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Optimal Risk-based Pooled Testing in Public Health Screening,
with Equity and Robustness Considerations

Hrayer Aprahamian

(ABSTRACT)

Group (pooled) testing, i.e., testing multiple subjects simultaneously with a single test,
is essential for classifying a large population of subjects as positive or negative for a binary
characteristic (e.g., presence of a disease, genetic disorder, or a product defect). While group
testing is used in various contexts (e.g., screening donated blood or for sexually transmitted
diseases), a lack of understanding of how an optimal grouping scheme should be designed to
maximize classification accuracy under a budget constraint hampers screening efforts.

We study Dorfman and Array group testing designs under subject-specific risk charac-
teristics, operational constraints, and imperfect tests, considering classification accuracy-,
efficiency-, robustness-, and equity-based objectives, and characterize important structural
properties of optimal testing designs. These properties provide us with key insights and
allow us to model the testing design problems as network flow problems, develop efficient
algorithms, and derive insights on equity and robustness versus accuracy trade-off. One of
our models reduces to a constrained shortest path problem, for a special case of which we
develop a polynomial-time algorithm. We also show that determining an optimal risk-based
Dorfman testing scheme that minimizes the expected number of tests is tractable, resolving
an open conjecture.

Our case studies, on chlamydia screening and screening of donated blood, demonstrate the
value of optimal risk-based testing designs, which are shown to be less expensive, more
accurate, more equitable, and more robust than current screening practices.

This material is based upon work supported in part by the National Science Foundation
under Grants No. #1055360 and #1129688. Any opinion, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.



Optimal Risk-based Pooled Testing in Public Health Screening,
with Equity and Robustness Considerations

Hrayer Aprahamian

(GENERAL AUDIENCE ABSTRACT)

Group (pooled) testing, i.e., testing multiple subjects simultaneously with a single test,
is essential for classifying a large population of subjects as positive or negative for a binary
characteristic (e.g., presence of a disease, genetic disorder, or a product defect). While group
testing is used in various contexts (e.g., screening donated blood or for sexually transmitted
diseases), a lack of understanding of how an optimal grouping scheme should be designed to
maximize classification accuracy under a budget constraint hampers screening efforts.

We study Dorfman and Array group testing designs under subject-specific risk charac-
teristics, operational constraints, and imperfect tests, considering classification accuracy-,
efficiency-, robustness-, and equity-based objectives, and characterize important structural
properties of optimal testing designs. These properties provide us with key insights and
allow us to model the testing design problems as network flow problems, develop efficient
algorithms, and derive insights on equity and robustness versus accuracy trade-off. We also
show that determining an optimal risk-based Dorfman testing scheme that minimizes the
expected number of tests is tractable, resolving an open conjecture.

Our case studies, on chlamydia screening and screening of donated blood, demonstrate the
value of optimal risk-based testing designs, which are shown to be less expensive, more
accurate, more equitable, and more robust than current screening practices.
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Chapter 1

Introduction

1.1 Motivation

Screening a population of subjects so as to classify each subject as positive or negative for a
binary characteristic (e.g., presence of a disease or genetic disorder, a product defect, error
in a computer code) is essential in many settings. Individually testing each subject is often
very costly, and hence, may not be a viable strategy for classification, especially when the
prevalence of the binary characteristic in the population is low and the population size is
large. Therefore, in 1943, Dorfman, an economist, [46] proposed the concept of group testing,
which involves testing multiple subjects simultaneously using a single test, for the purpose

of screening military inductees for syphilis in an economical manner.

An important consideration is that prevalence rates may vary, and sometimes substantially,
with subject characteristics. For example, in the United States (US), subjects within the
15-24 age group are twelve times more likely to be infected with chlamydia, one of the most

prevalent STDs in the US, than subjects from other age groups [55]; first-time blood donors



are seven times more likely to be infected with HIV than repeat donors [143]. The challenge,
then, is to incorporate the heterogeneity of the population into the modeling framework and
to design risk-based testing schemes (i.e., determining group sizes, and assigning subjects,
with different risk, to the groups) so as to classify the set of subjects for the binary character-
istic accurately (i.e., with minimum classification error), equitably (i.e., with a fair and even
distribution of misclassification probability across subjects), and efficiently (i.e., with min-
imum resources). We identify important structural properties of optimal risk-based testing
schemes with imperfect tests; use these properties to develop efficient algorithms; and derive
key insights through realistic case studies that demonstrate the value of optimal risk-based
testing designs, which are shown to be less expensive, more accurate, more equitable, and

more robust than current screening practices.

1.2 Research Overview

We first consider models that attempt to accurately estimate the residual risk of transfusion-
transmittable infections (TTIs), which include the human immunodeficiency virus (HIV),
hepatitis B and C viruses (HBV, HCV), among others. An accurate estimation of the
residual risk of transfusion-transmittable infections (TTIs) is essential, as it provides the
basis for blood screening assay selection. While the highly sensitive nucleic acid testing
(NAT) technology has recently become available, it is highly costly. As a result, in most
countries, including the United States, the current practice for HIV, HBV, HCV screening
in donated blood is to use pooled NAT. Pooling substantially reduces the number of tests
required, especially for TTIs with low prevalence rates. However, pooling also reduces the
test’s sensitivity, because the viral load of an infected sample might be diluted by the other

samples in the pool to the point that it is not detectable by NAT, leading to potential



TTIs. Infection-free blood may also be falsely discarded, resulting in wasted blood. In this
chapter, we derive expressions for the residual risk, expected number of tests, and expected
amount of blood wasted for various two-stage pooled testing schemes, including Dorfman-
type and array-based testing, considering infection progression, infectivity of the blood unit,
and imperfect tests under the dilution effect and measurement errors. We then calibrate
our model using published data and perform a case study. Our study offers key insights on

how pooled NAT, used within different testing schemes, contributes to the safety and cost

of blood.

In Chapter 3, we propose and study an adaptive risk-based pooling scheme, which consid-
ers important test and population level characteristics often over-looked in the literature
(e.g., dilution of pooling and heterogeneous subjects). We characterize important structural
properties of optimal subject assignment policies (i.e., assignment of subjects, with different
risk, to pools), and provide key insights. Our case study, on chlamydia screening, demon-
strates the effectiveness of the proposed pooling scheme, with the expected number of false

classifications reduced substantially over policies proposed in the literature.

In Chapter 4, we study optimal group testing designs under subject-specific risk character-
istics and imperfect tests, considering classification accuracy-, efficiency- and equity-based
objectives, and characterize important structural properties of optimal testing designs. These
properties allow us to model the testing design problems as partitioning problems, develop
efficient algorithms, and derive insights on equity versus accuracy trade-off. One of our mod-
els reduces to a constrained shortest path problem, for a special case of which we develop a
polynomial-time algorithm. We also show that determining an optimal risk-based Dorfman
testing scheme that minimizes the expected number of tests is tractable, resolving an open
conjecture. We demonstrate the value of optimal risk-based testing schemes with a case

study of public health screening.



Finally, in Chapter 5 we study optimal group testing designs that take into account important
operational constraints, subject-specific risk characteristics, imperfect tests, and uncertainty
in risk estimates, while considering classification accuracy- and robustness-based objectives.
We characterize important structural properties of optimal testing designs, which allow us
to model them using network flow formulations, develop efficient algorithms, and derive in-
sights on the robustness versus classification accuracy trade-off. We demonstrate the impact
of this research through a case study on the screening of donated blood for the human im-
munodeficiency virus. Our numerical results highlight the value of optimal risk-based testing
designs, which are shown to be less expensive, more accurate, and more robust than current

screening practices.



Chapter 2

Residual Risk and Waste in Donated

Blood with Pooled Nucleic Acid

Testing

2.1 Introduction

Maintaining a constant supply of infection-free blood is of utmost importance for the society,
as the consequences of transmitting an infection through blood transfusion can be potentially
severe and even life-threatening for the recipient. Recognized transfusion-transmittable in-
fections (TTIs) include the human immunodeficiency virus (HIV), hepatitis viruses, with the
major ones being hepatitis B and C viruses (HBV and HCV), West Nile virus (WNV), hu-
man T-cell lymphotropic virus (HTLV), syphilis, and babesiosis, among others. Throughout
the last decade, blood screening has seen substantial advances, especially with the introduc-
tion of the more accurate virologic testing technology (i.e., Nucleic acid testing (NAT)) that
measures viral RNA and DNA in blood. In the United States (US), NAT technology for

5



blood screening is recently licensed by the Food and Drug Administration (FDA) for the
HIV, HBV, HCV, and WNV (respectively in 2005, 2001, 1999, and 2005 [53]). Virologic
testing has higher sensitivity (the probability of correctly identifying an infected sample)

than traditional serologic testing, especially for recently infected donors.

The residual risk (the probability of releasing a potentially infectious donation into the
blood supply [34]) is predominantly caused by recently infected donors, i.e., donors within
the window period, which refers to the time it takes for the donor’s bio-marker load (e.g., viral
load) to reach a level detectable by screening. An infected individual goes through various
phases of viral load growth rates: pre ramp-up phase, ramp-up phase with accelerating
growth rates, and post ramp-up phase during which the growth rate slows down, eventually
reaching a plateau [25,33,52,61,138,139]. NAT has reduced window periods compared to
serologic testing, but NAT is considerably more expensive (costs vary, but as an example,
the cost of HIV NAT is reported to be at least 3 to 4-fold higher than that of serologic
testing [42,45, 68, 78,86]). Because of the high testing cost, NAT is often used on pools of
blood samples collected from multiple donors. Pooled testing can substantially reduce the
number of tests required, hence the testing cost, especially in blood screening where TTI
prevalence rates are typically low. This is highly desirable, especially because blood is a
high-volume product and is becoming increasingly expensive (the unit cost of a red blood
cell has tripled in the US over the last decade [108,112]), and testing cost constitutes a large

portion of the cost of blood [108].

Of course, pooling has a dilution effect: the viral load of an infected sample is diluted by
the other samples in the pool, reducing the test’s sensitivity (e.g., [8,32,76,137]). As a
result, as the pool size increases, the testing cost goes down, but the residual risk increases.
Furthermore, tests have less than perfect specificity (the probability of correctly identifying

a non-infected sample) [24]. False-positive outcomes are also undesirable; as they lead to



infection-free blood being falsely discarded (waste). Pooling can also increase waste, through
the possibility of discarding an entire pool based on the outcome of one pooled test. Because
healthcare resources are limited in both rich and poor countries (e.g., [11,29, 115]), blood
screening decisions often revolve around the trade-offs between the residual risk, testing
cost, and waste. Therefore, it is important to study these trade-offs for various two-stage
testing (i.e., initial testing and re-testing) schemes, considering the realistic aspects of testing,
including infection progression, infectivity of the blood unit, and imperfect tests under the

dilution effect and measurement errors.

The transfusion literature, with the exception of some recent research that we discuss sub-
sequently, typically estimates the residual risk of a given testing scheme through the simple
Incidence window period model (IWP), which relies on quite restrictive assumptions (see,
e.g., [24,33] for details). In particular, IWP ignores, among others, infection progression
(e.g., viral load growth in the context of NAT) and the individual variability with which this
happens, as well as the stochasticity in test outcomes due to measurement errors, the dilution
effect, and imperfect specificity [8,32,76,137]. Indeed, clinical data for HIV-, HBV-, and
HCV-infected individuals indicate that viral load progression may differ among individuals
in the ramp-up phase due to physiological characteristics not well-understood (25,52, 61];
and due to measurement errors, the same test may produce different outcomes when used

repetitively on the same pool (in-sample variability) [97,137,138,139].

Further, IWP estimates only the residual risk, and not the other important metrics. Conse-
quently, IWP may not provide accurate estimates of the costs and benefits of blood screening
assays, especially under pooling [138,139]. However, pooled NAT has become the common
practice in blood screening in many parts of the world, including the US and many Euro-
pean countries, e.g., the American Red Cross (ARC) routinely uses pooled NAT, in pools
of size 16, for HIV, HBV, HCV, and WNV screening [1,40]. Operations researchers and



statisticians, on the other hand, approach this problem as a generic pooled testing problem,
and make certain modeling assumptions, detailed below, that we relax in this work so as to

obtain a more accurate analysis of various pooled NAT schemes in blood screening.

Our contributions to the blood testing problem are multi-fold. First, we develop analytical
expressions for the relevant metrics (the residual risk, expected amount of blood wasted, and
expected number of tests) and compare them for various two-stage post-donation testing
schemes, while taking into account the joint impact of dilution (as a function of pool size),
imperfect tests, in-sample variability, and re-testing possibility. Thus, our model expands the
earlier works on pooled testing (e.g., [86,138,139]). Second, to close the gap between theory
and practice, we integrate, into our model, mathematical models of post-infection viral load
growth (i.e., doubling time model developed by [33]) adopted in the medical literature, but
increase the realism of these models by incorporating the stochasticity in individual viral
load growth rates and by considering the infectivity of the blood sample (infected blood
with low viral load may not be infectious when transfused, e.g., [33,138,139]). Further, we
calibrate the model parameters using published data on NAT characteristics, and prevalence
and viral load growth rates for HIV, HBV, and HCV, and perform a case study. Our study

generates key insights on how pooled NAT contributes to the safety and cost of blood.

The concept of pooled testing for infectious diseases was first introduced by Dorfman in
1943 for screening military inductees for syphilis in an affordable manner [46]. Dorfman’s
objective is to determine the optimal pool size that minimizes the testing cost for a particular
two-stage testing scheme, commonly referred to as Dorfman-type testing: if the master pool
tests negative, then all samples in the master pool are declared infection-free; and if the
master pool tests positive, then each sample in the master pool undergoes individual testing.
Dorfman’s analysis relies on several assumptions including, among others, that tests are

perfectly reliable and there is no dilution in pooling. Dorfman’s seminal paper paved the



way; and numerous extensions of his model, including consideration of imperfect tests and
multi-stage pooling strategies, have been studied for both the classification problem that
we consider in this chapter (e.g., [8,20, 73,80, 86,97, 137]), and the surveillance problem

(e.g., [39,117,122,123,141, 142]).

An interesting alternative to traditional hierarchical pooled testing, such as Dorfman-type
testing, is array-based testing, which utilizes the concept of overlapping pools [2]. In its most
basic form, an n x n matrix of n? samples is constructed, and 2n pools, comprised of samples
in each column and in each row, are tested. Under perfect tests, the decision is simple in
that all samples that lie at the intersection of a positive-testing row pool and a positive-
testing column pool are infected [86]. Needless to say, the decision becomes complex in the
presence of test error, when it is possible for a row pool to test positive without a column
pool testing positive, and vice versa. While array-based testing is used in genetics (e.g., [2,
12,30]), it has, surprisingly, been under-utilized in blood testing, and limited research exists
on the operational characteristics of array-based testing under test error and/or dilution
effect. As some examples, [15,73] derive various performance metrics for array-based testing
under perfect tests; [69,86,105] consider test error, but without the dilution effect; and [85]
studies three-dimensional array-based testing under similar assumptions. More recently,
Habtesllassie et al. [66] study array-based testing under both test error and the dilution
effect, but their analysis ignores other important aspects of blood screening, such as the

infection progression, infectivity of the blood, and in-sample variability.

On the transfusion side, a recent research focus has been on developing mathematical models
of post-infection viral load growth [33] and utilizing these models for residual risk estimation
in donated blood under pooled NAT [138,139]. In particular, Weusten et al. [138] consider
that the viral load grows in a deterministic manner post-infection (i.e., according to the

doubling time model [33]), that is, with identical growth rates for all infected individuals.



Recently, Weusten et al. [139] partially relax this restriction by modeling the viral load in
each time period as a Poisson distribution, which allows the calibration of the first moment
of viral load growth. However, the Weusten model [139] uses the Poisson distribution solely
for the derivation of the probability that a blood sample is infectious; in other words, the
test’s sensitivity is still derived using the deterministic viral load model. More importantly,
both models [138,139] rely on other restrictive assumptions, including perfect specificity, and
do not consider array-based testing and the other important metrics, including the expected
number of tests and amount of blood wasted. Our research builds upon and substantially
expands these models for a more realistic representation of the various trade-offs incurred
among the different pooling schemes. Specifically, we relax the various assumptions used
in [138,139] to account for the test’s specificity and individual variability in viral load growth;
consider various two-stage pooling schemes, including array-based testing; derive expressions
for the important metrics, including the residual risk, expected number of tests and waste,
and analytically compare the performance of the different pooling schemes, and finally study

the trade-offs incurred for each pooling scheme within a cost-based objective.

The remainder of this chapter is organized as follows. Section 2.2 presents the notation and
assumptions, and provides an overview of the model. Section 2.3 provides an analytical com-
parison of the performance metrics for various pooling schemes. Then, Section 2.4 discusses
findings from a case study for South Africa, a region with one of the highest TTI rates in
the world; and Section 2.5 complements the case study with a cost-based analysis to derive
the least-cost pooling scheme for each infection. Finally, Section 2.6 summarizes our findings
and provides suggestions for future research. To facilitate the presentation, all proofs, and

some tables and figures are relegated to the appendix.
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2.2 Notation, Preliminaries, and Model

2.2.1 Notation

Each test (pooled or individual) provides a binary outcome, with a “positive” outcome
indicating an infection, and a “negative” outcome indicating otherwise. To simplify the
notation, we omit the infection or test index for parameters, random variables, and events

throughout Sections 2.2-2.3, and provide infection- and test-specific values in Section 2.4.

Parameters

Nmaz: Maximum pool size possible (due to technology availability or regulations)
T: average time between two consecutive donations for repeat donors who have sero-converted
v: average volume of blood transfused per patient

lp: starting viral load at time of infection, in number of viral particles in genome equivalent

(geq) per one mL of blood

x: number of nucleic acid copies per viral particle

Random Variables

D: donation time, from time of infection, of an infected donor, where D ~ Uniform|0, 7]
L: viral load in blood sample (geq per mL), with support in [0, o0]

A: doubling time parameter describing the post-infection viral load growth rate, with mean

w and support in [0, o0]
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Events

T*(n,m): event that the outcome of the test, with pool size n, is positive under a given deci-
sion rule when the test is repeated m times on the same pool, Vn,m € Z* (With complement

T~ (n,m))
AT: event that a random donor is infected (with complement A7)

I: event that the blood sample of volume v is infectious, i.e., it contains at least one viral

particle that is is infectious

To simplify the notation, we denote T (n,1) by T%(n). Let Se(n) = P(T"(n)|A") and
Sp = P(T—(n)|A™) respectively denote the sensitivity and specificity of a test with pool
size n € Z". While the sensitivity depends on the pool size due to the dilution effect, the

specificity is independent of the pool size.

Following the transfusion literature, we define the window period, t,,, as the post-infection
time at which the individual’s viral load becomes high enough to achieve a test sensitivity of
at least 0.999 for all pool sizes, that is, ¢, = inf{t > 0 : P(T+(nmax)’A+, D = t) = 0.999},
which is infection- and test-specific [79,138,139]. Thus, the sensitivity, of 0.999, is achieved
exactly for a pool size of n,,.., and is exceeded for all other pool sizes, n < N4, To simplify

the subsequent analysis, we make the following approximation.

Assumption 2.1. The test has perfect sensitivity for detecting an infected sample from a

donor outside of the window period for all pool sizes, i.e., Se(n)|D > t, = 1,V n < npez.

2.2.2 Assumptions and Preliminaries

Our model is based on the following concepts:
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Figure 2.1: Viral load (geq per mL) for an HBV-infected individual as a function of post-
infection time when A ~ N(u,0?), with [y = 1, up = 2.5, and o = 0.122 (Values taken
from [139])
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1. During the window period, the viral load of an infected individual grows at a rate
that may vary among the individuals, reaching a plateau at the end of the window
period [25,52,61]. Specifically, for an infected donor whose donation time is within the
window period, i.e., D € [0,1,],

L =1y 2P0, (2.1)

Eq. (2.1), with deterministic A, is the doubling time viral load growth model in [33].
A non-infected donor has L = 0, and L is left unspecified for an infected donor whose
donation time is outside of the window period (due to Assumption 2.1). To simplify
the notation, let f7(.) denote the probability density function (pdf) of the viral load
for an infected donor within the window period. Figure 2.1 demonstrates the mean
and the 95%-range of an infected donor’s viral load as a function of post-infection time

under one possible pdf (normal) for A.

2. Infectivity of the blood sample increases with viral load, as each viral particle can cause

infection with probability p,, independently of the other viral particles. Then, similar
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to [139]:
PUIL) =1 (1—p)'". (22)

. Test sensitivity is a decreasing function of pool size due to the dilution effect; and there
is in-sample variability, that is, due to measurement errors, the same test may produce
stochastically different outcomes when used repetitively on the same pool (i.e., test
outcome is not always positive (negative) when the viral load is above (below) the
test’s threshold), e.g., [97,137,138,139]. Similar to the transfusion literature, we model
these aspects of testing using the probit function (e.g., [138,139]), i.e., the conditional

sensitivity for an infected window-period sample is given by:

Se(n)|L = P(T*(n)|A",L) =& zw (2.3)
7 log(zes/50) |~

where x50 and x5 are infection- and test-specific parameters, which correspond to the
viral load required to achieve a sensitivity of 50% and 95% respectively (i.e., z, =
inf{l > 0 : Se(1)|(L = 1) = y}, for y = 0.50,0.95), ®(-) denotes the CDF of the
standard normal distribution, and {z : ®(z) = 0.95}. Observe that the dilution effect
is taken into account through using the average viral load in the pool, L/n, similar
to [97, 137,138, 139]. Figure 2.2 plots the conditional sensitivity in Eq. (2.3) as a
function of viral load and pool size. As Figure 2.2 demonstrates, the probit function
possesses certain properties that make it a good fit for modeling the sensitivity: (1) It is
strictly increasing with viral load, asymptotically converging to zero (one) as the viral
load goes to zero (infinity). (2) It is strictly decreasing with pool size, asymptotically
converging to zero as the pool size goes to infinity. (3) With respect to viral load, the
rate of change in sensitivity per unit change in viral load is much more pronounced

(i.e., higher) at lower viral loads (at high viral loads, there are diminishing returns).
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Figure 2.2: Conditional test sensitivity for window-period samples as a function of viral load
(left) and pool size (right) for ULTRIO HBV
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Due to these monotonic and asymptotic properties, along with the ability to calibrate

the function based on infection- and test-specific parameters (x50 and zgs), the probit

function is commonly used in the transfusion literature to model test sensitivity.

Our model relies on the following additional assumptions:

Assumption 2.2. The probability that more than one infected sample is present in any

pool is negligible.

Assumption 2.3. Test outcomes and infectivity of sample are conditionally independent

given the viral load, that is, events T (n)|L and I|L are conditionally independent.

Both assumptions are reasonable and are common in the transfusion literature (e.g., [78,87,
131,138,139]). Assumption 2.2 generally holds because TTI prevalence rates are typically
low (see Section 2.4), and the maximum pool size used in blood screening, 1., is around
16 [40]. Therefore, the probability that more than one infected sample is present in a pool

is negligible.

Assumption 2.3 states that, given the viral load, test outcomes and infectivity of the sample
can be considered independent, as they mainly depend on the viral load. Outcomes of the

same test, when repetitively performed on the same pool, are still dependent when not
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conditioned on the viral load. That is, a high (low) viral load is more likely to produce a
positive (negative) outcome in all tests performed on a given pool. Note, however, that even
when conditioned on the viral load, outcome of each test is still stochastic due to in-sample
variability. Consequently, our approach, of modeling the sensitivity as a function of both pool
size and viral load (see Eq. (2.3)), overcomes the limitations of existing approaches, which
do not model sensitivity as a function of viral load, and hence need to assume independence
among subsequent test outcomes (e.g., [86,97]). Alternatively, one can use empirically-
derived pooled sensitivity values (published only for a small set of pool sizes, e.g., [119]);
however, this modeling does not consider the viral load, and in the absence of empirical
data on the conditional sensitivity given prior test outcomes, one again will need to assume
independence among test outcomes. Thus, Eq. (2.3) allows us to explicitly model the
dependence of the test’s outcome on the viral load, providing an improvement over the

current literature.

To understand the impact of Assumptions 2.1 and 2.2 (as well as the other major assumptions
made in our study), we perform a simulation study, which indicates that all assumptions,
other than the distribution of donation time, D, have a minor impact on the performance

metrics; see Appendix A.1.

In light of Assumption 2.2, we use P (A*(n)) to denote the probability that there is an
infected sample in a pool of size n,n € Z* (With complement P(A_ (n))), that is, we model

the prevalence rate in a pool as a function of pool size (see Section 2.4).

Under these assumptions, the probability of a positive test outcome for a pool of size n € Z*

follows:

P(1+(m))=P(a* ) [P (7 (M) A* (n),D<tw) P(D<tul A+ (n))

+P (T (n)| A+ (n), D>t ) P (D>tw|A+(n))] +P (1) A~ () P4~ (), (2.4)
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where

P(D<tula* @) P(T+m)|A* (n),D<ty) =12 [ P(T (n)| A* (), D<tw,L=1) fr (L, (2.5)
- tw .
P(D>tw|A+(n))P(T+(n)|A+(n),D>tw):T ., by Assumption 2.1, (2.6)
T
P(7+(m)|A~(m))=1 — Sp. (2.7)

These expressions are utilized in the subsequent derivations.

2.2.3 Testing Schemes

We consider one single-stage testing scheme (i.e., only one pooled test), which serves as a
reference point, and various two-stage testing schemes. Let n; (< nypq,) denote the pool size
in stage ¢ = 1,2. Following the current practice, the second stage, which we also refer to as
the re-testing stage, involves repeating a certain test a number of times (m) and determining
the overall outcome of the second stage based on a given decision rule; the need to perform
the same test multiple times is due to the in-sample variability (see Eq. (2.3)). One decision
rule we subsequently utilize is the Believe the Positive (BP) rule, according to which the
second stage outcome is positive (negative) only if at least one of the m tests in the second
stage provides a positive outcome (only if all m tests in the second stage provide negative
outcomes). This rule is commonly used in blood centers as well as in the literature due to

its conservative nature (e.g., [22,24,102,138,139]).

Single-stage testing:

No re-testing (NR (n1)): Only the master pool, of size ny, is tested once. If the master pool
“passes” (i.e., the test outcome is negative), then the entire pool is accepted; otherwise, the

entire pool is rejected.

Two-stage testing (initial testing, followed by re-testing):
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Figure 2.3: Two-stage testing schemes
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All two-stage schemes start with testing of the master pool in the first stage and differ only
with respect to their second stage; see Figure 2.3. If the master pool passes, then the entire
pool is accepted without further testing; otherwise, the second stage is performed. The

sample(s) are rejected only when both stages fail.

(1) Pooled re-testing (PR (ny,n2 = ny,m)): In the second stage, the master pool is tested

m times under the BP decision rule.

(2) Dorfman-type testing (individual re-testing) (IR (ni,ne = 1,m)): In the second stage,
each sample in the master pool is tested individually m times under the BP decision

rule.

(3) Array-based re-testing (AR (ny1,n2 = y/n1,m)): In the second stage, array-based test-
ing is performed, that is, all samples in the master pool are randomly placed within a

/ni X y/nqi matrix, and 2,/n; pools, each of size /ni, are constructed from samples

18



in each row and each column. Each row pool and column pool is tested m times, and
sample (7,7) (i.e., the sample at the intersection of row ¢ and column j) is rejected if
both row ¢ and column j fail; and is accepted otherwise. We use the decision rule that

a row or a column fails if its pooled test provides a positive result at least once.

Then, the event that both stage 1 and stage 2 fail (i.e., a random sample is rejected), which

we denote by F'"(ny,ng, m), ny,ne,m € Z*, and its complement, F~(ny, ny, m), follow:

P(F_(nl,ng,m)):P{T_(nl) or (T+(n1),T—(n2,m))} (2.8)
P(F+(n1,nQ,m)|A+(n1),Dgtw):P{ (7 (n1), T+ (n2,m)) |A+(n1),D§tw}
= [° P(T+ ()| A* (n1),D<t.y, L=1)

x P(T+(n2,m)|A* (n1),D<tw,L=1) fr ()di, by Assumption 2.3 (2.9)

P(F*(n1,n2,m)|A*(n1),D > t,,) =1, by Assumption 2.1 (2.10)

P(F*(ni,n2,m)|A™(n1)) =(1 — Sp) P(T* (ng, m)|A™(n1)). (2.11)

In the next section, we derive the performance metrics for all testing schemes. The super-

scripts NR, PR, IR, and AR denote the corresponding testing scheme.

2.3 Analysis

2.3.1 Derivation of the Performance Metrics

To facilitate the presentation, we explain the logic behind each derivation, and refer the

reader to Appendix A.2 for the derivations.
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Residual Risk (R)

An infection will be transmitted to the transfusion recipient only when the blood sample of
volume v is infected, is not detected during screening, and is infectious. Then, assuming all

blood transfused to a recipient comes from the same donor, we can write:

R=P (AJr (n1),1,F~(n1,n2 ,m))

:P(A+(n1),Dgtw,l,F*(nl,ng,m))+P(A+(nl), D > ty, I, F~(n1,ng, m))

~
I

0 (by Assumption2.1)
=pP(A* (1)) P(D<tulA* (1)) [5° P(114% (n1).D<tu,L=1) P(F~ (n1,n2,m)|[LA* (n1),D<tw,L=1) 1. ()d]
=p(A* (1))t [ P(11A% (), D<tu,L=1)

X P(F~ (n1n2,m)|A* (n1),D<tw,L=1) fr (Ddl, by Assumption 2.3. (2.12)

The expression of the residual risk in (2.12) has two improvements over that in Weusten
et al. [139]: It incorporates the individual variability in viral load and it provides a general
expression that applies to any two-stage testing scheme, including the array-based testing
scheme not considered in [139]. Further, our analysis also incorporates imperfect test speci-
ficity (another improvement over Weusten et al. [139]); while imperfect specificity does not
alter the residual risk expression, we find that it has substantial impact on the other perfor-

mance metrics, as discussed in the subsequent sections.
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Expected Number of Tests (E[N])

We derive:

(

0, for NR
mP(T*(n)), for PR

mny P(T* (1)), for IR

2my/m P(T"(ny)), for AR
\

where P(T +(n1)) is given by Eq. (2.4). Thus, in the no re-testing scheme, only one master
pool is tested for all n; samples, whereas in the two-stage schemes, the number of tests

depends on the outcome of the master pool.

Expected Waste (E[IV])

No re-testing (NR) and pooled re-testing (PR): In either testing scheme, the entire pool is

rejected if both stages fail. Then, for X € {NR, PR}, we can write:

E[WX} = nlp(Ai(Th), F+X(n1, na, m)) + (nq — 1)P(A+(n1), F+X(n1,n2, m)) (2.13)

Individual re-testing (I R): If the master pool fails, then each sample undergoes individual

testing. Letting N3 denote the number of infection-free samples that falsely fail in stage 2 of
IR, we have that Nj%|A™(n;) is binomial with (ny, (1 —Sp™)) and N3F|A™(n;) is binomial
with (n; — 1, (1 — Sp™)). Then,

E[W!] =(n1 — 1)(1 = Sp™)P(T* (m) | AT (1)) P(AT(m)) + 1 (1 = Sp™)(1 = Sp)P(A™ (m1)),
(2.14)
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where P(T"(ny)|A%(n1)) can be derived using Eq.s (2.5) and (2.6).

Array-based re-testing (AR): The derivation of the expected waste in array-based testing is

more involved and detailed in Appendix A.2.

Using these expressions, in the next section we compare the different testing schemes and

derive insights.

2.3.2 Comparison of the Performance Metrics

The proofs of the results in this section can be found in Appendix A.3.

Lemma 2.1. For any master pool of size ny and number of re-tests m, we have:

RPR

RAR

Further, RX is decreasing in m for X € {PR,IR, AR}, with lim,, ... R*(m) — RN

Lemma 2.2. For any master pool size of ny and number of re-tests m, we have:

E[N'A] <EN',ifny >4
> E[NPR] > E[NNR], E[NAR]

E[NAE] > E[N'E],  otherwise
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Lemma 2.3. For any master pool size of ny and number of re-tests m, we have:

;

E[WPR]

EWN > Srwir) , EWPR] > EWT > E[WAY).

E [WAR]

\

Further, E[WX] is increasing in m for X € {IR, PR, AR}, with lim,,, o, E[W*] — E[WNF].

Thus, the residual risk of the no-retesting scheme is the lowest among all testing schemes.
This follows because under any two-stage scheme, a positive master pool is subjected to
further testing, and, due to the in-sample variability (see Eq. (2.3)), it is given a second
chance to pass the test, hence increasing the residual risk. For all the two-stage testing
schemes considered in this chapter, the sole purpose of re-testing (the second stage) is to
reduce the amount of wasted blood. Of course, one can design other types of re-testing
schemes so as to reduce the residual risk, e.g., by re-testing the samples that test negative in
the first stage. However, under low prevalence rates, such re-testing schemes will likely lead
to a huge increase in the number of tests, and hence, one needs to study the testing design

carefully, considering its impact on all the performance metrics.

Finally, it is interesting to note that when the master pool size, ny, equals 1, the two re-
testing schemes, PR and I R, become equivalent, as in this case both schemes reduce to an

individual test in the first stage, followed by m individual tests in the second stage.
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2.4 Case Study

We consider three chronic infections, HIV, HBV, HCV, for which pooled NAT (ULTRIO
HIV, ULTRIO HCV, and two types of NAT for HBV, namely ULTRIO HBV and ULTRIO
Plus HBV) and the corresponding data are available. We calibrate our model using published
data on test characteristics, viral load progression, and prevalence rates; and perform a case

study of South Africa, a region with one of the highest TTT rates in the world [133].

2.4.1 Model Data and Calibration

We calibrate the doubling time parameter, A, considering a normal distribution (A ~
N(p,0%)). Our numerical study, which also considers the Poisson distribution used in
Weusten [139], indicates that the results of the case study are not highly sensitive to the
distribution of the viral load. However, the additional flexibility offered by the normal dis-
tribution, of calibrating the first two moments of the distribution, may be important for
certain data sets (e.g., for infection-test pairs with long window periods and high variability
in viral growth). For each of HIV, HBV, and HCV, we calibrate viral load parameters, u
and o2, using the clinical data in [25,52,61,139]; see Table 2.1. The values of 7, X, Py, lo,
x50, and xes are from [139] (the reader is referred to [139] for details); the window period
for each infection-test pair and test specificity are from [24,78]; and the average volume of
red blood cell transfusion per patient (v) is estimated as 20 mL based on a study conducted
by the South African National Blood Service [139]. To derive the value of P(A™(n)), the
probability that a pool of size n,n € Z*, contains an infected sample, we assume that the
number of infected samples in the pool follows a binomial distribution (rn, P(A™(1))). Then,
P(A*(n)) =1—[1— P(A*(1))]", where P(A*(1)) values are reported in Table 2.1.
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Table 2.1: Data used in the case study (from Weusten et al. [139] unless otherwise noted)

HBV HCV HIV
Epidemiology data
Prevalence rate (P(A+(1))) (%) 0.030% 0.001% 0.046%
Inter-donation time (7) (days) 111 149 166
Data on the virion
Number of nucleic acid copies per vi- 1 1 2
ral particle (x)
Probability that a single viral parti- 0.187 0.086 0.217
cle is infectious (py)
Parameters for viral load growth
Viral load at time of infection (lo) 1 1 1
(geq/mL)
Mean doubling time (p) (days) 2.50 0.45 0.85
Standard deviation of doubling time 0.122 0.022 0.051
()
ULTRIO ULTRIO Plus ULTRIO ULTRIO
HBV HBV HCV HIV
NAT parameters
Specificity (Sp) (%) * 99.93% 99.93% 99.93% 99.93%
Window period (t,,) (days) * 33 29 10 11
Viral load for 50% sensitivity (z50) 7.5 2.5 2.3 2.7
(geq/mL)
Viral load for 95% sensitivity (zgs) 80.3 26.7 20.2 18.4

(geq/mL)

* From [24,78].

2.4.2 Findings

In Table 2.2, we report, per 1,000,000 donations, the residual risk (expressed as the number

of infected blood samples falsely accepted per 1,000,000 donations, that is, R x 1,000, 000),

expected number of units wasted (E[W]), and expected number of tests needed (E[N ])

In addition, Figure 2.4 illustrates the change in each metric with respect to the number of

re-tests and pool sizes for all testing schemes considered.

The numerical results in Table 2.2 provide some scale for the residual risk relationships de-

25



tailed in Lemma 2.1. As expected, the largest increase in R is observed for the least accurate
test (ULTRIO HBV), and since R decreases with m, this occurs for m = 1. The largest
increase in R, caused by re-testing, is the release of 11.5 additional infectious donations into
the blood supply (over the 20.37 released under the no re-testing scheme), which occurs with
array-based re-testing for a pool size of 1, but array-based re-testing is not efficient at such
a small pool size. For the pooled re-testing (m = 1), around 7.5 extra infectious donations
are released for a pool size of 1 (over the no re-testing value of 20.37), while the number
of additional infectious donations is 8 for a pool size of 16 (over the no re-testing value of
47.08). Conversely, the R gap between the no re-testing and both the individual re-testing
and array-based re-testing schemes reduces as pool size increases. For example, for individ-
ual re-testing (at m = 1), 7.5 additional infections are released, while for a pool-size of 16,
only 0.8 additional infectious donations are released. For pooled re-testing, the number of
re-tests decreases in pool size (see Table 2.2), but the dilution causes a significant number
of false-negatives, adding considerable risk at m = 1 (as m increases, R converges to the no
re-testing value, see Lemma 2.1). For individual re-testing, the number of re-tests increases
in the pool size (fewer pools need to be re-tested, but these represent more individual re-tests
due to the larger pool) and the lack of dilution allows most of the infected donations to be
identified. The highest R occurs for the HBV, mainly due to longer window periods (up to
3.3 times longer than HIV and HCV).

Overall, waste in the no re-testing scheme increases with the pool size, as a positive test
outcome causes the infection-free samples in the pool to be wasted. This effect is slightly
countered by dilution, which decreases waste somewhat by increasing the probability of false-
negative outcomes (hence increasing R, see Figure 2.4). This increase in waste with pool size
under the no re-testing scheme carries through to all re-testing schemes. Of course, individual

re-testing reduces the waste more than the pooled re-testing scheme, by eliminating the waste
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Residual risk

Residual risk

Residual risk

Figure 2.4: Residual risk (left), expected waste (middle), and expected number of tests
(right) as a function of master pool size (n;) and number of re-tests (m) for ULTRIO HBV
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inherent in pooling. As the number of re-tests (m) increases, so does the waste, due to the
likelihood of a false-positive outcome; for large m, all waste figures tend to E[WY%] but
convergence to the no re-testing waste is slow; for instance, when m = 8 the waste for all re-
testing schemes is still much smaller than the no re-testing waste (except for large pool sizes
under pooled re-testing). This tends to encourage a higher number of re-tests, because waste
converges (i.e., increases) much slower than R converges (decreases). Array-based re-testing
incurs the lowest waste of all testing schemes (see Lemma 2.3). Also, for pool sizes larger

than one, the waste is higher for more sensitive tests (e.g., ULTRIO Plus HBV compared
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to ULTRIO HBV). However, when the master pool size equals one (n; = 1), the expected
waste does not differ much for the different infections and tests, mainly due to low prevalence
rates and the common specificity value used for the different tests. It is also interesting to
note that with only one re-test, waste drastically decreases in all schemes (except for large

pool sizes under pooled re-testing).

As Figure 2.4 illustrates, for a given pool size and number of re-tests, the expected number
of tests does not vary much among the different testing schemes. This is primarily due to
low prevalence rates, which imply that in the majority of the cases the blood would not be
infected and thus, since test specificity does not depend on the pool size, E[/V] in all schemes
would be similar. The subtle differences observed are due to the portion of time the master
pool tests positive. Of course, E[N] decreases with the master pool size and increases with
the number of re-tests. Among the two-stage re-testing schemes, pooled re-testing leads
to the lowest number of expected tests, while, for n; > 4, individual re-testing incurs the

highest (see Lemma 2.2).

Table 2.2 displays the trade-offs among the performance metrics. For example, consider
ULTRIO Plus HBV for a master pool size of one (n; = 1). After the first stage (see the no
re-testing scheme), R is 11.27, i.e., out of 1,000,000 donations, 11.27 infectious blood units
are released into the blood supply. Comparing this with pooled re-testing with m =1, R
goes up to 17.35 units out of 1,000,000 donations, but the waste drastically reduces (i.e.,
from 699.79 wasted units under no re-testing to 0.49 units under pooled re-testing (with
m = 1) per 1,000,000 donations). A similar pattern can be observed for any master pool
size, any m, and also happens for the other two-stage schemes, individual re-testing and
array-based re-testing. Indeed, the waste reduces drastically with any type of re-testing,
with the highest reduction occurring for the individual re-testing and array-based re-testing

schemes. On the other hand, the number of additional re-tests (from no re-testing to pooled
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re-testing with m = 1) increases by 992, suggesting that, on average, 992 samples out of
the 1,000,000 blood samples failed in the first stage, requiring further tests. Furthermore,
the no re-testing waste is 699.79, which implies that out of 992 failed blood samples, 699.79
samples were infection-free and discarded due to false-positive outcomes. The remaining
291.21 samples were, thus, true-positives. When one pooled re-test (m = 1) is performed, 6
out of 291.21 samples incorrectly test negative, increasing the risk, but since test specificity
is high, the majority of the false-positives are correctly identified as infection-free, reducing
the waste to 0.49 donations out of the 1,000,000 donations. For smaller pool sizes (n; < 4),
the relative increase in the expected number of tests, as m increases, is low (the maximum
increase is around 8.0%), while for larger pools (n; > 8) the increase is much more drastic

(e.g., individual re-testing for HIV with n; = 16, m = 8 the maximum increase is around

100%).

