Improving microbial fate and transport modeling to support TMDL development in an urban watershed

Hehuan Liao

Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in

partial fulfillment of the requirements for the degree of

Doctor of Philosophy

In

Biological Systems Engineering

Leigh-Anne Krometis, Chair

W. Cully Hession

Karen Kline

Brian Badgley

Leanna House

April 13, 2015

Blacksburg, VA

Keywords: Fecal indicator bacteria, fate and transport, quantitative microbial risk analysis,

source tracking, urban watershed, waterborne disease

Improving microbial fate and transport modeling to support TMDL development in an urban watershed

Hehuan Liao

ABSTRACT

Pathogen contamination, typically quantified by elevated levels of fecal indicator bacteria (FIB), remains the leading cause of surface water-quality impairments in the United States. Continuous watershed-scale models are typically employed to facilitate Total Maximum Daily Load (TMDL) restoration efforts. Due to limited understanding of microbial fate and transport, predictions of FIB concentrations are associated with considerable uncertainty relative to other water-quality contaminants. By focusing on a data-rich instrumented urban watershed, this study aims to improve understanding of microbial fate and transport processes. Weekly FIB concentrations in both the water column and streambed sediments were monitored for one year, and statistical correlations with hydrometeorological and physicochemical variables were identified. An intensive six storm intra-sampling campaign quantified and contrasted loading trends of both traditional regulatory FIB and emerging Microbial Source Tracking (MST) markers. Together, these intensive monitoring efforts facilitated evaluation of the impacts of bacteria-sediment interactions on the predictions of daily FIB concentrations in Hydrological Simulation Program-Fortran (HSPF) over multiple years. While superior overall model performance was demonstrated as compared to earlier efforts, the inclusion of bacteria-sediment interactions did not improve performance. Large wet-weather microbial loading appears to have dwarfed the effects of FIB

release and resuspension from sediment. Although wet-weather loading is generally considered as a primary source of waterbody microbial loads, dry-weather periods are more directly associated with public health concern, which may be a more suitable area for future model-refinement efforts. Site evaluation is critical to determine whether the added model complexity and effort associated with partitioning phases of FIB can be sufficiently offset by gains in predictive capacity. Finally, a stochastic framework to translate simulated daily FIB concentrations into estimates of human illness risks is presented that can be can be readily integrated into existing TMDLs. As even small concentrations of FIB from human sources are associated With great risk, and monitoring efforts indicated moderate/high levels of human-associated MST marker in this watershed, remediation efforts to protect public health would be best directed toward infrastructure improvements. Uncertainty analysis indicates more site-specific knowledge of pathogen presence and densities would best improve the estimation of illness risks.

ACKNOWLEDGEMENTS

This dissertation would have not been possible without the support and guidance of my committee, friends and family. It is a great pleasure that I acknowledge their inputs.

I would like to express my sincere gratitude to my committee chair and advisor, Dr. Leigh-Anne Krometis. Her insights on environmental health and excitement on teaching have been the major driving forces throughout my doctoral training. I thank my committee member Dr. Cully Hession, who created the StREAM Lab and provided me with numerous research opportunities. His fun classes on non-point source pollution, GIS, and models equipped me with not only solid scientific knowledge, but also improved presentation skills. I thank my committee member Dr, Karen Kline, who taught me HSPF modeling techniques from zero, and offered me invaluable advice on future careers. I thank my committee member Dr. Brian Badgley, who shared his insights on MST techniques and generously supported me with his resources and expertise on experimental training. I thank my committee member Dr. Leanna House, who provided her expertise on statistics and set solid statistical methodologies for this dissertation.

I would like to thank Laura Lehmann and Mary Dail for providing field data that makes the modeling possible, Dr. Choung Hyun Seong and Dr. Rory Coffey for sharing their experience and expertise on hydrology calibration, and Dr. Gene Yagow for sharing his expertise on GWLF. Many thanks are also due to the Krometis research group (Kelsey, Nick, Heather, Hannah, Jake, Lory, and Robert) for all their help and accompany. Additional thanks are extended to all the graduate student friends, staffs and faculties in my department for all of their help during my graduate study.

Finally, I would like to thank my old advisor at Central South University, Dr. Xueduan Liu, who helped me in gaining financial support from China Scholarship Council and has been fully supportive during my overseas study. I would like to thank my family and friends, who have always been with me wholeheartedly throughout my life.

Table of Contents

Chapter 1. Introduction
1.1. Study Justification1
1.2. Goal and Objectives4
References5
Chapter 2. Hydrometeorological and physicochemical drivers of fecal indicator bacteria in an
urban stream bottom sediments
Abstract9
2.1. Introduction
2.2. Materials and methods
2.2.1. Study area description
2.2.2. Sampling design15
2.2.3. Laboratory analysis17
2.2.4. Hydrometeorological and physicochemical variables
2.2.5. Statistical analysis
2.3. Results and discussion
2.3.1. Statistics of FIB concentrations in the water column and a comparison with multiple
standards19
2.3.2. Statistics of FIB concentrations in the streambed sediments and a comparison with
overlying water FIB concentrations

2.3.3. Correlations with hydrometeorological and physicochemical factors	24
2.4. Conclusions	29
Acknowledgments	31
References	31
Chapter 3. Storm loads of culturable and molecular fecal indicators in an inland urban	stream35
Abstract	36
3.1. Introduction	36
3.2. Materials and methods	39
3.2.1. Study area description	39
3.2.2. Sampling strategy	41
3.2.3. Laboratory analyses	41
3.2.4. Data analysis and statistics	43
3.3. Results and discussion	45
3.3.1. Summary of storm events and statistics of FIB concentrations for each store	m45
3.3.2. Intra-storm patterns of concentrations and loading rates	47
3.3.3. Relationships between the FIB concentrations measured by different metho	ds50
3.3.4. Event load, equivalent background period, and association with key env	ironmental
variables	52
Supporting information	56
Acknowledgements	57

References
Chapter 4. Long-term impacts of bacteria-sediment interactions in watershed-scale microbial fate
and transport modeling61
Abstract
4.1. Introduction
4.2. Methods
4.2.1. Study area
4.2.2. Model development
4.3. Results
4.3.1. Hydrology calibration and validation73
4.3.2. Calibration and validation of in-stream E. coli concentrations under "free-phase"
scenario74
4.3.3. Calibration and validation of in-stream E. coli concentrations under "sediment-
attached" scenario75
4.3.4. Comparison of model performance under "free-phase" vs. "sediment-attached"
scenario77
4.4. Discussion
4.5. Conclusion
Acknowledgements
References

Chapter 5. Human health risk estimation by coupling a continuous watershed-scale microbial fate
and transport model with a stochastic model
Abstract
5.1. Introduction
5.2. Methods90
5.2.1. Study area90
5.2.2. Modeling source-specific <i>E. coli</i> concentrations
5.2.3. Quantitative microbial risk analysis (QMRA)91
5.3. Results and discussion96
5.3.1. Comparing monthly geometric means of E. coli concentrations with associated GI
illness risks96
5.3.2. Importance and sensitivity analysis of stochastic input variables
5.4. Conclusion: risk management implications for urban watersheds
Acknowledgements102
References102
Chapter 6. Conclusions
Appendix A: Weekly FIB monitoring Data111
Appendix B: Intrastorm FIB monitoring data139
Appendix C: HSPF model150

List of Figures

Figure 2-1. Major in-stream bacterial fate and transport processes
Figure 2-2. Location of Stroubles Creek watershed, StREAM Lab, and monitoring sites15
Figure 2-3. Monthly distribution of (a) <i>E. coli</i> concentrations in the water column and streambed
sediments, and (b) enterococci in the water column and streambed sediments
Figure 3-1. Location and land use distribution of upstream watershed above the sampling bridge.
Figure 3-2. Box-and-whisker plot of fecal indicator concentrations over an entire storm
Figure 3-3. Intra-storm patterns of concentrations of each fecal indicator
Figure 3-4. Instantaneous loadings rate of each fecal indicator during storm events
Figure 3-5. Variables factor map of PCA on the concentrations of the four fecal indicators52
Figure 3-6. Measures of (A) event load (EL) and (B) equivalent background period (EBP) for
each fecal indicator during each storm event
Figure 3-7. Variables factor map of PCA on the event loadings of the four fecal indicators and
Figure 3-7. Variables factor map of PCA on the event loadings of the four fecal indicators and the environmental variables that showed statistical significant correlation with event loadings of
Figure 3-7. Variables factor map of PCA on the event loadings of the four fecal indicators and the environmental variables that showed statistical significant correlation with event loadings of at least one of the four fecal indicators
 Figure 3-7. Variables factor map of PCA on the event loadings of the four fecal indicators and the environmental variables that showed statistical significant correlation with event loadings of at least one of the four fecal indicators
 Figure 3-7. Variables factor map of PCA on the event loadings of the four fecal indicators and the environmental variables that showed statistical significant correlation with event loadings of at least one of the four fecal indicators
 Figure 3-7. Variables factor map of PCA on the event loadings of the four fecal indicators and the environmental variables that showed statistical significant correlation with event loadings of at least one of the four fecal indicators
 Figure 3-7. Variables factor map of PCA on the event loadings of the four fecal indicators and the environmental variables that showed statistical significant correlation with event loadings of at least one of the four fecal indicators
 Figure 3-7. Variables factor map of PCA on the event loadings of the four fecal indicators and the environmental variables that showed statistical significant correlation with event loadings of at least one of the four fecal indicators
 Figure 3-7. Variables factor map of PCA on the event loadings of the four fecal indicators and the environmental variables that showed statistical significant correlation with event loadings of at least one of the four fecal indicators

Figure 4-5. Simulated versus observed <i>E. coli</i> concentrations during the calibration (a-e) and
validation (f) period under "sediment-attached" scenario77
Figure 4-6. Simulated versus observed E. coli concentrations under "free-phase" scenario (circle
symbols) and "sediment-attached" scenario (cross symbols) during the simulation period for R3
(a) and R1 (b)78
Figure 5-1. Stochastic model construction in Analytica: (a) example module for illness risk from
cattle; (b) overall model for total illness risk calculation
Figure 5-2. Contribution of <i>E. coli</i> concentrations and associated illness risk from each source.

List of Tables

Table 2-1. Summary of statistics of monthly geometric mean of FIB concentrations in the bed
sediment, water column, and the ratio21
Table 2-2. Bacteria criteria to protect waters designated for primary contact recreational uses. .22
Table 2-3. A summary of data statistics and their sources
Table 2-4. Summary of Spearman's rank correlation ρ ($\alpha = 0.05$).25
Table 3-1. Characteristics of strom events
Table S1. Hydro-meteorological and physicochemical variables used in correlation analyses56
Table S2. Pearson's correlation coefficient between event loadings of each fecal indicator and
environmental variables (p<0.1)
Table 4-1. Estimates of model parameters affecting microbial fate and transport. 72
Table 5-1. Summary of input parameters to calculate dose
Table 5-2. Dose-response relationships. 95
Table 5-3. Summary of importance and sensitivity of stochastic input variables

Chapter 1. Introduction

1.1. Study Justification

Microbial water-quality degradation is a global public health concern (Ford and Colwell, 1996, Hyer and Mayer, 2004, Coffey et al., 2010, WASH, 2012). In the past several decades, continued waterborne outbreaks, even in developed nations, have spurred extensive cooperation among experts from diverse fields – including hydrology, microbiology, engineering, epidemiology, medicine, and risk assessment - to better design strategies to protect and/or remediate source waters (Ford and Colwell, 1996, Lechevallier and Buckley, 2007, APEC, 2012). Nevertheless, exposure to pathogenic microorganisms via contaminated waters remains responsible for at least 40,000 cases of contagious disease annually at a direct healthcare cost of \$970 million in the United States alone (Collier et al., 2012).

Pathogens contamination, typically identified via elevated levels of fecal indicator bacteria (FIB), remains the leading cause of surface water-quality impairments in the United States (USEPA, 2015). Under the 1972 Clean Water Act, states are required to address identified impairments through the development of Total Maximum Daily Load (TMDL) restoration plans. Due to the technical difficulties and considerable expense associated with the continuous monitoring of FIB, water-quality models are commonly used in the TMDL process to identify the relative contributions of potential watershed sources of FIB and to evaluate the effectiveness of proposed restoration plans (NRC, 2001, Benham et al., 2006). The ability to develop robust and effective TMDLs is therefore directly dependent on the quality of models. Unfortunately, model simulations of microbial fate and transport are notoriously plagued by uncertainty (Novotny, 2003, Benham et

al., 2006, Benham et al., 2011). Bacteria are most commonly represented as "free" or dissolvedphase contaminants with near-neutral buoyancy in existing models, although a growing number of studies indicate that the re-suspension of particle-associated cells from bottom sediments can be an important source of water column bacteria concentrations (Bai and Lung, 2005, Jamieson et al., 2005, Fries et al., 2006, Krometis et al., 2009, Rehmann and Soupir, 2009, Cho et al., 2010, Pandey et al., 2012). Bacteria associated with sediments may also survive longer in the environment and potentially pose human health risks for an extended period of time (Droppo et al., 2009). A quantitative understanding of the impacts of sediments on bacteria fate and transport in receiving waters would significantly advance modeling capabilities, and thus promote effective TMDL development. Implementation of these environmental processes within existing models is currently limited by the lack of observational water-quality information for model development, calibration and validation.

While TMDL development represents a significant investment of financial resources (e.g. Birkeland (2001) estimated costs run from roughly 4,000 to 1,000,000 dollars per TMDL developed), it is unclear whether numerical compliance with FIB-based water-quality standards is an effective and efficient method to protect public health. Previous studies have indicated that the absence of FIB in water does not ensure the absence of pathogens and, conversely, that their presence does not always correlate with public health risk (Wu et al., 2011). This deficiency is partly attributed to the inherent difficulty in using FIB as an approximation for the presence of all pathogens. Although the presence of *E. coli* and enterococci generally indicates fecal contamination of a water body, previous studies indicate these bacteria are poorly correlated to the detection of many pathogenic microorganisms (e.g. *Salmonella* spp., *Campylobacter* spp.,

Cryptosporidium and *Giardia* spp, and human enteroviruses) (Harwood et al., 2005, Field and Samadpour, 2007, Yates, 2007, Wu et al., 2011). In addition, though most models consider fecal loads from a wide range of different sources during TMDL development, a single total FIB concentration is ultimately returned to compare with the applicable standards established based on epidemiological studies at human-sewage dominated coastal waters (USEPA, 2012). Previous risk assessments based on existing knowledge of pathogen presence and dose-response models indicate that risk varies widely by source. While it is generally accepted that the most serious threat to human health is from human fecal contamination rather than from animals (Field and Samadpour, 2007, Benham et al., 2011), fresh cattle feces can sometimes pose comparable human gastrointestinal illness risks to that from human sources due to the presence of zoonotic pathogens (Soller et al., 2010). At present, it is therefore difficult to assess the health risks related to different proposed watershed restoration plans to address high FIB concentration, which can lead to confusion for stakeholders participating in the process (Keller and Cavallaro, 2008).

Quantitative Microbial Risk Assessment (QMRA) modeling is a mathematical strategy used to link environmental exposure to illness risk via existing epidemiological relationships. Four major steps are generally employed in the risk assessment process: 1) hazard identification, which involves the documentation of all health effects associated with a particular pollutant; 2) doseresponse assessment, which characterizes the relationship between dose amounts and the incidence of adverse health effects; 3) exposure assessment, which is used to determine the demographics of the exposed population as well as the route, amount, and duration of exposure to a particular pollutant; and 4) risk characterization, which involves the integration of the exposure, doseresponse, and hazard identification steps in order to develop an estimate of the magnitude of the impact from an environmental hazard (Haas et al., 2014). Previous studies have demonstrated the capability of QMRA to link single measures of FIB or pathogen concentrations to public health risks in recreational waters (Ashbolt et al., 2010, Schoen and Ashbolt, 2010, Soller et al., 2010, Soller et al., 2010, USEPA, 2010, Tserendorj et al., 2011, McBride et al., 2013). Most studies, however, were done under idealized conditions and failed to account for bacteria fate and transport processes (Ashbolt et al., 2010, Schoen and Ashbolt, 2010, Soller et al., 2010, USEPA, 2010, Schoen and Ashbolt, 2010, Soller et al., 2010, USEPA, 2010, Veldhuis et al., 2010, Schoen and Ashbolt, 2011, McBride et al., 2010, USEPA, 2010, Veldhuis et al., 2010, Schmidt and Emelko, 2011, McBride et al., 2013). Temporal or climatic variations of bacteria loading in receiving waters are therefore not well captured. Linking QMRA with a fate and transport model would allow for a holistic evaluation of water-quality impairments and provide greater clarity in prioritizing restoration efforts during TMDL development and implementation planning.

1.2. Goal and Objectives

The overall goal of this study is to improve current understanding of microbial fate and transport processes, which will facilitate the development of a framework to translate *E. coli* concentrations as existing TMDL endpoints to human health risks. Specific objectives include:

- Statistically identify potential correlations between water and sediment FIB (i.e. *E. coli* and enterococci) concentrations with available environmental variables following establishment of a weekly FIB monitoring regimen;
- Investigate intra-and inter-storm patterns of loads of culturable and molecular fecal indicators;

- Evaluate the long-term impacts of sediment on the prediction of FIB concentrations in HSPF by augmenting the existing model with a bacteria-sediment association module; and
- Estimate source-specific and total human illness risks through linking HSPF outputs to a stochastic QMRA model.

References

- APEC. 2012. What is the role of microbes in water quality. City of Industry, Ca.: APEC Water Systems. http://www.freedrinkingwater.com/water_quality/quality1/1-the-role-microbes-in-water-quality-page2.htm (accessed 12 Feb. 2015)
- Ashbolt, N.J., M.E. Schoen, J.A. Soller and D.J. Roser. 2010. Predicting pathogen risks to aid beach management: the real value of quantitative microbial risk assessment (QMRA). Water Res. 44: 4692-4703. doi:10.1016/j.watres.2010.06.048.
- Bai, S. and W.S. Lung. 2005. Modeling sediment impact on the transport of fecal bacteria. Water Res. 39: 5232-5240. doi:10.1016/j.watres.2005.10.013.
- Benham, B., C. Baffaut, R.W. Zeckoski, K.R. Mankin, Y.A. Pachepsky, A.M. Sadeghi, K.M. Brannan, M.L. Soupir, M.J. Habersack. 2006. Modeling bacteria fate and transport in watersheds to support TMDLs. Trans. ASABE 49: 987-1002.
- Benham, B., L.A. Krometis, G. Yagow, K. Kline and T. Dillaha. 2011. Applications of microbial source tracking in the TMDL process. In: C. Hagedorn, A. R. Blanch and V. J. Harwood, editors, Microbial source tracking: methods, applications, and case studies. Springer Science+Business Media, LLC, 233 Springer Street, New York, NY 10013, USA. p. 313-335.
- Birkeland, S. 2001. EPA's TMDL Program. Ecology L. Q. 28: 297-325.
- Cho, K.H., Y. Pachepsky, J.H. Kim, A. Guber, D. Shelton and R. Rowland. 2010. Release of Escherichia coli from the bottom sediment in a first-order creek: Experiment and reachspecific modeling. J. Hydrol. 391: 322-332. doi:10.1016/j.jhydrol.2010.07.033.
- Coffey, R., E. Cummins, V. O'Flaherty and M. Cormican. 2010. Pathogen sources estimation and scenario analysis using the Soil and Water Assessment Tool (SWAT). Hum. Ecol. Risk Assess. 16: 913-933. doi:10.1080/10807039.2010.502051.
- Collier, S., L. Stockman, L. Hicks, L. Garrison, F. Zhou and M. Beach. 2012. Direct healthcare costs of selected diseases primarily or partially transmitted by water. Epidemiol. Infect. 140: 2003-2013. doi:10.1017/S0950268811002858.
- Droppo, I.G., S.N. Liss, D. Williams, T. Nelson, C. Jaskot and B. Trapp. 2009. Dynamic existence of waterborne pathogens within river sediment compartments. Implications for

water quality regulatory affairs. Environ. Sci. Tech. 43: 1737-1743. doi:10.1021/es802321w.

