezoelectric actua- 

tors and point force disturbances created with a shaker. As will be discussed in 

the following overview, the dynamic range of the controller as well as the physical 

implementation of the shaker as the primary disturbance play an important role in 

the controlled and uncontrolled structural acoustic response. Upon establishing the 
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appropriate analytical models and method of implementation, each of the sensors 

studied in this work are discussed. Since microphone error sensors placed in the 

acoustic field provide an estimate of the desired cost function, (the total radiated 

acoustic power), results from control experiments implementing these sensors are 

discussed first. In addition, all results from control experiments utilizing alternative 

sensors will be compared to experiments implementing microphone error sensors, 

which provide a good basis for comparison since the objective is to reduce the ra- 

diated pressure. A separate section is devoted to each error sensor studied in this 

work, which includes microphones, PVDF structural and acoustic error sensors, and 

accelerometer error sensors. 

6.1 Overview 

Initial control experiments implementing the feed forward filtered-x version of the 

adaptive LMS algorithm were performed with the simply supported plate as the 

test structure. ‘The input disturbance was created with a shaker and control was 

achieved with piezoelectric actuators. A schematic of the test plate configured with 

the piezoelectric actuators is illustrated in Figure 6.1. The positions of these actua- 

tors are presented in this section as opposed to the chapter devoted to design since 

they were not optimally located on the plate. Their coordinates were chosen with 

respect to the ncdal lines of the modes necessary to control over the frequency range 

of interest (0-600 Hz). Each actuator measured 38.1 mm in the x-direction by 31 

mm in the y-direction, and the center coordinates of each actuator are (63.3,150) 

mm, (190,250) ram and (316.6,50) mm for C1, C2 and C3 respectively. (The reader 

is reminded that an actuator corresponds to two piezoelectric elements positioned 
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symmetrically about the plate surface and wired 180° out of phase with respect to 

each other to produce uniform bending about the neutral axis.) Microphone error 

sensors were implemented in the cost function of the controller along the horizontal 

midplane of the plate, and the results from these preliminary tests were compared to 

theory to evaluate the analytical models as well as the performance of the controller. 

An immediate difference between the predicted and measured controlled acoustic 

response was noted upon conducting these first. preliminary tests. Consider the the- 

oretical acoustic directivity pattern presented in Figure 6.2, When computing the 

theoretical controlled acoustic response of the structure at 550 Hz due to an input 

disturbance located at spatial coordinates of (240,130) mm, the limit in attenuation 

at the chosen error sensors is a function of the computational accuracy, which is 16 

digits in double precision. In other words, for the three-input, three-output con- 

trol case presented, the acoustic response at the chosen acoustic field points can be 

driven to zero machine accuracy. This is not practical in physical systems since the 

A/D converters as well as the signal processors are each limited to a finite dynamic 

range. For the purpose of this study, each was limited to 12 bit accuracy (i.e. 66 

dB). Due to limitations placed on the inputs to protect the A/D converters as well 

as scaling performed on the signal processing unit while implementing the control 

approach, the dynamic range of the controller was limited to 40 dB, as discussed 

previously. To prevent further reduction in the dynamic range, all experiments were 

conducted at an acoustic level well above the noise floor of the anechoic chamber, 

which was approximately 20 dB relative to 20 wPa. Thus for harmonic inputs, the 

coherence between the input disturbance and the response at any chosen error sen- 

sor was always close to unity at the driving frequency. 
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Since the level of attenuation at each error sensor was in practice limited to 40 dB, 

the same limitation was imposed on the analytical model. This limit in attenuation 

was essentially implemented by the same technique used to implement the model 

reference control approach. The desired response was computed by dividing the un- 

controlled response at each error sensor by 100, resulting in a desired response 40 dB 

less than that of the uncontrolled response. A comparison of the variations in the 

directivity patterns for an excitation frequency of 550 Hz is presented in Figure 6.2 

to illustrate the effect of a limited dynamic range on the overall controlled response. 

The legend of the figure indicates the limit in the level of attenuation constrained 

at the chosen error microphones which were positioned about the central axis of the 

plate at angles (9, ¢) corresponding to (45°, 0°), (45°, 180°) and (0°,0°). The —45° 

angle depicted in. Figure 6.2 is used to indicate (45°, 180°) in the coordinate system 

of Figure 4.6. As is evident from the results, increasing the dynamic range of the 

controller serves to increase the level of attenuation possible at the chosen error 

sensors; however, an increase in spillover is observed in some regions of the residual 

acoustic field as well. While this level of spillover is relatively small, one quickly 

concludes from the case presented that little is gained by having a large dynamic 

range. In fact, the dynamic range of the controller need simply be equivalent to the 

theoretical level of attenuation possible in the residual acoustic field to yield a suc- 

cessful control iraplementation. This result is pleasing since all real systems will be 

restricted to some finite level of attenuation due to noise floors on instrumentation 

as well as finite dynamic ranges in the A/D and D/A conversion processes. 

In addition to the limited dynamic range of the controller, other factors must be 
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considered when comparing the controlled acoustic response of the structure. One 

such factor concerns the attachment of the shaker to the structure. While the shaker 

was attached with a stinger at the desired coordinates and was suspended from a 

flexible bungee cord, some mass loading of the test structure occurs. This mass 

loading is not observed when driving the system with the shaker alone since the dy- 

namics of the shaker are used to create the desired harmonic input force. However, 

upon trying to control the response of the structure with piezoelectric actuators, the 

dynamics of the shaker are “observed” by the control actuators. The ideal means of 

analysis would require a coupled dynamic model; however, this would dictate some 

form of substructure synthesis or a finite element model coupled with a boundary 

element model for computing the acoustic response of the structure. 

As opposed to this complex approach, the mass loading of the shaker is modelled by 

the assumed mcdes method, which is simply a form of the Rayleigh Ritz method. 

The comparison functions chosen are the eigenfunctions of the simply supported 

plate since they satisfy the natural and geometric boundary conditions. Both the 

structural response and acoustic response of the simply supported plate can be com- 

puted analyticaily by this method as outlined in Appendix D. The computational 

effort required increases by a factor of the number of original modes squared; how- 

ever, a significant difference is noted in the predicted response of the structure based 

on this approach and justifies implementation. In addition to modeling the mass of 

the shaker, the torsional stiffness of the boundaries resulting from the shim stock 

used to approximate the simply supported boundary conditions was included in the 

model. The modified differential equation is presented in Appendix D, and as ob- 

served, the mass is modelled by means of a kinetic energy term and the torsional 
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springs are included with a potential energy term. Burdisso and Fuller (1991) for- 

mulated a similar model for the simply supported beam to account for the mass 

loading of the shaker and the torsional spring boundary conditions imposed by the 

thin shim spring stock. The appropriate spring stiffness is 3.0 N/rad computed by 

Burdisso and Fuller (1991) and verified in this work, and the mass of the shaker 

armature is 0.02 kg which compares well with the 0.0178 kg mass estimated by 

Burdisso and Fuller (1991). 

A comparison of the controlled acoustic response at an excitation frequency of 400 

Hz by the original modal formulation and the modified assumed modes approach 

is presented in Figure 6.3. In this test case, the actuators were positioned as il- 

lustrated in Figure 6.1, and the input disturbance was located at plate coordinates 

of (240,130) mm. Acoustic microphone sensors were chosen at the previously de- 

scribed field points. As indicated by the acoustic directivity pattern, a significant 

difference is noted in the controlled acoustic response of the plate. Upon including 

the mass loading of the shaker armature and the torsional spring stiffness of the 

support boundaries, the controlled acoustic response was observed to increase in 

the residual acoustic field (i.e. field points other than those chosen for error sen- 

sors). This characteristic was also observed in the experimental results which will 

be presented in the following section. The previous case was presented simply to 

emphasize the dramatic effect that relatively small unmodelled dynamics can have 

on the controlled acoustic response. By no means is the model assumed to be perfect 

at this point. Certainly wave conversion occurs at the boundaries of the structure 

where traveling extensional waves couple with flexural waves. In addition, while the 

dynamic model of the piezoelectric actuator was determined appropriate for studies 
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of this type (Fleming 1990, Clark et al., 1991(a,b)), the accuracy for computing the 

modal response of the structure was measured at at 45% for the dominant struc- 

tural modes and less for the residual modes. 

By implementing the assumed modes method in computing the structural response 

of the plate, sufficient accuracy is achieved with the analytical model for investigat- 

ing different sensor designs in active structural acoustic control, which is the thrust 

of this work. Thus for the remainder of the theoretical test cases presented in this 

work, a finite dynamic range of 40 dB will be imposed, and the modal response of 

the structure will include the mass loading of the shaker as well as the torsional 

stiffness at the boundaries. In addition, all theoretical acoustic directivity patterns 

presented in this work are computed at a radius of 1.6 m which corresponds to the 

radius of the traverse used to measure the directivity pattern. This radius does not 

satisfy the far-field conditions outlined earlier for the frequency range of interest, 

and hence all computed directivity patterns are obtained from numerical integration 

of Rayleigh’s integral to provide the best possible basis for comparison. 

6.2 Microphone Error Sensors 

Microphones were initially implemented as error sensors in the control approach 

to provide a foundation for this work. As previously discussed, these sensors were 

used to study the physical limitations of the control approach and to identify er- 

rors in the analytical model. Control results obtained while implementing these 

error sensors provide a basis for comparison since the goal is to control the radiated 

sound. In addition, results from control experiments conducted while implementing 
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microphone erro: sensors were studied to determine the appropriate method of in- 

terpreting the results and conveying the physical mechanisms of control. Two such 

test. cases which encompass the physical mechanisms of structural acoustic control 

are presented. The first test case corresponds to on-resonance excitation near the 

(3,1) mode of the plate at an excitation frequency of 349 Hz. The second test case 

corresponds to off-resonance excitation at an excitation frequency of 400 Hz. 

6.2.1 On-Resonance Response (349 Hz) 

For the on-resonance case, the measured acoustic directivity pattern of the baffled 

simply supported plate is presented in Figure 6.4. Up to three control channels 

were implemented while the number of error sensors were maintained at three for 

the duration of the test. In this study, the number of control channels will always 

pertain to the number of control outputs implemented. Since the objective was to 

minimize the radiated sound globally, the maximum number of acoustic error sen- 

sors, three, were implemented for each control case. For this particular test, the 

input disturbance, which was created with the shaker, was located at spatial coordi- 

nates of (240,130) mm on the plate and the piezoelectric actuators were positioned 

as discussed in the previous section and as illustrated in Figure 6.1. In the legend 

of Figure 6.4, C# indicates the control actuator used and the numbers -45, 0, and 

45 are used to indicate the angle, @ in units of degrees, about the midplane of the 

plate where each microphone error sensor was positioned. Rather than confuse the 

figure with directions for both @ and ¢, a negative sign was used to designate the 

direction corresponding to ¢ = 180°. 
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As indicated by the acoustic directivity pattern of Figure 6.4, little if any improve- 

ment in sound attenuation was obtained for the on-resonance response of the simply 

supported plate upon increasing the number of control inputs. Even at the posi- 

tions of the error microphones, an increase in attenuation of only 1 dB was observed 

with increasing rumber of control inputs. As much as 40 dB of sound attenuation 

was noted in the region between —45° and +45°, while the average level of sound 

attenuation was on the order of 30 dB. 

For comparison, the predicted uncontrolled and controlled acoustic response of the 

structure is presented in Figure 6.5. As discussed earlier, the assumed modes method 

was used to predict both the structural and acoustic response of the plate. The input 

force used to predict the response was obtained by measuring the magnitude of the 

force input to the plate with the force transducer discussed in chapter 5. The single 

channel control results correspond quite well with those measured in the anechoic 

chamber. However, greater deviation between theory and experiment is noted with 

increasing number of control channels. Details noted in the directivity pattern for 

the two and three channel control cases were not observed in the measured response 

presented in Figure 6.3. In addition, the “notches” typically expected at the field 

points chosen for the microphones are not apparent since the level of attenuation was 

limited to 40 dB as discussed earlier. In theory, the structural and acoustic response 

of the structure can be driven to nearly zero for on-resonance applications. While 

general levels of sound attenuation are acceptable, the noted differences observed in 

the multi-channel control case are proposed due to a number of nonlinearities. 