To study the impact of the pooling dilution on the results, we remove the dilution effect
from our model by replacing the pooled test sensitivity in Eq. (2.3) with that of individual
testing, and analytically re-evaluate the performance metrics. Our results (which are not
reported in this dissertation) indicate that failing to model the dilution effect leads to a
significant underestimation of the residual risk, but does not alter the expected waste and
expected number of tests much. These results encourage the incorporation of the dilution
effect, especially for the blood screening context in which the residual risk reduction is the

primary objective.

Finally, in order to study the effect of the variability in viral load growth, we extend our case
study to two settings: a deterministic setting (with A in Eq. (2.1) replaced by its mean, p)
and a high variability setting in which p remains the same, but ¢ = 11/3, which ensures that
A is non-negative 99.7% of the time. We find that the differences in the three performance

metrics are minor in all three settings. However, for infection-test pairs with long window
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periods and high variability in viral load growth, the differences can be large; and our model
offers the flexibility to model this variability, unlike the previous models that consider either

deterministic or Poisson viral load models [138,139].

2.5 Cost-based Analysis

One way of incorporating the trade-offs among the various performance metrics in decision-
making is by considering a cost-based objective to determine the least-cost testing scheme
and its design (i.e., master pool size, ny, and number of re-tests in the second stage, m - the
second stage pool size, ns, is a function of ny, and is determined by the testing scheme). The
current practice for US blood centers is to perform pooled NAT within pools of 16 for each
of HIV, HBV, and HCV. In this section, we consider a maximum pool size of 25 for more
flexibility, as much larger pool sizes are utilized in many countries (e.g., pool sizes of up to
96 in some European countries [1]) For each infection and each testing scheme, we perform
a complete enumeration over (ny,m), with n; € {1,2,---,25} and m € {1,2,---,8}, and

determine the least-cost scheme.

Table 2.3 reports the cost data used in our study and the least-cost testing scheme for each
infection. Interestingly, for all infections considered, the array-based testing scheme provides
the optimal strategy under our data. However, Dorfman-type testing is the strategy of choice
for HIV, HBV, and HCV screening of donated blood in many countries, including the US
and Europe [1,40], while array-based testing is common in genetic testing (e.g., [2,12,30]).
Moreover, according to the South African National Blood Service [111], the current HIV,
HBV, and HCV blood screening procedure in South Africa is individual NAT; however,
a significant portion of blood donations remains untested (e.g., in 2007, according to the

WHO’s Global Database on Blood Safety, there were at least 400,000 blood donations in
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South Africa that were not tested for HIV, HBV, and HCV [136]). Thus, our study offers
important insight into the value of array-based testing in blood screening, especially when
the testing cost is high and/or prevalence rates are low. Finally, since the transmission cost
of HIV is higher (see Table 2.3), our model recommends performing two re-tests for HIV in

order to reduce the residual risk (see Lemma 2.1), and thus the cost of transmission.

Most data used in our study, and especially prevalence rates, are inherently uncertain. In
particular, prevalence rates are typically estimated based on small sample sizes and/or sub-
populations (e.g., pregnant women) that may not accurately represent the blood donor group,
and may vary greatly among the regions (see [49] and the references therein). Further, for
emerging and newly recognized TTIs, the sample size may even be more limited, adding
to uncertainty [49]. To study the impact that the prevalence rate has on our cost-based
function, we perform a one-way sensitivity analysis on the HIV prevalence rate. Specifically,
we vary the HIV prevalence rate in the range of [0.01%-1.00%] and determine the least-cost
strategy for each scenario; see Table 2.4. Interestingly, for low prevalence rates (which is
the case in our study), the array-based testing scheme remains as the least-cost scheme; for
higher prevalence rates, however, Dorfman-type testing becomes optimal. Moreover, as the
prevalence rate increases, the least-cost master pool size reduces in order to counter the effect
of dilution. This analysis highlights the value of studying pooled testing schemes considering

infection, test, and regional characteristics, as we do in this chapter.

2.6 Conclusions and Future Research Directions

We derive analytical expressions for various performance metrics (the residual risk, expected
waste, and expected number of tests) that are essential for assay selection in blood screening,

while explicitly considering the joint impact of dilution, imperfect tests, in-sample variability,
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and re-testing possibility. Our model expands upon the earlier works on pooled testing and
provides accurate estimates, which can be used within a cost-based framework, such as the

analysis in Section 2.5, for decision-making on blood screening strategies.

Interestingly, our analysis indicates that even by re-testing only once, the waste figures are
drastically reduced, especially for smaller pool sizes. This is a useful insight, since the minor
increase in the residual risk and number of tests resulting from re-testing might be justified by
the drastic reduction in waste. The array-based re-testing scheme provides a middle ground
between the high-risk, low-cost pooled re-testing and the low-risk, high-cost individual re-
testing, and is an interesting alternative to traditional hierarchical testing schemes. Although
it is under-utilized in infectious disease settings, it is promising, especially when the testing
cost is high or prevalence rates are low. Indeed, this is justified by the cost-based analysis,
which indicates that the least-cost strategy for all three infections (HIV, HBV, and HCV)
is the array-based testing scheme (see Table 2.3). In summary, our analysis underscores the
importance of considering all three metrics simultaneously in assay selection. Further, it
indicates that relaxing some of the assumptions made in the literature, such as the perfect

specificity assumption, substantially alters the metrics, especially the waste.

Potential improvements to our model include utilizing an expanded viral load model that
spans the life-time of an infection to also model chronic or occult phases, studying multi-stage
pooling strategies, and investigating other types of re-testing schemes that can reduce the
residual risk. We hope that this work motivates and guides future research in this important

area.
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Table 2.2: Performance metrics for HIV, HBV, and HCV

Pooled re-testing (PR)

Individual re-testing (IR)

Array-based re-testing (AR)

Number of re-tests in the second stage (m)

Master pool size (n;) No re-testing (NVR) 1 2 4 8 1 2 4 8 1 2 4 8
ULTRIO HBV Residual risk (R)
1 20.37 27.89 23.90 21.83 20.87 27.89 23.90 21.83 20.87 31.87 25.97 22.78 21.25
2 26.84 34.70 30.69 28.58 27.57 31.74 28.86 27.57 27.07 - - - -
4 33.54 41.52 37.51 35.40 34.37 36.47 34.56 33.86 33.63 41.45 36.96 34.90 34.05
8 40.32 48.32 4431 42.20 41.18 41.92 40.77 40.43 40.34 - - - -
16 47.08 55.07 51.07 48.97 47.94 47.88 47.26 47.11 47.08 51.94 48.84 47.66 47.27
Expected waste E[W]
1 699.79 0.49 0.98 1.96 3.91 0.49 0.98 1.96 391 0.00 0.00 0.01 0.02
2 976.21 269.26 273.76 276.84 279.81 0.68 1.37 2.73 5.45 - - - -
4 1,508.66 786.08 798.59 805.90 810.92 1.06 211 4.22 8.43 0.37 0.75 151 3.04
8 2,538.45 1,784.63 1,813.15 1,828.89 1,838.01 1.78 3.55 7.10 14.18 - - - -
16 4,532.89 3,716.89  3,777.27 3,809.84 3,827.13 3.17 6.34 12.68 25.32 1.06 2.14 4.31 8.66
Expected number of tests E[N]
1 1,000,000 1,000,983 1,001,966 1,003,932 1,007,864 1,000,983 1,001,966 1,003,932 1,007,864 1,001,966 1,003,932 1,007,864 1,015,727
2 500,000 500,626 501,253 502,506 505,011 501,253 502,506 505,011 510,023 - - - -
4 250,000 250,445 250,889 251,778 253,557 251,778 253,557 257,114 264,228 251,778 253,557 257,114 264,228
8 125,000 125350 125,700 126,401 127,801 127,801 130,603 136,205 147,411 - - - -
16 62,500 62,799 63,099 63,697 64,894 67,289 72,077 81,655 100,809 64,894 67,289 72,077 81,655
ULTRIO Plus HBV Residual risk (R)
1 11.27 17.35 13.62 11.92 11.37 17.35 13.62 11.92 11.37 21.09 15.32 12.46 11.46
2 16.79 23.92 19.98 17.98 17.11 21.04 18.27 17.16 16.84 - - - -
4 23.00 30.69 26.69 24.60 23.61 25.69 23.83 23.19 23.03 30.61 26.13 24.10 23.29
8 29.58 37.49 33.49 31.38 30.36 3111 29.98 29.66 29.59 - - - -
16 36.29 44.25 40.26 38.16 37.13 37.07 36.45 36.31 36.29 41.12 38.02 36.85 36.46
Expected waste E[W]
1 699.79 0.49 0.98 1.96 3.91 0.49 0.98 1.96 391 0.00 0.00 0.01 0.02
2 986.27 280.04 284.48 287.46 290.27 0.69 1.38 2.76 5.51 - - - -
4 1,540.29 818.57 831.04 838.29 843.22 1.08 2.16 431 8.60 0.39 0.78 1.57 3.16
8 2,613.61 1,860.45 1,888.93 1,904.64 1,913.73 1.83 3.66 7.31 14.60 - - - -
16 4,694.72 3,879.16  3,939.49 3,972.02 3,989.30 3.29 6.57 13.13 26.23 111 2.24 4.49 9.03
Expected number of tests E[N]
1 1,000,000 1,000,992 1,001,984 1,003,968 1,007,936 1,000,992 1,001,984 1,003,968 1,007,936 1,001,984 1,003,968 1,007,936 1,015,873
2 500,000 500,636 501,273 502,546 505,092 501,273 502,546 505,092 510,184 - - - -
4 250,000 250,455 250,910 251,821 253,641 251,821 253,641 257,283 264,565 251,821 253,641 257,283 264,565
8 125,000 125361 125722 126,444 127,887 127,887 130,774 136,549 148,098 - - - -
16 62,500 62,810 63,120 63,740 64,981 67,461 72,423 82,345 102,190 64,981 67,461 72,423 82,345
ULTRIO HCV Residual risk (R)
1 0.06 0.09 0.07 0.06 0.06 0.09 0.07 0.06 0.06 0.11 0.08 0.06 0.06
2 0.09 0.13 0.11 0.10 0.09 0.11 0.10 0.09 0.09 - - - -
4 0.13 0.17 0.15 0.13 0.13 0.14 0.13 0.13 0.13 0.16 0.14 0.13 0.13
8 0.16 0.21 0.19 0.17 0.17 0.17 0.17 0.16 0.16 - - - -
16 0.20 0.25 0.23 0.21 0.21 0.21 0.20 0.20 0.20 0.23 0.21 0.21 0.20
Expected waste E[W]
1 699.99 0.49 0.98 1.96 3.91 0.49 0.98 1.96 391 0.00 0.00 0.01 0.02
2 713.09 13.56 14.07 15.06 17.01 0.50 1.00 1.99 3.98 - - - -
4 739.17 39.57 40.12 41.14 43.11 0.52 1.03 2.07 4.13 0.02 0.04 0.08 0.17
8 791.13 91.40 92.04 93.09 95.09 0.55 111 221 4.42 - - - -
16 894.69 194.68 195.50 196.64 198.68 0.63 1.25 2.50 5.00 0.05 0.11 0.22 0.46
Expected number of tests E[N]
1 1,000,000 1,000,713 1,001,426 1,002,853 1,005,705 1,000,713 1,001,426 1,002,853 1,005,705 1,001,426 1,002,853 1,005,705 1,011,410
2 500,000 500,363 500,726 501,452 502,905 500,726 501,452 502,905 505,810 - - - -
4 250,000 250,188 250,376 250,752 251,504 250,752 251,504 253,009 256,018 250,752 251,504 253,009 256,018
8 125,000 125101 125201 125402 125,804 125804 126,608 128217 131,433 - - - -
16 62,500 62,557 62,613 62,727 62,954 63,408 64,315 66,131 69,761 62,954 63,408 64,315 66,131
ULTRIO HIV Residual risk (R)
1 213 3.49 2.56 221 213 3.49 2.56 2.21 2.13 4.42 2.92 2.28 2.14
2 3.79 5.62 4.55 4.03 3.84 4.71 4.05 3.83 3.79 - - - -
4 5.82 7.92 6.81 6.24 5.97 6.35 5.95 5.84 5.82 7.67 6.53 6.03 5.86
8 8.06 10.25 9.14 8.55 8.27 8.31 8.11 8.06 8.06 - - - -
16 10.35 12.56 11.45 10.87 10.59 10.45 10.37 10.35 10.35 11.39 10.69 10.45 10.38
Expected waste E[W]
1 699.68 0.49 0.98 1.96 391 0.49 0.98 1.96 391 0.00 0.00 0.01 0.02
2 1,152.99 452.28 453.84 455.34 457.49 0.81 161 3.22 6.44 - - - -
4 2,052.87 1,348.34 1,352.15 1,354.86 1,357.61 1.44 2.87 5.74 11.47 0.63 1.26 2.53 5.08
8 3,838.56 3,126.27 3,134.53 3,139.59  3,143.52 2.69 5.37 10.74 21.44 B - - -
16 7,378.92 6,651.33 6,668.44 6,678.17 6,684.36 5.17 10.33 20.64 41.22 1.87 3.75 7.51 15.08
Expected number of tests E[N]
1 1,000,000 1,001,155 1,002,310 1,004,620 1,009,241 1,001,155 1,002,310 1,004,620 1,009,241 1,002,310 1,004,620 1,009,241 1,018,481
2 500,000 500,803 501,607 503,213 506,426 501,607 503,213 506,426 512,853 - - - -
4 250,000 250,626 251,252 252,504 255,009 252,504 255,009 260,017 270,034 252,504 255,009 260,017 270,034
8 125,000 125,536 126,072 127,144 129,287 129,287 133,575 142,149 159,298 - - - -
16 62,500 62,989 63,478 64,456 66,412 3370,325 78,149 93,798 125,096 66,412 70,325 78,149 93,798




Table 2.3: Cost-based analysis: Data and results

HBV HCV HIV Source
Costs
Testing cost per donation* $35 $30 $30 Jackson et al. [78]
Cost of a symptomatic TTI $11,288 $8,355 $260,193 Marshal et al. [95]
casel
Cost of wasted blood per  $625 $625 $625 Bish et al. [23], Simon et al. [113]
donation*
The least-cost testing scheme
Testing scheme AR AR AR
Master pool size (n) 25 25 25
Number of re-tests (m) 1 1 2
Total cost per donation $2.01 $1.21 $4.63

*  Cost of single-donation NAT.

1 Average life-time medical cost per patient. Estimated based on the average age of the US population,
of 37 years [127].

1 Cost of donor medical evaluation and disposal of blood.

Table 2.4: One-way prevalence sensitivity analysis for the least-cost HIV testing scheme

Prevalence rate Least-cost Master pool Number of Total cost per
testing scheme size (ny) re-tests (m) donation
0.010% AR 25 1 $1.96
0.020% AR 25 1 $2.71
0.050% AR 25 2 $4.94
0.100% IR 14 1 $8.26
0.500% IR 3 2 $25.44
1.000% IR 2 3 $38.86
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Chapter 3

Adaptive Risk-based Pooling in
Public Health Screening

3.1 Introduction and Motivation

Screening for diseases is an important, and extensively used, public health tool. The classifi-
cation problem (i.e., classifying each subject as positive versus negative for a disease) involves
testing a large number of subjects for infectious or genetic diseases through in-vitro labora-
tory tests performed on specimens (e.g., blood, urine, tissue swabs) from the subjects so as
to measure the concentration (load) of a disease-related bio-marker. Public health screen-
ing is performed when early detection can improve clinical outcomes, and/or to reduce the
spread of infectious diseases, especially for diseases that have slow to develop and/or initially
non-specific symptoms (e.g., AIDS, Zika, hepatitis), and can save lives, reduce suffering, and
decrease healthcare expenditures. However, due to limited resources, efficiency is essential.
Because screening usually involves large populations and diseases with low prevalence rates,

pooled testing (testing combined specimens from multiple subjects via a single test) is com-
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monly used to improve the efficiency of screening efforts. Pooling schemes studied in the
literature test each specimen multiple times, as only a small sample from the collected spec-
imen is required for a test; therefore, multiple tier schemes, i.e., two- or three-tier schemes,

are common in order to increase the classification accuracy of the schemes.

In designing a pooling scheme, certain issues should be considered: 1) screening tests are
imperfect (e.g., due to biological factors, including the time, post exposure, it takes for
the bio-markers to reach levels detectable by the test); and false positives (i.e., subjects
falsely classified as positive for the disease) and false negatives (i.e., subjects falsely classified
as negative for the disease) are possible; 2) pooling may further reduce the classification
accuracy, as it leads to the dilution of the true-positive specimen’s bio-marker load with
true-negative specimens in the pool, resulting in a higher false negative probability [32,76,
137]; and, 3) the population can often be segmented into sub-populations having different
prevalence rates (e.g., based on disease risk factors), that is, the population is heterogeneous
in terms of the probability of positivity (risk) for the disease in question. Consequently, a
major public health challenge is to design efficient screening policies with pooling so as to
accurately classify subjects in a large population with limited resources, considering imperfect
tests, dilution effect of pooling, and population heterogeneity; this problem is the focus of
this chapter. In our context, a screening policy involves the testing design (e.g., pool sizes)

as well as the assignment of subjects, each with different risk, to the pools.

There are two main types of pooling schemes studied in the literature and adopted in prac-
tice: 1) Dorfman pooling [46], which is widely used in infectious disease screening [82,107],
entomology [132], pharmaceuticals and drug discovery [74,81], and various other industrial
applications [114]; and, 2) array pooling [105], which is often used in genetics screening
(e.g., [2,12,30]). Dorfman pooling was introduced in 1943 as a way to test military inductees

for syphilis in an economical manner [46]. The Dorfman pooling scheme has two tiers: the
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first tier is a pooled test; if the pool tests negative, then all subjects in the pool are classified
as negative; and if the pool tests positive, then, in a second tier, all subjects in the pool
are individually tested (using a new sample from each specimen). Dorfman’s idea of pooling
(for syphilis screening), using the Wasserman-type antibody blood test, was not used in the
1940’s, mainly due to some unrealistic assumptions imposed on the original model, such as
no testing errors or dilution, which could be significant for syphilis screening [47]. Since
Dorfman’s seminal work, variations of the two-tier Dorfman pooling have been studied, and
the most restrictive assumptions of Dorfman’s original model have been somewhat relaxed
to consider imperfect tests (e.g., [3,4,59,62,80,86,92,122]) and dilution (e.g., [32,76,137]).
The second type of pooling scheme, array pooling, places samples of specimens from mn
subjects into an m X n matrix, forming m + n overlapping pools (m row pools and n column
pools; thus a sample of each subject’s specimen lies in a unique pair of pools) that are tested
simultaneously. Under perfect tests, all positive subjects will lie at the intersection of a
positive-testing row and a positive-testing column. In the realistic case of imperfect tests,
however, a decision rule must be constructed, leading to many variations (e.g., [85,86]). Over
the years, array pooling has been extended to higher dimensional arrays (e.g., [85]), and has
been studied under imperfect tests (e.g., [66,86,98]) and dilution (e.g., [66]). While a large
number of policies having multi-tier testing designs are possible in both Dorfman and array
pooling, complex designs can be very difficult to implement in practice [85,86,96,137], and
as a result, most of the extant literature studies two- and three-tier pooling designs (see,
e.g., [46,86,105,109]). Therefore, in this chapter, we also restrict our study to three-tier

testing designs, as our goal is to provide actionable guidelines for practitioners.

Yet another consideration in designing a pooling scheme is the level of adaptivity, i.e., whether
or not the testing procedure for subsequent tiers is determined based on the observed outcome

of earlier tiers. Two-tier Dorfman pooling is an example of an adaptive scheme, because Tier
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2 individual testing is performed only if the Tier 1 pooled test outcome is positive. While
the array pooling described above is not adaptive, adaptive array pooling is possible. For
example, the row pools can be considered Tier 1, and column pools as Tier 2. The Tier
2 column pool testing can be modified based on Tier 1 results in a number of ways: For
instance, in [105], if exactly one row pool tests positive, then all subjects in that row are
tested individually in Tier 2; and if more than one row pool tests positive, then all column

pools are tested in Tier 2.

The majority of the existing literature on pooled testing assumes a homogeneous population,
i.e., all subjects have the same risk for the disease in question. In the homogeneous setting,
with no risk-based differentiation among the subjects, the only decision is the testing design
(i.e., pool sizes in Dorfman pooling, and dimensions of the testing matrix in array pooling),
and subjects are assigned to pools randomly. However, many studies show that the prevalence
rate of a disease can vary, sometimes significantly, based on demographic and/or clinical risk
factors, e.g., 62% of all reported cases for chlamydia, one of the most prevalent sexually
transmitted diseases (STDs) in the United States (US), occur in people between 15-24 years
of age [35]; the human immunodeficiency virus (HIV) prevalence rate of first-time blood
donors is seven times higher than that of repeat donors [143]. Indeed, as we show in this
work, incorporating such population level characteristics into the modeling framework is
essential for improving both the classification accuracy and efficiency of screening, and is
feasible, as various clinical and demographics data are often collected prior to screening; e.g.,
gender, age, race/ethnicity, reason for testing, and pregnancy status, is collected for STD
testing [35]; gender, age, first-time vs repeat donor status is collected from all US blood
donors [54]. In models where the heterogeneity of the population is taken into account,
in addition to the testing design decision, the decision-maker also needs to determine the

assignment of subjects, with different risk, to testing pools.
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While some papers investigate the testing design for array pooling, most of this work con-
siders homogeneous populations; thus, there is no subject assignment decision, and the only
decision variables are the dimensions of the testing matrix. Further, all this research de-
termines the testing design, either via enumeration or heuristically, so as to minimize the
expected number of tests (rather than maximize the classification accuracy under limited
testing budgets, as we do in this chapter), considering square testing matrices only and for a
homogeneous population, and either under perfect tests [73], or imperfect tests but without
the dilution effect [98]. On the other hand, research that studies the subject assignment
decision in array pooling for heterogeneous populations is extremely limited; this research
studies non-adaptive array pooling schemes (i.e., row pools and column pools are tested
simultaneously) via solely numerical studies of various heuristics (e.g., [98]), without char-
acterization of the properties of an optimal assignment and without considering the dilution
effect of pooling. The assumption of no dilution is indeed restrictive, as classification accu-
racy may deteriorate substantially with the dilution that comes with pooling. For example,
clinical research shows that the sensitivity (i.e., true positive probability) of the HIV Ultrio
Plus NAT blood test reduces from near perfect sensitivity, for individual testing, to only 88%
when pools of size 16 are used [119]. Such reductions in sensitivity underscore the need to
model and study the dilution effect of pooling for certain tests. In particular, the objective of
minimizing the expected number of tests is common in the extant literature on both testing
design and subject assignment (the latter applies to heterogeneous populations only). In
this chapter, we take a different approach, of maximizing the classification accuracy under a
testing budget constraint, as this is the main objective of the decision-maker in public health

screening.

In particular, we formulate the testing design problem so as to minimize the expected num-

ber of false negative classifications under a budget constraint, which includes the testing cost
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and the cost of false positive classifications. This formulation applies especially in settings
in which false negatives lead to substantially more severe consequences than false positives,
and in which false positives are subject to further confirmatory testing that has near per-
fect sensitivity and specificity. Examples include donated blood screening, as transfusion
with infected blood may lead to severe infections, e.g., HIV, hepatitis virus infections, in
transfusion recipients, and it is common practice in the US to apply confirmatory testing
to all blood specimens that test positive in screening, to appropriately inform the infected
donors, but the blood that tests positive during screening is not used in transfusion [41].
This objective is in line with the transfusion literature, which mainly focuses on false neg-
atives, e.g., [4,138,139]. However, false positives also carry negative consequences, as they
can potentially lead to not only higher costs, due to additional confirmatory tests, but also
to anxiety and stress in patients. We account for these negative effects by incorporating
the expected number of false positives into the budget constraint, thus penalizing false pos-
itives; and through a three-tier testing scheme, in which the third tier consists of individual
testing. Our analysis indicates that this third tier substancially reduces the false positives,
while having minimal impact on the false negatives, especially when individual testing has

almost perfect sensitivity.

Thus, all performance metrics, false negatives, false positives, and testing cost are taken
into account in the testing design decision, which is made under uncertainty on subject
risk vector. Then, given a testing design, the subjects are assigned to the testing matrix
after the subject risk vector is observed for the set of subjects to be screened in a given
period (e.g., a day), and in this stage, the assignment decision is made so as to minimize the
expected number of false negatives. Due to the complexity of this problem, following the
literature we solve the testing design problem under a homogeneous population assumption,

but our model differs from the existing literature in that we consider maximization of the
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Table 3.1: Summary of the pooled testing literature

Homogeneous No Dilution [8,15,46,62,73,80,85,86,92,105,114, 118,124, 125]
population With Dilution | [4,32,66,76,137]

[

[

20,21, 26,27, 31,75,96,98, 109
48]

Heterogeneous No Dilution

Pooled Testing

population With Dilution

classification accuracy under a testing budget constraint, as opposed to minimization of the
expected number of tests, as discussed above. Then, in the subject assignment problem,
we take the heterogeneity of the population into account to make the subject assignment

decisions based on their risk.

Table 3.1 provides a summary of the related literature with respect to various important
dimensions of the pooled testing problem. The vast majority of the literature studies the
pooled testing problem under the assumption of a homogeneous population, with very limited
work done on risk-based pooled testing for a heterogeneous population. Moreover, even fewer
papers investigate the pooled testing problem for a heterogeneous population under the
dilution effect of pooling. However, incorporating the dilution effect and the heterogeneity
in the population adds considerable realism to the testing problem. Therefore, motivated by
this gap in the literature, in this chapter we investigate risk-based pooled testing schemes

for a heterogeneous population, while taking into account the dilution effect of pooling.

Our contributions in this chapter are multi-fold: To our knowledge, our work is the first to
study the testing design and subject assignment decisions for an adaptive risk-based array
pooling scheme, while taking into account important test and population level characteris-
tics, including imperfect tests and an adaptive testing scheme, dilution effect of pooling,
and risk profile of subjects; for this purpose, we consider a novel formulation, of maximizing
the classification accuracy under a testing budget constraint. From that perspective, our

optimization-based model provides a realistic treatment of the important issues surround-
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ing pooling, and offers a paradigm shift, from the traditional test minimization approach
used in most of the existing literature, to classification accuracy maximization under limited
resources. Our analytical results characterize the properties of optimal subject assignment
policies. In addition, we perform a case study, using published data, on chlamydia screening
in the US. The case study demonstrates that the proposed adaptive risk-based policy sub-
stantially reduces both false negative and false positive classifications over screening schemes
studied in the literature, while remaining within current testing budgets, underscoring the
power of the proposed optimization-based framework and the effectiveness of adaptive risk-

based pooling.

The remainder of this chapter is organized as follows. Section 3.2 discusses the decision
problem, assumptions, and our modeling. Then, Section 3.3 studies the assignment of sub-
jects to pools and the testing design. Section 3.4 discusses findings from the case study
and compares our model to previously proposed policies. Finally, Section 3.5 summarizes
our findings and provides suggestions for future research. To facilitate the presentation, all

proofs are provided in the appendix.

3.2 The Notation and Model

Throughout, we will use the terms “positive” and “negative” to refer both to subjects (i.e.,
to respectively denote the presence or absence of the infection in question for the subject)
and to test outcomes (i.e., to respectively denote the test outcomes that indicate the presence
or absence of the infection). To simplify the terminology, we will use “subject” to refer both
to a subject and to a specimen taken from the subject. We denote random variables in

upper-case letters and their realization in lower-case letters, and vectors in bold face.

In what follows, we first describe the decision problem, and then discuss the modeling of the
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dilution effect and the heterogeneity in the population.

3.2.1 The Decision Problem

We consider an adaptive risk-based array pooling scheme in which the subjects are placed
in an m X n testing matrix. The decision-maker (e.g., the lab) needs to determine: (i) the
testing design, i.e., the dimensions, m and n, of the testing matrix, so as to minimize the
expected number of false negative classifications under a budget constraint, which includes
the testing cost and the cost of false positives; and (ii) the assignment of subjects, with
different risk factors, to the pools (i.e., placement of the subjects in the testing matrix). The

testing follows a three-tier testing scheme:

Adaptive three-tier array pooling: In Tier 1, all row pools are tested; if the test outcome
of at least one row pool is positive, then testing proceeds to Tier 2. In Tier 2, the testing
matrix is reduced to include the subjects in positive-testing rows only (this reduces dilution
in Tier 2), and all column pools of the reduced testing matrix are tested. In Tier 3, all
subjects lying at the intersection of a positive-testing row and a positive-testing column are
individually tested and are classified based on the outcome of the individual test. All other

subjects are classified as negative.

We note here that the main reason for the inclusion of the third tier in our testing scheme
is to reduce the false positives. Indeed, our numerical study in Section 3.4 shows that the
third tier substantially reduces the number of false positives, while having minimal impact

on the false negatives, especially when individual testing has almost perfect sensitivity.

In contrast to the adaptive array scheme described above, the extant literature mainly focuses
on non-adaptive array pooling schemes in which row and column pools are tested simultane-

ously (followed by individual testing of select subjects [73,86,105]). However, adaptive array
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schemes, such as the one proposed here, offer several benefits over non-adaptive schemes,
including a reduction in the expected number of tests and a reduction in the dilution effect
in the second tier column testing. The latter happens because the second tier column testing
is performed only on a subset of the subjects, i.e., subjects that belong to positive-testing
rows in the first tier row testing. On the other hand, non-adaptive array schemes also offer
some benefits, e.g., ease of implementation and shorter overall testing times, as all row and
column pools are tested simultaneously (see Section 3.4 for a comparison of our model to

non-adaptive array pooling schemes).

The testing design is static, i.e., it is made only once and used repetitively each testing
period (e.g., day), as it is a tactical decision because equipment setup and process rules are
not easy to change on an operational basis. In this chapter, our main focus is on the value
of an adaptive testing scheme and risk-based assignment of the heterogeneous subjects to
the testing matrix. Towards this end, and following the literature, we determine the testing
design (i.e., m and n) under the assumption of a homogeneous population [86,98] (see Section

3.3.2 for the testing design problem).

Let FN(m,n) (FP(m,n)) denote the random number of false negatives (positives) incurred
for mn subjects tested within an m x n matrix, with FN'(m,n) (FP(m,n)), | = 1,2,3,
denoting the random number of false negatives (positives) incurred in Tier [, and let T'(m, n)
denote the random number of total tests required for mn subjects. As discussed in Section
3.1, we consider settings in which false negatives lead to substantially more severe conse-
quences than false positives (e.g., blood screening, STD screening), mainly because a false
negative indicates a missed diagnosis, while false positives are discovered through subsequent

confirmatory testing [4,138,139].
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3.2.2 Modeling the Dilution Effect and Heterogeneity of the Pop-

ulation

An important component of our model is the modeling of the dilution effect of pooling in
a generic manner. Let Se(n,k) denote the conditional probability that the pooled test
outcome is positive for a pool of size n given that the pool contains k truly positive subjects
(conditional sensitivity of the test), 0 < k < n, k,n € ZT. We let Se(n,0) = 1 — Sp(n),
where Sp(n) denotes the test’s specificity (true negative probability, i.e., the probability that
the test outcome for a pool of size n is negative given that all subjects in the pool are truly
negative). We consider general test sensitivity functions that satisfy only two monotonicity

properties related to dilution:
Property 1: Se(n, k) is non-increasing in n, for all k < n, k,n € Z*.
Property 2: Se(n, k) is non-decreasing in k, for all k < n, k,n € Z™.

Not surprisingly, Properties 1 and 2 are satisfied by FDA-licensed blood and STD screening
tests (e.g., [119] illustrates how the HIV, HBV, and HCV NAT tests adhere to Properties 1
and 2). Specifically, for a given number of truly positive subjects in a pool, test sensitivity
is impaired as pool size increases, since dilution becomes more pronounced (Property 1);
and as the number of truly positive subjects in a pool increases, the test will have a higher
probability of testing positive due to a higher marker load in the pool, hence a higher
sensitivity (Property 2). While test sensitivity is modeled as a function of pool size, test
specificity is assumed constant and independent of pool size, i.e., Sp = Sp(n), Vn € Z*,
as in the absence of any infected specimens in a pool, false positives occur mainly due to
technical or human error, and hence are typically not affected by pool size. In addition, we

assume that individual testing has perfect sensitivity, i.e., Se(1,1) = 1. Indeed, tests that
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are utilized in pooled testing are often highly sensitive when conducted individually, e.g., the

HIV ULTRIO Plus NAT test has an individual test sensitivity of 0.9998 for HIV testing [6].

To represent the heterogeneity in the population, let P, denote the probability that subject
k, with certain risk factors, is truly positive for the disease (hereafter referred to as “risk”).
Then, random variable Dy (unobservable by the lab) is 1 if subject k is truly positive,
and 0 otherwise, i.e., Dy ~ Bernoulli(FP;). We assume that random variables Dy, V k, are
independent. Observe that in this setting, the probability of having k infected subjects in a

pool of size n needs to be derived by conditioning on which k subjects are positive.

3.3 Structural Properties of an Optimal Risk-based

Assignment

In this section, we first investigate, in Section 3.3.1, the subject assignment problem, for
a given configuration, m and n, and risk vector realization, p, and establish structural
properties of an optimal assignment policy for subjects with different risk profiles. Then,
in Section 3.3.2, we formulate the testing design problem that generates a static design

considering a homogeneous population.

3.3.1 Assignment of Subjects to Pools

Given an m X n testing matrix and a risk vector realization p for mn subjects, the subjects
need to be assigned to row pools in Tier 1, and to column pools in Tier 2 given Tier 1
testing outcome. Note that there is no assignment decision in Tier 3, which corresponds
to individually testing select subjects. Towards this end, let &' = (z},)i=1... m, req and

x° = (x?k)]:1n req2 respectively denote the first and second tier assignment vectors,
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where

if subject k is assigned to row 4 X if subject k is assigned to column
1, )
D in Tier 1 , 1%, = j in Tier 2
0, otherwise 0, otherwise

where Q = {1,--- ;mn} and > ={k € Q: 2 R, =1,i=1,--- ,m}, with R; = 1 if Row ¢
pool tests positive, and 0 otherwise, that is, Q2 is the set of subjects whose assigned row tests

positive in Tier 1 (i.e., the set of subjects for which Tier 2 testing needs to be conducted).

Let R = (R;)i=1,..m denote the random test outcome vector for Tier 1 row pools, and
define counting random variables, Ny = >, ., Dy and N, = >~ R;, as the number of truly
positive subjects in the testing matrix, and the number of positive-testing rows in Tier 1,

respectively. Also let Nj (') =37, . Dijp and N (x',x?) = > keqe Drasy respectively

denote the number of truly positive subjects in row ¢, ¢ = 1,--- ,m, of the original (Tier 1)
testing matrix, and in column j, j = 1,--- n, of the reduced (Tier 2) testing matrix. In
Tier 2, we relabel the rows of the reduced matrix as 1,--- ,n,, where n, is a realization of

the random variable V.

Problem Formulation

The objective is to assign subjects to the testing matrix so as to minimize the total expected
number, per subject, of false negatives, i.e., the expected number of false negatives incurred
in Tier 1 plus the expected number of false negatives incurred in Tier 2, where the latter
needs to be computed for each possible Tier 1 assignment vector @', via the law of total

expectation, i.e., by conditioning on the R vector. However, observe that the probability
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mass function of R, i.e., P(R(x') = 7), Vr, is a function of the Tier 1 assignment vector,
x!, and further, the dimensionality of #? depends on x! and the realization of R, because
not every subject undergoes testing in Tier 2. Consequently, we do not have closed-form
expressions on E[FN?(x?)|r] and P(R(x') = r) for a given Tier 1 assignment decision.
Further, the number of possible assignment decisions in each of Tiers 1 and 2 is huge, e.g.,
for an mxn testing matrix, the number of possible Tier 1 assignments is in the order of (mn)!,
which, even for a moderate matrix size, is huge. Therefore, this alternative formulation is
intractable; hence, for analytical tractability, we proceed by minimizing the expected number
1

of false negatives in each tier separately, i.e., ——E[FN'|p] in Tier 1, and --E[FN?r,p| in

n

Tier 2, i.e., the latter is conditional on Tier 1 outcome, as given in (3.1) and (3.2):

Tier 1 Assignment Problem:

. 1 1.1 I v i (ol
min %E[FN () | p] = mn;k_lk[l_Se(n’k)]P(Nd”"(m )=k |p)
s.t. Zx}k:n, Vi=1,---,m
ke (3'1)
daj=1, VkeQ
i=1

rh €{0,1}, Vi=1,---,m, VkecQ.

Tier 2 Assignment Problem:

: 1 20,2 _ 1 - J (el 2) _
min mnE[FN (x%) | r,p] = o < k[1— Se(n,, k)| P(N] (z',z*) =k | r,p)
Jj=1k=1
s.t. Zx?k:nr, Vi=1,---,n
keQ? (3.2)

doah=1, VkeQr
j=1
a3, €{0,1}, Vji=1,-,n VkeQ|r
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Note that mn is a constant in the assignment problem, and hence is omitted from the

analysis.

Although the two tiers of the assignment decisions are optimized separately, the two decisions
are linked, as the second tier assignment decision depends on the outcome of the first tier
test (given by r) and the subject risk vector updated at the end of the first tier (given by p’).
Moreover, the second tier column testing is performed on a testing matrix that is modified
based on the first tier outcome (7). Thus, the dimensionality of the second tier testing is
informed by the random outcome (R) and the assignment decision (a4) of the first tier. Our
modeling approach reflects this dynamic decision-making and determines the optimal Tier

2 assignment given a Tier 1 outcome.

Remark 3.1. E[FN'(z!) | p] and E[FN?(2?) | r, p] become independent of the subject

assignment, ! and 2, when m =1 or n = 1.

To simplify the subsequent notation, hereafter we drop the arguments in parenthesis and

omit the dependence on p or r when clear from the context.

In general, the assignment problems in (3.1) and (3.2) are difficult to solve, as their respective
objective functions are non-linear and not necessarily well-behaved, and do not have closed-
form expressions for general sensitivity functions. As a result, although the constraint sets
in both problems possess the total unimodularity property, the binary restrictions on ! and
x? cannot be relaxed without loss of feasibility. Therefore, in the subsequent sections, we
investigate properties of optimal solutions to (3.1)-(3.2), which enable us to characterize the

optimal assignment policy.

Given a testing design (m and n), the following assignment policies will be of importance in

the subsequent analysis of the assignment problem:

1. Assignment Row-wise-highest-risk-first (RH) assigns the n highest risk subjects
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(subjects 1,--- ,n) to row 1, next n highest risk subjects (subjects n+1,---,2n) to row

2, and so on.

2. Assignment Column-wise-highest-risk-first (CH) is similar with respect to columns,

i.e., it assigns the m highest risk subjects (subjects 1,--- ,m) to column 1, and so on.

In both assignments, ties are broken arbitrarily, as there exist multiple RH (CH) assign-
ments, including permutations of subjects within each row (column), and permutations of

rows (columns).

Given an assignment of the subjects to the testing matrix, we use index (7,j) to denote
the subject assigned to cell (7,7) in the matrix (i.e., the ith row and jth column), for all
i1=1,---,m,and j = 1,--- ,n. The following characterizations will prove to be useful in
establishing properties of an optimal assignment. In particular, Corollary 3.1 and the first
part of Corollary 3.2 are used in Lemma 3.1 to show that it is sufficient to study a 2 x n
matrix to derive properties of an optimal assignment for the original m x n matrix, and the
second part of Corollary 3.2 is utilized in Theorem 3.1 to establish properties of an optimal

Tier 1 assignment. All proofs can be found in the appendix.

Corollary 3.1. For an m X n testing matrix, if an assignment does not follow RH, then

there exist rows iy,iy @ i1 # i9, 41,12 = 1,-+- ,m, such that:
(a) min {p;;} < max {py;}, and (b) max {p;;} > min {p;;}.
j=1,n j=1,n j=1,n j=1,n

Corollary 3.2. For an m X n testing matrix, if an assignment does not follow RH, then
there exists a 2 x n sub-matrix of the original m x n matrix such that: (i) the sub-matrix
does not follow RH, and (ii) relabeling the rows of the sub-matrix as rows 1 and 2, one can
construct an equivalent assignment (i.e., with the same E[F'N!|p] as the original assignment)
such that there exists some subject k = 1,--- ,n — 1, with p;; < pg; forall j =1,2,--- k,

and pij > poj forall j =k +1,k+2,--- ,n, or vice versa.
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Corollary 3.2 follows because the number of false negatives in Tier 1 depends only on the set
of subjects assigned to each row, and not on their specific location within each row. Hence,
in Corollary 3.2, we consider a particular permutation of the original assignment for the 2 xn
sub-matrix in which the subjects in row 1 are assigned to columns following a non-decreasing
order of their risk, while those in row 2 are assigned following a non-increasing order, e.g.,
in the new assignment, the subject with a risk of min;_; .. ,{pi,;} is assigned to cell (1,1),

the subject with a risk of max;_ ... ,{pi,;} is assigned to cell (2,1), and so on, or vice versa.

