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Abstract

Technological advancements in sensor miniaturization, processing power and faster networks
has broadened the scope of our contemporary compute-infrastructure to an extent that
Context-Aware Intelligent Environment (CAIE)—physical spaces with computing systems
embedded in it—are increasingly commonplace. With the widespread adoption of intelligent
personal agents proliferating as close to us as our living rooms, there is a need to rethink
the human-computer interface to accommodate some of their inherent properties such as
multiple focus of interaction with a dynamic set of devices and limitations such as lack
of a continuous coherent medium of interaction. A CAIE provides context-aware services
to aid in achieving user’s goals by inferring their instantaneous context. However, often
due to lack of complete understanding of a user’s context and goals, these services may be
inappropriate or at times even pose hindrance in achieving user’s goals. Determining service
appropriateness is a critical step in implementing a reliable and robust CAIE. FExplicitly
querying the user to gather such feedback comes at the cost of user’s cognitive resources

in addition to defeating the purpose of designing a CAIE to provide automated services.



The CAIE may, however, infer this appropriateness implicitly from the user, by observing
and sensing various behavioral cues and affective reactions from the user, thereby seamlessly

gathering such user-feedback.

In this dissertation, we have studied the design space for incorporating users affective re-
actions to the intelligent services, as a mode of implicit communication between the user
and the CAIE. As a result, we have introduced a framework named CAfFEINE, acronym
for Context-aware Affective Feedback in Engineering Intelligent Naturalistic Environments.
The CAfFEINE framework encompasses models, methods and algorithms establishing the
validity of the idea of using a physiological-signal based affective feedback loop in convey-
ing service appropriateness in a CAIE. In doing so, we have identified methods of learning
ground-truth about an individual users affective reactions as well as introducing a novel
algorithm of estimating a physiological signal based quality-metric for our inferences. To
evaluate the models and methods presented in the CAfFEINE framework, we have designed
a set of experiments in laboratory-mockups and virtual-reality setup, providing context aware
services to the users, while collecting their physiological signals from wearable sensors. Our
results provide empirical validation for our CAfFEINE framework, as well as point towards
certain guidelines for conducting future research extending this novel idea. Overall, this
dissertation contributes by highlighting the symbiotic nature of the subfields of Affective
Computing and Context-aware Computing and by identifying models, proposing methods
and designing algorithms that may help accentuate this relationship making future intelligent

environments more human-centric.
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GENERAL AUDIENCE ABSTRACT

Physical spaces containing intelligent computing agents have become an increasingly com-
monplace concept. These systems when populating a physical space, provides intelligent
services by inferring user’s immediate needs, they are called intelligent environments. With
this widespread adoption of intelligent systems, there is a need to design computer interfaces
that focuses on the human user’s responses. In order for this service-delivery interaction to
feel natural, these interfaces need to sense a user’s disapproval of a wrong service, without
the user actively indicating so. It is imperative that implicitly inferring a user’s disapproval
of a service by observing and sensing various behavioral cues from the user, will help in

making the computing system cognitively disappear into the background.

In this dissertation, we have studied the design space for incorporating user’s affective re-
actions to the intelligent services, as a mode of implicit communication between the user
and the intelligent system. As a result, we have introduced an interaction framework named
CAfFEINE, acronym for Context-aware Affective Feedback in Engineering Intelligent Natu-

ralistic Environments. The CAfFEINE framework encompasses models, methods and algo-



rithms exploring the validity of the idea of using physiological signal based affective feedback
in intelligent environments. To evaluate the models and algorithms, we have designed a set of
experimental protocols and conducted user studies in virtual-reality setup. The results from
these user studies demonstrate the feasibility of this novel idea, in addition to proposing new
methods of evaluating the quality of underlying physiological signals. Overall, this disserta-
tion contributes by highlighting the symbiotic nature of the subfields of Affective Computing
and Context-aware Computing and by identifying models, proposing methods and designing
algorithms that may help accentuate this relationship making future intelligent environments

more human-centric.
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Chapter 1

Introduction

“In theory, there is no difference between theory and practice. But, in practice, there is.”

— Jan L. A. van de Snepscheut

We spend the majority of our days immersed inside built-environments infused with networks
of connected devices used for sensing the state of the system and often providing automated
services. Modern buildings are functionally akin to large-scale interactive machines [1], and

can be seen as extensions of computing devices and services that are progressively moving
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away from the limited desktop scenario into our living environment, ever closer to the ac-
tivities of our daily lives. Technological advancements in hardware sensor miniaturization,
processing power, faster networks and their ever shrinking costs have pushed the contem-
porary computational infrastructure into our living rooms, closely following Mark Weiser’s
overarching vision of “invisible, everywhere computing” [2]. Mark Weiser had sketched out
a broad vision for Ubiquitous Computing as a human-centered computing platform in an
information-rich and computationally-augmented reality [3, 4], envisioning computers to be-

come part of the “woodwork everywhere”.

The collective term describing such a ubiquitous spread of computational infrastructure is
Context-aware Intelligent Environments (CAIE), which is a space where the ambient intelli-
gent system “has contextual-awareness of a user’s current state and is capable of maintaining
a consistent, coherent interaction across a number of heterogeneous smart devices” [5]. A
CAIE needs to be sensible to identify situations when it should provide a service to the user
and how to help them achieve their current goals while also preserving their privacy, safety
and agency [6]. In the ubiquitous computing paradigm, similar to an intelligent building
environment, a user interacts with a dynamic set of sensors and devices in the environment,
possibly cohabitated by other fellow users [5]. From the human-computer interaction (HCI)
perspective, for these pervasive technologies to become part of the “woodwork everywhere”,
and thereby cognitively disappear completely, designers still need to address the nuances
of human-environment interfaces to facilitate a seamless communication channel between
the interacting agents, i.e. the user and the intelligent environment. In this article, we
present CAfFEINE—Context-aware Affective Feedback in Engineering Intelligent Natural-
istic Environments—a framework for incorporating implicit feedback from users enabling

natural seamless interactions in ubiquitous computing infrastructure.

For a pervasive computational system to disappear from a user’s cognitive front, one of the
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requirements is to acquire the ability to assimilate into their temporal workflow at all possible
times, without being a hindrance to them. To achieve this, the environment may need to
continuously and consistently infer a user’s goals, intentions and instantaneous context by
collecting sensory inputs, usually from the instrumented environment surrounding the user.
One key aspect of an inference-based system is the probabilistic nature of recognizing a
user’s context and thereafter delivering suitable services. As a result, such an intelligent
computational system may render itself to situations where it is delivering services which
may not align properly with a user’s current needs for achieving his goals. This lack of proper
understanding of a user’s instantaneous expectations from the system may arise from various
reasons ranging from dynamic user preferences to improper modeling of user’s context, goals
or intentions (may be due to the lack of complete information). Although this may be
alleviated by provisioning for some ways to explicitly ask the user about the appropriateness
of the current provided service. In a way, however, this would defeat the purpose of having
an inference-based context-aware pervasive computational system in the first place, if it has
to stop and ask the user each time after delivering the services. If, on the other hand,
the pervasive computational system could infer a user’s (dis)approval about the service’s
(in)appropriateness from their behavioral or physical cues, the need for stopping and asking

the user could be completely eliminated.

This dissertation intends to explore the various design parameters influencing decisions for
incorporating such an implicit feedback loop in a pervasive computational system. Specifi-
cally, we will present our interaction scheme that a user is envisioned to follow in our system,
and present a battery of experiments to validate various aspects of this interaction scheme.

In the next section, we will present the overall motivation driving our research.
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1.1 Motivation

During communication, more than 90% of messages are conveyed by non-verbal implicit
modes [7, 8]. Thus, for attaining seamless communication, the implicit channel must be em-
ployed as it enables convergence in communication between interacting agents [9]. Affective
Computing provides techniques to implicitly infer psychological states such as technostress
from user’s physiological signals such as electrodermal activity (EDA), heart-rate variability
(HRV), skin-temperature (ST), electromyography (EMG) etc. [10]. Similar ideas of implic-
itly learning a user’s disapproval of an intelligent service in a multi-turn interaction, has been
widely used in information-retrieval domain to model search relevance [11, 12]. Specifically,
search-relevance is modeled by predicting searcher frustration[13] and creating personalized
models of search satisfaction [14]. Physiological signals have recently been explored for mod-
eling search relevance [15, 16]. An implementation for using physiological signals in mobile
search improvement has recently been patented by Google [17]. Thus, we see that service-
relevance feedback by modeling user’s frustration in personal computing scenario has been
extensively studied and implemented. However, it has not been tried in pervasive computing

scenario, specifically a CAIE, which is the main goal of our work.

In this section, we will briefly describe some concepts of a pervasive computational system
embedded with various sensors to infer a user’s context, as well as some nuances of interaction
with such an expanse of distributed computational infrastructure. We will then shortly
discuss the role of a relatively new branch of computational intelligence, namely Affective
Computing (AC), in inferring a user’s (dis)approval about (in)appropriateness of a service.
Finally we will discuss how, if at all, the inference from an AC system can be used to

incorporate the implicit feedback loop which we alluded-to in the introductory paragraphs.
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1.1.1 Context-aware Intelligent Environments

An Intelligent Environment (IE) has been defined by Augusto et al. as a space in which “the
actions of numerous networked controllers, each controlling different aspects of an environ-
ment, is orchestrated by self-programming pre-emptive processes (e.g., intelligent software
agents) in such a way as to create an interactive holistic functionality that enhances occu-
pant’s experiences” [6]. In this article, Augusto et al. argue that an IE should be sensible
to identify situations when it should provide a service to the user and how to help them
achieve their current goals while also preserving their privacy, safety and autonomous be-
havior. Situational information relevant to the interaction between a user and an application
has been defined as context [18]. A context-aware intelligent environment(CAIE), thus, is
a space where the ambient intelligent system “has contertual-awareness of a user’s current
state and is capable of maintaining a consistent, coherent interaction across a number of

heterogeneous smart devices”[5].

In the ubiquitous computing paradigm, “a user maintains an ongoing interaction with a
dynamic set of devices in the environment, including many of which he may not even be
aware” [5]. Some of these devices are usually instrumented with sensors to provide a situa-
tional awareness snapshot of the interacting agent (i.e., the user), often a plurality of them in
the same environment, enabling richer forms of interaction. However, interaction design for
this paradigm is significantly challenging compared to traditional computing infrastructure
(such as desktop computers, tabs, pads and boards [19]) due to their inherent differences
such as (i) the lack of single focal point of interaction, (ii) dynamic set of interaction de-
vices, (iii) potential of multiple simultaneous users each engaged in diverse set of modalities,
etcetera [5]. We argue that these pose a pressing need to address these issues, while affective

computing technologies (see next section) presents some promising opportunities.
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1.1.2 Role of Affective Computing

As per the seminal article by Cowie et al. [9], convergence is a feature of human communi-
cation wherein the agents who are in sympathy (or intend to portray so), converge vocally
or via other modes of communication. Cowie et al. categorize communication into explicit
and implicit channels, wherein they hypothesize that the implicit channel imparts meaning
and/or provides context to what is explicitly conveyed via words or actions. In this cate-
gorization, the explicit channel is surmised to consist of spoken words, actions and enacted
facial expressions, whereas implicit channel may be thought as voice tonality, body-gestures,
social gestures arising from underlying psychological states of the user. Mehrabian proposed
a 7%-38%-55% rule for non-verbal communication which states that only 7% of messages
are conveyed by the spoken words, the rest (more than 90%) are by voice tonality and body
language [7, 8]. For technology to go into the “woodwork everywhere”, a seamless communi-
cation needs to be established between the interacting agents viz. the human user and the
IE. This demands attaining the state of convergence in interaction between the agents by

establishing an understanding of the implicit channel of communication.

Over the past decade, a new class of intelligent computing systems has emerged that strives to
recognize, understand and actively influence human emotions and are collectively termed as
Affective Computing (AC) systems. In a recent work, Thompson et al. note that “although
computers will not actually experience emotions in the same way as humans would, the
quality of interaction has been shown to improve even if the system appears to do so” [8]. AC
systems/agents showing empathy have been successfully shown to improve overall usability
of a system [8], sometimes helping reduce user’s experienced stress even when performing
frustrating tasks, making the system more human-centric [20, 8]. As Thompson et al. point

out, the ability to detect/measure stress due to difficulty caused by a system may allow
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developers to pinpoint problems and improve the system by enabling it to respond in a more
natural or realistic way [8]. Such AC systems have been successfully implemented in diverse
applications such as robotic personas [21], learning companions [22], affective tutors [23, 24,
25], affective games [26, 27, 28, 29], psychotherapy (such as in autism) using wearable devices
[30, 31, 32] to name a few. These systems have shown promising results in computationally
understanding human psychological states arising from complex interactions, with various
agents. In a recent thematic issue on “Affect-aware Ubiquitous Computing”, Doctor et al.
state that integrating such sensing modalities into IE will result in a richer set of interaction,
influencing how we interact with the IE system [33]. We hypothesize that such AC systems
can be used to implement the service-relevance feedback to the IE, employing implicit channel

of communication.

1.1.3 Technostress in Computer Interaction

Technostress has been defined by psychologist Craig Brod as “a modern disease of adaptation
caused by an inability to cope with computer technologies” [34, 35]. In simpler terms,
technostress is the perception of hassles due to system failures e.g. computer crash, response
delay or a demanding learning-curve of new modalities during interaction with technology. It
is a psychological as well as biological stressor, which results in activation of many biological
subsystems. A leading cause of technostress is “achievement stress” which is observed to be
heightened in system failures during time-pressured tasks, i.e., tasks having hard-deadlines
associated with them [35, 36]. Following our on going discussion, technostress generated due
to inappropriate service delivered from a CAIE can be used as a means of detecting user’s
reaction. Thus, detecting and inferring technostressed states, could fit immaculately in the
implicit feedback mechanism discussed earlier. A more detailed discussion on technostress

and its physiological correlates will be presented in Chapter 2.
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Design of environments with computational intelligence embedded in them, has hitherto been
focused towards automating services (automated services) and reacting to a subset of users
context (smart services), as discussed in details in Section 2.1.3. From the design perspective,
the above reasoning demands that the design of intelligent environments also needs to react to
users affect (intelligent service). Affect and emotions are integral parts of human intelligence,
and to attain convergence in communication between agents, the services need to understand
and reciprocate human emotions. To elaborate this point further, imagine a smart service
such as an automatic door, it automatically opens up sensing just the presence of a user,
not knowing if the user actually wanted to pass through it. When these systems produce
such an unwanted behavior (say due to, limitations in their sensing or wrong inferences on
context), the user first reacts emotionally to the error by getting stressed or angry. As a
system designer however, we are ignoring/losing a very rich signal i.e. users emotion, knowing
which may inform the intelligent environment about the relevance of its service. Being able
to understand and react to such emotions may also help personalise each environment to its
dwellers, thereby enhancing convergence in communication and immersivity in interaction

with the user.

In this dissertation, we will present our experiments designed to elicit technostress arising
due to the mismatch between a user’s expectation and the actual services provided by a
CAIE. We will use physiological signals to capture these user-specific response patterns and
use computational methods to recognize a specific aspect of this technostressed state, namely
sympathetic activation. In our experiments, we will demonstrate that intelligent services that
do not match a user’s expectations, indeed produce higher sympathetic activation. We will
also present an individualized EDA signal-shape based quality-metric computation method,
that will be used to independently assess the usefulness of this technostress inference drawn

from features depicting a high sympathetic activation.
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1.1.4 Scheme for Human-Centric Intelligent Environment

Formally speaking, a direct outcome of the discussion above is a scheme of a system wherein
a service provider CAIE, which has over time built a knowledge profile for a particular user,
is capable of providing intelligent services by recognizing the user’s present context consisting
of their physical, environmental, social situations. The implicit channel of interaction will
be provided by the affect recognition component of this system, which continuously monitors
the user’s reactions and predicts a service-relevance score. This prediction is used by the
CAIE as a service-relevance feedback to model user’s satisfaction with the services, and in

turn will help to reconfigure the CAIE services to better suit the user’s immediate needs.

The schema described above can be illustrated by two example scenarios described below,
depicting the need for creating an affect-aware implicit feedback loop in a CAIE. Scenario
One depicted in Figure 1.1 shows a simple interaction scenario, whereas Scenario Two de-
picted in Figure 1.2 shows a complex interaction between a user and a CAIE. These scenarios
presented here are just for illustration purposes. Experiments described later-on in this dis-
sertation, that are used to validate our interaction framework, are modelled on practical

CAIE scenarios.

Human-centered computing (HCC) is a set of methodologies used in any field that uses
computing systems that are intended to directly interact with humans [37]. HCC aims to
integrate human-sciences (social, cognitive and affective) into notions of human-computer
interaction (HCI). Thompson et al. [8] noted that for human-centered design “the main
focus is that user’s needs should inform system design” [38]. In this respect, our approach is
a holistic human-centric approach as the emphasis is on understanding the user’s non-verbal
modes of communication in addition to sensing their physical and environmental context, to

complete the service-relevance discovery loop thereby improving the system’s usability.
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Scenario One

It’s a cold winter day and Dave is walking in a hallway, past a proximity sensing
automatic door. Even though Dave did not intend to go outside, the door opened up
as it sensed his presence in front of the door. This was not an expected behavior of
the system, although it is a very commonly occurring mis-triggering of the system. If
the environment had an implicit feedback loop, it might have inferred Dave’s intention

and stopped the door from opening all the way.

(WHEN | WALK FAST AN AUTOMATIC DOOR
AND IT OPENS FOR ME, | WORRY THAT IF
| DONT GO IN |LL HURT ITS FEELINGS.

\ 4 ATATIANSSSN N

OH, DM, '™ SORRY,
| WAS JUST-..(M...
| GUESS | CAN HANG

OUT FOR A BIT.

Figure 1.1: An example of an unintended interaction with an automatic door. For a humor-
ous take, please visit https://xked.com/175/
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Scenario Two

Brad and Tina are in an context-aware smart building, which has access to his per-
sonal planner and various other personal profiles. Brad is getting ready for one of his
meetings. It is winter, and he picks up a jacket but is unsure of the weather outside.
He vaguely asks the smart-building if the jacket would be enough for the planned out-
ing. The pervasive computational intelligence decodes the semantic meaning of the
query, infers that the user is asking about weather outside, checks his planner to see
how long does he plan to be outside and replies in affirmative as well as cautions him
to take an extra as the weather is going to get bad by the time he returns indoor af-
ter several other meetings. However, in doing so the building may have revealed too
much information, which Brad may not have wanted his co-worker Tina to know. The
smart-building was totally unaware of this social context. If the building was designed
to be affect-aware, the computational system could have inferred Brad’s preferences

from his instantaneous affective reactions and may have stopped accordingly.

Hey home, should this
jacket be enough for the
planned outing?

Yes, but it is going to
get worse by the time
you get back, so please
carry an extra ...

Brad, when
are you
coming back?

Figure 1.2: An example interaction within an IE, depicting the need for an implicit feedback.
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1.2 Research Questions and Contribution

The discussion thus far can be summarized into an overarching design question, namely,
what are the methods in which affective computing techniques can be used to design an auto-
matic service-appripriateness feedback in a real-life human-centric intelligent environment.
To answer this broad design question, we have broken it down into a set of research questions
focusing on defining the model of interaction that supports such a service-relevance feedback,
feasibility of such a feedback loop in a real-life CAIE, physiological underpinnings of such

an affective feedback loop.

1.2.1 Research Questions (RQ)

RQ1 : What is the interaction schema to effectively incorporate an implicit-

feedback loop in a context-aware intelligent environment?

Chapter 3 defines the interaction schematic and the interplay between various elements of the
CAIE. For instance, we answer such questions as, how can we exploit a user’s physiological
responses to the system’s services to create an implicit feedback loop, which modality of
data collection used in AC is well suited for designing a dyamic human-centric interface in
a CAIE and what are the trade-offs for choosing these modalities. In addition, what is the
planned interaction schema and what is the chronology of the user’s interaction under this
new schema? How will the intelligent system learn emergent user behavior, or variants to the
same behaviour? Which methods of ground truth collection for physiological profile learning

are well-suited for a naturalistic CAIE?

RQ2 : What are the basic design parameters, signal-features and methods for

evaluation of the interaction scheme of a physiological-signal based affective



Dissertation. Deba P. Saha 13

feedback loop in a CAIE.

Chapter 4 experimentally validates the idea of incorporating an affective feedback loop in
real life CAIE. Our hypothesis is that a computing system providing services which are not
as desired by the user and is perceived to be a hindrance in achieving their time-critical
goal, will induce technostress in them [39][35]. Our first experimental setup is an Order-
Picking Experiment, mimicing the order-picking tasks used in large warehouses to fulfill
customer orders (details in Chapter 4). We trained a classifier to detect changes in a user’s
physiological response whenever the system was made to malfunction. The results from
this study empirically validates the idea that closing the service-relevance feedback loop is a

worthy idea [40].

RQ3 : Which parameters of the physiological signals are critical in perfor-

mance tmprovement of a technostress based service-relevance feedback loop?

Technostress is said to induce physiological and biological reactions, similar to cognitive stress
[39, 35]. Technostress is a biological phenomenon, which produces heightened secretion of
stress-hormone (e.g. cortisol, adrenaline) and detectable changes in patterns of physiological
signals. Our next focus is to understand the underlying physiology of technostress as well
as explore and design various computational methods to detect such a state in naturalistic
intelligent environments. Towards this end, we conducted a second experiment in a Vir-
tual Reality based Grocery Store setup and identified a few informative features from the
Electrodermal Activity datastream that can be used to identify a group of services inducing

technostress from another group of correct services [41]. This is described in Chapter 4.

RQ4 : How to estimate the quality of the inference drawn from the physiolog-

ical signals?

Chapter 4 describes a method to estimate the quality of inference based on the comparison
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between two impulse response function (IRF) shapes of Electrodermal Activity (EDA) signal:
one recorded directly from the user while they listen to a sonic impulse and the other derived
from the EDA decomposition framework. An empirical threshold can be set to define the
quality of inference from the EDA measurement based on this score (see [42]). Such a

quality-metric can be helpful in real-life implementation of the CAfFEINE framework.

1.2.2 Contributions

This dissertation makes two contributions to the field. First, it advances the discussion on the
symbiotic relationship between Affective Computing and Ubiquitous Computing as posited
in [33, 43]. We present a framework that deals with incorporating a physiological signal
based implicit feedback loop for determining service-appropriateness in an context-aware
intelligent environment. We believe that the interaction schematic presented in this work,
is a main contribution to the field. Specifically, to the best of our knowledge, physiological
signal based implicit feedback in a pervasive computing scenario used to ascertain service

appropriateness has not been tried before.

Second, we apply a systematic approach in exploring the design space for employing a
physiology-based inference of technostress, as a means of incorporating an implicit feed-
back loop as described above. We identified methods and algorithms that could be used
for implementing such a framework. Additionally, we introduced a method to identify the
quality of an inference based on certain features derived from an individual’s physiological
signals. We believe the experiments, the evaluation methods and the algorithmic approaches

explored as a part of this work, will function as a baseline for further studies in this field.

In summary, this dissertation systematically explores the design space for incorporating a

technostress-based implicit feedback loop and identifies methods for implementing them.
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The algorithmic approaches used in our exploration may form a baseline method for future

studies in this field.

1.3 Document Organization

In this current chapter, we have presented our overall motivation and an overview of the
research questions that has been addressed in this dissertation. Chapter 2 will describe the
state-of-the-art in affect-aware human-centric interfaces for CAIE research, psychophysiol-
ogy of technostress and computational theories of emotion recognition. In this chapter we
will also discuss the algorithmic approaches for a physiological profile learning framework.
Chapter 3 will provide a brief description of our research methodology in relation to each of
the research questions posed in Chapter 1. In Chapter 4, we will discuss our experimental
setup for validation of the interaction scheme as well as the results. Chapter 5 presents a

discussion on the conclusions and some possible avenues of future work.



Chapter 2

Background and Related Research

“Information is a source of learning. But unless it is organized, processed, and available to

the right people in a format for decision making, it is a burden, not a benefit.”

— William Pollard

In the previous chapter, we have presented a short introduction to the motivation behind

creating an implicit feedback loop for an intelligent environment. We have also discussed

16
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the research questions that are addressed in this dissertation through which we have taken
a systematic approach to define a computational framework for creating such a feedback
loop. In this chapter, we will present the state of the current research in human-computer
interfaces for CAIE. It is a widely held view that affective computing paradigm holds tremen-
dous promise for transforming HCI design for CAIE [43]. We will start by briefly discussing
various interfaces and types of interactions in an intelligent environment and what role can
an affective computing system play in such interactions. Then, we will briefly discuss the
envisioned role of technostress in interaction design for IE. Later on we will describe how
computational models of affective agents based on motivational/appraisal theories of affec-
tive computing may inform our research on affective interfaces for CAIE. Lastly, we will
discuss various computational methods used for feature extraction and learning models to

be used in our research.