As noted previously the accuracy of the model for predicting the modal response of 
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the structure based upon excitation with piezoelectric control actuators decreases 

with increasing number of piezoelectric control actuators implemented (Fleming, 

1990 and Clark et al., 1991(a,b)). In essence, if only +5% error is associated with 

a single control actuator, this error compounds as the number of contro! actuators 

increases. In addition, slight errors in the position of the traversing microphone can 

result in deviations in the directivity patterns. Any asymmetry in the plate as well 

as nonlinearities introduced by the boundary conditions contribute to the noted de- 

viation. Finally the baffle is of finite dimensions which is in contrast to the assumed 

infinite extent required to develop the analytical model for the acoustic response 

of the structure. These noted discrepancies are not outlined to discredit the work 

presented, but merely to explain deviations observed in the details of the acoustic 

directivity patterns when comparing theory and experiment. In general, the overall 

levels predicted for the acoustic response are in agreement with that measured in 

the anechoic chamber. 

As outlined in Appendix C, the modal response of the plate was decomposed into 

the eigenfunctions of the simply supported plate. While the closed-loop eigenfunc- 

tions of the structure are in general different than the open-loop eigenfunctions as 

previously demcnstrated by Burdisso and Fuller (1991), the modal response was 

represented in terms of the uncontrolled modes of the structure such that the re- 

sponse before and after control could be compared. Considering the experimental 

modal distribution presented in Figure 6.6, one readily observes that the mechanism 

of control involves modal suppression. Modal suppression was previously defined by 

Fuller et al., (1989(b)) and involves the uniform reduction of all modal amplitudes 

(i.e. the total plate response is attenuated). However the dominant (3,1) mode was 
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reduced by approximately 15 dB, which does not account for the 30 dB of global 

sound reduction. Upon further inspection, one observes that the response of the 

(1,1) mode increased a small amount and is approximately 10 times less than that 

of the (3,1) mode. Since the radiation efficiency of this mode is approximately 10 

times that of the (3,1) mode as indicated in Figure 1.1 at the frequency of opera- 

tion, one concludes that the remaining attenuation in the sound field resulted from 

modal restructuring. In modal restructuring, the amplitudes of modes can increase; 

however, phasing between modes is such that destructive interference occurs in the 

acoustic field. For the case presented, this corresponds to the (3,1) mode and (1,1) 

mode being 180’ out of phase with each other when control is applied. The slight 

increase in the (2,2) mode is of little significance since its radiation efficiency is sev- 

eral orders of magnitude below that of the (3,1) mode as illustrated in Figure 1.1. 

Thus upon achieving control, the overall radiation efficiency of the plate is reduced. 

While this method of analyzing the structural response is relatively simple for on- 

resonance test cases, interpretation is complicated when studying off-resonance re- 

sponse. To alleviate this problem, the wavenumber transform was computed from 

the decomposed modal response to convey the mechanisms of structural acoustic 

control. The wavenumber transform of the modal response presented in Figure 6.6 

is illustrated in Figure 6.7. Only a finite number of modes were obtained from 

the modal decomposition due to limitations imposed by the number of accelerome- 

ters used in the array to measure the structural response of the plate. Hence, the 

wavenumber transform is based simply on those modes resolved from the experi- 

mental modal decomposition. For the frequency range of excitation in this study, 

the number of modes included in the modal decomposition is sufficient to obtain an 
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accurate description of the structural response. 

As indicated, a uniform reduction in both the supersonic and subsonic regions oc- 

curred, which supports the conclusion that the primary mechanism of control was 

modal suppression. Note that the supersonic region lies between k = —6.5 and 

k = 6.5 in Figure 6.7. In reality, the wavenumber transform is computed in two 

dimensions; however, for visual clarity only one axis is presented in this work, cor- 

responding to the axis of the traversing microphone used to measure the acoustic 

directivity pattern. One can readily determine the mechanism of control by studying 

the change in the supersonic region of the wavenumber transform since this region 

corresponds to the radiated sound to the acoustic far-field. Also note that the peaks 

in the subsonic region of the wavenumber transform correspond to a structural 

wavenumber of approximately 24, which agrees well with the predicted structural 

wavenumber of the (3,1) mode (i.e. k, = mr/L, = 24.8). 

6.2.2 Off-Resonance Response (400 Hz) 

The simply supported plate was driven with the shaker located at the same co- 

ordinates as that of the previous test case at an excitation frequency of 400 Hz 

which lies between the resonant frequencies corresponding to the (3,1) and (1,3) 

structural modes. The acoustic directivity patterns corresponding to the measured 

uncontrolled and controlled response are presented in Figure 6.8. In contrast to 

the previous test case, the level of acoustic attenuation increased markedly with 

increasing numbers of control inputs. While sound attenuation on the order of 5 dB 

was noted with the single control actuator test case, approximately 20 dB of global 
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sound reduction was observed when implementing three control actuators. 

The corresponding predicted acoustic directivity patterns for the multi-channel con- 

trol cases are presented in Figure 6.9 for comparison. As in the on-resonance test 

case, the measured and predicted directivity patterns for the single input control 

case are very similar both in magnitude and shape. Some characteristics of the di- 

rectivity pattern are lost as the number of control inputs increases; however, general 

levels of acoustic attenuation compare well. The deviation in the measured and 

predicted acoustic response noted near the boundaries of the baffle are proposed 

due to the finite dimension of the baffle used in the physical system. The obvious 

“notches” created at the spatial field points of the microphones are predicted and 

measured as indicated in Figure 6.8 and Figure 6.9 for the three input control case. 

In this case, since the number of inputs equals the number of outputs, the structural 

response can be arranged such that the response is driven to zero at the accuracy 

of the signal processing board. This result is not apparent when the number of 

control inputs is less than the number of error sensors since the system is under 

determined. Based upon this observation, in typical operating conditions it may be 

advantageous to have more error sensors than control actuators to reduce the level 

of control spillover into the residual acoustic field. Driving the response at the error 

sensors to zero can lead to spillover as illustrated in Figure 6.2. Thus the increased 

level of acoustic attenuation at the chosen error microphones can be detrimental to 

the levels of attenuation obtained in the residual acoustic field. 

Considering the modal decomposition of the response of the structure presented in 

Figure 6.10, one quickly recognizes that the primary mechanism in achieving control 
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is modal restructuring. The modal response and hence the total vibration response 

of the plate increases as sound reduction is achieved in the acoustic field. Thus the 

overall radiation efficiency of the controlled structure decreases through destructive 

interference in the acoustic field. 

The physical mechanisms of control are more readily conveyed in the wavenumber 

transform presented in Figure 6.11. As shown in Figure 6.11, the response in the 

supersonic region of the wavenumber transform decreases significantly under con- 

trol conditions. The supersonic region is defined between k = —7.4 and k = 7.4 

for the frequency range of interest as indicated in Figure 6.11. The response in the 

subsonic region is observed to increase to a level beyond that of the uncontrolled 

case; however, this is of little concern since the subsonic components do not radiate. 

As previously outlined, this is characteristic of modal restructuring and is thus the 

method of achieving a lower radiation efficiency of the structure. Sound reduction 

has been achieved while the plate response has increased! One should note that 

modal restructuring tends to occur in off-resonance acoustic control applications 

since the modal density is richer, resulting in greater opportunity for interactions 

between structural modes. 

6.3. Polyvinylidene Fluoride Error Sensors 

A variety of sensing techniques, both structural and acoustic were evaluated with 

specially design PVDF sensors. Rectangular structural sensors as well as shaped 

structural sensors were tested to determine the most appropriate method of imple- 

mentation. In addition, acoustic near-field sensors were designed from the material 
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and implemented in the control approach. Results from each of these unique sens- 

ing techniques as applied to active structural acoustic control are discussed in the 

following sections. 

6.3.1 Rectangular Strip PVDF Sensors 

Initial studies were performed implementing two piezoelectric control actuators and 

two rectangular strips of PVDF as structural error sensors as discussed in section 4.1 

and presented ir. Figure 4.1. (The number of control actuators must always be less 

than or equal tc the number of error sensors to assure that the feed forward LMS 

algorithm converges to a minimum.) These sensors were the initial prototypes for 

achieving wavenumber filters for active structural acoustic control. Only two PVDF 

sensors were required to perform the desired filtering in the x and y-direction of 

the structure to provide an estimate of the structural acoustic response of the more 

efficient radiating modes. The details of the design are outlined in section 4.1. This 

prototype sensor design was based upon the observation that the radiation efficiency 

of modes with odd modal indices is greater than that of modes with even modal 

indices for low k/k,. Hence these sensors were implemented such that the response 

of modes for which both modal indices were even would not be observed. While 

each of these sensors selectively filters even modes in their respective direction (i.e. 

(even,*) modes in the x-direction and (*,even) modes in the y-direction), a true two 

dimensional sensor would be required to eliminate the response of all modes with an 

even modal indice. However, due to the radiation efficiency of some (*,even) modes 

and (even,*) modes, this is not necessarily desirable. 
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Two test cases are presented for this preliminary study, both on and off-resonance. 

In each test case, two PVDF error sensors were implemented in the cost function 

and thus two piezoelectric control actuators were utilized to achieve control. As 

illustrated in Figure 4.1, the actuators are positioned on the structure with respect 

to nodal lines of modes with odd modal indices to increase control authority over 

these modes. Since the objective is to yield a controlled acoustic response similar 

to that obtained with microphone error sensors, results from control experiments 

implementing the PVDF sensors are compared to those implementing microphone 

error sensors at the previously discussed acoustic field points. The wavenumber 

transform of the experimentally obtained modal response was then compared to 

convey the physical mechanisms of control. 

6.3.1.1 On-Resonance Response (349 Hz) 

The plate was driven slightly below resonance for the (3,1) mode in the first test 

case at an excitation frequency of 349 Hz. This excitation frequency was chosen 

since it is nearly impossible to determine the exact resonant frequency of the (3,1) 

mode, coupled with the fact that a 180° phase change occurs on resonance and can 

lead to control instability if the response flips back and forth through this phase 

change. The predicted acoustic directivity pattern for the given sensor design im- 

plementation and frequency of excitation is presented in Figure 6.12. While exact 

details of the cirectivity pattern do not correspond to those of the measured re- 

sponse in Figure 6.13, general levels of predicted sound attenuation match within 

+3 dB. Approximately 20 dB of sound attenuation was predicted and measured 

when implementing the PVDF error sensors. The level of attenuation was predicted 
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to improve by roughly 10 dB when implementing the microphone error sensors. This 

improved level of acoustic attenuation was also measured as evident in the measured 

directivity pattern of Figure 6.13. General trends from these directivity patterns 

compare well and suggest that the analytical model can be used to design PVDF 

structural sensors for active structural acoustic control applications. 

As illustrated by the acoustic response presented in Figure 6.13, sound attenuation 

on the order of 20 dB was obtained when implementing the PVDF structural error 

sensors. In the legend of the figure, “C#” indicates the piezoelectric actuator used 

in the control implementation and “PVDF#” indicates the chosen PVDF error sen- 

sor. Each of the numbered elements is depicted in the plate schematic of Figure 4.1. 

Results from the modal decomposition given in Figure 6.14 indicate that control 

was achieved by modal suppression of the dominant (3,1) mode with an increase in 

the response of the (1,1), (2,2) and (4,1) structural modes. The control spillover 

into the (2,2) mode has little effect on the structural acoustic response due to the 

low radiation efficiency of this mode at k/k, = 0.24; however, the small increase in 

response of the (1,1) mode limits the level of sound attenuation since the radiation 

efficiency of this mode is approximately 10 times greater than that of the (3,1) mode. 