Properties of an Optimal Tier 1 Assignment

We are ready to establish some properties of an optimal Tier 1 assignment.

Lemma 3.1. If Assignment RH minimizes E[FN'|p| for a 2 x n testing matriz, ¥ p, then
Assignment RH minimizes E[FN|p] for all m x n testing matrices, for n, m € Z*, and

vV p.

In light of Lemma 3.1, in the following we extensively study the properties of a 2 x n matrix.
For this purpose, with a slight abuse of the notation, let &' and N, respectively denote the
Tier 1 assignment and the number of positive subjects in the 2 x n matrix. We define the
conditional indicator variable (Y;(x')|Ng = ng), which equals 1 if there exists a row in the
2 X n matrix with exactly ¢ positive subjects, and 0 otherwise, given a total of ng truly

positive subjects, that is:

1, if (N}, |Ng=mng) =1, for j=1or?2
(E(ml)“\[d:nd): ( d7’ d d)

0, otherwise
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Observe that, Vng =0,--- ,2n,

I(n,ng) I(n,nq)
Pl U {(Y;(ml)wd —ng) = 1} - P{ (Yi(a")|Ny = ng) = 1} —1,
i=0 =0

where I(n,nq) = |min{ng, 2n —ny}/2| and E[Y;(x)| Ny = ng] = P{(Yi(x")|Ns = nq) = 1}.
Corollary 3.3. For a 2 x n matrix, E[FN*(z')] in (3.1) can be equivalently expressed as:

on I(n,ng)

E[F Z Z a(i,ng) E[Yi(z)| Ny = na, (3.3)

where a(i,nq) = E [FN'(x")|(Yi(x")|Ng = na) = 1] P(Ng = ny).

Corollary 3.3 follows directly by conditioning on the number of positive subjects, Ny, and on
Y;(x')| N4, and utilizing the law of total expectation. The representation in Corollary 3.3 is
helpful, because only the second component of the right-hand side of Eq. (3.3) is dependent
on the assignment decision, 1, and we heavily exploit this structure of the objective function

in our analysis.

As stated in Section 3.2.1, we consider a general class of sensitivity functions that satisfy
the monotonicity properties given in Properties 1 and 2. Not surprisingly, the form of the
sensitivity function impacts the form of the optimal assignment. In order to obtain structural
properties of an optimal assignment, in the remainder of the chapter we assume that the

sensitivity function satisfies Properties 1, 2, and the following condition:

2
0*Se(n, k) > g 0Se(n, k)

K ok2  — ok

Vk<n; k,neZ". (3.4)

The condition imposed in Eq. (3.4) states that the sensitivity function is either convex, or,

loosely speaking, not “too concave” in k, i.e., the number of truly positive subjects in the
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pool, ¥V k (i.e., the second derivative of the sensitivity function is bounded from below by a
negative number). This condition is not restrictive, as a large range of dilution dynamics,

with different intensities, can be modeled under this condition, as illustrated in Example 3.1.

Example 3.1. Consider the sensitivity function, proposed in [32], which satisfies Eq. (3.4),
Vae (0,1]:

Se(n,k) =1— Sp+ (56(1, 1)+ Sp — 1) (%) L Vhk<m k, neZt,  (35)

where Se(1,1) is the sensitivity of individual testing, Sp is the test’s specificity, and « is a
calibration parameter that governs the intensity of the dilution effect of pooling. For instance,
in the case study (see Section 3.4), we consider the Ligase Chain Reaction chlamydia test and
set Se(1,1) = 1.00, Sp = 0.98, and calibrate the sensitivity function and obtain o« = 0.014329

(see Appendix B.3).

As another example, consider the following sensitivity function derived for the HIV Ultrio
Plus NAT blood screening test, using clinical data published in the literature [6]. This

sensitivity function also satisfies Eq. (3.4), V a € (e7%,1):
Se(n,k) =1—Spa*m Yk<n;k nelZ (3.6)

Figure 3.1 plots families of sensitivity functions given in Eq.s (3.5) and (3.6), both of which
satisfy Eq. (3.4), for various intensities of the dilution effect (parameter o). As Figure 3.1
demonstrates, one can model a wide range of dilution dynamics under the condition imposed
in Eq. (3.4). In the remainder of the chapter, we consider sensitivity functions that satisfy

Properties 1, 2, and Eq. (3.4).

Lemma 3.2. For all sensitivity functions that satisfy Fq. (3.4), a(i,ng) is increasing in i,

i=0,--,1(n,ng), for all realizations ng of Ny.
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Figure 3.1: Example sensitivity functions that satisfy Eq. (3.4), for n = 10 and various «
value (the black (gray) curves correspond to sensitivity functions of the form in Eq. (3.5)

(Eq. (3.6)))

Se(n, k)

In contrast with the monotonicity result in Lemma 3.2, however, for sensitivity functions

satisfying Eq. (3.4) it is not necessarily true that:
E[YO<$1)|Nd = ”d] > ]E[Yl(ax'l)’Nd = nd:| > 2 E[}/}(n,nd)(wl)‘Nd = nd};

that is, the objective function to the Tier 1 Problem (see (3.1) and Corollary 3.3) is not
monotone. Therefore, we utilize Corollary 3.2 to identify a sub-matrix of the 2 x n testing
matrix such that the risk of each subject in one row is greater than or equal to the risk of
each subject in the other row. We note that the second part of Corollary 3.2 guarantees the
existence of such a sub-matrix. Then, by conditioning on the number of positive subjects in
this sub-matrix, we establish important structural properties of E[FN'(z')]. Theorem 3.1

then follows as a result of these properties and the ordering given in Lemma 3.2.
Theorem 3.1. For all sensitivity functions that satisfy Eq. (3.4), Assignment RH mini-
mizes E[FN'|p] in (3.1), V p.

Further, Theorem 3.2 shows another desirable property of the Tier 1 RH assignment for a

subset of sensitivity functions satisfying Eq (3.4).

Theorem 3.2. For all sensitivity functions Se(n, k) that are concave in k, V k, Assignment
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RH minimizes E[N,|p], the expected number of positive-testing rows in Tier 1, V p.

Thus, for sensitivity functions that satisfy Eq. (3.4) and that are also concave in k, Assign-
ment RH minimizes not only the expected number of false negatives in Tier 1, but also the
dilution effect in Tier 2, hence improving the testing accuracy in Tier 2 by minimizing the
column pool size. Theorems 3.1 and 3.2 demonstrate how well the adaptive and risk-based
properties of the proposed assignment policy work together, as Assignment RH minimizes
the expected number of positive-testing rows, thus taking full advantage of the adaptive

array pooling scheme by maximizing the number of rows eliminated in Tier 2 of testing.

Remark 3.2. For all @ € (0,1] (o € (e72,1)), the sensitivity function in Eq. (3.5) (Eq.
(3.6)) satisfies Eq. (3.4), and is concave in k, V k. Thus, both Theorems 3.1 and 3.2 hold

for the sensitivity function in Eq.s (3.5) and (3.6) under the « values provided above.

Properties of an Optimal Tier 2 Assignment

We next study the optimal Tier 2 assignment that minimizes E[F N?(x?)|r, p] for all real-
izations 7 of the random vector R(x'). Given a Tier 1 assignment (this applies to any one of
the possible RH permutations), !, and outcome, 7, the updated positivity probability (risk)
of subject (i,j) (i.e., the subject tested in cell (i,7) in Tier 1), i =1,--- ,m,j =1,--- ,n,

follows:

[ =P(Dy =1|R;=1;) =
pz] ( ) |RZ TZ) P(Rzzrz)

Dij- (3.7)

Remark 3.3. Due to the symmetry between Assignment RH for Tier 1 row pooling and
Assignment CH for Tier 2 column pooling with updated probabilities p;, k € 2, one might
expect, based on Theorem 3.1, that Assignment CH minimizes E[FN?*(x?)|r,p] for the
reduced testing matrix for all sensitivity functions that satisfy Eq. (3.4), and V r € R.

However, this is not necessarily true due to two important characteristics of the information
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obtained at the end of Tier 1:

(i) Conditioned on 7, the subjects are no longer independent, i.e., P(D;;, =1, D;j, = 1|R; =
’T‘Z‘) 7é P(Dijl = 1|Rz = Ti)P(Dijg = 1|Rz = T’i), fOI' Z = ]_, ,m, jl,jg = 1, , jl 7&]2

(ii) While the original ordering of the risk within each row is preserved when conditioned on
r (e, pij, > pijy & p§j2 > pgh), this result does not necessarily hold across rows, as the

outcome of Tier 1 depends on the set of subjects assigned to each row.

Consequently, in the following we first identify the conditions under which Assignment CH is
guaranteed to be optimal for Tier 2, and study the value of the Tier 1 information. Then, we
provide several examples, including a counter-example for which CH is not optimal in Tier
2. These conditions motivate a highly effective Tier 2 assignment heuristic, as demonstrated

in Section 3.4.

Definition 3.1. A set of subjects is said to be risk-order-independent (ROI) if, upon con-
ditioning on the true positivity status of any subset of subjects, the risk ordering of the

remaining subjects in the set remains unchanged over the original risk vector, p.

Corollary 3.4. If a set of subjects is ROI for a Tier 1 outcome r = (1,--- 1), then the set

is ROIL, V 7.

Theorem 3.3. For all sensitivity functions satisfying Eq. (3.4), Assignment CH minimizes
E[FN?(x2)|r,p| for any testing matriz, m x n, m, n € Z*, and ¥ v, when, for a Tier 1

outcome r = (1,--- 1), the resulting set of subjects is ROL.

Of course, Assignment CH may still be optimal even when the set of subjects is not ROI
at the end of Tier 1. In the following lemma, we provide some cases that satisfy the ROI

requirement.
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Lemma 3.3. For a Tier 1 outcome r = (1,--- 1), the set of subjects is ROI, if Conditions
I and II are satisfied, where Q;(1) denotes the collection of all subsets of cardinality | from
set {1,---,j—1,7+1,--- n}:

Condition I: Foralli=1,--- ,m,j=1,---,n,l=1--- ,n—1, and all subsets S;(l) €

Q;(1):
P(Dijleizl, N Dikzo) 2P<Dij:1Ri:1, N Dikzo), and
kes;(l k€S, (1-1
€5;(1) €5;(1-1) (3.8)
P|Dij=1Ri=1, (| Dix=1|<P|Dy=1R =1 (] Du=1].
kes; (1) kes;(1—1)
Condition II: For all iy, io =1,--- ,m, 11 # iy:

Jinlaxn {P (Dilj =1 Ri1 = 17 m Dilk = 0) } S Jflnnn {P (Din =1 Ri2 = 1, ﬂ Digk = 1) } , 0T
o Q;(n—1) o Q2j(n-1)

HllaXn P Di2j =1 RiQ = 17 m Digk‘ =0 S lIlllIln P Dilj =1 Ri1 = 1, ﬂ Dilk =1 .

= Q;(n—1) I Q;(n—1)

(3.9)

Condition I states that, conditioned on the positive test outcome of a row pool, the prob-
ability that a subject is positive decreases (increases) if other subjects in the same row are
identified as positive (negative). Thus, Condition I implies negative correlation among sub-
jects in the same row: given that one subject is positive, the conditional probability that
another subject in the same row is positive is reduced. On the other hand, Condition II
ensures, for all possible pairs of rows (i1, s), that the subject with the highest updated risk
in one of these rows (say i;) will have an equal or lower risk than the subject with the lowest
updated risk in the other row (hence i) in the worst case, i.e., when all other subjects in
row iy (ig) are negative (positive), or vice versa. Then, for all realizations r, the resulting

set of subjects will be ROI. The following example illustrates the implications of Condition
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I for all testing matrices having two columns (i.e., n = 2).

Example 3.2. An example of a sensitivity function that satisfies both Eq. (3.4) and Con-
dition I for any m x 2 matrix, m € Z*, is Se(n, k) = 1 — Sp o*/™ for k=0,--- ,n, Sp > 0,

a € (e72,1) (see Example 3.1). This follows because (see Example 3.1 and Appendix B.1):
Condition I < {(86(2, 1))* > (1 — Se(2,0))Se(2, 2)} & Sp(1—a?)’ > 0.

While the inequality is satisfied for all @ > 0, it also must be true that a € (e2,1) for the

sensitivity function to satisfy Eq. (3.4) (see Example 3.1).

Next we provide two examples, both of which use the sensitivity function in Example 3.2,
i.e., that satisfies Condition I. These examples provide an idea on when a CH assignment is

optimal in Tier 2 and when it is not.

Example 3.3. Consider the sensitivity function in Example 3.2, Se(n,k) = 1 — Sp ak/m,
k=0---,n, with « = 0.15 (see Figure 3.1) and Sp = 0.9993, and two instances of the
problem for a 2 x 2 testing matrix, characterized by the risk vector, p. Suppose that the Tier
1 assignment follows the optimal RH assignment. In Tier 2, we evaluate E[FN?(z?)|r, p|
when the Tier 2 assignment follows: (a) the original RH assignment (i.e., Tier 1 assignment
is unchanged) and (b) the CH assignment using updated risk vector, p’. By Remark B.1

(see Appendix B.1), it is sufficient to consider the case of N, =2 (i.e., r = (1,1)).

Instance 1.

0.10 0.15 0.437 0.644 ,CH 0.437 0.660

RH

0.45 0.50 0.660 0.722 0.644 0.722
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Instance 2.

0.001 0.002

. mi 0243 0.486

0.243 0.985

0.980 0.990 0.985 0.993 0.486 0.993

Tier 2 assignment Condition satisfied?

RH CH I 11
2 2 _

Istance 1 PEN @R, = (LDFPer 0 660 175504 Yes No
million)
2 2 _

Istance 2 EE N @)Ip,r = (L D] Per 50 570 138500 v Yes
million)

While Condition I is satisfied for both instances, Condition II is satisfied only for Instance
2. As such, by Theorem 3.3 and Lemma 3.3, CH minimizes the Tier 2 expected number of

false negatives for Instance 2, but not necessarily for Instance 1.

In summary, the information gained from Tier 1 testing can be partitioned into two cat-
egories: (i) information regarding the updated positivity probabilities (i.e., p’), and (ii)
information regarding the dependencies of subjects within a row. As can be seen in Example

3.3, both pieces of information are crucial for constructing an optimal Tier 2 assignment.

By Theorem 3.3 and Lemma 3.3, for instances where Conditions I and II are satisfied, CH is
optimal for Tier 2 assignment. While Condition I is realistic (see the discussion after Lemma
3.3), Condition II is quite restrictive and is not satisfied by most realizations of p. As such,
we next develop a heuristic for sensitivity functions satisfying Eq. (3.4) for cases where
Condition II is not satisfied. Our heuristic is motivated by two observations: (i) Condition
I implies negative correlation among the updated risk of subjects within the same row, and
(i) the objective function, E[FN?(z2)|r, p|, depends only on the set of subjects assigned

to each column, and not on their row assignment. Consequently, for sensitivity functions
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satisfying Eq. (3.4), the proposed heuristic preserves the row assignment of each subject
in Tier 2, avoiding the assignment of dependent subjects to the same column. Under this
constraint, the assignment that mimics CH as much as possible is to place the subjects in
each row in non-decreasing order of risk. Thus, the proposed RH-based heuristic (RH-H) is
as follows: Tier 1 assignment follows a specific permutation of RH, with subjects in a given
row assigned to the matrix in non-decreasing order of risk. This assignment is preserved in

the reduced matrix of Tier 2.

3.3.2 The Testing Design

We next study the testing design problem in which the objective is to determine the di-
mensions of the testing matrix, m and n, so as to minimize the expected number of false
negatives per subject, under a per subject budget constraint on the expected number of tests
and expected number of false positives. In contrast, the existing literature focuses mainly on
non-adaptive array pooling schemes (i.e., row and column pools are tested simultaneously)
and uses enumeration to find the testing matrix that minimizes the expected number of tests

under perfect tests [73] or imperfect tests but with no dilution effect [98].

Alternatively, one could formulate the testing design problem as a two-stage stochastic pro-
gramming problem that includes the testing design in Stage 1, under uncertainty on the P
vector, and the subject assignment decision (in Tiers 1 and 2) in Stage 2, after a specific
realization of the P vector is observed. However, this problem is intractable because one
needs to determine, for all possible matrix dimensions, the optimal Tier 1 and Tier 2 assign-
ments of subjects for all possible p vector realizations, which, as discussed above, is already
intractable. As a further complication, the objective function for the testing design prob-

lem for a heterogeneous population and under a general sensitivity function does not have a
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closed-form expression. Hence, and as discussed in Section 3.2.2, we separate the Stage 1 and
Stage 2 problems, and we formulate the testing design problem under the assumption of a
homogeneous population, i.e., the risk of each subject is deterministic and assumed equal to
the population mean prevalence rate, p,. While this assumption ignores the heterogeneity of
the population in the testing design, it results in a formulation that can be efficiently solved,

while resulting in substantial reductions in classification errors (see Section 3.4).

Testing Design Problem:

min  —— E[FN(m,n)]

s.t. %{E[T(m, n)] + ”yE[FP(m,n)]} <B (3.10)

m<M n<N, mmnecZt,

where v > 0 is the ratio of the cost of a false positive classification to the cost of testing,
and M and N represent technological upper bounds on pool sizes (if any). Appendix B.2
provides the derivations of the performance measures for both the proposed adaptive array
pooling scheme under the homogeneous population assumption, and the non-adaptive array
pooling schemes studied in the literature. The latter will serve as a benchmark in the case

study of Section 3.4.

The testing design problem is a difficult optimization problem, as m and n are integer decision
variables and the objective function and constraint are non-linear and not monotone in m

or n.
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3.4 Case Study: Chlamydia Screening in the United

States

In this section, we perform a case study on chlamydia screening in the US. Various one-way
sensitivity analyses are conducted to account for the uncertainty in the data values used in

the case study, as discussed subsequently.

Currently, chlamydia is one of the highest prevalent STDs in the US [35], and most screen-
ing occurs on a state level via public state laboratories. However, there are no guidelines on
screening practices. As a result, screening practices differ significantly among states (e.g.,
North Carolina individually tests only high risk female subjects [99]; Idaho uses pooled test-
ing on all subjects in pool sizes of four [89], except those who are “exposed to chlamydia”
or who need to be “screened after treatment”). The lack of a nationwide screening practice
indicates that risk-based pooling schemes, especially for tests for which the dilution effect is
significant, are not well-understood. Further, a study conducted by the Centers for Disease
Control and Prevention (CDC) shows how the positivity probability of a subject for chlamy-
dia can substantially vary by age and race/ethnicity [35]. Consequently, in this case study,
we decompose the population into two age groups (15-24 and other) and three race/ethnicity
groups (black, hispanic, other), where the “other” category includes: white, American In-
dian or Alaska native, and Asian or Pacific islander, leading to a total of six risk groups. In
fact, the risk categorization of the population is an important consideration in the testing
design and implementation, and in this case study we select a decomposition that captures
the heterogeneity of the population relatively well, while resulting in a reasonable number
of risk categories, as a large number of risk categories can hinder the implementation of

risk-based testing schemes.
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The risk data used in our numerical study come from the Centers for Disease Control and
Prevention (CDC) [35], which provides data on chlamydia prevalence rates based on seven
age groups, five race groups, and two genders groups, leading to a total of 70 possible risk
categories. Our analysis of these data indicate that the risk of subjects within the age group
of 15-24 is significantly higher than the risk of subjects belonging to other age groups, all of
which have comparable risk. As such, defining two age groups, of 15-24 and other, adequately
captures the heterogeneity of the population. Similarly, we categorize the population into
three race categories (black, hispanic, and other) because significant differences in the risk is
observed between these three categories, while all races belonging to the “other” category had
comparable risk. Our numerical results on a population having all seventy risk categories led
to only minor differences in the performance of the proposed testing scheme, suggesting that
this specific decomposition, with six risk categories, adequately captures the heterogeneity

of the population in this case study.

In addition, studies show that a large percent of chlamydia cases go undiagnosed and/or
unreported (e.g., 75% of women and 50% of men with chlamydia show no symptoms and are
likely to be unreported [56]); and the actual number of cases is estimated to be around three
times the number of reported cases [64], leading to a mean population prevalence rate of
tp = 0.973%. In Table 3.2, we present the number of reported cases and the population for
each risk group based on data in [55] for the year 2014 and using an underreporting factor

of 3.

We consider the Ligase Chain Reaction (LCR) chlamydia test, a commonly used test for
chlamydia screening. We model the sensitivity of the LCR test by the sensitivity function
given in Eq. (3.5), with calibration parameter o = 0.014329, Se(1,1) = 1.0 (by our as-
sumption, see Section 3.2.2), and Sp = 0.98. This function was validated using published

empirical data, and provides a good fit for the LCR test (see Appendix B.3 for details). As
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Table 3.2: Number of chlamydia cases and the population of risk groups for the year 2014 [55]

Proportion

Race/ethnicity & age group Reported cases Population Risk (pg) in population ()
k

Black
& (15-24) 301,527 6,822,954  13.26% 2.2%
Dlack 129,411 33,979,132 1.14% 10.7%
& (other age group)
Hispanic
& (15-24) 125,681 9,274,931 4.07% 2.9%
i .
Spane 75,288 44,796,439 0.50% 14.2%
& (other age group)
Other race/ethnicity
& (15-24) 255,532 27,856,517 2.75% 8.8%
Other race/ethnicity 138,057 193.398.866  0.21% o199,

& (other age group)

stated above, to account for the uncertainty in data values used in our case study, we conduct
various one-way sensitivity analyses on the mean prevalence rate, p,, dilution parameter, «;,
and the individual test sensitivity, Se(1,1). The values of all input parameters, data sources,

and values considered in the one-way sensitivity analyses are summarized in Table 3.3.

To quantify the value of the proposed adaptive risk-based array pooling scheme, which we
denote by RP, we consider a non-adaptive and non-risk based array pooling scheme, which
we denote by NINP, in which the decision maker: (i) does not utilize an adaptive scheme;
i.e., both Tier 1 row pooling and Tier 2 column pooling are performed simultaneously,
and negative-testing rows are not removed from the testing matrix in Tier 2; and (ii) does
not consider population level characteristics and thus assigns the subjects to the testing
matrix randomly. NNP corresponds to pooling schemes commonly studied in the literature
(e.g., [73,86,98]). In addition, we also compare our model to the two-tier Dorfman scheme, as
it is one of the most commonly utilized testing schemes in practice. In the two-tier Dorfman

scheme, subjects are first tested in pools in Tier 1; if a pool tests negative, then all subjects in
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Table 3.3: Input parameters and data sources

Values considered

Input parameter Value in sensitivity Source
analysis
Mean prevalence rate
(11,) 0.973% 0.486%, 1.945% [35, 64]
p
Individual test
sensitivity (Se(1, 1)) 1.000 0.980, 0.990 [82]
Test specificity (Sp) 0.980 - 82]
Sensitivity function
(Se(n, k) 1—-Sp+(Se(1,1)+5p—1) (k/n) - 32]
Dilution parameter («) 0.014329 0.007164, 0.028657 [82]
Testing budget (B) 0.25 0-15, %?305’ 030, -

the pool are classified as negative; and if a pool tests positive, then each subject in the pool is
individually tested and classified based on their Tier 2 individual test outcome. We note that
the optimal pool size of the two-tier Dorfman pooling scheme depends only on the average
risk of subjects, 1,,, because the subjects are in a single pool, hence the subject assignment

decision is irrelevant. The testing schemes utilized in the case study are summarized below:

e RP: Adaptive risk-based array pooling scheme, in which subject assignment is based
on RH-H (see Section 3.3.1), and the testing design is based on a homogeneous pop-

ulation, with the expressions given in Appendix B.2.

e NNNP: Non-adaptive non-risk based array pooling scheme, in which subjects are ran-
domly assigned to the testing matrix, and the testing design is based on a homogeneous

population, with the expressions given in Appendix B.2.

e Two-tier Dorfman: Two-tier Dorfman scheme, in which subjects are randomly as-

signed to the pool, and the pool size is determined based on a homogeneous population.

The optimal pooling configurations for all schemes are obtained by enumerating over all
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Table 3.4: Results for chlamydia screening in the US

Expected false
classifications (per

million)
. . E[FN] E[FP]
Pooling scheme B Design (95% CI) (95% CI)
0.15 Infeasible
Two-tier non-risk 0.20 Lladfesilolle
based Dorfman pooling 0.25 n=>6 238 1,299
0.30 n=>5 215 1,124
0.35 n=4 185 946
N daoti d 0.15 Infeasible
on-acdapsive an 020 m=10,n=13 625 247
non-risk based array
pOOliIlg scheme 0.25 m=_8,n=10 567 164 % Change over
(NNP) 030 m=6,n=9 519 119 NNP
035 m=6,n= 469 85 E[FN] E[FP]
0.15 Infeasible

Proposed adaptive 020 m=8 n=9 312
risk-based array 0.25 = =6 232
pooling scheme (RP) 030 m=1,n=5 213
4

035 m=1n= 183

307-318) 119 (116-121)  -50%  -52%
222-242) 31 (27-34) -59%  -81%
201-227) 23 (20-28) -59% -82%
169-196) 18 (14-22) -61%  -79%

—~ ~~ —~

possible configurations, with the technological upper bounds on pool sizes, M and N, both

set to 16 [40].

Having determined the testing design, the performance measures are determined via a Monte
Carlo simulation, which generates realizations of the random risk vector following the discrete
distribution presented in Table 3.2. Based on the realized risk vector, the subjects are
assigned to the testing matrix, and the true random status of each subject is generated from
the corresponding Bernoulli distribution, and the numbers of both false negative and false
positive classifications are computed. In Table 3.4, we report both the expected value (per
1 million) and the 95% confidence interval (in parenthesis) for both the expected number
of false negatives and false positives, as it is important to evaluate the testing schemes on

both performance measures, due to the negative consequences associated with each type of
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classification error, see Section 3.1.

In our analysis, we consider a set of budget levels that are representative of realistic per-
subject testing budgets, see Table 3.4. While other budget levels are possible, our numerical
results on different budget levels lead to similar observations. Specifically, the budget value
represents the ratio of the maximum number of tests the testing facility can conduct (due to
a testing budget) to the number of tests needed for individually testing each subject (i.e., one
test per subject). For example, a budget value of 0.20 indicates that the testing facility has
20% of the budget required to perform individual testing, while a budget level of 1, or greater,
represents the case where the testing facility can afford individual testing. Table 3.4 leads
to several interesting insights: For a budget of 0.20, there is no feasible two-tier Dorfman
solution, while RP reduces E[F'N] and E[F'P] by 50% and 52% over NNP, respectively.
For the two higher budgets, NINP outperforms the two-tier Dorfman scheme with respect
to E[F P], but more than doubles E[FN]. On the other hand, RP matches the E[F'N] of the
two-tier Dorfman scheme, and substantially reduces the E[F'P] by an average of 98%. RP
does this by performing as well as the Dorfman scheme in the number of false negatives using
the first two tiers, and then using Tier 3 to reduce the false positives. RP also reduces each
of E[FN] and E[F P] over NNP by an average of 59% and 81%, respectively. In addition,
notice that RP consistently has smaller testing matrices (smaller m and n) over NNP; this
is due in part, to the adaptivity of RP, which lowers the expected number of tests over
NNP, and hence, smaller pool sizes become budget feasible. Moreover, our results suggest
that array pooling testing designs are often non-square matrices (i.e., m # n), as opposed
to the literature that often limits the analysis to square matrices only (e.g., [66, 86, 98]).
In summary, RP not only offers a more flexible testing scheme that can provide feasible
solutions at lower budget levels, but also outperforms, in terms of classification accuracy,

the commonly studied testing schemes, the NNP and two-tier Dorfman pooling.
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The results from our sensitivity analysis, shown in Tables 3.5, 3.6, and 3.7, confirm that
substantial benefits can be realized with risk-based testing, i.e., through explicitly accounting
for the population heterogeneity in the assignment decision, in a variety of settings that are
representative of practical situations, i.e., with varying dilution levels, mean population
prevalence rates, and sensitivity of the individual test. Specifically, Tables 3.5 and 3.6
indicate that risk-based testing continues to yield substantial benefits at different intensities
for the dilution effect of pooling (i.e., for various values of the dilution parameter, ) and for
a range of mean prevalence rates of the population. In particular, these results indicate that
the number of false negatives can be reduced by an average of 55% (57%) and the number
of false positives reduced by an average of 70% (66%) over the different values of o (mean

prevalence rates of the population).

On the other hand, Table 3.7 shows that risk-based testing works best when Se(1, 1) is high.
For lower Se(1,1) values, RP still outperforms NNP for both false negatives and false
positives. On the other hand, when there is a feasible Dorfman solution, it outperforms RP
in terms of the false negatives, but not false positives. Interestingly, the extra false negatives
for RP all stem from the third tier test. Using the same matrix designs, a two-tiered RP
has fewer false negatives compared to the Dorfman solutions, but higher false positives, thus
the RP designs in Table 3.7 rely on the third tier to reduce the number of false positives.
If false negatives are a main concern and individual test sensitivity (Se(1,1)) is relatively
low, then the two-tier Dorfman or two-tiered RP scheme might be preferred, depending
on the trade-offs between false negatives and false positives. However, as we state in the
chapter, in settings that we consider, the individual test sensitivity is typically close to being
perfect (otherwise pooling would have a very low sensitivity due to dilution, and would not

be considered as a viable option), and false negatives are a primary concern.
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Table 3.5: Results for chlamydia screening in the US, sensitivity analysis on p,

Expected false
classifications (per

million)
Pooling scheme B Design ( éEs[(? ]é]l) ( E;ES[;@I)
0 0
wp = 0.486%
. . 0.20 n="7 130 945
Two-tier non-risk
based Dorfman pooling 0.25 n=5 108 766
0.30 n=4 93 676
Non-adaptive and 020 m=10,n=11 307 79 % Change over
non-risk based array 9 B B 9 NNP
pooling scheme 0.25 m=8n=9 80 58
(NNP) 030 m=6,n=38 255 44 E[FN] E[FP]
Proposed adaptive 0.20 m=2n= 7 127 (121-134) 20 (18-23) -59% -75%
risk-based array 025 m=1,n=>5 106 (97-115) 10 (7-13) -62%  -83%
pooling scheme (RP) 3, _ 1 ,,—4  95(86-105) 14 (11-18)  -63%  -68%
pp = 1.945%
. . 0.20 Infeasible
Two-tier non-risk )
based Dorfman pooling U-25 Infeasible
0.30 n==6 466 2,146
Non?adaptive and 0.20 Infeasible % Change over
non-risk based array 0.9 —10.n = 10 11 93 NNP
pooling scheme 25 m=10,n= 158 5
(NNP) 030 m=7,n=9 1,052 391 E[FN] E[FP]
Proposed adaptive 0.20 Infeasible
risk-based array 025 m=11,n=8 628 (620-636) 386 (382-390) -46%  -35%
pooling scheme (RP) 30, _4 ;,—6 468 (456-479) 110 (105-114) -56%  -72%

3.5 Conclusions and Future Research Directions

In this chapter, we study the classification problem in the context of public health screening,

where the objective is to classify each subject as positive or negative for an infection. We

propose and study a three-tier adaptive risk-based array pooling scheme that incorporates

imperfect tests, the dilution effect of pooling, and the risk profile of subjects. Our analytical
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Table 3.6: Results for chlamydia screening in the US, sensitivity analysis on «

Expected false
classifications (per

million)
Pooling scheme B Design ( 55[5 ]é]l) ( E;ES[;@I)
0 0
o = 0.007164
R R 0.20 Infeasible
Two-tier non-risk
based Dorfman pooling 0.25 n=>6 119 1,311
0.30 n=>5 108 1,132
Non-adaptive and 020 m=10,n=13 318 254 % Change over
non-risk based array 5 B _1 5 NNP
pooling scheme 025 m=8,n=10 88 168
NNP 030 m=6,n=9 263 121 E[FN] E[FP]
( )

Proposed adaptive 0.20 m=9,n=9 158 (154-161) 131 (128-133)  -50% -48%
risk-based array 025 m=3n=6 123 (117-129) 42 (39-45) S57%  -15%
pooling scheme (RP) 37 ;1 ;=5 113(103-122) 24 (19-28)  -57%  -80%

o = 0.028657
. . 0.20 Infeasible
Two-tier non-risk

based Dorfman pooling 0.25 n=06 469 1,276

0.30 n=>5 423 1,107
Non-adaptive and (55, — 10 5 =13 1,209 233 % Change over

non-risk based array 0.9 B _ 10 1100 156 NNP
pooling scheme 2 m=8n= ’ 5

(NNP) 030 m=7,n=7 987 105 E[FN] E[FP]

Proposed adaptive 020 m=7,n=9 600 (592-608) 98 (96-101)  -50%  -54%
risk-based array 025 m=2n=6 463 (449-477) 30 (27-33) -58%  -81%
pooling scheme (RP) 30, _1 ,,—5 428 (410-446) 25 (21-30)  -57%  -76%

results that consider a general form of the sensitivity function offer valuable insights on the
structural properties of an optimal assignment solution, while our case study demonstrates
the effectiveness and power of an adaptive risk-based pooling scheme, with the expected
number of false classifications reduced substantially over the previous models proposed in
the literature. Our findings underscore the importance of taking into account population

level characteristics, as failing to do so can lead to pooling schemes with a high probability of

70



Table 3.7: Results for chlamydia screening in the US, sensitivity analysis on Se(1,1)

Expected false
classifications (per

million)
Pooling scheme B Design ( 55[5 ]é]l) ( E;ES[;@I)
0 0
Se(1,1) =0.99
. X 0.20 Infeasible
Two-tier non-risk
based Dorfman pooling 0.25 n=6 426 1,290
0.30 n=>5 403 1,116
Non-adaptive and 020 m =10, n=13 895 243 % Change over
non-risk based array
. 025 m=8,n=10 839 162 NNP
pooling scheme
(NNP) 030 m=6,n=9 793 117 E[FN] E[FP]

Proposed adaptive ~ 020 m=8 n=9 595 (586-603) 113 (111-116) -34%  -53%
risk-based array 025 m=2n= 521 (503-540) 32 (29-36) -38%  -80%
pooling scheme (RP) (30 ;-1 n=5 512 (484-530) 23 (19-28)  -35%  -80%

Se(1,1) =0.98
. . 0.20 Infeasible
Two-tier non-risk

based Dorfman pooling 0-29 n=>6 613 1,281

0.30 n=>5 591 1,109
NOH.-aI?Z;ptiVCT and 0.20 m = 10, n=13 1,160 239 % Change over

fon-rist based artay 025 m=8,n=10 1,105 159 NNP
pooling scheme

(NNP) 030 m=7n=7 1,049 106 E[FN] E[FP]

Proposed adaptive ~ 020 m=8n=9 869 (858879) 111 (108-113) -25%  -54%
risk-based array 025 m=2,n=6 792 (769-814) 33 (30-37) 28%  -79%
pooling scheme (RP) (30 ;=1 n=5 780 (754-824) 23 (18-27)  -25%  -78%

misclassification. Our model has the potential to make a substantial positive societal impact
by reducing misclassification for important infections, such as the chlamydia infection that

is considered in the case study.

Potential improvements to our model include expanding the testing design formulation to
consider a heterogeneous population; the generalization of the testing scheme into non-

universal schemes, where subjects with different risk characteristics can potentially have
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different testing designs; the incorporation of potential correlation among certain groups
(e.g., correlation among sexual partners and family members) into our modeling; and the
consideration of the uncertainty in subject risk estimation, which is prone to errors. Another
promising direction is to take into account the continuous nature of tests. Test readings are
typically continuous, as the test measures the concentration of a bio-marker in the host
(e.g., viral load, antibody concentration). These readings are often converted into a binary
outcome with help of pre-set thresholds. Since the threshold significantly affects the classi-
fication accuracy of the test, an important direction is to determine the optimal thresholds
that strike the ideal balance between false negative and false positive classifications. Inte-
grating threshold optimization with the risk-based pooling scheme studied here can further
improve the performance of the proposed scheme. We hope that our work motivates both
academic researchers and practitioners to consider adaptive risk-based approaches to pooled

testing in public health screening.
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Chapter 4

Optimal Risk-based Group Testing

4.1 Introduction and Motivation

Screening a population of subjects so as to classify each subject as positive or negative for
a binary characteristic (e.g., presence of a disease or genetic disorder, a product defect,
error in a computer code) is essential in many settings. Individually testing each subject
is often very costly, and hence, may not be a viable strategy for classification, especially
when the prevalence of the binary characteristic in the population is low and the population
size is large. Therefore, in 1943, Dorfman, an economist, [46] proposed the concept of group
testing, which involves testing multiple subjects simultaneously using a single test, for the
purpose of screening military inductees for syphilis in an economical manner. This so-called
Dorfman testing scheme has two stages: in the first stage, subjects are tested in groups;
if a group tests negative, then all subjects in the group are classified as negative; and if
a group tests positive, then each subject in the group is individually tested and classified
based on the outcome of their individual test. Dorfman testing is one of the most commonly

utilized group testing schemes today; for example, in donated blood screening, Dorfman
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testing has become the standard practice in the United States (US) and several European
countries [1,40]. However, many unrealistic assumptions were imposed in Dorfman’s original
model, as well as in most of the subsequent research on Dorfman testing. These include the
assumptions of perfect tests (i.e., no classification errors), homogeneous (identical) subjects
(i.e., the probability of having the binary characteristic is the same for all subjects), and
an infinite testing population (in reality, the number of subjects is finite and known in each

testing period).

Specifically, the decision problem is as follows: There is a finite set of subjects to be classified
as positive or negative for a certain binary characteristic in each testing period; and there
are risk factors that are known to increase a subject’s probability of positivity (risk) for the
binary characteristic in question (i.e., subjects come from a heterogeneous population). A
screening test, which may be used on individual subjects or groups of subjects, is available
to detect the binary characteristic, but the test is imperfect, leading to the possibility of
false positive or false negative classifications. The challenge, then, is to design a risk-based
Dorfman testing scheme (i.e., determining group sizes, and assigning subjects, with different
risk, to the groups) so as to classify the set of subjects for the binary characteristic accurately
(i.e., with minimum classification error), equitably (i.e., with a fair and even distribution of
misclassification probability across subjects), and efficiently (i.e., with minimum resources).
Equity (fairness) is an important, and often over-looked, dimension of resource allocation
problems (e.g., [18,19,93]), and considering the trade-off between accuracy and equity is
especially important in public health screening [29,135]. We identify important structural
properties of optimal risk-based Dorfman testing schemes with imperfect tests; use these
properties to develop efficient algorithms; and derive key insights through a realistic case
study that demonstrates an application of the proposed risk-based testing scheme within a

public health screening setting.
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Our decision problem applies in a wide variety of settings. As mentioned above, an important
application of group testing arises in public health screening. For example, state health
laboratories often have programs to screen the sexually active population in the state for
sexually-transmitted diseases (STDs) [120], and blood banks screen all donated blood for a
set of transfusion-transmittable diseases, including HIV, hepatitis viruses, etc. [4,53,139].
Individually testing each subject, within a large population, for a disease is typically not
feasible due to limited resources. Another important consideration is that disease prevalence
rates may vary, and sometimes substantially, with subject characteristics. For example, in
the US, subjects within the 15-24 age group are twelve times more likely to be infected
with chlamydia, one of the most prevalent STDs in the US, than subjects from other age
groups [55]; first-time blood donors are seven times more likely to be infected with HIV
than repeat donors [143]. Group testing can also enable the use of more accurate, yet more
expensive, tests that would have been too expensive to be implemented for individual testing
(e.g., nucleic acid testing (NAT) technology). An equitable testing scheme is especially
important in this setting. For example, in STD screening, the optimal testing solution that
minimizes the classification errors may do so by placing the subjects in different size Dorfman
groups in the first stage of testing, based, in part, on how the demographics (e.g., age,
race/ethnicity) impact risk. It is important that in doing this the solution might unfairly
increase the classification errors for a certain subset of subjects (e.g., subjects within a
specific age-group or belonging to a certain race/ethnicity). Group testing has also seen wide
applications beyond health-care. Consider, for example, a common communication channel
(e.g., a satellite connection or a fiber-optic cable) that is shared by a large number of users;
if multiple users attempt to transmit a signal during the same time slot, a collision occurs,
and must be resolved by identifying the “active” users (i.e., users that are transmitting a
signal) during this time slot. Group testing can be utilized to identify these active users

efficiently, significantly reducing the conflict resolution time in multi-access communication
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networks [16]. In this context, the probability of being active varies depending on user
characteristics, e.g., users with a history of heavy signal transmission would have a higher
probability of being active. Alternatively, in industrial quality control, a manufacturer can
test a group of light bulbs for defects by arranging them in series and applying a voltage
across the group; or test a group of airtight containers for leaks by filling them with an
indicator gas and placing the group in a low pressure chamber, the presence of the gas
in the chamber indicates leakage in at least one of the containers [114]. The probability
of being defective can vary based, for example, on properties of manufacturing machines,
including their age and maintenance schedules. Other examples of group testing applications
include, among others, software testing [28], screening of experimental variables [90], data

compression [72], compressed sensing [38], and DNA library screening [104].