- Field, K.G. and M. Samadpour. 2007. Fecal source tracking, the indicator paradigm, and managing water quality. Water Res. 41: 3517-3538. doi:10.1016/j.watres.2007.06.056.
- Ford, T.E. and R.R. Colwell. 1996. A global decline in microbiological safety of water: A call for action. American Academy of Microbiology. http://academy.asm.org/index.php/colloquium-program/water-/214-a-global-decline-inmicrobiological-safety-of-water-a-call-for-action (accessed 11 Oct. 2012)
- Fries, J.S., G.W. Characklis and R.T. Noble. 2006. Attachment of fecal indicator bacteria to particles in the Neuse River Estuary, NC. J. Environ. Eng. 132: 1338-1345.
- Haas, C.N., J.B. Rose and C.P. Gerba. 2014. Quantitative microbial risk assessment. Second ed. John Wiley & Sons, Inc.
- Harwood, V.J., A.D. Levine, T.M. Scott, V. Chivukula, J. Lukasik, S.R. Farrah, et al. 2005. Validity of the indicator organism paradigm for pathogen reduction in reclaimed water and public health protection. Appl. Environ. Microbiol. 71: 3163-3170. doi:10.1128/AEM.71.6.3163-3170.2005.
- Hyer, K.E. and D.L. Mayer. 2004. Enhanceing fecal coliform total maximum daily load models through bacterial source tracking. JAWRA 40: 1511-1526.
- Jamieson, R.C., D.M. Joy, H. Lee, R. Kostaschuk and R.J. Gordon. 2005. Resuspension of sediment-associated Escherichia coli in a natural stream. J. Environ. Qual. 34: 581-589.
- Keller, A.A. and L. Cavallaro. 2008. Assessing the US Clean Water Act 303 (d) listing process for determining impairment of a waterbody. J. Environ. Manag. 86: 699-711. doi:10.1016/j.jenvman.2006.12.013.
- Krometis, L.-A., P.N. Drummey, G.W. Characklis and M.D. Sobsey. 2009. Impact of microbial partitioning on wet retention pond effectiveness. J. Environ. Eng. 135: 758-767. doi:10.1061//asce/ee.1943-7870.0000040.
- Lechevallier, M. and M. Buckley. 2007. Clean water: What is acceptable microbial risk. Washington DC. http://academy.asm.org/index.php/water/427-clean-water-what-isacceptable-microbial-risk (accessed 12 Feb. 2015)
- McBride, G.B., R. Stott, W. Miller, D. Bambic and S. Wuertz. 2013. Discharge-based QMRA for estimation of public health risks from exposure to stormwater-borne pathogens in recreational waters in the United States. Water Res. 47: 5282-5297. doi:10.1016/j.watres.2013.06.001.
- Novotny, V. 2003. Water quality: Diffuse pollution and watershed management. 2 ed. John Wiley & Sons, Inc., New York.
- NRC. 2001. Assessing the TMDL approach to water quality management. National Academy Press, Washington, DC. p. 1-109.
- Pandey, P.K., M.L. Soupir and C.R. Rehmann. 2012. A model to predict resuspension of E. coli from streambed sediments. Water Res. 46: 115-126. doi:10.1016/j.watres.2011.10.019.

- Rehmann, C.R. and M.L. Soupir. 2009. Importance of interactions between the water column and the sediment for microbial concentrations in streams. Water Res. 43: 4579-4589. doi:10.1016/j.watres.2009.06.049.
- Schmidt, P. and M. Emelko. 2011. QMRA and decision-making: Are we handling measurement errors associated with pathogen concentration data correctly? Water Res. 45: 427-438. doi:10.1016/j.watres.2010.08.042.
- Schoen, M.E. and N.J. Ashbolt. 2010. Assessing pathogen risk to swimmers at non-sewage impacted recreational beaches. Environ. Sci. Technol. 44: 2286-2291.
- Soller, J.A., T. Bartrand, N.J. Ashbolt, J. Ravenscroft and T.J. Wade. 2010. Estimating the primary etiologic agents in recreational freshwaters impacted by human sources of faecal contamination. Water Res. 44: 4736-4747. doi:doi: 10.1016/j.watres.2010.07.064.
- Soller, J.A., M.E. Schoen, T. Bartrand, J.E. Ravenscroft and N.J. Ashbolt. 2010. Estimated human health risks from exposure to recreational waters impacted by human and nonhuman sources of faecal contamination. Water Res. 44: 4674-4691. doi:10.1016/j.watres.2010.06.049.
- Tserendorj, A., A.J. Anceno, E.R. Houpt, C.R. Icenhour, O. Sethabutr, C.S. Mason, et al. 2011. Molecular techniques in ecohealth research toolkit: facilitating estimation of aggregate gastroenteritis burden in an irrigated periurban landscape. EcoHealth: 1-16. doi:10.1007/s10393-011-0724-8.
- USEPA. 2012. Recreational Water Quality Criteria. http://water.epa.gov/scitech/swguidance/standards/criteria/health/recreation/upload/factsh eet2012.pdf (accessed 11 Feb. 2013)
- USEPA. 2015. National summary of impaired waters and TMDL information. http://iaspub.epa.gov/waters10/attains_nation_cy.control?p_report_type=T#causes_303d (accessed 20 Feb. 2015)
- USEPA. 2010. Quantitative microbial risk assessment to estimate illness in freshwaters impacted by agricultural animal sources of fecal contamination. EPA 822-R-10-005. Office of Waters, U.S. Environmental Protection Agency. http://water.epa.gov/scitech/swguidance/standards/criteria/health/recreation/upload/P4-QMRA-508.pdf (accessed 16 Mar. 2015).
- Veldhuis, J.A.E.t., F.H.L.R. Clemens, G. Sterk and B.R. Berends. 2010. Microbial risks associated with exposure to pathogens in contaminated urban flood water. Water Res. 44: 2910-2918. doi:10.1016/j.watres.2010.02.009.
- WASH. 2012. Global Water, Sanitation, and Hygiene (WASH) Health Burden. Atalanta, Ga.: Centers for Disease Control and Prevention. http://www.cdc.gov/healthywater/global/healthburden.html (accessed 11 Oct. 2012)
- Wu, J., S.C. Long, D. Das and S.M. Dorner. 2011. Are microbial indicators and pathogens correlated? A statistical analysis of 40 years of research. J. Water Health 9: 265-278. doi:10.2166/wh.2011.117.
- Yates, M.V. 2007. Classical Indicators in the 21st Century—Far and Beyond the Coliform. Water Environ. Res. 79: 279-286. doi:10.2175/106143006x123085.

Chapter 2. Hydrometeorological and physicochemical drivers of fecal indicator bacteria in an urban stream bottom sediments

A research article published in Journal of Environmental Quality:

Liao, H., L. Krometis, W. C. Hession, L. House, K. Kline, B. Badgley. 2014.

Hydrometeorological and physicochemical drivers of fecal indicator bacteria in urban stream

bottom sediments. J. Environ. Qual. 43: 2034-2043

Abstract

High levels of fecal indicator bacteria (FIB) are the leading cause of surface water-quality impairments in the United States. Watershed-scale models are commonly used to identify relative contributions of watershed sources and to evaluate the effectiveness of remediation strategies. However, most existing models simplify FIB transport behavior as equivalent to that of dissolvedphase contaminants, ignoring the impacts of sediment on the fate and transport of FIB. Implementation of sediment-related processes within existing models is limited by minimal available monitoring data on sediment FIB concentrations for model development, calibration, and validation purposes. The purpose of the present study is to evaluate FIB levels in the streambed sediments as compared to those in the water column and to identify environmental variables that influence water and underlying sediment FIB levels. Concentrations of E. coli and enterococci in the water column and sediments of an urban stream were monitored weekly for one year, and correlated with a variety of potential hydrometeorological and physicochemical variables. Increased FIB concentrations in both the water column and sediments were most strongly correlated with increased antecedent 24-h rainfall, increased stream water temperature, decreased dissolved oxygen, and decreased specific conductivity. These observations will support future efforts to incorporate sediment-related processes in existing models through the identification of key FIB relationships with other model inputs, and the provision of sediment FIB concentrations for direct model calibration. In addition, identified key variables can be used in quick evaluation of the effectiveness of potential remediation strategies.

2.1. Introduction

Elevated levels of fecal indicator bacteria (FIB) are the leading cause of surface water-quality impairments in the United States (USEPA, 2012a). Under the 1972 Clean Water Act, states are required to address identified impairments through the development of basin-specific Total Maximum Daily Load (TMDL) restoration plans. A TMDL is a "pollutant budget" that quantifies the maximum loadings of a contaminant that a waterbody can receive while still safely meeting applicable water-quality standard (USEPA, 2012a). Due to the technical difficulties and considerable expense associated with monitoring FIB levels, water-quality models are commonly used in the TMDL process to estimate the relative contributions of various watershed sources of FIB and to evaluate the effectiveness of potential load-reduction strategies. The ability to develop robust and effective TMDLs is therefore directly dependent on model accuracy. However, efforts to model FIB fate and transport are notoriously plagued by uncertainty, largely associated with current limitations in understanding the relative importance of various microbial behaviors in receiving waters (Benham et al., 2006; Shirmohammadi et al., 2006).

In most existing microbial water-quality models, FIB are assumed to behave in a manner similar to dissolved-phase contaminants (Jamieson et al., 2004). However, an increasing number of laboratory and field-scale studies suggest that FIB fate and transport is much more complex (Fig. 2-1). For example, a significant fraction of waterborne bacteria are associated with settleable particulates in stream sediments, which can be re-suspended into the water column if subsequently disturbed (Jamieson et al., 2005b; Krometis et al., 2009b; Rehmann and Soupir, 2009). Bacteria associated with particulates can persist in the environment and may pose human health risks for

an extended period of time (Droppo et al., 2009), further emphasizing the need to consider sediment-related processes in modeling in-stream FIB concentrations.

Figure 2-1. Major in-stream bacterial fate and transport processes. Current watershed-scale models generally only account for advection, dispersion, and first-order decay, although several studies have developed models by including other fate and transport processes (Kim et al., 2010; Russo et al., 2011; Wilkinson et al., 2011). VBNC = viable but not culturable.

In order to better understand the dynamics of FIB fate and transport, several previous studies have used existing water-quality monitoring datasets to correlate environmental variables and FIB concentrations in the water column. These studies largely associated water FIB levels with measures of precipitation in watersheds, i.e. rainfall/antecedent rainfall generally appear positively correlated with FIB concentrations (Mallin et al., 2001; Reeves et al., 2004; Gentry et al., 2006; Vidon et al., 2008; Hathaway et al., 2010). This is not surprising, as many studies have noted that increases in water FIB concentrations were associated with runoff-generating storm events (Gaffield et al., 2003; Krometis et al., 2007b). A separate study of two Midwestern watersheds observed a significant positive relationship between water FIB concentrations and average daily discharge (Vidon et al., 2008), which may reflect the "flushing" of sediment associated FIB concentrations. With respect to related water-quality metric, increases in turbidity have been correlated with increases in water FIB concentrations in both coastal (Mallin et al., 2001) and inland waters (Gentry et al., 2006; Vidon et al., 2008; Huey and Meyer, 2010). While total suspended solids (TSS) concentrations have been positively correlated with water FIB concentrations in several studies of inland freshwaters (McCarthy et al., 2007; Huey and Meyer, 2010), no statistical significant correlations were observed between TSS and water FIB concentrations in a study of the Neuse River Estuary by Fries et al. (2006). This may reflect the existence of different relationships between FIB and TSS in different types of watershed or geographic region.

Unlike water column levels of FIB, FIB concentrations in natural streambed sediments are not typically monitored by environmental agencies. Available datasets for the development of models incorporating fluxes of microorganisms between the water column and sediments are therefore quite limited. Previous efforts to incorporate sediment-related processes in modeling in-stream FIB concentrations have relied on theoretical estimates or very limited streambed FIB monitoring data for model formulation, calibration or validation purposes, which introduced considerable uncertainty (Bai and Lung, 2005; Pandey et al., 2011; Russo et al., 2011).

The overall goal of this study is to improve the current understanding of patterns of FIB concentrations in streambed sediments, and to inform future monitoring efforts and subsequent

model development. This effort focuses on an impaired stream within a highly urbanized watershed in the Virginia Ridge and Valley ecoregion, where TMDL development is required by the Virginia Department of Environment Quality (VADEQ) under the U.S Clean Water Act sections 305(b) and 303(d). Specific objectives include 1) quantification and comparison of water and sediment FIB concentrations; and 2) identification of key hydrometeorological and physicochemical water-quality variables associated with FIB levels in the water column and streambed sediments. To our best knowledge, this is the first study investigating correlations between sediment FIB concentrations and other environmental variables. As many microbial fate and transport processes are difficult to measure in natural conditions but are highly coupled to a variety of more readily measurable hydrometeorological and physicochemical factors (Vidon et al., 2008), identifying the dominant factors influencing FIB levels in both the water column and underlying sediments of receiving waters will assist with incorporation of sediment-related processes in model development.

2.2. Materials and methods

2.2.1. Study area description

The present study is centered within the Virginia Tech StREAM Lab (Stream Research, Education, And Management) along Stroubles Creek in Blacksburg, VA (http://www.bse.vt.edu/site/streamlab/; Figure 2-2). Stroubles Creek flows approximately 15 km from northeastern Blacksburg, through the Virginia Tech campus, and into the New River, which has served as the region's main source of drinking water supply and home to a variety of recreational activities since the early 1950s (Parece et al., 2010). The 62-km² watershed is within the Ridge and Valley ecoregion, which is characterized by dolomite and limestone formations with numerous sinkholes and natural springs. The streambed is composed of alluvial-floodplain deposits of stratified unconsolidated silt, clay and sand with lenses and beds of cobbles and pebbles (Parece et al., 2010). A TMDL to address high sediment loads impacting stream benthic macroinvertebrate communities were developed for the stream in the early 2000s (VADEQ and VADCR, 2003, VADEQ and VADCR, 2006). The 10-km benthic-impaired segment draining the highly urbanized Upper Stroubles Creek watershed (approximately 50% residential; 34% impervious surfaces) is also impaired by fecal contamination indicated by elevated *E. coli* concentrations. The benthic TMDL assumed that microbial loadings would also be substantially reduced through sediment control practices, as past experimental and field studies have reported significant associations between suspended sediments and indicator organisms (Ling et al., 2002; Jeng et al., 2005; Cizek et al., 2008; Krometis et al., 2010).

Figure 2-2. Location of Stroubles Creek watershed, StREAM Lab, and monitoring sites (B1: sampling bridge 1; B2: sampling bridge 2; B3: sampling bridge 3).

2.2.2. Sampling design

Water and underlying sediment samples were taken from three sites within the StREAM Lab corresponding to the existing sampling access bridges. In Figure 2-2, from upstream to the downstream, the three sampling sites are designated as B1, B2, and B3. Site B2 is located approximately 550 m downstream of B1, and B3 is approximately 330 m downstream of B2. Both banks are covered with thick grassy vegetation. At baseflow conditions, the water depth of this segment varied from 13 cm to 33.5 cm, and the channel width varied from 2.7 m to 4.0 m (Abel, 2012). Physicochemical water-quality variables (e.g. stream water temperature, specific

conductivity, pH, turbidity, and dissolved oxygen) are continuously monitored by multi-parameter water-quality sondes (YSI Inc., Yellow Springs, OH) at all three sites. Stage is monitored via a gage (Campbell Scientific, Inc., Logan, UT) at B1, which was converted to flow rate using an existing stage-discharge equation developed by the StREAM Lab using the velocity-area method (NRCS, 2014). Hourly rainfall is recorded by a full weather station (Campbell Scientific, Inc., Logan, UT) near B2.

Grab samples of water and sediment from the three sampling bridges were collected weekly for one year (February 2012-January 2013), i.e. a total of 50 samples per sampling site. Samples were collected from the most downstream to most upstream site to avoid contamination via upstream re-suspension. Water samples were collected in sterile 250 mL wide-mouth polypropylene bottles. Although studies have shown that FIB can penetrate the hyporheic zone even in fine-grained bedded streams (Drummond et al., 2014), it is largely assumed that most FIB are retained in the upper layer of bed sediment (i.e. the top few centimeters associated with sedimentation and resuspension) (Kim et al., 2010). Therefore, in this study, sediment samples were collected from approximately the upper one cm of bed sediment, and triplicate sediment samples from each site were composited in a sterile Whirl-Pak bag as recommended previously by Myers et al. (2007). The time of day was recorded following sampling, and samples were transported to the laboratory on ice within one hour and promptly analyzed.

2.2.3. Laboratory analysis

Two FIB targets, *E. coli* and enterococci, were analyzed in this study. Although only *E. coli* is currently monitored by the VADEQ to ensure standards compliance (SWCB, 2010), both *E. coli* and enterococci are recommended by the 2012 USEPA Recreational Water-Quality Criteria (RWQC) for freshwater monitoring (USEPA, 2012b)..

Water samples

Concentrations of *E. coli* and enterococci were determined via the Colilert and Enterolert defined substrate techniques, respectively (IDEXX Laboratories, Inc., Westbrook, ME, USA). Quantification through incubation in the 97-well Quanti-tray/2000 permitted calculation of most-probable-number (MPN) based concentrations (Hurley and Roscoe, 1983). Colilert trays were incubated at 37°C for 24 h, and Enterolert trays were incubated at 41°C for 24 h per manufacturer recommendations. Following incubation, fluorescent wells within each Quanti- tray/2000 were enumerated under a 6-watt, 365-nm handheld UV lamp Model UVL-56 (UVP LLC, Upland, CA, USA). The bacteria concentrations in water samples were expressed as most-probable-number per 100 mL water (MPN/100 mL).

Bottom sediment samples

Sediment-microbial aggregates were dispersed prior to quantification by votexing with Tween-85, which disperses sediment-microbial aggregates as effective as sonication without measurable microbial die-off (Krometis et al., 2009b). For each sample, a wet weight of 3.0 g sediment was mixed with 200 mL distilled water. Forty drops of Tween-85 (approximately 400 μ L) were added to the solution, followed by 10-s vortex mixing to produce homogeneous slurry. After allowing the

slurry to settle for 30 minutes, the supernatant was analyzed using the same defined substrate techniques (i.e. Colilert, Enterolert) used in the water sample analysis. Potential quantification errors due to particle-bound organisms during Quanti-tray analysis (e.g. multiple cells per well) have been determined to be minor in most scenarios (Fries et al., 2006). In order to determine the dry weight of sediment samples, 3.0-g subsamples for each site were dried at 40°C for 24 h. FIB concentrations in the bed sediments were expressed as most-probable-number per gram dry sediment (MPN/gds).

