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Abstract: In this paper we report the fabrication of glass-clad BaO-TiO2-SiO2 (BTS) glass–ceramic
fibers by powder-in-tube reactive molten-core drawing and successive isothermal heat treatment.
Upon drawing, the inserted raw powder materials in the fused silica tubing melt and react with the
fused silica tubing (housing tubing) via dissolution and diffusion interactions. During the drawing
process, the fused silica tubing not only serves as a reactive crucible, but also as a fiber cladding
layer. The formation of the BTS glass–ceramic structure in the core was verified by micro-Raman
spectroscopy after the successive isothermal heat treatment. Second-harmonic generation and
blue-white photoluminescence were observed in the fiber using 1064 nm and 266 nm picosecond laser
irradiation, respectively. Therefore, the BTS glass–ceramic fiber is a promising candidate for all fiber
based second-order nonlinear and photoluminescence applications. Moreover, the powder-in-tube
reactive molten core method offers a more efficient and intrinsic contamination-free approach to
fabricate glass–ceramic fibers.

Keywords: thermal drawing; molten core fabrication; glass–ceramic fiber; second-order harmonic
generation; photoluminescence

1. Introduction

Since the introduction of optical fibers in the 1960s, optical fibers have shown an increased
demand in various applications, such as in communications, lasers, and sensing, owing to its compact
size, strong light confinement, and long interaction length [1–3]. However, due to the amorphous
nature of glass, optical glass fibers generally do not exhibit second-order optical nonlinearity, which
is crucial to many devices, such as frequency doublers, electro-optic modulators, and the generation
of entangled photon pairs [4]. Efforts have been made to overcome this obstacle by using thermal
poling of glass fibers [5–7] and the fabrication of crystalline fibers [8–10]. The first approach induces an
effective second-order nonlinearity by the combination of a frozen-in DC field and intrinsic third-order
nonlinearity. Since it relies on higher-order nonlinearity and non-uniform distribution of ions, the
induced second-order nonlinearity is usually relatively weak and unstable upon heat or strong
light irradiation. The second approach fabricates common nonlinear crystals into the fiber, such as
LiNbO3, BBO (beta barium borate) or KDP (potassium dihydrogen phosphate), and the resulting
fibers show strong and stable second-order nonlinearity as their bulk forms. However, since the
process generally involves crystal growth from the melt, the yield tends to be low [8–10]. Usually,
the fiber either does not have a cladding layer or exhibits strong elemental migration if a cladding
layer exists [8]. In the past decades, glass–ceramic materials have emerged as a potential candidate to
fill the gap, since it is a two-phase composite in which crystals are homogeneously distributed in the
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glass matrix [11,12]. Among them, glass–ceramic materials with fresnoite crystals (i.e., BaO-TiO2-SiO2

(BTS)) have been extensively studied owing to their good dielectric and optical properties [13–17].
Besides strong second-order nonlinearity [13–15], long-decaying UV photoluminescence [16,17] has
also been demonstrated in BTS crystals. Hence, BTS glass–ceramic fibers are a promising candidate
for second-order nonlinear and photoluminescence applications in an all-fiber-based system. To date,
only a few fresnoite glass–ceramic fibers have been reported due to their difficult fabrication [18–20].
Direct drawing of glass–ceramic fibers is challenging due to the crystallization of the preform at the
drawing temperature [20]. Hane et al. used the pull-from-melt method, in which the fabricated fiber
does not have a cladding and exhibits large diameter variations [18]. Ohara et al. and Fang et al.
overcame this obstacle by using “rod-in-tube” molten-core thermal drawing [19,20]. However, in both
processes the precursor core glass needs to be synthesized first via the “melt-and-quench” method and
then machined to the desired geometry. In the glass melting process, a platinum (Pt) crucible is often
used to prevent reactions between the glass melt and the crucible. However, since the temperature
required to synthesize BTS glass is high (~1600 ◦C), the undesired dissolution of the crucible material
is promoted. For example, dissolution of platinum (Pt) from the crucible into the glass melt and the
reduction of transparency and change of crystallization behavior have been reported [21]. In addition,
exposure to the machining tools also raises the risk of contamination.