Dorfman testing has been extensively studied, but mostly under restrictive assumptions, such
as perfect tests (e.g., [46,51,75,91,109,114]), which leads to a focus on minimizing the number
of tests (i.e., maximizing efficiency), rather than maximizing classification accuracy or equity;
infinite populations; and with subjects having identical risk for the binary characteristic (i.e.,
the testing population is homogeneous) (e.g., [62,65,86,137]). One of the earliest works to
incorporate subject-specific risk characteristics in group testing design is by Hwang [75], who
studies the problem of determining a risk-based Dorfman testing scheme so as to minimize the
expected number of tests for perfect tests. More recent work (e.g., [20,26,27,96,120]) extends
the analysis to the realistic case of imperfect tests; these analyses, however, solely rely on
heuristics that attempt to reduce the expected number of tests, rather than maximize the
classification accuracy or equity under a testing budget constraint, as we do in this chapter.
In particular, [96] states that determining an optimal risk-based Dorfman testing scheme
that minimizes the expected number of tests (i.e., an extension of Hwang’s [75] model to

the case of imperfect tests) “appears to be intractable;” hence, the paper develops various
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heuristics, which range from restricting all group sizes to be equal; to testing the low-risk
subjects (determined via a pre-set risk threshold) in groups of equal size, while testing
the high-risk subjects individually; to varying group sizes but under the assumption that
group sizes reduce as subject risk increases. Although some of these properties may seem
intuitive, we show in this chapter that an optimal solution does not necessarily satisfy any
of these properties; thus, none of the greedy heuristics in [96] necessarily converge to the
optimal solution. Further, we show that the aforementioned extension of Hwang’s model to
the case of imperfect tests (i.e., the problem of determining a risk-based Dorfman testing
scheme so as to minimize the expected number of tests under imperfect tests) is in fact
tractable, resolving the conjecture in the relevant literature. Our model is quite general,
and is able to incorporate subject-specific risk characteristics into the testing design, and
relax the perfect test and infinite population assumptions, thus enabling us to consider all

important dimensions of testing: classification accuracy, efficiency, and equity.

Specifically, we consider a number of objective functions, as in practice there are different
goals depending on the context of the problem. In particular, we explore: (1) minimizing
a weighted sum of the expected number of false negative and false positive classifications,
and number of tests (i.e., the system’s problem and the first best solution), a special case of
which reduces to the minimization of the expected number of tests (i.e., our model extends
the earlier works of [75,96]); and (2) minimizing a weighted sum of the expected number
of false negative and false positive classifications under a testing budget constraint (i.e., the
budget-constrained problem). Further, we explore an equity-based formulation, which aims
to capture the trade-off between accuracy and equity under a testing budget constraint.
These formulations may arise in various settings. For instance, in STD screening, mini-
mizing classification errors and maximizing equity, especially with respect to false negative

classifications, are important objectives. In this setting, false positive classifications may
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only lead to further confirmatory testing, while false negative classifications may lead to
medical complications and further spread of the disease; and a testing design that yields a
much higher probability of a false negative classification for a subset of the subjects than
the rest of the population is not desirable from a societal perspective. In industrial quality
control, both false negatives (which result in defective products shipped to customers) and
false positives (which result in unnecessary wastage) are of importance; thus, minimizing
a weighted sum of false negative, false positive, and testing costs would be an appropriate

objective.

Our contributions in this manuscript are multi-fold. We formulate the aforementioned deci-
sion problems as partitioning problems and develop key structural properties. These prop-
erties allow us to reduce the system’s problem to a shortest path problem, and the budget-
constrained problem to a constrained shortest path problem. Not surprisingly, the shortest
path problem arises in various other contexts, including pricing and inventory management,
transportation, supply chain management, and scheduling (e.g., [43,116,130,134}), and our
work adds a novel application to this set. The constrained shortest problem is N P-hard [58],
and the algorithms proposed in the literature are not polynomial for the general problem
(e.g., [14,50,67,77,140]). Depending on the setting, the problem size can be quite large in our
context; for example, in STD screening, it is common for a state health laboratory to screen
specimens taken from around a hundred subjects every day [89], hence the algorithms de-
veloped in the literature become computationally expensive for realistic instances. Towards
this end, we utilize the structural properties of our decision problem to improve its tractabil-
ity; and, for special cases of our decision problem, we develop a polynomial-time algorithm
that can solve the corresponding constrained shortest path problem. Further, our study of
an equity-based objective provides valuable insight; for example, in our budget-constrained

problem, when the objective is to maximize the equity with respect to false negative classifi-
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cations, we show that there is no trade-off between classification accuracy and equity, i.e., the
price of fairness is zero, and the testing design that minimizes the number of false negative
classifications is also the one that maximizes equity. Finally, we demonstrate the effective-
ness of the proposed risk-based Dorfman testing scheme through a case study on chlamydia
screening in the US using published data. The proposed risk-based Dorfman scheme not only
substantially reduces each of the expected number of false negatives, expected number of
false positives, and expected number of tests, but also significantly increases the equity of the
testing scheme, over optimal non-risk-based schemes and current screening practices. Such
significant improvements in all performance measures underscore the value of incorporating

subject-specific risk characteristics and realistic assumptions into the testing design.

The remainder of this chapter is organized as follows. Section 4.2 presents the notation,
decision problem, and formulations; and Section 4.3 provides derivations of the performance
measures. Section 4.4 studies the optimal design of risk-based Dorfman testing schemes in
different settings and derives important structural properties of optimal solutions. Then,
Section 4.5 discusses findings from the US chlamydia screening case study. Finally, Section
4.6 summarizes our findings and provides directions for future research. To facilitate the

presentation, all proofs are relegated to the Appendix.

4.2 The Notation, Decision Problem, and Models

4.2.1 The Notation and Decision Problem

Throughout, we denote random variables in upper-case letters, their realization in lower-case
letters, and vectors in bold. We use indices m and 7 to respectively refer to a subject and

to a group, and use the subject index as a superscript and group index as a subscript, i.e.,
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X" versus X;. Finally, we use the terms positive and negative to refer both to subjects
(i.e., to respectively denote the presence or absence of the characteristic) and to binary test
outcomes (i.e., to respectively denote the test outcomes that indicate the presence or absence

of the characteristic).

Consider an ordered set, S = {1,---, N}, of subjects, ordered with respect to their risk
(probability of positivity) for a certain binary characteristic, with their corresponding risk
vector given by, p = (p',p?, -+ ,p"), where p! < p?-.. < pV. Each subject in set S needs
to be classified as positive or negative for the binary characteristic through testing. The
test is not perfectly reliable, with test sensitivity (i.e., true positive probability), denoted
by Se, and test specificity (i.e., true negative probability), denoted by Sp. Consequently,
misclassification, i.e., classifying a truly negative subject as positive (a false positive classi-
fication), or classifying a truly positive subject as negative (a false negative classification),
is possible. We assume, without loss of generality, that the test’s true negative probability
is higher than its false negative probability,! i.e., Sp/(1 — Se) > 1. As such, we have that
Se+ Sp —1 € [0, 1], with the special case, of Se + Sp — 1 = 1, corresponding to the perfect
test case (i.e., false positives and false negatives are not possible), i.e., the case studied in the
previous literature [75], see Section 4.1. Both individual testing and group testing are possi-
ble, and the test’s sensitivity and specificity remain constant with group size. Our modeling
also implies that the testing responses are conditionally independent, given the true posi-
tivity status of the subjects. This is a common assumption in the related literature, and is
mainly for analytical tractability. We discuss the implications of this assumption in Section
4.4.2. For the given set, S, of subjects to be classified, the decision-maker needs to decide
whether each subject is to be tested individually, i.e., with one test per subject and with the

subject classified based on the individual test outcome; or in groups, and if so, then group

! This follows because any test not satisfying this assumption can be transformed into one that satisfies
it by interpreting the test outcome in the opposite way.
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sizes and assignments. Each group is to be tested following the Dorfman testing scheme: in
the first stage, the group is tested with one test; if the group test outcome is negative, then
all subjects in the group are classified as negative; and if the group test outcome is positive,
then all subjects in the group are individually tested and classified based on their individual

test outcome.

Thus, the decision problem is to find a feasible partition of set S that is optimal with
respect to a certain objective function (see Section 4.2.2). We represent a partition by a
combination of mutually disjoint sets, © = (€2;);=1,... 4, each with cardinality n; = |Q;|, for
some g € {1,---, N}, such that |J,; =S, &nNQ,; =0, foralli,j € {1,---,g}:i # j; and
each subject in €2;:n; = 1 is individually tested, and each set of subjects in €2;:n; > 1 is tested
Q, and

according to Dorfman testing scheme with a group size of n;. We define Q! = |

0=

imi=1
im,>1 8 1.e., the set of subjects to be tested individually and to be tested in groups,
respectively.

In this chapter, our focus is on testing facilities that are capable of dynamically changing
the testing scheme on a frequent basis, i.e., each period ( e.g., day), based on the risk vector
realization of the testing population in each period. This type of testing is possible by
automated testing machines. For example, in public health screening, many testing facilities
use automated molecular testing machines (e.g., [71] and [128]) to conduct screening tests
for many diseases and viruses (e.g., chlamydia, gonorrhea, HIV). These testing machines can

handle both individual and group testing, and are programmable to be able to handle such

dynamic testing schemes.

The objective functions in Section 4.2.2 are based on the following random variables: number
of false positive classifications (F'P(€2)), number of false negative classifications (FN(€2)),
and number of tests to be performed (7'(€2)) for a partition Q of set S. Let I"™ denote the

indicator random variable corresponding to the true positive status of subject m € S; and
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for a partition €, let FN™(Q) and FP™(Q2), m € S, denote the indicator random variables,
respectively corresponding to the false negative classification and false positive classification
of subject m, i.e., I"™ FN™(Q), FP™(2) = 1, if subject m is, respectively, truly positive,
classified falsely as negative, or classified falsely as positive; and 0 otherwise. Similarly,
let N;F (), FN;(€;), and FP;(€;) respectively denote the counter-parts of these random
variables for group 4,Vi, i.e., number of true positive subjects, number of false negative

classifications, and number of false positive classifications in group ¢, that is,

N Q)= ) _I", FNi(Q)= ) FN™ and FP(Q)=>» FP" Vi

meQi mEQi mEQi

We also let T;(€2;) denote the random number of tests performed for group ¢,Vi. Then, the

performance measures, corresponding to a partition €2 of set S, can be expressed as:
FN(§) = ZFNi(Qi)a FP(Q2) = ZFPi(Qi>7 and T(Q) = ZE(Q’L>

To simplify the subsequent notation, we drop the arguments in parentheses when clear from

context.

4.2.2 Models

As discussed above, we consider the decision problem, of finding an optimal partition, 2* =
(QF);, under different objective functions and in different settings; the latter is characterized

by the presence or absence of a constraint on the testing budget.
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System-optimal Model

In the System-optimal Model (SM), we consider the problem from a system’s perspective,
with an objective of minimizing the system-wide cost associated with the binary charac-
teristic, that is, we consider a weight (cost) associated with each test, each false negative
classification (e.g., consequences of the disease when not detected), and each false positive
classification (e.g., follow-up testing cost or hassle, which is unnecessary), i.e., the goal is
to identify a partition that minimizes a weighted sum of both types of classification errors
and the testing cost. Such an objective function has been analyzed before (e.g., [94]), but
not within a heterogeneous population framework. Problem SM applies in a wide variety
of settings, for example, in the context of a single-payer health-care system or a centrally

managed production system.

System-optimal Model (SM):

minimize  ME[FN(Q)] + LE[FP(Q)] + (1 - A = M)E[T(Q)], (4.1)

where parameters A\, Ay € [0, 1] represent the weight the decision-maker places on each
objective, with special cases corresponding to the minimization of the expected number of
false negative classifications only (A = 1), expected number of false positive classifications
only (A2 = 1), and expected number of testing cost only (A; = Ay = 0); as discussed in

Section 4.1, the last case is the case most studied in the literature (e.g., [46,75,96,109]).

Budget-constrained Model

As opposed to the setting above, in the Budget-constrained Model (BM), we consider a
decision-maker that must perform testing under a testing budget constraint, and the objec-

tive is to minimize a weighted sum of both types of classification errors. This applies, for
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example, in the context of a testing laboratory that is constrained by the available resources,
e.g., a testing budget, which we represent in terms of parameter B, corresponding to the

number of tests that can be conducted.

Budget-constrained Model (BM):

minimize AE[FN ()] + (1 = NE[FP(£2)]
“ (4.2)
subject to  E[T(Q)] < B,

where parameter A € [0, 1] represents the weight the decision-maker places on each type
of classification error, with special cases corresponding to the minimization of the expected

number of false negatives only (A = 1) and expected number of false positives only (A = 0).

Remark 4.1. In some settings, additional confirmatory testing is conducted on all subjects
that test positive in the initial screening (see Section 4.5.2). This can be easily incorporated
into the BM formulation by adjusting the budget constraint to include the additional (ex-
pected) cost of confirmatory testing; and all the subsequent results continue to hold under

this new formulation.

In general, the partitioning problem, of determining €2, under an arbitrary objective function
is N P-hard [36], and enumeration-based methods may lead to highly inefficient solution
techniques even for small problem instances (e.g., when N = 20, the number of possible
partitions is around 52 trillion, while realistic problem instances often have hundreds of
subjects, e.g., see Section 4.5). Therefore, in the remainder of the chapter, we develop
important structural properties for each optimization problem. These properties allow us to

develop efficient algorithms and analyze their computational complexity.
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4.3 Derivations of the Performance Measures

We first derive expressions for the performance measures, including the expected number of
false negatives, false positives, and tests. Equity measures are discussed in Section 4.4.3.
Recall that, for a partition €2, Q and Q¢ respectively correspond to the sets of subjects to

be tested individually and in groups, and n; denotes the size of group ¢, V.

4.3.1 False Negative Classifications

Recall that in individual testing, a truly positive subject is falsely classified as negative if the
test outcome is negative, whereas in group testing, a truly positive subject is falsely classified
as negative if: (i) the group test outcome is negative, or (ii) the group test outcome is positive
and the subject’s subsequent individual test outcome is negative. Then, given €2, for any

subject m € S, we have:
E[FN™] =E[FN™|["™ = 1|P(I"™ = 1) + E[FN™|I™ = 0]P(I"™ = 0)
(1 —Se)p™ + 0, if meQf
<Se(1 —Se)+ (1 - Se))pm +0, if meQf,

(1= Se)p™, ifmeQ,
leading to: E[FN™] =

(1—Se*)p™, if me QF.
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Then, the expected number of false negative classifications for group ¢ is given by:

(1—-Se)> , o p™ ifn; =1,
E[FN;(Q,)] = e

(1 —5€*) 3 eq P, otherwise,

and the expected number of false negative classifications for all subjects in .S is given by:

EFN(@)] = D EFN(Q)] = ) E[FN(Q)]+ > E[FNi()

n;=1 2n;>1

= (1—Se) Z p™+ (1 — Se?) Z p™. (4.3)

meQ! meNG

Interestingly, for a grouped subject, m, E[F'N™] is independent of the risk of the remaining
subjects in the group. This behavior follows due to two reasons: (i) subjects are independent
of one another (i.e., knowledge of the true status of one subject does not alter the risk of
another), and (ii) conditioned on subject m, in group 4, being positive, the probability that
group i tests positive is Se, regardless of the status of the remaining subjects in the group.
This follows under our assumption that Se and Sp are independent of the group size, which
implicitly implies that, conditional on the true status of subject m, m € Q¢ the grouped
and individual test outcomes of subject m are independent of one another. This is a common
assumption in the group testing literature, and to relax this assumption, one can model the
dilution effect of grouping (e.g., [137]); this is an interesting research direction, but is beyond
the scope of this chapter. These observations lead to an important property, discussed in

Remark 4.2.

Remark 4.2. For any partition €2, the expected number of false negative classifications
corresponding to the set of subjects that are grouped, i.e., in set Q¢ depends only on set

Q% and not on how the subjects are grouped.
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Remark 4.2 will allow us to develop a polynomial-time algorithm for a special case of the

problem; see Section 4.4.2.

4.3.2 False Positive Classifications

Recall that in individual testing, a truly negative subject is falsely classified as positive if the
test outcome is positive, whereas in group testing, a truly negative subject is falsely classified
as positive if the group test outcome is positive and the subject’s subsequent individual test
outcome is positive. Then, given a partition €, for any individually tested subject m € Qf,

we can write:

E[FP™] =E[FP™|I™ = 1]P(I"™ = 1) + E[FP™|I™ = 0]P(I"™ = 0)

=0+ (1 —=Sp)(1—p™),

and for any subject m € QY grouped in some set Q;n; > 1,4 € {1,---, g}, i.e., m € Q;, we

have:

E[FP™ =E[FP™|I™ = 1]P(I"™ = 1) + E[FP™|I™ = 0|P(I"™ = 0)

=0+ [(1-5p* J] a-=p)+Set=5p [1- J] a-p]| Q=0
keQ,\{m} keQ,\{m}

—(1— 8p)Se(1 —p™) — (1 = Sp)(Se+ Sp—1) [ (1 —p"),

ke,
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leading to:

(1—Sp)(1—p™), itme Q!
E[FP™ =

(1—Sp)Se(l —p™) — (1 = Sp)(Se+ Sp — 1) [1eq,(1 —p"), if me QE.

Then, the expected number of false positive classifications for group ¢ is given by:

BFp@y - D el et

(1=5p)Sed  eq, (1 —p™) —ni(1 — Sp)(Se + Sp— 1) [[,eq,(1 —p™), otherwise,

and the expected number of false positive classifications for all subjects in set .S is given by

E[FP(Q)] = 52 E[F P (€2)].

4.3.3 Number of Tests

Recall that in individual testing, the number of tests per subject is always one, whereas in
group testing, the number of tests depends on the outcome of the group test: if the group test
outcome is negative, then only one test is performed for the entire group, and if the group
test outcome is positive, then an additional individual test is performed for each subject in
the group. Given a partition 2, the expected number of tests for group i, i = {1,--- , g}, is

1if n; =1 (i.e., individual testing), and if n; > 1, we can write:
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ET(00)] =3 E[T(00)[N; () = KP(N () = §)

=E[T;(:)|N;" (%) = 0]P(N; () = 0) + > E[T;(%)|N; () = kPN (%) = k)

(2

=(Sp+ (1= Sp)(1+ny)) P(N; () =0)+ Y (1 —Se+ Se(l+n;))P(N; () = k)

:1—|—7’Li<56—(56—|—5p—1) H(l—pm)

mEQi

1, ifn; =1,
Thus, E[T}(Q)] =

L n (Se —(Se+5p = 1) [Lneq,(1 — pm)>, otherwise,

(4.4)

and the expected number of tests needed for all subjects in set S is given by E[T(Q2)] =

> BT (€2)].

4.4 Structural Properties and Algorithms

As discussed earlier, the partitioning problem under an arbitrary objective function is N P-
hard [36]. Therefore, in what follows, we develop important structural properties of the
two optimization problems, SM and BM, presented in Section 4.2.2. These properties
allow us to reduce the partitioning problem into network flow problems and analyze their
computational complexity. In many instances, the resulting network flow problems can be
solved with algorithms whose complexity is polynomial in problem size, i.e., N, the number

of subjects in set S.
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Definition 4.1. A partition, Q = (£2;);=1,... 4, is said to be an ordered partition if it follows
the ordered set S = {1,2,--- N}, that is, Q3 = {1,---,m}, Qo = {nm1 +1,--- 0y +
not, -,y = {Zf;lln,-—i-l,--- ,N}, for some g € {1,--- N}andn; € ZTi=1,--- ,g.

By this definition, an ordered partition © = (£2;); can be equivalently expressed in terms of
the group size vector, n = (n;);, as groups are constructed following the ordered set S. In
the following, we first present our main results that hold for both SM and BM, and then
derive additional properties for each problem respectively in Sections 4.4.1 and 4.4.2. All

proofs can be found in the Appendix.

Theorem 4.1. For SM and BM, the following properties hold in an optimal solution:

(a) There exists an optimal partition that is an ordered partition of S.

(b) If in the optimal ordered partition, subject m, with risk p™, is individually tested, then

it 1s optimal to individually test all subjects having a risk higher than p™.

The first part of Theorem 4.1 allows us to reformulate the partitioning problem as a network
flow problem defined on the network in Definition 4.2, while the second part of Theorem 4.1
enables us to improve the computational complexity of the proposed algorithms for certain

special cases.

Definition 4.2. For a problem instance with N subjects (N € ZT) in set S, let G = (V, E)
denote an acyclic directed graph with vertex set V' = {1,--- /N + 1} and edge set F =
{(i,j) € V i < j}, with cardinality, |E| = N(N +1)/2.

Figure 4.1 depicts an example of G = (V| E) for N = 10, where the bold end of an edge

represents its direction, i.e., the flow is directed towards the bold end.
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Figure 4.1: G = (V, E) when N = 10

Remark 4.3. For a problem instance with N subjects (N € Z") in set S, each path from
vertex 1 to vertex N + 1 in network G = (V| E) corresponds to an ordered partition of set
S, and the number of unique paths is given by 2¥~!. Further, G = (V, E) is a dense graph,

with the degree of each vertex given by N (i.e., deg(v) = N for all v € V).

To derive the number of paths given in Remark 4.3, let Path(N) denote the number of paths

from vertex 1 to vertex N + 1 in G = (V, E). We have that:
Path(N) = 1 + Path(N — 1) + Path(N — 2) + - - - + Path(1), (4.5)

which follows since from vertex 1, one can directly go to vertex N + 1, or go to vertex 2 and
then go to N + 1 (in the latter case the number of possible paths from vertex 2 to N + 1
equals Path(N — 1)), and so on. Rearranging Eq. (4.5) and noting that Path(1) = 1, we

have:
Path(N) = Path(N — 1) + (1 4 Path(N —2) + -+ Path(l)) — 2Path(N — 1) = 281,

The fact that G = (V, F) is a dense graph follows by definition, i.e., a graph is said to be
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dense if min,cy{deg(v)} > N/2 [60]; this will play an important role for the construction of
an algorithm for a special case of the problem; see Section 4.4.2. Theorem 4.1 leads to the

following results.

Property 4.1.

1. SM can be formulated as a shortest path (SP) problem defined on G = (V, E), with
edge costs given by ¢;; = ME[FN;(Qi—;)] + MNE[FP, ()] + (1 — A\ — X)E[T;(2i—5)],

where Q;_; = {i,--- ,j—1}, i.e., ¢;; is the cost of utilizing group €2;_;, for all (4, j) € E.

2. BM can be formulated as a constrained-SP problem, having a single constraint, defined
on G = (V, E), with edge costs given by ¢;; = AE[FN;(_;)] + (1 — NE[F P, ()],

where Q;_; = {i,--- ,j—1}, i.e., ¢;; is the cost of utilizing group §2;_;, for all (4, j) € E.

Remark 4.4.
1. The SP problem for an acyclic graph can be solved in polynomial time (e.g., via a

topological sorting algorithm in O(|V| + |E|) [37]). As such, a topological sorting
algorithm solves SM with N subjects in O(N?).

2. The constrained-SP problem is, in general, N P-hard [58].

Thus, SM can be solved in polynomial time, resolving the intractability conjecture stated in
the literature [96]. However, BM is a difficult problem. In the remainder of the chapter, we
develop structural properties of SM and BM that enable us to improve their computational
efficiency, and to develop an algorithm that can solve an important special case of BM in

polynomial time.
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4.4.1 Analysis of SM

We next study structural properties for important special cases of SM, i.e., those that seek
to minimize a subset of the expected number of false classifications, or to minimize solely
the expected number of tests. Each of these objectives can be important for the decision-
maker depending on the setting. For example, [20,27,96] exclusively focus on the special
case of Ay = Ay = 0, i.e., minimization of the expected number of tests, and develop various

heuristics.

Theorem 4.2. Consider the following special cases of SM that respectively minimize the
expected number of a weighted combination of both types of classification errors, or number

of false negatives only, or number of false positives only.

1. For all Ay, Mg € [0,1] : Ay + Ay = 1, i.e., when minimizing a weighted sum of both types

of classification errors:

(a) the optimal ordered partition does not contain a group having more than three
subjects, that is, each group is comprised of one, two, or three subjects, i.e., n} <
3, foralli=1,--- g, for some g€ {1,--- /N}.

(b) If pV < 1/3, then the group sizes of the optimal ordered partition are in non-

increasing order, i.e., ny >ny > -+ >nz, for some g € {1,--- , N}.

2. For \y =1, i.e., when minimizing E[F N|, the optimal partition is to individually test

each subject, i.e., nf =1,1=1,---,N.

3. For Ay = 1, i.e., when minimizing B[F P], the optimal ordered partition can have at
most one individual test, which, by the second part of Theorem 4.1, has to be for the

highest risk subject, i.e., subject N.
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Remark 4.5. For all A\;,\y € [0,1] : A\; + Ay = 1, by Theorem 4.2, the number of edges
in G = (V,F), |E|, reduces from N(N + 1)/2 to 3(N — 1). As such, a topological sorting

algorithm solves SM with N subjects in O(|V'| + |E|) = O(N), that is, in linear time.

Similarly, the following result characterizes properties of the optimal SM solution that min-

imizes the expected number of tests.

Theorem 4.3. Consider a special case of SM that minimizes E[T], i.e., Ay = Ay = 0. If

Se—0.5 )1/2

A [ (R
b= <Se+5p—1

then the optimal ordered partition can have at most one individual test, which, by the second

part of Theorem 4.1, has to be for the highest risk subject, i.e., subject N.

We expect the condition imposed in Theorem 4.3 to be satisfied when, for example, the
prevalence of the binary characteristic is low and the test specificity is high. As an example,
in our case study (see Section 4.5), this condition reduces to p% < 0.308, which is satisfied

by all subjects in the case study.

1/2
Remark 4.6. If \; = X\, = 0 and p"¥ < 1 — <£i;52{31> , then the number of edges in
G = (V,E), |E|, reduces from N(N+1)/2 to 1+ N(N —1)/2, improving the computational

complexity of the SP algorithm for SM.

Theorem 4.2 establishes that for a special case of SM that minimizes the expected number
of misclassifications (i.e., \; + Ay = 1), and under a certain condition (i.e., p™ < 1/3), the
group sizes for an optimal ordered partition are non-increasing. This property may seem
intuitive because it indicates that higher risk subjects are placed in smaller groups than
lower risk subjects. Thus, the next question is whether the optimal group sizes continue to

be non-increasing when this condition is not satisfied, or when the objective in SM contains
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the expected number of tests (i.e., Ay + Ay < 1). The special case of A\; = Ay = 0, i.e., the
minimization of the expected number of tests, is the objective almost exclusively studied
in the literature, and various heuristics are proposed that generate ordered partitions with
non-increasing group sizes [96]. The following counter-example, which is based on realistic

problem parameters, indicates that this property does not necessarily hold in general.

Example 4.1. Consider SM with A\; = Ay = 0, i.e., the objective is to minimize E[T].
Consider a test with Se = 0.90 and Sp = 0.95, and a set, S, of 100 subjects, i.e., N =
100, with an ordered risk vector, p, given by p;x1 = 8+ pi, ¢ = 2,---,99, where § =
12/3,300 and p; = 0.01. The optimal partition that minimizes E[T] is given by n* =
(7,6,5,4,4,4,4,4,4,3,3,3,3,3,3,3,3,34) with E[T] = 74.48, which does not follow a non-

increasing ordering of the group sizes.

While placing higher risk subjects in smaller groups seems intuitive, Example 4.1 demon-

strates that this is not always the case in an optimal solution.

4.4.2 Analysis of BM

Next, we study structural properties of BM in which the objective is to minimize a weighted
sum of both types of classification errors under a testing budget constraint; see Eq. (4.2).
By Property 4.1, we formulate BM as a constrained-SP having a single constraint, which,
by Remark 4.4, is N P-hard. Various methods are proposed in the literature to solve the

constrained-SP problem, as we briefly discuss below (for a thorough review, see [58]).

One method to solve the constrained-SP problem is the path ranking method in which the
next unconstrained shortest path is successively generated until the first feasible path, i.e.,
that satisfies the constraints, is identified. The problem of generating the next shortest path

is related to the k-shortest path problem in which the objective is to generate the first &
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(unconstrained) shortest paths for a given k € Z*. When £k is fixed, there exist polynomial-
time algorithms that generate the k shortest paths [58]. However, when the k-SP problem is
used to solve the constrained-SP problem, £ is no longer fixed and hence there is no guarantee
of a polynomial-time algorithm [58]. This is especially true in our case, as the number of
paths grows exponentially with N (see Remark 4.3), rendering this method inefficient and
computationally expensive. Alternatively, one can utilize a Lagrangean relaxation based
method to solve the constrained-SP problem (e.g., [67]); specifically, when the constraints
are relaxed, the problem reduces to an SP problem, which can be solved in polynomial time.
In particular, Handler et al. [67] solves the Lagrangean relaxation of the problem in order to
determine upper and lower bounds, and then, using a k-SP algorithm (e.g., [140]), closes the
gap until optimality or d-optimality is attained. While such methods are, in general, more
efficient than path ranking methods, they may still require a large number of iterations to
converge to the optimal solution, especially when the number of paths is large, as in our

case.

In what follows, we first analyze an important special case of BM that minimizes the ex-
pected number of false negative classifications under a testing budget constraint (i.e., A = 1).
When A\ = 1, Theorem 4.1 and Remark 4.2 enable us to develop an algorithm that can solve
BM in polynomial time. The algorithm is motivated by the properties that, keeping all
else the same, (i) testing any subject individually reduces the objective function value (Eq.
(4.3)), (ii) the objective function value is independent of how the subjects in set Q¢ are
grouped (Remark 4.2), and (iii) by Theorem 4.1, the subjects in set ) must correspond to
the highest risk subjects in set S. Therefore, the proposed algorithm determines the optimal
ordered partition by identifying the largest feasible set of subjects that can be tested individ-

ually (set Q7), and by minimizing the expected number of tests for the remaining subjects

(set Q).
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Theorem 4.4. When \ = 1, the following algorithm solves BM for N subjects in O(N3):

Step 0: If B > N, stop; the optimal solution is to individually test each subject, i.e., nf =1,
i=1,---,N.

Step 1: Let N =2, S; = {1,2}, and S, = S\ S;.

Step 2: Solve SM with S = Sy and parameters \y = Ay = 0, and let Z*(S1) denote the opti-
mal objective function value for set Sy, i.e., Z*(S1, Q*(S1)) = ming { E[T(Sy; Q)]}

Step 3: If Z*(S1) + |S2| < B, stop; the optimal solution is to test the subjects in Sy indi-
widually, and to test the subjects in Sy according to the optimal ordered partition in

Step 2, i.e., *(S1).
Step 4: If N = N and Z*(S1) > B, stop; the problem is infeasible.

Step 5: Set N=N+1, S, =5, U{N}, Sy =S\ S1, and go to Step 2.

The algorithm provided in Theorem 4.4 depends on Remark 4.2, which in turn depends on
the assumption that testing responses are conditionally independent, given the true positivity
status of the subjects. In some settings, this assumption might not hold, as there might be
a positive correlation among the test outcomes of positive subjects, i.e., if a test outcome
of a positive subject is positive, then the probability that the outcome of a sub-sequent
test, conducted on the same subject, is positive is higher. This dependency does not have an
impact on: (i) the expected number of false positives, as this dependency is typically observed
for positive subjects and does not impact the test outcome of negative subjects, and (ii) the
expected number of tests, as the number of tests is determined purely from the outcome of the
first stage of tests and not from the sub-sequent tests. However, the expected number of false
negatives in our model does get impacted, but it provides an upper bound to the expected
number of false negatives under a model where this assumption is relaxed. This follows

because, by assuming conditional independence, we are underestimating the probability of
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a test outcome, in the second stage of individual testing, to be positive. As such, our
models are minimizing upper bounds of the objective functions obtained from relaxing this
conditional independence assumption, and hence we expect the solutions provided by our

model to perform very well even when the conditional independence assumption is relaxed.

Remark 4.7. When A = 1, the algorithm presented in Theorem 4.4 not only determines an
optimal solution to BM, i.e., that minimizes E[F'N], but also provides a solution with the
minimum expected number of tests among multiple optimal solutions (if any). This property
is not guaranteed by other algorithms, such as Handler’s algorithm, which generate any one

of the optimal solutions.

Having developed a polynomial-time algorithm for BM when A = 1, we next explore solving
BM when A < 1. In particular, we formulate BM as a binary integer programming problem.
Note that the total unimodularity property, present in the integer programming formulation
of the unconstrained SP problem, no longer holds with the addition of the budget constraint.
Therefore, in the following we exploit the structure of an optimal solution to BM. In par-
ticular, by Theorem 4.1(b), one can add a set of constraints to the integer programming
formulation of BM that reduces the feasible region without cutting off the optimal solution,

as stated in the following lemma.

Lemma 4.1. By Theorem 4.1, the following set of constraints do not cut off the optimal
solution to BM:

Tjjp1 > T, ¥ (i,5) € B j > .
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In light of Lemma 4.1, the integer programming formulation of BM follows:

N N+1

minimize > (AE[FN,-(Qi_j)] +(1- A)E[FB(Qi_j)]) zi)
* i=1 j=i+1
(
1, ifi1=1
N+1 i—1
subject to inj—iji: 1. ifi=N+1 VieV
j=i+1 j=1 ’
\O’ otherwise
N+1
J=i+1
Tjjt1 = Tiitl V(i,j) EE:j>i
N N+1
> > EL(Q ) @y < B
i=1 j=i+1
CCij € {07 1} \V/(l,j) € E7
(4.6)
where ;_; = {i,---,j—1}, Vi. Our numerical study shows that, in general, the branch and

bound approach used to solve the formulation in (4.6), which includes the additional con-
straints in Lemma 4.1, outperforms Handler’s algorithm [67] in terms of efficiency, allowing

us to solve considerably larger problem instances to optimality.

4.4.3 An Equity-based Objective and Properties

As mentioned in Section 4.1, an important consideration in resource allocation problems,
especially in public health screening, is the trade-off between classification accuracy and
equity. For example, does the most accurate solution unfairly increase the misclassification
probability for certain subjects? If so, this solution would be unfair because certain subjects,

based on their demographics, which may impact risk, would not benefit from the improved
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solution, but instead would be more likely to be misclassified. Therefore, we would like to
understand if such inequity occurs in the proposed solutions, and if so, to what degree, i.e.,
what is the trade-off between accuracy and equity. Towards this end, we capture the trade-
off between accuracy and equity by adopting the a-fairness measure, commonly used in the
literature (e.g., [10,13,19]). The a-fairness measure is a function of parameter o > 0, known
as the inequality aversion parameter, that measures the tendency of the model to produce
a more equitable solution (over a more accurate solution), see, for example, [19]. Then
the equity-based version of the Budget-constrained Model, which we refer to as BM-E(«),

follows:

Equity-based Budget-constrained Model (BM-E(«)):

1
(1-a)

S (1 AEENT(Q)] - (1 A)E[FP’"(Q)])l_a
meS (47)
subject to E[T(Q2)] < B.

maximize
Q

Remark 4.8. Consider the objective function in BM-E(«):

1. When a = 0, the objective function reduces to the minimization of a weighted sum of
both types of classification errors (i.e., the most accurate solution), that is, BM-E(«)

reduces to BM.
2. As « increases, the objective function assigns more weight to equity [13,88].

3. As a — o0, the objective function reduces to the most equitable function [83], i.e., of

minimizing the worst-case equity outcome given by,
min'gnize mafq({)\E[FNm(Q)] + (1= NE[FP™(Q)]}.
me

Definition 4.3. Following [18], we define the Price of Fairness, denoted by PoF(«), as
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the relative increase in the weighted sum of classification errors under the optimal equitable
solution, with fairness level «, compared to the most accurate solution (i.e., when a = 0),

that is:

A(E[FN(Q*(@))] — E[FN(Q7(0)) ) —\) (E [FP((a))] E[FP(Q*(O))])
AE[FN(©+(0))] + ( — ME[FP(€2+(0))] '

PoF(a) =

By Remark 4.8, BM-E(a = 0) reduces to BM, and all results of Section 4.4.2 follow.
Therefore, in what follows we discuss the case where o > 0. The following example shows
that when a@ > 0 and A < 1, i.e., the objective is to maximize an equity-based objective
with respect to either both false negatives and false positives, or false positives only, the
optimal partition to BM-E(«) need not be an ordered partition, that is, Theorem 4.1 does

not necessarily hold under the equity-based objective.

Example 4.2. Consider BM-E(«) with @« — oo and A = 0. Suppose that B = 5, and
consider a test with Se = 0.90 and Sp = 0.95, and a set, S, of five subjects with the
following risk vector:

= (0.10,0.28, 0.30, 0.40, 0.45).

The optimal partition is to have two groups, with the first group containing the lowest and
highest risk subjects (i.e., subjects 1 and 5), and the second group containing the remaining
three subjects, i.e., Q* = {{1,5}, {2,3,4}}. Clearly, the optimal partition is not ordered.
Table 4.1 reports the performance of the optimal partition with two ordered partitions that
have the same group sizes as the optimal partition (i.e., n = (2,3) and n = (3,2)), with

n = (3,2) corresponding to the best solution among all ordered partitions.

Example 4.2 demonstrates that the optimal partition need not be an ordered partition. To

explain this, first note the following observation.
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Table 4.1: Performance of various partitions in Example 4.2

E[FP™]
Partition (£2) Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 mgg{{E[FPm]} E[FP]
{1,5},{2,3,4}  0.01946 0.01955 0.01865 0.01415 0.00372 0.01955 0.07552
{1,2},{3,4,5}  0.01296 0.00486 0.02168 0.01718 0.01493 0.02168 0.07162
{1,2,3},{4,5} 0.02122 0.01312 0.01222 0.01298 0.01073 0.02122 0.07027

Remark 4.9. Consider BM-E(«) with @ — oo and A = 0. For any given partition 2,
the highest false positive probability in each group is determined by the lowest risk subject
in that group. Therefore, max,,cs{E[F P™|} corresponds to the false positive probability of

the lowest risk subject of one of the groups.

As such, this example demonstrates how the optimal partition balances the maximum value
of the false positive probability by appropriately grouping the subjects, and the optimal

grouping does not need to follow an ordered partition.

Remark 4.10. Since BM-E(«) no longer has the property that ensures the existence of an

optimal partition that is ordered, it is N P-hard [36].

However, for an important case of BM-E(«) with A = 1 and « > 0, i.e., the equity-based

objective applies only to false negative classifications, we have the following important result.

Theorem 4.5. For BM-E(a) with A = 1 and o > 0, there exists an optimal ordered

partition that is independent of a.

When A = 1, Theorem 4.5 follows because, for all a > 0, (i) testing any subject individ-
ually reduces the objective function value (Eq. (4.3)), (ii) the objective function value is
independent of how the subjects in set Q¢ are grouped (Remark 4.2), and (iii) by Theorem

4.1, the subjects in set Qf must correspond to the highest risk subjects in set S. As such,
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for all @ > 0, the objective is to determine the largest feasible set of subjects that can be
tested individually (set ), and since the constraint is independent of a, then this set will be
identical for all a levels. Theorem 4.5 has important implications, as stated in the following

result.

Corollary 4.1. Consider BM-E(«) with A =1 and « > 0, i.e., the equity-based objective
applies only to false negative classifications.
1. PoF(a) = 0 for all @ > 0, that is, in terms of the false negative classifications, the

partition that is the most accurate is also the most equitable.

2. For all @ > 0, an optimal partition can be obtained by solving BM, for which a

polynomial-time algorithm exists (see Theorem 4.4).

In the next section, we perform a case study to illustrate the effectiveness of the proposed risk-

based testing scheme over optimal non-risk-based schemes and current screening practices.

4.5 Case Study: Chlamydia Screening in the United

States

In this section, we perform a case study on chlamydia screening. Chlamydia is one of the
most prevalent STDs in the US [35], and most chlamydia screening occurs at the state level
via public health laboratories. There are no nationwide guidelines on screening practices for
chlamydia, and as a result, screening practices differ significantly among states; for example,
North Carolina individually screens high-risk female subjects only [99]; while Idaho uses
group testing on all subjects in group sizes of four, with the exception of individual testing
of subjects who are exposed to chlamydia or who need to be tested after treatment [89].

A study conducted by the Centers for Disease Control and Prevention (CDC) indicates
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Table 4.2: Risk for chlamydia and proportion in population by gender, age, and
race/ethnicity [55]

. Risk Proportion in

Gender  Race/ethnicity ~ Age group (prevalence) general population
Hispanic (H) 15-24 6.54% 1.41%
Other 0.65% 7.01%
Female Black (B) 15-24 19.19% 1.07%
Other 1.22% 5.67%
Other (O) 15-24 4.38% 4.29%
Other 0.25% 31.31%
Hispanic (H) 15-24 1.78% 1.53%
Other 0.36% 7.16%
Male Black (B) 15-24 7.45% 1.09%
Other 1.05% 5.08%
Other (O) 15-24 1.20% 4.51%
Other 0.17% 29.87%

how the positivity probability (risk) of a subject for chlamydia can vary substantially by
gender, race/ethnicity, and age [35]. Consequently, in this case study, we decompose the US
population by gender, three race/ethnicity groups (black (B), hispanic (H), and other® (O)),
and two age groups (15-24 and other), leading to a total of 12 risk sub-populations. Studies
also show that a large percent of chlamydia cases go undiagnosed and/or unreported (e.g.,
75% of females and 50% of males with chlamydia show no symptoms, and are likely to be
unreported [56]); and the actual number of cases is estimated to be at least three times the
number of reported cases [64]. In Table 4.2, we report the risk (prevalence rate) for chlamydia
in the US and the proportion, in the general population, of each risk sub-population based
on data in [55] for the year 2014 and using an under-reporting factor, denoted by UP, of

three. In addition, we conduct a one-way sensitivity analysis on UP, and investigate two

2The “other” category includes: white, American Indian or Alaska native, and Asian or Pacific islander.
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other cases of UP = 4 and UP = 5. The mean overall prevalence rate, p, , which we use in
non-risk based schemes, is equal to 0.97%, 1.29%, and 1.62%, corresponding to UP = 3,4

and 5, respectively.

