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Abstract

The output of a causal, stable, time-invariant nonlinear filter can be approximately represented by
the linear and quadratic terms of a finite parameter Volterra series expansion.  We call this
representation the “quadratic nonlinear MA model” since it is the logical extension of the usual
linear MA process.  Where the actual generating mechanism for the data is fairly smooth, this
quadratic MA model should provide a better approximation to the true dynamics than the two-
state threshold autoregression and Markov switching models usually considered. 

As with linear MA processes, the nonlinear MA model coefficients can be estimated via least
squares fitting, but it is essential to begin with a reasonably parsimonious model identification
and non-arbitrary preliminary estimates for the parameters.  In linear ARMA modeling these are
derived from the sample correlogram and the sample partial correlogram, but these tools are
confounded by nonlinearity in the generating mechanism.  Here we obtain analytic expressions
for the second and third order moments – the autocovariances and third order cumulants – of a
quadratic MA process driven by i.i.d. symmetric innovations.  These expressions allow us to
identify the significant coefficients in the process by using GMM to obtain preliminary
coefficient estimates and their concomitant estimated standard errors.  The utility of the method
for specifying nonlinear time series models is illustrated using artificially generated data.
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We focus here on parametric modeling methods because we are more sanguine as to the feasibility of

applying such methods to macroeconomic and financial data sets in which the sample length has been restricted so as

to make reasonably credible the assumption of a stable relationship.  Granger and Teräsvirta (1993, Chapter 7)

review alternative – nonparametric and semiparametric – approaches; they also review several parametric

approaches – e.g., bilinear models –  which cannot be classified as “switching regressions.”

1. Introduction

Nonlinear serial dependence in the mean of a time series is typically modeled within a

“switching regressions” framework in which the observed realization at time t is taken to be

generated by one of several (usually two) linear AR(p) processes.1  Which process is operative

may be determined by the value of a lagged value of the observed series – as in the TAR or

STAR processes studied by Tong(1983), Chan and Tong (1986), and Teräsverta, et al. (1992,

1994) – or it may be stochastically determined, as in the Markov switching processes studied by

Hamilton (1989) and later authors.  These specifications are sufficiently flexible as to provide

good sample fits to a number of economic and financial time series, but recent evidence in

Ashley and Patterson (2000) illustrates how several such switching models for U.S. real output

can fit the sample data fairly well, yet fail to capture the nonlinear serial dependence in this time

series.  

Here we propose a method for identifying the important coefficients in an alternative

parametric framework for modeling nonlinear serial dependence in time series.  This framework

is based on the general Volterra expansion for a time series process.  The usual linear MA(q)

process can be viewed as the first term in this expansion; by retaining a sufficiently large number

of terms in the expansion an extremely broad class of nonlinear time series processes can be

accurately represented.  Where a time series varies fairly smoothly in its nonlinear behavior – 

rather than shifting from one distinct linear process to another – the first few terms in this

expansion will approximate the true generating mechanism far better than can even an elaborate



switching regression model.  Conversely, where a process actually does switch between several

distinct regimes, only an impractically elaborate Volterra expansion will be adequate.  In this

sense, the framework proposed here can be viewed as a complement to existing methods based

on the regime-switching paradigm. 

The Volterra expansion is described in Section 2 below.  There we use the second order

expansion – what one might call a “quadratic moving average” model – to explicitly demonstrate

how nonlinear serial dependence confounds the information in the usual autocorrelation function. 

In Section 3 we describe an identification procedure which uses the generalized method of

moments (GMM) method to obtain preliminary estimates of the coefficients in the second order

expansion.  The utility of this procedure is illustrated in Section 4 with an application to

artificially generated data and directions for further research in this area are outlined in Section 5.



2.  The Volterra Expansion and the Quadratic Nonlinear MA Model

Sandberg (1983) shows that , where {xt} is strictly stationary with finite higher moments,

it can be represented as the multi-order convolution of a set of causal, stable, time-invariant

filters with i.i.d. noise:

               (1)

where et  ~  i.i.d (0, F2) and the functions hi(n, m, k, ...) are called the Volterra kernels of the

filter.   Here we will restrict attention to approximations to this underlying process which are

quadratic and have finite memory L:

                    (2)

Data generated by this process, denoted the “quadratic nonlinear MA model of order L” below,



exhibits asymmetry whenever any of the a(n,0) coefficients are non-zero.  While there is no

guarantee that this moving average process is invertible in general, it must be invertible if the

quadratic nonlinear MA model is an adequate approximation to the true generating mechanism. 

