Optimal Demand Shaping Strategies for Dual-channel Retailers in
the Face of Evolving Consumer Behavior

Nevin Mutlu

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and
State University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Industrial and Systems Engineering

Ebru K. Bish, Committee Chair
Douglas R. Bish
Navid Ghaffarzadegan
Erick D. Wikum

March 24, 2016
Blacksburg, Virginia

Keywords: Dual-channel retailing, e-commerce adoption, adaptive learning, consumer choice,
multi-period inventory, pricing.

Copyright © 2016, Nevin Mutlu



Optimal Demand Shaping Strategies for Dual-channel Retailers in
the Face of Evolving Consumer Behavior

Nevin Mutlu

ABSTRACT

The advent of the Internet has not only enabled traditional brick-and-mortar retailers to open
online channels, but also provided a platform that facilitated consumer-to-consumer information
exchange on retailers and/or products. As a result, the purchasing decisions of today’s consumers
are often affected by the purchasing decisions of other consumers. In this dissertation, we adopt an
interdisciplinary approach that brings together tools and concepts from operations management,
economics, systems dynamics and marketing literatures to create analytical models in order to
address a dual-channel retailer’s optimal demand shaping strategy, through e-commerce advertise-
ment efforts, store service levels, and pricing, in this new environment. Our findings show that the
retailer’s optimal demand shaping strategy, in terms of store service levels and e-commerce adver-
tisement effort, critically depends on the product’s e-commerce adoption phase. We also show that
in the presence of higher operating costs for the store channel compared to the online channels, a
channel-tailored pricing policy always dominates a uniform pricing strategy. Our work sheds light
on the benefits of channel integration for multi-channel retailers. We show that the retailer can
leverage the online channels to provide in-store pricing and inventory availability information in
order to enable a more transparent shopping experience for consumers, and this strategy results in

a “win-win” situation for all parties.



“Not I, nor anyone else can travel that road for you.

You must travel it by yourself.

It is not far. It is within reach.
Perhaps you have been on it since you were born, and did not know.

Perhaps it is everywhere - on water and land.”

-Walt Whitman

To Mom and Dad
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Chapter 1

Introduction

1.1 Motivation and Objectives

Just when retailers had largely mastered replenishing stores, the retail game changed with a seismic
shift to omni-channel retailing. The extensive use of the Internet, along with the introduction of
smartphones, gave rise to a number of additional sales channels beyond the traditional brick-and-
mortar stores. As such, consumers adopted new shopping mechanisms, such as ordering an item
online, through a mobile application, by phone using a catalogue, or a combination thereof. The
use of technology has moved far beyond the point of purchase, though. Today’s consumers use it
throughout their entire shopping experience, from awareness and research, to purchasing, taking
possession, and obtaining service and support (Toshiba Global Commerce Solutions 2012). For
example, a consumer can start her shopping journey online by reading reviews about a specific item,
move to the purchasing stage through her mobile phone, and complete her shopping experience at
the store, where she chooses to take possession of her order. As channels blend together, the rules of
the game are changing and retailers are trying harder than ever to come up with innovative ideas to
make consumers’ shopping journeys more enjoyable at all stages. In addition to new features that
enable consumers to check the in-store product availability and price on the retailer’s mobile app
and/or websites, new shopping mechanisms such as Order Online/Pick up at the Store or Order
at the Store/Ship Home have emerged in the past few years to provide consumers with a more

transparent, convenient, and faster shopping experience.



The advent of the Internet in the past decade also provided a platform that facilitated consumer-
to-consumer information exchange on retailers and products (Chiang and Chhajed 2005, Toshiba
Global Commerce Solutions 2012). As a result, the purchasing decisions of today’s consumers are
greatly influenced by the purchasing decisions of other consumers (Netessine and Tang 2009). Con-
sumer interactions in the physical and in the virtual world are crucial when it comes to adopting new
services and shopping mechanisms such as e-commerce. The information obtained through word of
mouth is also important for consumers when they are building estimates about the retailer’s service
quality (e.g. inventory service levels). However, the ever-growing interactions among consumers
create challenges for a dual-channel retailer’s demand forecasting and management by leading to
dynamically evolving demand patterns across channels over time and by amplifying the effect of
poor service levels on demand.

Consumer demand is also impacted by the pricing of the item across various channels (Trade
Extensions 2014). Interestingly, research indicates that one of the biggest challenges that dual-
channel retailers face is that consumers expect a similar experience through all available channels
rather than a channel-specific one. This implies that products must be available at all channels,
and the pricing structures must be consistent across the supported channels. That is, “inconsistent
messaging, pricing, promotions, or experiences cause customer confusion, leading to low customer
satisfaction and reduced spending” (Aberdeen Group 2012). In order to mitigate these challenges,
it becomes crucial for the retailer to shape the demand optimally across channels using the decision

levers the retailer has.

1.2 Contributions

A main strength and a unique characteristic of this dissertation is adopting an interdisciplinary ap-
proach that brings together tools and concepts from the operations management (OM), economics,
systems dynamics and marketing literatures. In particular, using these different methodologies,
we develop analytical models so as to determine a dual-channel retailer’s optimal demand shaping
strategy, through three types of levers: e-commerce advertisement efforts, store service levels, and

pricing.



In our first study, we develop a novel model that represents both the diffusion of e-commerce
within the society and the consumer’s channel choice, in the presence of consumer learning, which
refers to learning about the product’s availability at the store through own experiences and the
information shared by other consumers. We characterize the settings in which e-commerce adver-
tisement is profitable for the retailer, and show that the retailer’s optimal demand shaping strategy
critically depends on the product’s e-commerce adoption phase. Interestingly, if the retailer pro-
vides the consumers with information on store availability levels, then this results in a “win-win”
situation for all parties. In this case, the retailer’s optimal service levels do not need to vary over
time, even as e-commerce adoption grew.

In our second study, we consider the retailer’s optimal demand shaping policy through pricing
across channels. Specifically, we shed light on the impact of channel-tailored pricing policies on
consumer behavior, and examine some information-sharing strategies the retailer could use to
mitigate the aforementioned challenges resulting from those channel-tailored policies. Our study
shows that when there is information asymmetry on the store price, i.e. when consumers use
the online price as a proxy to estimate the store price, a channel-tailored pricing policy always
dominates a uniform pricing policy. In this setting the retailer can further improve its profit by
simply making its store price information available on its website, hence, providing consumers with
accurate information regarding the actual store price.

The remainder of this dissertation is organized as follows. In Chapter 2, we present recent
trends and advances in the retailing industry, and provide a comprehensive review of the relevant
literature. In Chapter 3, we present the manuscript of our first study, which is on the retailer’s
optimal demand shaping strategy using e-commerce advertisement and store service levels under
consumer learning. Then, in Chapter 4, we present our second study, which focuses on how a
dual-channel retailer should optimally shape its demand through pricing. Lastly, we conclude with
future research directions in Chapter 5. To improve the presentation of this dissertation, all proofs

are relegated to the Appendix.



Chapter 2

Recent Advances in the Retailing

Industry and Related Research

2.1 Recent Advances in the Retailing Industry

The technological revolution in the past decade has transformed the retailing industry tremendously
by enabling: 1) manufacturers (e.g. Dell) that would typically sell their products through a brick-
and-mortar retailer (e.g. Best-Buy) to open online channels, allowing them to reach consumers
directly, and 2) traditional brick-and-mortar retailers (e.g. Best-Buy) to expand their marketing,
sales, and distribution efforts to multiple channels such as online and mobile (see Figure 2.1). By
taking advantage of the emerging sales mechanisms, retailers have been transitioning to a new
supply chain strategy — “omni-channel retailing” — a business model that focuses on multi-channel
ordering and delivery methods that enable products to be bought, received, and returned anywhere
within an integrated supply chain network in which a uniform consumer experience with the brand
across all available channels is essential.

In this increasingly competitive marketplace where information is only milliseconds away, end-
to-end consumer experience is the new battleground. Success in retailing today requires companies
to deliver a superior, differentiated shopping experience that fits ever-changing consumer needs and

preferences (Achabal et al. 2005). Figure 2.2 shows how the retail industry has evolved from single-
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Figure 2.1: Multi-channel supply chain.

channel to omni-channel throughout the years. A single-channel strategy, which allowed consumers
to shop mostly at brick-and-mortar stores (an exception includes Sears Roebuck and Company,
which began as a mail order catalog company in 1886 and opened retail locations beginning in 1925),
has been outdated with the rise of e-commerce in the 1990s. On the other hand, shopping through
multiple channels that operate independently of each other is no longer sufficient for consumers. In
the new millennium, consumers want to be able to shop through a variety of channels (e.g. store,
online, mobile, catalog, and phone) and have the flexibility to switch channels at different stages of
their shopping experience. For instance, a shopper might want to do her product research online,
order the item through an app on her smartphone, and pick her order up at the store. Most retailers
operate in various channels: while this allows for cross-channel interactions with their brands, the
channels still remain loosely connected. This retailing model, though, is slowly transforming to a
superior one where cross-channel reality is supplemented by technology to deliver a truly seamless
shopping experience across multiple channels. With this new business model, consumers can easily
switch channels at various phases of their shopping journey by experiencing a uniform view of the
brand at all stages (Achabal et al. 2005). According to Tadd Wilson, Senior Managing Consultant
at Toshiba Global Commerce Solutions (2013), “Most retailers face a cross-channel reality and have
omni-channel aspirations.”

Omni-channel retailing can be formally defined as “a set of decision and business processes that

enable consumers to have a seamless experience with the brand across all available channels such
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Figure 2.2: The evolution of omni-channel retailing.

as brick-and-mortar stores, the Internet, catalogues and a call center through an integrated sup-
ply chain network design, data management, pricing strategy and marketing plan.” Omni-channel
retailing demands continuous improvement of multi-channel workflow integration within merchan-
dising, order management, marketing and consumer experience through all stages of consumers’
shopping experiences from awareness and research to purchasing, taking possession and obtaining
service and support (e.g. exchange and return) (Aberdeen Group 2012). Figure 2.3 illustrates
that omni-channel retailing provides consumers with a uniform view of the brand, which is sus-
tained through a strong integration among the available channels and through effectively managing
inventory, product assortment, pricing, delivery decisions, and consumer loyalty programs and
promotions.

In an omni-channel environment, shoppers view a given retailer’s sales channels not as sepa-
rate entities (e.g. a store, a website and a catalog operation), but as a single brand and company
that operates in a consistent and harmonious way regardless of the touch point (Achabal et al.
2005). Therefore, consumers demand similar experience through all the outlets regarding pricing,
promotions, product offerings etc. (Aberdeen Group 2012). This “anytime, anywhere” retailing
places great pressure on organizations to reinvent their infrastructures because “Retailers are serv-

ing greater volumes of shoppers through increasing number of channels, but they are doing this
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Figure 2.3: The components of omni-channel retailing.

by using supply chains that were built to serve stores” states RIS News Group Editor-in-Chief
Joe Skorupa (4R Systems 2013). In order to overcome the challenge, most companies concentrate
on “front-end” activities that consumers directly experience (e.g. promotions, apps, in-store Wi-fi
etc.); however, a focus on what goes on behind the scenes (product offerings, pricing, delivery) is
much needed to accommodate the changes in the industry. Figure 2.4 presents a framework that
shows various decisions that retailers need to make with respect to consumers’ channel choices and
respective product flows in an integrated supply chain where consumers can easily move from one
channel (e.g. online) to another (e.g. store). In addition to providing the consumers with new tools
and technologies (e.g. mobile apps, in-store Wi-fi and personalized promotions) to improve omni-
channel shopping experience, retailers must optimize various activities in the channel planning and
execution stages. Such decisions include strategic decisions such as supply chain network design
as well as tactical (e.g. pricing, product assortment and consumer segmentation) and operational
decisions (e.g. inventory management, warehouse management and data management). Accord-
ing to Retail TouchPoints Research Group, many challenges revolve around inventory efficiencies

across the distribution network due to uncertain demand from various channels (RetailTouchPoints



2012). In order to promote high consumer satisfaction (which leads to high brand loyalty), retailers
should serve consumers from various channels efficiently. In that regard, an effective order allo-
cation model, which takes into account various factors including consumer segmentation, product

assortment, pricing, etc., is needed to excel in the industry (Achabal et al. 2005).
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Figure 2.4: Omni-channel supply chain design.

As consumers demand to shop “anytime, anywhere,” retailers are trying various approaches to
reinvent their traditional store-serving supply chains so that they can better address these emerging
issues. For instance, Walmart is investing $430 million to better its e-commerce operations, which
includes building new warehouses for online orders, while Macy’s is turning its stores into online
fulfillment centers (Banjo 2013, Ryan 2013). On the other hand, Amazon, the largest e-tailer,
invests in Amazon lockers, which are located at various stores including Seven-Eleven, RadioShack
and Staples to reduce distribution costs (Banjo 2013). Figure 2.5 shows alternative inventory
locations and delivery paths.

In order to obtain a thorough understanding of omni-channel retailing research, the current state
of this new business model, and the challenges that are yet to be addressed, we review a variety of
resources in industry and academia in the next two sections. Industry research reveals the current

state of omni-channel retailing through surveys and benchmark studies, and provides roadmaps
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Figure 2.5: Emerging order fulfillment paths in omni-channel retailing.

and tools (e.g. software) for companies to excel in this new business environment. Although
qualitative research emphasizes the need for tools which would integrate various aspects of the
problem (e.g. pricing, inventory, and order fulfillment), current software only provides modules that
deal with these issues separately. Scholarly research, is still scarce. The majority of papers come
from the dual-channel literature in which online and store channels work independently with no
interaction, and the dynamic change in consumers’ adoption of emerging channels is not addressed.
Marketing literature provides insights on pricing issues, while operations management literature
provides inventory control and distribution models in multi-channel supply chains. Consequently,
this literature provides practitioners with a very limited knowledgebase on how to structure omni-

channel supply chains and how to make decisions in an omni-channel setting.

2.2 Industry Research

By contrast to single-channel retailing and multi-channel retailing, which have been widely explored
by marketing and operational perspectives, industry research on omni-channel retailing is limited.
The majority of industry white papers focus on defining the term, and providing roadmaps for
a successful transition from a multi-channel to an omni-channel approach to retailing as most
companies are still in the process of converting their supply chains to omni-channel supply chain

networks which are not mature enough for optimization yet.



A white paper by Toshiba Global Commerce Solutions (Toshiba Global Commerce Solutions
2012) states that although non-store channels only account for 5% of total retail spending globally,
retailers view cross-channel shoppers as being more valuable than single-channel shoppers. Conse-
quently, it is crucial that retailers make every effort to gain the loyalty of cross-channel consumers
through a seamless shopping experience across all channels and at all stages of their shopping pro-
cess. Providing a superb shopping experience across all channels, however, requires an integrated
supply chain infrastructure with an efficient order fulfillment strategy. Similarly, an Aberdeen
Group survey (2012) of 80 organizations reveals that the biggest omni-channel pressure felt by
retailers (49% of the retailers responded “Yes” to this question) is “Lost sales opportunity costs,”
which explains why “Ensuring product availability across all channels” has been selected as the
most important strategic action in the survey. Furthermore, survey data shows that the “leaders”
are twice as likely as “followers” to have accurate demand data across all channels. Aberdeen Group
concludes that accurate demand data across channels not only improves merchandising plans, but
also helps establish right product assortment-mix across channels, inventory allocation at stores
and distribution centers, and replenishment strategies to prevent stock-out situations that incur
high opportunity costs (Aberdeen Group 2012). Likewise, Retail TouchPoints Research emphasizes
the profitability of the cross-channel shoppers and concludes that “the crux of many cross-channel
challenges revolves around the advanced collection of data, and using the data to create inventory
efficiencies” (RetailTouchPoints 2012). 4R Systems suggests that as channels blend more and more
through consumers’ cross-channel shopping habits, inventory efficiency can no longer be sustained
through separate inventory streams for in store and digital commerce (4R Systems 2013). Lastly,
IBM Business Consulting and Santa Clara University’s Retail Management Institute present a
roadmap for cross-channel optimization in omni-channel businesses. The framework consists of

four stages:

1. Align fundamentals (ensure basic value propositions such as assortment and pricing are in

sync),

2. Achieve proficiency (integrate key consumer facing processes),

10



3. Leverage across channels (exploit channel-specific capabilities and drive cross-channel collab-

oration), and

4. Optimize operating model (optimize resource allocation at enterprise level) (Achabal et al.

2005).

Some multi-channel software is available in the market. Such products include WebSphere Com-
merce (IBM), Celerant (Celerant Command Retail), CoreSense (CoreSense, Inc.), Hybris (hybris),
and StoreNet Live (VendorNet), which provide businesses with multi-channel solutions regarding
marketing, promotions, social commerce, order management, pricing, cross-channel order process-
ing, employee management and warehouse management. Figure 2.6 provides a comparison chart
for various multi-channel software available in the market with respect to the modules they contain.
While built-in modules help companies to enhance their front-end activities to provide more enjoy-
able and personalized shopping experience for the consumers, the existing software fails to provide
a comprehensive model that takes into account the interdependencies between price, product as-
sortment, lead time, and demand, and the combined effect of these factors on order fulfillment
strategies. By focusing on marketing activities, industry software helps retailers increase their
non-store sales, but without firm infrastructure for effective decision making regarding inventory
management, pricing, and order fulfillment, higher sales do not always lead to increased profits.
Therefore, there is a big research opportunity for a much needed omni-channel decision support sys-
tem, which handles these issues hand in hand in the face of growing adoption of emerging channels

by the consumers over time.

2.3 Academic Research

Several research papers and books such as Agatz et al. (2008) and Simchi-Levi et al. (2004) provide
excellent reviews on the impact of the Internet on existing supply chains. Most previous work up
to that point, though, considers either online-only supply chains or coordination strategies and
inventory and distribution management at a strategic level in multi-echelon supply chain where the

higher echelon is the manufacturer and the lower echelon is the retailer. In particular, Agatz et

11
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al. (2008) identifies the issues and existing models related to two core areas: 1) sales and delivery
planning, and 2) supply management. Sales and delivery planning includes delivery service design,
pricing and forecasting, order promising and revenue management, and transportation planning.
Supply management, on the other hand, covers areas such as distribution network design, warehouse
design, and inventory and capacity management. Alternatively, Simchi-Levi et al. (2004) discusses
the specific aspects of online and multi-channel retailing, regarding conflict and coordination in
multi-channel distribution systems, coordination of pricing inventory decisions, etc. However, with
the growing use of the Internet, additional services such as mobile shopping, in-store Wi-fi, Order
online/Pick up at the store, and Order in store/Ship to home are emerging. Hence, new research
is being conducted to answer some of the questions related to these emerging services.

In the remainder of this section, we first review a representative set of recent marketing pa-
pers on multi-channel retailing. This strand of research primarily focuses on consumer behavior
through empirical studies. In particular, the drivers of consumer behavior toward online and offline
channels are discussed. Then, we review analytical research recently conducted in the operations
management (OM) literature. The first strand of research in this area is focused on the dynamics
between a manufacturer and retailer in a decentralized supply chain in the event that the man-

ufacturer opens a direct sales channel, which competes with its already existing retailer channel.