We consider an amplified DNA assay for chlamydia (Viper ProbeTec Chlamydia Q%), a
commonly used chlamydia screening test that can be utilized for both individual and grouped
testing [84]. A number of NAT tests are available with varying sensitivity and specificity
values, hence in this case study, we explore a set of sensitivity and specificity values ranging
from 0.93 to 0.97. We use testing and cost data from [100,129]. Specifically, we set the
cost of a false negative to the average cost of sequelae (i.e., any complications resulting from
not treating a chlamydia patient), estimated as $2,927; the screening cost, per test (either
individual or grouped), to $55; and the cost of a false positive to the cost of an additional

confirmatory test, which we assume equals the cost of the initial screening test.

To illustrate the benefits of the proposed risk-based Dorfman testing, we perform a Monte
Carlo Simulation. In particular, we set the number of subjects that need to be tested in
a given period (day) to 100 (i.e., N = 100), this provides a realistic representation of the
problem [89], and for each day, we generate a realization of the random risk vector following
the discrete distribution presented in Table 4.2. We perform 3,000 simulation replications
for each scenario, characterized by p,, Se, and S, and determine the sample mean and
sample variance for 3,000 replications for each performance measure. All simulation results
in the tables are presented in the form, the point estimate &+ and the half width of a 95%

confidence interval.

In Sections 4.5.1 and 4.5.2, we compare each risk-based model, SM and BM, to a corre-
sponding base-case (BC) model in which, following the common treatment of the group
testing design in the literature, e.g., [46,86], we assume that the testing population is homo-

geneous, with mean risk p,, and the population size is infinite. Then, the base-case model
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generates a static group testing design, which is used repetitively every period, while the pro-
posed risk-based policies generate dynamic testing designs, i.e., they produce a potentially
different testing design each period based on the observed risk vector for the N subjects.
Following current practices, in the base-case, if N is not a multiple of the group size, then the
remaining subjects form a (smaller) group for testing, and subjects are randomly assigned to
the groups. Then in Section 4.5.3, we compare SM to the three risk-based heuristic testing
designs proposed by [96], in which the objective is to minimize the expected number of tests.
We denote the three heuristics by MC1, MC2, and MC3, respectively corresponding to the
Optimal Dorfman, Thresholding, and Pool-Specific Optimal Dorfman algorithms discussed
in [96].

4.5.1 System-optimal Model (SM)

We first consider the system’s problem, of generating a testing design for N subjects so
as to minimize the total cost of false negative and false positive classifications and testing.
In our risk-based testing policy, this corresponds to SM, with the objective of minimizing
ME[FN]| + ME[FP]+ (1 — A — X)E[T], with weights A; = 0.96 and Ay = 0.02, which are
normalized based on the cost data discussed above. Specifically, \; = $2,927/$3,0373 ~ 0.96
and Ay = $55/$3,037 ~ 0.02. The corresponding base-case, BC, is obtained by minimizing
the same objective function, but under the homogeneous and infinite population assumptions,
i.e., minimizing the objective function per subject.  Table 4.3 reports the performance

measures for BC and SM for a range of parameter values.

The results in Table 4.3 indicate the substantial reductions under SM for all performance

measures over the non-risk based scheme BC. Specifically, SM reduces each of E[FN],

383,037 represents the total cost, i.e., the cost of false negatives ($2,927), false positives ($55), and testing
($55), see Section 4.5 for details.
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Table 4.3: Performance measures (point estimate + half width of a 95% confidence interval)
for BC and SM

Model E[FN] max{E[FN"™]} E[FP] E[T] OFt

UP =3 (up, = 0.97%), Se = 0.95, Sp = 0.95

BC 0.0942 4+ 0.0008 0.0146 £ 0.0002 0.7048 £+ 0.0034 24.0196 £+ 0.0753 0.5850 £ 0.0024
SM 0.0850 £ 0.0006 0.0086 £ 0.0001 0.5901 = 0.0015 19.4419 £ 0.0441 0.4822 £ 0.0014

%Change -10% -41% -16% -19% -18%
UP =4 (u = 1.20%), Se = 0.95, Sp = 0.95

BC 0.1266 + 0.0011  0.0197 £ 0.0003  0.7400 £ 0.0039  26.0331 £ 0.0874 0.6570 & 0.0028
SM 0.1138 £ 0.0008 0.0116 £ 0.0001 0.6259 &+ 0.0014  21.4702 £ 0.0460 0.5512 4 0.0017

%Change -10% -41% -15% -18% -19%
UP =5 (up = 1.62%), Se = 0.95, Sp = 0.95

BC 0.1570 £ 0.0014  0.0241 £ 0.0003 0.8284 4+ 0.0043  29.1062 £ 0.0994 0.7494 £ 0.0034
SM 0.1414 £+ 0.0010  0.0143 £ 0.0001  0.6553 &+ 0.0014  23.2094 & 0.0495 0.6131 & 0.0019

%Change -10% -41% -21% -20% -18%
UP =3 (1 = 0.97%), Se = 0.93, Sp = 0.95

BC 0.1302 £ 0.0011  0.0202 £ 0.0003 0.6944 + 0.0032  23.7900 £+ 0.0715 0.6147 £ 0.0025
SM 0.1179 £ 0.0008 0.0121 £+ 0.0001 0.5863 £ 0.0015 19.2801 £ 0.0422 0.5105 + 0.0016

%Change -9% -40% -16% -19% -17%
UP =3 (1, = 0.97%), Se = 0.97, Sp = 0.95

BC 0.0574 £ 0.0005 0.0090 £ 0.0001 0.7158 4+ 0.0034 24.2618 £+ 0.0753  0.5546 £ 0.0020
SM 0.0516 £+ 0.0003 0.0052 £ 0.0001  0.5937 4+ 0.0015 19.6080 £ 0.0436 0.4536 £ 0.0012

%Change -10% -42% -17% -19% -18%
UP =3 (1, = 0.97%), Se = 0.95, Sp = 0.93

BC 0.0947 £ 0.0008 0.0147 £ 0.0002 1.1135 4+ 0.0046  25.8354 + 0.0738  0.6299 £ 0.0024
SM 0.0851 £+ 0.0006 0.0087 £ 0.0001 0.9564 + 0.0021  21.2879 £ 0.0434 0.5265 £ 0.0014

%Change -10% -41% -14% -18% -16%
UP =3 (1, = 0.97%), Se = 0.95, Sp = 0.97

BC 0.0939 £+ 0.0008 0.0146 £ 0.0002 0.3688 + 0.0020 22.2124 £+ 0.0756  0.5418 £ 0.0023
SM 0.0844 £+ 0.0006 0.0086 £ 0.0001 0.2987 4+ 0.0009  17.5682 £ 0.0435 0.4384 £ 0.0014

%Change -10% -41% -19% -21% -19%

T OF is the objective function of SM, i.e., OF = ME[FN]| 4+ ME[FP] + (1 — A\ — \2)E[T].

max,es{E[F'N™]}, E[FP], and E[T] over BC by an average of 10%, 41%, 17%, and 19%,

respectively. Moreover, the objective function of SM is reduced by and average 18% over
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Figure 4.2: Performance comparison of BC and SM with respect to E[F'N], E[FP], and
E[T], when UP = 3 (u, = 0.97%), Se = 0.95, and Sp = 0.95

35

s | ®BC ¢
3 - @SM ,ﬂ..

29 |
27

25

E[T]

23

21

19 |

17 +

15 1 1
0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

E[FN]
(b)
oBC ®

1.2

1.1 +

09 |

0.8 |

E[FP]

0.7 F

0.6 L

05 f

0.4

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

E[FN]
BC. The one-way sensitivity analysis reveals that the reductions in all performance measures
are consistent among the different settings, indicating how risk-based testing can provide

substantial benefits for a range of parameter values. Figure 4.2 also plots (a) E[T] and (b)

E[F P] as a function of E[F'N] for each of BC and SM; each point in the figure represents
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one of the 3,000 simulation replications of the random risk vector. In addition to the re-
duction of all performance measures under SM, interestingly, Figure 4.2 also reveals that
SM substantially reduces the variance, i.e., the sample variance corresponding to the 3,000
simulation replications, of these measures as well, specifically, by 51%, 80%, and 66% for

E[F N], E[F P], and E[T], respectively.

4.5.2 Budget-constrained Model (BM)

We next consider the budget-constrained testing problem, of generating a testing design for
N subjects so as to minimize the number of false negative classifications under a testing
budget constraint. In our risk-based testing policy, this corresponds to BM, with A\ =
1. Following common testing practices, we consider that all positive-testing subjects in
the initial screening undergo additional confirmatory testing. Consequently, we modify the
testing budget constraint in (4.2) to also include the cost of false positives in the initial
screening, E[T] + yE[FP] < B, with v = 1, i.e., the cost of a false positive is equal to the

testing cost. By Remark 4.1, this modification does not impact the analytical results.

In the corresponding base-case, BC, under the homogeneous and infinite population assump-
tions, the per subject expected number of false negatives becomes independent of the group
size [7]. As such, for the corresponding base-case, rather than minimizing the per subject
expected number of false negatives, we minimize the left-hand side of the budget constraint
(i.e., E[T]+~E[F P]), as this will determine the least costly scheme. In this setting, the opti-
mal group size in BC is equal to 11, 10, or 9 corresponding to j,, = 0.97%, 1.29%, and 1.62%,
respectively. As stated above, if N is not a multiple of the group size, then the remaining
subjects form a (smaller) group for testing, e.g., for u, = 0.97%, all subjects are tested in

group sizes of 11, except for one subject (randomly selected) that is tested individually (since
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Figure 4.3: Performance comparison of BM and BC with respect to E[F'N], E[FP], and
E[T], when UP = 3 (u, = 0.97%), Se = 0.95, and Sp = 0.95
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N =100). The subjects are randomly assigned to groups.

The per period budgets of BM is set to the corresponding testing costs under the BC policy,
that is, given a risk vector realization in a period, the budget for the risk-based scheme BM
is set to B = E[T'] + E[F'P] of BC. Doing so ensures that the cost of the risk-based scheme
does not exceed that of BC. Table 4.4 reports the performance measures of BM and BC
for a range of parameter values, and indicates the substantial reductions in all performance
measures under BM. Specifically, BM respectively reduces E[F'N|, max,,cs{E[FFN™]}, and
E[T]+E[F P] by 28%, 48% and 1%, over BC. Hence, BM generates testing schemes that are
substantially more accurate and equitable, in terms of false negatives, than current testings
schemes while being cheaper to implement than non risk-based testing schemes. Moreover,
the one-way sensitivity analysis reveals that these reductions are consistently observed for a
range of parameter values. Figure 4.3 plots E[T]| + E[F'P] as a function of E[F'N], with each
point representing one of the 3,000 realizations of the random risk vector. In addition to the
reduction of all performance measures under BM, interestingly, Figure 4.3 also reveals that

BM substantially reduces the variance, i.e., the sample variance corresponding to the 3,000
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Table 4.4: Performance measures (point estimate + half width of a 95% confidence interval)

for BC and BM

Model E[FN] max{E[FN"]} E[FP] + E[T]
UP =3 (up, = 0.97%), Se = 0.95, Sp = 0.95
BC 0.0943 £ 0.0008 0.0147 + 0.0002 24.7396 4+ 0.0756
BM 0.0683 £ 0.0004 0.0077 £ 0.0001 24.3924 4+ 0.0759
%Change -28% -48% -1%
UP =4 (i, = 1.20%), Se = 0.95, Sp = 0.95
BC 0.1267 + 0.0011 0.0196 + 0.0003 26.7660 4+ 0.0935
BM 0.0902 £ 0.0005 0.0102 + 0.0001 26.4263 £+ 0.0933
%Change -29% -48% -1%
UP =5 (1, = 1.62%), Se = 0.95, Sp = 0.95
BC 0.1565 + 0.0013 0.0242 + 0.0003 29.9104 4+ 0.1006
BM 0.1086 + 0.0006 0.0125 + 0.0002 29.5492 4+ 0.1011
%Change -31% -49% -1%
UP =3 (1, = 0.97%), Se = 0.93, Sp = 0.95
BC 0.1307 + 0.0011 0.0203 + 0.0003 24.5217 4+ 0.0775
BM 0.0952 + 0.0006 0.0107 + 0.0001 24.1705 4+ 0.0779
%Change -27% -47% -1%
UP =3 (1, = 0.97%), Se = 0.97, Sp = 0.95
BC 0.0566 + 0.0005 0.0086 + 0.0001 24.8495 4+ 0.0789
BM 0.0409 + 0.0002 0.0045 + 0.0001 24.4928 4+ 0.0792
%Change -28% -48% -1%
UP =3 (1, = 0.97%), Se = 0.95, Sp = 0.93
BC 0.0941 + 0.0008 0.0144 + 0.0002 26.8905 4+ 0.0784
BM 0.0683 + 0.0004 0.0075 + 0.0001 26.5379 4+ 0.0788
%Change -27% -48% -1%
UP =3 (1, = 0.97%), Se = 0.95, Sp = 0.97
BC 0.0942 + 0.0008 0.0147 + 0.0002 22.6159 4+ 0.0796
BM 0.0681 + 0.0004 0.0077 + 0.0001 22.2615 4+ 0.0797
%Change -28% -48% -2%

simulation replications, of E[F'N| and max,,cs{E[F'N™|}, specifically by 72% and 77% over

BC, respectively.

111



4.5.3 Comparison to Existing Heuristics

In this section, we compare the performance of SM to existing heuristics proposed in the

literature (see [96]), detailed below:

e Optimal Dorfman (MC1): All group sizes are restricted to be equal, and the group
size is determined by enumerating over all possible values and selecting the one that

gives the smallest expected number of tests.

e Thresholding (M(C2): The population is partitioned into two classes, low risk and high
risk subjects, based on a risk threshold. The risk threshold is determined as follows: (i)
run heuristic MC1 on all N subjects and determine the best common group size, (ii)
using this common group size, and starting with the highest risk subjects, enumerate
over the groups of subjects to determine the first group that gives a lower expected
number of tests when grouped over individual tests, denote this group by 4, (iii) set
the risk threshold to the average of the highest risk subject in group ¢ and the lowest
risk subject in group i+ 1. All subjects having a risk higher than the risk threshold are
classified as high risk subjects, and are individually tested, while all subjects having a
risk lower than the risk threshold are classified as low risk subjects, and are tested in
groups of common size. The common group size for the low risk subjects is determined

by running MC1 on the set of subjects having a risk lower than the risk threshold.

e Pool-specific Optimal Dorfman (MC3): Starting with the lowest risk subjects, groups
are formed so as to minimize the expected number of tests per subject. Specifically, the
groups are constructed as follows: (i) place the lowest risk subject in a group, giving
an expected number of test per subject equal to one, (ii) add the second lowest risk
subject to this group and measure the expected number of tests per subject, (iii) keep

on adding subjects to the group until the group with the lowest expected number of
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test per subject is identified, (iv) reapply the same steps on subjects that have not yet

been assigned to groups.

All three heuristics, MC1, MC2, and MC3, are based on minimizing the expected number
of tests. Therefore, for comparison purposes, in SM we set A; and \g, i.e., the weight of
false negatives and positives in the objective function of SM, to zero, to also minimize the

expected number of tests in SM.

To study how the solutions from these three heuristics compare to the optimal solution
obtained from SM, we perform a Monte Carlo simulation with 10,000 replications. In each
replication, we generate a risk vector realization and determine the solutions provided by
SM, MC1, MC2, and MC3. We demonstrate our results for the case where UP = 3
(1 = 0.97%), Se = 0.95, and Sp = 0.95. (Our extensive numerical study, with various
parameter values, yields similar findings.) Figure 4.4 plots the histograms of the error (in
percentage), i.e., the deviation (in percentage) of the expected number of tests obtained by
the heuristic solution from the optimal expected number of tests obtained by SM, for: (a)
MC1&2 and (b) MC3. We want to note here that MC1 and MC2 heuristics provided
identical solutions in all our numerical experiments in this section. This is the case because
when implementing M C2 in our setting, all subjects are identified as low risk subjects, and
hence MC2 reduces to MC1 (see the details of MC2 at the beginning of Section 4.5.3).
According to Figure 4.4, out of the 10,000 Monte Carlo scenarios, MC1&2 never attained
optimality, and the deviation from the optimal solution can be as high as 12%. On the other
hand, MC3 attained optimality only once out of the 10,000 scenarios, and the deviation

from the optimal solution can be as high as 5%.

This case study underscores the substantial benefits of the proposed risk-based policies in
both settings (i.e., SM and BM); risk-based policies substantially reduce the classification

errors and improve efficiency and equity over non-risk based policies. We demonstrate how
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Figure 4.4: Deviation of (a) MC1&2 and (b) MC3 from SM, when UP = 3 (u, = 0.97%),
Se =0.95, and Sp = 0.95
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heuristic solutions are rarely optimal, and how they can deviate, sometimes substantially,

from the optimal solution.
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4.6 Conclusions and Future Research Directions

We study the problem of designing an optimal risk-based Dorfman testing scheme to ac-
curately and equitably classify a set of subjects in an efficient manner, while taking into
account imperfect tests. Our analytical results enable us to reduce the N P-hard partition-
ing problems into an SP problem (for SM) or a constrained-SP problem (for BM). Further,
for special cases of BM, we develop highly efficient algorithms that exploit the structure of
the problem and that are able to solve the constrained-SP problem in polynomial time. Our
case study demonstrates the effectiveness of risk-based testing, producing solutions that sub-
stantially reduce all performance measures when compared to static, non-risk based models.
Our findings highlight the importance of incorporating subject-specific risk characteristics
into the modeling framework, as failing to do so can lead to higher classification errors and

more costly and less equitable testing schemes.

This research can be expanded in several important directions. In reality, subject risk values
are not perfectly observable, hence the decision-maker needs to estimate the risk of each sub-
ject given their characteristics. Therefore, an important future research direction would be
to consider robust testing schemes that perform well under risk estimation errors, or to con-
sider adaptive strategies that study the exploration (e.g., initial testing for risk estimation)
versus exploitation (e.g., testing for classification) trade-off, especially studying the decision
of how to allocate a given budget between the efforts of exploration versus exploitation to

maximize the classification accuracy.

Another important aspect in group testing is the dilution effect of grouping, i.e., for some
tests, the accuracy of the test for detecting positive subjects (i.e., the test’s sensitivity)
may decrease as group size increases. However, studies have shown that up to certain

group sizes, the effects of dilution are negligible. As such, a possible way to incorporate
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the dilution effect into our models is to place upper bounds on group sizes; this can be
attained by eliminating certain edges from the underlying graph of the partitioning problem.
Alternatively, a more accurate, yet more complex, approach is to explicitly model the dilution
effect (i.e., the test sensitivity becomes a function of the group size) and incorporate it into
the modeling framework. Our analysis also depends on the assumption that different test
outcomes performed on the same subject are conditionally independent, given the actual
positivity status of the subject. This assumption does not always hold in practice, especially
for infection screening tests that measure infection-related bio-markers, because if a subject
is infected with the infection in question, then concentrations of several infection-related
bio-markers will be higher than infection-free subjects, and tests that measure the related
bio-markers will have a tendency to produce a positive test outcome. Therefore, relaxing
such outcomes on the test’s sensitivity and specificity will increase model realism and may

produce better testing schemes.

An important aspect is to consider the operational challenges of changing the testing scheme
on a daily basis, as is done here. In some cases, modifying the testing scheme on a frequent
basis may not be feasible, or simply not desirable. In this case, the decision-maker may
be interested in determining an optimal static policy (either static group sizes, or a static
threshold vector on subject risk according to which the subjects can be partitioned into
groups), that is, the problem is one of a stochastic programming problem, of identifying an
optimal static policy under uncertainty on subject risk vector. Finally, our decision problem
considers only Dorfman-type testing schemes. There are other, albeit more complicated,
group testing schemes, and it will be interesting to study the problem of jointly determining

an optimal partitioning and testing scheme. This is a challenging research direction.

It is our hope that this work builds the foundation for more complex risk-based testing

schemes and drives future research in any of the aforementioned directions. As we show here,
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the benefits of risk-based group testing schemes can be substantial, and we hope our work

also motivates the practitioners to consider implementing such risk-based testing schemes.
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Chapter 5

Optimal Static Risk-based Group
Testing Under Imperfectly Observable
Risk

5.1 Introduction and Motivation

Screening a large population so as to classify each subject as positive or negative for a
binary characteristic (e.g., presence of a disease or defect) is important in many settings.
Individually testing each subject incurs high testing costs, and is often not budget-feasible.
Consequently, testing facilities often utilize group testing, wherein multiple subjects (or speci-
mens from the subjects, e.g., blood specimens) are grouped and tested together, with one test
applied to the entire group. Thus, group testing can offer substantial reductions in testing
costs over individual testing, especially when the prevalence of the binary characteristic in the
population is low, and is commonly utilized as an integral part of screening/testing schemes

across various disciplines, including public health screening, industrial quality control, con-
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flict resolution in multi-access communication networks, software testing, and compressed
sensing, e.g., [16,28,38,46,114]. The origins of group testing date back to the 1940’s, when
Dorfman [46], an economist, introduced this concept as a way to test military inductees for
syphilis in an economical manner. Dorfman proposed a simple two-stage testing scheme:
in the first stage, a group of subjects are tested with a single test; if the test outcome is
negative, suggesting that all subjects within the group are negative for the disease, then the
testing stops and all subjects in the group are classified as negative; if, on the other hand, the
test outcome is positive, suggesting the presence of at least one positive subject within the
group, the testing proceeds to the second stage in which each subject is individually tested
and classified according to the outcome of their individual test. Today, this so-called Dorf-
man testing is one of the most commonly adopted schemes in practice due to its simplicity

and efficiency, and is the focus of this chapter.

In these settings, the tester needs to determine the various group sizes to be used in testing,
along with the assignment of subjects, with different risk estimates (probability of positivity)
for the binary characteristic, to the different groups. Moreover, it may not be practical, nor
even feasible, to change the testing scheme (e.g., group sizes) each period, as doing so may
incur high set-up cost/time and/or operational challenges; thus, “static” testing schemes,
which do not change over time, may be highly desirable for practitioners. What complicates
the testing decision further is that the test is not perfectly reliable; hence false negative
classifications (i.e., falsely classifying positive subjects as negative) and false positive clas-
sifications (i.e., falsely classifying negative subjects as positive) are possible. This decision
problem arises in many settings, as discussed above. For example, in the context of public
health screening, testing laboratories screen donated blood (via a specimen from each dona-
tion), received periodically (e.g., with each shipment), for a set of transfusion-transmittable

diseases (e.g., human immunodeficiency virus (HIV), hepatitis viruses) [40]. Specimens are
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loaded into automated testing machines in “batches” (typically between 40-200 specimens
per batch depending on the equipment used [71]). Due to the large number of subjects
that need to be tested, testing begins as soon as a sufficient number of subjects to form a
complete batch arrive. As another example, consider industrial quality control in which a
set of products, received periodically (e.g., with each shipment from the supplier, in each
manufacturing shift), needs to be tested for defects; and the batch size may represent the

shipment size, or the capacity of the testing machine.

On the population side, the probability of having the binary characteristic (risk) may vary,
sometimes substantially, with subject-specific characteristics (risk factors) that are often
known prior to testing. For example, in donated blood screening, first-time blood donors in
the United States are around seven times more likely to have an HIV infection than repeat
donors [143]; vector-borne infections, such as babesiosis, are endemic in certain areas of
the United States [70]. Thus, subjects come from a heterogeneous population. However,
the process of estimating the subject-specific risk, based on established risk factors for the
binary characteristic, and/or informed by sub-population-specific prevalence rate estimates,
is far from perfect. This is because risk factors, and their interactions, are often not well-
understood; and prevalence rate estimates in the different sub-populations are inherently
uncertain, e.g., [9,63]. Consequently, the true risk of a subject is unobservable, and the
tester needs to estimate the risk of each subject and construct an uncertainty set that
contains the true risk with a high probability. Under such uncertainty in risk estimation, it
is important to determine testing schemes that are not highly sensitive to perturbations in

the risk estimates, i.e., robust testing schemes.

The challenge, then, is to determine a static risk-based Dorfman testing scheme, comprised
of a set of group sizes and a policy to assign subjects, with different risk, to the mutually

exclusive groups, under uncertainty on both subject characteristics (hence the estimated risk)
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and the actual risk. The goal is to identify a static testing scheme that is used repetitively
for every batch, and that is accurate, in terms of subject classification, efficient, in terms
of testing cost, and robust, with respect to deviations from the estimated risk vector. Most
literature on group testing considers the objective of minimizing the testing cost under
perfect tests, with limited focus on misclassification; and robustness is an often overlooked
dimension in group testing, as the group testing literature almost exclusively assumes that
subject risk is perfectly observable. In this chapter, we explore both expectation-based and
robust optimization models to determine optimal static risk-based Dorfman testing schemes,
under uncertainty on the subject risk. We characterize key structural properties of optimal
static risk-based Dorfman testing schemes. These properties allow us to reduce the resulting
optimization problems to network flow problems and solve to optimality. We also perform a
case study that demonstrates an application of the proposed static risk-based testing scheme

to public health screening, specifically, the donated blood testing setting discussed above.

Dorfman’s original model, and the majority of the subsequent research, impose unrealis-
tic assumptions, such as perfect tests, i.e., there are no classification errors, a homogeneous
population, i.e., the probability of having the binary characteristic (risk) is identical across
subjects, and infinite testing batch sizes (e.g., [46,114,118]). While several papers extend
the analysis of Dorfman testing schemes to imperfect tests (e.g., [62,80,86,96]), there is very
limited work on Dorfman testing for a heterogeneous population, i.e., with subject-specific
risk, and the few papers that consider a heterogeneous population (e.g., [5,75,96]) mainly
do so under restrictive assumptions, including that the subject risk is perfectly observable,
or they determine testing schemes heuristically. Specifically, Hwang [75] determines optimal
risk-based Dorfman testing schemes for a heterogeneous population, but under the assump-
tion that the test is perfect (hence, the objective is to minimize the number of tests) and

the subject risk is perfectly observable. Moreover, Hwang’s focus is on “dynamic” testing
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schemes, i.e., group sizes and the subject-group assignment policy are allowed to change with
each batch, that is, the group testing problem is a deterministic problem, solved after the
risk of each batch of subjects is observed. McMahan et al. [96] extend the analysis in [75] to
the case of imperfect tests, but conjecture that the problem, of determining risk-based Dorf-
man testing schemes, under imperfect tests and perfectly observable subject risk, so as to
minimize the expected number of tests, is intractable, and develop heuristics. More recently,
Aprahamian et al. [5] show that the extension of Hwang’s model to the case of imperfect
tests, but with perfectly observable subject risk, is in fact tractable, resolving the conjecture
in the literature, and develop exact algorithms to determine optimal dynamic risk-based
Dorfman testing schemes. While these studies have improved our understanding of optimal
risk-based Dorfman testing for a heterogeneous population, they leave out other important
aspects of the problem, such as implementability of the testing scheme and uncertainty in
subject risk estimates. For example, both Aprahamian et al. [5] and Hwang [75] assume that
the decision-maker can construct an optimal dynamic testing scheme, customized for each
batch of subjects. While such an assumption may be justified in certain settings, in other
settings the decision-maker may not have the flexibility to modify the testing scheme for
every batch, as discussed above. McMahan et al. [96] consider a static testing scheme (the
same group sizes and assignment policy are used for every batch), which partially resolves
the implementability issue, but this is done by: (i) ordering the subjects in non-decreasing
order of their risk and simply setting the risk of each subject to the expected risk of the cor-
responding order statistics, and, (ii) determining testing schemes that attempt to minimize
the expected number of tests using heuristics, based on properties that do not necessarily
hold in an optimal solution (e.g., group sizes are non-increasing for a risk-ordered batch,
see [5]). A lack of properties and algorithms for optimal static Dorfman testing schemes in
this setting is not surprising, because various functions of order statistics (for batch sizes

that are in the hundreds) arise in an exact formulation, substantially complicating the analy-
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sis. Our analysis, of optimal static Dorfman testing schemes for heterogeneous populations,
resolves all of the aforementioned issues, and as a by product, provides a novel result on
order statistics, which is not limited to the group testing setting. In addition, we investigate
the realistic situation in which the true risk of a subject is not known with certainty, but lies
within a known uncertainty set, and this aspect of the problem gives rise to a novel robust

formulation of the problem.

Our contributions in this chapter are multi-fold. First, we model important aspects of
group testing that are often overlooked in the literature, such as implementability of the
testing scheme, the uncertainty in the risk estimates, and objective functions that incorporate
the classification accuracy into the modeling framework (as opposed to solely minimizing
the expected number of tests). Second, we explore novel expectation-based and robust
formulations of the aforementioned decision problem, and develop key structural properties
of each problem. These properties allow us to reduce the expectation-based and robust
formulations to network flow problems, enabling us to solve these problems to optimality,
which, to the best of our knowledge, has not been done in the existing literature. Analysis of
the expectation-based and robust models further provides valuable insight on the trade-off
between classification accuracy and robustness; for example, our numerical study indicates
that the price of robustness is low in our setting, i.e., the robust model leads to a small
increment in the expected value of the objective function (i.e., subject misclassification and
testing costs), while substantially improving other aspects of the testing scheme, such as
reducing the variability around the objective function value. Third, we develop a novel
expression on the expected value of the product of some function of a set of consecutive order
statistics, which is not limited to the group testing setting. This result substantially improves
the computational efficiency of the proposed algorithms, enabling us to solve realistic problem

instances to optimality. Finally, we demonstrate the effectiveness of the proposed static risk-
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based Dorfman testing scheme through a case study on HIV screening in sub-Saharan Africa,
an area with one of the highest HIV prevalence rates in the world. The proposed testing
schemes substantially reduce the misclassification and testing costs over optimal non risk-
based (‘“uniform”) schemes and current screening practices. Further, our numerical study
suggests that the performance of static testing schemes, which are easily implementable, are
within one percent of the more complicated dynamic testing schemes, i.e., schemes that are
customized for each batch. Thus, restricting the testing schemes to static schemes does not
hinder the performance of screening in a significant way. Our numerical results also indicate
that the performance of static testing schemes comprised of only a small number of group
sizes (only two in our setting) is comparable to more complicated static testing schemes
comprised of many group sizes. These findings indicate that simple static schemes, with a
small number of group sizes, can capture most benefits of risk-based testing, underscoring

the value of static risk-based testing schemes studied in this dissertation.

The remainder of this chapter is organized as follows. Section 5.2 presents the notation
and the decision problem, and Section 5.3 discusses the expectation-based and robust for-
mulations, and provides derivations of the relevant performance measures. Section 5.4 then
studies the optimal design of static risk-based Dorfman testing schemes in different settings
and derives important structural properties of optimal solutions. Section 5.5 discusses find-
ings from the HIV screening case study. Finally, Section 5.6 summarizes our findings and
provides directions for future research. To facilitate the presentation, all proofs are relegated

to the Appendix.
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5.2 The Notation and the Decision Problem

In this section, we present the notation and the decision problem. Throughout, we denote
random variables in upper-case letters, their realization in lower-case letters, and vectors in
boldface. We use the terms positive and negative to refer to a subject’s true status or classi-
fication outcome (i.e., to respectively denote the presence or absence of the characteristic, or
the classification for the characteristic), or to the binary test outcome (i.e., to respectively

denote the test outcome that indicates the presence or absence of the characteristic).

Consider a testing facility (e.g., laboratory) where subjects (or specimens collected from
subjects) arrive throughout the day. Subjects are tested in batches of size N for a binary
characteristic, where the batch size IV is determined by the testing equipment. Due to limited
testing capacity and throughput requirements, we assume that testing begins when enough
subjects arrive to form a batch. For example, most public health screening laboratories
have testing equipment dedicated to the screening of a certain condition (i.e., disease or
genetic disorder), and most testing machines are highly automated, e.g., the nucleic acid
amplification testing machine [71,128] that we consider in our case study in Section 5.5.
These testing machines are loaded in batches (e.g., with batch sizes, IV, ranging from 40 to
200), and testing of each batch typically takes 3-4 hours. Thus, whenever a set of N subjects
is received, testing is performed. The tester needs to classify each subject as positive or
negative for the binary characteristic so as to minimize the costs of misclassification and

testing, under imperfectly reliable tests.

The population is heterogeneous with respect to risk (probability of positivity) for the binary
characteristic due to subject-specific demographic and clinical factors. To model population
heterogeneity, let D™ denote the true status of subject m for the binary characteristic, with

a value of 1 if subject m is a true-positive for the characteristic, and 0 otherwise, that is,
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random variable D™ unknown to the tester, follows a Bernoulli distribution with a subject-
specific probability of positivity given by P™, independently of other subjects. However,
the value of P™, i.e., the “true” risk of subject m, is unobservable by the tester due to
potentially unknown or misunderstood risk factors and/or interactions. Therefore, the tester
“estimates” the risk of subject m, denoted by P™, based on the subject’s characteristics.
We let = denote the random perturbation (error) term for the risk of subject m, i.e., the
deviation of the estimated risk from the true risk. Thus, the true risk of subject m can be
expressed as a function of the estimated risk and the random perturbation term. We assume
that random variables P™,m = 1,--- , N, are independent and identically distributed (iid),
following an arbitrary continuous distribution with support in [a,b], for 0 < a < b < 1;
random variables =™ m = 1,--- , N, are iid, following an arbitrary continuous distribution
with support in [—d, 0], for some 6 > 0; and random vectors P and E are independent.
Then, the true risk of subject m, conditional on the estimated risk and perturbation term,
can be written as, P™|P™ 2" = t(]-:’m, Em), form=1,---, N, where t(.) is some arbitrary
continuous function in [0, 1]. We do not make any assumptions on function ¢(p, £), other than
that it is non-decreasing in each of p and &; Ezm [t("", Em)} = p™, that is, the expectation of
the true risk equals the estimated risk; and t(p, 0) = p, for all p, that is, the true risk reduces
to the estimated risk when the perturbation term is zero, i.e., the case of no estimation error.
Then, Dm|]5m follows a compound Bernoulli distribution with a probability of positivity of
Pm\Pm, which lies within an uncertainty set, [t(]sm, —5),15(]5’“, 5)] C [0,1]. Notice that
the uncertainty set is larger for higher values of 9; thus parameter d can be interpreted as a

“budget of uncertainty” (e.g., [17]) around the estimated risk.

Without loss of generality, we represent the set of subjects in each batch as a risk-ordered
set, S = {1,---, N}, that follows a non-decreasing order of the estimated subject risk, i.e.,

pt < p? < - < pN) that is, for a given estimated risk vector p = (p%)i=1... n, subject 1
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corresponds to the subject with the lowest estimated risk, subject 2 with the second lowest
estimated risk, and so on. Then P = (PM P®@ ... PWN) denotes the random ordered
estimated risk vector, with P™ denoting the m'™" order statistic of a random sample of size

N.

On the testing side, the test can be used for both individual testing and group testing
(i.e., with specimens from multiple subjects combined and tested as a group with a single
test). While one test per subject suffices for individual testing, group testing follows the
two-stage Dorfman testing scheme: in the first stage, the group is tested with a single
test; if the group test outcome is negative, then all subjects in the group are classified
as negative; and if the group test outcome is positive, then each subject in the group is
individually tested and classified according to the outcome of their individual test. In either
case, the test is not perfectly reliable, leading to the possibility of misclassification. Let
R™(n) denote the random classification outcome for subject m, m =1,--- | N, when tested
within a group of size n in the first stage, with R™(n) = 1 if subject m is classified as positive,
and 0 otherwise. Then, subject m will become a false negative classification, i.e., a true-
positive subject falsely classified as negative, with probability Pr(D™(1— R™(n)) = 1), and
a false positive classification, i.e., a true-negative subject falsely classified as positive, with
probability Pr((l —D™)R™(n) = 1). Let Se and Sp respectively denote the test’s sensitivity
(true positive probability, i.e., the probability that the test outcome is positive, given that
the group contains at least one true-positive) and specificity (true negative probability, i.e.,
the probability that the test outcome is negative, given that the group contains all true-
negatives), and we assume that the test’s sensitivity and specificity are not altered by group
size. Without loss of generality, we consider that the test’s true negative probability is higher

than its false negative probability', i.e., Sp > (1 — Se) = Se + Sp—1 € [0, 1].

IThis follows because any test not satisfying this assumption can be transformed into one that satisfies
it by interpreting the test outcome in the opposite way.
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The tester needs to determine a testing scheme, comprised of a set of group sizes to be used
(with a group size of one indicating individual testing) and an assignment policy (i.e., a set
of rules that specify how each of the N subjects, each with a given risk estimate, is to be
assigned to one of the mutually exclusive groups in a batch). Our focus is on static testing
schemes in which group sizes and the assignment policy remain the same for each batch.
Such static schemes are highly desirable from an operational perspective: Testing facilities
may not be able to modify group sizes for each batch, or doing so may incur high set-up
cost /time; hence, static policies can reduce the operational complexity considerably. We also
consider the practical restriction that the tester is able to use a maximum of v “distinct”
group sizes, for some given v € Z™; this may be due to the capability of the testing machine,

or due to the set up needed to configure the testing machine for the different group sizes.

Then, the risk-based testing problem is to determine an optimal static testing scheme,
i.e., a set of group sizes and an assignment policy, under uncertainty on both the estimated
risk vector, P, and the perturbation vector, =. We represent the decision variables as a
collection of mutually exclusive sets, Q = (€;)i=1,... 4, for some g € ZT, such that J?_, ; =
S,and ;NQ; =0, foralli,j =1,---,g: 7 # j. Letting n; = |€;| denote the cardinality (size)
of set Q;,i=1,---,g, we refer to the corresponding vector, n = (n;)i=1,.. 4 : »_.n; = N, as
the group size vector. Thus, set €); is the index set of subjects assigned to group i, where
a subject’s index is determined based on the risk-ordered set, S, that is, index m denotes
the m™ order statistic for a sample of size N. To represent the constraint on the maximum
number of distinct group sizes allowable in any testing scheme, let y;, 7 = 1,--- , N, equal
1 if at least one group of size j is utilized, and 0 otherwise, that is, for a given 2, and
Vj=1,---,N, y; =1 only if there exists at least one group ¢,2 =1, --- , g, such that n, = j.

Then, letting

N
120=> v, (5.1)
=1
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we have that ||Q]] <.

In this setting, the risk vector, p, for each subject in a batch is estimated, and testing is con-
ducted following the assignment indicated by €2, via groups of sizes n = (1;)i=1,... g: > ;i =
N. The objective is to minimize a function of misclassification and testing costs. To express

the objective function, we define the following random variables.

For any testing scheme given by Q, let F'N;(€2;), F P;(€;), and T;(£2;) respectively denote the
number of false negative classifications, number of false positive classifications, and number

of tests performed for group i, Vi. Then, we have that:

meQ; me);
1, it ny =1

where 1(€2;) = 1, if the test outcome for group i is positive, and 0 otherwise. Then, the total
number of false negative classifications, false positive classifications, and tests performed for

the set of N subjects under a given testing scheme, €2, follow:

g g g
FN(Q) :ZFNi(Qi)> FP($) :ZFPi(Qi)a and T'(£2) :ZTz(Qz)
i=1 i=1 i=1
Using these expressions, the total cost for group 7,7 = 1,--- , g, and the total cost for the set

of N subjects can be respectively written as:

Qi(%) = MFN,(Q) + MFP(Q) + (1 — A — A)TH(), and (5.2)

Z Qi() = Z [AlFNi(Qi) + M F P () (1 — Ay — A2)E(Qi)]7 (5.3)
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where A = (A1, A2) € [0,1]2 : A\; + Ay < 1, denotes a normalized weight (cost) vector. In
practice, the cost of a false negative classification is typically much higher than the cost
of a false positive classification: While false positives are often detected during subsequent
confirmatory testing, false negatives may lead to a missed diagnosis, and hence to potentially

severe negative outcomes. We discuss the choice of weight parameters in Section 5.5.

To simplify the subsequent notation, we drop the arguments in parentheses when clear from

the context. All mathematical proofs can be found in the Appendix.

5.3 Optimization Models and the Objective Function

We first present, in Section 5.3.1, expectation-based and robust formulations of the decision
problem. Then, in Section 5.3.2, we provide analytical expressions of the various performance

measures that contribute to the objective function.

5.3.1 Optimization Models

We use two different approaches for formulating the decision problem: (i) an expectation-
based optimization model (EM) in which the objective is to minimize the expected value
(under uncertainty over both P and E) of the objective function, and (ii) a robust opti-
mization model (RM) in which the objective is to minimize the expected worst-case value
of the objective function, that is, for each possible realization of the estimated risk vector,
13, we determine a realization of the error vector, &, that provides the worst-case objective
function value, and we minimize the expected worst-case value (under uncertainty over 15)

of the objective function.
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Expectation-based Optimization Model (Problem EM):

minimize Es [IEE [E[Q(Q) =, 15]”

Q:(Qi)izl,m,g,QGZﬁ
subject to Q,NQ; =0, Vi,j=1,--- g i#] (5.4)
9
U@i={1--.N} (5.5)
i=1

12]] <, (5.6)

where Q(€2) is as defined in Eq. (5.3), v € Z" represents the maximum number of distinct

group sizes allowed, and the operator || - || is as defined in Eq. (5.1).