When implementing the microphone error sensors located at +45°, 0° and —45° 

in conjunction with the same piezoelectric control actuators, the level of acoustic 

attenuation improved by approximately 10 dB as indicated in Figure 6.13. Thus 

the residual acoustic response of the structure was observed to decrease by approx- 

imately 30 dB upon applying control as indicated in Figure 6.13. While the general 

shape of the directivity patterns resulting from control with either microphone er- 
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ror sensors or PVDF error sensors is similar, greater levels of acoustic attenuation 

resulted when implementing the microphone error sensors. Referring to the modal 

response presented in Figure 6.14, control was achieved in this case by two mecha- 

nisms. First of all, the dominant (3,1) mode, which is an efficient acoustic radiator, 

was reduced (modal suppression). However some increase in the amplitude of the 

(2,2) mode was observed. As discussed earlier, this spillover into the (2,2) mode 

has little effect on the level of sound radiation since the radiation efficiency of this 

mode is approximately 15 times less than that of the (3,1) mode for k/k, = 0.25 

as can be seen in Figure 1.1. Upon comparing the structural modal response when 

applying control with the PVDF error sensors to that when applying control with 

the microphone error sensors, one observes that the controlled modal amplitudes are 

nearly identical with the exception of the (3,1) mode. Less attenuation of the (3,1) 

mode occurred when using the microphone error sensors. Upon achieving control, 

the (3,1) mode was reduced; however, upon reaching a level where the sound radi- 

ation from the (1,1) mode and (3,1) mode were comparable, the phase relationship 

between the modes was restructured such that the (3,1) mode and (1,1) mode were 

out of phase with each other, explaining the increased level of attenuation observed 

when implementing the microphone error sensors. 

Considering the wavenumber transform of the structural response presented in Fig- 

ure 6.15, the modal suppression and restructuring mechanisms are evident. The 

acoustic wavenumber for the frequency of excitation is 6.5 as illustrated in Figure 

6.15, defining the supersonic and subsonic regions. The response in the supersonic 

region of the wavenumber transform was significantly reduced when using either 

PVDF or microphone error sensors; however, a greater level of attenuation was ob- 

201



  5E-09 

; ee 

4E-09 F- 

3E-09 r 

2E-09 

1E-09 

D
i
s
p
l
a
c
e
m
e
n
t
 
Am

pl
it

ud
e 

(m
) 

    

Le 

    
  

  

      
  

40 
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served when implementing the microphone error sensors. In the subsonic region, the 

amplitudes of the spectrum are greater when applying control with the microphone 

error sensors than that observed when applying control with the PVDF error sensors. 

Recalling the results presented in Figure 6.13, greater levels of sound attenuation 

were observed when implementing the microphone error sensors. This illustrates 

that the modal restructuring required to achieve greater levels of sound attenuation 

with microphone error sensors serves to increase spillover into the subsonic region of 

the wavenumber spectrum in comparison to that resulting from control with PVDF 

error sensors. This spillover can be attributed to the differences noted in the modal 

response of the (3,1) mode corresponding to the two control cases. Thus while less 

sound attenuation was achieved when implementing the PVDF error sensors, the 

level of control spillover was reduced, which could be an important issue if the vi- 

bration response of the structure is also a point of concern. 

6.3.1.2 Off-Resonance Response (320 Hz) 

The second test case was conducted off-resonance at a driving frequency of 320 Hz, 

which lies between resonant frequencies corresponding to the (1,2) and (2,2) modes 

of the structure. The same control actuators and error sensors implemented in the 

on-resonance case were used to achieve control in the off-resonance test case. Before 

conducting the experiments, the sensor design was evaluated with the analytical 

model and results illustrating the controlled acoustic response are presented in the 

directivity patterns of Figure 6.16. As indicated, approximately 10 dB of sound 

attenuation was predicted when implementing the PVDF structural error sensors. 

The general shape of the directivity pattern corresponds well with that measured 
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in Figure 6.17, while the level of acoustic attenuation achieved on the structure 

was approximately 15 dB, slightly greater than that predicted. This difference in 

predicted and measured response could be due to nonlinearities in the structural re- 

sponse, inaccuracies in predicting the actual mass loading of the plate and torsional 

springs at the boundaries or any of the other reasons previously stated to address 

this problem. In any event, correspondence between theory and experiment was 

accurate enough for choosing the given design. 

As indicated in Figure 6.17, approximately 15 dB of global sound attenuation was 

obtained after minimizing the response of the PVDF distributed sensors. The modal 

structural response of the plate given in Figure 6.18 was observed to decrease at ev- 

ery mode under control conditions, with the exception of the (1,2), (1,3) and (4,1) 

modes. Of these three modes, the (1,2) mode is of primary concern since the modal 

amplitude after control is of a comparable level with that of the (3,1) mode before 

control. Fortunately, the radiation efficiency of the (3,1) mode is approximately 3 

times greater than that of the (1,2) mode for k/k, = 0.22, hence the spillover into 

the (1,2) mode does not prevent attenuation of the radiated sound. 

For comparison, microphones positioned at +45°, 0° and —45° were again utilized 

as error sensors, and two channels of control were implemented. As can be seen 

in Figure 6.17, levels of sound attenuation on the order of 20 dB resulted. It is 

apparent from Figure 6.18 that in the case implementing microphone error sensors, 

control was achieved through modal suppression of the (3,1) and (1,1) mode as well 

as modal restructuring between these modes. As demonstrated in the on-resonance 

test case presented in Figure 6.13, the (3,1) mode and (1,1) mode were phased for 
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destructive interference upon achieving control. This again serves to explain why 

the amplitude of the (3,1) mode was attenuated less when implementing the micro- 

phone error sensors than when implementing the PVDF error sensors. Since the 

radiation efficiency of the (1,1) mode is approximately 10 times greater than that 

of the (3,1) mode, the modal response of the (3,1) mode must be greater than that 

of the (1,1) mode for destructive interference to occur (with the appropriate phase 

relationship). The residual plate response thus had a lower overall radiation effi- 

ciency upon achieving control with the microphone error sensors. This lower overall 

radiation efficiency is achieved primarily through modal suppression of the domi- 

nant acoustic radiating modes and lower order modal restructuring between these 

modes. 

The wavenumber transform of the modal structural response presented in Figure 

6.18 is depicted in Figure 6.19. With an excitation frequency of 320 Hz, the corre- 

sponding acoustic wavenumber is 5.9. The amplitudes of the wavenumber transform 

were significantly decreased as illustrated in Figure 6.19, and the method of control 

is again predominantly described by modal suppression whether PVDF or micro- 

phone error sensors were implemented in the control approach. This result was also 

observed in Figure 6.18 with the exception of an increase in the amplitude of the 

(1,2) mode of the structure, resulting from control spillover. As indicated in Figure 

6.19, whether PVDF or microphone error sensors were implemented in the control 

approach, the amplitude of the wavenumber spectrum in the supersonic region as 

well as the subsonic region decreased. However, when implementing the microphone 

error sensors, the amplitude of the wavenumber spectrum was significantly less in 

the supersonic region than in the subsonic region compared to the controlled re- 
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sponse when utilizing the PVDF error sensors. 

The greater levels of attenuation in sound radiation can thus be attributed to the 

spillover into the subsonic region of the wavenumber spectrum. The structural 

wavenumber of the (3,1) mode is 27, which is approximately the location of the 

two maxima corresponding to the controlled response when implementing the mi- 

crophone error sensors. As indicated in Figure 6.18 the controlled response when 

implementing microphone error sensors resulted in less attenuation of the (3,1) mode 

than that resulting from applying contro] with the PVDF error sensors. The phas- 

ing between the (3,1) mode and (1,1) mode serves to further reduce the response 

in the supersonic region at the expense of less attenuation in the subsonic region. 

Thus as observed in the on-resonance test case, the PVDF error sensors result in less 

control spillover in the subsonic region of the wavenumber transform, which may be 

an advantage of these sensors in cases where structural spillover is a problem. 

6.3.1.3 Summary of Rectangular Strip PVDF Sensors 

While significant levels of sound attenuation were obtained when implementing the 

PVDF error sensors for both on and off-resonance test cases, greater levels of sound 

attenuation were observed when implementing the microphone error sensors. This 

results from the fundamental differences in the two sensors. The PVDF error sen- 

sors weight each structural mode as a function of their shape and position on the 

structure (i.e. spatial window created by the sensors as illustrated in Figure 4.2 and 

Figure 4.3) and as a function of the modal indices since the response is proportional 

to the integral of strain over the surface of application as evident in equation (4.2). 
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Hence, the sensor becomes increasingly responsive to higher order modes; however, 

the response of these modes at low frequencies of excitation are filtered due to the 

frequency response characteristics of the structure. When the controlled modal am- 

plitudes of the dominant lower order modes (for structural acoustic control) are of 

comparable leveis with the higher order modes, the PVDF sensor “shifts interest” 

to these higher order modes. This explains why the amplitude of the (3,1) mode 

was always reduced to a level comparable to that of the (1,1) mode. The (3,1) mode 

is weighted approximately three times greater than that of the (1,1) mode since the 

sensor yields an electrical response proportional to the integral of strain over the 

surface of application. 

In contrast, the microphone error sensors obviously include the structural acoustic 

transfer function and hence are ideal error sensors for this application. The radiation 

efficiency of each mode is automatically included in the cost function since the elec- 

trical response of the microphone is sensitive to the resulting sound radiated from 

each structural mode and not the amplitudes of the structural modes. This serves 

to explain why the (3,1) mode was attenuated less when implementing microphone 

error sensors than when implementing the PVDF error sensors. As the response of 

the (3,1) mode was reduced to a level where the radiation efficiency was comparable 

to that of the (1,1) mode, the phase relationship between the two modes was simply 

configured for destructive interference (i.e. out of phase). When implementing the 

PVDF error sensors, the (3,1) mode was observed to be out of phase with the (1,1) 

mode; however, the amplitude was reduced to a level where destructive interference 

of the acoustic response was not possible since the PVDF sensor is sensitive to the 

integral of strain over the surface of application. 
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6.3.2 Optimal Design of Rectangular PVDF Structural 

Sensors 

Given the success obtained with the rectangular strip PVDF structural error sensors, 

the optimization routine described in section 4.2 was implemented to determine the 

optimal dimension and location of rectangular PVDF error sensors for given design 

applications. To demonstrate the feasibility of the optimal design theory, two test 

cases were chosen. In both cases, the structure was driven at an excitation frequency 

of 550 Hz. Optimal design techniques, as discussed in Chapter 4, were utilized to 

determine the optimal location of the piezoelectric control actuators and the optimal 

size and location of the PVDF structural sensors. Previous work by Wang et al., 

(1991(b)) was devoted to optimal design procedures for single and multiple actuator 

control applications. Since the focus of this work concerns design and implementa- 

tion of sensors in active structural acoustic control, the reader is referred to several 

references by Wang et al., (1991(a,b)) as well as a comparison of experimental and 

theoretical results by Clark and Fuller (1991(e)) for more details on optimal design 

implementing piezoelectric control actuators. The two cases presented in this work 

are devoted to a single-input/single-output optimal design for the simply supported 

plate and a three-input/three-output optimal design. 

6.3.2.1 Single-Input/Single-Output (550 Hz) 

The first test case considered involved optimization of the position of a single piezo- 

electric control actuator and the size and position of a single PVDF structural error 

sensor. The optimal design approach was outlined in section 4.2 and as discussed 
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the objective function was formulated as an estimate of the radiated acoustic power. 

Hence the design optimization was conducted such that the control actuator and 

PVDF error sensor were optimally configured to minimize the radiated acoustic 

power for the harmonic input disturbance chosen. The optimal designs for both 

the control actuator and PVDF error sensor are presented in Figure 4.7 of section 

4.2.3 and Figure 4.8 of section 4.2.4.1 respectively. The structure was driven with a 

shaker positioned at spatial coordinates of (240,130) mm from the lower left corner 

of the plate as in previous cases discussed. Control was achieved by minimizing the 

response of the optimal PVDF structural error sensor with a piezoelectric control 

actuator. As illustrated in Figure 6.20, approximately 15 dB of sound attenuation 

was predicted based on the analytical model for the optimal design case. Since the 

PVDF sensor was designed to yield a controlled acoustic response approximating 

that of an array of microphones placed in the acoustic field, the controlled response 

of the structure was predicted implementing acoustic error sensors at field points of 

6 = —45°, 6 = —0° and @ = 45° as discussed in the previous test cases presented. As 

illustrated in Figure 6.20 marginal improvement in sound attenuation is predicted 

near the baffle (i.e. 6 = +90°); however, less attenuation is predicted normal to the 

plate at 6 = 0° when implementing the microphone error sensors. 