12



Specifically, coordination strategies for the manufacturer and the retailer which face both vertical
and horizontal competition are discussed in this section at a strategic level. The second strand of
research in the OM literature is concerned with the optimization of tactical decisions in a multi-
channel supply chain. The research in this area is primarily focused on inventory and distribution

strategies formulated in a way that is similar to multi-echelon supply chain settings.

2.3.1 Marketing Literature

The marketing literature on multi-channel retailing is primarily focused on consumer behavior
within emerging channels in the retail industry. Specifically, authors adopt a common surveying
approach complemented with statistical analyses to present their findings in two main areas: 1)
drivers of channel choice within the multi-channel framework, and 2) consumers’ adoption level of
emerging online channels with respect to various product categories.

Understanding the factors that drive consumers to choose various channels within a centralized
supply chain is paramount to understanding consumer behavior, which is at the core of designing
efficient pricing, product assortment, inventory management, and distribution strategies for the
entire supply chain. Schoenbachler and Gordon (2002) provide one of the earliest works that
attempt to provide a conceptual model to explain various factors that influence consumers’ choice
of channels. In particular, the authors identify five main factors that impact the likelihood that a
consumer will purchase through a particular channel. These factors, listed here, include not only

consumer-related attributes but also retailer- and product-related factors:

1. “Perceived risk” refers to financial, social or physical risk related to the purchase. Perceived
risk related to a specific channel stems from the individual’s familiarity with the retailer, the
brand or the Internet as well as her perception of the security of personal information or

purchase in the specific channel.

2. “Past direct marketing experience” refers to when and how the consumer purchased in the
past. Since past behavior is a strong indicator of future behavior, a consumer who had a
pleasant experience with a channel in the past would be more willing to purchase through

the same channel in the future.

13



3. “Motivation to buy from a channel” refers to consumer demographics such as age, income,
gender, number of credit cards and lifestyle factors such as need for convenience and views
on shopping for entertainment as well as the purpose of the purchase (e.g. gift vs. self). For
example, consumers who view shopping as a form of entertainment would be more likely to

shop in store.

4. “Product category” undoubtedly impacts consumers’ shopping behavior. For instance, au-
tomobiles are most often purchased via traditional retail means, while electronics are more

likely to be purchased at the store.

5. “Web site design” refers to the user friendliness of the web page and purchase process as well
as the eye appeal of the interface. Consumers would be more willing to purchase through web

sites that have better designs.

Kumar and Venkatesan (2005) extend the prior work by Schoenbachler and Gordon (2002) with
a slightly modified conceptual framework that is complemented with an empirical analysis using
the consumer database of a high technology hardware and software manufacturer. The authors’
conceptual framework consists of “customer-level characteristics” including cross-buying (i.e. the
number of different product categories that the consumer buys through the firm), return behavior,
consumer tenure, purchase frequency, etc. and “supplier factors” including number and type of
contact channels with consumers, the interactions among which can impact multi-channel consumer
behavior. The authors evaluate the association of the aforementioned factors on multi-channel
shopping by using an ordered logistic regression, and also analyze the performance of multi-channel
shoppers compared to single-channel shoppers in terms of several consumer based metrics, including
revenues, past consumer value, share of wallet, and predicted propensity to stay in the relationship.
Some of the important findings in this work suggest that consumers who buy across multiple product
categories and have past experience with the retailer through the online channel have longer tenure
and purchase more frequently. The authors also find evidence for a nonlinear relationship between
returns and multichannel shopping, and that there is a positive synergy towards multichannel

shopping when consumers are contacted through various communication channels. Interestingly,
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consumers who shop across multiple transaction channels provide higher revenues, higher share of
wallet, have higher past consumer value, and have a higher likelihood of being active than other
consumers.

As opposed to the prior work, wherein authors simply define multi-channel shoppers as those
who make a purchase in more than one channel in the observed time period, Schroder and Zaharia
(2008) define multi-channel shoppers as those who obtain information in one channel and make the
purchase in another channel (of the same retailer). They conduct a survey with 525 consumers of
a multi-channel retailer that operates five different channels to identify consumers’ channel choice
with respect to five different factors including recreational orientation, convenience orientation,
independence orientation, delivery-related risk aversion, and product- and payment-related risk
aversion. Consumers are divided into groups based on the channel in which they obtain information
and the channel through which they make a purchase. The survey revealed that consumers who
solely shop through store channels care about recreational purposes the most while consumers
who shop through online channels only look for convenience and independence. Surprisingly, their
findings show that consumers who use multiple channels (i.e. obtain information in the online
channel and make a purchase in the store channel) combine the independence feature of online
shopping with the reduction of risks associated with buying products in the physical store channel.

Benedicktus et al. (2010) argue that “trust” is one of the greatest factors which could improve the
competitiveness of an online-only retailer with multi-channel retailers that have physical presence
in the market. The authors first examine the main effects and interactions of consensus information
(i.e. the extent of satisfaction agreement among previous consumers), physical store presence, and
brand familiarity on trustworthiness and purchase intentions. Then, they extend their work to
examine the effects of consensus information and brand familiarity when consumers are actively
suspicious and less inclined to trust sellers in general. The authors find that consensus information
provides a broad cue that conveys trustworthiness and leads to greater purchase intentions. The
authors also find that that consensus information alone is not sufficient to buffer against active,
generalized suspicions online. Instead, a combination of high consensus and brand familiarity is

necessary for this purpose.
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Levin et al. (2005) provide a conceptual model to explain how consumer characteristics such as
age, gender, income and computer literacy as well as channel attributes including delivery speed,
selection and price for a specific set of products impact online shopping behavior and their model
by conducting a survey. In the study, the participants are asked to rate 1) which key attributes are
delivered better online than offline, and 2) the importance of each key attribute in both the search
stage and the purchasing stage of the product. The findings show that the single best predictor
of online/offline shopping preferences is self-reported consumer literacy. Not surprisingly, when
consumers demand a fast checkout or a large selection of a product, online shopping is preferred;
on the other hand, when attributes such as personal service and ability to see, touch and handle
the product are predominant, offline shopping is preferred.

Kacen et al. (2013) uses a similar methodology to test for differences in consumer acceptance
of online channels with respect to various product categories. The authors conduct a survey in
which the participants rate how well each channel performs in various attributes (such as low price,
high quality, availability level, and variety), which have different weights for importance (rated by
the consumer). The authors find that all product categories evaluated, including books, shoes,
flowers, toothpaste, DVD players, and food items, have lower online acceptance, yet the product
category with the highest online acceptance rate is books while the lowest is shoes. Specifically,
even though online stores have advantages in brand selection and variety and ease of browsing, those
advantages are overcome by shipping and handling charges and exchange-refund policies providing
an interesting social or family experience, helpfulness of salespeople, post-purchase service, and

uncertainty about getting the right item.

2.3.2 Operations Management Literature

The OM literature on multi-channel retailing is focused on:

1. Strategic decisions with respect to multiple parties in a decentralized supply chain (i.e. a

manufacturer and a retailer), and

2. Strategic and tactical decisions in a centralized supply chain (i.e. a single multi-channel

retailer).
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The first strand of research concentrates on contractual agreements, which are primarily used
to coordinate decentralized supply chains in business-to-business settings. The second, on the
other hand, focuses on optimal inventory management and distribution strategies for multi-channel

retailers in business-to-consumer settings.

Competition and Coordination in Dual-channel Supply Chains

The coordination strategies in decentralized supply chains with a single supplier and single retailer
(or multiple competing retailers) have been well studied in the literature (e.g. Chen et al. 2001,
Bernstein and Federgruen 2003, and Bernstein and Federgruen 2005). The setting we cover in this
review paper, though, is slightly different in that the manufacturer not only is the supplier for the
retailer, but also a market competitor. As mentioned before, the common approach in this research
area is designing contracts to coordinate the supply chain by using game-theoretic approaches.
Chiang et al. (2003) study the profitability of opening a direct channel that competes with the
existing retail channel considering various levels of consumers’ acceptance of a direct channel ()
utilizing a price-setting game. The consumers are heterogeneous in their valuation of the product
(v), and purchase the product through the utility maximizing channel given the different pricing
scheme (determined by a Stackelberg game where the leader is the manufacturer and the retailer is
the follower) across channel and the consumer acceptance level for the product. As the Stackelberg
leader, the manufacturer determines the optimal wholesale price and the direct channel price that
would maximize its profits anticipating the retailer’s pricing decision. Then, given the wholesale
price, the retailer determines its optimal selling price. The authors’ key finding in this setting
is that when the consumer acceptance of the direct channel is high enough, the manufacturer
can open a direct channel strategically to alleviate the double-marginalization problem. Double-
marginalization occurs when upper and lower echelon parties in a vertical supply chain compete
for the same market, which, in turn, results in higher prices, lower demand, and lower profit for
both parties. In this setting, the retailer sees the direct channel as such a considerable threat that
it cuts the price aggressively, which increases sales in the retailer channel, and, in turn, increases

profits of the manufacturer through a higher sales volume.
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Similar to Chiang et al (2003), Tsay and Agrawal (2004a) study the optimal channel structure
for a manufacturer which can operate two channels-direct and retail. Assuming that the product
price is uniform across channels, the authors differentiate between channels by the sales effort in
each channel. In that setting, the aggregate deterministic demand in each channel is increasing
in the sales effort in both channels. That is, a high sales effort in one channel not only increases
demand in that channel, but also in the competing channel. The authors study three different
strategies (i.e. direct only, retailer only, and dual-channel) within a game-theoretic framework and,
similar to Chiang et al. (2003), find that opening a direct channel is not necessarily detrimental
for the retailer. In fact, in order to retain some of the retailer’s sales effort, the manufacturer
will lower the wholesale price which will create a net system-wide efficiency gain to share because
the wholesale price reduction can counteract double marginalization. The authors also find that
revisiting the wholesale pricing terms can improve the overall efficiency of a dual-channel system.
However, the greatest improvements are realized when the pricing is premised on the reseller’s sales
effort, which may be difficult or impossible to monitor in practice. Fortunately, certain schemes
observed in industry do not have this requirement. These include paying the reseller a commission
for diverting all consumers toward the direct channel, or conceding the demand fulfillment function
entirely to the reseller.

Boyaci (2005) considers a manufacturer that sells products through a direct channel and an
independent retail channel. The author focuses on the stocking levels across both channels in
the face of stock-out based channel substitution (horizontal competition) and vertical competition
(double-marginalization) due to the hierarchal nature of the supply chain. As opposed to Chiang
et al. (2003), the channel structure decision is not considered; that is, it is assumed that the
manufacturer utilizes both channels at all times under various prices (uniform across both channels),
and wholesale prices which are assumed to be exogenous. The findings show that both channels tend
to overstock due to substitution, which gets more pronounced with increasing substitution rates.
On the other hand, increasing double-marginalization through a higher wholesale price results in
overstocking in the manufacturer’s direct channel and understocking in the retailer channel. The

author considers various contracts and finds that price-only, buyback, rebate, revenue sharing and
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vendor managed inventory contracts do not coordinate the supply chain since they cannot overcome
the vertical and horizontal competition inherent in the system. On the other hand, penalty and
compensation commission contracts have the capability to coordinate the supply chain although
they are hard to implement in practice.

Similarly, Chiang and Monahan (2005) consider a multi-echelon setting and investigate optimal
inventory levels for the direct and retail channel channels in the supply chain. Similar to Boyaci
(2005), the authors consider parameterized stock-out based channel substitution across channels.
As opposed to prior work, the authors use a Markov Model with a Poison demand function as a
modeling and solution methodology, and base their conclusions on channel performance on long-run
(steady state) average inventory holding and lost sales costs for each channel. The parametric anal-
ysis performed by the authors shows that increasing the consumers’ willingness to switch channels
when a stock-out occurs can possibly increase the total inventory related costs across channels. The
authors also examine the performance of two other possible channel distribution strategies—retail-
only and direct-only. The numerical study shows that the dual-channel strategy outperforms the
other two channel strategies in most cases, and the cost reductions realized by the flexibility of the
dual-channel system may be significant under certain circumstances.

Cattani et al. (2006) analyze a similar scenario to that considered in prior work where a
manufacturer with a traditional channel partner opens up a direct channel in competition with the
traditional channel. The authors study the pricing problem across channels using a game-theoretic

approach. Specifically, they consider three scenarios:

1. Employ uniform pricing strategy that keeps wholesale prices as they were before,
2. Keep retail prices as they were before, and

3. Set wholesale and retail prices to maximize the manufacturer’s profit.

For each of these strategies, the authors determine how the resulting prices compare to single-
channel prices, and determine the resulting profits for the supply chain and its two players. The key
findings indicate that the specific equal-pricing strategy that optimizes profits for the manufacturer

is also preferred by the retailer and consumers over other equal-pricing strategies. In addition, they
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find that equal-pricing strategy is appropriate as long as the Internet channel is significantly less
convenient than the traditional channel. If the Internet channel is of comparable convenience to the
traditional channel, then the manufacturer has tremendous incentive to abandon the equal-pricing
policy, which is detrimental to the traditional retailer.

In addition to the previously mentioned literature that studies conflict and coordination issues
at a strategic level in multi-channel supply chains in the existence of a manufacturer and a retailer
under both vertical and horizontal competition, another body of literature is focused on multiple
aspects of inventory and distribution strategies in centralized multi-channel supply chains. In the

next section, we summarize some prominent papers in this literature.

Inventory and Distribution in Dual-channel Supply Chains

One of the earliest works in the inventory and distribution related literature in a multi-channel
retailing context is provided by Alptekinoglu and Tang (2005) wherein the authors consider a
centralized two-stage supply chain network with multiple depots and sales locations. In particular,
the demand at each sales location is stochastic and correlated with other sales locations. In addition,
the depots hold no inventory. In this setting, the authors aim to determine the optimal ordering and
allocation policies for each depot (i.e. how much stock to order, and how much stock to allocate to
each sales location) so that the total expected distribution cost, which consists of transportation,
inventory holding, and backordering costs, is minimized. The authors solve this general model
(which is applicable to a multi-channel supply chain setting) with a decomposition scheme that
breaks down the original multi-channel distribution network into m independent single-depot sub-
networks, each of which possesses the structure of a single-depot distribution system. Then they
extend the Eppen and Schrage model to analyze these single depot sub-networks. The authors’ key
findings show that the correlation of demands across sales locations (channels in the multi-channel
context) play a significant role in ordering and allocation policies.

A series of papers by Mahar and his colleagues study various aspects of distribution issues in
multi-channel retailing. As such, similar to Alptekinoglu and Tang (2005), Bretthauer et al. (2010)

study where and how much inventory should be held at each site for a company that operates mul-
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tiple sales and distribution channels. As opposed to Alptekinoglu and Tang (2005), who considers
a single depot assignment to a sales location, the authors consider multiple depot assignment to
a sales location for inventory allocation by using a similar Eppen and Schrage framework. The
authors’ key findings indicate that 1) the percentage of sales occurring online is the major deter-
minant of the number of sites providing e-fulfillment when all costs (inventory holding, backorder,
and shipping) are considered; 2) when holding and backorder costs are the only consideration, the
standard deviation of in-store demand is a major factor in determining where online inventory
should be located; and 3) an increase in unit shipping costs does not necessarily imply that adding
online fulfillment locations will drive the total cost down.

Mahar and Wright (2009) study the order fulfillment postponement strategy within the multi-
channel distribution context. Specifically, the author investigate the profitability of postponing
the fulfillment of online orders, that is, accumulating the online orders before determining which
fulfillment site the orders should be assigned to instead of using the closest fulfillment center to the
consumer to fulfill the order right away. The authors develop a “quasi-dynamic” allocation policy
that assigns accumulated online sales to fulfillment locations based on expected inventory, shipping,
and consumer wait costs, and conclude that accumulating online orders before assigning them to
order fulfillment centers is the optimal strategy as this approach leverages more information on the
inventory position of each fulfillment site before making the actual fulfillment decisions.

As a follow-up work, Mahar et al. (2012) study a newly available service by the retailers: “Order
online/Pick up at the store,” wherein the retailer shows the real-time availability of the item at
various pick-up locations (i.e. stores) on its website. The paper compares two strategies that can
be employed by the retailer: showing all pick-up sites that hold the item vs. showing a subset of
pick-up sites with available inventory. The authors develop a dynamic pickup site inclusion policy
that utilizes real-time information to determine which of the firm’s e-fulfillment locations should
be presented at online checkout. The authors’ key findings show that it is more profitable for
the retailer to show a subset of pickup sites with available inventory, which protects stores with
critically low inventory levels and hence reduces backorder costs.

Even though returns by consumers constitute one of the major problems in multi-channel retail-
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ing, research that studies this problem is very scarce. Our comprehensive literature search shows
that Yao et al. (2005) provides the only analytical work in this field. The author considers a manu-
facturer and a retailer within a decentralized supply chain and analyzes the impact of information
sharing between the manufacturer and the retailer on the manufacturer’s optimal return policy
within a game-theoretic framework. The author finds that: 1) if the manufacturer and the retailer
do not share forecast information about the ratio of the consumer demand across channels, the
returns policy becomes more restrictive if the manufacturer overestimates the demand in the direct
channel; and 2) the returns policy remains the same regardless of the shift of consumers between

two channels if the manufacturer decides to share information with the retailer.

2.4 Conclusions and Future Research Directions

In this chapter, we present some recent advances in the retailing industry, and provide a compre-
hensive review of some of the most recent papers relevant to omni-channel retailing. Omni-channel
retailing is an emerging business model, and even though retailers have been trying to achieve an
efficient, seamless supply chain in the past decade, academic research that complements the new
developments in the industry is still at its infancy. Hence, our main resource in this work is multi-
channel distribution literature. In particular, we provide examples of: 1) descriptive research from
the marketing literature that addresses consumer behavior towards multi-channel retailing, and 2)
prescriptive research from the OM literature that is focused on two areas: a manufacturer’s decision
to open an online channel that competes with an already existing retail channel in a decentralized
setting, and a multi-channel retailer’s optimal inventory and distribution strategy in a centralized
setting.

We observe that even though consumer attitudes toward multi-channel retailing is well-studied
in the marketing literature, the demand forecasting issue (both short and long term) is completely
ignored in a multi-channel setting. It is of utmost importance to the retailer to know the volume of
demand across channels for inventory planning purposes, and the current marketing literature does
not address this problem. Similarly, the OM literature assumes that demand is deterministic or

follows a certain distribution (commonly uniform or normal distribution) in order to study various
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decisions such as pricing, inventory, wholesale price or distribution in a single period setting. Hence,
the literature lacks predictive models for demand forecasting in a multi-period setting.