The following property provides an equivalent expression of the EM objective function, and

we use it throughout the chapter.

Property 5.1. Problem EM can be equivalently formulated as follows:

o B, Bp[EQVIE = 0.7

subject to  (5.4),(5.5), (5.6).

Problem EM is challenging due to two main reasons: First, the problem, of determining an
optimal testing scheme, €2, that minimizes the objective function reduces to a partitioning
problem, which is N P-hard [36]. Hence, for realistic problem sizes in which the number of
subjects in each batch, IV, is typically in the order of hundreds, the problem quickly becomes
computationally expensive. Second, the objective function is non-linear and non-separable,
and further, even the evaluation of the objective function for a given solution, €2, poses some

difficulty, as it requires the computation of higher-dimensional integrations (see Sections
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5.3.2 and 5.4.1).

We next formulate the robust optimization problem: Under uncertainty on the estimated
risk vector, 15, the tester determines a “robust” static testing scheme that would perform
well under most perturbations to a realized vector, p. For this purpose, we consider a mini-
max (worst-case) type objective function, commonly adopted in the robust optimization
literature, e.g., [17,57,103,110]. Specifically, the objective is to determine a robust static
testing scheme that minimizes the worst-case cost, which, for a given realization of the
estimated risk vector p, and a given testing scheme, is attained by a realization of the error
vector, E, that maximizes the objective function. Then, the goal is to determine a static

testing scheme that minimizes the expectation (under uncertainty over P) of the worst-case

cost. The formulation of the robust optimization problem follows:

Robust Optimization Model (RM):

inimi Es[Q*(Q)| P
qninimize - E5[Q"(Q)|P]

(5.8)
subject to  (5.4),(5.5), (5.6),
where Q*(2)|P is the optimal solution to the following stage 2 problem:
Q*(Q)|P = maximize E[Q(Q)|E = ¢, P]
(5.9)

subject to —0<E" <4, VYm=1,---,N.

We denote the optimal solution to the stage 2 problem by fm*(Q)|15, form=1,---,N.

Remark 5.1. When 6 =0, i.e., when P = 13, Problem RM reduces to Problem EM.
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Problem RM suffers from all the difficulties stated for Problem EM; in addition, Problem
RM faces yet another challenge: Since P is a continuous random vector with an uncountable
sample space, to evaluate the expectation in the objective function of (5.8), one needs to solve
an infinite number of optimization problems in stage 2 (i.e., (5.9)), to obtain Q*(£2)| P, one
for each possible realization of P. In the subsequent sections, we characterize key properties

of Problem RM that will enable us to solve it to optimality.

While a worst-case objective function, similar to the one used in Problem RM, is a con-
servative measure, e.g., [17,49,103], one might reduce the value of ¢ in order to reduce the
conservativeness of the solution. Further, we show, in the numerical study of Section 5.5,
that the price of robustness, i.e., the relative increase in the objective function value under
the optimal robust solution (solution to RM) compared to the optimal expectation-based

solution (solution to EM), is low in our setting.

5.3.2 The Objective Function

The objective function is a function of the expected number of false negatives, false positives,
and tests. In the following, we provide analytical expressions on each of these performance
measures, extending those in [5] to the case where the true risk vector is stochastic and not

perfectly observable. We refer the interested reader to [5] for derivation details.

False Negative Classifications: In individual testing, a true-positive subject is falsely
classified as negative if the test outcome is negative, whereas in group testing, a true-positive
subject is falsely classified as negative if: (i) the group test outcome is negative, or (ii)
the group test outcome is positive and the subject’s subsequent individual test outcome is

negative. Then, conditioned on the estimated risk vector, P, and the perturbation vector,
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p—

=, we can write, for a given €2:

(1—Se) > (P =Zm), ifn; =1,
E[FN:()|E, P]

(5.10)

and E[FN(Q ZE [FN;(Q)|=, P.

False Positive Classifications: In individual testing, a true-negative subject is falsely
classified as positive if the test outcome is positive, whereas in group testing, a true-negative
subject is falsely classified as positive if the group test outcome is positive and the subject’s
subsequent individual test outcome is positive. Then, conditioned on the estimated risk

vector, P, and the perturbation vector, E, we can write, for a given £2:

(

(1=Sp) Y (1—t(P™,=m)), if n; = 1,

me;

E[FP()|E, P] = (1-5p)Se S (1—t(P0™,=m))

me;

—n;(1 — Sp)(Se+ Sp — 1) [T neq, (1 - t(p(m), =m)), otherwise,

(5.11)

and E[FP(Q)|2, P] =) E[FP,(Q)|E, P].

Number of Tests: In individual testing, the number of tests per subject is always one,
whereas in group testing, the number of tests depends on the outcome of the group test:

if the group test outcome is negative, then only one test is performed for the entire group,
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and if the group test outcome is positive, then an additional individual test is performed
for each subject in the group. Then, conditioned on the estimated risk vector, 15, and the

perturbation vector, Z, we can write, for a given 2:

L if n; = 1,

E[T:(%)|E, P] = 3
1+n; | Se—(Se+Sp—1) H (1—t(P(m),Em)) , otherwise.

mEQ,-

(5.12)

Then, for a given weight vector, A, and a testing scheme, €2, one needs to use the law of
total probability to compute the objective functions for each of EM and RM (see Eq.s
(5.2) and (5.3) and the formulations in (5.7)—(5.9)). This, however, requires computations
of higher-dimensional integrations (up to N-fold), as we discuss in detail in Section 5.4.1.
Moreover, the multiplicative nature of the expressions in Eq.s (5.11) and (5.12) substantially
complicates the analysis, as the contribution of a subject to the objective function depends

on the set of subjects it is grouped with.

Notice that special cases of the objective function in Eq. (5.3) correspond to the minimization
of the expected number of false negative classifications only (A = (1,0)), expected number of
false positive classifications only (A = (0, 1)), and expected number of tests only (A = (0,0));
the last case is the case most extensively studied in the literature (e.g., [46,75,96,109]), as
discussed in Section 5.1. Thus, EM and RM formulations provide a contribution to the
literature by incorporating the classification accuracy into the optimization framework, and

by considering a robust formulation.
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5.4 Structural Properties and Algorithms

Recall that in its current form, Problem RM is intractable, as it requires solutions to an
infinite number of optimization problems in stage 2 (see (5.9)), one for each possible real-
ization of the risk vector, P, which is continuous. Thus, in what follows, we first provide
an equivalent formulation for RM. Interestingly, this result also implies that Problems EM
and RM both reduce to an optimization problem with a common structure. Then, in the
remainder of this section, we exploit this common structure to develop structural properties

and effective solution algorithms for both EM and RM.

5.4.1 Equivalent Formulations for EM and RM

The following result is essential, as it reduces Problem RM from an intractable problem to

a problem that is only as difficult as EM.

Theorem 5.1.

1. For all Q and P, there exists an optimal solution to (5.9) such that €™*(Q)|P equals

either —6 or d, for allm=1,---,N.

2. If M (1 — Se) > Xy(1 — Sp), then for all 2 and P, there exists an optimal solution to
(5.9) such that Sm*(Q)|15 equals &, for allm=1,---  N.

The condition imposed in the second part of Theorem 5.1 is realistic, as the weight (cost) of
a false negative in the objective function, i.e., Ay, is typically much larger than the weight
(cost) of a false positive, i.e., Ao, as discussed in Section 5.2. As such, in the remainder of

the chapter, we assume that the condition, A\;(1 — Se) > A2(1 — Sp), is satisfied.
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Corollary 5.1. If \;(1 — Se) > Ao(1 — Sp), then Problem RM reduces to the following
optimization problem:

minimize E5 [E N)E =4, P ]
Q=(Q4)i=1,... .9, geZt P [Q( )| } (5.13)

subject to  (5.4), (5.5), (5.6).

Theorem 5.1 is significant, as it eliminates the need to solve an infinite number of optimization
problems in (5.9) to determine an optimal solution to RM, and reduces the two-stage robust
formulation in (5.8)-(5.9) to a single-stage optimization problem. Moreover, notice that the
equivalent formulations for Problems EM and RM, provided respectively in (5.7) and (5.13)
(Property 5.1 and Corollary 5.1), have a common structure, in that the random perturbation
vector, Z, is reduced to a constant vector in both cases: in EM, E = 0, and in RM, E = 4.

Hence, both EM and RM reduce to the following form of an optimization problem:

Common-form Optimization Model (CM)

minimize Ep []E [QQ)|E = =, PH

Q=(Q;)i=1,- g, gELT

subject to Q;NQ; =0, Vi,j=1,---,g:1F#
(5.14)

g
Uai={1-- N}
=1

1€2[] <,

where z is a constant vector, which equals 0 for EM and 6 for RM, and the objective

function is given by:
b b b _
[ ] ElQ@E=2P =550 . poo @ 75
prl
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E[Q(Q)|E = 2, P] = ME[FN(Q)|E = 2, P] + ME[FP(Q)|E = 2z, P] + (1 - A — M)E[T(Q)[E = 2, P],

and E[FN(Q)|E = z,P], E[FP(Q)|E = 2, P|, and E[T(Q)|E = z, P] are given by
Eq.s (5.10), (5.11), and (5.12), respectively, and fza) . g (.) denotes the joint probability

density function of the ordered random variables PV, P@) ... pW),

As stated earlier, Problem CM is challenging due to two main reasons: First, it is at least
as hard as the partitioning problem, which is N P-hard [36]; and second, the evaluation of
the objective function for a given solution, €2, requires the computation of up to N-fold
integrations, which are computationally expensive. Therefore, in this section, we explore

important structural properties of CM. Towards this end, consider the following definition.

Definition 5.1. A testing scheme, 2 = (Qi)i:h”’g, for some g = 1,---, N, is said to
be an ordered testing scheme if it follows the ordered set S = {1,2,---, N}, that is, ; =
{1, n}, Qe={n1+1,- ,ni+ng}, -+ ,Q, = {Zf;llni—l—l,--- , N}, where n; € Z*1,i =
1,---,g,and Y7 n; = N.

By this definition, an ordered testing scheme 2 = <Q7’)Z can be equivalently expressed in
terms of the group size vector, n = (n;);, as groups are constructed (i.e., subjects in each

batch are assigned to groups) following the risk-ordered set, S.
Our main results for CM are given in Theorems 5.2, 5.3, and 5.4.

Theorem 5.2. For all N € Z* and v € Z*, there exists an optimal solution to CM in

which the testing scheme is an ordered testing scheme.

By Theorem 5.2, to determine an optimal risk-based testing solution, it is sufficient to
consider the ordered testing schemes. This result is important in two ways: First, it allows

us to reformulate Problem CM as a Constrained-Shortest Path (C-SP) Problem: While
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C-SP is NP-hard [58], the equivalent C-SP-type formulation enables us to characterize
important structural properties of the risk-based testing problem, allowing us to efficiently
solve the problem for realistic problem sizes. Second, recall that the objective function
in CM includes the expected number of false positive classifications and the number of
tests, and the expressions for each term contains products of some function of a set of order
statistics (see Eq.s (5.11) and (5.12)). However, Theorem 5.2 indicates that these expressions
need to be evaluated for products of functions of consecutive order statistics, and not any
set of order statistics. This result turns out to be very useful, as we are able to exploit
this property in Theorem 5.3 to reduce the higher dimensional (upto N-fold) integrations
required to compute those expectations into 3-fold integrations, substantially improving the

efficiency with which the CM objective function can be evaluated.

As a side note, Theorem 5.2 highlights an additional benefit of optimal static risk-based
testing schemes for practitioners: the tester does not need to evaluate the exact risk of each
subject, rather it is sufficient to determine a risk-ordering of the subjects. This greatly

facilitates the implementation of static risk-based testing schemes.

Theorem 5.3. Consider N iid continuous random variables, each with a continuous prob-
ability density function fx(-), cumulative distribution function Fx(-), and support [a,b]:0 <
a<b<l1 Let X < X® < ... < XN denote the order statistics, and let Ix .. xo ()
and fxo xu(-) respectively represent the joint probability density functions of the ordered
random variables, X < ... < XU and of X < XU 4 < j. Let g(-) denote any

continuous function. Then, for all N >4 andi,7 =1---,N:i < j, we have:
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Theorem 5.3 follows because, by conditioning on the values of the lowest and highest order
statistics, and by exploiting the structure of the integral, we are able to recursively reduce
its dimensionality. In the following, we provide an equivalent, C-SP-type formulation for

CM.

Remark 5.2. For a given y = (y;);=1... n, the problem of finding a feasible decomposition,
Q = (i)i=1,.. 4, that corresponds to vector y, i.e., Vj =1,--- N, y; = 1 only if there exists
at least one i, = 1,---, g, such that n; = j, reduces to a Shortest Path (SP) Problem
defined on an acyclic directed graph G = (V| E'), with vertex set V' = {1,--- | N + 1}, edge

set £ ={(i,j) € V :y;—; = 1}, and edge costs given by:

E

m

{E [Qi(Si—j)

Ep [E[Qi(Si-y)

=0, P”, for Problem EM

b

[0]

=9, IBH, for Problem RM

Theorem 5.2 and Remark 5.2 lead to the following result.
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Theorem 5.4. Problem CM can be equivalently formulated as a C-SP Problem as follows:

minimize Z Es [E [Qi(Si—))|E = =, 13]]:1:”
y=(y;)j=1, N> “=

x=(Tij)(i,5)eE (i.J))EE

(

1, ifi=1
subject to Z Tij — Z Tii=94 -1, ifi=N+1> VieV
JEV >0 JEV j<i
0, otherwise
Z xij S ]_, \V/Z c Vv
JEV >0 (515>
T < Yk, V(k,l) ek (5.15.1)
N
> i<y (5.15.2)
j=1
y< Y mw Vi=1--,N (5.15.3)
(k) EE: I—k=j
y; € {0,1}, Vj=1,--- N (5.15.4)

Lij S {0, 1}, V(Z,j) S E,

where Q;(-) function is as defined in Eq. (5.2); S;i—; = {i,---,7 — 1}, for all (i,5) € E; y;,
j=1---,N,is 1 if a group of size j is utilized, and 0 otherwise; x;;, (i,7) € E, is 1 if
edge (i,7) is selected, i.e., the group, comprised of subjects {i,--- ,j — 1}, is utilized, and 0

otherwise; and z is a constant vector, which equals 0 for EM and § for RM.

In the equivalent CM formulation provided in Theorem 5.4, each path from vertex 1 to

vertex N + 1 in graph G = (V, E') corresponds to an ordered testing scheme.
Remark 5.3.

1. To construct graph G = (V, E) for the CM formulation in Theorem 5.4, one needs

to compute N(N + 1)/2  edge costs, where the cost of each edge (i,j) € E, i.e.,
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E[Q;(Si—;)], requires (j — i)-fold integration. Thus, Theorem 5.3 greatly facilitates
the construction of this graph by allowing all higher-dimensional integrations, with

J —1 >4, to be computed via 3—dimensional integrations.

2. If Constraints (5.15.1)-(5.15.4), which limit the number of allowable distinct group
sizes, are relaxed, then CM reduces to an SP Problem, which, for an acyclic graph,
can be solved in polynomial time via, for example, a topological sorting algorithm in
O(|V]+|E|) = O(N?) [37]. While such an algorithm runs in quadratic time, one must
still construct the graph by computing all edge costs, and Theorem 5.3 substantially

reduces the computational effort required for constructing the graph.

We note here that the total unimodularity property, satisfied for the SP, no longer holds
with the addition of Constraints (5.15.1)-(5.15.4). Nevertheless, in what follows, we show
that the integrality constraint can still be relaxed for a large set of decision variables, while

preserving the integrality of the optimal solution.

Lemma 5.1. The integrality constraint for  in (5.15) can be relazed without loss of opti-

mality.

As a result of Lemma 5.1, integrality constraints are needed only on the y variables, and
hence, the number of binary decision variables in CM grows only linearly with problem size.

Thus, Lemma 5.1 has the potential to drastically improve the computational efficiency.

Next, we provide a structural property for an important special case of Problem CM, which

minimizes the expected number of misclassifications.

Theorem 5.5. Consider the special case of CM with A, Ay € [0,1] : A\ + X2 = 1, i.e., the
objective is to minimize the expected costs of classification errors only. Then, there exists

an optimal testing scheme that is comprised of groups of size one, two, or three only, i.e.,
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ny < 3, equivalently, y; = 0, for j > 4. As such, for v > 3, Constraints (5.15.1)-(5.15.4)

become redundant, and CM reduces to an SP Problem.

In the next section, we utilize the properties developed in this section to determine optimal

testing schemes for our case study, and discuss our findings.

5.5 Case Study: HIV Screening of Blood Donations in

Sub-Saharan Africa

In this section, we perform a case study on the screening of donated blood for HIV in sub-
Saharan Africa, a region that is home to around 60% of the HIV-infected people worldwide,
while containing only 10% of the world’s population [44]. Transfusion with HIV-infected
blood has been a major contributor to this endemic, with over 95% of transfusions with
HIV-infected blood resulting in an infection in the recipient [44]. Consequently, developing
a screening strategy with high classification accuracy and low cost is of utmost importance

in this setting.

Our objectives in this case study are three-fold: (1) To quantify the benefits of risk-based
testing (i.e., EM and RM) over testing schemes that ignore the risk characteristics of the
subjects, i.e., that assume that the population is homogeneous with respect to risk (‘“uni-
form” testing schemes (UM)): such uniform testing schemes, which rely solely on the overall
prevalence rate in the population for testing design and randomly assign subjects to test-
ing groups, are common in the existing literature (e.g., [46,62,86]). (2) To compare the
performance of the robust and expectation-based versions of risk-based testing (solutions
to RM and EM), and to quantify the price of robustness for RM. (3) To compare the

performance of the static risk-based schemes, studied in this chapter, to dynamic risk-based
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Figure 5.1: Probability density functions of P for different support regions ([a,b]) and j
values
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schemes (DM), i.e., testing schemes that are customized (in terms of group sizes and sub-
ject assignment) for each testing batch, based on the specific estimated risk vector for that
particular batch [5]. Of course, due to the additional flexibility, dynamic testing schemes are
expected to outperform static schemes, but this may come at a high operational complex-
ity /cost. Thus, this comparison will shed some light on the degree to which the screening

performance is hindered by restriction to static schemes.

The remainder of this section is organized as follows. In Section 5.5.1, we calibrate our
models and discuss the data sources. Then, in Sections 5.5.2 and 5.5.3, we discuss the

findings from our case study, in terms of the aforementioned objectives.

5.5.1 Model Calibration and Data Sources

We consider a population comprised predominantly of high and low risk subjects. To model
this setting, we assume that subject risk estimates, P, follow a generalized form of the

U-quadratic distribution, with a probability density function given by (see Figure 5.1):
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0, otherwise

with support in [a, b] and parameter 3, and with the first moment given by:

3(b—B)" —(a—
1= By —(a-

)4
)*

E[P] =8+ i (5.17)
5
We use [ as a calibration parameter to match the first moment to the data. Note that when

B = (a+b)/2, the distribution reduces to the U-quadratic distribution.

The HIV prevalence rate in sub-Saharan Africa varies by country, from 2% to 26% [126]; in
this study, we use 15% as a representative prevalence rate for this region. Data on population
risk characteristics in sub-Saharan Africa is limited, hence we set the lower bound of the
support of the estimated risk variable, a, to zero, while exploring a range of upper bound, b,
values in {0.2,0.4,0.6}. For each scenario, we calibrate the parameter 8 to match the first

moment of P (see Eq. (5.17)) to 0.15.

We model the relationship between the true (unobservable) risk, P, and the estimated risk, P,
through a multiplicative model, i.e., P|P,Z = t(P,Z) = P(1+Z), where = ~ Uniform[—d, §],
and ¢, which represents the degree of uncertainty in the estimated risk with respect to the

true risk, is set to 0.667.

On the testing side, we consider the HIV Nucleic Acid Test (NAT), a commonly used screen-
ing test for donated blood that can be conducted on both individual specimens and groups
of specimens collected from multiple donors [78], with a sensitivity of Se = 0.9670 and a
specificity of Sp = 0.9930 [22]. For the objective function, which is comprised of the costs of
misclassification and testing, we set the unit testing cost to $15, as reported in [78]. While

it is difficult to quantify the costs of false positives and false negatives, the most important
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Table 5.1: Performance comparison of UM, EM, and RM

Problem UM
n*=(3(20) E-OF=1.416 W-OF=2.012
Problem EM Problem RM
v n* E-OF W-OF n* E-OF W-OF
a=0,b=06,5=04
1 (5012)) 1.318  1.840 (1(60y) 1.492  1.682
2 (5¢8), 1(209) 1.137 1478 (5(6), L(30) 1.168  1.447
3 (72):4(7), L(18)) 1.126  1.479 (8(1),4(6)> L(28)) 1.155  1.440
4 (94),5¢2),4(6), Lam)) 1124 1.486 (811),5(2),4(3), 130)) 1.161  1.438
5 (91, 6(2),4(),32): 1)) 1.123 1487 (8(1),5(1): 4(3), 3(2)> 1(20)) 1.159 1437
>6 (9(1),6(1),5(2),4(3),3(2), 1(17)) 1.122 1.486 (8(1),5(1),4(3),3(2), 1(29)) 1.159 1.437
a=0,b=04, 3=0226
1 (5012)) 1.320  1.824 (1(60) 1.492  1.682
2 (5¢8) 1(20) 1.104  1.427 (5¢7), 1(25)) 1.110  1.399
3 (92),4(5), 1(22)) 1.093  1.407 (72),4(5), 1 (26)) 1.107  1.389
4 (111, 6(2), 4(ay> 1(21)) 1.089  1.412 (81),5(2),4(1) 1(26)) 1.106  1.387
5 (10(1), 7y, 5(2),4@3)s Leny)  1.088  1.410 (8(1),5(2): 4(3), 3(1)> L(27)) 1113 1.387
>6  (1001),7(1):52),43), L21))  1.088  1.410  (8(1),6(1),5(1):4(3),3(1), 1(26)) 1.105  1.386
a=0,b=0.2, 3=0.067
1 (320) 1.407  1.990 (1(60) 1492 1.682
2 (4¢7),1(32)) 1.364  1.705 (42), 1(52)) 1.401  1.608
3 (7(1):38) L(29)) 1.358  1.720 (5(1),4(1)> Lis1)) 1.392  1.605
>4 (61),4(2),3(5), L(31)) 1.357  1.704 (501),41), 1(51)) 1.392  1.605

consideration in our model is the relationship between these costs and the testing cost. We
assume that if the initial screening test indicates that the subject is positive, then additional
individual confirmatory testing will be performed, as is the case in practice in many coun-
tries [40]. Hence, we set the cost of a false positive to the testing cost of $15. On the other
hand, in donated blood screening, the consequences of a false negative classification are sub-
stantially more severe than a false positive classification, as a false negative may lead to the
contamination of the blood supply, hence to a potential HIV infection in the transfusion re-
cipient. While an accurate estimate of this cost is difficult to obtain, we set the cost of a false

negative to be 55 times the cost of a false positive, as this is in line with published research,
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Figure 5.2: Expected cost (E-OF) (left) and worst-case cost (W-OF) (right) for UM, EM,
and RM, as a function of v when a =0, b=0.6, 5 =0.4
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e.g., [137]. Normalizing these cost parameters leads to Ay = 0.96 and Ay = 0.02 (hence,
1 — A — Ay = 0.02). While these parameter values represent costs in the US, we assume
that, proportionally, they reflect the same trade-offs encountered in sub-Saharan Africa. In
what follows, we illustrate the benefits of our model by considering a testing batch size, N,
of 60. Our extensive numerical study indicates that our model behaves similarly for different

values of N.

For each scenario, characterized by the support of the estimated risk distribution, given by
b, and the maximum number of distinct group sizes allowed, v, we determine the optimal
solutions for Problems UM, EM, and RM. In uniform schemes, generated by UM, the
population is assumed to be homogeneous, i.e., the risk of each subject is the same, and
equals the mean prevalence rate of the population, which is 0.15. For both EM and RM,
we determine an optimal testing scheme that is an ordered testing scheme (see Theorem 5.2).
Thus, for all models, we can represent the testing scheme in terms of its group size vector,
n = (n;);, as in EM and RM groups are constructed (i.e., subjects in each batch are assigned
to groups) following the risk-ordered set, S; and in UM groups are constructed in a random
fashion (i.e., subjects, which are assumed identical, are assigned to groups randomly). To
simplify the presentation of the group size vector, we use the notation z(, to represent y

groups each of size x. We also let E-OF denote the expected cost of a testing scheme, i.e.,
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Ep []E [Q|E =0, IE’H, and W-OF denote the worst-case expected cost of a testing scheme,
ie, Ep []E [Q\E =0, I-Z’H Similarly, we let CE-OF denote the expected cost of a testing
scheme conditioned on a given realization of the estimated risk vector, i.e., E[Q|E =0, 15],
and CW-OF denote the worst-case cost of a testing scheme conditioned on a given realization

of the estimated risk vector, i.e., ]E[Q\E =9, 15}

5.5.2 Risk-based Schemes versus Non Risk-based Schemes

In this section, we compare the performance of EM and RM to non risk-based (uniform)
testing schemes, i.e., solutions to Problem UM, for various scenarios, see Table 5.1. Note
that the performance of UM is identical in all scenarios, as the UM solution is based only
on the mean prevalence rate of the population, which remains constant across the scenarios.
Also observe that for scenarios with v = 1 (i.e., with only one group size allowed), the
optimal group sizes in EM and UM are not necessarily equal (e.g., when b = 0.6 and v = 1,
the single group size in UM is equal to 3, while the single group size in EM is 5). This
difference in group sizes arises due to the ordering of the estimated risk vector in EM, that is,
the optimal group size under a random assignment policy (in UM) differs from the optimal
group size under an ordered assignment policy (in EM). However, when the heterogeneity
of the population reduces (i.e., the support region shrinks, e.g., the scenario with b = 0.2),
the optimal group sizes in EM and UM converge. Also observe that when the maximum
number of distinct group sizes exceeds six (i.e., ¥ > 6), no additional benefits are realized in
EM and RM solutions, i.e., the solutions converge to the solution with v = 6 (and in some

scenarios, this convergence happens quicker, i.e., for v > 4); see Table 5.1.

The results in Table 5.1 highlight several important properties. First, both EM and RM

substantially reduce both the expectation and the worst-case of the cost over UM (with
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Figure 5.3: Expected cost (E-OF) (left) and worst-case cost (W-OF) (right) for UM, EM,
and RM, as a function of 6 when a =0, b = 0.6, § = 0.4, and for all v > 6
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the exception of the expected cost for RM when v = 1). For example, when a = 0,
b=0.6, 5= 0.4, and for all v > 6, comparing EM (RM) with UM, we observe substantial
reductions in both the expected cost and the worst-case cost, respectively by 21% (18%) and
26% (29%) over UM. Even for the most restrictive case of v = 1, i.e., with only one group
size allowed, EM still reports reductions in the expected cost, especially for cases when
the support region for the estimated risk is large (i.e., large b values). Also, observe that
both the optimal expected cost (optimal solution to EM) and the worst-case cost (optimal
solution to RM) reduce as v increases, but in both cases, the reductions exhibit diminishing
returns, with a substantial reduction occurring when ~ increases from one to two, and with
all subsequent reductions being much smaller in magnitude (see Figure 5.2). This finding
has important implications, as schemes with only two group sizes are easier to implement in

practice, making them especially appealing to practitioners.

Next, we study how the testing performance varies with the degree of uncertainty in the
estimated risk with respect to the true risk, §. For this purpose, we conduct a sensitivity
analysis on 0 and obtain UM, EM, and RM optimal solutions for various § values in
{0,0.1,0.2,0.3,0.4,0.5,0.6, 0.667}; see Figure 5.3 for the case with a = 0, b = 0.6, § = 0.4,
and for all v > 6, that is, the case where there is effectively no limit on the number of

distinct group sizes (see our discussion above). Our results indicate that both EM and RM
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Figure 5.4: Conditional expected cost (CE-OF) as a function of the conditional worst-case
cost (CW-OF) for UM, EM, and RM, when a =0, b = 0.6, § = 0.4, and for all v > 6
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substantially improve both objective functions over UM for all values of 9.

Next, we compare the costs incurred in EM and RM solutions so as to quantify the price of
robustness and analyze the trade-off in the expected classification accuracy versus robustness.
For this purpose, we analyze the distributions of CE-OF versus CW-OF generated by UM,
EM, and RM testing schemes. In particular, we use the optimal solutions for UM, EM,
and RM within a Monte Carlo simulation with 10,000 replications. In each replication, a
random realization of the estimated risk vector is generated following the distribution in
Eq. (5.16), the estimated risk vector is perturbed randomly according to the aforementioned
multiplicative model (see Section 5.5.1), and the resulting expected and worst-case costs
under each testing scheme are computed. Figure 5.4 plots CW-OF versus CE-OF for all
replications for the scenario where a = 0, b = 0.6, 5 = 0.4, and for all v > 6. (Similar results

have been obtained for the other scenarios.)

RM solution has the smallest range for both the objective function value and the worst-
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Figure 5.5: Histogram of the expected cost (E-OF) for EM and DM, when a = 0, b = 0.6,
B =0.4, and for all ¥ > 6
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case value, marked by the range rectangles in Figure 5.4. A smaller range represents a
more “robust” solution, one that is less sensitive to perturbations in the estimated risk
vector. Specifically, RM reduces the range of the expected cost by 53% over UM and 25%
over EM, and also reduces the range of the worst-case cost by 45% over UM and 22%
over EM. Moreover, RM solution leads to substantial reductions in the variability of both
performance metrics: RM reduces the variance of the expected cost by 81% over UM and
42% over EM, and reduces the variance of the worst-case cost by 76% over UM and 38%
over EM. Further, RM reports only a 3% increase in the expected cost over EM, leading
to a price of robustness of around 3%. Depending on the setting, the added benefits of a

robust solution may outweigh this slight increase in the expected cost.

5.5.3 Static Schemes versus Dynamic Schemes

Having quantified the value of risk-based testing, in this section we compare the performance

of the static EM model to dynamic risk-based schemes DM [5], in which the decision-maker
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customizes the testing scheme to each batch, that is, in DM, the decision-maker first observes
the estimated risk vector for the batch, and then optimizes accordingly. The DM testing
scheme will outperform the EM scheme, but we want to quantify the degree to which the
testing performance is affected by using a static scheme. Towards this end, we perform a
Monte Carlo simulation with 10,000 replications. While the optimal static EM solution is
computed only once, prior to the simulations (as in the previous section), an optimal DM
solution is computed for each batch, that is, in each replication, a random realization of the
estimated risk vector for a batch is generated following the distribution in Eq. (5.16), the
optimal DM solution is determined for this specific estimated risk vector, and the resulting
expected costs are computed for the optimal EM and DM solutions. Figure 5.5 depicts
the histogram of the expected cost for EM and DM for the scenario with a = 0, b = 0.6,

B = 0.4, and for all v > 6.

Figure 5.5 (and other numerical studies) lead to an interesting finding. In particular, the two
histograms almost completely overlap, with only a miniscule difference between the expected
costs under EM and DM in fact, EM and DM costs are within only 1% of each other. This
implies that a static risk-based testing scheme captures most benefits of dynamic risk-based

testing, while greatly simplifying the implementation.

5.6 Conclusions and Suggestions for Future Research

We develop novel models for determining optimal static risk-based Dorfman testing schemes
under imperfectly observable subject risk, with the objective of accurately and efficiently
classifying a set of subjects as positive or negative for a binary characteristic. Our models
take into account important test and population level characteristics, and generate easily

implementable risk-based testing schemes. While these problems can be modeled as par-
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titioning problems, we derive various key structural properties of their optimal solutions
and reduce them into network flow problems; this allows us to obtain optimal risk-based
testing schemes for realistic problem sizes. Further, our novel expression on the expected
value of the product of a function of a set of consecutive order statistics enables us to sub-
stantially improve the efficiency with which the corresponding graph can be constructed.
We also explore a novel robust formulation, an important special case of which we are able
to solve to optimality. Our case study, on HIV blood donation screening in sub-Saharan
Africa, demonstrates the effectiveness of static risk-based testing schemes, which substan-
tially reduce the costs of misclassification and testing over current screening practices, while

significantly improving the robustness of the solution.

There are several important extensions of this research effort. We consider a purely static
testing scheme, comprised of group sizes and a subject assignment policy that is used repet-
itively for each testing batch. One might consider various partially dynamic testing schemes
in which some components of the testing scheme may be customized for the specific batch.
Further research directions may include improving the realism of the model. For example,
in certain settings, the sensitivity of the test may reduce as the group size increases. This
is known as the dilution effect, and it is an interesting future research direction to model
the test sensitivity as a function of the group size. One can also expand this work to con-
sider other group testing schemes, such as multi-stage hierarchical schemes or schemes that
take advantage of overlapping groups (e.g., array-based grouping schemes [86]). While such
schemes may be more complicated to implement, they have the potential to outperform
Dorfman testing schemes, and the complexity versus benefit trade-off needs to be studied.
Finally, a promising research direction is to utilize group testing for the purpose of risk esti-
mation, where important research questions arise on how the population should be clustered

into different risk groups (sub-populations) and what risk value should be assigned to each
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of these sub-populations.

We hope that this work, which indicates that the benefits of static risk-based group testing
schemes can be substantial, encourages academicians and practitioners to further study static

risk-based testing schemes.
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Chapter 6

Conclusions and Future Research

Directions

Incorporating the heterogeneity of the population into the modeling framework to design risk-
based testing schemes is of utmost importance for testing facilities, as substantial benefits
can be observed by taking into account such additional information. This is evident by
our extensive numerical analysis, which demonstrate the value of optimal risk-based testing
designs, which are shown to be less expensive, more accurate, more equitable, and more

robust than current screening practices.

In Chapter 2, we derive analytical expressions for various performance metrics (the residual
risk, expected waste, and expected number of tests) that are essential for assay selection
in blood screening, while explicitly considering the joint impact of dilution, imperfect tests,
in-sample variability, and re-testing possibility. Our model expands upon the earlier works
on pooled testing and provides accurate estimates, which can be used within a cost-based

framework for decision-making on blood screening strategies.
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In Chapter 3, we propose and study a three-tier adaptive risk-based array pooling scheme
that incorporates imperfect tests, the dilution effect of pooling, and the risk profile of sub-
jects. Our analytical results that consider a general form of the sensitivity function offer valu-
able insights on the structural properties of an optimal assignment solution, while our case
study demonstrates the effectiveness and power of an adaptive risk-based pooling scheme,
with the expected number of false classifications reduced substantially over the previous
models proposed in the literature. Our findings underscore the importance of taking into
account population level characteristics, as failing to do so can lead to pooling schemes with
a high probability of misclassification. Our model has the potential to make a substantial
positive societal impact by reducing misclassification for important infections, such as the

chlamydia infection that is considered in the case study.

In Chapter 4, we study the problem of designing an optimal risk-based Dorfman testing
scheme to accurately and equitably classify a set of subjects in an efficient manner, while
taking into account imperfect tests. Our analytical results enable us to reduce the N P-hard
partitioning problems into an SP problem (for SM) or a constrained-SP problem (for BM).
Further, for special cases of BM, we develop highly efficient algorithms that exploit the
structure of the problem and that are able to solve the constrained-SP problem in polyno-
mial time. Our case study demonstrates the effectiveness of risk-based testing, producing
solutions that substantially reduce all performance measures when compared to static, non-
risk based models. Our findings highlight the importance of incorporating subject-specific
risk characteristics into the modeling framework, as failing to do so can lead to higher clas-

sification errors and more costly and less equitable testing schemes.

In Chapter 5, we develop novel models for determining optimal static risk-based Dorfman
testing schemes under imperfectly observable subject risk, with the objective of accurately

and efficiently classifying a set of subjects as positive or negative for a binary character-
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istic. Our models take into account important test and population level characteristics,
and generate easily implementable risk-based testing schemes. While these problems can
be modeled as partitioning problems, we derive various key structural properties of their
optimal solutions and reduce them into network flow problems; this allows us to obtain op-
timal risk-based testing schemes for realistic problem sizes. Further, our novel expression
on the expected value of the product of a function of a set of consecutive order statistics
enables us to substantially improve the efficiency with which the corresponding graph can
be constructed. We also explore a novel robust formulation, an important special case of
which we are able to solve to optimality. Our case study, on HIV blood donation screening
in sub-Saharan Africa, demonstrates the effectiveness of static risk-based testing schemes,
which substantially reduce the costs of misclassification and testing over current screening

practices, while significantly improving the robustness of the solution.

There are several important extensions of this research effort. We consider a purely static
testing scheme, comprised of group sizes and a subject assignment policy that is used repet-
itively for each testing batch. One might consider various partially dynamic testing schemes
in which some components of the testing scheme may be customized for the specific batch.
Further research directions may include improving the realism of the model. For example,
in certain settings, the sensitivity of the test may reduce as the group size increases. This is
known as the dilution effect, and it is an interesting future research direction to model the
test sensitivity as a function of the group size. Our analysis also depends on the assumption
that test outcomes performed on the same subject are conditionally independent, given the
actual positivity status of the subject. This assumption does not always hold in practice,
especially for infection screening tests that measure infection-related bio-markers, because if
a subject is infected with the infection in question, then concentrations of various infection-

related bio-markers will be higher than infection-free subjects, and tests that measure the
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related bio-markers will have a tendency to produce positive test outcomes. Relaxing such
assumptions on the test’s sensitivity and specificity will increase model realism, and may

produce better testing schemes.

Another possible future research direction is to consider other group testing schemes, such
as multi-stage hierarchical schemes. While such schemes may be more complicated to imple-
ment, they have the potential to outperform Dorfman testing schemes, and the complexity
versus benefit trade-off needs to be studied. Finally, a promising research direction is to
utilize group testing for the purpose of risk estimation, where important research questions
arise on how the population should be clustered into different risk groups (sub-populations)

and what risk value should be assigned to each of these sub-populations.

We hope that this work, which indicates that the benefits of risk-based group testing schemes
can be substantial, encourages academicians and practitioners to further study risk-based

testing schemes.
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Appendix A

Appendix for Chapter 2

A.1 Simulation Results when Modeling Assumptions

are Relaxed

We perform several Monte Carlo simulations to study the impact of various modeling as-
sumptions on the performance metrics. For each simulation study, we perform 45,000,000

replications and construct the 95% confidence intervals for each performance metric.

Impact of Assumptions 2.1 and 2.2: Assumption 1 is relaxed by considering the viral
load of a non window-period donor to be a constant, which equals the viral load at the
end of the window period, i.e., the viral load that achieves a sensitivity of 0.999 for a pool
size of Mz, see Section 2.2.1. Thus, infected non window-period samples have a non-
zero probability of falsely testing negative (i.e., test sensitivity is no longer perfect for non
window-period donors). On the other hand, Assumption 2.2 is relaxed by allowing multiple

infected samples to be present in a pool.
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Relaxing Assumptions 2.1 and 2.2 impacts each performance metrics differently. For exam-
ple, relaxing Assumption 2.1 increases the residual risk, since infected non window-period
samples now have a non-zero probability of being falsely declared as infection-free. On the
other hand, relaxing Assumption 2.2 reduces the residual risk, since a larger number of in-
fections within a pool increases the probability of detection (countering the dilution effect).
Similarly, while relaxing Assumption 2.1 reduces the probability that the master pool fails,
hence leading to a reduction in both the expected number of tests and expected waste,

relaxing Assumption 2.2 has the exact opposite effect on these two measures.

Our simulation study indicates that the impact of Assumptions 2.1 and 2.2 is minor: for
instance, when only Assumption 2.1 is relaxed, 96% of the analytical results fall within the
confidence intervals of the simulation results; and this number becomes 92% when both

Assumptions 2.1 and 2.2 are relaxed.

Impact of the distribution of the donation time, D: To study the impact of the
distribution of the donation time, D, we perform another simulation study in which we model
D as a triangular distribution with the same mean (7/2) and support in [0, 7]. The triangular
distribution is often used under limited information [121]. The simulation results indicate
that the distribution of D has a major impact on the performance metrics, especially on
the residual risk. However, under no additional information on donation times, the uniform

distribution is a good choice.

Impact of the distribution of the viral load, L: Lastly, we perform a simulation study
in which the viral load (conditional upon D) follows a Poisson distribution (similar to [139]).
Our results reveal only slight differences in all three performance metrics, suggesting that,
under our data set, the choice of the distribution of L does not have a significant impact.
Similarly, when A is replaced by p (i.e., when L grows deterministically) we also observe

minor differences in all performance metrics.

172



A.2 Derivations of the Performance Metrics

A.2.1 Residual Risk

No re-testing (N R): Substituting

P(E=(n,ny,m)| AT (m),D < tu, L) = P(T™(m)|A%(m), D < £, L),

RNE directly follows from Eq. (2.12).