The optimal design was implemented on the test structure and the plate was posi- 

tioned in the baffle of the anechoic chamber as illustrated in Figure 5.14. Results 

from the controlled response of the plate implementing the optimal design coordi- 

nates for the actuator and sensor are illustrated in Figure 6.21. From the acoustic 

directivity pattern, one observes that the measured level of sound attenuation was 

close to 15 dB when implementing the optimally designed PVDF error sensor and 
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20 dB when implementing the microphone error sensors. The general shape of the 

directivity pattern for the uncontrolled and controlled acoustic response are in agree- 

ment as well as the predicted level of response as is apparent when comparing the 

results from Figure 6.20 to those of Figure 6.21. Hence the analytical models used 

to optimize the position of the control actuator as well as the position and dimen- 

sions of the PVDF error sensor proved successful for the single-input /single-output 

control case. 

Further analysis of the structural response before and after control indicates that 

the acoustic response was attenuated primarily by modal reduction when imple- 

menting the PVDF error sensor or the microphone error sensors as is evident in 

Figure 6.22. The modal structural response before control was dominated by the 

(4,1), (1,1), (2,1), (1,2) and (2,2) modes as illustrated. The radiation efficiency of 

the (4,1) mode at this excitation frequency, corresponding to k/k, = 0.3, is approx- 

imately one fourth that of the (1,1) mode as is the radiation efficiency of the (1,3) 

mode. Clearly the response of these modes must be reduced to attenuate the far-field 

sound radiation. Consider the modal weighting distribution for the optimal PVDF 

sensor which was previously presented in Figure 4.9. All of these modes are well 

represented in the electrical response of the sensor. Notice that the (3,2) mode is 

essentially unobserved by the sensor due to its location and dimension. This result is 

due to the poor radiation efficiency of this mode at the chosen excitation frequency. 

As a result, little attenuation of this structural mode was observed upon achieving 

control as indicated in Figure 6.22. In addition, notice that the controlled struc- 

tural response when implementing the microphone error sensors is nearly identical 

to that when implementing the optimal PVDF error sensor. Hence the desired cost 
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function (i.e. the acoustic response), is incorporated into the optimally designed 

PVDF sensor. A wavenumber transform of the structural response also confirms 

the observation that the dominant mechanism in the control implementation was 

modal reduction as is apparent in Figure 6.23. As in the modal response of Figure 

6.22, little difference is observed between the measured response when implement- 

ing the PVDF error sensor or the microphone error sensors. The same structural 

acoustic response was thus obtained with one optimally designed structural sensor 

as opposed to three acoustic error sensors. In addition to the fact that the PVDF 

sensor is more compact and less expensive, it has reduced the order of the control 

system. 

6.3.2.2. Three-Input/Three-Output (550 Hz) 

The second design incorporated three optimally positioned piezoelectric control ac- 

tuators and three optimally positioned and dimensioned PVDF structural error 

sensors as illustrated in Figure 4.7 of section 4.2.3 and Figure 4.8 of section 4.2.4.1 

respectively. The predicted acoustic response of the controlled simply supported 

plate is presented in Figure 6.24. Only 2 dB of improvement in the level of sound 

attenuation is predicted when implementing the three optimal contro! actuators and 

the three optimal PVDF error sensors as is apparent upon comparing the directivity 

patterns presented in Figure 6.20 and Figure 6.24. In contrast, approximately 15 dB 

of improvement in the sound attenuation is predicted when implementing the three 

actuators in conjunction with the microphone error sensors. This limit, which is 

imposed by the implementation of the structural error sensors, is thought to be due 

to the fact that the phase relationship between any given structural mode cannot 
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be changed by the filtering characteristics of the rectangular sensors. Hence, modal 

restructuring cannot be incorporated into the optimal PVDF sensor design to the 

same degree obtained when implementing a point microphone error sensor. 

Results from the experimental study support those obtained from the analytical 

models. As indicated in Figure 6.25, close to 25 dB of sound attenuation was 

achieved when controlling the structure with the three piezoelectric actuators and 

three PVDF structural error sensors. Upon implementing the microphone error sen- 

sors, the level of sound attenuation was on the order of 35 dB as illustrated in the 

directivity pattern. Hence an additional 10 dB of sound attenuation was gained 

by implementing the microphone error sensors as opposed to the structural PVDF 

error sensors. However, 25 dB of sound attenuation is certainly an acceptable level 

when incorporating the structural error sensors to achieve the desired “adaptive 

structure”. Since the spatial filtering characteristics of the rectangular PVDF error 

sensors are such that specified phase relationships between modes cannot be incor- 

porated in the design, a finite limit exists in the level of sound attenuation which 

can be achieved, unless of course a sufficient number of control actuators are used 

to drive the total response of the structure to zero. 

The modal response of the structure upon achieving control is very similar to that 

of the modal response for the single channel control case as is illustrated in Figure 

6.26. Again, the dominant mechanism of control is modal suppression; however, 

further insight into the control process can be gained by studying the wavenumber 

transform of the structural response plotted in Figure 6.27. One observes that the 

magnitude of the wavenumber spectrum was reduced in both the subsonic and su- 
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personic region. However, in the case where microphones were implemented as error 

sensors in the cost function, greater reduction is observed in the supersonic region, 

while less reduction is observed in the subsonic region compared to that when imple- 

menting the PVDF structural sensors. Hence, as discussed earlier, this additional 

attenuation of sound is due to lower order modal restructuring upon minimizing the 

response of the structure. The reduced modal response is further rearranged for de- 

structive interference between modes when implementing the acoustic error sensors 

yielding greater levels of attenuation in the radiated sound and spillover into the 

subsonic region of the wavenumber spectrum. 

6.3.2.3 Sumrnary of Optimal Design 

Optimal design techniques were implemented to determine the optimal location 

of piezoelectric control actuators and the optimal size and location of rectangular 

PVDF structural error sensors. As illustrated in Figure 4.7, the optimal locations 

for the control actuators were in the vicinity of the corners of the plate. This makes 

physical sense when one considers the modal response of the structure. As the num- 

ber of modes contributing to the response of the structure increases, the likelihood 

of locating an actuator close to a nodal line for a given mode increases, rendering 

it ineffective for controlling that mode. As the actuator nears the corner of the 

structure, the number of nodal lines covered by the actuator is decreased. Hence an 

infinitely small actuator placed in the corner of the plate could theoretically couple 

with all structural modes; however, due to the infinite input impedance of the struc- 

ture at this location, this approach is not practical in view of driving the actuator 

with some finite voltage. In addition, in some cases locating an actuator on or near 
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a nodal line is valid, specifically if there is no need to control the mode (i.e. the 

mode has a low radiation efficiency with respect to other dominant modes). 

Considering the optimal locations and dimensions of the PVDF structural error 

sensors, one quickly observes that in the single channel control implementation, the 

sensor is located at the edge of the plate as illustrated in Figure 4.8. One also 

observes that it is positioned about the anti-node of the (4,1) mode. Hence the 

electrical response of the sensor is most sensitive to the (4,1) mode of all the plate 

modes contributing to the response. Significant response to the (1,3) mode and (1,1) 

mode is observed as well. Considering the discussion in Chapter 1 pertaining to edge 

radiators and the radiation efficiency, the location and dimension of this sensor is 

logical. The structural acoustic response of the plate is controlled by minimizing 

the response of the efficient acoustic radiators, the (1,1), (1,3) and (4,1) modes, and 

the edge radiating (1,3) mode is controlled by the location of the actuator along the 

appropriate edge. The multi-channel control case is obviously more complicated; 

however, one of the PVDF sensors is observed to be located and dimensioned in a 

similar manner to that of the single channel control case. Greater insight into the 

multi-channel control case can be gained by considering the acoustic intensity in the 

z-direction at the surface of the structure (computed as outlined in equation (2.49)). 

The theoretical acoustic intensity of the uncontrolled plate response is presented in 

Figure 6.28. As illustrated, a significant amount of the sound power is radiated 

from the edges of the plate. Upon achieving control, the total power is minimized; 

however, a significant reduction in the sound radiation at the edges is also observed 

as illustrated in Figure 6.29. Hence, the locations of the PVDF structural error 

sensors make paysical sense when considering the sound power radiated from the 
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Figure 6.28: Acoustic Intensity of Uncontrolled Plate Response (550 Hz) 
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Figure 6.29: Acoustic Intensity of Controlled Plate Response with 3 Actuators (550 

Hz) 
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structure. 

6.3.3 Shaped Modal PVDF Structural Sensors 

Design methods for achieving shaped sensors based upon the modal response of the 

structure were previously outlined in Chapter 4. In the case of the simply supported 

beam, the shaped modal sensor can be readily achieved since the variation in the 

polarization profile as a function of position on the structure can be incorporated 

into the shape of the sensor as illustrated in Figure 4.15 of section 4.3.2. For the 

simply supported plate, the response is two-dimensional and thus requires a three- 

dimensional shaped sensor to achieve the desired variation in polarization profile as 

a function of beth the x and y-direction. The surface of the plate must be totally 

covered by the PVDF and the polarization profile must vary as a function of the z- 

direction of the structure. Since a three-dimensional sensor is not readily realizable 

at this stage, experiments were conducted only for the simply supported beam and 

corresponding shaped sensor design. 

To demonstrate the potential of shaped modal sensors, a PVDF sensor was designed 

to control sound radiation in the far-field at an angle of 0 = 0° from the baffled sim- 

ply supported beam. This angle was chosen since the modal acoustic response of the 

structure is independent of frequency at this angle as illustrated in equation (4.43). 

In addition, a sensor designed to respond only to the first structural mode of the 

beam was implemented to demonstrate the significant difference in the controlled 

acoustic response with slight variations in the sensor design as illustrated in Figure 

4.15. Control experiments were conducted with the simply supported beam, which 
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measured 380 mm x 40 mm x 4.57 mm as previously discussed in chapter 5. The 

input disturbance was positioned 240 mm from the end of the beam as illustrated 

in Figure (5.12), and the control actuator measured 38 mm long x 30 mm wide and 

was positioned 95 mm from the end of the beam. The actuator was centered over 

the nodal line of the fourth mode since this mode does not significantly contribute 

to the acoustic response of the structure at the chosen frequencies of excitation. The 

predicted and measured acoustic directivity patterns are compared in the following 

sections for the shaped sensor design implementation. 

6.3.3.1 Off-Resonance Response (660 Hz) 

For an excitation frequency of 660 Hz, which is just below the resonant frequency of 

the third structural mode, a significant reduction in the radiated sound is predicted 

when minimizing the response of the PVDF “Microphone” sensor as indicated in 

Figure 6.30. However, minimizing the response of the PVDF “Mode 1” sensor re- 

sults in an increased acoustic response for this excitation frequency. This results 

primarily from control spillover into the dominant third structural mode. For the 

range of excitation used in this study, the first and third structural modes are the 

most dominant acoustic radiators. An experiment was conducted in the anechoic 

chamber with a baffled simply supported beam as outlined earlier, and the experi- 

mental results for the identical test case are presented in Figure 6.31. As predicted, 

sound attenuation is achieved when using the PVDF “Microphone” sensor, and the 

sound field increases when using the PVDF “Mode 1” sensor. 

General trends in the predicted and measured acoustic directivity patterns compare 
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Figure 6.30: Predicted Acoustic Directivity Pattern (660 Hz) 
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well, and the magnitude of the response for the controlled and uncontrolled cases are 

within reason. As in the previous test cases with the baffled simply supported plate, 

the most significant difference in the directivity patterns are noted near the baffle, 

which as previously discussed is likely due to deviation from the assumed infinite 

extent of the baffle in computing the theoretical directivity pattern. One should 

also recognize that the “notch” in the controlled acoustic response of the beam does 

not appear at @ = 0° in the theoretical directivity pattern or the measured direc- 

tivity pattern. Recall however that the PVDF microphone sensor was designed to 

yield the same controlled response as that achieved with a microphone positioned 

in the acoustic far-field at 9 = 0°. As previously discussed, due to the dimensions 

of the anechoic chamber and the chosen operating frequency range, the traversing 

microphone position does not satisfy the far-field conditions. The far-field directiv- 

ity patterns are thus not developed at this radius, explaining why the “notch” does 

not appear at the expected angle. 