2.1 Interfaces for Intelligent Environments

Context-aware intelligent environments (CAIE) can be conceptualized as living spaces em-
bedded with computational intelligence that provides companionship in our daily lives while
congnitively disappeares from our lives. Designing such a CAIE has been the persistent
vision of computer scientists for nearly two decades, following Mark Weiser’s seminal article
envisioning ubiquitous computing infrastructure that is characterized by “invisible, every-
where computing that does not live on a personal device of any sort, but is in the woodwork
everywhere” [19]. The explosive growth of interconnected embedded systems, general pur-
pose computers and intelligent devices—commonly termed as Internet of Things (IoT)—is an

enabler of richer context awareness and tighter integration with users in their daily lives,
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effectively shortening the service delivery pathways. Even with this tremendous progress,
the model for interaction between the user and the computing infrastructure has always
been reactive. However, an ideal context-aware system residing in the woodworks every-
where should proactively assist a user in their tasks where there is no need for the user to
fetch appropriate assistance. In addition to not serving the user’s needs, this passive service-
delivery approach of the reactive interface creates potentially awkward social situations, thus,

sometimes rendering itself as a liability for the user [44].

The present scope of context-aware applications leaves a lot to be desired, as evident from the
opinion paper by Erickson [44] which highlights that the root of the problem lies in the fact
that context awareness shown by humans is on a radically different paradigm as compared
to that shown by computational machines. To quote him “people notice and integrate a
vast range of cues, both obvious and subtle, and interpret them in the light of their previous
experience to define their context. In contrast, current context-aware systems detect a very
small set of cues, typically quantitative variations of the dimensions for which they have
sensors.” The obvious and subtle cues that Erickson is talking about, are very similar to
Cowie’s explicit and implicit channels of human interactions, as previously described in
Section 1.1.2 [9]. Cowie’s claim that the implicit channel has been relatively less studied
in the human-computer interactions (HCI) community, is evinced by Erickson’s distinction

between the paradigms of context-awareness used by humans and machines.

2.1.1 Naturalistic Interactions in Intelligent Environments

The pervasiveness of a CAIE not only poses challenges for user interface (UI) development
due to factors described in Section 1.1.1, they also open up enormous possibilities of using a

variety of naturalistic interfaces in the wild to design interaction. The possibility of physically
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embodied interactions in a CAIE differentiates them from traditional personal computing.
In a CAIE, the usual handling of a thing or a prop can provide a context of usage, thereby
triggering a service. For example, when you sit in a chair to read a book, a computer vision
system might detect the context and the lights might be automatically adjusted to your
most preferred intensity setting based on your daily time of sleep, in order to aid you in your
circadian rhythm [45]. Here, the chair and book became input devices, even though they
are not directly used to control a computer. Not only as input, the embodied interaction via
the prop may also take the form of a CAIE’s smart output, such as flashing of the reading
light to indicate some alarm [5]. Ishii et al. coined a term phicons (physical icons) [46], to
describe a new class of connected props for CAIE, which may be used as input [46], output

[46] or storage UT [47].

In the survey on interaction issues for IE, Shafer infers that an “automatic user behavior-
learning interface”, akin to the The Neural Network House proposed by Mozer [48], is ar-
guably the best Ul for CAIE from the design point of view [5]. Such automatic behaviors
can be programmed by the user or the manufacturer, taught by demonstration or learned
by observation. As discussed briefly in the introductory paragraphs in Chapter 1, these
learning-based context discovery systems have a probabilistic nature, and thus are prone to
erroneous inferences. Hence, no matter what kind of interaction is designed into the CAIE,
there must be a mechanism for the user to iterate with the service delivery system using
an appropriateness feedback (which will tell the system if the service last received was as
expected by the user), until their expectations are met vis-a-vis the service. Such an imme-
diate feedback and provision of an undo mechanism for the user is considered as the first
remedial measure for interaction issues in a CAIE by Shafer [5]. For an “automatic user
behavior-learning interface”, which is arguably an ideal naturalistic UI, an explicit service-

appropriateness feedback (e.g. in the form of say a switch to inform the system about the
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appropriateness of services) will eventually defeat the purpose of the self-learning interface
itself. A feedback loop employing the implicit channel of communication, (such as, using
affective computing technologies) to understand a user’s natural responses to likes or dis-
likes for the service, may provide a very meaningful and valuable method of assessing user’s
(dis)approval in a naturalistic way. In the following section, we present a brief discussion on

the relevance and importance of affective interfaces for CAIE.

2.1.2 Affective Human-Computer Interaction

Affective computing systems have been defined as a new class of intelligent systems that
understand and influence human emotions. As Doctor et al. note in the introduction to
a recent thematic issue in “Affect-Aware Ubiquitous Computing”, the projected number of
Internet of Things (IoT) devices may cross 16 billion units by the year 2020 [33], which will
open up new avenues for human-centric computing. The emergence of affective-computing
paradigm has helped in developing a symbiotic interaction and transference between the hu-
man and digital environment where the overall quality of interaction is expected to benefit
[33]. As already discussed in Section 1.1.2, incorporating affective computing (AC) technolo-
gies improves system usability, the quality of interaction from the design point of view as
well as reduces the overall perception of stress during computer interaction [8]. In addition
to improved interaction, AC technologies have implications for user’s performance at the
interface. As pointed out by Brave et al., interfaces which lack the capacity to understand
and reciprocate emotions, can dramatically impede user’s performance [49]. Such AC sys-
tems have been successfully implemented in diverse applications such as robotic personas
[21], learning companions [22], affective tutors [23, 24, 25|, affective games [26, 27, 28, 29],
psychotherapy (such as in autism) using wearable devices [30, 31, 32, 50| to name a few.

Not only that, as we will see later on in this section, it is also interesting to note that with
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an increased coupling of computing infrastructure in human lives, the quality of interface
design has immense effect on human performance on information manipulation and user’s

overall motivation to adopt these enabling technologies.

How important is Affect for Human-Computer Interaction? : Following initial lack-
lustre response for affective computing research [51], there is a renewed focus in affective
interfaces following continued research findings in psychology, physiology and computational
behavioral analysis which demonstrate the interdependence among these fields [52, 8]. Re-
lationship between human affect and cognition is bidirectional. Riesberg et al., Ohman,
Anderson and Vuilleumier have independently shown that human affect has proven impact
on the speed of information processing [53], to the extent of determining whether the infor-
mation will be attended to [54, 55], or will it be registered in memory [56, 8. Partala et al.
have shown that simple quirks of human-computer interaction such as mouse response delay
has bearings on human performance due to perceptions of stress, and that affective interven-
tions help regain performance [52]. As will be highlighted later in Section 2.2, human affect
has a symbiotic relation with motivation, goal-setting and thereby personality of a human,
which is also helping researchers arrive at computational models of affective intelligence and

methods of incorporating them in computers.

In Section 1.1.2, we stated that even if a computer gives an impression of understanding
human affect, the quality of interaction as well as the usability of the system improves. In
a study, Klein et al. deliberately elicited frustration in a user by incorporating random de-
lays or unresponsive behavior by a computer inhibiting user’s progress towards a goal—a
phenomenon christened technostress [35, 39]—while also provisioned for methods to vent
frustration (that is, a form of affective support)[57]. Findings demonstrate that users receiv-
ing this affective support persisted with the frustrating task for a longer duration, compared

to users who did not receive support [8]. Prendinger et al. showed similar trends by providing
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direct affective support using empathic agents [20, 8].

Thompson et al. point out that “measuring the stress or difficulty caused by a system may
also allow developers to pinpoint problems, or simply allow the system to be improved by
being able to respond in a more natural and realistic way” [8]. Thus, understanding and
reciprocating human affect is indeed necessary for an effective design of the human-computer
interface. With the closer coupling of computing technologies in our daily lives in the form of
intelligent environments, affective understanding and support will go a long way in realizing

the vision of computing in the “woodworks everywhere”.

2.1.3 Affective Interfaces for Intelligent Environments

Earlier we have discussed the prolific use of affective computing technology in designing
interfaces for traditional desktop computers used for applications such as learning compan-
ions, affective tutors, affective games, psychotherapy, affective prosthesis and robotic com-
panions (as shown in Section 1.1.2). We classify these as active-agent approaches in HCI
design, wherein the user can either directly interact with the affective agent or can see the
changes caused by the agent on the computing screen. However, the evidence of affective
interfaces as a passive-agent, where the affective component doesn’t directly influence the
interaction but rather modulates and reconfigures the services in an intelligent environment
scenario, is limited. We have seen in Section 1.1, such passive-agent approach has been
widely studied and implemented in personal computing scenarios, where affective computing
techniques have been used in information retrieval domain to create an implicit user feed-
back loop by developing a personalized model of user-satisfaction from their frustrated states
[11, 12, 13, 14, 15, 16, 17]. However, there is a gap in literature for using such techniques in

pervasive computing scenarios.
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Affective interfaces for intelligent environments are being envisioned as an extension of their
desktop counter-part. Sanchez et al. have used animated avatars on display screens for
portraying prototypical affective states to users in an intelligent environment [58]. Carnegie
Melon University researchers designed ComSlipper project which augments traditional slip-
pers with sensory actuators to communicate prototypical emotions via tactile information
such as single or rythmic taps to another connected slipper which responds by vibrations and
producing warmth [59]. Although this work is novel, however there is no inherently natural
mapping of the signalling rythms and users need to learn it. Some groups of researchers use
smartphone usage, game based therapy and questionnaires to investigate early signs of so-
cial loneliness and cognitive impairment for elderly [60, 61, 62]. These are interesting works
which lean more towards behavior modeling and affective intervention rather than designing

an affective interface for intelligent environments.

Doulamis proposed a facial emotion recognition based adaptive pervasive computing frame-
work which updates its performance by adapting to individual users based on their current
context including social context (surrounding people such as friends, family and acquain-
tance) [63]. The results are promising and visual recognition modality in interesting. How-
ever, it also has some technical and social drawbacks such as expression suppression, visual
occlusion and privacy, which may defeat its long term adoption. Moncrieff et al. in their
work, use audio input from a smart environment to detect contextually anxious situations
to infer hazard for elderly people to provide active intervention [64]. The initial results are
encouraging, however the audio interface also has some technical and social limitations quite
similar to visual interface. In addition, if the person in the environment consciously sup-
presses his vocal reactions due to the social context, the system is practically blind (or deaf)

to their affect [65].

The Affect and Belief Adaptive Interface System (ABAIS) was designed to compensate for
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performance-bias caused by user’s affective states and active beliefs [66]. ABAIS presented
a graphical user interface (GUI) reconfiguration system in the context of Air-Force combat
task, where the performance-bias prediction (threat perception in view of ambiguous radar
data, severity of action under threat etc.) is based on empirical findings from affective
research, and the anxiety assessment module is modeled as a knowledge based system. The
ABALIS system identifies the potential impact of the inferred affective-states and active beliefs
on user’s performance, and finally selects a mitigation strategy (such as redirecting focus on
salient cues by redirecting attention to important cues or presenting additional /reconfigured
information to reduce ambiguity and aid decision making). This system is very interesting
and quite relevant to our work. However, the problem with rule-based and knowledge-based

systems like ABAIS is, they are quite inflexible and follow the programmed rules as-is [67].

Benta et al. recently presented a facial expression based affective-feedback in affect-aware
smart homes, where the system takes positive expression as approval and negative expression
as disapproval of an intelligent system’s decision/service [67]. Broekens has used a similar
approach of facial expression based affective feedback to teach desired behavior in human-
robot interaction, employing reinforcement learning [68]. The robot learns desired behavior
from positive reinforcement (reward) by positive expressions, and rejects undesirable ones
by negative reinforcement (punishment). We see two principle drawbacks with using facial
expression and audio based sensing mechanisms, namely (a) lack of a continuous and per-
vasive sensing interface in a CAIE, for capturing such expressions that are very sensitive to
sensing angle and occlusion, and (b) both these modalities capture fully formed emotions,
which are susceptible to conscious suppression of outward display of emotions due to social

context [69, pp 155-194] [70].

Although our work is, in principle, similar to many of these prior works, it differs on the

implementation methodology. We are employing the physiological bio-sensing paradigm
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using wearable on-body sensors for measuring physiological variables related with human
psychological states, such as electro-dermal activity, heart-beat, blood volume pulse and skin
temperature. We will delve deeper into the neurophysiology and psychophysiology of human
affective states in Section 2.3.1. Wearable on-body sensing alleviates a major issue unique to
a CAIE, arising from the lack of a continuous and consistent sensing modality for tracking
user’s reactions in the wild, as we will see in Section 3.1. Research on emotion suppression
has shown that although users may consciously suppress some expressions, but that doesn’t
alter their experience of the emotion [69], which suggests that physiological variables may
not be affected by emotion suppression. This is a distinct advantage of physiological sensing
of a user’s affective states, that is, it arguably captures pre-conscious processes in the human
body providing an unaltered window into nascent emotional states [71], and thus has the
least chance of being suppressed due to social context or any other such considerations.
In Section 2.4, we will delve deeper into this phenomenon of Autonomic Nervous System
(ANS) activation of end-organs. Thus, both of the above mentioned arguments address the
problems of affective state recognition using variations in facial expression or voice prosody,

as used by prior works of Benta et al. [67], Doulamis [63], Broekens [68] and Moncrieff [64].

In the next section we will delve deeper into the definition of a user’s context, encompassing
affect, goals and intentions. Here we will also present a brief overview of models of affect in

relation to designing computational systems.

2.2 Context Definition: Role of Affect and Intentions

In this section, we will discuss certain definitions and constituents of user context that are
well suited for the computational intelligence community. Maat et al. have presented a set

of six questions [72], answers to which will help in providing an outline of the model of user
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context, needed for designing effective service-delivery in a CAIE. We argue through these
set of questions that human affect is an important part of user-context which should not be
ignored when designing a user interface for CAIE. Later on, we discuss the various underlying
cognitive processes of appraisal and coping that precede affect generation in users. We argue
that a comprehensive knowledge of these underlying processes is extremely necessary to make

sense of a complete model of user context.

2.2.1 Relevance to our Research

Discussion presented in this section will show that appraisal and coping, two important
cognitive subprocesses of affect generation, are important in meaningful interpretation of
a person’s actions in a given context. In Section 2.3.5 we will see that personality traits
play immense role in determining if an event is appraised as a stressed state, what coping
stategies a person chooses and whether such a strategy will prove to be effective. Applica-
tions developed for continuous, real-time ambulatory monitoring of stress in-the-wild using
non-invasive techniques—such as ours—remains an open challenge to date [73]. In addi-
tion, it is well known that physiological indicators of stress, such as heart-rate variability,
electrodermal activity, respiratory rate, thermal imaging, display individual person-specific
differences [74, 75, 73, 28, 76, 77]. In view of the discussion presented in the previous sec-
tions, personality traits present a plausible framework to explain such differences. A recent
work by Chittaranjan et al. used mobile phone usage statistics to gauge dominant person-
ality traits in a human being, such as “Big-Five Traits” (term coined by Lew Goldberg [78])
[79, 80]. Such innovative methods of ascertaining individualized patterns may hold key to
designing personlized affective interfaces for context-aware intelligent environment. Thus, it

is imperative to incorporate all these factors in our study.



Dissertation. Deba P. Saha 27

2.2.2 Definition and Components of Context

Schilit et al. in their 1994 paper [81] introduced the term Context-Aware Computing in
literature, wherein the authors present the idea of computing systems that determine and
in-effect react to a user’s ever-changing context in order to help the user accomplish their
intended tasks. Schilit et al. define user-context as the immediate proximate environment
of the user—people and things that the user is interacting with, in a particular place at
a time, and the spatio-temporal history of their changes. Environmental variables such as
ambient noise, temperature, available communication bandwidth etc. are also considered
to constitute user context. Various other definitions of context have emerged ever since, as
noted in a widely cited survey by Baldauf [82]. However, as mentioned in Section 1.1.1, the
widely accepted definition of context, as given by Dey et al. is — “any information that can
be used to characterize the situation of entities (i.e. whether a person, place or object) that
are considered relevant to the interaction between a user and an application, including the

user and the application themselves” [83, 18].

An interesting aspect about Dey’s definition of context in [83] is the inclusion of user’s
emotional state and focus of attention as its constituents. Prekop et al. classify context along
two dimensions--external and internal [84] while Hofer classifies context along physical and
logical dimensions [85, 82]. Although Hofer’s definition of context is computer-application
centric as opposed to Dey’s and Prekop’s definition being user centric, but his idea of logical
dimensions being used to accentuate the essence of physical dimensions of context, resonates
with the widely accepted view of internal and external user context. The distinction between
these dimensions is that the external or physical dimension refers to the context data collected
from environmental sensors like ambient light, sound, temperature, movements, location,

time; whereas the internal or logical dimension captures the monitoring of user interactions,
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user goals, tasks and emotional states.

Maat et al. in [72] presented an affective multi-modal human-computer interaction (AMM-
HCI) system where they have modeled user’s context by answering six questions related to

the user’s activities in the computer interface, namely:

e Who — User’s own identity and identity of other humans in user’s surroundings
e Where — Environmental parameters and Location of the user

o What — Current task or activity of the user

e When — Time log of the user’s activities and affect

e How — How is the user enacting interactive cues i.e. user’s affect.

e Why — Why is the user performing the observed activities and portraying certain

affective states

Answers to these questions will give us an outline of the model of user context that a
context-aware computational system must adhere to. To distinguish these questions among
the dimensions of context, Who, Where, When and What constitute the external context,
whereas the questions of How and Why form the internal context of the user. As rightly
pointed out by Maat et al., the most difficult question among these context questions is

answering the why context question.

2.2.3 User Intentions in the Context Model

We need to use models for inferring User Intentions from their goals and actions to answer
this why context question. Burghardt et al. have modeled user intention with tuples of

users Goal, Strategy and Action [86]. Sadri et al. define intention detection (i.e. inferring
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user goals), as the task of recognizing the intentions of an agent by analyzing some or all of
their actions and/or analyzing the changes in the environmental state resulting from their
actions [87]. Sadri also defines plan or strategy recognition as the task of recognizing the
the sequence of actions (including future actions) that the observed agent is following in
order to achieve his intentions. Burghardt argues that the user has a certain amount of
commitment towards his goals, they perform certain actions to fulfill their goals as per their
chosen plan/strategy and in effect leave a trail of changes on the environment which are
picked up by the external context (ambient) sensor infrastructure. In addition to an explicit
change in users goals, changes in the environmental context of the user may also prompt the
user to change their goals and strategies and thus their actions. Thus, user intention must
be an integral part of users context. Logic based approaches such as abductive reasoning,
case-based reasoning, task networks, causal theories, and probabilistic models have been

used to model user intention [86, 87].

An intention recognition system (IRS) must have the following components — 1. Set of inten-
tions to choose from 2. Some knowledge about how plans achieve goals 3. Sensed sequence of
actions by the agent 4. Prior belief about intention. There is an assumption that the agent
is a rational agent and their actions are geared towards achieving a goal. Knowledge about
relations of plans and goals is modeled using techniques listed in the last paragraph. In
an instrumented intelligent environment, component 3 listed above is fulfilled using activity
recognition techniques. The most popular model for computational implementation of IRS

is “Belief-Desire-Intention” (BDI) Model as presented in [88].



30 Chapter 2.

2.2.4 Interdependence of Affect and Intentions

Environmental and social context plays a very critical role to disambiguate various cues
which are input to data analysis in emotion recognition systems. A commonly used example
goes like this - without the social context an isolated flush may signal either pleasure or
anger. Hammal points out that without social context, even a human may misunderstand
interaction cues [43]. Vinciarelli says that the contextual information cannot be overlooked
in automatic emotion recognition, also adding that incorporating social and environmental
cues may provide a different flavor to each social interaction [89]. Cowie et al. point out that
complex mental states should be inferred from heterogeneous information sources that pro-
vide enough information to detect the explicit modes as well as help to infer the implicit cues
of human interactions [9]. The how context question raised in Maat’s work [72] addresses
the affect recognition problem in human-computer interaction. Various computational mod-
els have been proposed such as the Ortony, Clore and Collins (OCC) model [90, 91] and

Emotion and Adaptation (EMA) model [92, 93] to name a few.

Ramos et al. highlight that it is beneficial to incorporate affect, mood and personality
models of the user at each level of ambient intelligent systems—sensing, reasoning and action
[78]. Historically, there were fundamental differences among groups of researchers with
characterizations of affect and human emotions, such as there was little agreement on the
set of basic emotions, there is considerable difference in terms of defining emotions to be
selection driven as opposed to culture driven. Cowie et al. in a systematic review [9], trace
back these differences: (a) Rene Descartes introduced the idea of “human emotional space
constituting of a few basic emotions” (b) Charles Darwin thought “emotion as a biological
phenomenon of selective behavior” However, Ramos et al. point out in their survey [78], that

recent years have seen a positive attitude of researchers cutting across disciplinary boundaries
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such as psychology, neuroscience and philosophy towards the influence of affect in human
decision making processes. The relationship between affect and social context runs both
ways--the evaluation of task completion viz-a-viz goals elicit emotions using the process of
“cognitive appraisal” [88]; these emotions, in effect color our views towards restructuring the
decisions and strategies viz-a-viz our goals using the process of “coping” [94, 95]. We will
see in next Section 2.3 that physiological pre-disposition, personality and social context play

equal roles in these two reverse and complementary processes.

2.2.4.1 Process of Cognitive Appraisal

Everly et al. define cognitive appraisal as “the process of cognitive interpretation, that is,
the meanings that we assign to the world as it unfolds before us, and affective integration
as “the blending and coloring of felt emotion into the cognitive interpretation” [96]. From a
psychological perspective (mainly Lazarus’s theory of Appraisal [97], as also discussed briefly
in Section 2.3), the process of cognitive appraisal comprises of the integration of sensory
inputs and basic subjective evaluation of the present situation or sequence of events to first
form emotions, and then to ascertain a plan of action required to react(if at all) to the event
[97, 96]. This process is critical in our perception of stressors, i.e. in the determination of
whether the psychosocial stimuli is a psychosocial stressor or not. Please refer to Figure 2.1,
for a clearer picture of the primary and secondary appraisal processes. This is a widely
accepted theory, influencing various computational theories of cognitive agents. Ortony,
Clore and Collins defined a computational model of affective states—popularly known as
the OCC Model—which defines human affect as “valenced reactions to three different kinds
of stimulus—objects, consequence of events and action of agents”. It is the most popular
model for implementing environments with intelligent agents [78]. The OCC Model proposes

that affective states are attained as a result of three types of subjective cognitive appraisal:
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1. Appraisal of pleasantness of events viz-a-viz agent’s goals 2. Appraisal of approval of
agent’s behavior with respect to accepted standards of behavior 3. Appraisal of liking of

objects with respect to attitudes of agents. An updated and simplified OCC model considers

only two affect catergories of valence—positive and negative [91], as shown in Table 2.1.

Positive Reactions

Negative Reactions

Undifferentiated

.. because something good happens

... because something bad happens

happen (relief)

(joy) (distress)
.. about the possibility of something | ... about the possibility of something
good happening (hope) good happening (fear)
Goal-based .. because a feared bad thing didn’t ... because a hoped-for good thing

didn’t happen (disappointment)

.. about a self-initiated
blameworthy act (remorse)
.. about an other-initiated
blameworthy act (anger)
... because one finds

someone/something unattractive
(dislike)

.. about a self-initiated praiseworthy
act (pride)
.. about an other-initiated
praiseworthy act (gratitude)

Standard-based

... because one finds

Taste-based ; i i
aste-base someone/something attractive (like)

Table 2.1: Generalized positive and negative emotions, per OCC Model. Table from [91]

2.2.4.2 Process of Coping

From a neurobiological perspective, coping is the process of reattaining the bodily state of
homeostasis after the initial reaction from cognitively appraising an event [98, 36, 96]. From
a psychological perspective, coping is the process of dealing with emotions, either externally
(problem-focused-coping)—by forming intentions to act upon; or internally (emotion-focused
coping)-by acting on self [97, 99]. As briefly described in Section 2.3.1, the activation of SAM
axis is interpreted as active-coping and activation of HPAC axis as passive-coping. Problem
focused coping refers to the efforts by the agent to improve troubled person-environment
relation by acting on the exact reasons of the trouble, whereas emotion-focused coping is the

process of altering beliefs, realigning goals and restructuring strategies to achieve new goals
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in presence of strong emotions (which are generated due to appraisal of favorable/unfavorable

actions viz-a-viz old goals) [94, 99].

These two processes of appraisal and coping interact with each other in a cyclic process of
appraisal— coping— reappraisal and give temporal characteristics to human affect and inten-
tions. This cycle forms the basis of emotional dynamics which says that an agent’s appraisal
of events create affective states, which color it’s further evaluations, ultimately changing its
own emotional state at a future time. Two very important factors influence this emotional
dynamic process—social context and personality traits of the subject [95]. Delongis et al.
used Daily Process Method to investigate the effect of personality traits, nature of stres-
sor and social contexts on the selection of coping strategies by several individuals in varied
environments [95]. Key aspects of social context under study were personality of agents
in the support system of the subject and individual’s satisfaction with the support system.
Delongis et al. found that choice of coping strategy and support system form a vicious cycle
(that is, poor results from one feeds into poor performance of the other). This work also
presents an extensive study of the Big-Five Traits viz-a-viz stressor types and found that

personality interacts with stressor types to elicit coping strategies.