Pooled re-testing and individual re-testing (PR and I R): Substituting

P(F~(ny,n2,m)|A*(n1),D < ty, L) = 1=P(T"(n1)|A*(m), D < ty, L)
x (1 - (P(T_(n2)|A+(n1),D < tw,L)>m>,
where ny respectively equals ny for PR and 1 for IR, RP% and R'" directly follow from Eq.
(2.12).

Array-based testing (AR): We have:

P(F=AR(n1,nz,m) | A* (n1),D<tu,L) =1 P (T* (n1)| A* (n1), D<tw, L) P(T* (nz,m) | 4* (1), D<t L), (A1)

2
where P(T*(ng,m)|A*(n1), D < t,,L) = (1 . (P(T—(, /i) AT (1), D < t, L)) ) ,
since the re-test fails only if both the row pool and the column pool containing the infected
window-period sample fail at least once during the m re-tests. Then, substituting Eq. (A.1)

in Eq. (2.12) leads to the expression for RA%.
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A.2.2 Expected Waste

No re-testing (IVR): We have that:

P(A_(nl),F+NR(n1,n2,m)) :P<T+(n1)|A_(n1))P(A_(n1)) =(1- Sp)P(A_(nl)),

P(A+(n1)7F+NR(n1,n2,m)) :P(A+(n1),T+(n1)) = P(T+(n1)|A+(n1))P(A+(n1)).

Noting that

P(T*(n1)|A*(ny)) = P(T*(n1)|A*(n1), D < t) P(D < ty|A* (1)) + P(D > t,|A* (1)),

and substituting the expressions in Eq.s (2.5) and (2.6) into Eq. (2.13) provides the result.

Pooled re-testing (PR): We have that:

P(A_(nl),F+PR(n1,n2, ) P

)’ T+(n27 m))a

(A~ (n
P(A™(n ) ( F(n)|A™(m)) P(T* (g, m)|T (1), A™ (1)),
(A~ (n1))(1 = Sp)(1 — Sp™), (A.2)

P(A"(m1))P(D < ty| AT (m)) P (T (n1), T (n2,m)| A" (m1), D < t,)

P

P(A*(m), FtP%(ny,na, m))

+ P(T*(n1),T* (n2,m)|A*(n1), D > t,,) P(A" (n1)) P(D > t,|A* (n1)),
—P(A* (1)) P(D < t | A*(n))) /0 P(T*(m)|A*(m), D < . L = 1)
< (1= (PO la* ). D < 1o =0) ") o0

+ P(AT(n1))P(D > t,|AT(m1)). (A.3)

Substituting Eq.s (A.2)-(A.3) into Eq. (2.13) provides the result.

Individual re-testing (/R): Substituting P (T (ny)|A*(n;)), derived in Section 2.2.2, into

174



Eq. (2.14) provides the result.

Array-based re-testing (AR): We have:

EWAR] =E[WA%|A*(ny), D > t,,| P(AT(n1), D > t,,)
+E[WAH AT (ny), D < t,] P(AT(n1), D < t,,)

+ E[WAR| A~ (n,)] P(A™ (n)). (A.4)

For the analysis of the first two cases (i.e., (A" (n1),D > t,,) and (A" (n1), D < t,,)), assume,
without loss of generality, that the infected sample is placed at the intersection of row ¢ and
column j in the matrix for some é,j € {1,2,---,/n1}. We refer to a sample as an intersection
sample if both its corresponding row pool and column pool have failed in the second stage.
Per our decision rule, all intersection samples are discarded. In what follows, we present

only the first case in detail, as the derivation of the other cases follow similarly.

Case 1: Event (A*(n1),D > t,): If event (A*(ny),D > t,) occurs, that is, the master
pool contains one infected sample that is outside of the window period, then by Assumption
(A1) the master pool will fail with probability one, that is, P(T"(ny)|A"(n1), D > t,) = 1.
Similarly, in the second stage, both row ¢ and column j will fail with probability one (by
Assumption (A1)). Let N5 and N3.# respectively denote the additional number of column
pools and number of row pools that fail in the second stage (i.e., that produce a positive test
outcome at least once in the m re-tests). Then, N5\F and N each follow an independent and
identical binomial distribution with <\/n_1 —1, ( 1— Spm)> . Hence, the number of intersection
samples equals (1+ N4E)(1+ N3F), of which the infected sample will be correctly discarded
and the remaining intersection samples will be wasted (falsely discarded); Figure A.1 depicts
an example with N = 3 and NjF = 2 leading to a waste of 4 x 3 — 1 = 11 blood units.

Then:
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Figure A.1: An example illustrating the number of column pools and row pools that have
failed and the corresponding waste in array-based testing

@ Infected sample

O Non-infected sample

EWARAY (m), D > t,] = [1 + (1= Sp™) (/s — 1)]2 -~ (A.5)

Case 2: FEvent (AT(ny), D <t,): If event (AT (ny), D <'t,) occurs, that is, the master pool
contains one infected sample within the window period, we condition on the outcome of the

master pool:

EWAE| AT (ny), D < t,)] = EIWAR| AT (1), D < to, TT(n1)]P(T T (n1)| AT (1), D < t,,) + 0.
(A.6)
Recalling that the infected sample lies at location (4, j) in the matrix, we let random variable
N;; denote the total number of failures for row ¢ and column j (i.e., 2 if both row ¢ and
column j fail, 1 if only one fails, and 0 if none fail), that is, IV;; is binomial with (2, (1 -
(P(T~(/m)|A*(ny), D < tw)’”)). Then:
2

E[WATAY (), D < t, TH(m)] = Y E[WATA* (), D < t,, T (1), Ny = 2]

=0

X P(NU = x|A+(n1),D S tw)7

which utilizes the following expressions, whose derivations follow similarly to those of Case
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E[WAR| AT (n1), D < ty, T (n1), Ny = 2] = [1 + (1 = Sp™) (Vi — 1) — 1,
E[WAHA* (1), D < to, T (n1), Ny = 1] = [(1 = Sp™) (v/n1 — D)][(L+ (1 = Sp™) (v/n1 — 1))],

E[WAR|A* (ny), D < t, T*(ny), Ny = 0] = (1 — Sp™)*(y/n1 — 1),

Case 3: Fvent A~(ny): In case of event A~ (n;), that is, the master pool does not contain

any infected sample, we can write:

E[WAHA™ ()] =E[WHA™ (n1), T (n1), T (n2, m)]| P(T (1) |A” (1)) P(T (2, m)| T (n1), A™ (1))
+E[WARA (1), T (), T (ng, m)] P(T* (m1)| A™ (n2)) (T~ (ng, m)| T (n1), A (m1))
+ E[WARA (1), T (n) | P(T (na) | A (n1))

—ny (1= 5p) (1—p™)*+0+0. (A7)

Finally, substituting Eq.s (A.5), (A.6), and (A.7) in Eq. (A.4) leads to the expression.

A.3 Proof of Lemmas

Proof of Lemma 2.1. Since P(T"(n1)|A"(n1), D < ty, L) > P(T*(n1),T" (n2,m)|A"(n1), D <
tw, L) for all ny,ny,m € Z*, it trivially follows that RN? < RX for X € {PR,IR, AR}. In
addition, P(T~(ny)|A"(ny),D < t,, L) is increasing in ny, which, in turn, implies that

RPE > RIE_TFinally, for n; > 1, we have that:

2

(1 — (P(T™ () A* (m), D < tw,L))m) <1- (P(T" (ym)|A*(m), D < t, 1))

<1-— <P(T—(1)|A+(n1), D < t,, L))m,
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leading to R4%® > R!®. For the second part of the lemma, note that R is a function of m
only through P(F~(ni,no,m)|A%(n1),D < t,,L). Thus, it is sufficient to study how the

latter varies in m. Deriving the partial derivative, one can show that:

é%PQ*Xm%n%mﬂAﬂnQJ)gtwL)SO,VCXG{PRJRMUQ.

Finally, by taking the limit as m — oo, it trivially follows that RX for X € {PR,IR, AR}

tends to RVE, completing the proof. O

Proof of Lemma 2.2. The first set of inequalities trivially hold, since mn; > m > 1 and
2my/ny > m > 1, respectively, for any n; > 1,m > 1. For the second set of inequalities,

note that E[N'F] > E[N4E] & n; > 4, since then mn; > 2m./n;, completing the proof. [

Proof of Lemma 2.3. Since P(T"(ny), T (ny,m), A*(n1)|L) < P(T*(n1), A™(n)|L), it fol-

lows that:

EWYNE|L] = (ny — DP(T*(m), AT (n1)|L) + ni(1 = Sp)P(A™ (1))

> (ng — 1)P(T* (n1), T (n2,m), A" (n1)|L) 4+ na (1 — Sp)(1 — Sp™)P(A™ (1))

= E[WTE|L].

Similarly, we can show that E[WN%] > E[W!f]. To compare the expected waste of the AR

and IR testing schemes, we define the following two terms:

(%) =(v/n1 = 1)(1 = Sp™) [(2(1 — (P(T™ (n2)|A*(n1), D < t, L))’”) + (1 8p™) (Vi — 1))
x P(T*(n1)| A% (ny), D < to, L)P(D < t,|A*(ny))

T (2 +(1—Sp™) (Vi — 1))P(D > tw|A+(”1))]
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(3%) = n1(1 — Sp) (1 — Spm)2

Then, E[WAE|L] = (x)P(A*(n1)) + (3%)P(A~(n1)). We have that:

(%) < (m1 —1)(1 — Spm)<1 — P(D < ty| AT (n1)) P(T™ (m1)|A* (n), D < t, L)),

(%) < ny(1—Sp)(1— Sp™).
Thus,

E[WAF|L] = (%) P(A™(n1)) + (+%) P(A™ (1))
< (m —1)(1— Spm)<1 — P(D < t,|At () P(T (n1)|A* (1), D < tw,L)>P(A+(n1))

+n1(1 = Sp)(1 = Sp™) P(A™ (n1))

=E[W'"|L],
proving that E[WAE] < E[W!E]. To show that E[W %] < E[W!E] we note that if
P(F+PR(n1,n2,m)|T+(n1),A+(n1), D <t,) > (1—Sp™)P(T*(n1)|A"(n1), D < t),
then it can be easily shown that E[WT%] < E[W!f]. However, we have that:

P(T*(n1), T" (n1,m)|T*(m), A" (n1), D < t,),

P(F+PR(n1,n2, m)|T(ny), AT(ny), D < tw)
P(T*(ny,m)|T*(n1), A" (n1), D < ty),
n

(

(
P(T*(ni,m)|A*(n1), D < t,),

(

(

\Y

\Y

P(T*(ny, )|A*(m1), D < t,),

P(T*(m)|AT (), D < t),

>(1—Sp™)P(T*(m)|AT(m), D < ty,).
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As such, since the condition is always satisfied, then E[WTH] < E[W'%]. Finally, for the

second part, it can be shown that:

0
%E[WX] >0, VX € {PR,IR, AR},

which leads to the results shown in the lemma. Taking the limit as m — oo reduces the

expected waste to that of the no re-testing case, completing the proof. O
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Appendix B

Appendix for Chapter 3

B.1 Mathematical Proofs

Throughout, we denote the optimal Tier 1 (Tier 2) assignment by x* (22*)

Proof of Lemma 3.1. By Remark 3.1, when m = 1, E[FN'(x!)|p] becomes independent of
the assignment. For m > 2, suppose that the optimal assignment for the m xn testing matrix
does not follow Assignment RH. Then by Corollary 3.2, there exists a 2 x n sub-matrix,
with rows i; and iy, such that its assignment does not follow RH. Since E[F N (z'*)|p] is

additive across rows, we can write:

E[FN'(z')|p] =) E[FN}(z'")[p]

(2

Il
A

Il
.MS

=1

02

~
[y

where E[F'N}(2'*)] is the Tier 1 expected number of false negatives of row i. Consider an
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assignment, denoted by &', where the subjects in the 2 x n matrix, comprised of rows i,
and iy, are reassigned such that they follow Assignment RH, while the original assignment
of all other rows is maintained. Observe that, for all i # i1, 19, E[FN}!(x'*)] = E[FN}(&')].

Moreover, since Assignment RH is optimal for a 2 x n matrix, Vp, we have:

E[FN;, (&")|p] + E[F N, (2")|p] < E[FN;, (z)|p] + E[FN;, (")|p],

that is, E[FN*(&')|p] < E[FN'(z)|p], implying that there exists an optimal assignment

that follows RH. O

Proof of Lemma 3.2. For all sensitivity functions that satisfy Eq. (3.4), it follows, by defi-

nition, that:

d0*Se(n, k) 2856(71, k)

dSe(n, k)
oz T ok F

0
> =
>0= % Se(n, k) + %

Thus, we get:

k@Se(n, k)

Se(n,k+1) + (k + 1y 22k + D =

ok
ja% [(k +1)Se(n, k + 1) — kSe(n, k)] > 0.

— Se(n, k) — >0

For a given realization ng of Ny, let i = 1,--- I(n,ng). Assuch, i <ng/2 =i <ng—i=

1 — 1 < ng— 1, which gives:

i (1—Se(n,7))+ (ng—1)(1 —Se(n,ng—1)) > (i —1)(1 — Se(n,i — 1)) + (ng — i+ 1)(1 — Se(n,ng — i + 1)).
(B.1)
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Multiplying both sides of Eq. (B.1) by P(N; = n4) and noting that:
E [FN'(z")|(Yi(x")|Na = nq) = 1] =i (1 — Se(n,q)) + (ng — i)(1 — Se(n, ng — 1)),
we obtain a(i,ng) > a(i—1,ng4) for all realizations ng of Ny and for alli = 1,--- , I(n,ng). O

Proof of Theorem 3.1. By Lemma 3.1, it is sufficient to show that Theorem 3.1 holds for a

2 x n matrix. Suppose that the optimal assignment, denoted by x'*, does not follow RH.

Case 1: Ng=n

From Corollary 3.3, we have that:

[n/2]
E[FN'(z'*)|Ny = n]P(Ng =n) = Y _ a(i,n)E[Y;(z")|Ny = n]. (B.2)

i=0
By Corollary 3.2, there exists a subject k, k < n, such that p;; < py; for all j =1,--- k,
and py; > po; for all j =k +1,--- ,n. For a given Tier 1 assignment, &', let P,fl(n}i’r,n?l’r)
(P2, (n},,n3,)) denote the probability that the 2 x k (2 x (n—k)) sub-matrix has n}, and
nflﬂq positive subjects in rows 1 and 2, respectively. By conditioning on the outcome of the

2 X k sub-matrix, we get:

. 1x ..
E[}/Z( 1* |Nd_n = Z Pk ndr?ndr) |:P1? k( ngl,wn_n?l,r_z)—i_Pw k( n}l,r_%z_nz,r) :

Substituting Eq. (B.3) into Eq. (B.2) gives:

[n/2]
* . 1x .
]E[FNI(:BI )|Nd :n] E Pk n}i,rvni,r){ E a(Zan)(Pn k( ndmn*n(QLril)

1=0
”d r ”d r

1% -
+ P =k, — i =3 ,)) .

Observe that for any ng,,n3, pair with ng, > nj,, there exists a symmetric pair. By
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combining these symmetric terms we get:

E[FN'(z)|Ng=n]P(Ng=n)= Y C* (n},,n3,)PE (n},.n3,)
n}lmﬁni,r

1 2
Ng r=Nq,r

1 1% 1% 1%
+ > [ b )P (0l o) + O (03 ond ) PE T (03 om0
1

2
nd,r7nd,7‘
1 2
Mg r>Ng

[n/2]
where Cwl* (ngl,m n?l,r) = Z a’(i7 Tl) |: 73:1;;(2 - n}l,m n— n?l,r - Z) + Péllj;;(n - n}l,r - Z7Z - n?l,r)] :
=0

In what follows, we show that, for n}, > n2,, C*"(n2, ,n}, ) > C*"(n},,n2,). Starting
with C®'"(n},,n2,) and performing a change of variable j =i —n}  +n3, for the first term,
we can write:

[n/2) 403, —nly,
xl* 1 2\ 2 : . 1 2 zl* 2 1 .
C (nd,ﬂ nd,r) - Cl(] + nd,r - nd,r’ n)Pn—k(j - nd,r’ n— nd,r - ])
2 1
I="a,r ",
[n/2]
. xl* 1 . 2
+ 3 ali,n) P20 — b, —ii = n3,).
i=0
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Since n}, > n? . one can split the sums as follows:

C™ (nypng,) = D aling, —ng, )P =g, n—ng
i=n2_—n},
[n/2] +n§’r—ncll -
+ a(i +nj, —ng,,n)Pe(i = nj,,n
=0
[n/2] +n§’r—n}i -
+ Z a(t, n)P:_lZ(n n}“ 1,1 ni,q)
i=0
[n/2]
+ Z a(i,n)P® (n — ny, —ii—nj
i=n/2]+n3 , —ng . +1
Combining terms gives:
[n/2]4nG .~ p
wal* (ncll,w n?l,r) = Z a<i7 n>in—hl;(n - n}l,r — 10— ni,r)

1=0

; 1 2 x> 2
+ a(Z + Napr = N s n)Pn—k(Z — Ny, NN

-1

2.

o 1
=g Ty

a(l + ntll,’r - nz,ﬂ n)Pml

n—

+

Ln/2]

2

i=[n/2| —l—nir—n}i’r—i—l

+

Let

[n/2] +nfm—n}i’r
I = Z [a(i, n)P*" (n — Ny, —i,i

i=0
—1

Iy = Z CL(’Z + ncll,r - n?l,r? n)Pr:LEjZO - n?l,r’ n— nil,r

i=ng . —ng,,

[n/2]

Iz = Z a(i,n)P*(n — Ny, —i,i—ng,).

i=|n/2| +n§’T—n;T—|—1
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nd,r

_7’)7

— i

Z(Z - n?i,’r?n -

2

g

1

o nz,r) + CL(Z + ncll,r - n?l,r? TL)

T

,r)'

P

n

1

—k

= )]

—Z)

(1 — nfm, n—

=)



As such, le*(n}lar,n?”) = Iy + Iys + I»3. Similarly, performing a change of variable j =

; 1 2 xl*( 2 1 Q-
i —ng, +ng, for the second term of C* (ng,,ng,) gives:

[n/2] .

(ni,ﬂ ncll,r) = Z a(i7 n)in—k(Z - n?z,m n— ncll,r - Z)
=0

[n/2] +”3,r_”¢11

1%

C:I:

,T
1x*

+ Z Cl(j + nil,r - n?l,ra n) :—k(n - ncll,r - jaj - n?l,r)'

j:ng,r_nrli,r
Noting that nj, > nj, and splitting the sums gives:

[n/2] +n3’rfn(1im

* . 1 .
Cwl (n?l,r’ ncll,r) = Z a(7’7 n)P;f—k(z - nc2l,7"7 n— ncll,r - Z)
=0
[n/2] )
+ Z CL(i, n)infk(Z o n?l,r? n— ncll,r - Z)

i=|n/2| +n3m 7n(1i’r+1

—1
. 1 ..
+ Z a(Z + né,r - nz,m n) :f; (TL - ncll,r -t n?l,r)

02 1
Z_nd,'r nd,r

L”/2J+"3,T*ném
Z : 1 2 xl* 1 . 2
+ a(Z + Nar — Ng ps n) n—k(n —Ngy — 4,1 — nd,r)‘
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Collecting terms gives:

[n/2] +n3 2N

1
c® *( ?l,rancll,r) -

+ Z a(z + ngl,r - n?l,r? n) nw—12(n - ncll,r
imry
[n/2]
+ > a(i,n) PE7(i = ng,,m

1
d,r

mg

CL(?:, n)an—lZ(l - nz,w n-—

,T

1x

+ CL(Z + nzli,r - nz,m n)Prszk:(n - ncll,r

i=|n/2| +n3yr 7"¢11,r+1

Let

[n/2]+4nf ,—n}
Iy = ali,n) PG

=0
1

I3y = Z a(i + ném — nfm n)Pwi*k(n —nk

i=nj,—ng,

[n/2]

Iyy = > -

i=|n/2] +n§yr—néyr+1

a(i,n)P*" (i — NG, n —

2 1
— Mgy, —

n

.. 2
oLt nd,r)?

ny, —i).

—ny

and

NS

— i

—9).

~n3,)]

— i
2
- nd,r)
al* 1
Pnfk(n - nd,r

Ngr — Z) + CL(Z + ntli,r - nz,w n)

— i

As such, le*(”?z,m ny,) = I3+ Isy + I33. In what follows, we show that Is; > Iz, I3y > Ia,

and ]33 Z 123.

(1) To show 131 Z [21
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We have:

1 < Ln/2J + n?l,r - ncll,r
<n/2+ nz,r —nlk

T

<n/2+4 (nj, —ny,)/2 (since ng, >nj,).

This gives 1 — "?z,r <n-— n}i’r — 1. Now, since py; > pg; foralli =k +1,--- ,n we get:

1%

Py (n —mnyg

n — 10— nz,r) > P;LE—I;;(Z - n?l,rv n-— nzli,r - 7’) (B4)

T

Also, since ny, > nj,, then, by Lemma 3.2, we have that a(i + ng, — nj,,n) — a(i,n) > 0.

Multiplying both sides of Eq. (B.4) by the latter and rearranging gives:

. 1 . . . 1 .o
CL(Z, n>P1ZL;;(Z - n?l,m n— ncll,r - Z) + CL(Z + ncll,r - n?l,r? n)inf’;c(n - né,r — 01— nz,r)

. 1 .. . 1 . .
> CL(Z, n)P:fk(ln’ - ncll,r -t n?l,r) + a(l + né,r - nz,m n) nf»l;(Z - nz,w n— né,r - Z)'

Since this is true for all ¢ < |n/2| +nj, —nj, then summing over all of these terms directly

implies that I3; > I5.

(11) To show 132 Z ]22

We have that nj, —nj, < k <n which implies that (n+nj, —nj,)/2 > 0, but in these cases
we have that i < —1 < (n—ng,+nj,)/2. Assuch, we get that i—nj, < n—ng,—i. Also, since
i = pa for all i = k+1,--- ,nwe get Py (n—ny, —i,i—nj,) > PX(i—ng, n—ny, —i).

Multiplying both sides by a(i + n}“ — nflm, n) > 0 and adding over all cases we get:

-1 -1

. 1 .o . 1 .
Z a(z+ncll,r_n§,r7 n) nm—;;(n_ncll,r_lv Z_nfl,r) > Z CL(Z—’_ncll,r_n?l,r’ TL) :—Z(Z_n?l,ru n—mn

2 1 o2 1
i=nj, —ng., =G T
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which directly gives I35 > I5s.

(111) To show Ig3 Z ]23

Sub-case 1: ny, —ng, <2|n/2] —n+2

In this case we get that (from the imposed condition)
ln/2| + nflﬂ, - ncllm + 1] - nfm >n — n}” — | |n/2] + nzﬂ, — ncll,r + 1].

As such, for all i > [n/2| +nj, —ny, + 1 we have i —nj, >n—nj, —1i, and since p; > pa;
foralli = k+1,---,n we get ijj};(z — nfl,r,n — n}l’r —1i) > Pfi;c(n — n}” — 1,1 — nfl’r).

Multiplying both sides by a(i,n) > 0 and summing over all cases gives I33 > I3.

Sub-case 2: ny, —ng, > 2[n/2] —n+2and n is odd

Under the imposed condition we get:
Ln/QJ + n?l,r - ncll,r +1< n/2 + (n?l,r - ncll,r)/2 < Ln/2J :

Separating the sum in I33 as follows

n/2+(n3m—n}lyr)/2—l

. 1% ., .
I33 = Z CL(’L, TZ) nx—k‘<l - n?i,'r? n-— ntli,’f B Z)
il 2~ +1
/2] 1
+ Z a(i,n) Py, (i — n?l,r’ n— n}lﬂ“ — i)

i:”/2+("3,r_n(li,r)/2+1

+ a(n/2 + (n?l,r - ncll,r)/za Tl) :j;(n/2 - (ncll,r + n?i,r)/zu n/2 - (né,r + ”3,r)/2)7

189



and performing a change of index 7 =n + nfl’r — ném — 1 for the first term gives:

[n/2]
. o1 ..
[33 = Z [a(n—i—nir - n}l,r _Jun)Pnkan’_n}l,r — 7] _n?l,r>
j=n/2+(ng . —ng,)/2+1

. 2%, . o
+ a(]? n)Pnfk(] - nz,w n-— n(%i,r - ]) 1:|

+ a(n/2 + (n?l,r - n}l,r)/Qa n)P:jZ(n/Q - (ncll,r + n?l,r)/Qa n/2 - (ngl,r + nz,r)/2)

Note that upon change of index the upper bound of the sum is equal to n — [n/2] — 1, which
is equal to |n/2] (since n is odd). Upon similar algebraic manipulations, we get:
/2]
1131*

123 = Z |:CL(7”L—|—TL62LT _ncll,r _j) n—k(j _n?lﬂ"n_niliﬁ’ _'7)
=n/2+(nG ,—ng,)/2+1
. wl* 1 . . 2
+ a(]a n)Pn—k’(n —Ngyr —JJ — nd,r)

+a(n/2+ (ng, —nj,)/2,0)PT 5 (n/2 = (nh, +n3,)/2,n/2 — (ny, +nj,)/2).
Comparing the first terms of I33 and o3 (their second terms are equal) we have:
j > n/2 + (”Z,r - ncll,r)/Q +1> 77,/2 + (n?l,r - ncll,r)/2’

which implies both j > n+nJ, —ng,.—jand j—nj, > n—ny, —j. Assuch, by Lemma 3.2,
we get that a(j,n) —a(n+nj, —ng, —j,n) > 0 and P*(j — NG M =Ny, —J) > P* (0 —

ng,—j,j —ng,). Multiplying both sides of the latter with the former and reorganizing gives:

. ol . . wl* /. .
a’(n + nz,r - nil,r -7 n)Pnfk<n - n}l,r —5J— n?l,r) + CL(], n)Pnfk(j - n?l,r? n— né,r - .])

. 1 . . . 1 .o
> a(n—i_n?l,r _ncll,r _jvn) ’:L’;C(j _n?l,wn_n;l,r _j) +(1,(j77l) 7312(”_”}1,7« — 1] _n?l,r)'

Summing over all cases and adding a(n/2+ (nj, —ny,)/2,n) 1 ()2 — (ng,+ng,)/2,n/2—
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(ng, +n3,)/2), on both sides directly gives Is3 > Io3.

Sub-case 3: ny, —ng, > 2|n/2] —n+2and n is even

Following a similar procedure to that of Sub-case 2 we get:

n/2—1
:1:1*

_ 2 1 , 1 . 2
I3 = E [a(n +ng, —ng, — 3Py (n—ng, — 3,5 —ng,)
j:n/2+(n3m7n}lm)/2+1

. Ix . .
+a(j,n) Py (j — ngpn —ng, — j)

+ CL(TL/Q, n)P:i;;(n/2 - n?l,ra n/2 - nzli,r>

+ a(n/2 + (ng,r - ntli,r)/27 TL) :—12(”/2 - (ntli,r + n?l,'r)/Qa TL/2 - (ncll,r + nz,r)/Z)

n/2—1
1

_ } : 2 1 . xl* /- 2 .
[23 - [CL(TL + Ngr — Ngr — I n)Pn—k(.] NG Ny — j)
j=n/2+(n] —n},)/2+1

1

+a(j, )Py (n —ng, —j,j —ng,)
+ a(n/27 TL) si;<n/2 - ncll,w n/2 - n?l,r)

+ a<n/2 + (n?l,r - ncll,r)/Qa n)P:i;;(n/2 - (ncll,r + n?l,r>/27 TL/2 - (n(li,r + ni,r)/Q)

The first term of I33 was shown to be greater than the first term of I3 in Sub-case 2. For
the second term, we note that ng, > nj, which gives n/2 —nj, <n/2 —nj, implying that
P* ()2 — ng,.,n/2—ng.) > P> (n/2 — ng,.,n/2 —nj,). Multiplying both sides of the
latter equation by a(n/2,n) > 0 shows the second term of I33 is greater than I3,. Since the
last term is equal among the two, we thus get that I3z > Io3.

x> (2 1 (1 2 ; 1 2
Thus, we have shown that C* " (nj,,n,,) — C* (n4,,n7,) > 0. Also, since ng, > ng . and

pr; < poj forall j=1,---  k we get that P* (ng,,n5,) < pE (ng,,ny,). Multiplying the
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last two equations and expanding gives:

1 1 1 1
C* (ngpo g, ) P (g ma,) + C% (ng g, ) PE (ng . mi,)

1 1 1 1
< O (g g, ) BE (g gy mi,) + O (ng 0 ng ) PE (0, mg,)-
As such, we get that:

1 1
> O (g )P (ng,,ng,)

ntli,r’ni,r
ntli,r:ng,r
xl*/ 1 2 axl* 2 1 xl*/ 2 1 xl* 1 2
+ E [C (Mg na )Py (NG ng,) +C% (ng,.,ng, )P (nd,rvnd,r)]
nzli,r’ni,r
ny,>ng .
xl*/ 1 2 axl*/ 1 2
< E C (nd,r7nd,r)Pk (nd,rand,r)
né,r’nz,r
ntli,'r:nd,r
xl*/ 1 2 xcl* 1 2 xl* /2 1 xl*/ 2 1
+ E [O (Mg na )Py (ngpsng,) +C% (ng,.,ng, )P (”d,m”d,r)]-
n(i,r’n?i,r
nh,>n3,

Consider the assignment, denoted by &, where the first k subjects of row 1 are interchanged

with the first k subjects of row 2. Observe that 2! follows Assignment RH,

1 1
PP (ng,ona,) = P (ng,,ng,), and

1%

~1 1 31
:fk(n}l,m n?l,r) = P;ik(”é,r? n?l,r) = C-’l: *(nil,w nz,r) = Cm (n}l,rv n?l,r)'
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As such, by substituting back gives:

&1 2 &l 2 1
E C d,r)Pk (nd,wnd,r)
nd r’ndr
n}l,r_ni,r
€T :E :E iB
+ E : [C ndr7ndr>P (ndr7ndr)+c (ndr7ndr)P (ndr7ndr)]
nd T’ndr
nd,r>nd,r
xl*/ 1 2 acl*/ 1 2
< E C (”d,m nd,r)Pk (nd,r> ndm)
ntli,r’nz,r
g =g,
xl*/ 1 2 acl* 1 2 xl* /2 1 xl*/ 2 1
+ E [C (Mg, na )Py (ngpng,) +C% (ng,..ng, ) Pr (ng,, nd,r)] ;
ncll,r/n?l,r
ng,>ng .

which directly implies E[FN*(£')|Ny = n] < E[FN!(z')|N; = n]. Since '* is the optimal
assignment, then it must be true that E[F'N'(£')|Ny = n] = E[FN'(x'*)|N; = n|. As such,

there exists an optimal assignment which follows RH.

Case 2: N;y<n

We note that under any realization, n — N; columns would have zero positive subjects.
Letting ® denote the set of all possible n — Ny columns, by conditioning on the columns

having zero positive subjects we get:

[na/2]
E[FN'(@™)|Ng = ng P(Ng=na) = Y _ | Y ali,ng)B[Yi(™)|Ng = ng] | P (¢| Ny = na).
ped | =0

By Corollary 3.2, there exists a subject k such that p;; < pg; for all j = 1,--- &k and
p1j > poy for all j = k+1,--- ,n. For a given Tier 1 assignment, x', let P (g, 13,)
(P2, (n},,n3,)) be the probability that the 2 x k (2 x (n — k)) sub-matrix has n}, and

n?l’r positive subjects in rows 1 and 2, respectively. Consider the assignment, denoted by
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#!, where the first k subjects of row 1 are interchanged with the first k subjects of row 2.

Observe that 2! follows Assignment RH. From our previous result (i.e., Case 1) we have

[na/2] [na/2]
> ali, n)B[Y;(@")|Na = na] = ) ali,ng)E[Yi(&")|Na = na).
=0 1=0

Also, since we are conditioning on columns that have no positive subjects in both rows then
P*"(¢| Ny = ng) = P* (¢| Ny = ng) for all ¢ € ®. Thus, we get that E[FN'(&1)| Ny = ng] =

E[FN! ()| N,y = ng) implying that there exists an optimal assignment which follows RH.

Case 3: Ny >n

We note that under any realization, Ny — n columns would have two positive subjects (one
in each row). By conditioning on these columns, the proof follows similarly to that of Case

2. [l

Proof of Theorem 8.2 . Similar to the proof of Theorem 3.1, we start with the perfect in-
formation setting for a 2 x n matrix. Let njy, and nj, respectively denote the number of
positive subjects in rows 1 and 2, and assume, without loss of generality, that nj, > nj,.
Suppose an optimal Tier 1 assignment, which we denote by assignment v1, does not follow
RH. Then, it must be true that 0 < nj, < ng, < n (note that if ny, = n or nj, = 0,
the assignment must follow RH). We have E[N}'] = Se(n,nj,) + Se(n,nj,). Next consider
another assignment, denoted by v2, in which one positive subject is moved from row 2 to
row 1, leading to E[N?] = Se(n,nj, + 1) 4+ Se(n,nj, — 1). By concavity of Se(n, k), we
have that:

0
_ — <
% [Se(n,k+1) — Se(n, k)] <0,

hence the difference, Se(n, k + 1) — Se(n, k) is decreasing in k. Then, since ng, > nj, — 1,

we have that Se(n,nj, +1) — Se(n,nj,) < Se(n,n3,) — Se(n,ng, — 1) = Se(n,ng, +1) +
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Se(n,nj, — 1) > Se(n,ny,) + Se(n,nj,) = E[N*] < E[N}']. However, since assignment
vl is optimal, then it must be true that E[N'?] = E[N*!]. As such, there exists an optimal
assignment which follows RH. The remainder of the proof is exactly the same as that of

Theorem 3.1. O

Proof of Theorem 3.3. Since the set of subjects resulting from a Tier 1 outcome of r =
(1,---,1) is ROI (the condition imposed by the theorem), then by Corollary 3.4 the set of
subjects is also ROI for all . As such, the ordering of the risk is preserved for any possible
outcome, and due to the symmetry between Assignment RH in Tier 1 and Assignment CH

in Tier 2, the result directly follows from Theorem 3.1. [

Details on Example 3.2. Starting with an arbitrary row ¢ = 1,--- ,m, Eq. (3.8) implies the

following;:

P(Dji = 1|Ri = 1,Dip = 1) < P(Diy = 1|R; = 1)
P(R; =1|D;; =1)P(R; =1|Djs = 1)
PR, =1)
[pi2Se(2,2) + (1 — pi2)Se(2,1)] [pi1Se(2,2) + (1 — pi1)Se(2,1)]
pipiaSe(2,2) + [pi(1 — pia) + pia(1 — pi)] Se(2,1) + (1 — pi ) (1 — pia) (1 — Sp)
pirpi2Se(2,2)? + [pi1(1 — piz) + pia(1 — pi1)] Se(2,2)Se(2,1) + (1 — pir) (1 — pi2)Se(2,1)?

& Se(2,2) <

Se(2,2) <
< “(2.2) < pitpi2Se(2,2) + [pir(1 — pi2) + pia(1 — pi1)] Se(2,1) + (1 — pia ) (1 — piz)(1 — Sp)
& (1 — Sp)Se(2,2) < Se(2,1)?.
As such,

P(Dj =1|R;=1,Diy=1) < P(Dj; = 1|R; = 1) & Se(2,1)* > (1 — Sp)Se(2,2).

Similarly, it can be shown that:

P(Djy =1|R; =1,D;3=0) > P(Dy; = 1|R; = 1) & Se(2,1)* > (1 — Sp)Se(2,2),
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providing the result. [l

Remark B.1. For any 2 x 2 testing matrix and sensitivity function satisfying Eq. (3.4),

2

min E[FN?(z?)|R(@") = 7] = max Y _ P(N;,(z*) =2|Ny =2, R(z") =r), VreR
x X j=1

Proof of Remark B.1. Notice that for N, # 2 or Ny # 2, the expression E[FN?(z?)|R(z') =
r] becomes independent of the second tier assignment, 2. This follows because for N, = 1,
there is only one possible assignment; and for N, = 2 and N; = 0,1, 3,4, all possible
assignment lead to the same realization of number of positive subjects in each column (e.g.,
when N; = 3, all possible assignments lead to 2 positive subjects in one column and 1
positive subject in the other). On the other hand, for NV, = 2 and N; = 2, two outcomes are
possible: the two positive subjects occur either in the same column or in different columns.

By Lemma 3.2, the first case has a lower expected number of false negatives, and the result

follows. O]

B.2 Derivations of the Performance Measures

Adaptive array pooling scheme under the homogeneous population assumption

In the following, we derive expressions for each performance measure for the proposed adap-

tive array pooling scheme under the homogeneous population assumption.
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3
E[FN(m,n)] Z]E [FN'(m,n)]
=1

:mZk[l—Se(n,k)] (Ng,r=k) + i i k|1 — Se(n,, k ]P(NT =n,)P(Ng, = k|N, =n,) +0
k=1 =1k=1
:mz k[1— Se(n, k)] (Z) (,up)k(l R

k=1

+ny Z k[l — Se(n,, k)] <;”> (P(R=1))""(1-P(R=1))""" <’;> () (1 = e *,

n,=1k=1

3
E[FP(m,n)) ZE Flen
=1

=0+ 0+n(1 - Sp) Z Z — k)Se(n,, k)P(N, = n,)P(Ny. = k|N, = n,)

ny=1k=0
=11 5p) 3 3o = Benn ) (1) PR =1 (1= = 0)" 7 () )41 =
n.=1k=0 r
and
E[T(m,n)] = Z E[T(m,n)|N; = n.]P(N, = n,)
n,=0
=mP(N, =0) + Z m—+n+nn, iSe(n,«, k)P(Ny. = k|N, = n,)| P(N, =n,)
ny=1 k=0

=m(l1-P(R=1)"

53

ny=1

mtntn anSe ) ()t - u;,y“—’f] () Pr=1y (1 PR =1)" ",

Ny

where P(R = 1), i.e., the probability of a row testing positive, is given by

- Z et 1)) )"0 = )"

and f1,, the updated prevalence rate (i.e., the probability that a subject is positive given
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that its corresponding row pool tests positive in Tier 1), is given by

ni Se(n, k+1) (n ; 1) (i) F (1 = pap)" ¥
TS Hp-
kz:; Se(n, k) (Z) (pp) " (1 = )"

Non-adaptive Non-risk based Array Pooling

Since the NINP scheme is non-risk based, all subjects are considered to have the same risk.
Let FN;; (FPy;)ie{1,---,M}, j € {l,---,N}, denote the probability that the subject,
located at the intersection of row i and column j, is classified as a false negative (positive).
Also, let R; (C;) denote the random variable representing the test outcome status for row ¢
(column j), with R; = 1 (C; = 1) representing a positive test outcome of row ¢ (column j).
Lastly, let A;; denote the random variable corresponding to the true status of the subject
located at the intersection of row ¢ and column j, with A;; = 1 if the subject is truly infected,

and 0 otherwise. Then, for arbitrary ¢ and j, we can write:

E[FN] =mnE[F N;;]
=mnE[F Ny|Ai; = 1]P(A;;)
=mnj,E[FNij|Aij = 1]

We note that, conditioned on the true status of the subject at the intersection, the test

outcomes of row ¢ and column j are independent. Thus, we can write:
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where

n—1
n—1
PR =1|A;=1)= Zse(n,k + 1)< i )(,up)k(l _ ,pr)nflfk, and
k=0

P(C;=1|4; =1) = leSe (m, k+1 <mk_ 1) (1) (1 = )™ H
k=0
Similarly, we have that:
E[FP] =mn(1 — p,)(1 — Sp)P(R; = 1|A;; = 0)P(C; = 1|A;; = 0), (B.5)
where

P<Ri - 1|Aij - 0) - i Se(n, k) (n ; 1) (Hp)k(l - Mp)n_l_k, and

Lastly, the expected number of tests is given by:

E[T] =m+n+mnP(R; =1,C; = 1)
=+ mn i, P(R; = 1,C5 = 1Ay = 1) + (1 = 1ip) P(R; = 1,C; = 1|4 = 0)
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B.3 Case Study: Model Validation and Calibration of

the Sensitivity Function Parameter

To validate our model, we evaluate the probability of releasing an HIV-infected blood dona-
tion into the blood supply (referred to as the residual risk in the transfusion literature) in the
United States considering the current practice, i.e., the two-tier Dorfman testing scheme in
pools of size 16 using the HIV nucleic acid test (NAT') [40]. We use the sensitivity function
utilized in the case study of Section 3.4, given by Se(n, k) = 1—Sp+(Se(1,1)+Sp—1)(k/n)*,
Vk < n;k,n € Z*, and calibrate it using published data [33,106,119,138,139], with individ-
ual test sensitivity and specificity values of 0.992 and 0.988 [22], respectively, leading to a
calibration parameter of v = 0.00263 (see [6] for details). For the mean prevalence rate, we
consider 0.00278%, which is representative of the HIV prevalence rate in the United States

among the donor population [143].

Using these data, our Monte Carlo simulation provides an estimate of the residual risk per
1,000,000 donations, with a point estimate and a 95% confidence interval given by 0.66 (0.61-
0.72) per million, which is in line with published work that reports the residual risk for HIV
infection in the United States, e.g., [143]. In summary, the predictions of our model, with

our calibrated sensitivity function, are consistent with published data.