6.3.3.2 Off-Resonance Response (700 Hz) 

The excitation frequency was increased to 700 Hz, which is 20 Hz above the resonant 

frequency of the third structural mode, and the control experiments were repeated 

to provide another test case. As illustrated in Figure 6.32, little attenuation is ob- 

served in the predicted controlled acoustic response of the beam configured with the 

PVDF “Microphone” sensor; however, an acoustic notch in the directivity pattern 

is observed near 9 = 0°. (Again, since the sensor was designed to yield the same 

controlled acoustic response as a microphone positioned in the acoustic far-field, the 

directivity patterns are not fully developed at the radius used in this study, 1.6 m 
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and hence the notch does not appear at 6 = 0°.) For the PVDF “Mode 1” sensor, 

the predicted acoustic response upon achieving control is greater than that before 

control. Minimizing the response of the PVDF “Mode 1” sensor results in spillover 

into the third structural mode, resulting in increased sound radiation. Experimental 

results for the same test case confirm the predicted acoustic response as illustrated 

in Figure 6.33, suggesting that the desired sensor shape was achieved. As in the pre- 

vious test case, both the magnitude and trends of the acoustic directivity patterns 

are within reasonable agreement. The most significant deviation between theory 

and experiment is noted near the baffle, and reasons for this discrepancy have been 

given in the previous sections. 

6.3.3.3 Summary of Modal Shaped PVDF Sensors 

In both of the test cases previously presented, one might question why an acous- 

tic notch in the directivity pattern was not observed at an angle corresponding to 

exactly 6 = 0°. In all test cases presented, the acoustic response of the structure 

was computed by numerically integrating Rayleigh’s integral at the chosen acoustic 

field point since all measurements in the anechoic chamber were taken at a radius 

of 1.6 m from the structure. As discussed earlier, this radius does not satisfy the 

far-field conditions required to approximate the acoustic response. Since the PVDF 

shaped sensor was designed to approximate a microphone positioned at 6 = 0° in 

the acoustic far-field (i.e. a radius much greater than 1.6 m), the notch in the direc- 

tivity pattern is not apparent at exactly 6 = 0°. The dominant acoustic directivity 

patterns which would produce the notch at the desired coordinate are not present at 

the radius required to measure the acoustic response of the structure in the anechoic 
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chamber due to interactions between the non-radiating part of the sound field and 

the radiating part. By predicting the acoustic near-field response analytically, lim- 

itations imposed by the finite dimensions of the anechoic chamber were overcome, 

and good correlation between experimental and analytical results were observed in 

the region between —45° and 45° away from the baffle. As a final comment, one ob- 

serves that a greater level of global attenuation occurred for an operating frequency 

of 660 Hz than 700 Hz. The resonant frequency of the third mode for the simply 

supported beam used in this study was at 680 Hz. Hence, upon passing through the 

resonant frequency, a phase change between the first and third mode of the beam 

occurred. This phase change resulted in attenuation at the desired angle with very 

little attenuation predicted or observed in the remaining residual acoustic field. 

6.3.4 Optimally Located PVDF Acoustic Near-Field Sen- 

sors 

Acoustic near-field sensors constructed from PVDF were optimally positioned in the 

x and y-direction with respect to the plate surface to control the radiated sound. 

The relative positions of the near-field sensors are illustrated in Figure 4.11 of sec- 

tion 4.2.4.2. Due to the computational requirements discussed earlier, optimization 

of both size and dimension was not feasible. Since some deviation was noted be- 

tween the measured and predicted response of the sensor, as illustrated in Figure 

5.9, sensors of similar size were implemented in the multi-channel control case such 

that the magnitude and phase response of the sensors displayed similar character- 

istics. The two test cases were chosen at an excitation frequency of 550 Hz since 

a significant number of modes contribute to the structural and acoustic response 

at this frequency. In addition, the optimal actuator locations illustrated in Figure 
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(4.7) can be used for this study as well. A single-input/single output control case 

is presented first, and the multi-channel control case was performed with two ac- 

tuators and two acoustic near-field sensors. Three channels were not implemented 

since the computational time required to optimize the two sensor control case was 

on the order of 24 hours on the IBM VM1 computing system as discussed earlier in 

Chapter 3. Results from this study are presented below. 

6.3.4.1 Single-Input/Single-Output (550 Hz) 

The predicted acoustic response for the single-input/single-output optimal design 

is presented in Figure 6.34. In the legend of the figure, the use of an optimal ac- 

tuator is designated by the symbol, “OPT-PZT”, and the use of an optimal acous- 

tic near-field sensor is designated by the symbol, “OPT-NFPVDF”. As illustrated, 

upon optimizing the position of the acoustic near-field sensor, the predicted level of 

sound attenuation was approximately 15 dB as was the case when implementing the 

microphone error sensors with the same optimally configured piezoelectric control 

actuator. The predicted and measured results are consistent as is apparent when 

comparing the directivity patterns of Figure 6.34 to those of Figure 6.35. Approxi- 

mately 15 dB of sound attenuation was achieved whether the optimally configured 

acoustic near-field sensor was implemented in the control approach or the three mi- 

crophones positioned as in the previous test cases. 

Comparing the experimental modal response of the structure before and after con- 

trol one observes that both modal suppression and modal restructuring play a role in 

reducing the radiated sound pressure. While in both control cases, the modal ampli- 
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tudes were observed to decrease for the most part, some increase in the (1,1) mode 

and (2,3) mode is observed when implementing the microphone error sensors as il- 

lustrated in Figure 6.36. These results are readily interpreted upon considering the 

wavenumber transform of the structural response presented in Figure 6.37. As illus- 

trated, the supersonic region of the wavenumber transform is reduced significantly 

in both cases; however a greater reduction is noted at k, = 0, which corresponds to 

6 = 0 as discussed in chapter 4, for the PVDF error sensors. The observed increase 

in sound attenuation results from the lower order modal restructuring which results 

in control spillover in the subsonic region of the wavenumber spectrum. 

6.3.4.2 Two-Input/Two-Output (550 Hz) 

The second test case was conducted with two control actuators and two optimally 

positioned acoustic near-field sensors as discussed earlier in section 4.2.4.2 and de- 

picted in Figure 4.11. As illustrated in the directivity pattern of Figure 6.38, the 

predicted level of acoustic attenuation improved by roughly 10 dB when implement- 

ing the microphone error sensors in the control approach as compared to the PVDF 

acoustic near-field sensors. Sound attenuation on the order of 20 dB was predicted 

when implementing the PVDF near-field sensors, and as illustrated in Figure 6.39, 

close to 20 dB of sound attenuation was measured. This is roughly a 5 dB improve- 

ment in the level of acoustic attenuation observed in the single channel control case 

discussed previously. Upon implementing the microphone error sensors, approxi- 

mately 30 dB of sound attenuation was predicted, and as illustrated in Figure 6.39, 

roughly 30 dB of sound attenuation was measured. The predicted and measured 

controlled and uncontrolled acoustic directivity patterns are similar in shape as well, 
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suggesting that the analytical models were sufficient for achieving the desired de- 

sign. 

Upon comparing the modal response of the structure before and after control, one 

recognizes that the dominant mechanism of control is modal suppression. All struc- 

tural modes, with the exception of the (2,3) mode which increased only 5%, were 

reduced as can be seen in Figure 6.40. The dominant acoustic radiating (4,1), (1,3) 

and (1,1) modes were reduced significantly under control conditions. 

As expected, the wavenumber spectrums of the structural acoustic response corre- 

sponding to the two control cases are similar as illustrated in Figure 6.41; however, 

greater reduction is noted in the supersonic region of the wavenumber transform 

when implementing the microphone error sensors in the control approach. The su- 

personic region is defined between k = —10.1 and k = 10.1 as indicated in Figure 

6.41. A significant reduction is observed in the subsonic region of the spectrum as 

well, which is characteristic of the mechanism of control termed modal suppression. 

Hence in the two-channel control case presented here, the acoustic near-field sensors 

function as predicted in achieving the desired controlled response of the structure. 

However, as was the case with the optimally configured structural PVDF sensors, 

the level of acoustic attenuation possible appears to be limited. 

6.3.4.3 Summary of Acoustic Near-Field PVDF Sensors 

Results from control experiments performed with the PVDF acoustic near-field sen- 

sors confirm that these sensors can be optimally positioned near the surface of the 
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structure for achieving control of far-field sound radiation. In this case, the sensors 

were positioned 2.54 cm from the surface of the structure to simulate realistic oper- 

ating conditions, which would dictate that the sensor be very close to the vibrating 

surface. The design goal is to place the acoustic near-field sensor as close to the 

vibrating surface as possible, yet maintain the ability to predict the acoustic far-field 

response at the design frequency. This goal is analogous to the concept of acoustic 

holography. Hence the optimal distance from the surface of the structure was not 

specifically studied; however, sensor position was optimized at a variety of fixed 

distances from the plate surface as discussed in section 3.2.4.2. In general, little 

variation in the optimal position of the sensors was noted when located between 2 

and 10 cm from the surface of the plate. 

The fundamental limitation in implementing these sensors in active structural acous- 

tic control applications results from the intense requirements on CPU time for deter- 

mining the optimal design. Since the distributed acoustic response of the structure 

over the surface of the error sensor must be computed, a significant number of 

acoustic near-field computations must be made at each trial step as well as when 

estimating the gradient of the constraints and objective function numerically. Even 

for the simply supported plate chosen in this study, the Rayleigh integral must be 

evaluated numerically in the acoustic near-field. Hence for practical implementation 

this must be confronted as the primary deterrent for application. However physical 

implementation may dictate the use of these sensors in some applications. 
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6.3.5 Optimally Weighted Discrete/Distributed PVDF 
Structural Sensors 

The final test case was studied with the analytical model only and was investigated 

specifically to provide a foundation for future work in designing shaped sensors for 

ASAC. An array of distributed rectangular PVDF error sensors (nine) were modelled 

on the surface of the plate as illustrated in Figure 4.12 of section 4.2.5. The response 

of each sensor was weighted with a number between +1 and —1 and summed to cre- 

ate the response of the “weighted” distributed sensor. As a result, for each different 

design implementation (i.e. test frequency), the same sensors can be used to create 

the desired equivalent error sensor by simply changing the optimal weights for each 

application. Optimal design techniques were implemented to determined the opti- 

mal weights for a harmonic point force disturbance located at spatial coordinates 

of (240,130) mm and driven at an excitation frequency of 550 Hz as in the previous 

optimal design tests. The PVDF sensor array and optimal weighting configuration 

were previously presented in Figure (4.12). 

As illustrated in Figure 6.42, the predicted controlled acoustic response of the struc- 

ture results in 15 dB of sound attenuation. Comparing the level of attenuation pre- 

dicted in Figure 6.42 with that predicted in Figure 6.20, the controlled structural 

acoustic response is of the same order of magnitude as that obtained with the single 

optimally designed PVDF sensor. Considering the consistency in the predicted and 

measured response of the previous study, it is plausible to expect this level of atten- 

uation upon conducting experiments implementing this design approach. A neural 

network is proposed to select the optimal weights for each frequency of excitation 

and is suggested as the basis for future work with distributed PVDF structural 
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sensors since the same array of sensors can be used for an input disturbance with 

varying frequency content. 

6.3.6 Summary of PVDF Sensors 

A number of structural and acoustic near-field sensors of different forms constructed 

from PVDF have been studied for active structural acoustic control applications. 

Optimization of both the size and position of rectangular structural PVDF error 

sensors proved valid in achieving the same controlled acoustic response as obtained 

when implementing microphone error sensors. The optimal design was demonstrated 

for a harmonic input disturbance, and while the results from a sensitivity analysis 

are not given here, the controlled structural acoustic response (i.e. radiated field) 

was found to be sensitive to changes in the input frequency of the disturbance. How- 

ever, as long as the optimal design frequency and thus operating range is restricted 

between resonant frequencies of the structure, the phase relationship between modes 

remains fixed and thus significant levels of acoustic attenuation can be obtained even 

when operating away from the design frequency. In general, the sensor should be 

optimally configured for each specific frequency to be controlled if the maximum 

level of acoustic attenuation is desired since the relative weighting of the structural 

modes changes as a function of frequency. 

In addition to optimizing the structural PVDF sensors, acoustic near-field sensors 

were constructed from the material in the form of a cylindrical plate and optimal de- 

sign techniques were implemented to determine the optimal location of each sensor. 