Thus, having described affective computing technologies and their role in defining a user’s
context, we are in a position to point out their symbiotic relation. From the previous two
sections, we see that the concept of an inference based affective-feedback to determine the
appropriateness of a intelligent service is a seamless fit into the scheme of a context-aware
intelligent naturalistic environment. A user’s context is fundamentally an inferred entity.
Thus, the lack of an implicit feedback loop for a CAIE, prompting the user to explicitly undo
an inappropriate service, defeats the idea of an automated service from the CAIE. Although,
a few recent works demonstrate the use of implicit feedback in interface design in intelligent

environments using the voice and visual modalities, we believe (a) the visual modality used
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in these works has a basic drawback of the possibility of occlusion in a naturalistic intelligent
environment, which is not the case with a wearable on-body sensing system. (b) both the
visual and auditory modalities express fully formed emotions, thus, have the possibility of
affect-suppression [71]. Towards that end, we propose to use physiological signals captured
using wearable devices, to infer user’s pre-conscious affective state of technostress and use it
as a surrogate for user’s (dis)approval of (in)appropriate services. We posit that a wearable
device is well-suited for a CAIE, which has a fundamentally different interaction paradigm
spanning multitude of devices and lacking a single focal point of interaction (see Section
1.1.1 for detailed discussion). In the next section, we will discuss the phenomenon called
technostress, what are the physiological signatures of this state and how we plan to use it in

this work.

2.3 Technostress in Computer Interactions

The interface between technology and human plays a critical role in human performance.
More so, when intelligent agents and environments are being adopted at a never-seen-before
pace, thus getting more entwined in our daily lives. Stress perception in human resulting from
their interactions with technology is real [35]. This phenomenon has been formally defined
as technostress by psychologist Craig Brod as “a modern disease of adaptation to cope with
new computer technologies in a healthy manner” [34, pp 16]. Psychological stress, on the
other hand, has been defined by Lazarus and Folkman as “particular relationship between
the person and the environment that is appraised by the person as taxing or exceeding his

or her resources and endangering his or her well being” [97].

In Lazarus’s theory of stress, people are continuously appraising potential stressors in the

environment. The cognitive appraisal process comprises of primary and secondary phases.
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Secondary Appraisal

Primary Appraisal |||

Account is taken of the
resources available with
the individual to cope with

the current event

The situation is being
regarded as positive,
stressful or being
irrelevant to wellbeing

Re-Appraisal

The stimulus and coping
strategies are re-evaluated,
and primary and secondary
appraisal processes are
modified (if necessary)

Figure 2.1: Primary and Secondary Appraisal Processes. Picture adapted from [98, pp 83]

The primary appraisal process determines the threatening agents posing challenges to the
entity in the environment, whereas, the secondary process determines the ability of the entity
to cope with the posed challenges. It is the secondary appraisal process which is critical in
selecting coping strategies as well as affective physiological responses. Figure 2.1 shows the
interplay between primary and secondary appraisal processes through a re-appraisal of the
events at a subsequent time. A knowledge of the temporal dynamics of cognitive processes
underlying stress appraisal is necessary as they are correlated with various physiological

processes, as will be seen in details in the next section as well as Section 2.2.

Hudiberg studied and presented a comprehensive list of events that are known to cause tech-
nostress [100], such as computer slowdown or crash, screen-freeze, unexpected and continued
error messages, program response delays, input-output device malfunction, incomprehensible
instructions, typing errors, poorly designed user-interface and poorly written system manuals
etcetera. This list is available as Computer Technology Hassle Scale designed by Hudiberg
[100, 101]. Various prior studies have reported evidence of stress during such episodes of

hassles with computer interface [52, 102, 103, 104, 105].
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It is worth noting here that many of the responses to technostress, have been shown to
be physiologically similar to that during psychological stress responses [39]. In addition,
in order to design a real-time affective computing system, it is also necessary to have a
detailed picture of the temporal dynamics of the various biological subsystems involved in
producing the human stress reaction. This chronological order of activation of biological
subsystems as a part of the bodily stress-reaction, is also important in order to ascertain the
physiological signal-streams necessary and sufficient for real-time on-body sensing of stress.
In the next section, we produce a discussion on the neurophysiology of stress-reaction in
the human body. The details presented in the following section of neurobiology and the
chronological order of stress responses in humans, is especially relevant to developing the
systems model of interaction for to address RQ 1 (shown in Chapter 1), as well as forms the

basis of computational analysis of psychophysiological variables (shown in Section 2.4).

2.3.1 Neurobiology of Stress

An event, real or imagined, in the vicinity of a person has to be sensed and cognitively
and affective appraised to be a “threat” to trigger the physiological stress reactions. In
[96], Everly et al. presented a meta-analysis of state-of-the-art research on physiological
reactions to stress which shows that pysiological reaction to psychosocial stress can be tem-
porally sequenced into activation of three nervous systemic axes: (i) Most immediate term
response through Neural Axis activation, (ii) Intermediate term response through Neuro-En-
docrine Axis (also termed as Sympathetic-Adrenal-Medullary (SAM) axis) Activation and
(iii) Endocrine Axes (most prominent among these is Hypothalamus-Pituitary-Adreno-Cor-
tical (HPAC) axis) Activation [96] [98, pp 87-89]. Each individual axes is activated sequen-

tially, upon continual re-appraisal of a persistent stressor.
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Hypothalamus

IMMEDIATE TERM EFFECTS LONG TERM EFFECTS

C Anterior Pituitary Gland )

Adrenal Medula

Release 0
Epinephrine & Norepinephrine
(aka adrenaline & noradrenaline) .
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<
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& | (Fight-or-Flight Response): T Release of Glucocorticoids
e Increased Heart Rate (such as Cortisol)
e Faster Breathing
e Pupillary Dilation
e Reduced Digestion
e Reduced Saliva Long-term Physio Responses:
(Dry mouth) e  Suppresses Inmune System
{} e Causes Liver to Release stored
Glucose (provides steady
Release of Glucose supply of fuel to the body)
(to provide more energy) —
Reduces Effect of Initial Shock
| Take Action, Run! w Response ]
Body Prepares for Coping with
Long-Term Stress ;

Figure 2.2: Sympatho-Adreno-Medullary Axis and Hypothalamus-Pituitary-Adrenal Axis
Activation in Response to Stressors. Picture adapted from [98, pp 89]

Neural Axis Activation : The most immediate response to a stressful stimulus occurs via
the direct neural innervations of end organs, via the activation of both the divisions of ANS
i.e. Sympathetic Nervous System (SNS) and Para-Sympathetic Nervous System (PSNS).
Since these are the end organs that are directly innervated by the ANS, measuring the
responses from these end-organs gives the earliest indications of stress appraisal [96]. The

neural impulses from the limbic system, which take part in appraisal of an event, trigger
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posterior and anterior hypothalamus to activate SNS and PSNS, respectively.

The effect of SNS activation is generalized arousal

Table 2.2: Effects of Neural-axis Ac-

of various body systems such as heart, sweat-glands, tivation during Stress Appraisal [96]

lungs etc, resulting in increased heart-rate, increased

muscles stimulation, increased breathing to name a Effect Process

few. The effect of PSNS activation are inhibition  Secretes Sweat Glands
and restorative functions of end organs. Although Dilate Eye Pupil
most common neural activation in humans is SNS Decrease Salivary Secretion
activation, but PSNS activation has also been ob-  Increase Heart Rate

served [96, pp 32]. This simultancous activation of ~Decrease Bloodflow to Skin

SNS and PSNS is counter-intuitive, although litera-

ture provides enough evidence. We must note here, not all end organs are equally innervated
by SNS and PSNS nerves, which is why there are specific systems which should be used for
noninvasive detection SNS activity (See [96, Table 2.3] for list of organ innervation). Neural
axis activation is the quickest response (and also the weakest, due to limited capability of
SNS to continue secreting neurotransmitters [96, pp 32]), and is the main focus of wearable
sensing in majority of prior research. The effects of this activation usually lasts till say 3 - 5
seconds [106, Ch 2], which explains the usual EDA processing window of 5 seconds following

an event (as shown in Section 2.4).

SAM Axis Activation : To continue bodily responses in moderate to chronic stress condi-
tions, the immediate neural axis activation is followed by the activation of adrenal-medulla
gland (the neuroendocrinal axis), to trigger what is popularly known as “fight-or-flight” re-
sponse. The neural impulses start at dorsomedial-amygdalar complex, travel through the
spinal cord to adrenal-medulla situated on top of kidneys, which on activation secretes

adrenal-medullary catecholamines (epinephrine-almost 80% and norepinephrine-the rest).
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The effects of these catecholamines on end-organs are
functionally identical to that of direct SNS activa-
tion, only these are an order of magnitude stronger
(producing more pronounced responses) and require
a delay of atleast 20 seconds to produce effect [96,
pp 34| (see [96, Table 2.4] for organ effects). It is
worth noting here that electrodermal activity (EDA)
and bronchiole effects are not affected by these cate-
cholamine release [96, pp 34]. Due to this similarity,

the neural axes activation is often merged with SAM

39

Table 2.3: Effects of SAM-axis Acti-
vation during Stress Appraisal[96]

Effect Process
Increase  Arterial Blood Pressure
Increase Heart Rate
Increase Cardiac Output
Increase Muscle Stimulation
Decrease  Bloodflow to Kidneys
Decrease Bloodflow to Skin

responses, as done in [98, pp 89] (See Figure 2.2). Researchers have called this activation

as “Sympatho-Adreno-Medullar” (SAM) axis, and is generally regarded as an active-coping

mechanism (to be discussed in Section 2.2.4) to bring the body back to homeostasis, after

the initial shock response.

HPA Axis Activation : If the stressor (real or
imagined) persists till a chronic stage, the endocrine
axis is activated where the most prominent response
is seen in “Hypothalamus-Pituitary-Adreno-Cortical”
(HPAC) axis. The activation is initiated in septal-
hippocampal complex, the neural impulses reach me-
dian eminence of hypothalamus and in turn secrete
corticotrophin release factor (CRF) which on reaching

anterior pituitary glands secrete adrenocorticotrophic

Table 2.4: Effects of HPAC-axis Ac-
tivation during Stress Appraisal [96]

Effect Process
Increase  Glucose Production
Increase  Gastric Irritation
Increase Urea Production
Decrease Apetite

hormone (ACTH) into the systemic circulation. ACTH reaches the adrenal-cortex glands

situated on top of adrenal-medulla and releases glucocorticoids (e.g. cortisol-the “stress
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hormone”) and mineralocorticoids into the systemic circulation. Effects of cortisol secretion
are suppression of digestion, delay onset of sleep [36], increase in glucose production thereby
heightened blood sugar, and suppression of immune system (see [96, Table 2.5] for complete

list).

In addition, cortisol also acts as a negative feedback to catecholamine release hormones,
thereby suppressing the effects of the initial “fight-or-flight” stress-responses of the SAM axes
[36]. Activation of HPAC axis is the slowest occuring but the most chronic stress symptom,
often associated with helplessness syndrome and is called passive-coping system (discussed
in Section 2.2.4). Evidence of activation of the neural axis and the neuroendocrine (SAM)
axis during technostress has been extensively reported in prior research. A recent study,
however, also reports increase in the stress-hormone Cortisol due to computer breakdown [36],

indicating long-term stress-response (see Figure 2.2 for detailed stress response timeline).

The chronological progression of stress-reactions in bodily subsystems can be summarized

pictorially as shown in Figure 2.3.

Neural Axis Activation via SAM Axis Activation via HPAC Axis Activation via
Autonomic Nervous System Adrenal Medulla Adrenal Cortex
(Immediate Term Effects) (Intermediate Term Effects) (Long Term Effects)
* Increased Sweat Secretion (EDA) | |. Mostly Same effects as Increased Blood Pressure
* Increased Heart Rate (HR) Neural Axis Activation Increased Blood Glucose
* Increased Blood Pressure (BP)  Delayed but pronounced Suppress Immune System
Pupil Dilation (PD) « EDA is not affected Release Stored Glucose

Cognitive &
Affective
Appraisal

Stressor
Event

Time=0sec Time=0-3sec Time > 20 sec Time = minutes to days

Figure 2.3: Chronology of stress-reaction showing activation of bodily subsystems on con-
tinued appraisal of a stressor.
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2.3.2 Psychophysiological Indicators of Technostress

Technostress, as described in Section 2.3, is a biological and psychological phenomenon
which is triggered due to a perception of hassle, such as variable response delay or system
breakdown, during a user’s interaction with computers. This perception of hassle may trigger
activation of biological stress mechanisms (as described in Section 2.3.1) that encompass
many physiological subsystems such as autonomic nervous systems, central nervous system
and endocrine system [39]. As evidenced in the previous section, the neurobiological anatomy
of the stress reaction finally ends in the activation of end-organs. The catecholamines secreted
by adrenal medulla and glucocorticoid secreted by adrenal cortex glands, when pumped in
the systemic circulation have various arousal effects on respiratory organs, skin, skeletal
muscles and heart. Literature survey such as Reidl [39], show very similar physiological

effects resulting from technostress.

Prior research shows physiological effects of technostress include heightened levels of adrenaline
and noradrenaline (referred to as epinephrine and norepinephrine in U.S.A. [98, pp 88]) [102,
107], increased mean spontaneous skin-conductance responses (sympathetic nervous system
activation) , heart rate and blood pressure (increased catecholamine secretion) [108, 109, 107],
increased jaw muscle electromyograph (indicating clenching of teeth) [103, 110, 107]. A recent
survey also reports the following physiological responses to technostress: (a) neuronal effects
such as decreased P300 amplitude indicating fatigue (b) elevated stress hormones (adrenaline,
cortisol) and other precursor stress enzymes (alpha-amylase, andrenocorticotrophic hormone)
(c) elevated responses of sympathetic activation such as increased blood-pressure, skin con-
ductance, heart-rate, muscle tension [39]. A detailed discussion on methods of computational

analysis of these psychophysiological variables has been presented in Section 2.4.
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2.3.3 Technostress as Negative Feedback Signal

We have seen in the previous section, technostress produces distinct physiological signatures.
Prior research has primarily focused on identifying antecedants and consequences [36] of
technostress as well as detecting technostressed-states [105, 104, 111] in order to develop ways
to mitigate it by formulating and experimentally validating design guidelines for interface
design. However, in our approach, the successful detection of technostressed states will be
used as an implicit feedback from the user representing disapproval for a service, and to

trigger a modification in the service in order to provide desirable output to the user.

In a way, instead of researching on methods to mitigate technostress, we conceptualize an
adaptive interface that infers technostress during interaction as a negative feedback from the
user about the service’s desirability. The system then iteratively modifies the services, so
as to minimize this technostressed state. We argue that this approach of responding to the
user’s innate feedback, conveyed via the implicit channel, will result in a more human-centric
user interface as discussed in Section 1.1.4. We have already seen in our previous discussion
in Section 2.1.2, that even if a computer gives an impression of understanding human affect,
the quality of interaction as well as usability of the system improves, as also evinced by the
experiment conducted by Klein et al. [57]. To the best of our knowledge, as also noted in
our short survey on the current state of the art in affective interfaces design for intelligent
environment (presented in Section 2.1.3), this scheme of using technostress in a CAIE to

detect service relevance has never been tried before.

It is well known that physiological indicators of stress, such as heart-rate variability, elec-
trodermal activity, respiratory rate and thermal imaging display individual person-specific
differences [74, 75, 73, 28, 76, 77]. In the next section, we present a brief discussion on

some of the factors that have considerable influence on the degree and pattern of end-organ
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activation from stress-responses. We will highlight in more details, some of these individual
differences related to each signal stream in Section 2.4. The information presented here is
relevant in identifying various confounding factors for physiological sensing of technostress,
and forms the basis of our investigations into designing a personalized physiological profile

learning component in our framework.

2.3.4 Individuality of Stress Reaction

We have seen briefly in the previous section that the cognitive appraisal process is critical in
the perception of stress and identification of a stimuli as a stressor (please refer Section 2.2.4
for a detailed discussion). Everly et al. have noted in [96], that such a perceptual process
is uniquely individualized and dependent on biological predispositions such as personality
patterns and available resources of coping. The physiological response to stress is dependent
on response mechanism stereotypy (preferential pattern of organ system activation) and
target-organ specificity (predisposition of the target organ to experience arousal), both of

which are heaviliy determined by factors such as genetics [96].

Such individual differences are measurable from the human physiological reactions to stress,
as evident from multiple studies relating electrodermal activity (EDA) lability to personality
traits and predispositions [112] as well as tasks demanding vigilance and personal ability to
allocate information processing capability to various stimuli [113] (see Section 2.4.1). For
instance, Dawson present a survey of various studies suggesting the differences in EDA re-
sponses could reflect individual differences in higher central processes involved in information
processing, which was consistent with some experimental findings showing “EDA labile chil-
dren outperformed EDA stabiles on various tasks requiring perceptual speed and vigilance”

[113]. This is very relevant to our study involving “Paced Stroop Test” (see Section 3.2.1)
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wherein vigilance and information processing speed are critical. In addition, we hypothesize
that these personal predispositions are also broadly related to the perception of technostres-

sors and portraying typical reactions thereafter.

2.3.5 Moderators of Technostress Reactions in Humans

There is consensus in literature about the multidimensional character of technostress, hav-
ing various antecedants and consequences. Moreover, there are multiple possible moderators
that may affect the relationship between technostress and its antecedents and consequences.
One such counter-intuitive moderator—cultural orientation—was reported in studies con-
ducted by Wang and Tu on Chinese population. They report that unlike North America,
technostress has no significant effect on employee productivity [36]. A discussion on a few

major moderators is presented below.

2.3.5.1 Gender and Stress Reactions

People use personal computers to accomplish specific tasks in various settings and contexts
such as office, education or home. With the projected development in IoT, and further de-
ployment of intelligent environments, people are expected to interact with these technologies
to accomplish everyday tasks. The perception of hassle in such environments due to system
delay or misinterpretation of user’s commands will threaten the accomplishment of goals for
the users. The expectation from the use of information and communication technologies
(ICT) is to accelerate goal fulfillment, which only aggravates the negative impact of system
malfunction because the user is expected to deliver better results faster when using ICT in
all contexts [35]. Such complex human-computer interactions tasks that are also time-critical

are said to impart achievement stress [35].
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Prior research has shown the evidence of significant gender differences in physiological re-
actions to different types of psychological stress perceptions. Stroud et al. demonstrated
gender sensitivity to different types of psychological stress by showing difference in cortisol
secretion levels [114]. In the study, male and female participants were exposed to achieve-
ment stress (complex tasks) and social rejection stress (excluded from a conversation). The
results showed that only male participants show significant increase in cortisol level while
responding to achievement stress, whereas female participants show increased cortisol level
on exposure to social rejection stress [114]. Taylor et al. show similar gender differences in
behavioral responses to stress perception, arguing that behaviorally females show tend-and-
befriend as opposed to males, who show fight-or-flight responses [115]. There are even more
evidences which show performance failures in accomplishing time-pressured tasks (akin to
ICT tasks) cause increased perception of stress in males [116], whereas, situations of inter-
personal conflict (not similar to ICT tasks) cause increased perception of stress in females
[117]. A plausible explanation for this heightened male reaction to achievement stress can
be drawn from the field of evolutionary psychology (for details, see [115]), which argues that
historically males acted as “hunters”, while females primarily acted as “gatherers” [35] and

thus responded to stress with a tend-and-befriend behavior [115].

Riedl et al. hypothesize, citing this body of work, that there must be significant gender
differences in technostress perceived in a typical time-pressured human-computer interface
task [35]. They note that technostress research has continued to be gender-neutral, and
list various reasons why it should not be so. Gender has been identified as an important
factor to explain variances in activation of various biological subsystems in response to
stress factors [118, 119]. A few studies also report gender based attitude differences towards
technology acceptance (see[35] for details), whereas other studies have explicitly called for

difference in interface design to account for the gender differences in perception of online
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trust, color or preference to information processing [120, 121]. However, a few limited studies
that strive to uncover these differences have reported conflicting results. Although two
recent articles by Tarafdar et al. and Riedl et al. found men experience significantly more
technostress compared to women in time-pressured ICT tasks [122, 35], a relatively old study
by Elder et al. found exactly the opposite—that women experience more technostress [123].
This provides ample evidence which suggest that gender differences are critical factors in
determining technostress responses. To the best of our knowledge, nobody has studied the

detection of technostress in an intelligent environment, let alone studying gender differences.

2.3.5.2 Role of Personality in Technostress

Personality traits are known to play significant roles in the appraisal and coping processes [97,
99, 95], both of which are integral processes in the trigger and mitigation of stress responses.
Technostress may occur in organizational as well as personal context. Multiple studies
examining the effects of personality on technostress focused on the general organizational
context [124, 125], including specific cases such as banking [126] and library personnel [127].
These are largely focused on discovering correlation between personality traits with the
choice of coping strategies during technostress. However, studies relating personality traits

to differentiated perception of technostress could not be found.

Personality traits are known to have immense bearing on how a person chooses his goals,
how he appraises a particular action viz-a-viz his goals that imparts certain emotions in
them and what coping strategies they choose in a given situation [78]. Personality traits
such as neuroticism are known to be strong predictors of perception/appraisal of events as
psychosocial stressors [128, 39], and neurobiological and physiological reactions thereafter.
Similarly, personality types have also been reported in research studies to significantly influ-

ence appraisal of events as stressful [98, Page 92]. Personality traits have also been indicative
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of effectiveness of certain coping strategies in stressful situations [95]. Thus, we see ample
evidence of personality traits and types influencing the psychosocial stress related appraisal
process. Everly also notes that cognitive appraisal is an individualized process, vulnerable
to personality patterns, learning history and available resources to cope [96]. We also see a
research gap in finding evidence of reproducing similar effect for technostress in ICT settings.
Our experimental setup of technostressors in an intelligent environment (to be discussed in

details in later Chapter 4) may provide a unique opportunity to answer this question.

In the next section, we will present a survey of computational approaches of extracting
statistical features of physiological signals, and methods for recognition of affective states
such as technostress. As pointed out earlier, in this dissertation, our target for recognition
of technostressed states is to identify heightened sympathetic activation from physiological
signals. Computational recognition of these states can be used as a service-appropriateness
feedback for our interaction framework as described in Chapter 3. These techniques are

especially relevant to answering RQ 3 and RQ 4, as described in Chapter 1.

2.4 Computational Psychophysiology

Emotion studies were largely divorced from the brain-related studies, until recently, when the
neuroscience community proposed new methods to understand neural correlates of emotional
states. The emergence of the field of Affective Neuroscience has helped standardize the
underlying neural circuitry for emotional experiences [129]. Psychological stress is one such
affective state, which draws immense attention from various fields of computer sciences,
engineering, psychology and their related branches. Everly defines human stress response as
“a physiological response that serves as a mechanism of mediation linking any given stressor

to its target-organ effect” [96].
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Affective studies have paid considerable attention towards ANS activity, in part due to
the ease of measuring its constituents non-invasively using wearable on-body sensors. For
example, physiological correlates of ANS activity can be directly measured by observing
changes in heart rate, blood pressure, blood pulse volume, respiration rate, pupil dilation,
electro dermal activity, skin temperature and skeletal muscle tension [49]. Physiological
sensing provides a reliable modality of non-invasively capturing responses directly from ANS
thereby opening a window into signals that may reflect various processes that are beyond
cognitive intent [71, 130]. ANS activity is known to be more pronounced during negative
emotional states [131] (such as technostress). We might recall from Section Section 2.3.1
where we discussed the neurobiology of human stress response and temporal chronology
of biological processes that Neural axis is activated immediately following the appraisal of
a stressor. For detecting technostress from events in a CAIE using physiological signals,
temporally the most ideal indicators of stress are those effected by the activation of Neural
azis as noted in Table 2.2. Colomer et al. [132] in a comprehensive analysis of various
indicators of ANS arousal show that features derived from electrodermal activity (EDA)
and heart-rate-variability (HRV) are the most significant attributes, a result corroborated
by other researchers such as Yoo et al [133] as well. Following such comprehensive analysis
of affective computing literature as well as our own survey into neurobiology of stress, we
have decided that for our research, we will be using the features derived from Electro-Dermal
Activity (EDA) and Heart Rate (HR) signal streams. In the subsequent sections, we will

describe their salient features relevant to our research.

2.4.1 Electro-Dermal Activity (EDA)

Electrodermal activity has often been described as “perhaps the most widely used index of

activation” in the field of psychophysiology, being under active research for over 100 years.
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One key reason for the popularity of this datastream among psychophysiology researchers
is the direct and undiluted representation of sympathetic neural activity [113, 130]. Ec-
crine sweat glands are primarily responsible for thermoregulation in the human body. In a
comprehensive work on EDA by Dawson et al.[113], the authors report earlier findings by
Darrow et al. that “the function of secretory activity in the palms is primarily to provide pli-
able adhesive surfaces facilitating tactual actuity and grip on object”. Thus, eccrine glands
present in large concentration on the inner side of the palm and feet are thought to be aiding
gripping and less responsible for thermal cooling, and hence more responsive to psychological
stimuli. EDA is an umbrella term which defines the change in electrical properties of skin
measured across specific active sites. It occurs due to sweat secretion from eccrine glands

during aroused SNS activity [130].

EDA signal arguably is a unique channel which is innervated only by the SNS division, thus,
making it a reliable marker of symapthetic activation [130]. Skin conductance (SC) is the
most widely used measure to quantify EDA, which is composed of a slow changing back-
ground component called skin conductance level (SCL) and a rapidly changing component
called skin conductance response (SCR). In [134], Darrow provided empirical proof for using
change in skin conductance as a reliable measure of electrodermal activity. Per Dawson
et al. [113], tonic SCL has been widely reported to be low during sleep and high during
activated states such as anger or activity, whereas phasic SCR has been related to attention
and noted that this response is sensitive to stimulus novelty, intensity and significance. EDA
is an established measure of SNS arousal as it is arguably the only physiological variable
that reflects the SNS activity uncontaminated by parasympathetic nervous system (PNS)
activity [130]. Event related phasic SCR (ER.SCR) are quite informative and have shown
wide variation in rise-time, decay-time, amplitude and latency based on the nature of stim-

ulus applied. Electrical conductivity recordings are arguably very reliable indicators of SNS
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activity [35, 131, 75, 77] which shows heightened activity during the perception of stress.