On the other hand, reactive molten-core fabrication has proven to be an effective method to
fabricate fibers with core materials which cannot be drawn into fibers on their own [22–24]. With the
housing material reacting with the core material via various mechanisms, such as reactive chemistry,
dissolution, and diffusion, fibers with various core materials, such as semiconductors, special glass,
and crystalline oxides, have been reported [22–30]. Therefore, in this paper we report on the fabrication
of glass-clad BTS glass–ceramic fibers using the powder-in-tube reactive molten-core approach with
a successive isothermal heat treatment. The corresponding crystalline powder mixture is filled
inside a glass tube as the fibers preform, and the precursor core glass is directly synthesized due
to reactions occurring during the fiber drawing process. The housing glass not only serves as a
material source for the synthesis of the core glass, it also serves as the cladding layer of the drawn
fiber. This method utilizes the reaction between the melt and the crucible, which avoids the potential
occurrence of undesired reactions during the synthesis of the precursor glass by the “melt-and-quench”
approach in previous works [19,20]. It is also more efficient and can be extended to fabricate other
glass–ceramic fibers of which compositions contain the housing material. Second-harmonic generation
and photoluminescence properties were also measured in the fabricated fiber.

2. Materials and Methods

2.1. Preform Assembly and Fiber Fabrication

Figure 1 shows the preform assembly and fabrication procedure. A glass tubing (ID: 3 mm, OD:
8 mm) was sealed on one end and then over-cladded consecutively by two other tubes (ID: 9 mm
OD: 15 mm and ID: 16 mm, OD: 20 mm) with a glass working lathe (Litton Engineering Laboratories,
Grass Valley, CA, USA). The glass tubes used were fused quartz (Technical Glass Product) and the final
ID and OD of the preform was 3 mm and 19 mm, respectively. The raw materials used were BaCO3

powder 99.8% (Alfa Aesar, Tewksbury, MA, USA) and TiO2 powder 99.5% (Sigma-Aldrich, St. Louis,
MO, USA). The powders were prepared in a mole ratio of 70 BaCO3: 30 TiO2 and thoroughly mixed in
acetone inside an ultrasonic bath. This composition was chosen because of its effectiveness to form a
BTS glass–ceramic structure, as reported in the literature [13,31–34]. The mixed power was inserted
into the preform and the preform was then heated up to ~1900 ◦C in a tube furnace under a nitrogen
environment, while the inside of the tube was kept in a low vacuum (~0.1 bar). During the heating
process, BaCO3 starts to decompose into BaO and CO2 at ~900 ◦C, and becomes fully decomposed
at ~1400 ◦C [35]. The powder was not compressed firmly in the tube, so as to ensure no build-up of
pressure during the release of CO2 gas in the powder state. During this process, the resulting BaO
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reacts with TiO2 (powder) and SiO2 (tubing) to form the BTS compound. The BaO and TiO2 themselves
do not melt until 1923 ◦C and 1843 ◦C, respectively. However, the BTS compound has an eutectic point
of ~1260 ◦C and a melting point of ~1445 ◦C [13]. Therefore, the molten BTS compound dissolves the
remaining BaO, TiO2 and SiO2 during the process. In addition, owing to the low vacuum environment,
CO2 was easily released from the melt due to the buoyancy effect. To prevent the early collapse of the
preform and a change in the drawing condition once the temperature passed 1600 ◦C, the vacuum
pump was shut off and the inside of the tube was exposed to air at 1 atmosphere pressure. At the
drawing temperature (~1900 ◦C), due to the small size and the liquid state, the core composition is
homogenized via fast diffusion and convection induced by the thermal gradient [36]. Once the fused
silica is soft enough, the preform is drawn into a fiber at speeds of 15–20 cm/s. The drawn fiber has
a diameter of 300 µm to 400 µm depending on different drawing speeds. The drawn fiber was then
isothermally heat treated at 850 ◦C for 10 h with a heating rate of 10 ◦C/min to form a glass–ceramic
core. This specific thermal heat treatment was chosen based on the composition analysis of the fiber
(which will be discussed in the Section 3) and its corresponding crystallization temperature, reported
in the literature [13,31–34].
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Figure 1. Preform assembly and fabrication procedure of BTS glass–ceramic fibers (BTS: BaO-TiO2-SiO2).

2.2. Characterization

The fiber geometry was examined using a transmission optical microscope (Olympus BX51, 20×
Objectives, Center Valley, PA, USA) and an environmental scanning electron microscope (ESEM, FEI
Quanta 600 FEG, Hillsboro, OR, USA). The elemental mapping and line scan were performed on a
polished fiber cross-section (down to a 0.1 µm diamond polishing pad) at an accelerating voltage of
20 kV using the same ESEM with an attached energy dispersive X-ray spectrometer (Bruker QUANTAX
400, Billerica, MA, USA) equipped with a high-speed silicon drift detector.