Thus, invertibility is solely a numerical issue here, and that only because the optimization

algorithm used to estimate (2) will necessarily examine parameter values well away from the

optimum; this issue is discussed in Section 3 below.  

Where the underlying process is smoothly related to its own past – as opposed to shifting

from one discrete state to another – the quadratic nonlinear MA model may often provide a good

approximation to the actual process generating the data.

Data generated by this quadratic nonlinear MA process may be serially correlated or they

may not.  In fact, in this setting the autocovariance function for xt is quite misleading because it

confounds the linear and the nonlinear serial dependence in xt.  More explicitly, letting F2 denote

the variance of the innovation et and letting :k denote its kth moment for k > 2, the

autocovariance function for xt generated by the quadratic nonlinear MA process is

(3)
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Note that x t xt-1 equals a(1,m)a(2,m)(et-2)

2 (et-2-m)2 plus terms with expectation zero, whereas E{x t xt-k} is

zero for all k exceeding 1.

where *(m) is the usual kronecker delta function.  

Thus, xt might depend quite strongly on its own past – i.e., some or all of h(1) ... h(L) and

a(1,1) ... a(L,L) are substantially non-zero – yet xt might appear to be serially uncorrelated – i.e., 

|cxx(1)| ... |cxx(L)| are small.  For example,  xt generated from 

                        (4)

are serially uncorrelated but still serially dependent.

Alternatively, some or all of  |cxx(1)| ... |cxx(L)|  might be large – implying substantial

linear serial dependence in xt to the unwary  –  entirely because of nonlinear serial dependence

associated with substantial a(m,n) coefficients.  Thus, for example, xt generated from 

                             (5)

will have the same population correlogram as that of a (linear) MA(1) process.2  

In general, we can conclude that nonlinear serial dependence  –  nonzero values for some

a(m,n) in the present instance – can severely distort the shape of the population autocovariance

function.  This distortion greatly diminishes the usefulness of the correlogram as a tool for

identifying the linear dependence {h(1) ... h(L)} in a time series.  Moreover, since the probability

limits of the estimated parameters in a linear model for prewhitening xt are functions of the

autocovariances, this result also implies that the coefficients in a linear pre-whitening model will
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Indeed, this property can make even the estimation of linear MA models troublesome.

be inconsistently estimated.  Thus, pre-whitening is valid only under a null hypothesis of (at

most) linear serial dependence.

In principle the coefficients in the quadratic nonlinear MA model can be estimated via

least squares fitting, but the number of coefficients to be estimated quickly becomes unwieldy as

L rises; moreover, this model is quite nonlinear in the coefficients because the et’s themselves

depend on the coefficients.3  Consequently, it is essential to initially obtain preliminary parameter

estimates and a parsimonious representation of the series.  A practical method for doing so is

discussed in the next Section.
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There are (L+1)2 +1 coefficients to estimate if the martingale terms involving the contemporaneous

innovation – i.e., the coefficients a(0,0) ... a(0,L) – are omitted from the model and taking into account the fact that

F2 must be estimated.  See Robinson (1977) for a detailed treatment of the issues involved in estimating equation 6

for the special case where only h(1) and the first order martingale {a(0,1)} terms are non-zero.

5
The normality assumption on et can be replaced by an assumption that the innovations are i.i.d. and

symmetrically distributed, in which case two more parameters (the fourth and sixth contemporaneous moments of the

innovations) must be estimated and two more moments are matched. 
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The last element of involves the estimated  innovations, e1 ... eT, calculated based on the sample data and

the current set of parameter estimates.  If the quadratic nonlinear MA model is a reasonable approximation to the

3. Preliminary Estimates of the Quadratic Nonlinear MA Model Using GMM

Nowadays the generalized method of moments (GMM) is most commonly used to

estimate parametric models based on orthogonality conditions which are either implied by theory

or by  least squares minimization itself.  Our application of GMM here is more fundamental: we

obtain consistent preliminary estimates of the (L+1)2 +1 coefficients in the quadratic nonlinear

MA model of order L,4

                   (6)