2.4.1.1 Physiological Basis of EDA

The eccrine glands consists of a secretory portion which is in the form of a coiled duct, and
an excretory portion which is a long duct that opens up on the skin surface as a small pore.
To understand the physiological basis of EDA, it is convenient to model these long sweat
ducts as sets of resistors connected in parallel [113]. Columns of sweat will rise in these ducts
in varying amounts corresponding to the degree of activation of the SNS. As sweat fills the
ducts, conductive paths are formed through the otherwise relatively insulating skin, thereby
reducing the value of these parallel resistors and in turn resulting in observable change in
EDA. Convincing experimental evidences have conclusively proved that eccrine glands have
predominantly sympathetic innervations and there is a high degree of correlation between
bursts of SNS activity and SCRs. For detailed description of the multiple complex neural
pathways considered responsible for EDA generation and modulation, please see the seminal

works by Dawson et al. [113] and Boucsein [135].

Postganglionic sudomotor fibers, directly connected with the eccrine sweat glands, are re-
sponsible for transmitting the nerve firing signal to eccrine sweat glands to start sweat
discharge. Postganglionic sudomotor fibers which are slow fibers which have a conduction
velocity of roughly 0.5 to 2m/s. Conduction time from central activation to the sweat glands

of the fingertips (with a mean distance of 1.1 m) was estimated at 1.1s [136].

Electrical Recording of EDA: EDA measurement is carried out on the skin surface by
passing a small current through a pair of electrodes placed in skin contact. The principle is
of Ohm’s Law, which states that resistance across the electrodes is equal to the the voltage

(V) applied across the electrodes divided by current (I) being passed through the skin, i.e. R
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= V/I. Lykken et al. [137] and Boucsein et al. [138] strongly argued measuring SC directly by
applying constant voltage, and most commercially available devices use this principle [113].
The preferred areas of placing EDA electrodes are palms of hands, soles of feet, medial
and distal phalanges of the hand fingers [135, 113]. Although, experimental validations by
Poh et al. [139] found that distal forearm recordings have good correlations with finger
EDA, although diminished in amplitude. Van Dooren et al. [140] studied the correlation
of with traditional sites of EDA recordings from fingertips with 16 other sites on the body
that are better suited for long-term ambulatory monitoring, and found that recordings from
foot and shoulders have good correlation with recordings from fingertips especially during
emotional, physical and cognitive stress . Some important considerations to be mindful of
during data collection are the size of the contact area [113], force applied to the electrodes
[141], left hand-right hand laterality [142, 113], measurement site responsivity (distal vs.

medial phalanges vs. wrist) [113], temperature, humidity and diurnal variations [113].

For our work, we have identified two commercially available devices for reliably recording
EDA signal: (i) BioEmo Sensor from BioControl Systems' (ii) Empatica E4 Smartwatch

2 Both of these devices are constant-voltage exosomatic measurement

from Empatica Inc.
devices, which pass small amount of direct-current through the skin, proportional to the
skin conductance across two electrical terminals placed in contact with the skin at the distal
phalanges and the distal forearm (i.e. interior skin at the wrist) of the non-dominant hand,
respectively. The amplified sensor reading is converted to digital format using analog-to-

digital converters (ADCs), transmitted through Bluetooth to a nearby computer to be stored

and further analysed.

Individual Differences in EDA: Individual differences in EDA are relatively more con-

sistent, and have been shown to be reliably associated with behavioral differences or some
1

2

www.biocontrol.com, accessed 04/28/2018
www.empatica.com, accessed 04/28/2018
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psychopathological differences [113]. Certain specific characteristics of EDA such as number
of NS-SCRs and rate of SCR habituation are collectively termed as “Electrodermal lability”,
and are known to be broadly consistent within groups of individuals portraying similar be-
havioral traits. EDA labiles are individuals demonstrating high rates of NS-SCRs and slow
habituation, and EDA stabiles are those showing low rates of NS-SCRs and faster habitua-
tion. For instance, in [112], Crider report that “greater EDA lability is associated with un-
demonstrative and agreeable dispensation, whereas, greater EDA stability is associated with
expressive and antagonistic dispensation”. EDA lability has reportedly been consistently
correlated with personality traits, information processing abilities, vigilance and perceptual
speed [113]. We hypothesize that this might play an important predictor of susceptibility to
technostress and help us in characterizing groups of people for their expected responses for

service failure in CAIE.

2.4.1.2 Algorithmic Analysis of EDA

We have already discussed that skin-
conductance signal can be thought of as a
fast changing phasic SCR value superim-

posed on a slow changing tonic SCL. Tonic

p— |
ﬁ SCL generates a constantly changing base-

LATERCY
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line within an individual over time, and can

T~ differ considerably between different individ-

hY
RISE TIME HALF-RECOVERY TIME 4|

uals. From this, Boucsein concludes that ac-

Figure 2.4: Graphical Representation of Pha-
sic SCR. (Picture redrawn from [113, pp 165])
it easy to derive [135, 130]. In order to get

tual SCL level is of little consequence, nor is

an acceptable estimation of the tonic arousal in an EDA recording, “at the very least, phasic
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SCR amplitude must be subtracted from the tonic SCL” [130]. Phasic SCRs are superim-

posed small variations on the broader tidal drifts of SCL [137].

Presentation of novel unexpected stimuli is known to elicit “event-related” SCR (ER-SCRs),
which is known to occur in a window of 1s-3s (values derived based on frequency distribu-
tions of observed SCRs) following the onset of the stimulus, however, effects have also been
reported to be in longer windows of time [143]. All other SCRs outside this window are called
“non-specific” SCR (NS-SCR). This window based segregation of ER-SCR and NS-SCR is
widely practiced, as noted in [113, 136]. Apart from the relative amplitudes, another measure
of background tonic EDA activity is the count of non-specific SCR peaks (typically 1-5 per
minute during rest and close to 20 per minute during high arousal) [135, 130]. Additionally,
amplitude and standard deviation of NS-SCR peaks are valuable indicators of underlying

tonic arousal processes [130].

Features of EDA Signal: Various measures are derived from the SCR and SCL compo-
nents of EDA signals for computational analysis as listed here. (i) Tonic SCL is known to
vary widely between and within same subject based on different psychological states. Com-
puting log transformation SCL can reduce skew and kurtosis significantly [113]. (ii) It is
common for tonic SCL to decrease gradually while subject is at rest, increase when novel
stimulus is presented and then decrease again. (iii) SCR amplitude, when found to be pos-
itively skewed, show kurtosis or problems with homogeneity of variance, log or square root
(i.e. V/SCR) transformations have been found to alleviate the problem, however, it is not
always necessary. (iv) There are various other measures of ER-SCR shape that are infor-
mative of the EDA characteristics such as amplitude, latency, rise time, half-recovery time

etcetera, as shown in Figure 2.4 and Table 2.5.

To account for inter-individual differences, it is a common practice to normalize the EDA

time-series data. No universally accepted method exists for normalization, some of them
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Measure Definitions Typical Values
CL Tonic level of electr.lcal conductivity 2-20118
of skin

Gradual changes in SCL measured at
two points in time
Number of SCR in absence of
stimulus

Change in SCL 1-3uS

Frequency of NS-SCR 1-3 per minute

Phasic increase in amplitude shortly

SCR Amplitude after stimulus

0.1-148

Time difference between stimulus
SCR Latency and SCR onset 1-3 seconds

SCR Rise-time Time interval between SCR onset 1-3 seconds
and peak

Time interval between SCR peak
and 50% amplitude fall
Number of stimulus presentation
before no response
SCR Habitation Slope | Rate of change of ER-SCR amplitude 0.01 - 0.5 uS

SCR Half-recovery time 2-10 seconds

SCR Habituation 2 - 8 stimulus

Table 2.5: EDA Measures and Typical Values. (Table adapted from [113, pp 165])

are even controversial (such as range-correction due to the use of startle responses which
are not similar to the experiment domain [130]). As will be seen in Chapter 4, we apply
the recommended z-normalization which converts SCR values to Z-scores with mean of 0
and standard-deviation of 1 or to T-scores with mean of 50 and standard-deviation of 10

135, 130].

2.4.2 Heart-Rate and Heart-Rate Variability

We might recall from the section on “Neurobiology of Stress” (refer Section 2.3.1) as well
as in [96, Table 2.3], the cardiovascular system (consisting of HR, peripheral blood flow and
blood pressure), is affected immediately following the appraisal of a stressor. Measurement of
the heart-rate is the most commonly used method to monitor changes in the cardiovascular
system. Heart-rate variability (HRV) is the variation in the interval of consecutive heartbeats

(or in other words, oscillation in heart-rate calculated at each beat), and it is known to be a
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good indication of mental effort and stress in adults [144]. However, it must be noted here
that these temporal changes of beat-to-beat intervals have good correlation with respiration—
the so called respiratory-sinus-arrhythmia (RSA)—and are a reflection of changes in cardiac
autonomic activation [145]. RSA is known to vary with age and physical activity, which
in turn modulates the autonomic activation of the heart [146]. Although concurring views
allude the research community on the exact contributions of SNS and PSNS towards causing
HRV, numerous time and frequency domain techniques have been studied over the years,
and HRV has been related with emotional states, emotion regulation [147], mental workload

[148] and cognitive stress and anxeity [149].

2.4.2.1 Physiology of Cardiovascular System

The human heart is a mechanical pump for the blood, which receives electrical signals from
autonomic innervations from both the sympathetic as well as parasympathetic divisions.
These signals cause the heart muscles to contract and expand, following a rhythmic pattern.
RSA is the observed increase in HR (short R-R intervals) during inhalation and decrease in
HR (long R-R intervals) during exhalation. However, it must be noted here that HRV and
RSA are not exactly the same, but are often used interchangeably [145]. Over the years,
various phisiological phenomena have been surmised to be causing HRV such as, central
neural activation, reflex activation of lungs, mechanical changes in thoracic pressure during
respiration [145]. However, with systematic experimental evaluation it is now clear that RSA
at any given moment is a complex function of the activation of cardiac vagus nerve, SNS
(increases the HR), PSNS (decreases the HR), mechanical as well pacemaker cells located
in the sinoatrial node [145], although their exact roles are not yet conclusively agreed upon

[150).

In response to psychosocial stress, direct sympathetic neural activation causes epinephrine
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to be released in the blood stream which is detected by the ventricles of the heart, and

respond by increased speed and force of ventricular contraction [151]. As a result of these,

vasoconstriction follows, in effect reducing the blood-flow to the extremes of the body such

as fingertips, forehead and toes. The decline in the blood flow results in drop in skin tem-

perature, though it has been known to be not too reliable measure of peripheral blood-flow

[151].

QRS
Complex

R

PR Interval Q

T Interval

Figure 2.5: QRS-Complex waveform
in an ECG plot®. Usual lengths: P-
wave (0.08-0.10 s), QRS (0.06-0.10 s),
PR-interval (0.12-0.20 s), and QT-
interval (QT /v RR < 0.44s) [144]

Measurement of Heart Pulse: Various methods ex-
ist in practice of precisely measureing the period
of the cardiac cycle, for instance, phonocardio-
gram (PCG) measures the heart-beat sound, whereas
echocardiogram produces a visual representation of
the beating heart using ultrasound. The two most
common methods of measuring heart-rate are elec-
trocardiography (ECG) and photoplethysmography
(PPG). While ECG measures depolarized electrical
changes of muscular contraction associated with car-
diovascular activity [144], PPG measures the blood
flow at certain specific sites on the body such as fin-
gertips, toes, calves and works on the principle of light
absorption characteristics of the blood at different op-
tical frequencies. While both of these methods are

non-intrusive, ECG measurement is a bit more in-

volved with respect to access to measurement sites as well as device setup, compared to

PPG measurement. For our current work, we have identified two commercially available
3Redrawn from www.commons.wikimedia.org/wiki/File:SinusRhythmLabels.svg
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systems for reliably recording ECG and PPG: (i) BioBeat Sensor from BioControl Systems 4
which is a chest-ECG measurement system and (ii) Empatica E4 Smartwatch from Empatica

Inc ® which is a PPG sensor in wristband form factor.

The wave depolarization that starts at the apex of the right-atrium and ends in the apex
of right ventricle, the body being the conductor transmitting this electrical pulse. This
electrocardiac signal can be measured at the surface of the body by taking the potential
difference across two or more electrodes placed at either sides of the heart at specific sites
on the chest, guided by Einthoven’s triangle [152], which is a diagram showing on-body
electrical fields during various cardiac cycles with the heart at the center. Heart pulse
waveform obtained from ECG (see Figure 2.5) is quite detailed, however, Berntson et al.
postulate that most of the requirements for HRV analysis should be fulfilled by a simple data
stream showing large R-wave peaks [153], such as photoplethysmogram (PPG) as described
below. ECG is known to be affected by movement artifacts (produces baseline changes) and

power-line interference (50Hz or 60Hz) [152].

Plethysmography is a technique to measure the blood-flow under an organ of interest—such as
the heart—by measuring the change in pressure in the blood-vessel walls caused by the blood
ejected during cardiac cycles. Photoplethysmography (PPG) is a method that attains this
by shining fixed wavelength infra-red light onto the skin surface at sites mentioned above,
and detecting either the transmitted or the reflected light pulse, to finally measure the light
absorption in the blood due to the oxygen saturation of the blood [152]. PPG, although
is immune from electrical interferences, it is very sensitive to motion artifacts, and special

algorithmic approaches are needed for data processing [154, 155, 156].

4
5

www.biocontrol.com, accessed 04/28/2018
www.empatica.com, accessed 04/28/2018
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Variable ‘ Unit ‘ Definition
Time Domain Features
SDNN ms SD of all normal R-R intervals
SDANN s SD of the average normal R-R intervals cglculated over short time periods
(usually 5 mins)
RMSSD s Square root of mean squared dl.fference between adjacent normal R-R
interval
SDNN Index ms Mean of SD of normal R-R intervals calculated over short time periods
NNb50 Number of pairs of adjacent normal R-R intervals
pNN50 % NN50 divided by total number of R-R intervals
HRV Triangular Number of normal R-R intervals divided by height of the histogram of all
Index normal R-R intervals measured on discrete scale with bins of 1/128 s
TINN ns Baseline width of minimum square difference of triangular interpolation of

the highest peak of the histogram of all normal R-R intervals

Frequency Domain Features

Total Power ms? Area under the entire power spectral curve (<0.4 Hz)
ULF ms? Power in ultra low frequency band (<0.003Hz)
VLF ms? Power in very low frequency band (0.003 - 0.04 Hz)

LF ms? Power in low frequency band (0.04 - 0.15 Hz)
HF ms? Power in high frequency band (0.15 - 0.4 Hz)
LFnu nu Normalized low frequency power (LF/LF+HF)
HFnu nu Normalized high frequency power (HF /LF+HF)

LF/HF Ratio of low- to high- frequency power

Table 2.6: Conventional Heart-Rate-Variability Features. Table reproduced from [145]

2.4.2.2 Algorithmic Analysis of HRV

ECG waveform consists of the QRS-complex waveform formed during the various phases of
contraction of the ventricles, as shown in Figure 2.5. HRV is one of the oft-used methods
of ECG analysis, wherein the R-R interval (or normal-to-normal i.e. N-N interval) of each
consecutive beats are detected from the QRS-complex are determined. Detection of the QRS-
complex (see Figure 2.5) from the ECG time-series is well-studied problem, and a standard
Pan and Tompkins algorithm [157] is widely used for R-wave detection and subsequent HRV
time-series generation. This HRV time-series is used to derive various time, frequency and

non-linear features.



Dissertation. Deba P. Saha 59

HRV Time-Domain Features : Time domain features are commonly used statistical features
such as mean, standard-deviation (SD) of N-N intervals (SDNN), the SD of the 1st difference
of HRV time-series, count and percentage of total beats in a window having more than 50ms
as N-N interval i.e. NN50 and pNN50, count and percentage of total beats in a window
having more than 20ms as N-N interval i.e. NN20 and (pNN20). The SDNN feature measures
the total variability arising from periodic and random sources (similar to power in specific

spectral bands in frequency analysis) [145].

HRV Spectral Features : Spectral analysis of HRV

time-series is performed by decomposing the power
(or total variance) of a continuous series of heart

beats into frequency-components [145] and then spec- J\

Sqrt [Px(f)]

tral power for a given frequency band can be de-

termined by computing the area-under the power-

LF Power HF Power \/

spectral-density curve. Please refer to Figure 2.6
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for an example of an HRV power spectrum plot. Frequency
Two common methods of spectral analysis are Fast- Figure 2.6: Example of frequency
spectrum of an Heart-Rate Variabil-

ity time-series, marked with LF and
ministic components in the time-series, and Autore- HF regions. Figure redrawn from

158

Fourier Transform (FFT) which assumes only deter-

gressive (AR) modeling which has no such restrictions
i.e. the data can be composed of deterministic as
well as stochastic components. For short duration recordings (2min range), three main
peaks in the power spectrum are often identified: (i) Very-Low Frequency (VLF) band
[< 0.04Hz] (ii) Low-Frequency (LF) band [0.04Hz-0.15Hz] (iii) High-Frequency (HF) band
[0.15Hz-0.4Hz|. Notice the peaks in each frequency bands in Figure 2.6. The power in LF

and HF bands are computed in normalized units (nu), by dividing the power in each band
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by total power in LF + HF bands [145]. Finally the ratio of LF to HF power is significant
as it is thought to depict the index of sympatho-vagal activation balance, although there
are various studies pointing towards limitations of the this ratio for inferring an index of

sympathetic activation [150, 159].

HRV Geometric Features : Poincaré geometry in-

dices are increasingly being used to capture the dy-
namics of fluctuations in HRV interbeat intervals
(144, 160, 161, 145], owing to their utility in char-

acterization of complex non-linear organic systems.

RR(N*1) 4000
|

Poincaré plot is a scatter-plot representing the value

00

7

of each pair of consecutive R-R interval plotted in

a simplified phase-space or Cartesian plane, and an

4

RR®) . " ellipse is fitted for quantitative analysis of the scat-

Figure 2.7: Example Poincaré Plot ter of the system [160]. A series of these consecutive
of a Heart-Rate Variability Spectrum

similar to the one shown in Figure 2.6 points on the Poincaré plot represent a curve showing
(Figure redrawn from [158]) a system’s evolution. Some derived features include:
(i) minor axis of the ellipse or SD1, representing the
SD of the instantaneous changes in HRV. Physiologically it signifies the index of parasym-
pathetic activation, as it is known that the vagal effect on sinus node supersedes the sym-
pathetically mediated effects. (ii) major axis of the ellipse or SD2, representing the stan-
dard deviation of the long-term HRV. Physiologically it signifies both the sympathetic and
parasympathetic tones (iii) the relation of minor axis to major axis or SD1/SD2 representing
the index of parasympathetic activation compared to sympathetic activation.. This method

essentially quantifies the temporal changes in vagal and sympathetic activation of the HRV

time-series without the requirement of stationarity imposed on the data, which is rarely true
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for a complex system such as the heart [160]. Another useful geometric analysis technique
is finding the HRV Triangular Index, wherein the series of NN intervals are plotted as a
geometric shape such as a triangle distribution and the measure of an interpolated shape

such as the base of the triangle is used to signify the variance [145].

HRV Non-Linear Features : Deterministic chaos in biological systems promotes stability
(variation within limits) and flexibility (multiple x-value for single y-value), properties that
allows living organisms to maintain a stable internal environment, i.e. homeostasis, as it
adapts to changes in environmental demands [145]. In the late 20th century, various evidences
conjectured that biological processes in our cardiovascular systems do not follow regular
periodic oscillation, but rather operate under non-linear dynamic behavior. Thus, linear
statistical and spectral analysis may not provide the sensitivity needed to model subtle
changes in the HRV time-series. Over the years, multiple researchers have used Chaos Theory
and Fractal mathematics to describe HRV dynamics and complexity, for instance, heart rate
frequency (f) follows an inverse-power law relation (1/f)—a defining characteristic of fractals,
Detrended Fluctuation Analysis which detects the existence of fractal-like properties in HRV
series, Lyapunov exponent analysis, multiscale or approximate entropy measures to name a
few [145, 160]. These non-linear indices of HRV series, often are better predictors of adverse

cardiovascular events than traditional statistical methods [145].

Features such as Poincaré graphical indices and various non-linear HRV features as noted
in Section 2.4.2.2, can be extracted with the aid of already existing tools such as Kubios
HRV [162] analysis software ¢ v2.2 (Kuopio University, Finland) and Chaos Data Analyzer”

Professional (CDA Pro), v 2.2 (J.C. Sprott, University of Wisconsin, USA).

Swww.kubios.uef.fi, accessed 10/20/2016
Twww.sprott.physics.wisc.edu/cda.htm, accessed20/20/2016



www.sprott.physics.wisc.edu/cda.htm, accessed 20/20/2016

62 Chapter 2.

2.4.3 Computational Recognition of Technostress

In this section, we will present some computational methods that we have identified as
suitable for modelling and inferring technostressed states from human physiological signals
described in the previous two sections. We have already identified the most prolific statistical
features as well as various other surrogates for these features, a small subset of which are
mentioned in Table 2.5 and Table 2.6. Here, we will see details of a typical Machine Learning
(ML) pipeline consisting of techniques in feature extraction and selection, known ML algo-
rithms used in similar scenarios, as well as a subbranch of ML called transfer learning which
is a good candidate approach for implementing physiological profile-learning component of

our framework proposed in Section 3.2.

Computational Pipeline for ML: Computational pipelines for analysis of physiological sig-
nals elicited as a result of discrete-stimuli follow a windowing approach wherein the physi-
ological signal in question (e.g. EDA, HRV, etc.) are only analyzed for a fixed window of
time following the presentation of each stimuli. We have already seen in Section 2.4.1.2, that
SCRs occurring within a window of 1second - 5second following a stimulus can be considered
as ER-SCRs [113, 135, 136]. Recent works use an approach of a measurement window, that
has to be long enough to capture most relevant ER-SCRs, while short enough to exclude
capturing NS-SCRs as well as effects from subsequent stimuli [143]. According to a report
by Figner et al. [143], a common window of interest may be considered to start from 1second

and end at 6second after the stimulus onset.

Once the window for data processing has been defined, the above mentioned features are
extracted and concatenated together to form the feature vector x;7 € R for each observa-
tion, where D is the total number of features, and 1 is the transpose operator. The data

matrix consisting of N such observations is represented by X € R¥*P. When this data
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matrix is a part of a supervised learning task having a total of C classes, X’ is combined
with 1 x A-dimensional class-label vector ) such that (s.t.) y; € {c1,¢a,...,cc} to form the

dataset S = [X, )]

2.4.3.1 Notes on Dimensionality Reduction

Machine learning tasks can be collectively characterized as a quest for similarity searching
[163, pp 485]. One of the basic assumptions about the data matrix X for various data
analysis algorithms is that the columns should be uncorrelated. However, the features (or
dimensions) are derived from physiological signals produced from a complex set of highly-
correlated biological processes (as described in Section 2.3.1), thereby producing correlated
features [77]. In addition, there are various intrinsic computational problems related with
high-dimensional data, for instance, the number of samples needed for accurately estimating
an arbitrary function grows exponentially with the number of features that the samples
comprise of [163, pp 486]. For similarity searching this tranlates to an exponential growth
of the search space with number of dimensions. As Hastie et al. state in [164, ch 18], similar
problems arise for a data matrix having more number of features compared to the number of
observations, i.e. X with D > N. Apart from these issues, searching in a low-dimensional
feature sets is computationally tractable problem. Hence, it is necessary to find a low
dimensional representation of the feature vector by eliminating the correlated information in
the redundant features, while preserving the discriminatory information present in the data

[165].

Dimensionality reduction (DR) and feature selection (FS) are two ways to obtain a reduced
feature representation [166]. FS removes the redundant features from the dataset as they
may impact the final classification accuracy, while DR produces a transformed combination

of the orginal features. One disadvantage of DR methods is the lack of interpretability of
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the new transformed dimensions [166]. These techniques can be supervised (i.e. dependent
on the problem at hand, e.g. classification or regression task) or unsupervised (i.e. agnostic
to the current problem, producing reduced feature-sets blindly based only on some intrinsic
property of the data such as covariance). Depending on the type of problem and relation

between the features, linear (LDR) or non-linear (NLDR) may be useful [165].

2.4.3.1.1 Principal Component Analysis

The Karhunen-Loéve transform (commonly known as Principal Component Analysis (PCA))
is a very popular method of unsupervised feature transformation that produces a linear
combination of the original features to produce an orthogonal low-dimensional representation
while preserving most of the covariance of the original data-set [167, pp 331]. The addition
of a PCA based feature-preprocessing step is known to produce smaller error for various
pattern-recognition algorithms such linear Support Vector Machines (SVM)), SVM with
radial basis function (RBF) kernel, k-Nearest Neighbor (k-NN) [166]. For a data matrix
X € RV*P with N as the number of observations having D features each, a standard PCA
process chooses the first ¢ eigenvalues (¢ < D) of the ordered list of eigenvalues of matrix
cov(X), thereby reducing the dimensions of the D-dimensional dataset. Please see [165] for
a step-by-step guide on PCA. NLDR methods such as kernel-PCA, neural network based
NLDR [165] might be helpful.