Micro-Raman spectroscopy analyses were performed on a polished fiber cross-section with
an unpolarized confocal Raman microscope (WITec alpha-300-SR, Ulm, Germany). A continuous
wavelength (CW) laser of 532 nm was focused onto the sample through a 50× objective and the spot
size was ~2.5 µm. The reflected light was filtered by a long-pass filter (cut-off: 535 nm) before entering
the spectrometer equipped with an electron-multiplying CCD spectroscopy detector (Andor Newton
DU970, Abingdon, UK). The exposure time was 1 s.

The second-order nonlinearity of the fabricated fiber was investigated by irradiating the fiber core
with a pulsed laser operating near 1064 nm with a pulse width of ~8 ps (Passat COMPILER, Vaughan,
ON, Canada). In the measurement, the pulse energy varied but the repetition rate was fixed at 400 Hz.
The laser beam was focused onto the fiber core with a 10× objective lens and the transmitted light from
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the other end of the fiber was recorded by a spectrometer (Ocean Optics, USB4000-VIS-NIR, Largo, FL,
USA) after the pump wavelength was filtered. The spectra were recorded at 0.5 s exposure time and
averaged from 100 recorded data. The photoluminescence (PL) property of the fabricated fiber was
also investigated by similar configurations with the same laser operating at 266 nm (4th harmonics)
with an averaging power of 800 µW. The laser beam was carefully tuned to irradiate just a portion
of the fiber core to minimize the interference from the emission of the cladding. The spectra of the
transmitted light on the other end of the fiber were recorded by the same spectrometer.

3. Results

Representative optical microscopic and SEM images of the fabricated fiber are shown in Figure 2.
The fabricated fiber has a diameter of ~300 µm with a ~25 µm brown-transparent BTS glass–ceramic
core (Figure 2a). The core color is due to the absorption of the Ti4+-O2− charge transfer in the system [37].
The refractive index of the BTS glass–ceramics ranges from 1.6 to 1.9 under different compositions
and crystallization levels, which is higher than silica (~1.45) [13]. Therefore, the structure of this fiber
forms a waveguide. The core-cladding ratio of the fiber is about 1:12, which is smaller than the initial
preform (~1:6.3). This is due to the significant difference of viscosity between the core and the cladding
material, which shows a different fluid dynamic behavior during the drawing. Overall, both the core
and cladding exhibit good circularity, as shown in Figure 2b. Some micro-deformations were observed
at the core/cladding boundary, as indicated by Figure 2c,d. This is most likely due to the incomplete
filling of the glass tube after the powders have melted, which induces the non-uniform collapse of the
housing glass during the thermal drawing process. This irregularity can be reduced by optimizing the
preform dimension, powder filling process, powder size, and drawing parameters. No crack at the
core-cladding interface, as well as trapped gas in the core, was observed in the fiber. Figure 2c,d present
the elementary mapping of Si, Ba, and Ti of the core measured by EDX. Since Ba and Ti have a spectral
overlapping in the EDX spectrum due to the limited energy resolution, it is hard to derive their ratio
accurately. Instead, the ratio of Ba and Ti to Si can be estimated by characterizing the intensity of the
BaL + TiK and SiK channels in the EDX spectrum [38]. Since there is no report of strong vaporization of
Ba or Ti in the BTS system under the drawing condition [39], it is safe to assume that the concentration
of Ba and Ti in the fiber preserves its ratio in the initial powder mixture. As shown in Figure 2c,d,
Ba and Ti are concentrated in the core where Si has a steep decrease. The boundary in EDX results
matches the core observed in Figure 2b using Back-Scattered-Electron (BSE) imaging.
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Figure 2. (a) The optical transmitted microscopic image of the fabricated BTS glass–ceramic fiber
which has a transparent-brown core; (b) BSE image of the cross section of the fiber; (c,d) EDX mapping
of elements Si, Ba, and Ti in the core. (BSE: Back scattered electrons, EDX: Energy-dispersive X-ray
spectroscopy).
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To offer a better insight on the composition, a line scan was performed for fibers with different core
diameters, which were tuned by changing the drawing temperature and speed. Representative results
of the core sizes of 25 µm and 50 µm are plotted in Figure 3. The results indicate that both Si, Ba, and Ti
have a uniform distribution inside the core and a significant diffusion-based profile at the core/cladding
interface. Since the Si presented in the core comes purely from the reaction between the core material
and the fused silica tubing during the drawing process, the average Si content inside the core with
different core sizes are summarized in Table 1. The results indicate that larger core diameters have less
Si inside the core, which can be explained by the longer diffusion length of the Si in the core [24,36].
For all the fabricated fibers with different core sizes, the molar ratio of Si is within 65–75 mol%. Owing
to the large glass formation range for BTS in terms of the SiO2 composition (~40–80 mol% [40]), the
fiber core can still form glass upon drawing without crystallization.
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Table 1. Average elemental concentration inside core with different core sizes.