2.2.4. Hydrometeorological and physicochemical variables

Continuous monitoring records for hourly rainfall, water temperature, stage, specific conductivity, pH, dissolved oxygen, and turbidity were available for the February 2012-January 2013 monitoring period from the StREAM Lab database (http://www.bse.vt.edu/site/streamlab/). Flow rate was calculated using an existing stage-discharge equation developed by the StREAM Lab. Cumulative antecedent rainfall (Rain x, where x=12 h, 24 h, 48 h, or 72 h) was calculated through summation of the total rainfall in the time x prior to the sampling event.

2.2.5. Statistical analysis

FIB density values were log10 transformed to reduce skewness, as visually confirmed by a quantile-quantile plot (QQ plot) of the standardized data against the standard normal distribution (for normal data, the points ploted in the QQ plot should fall approximately on a straight line). Spatial variations in FIB concentration between sites were examined via one-way analysis of variance (ANOVA). The Pearson product-moment correlation coefficient (r) was used to test for correlations between FIB in water column and FIB in bed sediment (log10 transformed data were

used). Because the skewness of other physicochemical variables was not reduced sufficiently by log10 transformation for parametric Pearson product-moment correlation analysis, non-parametric Spearman's rank correlation coefficient analysis was employed to test the monotonic relationships with FIB. All statistical analyses in this study were performed in R version 2.15.3 (R Development Core Team, 2013).

2.3. Results and discussion

Differences between observations of FIB concentration were not statistically significant for any of the three sampling bridges (ANOVA test, p>0.2). Therefore, FIB concentrations from the three sites in each sampling event were pooled to compare with the water-quality standards. The geometric mean of the FIB concentrations corresponding to the three sampling bridges in each sampling event were used in the correlation analysis with discharge and rainfall, as there is only one stage recorder at B1 and one full weather station close to B2 (Fig. 2-2). As there are no significant flow inputs between the three sampling bridges, it appears reasonable to assume the flow rates are similar.

2.3.1. Statistics of FIB concentrations in the water column and a comparison with multiple standards

The distribution of FIB concentrations in water samples by month (February 2012 to January 2013) is shown in Figure 2-3. The observed monthly geometric mean of *E. coli* concentrations in the water column ranged from 70 MPN/100 mL (November) to 1000 MPN/100 mL (September), with a median value of 290 MPN/100 mL (Figure 2-3a and Table 2-1). The monthly geometric mean

of enterococci concentrations ranged from 4 MPN/100 mL (Mar) to 290 MPN/100 mL (September), with a median value of 40 MPN/100 mL (Figure 2-3b and Table 2-1).

Figure 2-3. Monthly distribution of (a) *E. coli* concentrations in the water column and streambed sediments, and (b) enterococci in the water column and streambed sediments (the upper and lower whiskers represent 90th and 10th percentiles, respectively; the box show

		Min	Max	Median; Arithmetic
				Mean
Monthly geometric	Sediment (MPN/100 mL)	3300 (Jan)	95000 (Jun)	34000; 37000
mean of E. coli	Water (MPN/100 mL)	70 (Nov)	1000 (Sep)	290; 350
concentrations in	Sediment / water	40 (Dec)	350 (Apr)	110; 130
Monthly geometric	Sediment (MPN/100 mL)	330 (Nov)	5900 (May)	1700; 2400
mean of enterococci	Water (MPN/100 mL)	4 (Mar)	290 (Sep)	40; 90
concentrations in	Sediment / water	7 (Sep)	580 (Mar)	20; 100

Table 2-1. Summary of statistics of monthly geometric mean of FIB concentrations in the bed sediment, water column, and the ratio.

It is worth noting that the decision to include Stroubles Creek on the Virginia 303(d) list of impaired waters was made based on the observation that approximately 8 of 32 samples (25%) collected by the state exceeded the 235 CFU *E. coli* /100mL single sample maximum criterion during any 2-year period from 2006 to 2012 (VADEQ, 2014). In 2012, the USEPA released revised recreational water-quality standards based on the use of two bacterial indicators (*E. coli* and enterococci) and two magnitude measures (Geometric Mean and Statistical Threshold Value) (Table 2-2). Although adherence to the new water-quality guidelines is not required, they are intended as guidance to each state in establishing new standards. Figure 2-3 therefore illustrates a comparison of FIB measurements with both the existing state standard and the 2012 USEPA revised standard. Overall, similar exceedance rates (9 out of 12 months) were observed by using the state standard and the revised USEPA guidelines (Figure 2-3).

Table 2-2. Bacteria criteria to protect waters designated for primary contact recreational uses: Virginia surface water quality criteria as established in Jan 2011, and USEPA 2012 recreational water quality criteria recommendations for protecting human health in all coastal and noncoastal waters. (Standards from Recommendation 1 is plotted to evaluate the Stroubles Creek microbial water quality)

	VA bacte (CFU/	eria criteria 100 mL)	USEPA 2012 recommendations (CFU/100 mL) Recommendation 1[c] Recommendation 2 [e]			
Fecal Indicator Bacteria (FIB)	30-day GM[a]	Single-sample[b]	30-day GM	STV[d]	30-day GM	STV
E. coli (fresh)	126	235	126	410	100	320
Enterococci (marine & fresh)	35 (transition and saltwater)	104 (transition and saltwater)	35	130	30	110

[a] GM = geometric mean;

[b] No more than 10% of the total samples in the assessment period shall exceed the single-sample criteria;

[c] Recommendation 1 based on an estimated illness rate of 36/1,000;

[d] STV = statistical threshold value. Approximates the 90th percentile of the water quality distribution and is intended to be a value that should not be exceeded by more than 10% of the samples taken;

[e] Recommendation 2 based on an estimated illness rate of 32/1,000.

2.3.2. Statistics of FIB concentrations in the streambed sediments and a comparison with overlying water FIB concentrations

FIB concentrations in the streambed sediments were compared with FIB concentrations in the water column. The sediment FIB concentrations were converted from MPN/gds (gds=grams of dry sediment) to MPN/100 mL by sediment density as described previously (Buckley et al., 1998). The monthly geometric mean of *E. coli* concentrations in the sediment during the period of study ranged from 3300 MPN/100 mL (January) to 95000 MPN/100 mL (June), with a median value of 34000 MPN/100 mL (Figure 2-3a and Table 2-1). The monthly geometric mean of enterococci concentrations in the sediment ranged from 3300 MPN/100 mL (May), with a median value of 1700 MPN/100 mL (Figure 2-3b and Table 2-1).

Ratios of the monthly geometric mean of E. coli concentrations in the bed sediments to that in the water column ranged from 40 to 350 (Table 2-1), while the ratio of the monthly geometric mean of enterococci concentrations in the bed sediments to that in the water column ranged from 7 to 580 (Table 2-1). While the present study represents an initial attempt to include sediment samples in a regular FIB monitoring effort for an inland urban stream, these results agree with previous studies of streambed sediment grab samples that observed higher FIB concentrations per unit volume as compared to overlying water column concentrations. Buckley et al. (1998) observed that total coliform concentrations in bottom sediments were on average 1000 times higher than in the overlying water column in a subtropical rainforest conservation reserve, where sediment samples were taken on twelve occasions during November 1993 to April 1994. An et al. (2002) reported that E. coli concentrations in sediments were more than 10000 times higher than in the water column based on a two-day observation in an inland lake, and Pandey et al. (2011) documented that concentrations of E. coli in streambed sediments were 2 to 90 times higher than concentrations in the water column during a one-day observation of different locations along an agricultural creek in summer. Comparisons between these limited references may suggests that ratios of FIB concentrations in bottom sediments to that in the water column in urban streams are lower than lakes or reservoirs, but are higher than agricultural streams. It is worth noting that the transport of sediment-associated FIB in urban streams can have more severe impacts on downstream water-quality as compared to agricultural streams due to the intense hydrologic alterations in urban areas, which results in both increased frequency and magnitude of high-flow events (Wenger et al., 2009).

2.3.3. Correlations with hydrometeorological and physicochemical factors

A summary of available hydrometeorological and physicochemical variables corresponding to the sampling time over the study period, their sources, and statistics is provided in Table 2-3. The Spearman rank correlation coefficient (ρ) was used to identify key hydrometeorological and physicochemical water-quality variables that correlated with water and sediment FIB concentrations (Table 2-4). Statistical significant correlation coefficients (α =0.05) are discussed below.

Variables		Sources	Monitoring	Maximum	Minimum	Median	Arithmetic
			frequency	observation	observation	observation	Mean
Hourly Rainfall (mm)		StREAMLab	1 hour	0.51	0	0	0.02
Antecedent	12 h	Aggregated		34	0	0	2
Rainfall (mm)	24 h			34	0	0	4
	48 h			34	0	2	6
	72 h			349	0	6	15
Water temperature	°C)	StREAMLab	15 min	25.5	-0.1	14.9	13.6
Dissolved oxygen	(mg/L)	StREAMLab	15 min	15.5	6.3	9.8	10.1
Specific conductiv	vity	StREAMLab	15 min	0.86	0.001	0.49	0.40
(mS/cm)							
Flow (cms)		StREAMLab	10 min	0.26	0.03	0.08	0.09
Turbidity (NTU)		StREAMLab	15 min	992	0.2	5.3	25.4
рН		StREAMLab	15 min	8.1	5.9	7.7	7.7

Table 2-3. A summary of data statistics and their sources (data corresponded to the sampling time)

2.3.3.1. FIB concentrations in the water column

Overall, both increases in *E. coli* and enterococci concentrations in the water column were strongly correlated with increases in antecedent 24-h rainfall, increases in stream water temperature, and decreases in dissolved oxygen (Table 2-4, Spearman's correlation coefficient $\rho \geq 0.35$). While several previous studies have also observed positive correlations of water FIB concentrations with 24-h antecedent rainfall (Mallin et al., 2001) and stream water temperature (He et al., 2007), these relationships do not appear consistent. Gentry et al. (2006) observed negative correlations between stream water temperature and water FIB concentrations in a southeastern stream within a mixed

land use watershed with karstic features, whereas Vidon et al. (2008) found no correlation between stream water temperature and water FIB concentrations in midwestern streams, and Kelsey et al. (2004) found antecedent 48-h rainfall correlated better with water FIB concentrations than antecedent 24-h rainfall in a high-salinity estuary draining a urbanized watershed in South Carolina coast. Therefore, consistent correlations between these variables and water FIB concentrations are not well-established, which is probably due to temporal and spatial complexity of different watersheds. It is likely necessary to establish correlations between water FIB concentrations and environmental variables for a specific site or a watershed type to facilitate long-term predictive modeling purposes.

		FIB concentrations in water (MPN/100mL)		FIB concentration in sediment (MPN/gds	
		waterEC	waterENT	sedEC	sedENT
Hourly rainfall (mm)		-	-	-0.33	-0.29
Antecedent rainfall (mm)	12 h	0.34	-	-	-
	24 h	0.40	0.35	0.28	0.30
	48 h	0.33	-	-	0.39
	72 h	-	-	0.30	0.52
Stream Temperature (°C)		0.47	0.53	0.48	0.50
Dissolved oxygen (mg/	L)	-0.51	-0.73	-0.35	-0.36
Specific conductivity (mS	S/cm)	-	-0.43	-0.26	-0.24
Stage (m)		0.38	-	-	-
Turbidity (NTU)		0.19	-	-	-
pH		-	-0.31	-	-

Table 2-4. Summary of Spearman's rank correlation ρ ($\alpha = 0.05$).

(Normal font: p < 0.05; '-': p > 0.05)

2.3.3.2. FIB concentrations in the streambed sediments

As FIB concentrations in the streambed sediments are not currently monitored or regulated by environmental agencies, long-term monitoring data of sediment FIB concentrations are rare. Comparison of these observations with correlations observed for water FIB concentrations does provides insight into key hydrometeorological and physicochemical variables, which should be the focus of later model refinements or remediation efforts.
Hydrometeorological variables

Increases in hourly rainfall (i.e. the total rainfall in the one hour preceding a sampling event), though not correlated with overlying water FIB concentrations, were significantly correlated with decreases in sediment FIB concentrations (p<0.05). Increases in antecedent 24-h rainfall were significantly correlated with increases in both water and sediment FIB concentrations (p<0.05). This may suggest antecedent accumulative 24-h rainfall is generally a good indicator of FIB wash-off from upland watershed surfaces and sedimentation.

Increases in stream flow, though correlated with increases in water *E. coli* concentrations (p<0.05), were not correlated with sediment FIB concentrations in this study (p>0.05). Although previous studies have indicated that FIB loadings to receiving waters were dominated by hydrological events (Muirhead et al., 2004; Davies-Colley et al., 2008; Wilkinson et al., 2011), it is important to note that in this study samples were mostly taken during dry-weather (i.e. low flow) conditions. The absence of correlation between flow and sediment FIB concentrations might therefore be a result of relatively stable flow conditions. Examining how sediment FIB respond to a wider range of flow conditions is an important need for future model development.

Physicochemical variables

Stream water temperature was positively correlated with FIB concentrations in both the water column and bottom sediments (p<0.05). Water temperature has long been recognized as a critical environmental factor in the survival of FIB (Ferguson et al., 2003; Hipsey et al., 2008; Bradford et al., 2013b). Under laboratory conditions with other variables (i.e. pH, salinity) held constant at ideal conditions, coliform bacterial survival was inversely proportional to water temperature, i.e.

cells remained culturable longer at lower temperatures (McFeters and Stuart, 1972). In the natural environment, however, water temperature can be a surrogate for multiple environmental and landuse factors that impact FIB inputs and survival. While higher water temperatures may be more likely to increase bacterial inactivation/die-off rates, they also generally signal greater potential for fecal inputs (e.g. more livestock, greater wildlife and pet activity) and regrowth. There is no consensus from previous studies regarding temperature impacts; negative (Gentry et al., 2006), positive (He et al., 2007), and no (Vidon et al., 2008) correlation between water temperature and water FIB concentrations have been observed. In the Virginia Ridge and Valley region, more frequent storm events during the warmer seasons results in greater fecal, nutrient, and sediment loadings to the stream, which may create a more favorable environment for bacteria survival and potential growth in both the water column and bed sediments. It is also possible that more fecal inputs into the stream during warmer months simply offset the rapid inactivation/die-off rates at higher water temperatures.

Increases in specific conductivity and dissolved oxygen were significantly correlated with decreases in FIB concentrations in bed sediments, in a manner similar to that of water enterococci concentrations. Previous studies have observed decreased water FIB concentrations in laboratory conditions when specific conductivity raised from 1.2 to 6.7 mS/cm (Singleton et al., 1982), in natural ponds when specific conductivity rose above 5 mS/cm (He et al., 2007) and in streams when specific conductivity increased (value unreported) (Gentry et al., 2006), suggesting high salt concentrations accompanied with high levels of specific conductivity can inhibit microbial growth or even damage cells (Singleton et al., 1982; Gentry et al., 2006; He et al., 2007; Bradford et al., 2013b). In this study, no correlation was observed between specific conductivity and *E. coli*

concentration in the water column, which is not surprising as a previous study has reported minimal photo-oxidative damage to *E. coli* at low salinity conditions (the specific conductivity levels observed at this site ranged from 0.001 to 0.86 mS/cm, table 3-2) (Sinton et al., 2002). Negative correlations between sediment FIB concentrations and specific conductivity were unexpected, as specific conductivity has been previously identified as a factor encouraging microbial-sediment attachment (Bradford et al., 2013b). It is very possible that other factors dwarfed this effect, i.e. increases in specific conductivity have found to be concurrent with rainfall events in this site (data not shown), which may disturb streambed sediments and release attached FIB.

The negative correlations between FIB concentrations and dissolved oxygen levels may be the result of increased waste inputs to the stream, which would be expected to simultaneously increase bacteria growth and biological oxygen demand (BOD). In addition, increases in dissolved oxygen levels can result from lowered water temperature due to substantial underground water recharge at this site, which may also dilute the FIB concentrations. It is also possible that sunlight-induced inactivation (i.e. photo-oxidative effects) of FIB in the water column increased with sufficient dissolved oxygen in the stream (Sinton et al., 2002; Hipsey et al., 2008), which may also affect the FIB in the bed sediment given high clarity of the creek when the level of dissolved oxygen is high and the creek is shallow (i.e. less than 0.23 meter) at dry-weather conditions.

No significant correlations were found between sediment FIB concentrations and pH over the course of this study. This may be due to relatively stable pH values (range: 5.6-8.1) within Stroubles Creek (Table 2-3), and previous studies suggested minimal effect of pH on bacteria survival at levels between 6 and 8 (Foppen and Schijven, 2006; Hipsey et al., 2008; Bradford et

al., 2013b). Correlations between turbidity and sediment FIB concentrations were also not significant in this study. Although turbidity is sometimes regarded as a general measure of nonpoint source contamination to urban streams, observations of relationships between FIB and turbidity levels in previous studies have been mixed. While several studies found positive correlations between turbidity and water FIB concentrations at near low flow conditions (Mallin et al., 2001; Reeves et al., 2004; He et al., 2007) and over hydrograph events (Davies-Colley et al., 2008), other studies observed no significant correlation (Gentry et al., 2006; He et al., 2007; Vidon et al., 2008). These observations suggest that caution is needed before uncritically using turbidity as an indicator of FIB contamination.

2.4. Conclusions

Observations of streambed sediments harboring 40 to 350 times the *E. coli* concentrations of the overlying water column, and 7 to 580 times the enterococci concentrations of the overlying water column are in agreement with many previous studies highlighting the potential for FIB sediment storage. Ratios in this study were generally higher than those previously reported for an agricultural stream, which may suggest the importance of considering watershed-specific landuse when modeling FIB behavior.

Key hydrometeorological and physicochemical variables influencing both water and sediment FIB concentrations were identified in this study, including antecedent accumulative 24-h rainfall and water temperature. Increases in antecedent accumulative 1-h rainfall were associated with decreases in sediment FIB concentrations, supporting previously presented studies suggesting initial storm surges "flush" (re-suspend) sediment bacterial reservoirs (Jamieson et al., 2005b;

Pandey et al., 2011; Ghimire and Deng, 2013); though higher sediment FIB concentrations were associated with greater antecedent 24-hour rainfall amounts, suggesting that over time these sediments may be "re-seeded" by further FIB loadings, as suggested previously (Russo et al., 2011). However, it is important to recognize that while these results might support the previous findings of other researchers as discussed, because these samples were taken weekly rather than throughout a single storm, they cannot confirm this behavior to be the cause of the observed fluctuations in FIB concentrations. Future intra-storm studies would be essential to quantitatively estimate the degree to which re-suspended sediment FIB contributes to downstream concentrations. It appears understanding the relative importance of these two competing factors (sediment "flush" vs sediment "seeding") would greatly improve the understanding of FIB transport that underlies model development.

Comparison of observations in this study to previously reported studies indicated that factors commonly associated with general non-point source pollution (e.g. turbidity, flow) may not be universally associated with FIB levels in all watershed types. This may be the result of differences in water chemistry (fresh vs. salt water), geographical region (patterns of baseflow and storm magnitude), and/or upland landuse. Further refinement of models should consider whether or not the sediment-related transport processes in FIB simulations are broadly applicable beyond the watershed-specific datasets used in model development.