2.4.3.2 Notes on Machine Recognition of Stressed States

ML algorithms such as SVM, Decision Trees (D-tree), Random-Forests (RF), Multi-class
Classifier (MCC) and Adaboost have been successfully used for computational recognition

of stressed states such as frustration [132]. Prior work on physiology based stress-recognition
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has demonstrated SVM outperforms various other ML algorithms [74, 75, 77, 76]. However,
in a recent work, Colomer et al. compared the performance of these algorithms with a
gamut of physiological features for emotion recognition and found that Adaboost with RF
outperforms all of the above ML algorithms on their dataset on audiovisual stimuli [132]. In
this section, we will present a short survey of these machine learning techniques which we

plan to use in our work for recognition of technostressed states.

2.4.3.2.1 Support-Vector Machines (SVM)

Support Vector Machine is a very widely used linear discriminative classification algorithm
which, being data distribution independent, is known to successfully classify a wide variety of
problems with good accuracy. SVM is predominantly a binary classifier where the primary
objective is to come up with a maximum margin classifying high-dimensional hyperplane
between the classes such that there are minimum number of support vectors inside the
margin, where margin is defined as the minimum distance between the classifying hyperplane
and a point in the dataset. So for a training dataset of labeled points S = {x;,y;}, with
y; € {+1, —1}, soft-margin SVM has the following dual formulation :

n TR

Objective :max L = Zai ~3 Z Z oy y K (2, )
i=1

a  dual
=1 j=1

Constraints :0 < a; < CVie S andz a;y; =0 (2.1)

=1

where K(xj, x;) is the kernel function used to map data vectors to a more expressive feature
space which aids in classification of non-linear datasets. For a detailed geometrical analysis

on SVM, please see [168, Ch 21].
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2.4.3.3 Notes on Transfer Learning (TL) Paradigm

The mission specified by Defense Advanced Research Projects Agency (DARPA) for Transfer
Learning (TL) is “the ability of a system to recognize and apply knowledge and skills learned
in previous tasks to novel tasks” [169]. Thus, TL aims to extract knowledge from a source

task and applies the knowledge to a target task.
Transfer learning literature follows a convention as noted below:

(i) A domain D = {X, P(X)} comprises of a feature space X and a marginal probability
distribution of the data P(X) where X = {z1,...,2,} € X.

(i) A task T ={Y, f(-)} comprises of a label space ) and a predictive function f(-), which
is not observed and has to be learned from the training dataset S = {x;,y;} where

r,e Xandy €)Y

(iii) Given a source domain Dg and learning task Tg, a target domain Dy and learning task
T, a transfer learning approach aims to improve the learning performance on f(-) in

T, where either Dg # Dy or Tg # Tr.

For this current work, the observations from Paced Stroop Test Paced Stroop Test (PST) or
responses form other physiological learning stimuli form the Dg and the observations from
the user’s responses from CAIE form the Dy, whereas, Tg and T7 are the cognitive stress
and technostress learning tasks, respectively. Pan et al. [169] provide a detailed classification

of the types of TL and when to use which approach (please see Table 2.7).

Following the Table 2.7, for this current work we hypothesize that both inductive TL and
transductive TL approaches can be applied. This follows from the following reasoning:
(a) transductive TL because—Dg and Dy are “different but related” as the nature of stress

generated from ground-truth collection techniques described in Section 3.2 as well as tech-
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TL Setting Ds and Dy Ts and T Dg Labels Dt Labels

Traditional ML Same Same Available Unavailable

Inductive TL Multi-task Learning May or May Different but Available Available
Self-taught Learning not be Same Related Unayvailable Available

Transductive TL Domaln—adaptatlop, Different but Same Available Unavailable

Sample-selection Bias Related
Unsupervised ML Dif}];eerg I;i(?m Dif}f{g; r:;(}lout Unavailable | Unavailable

Table 2.7: Comparison of Various Transfer Learning approaches

nostressors may be different. Tg and Ty are “same” as the tasks remain the same i.e. the
correct detection of stressed states. (b) inductive TL because—Dg and D are not the same
(as argued previously), in addition, Tg and T7 may also be considered to be different owing
to the different types of stress states, i.e. the functional mapping f(-)s and f(-)7 may be dif-
ferent. In addition, we might consider the availability of some labeled data Thus, techniques
such as a modified TrAdaboost algorithm as introduced by Dai et al. [170], or improving

SVM accuracy by training on auxiliary data similar to Wu et al. [171].

2.4.3.3.1 TrAdaboost: Adaboost for Transfer Learning

TrAdaboost algorithm assumes that Xs and X may consist of exactly similar features and
labels, however, their distribution over the data are different, i.e. P(X)s # P(X)r. In
addition, Dai et al. address the possibility that due to this difference in data distribution,
some instances from the source domain data may not enhance the classifier performance for
prediction on the target domain, which might even harm the classifier [169]. To overcome
this, TrAdaboost iteratively re-weights the source-domain data to reduce the effect of the
“bad” source instances while rewarding the “good” source-data towards improving target-
domain classification. Then, for each iteration, the TrAdaboost trains the base classifier on
this weighted dataset, while the error is only calculated on the target data. The strategy used

by TrAdaboost is same as the basic Adaboost to update the incorrectly classified examples
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in the target domain, while it applies a different strategy from Adaboost for updating the

incorrectly classified source examples in source domain.

In this chapter, till now we have described the symbiotic relation between affect-aware and
context-aware computing systems, and delved deeper into the physiological features of the
affective state called technostress. We have described methods of computational psychophys-
iology which can be used to recognize technostress from it’s physiological signature. In our
framework, as described in Chapter 3, we envision using this inference on technostress as
method of incorporating implicit affective feedback in a CAIE. In the next section, we de-
scribe an example of a potential application domain where we envision the use of our physi-
ology based implicit feedback to improve interaction quality. We have identified the lack of a
sense of agency in modern buildings as a potential problem, which our model of technostress

based feedback may provide a remedy to.

2.5 Implicit Feedback in Human-Building Interaction

Alavi et al. introduced the term home-biosis to explain the symbiotic relationship between
inhabitants and the building they occupy which is mostly driven by the advancements in ar-
tificial intelligence giving modern buildings a new kind of autonomy [172]. Unlike traditional
HCI with more well-defined modalities of interaction, a user interacting with a modern build-
ing can not terminate an interactive session without abandoning the physical space in case
of a negative interaction [1]. Consequently there is a need to thoughtfully design the user-
experience for such interactive contexts. From an HCI perspective, an intelligent building
scenario can be thought as an extreme amalgamation of ambient intelligent (Aml) system
and a tangible interface [1]. However, it must be noted that the emphasis of an Aml system

mainly lies on the interactions with digital artifacts with building as a backdrop and hav-



Dissertation. Deba P. Saha 69

ing little consideration for user’s comfort—a space quality that needs to be guaranteed for

dwelling in the building context.

2.5.1 Perceived Comfort in Built Environments

A ubiquitous technology in the context of modern buildings are Building Automation Sys-
tems (BAS), which often prioritize energy conservation and are motivated by optimization
of technological installations [1]. Energy conservation based BAS systems use quantitative
metrics of performance, with little consideration for uncertainty and diversity of user behav-
ior, inadvertently resulting in negative user experiences such as automated window blinds
with seemingly erratic behavior; a feeling of being controlled by the building or sick-building
syndrome [1]. With the projected trajectory of technological advancements, such automa-
tion systems will progressively be employed in our homes. These situations could be averted
if the automation systems were enhanced by an understanding of the inhabitant’s comfort

instead of optimizing only on the basis of energy conservation [1].

For the thermal variables, perceived user comfort is measured at a building scale by Fanger
model [173] which measures user’s discontent with a score called Predicted Mean Vote (PMV)
as a function of building variables such as air and radiant temperature, humidity etc. as
well as user variables such as activity, metabolic rate and clothing [1, 174]. However, PMV
has been shown to be inadequate for modeling thermal comfort for small groups of people
or buildings without centrally controlled systems (very common in a home context) [174].
Recently two groups have independently used wearable devices for modelling thermal comfort
[175, 174]. Huang et al. have proposed to address this problem recently by utilizing off-
the-shelf wearable wristbands measuring physiological signals to model individual perceived

thermal comfort using skin- and near-body temperature (to model ambient temperature),
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skin conductance (to model skin sweat) and heart-rate, step count and estimated calorie
consumption (to model activity level) [174]. Ranjan et al. have demonstrated using infrared
thermal imaging to derive a model of user comfort which outperforms BAS on the energy

conservation metric [176].

2.5.2 Frustration and Lack of Agency

In addition to user’s perceived comfort, Nembrini et al. argue that built environments may
also induce negative emotions such as annoyance or frustration due to automated services
whose behaviors do not match a user’s mental model, such as behavior of the automatically
controlled blinds [1]. Karjalainen et al. have shown that the inability to act upon the
environment in order to reconfigure it to one’s comfort induces increased frustration [177, 1].
This is similar to Alavi et al.’s argument of provisioning for user’s sense of agency in order
to set or change the preferences of services in human-building interactions (HBI). Such
negative emotions may in-turn also influence a user’s perception of the environment, akin
to assigning personality traits to intelligent homes. For example, Mennicken et al. in [17§]
imparted two groups of personality traits into a smart home while providing intelligent
services —(a) conscientiousness and agreeableness in CKC home taking a passive approach,
and (b) extraversion and openness in EC home taking a more proactive approach in providing
services. One of their key findings was that the users wanted to feel in control even when
interacting with computational agents providing automated services, as the proactive home

induced a feeling of lack of agency in them [178].

We hypothesize that such negative emotions of frustration are not tied to any particular
service, and may occur in response to services that produce arbitrary or unexpected behavior

for any automated services it may provide (some examples of such services are described in
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Section 5.3.1). This is akin to the concept of technostress, as alluded-to in the introductory
paragraphs. From the systems perspective, being able to recognize such frustrated states may
provide a novel way of implicitly communicating user’s feedback about the appropriateness
of the service to the intelligent system. Thus, a technostress based service-appropriateness
feedback signal may be useful in the HBI context, in order to adapt the intelligent services
for attaining, and improving, comfort. It is important to note here that in this article, we
do not intend to study users’ comfort directly, rather we intend to highlight it as a way of
defining an evaluating parameter for the success of our technostress based framework when

used in the HBI context.

2.6 Conclusion

In this chapter, we have shown the state-of-the-art in interface design for intelligent envi-
ronments, thereby arguing in favor of how incorporating an affective feedback loop may be
the key to more human-centric interfaces for context-aware intelligent environments. Tech-
nostress in an ICT interface has been researched intensively for atleast a couple of decades,
however, we have pointed out some prevailing research gaps in literature. In addition, we
claim that our use of technostress to ascertain a user’s approval of an intelligent service, is
novel. A brief survey on a holistic model of context, assimilating affect and intention in its

purview, was presented to bring previous discussions into perspective.

Later, we have described the physiological processes elicited by stress-reactions on the elec-
trodermal and cardiovascular subsystems of autonomic nervous system. We have discussed
statistical features relevant to computational analysis of EDA and HRV signals, electri-
cal devices and specification for measurement of these signal-streams, pre-processing steps

in applied their computational analysis. Further, we have also presented a short survey
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of machine-learning algorithms which we found to be well-suited for stress recognition in
general, and we hypothesize may be valuable towards a technostress recognition system. Fi-
nally, we have discussed the transfer learning paradigm which gives a framework for learning

a user’s physiological profile from different proven stressors for ground-truth data collection.



Chapter 3

The CAfFEINE Framework

“...rather than making computer-interfaces for people, we want to make people-interfaces

”»

for computers...

— Michael Coen [179]

In the previous chapter, we have discussed the need for a paradigm shift in interaction

techniques for CAIE compared to traditional desktop computing, and the challenges it poses

73
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for the designer. We have presented a case for the introduction of affective computing
(AC) technologies in intelligent environments (IE). As noted by Klien et al. [57, 8], a mere
perception of affective understanding in a computer-interaction reduces the user’s perception
of frustration. Interesting as these results are, Section 2.1.3 also highlights that such affective
feedback loops are an understudied area of intelligent environments. In Section 2.5, we have
presented an argument in support of introducing an implicit affective feedback in a human-
building interaction domain. In this chapter we will present a detailed overview of the
envisioned interaction schema in our CAfFEINE framework and go through it’s numerous

components and methods of evaluation.

3.1 Components of the CAfFEINE Framework

We have named our interaction framework for incorporating implicit affective feedback in
an intelligent environment as CAfFEINE, which stands for Context-aware Affective Feed-
back in Engineering Intelligent Naturalistic Environments. While describing CAfFEINE, we
will present our scheme of implicit affective feedback in a CAIE using human physiological
signals, methods of collecting ground-truth data, methods of evaluating the feasibility of
the interaction scheme presented in CAfFEINE, and also propose a method of estimating a

quality metric for the technostress inference on the aforesaid affective-feedback.

3.1.1 User Feedback in a CAIE

Intelligent Environments have been used as an umbrella term by various researchers to define
“spaces in which computation is seamlessly used to enhance ordinary activity” (by Coen et

al. [179]), and a “physical space in which the actions of numerous networked controllers,
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each controlling a specific aspect of the environment, is orchestrated by self-programming
pre-emptive processes in such a way as to create an interactive holistic functionality that
enhances inhabitant’s experiences” (by Augusto et al. [6]). Augusto et al. also notes that
an IE should be intelligent and sensible to identify when and how it should provide a service
to the user to help them achieve their current goals while also preserve their privacy, safety
and autonomous behavior. To achieve the level of intelligence and autonomy being hinted
here, coupled with our goal of designing “human centered interfaces” for a CAIE, we argue
that the IE needs to gather user’s preferences to tailor it’s services as well as their feedback
regarding appropriateness of these services after they are provided. As Coen et al. contend
in [179] that Intelligent Environments will be severely limited in scope without incorporating
various branches of artificial intelligence for preference learning and interaction design; we
argue that lack of any means to gather user’s feedback would inhibit communication with

and adoption of these computing spaces.

Incorporating user-feedback gathering techniques usually entails creating a channel of com-
munication, either explicit or implicit [9], that helps determine the relevance of the system’s
intelligent interventions towards fulfilling the user’s goals. However, in the context of intelli-
gent environments, provisioning for explicit channels of communication becomes particularly
challenging due to the absence of a direct-manipulation based interface [180]. As rightly
pointed out by Coen et al. in [179], “The user-interface primitives of these systems are not
menus, mice and windows but gesture, speech, affect, and context; their applications are not
spreadsheets and word processing but intelligent rooms and personal assistants.” In such
interfaces with de-centralized focus of attention and interaction, designing mechanisms for

gathering feedback unintrusively, becomes challenging.



76 Chapter 3.

3.1.2 Why Technostress? Hint: Explicit vs I'mplicit Feedback

We have discussed in the introduction chapter that one of the requirements, for a pervasive
computational system to disappear from the user’s cognitive front, is to acquire the ability
to assimilate into the temporal workflow of the user at all possible times without posing a
hindrance to them. To achieve this, the computational system may need to continuously
infer a user’s goals, intentions and instantaneous context from an instrumented environment
surrounding the user. A key aspect of an inference-based context-aware system is the prob-
abilistic nature of recognizing a user’s context and thereafter delivering suitable services. As
a result, such an intelligent computational system may render itself to situations where it
is delivering services which may not align properly with a user’s instantaneous needs for
achieving his broader goals. This lack of proper understanding of a user’s instantaneous
expectations from the system may arise from various reasons ranging from dynamic user
preferences to improper modeling of a user’s context, goals or intentions (which in turn may

arise due to limited information).

Ezxplicit feedback is a potent way of capturing a user’s intentions and needs by proactively
asking the user about the appropriateness of the service being currently provided. As dis-
cussed in Section 2.1.3, such explicit feedback pathways using questionnaires or facial ex-
pressions to convey (dis)like for a particular service, have been tried by Benta et al. [67].
However, as discussed previously, they result in reduced quality of interaction due to the
need for orienting towards the camera to trigger the sensing of facial expression. Thus, al-
though reliable, explicit feedback comes at the cost of user’s cognitive resources. In a way,
this defeats the purpose of having an inference-based context-aware pervasive computational
system in the first place, if it has to stop and ask the user each time after delivering the

services about the appropriateness of the service.
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On the other hand, if the pervasive computational system could infer a user’s (dis)approval
about the service’s (in)appropriateness from their implicit behavioral, physiological or phys-
ical cues, the need for stopping and asking the user could be completely eliminated. An
Implicit feedback, thus, provides a way to infer user’s approval of system interventions by
sensing non-verbal cues which often are generated at a subconscious level [71] thereby by-
passing the need for their cognitive resources. We found that there is a need for and a gap
in the knowledge about incorporating implicit feedback channels in intelligent environments.
Such seamless communication with the pervasive computational system, akin to human-to-
human implicit communication, will in essence improve the overall usability and adoption of

such systems.

Brave et al. argue that interfaces which lack the capacity to understand and reciprocate
emotions, can dramatically impede performance [49]. Section 2.1 amply demonstrates the
existance of a gap in knowledge on methods to incorporate such implicit feedback channels
in an [E. We plan to address this gap by using techniques developed in Affective Comput-
ing (AC) paradigm, which we think are potent methods for designing an implicit feedback
channel. This follows from the argument presented widely over the last decade that though
computers are inanimate objects, humans naturally tend to treat computers like social agents
[181, 49]. Bourguet rightly notes that “in particular, user’s expectations of a system’s capa-
bilities and user’s mental models of how a multi-modal interface works are often inadequate,
and these trigger interaction problems” [182]. This “interaction problem”, when appraised
by the user, imparts a temporary “technostress”, which is the phenomenon we want to ex-
ploit to infer a user’s approval of the services provided by the IE. As described in Section 2.3,
the phenomenon of technostress is an appropriate non-verbal pre-conscious event-tied reac-
tionary process that stimulates various biological and nervous system producing measurable

on-body changes. Hence, sensing these changes following any given event in an IE, provides
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for a reasonable method to infer a user’s subjective (dis)like of a service’s (in)appropriateness.

Next we will discuss the interaction paradigm in an affect-aware CAIE design.

3.1.3 Implicit Feedback using Technostress

A schematic for a CAIE is depicted in Fig-

Intelligent Environment

ure 3.1 which operates by sensing a user’s

" User Context ‘
—[User’s Activity,
Intentions & Goals]

. . ‘Environmental Context
context employing various sensors embedded

in the IE to detect constituent variables such User

as environmental (e.g., user identity, time, System Model Context-Aware Services

location and nearby objects), physical (e.g.,
current activity being performed by the user,
intentions and goals set by the user), social
Figure 3.1: Intelligent services provided by a
(e.g., other users nearby, their relation with CAIE on sensing a user’s contextual cues
current user), and affective (e.g., users psy-
chological state arising from appraisal of progress towards goals). A detailed discussion on
the constituents of a user’s context can be found in Section 2.2.2. Social context is a very
important aspect, especially for intelligent environments that are supposed to be cohabitated
by multiple users. We argue that future CAIEs may benefit from incorporating a sense of

social-context to avoid socially awkward situations such as the recent Al-chatbot-Twitter-

fiasco by Microsoft Tay [183, 184].

On successful identification of a user’s context with reasonable confidence, intelligent services
are provided by the CAIE, to assist them in their current activity. This assistance can be in
the form of either a proactive or a reactive service. An example of a proactive service would

be: an intelligent reminder to get milk on the way back from your office as the system suggests
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you take a different route to home due to heavy traffic on your usual route. An example of
a reactive service would be: the inhabitant asking over a voice prompt for instructions on
how to cook paneer-butter-masala. A schematic for this process of technostress generation is

shown in Figure 3.1.

There is often a distinct mismatch between a user’s mental model (or expectation) of how a
system should work vis-a-vis what the system designers thought appropriate at the time of
design freeze [182]. This mismatch in the expectation, accompanied by unforeseen comput-
ing bugs and system failure raises various interaction issues feeding into the main reasons
for a phenomenon called technostress. As already discussed in Section 2.3, technostress is
a user’s physiological response to stressors from computer-based-interactions such as unex-
pected network delay, system crash or unexpected behavior such as unresponsive hardware

etc. A schematic for this process of technostress generation is shown in Figure 3.2.

As already discussed, provisioning to sense

User

explicit user feedback in pervasive comput-

2 _ Mental Model ing systems is not optimal due to various
( reasons such as lack of a single focal point
o
: i :
\‘ Hlme"igent <<l g@ption Affect of interaction. It also defeats the purpose of
N ]% Generation
Intelligent \ an intelligent system if it has to stop and ask
Environment)

about the appropriateness of a service after

/

Physiology

Wearable Sensors

Figure 3.2: Affect generation in a user on ap-
praisal of services received from a CAIE, help-
ing or hindering progress vis-a-vis their goals

presenting each context-aware service to the
user. Inference based implicit feedback sens-
ing is a viable solution, and technostress is a

potent candidate phenomenon which can be

used as a means to implement the feedback loop. From system design perspective, the user’s

response in the form of technostress is an information-rich signal, which in the absence of an
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affect-sensing system, is lost. The CAfFEINE framework envisions employing human phys-
iological data-streams to infer technostressed states, thereby creating an implicit affective
feedback loop for the CAIE. Next section highlights the rationale behind using physiological

sensing for our framework.

3.1.3.1 Rationale for Physiology based Implicit Feedback

In a pervasive interaction scenario, with interaction spanning a dynamic set of devices, the
single consistent factor is the inhabitant and their physiological responses to various services
they receive from the CAIE. As pointed out in Section 2.1.3, camera based facial-expression
based user-feedback sensing explored by Benta et al. in [67] is not an optimal solution in
a naturalistic environment, due to the need for the user to orient their faces towards the
camera, in addition to other limitations of a vision based system such as variation in lighting
conditions (e.g. dim lighting during night etc.). Voice recognition based user interfaces are
appropriate for pervasive multi-device interaction. Speech carries rich affective information
in prosody, intonation, rhythmic variation in utterances etc. Recognizing patterns in these
speech features may be a viable modality for sensing a user’s affective state [185, 186].
However, for sensing a user’s (dis)approval of the (in)appropriateness of a service, just after
they have received a service from the CAIE, the user has to consciously interact with the
CAIE using their voice, introducing an aspect of ezplicit communication into the interaction.
Thus, similar to facial-expression based feedback system explored by Benta et al., we argue
such a system with voice-interaction based feedback would put the onus back on the user’s

cognitive resources.

Moreover, human affective states are comprised of a complex mixture of composite signals
from various biological subsystems. As we have seen in Section 2.1.3, affective states have

historically been inferred using various modalities such as audio-visual, behavioral, gestural
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as well as physiological sensing [185]. Physiological sensing provides a reliable modality of
non-invasively capturing responses directly from autonomic nervous system (ANS) reflecting
implicit responses that may occur without a subject’s conscious awareness or are beyond
cognitive intent [71]. Thus, ANS sensing provides a pathway into measuring nascent emo-
tional states unaltered by conscious efforts of emotion regulation. Kreibig [131] presented
an extensive review of relationship between human physiological responses and emotional
states, in which it was pointed out that ANS responses appear more pronounced in negative
emotions (such as stress, anger, frustration etc.) compared to positive emotions (such as
happy, excited etc.). Thus, direct measurement of biological subsystems innervated by ANS
nerves, is a potent modality for technostress sensing. In addition to this, on-body sensing
alleviates the need for a centralized focal point of interaction, compared to a vision or audio
based interfaces. Thus, we argue that on-body wearable sensing of biosignals provide the
most pervasive sensing modality, well suited for our proposed scheme of technostress based
CAfFEINE. In the next section, we plan to introduce the systems model of implicit feedback

using physiology based technostress detection in a naturalistic CAIE.

3.1.4 Interaction Schematic Overview

With the ubiquity of technology and pervasiveness of IEs, users are surrounded by poten-
tial technostressors practically all the time. Following our discussion above, we propose to
employ human physiology based technostress detection—a potent modality for implicit com-
munication among agents—to design a service appropriateness feedback loop for a CAIE.
Real-time detection of such technostressed states using wearable bio-sensors presents novel
opportunities for inferring relevance of services provided by the CAIE, thereby providing

knowledge useful in refining its services.
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In our interaction schematic, the CAIE recognizes a user’s (dis)approval of the intelligent
services by detecting their affective states, i.e. technostress in our case, resulting from the
appraisal of the appropriateness of the services. On inferring disapproval from the user with
ample confidence (possibly derived from the quality of the physiological signals), the CAIE
responds by modifying and refining these services in the next iteration of the services. A
schematic of such an interaction with an intelligent environment and the user is presented
in the interaction-process model in Figure 3.3. The processes in the schematic are marked

from steps one through five, indicating a chronological order:

Step 1: A smart-service is presented from the CAIE such as a smart home or intelligent man-

ufacturing unit,

Step 2: Thereafter the user appraises the usefulness of the service vis-a-vis their current goals
thereby producing technostress and eventually the affective feedback using behavioral

traits and physiological signals,

Step 3: The smart-system infers a user’s implicit feedback by sensing wearable physiological

data and predicting user’s disapproval of the service using a user-specific physiological
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profile for technostress,

Step 4: On inferring and assessing the implicit feedback, the system modifies the service-
delivery model (to be used by subsequent services), in order to match the user’s mental

model of the service.

Step 5: The system provides the next service in the next turn by accessing the modified service-

delivery model.