As with structural sensors, the optimal design was frequency dependent and hence 
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must change with each different input disturbance. In addition, the requirements on 

the CPU increased by two orders of magnitude with these near-field sensors since the 

response of the sensor must be obtained from the near-field acoustic response of the 

structure in the region of application. Considering the fact that the acoustic near- 

field sensors afford no advantage in the frequency band of operation (i.e. they are 

as sensitive to position and frequency as the structural sensors), structural PVDF 

sensors are suggested as the best alternative if this option is possible. However 

acoustic near-field sensors may be the only alternative in some design applications 

which restrict attaching the sensors to the structural surface. 

Modal shaped error sensors were constructed from PVDF and tested as a design 

alternative to the optimally configured rectangular sensors. The PVDF was shaped 

according to the mode shapes such that both the relative phase and magnitude of 

the structural response were incorporated in the design. A test was conducted on a 

simply supported beam, and results indicate that the PVDF sensor can be shaped 

such that the modal weighting corresponds to the radiation filter characteristics 

associated with the far-field sound at a chosen acoustic field point. The primary 

limitation with this design approach concerns applications on two-dimensional struc- 

tures such as simply supported plates. Since the polarization profile is a function 

of two dimensions in this case, a method for practically achieving the desired sen- 

sor weighting is unavailable at this time. Perhaps the best compromise of the two 

designs concerns the implementation of the weighted distributed/discrete array of 

PVDF sensors which was outlined for future work. With this method of application, 

if enough sensors were implemented in the array, a modal sensor could be approx- 

imated if desired. In addition, the weights could be distributed (for example) by 
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a neural network such that multi-frequency or broad-band disturbances could be 

controlled. Thus a variety of design alternatives exist with PVDF error sensors in 

ASAC, and the specific implementation obviously depends on the design require- 

ments. 

6.4 Accelerometer Error Sensors (Model Refer- 
ence Control) 

The final set of error sensors studied for ASAC were accelerometers. As was the 

case with the structural PVDF error sensors, the structural acoustic coupling must 

be incorporated into the control implementation of the accelerometer error sensors. 

Driving the response of an array of accelerometers arbitrarily located on the sur- 

face of a structure to zero with a multi-input/multi-output control approach will 

likely yield some reduction in the acoustic response if the structure is being driven 

on-resonance. However for the off-resonance case, any reduction in the structural 

acoustic response could surely be attributed to luck. Optimal design techniques 

could be implemented to determine the appropriate locations of the accelerometers 

for specific control applications as was done with the PVDF error sensors; however, 

an alternative approach was taken here. 

Since the feed forward version of the filtered-x adaptive LMS algorithm used as the 

basis for control in this work is ideally suited for model reference control, the struc- 

tural acoustic coupling was incorporated in a model to predict the desired response 

at an array of accelerometer error sensors. Note that the desired structural response 

corresponds to that which minimizes the sound radiation from the structure. This 
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approach was chosen since it provides a means of implementing structural error 

sensors on complex structures for which computation of the acoustic response is 

too complicated for optimal design techniques. Tests were performed on both the 

simply supported beam and the simply supported plate reported in an earlier pub- 

lication by Clark and Fuller (1992(a)); however, experimental results corresponding 

to model reference control of the simply supported plate will be presented here since 

the structural acoustic response of this structure is by far the more complex com- 

plex of the two systems. Two off-resonance test cases are presented in which the 

harmonic input disturbance was positioned at spatial coordinates of (240,130) mm 

as in the previous test cases presented. The plate used in this study was configured 

with actuators as illustrated in the schematic of Figure 6.1. 

6.4.1 Off-Resonance Response (320 Hz) 

The first test case was conducted implementing a single piezoelectric control actua- 

tor, Cl as illustrated in Figure 6.1 which was centered at coordinates of (63.3,150) 

mm on the surface of the plate. To implement model reference control, microphone 

error sensors positioned at the same acoustic field points of —45°, 0° and 45° as 

discussed earlier were utilized as error sensors in the control cost function. Upon 

minimizing the structural acoustic response with the microphone error sensors, the 

frequency response function between the chosen accelerometers and the harmonic 

reference input to the controller was experimentally measured to determine the ap- 

propriate reference response. As was outlined earlier in this work and in a previous 

study by Clark and Fuller (1991(d)), the number of structural error sensors im- 

plemented must simply be equivalent to the number of control actuators used if 
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the eigenfunctions and hence the transfer function between the actuator and error 

sensor are unique. For the single control actuator test performed here, a single ac- 

celerometer located at spatial coordinates of (120,240) mm was chosen. The only 

consideration required in choosing the coordinate for the accelerometer is that some 

measurable change in the structural response at the spatial coordinate selected oc- 

curs upon achieving control (i.e. system is observable). 

The predicted acoustic directivity patterns corresponding to the uncontrolled and 

controlled response of the structure are presented in Figure 6.43. Note that the con- 

trolled model reference response when implementing accelerometer error sensors is 

identical to the controlled acoustic response when implementing the microphone er- 

ror sensors. The data set corresponding to implementation of the microphone error 

sensors was suppressed to eliminate any confusion caused by superimposing the two 

data sets. As illustrated, approximately 10 dB of sound attenuation is predicted. 

The measured acoustic directivity patterns corresponding to the uncontrolled and 

controlled response of the structure are illustrated in Figure 6.44, comparing that 

obtained when implementing the microphone error sensors to that obtained when 

implementing the single accelerometer with model reference control. In addition, 

the acoustic response of the structure resulting from driving the response of the 

accelerometer to zero as opposed to the model reference response is presented for 

comparison. As indicated, the directivity patterns are nearly identical whether im- 

plementing the three microphone error sensors or the single accelerometer as was 

predicted from theory. Approximately 10 dB of sound attenuation was both pre- 

dicted and measured. Notice that driving the response of the single accelerometer to 

zero resulted in only 2 dB of sound attenuation, emphasizing the need for a model 
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incorporating the structural acoustic coupling. 

6.4.2 Off-Resonance Response (400 Hz) 

For the off-resonance response at an excitation frequency of 400 Hz, all three control 

actuators illustrated in Figure 6.1 were implemented in the control approach. Since 

three accelerometers are now required for the model reference control algorithm, 

two additional accelerometers were positioned on the structure at spatial coordi- 

nates of (180,200) mm and (280,80) mm. Again, the only consideration made in 

choosing the spatial coordinates of the accelerometers is that the system response 

is observable. The predicted acoustic directivity patterns for the uncontrolled and 

controlled response are presented in Figure 6.45. As illustrated, significant attenu- 

ation is predicted at the location of the three microphone error sensors. As in the 

single-input /single-output control case, the directivity pattern corresponding to the 

controlled model reference response when implementing accelerometer error sensors 

is identical to that obtained when implementing microphone error sensors. Upon 

comparing the predicted response of Figure 6.45 to the measured response presented 

in Figure 6.46, one recognizes that the model reference control design approach was 

again successful. While the resulting model reference directivity pattern was not 

exactly identical to that obtained when implementing the microphone error sen- 

sors, the same level of acoustic attenuation, approximately 20 dB, was observed. 

In addition, the controlled acoustic response of the structure is plotted for the case 

when the response of the three accelerometers was driven to zero as opposed to 

the reference response. As illustrated, the acoustic response actually increases by 3 

dB, demonstrating the advantage of model reference control over simply trying to 
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control the structural response to minimize sound radiation. 

6.4.3 Summary of Model Reference Approach 

Model reference control can be viewed as an analogous method to optimal design 

for incorporating the structural acoustic coupling in the cost function of the con- 

trol algorithm. This method of control affords implementation of accelerometers or 

other point structural sensors as error sensors for ASAC in addition to a means of 

eliminating microphone error sensors located in the acoustic field of complex struc- 

tures. Since the reference model can be obtained experimentally or from analytical 

models of the system, the control approach can be readily extended to structures 

with a complex modal acoustic response. Thus model reference control is ideal for 

structures for which the input disturbance is harmonic and the structural acoustic 

coupling remains stationary with time (e.g. transformers or rotating machinery). 

Model reference control could also be extended to broad band control, although the 

level of system modeling will become more complex as indicated by Vipperman et 

al., (1991), who developed a feed forward adaptive LMS algorithm for controlling 

broad band vibration disturbances. 

6.5 Discussion of Design Sensitivity 

Design sensitivity is an important issue in the model reference control approach as 

well as the optimal design of PVDF error sensors. While both designs are sensitive 

to errors in modeling the system to be controlled as well as errors in shape and posi- 

tioning of optimally configured error sensors, perhaps the most important parameter 
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in the design process is the disturbance input frequency. This study was devoted to 

sensor design and implementation for systems under a harmonic input disturbance. 

While this type of input disturbance is common in many physical systems, broad 

band inputs as well as multi-frequency inputs are just as common. In addition, even 

in the case of harmonic input disturbances, the frequency of excitation may vary 

with time. Hence if the sensor design or model reference control implementation is 

ultra sensitive to the frequency of excitation, the sensor design or model reference 

control implementation could be rendered useless. Previous studies by Clark and 

Fuller (1991(d)) have addressed the issues of design sensitivity for model reference 

control. These same concepts apply to the optimal design of structural PVDF error 

sensors and are reviewed by means of example here. 

Consider the theoretical frequency response function between an accelerometer lo- 

cated on the simply supported plate and a point force input disturbance illustrated 

in Figure 6.47. The chosen coordinates for the input disturbance and accelerome- 

ter correspond to those implemented in the model reference study discussed earlier. 

Model reference control of the structure was demonstrated to be an effective method 

of attenuating structure-borne sound. One of the test cases presented was for an 

excitation frequency of 400 Hz. This excitation frequency is enclosed in the region 

termed “operating range” of Figure 6.47. In the previous study by Clark and Fuller 

(1991(d)), significant levels of acoustic attenuation were observed in the model ref- 

erence control implementation as long as the frequency of the input disturbance 

remained in the designated operating range depicted, even though the design was 

for an excitation frequency of 400 Hz. While the levels of acoustic attenuation are 

not as great as that resulting from the “design” excitation frequency, Fuller and 
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Clark (1991(d)) demonstrated that as much as 10 dB of global sound attenuation 

can be expected over the “operating range” for a test case such as that presented 

in Figure 6.46 where 20 dB of global sound attenuation was measured at the design 

frequency. The explanation for this result is based upon the modal contribution 

between resonant frequencies. The relative phase relationship between structural 

modes required to reduce the overall radiation efficiency of the structure is the same 

as long as the desired operating range does not cross a resonant frequency. When 

the operating range does cross a resonant point in the frequency response function, 

the phase relationship between the mode corresponding to that resonant frequency 

and the remaining modes shifts by 180°. Since the acoustic response results from 

a superposition of the modal acoustic response of the structure, this 180° phase 

change alters the necessary reference model required and thus degrades model ref- 

erence control performance. The same concept holds true for the optimal design of 

PVDF error sensors. As long as the frequency of excitation remains in the “saddle” 

of the frequency response function, the relative phase relationship between struc- 

tural modes remains fixed and hence significant levels of acoustic attenuation can 

be achieved. 

Errors in modelling the desired system response for the model reference control im- 

plementation were also reviewed by Clark and Fuller (1991(d)), demonstrating that 

up to 5% error in both the phase and magnitude of the reference plant could be tol- 

erated without significantly sacrificing the levels of acoustic attenuation achievable. 

While good correlation was noted between the predicted and measured acoustic and 

structural response of the systems modelled, nonlinearities in the structural response 

resulted in some deviation from the predicted acoustic response in the previous stud- 
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ies reviewed in this work. While these nonlinearities resulted in deviations between 

details of the acoustic directivity patterns, general levels of acoustic attenuation on 

the order of that predicted were achieved in all test cases reviewed in this study. 
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Chapter 7 

Conclusions and 

Recommendations 

The primary goal of this work was to review a variety of alternative sensors for 

active structural acoustic control and develop a design approach for achieving an 

adaptive structure with sensors and control actuators embedded in the structure or 

bonded to the surface. In conducting this study, a number of different error sensors 

were reviewed: 

1. Microphones 

2. PVDF Distributed Sensors 

(a) Optimal design of rectangular structural sensors 

(b) Optimal design of cylindrical acoustic near-field sensors 

(c) Modal shaped structural sensors 

3. Accelerometers. 

Microphone error sensors were used as the basis for comparison since an approxima- 

tion of the desired cost function (i.e the total acoustic far-field power) is represented 
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in the electrical response of these sensors. 