Core Diameter (µm) Ba + Ti (at.%) Si (at.%)

24.6 8.7 ± 0.4 25.6 ± 0.8
50.8 12.3 ± 0.6 21.6 ± 0.8
113.8 11.8 ± 0.6 21.8 ± 0.7

For the characterization of the fiber’s microstructure, a micro-Raman spectroscopy of the fibers’
cross-section was measured, and the results are shown in Figure 4. The Raman spectrum of the
as-drawn fiber core consists of several broad bands. The broad band located in the 200 to 500 cm−1

range corresponds to the Si-O-Si bending vibration modes of the SiO4 unit [41]. The band ranging
from 800 to 1000 cm−1 can be associated with the stretching mode of the Ti-O bond [41]. The absence
of sharp peak in the spectrum confirms that the as-drawn fiber core is amorphous. For the Raman
spectrum of the isothermally heat-treated fiber core, several sharp peaks are observed. A strong peak
at ~865 cm−1 is observed and is assigned to the vibration of the short Ti-O bond [20,41–43]. Three
peaks, at 531, 598, and 663 cm−1, are also present in the spectrum, which are assigned to the ν(TiO4)
and νs(Si-O-Si) modes [20,42]. Moreover, there are several weak peaks at 221, 273, and 343 cm−1,
which can be attributed to the translational and bending modes of the Si2O7 and TiO5 groups [20,42].
All the observed sharp peaks are in good agreement with the previously reported Raman spectrum
of a Ba2TiSi2O8 single crystal [20,41–43], confirming crystallization after the thermal heat treatment.
The Raman spectrum of the cladding region after the isothermal heat treatment is also presented in
Figure 4, which shows a characteristic Raman spectrum of silica glass [20]. The results indicate that
crystallization is confined inside the fiber core.
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The results of the second-order harmonic generation are shown in Figure 5. The as-drawn fiber
without thermal heat treatment does not show any detectable emission within the measurement range
of the spectrometer. In contrast, the isothermally heat-treated fiber exhibits a strong green emission
with narrow bandwidth centered at 531.4 nm, which is exactly half of the pump wavelength. An image
of the green emission from the fiber, taken by a DSLR camera, is shown as the insert in Figure 5a.
According to [20], the energy from an infrared pulse is not sufficient to induce such an emission under
a single-photon process, which indicates that this narrow visible emission is at least a two-photon
process, most likely the second-harmonic generation. The relationship between the emission intensity
and the irradiation power was measured, and the result plotted in double-logarithmic scale in the
insert in Figure 5a. In a nonlinear process, the emission intensity is proportional to the n-th power of
the irradiation power where n is the order of the nonlinear process [4]. Thus, a linear fitting line of the
experimental data is also plotted, and the slope is 2.28, which confirms that the emission is attributed
to the second-harmonic generation [20].

It has been reported that BTS glass–ceramics exhibit a broad blue-white luminescence in the range
of about 400 to 600 nm under UV light exposure [16,44]. Thus, it is expected that the fiber fabricated in
this study will also show similar luminescent properties. The recorded photoluminescence (PL) spectra
excited at 266 nm of the as-drawn and the thermally heat-treated fiber are shown in Figure 5b. Both
spectra have a range of 400 to 700 nm, in which two peaks can be observed. The as-drawn fiber core
exhibits a broad band emission in the visible range with a main peak at ~530 nm, and the thermally
heat-treated fiber shows a similar emission spectrum with a stronger intensity and a blue-shifted main
peak position of ~500 nm. The enhancement of PL intensity and the shift of the peak position after the
heat treatment match the results reported in [44,45]. The origin of the PL in the BTS glass–ceramics is
controversial [44], but most of the work reported in the literature [16,44–47] attributes it to the TiO5