In addition, although the conditions under which it is profitable for a manufacturer to open
a direct channel that competes with the existing retail channel in a decentralized setting is well-
studied in the literature, the retailer’s product assortment, pricing, and order fulfillment strategies
across multiple channels in a centralized supply chain are not studied well in the OM literature.
Specifically, one of the major purposes of opening an online channel is to be able to offer more
products as online channels have a larger storage space compared to stores (i.e. warehouses vs.
stores). Hence, it is very important for the retailer optimally to leverage the extra space to offer
profitable products. Moreover, it is well-acknowledged that the operating costs in online channels
are lower due to inventory pooling practices. Hence, uniform pricing across channels, which is a
common assumption in the OM literature, might not be the optimal strategy. Although the pricing
scheme across channels has been studied in decentralized settings in a game-theoretical framework,
the pricing problem in a centralized environment deserves further attention.

Lastly, today’s multi-channel retailers are going above and beyond to offer innovative services
to provide consumers with a convenient shopping experience. Those new services include in-store
Wi-fi, Order online/Pick-up at the store, and Order in store/Ship to home. Even though Order
online/Pick-up at the store service is explored by Mahar et al. (2009), research addressing these
new services is in its infancy.

In conclusion, the developments in technology lead to many changes in the retailing industry in-
cluding evolving consumer behavior as well as opportunities for new sales mechanisms and services.
The objective in omni-channel retailing is to provide consumers with a seamless experience across
all channels through an integrated supply chain. In order to achieve this goal, many processes such
as pricing, order fulfillment, and inventory planning have to be executed in an efficient manner.
However, the current academic research provides little guidance on how these decisions should be
executed. Hence, we believe that omni-channel retailing still encompasses many interesting and

challenging problems that are yet to be addressed.
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Chapter 3

Optimal E-commerce Advertisement
and Store Service Level Decisions

under Consumer Learning

3.1 Introduction and Motivation

The advent of the Internet has not only enabled traditional brick-and-mortar retailers to open online
channels, but has also provided consumers with a platform that facilitated consumer-to-consumer
information exchange on retailers and/or products (Chiang and Chhajed 2005, Toshiba Global
Commerce Solutions 2012). As a result, the purchasing decisions of today’s consumers are greatly
influenced by the purchasing decisions of other consumers (Netessine and Tang 2009). Further,
besides organizational factors and pricing, “operational factors related to product availability can
have direct impact on consumers’ purchasing behavior” (Netessine and Tang 2009). This is because
stock-outs are costly due to the time and energy consumers invest in their shopping trips. Hence,
“consumers would not patronize a firm without some form of assurance that they can find what they
are looking for” (Su and Zhang 2009). Therefore, consumers build estimates about the retailer’s
product availability through their own prior experiences with the retailer as well as through word

of mouth in the physical and in the virtual world (i.e. online reviews and forums), and make their
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purchasing decision accordingly (Bernstein and Federgruen 2004).

Consumer interactions are also crucial when it comes to adopting new services and shopping
mechanisms such as e-commerce. Data suggest that e-commerce sales in the United States have
grown by 14.4% in 2014 (by 13.7%, 15.1%, 17.4% in 2013, 2012, and 2011, respectively) — four
times as fast as traditional retail — constituting as much as 34% of the total sales for certain
product categories such as electronics (the U.S. Department of Commerce 2014, Egol et al. 2012).
Among other factors such as increased spending in e-commerce advertisement and improvements
in the speed of online deliveries, consumer interactions play a great role in increasing e-commerce
adoption within the society. As OM scholars Debo and Veeraraghavan (2009) state: “Customers
do not decide in a ‘vacuum’ whether to buy a product... Consumers are influenced by what they
observe around them. Such customer-to-customer interactions are important determinants that
shape a firm’s demand or market share, especially [...] for new, innovative products of which some
features are unknown.” Marketing scholar Avi Goldfarb (2014) complements this statement: “The
physical environment shapes online behavior in powerful ways. Neighbors tend to like the same
books, music, and cars... So even though we speak of the Internet as a ‘place’ where users ‘visit’
websites, this metaphor falls flat when we consider actual behavior. All online behavior has an
offline context.”

The ever-growing interactions among consumers create challenges for a dual-channel retailer’s
demand forecasting and management by leading to dynamically evolving demand across channels
over time and by amplifying the effect of poor service levels on demand. In order to mitigate these
challenges, it becomes crucial for the retailer to shape the demand across channels optimally using
the decision levers it has. In our stylized model, we focus on two types of levers: e-commerce
advertisement efforts and store service levels. While the former (latter) decision directly impacts
the demand in the online (store) channel, it also indirectly impacts the store (online) demand due
to consumer migration from one channel to the other. From that perspective, our model brings
together the marketing and OM aspects of the problem through explicitly modeling the consumer-
to-consumer interactions (e.g. word of mouth, online reviews, and forums), which not only stimulate

the e-commerce adoption over time but also impact consumers’ predictions of the retailer’s store
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service levels. Our goal is to gain insight into important research questions including: How should
a dual-channel retailer adjust its advertisement efforts and inventory service levels over time to
shape demand optimally across channels to mitigate the aforementioned challenges? Do products
at different phases of e-commerce adoption and with different profit and sales margins necessitate
different strategies? What is the value of providing consumers with accurate information on the
retailer’s service levels, and how does this impact the retailer’s demand shaping strategy?

In order to answer such questions, we develop an analytical model that integrates a diffusion
model with a consumer choice model within a multi-period setting, considering a dual-channel
retailer that operates a store and an online channel. In particular, we utilize the consumer choice
model to represent the heterogeneity in the consumer base with respect to willingness to wait
for online delivery, travel distance to the store, and adoption status of the e-commerce option,
where the latter is derived from the diffusion model based on the interactions among e-commerce
adopters as well as non-adopters and the retailer’s e-commerce advertisement efforts. Consumers’
channel choice is also impacted by the product availability at the store, which consumers predict
through word of mouth and prior self-experiences with the retailer. Consequently, the retailer’s
demand across channels is determined endogenously as a function of its store service levels and
e-commerce advertisement efforts, and is also influenced by how consumers share information with
one another. This model allows us to obtain key managerial insight on a dual-channel retailer’s
multi-period demand shaping strategy in a setting with consumer learning and for products at
different phases of e-commerce adoption (i.e. early, established, or mature). In particular, we
show that the retailer’s optimal target service level in each period follows a threshold policy. This
characterization allows us to obtain several important insights. For example, we show that even
though e-commerce advertisement improves the retailer’s market coverage, it is not necessarily
profitable with sufficiently small service radii, i.e. when the majority of the consumers are located
in close proximity to the store. With sufficiently large service radii, on the other hand, the retailer’s
optimal demand shaping policy critically depends on the product’s e-commerce adoption level. For
example, not surprisingly, if a product is at a mature adoption phase, then the retailer does not

need to advertise the online channel as aggressively as in the earlier adoption phases, but invests
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more in inventory service levels in the store. Interestingly, we show that if the retailer provides
the consumers with accurate information on the store availability levels, then this results in a
“win-win” situation for both the retailer and consumers. Further, such information-sharing is most
beneficial in settings with slow-learning consumers. We also show that if consumers are provided
with accurate information on the retailer’s current availability level (so they do not need to seek the
information provided by other consumers), then the retailer’s optimal service levels do not need to
vary over time, even as e-commerce adoption grows. In other words, the retailer’s optimal service
levels vary over time mainly due to the fact that consumers need to predict the retailer’s current
availability levels using prior information.

The remainder of this chapter is organized as follows. In Section 3.2, we provide a brief overview
of the relevant literature. In Section 3.3, we present the demand model and the consumer learning
process, and characterize the retailer’s market segmentation as a function of its decision levers. In
Section 3.4, we analyze the retailer’s optimization problem, and in Section 3.5 we study the value
of providing consumers with accurate information on the retailer’s product availability at the store,
and study how this impacts the retailer’s optimal demand shaping strategy. We complement this
analysis with a case study in Section 3.6. Finally, we conclude in Section 3.7 with a summary of
our main findings and directions for future research. To improve the presentation, all proofs are

relegated to the Appendix.

3.2 An Overview of the Related Literature

The related literature spans various streams of research, including research on inventory-driven
demand, consumer learning, technology diffusion, and multi-channel retailing. This review is not
meant to be comprehensive, but rather indicative of the different models used in each line of
research.

The first stream of literature that we draw upon concerns inventory-driven demand; that is,
research in which product availability is used as a lever by the firm to stimulate demand. For
example, Dana and Petruzzi (2001) consider a single-period newsvendor set-up in which demand is

a function of service levels. Chen et al. (2008) study a single-period dual-channel retailer setting in
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which consumers’ utility from each channel is an increasing function of product availability in that
channel. Schwartz (1970) is one of the earliest works that explicitly considers the effect of stock-
outs on future demand within a periodic-review infinite-horizon setting for a single firm: the firm’s
demand in a given period is impacted by the proportion of stock-outs in the long-run. Bernstein
and Federgruen (2004) analyze a periodic-review infinite-horizon problem with competing retailers,
where each retailer’s demand is a function of all the retailers’ availability levels and prices. At a
high level, the modeling of demand in our work is similar to the aforementioned literature in that
demand in each channel is increasing in product availability in that channel. However, as opposed
to the above literature, we consider that consumers learn about the retailer’s prior performance, in
terms of service levels, through repeat purchases and/or social networks, and predict future service
levels. This aspect relates our work to the literature on consumer learning in the absence of perfect
information, as we explain below.

Adaptive learning models the phenomenon that consumers do not always treat the most recently
revealed information as a perfectly reliable reference; rather, they adjust to this new information
gradually by merging it with past experience to update their beliefs (e.g. Liu and Van Ryzin
2011). Tt is common to model this type of learning through an exponential smoothing method in
multi-period settings, which we adopt in our work (see, for example, Akerman 1957, Monroe 1973,
Sterman 1989, Jacobson and Obermiller 1990, Stidham 1992, Greenleaf 1995, Kopalle et al. 1996,
Popescu and Wu 2007, Liu and Van Ryzin 2011, and Wu et al. 2015). In particular, similar to Liu
and Van Ryzin (2011), we model consumers’ prediction of the retailer’s current product availability
level as an exponential smoothed average of the product availability level in the previous period
and consumers’ prior estimate. Further, to study the value of perfect information in the context
of product availability, we also study the setting in which consumers can accurately anticipate
the retailer’s current product availability level through the information provided by the retailer.
The fundamental differences between the work by Liu and Van Ryzin (2011) and our research are
the impact of availability on demand as well as the problem setting and the research questions
that we study. In particular, while high availability stimulates demand in our model by providing

consumers with a higher assurance of availability (hence a higher utility), in the setting studied
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by Liu and Van Ryzin (2011) the effect is the exact opposite: the expectation of high availability
during the sale season discourages consumers from buying during the regular season at full price.
In addition, in our setting price does not fluctuate over time; hence, there is no strategic “wait
and decide” component (see, for example, Shen and Su 2007); that is, all consumers make their
purchasing decision under the uncertainty that the product may be out of stock at the store.

We also benefit from the literature on technology diffusion to model the diffusion of e-commerce
adoption within the society. System dynamics models, and, in particular, diffusion models, study
the penetration of new technology, innovations, products, and services (e.g. e-commerce) within
the society over time (Sterman 2000). In particular, the Bass diffusion model, which is the most
commonly used model for this purpose, represents this phenomenon as a function of interactions
among current users and non-users, and changes in external factors such as advertisement efforts
(e.g. Bass 1969, Mahajan et al. 1995, Dodson 2014). From that perspective, the papers that
are most relevant to our research include Lewis and Long (2009), which uses the Bass diffusion
model to forecast e-commerce sales of a dual-channel retailer, and Barabba et al. (2002), which
utilizes a diffusion model in conjunction with a logit choice model to study the impact of external
factors, such as word of mouth, on the number of new subscribers for a new service. However,
these studies solely concentrate on the forecasting aspect and do not consider the optimization
of the retailer’s tactical decisions. In that respect, our main contributions include integrating the
Bass diffusion model with a consumer choice model so as to study the retailer’s optimal e-commerce
advertisement efforts and store service levels, both of which can be used to shape demand optimally
across channels.

The last stream of literature relevant to this study is the OM research that focuses on dual-
channel retailing (see Cattani et al. 2004, Tsay and Agrawal 2004b, and Agatz et al. 2008 for
excellent reviews). A strand of research in this area focuses on two-echelon systems in which a
manufacturer and its intermediary are engaged in both vertical and horizontal competition, i.e.
a manufacturer with a direct sales channel that competes with the existing retail channel. For
example, Chiang et al. (2003), Tsay and Agrawal (2004a), Chiang and Chhajed (2005), Chiang and

Monahan (2005), Boyaci (2005), Cattani et al. (2006), and Chen et al. (2008) model price and/or
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service interactions between upper and lower echelons to address channel conflict and coordination
issues in this setting. From a logistical perspective, Alptekinoglu and Tang (2005) study optimal
distribution strategies in a multi-channel system comprised of multiple depots and sales locations.
A series of works by Mahar and colleagues consider various order fulfillment strategies for dual-
channel retailers (e.g. Mahar et al. 2009, Mahar and Wright 2009, and Mahar et al. 2012). Some
OM scholars examine the impact of recent trends and developments in dual-channel retailing on
the retailer’s tactical and operational strategies. Balakrishnan et al. (2014) consider consumers’
value uncertainty of the product when they buy online, and study the impact of “showrooming”
behavior that results in consumers’ visiting the store to observe the item before they make their
channel-choice decision on the retailer’s pricing decision. Gao and Su (2016), on the other hand,
study the impact of “buy online and pick up at the store” option on the retailer’s store inventory
planning. All of these works consider a single-period setting. We contribute to this literature by
considering a dual-channel retailer that owns and manages competing channels within a multi-
period setting. The multi-period aspect in our setting is especially important, as it enables us to

study the retailer’s optimal demand shaping strategy as e-commerce adoption evolves.

3.3 The Demand Model

3.3.1 Overview of the Demand Model

Our demand model integrates a diffusion model with a consumer choice model to represent the
variation in demand across channels (store and online) over time. In particular, we use the Bass
diffusion model to represent, for a certain product, the penetration of the e-commerce option within
the consumer base through imitation via word of mouth; and innovation through the retailer’s
advertising efforts (Bass 1969, Sterman 2000).

In our context, penetration refers to the adoption of the “idea/option of buying online.” How-
ever, individual consumers still make rational choices on whether or not to purchase the item and
through which channel (store or online) so as to maximize their utility. In order to represent this

phenomenon, two processes happen simultaneously in our demand model: 1) adoption of the idea
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of acquiring the item through the online channel penetrates within the society over time through
advertising efforts, the level of which is determined endogeneously, and word of mouth, which is ex-
ogeneous, and 2) individual consumers choose between channels based on their own characteristics
and product attributes. We also incorporate availability-based channel substitution in our model

(see Figure 3.1).

Yes
Through advertisement l

E-commerce
adopters

E-commerce
non-adopters

e-commerce?
Through

word of
mouth

No purchase No purchase

Online

Store Store

l

Store demand .[ Lost sales ]‘ [ Online sales

Yes

b
utility from
the online
channel?,

Yes
Store sales

Figure 3.1: Overview of the integrated demand model.

3.3.2 Demand Model and Assumptions

In line with the Bass model, the proportion of the population which will have adopted the e-

commerce option by time ¢ is given by the cumulative distribution function (Bass 1969):

1—e (wta)t

Fy(w) (3.1)

T 14 Lo

where parameter w (coefficient of innovation) signifies the effectiveness of the retailer’s e-commerce
advertisement efforts, and parameter a (coefficient of imitation) can be interpreted as the word
of mouth effect on e-commerce adoption. An analogous model applies in discrete-time settings,
such as the setting considered in this paper, where the adoption rate can be discretized as Fy(w) =

Fi_1(w)+ fi(w), for t < T, with f;(w) representing the proportion of new adopters in time ¢, i.e. the
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probability mass function (Bass 1969). In practice, parameter a depends on the product and the
societal structure (Levin et al. 2005, Zhou et al. 2007, Kacen et al. 2013), and can be estimated
using maximum likelihood or regression analysis if preliminary data are available (Bass 1969), or by
evaluating data from similar products otherwise (e.g. data on mail orders or tele-marketing could
be used for e-commerce) (Dodson 2014). On the other hand, the retailer may have some control
over the advertisement effectiveness parameter, w, which we endogenize in our model.

In the discrete choice model, we consider a population of heterogeneous consumers, located
uniformly within a given store service radius (k) and differentiated with respect to three dimensions:
travel distance to the store (variable R ~ UJ0, k]), willingness to wait for online delivery (variable
D ~ UJ0,1]), and adoption status of the online channel at time ¢ (Bernoulli variable X;). Consumers
are brand-sure and interested in buying at most one unit of the item, and make their purchase/no
purchase and channel decisions so as to maximize their utility. Our consumer choice model extends
those in Chen et al. (2008), Cattani et al. (2006) and Yoo and Lee (2011) by incorporating, into the
channel choice, the adoption status of the online channel (variable X;), which evolves over time.
We also model availability-based channel substitution, that is, among the store-bound consumers
who face a stock-out at the store, those who also derive a positive utility from the online channel
switch to the online channel. We assume, similar to Chen et al. (2008), that the availability level
in the online channel is 100%. This assumption is realistic, given the fierce competition and high
stock-out costs in the e-commerce arena.

In the remainder of Section 3.3.2, we first characterize the demand split across channels in each
time period as a function of the retailer’s store service levels and e-commerce advertisement level.
Then, using this demand characterization, we study the retailer’s optimal decisions in Section 3.4.
Throughout, we represent random variables in upper-case letters and their realization in lower-case
letters, and represent vectors using arrows. We also use indices o, s, and n to denote the online

channel, store channel, and no purchase option, respectively.
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Consumer Utilities across Channels

Variables R and D each follow an independent uniform distribution with support [0,k] and [0,1],
respectively, similar to Cattani et al. (2006), Chen et al. (2008), and Yoo and Lee (2011). The
binary variable X, on the other hand, follows a Bernoulli distribution, with Pr(X; = 1) = Fj(w).
Consequently, there are two groups of consumers in each time period ¢: consumers who consider
the online option for purchasing the product (X; = 1) and consumers who d o not (X; = 0). Let
v denote the value that the consumer places on the item, p the price of the item in both channels,
and [ the delivery lead time for the online channel. A consumer with index pair (d,r) derives the

following utilities from the online and store channels:

v—p—dl, if X;=1 v—p—r, with probability &
Upi(d,r) = , and Ust(d,r) = ,

unde fined, otherwise —r, otherwise

where & is the consumers’ predicted store availability level, which is a function of the retailer’s store
service levels as detailed in Section 3.3.2. We assume, without loss of generality, that consumers
derive zero utility from the no purchase option. Then, given the uncertainty on product availability

at the store, the consumer’s expected utility for the store channel in period t can be written as:

E[Us(d,r)] = & (v —p) — 7.