Acknowledgments

The authors would like to acknowledge the Virginia Tech Institute for Critical Technology and Applied Science (ICTAS), and College of Agriculture and Life Sciences (CALS) integrative, for providing funding for this project. The authors also thank the Virginia Tech StREAM Lab manager, Laura T. Lehmann, for providing the field data and assistance during this project.

References

- Abel, S.M. 2012. Near boundary turbulence characteristics among stream restorations of varying intensity. Master's thesis, West Virginia University, Morgantown, West Virginia, USA.
- An, Y.-J., D.H. Kampbell and G. Peter Breidenbach. 2002. *Escherichia coli* and total coliforms in water and sediments at lake marinas. Environ. Pollut. 120: 771-778.
- Bai, S. and W.S. Lung. 2005. Modeling sediment impact on the transport of fecal bacteria. Water Res. 39: 5232-5240. doi:10.1016/j.watres.2005.10.013.
- Benham, B., C. Baffaut, R.W. Zeckoski, K.R. Mankin, Y.A. Pachepsky, A.M. Sadeghi, et al. 2006. Modeling bacteria fate and transport in watersheds to support TMDLs. Trans. ASABE 49: 987-1002.
- Bradford, S.A., V.L. Morales, W. Zhang, R.W. Harvey, A.I. Packman, A. Mohanram, et al. 2013. Transport and fate of microbial pathogens in agricultural settings. Crit. Rev. Environ. Sci. Tech. 43: 775-893.
- Buckley, R., E. Clough, W. Warnken and C. Wild. 1998. Coliform bacteria in streambed sediments in a subtropical rainforest conservation reserve. Water Res. 32: 1852-1856.
- Cizek, A.R., G.W. Characklis, L.A. Krometis, J.A. Hayes, O.D. Simmons III, S. Di Lonardo, et al. 2008. Comparing the partitioning behavior of *Giardia* and *Cryptosporidium* with that of indicator organisms in stormwater runoff. Water Res. 42: 4421-4438.
- Davies-Colley, R., J. Nagels and E. Lydiard. 2008. Faecal bacterial dynamics and yields from an intensively dairy-farmed catchment. Water Sci. Technol. 57: 1519-1523.
- Droppo, I.G., S.N. Liss, D. Williams, T. Nelson, C. Jaskot and B. Trapp. 2009. Dynamic existence of waterborne pathogens within river sediment compartments. Implications for water quality regulatory affairs. Environ. Sci. Tech. 43: 1737-1743. doi:10.1021/es802321w.
- Drummond, J., A. Aubeneau and A. Packman. 2014. Stochastic modeling of fine particulate organic carbon dynamics in rivers. Water Resour. Res. 50: 4341-4356.
- Ferguson, C., A.M. de Roda Husman, N. Altavilla, D. Deere and N. Ashbolt. 2003. Fate and transport of surface water pathogens in watersheds. Crit. Rev. Environ. Sci. Tech. 33: 1-35.

- Foppen, J. and J. Schijven. 2006. Evaluation of data from the literature on the transport and survival of *Escherichia coli* and thermotolerant coliforms in aquifers under saturated conditions. Water Res. 40: 401-426.
- Fries, J.S., G.W. Characklis and R.T. Noble. 2006. Attachment of fecal indicator bacteria to particles in the Neuse River Estuary, NC. J. Environ. Eng. 132: 1338-1345.
- Gaffield, S.J., L.A. Richards and R.J. Jackson. 2003. Public health effects of inadequately managed stormwater runoff. Am. J. Public Health 93: 1527-1533.
- Gentry, R.W., J. McCarthy, A. Layton, L.D. McKay, D. Williams, S.R. Koirala, et al. 2006. *E. coli* loading at or near base flow in a mixed-use watershed. J. Environ. Qual. 35: 2244-2249.
- Ghimire, B. and Z. Deng. 2013. Hydrograph-based approach to modeling bacterial fate and transport in rivers. Water Res. 47: 1329-1343. doi:10.1016/j.watres.2012.11.051.
- Hathaway, J., W. Hunt and O. Simmons III. 2010. Statistical evaluation of factors affecting indicator bacteria in urban storm-water runoff. J. Environ. Eng. 136: 1360-1368.
- He, L.-M., J. Lu and W. Shi. 2007. Variability of fecal indicator bacteria in flowing and ponded waters in southern California: Implications for bacterial TMDL development and implementation. Water Res. 41: 3132-3140.
- Hipsey, M.R., J.P. Antenucci and J.D. Brookes. 2008. A generic, process- based model of microbial pollution in aquatic systems. Water Resour. Res. 44: 1-26.
- Huey, G.M. and M.L. Meyer. 2010. Turbidity as an indicator of water quality in diverse watersheds of the upper pecos river basin. Water 2: 273-284.
- Hurley, M.A. and M. Roscoe. 1983. Automated statistical analysis of microbial enumeration by dilution series. J. Appl. Microbiol. 55: 159-164.
- Jamieson, R., R. Gordon, D. Joy and H. Lee. 2004. Assessing microbial pollution of rural surface waters: A review of current watershed scale modeling approaches. Agricult. Water Manag. 70: 1-17. doi:10.1016/j.agwat.2004.05.006.
- Jamieson, R.C., D.M. Joy, H. Lee, R. Kostaschuk and R.J. Gordon. 2005. Resuspension of sediment-associated *Escherichia coli* in a natural stream. J. Environ. Qual. 34: 581-589.
- Jeng, H.C., J. Andrew and H.B. Bradford. 2005. Indicator organisms associated with stormwater suspended particles and estuarine sediment. J. Environ. Sci. Health. 40: 779-791.
- Kelsey, H., D. Porter, G. Scott, M. Neet and D. White. 2004. Using geographic information systems and regression analysis to evaluate relationships between land use and fecal coliform bacterial pollution. J. Exp. Mar. Biol. Ecol. 298: 197-209.
- Kim, J.W., Y.A. Pachepsky, D.R. Shelton and C. Coppock. 2010. Effect of streambed bacteria release on *E.coli* concentrations: Monitoring and modeling with the modified SWAT. Ecol. Model. 221: 1592-1604. doi:10.1016/j.ecolmodel.2010.03.005.
- Krometis, L.-A.H., G.W. Characklis, O.D. Simmons, M.J. Dilts, C.A. Likirdopulos and M.D. Sobsey. 2007. Intra-storm variability in microbial partitioning and microbial loading rates. Water Res. 41: 506-516.

- Krometis, L.-A.H., T.A. Dillaha, N.G. Love and S. Mostaghimi. 2009. Evaluation of a filtration/dispersion method for enumeration of particle-associated *Escherichia coli*. J. Environ. Qual. 38: 980-986.
- Krometis, L.A.H., G.W. Characklis, P.N. Drummey and M.D. Sobsey. 2010. Comparison of the presence and partitioning behavior of indicator organisms and *Salmonella spp.* in an urban watershed. J. Water. Health. 8: 44-59.
- Ling, T., E. Achberger, C. Drapcho and R. Bengtson. 2002. Quantifying adsorption of an indicator bacteria in a soil-water system. Trans. ASAE 45: 669-674.
- Mallin, M.A., S.H. Ensign, M.R. McIver, G.C. Shank and P.K. Fowler. 2001. Demographic, landscape, and meteorological factors controlling the microbial pollution of coastal waters. Hydrobiologia 460: 185-193.
- McCarthy, D., V. Mitchell, A. Deletic and C. Diaper. 2007. Urban stormwater *Escherichia coli* levels: factors that influence them. Proceedings of the 6th International conference on sustainable techniques and strategies in urban water management - NOVATECH 2007. GRAIE, Lyon, France. p. 1657-1663.
- McFeters, G.A. and D.G. Stuart. 1972. Survival of coliform bacteria in natural waters: field and laboratory studies with membrane-filter chambers. Appl. Microbiol. 24: 805-811.
- Muirhead, R., R. Davies-Colley, A. Donnison and J. Nagels. 2004. Faecal bacteria yields in artificial flood events: quantifying in-stream stores. Water Res. 38: 1215-1224.
- Myers, D.N., D.M. Stoeckel, R.N. Bushon, D.S. Francy and A.M.G. Brady. 2007. Chapter A7. Biological Indicators. National Field Mannual for the Collection of Water-Quality Data (TWRI Book 9).
- NRCS. 2014. National Engineering Handbook: Part 630 Hydrology. http://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/water/?cid=stelprdb1043063 (accessed 10 Aug. 2014).
- Pandey, P.K., M.L. Soupir and C.R. Rehmann. 2012. A model to predict resuspension of *E. coli* from streambed sediments. Water Res. 46: 115-126. doi:10.1016/j.watres.2011.10.019.
- Parece, T., S. DiBetitto, T. Sprague and T. Younos. 2010. The Stroubles Creek Watershed: History of development and chronicles of research.
- Reeves, R.L., S.B. Grant, R.D. Mrse, C.M.C. Oancea, B.F. Sanders and A.B. Boehm. 2004. Scaling and management of fecal indicator bacteria in runoff from a coastal urban watershed in southern California. Environ. Sci. Technol. 38: 2637-2648.
- Rehmann, C.R. and M.L. Soupir. 2009. Importance of interactions between the water column and the sediment for microbial concentrations in streams. Water Res. 43: 4579-4589. doi:10.1016/j.watres.2009.06.049.
- Russo, S.A., J. Hunn and G.W. Characklis. 2011. Considering bacteria-sediment associations in microbial fate and transport modeling. J. Environ. Eng. 137: 697-705.
- Shirmohammadi, A., I. Chaubey, R. Harmel, D. Bosch, R. Muñoz-Carpena, C. Dharmasri, et al. 2006. Uncertainty in TMDL models. Trans. ASABE 49: 1033-1049.

- Singleton, P., S. El Swaify and B. Bohlool. 1982. Effect of salinity on Rhizobium growth and survival. Appl. Environ. Microbiol. 44: 884-890.
- Sinton, L.W., C.H. Hall, P.A. Lynch and R.J. Davies-Colley. 2002. Sunlight inactivation of fecal indicator bacteria and bacteriophages from waste stabilization pond effluent in fresh and saline waters. Appl. Environ. Microbiol. 68: 1122-1131.
- SWCB. 2010. 9 VAC 25-260 Virginia water quality standards.
- USEPA. 2012. Impaired Waters and Total Maximum Daily Loads. http://water.epa.gov/lawsregs/lawsguidance/cwa/tmdl/ (accessed 11 Feb. 2013)
- USEPA. 2012. Recreational Water Quality Criteria. http://water.epa.gov/scitech/swguidance/standards/criteria/health/recreation/upload/factsh eet2012.pdf (accessed 11 Feb. 2013)
- VADEQ. 2014. Draft 2014 305(b)/303(d) Water Quality Assessment Integrated Report. http://www.deq.virginia.gov/Programs/Water/WaterQualityInformationTMDLs/WaterQu alityAssessments/2014305(b)303(d)IntegratedReport.aspx (accessed 12 Feb. 2015)
- VADEQ and VADCR. 2003. Benthic TMDL for Stroubles Creek in Montgomery County, Virginia. http://www.deq.virginia.gov/portals/0/DEQ/Water/TMDL/apptmdls/newrvr/stroub.pdf (accessed 16 Mar. 2015).
- VADEQ and VADCR. 2006. Upper Stroubles Creek Watershed TMDL Implementation Plan, Montgomery County, Virginia. http://www.deq.virginia.gov/Portals/0/DEQ/Water/TMDL/ImplementationPlans/stroubip. pdf (accessed 16 Mar. 2015).
- Vidon, P., L. Tedesco, J. Wilson, M. Campbell, L. Casey and M. Gray. 2008. Direct and Indirect Hydrological Controls on Concentration and Loading in Midwestern Streams. J. Environ. Qual. 37: 1761-1768.
- Wenger, S.J., A.H. Roy, C.R. Jackson, E.S. Bernhardt, T.L. Carter, S. Filoso, et al. 2009. Twenty-six key research questions in urban stream ecology: an assessment of the state of the science. J. N. Am. Benthol. Soc. 28: 1080-1098.
- Wilkinson, R., L. McKergow, R. Davies-Colley, D. Ballantine and R. Young. 2011. Modelling storm-event *E. coli* pulses from the Motueka and Sherry Rivers in the South Island, New Zealand. N.Z. J. Mar. Freshwater Res. 45: 369-393.

Chapter 3. Storm loads of culturable and molecular fecal indicators in an inland urban stream

A research article submitted to Science of the Total Environment (April 2015):

Liao, H., L. Krometis, W. C. Hession, R. Benitez, R. Sawyer, E. Schaberg, E. Wagoner, B. Badgley. 2015. Storm loads of culturable and molecular fecal indicators in an inland urban stream. Sci. Total Environ.

Abstract

Elevated loading of fecal contamination in receiving waters during wet-weather flows is a considerable public health concern that can be exacerbated by climate change and urbanization. However, current understanding of the fate and transport of fecal indicator bacteria in stormwater is limited, and even less is known about molecular fecal indicators, which may supplant traditional culturable indicators. In this study, concentrations and loading rates of both culturable and molecular fecal indicators were quantified at high temporal frequencies in an instrumented inland urban stream during six storm events. While both concentrations and loading rates of each fecal indicator increased rapidly during the rising limb of the storm discharge hydrographs, it is the loading rates rather than instantaneous concentrations that provides a better estimate of transport through the stream during the entire storm. Overall, indicator source, rather than type, played the most important role as general fecal indicators (both culturable and molecular) correlated most highly with each other during storm events but not with a human associated marker. Event loads of general fecal indicators were most strongly correlated with total runoff volume, maximum discharge and maximum turbidity. Event loads of human-associated Bacteroides were most strongly correlated with the time to peak flow in a hydrograph. Sampling multiple points spanning the whole hydrograph with higher frequency during the rising limb is critical to improve estimates of pollutant load.

3.1. Introduction

Fecal pollution from agricultural operations, human-derived sources, domestic animals and wildlife can be disproportionately transferred to receiving waters during intermittent storm events, potentially leading to the downstream dissemination of pathogens (Ford and Colwell, 1996;

Krometis et al., 2007; Collier et al., 2012). This represents a considerable public health concern and challenge in watershed management. An increase in the frequency and magnitude of storm events is predicted given anticipated climate change, with the most dramatic effects expected in urban areas due to their altered landscapes and hydrology. Consequently, efforts to better understand sources, transport processes, and accompanying risks associated with fecal indicator bacteria (FIB) in urban stromwater runoff continue to receive substantial attention (Gaffield et al., 2003).

The majority of previous studies have relied upon the collection and analysis of single grab samples of surface waters during high-flow events to understand relationships with major environmental factors such as land use and hydro-meteorological variables (Mallin et al., 2001; Kelsey et al., 2004; Reeves et al., 2004; Gentry et al., 2007; Vidon et al., 2008; Liao et al., 2014). However, samples collected at single time points do not account for concentration changes during the course of a storm and therefore provide limited information regarding how loading rates might fluctuate during storm events. Pollutant loading information is critically important for watershed managers, as the current regulatory strategy informing remediation efforts is the Total Maximum Daily Load (TMDL) program under the U.S. Clean Water Act's sections 305(b) and 303(d), which quantifies target reductions in contamination per source in terms of loads rather than concentrations (Benham et al., 2011). Recent studies that have analyzed multiple discrete samples per storm event have noted that a single storm in an urban watershed could transport the same FIB loads as multiple years' of dry-weather loads, further emphasizing the need to focus on reduction in stormwater levels of fecal contamination to reduce downstream impacts and exposure risks (Krometis et al., 2007).

Previous estimates of stormwater microbial loads have focused exclusively on levels of culturable FIB (e.g., *E. coli*, enterococci) (Surbeck et al., 2006; Hathaway et al., 2010; McCarthy et al., 2013), so little is known regarding the transport of emerging microbial source tracking (MST) indicators. Focusing on the transport of culturable FIB remains important given current regulatory standards and programs that list maximum permissible culturable FIB concentrations in terms of coliformforming-unit (CFU) per 100 mL. However, it appears likely that qPCR methods will eventually supplant culture-based methods as the monitoring mechanism of choice. Compared to culturebased methods, qPCR methods are advantageous in situations that require quick regulatory decision (e.g., beach closures) (Griffith et al., 2009), and situations that need to quantify relative contributions of different pollutant sources in order to aid in prioritizing remediation efforts (Sauer et al., 2011). Given that MST markers generally target genetic material via quantitative polymerase chain reaction (qPCR), rather than viable organisms, their transport dynamics during stormflows may be different. This represents an important knowledge gap in developing improved approaches to watershed management and research is needed to investigate the relationships between the two method endpoints and understand associations with environmental variables.

The goal of this study was to quantify the transport of culturable and molecular fecal indicators in an inland urban stream during storm events. The specific objectives were to: 1) contrast the intrastorm patterns of concentrations and loading rates of culturable and molecular fecal indicators throughout each storm; 2) estimate the total event load of each fecal indicator during each storm; and 3) investigate how storm-induced event loads of different fecal indicators relate to a variety of hydro-meteorological and physicochemical factors. High-frequency samples were collected during six summer storms in 2013, and analyzed using multiple methods to generate concentrations of culturable *E. coli* (EC), culturable enterococci (ENT), *Enterococcus spp.* 23S rRNA gene copies (ENT-23S) (Haugland et al., 2005), and the human-associated HF183 *Bacteroides* 16S rRNA gene copies (HF183) (Seurinck et al., 2005) for each sample. As the focus of this present study is to explore the similarities and differences of culturable and molecular fecal indicators rather than develop or improve detection methods, the four relatively well-developed detection methods were selected, and protocols from previous literature were followed.

3.2. Materials and methods

3.2.1. Study area description

Samples were collected at a sampling bridge at Virginia Tech Stream Research, Education, and Management Laboratory (StREAM Lab) along Stroubles Creek in Blacksburg, VA, USA (Thompson et al., 2012). The 15-km creek, classified as a recreational water, runs from northeastern Blacksburg, through the Virginia Tech campus, and then into the New River, which has been the region's main source of drinking water supply and home to various recreational activities since the 1950s. A segment of the creek is instrumented with real-time monitoring capacity for a variety of hydro-meteorological and physicochemical variables as described in previous studies (Thompson et al., 2012; Liao et al., 2014). The watershed that drains to the sampling site encompasses an area of 14.4 km² that classified as 84% urban/residential, 13% agricultural, and 3% forested (Fig. 3-1). The average annual precipitation is 103.9 cm (40.9 in) with 30% of this precipitation occurring during the summer (June-August). The average temperature in summer is 20.9 °C (69.7 °F), with a minimum of 14.7 °C (58.4 °F) and a maximum of 27.2 °C (80.9 °F).

Figure 3-1. Location and land use distribution of upstream watershed above the sampling bridge – B1 (Map projection: NAD83 / UTM zone 17N; land cover data source: NLCD 2006 http://nationalmap.gov/).

Growth and urbanization is rapidly changing the Stroubles Creek watershed and stream hydrology (VADEQ and VADCR, 2006). Accordingly, the Town of Blacksburg has recently been classified as a small urban center under the MS4 program. Storm and sanitary sewers are entirely separate. A Total Maximum Daily Load (TMDL) implementation plan was established in 2006 to address violation of the general biological integrity clause of the Clean Water Act; reduced benthic macro-invertebrate abundance and diversity was assumed to be mainly the result of excessive sediment loads.(VADEQ and VADCR, 2003; VADEQ and VADCR, 2006) In 2008, the 11.6-km segment of the creek (Fig. 3-1) was added to the state's 303(d) impaired waters list due to elevated *E. coli* levels, with a TMDL specifying reductions in reducing bacteria loads impending (VADEQ, 2010).