pyramid within the BTS crystals. The origin of the weak peak of ~450 nm needs further investigation,
but it might be attributed to the Ti4+ impurities or/and oxygen-related defects of the SiO4 units in
the glass network, as suggested by [44,46]. Note that, due to the overlapping of the emission spectra
from different color centers, the observed peak positions in this study can be slightly shifted to the
actual positions and, hence, can differ from the values reported in other references [44–47]. Different
processing methods may also affect the PL spectrum, as suggested by [44]. Thus, further investigation
is ongoing to gain a better understanding of the PL property in the fabricated fibers. An image of the
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blue-white emission from the thermally heat-treated fiber, taken by a DSLR camera, is also shown as
the insert in Figure 5b.Materials 2019, 12, x FOR PEER REVIEW 7 of 9 
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4. Conclusions

In conclusion, we demonstrated the feasibility of using the reactive molten-core method to fabricate
BTS glass–ceramic fibers. During this method, raw powder materials were inserted inside a customized
fused quartz tubing in which the powder reacted with the housing tubing to form a BTS compound
upon fiber drawing. The fiber was drawn at high speeds to prevent any uncontrollable crystallization
during the cooling followed by isothermal heat treatment at 850 ◦C for 10 h to form a glass–ceramic core.
Micro-Raman spectroscopy confirmed the transition from an amorphous glass into a glass–ceramic
core after the heat treatment, with highly localized crystallization inside the core. The fabricated fiber
exhibited second-order nonlinearity through the second-harmonic generation using a picosecond
pulse laser. The fiber also showed broad photoluminescence covering all the visible spectrum upon
irradiation with the 266 nm laser, and its spectrum was enhanced and blue-shifted after the thermal
heat treatment. Therefore, BTS glass–ceramic fibers provide a promising opportunity for all-fiber-based
second-order nonlinear and photoluminescence applications. Moreover, the reactive molten-core
method offers a more efficient and contamination-free approach to fabricate glass–ceramic fibers.

Author Contributions: Conceptualization, S.Y.; methodology, S.Y., H.H., and D.H.; software, S.Y. and H.H.;
validation, S.Y. and H.H.; formal analysis, S.Y. and H.H.; investigation, S.Y. and H.H.; resources, G.P. and A.W.;
data curation, S.Y. and H.H.; writing—original draft preparation, S.Y.; writing—review and editing, H.H., D.H.,
G.P., and A.W.; visualization, S.Y.; supervision, G.P. and A.W.; project administration, S.Y.; funding acquisition,
G.P. and A.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank Wei Zou’s group in the ECE department at Virginia Tech for
generously allowing us to use their Raman spectroscopy.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Keiser, G.A. Optical Fiber Communications, 4th ed.; McGraw-Hill Education: New York, NY, USA, 2010.
2. Santos, J.L.; Farahi, F. Handbook of Optical Sensors; CRC Press: Boca Raton, FL, USA, 2014.
3. Dong, L.; Samson, B. Fiber Lasers: Basics, Technology, and Applications; CRC Press: Boca Raton, FL, USA, 2016.
4. Boyd, R.W. Nonlinear Optics; Elsevier: Amsterdam, The Netherlands, 2008.



Materials 2020, 13, 395 8 of 9

5. Myers, R.; Mukherjee, N.; Brueck, S.R. Large second-order nonlinearity in poled fused silica. Opt. Lett. 1991,
16, 1732–1734. [CrossRef] [PubMed]

6. Fleming, S.C.; An, H. Poled glasses and poled fibre devices. J. Ceram. Soc. Jpn. 2008, 116, 1007–1023.
[CrossRef]

7. Dussauze, M.; Cremoux, T.; Adamietz, F.; Rodriguez, V.; Fargin, E.; Yang, G.; Cardinal, T. Thermal Poling of
Optical Glasses: Mechanisms and Second-Order Optical Properties. Int. J. Appl. Glass Sci. 2012, 3, 309–320.
[CrossRef]

8. Wang, J.-S.; Tseng, Y.-H. ITO electrode-embedded double-cladding single-crystal LiNbO3 optical fiber. Opt.
Lett. 2013, 38452–38454.