(and estimated standard errors for these estimates) by matching the non-zero first, second, and

third order moments of xt as accurately as possible to the analogous sample moments obtained

from the data.  The second moment of the innovations is also matched, so as to estimate F2.5  

The discrepancies between these (L+1)(L+2) + 2 population and sample moments can be

written as the vector  defined in Table 1.  In this notation the parameter estimates are obtained

as argmin{  W-1 } where W is an (L+1)(L+2) + 2 square weighting matrix.6   Note that this



actual generating mechanism, then it can be expected to be invertible for parameter values close to the optimum, but

the optimization algorithm examines parameter value combinations well away from the optimum.  Where such

combinations lead to non-invertible models, the et calculation blows up.  In such cases the objective function is

penalized in an amount proportional to (et-1)
2 and the recursion is re-started, re-setting et-1 ... et-L to zero. 
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This is not as computationally burdensome as it sounds  – it typically takes well under a minute.

8
All of these grad ients are obtained analytically except those of the last component of , which must be

calculated numerically (using Ridder's method) since the  are only available numerically.  

model is over-identified since the number of moment conditions exceeds the number of

parameters.  

As usual in implementing GMM, initial consistent (but relatively inefficient) parameter

estimates are obtained by setting W equal to the identity matrix.  These initial parameter

estimates are then used to estimate the optimal weighting matrix, WGMM, which is the asymptotic

variance-covariance matrix of .  Ordinarily this matrix can be obtained from (1/T) times the

matrix of cross products of the T terms making up each component of , but that is not

appropriate here since these T terms are not serially independent.  Consequently, this asymptotic

variance-covariance matrix is estimated by using equation six (and the parameter estimates) to

generate 1000 T-samples (x1 ... xT), yielding 1000 realizations of the vector .7

An estimated t ratio for each coefficient estimate is then obtained using the usual GMM

estimator of the asymptotic variance-covariance matrix of the parameter estimates, 

[Gt (WGMM)-1G]-1, where G contains the partial derivatives of each component of  with respect

to each parameter.8
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All sums run from t = 1 to t = T; expectations are derived analytically from equation 6 (after a great deal of

tedious algebra) based on the current estimates of ", h(1) ... h(L), a(1,1) ... a(L,L), and F2.  The  are the

innovations implied by the sample data, given these current parameter estimates and   set to zero for

i 0 [0,2L-1].

Table 1

Definition of  vector components

Component Definition9

1 E{xt}  -  (1/T) E xt

2 E{xt xt-1}  -  (1/T) E xt xt-1

(etc.)

(L+1) E{xt xt-L}  -  (1/T) E xt xt-L

(L+1)  + 1 E{xt xt xt}  -  (1/T) E xt xt xt

(L+1)  + 2 E{xt xt xt-1}  -  (1/T) E xt xt xt-1

(etc.)

(L+1) + (L+1) E{xt xt xt-L}  -  (1/T) E xt xt xt-L

(L+1) + (L+1) + 1 E{xt xt-1 xt-2}  -  (1/T) E xt xt-1 xt-2

(L+1) + (L+1) + 2 E{xt xt-1 xt-3}  -  (1/T) E xt xt-1 xt-3

(etc.)

(L+1) (L+2) E{xt xt-L xt-2L}  -  (1/T) E xt xt-L xt-2L

(L+1) (L+2) + 1 E{(xt)
2}  -  (1/T) E (xt)

2

(L+1) (L+2) + 2 E{(et)
2}  -  (1/T) E 

 



4. An Illustrative Example Using Artificially Generated Data

To illustrate the usefulness of the method,  T observations were generated from the

quadratic nonlinear MA model:

         (7)

Applying the GMM method described above to obtain preliminary parameter estimates with 

T = 500 yields the estimates given in Table 2.   At this sample length the algorithm correctly

identifies all three terms {h(1), a(1,1), and a(1,2)} as statistically significant, although it does

underestimate their values.  No coefficients are falsely identified as significant, but note that a

modest number of such “false positives” would be entirely inconsequential since this is only a

preliminary identification step: such coefficients will be eliminated when the model is estimated

using least squares fitting.  

Failing to identify a coefficient that does belong in the model is more serious.  Table 3

summarizes how the a(1,1) and a(1,2) parameter estimates (and their associated estimated t

ratios) vary with T.  The identification procedure appears to work reasonably well for T $ 400

with this particular generating process.  The complete set of estimates is given in Table 4 for the

T = 250 case.  Examining these, it is evident that one still would have identified the right model

in this case – evidently (as one might expect) it is the GMM standard error estimates that are

becoming unusable at T = 250, not the parameter estimates.