In this systems model of interaction in CAfFEINE, there are some assumptions about the
intelligent system, such as: (i) the intelligent system has built a physiological profile of the
users over time, which will act as a ground-truth repository of technostress physiology. This
ground-truth repository will eventually assist the intelligent system to recognize and infer
technostress in the wild (in Step 3). (ii) the intelligent system possesses the capability to
independently assess the validity of the inference drawn on technostress using physiological
signals (in Step 4). In the next few sections, we will delve deeper into each one of these

assumptions and also present our methodology to address them.

3.2 Psychophysiological Profile Learning

Collecting ground truth data from natural settings such as an intelligent environment, poses
practical limitations in realizing such systems. In addition, although very promising, it
should be mentioned here that physiological sensing presents its own set of unique multiple
other challenges such as (i) inevitable presence of natural confounders like food or caffeine
intake and physical activity, (ii) daily and time-of-day variation of physiological subsystems,
and (iii) wide between-person variations in responses to stress originating from the different

coping strategies adopted by people with different personalities etc. which makes it difficult
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to design a generalised classifier model for a wide range of users [76].

Plarre et al. [76] argue that knowledge of proven stressors such as mental arithmetic, public
speaking etc. can be used as a more practical method to collect and annotate ground truth
data. Various recent works have used validated laboratory stressors to collect ground-truth
data for ideographic studies [76, 74, 187, 188, 73, 189, 77]. A quick survey of some recent
works demonstrate the successful use of stressors such as mental workload (e.g. timed arith-
metic [76, 74]), physical stressor (e.g. cold pressor [76, 74]), cognitive stressor (e.g. computer
screen freeze, timed typing [73], paced Stroop test [187, 188], virtual-reality Stroop test [189],
n-back memory test [188], Flanker test [188]), social stressor (e.g. public speaking [76, 74])
or combination of these such as MIST stressor (e.g. mental arithmetic followed by social

evaluative threat [77]), as individualized physiological ground-truth learning framework.

We hypothesize that incorporating such validated stressors in the interaction scheme at
optimum periodic intervals would help in first learning and then periodically re-calibrating
the system’s prior knowledge of a user’s physiological profile. This, in a way, alleviates
the problem arising from temporal differences in biological subsystems for each user. The
periodic learning is provisioned in the schematic shown in Figure 3.6 as Physio-Response-
Learning-Loop. For better usability of the system, we hypothesize such training (in our case
re-calibrating) phases of the system should be incorporated into non-intrusive recreational
activities which the user voluntarily participates in. A few such examples may be casual

games, semi-serious games and music.

In a recent position-paper, we have highlighted the possibility of using validated musical
stimuli for the physiological profile learning component of CAfFEINE framework [190]. This
position-paper builds upon the work from Huang et al. [191] which shows the existence
of groups of people with similar physiological responses to musical features, taken from a

music-physiology database generated from the work of Bortz et al. [192].
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In this dissertation, we demonstrate the use of Paced Stroop Test (PST) for collecting ground-

truth data in CAfFEINE framework which is described in the following section.

3.2.1 Paced-Stroop Test (PST)

Stroop Color-Word Interference Test is an extensively studied paradigm in neuropsychology

and a validated stress induction stimuli which has known relation to anterior cingulate cortex

(ACC) [189]. ACC is known to modulate attention by regulating cognitive and emotional

processing, and it has been shown to be activated during Stroop test by neuroimaging studies
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[189]. Increased difficulty during Stroop test has also been shown to evoke autonomic nervous

system changes [193] such as cardiovascular arousal [194, 195].

In its classical form, Stroop color-word interference test demands that the user chooses the
font color of a word which is depicting the name of either the same color as the font’s color
or a different color. In the congruent phase of the test, the font color of the word and the
name of the color depicted by the word match, whereas in the incongruent version, they
do not. This test has been shown to produce classical behavioural effects such as reaction-
time-lengthening [196] due to the need for suppressing involuntary visual processing of the
word, and generating a new word for the color of the font. Stroop color-word interference
test has been used as a standard cognitive stressor for laboratory use, which is capable of
inducing heightened ANS activity on users [193, 195, 187, 194]. A modified version of this
test is called Paced Stroop test, where each iteration of the Stroop test is programmed to
be active for a stipulated time, say 3 seconds [187]. This task-pacing during the Stroop
test has been shown to enhance the stress-inducing capability of Stroop test as compared
to self-paced Stroop test, due to the need to expend increased amount of mental/cognitive
effort in producing the correct response [193]. We will see later in Chapter 4, how we use

PST in our CAfFEINE protocol.

In the next section, we present our novel derivation of a physiological signal based quality-
metric. From the overall systems perspective, the real-time detection of the technostressed
state is a valuable service-appropriateness feedback signal. However, the detection of technos-
tress is based on inferences drawn on physiological signals using computational psychophys-
iology techniques. There is a need to quantitatively assess the quality of this technostres

inference.
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3.3 Physiological Signal based Quality-Metric

As discussed briefly in Section 3.1.4, the inference on technostress-based service- appro-
priateness from our CAfFEINE interaction framework may become actionable based on a
quantifiable measure of the quality of inference. Such a quality-metric can be derived from
the nature of the physiological signal captured during each session, when compared to a re-
sponse to a known stimulus, say a sonic impulse (e.g. a balloon pop sound) acquired during
the physiological profile-learning phase (as described in Section 3.2). In this dissertation, we
have used the electrodermal activity (EDA) datastream to derive such a quality-metric. In

the next section, we describe our method in detail.

3.3.1 EDA Signal Analysis and Impulse Response Function

EDA signal is composed of a slow varying background tonic component and a peakier phasic
component overriding the tonic. For this decomposition of EDA data, Ledalab software is a
widely used software package which uses a linear-time invariant model based approach, where
the measured EDA signal is assumed to be a convolution of a canonical impulse response
function (IRF) with the underlying sudo-motor nerve activation (SMNA) signal (or driver)
as shown in Benedek et al. [197]. This work by Benedek et al. follows from the earlier
work of Alexander et. al. [198] who proposed a bi-exponential Bateman function based
IRF with optimal values of parameters T f;;=(71, 72)=(0.75s, 2s), fitted from large datasets.
Bateman function is a well-known pharmacokinetic function used to model the time-course
of drug invasion into and elimination out of a compartment body model [199]. The Bateman
function as noted in [199], with the variables (a,b) transformed with time-constants (7, 75)

is given by:
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Alexander et. al. argue that so long as the (71, 72) values are chosen such that individual
phasic peaks are separated and the driver time-series falls back to a baseline in between
the peaks, their exact values are inconsequential. However, Benedek et al. while propos-
ing a continuous measure of sympathetic activation in [197], posit that the large inter-
individual variations in rise- and fall-times of phasic response shapes can harm the accuracy
of deconvolution-based EDA decomposition using fixed IRF shapes. Ledalab framework de-
signed by Benedek et. al., addresses this issue by taking a gradient descent optimization
approach to find a better fit to the measured EDA time-series, by optimizing for the IRF
time-constant parameters Tj.gquqp for each individual dataset, while minimizing a cost func-
tion defined by indistinctiveness of phasic peaks and their negativity. An outcome of this
approach of decomposition is that it allows for IRF shapes that may not be physiologically
valid [197]. Benedek et. al. posited “artifacts in the recorded EDA” data as a possible expla-
nation for such behavior of the IRF shapes resulting from Ledalab’s optimization approach.
To quote Benedek et. al. about these IRFs—“they thus give information on the quality
of the extraction algorithm and of the original SC (skin-conductance) data” [197]. Thus,
taking cues from this, we can use the resulting IRF output by Ledalab for each dataset to

define a measure of confidence for each user.

3.3.2 Towards Defining an EDA Quality Measure

In order to capture an independently obtained physiological response to an impulse stimulus,

we are collecting an individual user’s physiological response to a sonic impulse stimulus,
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such as a balloon-pop sound (a common method of eliciting distinct EDA responses [198]).
This is described in the experimental protocol section Section 4.3.1.1. A few samples of
unfiltered, zero-baselined and normalized EDA impulse responses from our dataset can be
seen in Figure 4.5. In Section 3.3.1, we discussed that the Bateman IRF function with
parameters Ticgaap, resultant from Ledalab optimization is an indicator of the quality of
EDA decomposition and of the original EDA data. Thus, we can use an individual’s response

to sonic impulse to derive an EDA quality-metric for our dataset.

Our proposed method is noted in the following steps:

1. Find a parametric fit of the zero-baselined normalized impulse responses and extract

the Bateman function time-constants T o= (71, 75).

2. Define an error term E;,; derived from the mean of the percentage of absolute devia-

tions of Teonic from Tiedaian

3. Define a quality term Qeqo = (1 - Ejyp)*100.

For Step-1, we take 5 seconds of zero-baselined normalized impulse response data starting
from the response onset as the independent variable, Equation (3.1) as the target model
function with Tjeqqap as the initial values for the parameter estimation using least-squares
curve fitting method. We obtain Ty,;.=(71,7) as a result of this curve-fitting. For Step-2

and Step-3, we compute the Ej,; and Qq4, as described above.

To interpret our quality metric, a higher ().4, score implies that the experimental IRF closely
matches the Ledalab optimization based IRF, signifying good quality EDA signal with negli-
gible artifacts corrupting it, thus enabling good inferences on sympathetic activation. On the
other hand, low (.4, score may imply inadequacy of the decomposition method, or higher

artifacts in the datastream feeding into erroneous inferences on sympathetic activation.
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To operationalize the Q).q4, score, we may define a threshold 6, say 50%, acting as a surrogate
for a confidence measure on the inferences drawn using EDA features. The inference system

in a CAIE will operate on the following condition:

Valid,  if Quaq > 0
EDA Features = (3.2)

Invalid, if Qegqq < 0

The schematic of this overall process of ().4, score computation and interpretation is shown

in Figure 3.5.

3.4 CAfFEINE Framework: Bringing It All Together

Till now, we have presented various components of our CAfFEINE framework, the interaction
overview with a CAIE, discussed the assumptions and our approach towards addressing
them. To summarize our discussion in a coherent interaction framework, we present our final

interaction schematic, as depicted in Figure 3.6. The chronological order of the processes as
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described in Section 3.1.4 are marked with the same step numbers in both Figure 3.3 and

Figure 3.6.

As discussed in Section 3.1.3, this scheme operates by inferring a user’s context from various
environmental sensors and provides a smart service, depicted using the primary blue arrows
(Step 1) in Figure 3.6. The user appraises the appropriateness of this service against their
mental model of the service and generates affective reaction (Step 2), which is sensed using
the physiological channel. The intelligent system, which has over-time built an individualized
physiological profile acting as the ground-truth about the user, can now infer technostress
arising due to the smart service (Step 3). The physiological profile learning loop is shown in
Figure 3.6 using the orange secondary arrows. Using the .4, based quality metric scoring

method discussed in Section 3.3, the intelligent system can independently assess the validity



92 Chapter 3.

of the technostress inference, and accordingly update it’s own service-delivery model for
subsequent use (Step 4). In the next iteration of the service delivery, this updated model

will be used.

3.5 Conclusion

In this chapter, we presented the envisioned interaction scheme in our CAfFEINE frame-
work. To summarize, the CAIE system is a service provider that has prior knowledge of a
user’s affective and physiological profile, provides smart services by recognizing the user’s
present context consisting of their physical, environmental, affective, and social situations.
This schema for the IE is illustrated in Figure 3.6, which shows the implicit feedback loop
implemented for an IE using physiology-based technostress recognition framework for de-
termining service-relevance. On successful identification of a user’s context, the IE presents
either a proactive or a reactive service to assist them towards their goals. The perception
of (in)appropriateness of this service, when appraised by the user, causes technostress (or
lack thereof), thereby signifying (dis)approval for the service. Successful detection of such
a technostressed state is a valuable feedback signal, which may be used to reconfigure the
services. To assess the validity of this inference, thereby enabling the CAIE to quantify
the need to reconfigure it’s service, we presented a physiological signal based quality-metric.
In later chapters, we have presented validation of our interaction framework, method of

ground-truth collection as well as the quality-metric.
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Experimental Setup and Results

“How often people speak of art and science as though they were two entirely different things,
with no interconnection. An artist is emotional, they think, and uses only his intuition; he
sees all at once and has no need of reason. A scientist is cold, they think, and uses only his
reason; he argues carefully step by step, and needs no imagination. That is all wrong. The
true artist is quite rational as well as imaginative and knows what he is doing, if he does not,
his art suffers. The true scientist is quite imaginative as well as rational, and sometimes

leaps to solutions where reason can follow only slowly; if he does not, his science suffers.”

— Isaac Asimov in The Roving Mind [200]

93
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In this document, till now we have presented our CAfFEINE framework proposed in this
dissertation work. In the framework, we have proposed a novel interaction scheme for infer-
ring a user’s disapproval for a context-aware service presented by a CAIE, by detecting their
psychological state of technostress induced by the service. We have discussed our rationale
for using physiological signals as a potent information stream that alleviates the need for
a continuous medium of interaction, envisioned to solve a unique Human-Computer Inter-
action (HCI) issue posed by the IE domain. We have also presented a novel method of
deriving a quality-metric from the physiological signals, for estimating the plausibility of our
inference on user’s disapproval of a service. Towards that end, we have conducted a set of
experiments to first validate and then delve deeper into the physiological underpinnings of
our framework, revealing important discriminatory features as well as a novel method for

deriving a physiological-signal based inference quality metric.

In this current chapter, we present the experimental validation of the CAfFEINE framework
from three of our experiments and their associated results. In experiment one as described in
Section 4.1, we have prototyped a warehouse scenario wherein the picker-personnel are given
a context-aware service to help them complete their task in a more efficient and error-free
manner. We have developed a machine-learning system to recognize technostressed states in
response to wrong responses from the system using data collected from a user’s physiological
signals. We demonstrated that recognition of technostressed states was indeed possible,
and the system performance improved when we included data from PST in our training
set. These results, originally presented in [40], provide an experimental validation of our

interaction framework.

Following the experimental validation of a critical link in our framework—mnamely, the per-
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sonalized ground-truth learning component—we set out to validate the physiological under-
pinnings of the psychological state of technostress. In particular, our quest was to identify
physiologically validated features of psychological stress (such as indicators of increased sym-
pathetic activation), also arising during situations of technostress in a CAIE. Results from
this study would validate our hypothesis of using technostress as a service-appropriteness
signal in the wild, as well as help us in identifying individual discriminatory features. In
order to design a more realistic and immersive experimental setup, we have prototyped a
general intelligent supermarket scenario in a position tracked virtual reality space at our re-
search institute, the Institute for Creativity, Arts and Technology, which is described in more
details in Section 4.2. From the results of this experiment, we identified a few physiologically
validated features from the EDA datastream that contain discriminatory information which

may potentially improve the technostress classifier performance described in Section 4.1.2

[41].

On validating both the components of our CAfFEINE framework, namely, the ground-truth
learning component and the use of technostress as a service-appropriteness signal in the
wild, we needed a physiologically grounded method of quantifying the quality of a technos-
tress inference. This quality score is envisioned to dynamically assess the correctness of the
technostress recognition, thereby helping the CAIE to decide if it needs to reconfigure it’s
service or discard the inference altogether. In order to design an experimental method to
assess this, we designed an experimental setup by modifying the previous experiment, as
described in Section 4.3. This modification is used to ascertain the quality of inferences from
our framework using the underlying phenomenon of a canonical impulse-response function
(IRF), which is integral to EDA signal analysis, specifically a widely used tool called Ledalab.
Results validate our idea of a physiological-signal based quality metric computation, consid-

ering an empirical threshold [42]. We now present the three experiments in the next three
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sections.

4.1 Experiment One: Warehouse Picker Experiment

An order picking task is the process of collecting supply items corresponding to a particular
order from warehouse racks, and sorting them as per order requisitions for delivery. Order
picking is one of the major tasks in warehouses across the globe, accounting for upto 60% of
their operating costs [201]. To reduce this operational cost as well as human errors, order-
picking personnel are provided with various context aware task-assistances from the IE.
Commonly used task-assistance systems in the industry are paper pick-lists (pick-by-list or
LST), illuminated bin indicators (pick-by-light or LHT) and heads-up-display (HUD) assisted
picking [201]. Such systems are usually fitted with laser trackers in order to determine the
current pick by detecting personnel’s reach in each bin. However, these laser-trackers are
frequently prone to mistrigger errors which is a major source of irritation for these personnel
[201], inducing “achievement stress” which is one of the potent reasons of technostress [35].
In practice, these mistrigger errors have to be corrected by expicitly indicating to the IE

about the error using buttons.

Our prototype (shown in Figure 4.1a) is based on the pick-by-light scheme, wherein the bins
are fitted with bin-indicating LEDs (bLED) showing the personnel which bin to pick from,

as well as wrong-pick LEDs (wLED) indicating a wrong pick.

4.1.1 Experimental Protocol

We have collected data from 7 participants (5 males, 2 females) in the age bracket 20-30 yrs

under a research protocol approved by Virginia Tech IRB#14-689. Participants represented
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Figure 4.1: Snapshot for Order Picking Experiment Setup in our Laboratory at Institute for
Creativity, Arts and Technology.

a wide range of nationality, ethnicity and physique, though no conscious effort was made to
select participants based along any discriminatory attributes. Each participant had to go

through the two phases of the experiment as mentioned below.

4.1.1.1 Order Picking Experiment (OPE) Phase

During our experiments, we purposefully indicate a wrong pick at predetermined times, even
though the participants know they are picking from the correct bin, thereby simulating the
situation of mistrigger error in this IE which causes technostress. Our system is operated in
a Wizard-of-Oz fashion, wherein the services and the mistrigger/pick-place error indications
are both triggered by the experimenter. In our experiment, each user is provided with a
paper-pick list containing 14 order bin numbers (i.e., 14 items per task), out of which 5 orders
have no task-assistance (LST), 5 orders have correct task-assistance ({LHT +bLED} states)
and 4 orders have incorrect task-assistance ({LHT +wLED} states). The participants were

requested to finish their tasks in the minimum possible time.
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4.1.1.2 Paced-Stroop Test (PST) Phase

As described in Section 3.2, there is a need to address the individual variations in physiolog-
ical signals by designing a provision to collect validated ground-truth dataset for each user.
Our CAfFEINE framework has designed a provision for collecting such ground-truth using
a validated laboratory experiment called Paced-Stroop Test, as described in Section 3.2.1.
There are many possibilities of using various other validated stress induction instruments
such as n-back memory test, Flanker test or MIST, as described briefly in Section 3.2. For
the purpose of this experiment, we have used task pacing time of 3 seconds between each
Stroop figure, running for a total of 180 seconds. In the PST experiment, one block of 60 sec-
onds (i.e., 20 pairs) of C-PST is preceeded and followed by 60 seconds each of IC-PST (i.e.,

2 x 20 pairs). A snapshot of the IC-PST phase of the experiment is shown in Figure 4.1b.

4.1.1.3 Picker Experiment Hardware Setup

Our setup involves acquiring EDA and ECG data using BioEmo and BioBeat sensors from
Biocontrol Sytems! respectively. BioEmo is an exosomatic skin conductance sensor, designed
to be worn on the medial or distal phalanges of the fingers in direct contact with skin.
BioBeat is the ECG sensor which comprises of gold plated electrodes worn in the form of a
chest band. Both these sensors are connected with iCubeX wiMicroDig digitizers sampling
at 200Hz, which are configured to stream data wirelessly over bluetooth to a nearby laptop

acting as a terminal for running both OPE and PST while also logging physiological data.
1

www.biocontrol.com, accessed 01/11/18
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4.1.2 Picker Experiment Data Analysis

4.1.2.1 Data Normalization and Preprocessing

As discussed earlier in Section 2.4.1, significant individual differences are observed in the
baseline value for skin-conductance levels. The raw time-series data is normalised by com-
puting the studentized residuals, making the algorithm self-calibrating to personal baseline

differences, which improves classification [76, 74].

For EDA preprocessing we have used a modified version of Jaimovich’s EDA preprocessing
MATLAB subroutines [152]. The algorithms take the raw EDA time-series, resamples it to
50Hz, removes electrical noise using an FIR filter of 0.5Hz cut off frequency and gives time
annotated SCR and SCL values as output. For computing the ER.SCR related features, we
have used the procedure charted in Kim et al.’s work [202, 130]. For ECG preprocessing,
we have used the Jaimovich’s ECG preprocessing MATLAB subroutines [152], which gives
a time annotated instantaneous HR time series as output. The raw ECG data, obtained
from the ECG sensor setup as described in Section 4.1.1.3, is detrended and filtered using
an FIR high-pass filter with Kaiser Window having a cut-off frequency of 3Hz, followed by
heart-rate extraction at each beat using a moving window with a thresholding parameter of

2 standard-deviations (SD) and beat change-ratio of 20%.

4.1.2.2 Feature Extraction and Feature Reduction

We extract a set of fourteen features from GSR and ECG time-series data, that have been
reported in literature as distinguishing for stress related studies [187, 76, 74]. Following
Figner’s report [143] stating a common window of interest for EDA feature extraction to be

limited upto 6 seconds after the stimulus onset, features in our analysis are extracted from
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a window of 6 seconds called StimWin. Only time domain EDA features were included in
our analysis which include mean amplitude, rise-time and fall-time of the phasic ER-SCR.
Both time and frequency domain features are extracted from the HRV time-series, derived
from the ECG data as described in Section 2.4.2.2. Time domain features include mean and
SD of HR computed at each beat, mean and SD of R-R peak intervals, root-mean-square
of successive difference of R-R peak intervals, percentage of all R-R peak intervals in the
Stim Win that are greater than 20ms and 50ms. Frequency domain features used are total
spectral power in LF band, HF band, and the ratio of these total powers in LF and HF
bands.

In order to properly project observations onto a space with independent basis vectors, we
use principal component analysis (PCA) which while orthogonalizing features also preserves
the variance of the dataset along these orthogonal bases. Thus, it can also be used to
discard those dimensions which do not explain significant amount of variance of the dataset,
essentially reducing dimensions and alleviating the Curse-of-Dimensionality. A reasonable
cut-off for variance is 99%, i.e. accepting at least N dimensions such that they explain a

total variance of more than 99% [165].

4.1.2.3 Support Vector Machines (SVM)

Support Vector Machine is a very widely used linear discriminative classification algorithm
which, being data distribution independent, is known to successfully classify a wide variety
of problems with good accuracy. Prior works on physiology based stress recognition have
shown SVM outperforms various other classifiers [75, 77, 76, 74]. SVM is predominantly
a binary classifier where the primary objective is to come up with a maximum margin
classifying hyperplane between the classes such that there are minimum number of support

vectors inside the margin, where margin is defined as the minimum distance between the
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classifying hyperplane and a point in the dataset. So for a training dataset of labeled points

D = {x;,yi}r, with y; € {+1, —1}, soft-margin SVM has the following dual formulation :

Objective : max dqual = Z =3 Z Z a0y K (2, 25)
=1 =1 j=1
Constraints : 0<o; <CVie D andz a;y; =0

=1

where K(x;,x;) is the kernel function used to map data vectors to a more expressive feature
space which aids in classification of non-linear datasets. In Section 4.1.3.1, we present our
kernel function comparison study to choose a good kernel for the CAfFEINE framework

dataset.

4.1.3 Picker Experiment Results

The goal of this current work is to correctly identify physiological states corresponding to the
onset of mental stress (i.e., technostress) induced by the incorrect responses from the IE; i.e.,
{LHT + wLED} states in OPE experiment. This goal is achieved by learning a statistical
model from a subset of this labelled dataset as well as the ground-truth obtained from a
laboratory stressor i.e., the PST dataset. The model is verified per user by predicting the
class i.e., stressed (S) vs. not-stressed (NS), of a previously unseen input sample from the
OPE dataset using the leave-one-sample-out-cross-validation (LOSO-CV) method. Follow-
ing data pre-processing, fourteen features were extracted from segments of window length
StimWin from the onset of each stimulus. These features were presented to the pattern

recognition pipeline to learn a statistical model.

We must note here that for this system must not tolerate any false-positives (FP) even at the
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cost of a low recognition accuracy of technostressed states. This is intuitive that an FP (i.e.,
when the system falsely senses user to be in technostressed state when they are actually not)
in this system will directly deteriorate its performance, as it will try to reorient its services

even though the service was actually helpful to the user.

As described in Section 3.2.1, physiological data collected during PST is used as ground truth
data corresponding to cognitive states of S or NS, C-PST being related to NS state and 1C-
PST to S state of the user. Based on our experiment design, we have the following sets
of results to present here: a) CASE-I: Train only on OPE data and cross-validate (CV) on
OPE data, b) CASE-II: Train only on PST data and Predict on OPE data, and ¢) CASE-III:
Train on Combined PST+OPE data and C'V on OPE data. Evidently we are particularly

interested in the results from the prediction/CV performed on the OPE data.

4.1.3.1 SVM Kernel Selection

In order to experimentally validate a good kernel for our technostress based CAfFEINE
framework, we tested 3 kernel functions, namely Gaussian, Polynomial and Sigmoid kernels
on a small pilot dataset. The confusion matrix comparison is shown below in Table 4.1.
Specifically, in comparison studies 1, 2 and 3, Sigmoid kernels outperform Polynomial kernels,
both on lower number of False Positives and overall accuracy. In comparison study 4, Sigmoid
kernel outperforms Gaussian kernel on classification accuracy metric. In comparison study
5 and 6, they perform equally. Given these findings, Sigmoid kernel clearly is the best
performing kernel for our CAfFEINE framework. Zhai et al. [203] showed that Sigmoid
kernel outperformed various other kernels for stress recognition. This is in line with our

findings, which prompted us to use Sigmoid kernel for compiling our results.
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Table 4.1: Comparision Table for Polynomial, Gaussian and Sigmoid Kernel Functions. In
each confusion matrix, S/NS pair represents stressed /non-stressed states. A typical confusion
matrix result, for say, Comparison Study 2, Polynomial Kernel will read as TP=3, TN=8,
FP=2, FN=1.