3.2.2. Sampling strategy

Discrete water samples were collected automatically via a Teledyne 6712 ISCO sampler (Isco, Inc., Lincoln, NE, USA) during six summer storms (June 26, June 27, June 30, July 2, July 10, and July 21, 2013). Prior to an anticipated storm event, the ISCO was loaded with 24 pre-sterilized sampling bottles and programed for equal-volume (i.e. 750 mL) sampling at constant intervals (i.e. 15 min or 30 min). The ISCO was triggered manually based on the immediate observations of actual rainfall within the watershed. Samples were kept on ice and retained for analysis if discharge and turbidity values (continuously monitored in real-time at the StREAM Lab) were higher than the observed average dry-weather values. In addition, three grab samples were collected during dry-weather conditions, defined as no rainfall for the previous 24 hours (June 25, July 9, and July 16, 2013). These samples provided baseline FIB concentrations to enable comparison with wet-weather FIB concentrations. All samples were preserved on ice during transport and stored at 4°C for less than 24 hours in the Water Microbiology Lab of Virginia Tech prior to analysis.

3.2.3. Laboratory analyses

Concentrations of culturable *E. coli* and enterococci in each sample were measured utilizing the Defined Substrate Technology[®] kits, Colilert[®] and Enterolert[®] (IDEXX Laboratories, Inc., Westbrook, ME, USA), respectively. All samples were diluted with reagent-grade water by 1:100 prior to analysis following the manufacturer's instructions. Both tests used the Quanti-Tray[®]/2000 for enumeration of cells, and the number of positive wells were converted to Most Probable Number (MPN) per 100 mL water via the MPN generator software (IDEXX, 2015), additional 50 mL from each sample was filtered through a MilliporeTM IsoporeTM Polycarbonate Membrane Filter (0.4 um pore size, 47mm diameter; Fisher Scientific, Pittsburgh, PA, USA) and stored in 2-

mL sterile cryotubes at -80°C for future qPCR analyses. DNA was extracted from the filters via the PowerSoil[®] DNA Isolation Kit (MO BIO Laboratories, Inc., Carlsbad, CA, USA) according to the manufacturer's protocol, Filters were cut into smaller fragments with sterile razor blades prior to addition to the PowerBead Tubes to maximize DNA removal. Extracted DNA concentrations were quantified using the Qubit[®] dsDNA BR Assay kit (Life Technologies, Grand Island, NY, USA), following the manufacturer's instructions.

qPCR assays were performed using previously published methods for the Enterococcus spp. 23S rRNA genetic marker (Haugland et al., 2005), and the human-associated HF183 Bacteroides 16S rRNA genetic marker (Seurinck et al., 2005). In brief, qPCR reaction mixtures to detect ENT-23S consisted of 12.5 µl of 2×iTaqTM universal probes supermix (BioRad, Hercules, CA, USA), 500 nM each primer, 400 nM probe, 2 mg/mL bovine serum albumin (Fisher Scientific, Pittsburgh, PA, USA), and 5 µl DNA template (sample DNA extracts containing 15ng total DNA, or 10 to 10^7 copies of plasmid standards). The total reaction volume was adjusted to 25 µl with PCR-grade water (MO BIO Laboratories, Inc., Carlsbad, CA, USA). The reaction mixtures for HF183 contained 12.5 µl of 2×iTaq[™] universal SYBR Green supermix (BioRad, Hercules, CA, USA), 300 nM each primer, and 5 µl DNA template (sample DNA extracts containing 15ng total DNA, or 10 to 10^7 copies of plasmid standards), in a total reaction volume of 25 µl adjusted by PCRgrade water. All qPCR reactions were performed in triplicate in 96-well plates using an Eppendorf Mastercycler® ep realplex instrument (Eppendorf North America, Hauppauge, NY, USA). A notemplate control (i.e. replacing DNA template with PCR-grade water) was included in each 96well plate run. The amplification efficiency (E) was estimated from the slope of the log standard curve as $E = 10^{-1/slope} - 1$. For each 96-well plate run, an efficiency within 0.9 to 1.1 and correlation

coefficient value above 0.99 was considered acceptable. Concentrations of molecular markers were reported as copy number (CN) per 100 mL as described previously (Yun et al., 2006).

3.2.4. Data analysis and statistics

Colilert and Enterolert samples above the maximum detection limit were assigned the highest value within the limits of detection (241,960 MPN/100 mL) and samples below the detection limit were assigned the lowest value within the limits of detection (100 MPN/100 mL), as in similar studies (Converse et al., 2011). Only 4 out of 130 total samples (3%) measured via the Colilert and Enterolert techniques fell into either of these categories. All qPCR results were within the limits of detection (i.e. 10 to 10⁷ per 15 ng DNA).

For each monitored storm event, two key parameters were calculated using previously published methods: 1) Event Load (EL), which is the total pollutant load during a storm event (Eq. 3-1) (Chong et al., 2011b; McCarthy et al., 2012; McCarthy et al., 2013); and 2) Equivalent Background Period (EBP), which is the ratio of a storm event load to a dry-weather load during an equivalent time period (Eq. 3-2) (Krometis et al., 2007). Because the continuously monitored 15-min streamflow do not always strictly overlap with the sampling time, the instantaneous loading rates were calculated by multiplying the fecal indicator concentration with the streamflow recorded (or linearly interpolated) at the time of sample collection. The maximum capacity of 24 sampling bottles of the ISCO sampler allowed us to obtain samples from the majority of a storm hydrograph (i.e. rising limb, peak, and partial falling limb of a storm), but not the entire recession to baseline.

measured during three dry-weather conditions were used as the FIB concentration corresponding to the end of each storm event in keeping with previous studies (Krometis et al., 2007).

$$EL = 10^{4} \sum_{i=1}^{N} Q_{i} C_{i} \Delta t$$
(3-1)

$$EBP = EL/DL \tag{3-2}$$

Where, $C_i = i^{th}$ discrete fecal indicator concentration (MPN/100mL); $Q_i=i^{th}$ discrete discharge (m³/s); N = total number of discrete concentrations measured; Δt = sampling frequency (s); DL = mean total dry-weather loads in the same duration of the storm event (MPN)

Principal component analysis (PCA) is one of the most popular approaches to reveal relevant information from environmental data by reducing a complex dataset to a lower, and more easily visualized, number of dimensions (Vialle et al., 2011). In this study, by resolving multiple variables into lower dimensional principle components, PCA was used to: 1) identify relationships between measurements of concentrations of culturable *E. coli*, culturable enterococci, the *Enterococcus spp.* 23S rRNA genetic marker, and the human-associated HF183 *Bacteroides* 16S rRNA genetic marker; and 2) investigate the relationships between the event loads of each fecal indicator and various environmental variables that were selected based on availability from our ongoing in-stream monitoring efforts at the StREAM Lab and an extensive literature review of previous studies (Table S1) (McCarthy et al., 2013). During the PCA analysis, in order to eliminate the effect of different units associated with different variables, all variables were standardized to have zero means and unit variance, and eigenvalues and eigenvectors were calculated using the Spearman's rank correlation matrix. All statistical analyses in this study were performed in R version 3.1.1 (R Development Core Team, 2013).

3.3. Results and discussion

3.3.1. Summary of storm events and statistics of FIB concentrations for each storm

The six storm events varied considerably in terms of duration, rainfall depth, and total runoff volume (**Error! Reference source not found.**), reflecting a wide spectrum of wet-weather flow onditions. Single sample measures of fecal indicator concentrations during storms were uniformly high. Concentrations of culturable *E. coli* and enterococci were 5 to 50 times higher than the current Virginia surface water-quality standards (SWCB, 2010). Concentrations of the *Enterococcus spp.* 23S rRNA genetic marker were 10 to 100 times higher than corresponding culturable enterococci concentrations (Fig. 3-2).

Table 3-1.	Characteristics	of strom e	vents
		01001011	

StormID (sample size)	S-1 (n=23)	S-2 (n=18)	S-3 (n=24)	S-4 (n=24)	S-5 (n=19)	S-6 (n=22)
Sampling Date	June 26	June 27	June 30	July 2	July 10	July 21
Sampling frequency (min)	15	15	15	30	30	15
Event rainfall depth (mm)	16	6	17	17	12	7
Event duration (hr)	12	7	13	19	23	6
Time to peak flow (hr)	3	1	3	11	3	1
Event runoff volume (m3)	58000	8100	57000	37000	70000	12000

Figure 3-2. Box-and-whisker plot of fecal indicator concentrations over an entire storm. The upper and lower whiskers represent 90th, and 10th percentile, respectively; the box shows 75th, 50th, and 25th percentile; circles represent outliers. The solid red line represents the Virginia recreational water single sample standard for *E. coli* (235 MPN/100mL) and the dotted red line represents a single sample enterococci standard (104 MPN/100mL).

The human-associated HF183 marker was detected in all samples, with median concentrations for each storm ranging from 1000 to 30000 CN/100 mL (Fig. 3-2). There is no regulatory standard for HF183, but these values would be classified as moderate (1000 – 5000 CN/100 mL) to high (>5000 CN/100 mL) according to a recent study of leaking sewer infrastructure in coastal urban areas (Sauer et al., 2011). The HF183 marker was chosen based on the results of a recent multi-laboratory study of the performance of many of the MST markers proposed for water-quality management, which suggested the HF183 marker is one of the most sensitive and specific genetic markers of human fecal contamination (Boehm et al., 2013; Harwood et al., 2013). Although a few

studies have recorded cross-reactivity of HF183 marker with fecal samples from animals (i.e. dog, chicken, duck and deer) (Staley et al., 2012), given that source-tracking was not the primary goal of this study, the potential for cross-reactivity in this watershed was not determined. However, the consistently high levels of HF183 marker in the stream is surprising in a watershed with wholly separate storm and sanitary sewers and several recent source-tracking studies in urban areas suggest that sewage intrusion into storm sewers and urban streams due to aging infrastructure is generally ubiquitous (Marsalek and Rochfort, 2004; Sauer et al., 2011; Guérineau et al., 2014). For the purposes of TMDL implementation, more rigorous source tracking research is needed to confirm the presence of human fecal contamination and identify possible sites of sewage intrusion into the storm sewer system.

3.3.2. Intra-storm patterns of concentrations and loading rates

Concentrations of traditional fecal indicators (i.e., culturable *E. coli* and enterococci) increased rapidly at the beginning of all storms, peaking earlier than the hydrograph, but did not typically decrease as rapidly as stream discharge during the falling limb (Fig. 3-3). Meanwhile, the loading rates of culturable *E. coli* and enterococci generally followed the patterns of the hydrograph more closely, with a rapid increase followed by a more pronounced decrease as stream discharge declined (Fig. 3-4). The intra-storm patterns of *Enterococcus spp.* 23S rRNA marker were quite similar to culturable enterococci in terms of both concentrations and loading rates (Fig. 3-4). This agrees with previous studies that have observed strong correlation between culturable and molecular indicators of *Enterococcus spp.* concentrations at both coastal (Converse et al., 2011) and inland urban watersheds (Krometis et al., 2007; Chong et al., 2011a). While estimates of actual concentrations using the two methods can be quite different as qPCR detects nonculturable and

nonviable cells in addition to live culturable organisms, overall differences in the intra-storm patterns introduced by different methodology were generally quite small (spearman's rank r = 0.53, p<0.001). The intra-storm patterns of the human-associated HF183 *Bacteroides* 16S rRNA marker were also quite similar to the other general fecal indicators for most of the storms, except for storm 4, which exhibited decreased concentrations and loading rates at the end of the first peak of the storm and remained low during the second peak of the storm (Fig. 3-4). This is different from a previous study that observed increasing concentrations of *Bacteroies spp*. gene copies over the course of a storm at coastal sites (Converse et al., 2011). This may be due to the differences in the climate and landscape, which result in different hydrologic responses. For example, the storms in this study lasted less than 24 hr, while the storms in the study of Converse et al. (2011) lasted approximately 80 hr with four or five peaks in each hydrograph.

Overall, concentrations generally peaked slightly earlier than the hydrograph, suggesting rapid inputs into the stream after the onset of precipitation. Concentrations did not typically decrease with discharge during the duration of the storm, while the intra-storm loading rates generally follow the hydrograph more closely. The difference between these two measures is critical from a watershed management perspective. The bulk of water-quality literature has focused on concentrations of indicators because the primary historical concern with regard to microbial waterquality has been public health risks related to direct contact between swimmers and surface waters at recreational sites (e.g., beaches) (Schoen and Ashbolt, 2010; Soller et al., 2010). However, it is important to note that in small urban streams, the primary concern is typically not direct human contact with water; instead, it is their role in transporting fecal contaminants to larger water bodies downstream where human exposure risks are more likely. In this case, or any time water-quality management is considered from a whole watershed or system perspective, consideration of loads rather than concentrations is critical in understanding system behavior (Badgley et al., 2011). To improve the accuracy of load estimations, multiple samples spanning the whole hydrograph with higher frequency during the rising limb should be employed if possible, instead of existing single grab sampling at regular (e.g., monthly or seasonally) frequencies. Calculating loading rates of fecal indicators, rather than simply reporting concentrations, is critical for identifying the most prominent sources across all spatial and temporal scales in a watershed.

Figure 3-3. Intra-storm patterns of concentrations of each fecal indicator (X-axis represents hours passed since the beginning of each storm event).

Figure 3-4. Instantaneous loadings rate of each fecal indicator during storm events (X-axis represents hours passed since the beginning of each storm event; the average of dry-weather samples were used to estimate the instantaneous loading rate corresponding to the end of each storm)

3.3.3. Relationships between the FIB concentrations measured by different methods

PCA on the complete dataset of concentrations of the four fecal indicators (EC, ENT, ENT-23S and HF183, n=137) resulted in most of the data variance (79.4%) being contained in the first two components, PC1 and PC2 (Fig. 3-5). The correlation circle describes the correlations between each variable and the two components, with the angle between two arrows representative of the correlation of the respective variables; there is no linear dependence if the angle is 90°, while an

angle greater than 90° indicates a negative correlation (Husson et al., 2014). EC, ENT and ENT-23S were most important variables for PC1 (r=0.88, 0.86, 0.78 respectively; p<0.001), while HF183 was the most important variable for PC2 (r=0.93, p<0.001). EC, ENT and ENT-23S were closely correlated with each other as indicated by the narrow angles between each arrows, while showing weak correlations with HF183 (Fig. 3-5). This makes sense given that EC, ENT, and ENT-23S are associated with all fecal sources in the watershed, while HF183 is generally associated with human sources. These observations agree with data from coastal areas with weak or no correlations between culturable FIB concentrations and qPCR measures of the human Bacteroidales genetic marker (Sauer et al., 2011; Gonzalez et al., 2012). In addition to variation in source, a lack of correlation may also result from different fate and transport processes. Therefore, existing watershed-scale models based on culturable E. coli may not be sufficient to predict source-specific genetic markers of fecal contamination. As emerging MST markers become integrated into water-quality monitoring efforts, additional research on the ecology of these targets in natural environmental systems will be critical to understand and predict their performance.

Figure 3-5. Variables factor map of PCA on the concentrations of the four fecal indicators.

3.3.4. Event load, equivalent background period, and association with key environmental variables

Event load (EL) represents the cumulative magnitude of total fecal inputs associated with a storm event, while equivalent background period (EBP) represents the number of time periods equal to the duration of the storm that would be required to transport the same load during dry-weather. Overall, the event loads of the *Enterococcus spp.* 23S rRNA marker were significantly higher than the event loads of culturable enterococci (Wilcoxon test, p<0.05, Fig. **Error! Reference source not found.**3-6A), whereas EBPs associated with the qPCR measures were smaller (Wilcoxon test, p<0.05, Fig. 3-6B). This corresponds to concentrations of the *Enterococcus spp.* 23S rRNA marker that averaged 130-times higher than corresponding culturable enterococci measures in dry weather, but only 60-times higher during storm events. This may reflect larger relative quantities of recently lysed cells or cells in a viable but not culturable state due to extended ultraviolet exposure during dry-weather periods. In contrast, during wet-weather flows, a substantial amount

of fresh fecal material is washed from the watershed surfaces into the stream, perhaps with lower quantities of stressed cells. Values for EBPs of HF183 were generally even lower (except for storm 4, Fig. 3-6B), which may indicate a more substantial dry-weather source (e.g., constant sewage intrusion) that only modestly increased during storm events (e.g., flushing of storm sewer system). If these data truly represent human fecal contamination, these results are consistent with what would be expected from sewage intrusion, which would predominate in dry weather and be flushed during storm events. For all markers, the results of this work echo previous observations that total microbial loads from individual storms can be equivalent to loads transported during several months to a year of dry-weather (Krometis et al., 2007). Therefore, monitoring efforts aiding in remediation plans such as the TMDL program should target storm events in addition to dry-weather monitoring.

Figure 3-6. Measures of (A) event load (EL) and (B) equivalent background period (EBP) for each fecal indicator during each storm event.

PCA was performed on the complete dataset with event loads of the four fecal indicators (EC, ENT, ENT-23S rRNA and HF183) and selected environmental variables that show statistical significant correlation (Table S2) with event load of at least one of the four fecal indicators. Most of the data variance (80.7%) was contained in the first two components, PC1 and PC2 (Fig. 3-7). More importantly, the important environmental variables associated with the event loads of each fecal indicators were identified via the correlation circle (Fig. 3-7). The event loads of each of the four fecal indicators show moderate positive associations with runoff duration (R_v), total precipitation in each storm (P_T), and antecedent 7-day precipitation (AP_{7d}), but were negatively associated with minimum dissolved oxygen (DO_{min}). Environmental variables most strongly positively associated with the event loads of general fecal indicators (EC, ENT and ENT-23S) included total runoff volume (V), maximum turbidity (TB_{max}), and maximum flow (Q_{max}). In contrast, total event loads of HF183 were most strongly positively associated with time to peak flow (t_p) during a storm (Fig. 3-7).

Figure 3-7. Variables factor map of PCA on the event loadings of the four fecal indicators and the environmental variables that showed statistical significant correlation with event loadings of at least one of the four fecal indicators (Table S2).

This study highlight the similarities and differences between storm loads of one source-specific MST marker and general fecal indicators during urban wet-weather flows. The results suggest that indicator source, rather than type (i.e., viable cell vs. genetic markers), may be a stronger determinant of transport process for fecal indicators. Given that human fecal contamination is generally considered to present more severe human health risks than other sources (Soller et al., 2010), and that urbanization, growing populations, and climate change can create more chances for exposure and dissemination, there is a critical need to improve understanding and prediction of transport processes for source-specific fecal indicators. Ideally, future water-quality models will incorporate these advances, e.g., more accurate identification of non-point sources of fecal contamination via microbial source tracking techniques, improved load estimation of fecal contamination via higher-frequency sampling techniques, and more appropriate fate and transport pathways and parameters for relating upstream to downstream concentrations.