Table 2

Preliminary GMM Estimates   –    T = 500

coef. t

" 2.1272 12.65     

h(  1) 0.1564 2.53     

h(  2) 0.0508 0.73     

h(  3) -0.0433  -0.56     

h(  4) -0.0049  -0.08     

a(  1.   0) 0.0362 0.93     

a(  1.   1) 0.2430 2.56     

a(  1.   2) 0.1365 2.14     

a(  1.   3) 0.0060 0.11     

a(  1.   4) 0.0058 0.07     

a(  2.   0) -0.0421 -1.09     

a(  2.   1) 0.0383 0.60     

a(  2.   2) -0.0574 -0.97     

coef. t

a(  2.   3) -0.0222  -0.27     

a(  2.   4) 0.0406 0.52     

a(  3.   0) 0.0029 0.08     

a(  3.   1) -0.0122  -0.22     

a(  3.   2) 0.0017 0.02     

a(  3.   3) -0.0257  -0.36     

a(  3.   4) 0.0246 0.34     

a(  4.   0) -0.0165 -0.44     

a(  4.   1) -0.0192 -0.20     

a(  4.   2) 0.0961 1.10     

a(  4.   3) 0.0221 0.29     

a(  4.   4) 0.0828 1.13     





Table 3

Preliminary GMM Estimates for a(1, 1) and a(1, 2) for Various Values of T

T a(1, 1) t1.1 a(1, 2) t1,2

250 .440 1.24 .198 0.85

400 .251 1.96 .175 1.97

500 .243 2.56 .136 2.14

1000 .307 3.91 .183 3.27



Table 4

Preliminary GMM Estimates   –    T = 250

coef. t

" 1.9554 8.05     

h(  1) 0.1530 1.02     

h(  2) -0.1234 -0.78     

h(  3) -0.0582 -0.34     

h(  4) 0.0967 0.79     

a(  1.   0) -.0304 -0.25     

a(  1.   1) 0.4396 1.24     

a(  1.   2) 0.1978 0.85     

a(  1.   3) -0.1217 -0.90     

a(  1.   4) -0.0482 -0.31     

a(  2.   0) -0.0026 -0.03     

a(  2.   1) -0.0304 -0.25     

a(  2.   2) -0.0288 -0.19     

coef. t

a(  2.   3) 0.1186 0.57     

a(  2.   4) 0.0020 0.01     

a(  3.   0) -0.0418 -0.41     

a(  3.   1) -0.0435 -0.35     

a(  3.   2) 0.0232 0.14     

a(  3.   3) 0.0354 0.25     

a(  3.   4) 0.0243 0.15     

a(  4.   0) 0.0513 0.58     

a(  4.   1) -0.0358 -0.22     

a(  4.   2) -0.0280 -0.16     

a(  4.   3) 0.0588 0.37     

a(  4.   4) 0.0054 0.03     
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We are also exploring the impact on forecasting effectiveness of including the martingale terms in the

preliminary identification and perhaps in the model estimation steps.

5. Future Directions

Currently we are working on applying the method to identify quadratic nonlinear MA

models for real data – e.g., the change in the monthly index of industrial production and daily

common stock returns.  We will examine the postsample forecasting performance of models for

these series which have been identified using our framework and fit (with parameter updating)

using nonlinear least squares fitting.10  

In future work we plan to relax the assumption of gaussian innovations made above.  The

analytic calculation of the population moments and gradients only requires that the innovations

be symmetrically (and serially independently) distributed, with given fourth and sixth moments. 

Assuming gaussianity thus corresponds to setting the fourth moment to 3F2 and the sixth moment

to 15F2.  These two moments can be instead be estimated along with the other parameters, but it

seems likely that rather large samples will be needed for reliable estimation of a sixth moment. 

Consequently – and since the principal interest in considering non-gaussian innovations is to

incorporate leptokurtosis –  our plan is to parameterize the innovations as Student’s t with k

degrees of freedom and estimate k.  Additional extensions which we are working on include

exploring the possibility of going on the cubic nonlinear MA model and extending the

framework to the identification of multivariate nonlinear MA models.
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