Observe that channel demand is driven endogenously by both the product availability level at
the store, which directly impacts the consumer’s predicted availability level &, and the retailer’s
e-commerce advertisement level w, which directly impacts the proportion of e-commerce adopters
(i.e. Pr(X; =1) = Fiy(w)). Consequently, this demand model allows us to investigate how the
interplay between the retailer’s store service levels and e-commerce advertisement efforts impacts

the retailer’s demand shaping capability.

Demand Shaping

We first introduce the following events:
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Events:

B;+: Event that a random consumer obtains the highest utility from option i € {s,0,n} in
period ¢, for t =1,...,T; e.g. Boy = {Uot(d,r)>max (E[U,.(d,7)],0)}.

B.;: Event that a random consumer obtains the highest utility from the store channel and
also derives a positive utility from the online channel in period ¢, for t =1,...,T; i.e.

Bc,t = {E[U&t(d,?")] > Uojt(d,r) > 0}

Then, for a random market size of M that is uniformly distributed in [0,b] with probability
distribution function fy/(-), we can express the random demand volumes across channels (Z, ¢, Zs ¢),

and the number of consumers who choose to not buy the item (Z,, ;) in period ¢ as follows:

Zi,t = MIi,t(wvgt% for i € {S,TL},
Ig,t(w)gt)
Is,t(waét)

where I 1(w, &) = Z Pr(B;+| Xy = x)Pr(X; = z), forie {s,n},
z€{0,1}

Zoy = M1 (w, &) +

)

[Zs,t - QS,t]+

9

L y(w, &) = Pr(Bog|Xe = 1)Pr(Xy =1),  I2,(w,&) = Pr(Bes|Xe = 1) Pr(X, = 1),

and g5 ; denotes the retailer’s order quantity for the store channel in period ¢.

(3.2)

For a given set of w and &, the random store demand (Zs; = M I ;(w,&;)) consists of consumers
(both e-commerce adopters and non-adopters) that obtain the highest utility from the store channel.
We assume away certain characteristics of the problem such as inventory carry over and backlogging
in order to be able to analyze the retailer’s optimal advertisement efforts and service level decisions
at a tactical level, while focusing on consumer learning. Then, if the store demand does not exceed
the order quantity (Zs; < ¢s:), the retailer fully satisfies the store demand and ends up with
inventory that is discarded with zero salvage value at the end of period f. Otherwise, among

those consumers who face a stock-out upon their visit to the store, [Zs; — gs4]*, a proportion

Ig,t(wvst)
Is ¢ (w,t)

) switches to the online channel, as they also derive a positive utility from the online
channel. Therefore, the random demand in the online channel consists of: 1) consumers who

derive the highest utility from the online channel (M1} ;(w,&;)), and 2) store-bound consumers who
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12
switch to the online channel due to availability-based channel substitution <I:ZE:§3 [Zet — qs, t]+>;
see Figure 3.1.

Both type 1 and type 2 service levels, defined below for completeness, are relevant to the retailer:

1. Type 1 service level, which we refer to as the “store service level,” defined as oy = Pr(Zs+ <

gst) = Pr (M < %) Since M ~ UJ0,b], the order quantity for the store channel
follows: Gsy = oy blg(w, &) (3-3)
Similarly, considering 100% type 1 service level for the online channel and incorporating

availability-based channel substitution, the retailer’s order quantity for the online channel,

Go.t, follows:
Qo = bLoy(w, &) + (1 — ar)bly y(w, &) (3.4)
2. Type 2 service level, which we refer to as the “actual store availability level,” follows:

B(ay) = Pr(a random consumer finds the item at the store)

= E[Pr(a random consumer finds the item at the store|Z; )]

bov b st bat 1
:/ 1fM(m)dm—|—/ s’fM(m)dm:/ 15 dm + ——dm
0 bat 0

Zs,t

= Blay) = (1 — In(ay)).

In the absence of perfect information on the current store availability level, we model the
consumers’ prediction process using an exponential smoothing process; that is, at the beginning
of each period t, consumers update their predicted store availability level using the actual store

availability level in period ¢ — 1 and their prior estimate:
& =MB(ap—1) + (1 = N)&—1, for A€ (0,1 and t =2,...,T, with & = S(a).

Our modeling of the consumers’ prediction process is in line with experimental and empirical
evidence, which suggests that consumers do not treat the most recent information as perfectly
reliable; rather, they adjust to the new information gradually by merging it with past experience
(e.g. Liu and Van Ryzin 2011). In that context, A represents the rate with which consumers adjust

to this new information. As A increases, consumers place a larger weight on the most recently
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observed availability level and a smaller weight on their prior estimate, which carries information
about availability levels in all the past periods. This adaptive learning model has been widely used
in the literature within multi-period settings, see Section 3.2.

Thus, the retailer can use: 1) its store service levels (which impact consumers’ predicted avail-
ability levels, &), and 2) e-commerce advertisement (which affects the e-commerce adoption level,

Fi(w)) as levers to shape demand across channels, as we explore in Section 3.4.

3.3.3 Market Segmentation

The retailer’s store service radius, k, is a strategic decision, as it strategically places its store to
serve a neighborhood of consumers. In addition, the delivery time, I, for the online channel can
be highly constrained by the current supply chain infrastructure and/or contracts with third party
logistics providers. Hence, we characterize the retailer’s business setting, which we consider as
exogenous, in terms of parameters k£ and [. We first provide the market segmentation with respect

to the heterogeneous consumer base. Let,

TH,; = min{{r : E[Us4(d,r)]=0},k} = min{ﬁt(v -p), k},

THgy = min{{d : Upy(d,r)=0},1} = min{u, 1}, (3.5)

l
THyy = {(d,7) : E[Usy(d,r)] = Upy(d,r)} = {(d, r):d= (1_&)[(“_7)) + }r}

Then, consumers (both e-commerce adopters and non-adopters) whose travel distance to the
store is less than TH,, (i.e. r < TH,;) derive a positive utility from the store. Similarly, e-
commerce adopters whose willingness to wait for the online delivery of an item is less than THg; (i.e.
d < THgy) derive a positive utility from the online channel. On the other hand, T'H;; represents
the set of e-commerce adopters who are indifferent between the store and online channels.

Figures 3.2(a)-(b) illustrate the market segmentation for e-commerce non-adopters and adopters,
respectively, for the case where THy; < 1 and TH,; < k. In this case, a portion of the con-
sumers choose the store channel, given by events B | X; = 0 (for e-commerce non-adopters) and

Bs¢| X = 1 (for e-commerce adopters). Further, for e-commerce adopters, the store-bound con-
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sumers who also receive a positive utility from the online channel switch to the online channel if they
face a stock-out at the store (B, ;| X; = 1). Consumers who choose the online channel (B, ¢|X; = 1)
consist of store-bound consumers switching to the online channel when they adopt e-commerce
(the gridded region to the left of threshold TH, ;) and consumers captured by the online option
who would, otherwise, opt not to purchase the item (the gridded region to the right of threshold
TH,;). Hence, the online channel expands the retailer’s market coverage by reducing the volume
of “choice-based lost demand,” i.e. consumers who choose not to purchase the item through either

channel (B, ¢|X: = 0U By +| Xy = 1).

d 4

Figure 3.2: Market segmentation for (a) e-commerce non-adopters, and (b) e-commerce adopters
for the case where THy; <1 and TH,; < k.

Lemma 1. I[f TH,; =k < & > W = ;5 then (Bn|X; = 0U B, 4| X; = 1) = 0; that is, there is

no choice-based lost demand in period t.

Lemma 1 suggests that for any product (defined by parameters v and p), there exists a threshold
for &, i.e. the availability level that allows the retailer to capture the entire market demand within
the store service radius, k. In particular, the retailer incurs no choice-based lost demand if & > W.

Lemma 2 fully characterizes the demand split across channels and the volume of choice-based

lost demand for any given w and &; see Eqn. (3.2).

Lemma 2. [;¢(w,&), i€ {s,n}, and I] (w, &), y€{1,2}, are 1) piece-wise continuous in & € (0, 1],

and 2) continuous and differentiable in w > 0, and can be fully characterized as in Table 3.1:
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Table 3.1: Proportion of demand across channels as a function of w and &.

THyy=1s1€(0,v—p THg: <1ele(v—p,o00)

Fi(w), ife<1-3% )

Iy = Ik, =1 - $&]BR(w)
1—5A- [l — (1 - &)B]?| Fi(w), otherwise

THy,, <k & <W [~z ]

Ig,z = Fi(w) - Ig.t Ig,t = BF(w) - I;,t
Ly = Fyw) = I3y + 1 (1 - F(w)) Ly = &[1- 5B R ()]
Ly=1-1Y — I, Ly=1-1% — I,

Fy(w), if&g<1-4

Li=q 12wl - (1 —&)BP|Fw), f1-L<&<i+w—L |L,=[0-8&) +F]BFw)

[(1-&)+¥]BFR(w), otherwise
THyy =k&&g2>2W | I2, = F(w) - I, 12, = BFy(w) — I,
Ly=1-1%, Iyp=1-15,
Ly =0 Iy =0

where W = k/(v—p) and B = (v —p)/l

Not surprisingly, the demand across channels depends on: 1) the retailer’s tactical decisions,
including store service levels (a4, through dependence on &), and e-commerce advertisement level
(w), 2) the retailer’s business setting (k and [), and 3) product characteristics (v and p). However,
Lemma 2 also indicates that the retailer’s demand is piece-wise non-linear, which leads to an

optimization problem that is hard to solve, as further discussed in Section 3.4.

3.4 The Retailer’s Optimization Problem

In order to study the retailer’s optimal demand shaping strategy under dynamically evolving e-
commerce adoption with consumer learning, we consider a multi-period setting in which the retailer
determines the optimal e-commerce advertisement level, w*, and target store service levels over the

planning horizon, o* = (af, a3, ...,a0), so as to maximize its expected total profit.

Let CF = £ ;_:C, where p is the unit sales price, ¢ is the retailer’s unit purchasing cost, and

s is the unit lost sales cost, with s < ¢ < p. That is, C'F' represents the “critical fractile” for
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the single-period newsvendor problem with exogenous demand. For analytical tractability, in the
remainder of the paper we restrict ourselves to the case where the initial service level equals critical
fractile (g = C'F), and assume that CF > 0.547 (under this condition, the first-order optimality
conditions become sufficient). This condition is satisfied for a variety of product categories such as

fashion items, electronics, and home goods, as demonstrated in the case study of Section 3.6.

The retailer incurs an advertisement cost for its efforts to increase e-commerce adoption. For
ease of presentation, we express the cumulative cost of advertisement over the planning horizon by
G(w), which is convex increasing in the advertisement level, w. This is in line with the literature,
e.g. “as with all inputs used in the production process, the marginal effectiveness of advertising
diminishes as more and more is spent on advertising. Thus, advertising is subject to diminishing
marginal returns.” (Mukherjee 2002). Then, given the retailer’s advertising efforts, its expected
profit function in period ¢, E[m(w, ay,&;)], comprised of the expected sales revenue less the pur-

chasing cost and the lost sales cost, is as follows:

E[Trt (w7 A, ftﬂ =p (E[Zo,t] + E[min(QS,tv Zs,t)]) - C(QS,t + QO,t)

(Is,t(w, &) — 12, (w, &) (3.6)

Is,t(w7£t>

) E[(Zs,t _QS,t)+] + E[Zn,t]

Substituting Eqn.s (3.2)-(3.4) in Eqn. (3.6), the retailer’s optimization problem reduces to the

following form (see the Appendix for derivations):

T
maximize E[ll(w, @)]= —G(w) + Y Elm(w, ar,&)]
Eh
T
=—Gw)+b>_ { (1L (W, &)+ 12 (w, &) [p;s _C} (3.7)
t=1

O£2 S
(Lt 6) = 12,0, )] | (p+s—)ar—(p+5) 5 2}.

The retailer’s objective function is non-linear, non-separable in @, and not necessarily well-
behaved, as we subsequently show in Section 3.4.1. Consequently, in the remainder of this section,
we study the structural properties of this problem. In particular, we first derive, in Section 3.4.1,
the optimal service level strategy, 3*(w), for any given advertisement level w. Then, in Section
3.4.2, we study how the objective function, E[II(w, @*(w))], behaves in w. In addition to important

structural properties, this analysis also leads to an efficient two-stage algorithm that provides the
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optimal solution to Eqn. (3.7).

3.4.1 The Retailer’s Optimal Store Service Levels (Stage 2 Problem)

The following lemma exploits the structure of the retailer’s expected profit function for a given

advertisement level, w.

%
Lemma 3. For any given w > 0, E|II w,ﬁ 1s continuous, and 1) increasing in o for 0 <
/)

a < C’F-T}, and 2) jointly concave in o for C’F'T> <d< 7. Further, for any A € (0,1],

af(w) € [CF1),t=1,..,T -1, and o, = CF,
Remark 1. For the special case where A =0, o (w) = o = CF,t =1,..., T, for any w > 0.

Lemma 3 indicates that consumer learning (which leads to dependence among the periods)
forces the optimal store service levels to be at least as high as the critical fractile. This finding is
in line with and extends upon the results in the existing literature on inventory-driven demand in
the single-channel single-period setting; see Dana and Petruzzi (2001) and the references therein.
Specifically, we show that such findings apply in a dynamic multi-channel multi-period setting in
which: 1) a high service level in one channel (store) stimulates the channel’s own demand, while
reducing the demand for the other channel (online), whose adoption level increases over time and is
also impacted by the retailer’s decisions, 2) consumers switch between channels in case of a stock-
out, and 3) consumers learn over time. Indeed, as Remark 1 indicates, when there is no consumer
learning (i.e. A = 0), there is no dependence among the periods through store service levels and the
problem reduces to the single-period newsvendor problem with exogenous demand, whose solution
is given by the critical fractile, C'F'.

In order to answer the research questions posed in Section 3.1, we next explore several structural

properties of the retailer’s optimal service levels.
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Theorem 1. For a given w > 0, o, = CF, and (o] (w), ...,ar_;(w)) has the following structure:

tel2,...,

(O/ll(w)ﬂ I 0/7/‘—1((“}))7 if W > temaxT]{fg’(w)},

where W = £ o/ = {a : B(a) = w} and o) ={a: B(a) =W}, fort=2,....,T, and

Y(w) =81 (w)) + (1 = N)E& {(w), for X € (0,1] and t = 2,..., T, with & = B(ay).

Theorem 1 fully characterizes the retailer’s optimal service levels for a given advertisement level,
w, and show that they follow a threshold policy. Theorem 1 also underscores that the retailer’s
service level strategy should be tailored to its business setting (k) and product characteristics (v
and p). Specifically, if W is sufficiently small, i.e. W < B(CF), then the retailer does not need
to increase its store service levels beyond the critical fractile, as this policy enables the retailer to
capture the entire market through the store channel due to the sufficiently small service radius;
see Lemma 1. Otherwise, the retailer always increases its store service levels beyond the critical

fractile. In particular, for relatively small W, i.e. B(CF) < W < glinT]{fg’ (w)}, higher service
t€[2,...,

levels, i.e. (of,...,a/ ), allow the retailer to capture the entire market. However, higher service

levels come at a cost. Therefore, for larger W, i.e. larger service radius, there is no benefit in
increasing the service levels beyond a threshold (of(w),...,a7_;(w)), and some choice-based lost
demand becomes inevitable. Example 1 demonstrates how the optimal service levels vary with

service radius, k, for a given w.

Example 1. Let a = 0.0065, w = 0.0003, A = 04, v = 29.99, p = 24.99, ¢ = 10.75, s =
0,1 =3, T =4, and a9 = CF = 0.57. Figure 3.8 depicts the optimal service levels as
a function of service radius, k, for e-commerce adoption level vector ? = (F1,Fy, F3,Fy) =

(0.0299, 0.0304, 0.0309, 0.0314).
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Figure 3.3: &@* as a function of k.

It is important to note that although the retailer’s optimal service levels for sufficiently small W
(i.e. k < 4.45 in Figure 3.3) are independent of the e-commerce advertisement level (equivalently,
e-commerce adoption level) and equal to C'F', the expanding e-commerce adoption does increase the
optimal order quantity for each channel by providing more consumers with a dual-channel option,

hence reducing the volume of choice-based lost demand (see Theorem 2 below).

Theorem 2. For each time period t = 1,...,T, q;,(w) is decreasing, q,.(w) is increasing, and

¢s+(w) + q; 1(w), is increasing in w when W < B(CF).

Next, we study the retailer’s optimal advertisement decision in Section 3.4.2.

3.4.2 The Retailer’s Optimal Advertisement Level (Stage 1 Problem)

The following lemma characterizes the structure of the retailer’s expected profit function with

respect to w.
Lemma 4. E[m(w, o, &)], t =1,...,T, is continuous in w. Further:

1. For & < W, E[m(w,a,&)], for t = 1,...,T, is strictly decreasing in w when oy satisfies

%ﬁ_c—% |:(p+S—C)Oét+(p+5)%?i| SO; and

2. For & > W, Elm(w,a,&)], for t = 1,...,T, is strictly decreasing in w when oy satisfies

2
B o= [(p+s— i+ (p+9)%] <0,
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Theorem 1 and Lemma 4 not only allow us to develop an effective two-stage algorithm to
determine the retailer’s optimal solution, but also indicate the cases where the retailer should not

invest in e-commerce advertisement at all.
Theorem 3. When W <B(CF), E[llj(w, af (w), & (w))],t=1,...,T, is strictly decreasing in w.

Thus, if the retailer’s optimal service level strategy allows it to capture the entire market through
the store channel (i.e. W < B(CF)), then it is optimal for its to serve all consumers through the
store channel only. Advertising for a competing online channel in this setting results in lower
profits; hence, if the retailer opens an online channel as a strategic necessity, then it should keep
its e-commerce advertisement efforts at a minimal level, i.e. w* goes to 0. This policy would allow
e-commerce adoption to grow due to the exogenous word of mouth effect only and lower the profit
loss due to online shoppers. In other cases, however, the online channel becomes a complementary
and profitable option, and allows the retailer to shape demand optimally across channels using

e-commerce advertisement in conjunction with store service levels.

3.5 The Value of Perfect Information

In this section, we study the value of information sharing strategies that the retailer can adopt in
order to improve consumers’ experience at the store. In particular, we study the setting in which
the retailer shares with the consumers its store service level information in the current period,
ie. & = P(ay). Then, consumers no longer need to rely on word of mouth and/or prior self-
experiences with the retailer to predict the current store availability level. This can be achieved, to
some extent, through mechanisms such as providing store service level information on the retailer’s
website, mobile application, catalogs. This type of information sharing may incur some cost, which
depends on the specific setting. We ignore this cost in our analysis, but it can easily be considered
in the model. Our goal is to gain insight into the value of this type of information sharing, which
helps eliminate the consumers’ dependence on the partial information provided by other consumers.

We first present the structure of the retailer’s optimal solution for the perfect information

setting, which we denote by the superscript P.
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Lemma 5. For a given w > 0, E[IIY (w, @)] is continuous, and 1) increasing in o for 0 < o <

C’F-?, and 2) jointly concave in & for CF-T <d< 7. Further, ajf (w) = o*F € [OF,1), for

t=1,..T.