Supporting information

Table S1.	Hydro-meteorological and physicochemical variables used in correlation analyses.
X7	

Variable name	Description			
Antecedent climatic variables that can indicate growth and removal on watershed surfaces				
Rad _x	Mean net radiation (MJ/m ²) for x days prior to a storm event			
(x=1, 2, 7, 14, 28 days)				
AP _x	Total precipitation (mm) in antecedent x days of a storm event			
(x=1, 2, 7, 14, 28 days)				
T _x	Minimum temperature (°C) for x days prior to a storm event			
(x=1, 2, 7, 14, 28 days)				
Rainfall variables that can indicate m	icrobial wash-off			
PT	Total precipitation (mm) in a storm event			
PD	Precipitation duration of a storm event (hr)			
PI	Mean precipitation intensity of a storm event (mm/hr)			
Stream flow variables that can indicate in-stream transport				
Rv	Total runoff volume (m ³)			
R _D	Runoff duration of a storm event (hr)			
Qmax	Maximum flow rate (m ³ /s)			
Qmean	Mean flow rate (m^3/s)			
t _p	Time to peak flow (hr)			
Physicochemical water-quality variab	les that can indicate source, growth and removal in the stream and watershed surfaces			
TB _x	Mean, minimum, maximum turbidity during a storm event (NTU)			
(x=mean, min, max)				
pH _x	Mean, minimum, maximum pH during a storm event			
(x=mean, min, max)				
DO _x	Mean, minimum, maximum dissolved oxygen during a storm event (mg/L)			
(x=mean, min, max)				

Table S2. Pearson's correlation coefficient between event loadings of each fecal indicator and environmental variables (p<0.1). All variables were log10-transformed to introduce log-normal distribution.

Environmental variables (log10- transformed)	Event loadings of fecal indicators in log10(CFU)				
	EC	ENT	ENT-238	HF183	
Total precipitation (mm) in antecedent 7 days of each storm event (AP _{7d})	0.71	0.78	0.70	0.81	
Total precipitation (mm) of each storm event (PT)	0.75			0.81	
Total runoff volume (m^3) of each storm event (R_V)	0.90	0.85	0.90	0.73	
Runoff duration (hr) of each storm event (RD)	0.82	0.85	0.80	0.84	
Maximum observed flow (m^3/s) during each storm event (O_{max})	0.76	0.71	0.80		
Time to peak flow (hr) of each storm event (t _p)				0.92	
Minimum observed dissolved oxygen (mg/L) during each storm event (DO_{min})	-0.86	-0.73	-0.83		
Maximum observed turbidity (NTU) during each storm event (TB_{max})		0.77	0.75		

Acknowledgements

The authors would like to thank the US National Science Foundation-Research Experiences for

Undergraduates (NSF-REU Award # 1156688), the Institute of Critical Technology and Applied

Science (ICTAS) and the College of Agriculture and Life Science (CALS) at Virginia Tech for

generously funding this project.

References

- Badgley BD, Thomas FIM, Harwood VJ. 2011. Quantifying environmental reservoirs of fecal indicator bacteria associated with sediment and submerged aquatic vegetation. Environ. Microbiol. 13: 932-942. doi:10.1111/j.1462-2920.2010.02397.x.
- Benham B, Krometis LA, Yagow G, Kline K, Dillaha T. 2011. Applications of microbial source tracking in the TMDL process. In: Hagedorn C, Blanch AR, Harwood VJ, editors, Microbial source tracking: methods, applications, and case studies. Springer Science+Business Media, LLC, 233 Springer Street, New York, NY 10013, USA. p. 313-335.
- Boehm AB, Van De Werfhorst LC, Griffith JF, Holden PA, Jay JA, Shanks OC, Wang D, Weisberg SB. 2013. Performance of forty-one microbial source tracking methods: A twenty-seven lab evaluation study. Water Res. 47: 6812-6828.
- Chong MN, Aryal R, Sidhu J, Tang J, Toze S, Gardner T. Urban stormwater quality monitoring: From sampling to water quality analysis. Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2011 Seventh International Conference on. IEEE, 2011a, pp. 174-179.
- Chong MN, Aryal R, Sidhu J, Tang J, Toze S, Gardner T. Urban stormwater quality monitoring: From sampling to water quality analysis. 2011 Seventh International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP). IEEE, Melbourne, Australia, 2011b, pp. 174-179.
- Collier S, Stockman L, Hicks L, Garrison L, Zhou F, Beach M. 2012. Direct healthcare costs of selected diseases primarily or partially transmitted by water. Epidemiol. Infect. 140: 2003-2013. doi:10.1017/S0950268811002858.
- Converse RR, Piehler MF, Noble RT. 2011. Contrasts in concentrations and loads of conventional and alternative indicators of fecal contamination in coastal stormwater. Water Res. 45: 5229-5240.
- Ford TE, Colwell RR. 1996. A global decline in microbiological safety of water: A call for action. American Academy of Microbiology. http://academy.asm.org/index.php/colloquium-program/water-/214-a-global-decline-in-microbiological-safety-of-water-a-call-for-action (accessed 11 Oct. 2012).

- Gaffield SJ, Richards LA, Jackson RJ. 2003. Public health effects of inadequately managed stormwater runoff. Am. J. Public Health 93: 1527-1533.
- Gentry RW, Layton AC, McKay LD, McCarthy JF, Williams DE, Koirala SR, Sayler GS. 2007. Efficacy of Measurements for Reducing the Statistical Uncertainty Associated with Hydrologic Flow and Fecal Loads in a Mixed Use Watershed. J. Environ. Qual. 36: 1324-1330.
- Gonzalez RA, Conn KE, Crosswell JR, Noble RT. 2012. Application of empirical predictive modeling using conventional and alternative fecal indicator bacteria in eastern North Carolina waters. Water Res. 46: 5871-5882.
- Griffith JF, Cao Y, McGee CD, Weisberg SB. 2009. Evaluation of rapid methods and novel indicators for assessing microbiological beach water quality. Water Res. 43: 4900-4907.
- Guérineau H, Dorner S, Carrière A, McQuaid N, Sauvé S, Aboulfadl K, Hajj-Mohamad M, Prévost M. 2014. Source tracking of leaky sewers: A novel approach combining fecal indicators in water and sediments. Water Res. 58: 50-61.
- Harwood VJ, Staley C, Badgley BD, Borges K, Korajkic A. 2013. Microbial source tracking markers for detection of fecal contamination in environmental waters: relationships between pathogens and human health outcomes. FEMS Microbiol. Rev.
- Hathaway J, Hunt W, Simmons III O. 2010. Statistical evaluation of factors affecting indicator bacteria in urban storm-water runoff. J. Environ. Eng. 136: 1360-1368.
- Haugland RA, Siefring SC, Wymer LJ, Brenner KP, Dufour AP. 2005. Comparison of Enterococcus measurements in freshwater at two recreational beaches by quantitative polymerase chain reaction and membrane filter culture analysis. Water Res. 39: 559-568.
- Husson F, Josse J, Le S, Mazet J, Husson MF. 2014. Package 'FactoMineR'.
- IDEXX. 2015. MPN Generator Software Program. https://www.idexx.com/water/mpn-generator.html (accessed March 2 2015).
- Kelsey H, Porter D, Scott G, Neet M, White D. 2004. Using geographic information systems and regression analysis to evaluate relationships between land use and fecal coliform bacterial pollution. J. Exp. Mar. Biol. Ecol. 298: 197-209.
- Krometis L-AH, Characklis GW, Simmons III OD, Dilts MJ, Likirdopulos CA, Sobsey MD. 2007. Intra-storm variability in microbial partitioning and microbial loading rates. Water Res. 41: 506-516.
- Liao H, Krometis L-A, Hession WC, House L, Kline K, Badgley B. 2014. Hydrometeorological and physicochemical drivers of fecal indicator bacteria in an urban stream bottom sediments. J. Environ. Qual. 43: 2034-2043. doi:10.2134/jeq2014.06.0255.
- Mallin MA, Ensign SH, McIver MR, Shank GC, Fowler PK. 2001. Demographic, landscape, and meteorological factors controlling the microbial pollution of coastal waters. Hydrobiologia 460: 185-193.
- Marsalek J, Rochfort Q. 2004. Urban wet-weather flows: sources of fecal contamination impacting on recreational waters and threatening drinking-water sources. J. Toxicol. Environ. Health A. 67: 1765-1777.

- McCarthy D, Deletic A, Mitchell V, Diaper C. 2013. Predicting Between-Event Variability of Escherichia coli in Urban Storm Water. J. Environ. Eng. 139: 728-737.
- McCarthy D, Hathaway J, Hunt W, Deletic A. 2012. Intra-event variability of Escherichia coli and total suspended solids in urban stormwater runoff. Water Res. 46: 6661-6670.
- R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2013.
- Reeves RL, Grant SB, Mrse RD, Oancea CMC, Sanders BF, Boehm AB. 2004. Scaling and management of fecal indicator bacteria in runoff from a coastal urban watershed in southern California. Environ. Sci. Technol. 38: 2637-2648.
- Sauer EP, VandeWalle JL, Bootsma MJ, McLellan SL. 2011. Detection of the human specific Bacteroides genetic marker provides evidence of widespread sewage contamination of stormwater in the urban environment. Water Res. 45: 4081-4091. doi:10.1016/j.watres.2011.04.049.
- Schoen ME, Ashbolt NJ. 2010. Assessing pathogen risk to swimmers at non-sewage impacted recreational beaches. Environ. Sci. Technol. 44: 2286-2291. doi:10.1021/es903523q.
- Seurinck S, Defoirdt T, Verstraete W, Siciliano SD. 2005. Detection and quantification of the human-specific HF183 Bacteroides 16S rRNA genetic marker with real-time PCR for assessment of human faecal pollution in freshwater. Environ. Microbiol. 7: 249-259.
- Soller JA, Schoen ME, Bartrand T, Ravenscroft JE, Ashbolt NJ. 2010. Estimated human health risks from exposure to recreational waters impacted by human and non-human sources of faecal contamination. Water Res. 44: 4674-4691. doi:10.1016/j.watres.2010.06.049.
- Staley C, Gordon KV, Schoen ME, Harwood VJ. 2012. Performance of two quantitative PCR methods for microbial source tracking of human sewage and implications for microbial risk assessment in recreational waters. Appl. Environ. Microbiol. 78: 7317-7326.
- Surbeck CQ, Jiang SC, Ahn JH, Grant SB. 2006. Flow fingerprinting fecal pollution and suspended solids in stormwater runoff from an urban coastal watershed. Environ. Sci. Tech. 40: 4435-4441.
- SWCB. 2010. Virginia water quality standards. http://water.epa.gov/scitech/swguidance/standards/wqslibrary/upload/vawqs.pdf (accessed 17 Mar. 2015).
- Thompson TW, Hession WC, Scott D. 2012. StREAM Lab at Virgnia Tech. Resources: 8-9.
- VADEQ. 2010. Final 2010 305(b)/303(d) Water Quality Assessment Integrated Report. http://www.deq.virginia.gov/Programs/Water/WaterQualityInformationTMDLs/WaterQu alityAssessments/2010305b303dIntegratedReport.aspx (accessed October 9 2013).
- VADEQ, VADCR. 2003. Benthic TMDL for Stroubles Creek in Montgomery County, Virginia. http://www.deq.virginia.gov/portals/0/DEQ/Water/TMDL/apptmdls/newrvr/stroub.pdf (accessed 16 Mar. 2015).
- VADEQ, VADCR. 2006. Upper Stroubles Creek Watershed TMDL Implementation Plan, Montgomery County, Virginia.

http://www.deq.virginia.gov/Portals/0/DEQ/Water/TMDL/ImplementationPlans/stroubip. pdf (accessed 16 Mar. 2015).

- Vialle C, Sablayrolles C, Lovera M, Jacob S, Huau M-C, Montréjaud-Vignoles M. 2011. Monitoring of water quality from roof runoff: Interpretation using multivariate analysis. Water Res. 45: 3765-3775.
- Vidon P, Tedesco L, Wilson J, Campbell M, Casey L, Gray M. 2008. Direct and Indirect Hydrological Controls on Concentration and Loading in Midwestern Streams. J. Environ. Qual. 37: 1761-1768.
- Yun JJ, Heisler LE, Hwang II, Wilkins O, Lau SK, Hyrcza M, Jayabalasingham B, Jin J, McLaurin J, Tsao M-S. 2006. Genomic DNA functions as a universal external standard in quantitative real-time PCR. Nuc. Acids Res. 34: e85-e85.

Chapter 4. Long-term impacts of bacteria-sediment interactions in watershedscale microbial fate and transport modeling

A research article submitted to Journal of Environmental Quality (March 2015):

Liao, H., L. Krometis, K. Kline, W. C. Hession, Long-term impacts of bacteria-sediment interactions in watershed-scale microbial fate and transport modeling. J. Environ. Qual.
Abstract

Elevated levels of fecal indicator bacteria (FIB) remain the leading cause of surface water-quality impairments in the United States. Under the Clean Water Act, basin-specific Total Maximum Daily Load (TMDL) restoration plans are responsible for bringing identified water impairments in compliance with applicable standards. Watershed-scale model predictions of FIB concentrations that facilitate the development of TMDLs are associated with a great deal of uncertainty relative to other water-quality contaminants. An increasingly cited criticism of existing modelling practice is the common strategy that assumes bacteria behave similarly to "free-phase" contaminants, i.e. bacteria-sediment interactions are neglected, though substantial field evidence indicates a nontrivial number of cells do preferentially associate with particulates. Only limited attempts have been made to evaluate the impacts of sediment on the predictions of in-stream FIB concentrations at the watershed-scale, and limited observational data is available for model development, calibration, and validation. This study aims to evaluate the impacts of bacteria-sediment interactions in a continuous, watershed-scale model (Hydrological Simulation Program - Fortran, or HSPF) widely used in TMDL development. In addition to observed FIB concentrations in the water column, streambed sediment-associated FIB concentrations were available for improved model calibration. Overall, while improved model performance was achieved as compared to previous studies, model performance under a "sediment-attached" scenario was essentially equivalent to the simpler "free-phase" scenario commonly employed in TMDL development. Watershed-specific characteristics (e.g. steep slope, high imperviousness) likely contributed to the dominance of wet-weather associated pollutant loading in the water column, which may have obscured sediment impacts. Site evaluation preceding modeling efforts is necessary to determine

whether the additional model complexity and effort associated with partitioning phases of FIB is sufficiently offset by gains in predictive capacity.

4.1. Introduction

Pathogen contamination, typically assessed via elevated levels of fecal indicator bacteria (FIB, e.g. *Escherichia coli* or *E. coli*, enterococci, fecal coliforms), remains the leading cause of surface water-quality impairments in the United States (USEPA, 2015). Considering the wide range of designated uses precluded or otherwise impacted by unacceptable FIB levels, including recreation, irrigation, aquaculture, and drinking, this represents a potentially huge economic loss (Collier et al., 2012). Identified water impairments are primarily addressed through the development of basin-specific Total Maximum Daily Load (TMDL) restoration plans in accordance with the sections 303(d) and 305(b) of the US 1972 Clean Water Act (CWA) (USEPA, 2015). The bacterial TMDL process is particularly notable for the considerable expense involved; cost estimates range from \$4,000 to \$1,000,000 per TMDL developed, not including subsequent implementation (Birkeland, 2001). As watershed-scale models are extensively employed during the TMDL processes to estimate the relative contributions of pollutant sources and to evaluate the effectiveness of potential remediation strategies, continuing model refinement to incorporate emerging scientific knowledge is critical to improve the efficiency and prioritization of remediation efforts.

Unfortunately, due to a limited understanding of microbial fate and transport in the environment, predictions of FIB concentrations by watershed-scale models are associated with a great deal of uncertainty relative to other water-quality contaminants (Novotny, 2003, Benham et al., 2011). Existing modeling practice commonly assumes bacteria behave as "free-phase" contaminants with

near-neutral buoyancy, i.e. governed only by die-off and transport downstream with the bulk flow (Jamieson et al., 2004). However, several studies note that stream bed sediments can harbor 10 to 10,000 times more FIB than the overlying water column in a variety of aquatic environments (Buckley et al., 1998, An et al., 2002, Pandey et al., 2012, Liao et al., 2014). In addition, bacteria can be released and resuspended into the water column if bottom sediments are disturbed (Jamieson et al., 2005, Cho et al., 2010, Pandey et al., 2012). Sediment-attached FIB appear to survive for extended periods due to the local abundance of nutrients and physical protection from protozoa and Ultraviolet light (Garzio-Hadzick et al., 2010, Droppo et al., 2011), potentially posing an extended period of human health risk (Droppo et al., 2011). Not surprisingly, many reviews of the TMDL process emphasize the need to develop and include more appropriate representations of bacteria fate and transport in watershed-scale models (NRC, 2001, Ferguson et al., 2003, Benham et al., 2006).

A number of studies have successfully included bacteria-sediment interactions in mathematically modeling in-stream FIB during experimental conditions or short-term storm events (Bai and Lung, 2005, Jamieson et al., 2005, Rehmann and Soupir, 2009, Cho et al., 2010, Droppo et al., 2011, Guanghai et al., 2011). In contrast, very few studies have attempted to link sediment and microbial transport using watershed-scale models over long time periods, which will be of greatest use to watershed managers concerned with TMDL development and the long-term attainment of water-quality goals to support designated uses. Kim et al. (2010) modified the Soil and Water Assessment Tool (SWAT) through the addition of a streambed *E. coli* release and deposition module, and calibrated using one-year of observational data of *E. coli* concentrations in both the water column and bed sediments. These efforts resulted in better agreement between predicted and observed in-

stream E. coli concentrations as quantified by the Nash-Sutcliffe Efficiency or NSE value (average improvement from -90 to -0.2). Russo et al. (2011) incorporated microbial-sediment association into the Hydrological Simulation Program - Fortran (HSPF) model to simulate bacterial transport in an urbanized watershed using existing model subroutines. The model was calibrated using oneyear of observational data of in-stream fecal coliform concentrations, but no field observations of sediment concentrations of coliform were available. Though this added effort improved model performance, the impacts were quite minimal, which was attributed to the dominance of wet weather watershed microbial loads. A subsequent sensitivity analysis supported this assumption, indicating that given current knowledge of appropriate parameter ranges governing settling velocities, soil erodibility, partitioning coefficients, and die-off, variations within appropriate parameter ranges failed to change estimates of overall water FIB concentrations by more than 10%, i.e. upland loading to the receiving water remained dominant over concentrations from sediment. However, Russo et al. (2011) also noted that HSPF estimates of sediment FIB concentrations, which assume a uniform distribution throughout the stream reach in terms of length and depth, appeared crude in comparison to field observations, and required confirmation.

The overall goal of this study was to determine whether the inclusion of bacteria-sediment interactions within HSPF would improve downstream predictions of *E. coli* concentration. A primary limitation of the Russo et al (2011) study was the lack of sediment coliform concentrations for model calibration; these data are difficult to obtain as most water-quality monitoring programs only record water FIB concentrations. The present study targeted an urbanizing stream in Virginia (USA) where a paired sediment and water column FIB monitoring effort recently concluded (Liao et al., 2014). With this dataset, we aimed to: 1) augment HSPF with a bacteria-sediment-

association module; 2) calibrate the HSPF model parameters using both water column and bed sediment concentrations of *E. coli*; and 3) evaluate the potential significance of streambed *E. coli* release and deposition in long-term (2 year) simulations of daily in-stream *E. coli* concentrations using this augmented model, as compared to the traditional assumption that *E. coli* behave as dissolved constituents. By providing estimates of the relative significance of distinct bacteria fate and transport processes, we hope to facilitate the development of more accurate modeling strategies, which should improve TMDL effectiveness and efficiency.