Comparison Study 1 Comparison Study 2 Comparison Study 3
Sigmoid Polynomial Sigmoid Polynomial Sigmoid Polynomial
NS |S NS |S NS |S NS |S NS |S NS |S

NS|10 |O|NS|4 |6 ||NS|10 | O|NS|8 |[2||NS|10|O0|NS|9
S| 0 4(S |2 |2/ S |2 |2(S |1 |3, S|3]|1]S |1 |3

[

Comparison Study 4 Comparison Study 5 Comparison Study 6
Sigmoid Gaussian Sigmoid Polynomial Sigmoid Polynomial
NS | S NS | S NS | S NS | S NS | S NS | S
NS| 8 [2|NS|8 [2]||NS| 8 |2|NS|8 2| [NS| 9 |[1|NS|9 1

S| 1 /3(S |2 |2/ S |1 (3(S |1 |3|], S|3]|]1]S |3 |1

4.1.3.2 Performance Evaluation Criteria

Classification accuracy metric is not an adequate metric for evaluating classifier performance
of class-imbalance learning problems such as ours [204, 205]. Stressed states in practical
situations can reasonably be assumed to be rare states, compared to normal non-stressed
states; hence, a stress-classifier in practice has to, almost always, deal with imbalanced
classes. A confusion matrix and its derived measures such as precision (p), recall (1), G-
score, Fg-score are used for quantifying classifier performance in imbalanced cases and are
defined as: G = /pr, Fp = % where 3 is used to tune the effect of p and r. Sasaki
[206] suggests that for 5 < 1, F3 becomes increasingly precision oriented. As discussed in
Section 4.1.3, our problem statement calls for heavy penalty for any FP while also rewarding

a good classification for technostressed states; so we must formulate an Fjz-score that rewards

very low FP (i.e., more dominant on p); hence we select § = 0.1.
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Table 4.2: User-wise Confusion Matrix, G-score and Fp-score Calculations (described in
Section 4.1.3.2) for Case I (discussed in Section 4.1.3). A typical confusion matrix result for
say User F, Case-I will be read as TP=3, TN=7, FP=3, FN=1.

Confusion Matrix for Case-I
User NS | S | G-score | Fj-score
A Ng g 1 0.35 0.49
B Ng g ;l 0.41 0.33
S [
D Ng 2 i 0.29 0.33
SO [
F Ng I g 0.61 0.50
G* Ng S le 0.26 0.20

Table 4.3: User-wise Confusion Matrix, G-score and Fp-score Calculations (described in
Section 4.1.3.2) for Case II (discussed in Section 4.1.3). A typical confusion matrix result
for say User F, Case-II will be read as TP=1, TN=9, FP=1, FN=3.

Confusion Matrix for Case-11
User NS | S | G-score | Fj-score
A Ng 130 (1) 0.50 0.97
B Ng ? ?) 0.53 0.38
C Ng g 411 0.22 0.20
D Ng 100 2 1.00 1.00
E Ng il% g 0.47 0.30
F Ng g 1 0.35 0.49
G* Ng g ;l) 0.65 0.43
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Table 4.4: User-wise Confusion Matrix, G-score and Fp-score Calculations (described in
Section 4.1.3.2) for Case III (discussed in Section 4.1.3). A typical confusion matrix result
for say User F, Case-III will be read as TP=3, TN=9, FP=1, FN=1.

Confusion Matrix for Case-111

User NS | S | G-score | Fj-score

A Ng 120 (2) 0.71 0.99

B Ng ;3 ?) 0.67 0.61

C Ng g i 0.35 0.50

D Ng 120 (2) 0.71 0.99

E NS 513 ?) 0.67 0.61

F Ng ? ;) 0.75 0.75
G* NS ? ; 0.67 0.67

4.1.3.3 Model Performance Evaluation

The results from training an SVM classifier with Sigmoid Kernel for each user are presented
in Table 4.6. Evidently the model underperforms on both G-score and Fjs-score metrics in
CASE-I where the classifier trains only on the OPE data, and could not recognise a single
correct technostressed-state for User C and User E. In CASE-II, we trained on PST and
cross-validated on OPE data. The results clearly show that the classifier performance has
improved, benefiting from the improved ground truth data provided by the PST dataset.
In CASE-III, we used the combined PST and OPE datasets to train our classifier. The
performance results have improved both on G-score and Fj-score metrics, compared to both
the previous cases. Particularly, the FP has reduced and classification for technostressed-
states has increased for all users. Thus, it is safe to conclude that the model has improved

from the improved ground truth data provided by the combined PST and OPE datasets.
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Figure 4.2: User-wise Fg-score Comparison For Case I, II and III

4.1.4 Picker Experiment Discussion

Using this user-study, we sought to answer two basic questions for real-life TE, namely
whether it is possible: a) to create an implicit channel of communication between a user and
CAIE by recognizing technostressed states, b) to use laboratory stressors as ground truth
for real-life stressors during ambulatory sensing of stress. The results produced from this
user study as shown in Section 4.1.3, depict that by training the SVM models individually
for each user, we were able to find similarity in the patterns of physiological data acquired
during sessions where two kinds of stressors were presented to a user, namely technostress in
the OPE experiment and cognitive stress in the PST experiment. This is evident from the
improvement in results in Case-III for all users (except User-D) as compared to Case-II and

Case-I of the experiment. This is depicted in Figure 4.2. These results provide preliminary
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evidence of computationally learning statistical parameters corresponding to stress related
physiological responses elicited from a proven laboratory stressor and using these parame-
ters to classify stress responses in real-life settings (technostress in this case). Section 2.3
describes how technostress is elicited when a system malfunctions, thereby hindering a user’s
progress. Thus, the parametric model capable of classifying technostress-states, can be used
to provide a user feedback, employing the implicit-channel of communication [9], thereby

completing an affective feedback loop in an intelligent environment.

As described in Section 4.1.3, our goal was to train a classifier that produces the least
number of false positives (FP) while also accurately classifying stressed states. Results
shown in CASEE-III of Table 4.6 are very encouraging, demonstrating a consistent increase
in F-score with the introduction of PST dataset in training phase. It should be noted here
that by tuning the hyperparameters for the SVM model, we were able to reduce FP count to
zero for all users; however, it resulted in near-zero correct classifications for stressed states,
which is why they are not included in the results. The OPE experiment was conceptualised
to mimic a real-life setting for an IE which senses user context and provides relevant services.
This also introduces a lot of noise sources, primarily motion artifacts into the sensor data.
Although, we have used adhesive tapes to affix the EDA sensors, thus, reducing sensor
fitting issues. However, the sensors used for this experiment are not designed for use in
ambulatory settings. There were instances of data corruption, which were dropped during

the pre-processing stages.

4.1.5 Picker Experiment Conclusion

In this section, we set out to explore the possibility of determining the relevance of services

provided by an intelligent environment by creating an affective feedback loop. Our results
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show that we could indeed identify technostressed states in response to wrong responses
from the system. Following a few recent works, we also hypothesized that proven laboratory
stressors such as PST can be used as effective ground truth collection instruments even in
ambulatory settings. Results from this study are encouraging and show that this idea of using
Paced-Stroop Test for a personalized ground-truth learning framework helps improve the
recognition of technostressed states. Thus, these results present an experimental validation

of the ground-truth learning component of our CAfFEINE framework.

Having validated the ground-truth learning framework component, our next quest is to prove
the validity of using technostress as a feedback signal, in an immersive intelligent environment
providing context-aware smart services. In the next section, we present our modeling of the
immersive intelligent environment in the form of an Intelligent Supermarket in a position
tracked virtual reality space providing navigation assistance. We used this setup to detect

physiological signature of technostress from physiological signals.

4.2 Experiment Two: Virtual SuperMarket with Nav-

igation Assist Experiment

In a descriptive essay by Wahlster et al. [207], supermarkets are envisioned as a good
candidate to model as a CAIE, wherein various intelligent interactions are discussed such as
RFID tagged objects and web-connected shopping lists. In our setup, we modeled such a
service which we call navigation-assist in a supermarket, that finds the best direct path to the
items on a dynamically changing shopping list from the current location of the user. There
has been recent commercial interest in smart supermarkets such as an in-store navigation-

assist introduced by Lowe’s Supermarkets [208], and a smart shopping experience requiring



Dissertation. Deba P. Saha 109

no checkout, independently designed by Amazon Inc. and Stanford Cognition Labs [209].

4.2.1 Intelligent Supermarket in Virtual Reality Setup

Our prototype intelligent supermarket system simulates a navigation-assist system which is
designed to show the best direct-path from user’s current location to the destination obtained
from a grocery list. However, due to the dynamic nature of the list or real-life sensing issues
such as uncertainty in indoor location tracking, the system may not always come up with an
optimum path. Since the navigation-assist service is intended to help the customer achieve
their goals faster, the wrong services (i.e. winding path) may cause achievement stress which

is a potent cause of technostress.

In order to design an immersive experimental setup, we have modelled our supermarket
experiment in a fully position-tracked virtual reality (VR) setup in The Cube at Virginia
Tech. Although this is a controlled environment, aspects of human behavior have been
widely compared in virtual and real worlds, and have been found to be following similar
patterns [210]. For example, it has been shown that users follow similar social norms [211],
demonstrate similar perception of proxemics [212], and follow similar economic behavior [213]
in virtual worlds as they do in real world. These and various other studies have shown the
effectiveness of using virtual worlds as viable option for designing our intelligent environment

setup. In the next section, we present the details of our experimental setup.

4.2.1.1 Experimental Protocol in VR Setup

Participants wear an Oculus headset and walk in a position tracked space, which simulates
walking in a supermarket. The hardware setup has been described in Section 4.2.2. In our

model, items are placed on shelves marked with serial numbers. Participants were informed
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(a) Top View of A Path (b) Top View of A Path

(c) Snapshot of a Virtual-Reality View

Figure 4.3: Our Experimental Setup: “Smart Supermarket with Navigation-Assist Service”.
Reproduced from Saha et al. [41]

that their shopping list was pre-populated with 10 items, and item numbers corresponding
to the next item will be shown as an overlay on the supermarket scene in their VR-glasses
(shown in Figure 4.3c). This unseen item-list gives a perception of a dynamically changing
shopping list. Participants were informed that the system will highlight a direct path from
current position to destination using horizontal green path-arrows, while a vertical red-arrow
will indicate the final destination visible from their current location (shown in Figure 4.3c).

This red-arrow is essential for the user to create a mental model of the smart-service (i.e. a
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direct path), violating which may impart technostress, as already discussed in Chapter 3.

In reality, the experiment was conducted in a Wizard-of-Oz fashion, where-in the experi-
menter would listen to the participant speaking the next item number on their VR headset
and activate the next path arrow by pressing a hotkey in the experimenter’s view (see Sec-
tion 4.2.2). Some of the paths were an obvious direct path, while some paths were deliberately
made winding, to create an impression of a system failure thus imparting technostress. Par-
ticipants were asked to always follow the path indicated by green arrows, even if it is not a
direct path. Out of the 10 items on the list, we provided correct service (CS: direct path)

and wrong service (WS: winding path) for 5 items each.

4.2.2 Hardware Setup

Our setup consists of a Qualisys Motion Capture system with 24 Oqusb+ cameras for track-
ing reflective marker based rigid-bodies and an Oculus Rift DK2 as our VR headset. The
Oculus Rift DK2 is connected to a laptop (say, Oculus Computer (OC)) which is running the
supermarket model in Unity, and is being carried by the participant in a backpack. For per-
forming the experiment in Wizard-of-Oz fashion, the experimenter has a mirrored view of the
participant’s VR view (running on OC), onto a local computer, say Experimenter Computer
(EC) communicating over the local wireless network. Physiological data is collected using
Empatica E4 wristband which streams time-stamped biosignal datastreams over Bluetooth
Low Energy (BLE) to OC. The hotkey presses (VR event onsets) are time-stamped with the

OC machine-time along with Empatica E4 data using custom code?.
2(available at https://github.com/debapratimsaha/EmpaticalUnityBLEClient)
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4.2.3 Virtual Supermarket Experiment Data Analysis

4.2.3.1 Electrodermal Activity (EDA) Analysis

As already described in details in Section 2.4.1, EDA is a reliable indicator of activation of the
sympathetic division of ANS (SNS), which shows heightened activity during the experience
of technostress [131, 96]. It is arguably the only physiological system that is activated
solely by SNS, uncontaminated by the PSNS, making it a well established marker for SNS
activity [40]. EDA signal is composed of a slow varying tonic and a rapidly changing phasic
components. For this experiment dataset, we decompose measured EDA into phasic and
tonic, using a deconvolution based method (see Ledalab [197]), wherein the measured EDA
is deconvolved with an impulse response function (IRF) waveform to obtain the underlying
compact sudomotor nerve-activity (SMNA) pulses. The IRF is modeled as a biexponential
Bateman function f(t) = exp%lt — exp%zt that explains the physiological processes of EDA

generation [197], refer to Figure 4.4 for details.

4.2.3.2 Integrated Phasic Response (IPR) Analysis

Ledalab® can decompose superposed EDA peaks into independent SMNA pulses, thus en-
abling the separation of phasic peaks. An advantage of Ledalab is the resulting phasic EDA
has a zero baseline, enabling us to compute the time-integral of phasic EDA over a response
window, which is a measure of sympathetic activation from the stimulus [197]. After de-
composition, we slice individual SMNA peaks and reconvolve them with the IRF to obtain
individual non-overlapping zero-baseline phasic EDA peaks. We take time-integral of these

peaks, to obtain an EDA scoring measure defined as integrated phasic response (IPR) [197].
3Code available: https://github.com/brennon/Pypsy
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Table 4.5: User-wise integrated phasic response (IPR) (in ©Ss units) and Peak Count
Analysis. Higher scores indicating stronger sympathetic activation, in each Correct Service
(CS)/Wrong Service (WS) pair for each user are bold-faced.

(a) IPR in Service Groups (b) Number of Phasic peaks (¢) IPR per Peak in Service Group
User CS WS User | CS | WS User CS WS

A 523.15 | 555.43 A 66 | 63 A 39.16 44.3

B 235.7 | 363.21 B 21 | 36 B 55.91 | 50.06

C 80.6 | 151.85 C 10 | 30 C 23.88 | 25.52

D 51.41 | T78.87 D 14 | 21 D 16.38 | 20.24

E 7.77 52.7 E 17 | 33 E 1.69 8.8

F 14.54 | 88.33 F 16 | 37 F 3.34 | 11.688

G 67.65 | 86.29 G 22 | 41 G 15.32 | 11.39

4.2.4 EDA Analysis Results

Our goal for this experiment was to identify instances of higher sympathetic activation
(which can be used as an indicator of technostress, given a known context), due to wrong-
services from a CAIE based on validated physiological indicators. We conducted a user
study and have collected data from 7 participants (6 males, 1 female) under a research
protocol approved by Virginia Tech (IRB-15-1193). Participants represented a wide range of
nationality and ethnicity. The results from our batch analysis of EDA features, accumulated
per event type show heightened sympathetic activation during WS events when compared
to CS events based on validated physiological indicators. The results of this analysis will
enable the CAIE to decide, when to ask clarifying questions in an adaptive-window based

multi-turn interaction as discussed in Section 3.1 section.

The number of significant phasic peaks and time-integral of phasic peaks are widely used
EDA features, wherein a higher number represents stronger sympathetic activation [214].
To perform the IPR analysis, the individual phasic peaks are thresholded to above 5% of
the userwise maximum peak-amplitude to mark the significant peaks. Time-integral of these

individual phasic peaks, where time is measured in seconds and phasic EDA in uS, are
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Figure 4.4: EDA Decomposition using Ledalab. Observe the tonic EDA follows the measured
EDA signal, while sliced individual SMNA peaks are convolved with IRF to obtain zero-
baselined phasic EDA (see inset). Notice the overlapped phasic peaks are separated as
individual peaks. Image reproduced from Saha et al. [41].

computed and accumulated for each type of services i.e. correct (CS) and wrong (WS)
within their respective windows to obtain the IPR values (in pSs units). The results are
compiled in Table 4.5 where the bold-faced numbers are higher among the CS/WS pairs
for each user. We can see that for all users, IPR during the WS events is higher than that
during the CS events. In addition, IPR per Peak is computed by dividing the total IPR
by the number of peaks following a service, then accumulating for each service type. We
see that for five users, the IPR per Peak is higher during the WS events. The number of
significant phasic EDA peaks is also compiled, and barring User A, we obtain higher number

of significant phasic peaks during WS compared to CS events. Time-spans for each events



Dissertation. Deba P. Saha 115

depend on the length of the paths, however, WS events induce higher number of phasic
peaks each with greater IPR (as seen in Table 4.6b-4.5¢) indicating stronger SNS activation.
It must be noted, that with a more liberal thresholding (say, 15%) for peak significance, the
results for User A in Table 4.6b and for User B and G in Table 4.5¢ are consistent with the

overall results.

Although, there are some users (esp. B and G) for whom the physiological indicators did
not reflect these patterns, we have learned that such differences may arise from factors
such as personality [112]. We do not have personality related data in our current dataset,
however, adding such qualitative data collection methods for future studies should help in

data analysis.

4.2.5 Virtual Supermarket Experiment Discussion

With this current work, we sought to identify user-independent physiological indicators of
stress experienced by users in CAIE, when they receive an inappropriate service. Table 4.5
shows that the number of phasic EDA peaks and average IPR in these peaks is higher during
WS events, i.e. more numbers of larger phasic EDA peaks are produced during WS events.
From this, we can infer that users show higher sympathetic activation during the WS events
compared to the CS events. Thus, from our experimental dataset in a VR environment, we
observed patterns in EDA signal across users during such WS (i.e. inappropriate or wrong
services), that have been shown to be correlated with negative emotional states [131] such
as frustration. The hypothesis behind our interaction framework as discussed in Section 3.1
section, rests on the successful identification of such affective states from physiological data.
Our results from the batch analysis show greater number of phasic EDA peaks each hav-

ing higher average IPR, both of which are independent evidences of stronger sympathetic
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activation in users while experiencing technostress in a CAIE. Although individual event-
wise analysis is not conclusively consistent across all users, however, with further analysis
of more EDA features and HRV signals, we hope to improve upon the granularity of these
discriminatory inferences to, possibly, a single window following each service. Nevertheless,
the patterns from this group analysis will enable a CAIE to improve a multi-turn interaction

(see Section 3.1 section) using features of technostress.

In addition to continued analysis of the physiological signals, we are also refining our exper-
imental protocol, in order to gain more insights into known influencers of human affective
responses such as their personality [112], thereby helping us improve our inferences. For
instance, a recent work has demonstrated that the daily usage pattern of a mobile phone is
predictive of a person’s personality types [79]. While collecting such mobile usage data is
out of the scope of our work, we intend to add qualitative data collection methods such as

personality questionnaire.

4.2.6 Virtual Supermarket Experiment Conclusion

In this section, we have proposed a novel system architecture to employ affective computing
techniques to identify a user’s states showing sympathetic activation arising from wrong ser-
vices. Successful identification of such states (a surrogate for technostressed states) following
a service, implying it’s inappropriateness, can be used as a feedback signal in order to refine
the services in subsequent turns. To evaluate this hypothesis, we have designed a controlled
experimental platform in a VR setup providing intelligent services, and occasionally provided
wrong services, while collecting real-time physiological data. The results from EDA signal
analysis from our study conducted in the experimental platform show heightened sympa-

thetic activation during wrong services, indicating onset of negative-emotional states such as
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technostress. These results are encouraging as we continue to refine our setup and analysis.

The results from this experiment validate another hypothesis in our CAfFEINE framework
where we hypothesized the feasibility of using technostress as a feedback signal in a CAIE.
This experiment shows that technostress indeed produces a physiological signature similar
to psychological stress with heightened sympathetic activation. Thus, recognition of physio-
logical features of technostress using ambulatory wearable sensors is indeed possible. Having
validated both the components of the CAfFEINE framework, our final quest in this disser-
tation work is to find a method to computationally estimate the quality of the technostress
inference using physiological signals. Towards that end, in the next section, we present a
novel algorithmic and experimental approach towards defining a physiological signal based

quality metric.

4.3 Experiment Three: Defining an Inference Quality

Metric using Physiological Signals

In this section, we will discuss our experimental setup to derive a physiological signal based
inference-quality metric. The experimental protocol and interaction in the VR supermarket
remain largely unchanged from the setup described in Section 4.2 (also presented in Saha et
al. [15]), please refer there for a detailed explanation. In this section, we present a highlight
of the modifications made to the existing protocol for the Intelligent Supermarket in Virtual
Reality, in order to answer the 4th research question presented in Section 1.2.1, namely
to derive a computational method for assessing the quality of technostress inference using

physiological signals.
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4.3.1 Modified Experimental Protocol

4.3.1.1 Baseline Sonic-Impulse Phase

As described in Section 3.3.2, our central idea for assessing the quality of technostress infer-
ence using physiological signals is to use a comparison between an individual’s physiological
response to a known stimulus and that during the experience of technostress. To assess each
subject’s response to a known stimulus, we used a sudden excitation (or impulse), such as
a sonic impulse stimulus e.g. a balloon-pop sound, physiological response to which is used
in our confidence measure computation (please refer Section 3.3.2). A few samples of unfil-
tered, zero-baselined and normalized EDA impulse responses from our dataset can be seen
in Figure 4.5. To create a uniform experimental condition, users were asked to put on an
isolating headphone to listen to a calming stimulus (such as a uniform white-noise sound) for
one minute. Following this, a short-duration (approx. 100ms) impulse stimulus was played
preceded and succeeded by silence for a minimum of five seconds. Physiological data was
captured on a local computer being streamed from Empatica E4 device (see Section 4.3.2)

while users listened to these sounds.

4.3.1.2 VR SuperMarket Phase

Participants were informed that their shopping list was pre-populated with 16 items, and
item numbers corresponding to the subsequent item will be shown as an overlay on the
supermarket scene in their VR headsets. Participants were informed that the system will
highlight a direct path from their current position to the destination using horizontal green
path-arrows, while a vertical red-arrow will indicate the final destination visible from their

current location. In reality, the experiment was conducted in a Wizard-of-Oz fashion, where-
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Figure 4.5: A few samples of normalized EDA responses to sonic impulse stimulus in our dataset
(refer to Section 4.3.1.1 for details). Figure reproduced from Saha et al. [42]

in the experimenter would listen to the participant reading the next-item-number on their
VR headset and activate the next-path-arrow by pressing a hotkey in the experimenter’s
view (see section Modified Hardware Setup). Some of the paths were an obvious direct path,
while some paths were deliberately made winding to create an impression of a system failure
thus imparting technostress. Participants were asked to always follow the path indicated by

green arrows after locating the destination red-arrows from their current location.

Out of the 16 items on the list, we provided correct service (CS: direct path) and wrong ser-
vice (WS: winding path) for 8 items each, interspersed in groups of G1(6 CS) — G2(5 WS)
— G3(2 CS) — G4(3 WS) in that order. Our hypothesis behind this interspersing was
to experimentally discard the ordering effect of service groups i.e. our hypothesis was to
observe repeating patterns of physiological indicators of NS — S — NS — S states

corresponding to CS/WS services.
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4.3.2 Modified Hardware Setup

The position tracking setup in The Cube at Virginia Tech consists of a Qualisys Motion
Capture system with 24 Oqusb+ cameras for tracking reflective marker based rigid-bodies
attached to an Oculus headset. The Qualisys system provides the 3D translation coordi-
nates, whereas the rotation coordinates are read from the Oculus headset. The Oculus is
connected to a VR Backpack computer (named Oculus Computer (OC)) which is running
the supermarket model in Unity. For performing the experiment in Wizard-of-Oz fashion,
the experimenter has a mirrored view of the participant’s VR view (running on OC), onto
a local computer (named Experimenter Computer (EC)) and communicating over the local
wireless network. We used snap-fit finger electrodes from Lafeyette Instruments? attached
to a modified version of Empatica E4 device to collect physiological data from the user. The
time-stamped biosignal datastreams are streamed over Bluetooth to OC. The hotkey presses
(VR event onsets) are time-stamped with the OC machine-time along with Empatica E4

data packets using custom code®.

4.3.3 Quality Metric Methods and Analysis

4.3.3.1 EDA Signal based Quality Metric

As described in Section 3.3, we employ the signal quality of captured EDA datastream to
derive a quality metric for our inference on affective feedback. Our quality metric calculation
hinges on the idea that using a canonical EDA impulse response function may result in sudo-
motor nerve activity (SMNA) pulsetrain having negative values, mainly due to individual

differences in EDA responsivity [197]. To overcome this, we proposed an idea of using

‘https://www.lafayetteinstrument.com/
®(available at https://github.com/debapratimsaha/EmpaticalUnityBLEClient)
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the response of each user to a known sonic impulse stimulus to calibrate our system. A
detailed overview of our quality metric computation is presented in Section 3.3, reader is
highly recommended to read the section before proceeding ahead. In the next section, we
will briefly discuss our experiments with deriving an algorithm for computing EDA based

quality metric.
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(a) A sample of EDA IRF obtained from (b) A sample of EDA IRF obtained from
Ledalab Decomposition of Intelligent Super- the Sonic Impulse phase and the parametric
Market Data for a user. curve-fit shown for the same user.