Interestingly, the optimal store service levels in the perfect information setting become identical
over time, i.e. independent of the consumers’ e-commerce adoption level. Hence, the retailer’s
multi-period service level problem reduces to a single-period problem, and a rise in e-commerce
adoption each period leads to a proportional increase (decrease) in online (store) demand. This
finding highlights that the retailer’s store service levels vary over time mainly due to the fact
that consumers do not have information on the current availability level and need to predict it
using past information. From a technical perspective, by providing consumers with availability
information, the retailer reduces its optimization efforts, as it needs to solve the Stage 2 (service
level) optimization problem only once regardless of the length of the planning horizon or e-commerce
adoption level of the product.

Theorem 4 shows that the retailer’s optimal service level strategy in the perfect information
setting continues to follow a threshold policy, but is much easier to implement than the limited

information (i.e. adaptive learning) setting.

Theorem 4. 1. For a given w, the optimal solution, o**, has the following structure:
CF, if W< B(CF)
=30 8)=W, if B(CF)<W <B(d)
o, if W > pB(d).

\

2. For each time period t = 1,...,T, q;"f(w) 1s decreasing, qgf(w) is increasing, and q;"f(w) +

q ¥ (w) is increasing in w;

3. When W < B(CF), E[ny(w,a*P)),t=1,...,T, is strictly decreasing in w.

The results is Sections 3.4 and 3.5 enable us to bound the deviation between the optimal service

levels in the limited versus perfect information settings. Specifically, Theorem 5 establishes an upper
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bound on the absolute difference between a*F and @* for any problem instance characterized by

CF.

Theorem 5. For any problem instance with a given C'F', we have:
1. o —af| =0, fort =1,...T, if W < B(CF);
2. |a*P—a;| <UB(CF)—CF, fort=1,...,T, if W > B(CF),

where UB(CF) is an upper bound on ar, for a given CF, and corresponds to the solution of the
following equation with A\=1 and Fy = F14;,i=1,...,T —1:

OE[(w, @))]

aal a;=CF
J#1

UB(CF) = aq =0

Hence, the impact of information sharing on availability levels is especially important with
sufficiently large service radii (i.e. W > B(CF)), and for products with small C'F' for which the
absolute difference between o*F and o'* may go up to 8% (for CF = 0.57), see Figure 3.4. We use
Theorem 5 to quantify the value of information sharing on the retailer’s optimal expected profit in

Section 3.6.

06 07 08 09 1
CF

Figure 3.4: Upper bound on the absolute difference between o*F and ™ as a function of CF when

W >CF.

3.6 Case Study

In this section, we present a case study to provide managerial insight on how the retailer’s optimal

demand shaping strategy is impacted by: 1) consumer-to-consumer interactions, in terms of how
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consumers learn (parameter A) and how they adopt e-commerce (parameter a), and 2) the product’s
current e-commerce adoption level F;. Furthermore, we quantify the value of providing consumers

with information on the retailer’s current store availability level.

3.6.1 Data and Approach

We select three product categories that are currently at different phases of e-commerce adoption, i.e.
early, established, and mature adoption phases. According to Egol et al. (2012), a representative
set of such product categories includes household items, apparel, and electronics, for which the
percentage of e-commerce sales (over all retail sales) are given by 3%, 14%, and 34%, respectively,
in 2012, when the overall e-commerce sales constituted 15.1% of the total retail sales. We use these
percentages as a proxy for the current adoption rates in the case study. According to Mahajan et al.
(1995), the parameter a for the word of mouth effect for monthly e-commerce diffusion typically lies
between 0.025 and 0.042. Hence, in our case study, we use a = 0.025, 0.034, 0.042 for the household,
apparel, and electronics items, respectively, for a planning horizon of four periods (T' = 4), and
with a random market size of M ~ UJ0, 1000].

For each product category, we choose a dual-channel retailer (i.e. Garmin Ltd. 2015, Fossil, Inc.
2015, and The Yankee Candle Company, Inc. 2015) and an item that the corresponding retailer
offers online (candle, wallet, and auto navigator). We determine the item’s online price, p, through
the retailer’s website, and assume that the item is offered in the store at the same price and that
its lost sale cost is zero (s = 0). We then use the published gross profit margin, (p — ¢)/p, which
equals the critical fractile for the product when s = 0, for each retailer (CSIMarket, Inc. 2015, The
Wall Street Journal 2013) to estimate the retailer’s purchasing cost, ¢, and assume that v =p+5

for all products (see Table 3.2).

Table 3.2: Financial data for the items considered in the case study.

Item Category | Profit margin (CF) | List (sales) price (p) | Purchasing cost (¢) | Sales margin (p — ¢)
Auto navigator | Electronics 58% $129.99 $54.60 $75.39
Wallet Apparel 55% $50.00 $22.50 $27.50
Candle Household 57% $24.99 $10.75 $14.24
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3.6.2 Results

We first use the candle example as a representative product to demonstrate how the retailer’s
optimal decisions and the resulting profit change with various problem parameters when W >
B(CF), as the retailer’s optimal solution is trivial otherwise (see Theorems 1 and 3). (The findings
are similar for the other products considered.) Then, we compare the optimal decisions for all
three products. We consider that the e-commerce advertisement cost function is in the form,
G(w) = h - w?, with h = 5,000, and assume k = 15 and [ = 10, unless otherwise noted.

Table 3.3 shows how the retailer’s optimal solution and the resulting profit change with A, i.e.
the rate with which consumers adjust to the new information obtained through other consumers
and prior self-experiences. Interestingly, for smaller values of A we observe a monotone pattern
over time, i.e. aj > aj > a3 > oy, while for larger A, the monotonicity disappears. This is
because a smaller A implies that the consumer places more (less) weight on her earlier (most
recent) experience(s). As a result, when A is small (e.g. A < 0.96 for the example in Table 3.3),
the optimal service levels in the earlier periods tend to be higher. When X is large, however, the
impact of the earlier periods on the subsequent periods diminishes and a non-monotonic service
level pattern becomes possible.

In general, the retailer’s optimal service levels increase with A. With a higher A, consumers
adjust to the new information faster, and this incentivizes the retailer to increase its service levels,
which is quickly transformed into higher consumer predictions of store availability. A natural
outcome of this strategy is that more consumers are captured and served through the store channel
as consumers adjust to the new information faster. Since store service levels and e-commerce
advertisement are substitutes, higher service levels also lead to a lower investment in e-commerce
advertisement as A\ gets higher. Yet, the retailer benefits from faster consumer learning, i.e. its
expected profit increases in A.

The retailer’s providing the consumers with accurate information on current store availability
levels (i.e. the perfect information setting) is a “win-win” situation, as demonstrated for the
candle example below. Table 3.3 shows that when consumers are provided with this information,

both the retailer’s optimal order quantity (hence, the number of consumers satisfied) and the
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optimal expected profit increase compared to the adaptive learning (limited information) setting.
Further, as A increases, the optimal solution for the adaptive learning setting approaches the perfect
information setting. Hence, sharing availability information with consumers is most beneficial in
settings with slow-learning consumers. Finally, the percent loss in expected profit (A = (E[IT*F] —
E[I1*])/E[I1*F]) due to not sharing the availability information with consumers may exceed 2%

(when A = 0), which can be significant in the retailing industry.

Table 3.3: Retailer’s optimal decisions and resulting expected profit for the (a) adaptive learning,
and (b) perfect information settings.

(a) Adaptive learning (limited information) setting with various values of A

AW o e o) ol g BT A(%)
0.00 0.0570 0.570 0.570 0.570 0.570 947 4,932 2.14
0.25 0.0563 0.618 0.608 0.593 0.570 980 4,950 1.79
0.50 0.0553 0.638 0.630 0.612 0.570 1,000 4,975 1.29
0.75 0.0546 0.645 0.641 0.629 0.570 1,013 4,996 0.87
1.00 0.0542 0.646 0.644 0.645 0.570 1,021 5,010 0.60

(b) Perfect information setting

I N B+
0.0547 0.645 0.645 0.645 0.645 1,054 5,040

Not surprisingly, the product’s current e-commerce adoption level (F7) has a large impact on
the retailer’s optimal policy. For a given A (A = 0.5), Table 3.4(a) illustrates that as F} increases,
the retailer’s e-commerce advertisement efforts decrease as expected, and the retailer can afford
to increase its store service levels. Further, as the dual-channel option becomes available to more
consumers, the retailer satisfies a higher demand (due to a decrease in choice-based lost demand),

and the retailer’s expected profit increases.
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Table 3.4: Retailer’s optimal decisions and resulting expected profit under (a) various values of F1,
and (b) various values of a.

(a) Under various values of F (a = 0.025)

* * * * * *
F w Qg Qg o3 Qy Gora  ET7]

0.03 0.0553 0.638 0.630 0.612 0.570 1,000 4,975
0.33 0.0389 0.639 0.630 0.613 0.570 1,402 5,269
0.63 0.0219 0.640 0.631 0.613 0.570 1,822 5,565

0.93 0.0042 0.640 0.631 0.613 0.570 2,265 5,863

(b) Under various values of a (F; = 0.03)

* * * * * * *
a w Qg Qg o3 Qy Gora  ET7]

0.025 0.0553 0.638 0.630 0.612 0.570 1,000 4,975
0.525 0.0597 0.634 0.625 0.610 0.570 1,279 5,145
1.025 0.0583 0.628 0.621 0.608 0.570 1,599 5,355

1.525 0.0445 0.624 0.620 0.610 0.570 1,800 5,515

Interestingly, an increase in the word of mouth effect (a), which stimulates e-commerce adoption
(see Eqn. (1)), leads to a non-monotone pattern in the retailer’s e-commerce advertisement level,
as shown in Table 3.4(b) (for the candle example). In particular, for sufficiently small (large) values
of a, the retailer’s optimal advertisement level increases (decreases) in a.

Finally, Table 3.5, which reports the optimal strategy for candle, wallet and auto navigator,
underscores that the retailer’s optimal demand shaping strategy greatly depends on the product’s
characteristics, including the e-commerce adoption phase (F}) as well as profit and sales margins .
Specifically, while the store service levels highly depend on the product’s profit margin (i.e. critical
fractile), the optimal advertisement level depends on the sales margin. In summary, a customized

strategy highly benefits the retailer.

49



Table 3.5: Retailer’s optimal decisions and resulting expected profit for the three products.

Product Sales margin  Profit margin  Fy a w* o aj aj oy G BT
Candle $14.24 57% 0.03 0.025 0.0553 0.638 0.630 0.612 0.570 1,000 4,975
Wallet $27.50 55% 0.14 0.034 0.0249 0.620 0.611 0.593 0.550 1,044 9,051
Auto navigator $75.39 58% 0.34 0.042 0.1791 0.645 0.638 0.621 0.580 1,711 30,201

3.7 Conclusions and Future Research Directions

As technology is becoming more prevalent in consumers’ lives, it is influencing the way they com-
municate, obtain, and share information. In this research, we study how consumer-to-consumer
interactions, empowered by technology, affect a dual-channel retailer’s demand shaping decisions.
Our results highlight the importance of considering the nature of these consumer-to-consumer in-
teractions (e.g. how consumers adopt e-commerce and how they learn about the retailer’s service
levels) in the retailer’s tactical planning. In particular, when consumers learn fast, both the retailer
and the consumers benefit. Yet, the best scenario occurs when the retailer actually provides the
consumers with information on its service levels. This strategy is a “win-win” situation for both
the retailer and consumers, and also reduces to a strategy that is much easier to implement for
the retailer. Our findings also indicate that even though e-commerce advertisement improves the
retailer’s market coverage, it is not necessarily profitable in small service radii.

Numerous extensions of our model deserve further attention. We assume that product price
is exogenous, and that prices and costs are uniform across channels. It is important to expand
our model to incorporate several major benefits of operating an online channel, in terms of risk
pooling and lower operating costs compared to the store channel. We consider that consumer
attributes, such as willingness to wait, travel distance to the store, and adoption probability of
the online channel, come from independent distributions. Our extensive simulation study, with
correlated distributions, indicates that the retailer’s optimal service levels do not differ much (with
the highest difference occurring in high service radii settings, but even in this case the differences
are low). Nevertheless, it would be interesting to explore the impact of consumer behavior and

heterogeneity on the optimal solution in a rigorous manner when consumer attributes are correlated.
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Since our main purpose is to study the impact of evolving consumer behavior on a dual-channel
retailer’s service level decisions at a tactical level, certain characteristics such as inventory carry
over and backlogging have been ignored; hence, it would be interesting to study an extension of this
problem with the inclusion of these components at an operational level. Lastly, competition among
retailers, which has been ignored in our model, can have a significant impact on their optimal
decisions. Hence, studying this aspect of the problem would provide valuable insights with respect
to dual-channel retailers’ advertisement and inventory decisions when multiple parties compete for
the market share. Despite these modeling assumptions, we believe our study offers key insight
to dual-channel retailers, and sheds light into their optimal service levels in the face of evolving

consumer behavior and e-commerce adoption.
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Chapter 4

Optimal Pricing Decision under

Reference Effects

4.1 Introduction and Motivation

The extensive use of the Internet, along with the introduction of smartphones, enabled traditional
brick-and-mortar retailers to open online channels, and changed the way consumers shop. Today’s
tech-savvy consumers use the Internet not only as a point of purchase, but also as a means for
awareness and research about the product attributes such as price and the retailer’s service quality
regarding availability, delivery, and service, and make their purchasing and channel-choice decisions
accordingly (Toshiba Global Commerce Solutions 2012). According to Subramani (2013), today’s
“shoppers have become increasingly channel agnostic and gravitate towards the channel that offers
most value — with pricing becoming a game changer.” As consumers become more price-aware and
price-sensitive while they are looking for the best deal in-store and online, they expect companies
to mirror this ability by actively comparing their prices across all channels in real time (McGovern
and Levesanos 2014).

Interestingly, research indicates that a main challenge that multi-channel retailers face is con-
sumers’ expectation of a uniform experience through all available channels rather than a channel-

specific one. That is, “inconsistent messaging, pricing, promotions, or experiences cause customer
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confusion, leading to low customer satisfaction and reduced spending” (Aberdeen Group 2012).
However, different channels come with different advantages and disadvantages. For instance, op-
erating costs of online channels are typically lower than store channels due to consolidation of
resources such as shop floor personnel, rent for storage space, etc., making it possible for dual-
channel retailers to offer lower prices compared to store channels (Schuerman et al. 2013). Further,
there is information asymmetry among different channels on pricing. For example, while the online
price of an item can be readily observed on the dual-channel retailer’s website, mobile app, etc.,
consumers can only estimate the store price using the information provided for the online channel
(unless the store price is explicitly shown on the retailer’s website, which is not currently a common
practice), and the actual store price can only be observed when the consumer physically arrives at
the store.

In this research, we explore how a dual-channel retailer’s pricing policy (i.e. uniform vs. channel-
tailored) impacts consumers’ purchasing behavior, and how this phenomenon, in turn, affects the
retailer’s profit when operating costs for the store and online channels are different. We also
examine whether a dual-channel retailer should leverage the online channels to provide information
about the store price, which is otherwise unknown to the consumers, thus, eliminating information
asymmetry. In particular, our objective is to answer important questions such as: When should
the retailer use channel-tailored vs. uniform pricing across channels? Is it beneficial for the retailer
to share the store price information on its website? How does such an information-sharing strategy
the store price information on the retailer’s website affect the retailer’s demand and profit?

In order to answer these questions, we develop an analytical model, considering a dual-channel
retailer that operates a store channel and an online channel. In particular, we utilize a consumer
choice model to represent the heterogeneity in the consumer base with respect to consumers’ hassle
costs related to shopping online and in store. Using this model, we study the retailer’s pricing
problem when consumers lack information on the store price and use the online price as a proxy to
estimate it, as they make their purchasing and channel-choice decisions. In this setting, we study
whether a channel-tailored pricing policy dominates uniform pricing across channels. Then, we

benchmark our model with the case where the retailer provides information about the store price
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on its website, and study how the retailer’s optimal pricing strategy and profit change.

Using this model, we obtain several important insights. Interestingly, when there is information
asymmetry, i.e. when consumers use the online price as a proxy to estimate the store price, a
channel-tailored pricing policy, with the store price set higher than the online price, always domi-
nates a uniform pricing policy. Further, when the retailer eliminates this information asymmetry
by sharing her store price on her website, this benefits not only the consumers, but also the retailer.

The remainder of this chapter is organized as follows. In Section 4.2, we provide a brief overview
of the relevant literature. In Section 4.3, we present our base model and analyze the retailer’s
optimization problem. In Section 4.4, we study the value of providing consumers with information
on the retailer’s store price, and study how this strategy impacts the retailer’s optimal pricing
policy as well as its profit. Finally, we conclude in Section 4.5 with a summary of our main findings
and directions for future research. To improve the presentation, all proofs are relegated to the

Appendix.

4.2 Literature Review

The related literature spans various streams of research, including research on consumer learning
and multi-channel retailing. This review is not meant to be comprehensive, but rather indicative
of the different models used in each line of research.

The first stream of literature that we draw upon concerns consumer learning. In multi-period
models where price and/or inventory levels are decision variables, adaptive learning models are
widely used. In particular, adaptive learning models the phenomenon that consumers do not always
treat the most recently revealed information as a perfectly reliable reference; rather, they adjust to
this new information gradually by merging it with past experience to update their beliefs (e.g. Liu
and Van Ryzin 2011). It is common to model this type of learning through an exponential smoothing
method in multi-period settings, which we also adopt in our work (see, for example, Akerman
1957, Monroe 1973, Sterman 1989, Jacobson and Obermiller 1990, Stidham 1992, Greenleaf 1995,
Kopalle et al. 1996, Popescu and Wu 2007, Liu and Van Ryzin 2011, and Wu et al. 2015). In

single-period models, on the other hand, the rational expectations paradigm is commonly used.
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The rational expectations paradigm assumes that consumers can correctly predict the store price.
This assumption may hold “in the long run when equilibrium beliefs have formed and stabilized”
(Su and Zhang 2009). However, it may not hold in various other settings, i.e. when the consumers
have no prior experience with the retailer’s store channel, or when the store price fluctuates over
time. In such settings, consumers may learn about the retailer’s store price through other relevant
information. Specifically, we assume that the consumer sets her reference store price as the online
price that she observes on the retailer’s website in these settings.