9. Tang, D.Y.; Route, R.K.; Feigelson, R.S. Growth of barium metaborate (BaB2O4) single crystal fibers by the
laser-heated pedestal growth method. J. Cryst. Growth 1988, 91, 81–89. [CrossRef]

10. Ren, Y.; Zhao, X.; Hagley, E.W.; Deng, L. Ambient-condition growth of high-pressure phase centrosymmetric
crystalline KDP microstructures for optical second harmonic generation. Sci. Adv. 2016, 2, e1600404.
[CrossRef]

11. Liu, X.; Zhou, J.; Zhou, S.; Yue, Y.; Qiu, J. Transparent glass-ceramics functionalized by dispersed crystals.
Prog. Mater. Sci. 2018, 97, 38–96. [CrossRef]

12. Holand, W.; Beall, G.H. Glass-Ceramic Technology; John Wiley & Sons: Hoboken, NJ, USA, 2019.
13. Wisniewski, W.; Thieme, K.; Rüssel, C. Fresnoite glass-ceramics—A review. Prog. Mater. Sci. 2018, 98, 68–107.

[CrossRef]
14. Kim, T.-H.; Kim, Y.-S.; Jeong, Y.-J.; Na, Y.-H.; Lim, H.-H.; Cha, M.-S.; Ryu, B.-K. Optical properties and

structure of BaO-TiO2-SiO2 glass ceramics. J. Korean Ceram. Soc. 2008, 45, 821–826. [CrossRef]
15. Masai, H.; Tsuji, S.; Fujiwara, T.; Benino, Y.; Komatsu, T. Structure and non-linear optical properties of

BaO–TiO2–SiO2 glass containing Ba2TiSi2O8 crystal. J. Non-Cryst. Solids 2007, 353, 2258–2262. [CrossRef]
16. Blasse, G. Fluorescence of compounds with fresnoite (Ba2TiSi2O8) structure. J. Inorg. Nucl. Chem. 1968, 30,

2283–2284. [CrossRef]
17. Hijiya, H.; Kishi, T.; Yasumori, A. Photoluminescent properties of fresnoite phosphors prepared from

phase-separated BaO-TiO2-SiO2 glasses. J. Ceram. Soc. Jpn. 2008, 116, 1255–1259. [CrossRef]
18. Hane, Y.; Komatsu, T.; Benino, Y.; Fujiwara, T. Transparent nonlinear optical crystallized glass fibers with

highly oriented Ba2TiGe2O8 crystals. J. Appl. Phys. 2008, 103, 063512. [CrossRef]
19. Ohara, S.; Masai, H.; Takahashi, Y.; Fujiwara, T.; Kondo, Y.; Sugimoto, N. Fabrication of BaO-TiO2-GeO2-SiO2

based glass fiber. J. Ceram. Soc. Jpn. 2008, 116, 1083–1086. [CrossRef]
20. Fang, Z.; Xiao, X.; Wang, X.; Ma, Z.; Lewis, E.; Farrell, G.; Wang, P.; Ren, J.; Guo, H.; Qiu, J. Glass-ceramic

optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers. Sci. Rep. 2017, 7, 44456.
[CrossRef]

21. Masai, H.; Hamaguchi, K.; Suzuki, Y.; Iwasaki, K.; Ihara, R.; Takahashi, Y.; Fujiwara, T. Precipitation of Pt
nanocrystallites from BaO-TiO2-GeO2 remelted glass. J. Appl. Phys. 2012, 111, 123513. [CrossRef]

22. Ballato, J.; McMillen, C.; Hawkins, T.; Foy, P.; Stolen, R.; Rice, R.; Zhu, L.; Stafsudd, O. Reactive molten core
fabrication of glass-clad amorphous and crystalline oxide optical fibers. Opt. Mater. Express 2012, 2, 153–160.
[CrossRef]

23. Ballato, J.; Peacock, A.C. Perspective: Molten core optical fiber fabrication—A route to new materials and
applications. APL Photonics 2018, 3, 120903. [CrossRef]

24. Cavillon, M.; Dragic, P.; Faugas, B.; Hawkins, T.W.; Ballato, J. Insights and Aspects to the Modeling of the
Molten Core Method for Optical Fiber Fabrication. Materials 2019, 12, 2898. [CrossRef]

25. Mangognia, A.; Kucera, C.; Guerrier, J.; Furtick, J.; Hawkins, T.; Dragic, P.D.; Ballato, J. Spinel-derived single
mode optical fiber. Opt. Mater. Express 2013, 3, 511–518. [CrossRef]