4.2. Methods

4.2.1. Study area

Our study focuses on the 31 km² upper Stroubles Creek watershed within the Ridge and Valley ecoregion of Virginia, USA (Fig.4-1a). Land use within the watershed is primarily residential (48%), with additional land uses including forest (30%), pasture (18%), and cropland (4%) (Fig. 4-1b). Annual precipitation ranges from 910 mm to 1300 mm. Stroubles Creek is designated as a primary contact recreational water by the Commonwealth of Virginia and required to meet "fishable and swimmable standards" (VADEQ, 2015a), although it is worth noting that the observed depth at base flow does not exceed 33.5 cm (Abel, 2012). The creek runs approximately 15 km from the northeastern town of Blacksburg, via the Virginia Tech campus, and then into the New River, which has served as the region's main source of drinking water since 1950 as well as home to a variety of recreational activities. An 8-km section of the stream was designated as in violation of the general biological integrity clause of the CWA due to degraded benthic macroinvertebrate ecology in 1996, with sediment identified as the primary stressor. A related sediment TMDL, including an implementation plan, was developed in the early 2000s (VADEQ

and VADCR, 2003, VADEQ and VADCR, 2006). In addition, an 11-km reach segment (the 8-km reach segment with benthic impairment plus an additional 3-km reach segment downstream) was more recently listed for violation of the *E. coli* standard, with a TMDL to reduce the *E. coli* levels currently required (VADEQ, 2015a).

Figure 4-1. Location and land use of Stroubles Creek watershed (Virginia, USA)

4.2.2. Model development

The HSPF (version 12.2, Bicknell et al., 2005) was selected as a primary tool for this work, as it has been used extensively in efforts to support TMDL development to address bacteria impairments in keeping with requirements of the CWA (Benham et al., 2006). It is a continuous, deterministic, lumped-parameter, watershed-scale model that is supported by both USEPA and USGS. Although bacteria are most often modeled as a "free-phase" generalized water-quality constituent in HSPF during TMDL development efforts, HSPF does have the ability to model bacteria as a "sediment-attached" constituent (Bicknell et al., 2005). In previous efforts, HSPF

has been used to model contaminants like polychlorinated biphenyls (PCBs) and phosphorus, as both dissolved and sediment-attached phases to support USEPA-approved TMDL development (USEPA, 2010, Tetra Tech 2009).

4.2.2.1. Sub-watershed delineation and spatial data acquisition

The upper Stroubles Creek watershed boundary was delineated in ArcGIS 10.1 using the 10-m National Elevation Dataset (NED). Land use was acquired from the National Land Cover Database 2006 (NLCD 2006), and the stream network was obtained from the National Hydrography Dataset (NHD). Soil data was obtained from Soil Survey Geographic Database (SSURGO) of the USDA and NRCS. The watershed was divided into nine sub-watersheds based on local land use homogeneity, stream network continuity, and monitoring station locations to facilitate model calibration and validation. For modeling purposes, the stream was simplified such that there is only one stream segment within each sub-watershed (i.e. labeled from 1 to 9 from downstream to upstream, Fig.4-2).

Figure 4-2. Upper Stroubles Creek watershed delineation, simplified reach segments and monitoring sites for modeling.

4.2.2.2. Hydrology module

Weather data were compiled from available stations within or near the watershed: daily minimum and maximum temperature were obtained from the National Climatic Data Center (NCDC) station at the Blacksburg National Weather Service Office (NWSO) (COOP ID: 440766); hourly precipitation data were obtained from Kentland farm, approximately 10 km from the watershed (<u>http://www.vaes.vt.edu/college-farm/weather/2014/weather2014.html</u>); and daily dew point temperature, average daily wind speed, and percent sun were obtained from the Lynchburg Regional Airport station, approximately 120 km away from the watershed, the closest station that records these data.

Stream stage is currently monitored and recorded at 15-min intervals by the Virginia Tech Stream Research, Education, and Management Laboratory (StREAM Lab) (Thompson et al., 2012), and is converted to flow rate via an existing stage-discharge equation developed using the velocity-area method (NRCS, 2014). The 15-min streamflow data were averaged to produce a daily dataset for hydrology calibration (period: 1/1/2012-12/31/2013) and validation (period: 1/1/2009-12/31/2011) of the HSPF model following the methods described in USEPA BASINS Technical Note 6 (USEPA, 2000).

4.2.2.3. Sediment module

Sediment loads and in-stream transport were modeled following the methods detailed in USEPA BASINS Technical Note 8 (USEPA, 2006). The watershed sediment loadings per unit area were calibrated for each land use to the values published in the previous sediment TMDL report for this site, which were estimated using the Universal Soil Loss Equation (VADEQ and VADCR, 2003).

In brief, HSPF simulates the transport, deposition and scour of sediment in a reach segment as functions of bed shear stress (Eq. 4-1):

$$\tau_b = SR\rho g \tag{4-1}$$

where $\tau b =$ bed shear stress (N m⁻²); S = slope (m m⁻¹); R = hydraulic radius (m); ρ = density of water (kg m⁻³); and g = acceleration of gravity (m s⁻²).

For the silt and clay size particles, the critical shear stress of deposition (τ_{cd}) and resuspension (τ_{cr}) for each size are adjusted so that the model calculates deposition during low flow periods, resuspension during high flow events, and transport with neither resuspension nor deposition for moderate flow rates. The rates of sediment deposition (R_d) and resuspension (R_r) are calculated as Eq. 4-2 and Eq. 4-3

$$R_d = v_s C_{ss} \left(1 - \frac{\tau_b}{\tau_{cd}} \right) \left(\tau_b < \tau_{cd} \right) \tag{4-2}$$

$$R_r = M\left(\frac{\tau_b}{\tau_{cr}} - 1\right) \ (\tau_b > \tau_{cr}) \tag{4-3}$$

where v_s = quiescent water settling velocity (m d⁻¹); C_{ss} = suspended-sediment concentration (kg m⁻³); M = erodibility coefficient (kg m⁻² d⁻¹).

4.2.2.4. Bacteria module

For consistency's sake, water-quality modeling was conducted with fecal coliform inputs, and then a translator equation was used to convert the output to *E. coli* for the final results (VADEQ, 2003); this is the existing standard procedure employed by the Virginia Department of Environmental Ouality (VADEO) for bacteria TMDL development. The watershed fecal coliform loads were estimated using the Bacteria Source Load Calculator (Zeckoski et al., 2005). The HSPF model was run separately under two scenarios: 1) a "free-phase" scenario, where bacteria are assumed to behave in a manner similar to dissolved-phase contaminants in keeping with current standard practice; and 2) a "sediment-attached" scenario, where a portion of bacteria are assumed to be associated with sediments. Under the "free-phase" scenario, advection and generalized first-order decay were simulated, and the model output included all "free-phase" E. coli in the water column. Under the "sediment-attached" scenario, advection and generalized first-order decay were simulated for "free-phase" and "sediment-attached" E. coli separately. Additional processes modeled under the "sediment-attached" scenario included adsorption/desorption between E. coli and sediment given a linear reversible isotherm, and streambed E. coli resuspension and deposition as a function of sediment resuspension and deposition, which are detailed in a previous study (Russo et al., 2011). Estimates of model parameters affecting microbial fate and transport are summarized in Table 4-1. Model outputs of in-stream E. coli concentrations in the "sedimentattached" scenario are the sum of "free-phase" and "sediment-attached" E. coli in the water column. Assuming E. coli are primarily associated with fine sediments (i.e., silt and clay), the instream E. coli concentrations under this assumption can be calculated via Eq. 4-4.

$$C_{EC,water} = C_{EC,free} + C_{EC,clay}C_{ss,clay} + C_{EC,silt}C_{ss,silt}$$
(4-4)

Where $C_{EC,water} = \text{concentration of } E. \ coli$ in the water column (CFU L⁻¹); $C_{EC,free} = \text{concentration}$ of free-phase $E. \ coli$ (CFU L⁻¹); $C_{EC,clay} = \text{concentration of } E. \ coli$ attached on the suspended clay particles (CFU mg⁻¹); $C_{EC, silt} = \text{concentration of } E. \ coli$ attached on the suspended silt particles

(CFU mg⁻¹); $C_{ss,clay}$ = concentration of suspended clay particles (mg L⁻¹); $C_{ss,silt}$ = concentration of suspended silt particles (mg L⁻¹).

	Silt	Clay
Sediment parameters		
Diameter $(\mu m)^a$	7.6	2.5
Density $(g \text{ cm}^{-3})^a$	2.3	2.0
Settling velocity (cm sec ⁻¹) ^a	1.3×10^{-3}	1.3×10^{-4}
Critical shear stress for deposition (N m ⁻²) ^{a,b}	0.67	0.57
Critical shear stress for resuspension (N m ⁻²) ^{a,b}	2.68	2.25
Erodibility factor $(\text{kg m}^{-2} \text{day}^{-1})^{a}$	0.01	0.01
Bacteria parameters		
Partition coefficient (L mg ⁻¹) ^c	0.5	0.5
Decay rate, free $(day^{-1})^d$	1.15	1.15
Decay rate, suspended-sediment-associated (day ⁻¹) ^e	0.6	0.6
Decay rate, bed-sediment-associated (day ¹) ^e	0.2	0.2

	Table 4-1. Estimates of model	parameters affecting	microbial	fate and	transport.
--	-------------------------------	----------------------	-----------	----------	------------

^aEstimated following methods provided in USEPA (2006).

^bCritical shear stress values for R5, detailed reach-specific shear stress modeling results were provided in (Appendix C)

^cEstimated such that attached *E. coli* fractions were 0.2 at background conditions and 0.5 during storms, consistent with previous studies (Characklis et al., 2005, Russo et al., 2011).

^dEstimated following methods provided in VADEQ (2003)

eEstimates consistent with previous studies (Jamieson et al., 2004, Russo et al., 2011).

Multiple sources of water-quality data were available to assist in model calibration and validation. Water column concentrations of *E. coli* have been monitored at two sites by the VADEQ seasonally since 1980 (Fig. 4-2). Additionally, *E. coli* concentrations in both the water column and bed sediment were monitored weekly from February 2012 through January 2013 at four sites (Fig. 4-2) as described by Liao et al. (2014). The model calibration and validation periods were selected to include at least one dry year and one wet year. Depending on the data availability for each site (Fig. 4-2) during each period, the calibration and validation were conducted from the upstream sites to downstream sites. Finally, the simulated in-stream *E. coli* concentrations were calibrated to the observed values for the period of 1/12012-12/31/2013 (calibrated sites: R1, R4, R5, R7 and R8), and validated for the period of 1/1/2010 - 12/31/2011 (validated site: R1).

Under "sediment-attached" scenario, the simulated streambed *E. coli* concentrations were also calibrated to the observed values (calibrated sites: R4, R5, R7 and R8). It is worth noting that the observed *E. coli* concentration in the bed sediments were measured at the outlet of each sub-watershed, whereas the simulated values represented average values over the whole reach in each sub-watershed. This lumped-parameter approach assumed that the each divided reach was completely homogenous, which remains the only practical methodology, although *E. coli* concentrations in the bed sediments have been observed to vary substantially (Droppo et al., 2009, Badgley et al., 2011, Liao et al., 2014).

The performance of the calibrated and validated models were evaluated based on the simulation results for the period of 1/1/2009 - 12/31/2010 for sites R1 and R3. To account for the uncertainties in the time of sampling and a rainfall event during a day, a 3-day window approach as described in Russo et al. (2011) was used, and the closest model prediction from the day of, the day before, or the day after an observation was compared to the observed *E. coli* concentrations. Although this strategy can be criticized as providing an overestimation of model accuracy, it is considered a standard practice in modeling waterborne microorganisms given the great deal of uncertainty and variability associated with monitoring (Benham et al., 2006, McCarthy et al., 2008, Russo et al., 2011)

4.3. Results

4.3.1. Hydrology calibration and validation

In keeping with best modeling practice, the Nash-Sutcliffe Efficiency (NSE) was used to quantitatively evaluate the agreement between simulated and observed flow following hydrology

calibration and validation (Moriasi et al., 2007). Final NSE values for the calibration and validation periods were 0.62 and 0.51, respectively, which is in keeping with satisfactory values reported in the literature (Moriasi et al., 2007, Seong et al., 2015). This calibrated and validated hydrology module provided the basis for *E. coli* predictions under both "free-phase" and "sediment-attached" scenarios.

4.3.2. Calibration and validation of in-stream *E. coli* concentrations under "free-phase" scenario

Initially, the water-quality module of HSPF was calibrated and validated under the "free-phase" scenario most commonly employed in bacterial modeling to support TMDL development, i.e. *E. coli* behave in a manner similar to dissolved contaminants and do not interact with particulates (Benham et al., 2006). During the calibration period, at least 96% of simulated *E. coli* concentrations were within one order of magnitude of observed values at all calibration sites (Fig. 4-3a-e), with a mean differences between observed and modeled values of less than 0.45 logs. Performance during the validation period was even higher (Fig. 4-3f): 100% of the simulated *E. coli* concentrations were within one order of magnitude of the observed values, and the mean difference was only 0.35 logs.

It is important to note that predictive modeling of in-stream bacteria concentrations at the watershed scale is very challenging due to the considerable variability associated with monitoring observations, as well as poor understanding of fate and transport behavior (Novotny, 2003, Benham et al., 2011). Earlier efforts consider a difference of one-order of magnitude between

simulated and observed results acceptable (Benham et al., 2006, Dorner et al., 2006), with typical reported mean differences ranging from 0.39 logs to 0.66 logs via a three-day window approach (Russo et al., 2011). Comparatively, the results in this study would be considered highly acceptable.

Figure 4-3. Simulated versus observed *E. coli* concentrations during the (a-e) calibration, and (f) validation period under the "free-phase" scenario. A three-day window approach was used to select the best modeling results from the day before, the day of, or the day following the observation. The black solid 1:1 line is equivalent to perfect agreement between the simulated and observed values; the grey dotted lines represent a deviation equivalent to one-order of magnitude.

4.3.3. Calibration and validation of in-stream E. coli concentrations under "sediment-

attached" scenario

Given the unique monitoring dataset available, *E. coli* concentrations in both the streambed sediment and overlying water column could be calibrated to observed values under the "sediment-attached" scenario, though it is worth noting underlying difficulties. Because HSPF simply provides a total *E. coli* load for the entire reach's bed sediment (in CFU), these values had to be

converted to average point concentrations prior to comparison with observation values by dividing the simulated total mass of bed sediment in that specific reach (in CFU/mg). Therefore, the horizontal and spatial variations of streambed *E. coli* concentrations were not accounted for in this study. Parameters were adjusted such that the simulated streambed *E. coli* concentrations were mostly (R8: 93%, R7: 92%, R5: 86% and R4: 92%) within one-order of magnitude of the observed values (Fig.4-4).

Figure 4-4. Comparison of simulated and observed *E. coli* concentrations in streambed sediment. A three-day window approach was used to select the best modeling results from the day before, the day of, or the day following the observation. The black solid 1:1 line is equivalent to perfect agreement between the simulated and observed values; the grey dotted lines represent a deviation equivalent to one-order of magnitude.

Parameter values associated with streambed *E. coli* concentrations remained constant while calibrating (Fig. 4-5a-e) and validating (Fig. 4-5f) the in-stream *E. coli* concentrations under the "sediment-attached" scenario. During the calibration period, at least 92% of simulated *E. coli* concentrations were within one order of magnitude of observed values at all calibration sites. The mean differences between observed and modeled values varied from 0.33 logs to 0.58 logs for the five calibration sites. During the validation period, 92% of the simulated *E. coli* concentrations were within one order of the observed values, with a mean difference of 0.5 logs.

Figure 4-5. Simulated versus observed *E. coli* concentrations during the calibration (a-e) and validation (f) period under "sediment-attached" scenario. A three-day window approach was used to select the best modeling results from the day before, the day of, or the day following the observation. The black solid 1:1 line is equivalent to perfect agreement between the simulated and observed values; the grey dotted lines represent a deviation equivalent to one-order of magnitude.

4.3.4. Comparison of model performance under "free-phase" vs. "sediment-attached" scenario

To compare the performance of the two calibrated and validated scenarios, a third simulation period was subsequently explored (1/1/2009 - 12/31/2010). Performance was evaluated solely on the basis of agreement with *E. coli* concentrations in the water column in keeping with regulatory standards used to designate impairments. Under the "free-phase" scenario, 100% simulated instream *E. coli* concentrations were within one order magnitude of the observed values, with a mean difference of 0.25 logs for the upstream reach segment (R3, Fig. 4-6a) and 0.34 logs for the downstream reach segment (R1, Fig. 4-6b). Under the "sediment-attached" scenario, the percentage of simulated in-stream *E. coli* concentrations within one order magnitude of the observed values.

observed values was 92% for R3 and 100% for R1, with mean differences of 0.34 and 0.49 logs for R3 (Fig. 4-6a) and R1 (Fig. 4-6b) respectively.

Figure 4-6. Simulated versus observed *E. coli* concentrations under "free-phase" scenario (circle symbols) and "sediment-attached" scenario (cross symbols) during the simulation period for R3 (a) and R1 (b). A three-day window approach was used to select the best modeling results from the day before, the day of, or the day following the observation. The black solid 1:1 line is equivalent to perfect agreement between the simulated and observed values; the grey dotted lines represent a deviation equivalent to one-order of magnitude.

4.4. Discussion

Outputs from watershed-scale hydrologic models used to predict FIB concentrations are associated with considerable uncertainty. Consequently, unlike nutrient or sediment concentrations, a prediction within one-order of magnitude of an observed value is generally considered acceptable. Regardless of "free-phase" or "sediment-attached" scenario, better performance, as measured by the percent predicted values within one-order of magnitude of observed values, was demonstrated in this study (90-100%) as compared to previous reported efforts (70-90%) (Dorner et al., 2006, Russo et al., 2011). The relatively large observational dataset for multiple calibration sites in this study likely contributed to these improvements.

In keeping with previous work by Russo et al. (2011), inclusion of a "sediment-attached" module in HSPF did not appear to appreciably change model outputs or overall performance, despite the availability of *E. coli* concentrations in the streambed sediment for calibration. Any observed differences were essentially negligible, given the considerable variation associated with any bacteria monitoring regime (McCarthy et al., 2008). Both the stream targeted by Russo et al. (2011) and this study's Stroubles Creek are situated within urbanized watersheds with steep slopes (average slope in the present study: 12%), and prone to a "first flush" of overland contaminant loadings. Therefore, the wet-weather loading from the upstream watershed sources likely outweight the impacts of release and resuspension from sediments on in-stream FIB concentration simulations, as demonstrated in the study of Ghimire and Deng (2013). More substantial impacts of the sediment on in-stream FIB concentration simulations would be expected at sites with gentle slope and low flow (e.g., a lake, or near a beach shore) (Thupaki et al., 2013).