The last stream of literature relevant to this study is the OM research that focuses on dual-
channel retailing (see Cattani et al. 2004, Tsay and Agrawal 2004b, and Agatz et al. 2008 for
excellent reviews). A strand of research in this area focuses on two-echelon systems in which a
manufacturer and its intermediary are engaged in both vertical and horizontal competition, i.e. a
manufacturer with a direct sales channel that competes with the existing retail channel. For ex-
ample, Chiang et al. (2003), Tsay and Agrawal (2004a), Chiang and Chhajed (2005), Chiang and
Monahan (2005), Boyaci (2005), Cattani et al. (2006), and Chen et al. (2008) model price and/or
service interactions between upper and lower echelons to address channel conflict and coordination
issues in this setting. Some OM scholars examine the impact of recent trends and developments
in dual-channel retailing on the retailer’s tactical and operational strategies. For example, Bal-
akrishnan et al. (2014) model the uncertainty in the value consumers place on the item when the
item is purchased online, and study how “showrooming” behavior, i.e. the consumers’ visiting the
store to observe the item, impacts the retailer’s pricing decision. Gao and Su (2016), on the other
hand, study the impact of “buy online and pick up at the store” option on the retailer’s inventory
planning. We contribute to this literature by studying how a retailer’s channel-tailored strategy
can hurt/help it, and how the retailer can leverage the different channels to better integrate its

operations.

4.3 Model

We consider a dual-channel retailer that operates a store channel and an online channel, respectively

denoted by indices s and o. From the retailer’s side, channels are differentiated with respect to
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their operating cost, which is higher for the store channel. We represent this difference in terms of
the product’s inventory purchasing cost, ¢;,i € {o, s}, with ¢5 > ¢,.

Similar to Cattani et al. (2006), Yoo and Lee (2011), and Gao and Su (2016), we denote
v > p;, i € {s,0}, as the value placed on the item by the consumers, and assume that consumers are
heterogeneous with respect to their hassle costs in the store channel, hs ~ U[0, H| (due to traveling
to the store, looking for the item in the store aisles, etc.) and in the online channel, h, ~ U[0, H]
(due to shipping cost, waiting for the item’s delivery, etc.). Consumers make their purchasing and
channel decisions so as to maximize their utility surplus.

In the base model, we consider a fixed market size with unit demand, and study the retailer’s
optimal pricing strategy for both channels when consumers lack accurate information on the store
price (ps), and need to estimate it using the online price (p,), which is readily available on the
retailer’s website. Before consumers make their purchasing and channel decisions, they check the
retailer’s online price (p,) and estimate their utilities under the assumption of uniform pricing
across channels (i.e. p¢ = p,). Therefore, the online utility and the estimated store utility for a

consumer with a hassle cost vector (ho, hs) is given by:

Uo(hoy hs) =V — Do — ho and  uS(ho,hs) =v —pS —hs, with p = p,. (4.1)

We assume, without loss of generality, that consumers derive zero utility from the no purchase
option, which we denote by index n. Then, based on the estimated utilities, consumers either choose
not to purchase the item, or purchase it through their utility-maximizing channel. Consumers who
pick the store channel observe the actual store price (ps) after they arrive at the store. Hence, at
this point they adjust their actual utility and reconsider their purchasing decision. That is, among
the store-bound consumers, those with u?(ho, hs) = v — ps — hs < 0 = hs > v — p, decide not to

purchase the item and leave the store empty-handed. We define the following events:

Events:

E,: Event that a random consumer with hassle vector (h,, hs) obtains the highest estimated

utility, i.e. before observing the actual store price, from the online channel;
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ie. B, = {uo(ho, hs) > max (ui(ho, hs),())}.

E!: Event that a random consumer with hassle vector (h,, hs) obtains the highest estimated
utility from the store channel, and the highest actual utility, i.e. after observing the actual
store price, from option i € {s,n};

e.g. B? ={uf(ho, hs) > max(uy(ho, hs),0) and 0 > ul(he, hs)}.

Before we introduce the retailer’s optimization problem, we derive the market segmentation of
the consumers as a function of the retailer’s decision variables (p,, ps). Figure 4.1 depicts the market
segmentation of the consumers for the case with (v —p, < H and ps > p,) < v —ps < v —p, < H.
In this case, based on the estimated online and store utilities, a portion of the consumers choose the
online channel (event E,), while another portion chooses the store channel (event EfU E?). Then,
those store-bound consumers who derive a negative actual utility from the store channel leave the

store empty-handed (event EY).

hoa i
: ho =h5
H ] - ==
V-Po :
Ao e ! .
o V-5 v-Po H hs

Figure 4.1: Market segmentation for the case where v — ps < v — p, < H.

Based on the retailer’s market segmentation, the following lemma fully characterizes the con-

sumers’ choice probabilities, i.e. Pr(E,(py,ps)) and Pr(E(po,ps)),i € {s,n}.

Lemma 6. Pr(Ey(po,ps)) and Pr(Ei(pe,ps)),i € {s,n}, are piece-wise continuous and differen-

tiable in po and ps, and can be characterized as in Table 4.2. Further, Pr(EZ(po,ps)) = Pr(Eo(po,ps))—

PT(E?(pmps))'
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Table 4.2: Choice probabilities as functions of p, and ps.

Region Choice probabilities
R1 = {(po,ps) : v — H > ps > po} Pr(Ey(po,ps)) = Pr(E;(po,ps)) = 0.5
Pr(Ey(po,ps)) = 0.5
RQZ{(pOaps):'UZps Z'U_H>po}
PT(Eg(pmps» = (2H —v +ps)(v —ps)/2H2 <05
Pr(Ey(po;ps)) = (2H — v + po) (v — po) /2H? < 0.5
R3:{<p03ps):v2p32poZU_H}
Pr(Eg(vapS)) = (2H -V +ps)(U _ps)/2H2 <0.5
Pr(Ey(po,ps)) = (2H — v + po)(v — po)/2H? < 0.5
Ry = {(pmps) 1V > p,>v— H and p, >ps}
PT(E§<p07pS)) = PT(EO(p07pS>> <0.5
Rs = {(pmps) v —H > p, > ps} PT(Eo(pOaps)) = PT(ES(vaps» =05

Next, we turn our attention to the retailer’s optimization problem. The retailer’s objective
is to shape the demand optimally across channels through its pricing decision so as to maximize
its expected profit. Given the consumer behavior described in Lemma 6, the retailer’s objective

function for the pricing problem (Problem P) follows:

Problem P:

%ggdg}igf (Do, Ps) = Pr(Eo(Po,Ds))(Po — Co) + Pr(E; (Do, Ds)) (Ps — Cs)- (4.2)

The following lemma summarizes the behavior of the retailer’s objective function in decision

variables (po, ps)-
Lemma 7. 7(po, ps) is continuous, differentiable, and not concave in (po, ps)-

The following theorem exploits the structural properties of the retailer’s profit function and

characterizes the retailer’s optimal solution.

Theorem 6. The unique optimal solution to Problem P has the following structure:

2¢cj +v
3

max(v—H, ><p}7<v,j€{s,o}, and p), < ps < py—co+ Cs.
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Theorem 6 provides important insights on the retailer’s optimal pricing strategy. Interestingly,
a channel-tailored pricing strategy, with the store price set higher than the online price, is always
optimal for the retailer, even though this implies that some store-bound consumers will leave the
store empty-handed. That is, the retailer balances between compensating for the higher operating
costs and incurring lost sales from store-bound consumers; she achieves this by setting the profit
margin for the store channel, (pX — ¢;), lower than that of the online channel, (p} — ¢,).

At this point, some important questions include: How is the retailer’s expected profit affected by
the consumers’ information asymmetry? Can the retailer improve its expected profit by adopting
simple policies such as making the store price available on its website? In order to answer these
questions, we next study the scenario in which the retailer makes the store price available on its

website.

4.4 The Value of Information Sharing

When the retailer makes the store price available on its website, consumers observe not only the
online price, but also the actual store price. Therefore, no store-bound consumer will have to leave
the store empty-handed (assuming that the store price does not fluctuate by the time the consumer
arrives at the store). Let E;, j € {s,0,n}, represent the event that a random consumer obtains the
highest actual utility from option j € {s,0,n}, i.e. after observing both the actual store price and
the online price on the retailer’s website (e.g. E} = {uo(ho, hs) > max (ul(ho, hs),0) }).

In order to demonstrate the impact of such information-sharing on the retailer, we reevaluate
the market segmentation depicted in Figure 4.1; see Figure 4.2, which considers the case with

(v—po < H and ps > p,) ©v—ps <v—p, < H.
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o V== H hs

Figure 4.2: Market segmentation for the case where v —ps; < v—p, < H under information-sharing.

Lemma 8. When the actual store price information is available on the retailer’s website, the re-

tailer’s market coverage expands or remains the same, i.e. Zje{o,s} Pr(E}(po,ps)) > Pr(Eo(po,ps))+

PT‘(E?(pO, ps))'

Interestingly, the retailer expands its market coverage by sharing her store price information
with consumers a priori. This happens because the reduction in store demand resulting from
providing consumers with the actual store price, which is higher than the online price (ps > po),
is compensated by a greater increase in the online demand (i.e. Pr(E%(po,ps)) — Pr(EL(po,ps)) <
Pr(E(po,ps)) — Pr(Eo(po, ps)))-

Before we examine the impact of the increase in market coverage on the retailer’s prices and
study if information-sharing is in fact profitable for the retailer, we first characterize the consumers’
choice probabilities (P?“(E;- (Posps)),J € {s,0,n}) as a function of the decision variables (p,,ps) in

this new setting.

Lemma 9. PT(E;» (Poss)),J € {s,0}, is piece-wise continuous and non-differentiable in p, and ps,

and can be characterized as below. Further, Pr(E! (po,ps)) =1 — > jeis o} Pr(E}(po,ps))-
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Table 4.3: Choice probabilities as functions of p, and ps; under information-sharing.

Region Choice probabilities

Pr(Ey(po,ps)) = 1 — (H — ps + po)* /2H?
Pr(E{(pops)) = 1 = Pr(E;(po, ps))
Pr(E}(po,ps)) = (v = po)/H — (v —ps)*/2H?
Pr(E{(po,ps)) = (2H + 2po — v — ps)(v — ps) /2H?

Ry = {(Po: Ps) : ps — po > H and v > p,} Pr(Ey(po,ps)) =1, Pr(E(po,ps)) =0
Pr(Ey(po,ps)) = (H — po + ps)*/2H?
Pr(E(po,ps)) = 1 = Pr(E,(po, ps))
Pr(Ey(po,ps)) = (2H + 2ps — v — po) (v — po) /2H?
Pr(Ey(po,ps)) = (v —ps)/H — (v = po)*/2H?

Rg = {(Po,Ps) :—H >p;—p,and v > po} Pr(E(/)(pmps)) =0, Pr(Eé(poaps)) =1

Ry = {(po,ps) : H > ps —po >0 and v — H > p,}

Ry = {(posps) : v >ps > po>v—H}

Ry = {(po,ps) : 0> ps —po, > —H and v — H > p, > 0}

R5:{(pmps)21)2po>psZU—H}

The retailer’s optimization problem in this setting is similar in form to Eqn. (4.2):

%?;(i;nigve 7 (Pos ps) = Pr(Eq(po, Ps)) (Po — co) + Pr(E(po, ps)) (ps — ¢s)- (4.3)

The following lemma summarizes the behavior of the retailer’s objective function under information-

sharing in decision variables (p,, ps).
Lemma 10. 7/(p,, ps) is continuous, non-differentiable, and not concave in p, and ps.

The following theorem summarizes how information-sharing impacts the retailer’s optimal so-

lution (plf, pi¥) and profit.

Theorem 7. The retailer’s optimal solution in the information-sharing setting has the following

structure:

Further, " > 7*.

Theorem 7 provides important insights into the benefit of information-sharing. Interestingly, it
indicates that the optimal profit increases if the retailer decides to share store price information on

her website.
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4.5 Conclusions and Future Research Directions

As more and more consumers shop with multi-channel retailers, retailers are under more pressure to
offer a uniform experience to consumers across all channels in terms of pricing, inventory availability,
service, etc. However, this may not be possible due to complicated channel structures that may
lead to different operating costs across channels. In this research, we study the impact of this
phenomenon on the retailer’s optimal pricing policy. We find that the retailer benefits from a
channel-tailored pricing strategy, with higher pricing in the store, even if this results in a number of
unsatisfied consumers. More importantly, our findings show that the retailer can leverage the online
channels to provide information about the store pricing to enable a more transparent shopping
experience for the consumers, which also leads to a higher profit for the retailer. Hence, our study
emphasizes the importance of taking advantage of a multi-channel supply chain network in order to
enable a more transparent shopping experience for the consumers, leading to a “win-win” situation
for all parties.

A number of extensions to our model deserve attention. First, it is important to consider the
stochasticity, with respect to item’s availability, in either channel. In that respect, examining the
interplay between inventory and pricing decisions would be an interesting area to explore from an
information-sharing perspective. Price-matching, which allows the retailer to match its store price
with the online price in case of higher store pricing, is another important concept to explore. For
instance, it would be worthwhile to study which strategy is the best option when the operating
costs for the store and online channels are different: price-matching in the store using the limited
store inventory or encouraging consumers to purchase through the online channel. The concept of
price-matching is especially important when consumers exhibit “showrooming” behavior; that is,
consumers visit the store to examine the product but then purchase it online if a better online deal
is available (i.e. for fashion items consumers can visit the store to try the item on, but then buy
the item online if a better online deal is available). Consumers can find a better deal online on
the retailer’s website or on a competitor’s website. Hence, studying the impact of competition in
this setting would provide valuable insights with respect to dual-channel retailers’ pricing decisions.

Lastly, it is important to study the impact of shipping costs for online purchases on consumers’
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purchasing behavior and on dual-channel retailers’ profit explicitly. In our model, we assume that
the shipping cost is a part of the consumer’s hassle cost in the online channel. However, many dual-
channel retailers offer free shipping if the consumer’s spending exceeds a certain amount. Hence,
it would be interesting to examine how free shipping offers impact consumers’ purchasing behavior

and retailer’s pricing strategy.
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Chapter 5

Conclusions and Future Research

Directions

5.1 Conclusions

Although inventory management and pricing problems are well-studied in various settings in the
literature, research that addresses these problems within a multi-channel setting is still in its infancy.
Most industry research papers provide merely qualitative frameworks that do not address how
these decisions should be made. On the other hand, the academic literature mostly focuses on
pricing and distribution problems in dual channel networks, where store and online channels operate
independently of each other in a single period setting. Generally, these models do not consider how
demand across channels evolves over time due to consumer interactions or how online channels can
be leveraged for providing consumers with inventory and/or price information for other available
channels in the supply chain to mitigate the consumer’s information asymmetry. Cross-channel
interactions that allow consumers to obtain information on inventory and/or price information
in stores through the retailer’s website as well as the diffusion of emerging channels within the
consumer base through increasing consumer interaction in the physical and in the virtual world,
however, are integral in understanding how demand across channels evolves over time in this new

business environment.
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In this dissertation, we contribute to the literature by adopting an interdisciplinary approach
that brings together tools and concepts from OM, economics, systems dynamics and marketing
literatures to create analytical models in order to address a dual-channel retailer’s optimal demand
shaping strategy, through e-commerce advertisement efforts, store service levels, and pricing. Our
findings show that the retailer’s optimal demand shaping strategy, in terms of store service levels and
e-commerce advertisement effort, critically depends on the product’s e-commerce adoption phase.
We also show that in the presence of higher operating costs for the store channel compared to
the online channels, a channel-tailored pricing policy always dominates a uniform pricing strategy.
More importantly, our work also sheds light on the benefits of channel integration for multi-channel
retailers. In particular, our findings show that the retailer can leverage the online channels to
provide in-store pricing and inventory information in order to enable a more transparent shopping

experience for the consumers, which results in a “win-win” situation for all parties.

5.2 Future Research Directions

Numerous extensions of our models deserve further attention. Since our main purpose is to study
the impact of evolving consumer behavior on a dual-channel retailer’s service level decisions at a
tactical level in our first study, certain characteristics such as inventory carry over and backlogging
are ignored; hence, it would be interesting to study an extension of this problem with the inclusion
of these components at an operational level. In our second study, on the other hand, the pricing
decision is studied in a setting where the inventory is assumed to be infinite. In the future, it
would be interesting to look at the joint inventory and pricing problem under consumer learning.
In addition, examining the interplay between inventory and pricing decisions in this setting can
be an exciting problem from an information-sharing perspective. Price-matching, which allows
the retailer to match its store price to the online price in case of higher store pricing, is another
important concept to explore. For instance, it would be worthwhile to explore which strategy is
the best option when the operating costs for the store and online channels are different: price-
matching in the store using the limited store inventory or encouraging consumers to purchase

through the online channel. The concept of price-matching is especially important when consumers
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exhibit “showrooming” behavior; that is, consumers visit the store to examine the product but
then purchase it online if a better online deal is available (i.e. for fashion items consumers can
visit the store to try the item on, but then buy the item online if a better online deal is available).
Consumers can find a better deal online on the retailer’s website or on a competitor’s website.
Hence, studying the impact of competition in this setting would provide valuable insights with
respect to dual-channel retailers’ pricing decisions.

One of the main disadvantages of online purchases from the consumers’ point of view is the
shipping cost. Therefore, many dual-channel retailers offer free shipping if a consumer’s spending
exceeds a certain amount. In order to take advantage of the free shipping opportunity, consumers
may shop in baskets. Hence, it would be interesting to examine how free shipping offers impact
consumers’ purchasing behavior and the retailer’s pricing strategy. Also, from retailers’ perspective,
one of the major advantages of opening an online channel is to be able to offer a greater selection
of products as online channels typically have a larger storage space compared to stores. For in-
stance, while multi-channel retailers can only use the storage space in their stores to fulfill in-store
purchases, they can use their warehouses as well as their stores to fulfill online orders. Hence, it is
very important for multi-channel retailers to take advantage of this setup, and offer products that
are tailored for specific channels in the supply chain network.

Lastly, today’s multi-channel retailers are going above and beyond to offer innovative services,
such as in-store Wi-fi, Order online/Pick-up at the store, and Order in store/Ship to home, to
provide consumers with a more convenient shopping experience. However, research addressing
these new services is in its infancy. Therefore, it would be interesting to study the impact of
such services on multi-channel retailers’ pricing and inventory decisions. Fulfillment of online
orders is another avenue to explore, as many multi-channel retailers are struggling in determining
the optimal order fulfillment strategy for online orders: shipping from a store, shipping from a
dedicated warehouse for online orders, shipping from a shared warehouse for store replenishment

and online order fulfillment, or a combination thereof.
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Appendix

[1—BFy(w)]& e < W
Recall that W = £ and B = 2. We also define, Y; = w ;& -, for
TP [1 — BFy(w)], otherwise.
t=1,...T.
Proof of Lemma 1. In order for mno choice-based lost demand to occur (i.e.
(Bnt|Xt =0UBp| Xy =1) = 0), both e-commerce adopters and non-adopters must receive

positive utility from at least one channel. Since the only available channel for the e-commerce
non-adopters is the store channel, it must hold that TH,; = k < & > k/(v —p) = W, ie. all
e-commerce non-adopters derive a positive utility from the store. This condition also implies that
all e-commerce adopters derive a positive utility from the store, thus, completing the proof. 1

Proof of Lemma 2.