26. Dragic, P.; Hawkins, T.; Foy, P.; Morris, S.; Ballato, J. Sapphire-derived all-glass optical fibres. Nat. Photonics
2012, 6, 627. [CrossRef]

27. Faugas, B.; Hawkins, T.; Kucera, C.; Bohnert, K.; Ballato, J. Molten core fabrication of bismuth germanium
oxide Bi4Ge3O12 crystalline core fibers. J. Am. Ceram. Soc. 2018, 101, 4340–4349. [CrossRef]

28. Heyl, H.; Homa, D.; Pickrell, G. Reaction of YBa2Cu3O7-x (YBCO) and fused silica in YBCO glass fibres. Bull.
Mater. Sci. 2019, 42, 154. [CrossRef]

29. Heyl, H.V. Phase Relations in the YBa2Cu3O7-x-SiO2 System and the Impact on Superconducting Fibers.
Ph.D. Thesis, Virginia Tech, Blacksburg, VA, USA, 2019.

http://dx.doi.org/10.1364/OL.16.001732
http://www.ncbi.nlm.nih.gov/pubmed/19784122
http://dx.doi.org/10.2109/jcersj2.116.1007
http://dx.doi.org/10.1111/ijag.12001
http://dx.doi.org/10.1016/0022-0248(88)90370-3
http://dx.doi.org/10.1126/sciadv.1600404
http://dx.doi.org/10.1016/j.pmatsci.2018.02.006
http://dx.doi.org/10.1016/j.pmatsci.2018.05.002
http://dx.doi.org/10.4191/KCERS.2008.45.1.821
http://dx.doi.org/10.1016/j.jnoncrysol.2007.03.005
http://dx.doi.org/10.1016/0022-1902(68)80233-7
http://dx.doi.org/10.2109/jcersj2.116.1255
http://dx.doi.org/10.1063/1.2890144
http://dx.doi.org/10.2109/jcersj2.116.1083
http://dx.doi.org/10.1038/srep44456
http://dx.doi.org/10.1063/1.4729488
http://dx.doi.org/10.1364/OME.2.000153
http://dx.doi.org/10.1063/1.5067337
http://dx.doi.org/10.3390/ma12182898
http://dx.doi.org/10.1364/OME.3.000511
http://dx.doi.org/10.1038/nphoton.2012.182
http://dx.doi.org/10.1111/jace.15696
http://dx.doi.org/10.1007/s12034-019-1839-8


Materials 2020, 13, 395 9 of 9

30. Heyl, H.; Yang, S.; Homa, D.; Slebodnick, C.; Wang, A.; Pickrell, G. Dissolution and diffusion based reactions
within YBa2Cu3O7-x glass fibers. Fibers 2020, 8, 2. [CrossRef]

31. Boulay, E.; Ragoen, C.; Idrissi, H.; Schryvers, D.; Godet, S. Influence of amorphous phase separation on the
crystallization behavior of glass-ceramics in the BaO–TiO2–SiO2 system. J. Non-Cryst. Solids 2014, 384, 61–72.
[CrossRef]

32. Ray, C.S.; Day, D.E. Crystallization of baria-titania-silica glasses. J. Non-Cryst. Solids 1986, 81, 173–183.
[CrossRef]

33. Cabral, A.A.; Fokin, V.M.; Zanotto, E.D.; Chinaglia, C.R. Nanocrystallization of fresnoite glass. I. Nucleation
and growth kinetics. J. Non-Cryst. Solids 2003, 330, 174–186. [CrossRef]

34. Wisniewski, W.; Döhler, F.; Rüssel, C. Oriented Nucleation and Crystal Growth of Ba-Fresnoite (Ba2TiSi2O8)
in 2BaO·TiO2·2SiO2 Glasses with Additional SiO2. Cryst. Growth Des. 2018, 18, 3202–3208. [CrossRef]

35. Arvanitidis, I.; Siche, D.; Seetharaman, S. A study of the thermal decomposition of BaCO3. Metall. Mater.
Trans. B 1996, 27, 409–416. [CrossRef]

36. Ballato, J.; Hawkins, T.; Foy, P.; Kokuoz, B.; Stolen, R.; McMillen, C.; Daw, M.; Su, Z.; Tritt, T.M.; Dubinskii, M.;
et al. On the fabrication of all-glass optical fibers from crystals. J. Appl. Phys. 2009, 105, 053110. [CrossRef]