Results from this work have demonstrated that rectangular structural PVDF error 

sensors can be optimally designed to incorporate the structural acoustic response of 

a simply supported plate in the electrical output of the sensor. Hence for narrow- 

band applications, wavenumber filtering can be achieved such that the supersonic 

region of the wavenumber transform is significantly reduced, resulting in structure- 

borne sound attenuation on the order of 20 dB. While this level of attenuation is 

approximately 10 dB less than that observed with microphone error sensors, some 

advantages are afforded with the structural sensors. First, the controlled structure 

is totally self-contained with both the control actuators and error sensors bonded 

to the surface. In addition, the rectangular PVDF error sensors were observed to 

limit control spillover into the subsonic region of the wavenumber transform, thus 

restricting the vibration response of the structure as well as the acoustic response. 

Similar results were observed with the optimally designed PVDF acoustic near- 

field sensors. A non-contacting sensor constructed from PVDF was designed and 

placed in close proximity (approximately 2.54 cm) from the surface of the simply 

supported plate, and results from experiments conducted with these sensors demon- 

strated structure-borne sound attenuation on the order of 20 dB. The wavenumber 

filtering characteristics observed with these sensors was similar to that observed 

with the optimally designed PVDF structural sensors. The advantage afforded with 

these sensors is that they provide a method of achieving structural acoustic control 

with a non-contacting sensor placed in close proximity to the structural surface. 
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In addition to optimal design techniques, a method of achieving selective wavenum- 

ber filtering was demonstrated by varying the polarization profile of the PVDF 

material as a function of the modal weighting. In the case of the one-dimensional 

simply supported beam, the variation in polarization profile was physically achieved 

by etching away the surface electrode on the material in the y-direction to achieve 

the desired weighting. A structural PVDF sensor yielding an electrical response 

proportional to the desired radiation filter was thus achieved. For the test case pre- 

sented, the radiation filter was designed for a microphone positioned normal to the 

center of the beam in the acoustic far-field. At this field point, the modal acoustic 

coupling is independent of frequency, and the sensor can thus be used in broad band 

as well as narrow band applications. In the case of the two-dimensional simply sup- 

ported plate, a similar design procedure was outlined; however, the sensor was not 

tested due to the complexity of the design. To achieve the desired radiation filter 

for a two dimensional structure, the polarization profile must vary as a function of 

both the x and y-direction. Methods of achieving this three dimensional sensor are 

not currently practical. 

As an alternative to PVDF sensors, accelerometer error sensors were implemented 

in conjunction with model reference control for attenuating structure-borne sound. 

Results from this work demonstrated that the structural acoustic coupling can be 

included in a reference model based on structural error sensors to achieve the same 

controlled acoustic response as that achieved with microphone error sensors. In fact, 

the reference response of the structure can be obtained experimentally if an array 

of microphones are initially used to achieve the desired structural acoustic response 

such that the reference response of the structure at the chosen array of accelerom- 
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eters can be measured. This technique affords greater flexibility in implementing 

structural sensors on complex systems with harmonic input disturbances since the 

entire control approach can be “designed” by experimental methods. 

Hence a variety of alternative sensor design implementations have been suggested 

for active structural acoustic control, and depending on the chosen implementation, 

each has merit. For example, complex structures which cannot be modeled by ana- 

lytical methods can be controlled with structural error sensors in conjunction with 

model reference control since the structural acoustic coupling can be measured di- 

rectly. For structures with a response characterized by one dimension, the shaped 

modal PVDF error sensors appear most viable for achieving directional control. If 

the structural response is a function of two dimensions, then the optimally posi- 

tioned and dimensioned rectangular PVDF error sensors appear most attractive for 

replacing microphones in the cost function of the control approach. Finally, if it 

is impossible to attach the sensor to the surface of the structure or position mi- 

crophones in the acoustic far-field, PVDF acoustic near-field sensors can be imple- 

mented in the cost function of the control approach with optimal design techniques. 

Future work should be devoted to studying the implementation of the weighted ar- 

ray of PVDF sensors in conjunction with a neural network to improve performance 

characteristics over a broad frequency range of input disturbances. The application 

of this approach as well as the previously outlined sensor designs and implemen- 

tations must be extended to broad band excitation to solve the active structural 

acoustic control problem. 
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Appendix A 

PVDF Acoustic Sensor Model 

A marked increase in sensitivity of the PVDF material to an acoustic pressure wave 

was observed as a result of curving the surface of the material as depicted in the 

coordinate system of Figure (2.6). Hence sensors were constructed in the form of 

shell segments, and the PVDF material was attached to a rigid frame as illustrated 

in the picture of Figure (5.1). Based on this configuration, the dynamic response 

of the cylindrical plate was derived from the equations of motion for the cylindrical 

shell (Junger and Feit, 1986), (Timoshenko, 1940): 

Ou, 1l—-vd*u, 1l+v Au, vous Ou Oru, 

Ox? t 2a? O¢? + 2a O20¢ a Ox ~e ot Ot? 
      —0, (A.1) 

l+v Ou, 4 1—v us, 4 Lu _ 1 dus 4 h? Cus 4 Pus 

2a Ord0d 2 O2z* a* 0¢* a? Od = 12a**Or?0¢ = a?0¢d° 
2 2 2 2 h O*u2 O*v =O0U, _O*UuUe = 0, (A.2) 

Taal -— ae t+ ag) — OSE Poe 

      

+ 

and 
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Vy Ou Ou2 U3 h? Otus 2 Otus Otus 

a Oz a20¢ a 13‘ Gat Ox4 + a? Ox2¢? + og? 

h? 2—-V Pus Our _ — 

Ta! a* Ox?0¢ wag) ~ Ca Pa = —— aR? FAS) 

  

  

  
. e . . . _ ~ C —V 

where all dimensions are illustrated in Figure (2.6), @ = p(1—v?)/E and C = $1533 

as defined by Liang and Rogers (1991). 

Since an exact solution for the shell segment depicted in Figure (2.6) does not ex- 

ist, a set of admissible functions which satisfy the geometric and natural boundary 

conditions were assumed as discussed by Timoshenko (1940). If the steady-state 

harmonic excitation is assumed, then the forcing function can be expressed as fol- 

lows: 

  

  

=) >, Dn sin( (ea) sin( — ) exp(jwt) (A.4) 
=ln=1 

where Dn is given by 

P(z, ¢,t) 5i are MrT 

Dan =f [ eee (jwt) » in(— sin )déde, (A.5) 

and all dimensions are defined in the coordinate system of Figure (2.6). Harmonic 

displacement responses for u,, u2 and u3 are assumed as follows which satisfy the 

geometric and natural boundary conditions: 
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MN nT op MrT ; 
u(t) = >> >> Amn sin(——~ ) cos( Z )exp(jwt), (A.6) 

ma=1n=1 

MN nro Mnx 
  

  

u2(t) = Xu Xu Bran cos(——) sin( Z )exp(jwt), (A.7) 

MN . ard MTL . 
u3(t) = Xu Xu Cmn sin(——~) sin( Z )exp(jwt). (A.8) 

Substituting the assumed response in the equations of motion, an expression for the 

expansion coefficients Amn, Bmn and Cmn results: 

{[K]ma + jwCll] — wpll]} {X} = {F}, (A.9) 

where 

Amn 

{X} = Brn } (A.10) 
C 

and 

0 

{F} = 0 | (A.11) 
D 1-v?



The stiffness matrix is defined as follows: 

  

mn)? 4 l-v(nn)2 (+v)mnx? (mn 
( L it aa | ° ) l-v/mn ag he 1 fnr\2 a( i) 

[K] = BaLa = (7) + 27(%) pata) (A.12) 
“CE ses)" b+ eeiele + eye 

If we let C = 0 and {F} = 0, we obtain the system of equations for the eigenvalues 

and eigenvectors: 

{[K] — w*alT]} {X} = {0}. (A.13) 

Hence the system of equations can be expressed in modal coordinates as follows: 

[M]mnt{Z(t) }mn + [K]mn{z(t)}mn = {Q(t) }mn (A.14) 

where 

| p 0 0 

[M]mn= | 0 p 0 | (A.15) 
00 p 

Amn 

{z(t) }mn = on | oc (A.16) 
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0 
{Q(t)}nn = 0 | etin, (A.17) 

1— 

Dinn Ei 

and [K]mn is defined in equation (A.12). 

We must first solve, 

[M] mn [tt] mn [7 ]mn = [K] mn[tlmn (A.18) 

where [t]mn is the modal matrix and [w?],,, is the diagonal matrix of natural fre- 

quencies squared. If we normalize such that 

[els nM] mnlt4lmn = [7], (A.19) 

and 

[ulanlK |mn [Ulmn = [w"], (A.20) 

and let 

{z(t)} = [ulmn{n(t) }mn, (A.21) 
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the resulting system of equations can be expressed as follows: 

[M] mn[U]mnt{i(t)}mn + [K]}mnltlmni{7(t) }mn = {Q(t) }mn- (A.22) 

If we premultiply equation (A.22) by [u]7,,, we obtain: 

ZN {(t) }mn + [w*]mn{n(t)}mn = {N(t) }mns (A.23) 

where 

{N(t)}mn = [Ulmn{Q(t)}mn- (A.24) 

Hence we obtain a system of equations for each assumed displacement response 

function as follows: 

{5 (t)}man + (wr)? (E) rin = {NO (E) Fenn (A.25) 

where the superscript (r) is used to designate each respective direction of displace- 

ment, U1, U2 and ug. The system response in normalized modal coordinates can thus 

be expressed as follows: 

() ( nvi(t) = i") (t — T))dr. (A.26)                     
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Since {7)(t) }mn = —w?{n(t)}mn, one can express the harmonic solution of the system 

of equations as follows: 

{7(t) }mn = [A}nnltlmn{Q(t) }mns (A.27) 

where 

CAE 0 0 

[Mnn=| 8 Gane 8 |. (A.28) 
0 0 Wyre 

Replacing {n(t)}mn with [u]7_{2(t)}, the system response can be expressed as a 

function of the modal amplitudes: 

{X} = [T]mn{F} (A.29) 

where 

[T]mn = [UlmnlAlin[Ulmn: (A.30) 

All that remains is to expand the input disturbance as a function of the eigenfunc- 

tions chosen for the out of plane displacement u3. Two types of forcing functions 

were chosen. The first was based upon a harmonic uniform pressure distributed 

normal to the surface of the shell segment. The forcing function is representative of 
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the response induced when the sensor is positioned in the standing wave guide and 

calibrated. Hence the input is expressed as follows: 

  

P(t) = Pexp(jwt)(u(z) — u(x — L))(u(¢) — u(¢ — @)). (A.31) 

Therefore, 

p= y y Dm sin( =) sin(™™), (A.32) 

Multiplying equation (A.32) by sin(###) and sin(2®2) and integrating over the bound- x 

a 

aries, we obtain: 

Dian = i (1 — cos(n7))(1 — cos(mz)). (A.33) 
mn? 
  

A similar expression can be obtained assuming that the pressure varies over the 

surface of application. If the sensor is broken into N, elements in the ¢-direction 

and Ny, elements in the x-direction respectively, then the input pressure loading 

over each respective element must be used to compute the total response of the 

cylindrical plate. 

P(t) = Pexp(jwt)[u(x — 2;) — u(x — 2441)][u(d — $3) — ud — bj41)]- (A384) 

where the subscripts z and j range from 1 to Ny and 1 to Ng respectively. Multi- 
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inmz plying equation (A.34) by sin(# 

we obtain: 

4P 
Dyan 

MAT 

x (cos(mma;/L) ~— cos(mmaxj41/L)). 

  

) and sin(#*®) and integrating over the boundaries, 

(cos(n@¢;/a) — cos(nt¢;41/a)) 
2 

(A.35) 

This expression can be used to compute the distributed response of the sensor for 

a finite number of acoustic inputs as illustrated in Figure (4.10). Hence an approx- 

imate model for the dynamic response of the cylindrical plate can be obtained as 

a superposition of the modal response resulting from a finite number of acoustic 

disturbances in equation (A.35). For both loads previously discussed, P is used to 

represent the input pressure applied over the area of interest. 

In either case, we seek the strain resulting from the dynamic response of the cylin- 

drical plate such that the electrical output of the PVDF sensor can be computed. 