To obtain the calibration parameter for the Ligase Chain Reaction test for chlamydia, we
use data from [82], which specifies that the test has perfect sensitivity for a pool of size 4.
Thus, we assume that individual testing also has perfect sensitivity (i.e., Se(1,1) = 1.0).
Also, we assume that the test’s specificity, Sp, remains constant with pool size, and we set
it to the specificity of the test with a pool of size 4 provided in [82], i.e., Sp = 0.98. Finally,

to determine parameter «, we use the results of [82], which reports the sensitivity for a pool
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of size 10 and the mean prevalence rate of chlamydia, p,. We calculate a by conditioning on
the number of infected subjects in the pool and matching our results to those in [82], that

is, v is chosen such that the following identity holds:

Se(n) = ZS@ (n, k) ( ) (1) (1 = )" "

1_ 1_Hp
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Appendix C

Appendix for Chapter 4

C.1 Mathematical Proofs

Proof of Theorem 4.1 (a). We prove the result by showing that for any unordered partition,
one can reduce or maintain the values of all three performance measures (i.e., E[F'N|, E[F P],
and E[T]) by converting the partition into an ordered one. Towards this end, suppose, to
the contrary, that the optimal partition, Q* = {Qf,---,Q*}, for some g € {2,--- N}
does not follow an ordered partition of S. Then, there must exist two groups, {1 and 7,

i,7€{1,--+,g}:i# j, such that:
Y min o™ < m and (i S
(1) mip p" < max p™, an (ii) max " > minp

Assume, without loss of generality, that n; < n;.

Case I: n; = 1: Since n; = 1, then it must be true that n; > 12. Due to conditions (i) and

*

(ii) the single subject in group Qf, denoted with index k;, has a lower risk than the subject

7

'If g = 1, then all subjects are in one group, and hence it is an ordered partition.
2If both groups are of size 1, then they will follow an ordered partition.
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with the maximum risk in group €2}, denoted with index k; (i.e., p* < p"). Let W; = {k;}
and let U; = {k;}, and define a new partition, Q= {Ql, e ,Qg}, where subjects in ¥; are
interchanged with subjects in ¥, that is, Q; = (2 \ ¥,) U ¥;, Q; = (925 \ ¥;) U W, and

O = Qf foralll € {1,--- ,g} : L #1i,j. As such, we have that:

[Ta-ry<J[a=pm=n [JC-p" <n [] -

me; me; mea; me;

In what follows, we will show that ) reduces or maintains the value of all performance

measures.

(a) Expected number of false negatives (E[FN]):

We have that:

E[FN(Q)] = ) E[FN]+ (1 - Se)p" + (1 - Se®) Y p™, and

L:l#i,j meQs
E[FN(Q)] = ) E[FN]+(1-Se)p" + (1—-5¢’) Y p™
L:l#4,5 mEQj

= E[FN ()] — E[FN(£2)] = —(1 — Se)(p" — p**) + (1 — Se?)(p" — p*)

= Se(1 — Se)(p" — pF) > 0.

As such, E[FN(Q)] < E[FN(Q)).

(b) Expected number of false positives (E[F' P]):
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We have that:

E[FP(Q)] = ) E[FP]+ (1 - Sp)(1-p")
Lil#i,j

+ (1 —Sp)Se Z (1—-p™")—n;(1—Sp)(Se+ Sp—1) H (1 —p™), and

* *
mGQj meﬂj

E[FP()] = ) E[FP]+ (1 - Sp)(1—p")
L4,

+ (1 — Sp)Se Z (1—p™) —n;(1—Sp)(Se+ Sp—1) H (1—p™).

mGQj mEQ]'

= E[FP(2)] — E[FP(Q)] =(1 - Sp)(L — Se)(p" — p")

+n;(1=Sp)(Se+Sp—1) | [Ta-p™ - [[@=pm)| >0

mGQj mEQ;f

PN

As such, E[FP(Q)] < E[FP(2°)].
(c) Expected number of tests (E[T]):
We have that:

ET(Q) =Y ET]+2+n (Se —(Se+sp-1) [ (1 —pm)), and

l:l#1,7 meQ}f

ET(Q)] = Y E[T] +2+n (se —(Se+Sp—1) J] (1~ pm)).

Lli g med;

= E[1()] — E[T()] =n;(Se + Sp—1) | [T =p™) = J[ 1 =p™)| >0.

me, mes;

As such, E[T(Q)] < E[T(€2)].
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Thus, by converting groups ¢ and j into an ordered partition, all measures are either main-

tained or reduced, implying that there exists an optimal partition, which is ordered.

Case II: n; > 1: By Remark 4.2, when the two group sizes are greater than one, the expected

number of false negatives resulting from these groups is constant. As such, one can convert
any unordered partition into an ordered one without impacting the expected number of
false negatives. Thus, we proceed by showing that the remaining performance measures
(i.e., E[FP] and E[T]) are reduced or maintained. By conditions (i) and (ii), there exist
¢ C ¥; CQF and ¢ C U; C Q such that |¥;| = |¥;| and when ¥; and ¥; are interchanged
the resulting set of groups will follow an ordered partition in which the group with the
smaller size contains the lowest risk subjects, while the group with the larger size contains

the highest risk subjects. We have that:

[Ta-r-J[a-r>0 (C.1)

mE\Ilj mG\Ili

Sub-case I: n; H (1—-p™) >n, H (1-p")

mEQz\‘I/z mEQj\‘IIJ

Define a new partition, = {Ql, . ,Qg}, where subjects in ¥; are interchanged with
subjects in W;, that is, Q; = (2 \ T,) Uy, Q = (5 \ ;) UT,, and = Qf for all
le{l,---,g}:1+#1i,7. In what follows, we will show that partition 2 reduces or maintains
the value of all performance measures. Multiplying the condition imposed in the sub-case,

ie.,

n [ A=pm>n [T -,

mEQZ\\IIZ mEQj\\Ifj
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by Eq. (C.1), and expanding and rearranging gives:

n [Ja=-p™+n [TA=p™) >n J[JTQ=p")+n [T Q=)

meY; me; me€dy me€d]

(a) Expected number of false positives (E[F P]):

We have that:

E[FP(Q)] = ) E[FP]+(1-Sp)Se Y (1—p™) —ni(1—Sp)(Se+Sp—1) J[] (1 —p™)
L:l#4,5 meQ; meQy
1—SpSeZ (1—p —njl—Sp)(Se—l—Sp—l)H(l—pm), and
mEQ* mEQ;
E[FP(Q)] = > E[FP]+(1-Sp)Se Y (1 —p™) —ni(1—Sp)(Se+Sp—1) ] (1—p™)
L:l#4,5 mesY; mel;
+ (1 — Sp)Se Z (I1—-p™)—n;(1—Sp)(Se+ Sp—1) H (1—p™).
mGQ]‘ mGQ]-

Noting that,

o oa-pm= > @-p"),

meQFUQL meQ;UQ;

and subtracting the two gives:

E[FP(Q*)] — E[FP(
IEPEBIP) o, T 0o - T G- TG0

mEQi meflj meQ)y mGQ
As such, E[FP(Q)] < E[FP(Q")].

(b) Expected number of tests (E[T)):
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We have that:

E[T(Q)) = S E[T]+2+n (Se —(Se+Sp—-1) J[ (- pm))

Ll#i,j me€dy
—l—nj(Se— (Se+Sp—1) H (1 —pm)), and
mGQ;f
E[T(Q)] = > B[] +2+ny(Se — (Se+ 5p—1) [[ (1 -p™))
i e,
+nj(se— (Se+Sp—1) [[ 1 —pm)).
mes;

Subtracting the two gives:

M&QE ;pE_[Ji()Q)] =ni [T =p™)4ny [T O=p™) =ni JT O =™ =ny T =) >0.

mes); mEQj meQ; mGQ;

As such, E[T(Q)] < E[T(2*)].

Thus, by converting groups ¢ and j into an ordered partition, all measures are either main-

tained or reduced, implying that there exists an optimal partition, which is ordered.

Sub-case II: n; H (1—p™) <n, H (1—p™)

mEQi\‘l/i mEQj\\I/j

Due to conditions (i) and (ii), there exist ¢ C Z; C Q; and ¢ C Z; C Q; such that

|Z;| = |Z;|, and when Z; and Z; are interchanged the resulting set of groups will follow

an ordered partition in which the group with the smaller size contains the highest risk

subjects, while the group with the larger size contains the lowest risk subjects. Define a new

partition, Q= {Ql, cee Qg}, where subjects in Z; are interchanged with subjects in Z;, that

is, Q; = (U \ Z) U Z, Qj:(Q;\Zj)UZi, and O = Qf foralll € {1,---,g}: 1 #4i,7. In

what follows, we will show that partition € reduces or maintains the value of all performance
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measures. By the condition imposed in the sub-case, i.e.,

and Eq. (C.1) we get:
n [[=p™) <ny [T =p™).

me); mEQj

By definitions of Z; and Z;, we have that:

[Ta-pH-J[a-p" >0

meZ; mGZj

From Eq. (C.2) we have that:

o [ a-pm [[O-p<n [ - [JO-27).

meQ\Z; meZ; meQ;\Z; meZ;

Then, by Eq.s (C.3) and (C.4), it must be true that:

n; H (1—-p™) <n, H (1—p™).

mGQZv\Zi mEQj\Z]‘

Multiplying Eq. (C.5) by Eq. (C.3), expanding and rearranging gives:

n [JT=p™) +n [JA=-p™)>n [TO-p™ +n [] @=p").

mesy; meQ; mes; me;

(C.4)

(C.5)

Following a similar methodology to that of Sub-case I, one can show that E[FP(Q)] <

E[FP(Q*)] and E[T(Q)] < E[T(S2*)]. As such, for all possible cases, we are always able

to construct an ordered partition that reduces or maintains the values of all performance

measures, hence concluding the proof.
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Proof of Theorem 4.1 (b). We prove the result by showing that if, in the optimal ordered
partition, subject m, with risk p™, is individually tested, and there exist a subject, having
a risk higher than p™, that is tested in a group, one can always construct an alternative
partition that reduces all three performance measures (i.e., E[F'N], E[F'P], and E[T]). To-
wards this end, suppose, to the contrary, that the optimal partition, Q* = {Q3,--- ,QZ},
for some g € {2,---, N}, is to test subject m, in group i, individually and there exists a
group, j : j # 4, with n; > 1 and all of its subjects have a risk higher than p™. Let k
denote the index of the subject with the highest risk in group j, then p* > p™. Define a
new partition, { = {Ql, e ,Qg}, where subject m and k are interchanged, i.e., {; = {k},
Q, = (U \{k}) U {m}, and O =Q foralll e {1,---,g}:1+#1,j. We have that:

[JTa-»)<JJa-o.

leq; 1€Q;

In what follows, we will show that partition Q2 reduces or maintains the value of all perfor-

mance measures.

(a) Expected number of false negatives (E[FN]):
We have that:
E[FN(Q)] = ) E[FN]+ (1 - Se)p™ + (1 - Se*) > _p', and
Lil£i,j 1eq?

E[FN(Q)] = ) E[FN]+ (1-Se)p" +(1-5¢*)> 7"
Ll 1€Q;

= E[FN(Q)] —E[FN(Q)] = —(1 — Se)(p" — p™) + (1 — Se*)(p* — p™),

= Se(1 - Se)(p* —p™) > 0.

As such, E[FN(2)] < E[FN(Q*)].
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(b) Expected number of false positives (E[F'P]):

We have that:

E[FP(Q)] = ) E[FP]+ (1 - Sp)(1-p")
L:l#4,5

+ (1 —Sp)Se Z(l —p') —ni(1 —Sp)(Se+ Sp—1) H(l —p"), and

leq; leq;

E[FP(Q)] =) E[FP]+ (1 - Sp)(1-p")
Lili,j

+ (1 — Sp)Se Z(l —p") —n;(1 - Sp)(Se+ Sp —1) H(l —ph.

1€€y; 1§y

= E[FP(2)] - E[FP(Q)] =(1 — Sp)(1 — Se)(p" —p™)

+n;(1 - Sp)(Se + Sp — 1) !H(l - -JJa pl)] > 0.

1eq, 1€Q;

A

As such, E[FP(Q)] < E[FP(")].

(c) Expected number of tests (E[T]):

We have that:

E[T(Q)] = > EITi] +2+n,(Se — (Se+ Sp—1) [T(1 - 4)), and

L) 1€
E[T()] = > BT +2+n;(Se — (Se+Sp—1) [T (1= ).
L:l#£4,5 leflj

= E[T(Q")] - E[T(2)] =n;(Se + Sp— 1) [H(l o) - JJ0a- pl)] > 0.

1eq, 1eQ;

N

As such, E[T(Q)] < E[T()).
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As a result, we are always able to construct an ordered partition that reduces or maintains
the values of all performance measures whenever the statement given in the theorem does

not hold, hence concluding the proof. O

Proof of Theorem 4.2 (1a). We prove the result by showing that if a group of size greater
or equal to four exists, then one can always reduce the objective function by placing the two
highest risk subjects in a separate group. Towards this end, suppose, to the contrary, that
the optimal partition, Q* = {Qf,---,Qr}, for some g € {2,---, N}, has a group, 2}, with
n; > 4, and let m and k denote the indices of the two highest risk subjects within the group.
Consider a new partition, Q, that is identical to €2* except for placing subjects m and k
into a separate group. Note that, due to Remark 4.2, the expected number of false negatives

under both partitions is equal, thus we proceed by showing that partition €2 reduces the

expected number of false positives over 2*. We have that:

E[FP(Q")] ZEFPI 1—Sp)SeZ(1—pl)—ni(l—Sp)(Se—i-Sp—l)H(l—pl), and

HESN leq leqy

E[FP(Q)] =) E[FP]+(1-Sp)Se> (1—p') = (ni—2)(1— Sp)(Se+Sp—1) [] 1 —p"

L:l#£i,j 1€, meQ;
+ (1= Sp)Se(2 —p™ = p*) = 2(1 = Sp)(Se + Sp — 1)(1 - p™)(1 - p*).
Subtracting the two gives:

E[FP(Q*)] — E[FP($)]
(1—-Sp)(Se+ Sp—1)

=|ni—2=mt—p™ @ =" [T 1 =p)+20-pM0 -2

mGQi

_ n —2— (i —2+2)(1—p™(1 —pk)} [T a-p)+20-pma-p*
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Since n; > 4, then [(nZ —2)(1—(1—pm™)(1 - pk))] [Tcq,(1 —P') > 0. As such, we have

that:
E[FP(Q*)] — E[FP(Q > o T =)+ 201 - p™) (1~ )
(1-S )(Se+Sp—1 - = p p
=2(1—p™)(1—p") (1= J[@-p)] =0
meQy;
As such, E[FP(Q)] < E[FP(Q")]. O

Proof of Theorem 4.2 (1b). By Theorem 4.2 (3a), the optimal partition can only have group
sizes of either one, two, or three. Also, by Theorem 4.1 (b) one cannot have an individual
test on a subject whose risk is lower than the risk of all subjects in a group. As such, to
prove the result of the theorem, it is sufficient to show that a group of size two cannot
contain subjects whose risk are all lower than the risk of subjects within a group of size
three. We prove this by showing that if the statement is not true, one can always construct
an alternative partition, by removing the lowest risk subject in the group of size three and
placing it in the group of size two, that reduces all performance measures. Towards this
end, suppose, by contradiction, that the optimal partition, Q* = {Q7,--- Qr}, for some
g €12,---, N}, has groups of size two and three, respectively denoted by €2} and €2}, where
maX,eq: {p™} < Miny,eo: {p™}. Let m; and my denote the risk of the two subjects in 2f, and
k1, k2, and k3 denote the risk of the three subjects in €2}, with p™ < p™2 < pFt < ph2 < phs,
Consider a new partition, £ = {Ql, e ,Qg}, with €; = Qr U ph, Qj = Q7 \ {p*}, and
QO = Qf for all [ € {1,---,9} : | # i,5. Note that, by Remark 4.2, this change to the
partition will not impact the expected number of false negatives. As such, in what follows,

we will show that partition Q2 reduces the value of the expected number of false positives.
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We have that:

E[FP(Q)] = ) E[FP]+(1—8p)Se Y (1—p")—2(1—Sp)(Se+Sp—1)(1—p™)(1—p™)

Ll 1eQ;UQ;
—3(1 = Sp)(Se+Sp—1)(1 = p*)(1 = p")(1 —p*), and

E[FP(Y)] = Y E[FP]+(1—-Sp)Se Y (1-p")—2(1—Sp)(Se+Sp—1)(1—p™)(1-p*)

HEE N lEQiUQj

—3(1—Sp)(Se+ Sp—1)(1 —p™)(1 —p™)(1—p").

Subtracting the two gives:

A~

E[FP(Q2*)] — E[FP(Q)]
(1—Sp)(Se+ Sp—1)

=[(1—p™)(1—p™) — (1=p")(1—p*)] (1 - 3p").

Noting that (1—p™)(1—p™2)—(1—p*2)(1—p**) > 0, and 1—3p* > 0 (since, by the condition
imposed in the theorem, we have p* < pN < 1/3), we get that E[FP(Q)] < E[FP(Q*)],

concluding the proof. O

Proof of Theorem 4.2 (2). The result trivially follows by noting that individually testing

subjects leads to a smaller expected number of false negatives. O

Proof of Theorem 4.2 (3). We prove the result by showing that if more than one subject is
individually tested, then one can always reduce the objective function by combining the two
subjects into a single group. Towards this end, suppose, to the contrary, that the optimal
partition, 2 = {Qf,---,Q*}, for some g € {2,---, N}, has two individual tests, and let
m and k denote the indices of these two subjects, which are respectively in groups ¢ and j.

Consider a new partition, €, that is identical to * except for combining the two subjects
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m and k into a single group of size two. We have that:

E[FP(Q")] = Y E[FP]+(1-Sp)(1 —p™) + (1 - Sp)(1 - p*), and
l:l#£1,5

E[FP(Q)] = ) E[FP]+ (1-Sp)Se(2—p™ — p*) —n;(1 - Sp)(Se + Sp — 1)(1 — p™)(1 — p).
l:l#£4,5

= E[FP(Q")] - E[FP(Q)] =(1 - Sp)(1 — Se)(2 — p™ — p*) + n;(1 = Sp)(Se + Sp — 1)(1 = p™)(1 - p*) > 0.
Thus, E[FP(2)] < E[FP(Q*)], which concludes the proof. O

Proof of Theorem 4.3. We prove the result by showing that if the condition of the theorem
is satisfied and more than one subject is individually tested, then one can always reduce
the expected number of tests by combining the two subjects into a single group. Towards
this end, suppose, to the contrary, that the optimal partition, Q* = {Q7,---,Q¢}, for some
g € {2,---, N}, has two individual tests, which, by Theorem 4.1 (b), implies that the two
highest risk subjects (i.e., subjects N — 1 and N) must be individually tested. Consider a
new partition, Q, that is identical to 2* except that subjects N — 1 and N are combined

into a single group of size two. We have that:

E[T(Q)] = ) E[T)] +2, and
Lil#i,j

ET()] =Y ET)+1+ 2(56 — (Se+ Sp—1)(1—p¥ (1 - pN)).
Iy

= E[T(Q")] — E[T(Q)] =1 — 2Se +2(Se + Sp — 1)(1 — pV1)(1 — pM).

By the condition imposted in the theorem, i.e.,
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and the fact that pV =1 < p", we get that:

Se —0.5
1—pV Ha-pM)> 1 —-pV)P2>—"— "
(L=p " )A=p") = ( p)_56+5p_1
=1-2Se+2(Se+Sp—1)(1—p"H(1—p") >0,
leading to E[T(£2*)] > E[T(€)] and concluding the proof. O

Proof of Theorem 4.5. When A = 1, the a-fairness objective function is only a function
of E[FN]. Then, by Remark 4.2, the objective function depends only on the partition of
grouped subjects and individually tested subjects, i.e., sets Q¢ and Qf. Let m denote
the index of the lowest risk subject that is individually tested. We next show that for all

ay,ay > 00 ag > az, m), =m}, . Suppose, to the contrary, that m}, # m, .

.. * *
Case i: m}, <m,

We know that both partitions are feasible to both cases, as the constraint is independent of
«. As such, by using the optimal partition of as for the case of «ay, one will have a feasi-
ble solution with a lower objective function value (since individually testing more subjects

reduces the objective function value), leading to a contradiction.

s, * *
Case i: mj,, > m},

Follows similarly to that of Case i.

Hence the proof is completed. O]
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Appendix D

Appendix for Chapter 5

D.1 Mathematical Proofs

Proof of Property 5.1. Consider the EM objective function, given by:

Xg:Eﬁ {EE (ME[FN:()[E, P] + MEIFR()[E Pl + (1 - A - M)E[T(2)[E, ﬁ]H .

=1

216



Next, we show that each term in the objective function reduces to the case when E = 0.

;

(1-5¢) Y Ean [t(ﬂm),am)}, if ny = 1,

mef);

(1 — Se?) Z Ezm [t pm) ”m)}, otherwise,

mes;

(1 — Se) Z P ifp, =1 (by assumption that Ezm [t(]sm, Em)] = ]5m>,

me;

(1 — Se?) ZP , otherwise,

(1-5p) Y (1—E5m [t(ﬂm),zm)}), ifn; =1,

(1= 5p)Se > (1 - Een[t(P™,27)))

mes);

\—ni(l — Sp)(Se+ Sp — 1)Ezm [Hmeﬂ (1 — t(ﬁ(m), Em)ﬂ , otherwise.

Noting that random variables =™, m = 1,--- | N, are iid, and that Ezm [t (]Sm, Em)} = pP™,

we can write:

E= [E[FP(Q)|E, P]] =

(1-Sp) > (1—15(’”)), ifn; =1,

meQ;

(1—Sp)Se Z (1- p(m)) —n;(1 —Sp)(Se+ Sp—1) H (1- [:’(m)), otherwise.

mes); me;

=E[FP,(Q;)|E =0, P].
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Il
=
LT

Following a similar logic, it can be shown that Eg [E[T,(Qzﬂ

thus concluding the proof. m

Proof of Theorem 5.1. Part 1.) Suppose, to the contrary, that in an optimal solution to
(5.9), denoted by £, there exists a subject, denoted by m, in group ¢, such that —§ < £™* < 4.
In what follows, we show that one can always improve the objective function value to (5.9) by
either increasing £"* to 0 or decreasing £™* to —d. Towards this end, consider an alternative
solution, denoted by &, which is identical to £, with the only exception that £™ = £™* + ¢,

for some |g| > 0.

Casel:n; =1

By using the expressions in Section 5.3.2, the contribution of group ¢ to the objective function

in (5.9) is given by:

Qi(&) =t(P'™, &™) [M(1 — Se) — Ao(1 — Sp)] + 1 — At — Ao + Mo(1 — Sp),

Qi(&) =t (P, &™) [M(1 = Se) — Aa(1 — Sp)] + 1 — Ay — Ag + Ao(1 — Sp).

= Qu(&) = Qi(€") = [H(P™,€7) = 1(P"),€™)] (1 = Se) = Xal(1 = Sp)].

Sub-case I: A;(1 — Se) > A\y(1 — Sp)

Let e =6 — ™ > 0= £™ =4, and hence we get that:

Q:(8) — Q,(£") = [t(P<m>, 5) — t(Ptm™), 5””)} [\(1— Se) — Ao(1 — Sp)] >0,

since A;(1 — Se) — Aa(1 — Sp) > 0, ™ < 0, and t(p, &) is increasing in £ by assumption.

Sub-case II: A1 (1 — Se) < Aa(1 — Sp)
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Let e = —6 — €™ < 0= £™ = —4, and hence we get that:

Qi(&) — Qi(&") = [t(ﬁ’(m), —5) — t(P(m>,§m*)] (M (1= Se) — A1 — Sp)] >0,

since A;(1 — Se) — Aa(1 — Sp) < 0, ™ > =4, and t(p, ) is increasing in £ by assumption.

CaseIl: n; > 1

Similarly, by using the expressions in Section 5.3.2, the contribution of group ¢ to the objec-

tive function in (5.9) is given by:

Qi(€") =M1 — Sp)Se — M (1 — 562)] 3 (1 - t(P@,gl*))

leQ;

—n;(Se+ Sp—1)[1 — At — A + Xa(1 — Sp)] H (1 - t(p(l)’fl*)>

1eQ;

+ (1 — /\1 — AQ)(]. + nZSG) + )\1(1 - SeQ)ni,

Qi(€) =[Aa(1 = Sp)Se — A (1 — 562)] 3 (1 . t(P@,gl))

1eQ;

—mi(Se +Sp = D)1= A = h + xa(1 = Sp)] [T (1-#(PV,€))
ey

+ (1 — )\1 — )\2)(1 + nZSe) + )\1(1 — Sez)ni.

= QuE) — QuE") =h(&",8) [H(P™ ™) — 1(P™.6m)]

where

h(€",€) = Ao(1-Sp)Se— A (1—5e?) —ny(Se+Sp—1)[1=A —Ag+ Ao (1—Sp)] H (1—15(}5(1)75:)).

1eQ;
l#m
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Note that h(é*, é) is independent of both €™ and ™.

Sub-case I: h(ﬁ*,é) <0

Let e =6 — ™ > 0= £™ =4, and hence we get that:

Qi(€) — Qu(€") = h(€7,€) [t(P™ &™) — (P, 6)] =0,

since h(&", é) <0, & < 6, and t(p,€) is increasing in £ by assumption.

Sub-case II: h(ﬁ*,é) >0

Let £ = —§ — ™ < 0 = £™ = —§, and hence we get that:

QiE) — Qi(g") = h(g", &) [t(P™), ™) — (P, —5)| >0,

since h(£*,é) >0, ™ > =6, and t(p,§) is increasing in £ by assumption.

Hence, in all possible cases, the objective function has been maintained or improved, thus

concluding the proof. O

Proof of Theorem 5.1. Part 2.) The proof follows similarly to that of part 1.). However,
notice that if A\;(1 — Se) > Ay(1 — Sp), then, when n; = 1, Sub-case I is satisfied and the

optimal solution is attained at . On the other hand, if n, > 1, we have that:

Ao(1 = Sp)Se — A (1 — Se?) = Ay(1 — Sp)Se — Ay (1 — Se)(1 + Se)
< Ao(1 — Sp)Se — Ay (1 — Se)Se

= [X2(1 = Sp) — A (1 — Se)] Se <0,
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and since

ni(Se+Sp—1)[1 =X\ — X+ X(1-5p)] [] (1 — t(P”),g’)) >0,
lEQi
l#m

we get that h(f*, E) < 0. Hence, Sub-case I is satisfied and the optimal solution is attained

at ¢, concluding the proof. n

Proof of Theorem 5.2. We prove the result by showing that for any risk vector realization,
any unordered testing scheme can be converted into an ordered testing scheme while reducing
or maintaining the values of all three performance measures in the objective function. We
only prove the result for Problem EM, as the proof for Problem RM follows similarly, with
the only difference being that the entire risk vector is multiplied by 1 4 0. Towards this
end, consider an estimated risk vector realization, p, and suppose, to the contrary, that the
optimal testing scheme, Q* = {Qf,--- ,Q*}, for some g = 2,--- | N ! is not an ordered
x

testing scheme. Then, there must exist two groups, Qf and Q7F, 4,5 =1,--- , g : i # j, such

that:

(1) min p™ < max p™, and (ii) max p"™ > min p™.
meQt meQt meQ* meQ;

@ J @

Assume, without loss of generality, that n; < n,.

Case I: n; = 1:

Since n; = 1, then it must be true that n; > 12. Due to conditions (i) and (ii) the single
subject in group 27, denoted with index k;, has a lower risk than the subject with the
maximum risk in group €%, denoted with index k; (i.e., p" < p*). Let ¥; = {k;} and let

U, = {k;}, and define a new testing scheme, Q= {Ql, e ,Qg}, where subjects in W¥; are

'If g = 1, then all subjects are in one group, and hence it is an ordered testing scheme.
2If both groups are of size 1, then they will follow an ordered testing scheme.
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interchanged with subjects in W, that is, Q; = (QF \ ¥,) U ¥;, Q; = (5 \ ¥;) UV, and

o =Qfforalll=1,---,g:1#1,5. As such, we have that:

[Ta-m< J[a-0"=n []Q=5") <n [] Q-5

mEQ;‘ mGQj ’H’LGQ; mEQj

In what follows, we will show that € reduces or maintains the value of all performance

measures.

(a) Expected number of false negatives

We have that:

E[FN(Q)] = Y E[FN]+ (1— Se)p* + (1 - Se’) > ™, and

L:l#i,5 meQy
E[FN(Q)] = > E[FN]+ (1—Se)p" + (1 - 8e) > ™
L:l#4,5 mer

= E[FN ()] — E[FN(£)] = —(1 — Se) (" — p*) + (1 — Se?)(p" — p*)

= Se(1 — Se)(p" — pF) > 0.

As such, E[FN(Q)] < E[FN(Q*)].
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(b) Expected number of false positives

We have that:

E[FP(Q)] = Y E[FP]+ (1 - Sp)(1—5")
L:l#4,5

+ (1 — Sp)Se Z (1—-p™)—n;(1—Sp)(Se+ Sp—1) H (1—p"), and

* *
mGQj mEQ].

E[FP(Q)] =) E[FP]+ (1 - Sp)(1 - ")
Ll j

+(1=Sp)Se > (1= —n;(1 = Sp)(Se+Sp—1) [[ (1—57).

mer mEQj

= E[FP(2)] - E[FP(Q)] =(1 — Sp)(L — Se) (7 — ")

+n;(1=Sp)(Se+Sp—1) | [[Ta-p" - [] -] >0

me; meq?

A

As such, E[FP(Q)] < E[FP(")].

(c) Expected number of tests

We have that:

E[T(Q)] = > BT +2+n;(Se — (Se+ Sp—1) [T (1=5™)), and

L:li,j meq;
E[T(Q)] = Y E[T] +2+n (se —(Se+Sp—1) [[ - ﬁm)).
l:l#1,5 mer

= B[T(@)] ~ BIT(Q)] =n;(Se + Sp— 1) | [] =) — [] (1= >0

mGQ]‘ mEQ;

N

As such, E[T(Q)] < E[T(Q)).
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Thus, by converting groups ¢ and j into an ordered testing scheme, all measures are either

maintained or reduced, implying that there exists an optimal partition, which is ordered.

CaseIl: n; > 1

Note that when the two group sizes are greater than one, the expected number of false
negatives resulting from these groups is constant. As such, one can convert any unordered
testing scheme into an ordered one without impacting the expected number of false negatives.
Thus, we proceed by showing that the remaining performance measures (i.e., E[F'P] and
E[T]) are reduced or maintained. By conditions (i) and (ii), there exist ) C ¥; C QF and
0 C ¥; € QF such that |¥;| = [¥;] and when W; and ¥; are interchanged the resulting
set of groups will follow an ordered testing scheme in which the group with the smaller size
contains the lowest risk subjects, while the group with the larger size contains the highest

risk subjects. We have that:

[Ta-m-JJa-5>0 (D.1)

Sub-case I: n; H (1—p") >n, H (1—pm)

mEQZ\\IfZ mEQj\\I/]'

Define a new testing scheme, Q= {Ql, e ,Qg}, where subjects in W; are interchanged with
subjects in W;, that is, Q; = (0 \ ¥,) U;, Q; = (25 \ ¥;) UV, and Q = QF for all
l=1,---,g:1+#1i,5. In what follows, we will show that partition 2 reduces or maintains
the value of all performance measures. Multiplying the condition imposed in the sub-case,
ie.,

mo 1 a-imsn 1 a-m.

mEQi\\I/i mGQj\\I/j
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by Eq. (D.1), and expanding and rearranging gives:

n [JT=-p"+n [TA=p") >n [T Q=" +n [ Q-5

meY; me; me€dy me€d]

(a) Expected number of false positives (E[F P]):

We have that:

E[FP(Q)] = ) E[FP]+(1-Sp)Se Y (1—p") —ni(1—Sp)(Se+Sp—1) J] (1 —5™)
L:l#4,5 meQ; meQy
1—SpSeZ (1-p —njl—Sp)(Se—l—Sp—l)H(l—]ﬁm), and
mEQ* mEQ;
E[FP(Q)] = > E[FP]+(1-Sp)Se Y (1 —5") —ni(1—Sp)(Se+Sp—1) [] (1 —5™)
L:l#4,5 mesY; mel;
+ (1 — Sp)Se Z (1—-p")—n;(1—Sp)(Se+ Sp—1) H (1—p™).
mGQ]‘ mGQ]-

Noting that,

ooa-pm= > 1-,

meQFUQL meQ;UQ;

and subtracting the two gives:

E[FP(Q*)] — E[FP($ . .
(E_fgp)()}geJrEgp_(l))] =n; [[ =" +n [T -5 =n [TO=5"—n; [[ (-5

mEQi meflj meQ)y mGQ
As such, E[FP(Q)] < E[FP(Q")].

(b) Expected number of tests (E[T]):
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We have that:

E[T(Q)) = S E[T]+2+n (Se —(Se+Sp—-1) J[ (- @m))

Ll#i,j me€dy
—l—nj(Se— (Se+ Sp—1) H (1 —ﬁm)), and
mGQ}f
E[T(Q)] = Y E[B] +2+ni(Se — (Se+ sp—1) [T (1= 5))
lid meth
+nj<5e— (Se+Sp—1) [[ 1 —ﬁ”)).
mes;

Subtracting the two gives:

M&QE ;pE_[Ji()Q)] =ni [T =)y JT O =5™) —mi [T =5 =n; T 0 =5™) >0,

mes); mEQj meQ; mGQ;

As such, E[T(Q)] < E[T(2*)].

Thus, by converting groups ¢ and j into an ordered testing scheme, all measures are either

maintained or reduced, implying that there exists an optimal partition, which is ordered.

Sub-case II: n; H (1—-p") <n, H (1—p")

mEQi\‘l/i mEQj\\I/j

Due to conditions (i) and (ii), there exist 0 C Z; C Q; and 0 C Z; C Q; such that

|Z;| = |Z;|, and when Z; and Z; are interchanged the resulting set of groups will follow an

ordered testing scheme in which the group with the smaller size contains the highest risk

subjects, while the group with the larger size contains the lowest risk subjects. Define a new

testing scheme, Q= {Ql, e ,Qg}, where subjects in Z; are interchanged with subjects in Z;,

that is, Q; = (Q\ Z;) U Z;, Qj:(Q;\Zj)UZi, and Q= Q foralll=1,--- ,g:1#4,j. In

what follows, we will show that partition € reduces or maintains the value of all performance
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measures. By the condition imposed in the sub-case, i.e.,

n [ =" <n [ -5,

mGQl\\I'Z mer\\Ilj

and Eq. (D.1) we get:
n [[ =) <ny [T =57,

me); mEQj

By definitions of Z; and Z;, we have that:

[Ta-sm-JJa-m=>o0

meZ; mGZj

From Eq. (D.2) we have that:

o [ - [[a-<n [ -5 [JO-57).

meQ\Z; meZ; meQ;\Z; meZ;

Then, by Eq.s (D.3) and (D.4), it must be true that:

ni [ A= <n; [ =57

mGQZv\Zi mEQj\Z]‘

Multiplying Eq. (D.5) by Eq. (D.3), expanding and rearranging gives:

n [JT=p™) +n [JA=-">n [TO-0™ +n [] Q=5

mesy; meQ; mes; me;

(D.4)

(D.5)

Following a similar methodology to that of Sub-case I, one can show that E[FP(Q)] <

E[FP(Q2*)] and E[T(2)] < E[T(92*)]. As such, for all cases, we are always able to construct

an ordered testing scheme that reduces or maintains the values of all performance measures,

concluding the proof.
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Proof of Theorem 5.3. We have that:

E ] / / X(Z Q(X(j))‘X(i) =2, X0) = xj]fx(n,xm(xivxj)dxidxj
/ / (X(“rl)) cg(XUDYX® = 4f X 0) = 2] fxo xo (2t 27)dz'da?,
(D.6)
where
E[g (X<i+1>)~-~g( G-y X0 = g, XD = 23] =
/ / / H_l - _1)fx(i+1)7... XG0 | XD =gt X (@) =gd (xi+1’ T 7$j_1)d$j_1 e da PP
(D.7)
where
: : fxo,. xo (', 27)
fX(i+1> e XU X @) =g X ()= -(33‘”1 ce :Ujfl) -
e, X Y | zt, X)) =g ) ) fX( )J((])(x ,xﬂ)
From [101], we have that:
i j N! ii—1 i j G\ NI
fxa),...,X(j)(ﬂ?,'“,w): - ~ Fx(2") fX($)"‘fX($)(1—FX($ )) )

and

NI
(i = DG —i = DN = j)!

fxo xo (@', 27) =

As such,we have that:

fX(agiJFl) ... fX(l’j'fl.) .
(Fx(xg) _ FX(Z.i))J—z—l

(D.8)

S G- x0 gt x =g (7, 27T = (j =i = 1))
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Substituting Eq. (D.8) into Eq. (D.7) gives:

—i—1)! A , A : . ,
(] 1 — / / / Z+1 B g(l.]—l)fx(mz—‘rl) . fx(fL']_l)d.T]_l . dl’z+2dl’z+1.
(Fx(a?) — Exa)) " Jor o

Define h(t) by: '
r)= [ ala)fe(onde

Note that h(t) exists since g(x) and fx(z) are both continuous (imposed in the theorem),
and h(z?) = 0 and dh(t) = —g(t)fx(t)dt. Then Eq. (D.7) can be written as:

]E[g(X(i"'l))H-g(X(j_l))|X(i) ) X(i) — ] —

— 7 — 1 . . . . . . . .
(F WEJ - (;S)J = 1/1- / [/ @l” 1>fx(z-7‘1)dz1‘1}g(z1“>--»g<z]‘2>fx<z1+1)-~fx(z-7‘2)dz1—2~»dz”+1
X — X x
— 7 — 1 . . . . .
o WEJ - (:)] — 1/ »/.73 B =g ) - g(@ 2 fx @) @ de TR dat
X — X x? k2

S
8 S,
<.

j—4

1) zJ ) . ) ) ) ) . ) ) .
F w;] ; <:>) -1 / a [/j73g(ljiz)fx(w]72)h<w172>dw]72]g(wl+1)H'g(wjis)fx(wﬂrl)‘"fx(w173)dw]73-~-dwl+1
X . ¢ x x

For the integral in brackets, we perform a change of variable u = h(z972) with du =
—g(2772) fx (2772)da? 72, this gives:

[E[g(X(H—l)) . --g(X<'7_1))\X(i) — mi',X(j) — zj} —
[3

i1 R o @Y , : . . , :
(wagj— leuznwfl Lo Lo [/mjf4 9<Z]_3>fx(”]_3>%dz]_3 R e L

Continuing in this manner gives:

E[g(X" ). g(XU) XD =27 XU = 27 = (j—i—1)! 1 h(a?)i=i—1
(Fx(29) = Fx(ah))’ " (G —i—1)!
i j—ie1
/x 9(x) fx(z)dx
zt FX(mj)—Fx($i)
Substituting the latter in Eq.(D.6) provides the result. 0O

Proof of Lemma 5.1. The result follows by Remark 5.2, which states that for a given vector
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y, Problem CM reduces to an SP Problem, for which the constraint set possesses the total
unimodularity property. As such, the optimal solution, corresponding to the specific y, will

be integral, and hence integrality constraints are not required for the @ variables. O]

Proof of Theorem 5.5. We prove the result by showing that for any estimated risk vector
realization, p, if a group of size greater or equal to four exists, then one can always reduce
the objective function by placing the two highest risk subjects in a separate group. We
only prove the result for Problem EM, as the proof for Problem RM follows similarly, with
the only difference being that the entire risk vector is multiplied by 1 + . Suppose, to
the contrary, that the optimal testing scheme, * = {Qf,---,Q}, for some g = 2,--- | N,
has a group, 7, with n; > 4, and let m and k denote the indices of the two highest risk
subjects within the group. Consider a new testing scheme, 2, that is identical to Q except
for placing subjects m and k into a separate group. Note that the expected number of false

negatives under both partitions is equal, thus we proceed by showing that testing scheme Q

reduces the expected number of false positives over 2*. We have that:

E[FP(Q)] =Y E[FP]+(1-Sp)Se> (1—§")—ni(1—Sp)(Se+Sp—1) [[(1 -#), and

L:l#i,j leq leq
E[FP(Y)] = Y E[FP]+ (1—Sp)Se Y (1—p")— (n; —2)(1— Sp)(Se+Sp—1) [] 1 -7
L1, 1€, me;

+(1—Sp)Se(2 = p" = p*) = 2(1 = Sp)(Se + Sp — 1)(1 — p™)(1 — 1").
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Subtracting the two gives:

E[FP(Q)] ~E[FP()] | - ) vt
I SpSetsp1 —Im—2-m-p )(1—pk)} m]}z;(l—pl)Jr?(l—p )(1—7")
=[ni—2= (i =2+ 2)(1 =51 -] [T =) +20 =50 -5
mes);
=[mi-2(-a-pma-i)] T[T a-) -2 [[a-i+20-5)0 -
' me e$;

Since n; > 4, then [(n2 -2)(1—-(1-pm)(1 - ﬁ’“))] [T,co,(1 —7') > 0. As such, we have

that:
E[FP(Q)] — E[FP(Q )
(1—Sp)(Se+Sp—1 = 2l£2[1— )+2(1—p™)(1—7p")
=201 =) =) (1 - 1Ia ﬁl)) >0
As such, E[FP(Q)] < E[FP(Q")]. ]
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