37. Mezeix, P.; Célarié, F.; Houizot, P.; Gueguen, Y.; Muñoz, F.; Rouxel, T. Elasticity and viscosity of BaO-TiO2-SiO2

glasses in the 0.9 to 1.2Tg temperature interval. J. Non-Cryst. Solids 2016, 445–446, 45–52. [CrossRef]
38. Senz, S.; Graff, A.; Hesse, D.; Abicht, H.P. Formation of an amorphous product phase during the solid

state reaction between a vitreous SiO2 thin film and a (001) BaTiO3 substrate. J. Eur. Ceram. Soc. 2000, 20,
2469–2475. [CrossRef]

39. Stolyarova, V.L.; Lopatin, S.I. Mass spectrometric study of the vaporization and thermodynamic properties
of components in the BaO-TiO2-SiO2 system. Glass Phys. Chem. 2005, 31, 132–137. [CrossRef]

40. Takahashi, Y.; Yamazaki, Y.; Ihara, R.; Fujiwara, T. Perfect surface crystallization and parasitic structures in
nonstoichiometric glass-ceramics: Micro-/nanoscopic aspects. Appl. Phys. Lett. 2013, 102, 191903. [CrossRef]

41. Markgraf, S.A.; Sharma, S.K.; Bhalla, A.S. Raman study of fresnoite-type materials: Polarized single crystal,
crystalline powders, and glasses. J. Mater. Res. Technol. 1993, 8, 635–648. [CrossRef]

42. Zhu, B.; Dai, Y.; Ma, H.; Zhang, S.; Lin, G.; Qiu, J. Femtosecond laser induced space-selective precipitation of
nonlinear optical crystals in rare-earth-doped glasses. Opt. Express 2007, 15, 6069–6074. [CrossRef]

43. Dai, W.; Zhu, M.; Hou, Y.D.; Wang, H.; Yan, H.; Shao, M.; Chen, X.; Xu, J.B. Preparation and characterization
of Ba2TiSi2O8 ferroelectric films produced by sol–gel method. Mater. Lett. 2004, 58, 2927–2931. [CrossRef]

44. Takahashi, Y.; Kitamura, K.; Benino, Y.; Fujiwara, T.; Komatsu, T. Second-order optical nonlinear and
luminescent properties of Ba2TiSi2O8 nanocrystallized glass. Appl. Phys. Lett. 2005, 86, 091110. [CrossRef]

45. Ehrt, D.; Herrmann, A.; Tiegel, M. Glasses and glass ceramics with blue, green and red photoluminescence.
Phys. Chem. Glasses B 2011, 52, 68–76.

46. Takahashi, Y.; Iwasaki, K.; Fujiwara, T. Photoluminescence in mineral-derived titanosilicates with various
Ti-polyhedral types for rare-earth free phosphor. Phys. Status Solidi C 2012, 9, 2336–2339. [CrossRef]

47. Blasse, G. Fresnoite (Ba2TiSi2O8): A luminescent compound with a long decay time. J. Inorg. Nucl. Chem.
1979, 41, 639–641. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/fib8010002
http://dx.doi.org/10.1016/j.jnoncrysol.2013.06.023
http://dx.doi.org/10.1016/0022-3093(86)90268-1
http://dx.doi.org/10.1016/j.jnoncrysol.2003.08.046
http://dx.doi.org/10.1021/acs.cgd.8b00312
http://dx.doi.org/10.1007/BF02914905
http://dx.doi.org/10.1063/1.3080135
http://dx.doi.org/10.1016/j.jnoncrysol.2016.05.006
http://dx.doi.org/10.1016/S0955-2219(00)00122-9
http://dx.doi.org/10.1007/s10720-005-0034-8
http://dx.doi.org/10.1063/1.4805028
http://dx.doi.org/10.1557/JMR.1993.0635
http://dx.doi.org/10.1364/OE.15.006069
http://dx.doi.org/10.1016/j.matlet.2004.05.021
http://dx.doi.org/10.1063/1.1879114
http://dx.doi.org/10.1002/pssc.201200270
http://dx.doi.org/10.1016/0022-1902(79)80347-4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Preform Assembly and Fiber Fabrication 
	Characterization 

	Results 
	Conclusions 
	References