To this end, expressions for the strain in the z and ¢-directions are given as follows: 

M N 

  

_ Ou mr . mmo, . ,mra 
= a =- hd Z Amn sin( a ) sin( Z , (A.36) 

and 

e, = Gua _ us 
¢ ade a 
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it~ (nm _ nto, . ,mrz 
= 9 2 Bin + Cmn) sin(——) sin( L ), (A.37) 

  

The electrical response of the PVDF acoustic near-field sensor can thus be expressed 

as a function of the strain by integrating over the surface of the sensor with respect 

to the stress/charge constants, e3, and e€32, as follows: 

L pa 
=| J (cores + eonee)adddz exp (jut), (A.38) 

Substituting equation (A.36) and equation (A.37) into equation (A.38), and evaluat- 

ing the integrals, an expression for the electrical response of the sensor as a function 

of the modal response and stress per charge constants is obtained: 

  = [Cnn + 601 {A Ban + (5) Cnn 2 
m=l1n=1 MrT 

x (1 — cos(n -))(U~ cos(m) exp(jwt). (A.39) 

Given the above expression, the electrical response of the material can be computed 

for any given forcing function which can be expanded in terms of the assumed 

solution. Since the units on the stress/charge constants, e3; and é€32, are in terms of 

C'/m?, the response of the sensor is in units of charge, C. 
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Appendix B 

Example of Model Reference 

Uniqueness 

In the example, the original cost function is formulated in terms of the acoustic 

response, and three unique coordinates are chosen to minimize the response. To 

simplify the example, only one control actuator is used to achieve control. Referring 

to equation (3.12), an expression for the optimal control voltage is obtained in terms 

of the transfer functions between the three error sensors and the control actuator as 

well as the disturbance. 

(Ti Ty, + TaTy, + Ta Th)? VP + (TivTh + TepTA + TspT3,)?F =0.  — (B.1) 

In the above equation, the superscript p is use to denote that the transfer functions 

were formulated in terms of acoustic pressure at chosen field points. The optimal 

control voltage can be obtained as follow: 

(B.2)   

Pa (427 + TopTy, + etn) F 
, TT, + TaTZ, + Ti Th, 
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With this optimal control voltage for the piezoceramic actuator, the modal ampli- 

tudes for the structural response can be obtained from equations (2.6) and (2.14) 

as follows: 

Wn = WE+ Wwe. (B.3) 

Upon obtaining the above modal amplitudes, the necessary information required to 

compute the reference response results. Since only one control actuator is used to 

obtain the desired acoustic response, only one structural sensor is required in the 

model reference approach to obtain the same controlled response. The cost function 

presented in equation (3.15) is now formulated in terms of the structural response 

where the desired response at any arbitrary coordinate on the beam is expressed as 

follow: 

. M 
ref(z1) = du (we + wr”) sin(Ym1)- (B.4) 

Substituting equation (B.4) into equation (3.16) yields: 

M 

(Tn T3,)*V8 + (Taw T3)°F - (> (WE + WP?) sin(7m21)] T=0, (BS) 
m=1 

where the superscript a is used to differentiate the transfer functions and control 

voltage for the structural response from the transfer functions and control voltage 

previously defined in terms of the pressure. The transfer function between the 

structural response at coordinate z; and the input force, F, can be expressed as 
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below: 

ot 
M 

1D = F > wr sin(m21) (B.6) 
m=1 

Substituting equation (B.6) into equation (B.5), we obtain: 

M 
Tavs + Tip - ( toe + 5. wir sn( m2) = 0. (B.7) 

m=1 

The expression for the modal amplitudes was given in equation (2.14) as a function 

of the voltage applied to the piezoelectric actuator. For simplicity, all constants in 

equation (2.14) will be represented by K},, and the modal amplitudes resulting from 

the optimal voltage obtained for minimization of the pressure can be expressed as 

follows: 

  (B.8) WE” = KLV? = Ki}, (ee + LopTy + rt) 
Lyi Ty, + To TQ, + Tai 731 

Substituting equation (B.8) into equation (B.7), and cancelling like terms, we see 

that the optimal voltage obtained from the model reference control approach is a 

function of the transfer functions for the far-field pressure. 

  

M Pp 
- TipTy, + TopTy, + TspT3 , Ts ye — _ K} 11 21 3) EP m B.9 

111 » m ( Ti Ts, TT, Ta TX, sin( 1) ( ) 
m=1 

The transfer function between the structural response at coordinate x, and the input 
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voltage can be simply expressed as: 

M Pe Wr: w=) Fa Sin Yme1) (B.10) 
m=1 1 

Substituting equation (B.10) into equation (B.9) and cancelling like terms, the modal 

amplitudes resulting from model reference control can be expressed simply as a 

function of the acoustic transfer functions. 

  

M M P 
a, Tiply, + TepT>, + T3pTz 

Wr" sin(ymt1) = — x3, ( 1D? 21 3) 

2» (mar) » Tyty, + TaTy, + T3173, 
x F' sin(¥m21); (B.11) 

therefore, 

  (B.12) wP? —_—K} (278 + TopTy, + Hota) PF 

Tilt, + Tut + Tails, 

Since the modal amplitudes resulting from model reference control implementing a 

single structural sensor are identical to those obtained by minimizing the far-field 

pressure at three error sensor locations, the resulting control voltage applied to the 

piezoceramic actuator must be the same as that obtained when implementing the 

acoustic cost function. The previous example can readily be generalized for an 

arbitrary but equal number of actuators and error sensors. 
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Appendix C 

Modal Decomposition 

The modal decomposition follows a method previously outlined by Hansen et al., 

(1989). For a simply supported plate, the displacement response, w, can be repre- 

sented as follows 

w(z,y,t)= >. >> Amn sin(—) sin() exp(jwt) (C.1) 
xz y m=1n=1 

  

where m and n represent the mode number, L, and L, are the plate dimensions, w 

is the frequency of vibration, and A,,, are the modal amplitudes. 

Nine accelerometers were randomly placed on the plate, and an additional reference 

accelerometer was placed on the plate away from nodal lines of modes desired in the 

decomposition. Since only two channels of A/D were available on the spectrum ana- 

lyzer, a reference accelerometer was required to obtain phasing of the measurements. 

The frequency response function between each randomly placed accelerometer and 

the reference accelerometer was measured as well as the autospectrum of the ref- 

erence accelerometer. The autospectrum provides a means of scaling the data in 
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terms of engineering units. By computing the frequency response function, phase 

information is also obtained. If the plate is assumed to respond as predicted in 

the theoretical analysis, a matrix of spatial coefficients can be generated from the 

theoretical eigenvectors by substituting the spatial coordinates of the randomly po- 

sitioned accelerometers into the equation. For nine independent measurements, nine 

distinct modal amplitudes can be computed, resulting in a nine by nine matrix of 

the eigenvectors. After measuring the acceleration at each of these coordinates, a 

system of linear algebraic equations results. 

[W] = [S][A] (C.2) 

where the matrix of measurements is 

[(W]=]| e (C.3) 

while modal amplitudes are 

e 

[A] = e (C.4) 

e 
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and the matrix of spatial functions is 

  

Shy Sto Shy e 5; 

53, Sto 53, e Se 

[S]= | Si, Si, Sh @ Si (C.5) 
e e e e e 

St, Siz Sh, © St 

where 

pg (th Epy . ITYp Si, = sin( L, ) sin( L, ) (C.6) 

In the above equation, 1 and j represent the mode number. Each of the spatial co- 

ordinates of the randomly placed accelerometers are designated with (zp, y») where 

p is the number of measurements taken. The modal accelerations were extracted 

by solving this system of linear equations. If measurements are taken such that the 

system is overdetermined, a least mean squares approach can be taken to solve for 

the desired modal amplitudes. 

Since there are a finite number of measurements, spatial aliasing can result. When 

nine measurements are made, only nine modal amplitudes can be resolved for a 

structure whose response is typically regresented with an infinite number of modes. 

As a result, response of higher modes can “fold back” into the lower modes (i.e. the 

nine computed). When applying this technique, the response of the higher modes 

must be assumed negligible. This can be checked by observing the roll off in the 
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amplitudes of the higher order modes when included in the solution. To this end, the 

excitation frequency of the structure should be well below the resonant frequency 

of the highest mode which can be resolved. 

Note that this method decomposes a system response into amplitudes or coefficients 

corresponding to the basis functions of equation (10). For the open loop case, these 

basis functions correspond to the modes of the system. For the closed loop case, the 

system will have new mode shapes and resonant frequencies (Burdisso and Fuller, 

1991). However, it is convenient to decompose the closed loop response into the 

open loop modal components so that a direct comparison of the component changes 

can be made. 
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Appendix D 

Assumed Modes Method 

The concentrated mass due to the shaker and the end torsional springs resulting 

from the shim stock at the boundaries of the simply supported plate are included 

in the dynamic model by the assumed modes method (Meirovitch, 1967, Burdisso 

and Fuller, 1992). A schematic diagram of the mass loading and torsional spring 

boundary conditions is presented in Figure D.1. The normalized mode shapes of 

the simply supported plate 

2 TTX sTy 
ors(Z,¥) = pla, L. )sin(=") (D.1) 

are selected as admissible functions. The response of the plate can thus be expanded 

  

as 

MN 
w(2,y,t)= >> >> dys, y) drs ExP(jwt) (D.2) 

r=1s=1 

where a,, are the modal expansion coefficients. Equation (D.2) can then be used to 

compute the strain and kinetic energy of the system respectively as follows: 
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Figure D.1: Schematic of Plate Configured with Mass and Spring Boundaries 
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V(t) = ah [°>. [V2w(a, y, t)]?dyda + 5K Pet) 

Ow(Lz,y,t) Ow(z,0,t).9 le Ow(z, Ly,t) 

45K Ax P+ 5K dy 3K Oy ) (D.3) 

and 

T= SL ey aedy + SMe Oa) 

where V(t) is the strain energy, T(t) is the kinetic energy, K is the torsional spring 

constant, M is the concentrated mass and the spatial coordinates (a,b) define the 

position of the shaker (i.e. M) on the structure. Substituting equation (D.2) into 

equations (D.3) and (D.4) and applying Lagrange’s equations (Meirovitch, 1967), 

the eigenvalue problem can be written as follows: 

[K]a = w*[M]a, (D.5) 

where [K] is the stiffness matrix, [M] is the mass matrix and @ = {a},...,ayn}7. 

The dimension of the matrix is thus MN x MN and the elements are given as 

follows: 

  

0 Ts 0 0 rs O 

ky sk = bk Os jw? + K[ e ; |e=0 ou le=o + a |n=Le Ht ty 

Oors, Of Obrs 0¢ 
Ta dy ly=o so ao dy B, W=LyB, = y wth (D.6) 
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and 

Merskl = brk Os! + M ¢,,(a, b) xi (a, b) (D.7) 

where 

we = De a4 (—)? + (=) (D.8) rs pl L; L, . 

are the eigenvalues of the simply supported plate. 

Upon solving the eigenvalue problem for the modified system of equation (D.5), 

M x N eigenvalues and corresponding eigenvectors are obtained. The eigenfunctions 

for the modified system are thus expressed as follows: 

M N 

Vinn(Z, y) = » » gij(z, Y)Gijmn: (D.9) 
i=1j=1 

The modal expression for the point force induced response of equation (2.6) and the 

piezoelectric actuator induced response of equation (2.14) can then be expressed 

respectively as follows: 

M N + (4 : ¢9nb 
wr _ 4F iz1 iI Amnij sin(f*) sin( 

mm pL, Ly (wren - w?) 

  (D.10) 

and 
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N +17 
—4C one ae Lj=1 Omnij v5 9i(15 2) fj(y15y2) 
  P = 

where 

gi(21, 22) = cos(7;21) ~— cos(7;22), (D.12) 

Fi(y1, yo) = cos(y;y1) — cos(yjy2), (D.13) 

yi = in/ Le (D.14) 

and 

4; = jm/Ly. (D.15) 

Hence these models can be used to predict both the structural and acoustic response 

of the plate to account for the mass loading and non-ideal boundary conditions. In 

the results of chapter 6, all predicted acoustic directivity patterns were computed 

based upon the assumed modes method to obtain better correlation between theory 

and experiment. 
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