Proof of Part 1. The proof proceeds in two parts. First, we derive closed-form expressions for the
choice probabilities, Pr(B;:|X; = 1), for j € {o,c}, and Pr(B;|X; = z), for i € {s,n},z € {0,1};
and the expressions in Table 2 for I; ;(w, &), for i € {s,n}, Igt(w, &), for y € {1,2}, follow directly
from Eqn. (3.2). Next, we show that I;(w,&), for i € {s,n}, IJ,(w,&), for y € {1,2}, are
piece-wise continuous functions of &;.

In the following, we consider the case where THy; <1< THgy = (v—p)/l <1,and TH,; < k &
TH,; = &(v—p) < k (see Figure 3.2); other cases defined in Lemma 2 can be proven similarly (see
Table A.1). We start with the segmentation of e-commerce adopters. Since the y-intercept (r = 0)
of the line TH;; is d(r=0) = (1_&;&, we can write:

l l

Pr(Bos|Xi=1) = — l 5 7] - (1)

1|, v=—p &w—p) (v—p (1—&)(v—p) (v—p)[2k—& (v—p)]
e g s

Similarly, it follows that:

§(v—p)[20=2(v—p)+&(v—p)]

PT’(BSVt’thl): 2%l

, Pr(Bn|X;=1)=1-)_ Pr(B;,|X;=1),
i€{s,0} (2)

and Pr(Be|X; = 1) = ”%p — Pr(Bo| X, = 1).

Since the online channel is not an option for consumers with X; = 0, consumers with {r : » < TH, ;}
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choose the store; otherwise, they choose to not make a purchase, leading to:
Pm&gxpﬂn:&@;m)mdpmammfzm:1—p43mu;:m. (3)

By substituting Eqn.s. (1)-(3), along with the equalities, Pr(X; = 1) = Fy(w) and Pr(X; = 0) =
1 — F}(w), into Eqn. (3.2), we get:

2 —
L54(w, &) = [1 S BRW), Biw.&) = BRw) ~ Ih(@.&), L&) = ll - %E(w)

)

2w w

and Iny(w &) =1— Y Lix(w,&)

i€{s,0}

Next, we show that function I} ;(w, &) is continuous in &. (Continuity proofs for I;(w,&), for
i € {s,n}, and 12 ,(w,&) are similar.) From Table 3.2, we have that:

2 .
1 ogs) — B[1- § | Rw). ifg < ;A "
15) yQt) —
it [(1 - &)B+ %] F;(w), otherwise.
. 1 . 1 BW .
We have that lim I,,(w,&§) = lim I, (w,&) = |B— ——| Fi(w). Hence, I,;(w,&) is
ﬁt—>vfp— ’ 5,5—>Ufp ’ 2

continuous in &.

Proof of Part 2. First, notice that we are slightly abusing the notation since the time index
t in Eqn. (3.1) stands for the time elapsed after e-commerce for the specific product becomes
available to consumers (for a given set of w and a), while the time index ¢ in Eqn. (3.7) stands
for the time period within the planning time horizon. Hence, in order to mimic the behavior of
the diffusion curve given in Eqn. (3.1) for a given set of w and a, we first provide the following
transformation. Let t*(w) denote the diffusion time that the retailer’s planning time horizon starts;
that is, Fy()(w) = F1, where w > 0, as w = 0 implies that F; = 0,V¢ > 0. Then, using Eqn. (3.1),
the following must hold:

1 — e~ (Wta)t(w) 1 w(l — F)
—F = tf(w) = — 1 .
1:>t(w) n<w—|—aF1>

Ft*(w) (w) = 1+ %e—(w—l-a)t*(w) w+a

()

Then, using Eqn. (3.1), the adoption level at time period ¢ within the planning horizon as a function
of w is as follows:
1 — ¢~ (wHa) (™ (w)+t-1)

Fy(w) = 1+ o (@ta)(t* (@) tt-1)°

w>0,t=2,..T. (6)

Since Eqn. (6) is continuous and differentiable, it trivially follows that I; ¢(w, &), i € {s,n}, and

1Y (w, &), y€{1,2} are continuous and differentiable in w.

Derivation of the Expected Profit Function. Recall that M~U[0,b]. Then, using Eqn.s (3.2),
(3.3) and (3.4), we derive the following:
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Table A.1: Choice probabilities

THyr=1%1€ (0,0 p] THys <1& 1€ (v—p,00)
PrBud Xy =1) = {([]z—u—&)l(«:—pn? ftf;:w]lsg " Pr(By|X; = 1) = &=pB2e ) ta-p)
Pr(Boy| Xy =1)=1—Pr(Bs X, =1) Pr(Boy| X, =1) = M
THy <k | Pr(By X, =1)= Pr(Bu X;=1)=1- Zie{s,o} Pr(Biy X, = 1)
& <W Pr(Bey|Xe =1) =1— Pr(Boy|X; = 1) Pr(B.; /X, =1) = Pr(Bos| X =1)
Pr(By| X, = 0) = &=n) Pr(BoiX; = 0) = sf(w »)
Pr(Bpg| X =0) =1 - Pr(Bs|X: =0) Pr(Bn|X; = 0) =1 — Pr(Bs4|X; = 0)

0 ifg <1-— =
Pr(By| X, =1) = ¢ FO=00nP 0y L gy <1 - LR | Pr(Byy|X, = 1) = 1 - 20=Sfenitk

1- W otherwise o
Pr(Bot|X: =1) =1— Pr(Bo Xt = 1) Pr(Bot|X: =1) =1— Pr(Bs:|X: =1)
THyy=k< | Pr(By X =1)= Pr(Bp X =1) =
G>w Pr(Be Xi=1)=1—Pr(By:|X: =1) Pr(Bes|X; =1) = 52 — Pr(Boy| Xt = 1)
Pr(Bs¢|X; =0) = Pr(Bss|X; =0)=1
Pr(Bn|X;=0) = Pr(B|X;=0) =

ot 1 bl ¢ (w,€t) 1
Emin(Zs4, qs :/ Zst——d 2 —‘r/ st 25
[ ( 4 ’t)] 0 * b[g t(w 61‘) ! gs,t Qet bIs,t(w’gt> !

m |:q9t + qst ( I i (w, &) qs,t)} = bl 1 (w, &) {1 — O;t}
bIs ¢ (w,&) 1
El(Zs s = s,t — Us —d s
(o= e /q (Z: E ’t)bfgs,xw;ft) o -
1 V2L (w, &)% — az, bl (w,&)(1 — ay)?
b, (w, &) [ 9 — syt (bls,t(w>§t) - QS,t):| = 9 )
bIL,(w, 12, (w, bI!,(w, bI2 (w, &) (1 — ay)?
(20,] = Mot T Z;Euz&t—qs,t)ﬂ _ Mod®) | Moo, &) onf
E(y) = Healnt) ML) Lol &)

Then, Eqn. (3.7) follows by substituting the terms derived in Eqn. (7), along with Eqn.s
(3.2)-(3.4), into Eqn (3.6). This completes the proof.

Proof of Lemma 3. In the following, we consider the case where THy; < 1 < THg; = (v—p)/l <
1; the case where THy; =1 < THgy = (v —p)/l > 1 can be proven similarly. Before we present
the proof for Lemma 3, we derive several properties.

a[Iol,t(wﬂft)‘f'Ig,t(Waft)] _
08t -

Property 1. 1. [I] (w,&)+I2(w,&)] = BF,(w) > 0 which implies that
0;

2. [Lsp(w, &) — 124(w,&)] = ¥;: > 0, and Gt > 0;

3. Given that & = AB(ag—1) + N&—1, where B(ay) = (1 — In(ey)), it holds that 8&, =
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A1 =XN)"Ilnoyy, fort <T, andi<t—1.

Proof of Property 1. Throughout the proof, we consider the range ay € (0,1], for t =1,2,..., T,
as In a; is undefined at oy = 0.

Proof of Parts 1 and 2. The results directly follow from Table 3.1.

Proof of Part 3. The result directly follows from the definition of &;.

This completes the proof. I

Proof of Lemma 3. Using Property 1, for A € [0,1] it follows that:

2
b
Efm(w, ar, &)] = ~G(w) + bBF,(w) [p;—s_c] +bY; [(p—i—s—c)ozt—(p—l—s)og] -5 ®
OE[m(w, ar, &) 0Yy, o (v A _ _ of -
Do, = b@ft)\(l AN Inog—; |(p+s—c)oy — (p+s) 5 Jor @ <t 9)
AR08y s — o) (10)
t
O?E[m(w, ag, &)] oY i 1 o? .
= da2_ = —ba—gt}\(l—)\) o~ [(p—i—s—c)at — (p—i—s)z] Jfor i<t (11)
2
OEImwon 8l o o i j <t (12)
8041571‘0%7]'
82E[7rt(waa7§t)] _ oYy i—1 ;
Ry = —ba—&)\(l—A) Inoy_; [p+s—c— (p+s)ay],for i <t (13)
82E[7Tt(w704t,€t)]
= - bY, 14
b 1Y, (p+9) (1)

Using the definition of Y;, Property 1 and Eqn. (8), it follows that E[m(w, ay,&)] is continuous
in o € (0,1], for j < t. Also, Eqn.s. (9) and (10) imply that E[m(w, o, &)] is strictly increasing
inaj € (0,CF), for j <t. Let A~ = {(ov,a2,...,04—1) : CF-1 §(a1,a2,...,at,1)§?,§t < W}
and AT = {(a1, 9, ...,qs_1) : CFTg (a1, 9y ey ay—1) < ?,{t > W}, where & = \3(oy—1) +
(1=X)&—1. Letting T' = bA [(p—l—s—c)ozt — (p—i—s)%%} ,and V = bA [p+s—c — (p+s)ay], the Hessian
matrix for —FE[m(w, oy, &)] for A~ in this case, where the entries are in the order of oy, as, ..., ay,
is as follows.

I 0 0 0 V(1-\)"2Ina; |
0 TOA L 0 0 V(1-\)"3nay
HA — [l — BFy(w)] : : - : : :
w 0 0 o TOA)? 0 V(1-\)'Inay_s
0 0 S 0 TOAP V(1-\)ln oy
L VI-N)"2lneg VI~V "2lnay -+ V(I-M'Ina s V([I-2)°lnay 1 &(p+s)

Using the definitions of 7" and V, it follows that 7" > 0 and V' < 0, for ay € [CF,1]. In order
to prove that E[m(w, o, &)] is jointly concave in oy € [CF,1] and (o, g, ...,ar—1) € A7, it is
sufficient to show that H4™ is positive semi-definite (PSD) in a; € [CF, 1], for j <t. For that, we
need to show that all principal minors of H4 , which we denote by D;, are greater than or equal
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to zero for a; € [CF, 1], for j < t. Clearly, D; = &(p+ s) > 0. In order to show that H4™ is PSD,
we only need to show that Do > 0, then D; > 0 for j > 2 can be proven by induction. In order to
show that Dy > 0 for o; € [C'F, 1], for j < t, we need to show that:
T(1-X)°
Dy = (al)gt(p—k s) = V3Inay_1)% > 0. (15)
tf

It follows that Dy is decreasing for oy € [C'F,1]; hence, for any given ay_1, Dy is minimized at
oy = 1. Therefore, in order for Ds to be positive at oy = 1, it must hold that:

JEmmpras

+ s + s
5 — AP (lnag_1)> > 0= [p 5~ c] Sulp+ )

—cA(lnag_1)* >0
a1

Qi1
p+s

= h= [2 - c] &Gp+s)—F(lnag—1)’a—1 >0 (16)

f1 is increasing for ay—; € [CF, 1], for i < t. Thus, it must hold that:

[p;S—m}CFu—hmﬂw—éanCFfCF;uh¢[pgs—c]u—mcwj—éanCFﬁzo(rn

Recall that CF = p;:c, letting n = 4’% and simplifying, we can rewrite Eqn. (17) as:

.ﬁzn[”gz](L—m";1>—<m”;1>220 (18)

f2 is increasing in 1), which implies that any 7 that is greater than the root of f, satisfies Eqn. (18),
which assures that Dy > 0. By numerically solving, we get: fo = 0 at n = 2.206. Thus, we prove
that Dy > 0 for n > 2.206, which implies that H4~ is PSD for > 2.206. Thus, E[m(w, o, &)] is
concave in A~. Next, the Hessian matrix for —F[m(w, &)] for A7 is:

0O --- 00 0
0O --- 00 0
HA+:[]. *BFt(LL))] . . . :
0 0 0 0 0
00 00 0
[0 0 00 (p+s)

which is PSD for Va; € (0,1],j < t. Then, E[m(w, o, &)] is jointly concave in a; € [CF,1], for
J < t since E[m(w,a,&)] is: 1) jointly concave in Vaj,j < t in both regions A~ and AT, 2)
9B[m (w.art)] >0,i < t, for (a1,a9,...,aq4_1) € A7, and

continuous and differentiable in ay, and 3) o

OE[mt(w,0,Et)]
dovy 5

=0,i <t, for (a1, 9,...,a4_1) € AT (using Eqn. (9)).

Proof of Remark 1. Using Property 1, it follows that & = S(ag) for A = 0. Hence, E[m(w, oy, &)]
is independent of o, for Vj # t. Then, Eqn.s. (10) and (14) imply that the FOC for E[m(w, o4, &),
Vi, for A = 0, is satisfied at oy = C'F for ¢t <T.

Proof of Theorem 1. In the following, we consider the case where THy; < 1 <& THy; =
(v —p)/l < 1; the case where THy; =1 < THy; = (v —p)/l > 1 can be proven similarly. For a
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given w > 0, since & is a function of all a;,7 < ¢, it follows that:

T T—t
BllT, @) = ~G Y Bl (s o, )] = 2o 37 OB masleerinbinl] ory < .
t=1 =0
OFE[(w, o Tt oy, 4 o2
= w = Yi[p+s—c—(p+s)as] — Alnoy Z 8{:; (1_)\)1—1 [(p—&—s—c)atﬂ (p+5) 1&2+z . (19)

Then using Eqn. (19), o = CF. Let &, for t < T, denote & at optimality. Then, using
Eqn.s. (9) and (10), it follows that the FOC for «, for ¢ < T, is satisfied at of = CF if
& = B(CF) > W; otherwise, there exists a vector, say, @” = (o, a4, ..., _,), that satisfies
the FOC if ¢/(w) < WVt < T, where &'(w) = A3(af_;) + (1 — N\)&—1, with & = B(a);
thus, (af,a},..,ak ) = a@”. If BCF) < W < lg%iilT{‘fl{’(w)}, then E[II(w,d)] is increas-
ing in all directions in (o, @g,...,ap_1) when & < W,Vt € [2,T]; therefore, it follows that
(of,a3,...,a5_1) = 3;;1-01" = {(a1,00,..,ar_1) : & = W)Vt € [2,T]}. Consequently, if

1n}‘/m {(w)} <W< max {§”( )}, then o < af < of since E[Il(w, @)] is decreasing at o” in
<t< 1<t<

some directions while maxmnzed in others. This completes the proof. }

Proof of Theorem 2. In the following, we consider the case where THy; < 1 & THg; =
(v—p)/l<1,and THy,; < k & TH,; = &(v — p) < k (see Figure 3.2); other cases can be proven
similarly. Before we present the proof, we derive the following property.

8Ft(

Property 2. <0 forw>0,t=2..,T.

Proof of Property 2. Using Eqns. (5) and 6), it follows that:

Fy(w) w+aF] —w(l — Fy)e~@ta)(-1) (a4 w)(1 — F)e”@ta)t=1)
w) = —1—
! w4+ aF + a(l — Fy)e~(wta)(t-1) w+aF + a(l — Fy)e~(wta)(t-1)
. (a +w)(1—Fy)
B (w+ aFy)ewta)t=1) + q(1 — )
(w+a)(t 1) _ (wa)( _
N OF;(w) _ (1_F1)(w+aF1) +a(l—F)— (a+w)e DA+ (w+aF))(t—1))

Ow (w+ aFy)e@ta)t=1) 4+ q(1 — Fy) )
1y (w+akh) +a(l - Fye~@ta)(t=1) _ (4 4+ w)(1 + (w + aFy)(t — 1))
(W + aFy)e@ =1 4 (1 — Fy))?
1— F) (e @tol-1 _ 1) — (a + w)(w + a)(w + aFy)(t — 1)
(W + aF)e@ra=D 1 a(1 — F))?

— (1 _ Fl)e(w+a)(t7

= (1 — Fy)elwra)t=1) o <0.

Proof of Theorem 2. Using Eqn.s. (3.3), (3.4), Property (2), and Theorem 3, when 8(CF) < W,
it holds that:

¢ o(w) = CFb I, (w, B(CF)) = aq‘é’tw(w) = per 2P (01; %)/5 (CF) B 8g£“> <0
Gy 1(w) = b1y, (w, B(CF)) + (1 = CF)b[BF;(w) — I, (w, B(CF))]

* w 2 tlw tlw

B( ) _vorB [1— ﬁ(fwf;) ]agi )+b(1—CF)Ba};£) ) >0
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aq;t(w) 0q;‘,t(w)
= ow * ow

=bB(1 - CFB(CF)) > 0.
This completes the proof. I
Proof of Lemma 4. In the following, we consider the case where THy; < 1 < THgy = (v—p)/l <

1; the case where THgy =1 < THgy = (v —p)/l > 1 can be proven similarly. From Eqn. (8), it
follows that:

ool 90 4 p2e) [ohe ]2 s — 09 %] 0

By assumption, G(w) is increasing in w. Then, using the definition of Y; and Property 2, the proof
follows. 11

Proof of Theorem 3. From Theorem 1, if W < B(CF), then o* = CF - T = & = p(CF) >
*)2

W,vt = 1,...,T. Since, %rs —c {(p—i—s—c)o@k — (p+s) (aé < 0at of = CF, and daj /0w = 0,
using Lemma 4, the proof follows. 1

Proof of Lemma 5. Given that & = B(a;) = % = —Inay, and using Property 1, it follows
that:
2
b
Elnf (w,a4,&)] = bBF: () [p;sc] +bY; {(p+sc)at(p+s)o;t} - (21)
P 2
N 8E['/Tt (W,Oétagt)] :71)%1H04t (p+576)0ét7(p+8)% +bY;§ [p+5*C*(p+5)Oét} (22)
8o¢t 8& 2
5‘2E[7rf(w,ozt,ft)] - 8Y;5 1 CY? ayvt
93 = fba—fta—t [(p+sc)at(p+s)2] f2ba—£t In oy [p+s—c—(p+s)ay] —bYi(p+s)

(23)

Using the definition of Y;, Property 1 and Eqn. (21), it follows that E[r} (w,as,&)] is continuous
in oy € (0,1], for a given w > 0. Let aryg = {ay : & = W}, where & = S(ay). Then, there are
three cases to consider: Case 1. If 0 < ary < CF < 0 < W < B(CF), then E[n,(w,ay,&)] is
strictly increasing in oy € (0,CF'), and strictly concave and differentiable in ay € [C'F, 1] with a
maximizer at ajf = CF. Case 2. If CF < ary < 1 < B(CF) < W < 1, then E[nf (w,a,&)]
is strictly increasing in oy € (0,CF), strictly concave in oy € (CF,ary), and strictly concave

decreasing in oy € (ary,1] with  lim 6E[7rf(w,at,§t)]/6at > lim 8E[7TtP(w,0<t,§t)]/8at
at—orH— at—arg+

by using Eqn. (22), which implies that E[r} (w,a,&)] is strictly concave in oy € [CF,1] with
a maximizer at off € (CF,arg]. Case 8. If arg > 1 & W > 1, then E[r](w,as,&)] is
strictly increasing in oy € (0,CF) and strictly concave in a; € [CF,1] with a maximizer at
;P € (CF,1). Also, using Eqn. (22), it follows that the first derivative of E[r} (w,ay,&)] is
independent of the adoption level F(w); therefore, aff = a*F for t < T. This completes the proof. }

Proof of Theorem 4.