Figure 4.6: EDA Signal based quality metric computation by comparing IRF obtained from
Ledalab decomposition and sonic impulse.

4.3.3.1.1 Point-wise Error Computation Algorithm

An initial approach for comparing the IRF response obtained from sonic impulse and Ledalab
framework optimization process, was to use point-to-point comparison of the filtered and
normalized waveforms. For a Sonic IRF timeseries denoted by SIRF; V(k = 0...n) and
Ledalab IRF timeseries denoted by LIRFj, V(k = 0...n), an error term (Ejf) was defined
as the absolute percentage deviation between each pair of |SIRF), — LIRF})| ¥(k = 0...n),
averaged over all the n values. However, we found that the error term obtained using

this method is highly dependent on measurement noise as well as prone to shape outliers.
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Following initial investigation, we decided to use parametric comparison instead of point-wise
comparison. The algorithm for parametric comparison has been described in Section 3.3.

For the sake of completeness, the algorithm will briefly described in the next section.

4.3.3.1.2 Parametric Error Computation Algorithm

EDA impulse response has been hypothesized to follow the Biexponential Bateman function
(see Equation (3.1)) which is a pharmacokinetic model representing the time-course of drug
diffusion in a compartment body model. This equation consists of a set of two parameters
(T" = 71, 7). Ledalab optimization framework provides the IRF in this parametric form,
denoted by Tjedaiap- For the sonic IRF, we use parametric curve-fitting with Equation (3.1)
as the target function to obtain Tsy.. Following this, an error term (Ej, ¢) was defined as the
absolute percentage deviation between each pair of 7 parameters. For a detailed discussion,
please see Section 3.3. A sample of Ledalab IRF compared with Sonic IRF is shown in
Figure 4.6.

4.3.4 Quality Metric Results and Discussion

4.3.4.1 EDA Signal based Parametric Quality Metric Results

Our goal for this work was to experimentally validate a quality metric derived from phys-
iological signals to interpret the implicit AF inference. Towards this end, we refined our
experimental setup to collect user’s physiological response to a sudden excitation (refer Sec-
tion 4.3.1 for the modifications). We present the validation of our @.4, metric using validated
discriminatory EDA features [41]. We have used Ledalab® to decompose the measured EDA

signal into tonic and phasic components as well as their respective drivers. The resulting
6Code available: https://github.com/brennon/Pypsy
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Table 4.6: User-wise ().q, measure, Cumulative IPR and Number of Phasic Peaks grouped
by Event type CS (correct service) and WS (wrong service). User E sensor data dropped
out in the middle of G4.

(a) Qrpa Measure (b) NSPP in CS/WS Group (¢) IPR in CS/WS Group
User | Qeda User | CS | WS User CS WS
A - A 34 | 52 A 438.1 | 673.3
B 34.6 B 27 | 31 B | 685.1 | 553.7
C 48.9 C 21 | 37 C | 284.9 | 261.3
D 57.0 D 29 | 39 D 130.9 | 146.9
E* | 58.4 E* | 39 | 50 E* | 663.2 | 757.5
F 54.5 F 38 | 71 F 100.8 | 347.3

phasic driver (being a zero-baselined signal) can be used to compute a continuous measure of
phasic activity called Integrated Phasic Response (IPR)—refer Saha et al. [41] for a discus-
sion on calculating this feature. We also compute an EDA signal based )4, metric following
the method described in Section 3.3.2. These features and the (.4, metric constitute our
basic computational framework for evaluating the hypothesis in our interaction model de-
fined in Chapter 3. We have collected data from 6 participants under a research protocol
approved by Virginia Tech (IRB-15-1193). Participants were recruited using advertisement
emails, and special care was taken to discard participants who had already participated in

Phase-1, to avoid precedence effects.

The number of significant phasic peaks (NSPP) and the time-integral of phasic peaks (re-
ported by IPR value) following a stimulus have been reported to be reliable indicators of
sympathetic activation [186]. For computing IPR, we have followed the method described in
[41]. Significant phasic peaks are computed above a threshold of 5% of userwise maximum
phasic driver amplitude (a figure considered in [197] as well). Time-integrals of these sig-
nificant phasic peaks, measured in (u.Ss) units, are computed and grouped by service type
(CS: CORRECT service) and (WS: WRONG service). The results compiled from EDA analysis as
well as Quality analysis are reported in Table 4.6. Please note that for User-A, the impulse

response was not included in the experiment, so we do not have a ()4, measure for the user.
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In Table 4.6¢ and Table 4.6b, the bold faced numbers are higher among the CORRECT /WRONG
pairs of events for each user. We see that for all users, NSPP are higher during WRONG events
compared to CORRECT events. For four users, IPR is higher during WRONG events compared to

CORRECT events. We will discuss the case of Users B and C in Section 4.3.4.2.

As discussed in Section 4.3.1, we have interspersed CORRECT and WRONG events in groups, with a
hypothesis to observe higher sympathetic activation during all WRONG event groups compared
to all CORRECT event groups in the sequence G1—G2—G3—G4. In Table 4.7, we report the
groupwise per-event IPR and per-event NSPP analysis results. We observe that for Users
A, E and F, per-event IPR during all CORRECT/WRONG event group transitions matched our
hypothesis. But, for Users B, C and D, per-event IPR do not match our hypothesis during
transitions G1—G2. Similarly, on per-event NSPP analysis feature, all users except User B
match our hypothesis for all transitions of service groups. The case of Users B and C will

be discussed in Section 4.3.4.2.

4.3.4.2 Interpreting the (., Quality Score

Our hypothesis for the experiment was to observe high sympathetic activation during groups
of WRONG events compared to groups of CORRECT events. Following Equation (3.2) in Sec-
tion 3.3.2, and assuming 6 = 50%, we observe in Table 4.6a that for Users B and C,
Qecda < 50%. This implies low confidence in EDA features for Users B and C, which may
explain the observed mismatch with our hypothesis as seen in Table 4.6¢, where IPR during
CORRECT events is higher compared to WRONG events. In Table 4.7 also, we observe that the
transition G1—G2 violates our hypothesis for Users B and C on per-event IPR feature and
for User B on per-event NSPP feature. On the other hand, for Users D, E and F, Q4. > 50%,
and their IPR for WRONG events is higher than CORRECT events in Table 4.6c, matching our hy-

pothesis. In Table 4.7 also, we see Users E and F match our hypothesis on both the features.
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Table 4.7: Per-Event IPR and Per-Event NSPP in sequence of Event groups: G1(5CS), G2
(5WS), G3 (2CS) and G4 (2WS) (CS:correct service, WS:wrong service). User E sensor data
dropped out in the middle of G4.

G1 G2 G3 G4
User || NSPP | IPR || NSPP IPR NSPP | IPR || NSPP | IPR
A 44 | 56.0 6.4 | 103.5 4.0 | 46.7 6.0 | 78.0
B 3.8 |91.2 3.8 60.8 2.5 | 15.2 5.0 | 39.7
C 2.8 | 46.8 4.8 31.7 2.0 5.9 4.0 | 36.7
D 3.8 | 175 5.3 15.2 3.5 | 11.3 5.5 | 16.8
E 5.0 | 84.2 6.8 | 117.7 4.5 | 8.7 7.5 | 84.5
F 44 | 14.3 8.3 45.8 6.5 | 14.4 || 10.0 | 424
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Figure 4.7: Groupwise Per-Event IPR and Per-Event NSPP Analysis Plots

G4

The only outlier to our quality /confidence model is for User D in per-event IPR feature for
G1—G2 transition. Thus, such a Q.q, thresholding may enable the CAIE to calibrate the
implicit AF loop by ignoring EDA features for the window where Q.q, < 50%. We must
note here that, the example of a threshold presented here is empirical, more experimental

validation is needed to arrive at a more accurate ().q, threshold.
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4.3.5 Quality Metric Discussion

In this experiment, we sought to define a quality measure for the user independent discrim-
inatory physiological features that can be used as indicators of frustration arising due to
experiencing technostress from a CAIE. For defining a quality score for the recorded EDA
signal and the decomposition method, we observed that the shape of the IRF derived as
a result of Ledalab optimization process, can be compared with an individual user’s EDA
response to a sonic impulse (see Section 3.3.2 for details). Subsection 4.3.4.2 demonstrates,
that a threshold of = 50% on .4, can be used to arrive at meaningful interpretations of
results in Table 4.6 and Table 4.7. The results demonstrate that all users with Q.q, > 50%,
match our hypothesis in groups of CORRECT/WRONG events and their transitions. For users
with Q.qa < 50%, the data does not match our hypothesis on the IPR and NSPP features
both cumulatively and in group transitions. Although it is worth mentioning, that tran-
sitions G2—G3—G4 always matched our hypothesis. In this phase of our experiment, we
have used finger electrodes attached to the Empatica wristband, which captures higher EDA
amplitudes compared to the wrist EDA enabling better phasic peak scoring. However, fin-
ger electrodes with longer wires may pick more motion artifacts, which could be a possible

explanation for low score on (.4, metric.

Thus, such a thresholded .4, score may be effectively used as a surrogate for confidence
in the discriminating quality of the features, enabling the CAIE to calibrate it’s response in
case of an (in)appropriate service. Additionally, in interpreting Q.q, score with an empirical
threshold 6, we may generalize the rule such that it may be used as surrogate for a direction
of change in EDA feature values, instead of a hard-set binary threshold. The (.4, threshold
presented here is purely empirical at this stage, and needs more experimental validation to

arrive at a meaningful value and a suitable way to interpret it’s applicability (i.e. yes/no
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binary threshold versus direction of change threshold). Nevertheless, such a score may be a
valuable step towards defining a final confidence score. For example, this ()4, score based ap-
proach might be used as a weight parameter in the Fy score based classifier design presented
in [40]. Inferences used in an affective feedback for our interaction framework will need to
be from multimodal signals, each of which may have such physiologically grounded quality
scores. These quality scores may finally be combined together along with the probability
outputs from a classifier to form a final confidence score on the service-(in)appropriateness
inference, guiding the strategy for reconfiguring subsequent services, shown using process

marked “5” in Figure 3.3 at the user-system interface.

4.3.6 Quality Metric Experiment Conclusion

In this section, we have proposed a novel method of deriving a quality metric (Qeq,) for
the EDA datastream using an individual’s response to a sonic impulse. This quality metric
is envisioned to be used as a surrogate for a confidence measure in the inference drawn on
technostressed states in our interaction framework. We have collected a new dataset from
a refined version of a previous experimental setup wherein users are immersed in a virtual
reality setup and occasionally given a wrong service. The EDA analysis reveals that users
show heightened sympathetic activation while they are given wrong services from the CAIE.
In addition, our proposed (.4, metric improves our capability to explain the observed results
from EDA analysis on validated physiological markers such as IPR and NSPP. These results
are encouraging, as we continue to refine our proposed quality metric to derive validated

thresholds.
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Summary, Conclusions and

Reflections

“A clear understanding of negative emotions dismisses them.”

— Vernon Howard

The work presented in this dissertation was motivated by the need to design a mechanism in

a context-aware intelligent environment (CAIE) that can implicitly infer a user’s feedback

128
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on the appropriateness of the services received from the CAIE. In this work, we set out to
study methods and develop protocols in computational psychophysiology in order to design
the aforementioned implicit feedback loop in a CAIE using physiological signals. In doing so,
we have borrowed from and advanced the discussion on the symbiotic relationship between
Affective Computing and Ubiquitous Computing domains, during experiment design and
user-evaluation of our research methods. We proposed a computational framework, called
CAfFEINE (presented in Chapter 3), and conducted various user-studies to demonstrate the
feasibility of multiple components of the framework (presented in Chapter 4). We developed
new experimental protocols, algorithms, research methods and experimentation tools as a
part of the process to evaluate our hypotheses presented as components of the CAfFEINE

framework.
In the Introduction chapter, we stated our overarching research question as:

What are the methods in which affective computing techniques can be used to

design an automatic service-appropriateness feedback in a real-life human-centric

CAIE?

This question was further broken into a few sub-questions as listed below:

(i) What is the interaction schema to effectively incorporate an implicit-feedback loop in

a context-aware intelligent environment?

(ii) What are the basic design parameters, signal-features and methods for evaluation of the

interaction scheme of a physiological-signal based affective feedback loop in a CAIE?

(iii) Which parameters of the physiological signals are critical in performance improvement

of a technostress based service-relevance feedback loop?

(iv) How to estimate the quality of the inference drawn from the physiological signals?
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5.1 Discussion on Research Questions

In this dissertation, we proposed a novel interaction framework called CAfFEINE, which
may enable a CAIE to establish a human-centric and naturalistic communication channel
with its users. We posit that inferring implicit feedback from users about the appropriateness
of services provided by these CAIEs will reduce the cognitive load on the occupants rather
than requiring them to explicitly provide feedback, thereby allowing the smart environment
to disappear from a user’s consciousness, and hopefully achieving the ideal goal of “invisible,
everywhere computing”, originally described by Mark Weiser in his vision for ubiquitous
computing. Consequently it is envisioned to restore the sense of agency in the occupant
as pointed out in Section 2.5, thereby improving the system’s usability. In this work, we
validated multiple critical components of our CAfFEINE framework using a battery of ex-
periments. Specifically, we chronologically addressed the research questions presented in the

introduction.

5.1.1 Validating CAfFEINE Interaction Scheme

To address research questions 1 and 2, we proposed an interaction scheme for CAIEs wherein
the user-feedback for service-appropriateness is computationally inferred by detecting tech-
nostressed states. In our framework, the ground-truth for these states for individual users is
envisioned to be collected from validated stress-induction instruments such as Paced-Stroop
Test (PST). We demonstrated that recognition of technostressed states in response to wrong
services from a CAIE was indeed possible using physiological signals collected from wearable
sensors. In doing so, in experiment one as described in Section 4.1, we have prototyped

a warehouse scenario wherein an order-picker personnel is given a context-aware service to
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help them complete their task in a more efficient and error-free manner. These services
sometimes failed in providing correct services, thereby causing technostress. We have devel-
oped a machine-learning system using Support Vector Machine (SVM) classifier to recognize
technostressed states in response to wrong responses from the system using data collected
from user’s physiological signals, specifically electrodermal activity and electrocardiography
signals. We demonstrated that recognition of technostressed states was indeed possible, and
the system performance improved when we included data from PST in our training set.
These results, originally presented in [40], provide an experimental validation of our inter-
action framework. In addition, the results validated the ground-truth learning component
of CAfFEINE framework by showing improvements in the system performance when using

PST data as a training set for the classifier.

5.1.2 Identifying Technostress Physiology

Following the experimental validation of the personalized ground-truth learning component
of our framework, we set out to validate the physiological underpinnings of technostressed
states in order to answer the research question 3. In particular, our quest was to identify
physiologically validated markers of psychological stress that also arise during situations of
technostress in a CAIE, such as indicators of increased sympathetic activation. In order to
design an immersive experimental setup, we have prototyped a general intelligent supermar-
ket scenario in a position tracked virtual reality space at our research institute, the Institute
for Creativity, Arts and Technology, which is described in more details in Section 4.2. In
this experiment, a user is immersed in a virtual reality setup of an intelligent supermarket
which provides navigation assistance highlighting a direct path from their current location
to a destination. Sometimes these services fail to provide a direct path, causing technostress.

We have identified a few physiologically validated features from the EDA datastream such
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as integrated phasic response and number of phasic peaks which are indicative of hightened
sympathetic activation. From our user study, these features have been demonstrated to
contain discriminatory information for differentiating correct services from wrong services,
which may potentially improve the technostress classifier performance described in the pre-
vious section. The results of this study, originally presented [41], validates our hypothesis of
using technostress as a service-appropriteness signal in intelligent environments, as well as

help us in identifying validated physiological features.

5.1.3 Deriving A Quality Metric

A computational framework needs a method to assess the quality of its inferences. For
CAfFEINE framework, our quest was to design a physiologically validated method of quan-
tifying the quality of a technostress inference in order to address research question 4. We
proposed a novel method of computing EDA signal based quality metric using the underlying
phenomenon of an impulse-response function used for EDA decomposition, and through a
user-study, we empirically validated the idea. This quality score is envisioned to dynamically
assess the correctness of the technostress recognition, thereby helping the CAIE to decide
if it needs to reconfigure it’s service or discard the inference altogether. In our approach,
we modified the previous experimental setup, as described in Section 4.3, by adding a sonic
impulse phase and recording the impulse response shape from each user. This shape is
considered as a user-specific impulse response template which is compared with the canon-
ical impulse-response function (IRF) obtained from the EDA decomponsition tool called
Ledalab. Results from this experiment, originally presented in [42], validate our idea of a

physiological-signal based quality metric computation considering an empirical threshold.
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5.2 Observations and Reflections

In this section, we will present some of our observations and reflections from the evaluation
methods, user-studies and applications presented in this dissertation, and discuss some logical

next steps for extending this work.

5.2.1 New Sensing Modalities and Instruments

New Sensing Modalities and Instruments: This dissertation has proposed the use of
electrodermal activity and cardiovascular activity in order to assess the technostress states
of users in a CAIE. However, collecting motion-artefact free data from locations suitable
for better wearability in ecological environments is challenging. Encouraged by the evidence
produced by the experiments using electrodermal activity and heart-rate variability mea-
sured from wearable wristband form-factor devices, a logical next step is to broaden our
sensing modalities suited for a CAIE, to include data streams containing information on
both emotional arousal and valence. In addition to ECG and EDA, some recent stress recog-
nition studies have shown effective use of respiration rate [76, 74|, pupilary dilation [187] and

trapezius muscle electromyography (EMG) [215] as good predictors of mental stress.

Apart from wearable devices, environmental sensing of affective and behavioral signals, such
as using infrared thermographic (IRT) cameras [216] or sensory chairs (for office use) [217] can
be helpful in deriving the affective/behavioral states of the user. IRT cameras capture facial
temperature variations which is a potent signal stream for sensing changes in human ANS,
as well as enable us to infer various secondary physiological parameters such as breathing-
rate, cardiac-pulse and cuteneous blood perfusion as noted in Cardone et al. [216]. Apart

from these, IRT images have been recently shown to be useful in inferring changes in skin-
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sweat, correlating with changes in electrodermal activity, thereby enabling off-body sensing
of physiological indicators of affect [216]. These open up new vistas of modeling and sensing

stress-episodes.

Additionally, recent prior works such as Plarre et al. [76] and Shi et al. [74] have used various
other kinds of social, mental and physical stressors such as public speaking, mental arith-
metic, cold pressor challenge etc. as stress induction instruments for improved physiological
profile learning component (described in Section 3.2). An interesting future direction may
be to explore the use of varied classes of laboratory stressors to model the ground truth of
a real-life stressor by experimentally weighting the contributions from each kind of stressor

that might constitute a real-life stressor.

Wearable Sensor Placement: Sensor placement has an impact on the quality of acquired
data, as well as the usability of the wearable devices. For example, in experiment 3, we
captured EDA data using Empatica at the fingertips whereas in experiment 2 we captured
it at the wrist (placement as intended in original device design). Signal amplitudes are
diminished in the wrist sensor placement compared to fingertip resulting in lower signal-to-
noise ratio impacting feature extraction and inference. However, using fingertip sensor in
the wild is not scalable. Similar obserations can be made about heart-rate signal captured
from photoplethysmography at the wrist (used in experiments 2 and 3) compared to elec-
trocardiography at the chest (used in experiment 1). Thus, novel sensing locations for EDA
and HR datastreams, such as a finger ring form-factor device may prove helpful. In addition,
future designs may provision for embedding EDA electrodes with co-located pressure sensors
which may be used to provide control for motion artifacts induced by changes in electrode

pressure, which have considerable effect on signal quality [141].
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5.2.2 New Computational methods

Computational Models for Technostress Recognition: In future work, this disserta-
tion can be extended by incorporating a continuous temporal model based Dynamic Bayes’
Networks and which use an accumulation-decay model, on similar lines as the work by Plarre
et al. [76]. The central idea behind an aggregation model of perceived stress, presented in
the work by Plarre et al., is the fact that the perceived stress for each individual may take a
long time to decay after a stressor is withdrawn, in addition to accumulation of physiological
effects from repeated successive stress events which may show pronounced effects and take
even longer to fade away. Plarre et al. implemented such a model in [76] using a Dynamic
Bayes Network with personalized accumulation and decay constants («, 5) to account for
inter-individual difference of stress-responsivity (these parameters are fit using experience

sampling questionnaires).

Transfer Learning Approach for Physiological Profile Learning: The physiologi-
cal profile-learning architecture proposed in this dissertation, as discussed in Section 3.2,
argues the need for collecting ground-truth data from proven stressors such as paced Stroop
test or validated musical stimuli. Using this ground-truth data, we have already designed a
computational stress-recognition pipeline for which the target task is to recognize technos-
tressed states in response to services received from the CAIE as described in Section 4.1.
From this architecture we can surmise that the train and the test tasks are similar, i.e. learn a
person specific stress-model from physiological data and predict a technostressed state. How-
ever, we hypothesize that the distribution of the data in the two phases may not be similar
owing to the difference in the nature of stress elicitation. Nevertheless, this kind of problem
is well-suited for this specialized area of transfer learning, wherein the learned representa-

tion of stressed states from PST can be intelligently transformed to recognize technostress



136 Chapter 5.

states, thereby improving the classifier performance of Section 4.1. In Section 2.4.3.3, we
have briefly delved into the details of transfer learning technique and how to use it for this
framework. An interesting recent work uses inductive transfer learning techniques to address
the well-known problem of individual differences [218], and report improved recognition ac-
curacy on a similar task—Virtual-Reality Stroop Test which is a modified version of the

Stroop color-word interference test that we are using.

5.3 Future Applications for CAfFEINE Framework

During the course of this dissertation, we have received several suggestions to extend our
work in novel application domains. One particularly interesting scenario is in creating novel

human-building interaction applications explained here.

5.3.1 Novel Systems for Human-Building Interaction

A new sensor-rich building at the nexus of arts and technology, called Moss Arts’ Center at
Virginia Tech has been used to design a novel human-centered intelligent infrastructure called
Mirror-Worlds (MW), in the mould of a broad idea of Ubiquitous Computing sketched out by
Mark Weiser [219]. The MW system was designed to study building-sized interaction such as
crowd-simulation, path-finding and navigation, spatial-analytics and visuatization, and aug-
mented environments. The underlying cyberinfrastructure, named Fusality, is modeled as a
real-time server-client architecture being fed data from producers and projecting real-time
analytics on consumers, in addition to enabling real-time interaction with a virtual world
from a physical world using producers+consumers [3]. The producers in the MW system

mainly consist of fisheye optical cameras affixed to the ceiling which uses computer-vision
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techniques to analyze coarse human movements around the smart-building, and projects
these anonymized movements on MW clients which are a gamut of display devices around
the building enabling real-time visualization. This sensing modality captures coarse group
analytics data enabling services and applications such as path planning and evacuation,
classroom student behavior analysis etc. However, it lacks the specificity and individuality
of physiological sensors which we argue are needed to broaden the ambit of the MW sys-
tem’s services and may enable the system to create individualized implicit feedback loops

envisioned in Section 2.5.

In our quest to broaden the scope of our system from experimental laboratory setting to
a real-world building-sized intelligent infrastructure, we have introduced a novel producer
to this MW system in the form of a physiological sensor by streaming real-time data from
Empatica wristband to the Fusality servers. The Empatica wristband streams electrodermal
activity, blood-volume pulse, skin temperature and hand movement data. In addition, we
are also in the process of integrating another producer to the MW infrastructure in the
form of an infrared thermographic (IRT) camera as described in Section 5.2.1. Both these
sensors enables the MW system to capture an individual’s responses to a certain intelligent
service it provided, and thereby infer the service’s appropriateness based on the identification
of a technostressed state as already described in this dissertation. Such an infrastructure
consisting of real-time synchronized datastream of physiological and behavioral data will
help in defining novel interactions with the building, such as inferring thermal comfort using
physiological signals as already discussed in Section 2.5. A very recent work by Nkurikiyeyezu
et al. [220] shows discriminatory features in HRV signals indicative of thermal comfort. Thus,
our CAfFEINE framework may be used to design a more organic natural interaction with

modern adaptive buildings.
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5.4 Concluding Remarks

Our primary vision for this dissertation was to study computational methods that can be used
to incorporate implicit feedback into context aware intelligent environments. In doing so, our
work advances a discussion on the symbiotic relationship between context-aware computing
and affective computing domains. This dissertation presents an exploration into various
aspects of designing a computational framework, which entails validating it’s component
processes by conducting multiple user studies and proposing novel algorithmic methods and
interaction protocols envisioned to be used in ecological environments. We have chosen
real-life applications and use-cases for our evaluation process, nevertheless, the scope of the
study remained in controlled settings. While there remains numerous open questions that
needs to be addressed, this dissertation revealed several interesting results that open further
lines of investigation into novel research problems in this domain. Multiple ongoing student
research projects have fanned out as a results of our investigations and identified gaps in
knowledge. To the best of our knowledge, this work takes a few small, yet concrete steps
towards filling a knowledge gap in the field of creating implicit feedback mechanisms using
physiological signals as applicable to intelligent environments. Ultimately, we hope to spur
general interest in this area by laying out the groundwork and demonstrating a feasibility of

this idea.
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