Proof of Part 1. It directly follows from Lemma 5 that, for a given w > 0, if
0 < arg < CF & 0 < W < B(CF), then o = CF. If, on the other hand,
CF < arg <1 & B(CF) < W < 1, then o*f € (CF,ary]; that is, the maximizer of
E[nl(w, o, &)] is also the maximizer of E[n] (w,a,&)] when & < W (equivalently, oy < arpr).
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Let o denote the point that sets the FOC of E[n} (w, ay, &)] when & < W equal to zero. It follows
from Eqn. (22) that o/ € (0,1). Then, there are two cases to consider: Case 1. If apy < o
(equivalently, W < B(a’)) then o*f’ = ary, and Case 2. If ary > o (equivalently, W > B(a))
then o*f = o/

Proof of Part 2. Proof follows similar to the proof of Theorem 2.

Proof of Part 3. Proof follows similar to the proof of Theorem 3.

This completes the proof. I

Proof of Theorem 5. Before we present the proof for Theorem 5, we derive the following property.

Property 3. 0?E[[l(w, @)]/daida; < 0, for Yoy, aj € (CF,1),5,t <T.

Proof of Property 3. Taking the derivative of Eqn. (19) with respect to «;, for j < T, it follows
that 92 E[Il(w, ay, &)]/Ocudaj < 0 for j,Vt < T. This completes the proof. i

Proof of Theorem 5.

Proof of Part 1. The proof follows from Theorems 1 and 4.

Proof of Part 2. The proof proceeds in three parts. First, we derive the expression for
the upper bound UB,; (A, CF) on aoj,t = 1,2,..,T — 1, for a given pair of (\,CF) and for
any w > 0. Next, we show that UB,: (), CF) is decreasing in ¢ and increasing A, and hence
UB(CF) = UBO[I(I,CF) is an upper bound on @* for a given CF. Finally, we complete the
proof by showing that a*” < UB,.r = o/ < UB(CF).

Factoring out p + s in Eqn. (19), we get:

2

T—t
Oty L(1-A)t |:0Fat+i - at;] (24)

— Oty

OE[I(w, )]
ooy

=P+ 8V CF —ay] — (p+s)AInoy

For a given w, when & < W,Vt = 2, ..., T; that is @’*(w) = @"(w), it follows that dE[II(w, o)]/dy
is decreasing in o, for j < T (using Property 3), and increasing in L=Bl@] o e [1,T—t]

[1-BF;(w)] °
(from Eqn. (24)). Then, UB,y (A, CF) sets Eqn (24) equal to zero when o = CF,Vj < T, j # t,
i.e. at its lower bound, and % = 1, i.e. at its maximum, which is obtained by setting

Fi(w) = Fyyi(w), for i € [1,T —t] (Hence, UB,; (A, CF) is independent of B,w and a.).

When a; = CF, for Vj <T,j #t, and F; = Fyyy, for i € [1,T —t], the first term in Eqn. (24) is the
same for all dE[[I(w, @)]/day; however, the second term is a summation over all a4, € [1,T —t].
Thus, for a larger t, the second term in Eqn. (24) is less positive; hence, U Ba;/()\, CF) is decresing
int. Also, when oj = CF, forVj < T,j # t, Eqn. (24) is decreasing in a; and increasing in A. Thus,
UBa;/(/\, CF),t <T,is increasing in \. Hence, UB(CF) = UB,; (1, CF) is an upper bound on ar.

Setting A =1, aj = CF,Vj < T,j # 1, and F| = Fi4, fori =1,...,T — 1, in Eqn. (24), the FOC
for o follows:

(25)

B(CF)[CF — UB(CF)] — In (UB(CF)) [CF 2] = 0.

When S(a’) < W; that is o*F = o/, at optimality it must hold that (using Eqn. 22):
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B()[CF —d] —Ind

CFo — a] =0. (26)

That is, using Eqn.s. (25) and (26),

12
CFa — a] (27)

= B(a/)[CF — d/] —Ind/

B(CF)[CF — UB(CF)] - n (UB(CF)) [CF 2] d

We prove that o*” < UB,.r = o/ < UB(CF) by contradiction. Assume that o/ > UB(CF) >
B(CF), then using Eqn. (27), it must hold that:

/2

F2
C CFO/—%

B(CF)[CF—-UB(CF)]—-B(d))[CF — '] =In (UB(CF)) [ ] —Ina/ >0. (28)

In addition, In(UB(CF)) < Ind/ < 0 and CTFQ > CFd — %2 > 0 = In(UB(CF)) [052} -

Ino/ [CF o — ’17/2} < 0, which poses a contradiction with Eqn. (28). Hence, it must hold that

a*P < UB,.r = o/ < UB(CF), which implies that |a*F — of| < UB(CF) — CF. This completes
the proof. 1

Proof of Lemma 6.. In the following, we assume that v — H > 0, and then provide the
proof for Pr(E,(po,ps)) and Pr(Ei(ps,ps)),i € {s,n}, for the case where v — p, < H and
Ps > Do =V —ps <V—p, < H, ie. (po,ps) € R3, see Figure 4.1 and Table 4.2. (Other cases
can be proven similarly.) Next, we show that Pr(E,(po,ps)) and Pr(Ei(p,,ps)),i € {s,n}, are
piece-wise continuous and non-differentiable. Note that if v — H < 0, only Regions Ro, R3, and Ry
would be possible.

As depicted in Figure 4.1, the gridded region shows the proportion of consumers who choose the on-
line channel, i.e. Pr(Ey(po,ps)) = (2H —v+po)(v—p,)/2H? < 0.5. Since consumers choose between
the store and the online channel assuming that p¢ = p,, and they either purchase the item through
the store channel or leave the store empty-handed after observing the actual price, it holds that

Pr(Eo(pops)) = Yic (s Pr(Ei(po. ps)), where Pr(E:(po,ps)) = (2H — v+ py) (v —p) /2H? < 0.5.

In the following, we consider the continuity and differentiability of Pr(FE,(po,ps)) in

Regions Ry and Rj3; other cases can be proven similarly. From Table 4.2, we have
lim  Pr(Ey(po,ps)) = lim  Pr(Ey(po,ps)) = 0.5 and lim  OPr(Ey(po,ps))/Opo =
Po—v—H— po—v—H+ Po—v—H—

limH OPr(Eo(po,ps))/Opo = 0. Hence, Pr(E,(po,ps)) is piece-wise and continuous and
Po—v—H—+

differentiable in p, and ps. This completes the proof. 1

Proof of Lemma 7. From Eqn. (4.2), it follows that:

O (pos Ps) _ OPr(Eo(po, ps)) OPr(E;(po,ps))

- - Pr(E, 2
9po o (o — o) + a0, (ps — ¢s) + Pr(Eo(po, ps)) (29)
8271'(;00,]95) . 82PT(EO(p07pS)) aQPT‘(E::(po,ps)) aPT(EO(pO’pS))
apg - 3]?% (po - Co) + apg (Ps - Cs) + 2 . (30)
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aﬂ(po,ps) _ GPT(ES(pO,pS))(

Op. p. ps — ¢s) + Pr(E{(po,ps)) (31)

0*7(po,ps) _ O*Pr(E:(po,ps)) o OPT(ES(po, ps))
op? Op? Bs = o) 42 Ops )
827r(po,ps) — 8PT(E§(pO7pS)) (33)
apoaps 8p0

Using Lemma 6, Property 4, and Eqns. (29)-(33) it follows that m(p,,ps) is: 1) continuous and
differentiable in p, and ps, and 2) strictly jointly concave in p, and ps for Regions Ry, Re, R3, R5,
but not for R4. This completes the proof. 1

Proof of Theorem 6. In this proof, we consider the case when 0 < H < v, other cases can be
2c]+v
< p]

v,j € {s,0}, and then we show that p} < p* < p’ — ¢, + ¢5. Before we present the proof, we derive
the following property:

proven similarly. The proof follows in two parts. First, we prove that max (v —H,

Property 4.
OPr(Eo(po,ps)) OPT(Eo(po,ps)) _ OPr(E; (po,ps)) OPr(E; (po,ps))
1. i <0, s =0, o <0, and —ps <0, and
2 9?Pr(Eo(po,ps)) < 0 9?Pr(Eo(po,ps)) =0 82 Pr(E(po.ps)) < 0 82 Pr(E%(po.ps)) < 0. and
‘ 2 = 7 op? ’ Ip? = p? -
82PT(E§(pO,p5)) 62PT(EO(pO,p5)) =0
Opo0ps Opo0ps o

Proof of Property 4. The proof trivially follows from Lemma 6. 1l

Proof of Theorem 6. We first prove that p; < pi by contradiction. Assume

that p = pi > pt = p' Then, from Eqn. (4.2), the retailer’s optimal profit
equals m(p;,py) = «'(,p") = Pr(E®Q.p")E — c) + PT(ES(p’ p") (" = ¢), with
Pr(Ey(p,p")) = Pr(E:(p,p")). Now assume that the retailer sets p’ = p, = ps, then the
retailer’s profit equals 7 (p', p’) = Pr(Eo(p", p'))(p" — o) + Pr(E; (¥, ) (0" — ¢s) > 7' (po, ps) since

Pr(Ey(p',p")) = Pr(E,(p,p")) = Pr(E:(p/,p")) = Pr(E:(p,p)) and (p’ — ¢s) > (p” — ¢s). Hence,
it must hold that p} < pt.

Now we further show that max(0,v — H) < p; < pf < v. Assume that v — H > 0. Then,
(p%, p%) must belong to Regions Ri, Ry, or Rs. Since Pr(E,(po,ps)) = Pr(ES(p,,ps)) = 0.5 for
any (po,ps) € Ry, the retailer can simply increase its profit by setting p, and ps at their upper
bound in this region, i.e. (po,ps) = (v — H,v — H). Further, for any (p,,ps) € Ra, it holds that
Pr(Ey(po,ps)) = 0.5. Hence, for any given ps in this region, the retailer can increase its profit by
setting p, at its upper limit, i.e. p, = v— H. Hence, it must hold that max(0,v—H) < p} < p¥ < v,
ie. (pi,pk) € Rs. In addition, using Eqns. (29) and (31), it trivially follows that m(p,,ps) is
increasing when p, = v — H and p; = (2¢; + v)/3,i € {s,0}, and it is decreasing when ps; = v;
hence, since 7 (p,, ps) is jointly concave in (p,, ps) for max(0,v — H) < p¥ < p¥ < v, it must hold
that max((2¢; +v)/3,v — H) < p} < wv,i € {s,0} and p} < p}.

Since 7(po, ps) is strictly jointly concave in (po,ps) for max(0,v — H) < p} < p% < v (using Eqn.
(30), (32) and (33)), the First Order Condition (FOC) is necessary and sufficient for optimality.
Assume that pf = p” and p* = p — ¢, + ¢s = p"" — ¢, + ¢5. Then, using Eqns. (29) and (31), it
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must hold that:

0T (Po,Ds)

=(—H+v—p)p' —co)/H* + (2H —v+p)(v—p)/2H* =0 (34)
Ipo ps:P”’_fIC/?Jrcs
0m(po, ps) =(H+v—p +co—cs)(p' —co)/H* + (2H —v+p —cotcs)(v—p +co—cs) /2H? (35)
Ops ps:p’i/%”gﬁcs
Op, ps=p'"’' —cotcs

po==p'" —co+tes

Since 7(po,ps) is strictly jointly concave in (p,,ps) for max(0,v — H) < p5 < pi < v, and by
assumption Eqn. (34) holds true, Eqn. (36) poses a contradiction. Hence, it must be the case
that p < p} — ¢, + ¢5. Using a similar argument, it can be easily shown that p} < p%. Hence, the
optimal solution must satisfy: p} < p¥ < p> — ¢, + ¢5. This completes the proof. 1

Proof of Lemma 8. In the following, we consider the case max(v — H,0) < p, < ps < v, i.e.
Region R3 and R for the settings with and without information-sharing, respectively. The proof
follows by contradiction. Assume that 3 e e, o Pr(E}(po, ps)) < Pr(Eo(po,ps)) + Pr(E{(po, ps))-
Then, using Tables 4.2 and 4.3, it must hold that:

2H (v — po) — (0 = ps)® + (2H + 2po — v — ps) (v — ps) < (2H — v+ po) (v — po) + (2H — v + ps) (v — ps)
= (2po — ps)(V — ps) — (V= ps)* < —(v = po)? + ps(v — ps)
=0< (v—ps)® = (v—po)* +2(ps — Do) (v — ps)
=0 < —(20 = ps — Po)(Ps — Po) + 2(ps — Do) (v — ps)
=0 < —(ps —po)?

Since the above result poses a contradiction, it must hold that > .., o Pr(E}(po,ps)) >
Pr(Eo(po,ps)) + Pr(E2(po,ps)). This completes the proof. I

Proof of Lemma 9. The proof follows similar to the proof of Lemma 6. 1

Proof of Lemma 10. From Eqn. (4.3), it follows that:

aﬂl(poaps) _ (9P?”(E(l)(po,ps)) + 8PT(Eg(po,ps))

ap ap (Po — <o) ap (ps—cs)—}—P?“(E;(po,ps)) (37)
827{'/(170;178) 82PT(E/ (po ps)) 82PT(E, (po ps)) aPT(E/ (po ps))
= ° : o~ Lo > : s Cs 2 2 7 38
2 o2 (Po—co) + 92 (ps—cs) + O, (38)
! ! !
67T (pmps) — aPT(Eo(pova)) (po _ Co) _|_ aPT(ES(pmpS)) (ps _ Cs) _|_ PT(E;(poyps)) (39)
6p3 8]95 8p8
827{'/(170;178) 82PT(E/ (po ps)) 62PT(E/ (po ps)) aPT'(E/ (po ps))
= ° : o —Co > : s Cs 2 > : 4

Since Pr(E!(po,ps)),i € {o,s}, is continuous and non-differentiable in p, and p,s from Lemma 9,
it follows that 7'(p,, ps) is continuous and non-differentiable in p, and ps using Eqns. (37)-(40).
This completes the proof. I

Proof of Theorem 7. In this proof, we consider the case when 0 < H < v, other cases can be
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proven similarly. Before we present the proof, we derive the following property:

Property 5. Assume that p, = p° > ps = p”. Then, Pr(E!(p°,p")) = Pr(E.(p",p°)) and
Pr(Ey(p°,p")) = Pr(E(p",p°%)).

Proof of Property 5. Assume that (p,,ps) = (p°,p”) € Rg, then, from Lemma 9,
it must hold that (p”,p°) € Rs. This implies that Pr(E.(p°,p")) = Pr(E.L(p",p°)) and
Pr(EL(p°,p")) = Pr(E.(p”,p°)). The proofs for other regions follow similarly.

Proof of Theorem 7. We prove that p’; < p'% by contradiction. Assume that p° = p/ > p':

p" = Pr(E.(p°,p")) < Pr(E.L(p°,p")). Then, from Eqn. (4.3), the retailer’s optimal profit equals
m(p,ps) =7 (p°,p") = Pr(E.(p°,p")(p° — ¢o) + Pr(E.L(p°,p")) (o — ¢s). Now assume that the
retailer sets p” = p, and ps = p°, then, using Property 5, the retailer’s profit equals 74 (p”, p°) =

Pr(Ey(p",p°)) (0" = co) + Pr(Ey(p", p°)) (0° = ¢5) = PrE(p° p")) (0" = co) + Pr(Ey(p°, p")) (0° = ¢s)-
Then, it follows:

Wé(p”7po) - ﬂ-/l(p,lapo) = PT(E/ (p y D //)
— Pr(E)(p°,p”

= Pr(Es(p°,p"))

= [Pr(E;(p°,p")

(" = co) + Pr(E,(p°, p"))(
)P — co) — Pr(Ey(p®,p")) (p" — cs)
(cs = co) = Pr(E,(p°,p"))(cs — ¢o)

) = Pr(Eq(p°,p")](cs — o) > 0.

Hence, it must hold that p), < p'%, ie. (p/,p's) must belong to Ry, Ry or R3. Now we further
show that max(0,v — H) < p/s < p/t < wv. Since Pr(E/(po,ps)) = 1 and Pr(E.(p,,ps)) = 0 for
any (ps,ps) € Rs, the retailer can simply increase its profit by setting p, and ps at their upper
bound in this region, i.e. (po,ps) = (v — H,v). Further, assume that (p,,ps) = (p",p?) € Ry.
Then, for any price vector {(pO,ps) : (po,ps) € Ry and p” — p* = p° — pb}, it holds that
Pr(E!(p",p*)) = Pr(E,(p°,p°%)) and Pr(E.(p",p*)) = Pr(E.(p°, p%)) using Lemma 9. Hence, the
retailer can simply increase 1ts profit by settlng po and p, at their upper bound in this region,
i.e. (po,ps) = (v—H,v). Hence, it must hold that max(0,v—H) < p/;, <p's <w,ie. (p';,p%) € Ra.

Lastly, we prove that «'(plf, pi¥) > m(pk, pf). First, using Lemma 9, it holds that Pr(E/(po,ps)) —

Pr(Eo(po,ps)) = Pr(E:(po,ps)) — Pr(EL(po.ps)) + (ps — po) /2H2 > 0 = Pr(E)(p}p:) —
Pr(E,(p;,pt)) = Pr(E:(p;,ph) — Pr(EL(phph)) + (ph — p5)?/2H? > 0. Then, it follows:

(05, p2) — w(p;, p%) = [Pr(EL(py, pL)) — Pr(EL(ps, p2))l(ps — cs) + [Pr(Eq(po, ps)) — Pr(Eo(po, ps))l(p5 — co)
2
= PT(EO<povps)) - PT(E;(povps)) + % (p: - CS)
+ [Pr(Eg(poups)) - PT(EO(pmps))](pz - CO)

_ 2
= [PT(Eo(pOaps>) — PT’(E:)(pO,pS))] (p’: — ¢4 7p: + Co) + M

2H2 (p:709)>0

= 7' (ply, ) > ' (0}, ps) > w(ph, pi) = 7' (5, ps) > 7(p}, p}). This completes the proof. B
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