One of the biggest advantages in this study was the inclusion of weekly observed *E. coli* concentrations in the bed sediments for model calibration. This represents a first attempt to use sediment *E. coli* concentrations to calibrate the HSPF model, although Kim et al. (2010) calibrated the modified SWAT using less frequently observed *E. coli* concentrations in the bed sediments (i.e. 25 observations over two years as opposed to 50 observations in one year in this study). Theoretically, and based on previous field evidence of bacterial resuspension, the magnitude of *E. coli* resuspended during high flows will be directly affected by the amount of *E. coli* available in the bed sediments, rendering calibration efforts on stream bed sediment *E. coli* concentrations of substantial importance to the reduction of model uncertainty. The negligible influence observed in this study could partly due to the dominance of wet-weather flow loadings, but also due to the

inability of HSPF to account for the heterogeneous distribution of *E. coli* in the stream bed sediment. Previous studies have suggested streambed *E. coli* concentrations can vary substantially with both depth and longitudinal distance (Bai and Lung, 2005, Kim et al., 2010, Badgley et al., 2011). While more detailed datasets for calibration are generally considered ideal, given the substantial labor and cost associated with *E. coli* monitoring as well as the added complexity of including sediment-calibration in model parameterization, it is worth considering whether these efforts are justifiable given the current realities of model development and practice. For lumped-parameter, watershed-scale models like HSPF, high-resolution data may not provide improvement, as modeled data inevitably represent the overall average of a reach segment, and are compared to averages over a substantial length of time (e.g. a three day window).

Ironically, although wet-weather loading eventually is generally identified as a primary source of microbial loading in developing watershed remediation plans (Gaffield et al., 2003), dry-weather periods may be more significant when considering public health risk, as these represent times when humans are more likely to engage in recreational use. Dry-weather periods may also prove to be the period of time when accurate model predictions of sediment release of bacteria reservoirs are most critical, as they would be expected to produce a much greater relative increase as compared to low base-flow concentrations of bacteria in an urbanized watershed. Future efforts to improve model accuracy through the incorporation of bacteria-sediment interactions are urged to examine dry-weather periods associated with public use patterns (e.g. summer) at a much finer time-scale (e.g. daily outputs) in order to identify conditions most likely to result in community health impacts and restrictions in appropriate designated uses.

4.5. Conclusion

Although considerable past research indicates that microbes are present in both a "free" and "sediment-attached" phase, there appears to be little demonstrable benefit, in terms of overall model performance, to the inclusion of separate phases in existing watershed-scale hydrologic models, even provided sediment-specific monitoring data to assist in parameterization. Limits in underlying model design (e.g. inability to account for spatial heterogeneity in reach sediments) and analytical uncertainties associated with microbial monitoring may limit model response. As wet weather loadings inevitably dominate calculations of in-stream FIB concentrations, given present model detail, the calculation of FIB load reductions associated with TMDL implementation plans will likely never be primarily attributed to the resuspension of sediment stores of FIB in urban watersheds. Careful consideration of site characteristics and intended applications (e.g. quantification of necessary overall load reductions versus identification of key periods of public risk) are key to determining whether the additional model complexity and effort associated with explicitly partitioning phases of microorganisms is sufficiently offset by gains in predictive capacity.

Acknowledgements

The authors would like to acknowledge the Virginia Tech Institute for Critical Technology and Applied Science (ICTAS), College of Agriculture and Life Science (CALS), and the US National Science Foundation-Research Experiences for Undergraduates (NSF-REU) for providing funding for this project. The authors would also wish to thank Laura T. Lehmann, Mary Dail, and Choung Hyun Seong for providing monitoring data and assistance during this project.

References

- Abel, S.M. 2012. Near boundary turbulence characteristics among stream restorations of varying intensity. Master's thesis, West Virginia University, Morgantown, West Virginia, USA.
- An, Y.-J., D.H. Kampbell and G. Peter Breidenbach. 2002. Escherichia coli and total coliforms in water and sediments at lake marinas. Environ. Pollut. 120: 771-778.
- Badgley, B.D., F.I.M. Thomas and V.J. Harwood. 2011. Quantifying environmental reservoirs of fecal indicator bacteria associated with sediment and submerged aquatic vegetation. Environ. Microbiol. 13: 932-942. doi:10.1111/j.1462-2920.2010.02397.x.
- Bai, S. and W.S. Lung. 2005. Modeling sediment impact on the transport of fecal bacteria. Water Res. 39: 5232-5240. doi:10.1016/j.watres.2005.10.013.
- Benham, B., C. Baffaut, R.W. Zeckoski, K.R. Mankin, Y.A. Pachepsky, A.M. Sadeghi, et al. 2006. Modeling bacteria fate and transport in watersheds to support TMDLs. Trans. ASABE 49: 987-1002.
- Benham, B., L.A. Krometis, G. Yagow, K. Kline and T. Dillaha. 2011. Applications of microbial source tracking in the TMDL process. In: C. Hagedorn, A. R. Blanch and V. J. Harwood, editors, Microbial source tracking: methods, applications, and case studies. Springer Science+Business Media, LLC, 233 Springer Street, New York, NY 10013, USA. p. 313-335.
- Bicknell, B., J. Imhoff, J. Kittle Jr, T. Jobes and A. Donigian Jr. 2005. HSPF version 12.2 user's manual. Athens, Georgia. http://water.epa.gov/scitech/datait/models/basins/bsnsdocs.cfm#hspf (accessed 16 Mar. 2015).
- Birkeland, S. 2001. EPA's TMDL Program Ecology L. Q. 28: 297-325.
- Buckley, R., E. Clough, W. Warnken and C. Wild. 1998. Coliform bacteria in streambed sediments in a subtropical rainforest conservation reserve. Water Res. 32: 1852-1856.
- Characklis, G.W., M.J. Dilts, O.D. Simmons, C.A. Likirdopulos, L.-A.H. Krometis and M.D. Sobsey. 2005. Microbial partitioning to settleable particles in stormwater. Water Res. 39: 1773-1782. doi:10.1016/j.watres.2005.03.004.
- Cho, K.H., Y. Pachepsky, J.H. Kim, A. Guber, D. Shelton and R. Rowland. 2010. Release of Escherichia coli from the bottom sediment in a first-order creek: Experiment and reachspecific modeling. J. Hydrol. 391: 322-332. doi:10.1016/j.jhydrol.2010.07.033.
- Collier, S., L. Stockman, L. Hicks, L. Garrison, F. Zhou and M. Beach. 2012. Direct healthcare costs of selected diseases primarily or partially transmitted by water. Epidemiol. Infect. 140: 2003-2013. doi:10.1017/S0950268811002858.
- Dorner, S.M., W.B. Anderson, R.M. Slawson, N. Kouwen and P.M. Huck. 2006. Hydrologic modeling of pathogen fate and transport. Environ. Sci. Tech. 40: 4746-4753. doi:10.1021/es060426z.

- Droppo, I., B. Krishnappan, S. Liss, C. Marvin and J. Biberhofer. 2011. Modelling sedimentmicrobial dynamics in the South Nation River, Ontario, Canada: Towards the prediction of aquatic and human health risk. Water Res. 45: 3797-3809. doi:10.1021/es060426z.
- Droppo, I.G., S.N. Liss, D. Williams, T. Nelson, C. Jaskot and B. Trapp. 2009. Dynamic existence of waterborne pathogens within river sediment compartments. Implications for water quality regulatory affairs. Environ. Sci. Tech. 43: 1737-1743. doi:10.1021/es802321w.
- Ferguson, C., A.M. de Roda Husman, N. Altavilla, D. Deere and N. Ashbolt. 2003. Fate and transport of surface water pathogens in watersheds. Crit. Rev. Environ. Sci. Tech. 33: 1-35.
- Gaffield, S.J., L.A. Richards and R.J. Jackson. 2003. Public health effects of inadequately managed stormwater runoff. Am. J. Public Health 93: 1527-1533.
- Garzio-Hadzick, A., D. Shelton, R. Hill, Y. Pachepsky, A. Guber and R. Rowland. 2010. Survival of manure-borne E. coli in streambed sediment: Effects of temperature and sediment properties. Water Res. 44: 2753-2762. doi:10.1016/j.watres.2010.02.011.
- Ghimire, B. and Z. Deng. 2013. Hydrograph-based approach to modeling bacterial fate and transport in rivers. Water Res. 47: 1329-1343. doi:10.1016/j.watres.2012.11.051.
- Guanghai, G., F. Roger A and L. Binliang. 2011. Numerical modelling sediment-bacteria interaction processes in the Severn Estuary. J. Water Resource Prot. 2011. doi:10.4236/jwarp.2011.31003.
- Jamieson, R., R. Gordon, D. Joy and H. Lee. 2004. Assessing microbial pollution of rural surface waters: A review of current watershed scale modeling approaches. Agricult. Water Manag. 70: 1-17. doi:10.1016/j.agwat.2004.05.006.
- Jamieson, R., D. Joy, H. Lee, R. Kostaschuk and R. Gordon. 2004. Persistence of enteric bacteria in alluvial streams. J. Environ. Eng. Sci. 3: 203-212. doi:10.1139/s04-001.
- Jamieson, R.C., D.M. Joy, H. Lee, R. Kostaschuk and R.J. Gordon. 2005. Resuspension of sediment-associated Escherichia coli in a natural stream. J. Environ. Qual. 34: 581-589.
- Kim, J.W., Y.A. Pachepsky, D.R. Shelton and C. Coppock. 2010. Effect of streambed bacteria release on E.coli concentrations: Monitoring and modeling with the modified SWAT. Ecol. Model. 221: 1592-1604. doi:10.1016/j.ecolmodel.2010.03.005.
- Liao, H., L.-A. Krometis, W.C. Hession, L. House, K. Kline and B. Badgley. 2014. Hydrometeorological and physicochemical drivers of fecal indicator bacteria in an urban stream bottom sediments. J. Environ. Qual. 43: 2034-2043. doi:10.2134/jeq2014.06.0255.
- McCarthy, D., A. Deletic, V. Mitchell, T. Fletcher and C. Diaper. 2008. Uncertainties in stormwater E. coli levels. Water Res. 42: 1812-1824. doi:10.1016/j.watres.2007.11.009.
- Moriasi, D., J. Arnold, M. Van Liew, R. Bingner, R. Harmel and T. Veith. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50: 885-900.
- Novotny, V. 2003. Water quality: Diffuse pollution and watershed management. 2 ed. John Wiley & Sons, Inc., New York.

- NRC. 2001. Assessing the TMDL approach to water quality management. National Academy Press, Washington, DC. p. 1-109.
- NRCS. 2014. National Engineering Handbook: Part 630 Hydrology. http://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/water/?cid=stelprdb1043063 (accessed 10 Aug. 2014).
- Pandey, P.K., M.L. Soupir and C.R. Rehmann. 2012. A model to predict resuspension of E. coli from streambed sediments. Water Res. 46: 115-126. doi:10.1016/j.watres.2011.10.019.
- Rehmann, C.R. and M.L. Soupir. 2009. Importance of interactions between the water column and the sediment for microbial concentrations in streams. Water Res. 43: 4579-4589. doi:10.1016/j.watres.2009.06.049.
- Russo, S.A., J. Hunn and G.W. Characklis. 2011. Considering bacteria-sediment associations in microbial fate and transport modeling. J. Environ. Eng. 137: 697-705.
- Seong, C., Y. Her and B.L. Benham. 2015. Automatic calibration tool for Hydrologic Simulation Program-FORTRAN using a shuffled complex evolution algorithm. Water 7: 503-527. doi:10.3390/w7020503.
- Tetra Tech 2009. Final Roanoke River PCB TMDL development (Virginia). http://www.deq.virginia.gov/portals/0/DEQ/Water/TMDL/apptmdls/roankrvr/roanokepcb .pdf (accessed 16 Mar. 2015).
- Thompson, T.W., W.C. Hession and D. Scott. 2012. StREAM Lab at Virgnia Tech. Resources: 8-9.
- Thupaki, P., M.S. Phanikumar, D.J. Schwab, M.B. Nevers and R.L. Whitman. 2013. Evaluating the role of sediment- bacteria interactions on Escherichia coli concentrations at beaches in southern Lake Michigan. J. Geophys. Res.-Oceans 118: 7049-7065. doi:10.1002/2013JC008919.
- USEPA. 2000. EPA Basins Technical Note 6: Estimating Hydrology and Hydraulic Parameters for HSPF. Office of Water. http://water.epa.gov/scitech/datait/models/basins/upload/2000_08_14_BASINS_tecnote6. pdf (accessed 16 Mar. 2015).
- USEPA. 2006. EPA BASINS Technical Note 8: Sediment Paramter and Calibration Guidance for HSPF. Office of Water. http://water.epa.gov/scitech/datait/models/basins/upload/2006_02_02_BASINS_tecnote8. pdf (accessed 16 Mar. 2015).
- USEPA. 2010. Chesapeake Bay TMDL. http://www.epa.gov/reg3wapd/tmdl/ChesapeakeBay/tmdlexec.html (accessed 10 Mar. 2015)
- USEPA. 2015. National summary of impaired waters and TMDL information. http://iaspub.epa.gov/waters10/attains_nation_cy.control?p_report_type=T#causes_303d (accessed 20 Feb. 2015)
- VADEQ. 2003. HSPF model calibration and verification for bacteria TMDLs. http://www.deq.virginia.gov/Portals/0/DEQ/Water/Guidance/032012.pdf (accessed 16 Mar. 2015).

- VADEQ. 2015. Draft 2014 305(b)/303(d) water quality assessment integrated report. Richmond, VA.: Virginia Department of Environmental Quality. http://www.deq.virginia.gov/Programs/Water/WaterQualityInformationTMDLs/WaterQu alityAssessments/2014305(b)303(d)IntegratedReport.aspx (accessed 16 Feb. 2015)
- VADEQ and VADCR. 2003. Benthic TMDL for Stroubles Creek in Montgomery County, Virginia. http://www.deq.virginia.gov/portals/0/DEQ/Water/TMDL/apptmdls/newrvr/stroub.pdf (accessed 16 Mar. 2015).
- VADEQ and VADCR. 2006. Upper Stroubles Creek Watershed TMDL Implementation Plan, Montgomery County, Virginia. http://www.deq.virginia.gov/Portals/0/DEQ/Water/TMDL/ImplementationPlans/stroubip. pdf (accessed 16 Mar. 2015).
- Zeckoski, R., B. Benham, S. Shah, M. Wolfe, K. Brannan, M. Al-Smadi, et al. 2005. BSLC: A tool for bacteria source characterization for watershed management. Appl. Eng. Agric. 21: 879-892.

Chapter 5. Human health risk estimation by coupling a continuous watershed-scale microbial fate and transport model with a stochastic model

A research article in preparation for submission to Risk Analysis:

Hehuan Liao, Leigh-Anne Krometis. Human health risk estimation by coupling a continuous watershed-scale microbial fate and transport model with a stochastic model. Risk Anal.

Abstract

Pathogen contamination indicated by elevated levels of fecal indicator bacteria (FIB) is the leading cause of surface water-quality impairments in the United States. The sufficiency of numerical compliance with FIB-based criteria as the endpoint of the existing watershed-specific Total Maximum Daily Load (TMDL) restoration plans is questioned by recent findings demonstrating poor correlations between FIB levels and the presence of actual human pathogens. Human illness risks associated with impaired surface waters have been estimated via a Quantitative Microbial Risk Analysis (QMRA) framework, but to date have focused on hypothetic watersheds and/or single events. This study is unique in that human illness risks were estimated within a QMRA framework by coupling a continuous watershed-scale fate and transport model (Hydrological Simulation Program – Fortran, or HSPF) with a stochastic dose-response model based on the USEPA "reference pathogens" approach. As HSPF is commonly used to assess watershed-level contaminant loads and reductions necessary to meet TMDL goals, this strategy could be readily incorporated into the TMDL process, providing greater clarity to stakeholders and watershed managers and potentially facilitating the development of more effective remediation efforts. QMRA results in our study watershed indicate that total human illness risks were consistently higher than the benchmark illness risk, even when the levels of FIB were in compliance. FIB from human sources was associated with the greatest illness risk relative to observations of concentration, and can increase dramatically during the occurrence of sanitary sewer overflows. Given recent research indicating sewer leakage are ubiquitous in urban areas that are not typically accounted for in the development of TMDLs, this is a particular concern, even in watersheds with separate storm and sewer systems. Uncertainty analysis indicated that more detailed site-specific

knowledge of pathogen presence and densities in each source was most likely to improve the accuracy of illness risk estimates.

5.1. Introduction

Pathogen contamination is the leading cause (14%) of surface water-quality impairments (USEPA, 2015), representing over 40,000 hospitalizations at a cost of \$970 million annually in the United States (Collier et al., 2012). Identified water impairments are primarily addressed through the development of basin-specific Total Maximum Daily Load (TMDL) restoration plans in accordance with the 1972 Clean Water Act's sections 303(d) and 305(b) (USEPA, 2015). During the TMDL processes, levels of fecal indicator bacteria ("FIB", e.g. E. coli and enterococci) are used to assess potential human health risks based on the assumption that FIB behave similarly to pathogenic organisms with respect to incidence, fate, and transport in the environment (Yates, 2007). Although TMDL development requires extensive hydrodynamics modeling of FIB concentrations over time, it is important to note that total (i.e. not source-specific) FIB concentration is predicted, and numerical compliance with relevant criteria remains the desired TMDL endpoint. The sufficiency of numerical compliance with FIB-based criteria has been questioned by several recent efforts that demonstrate: 1) poor correlation between FIB levels and pathogens/associated risks of human illness (Field and Samadpour, 2007, Wu et al., 2011, Harwood et al., 2014); 2) considerable differences between patterns of contamination in inland and surface waters, which renders broad application of standards developed based on epidemiology studies at sewage-impacted coastal sites less appropriate (Wade et al., 2003, Dorevitch et al., 2010); and 3) substantial variation in risks associated with FIB exposure between

sources (e.g. human vs. animal) (Schoen and Ashbolt, 2010, Soller et al., 2010, USEPA, 2010, Benham et al., 2011, Soller et al., 2014). Given the limited resources available, it is critical to prioritize remediation efforts through proper assessment of contamination levels and associated human health risks.

In response to these concerns, several recent studies have surveyed target surface waters directly for pathogens, in order to estimate human illness risks within a quantitative microbial risk analysis (QMRA) framework (McBride et al., 2013, Ishii et al., 2014, Sales-Ortells and Medema, 2014). QMRA is a mathematical strategy that can link environmental exposure to illness risk via epidemiological relationships (Haas et al., 2014). Give the time and expense associated with direct pathogen monitoring at the present time, and the number of waters that require protection, USEPA (2010) has proposed a "reference pathogens" approach to QMRA: a set of eight reference pathogens were established including Norovirus, Rotavirus, Adenovirus, Cryptosporidium spp., Giardia lamblia, Campylobacter spp., Salmonella, and E. coli O157:H7. These reference pathogens are generally considered representative of the fate and transport of other waterborne pathogens of concern, and have relatively established dose-response relationships based on extensive review of the scientific literature. This strategy has been applied to investigations of gastrointestinal illness (GI) risks posed by human recreational contact with a variety of waterbodies impacted by both human and animal sources. However, in all cases QMRA was conducted based on exposure during a limited period of time, i.e. there have been no attempts previously to apply this strategy over temporal or climatic changes in water-quality. While this is appropriate to short-term surface water management decisions (e.g. beach closures), long-term watershed remediation efforts (e.g. TMDLs) generally consider compliance and risk over multiple

years in conjunction with deterministic watershed models to determine appropriate interventions and societal investments.

The aim of this present study was to quantitatively estimate human health risk from exposure to waterborne pathogens by coupling an existing watershed-scale model widely used in TMDL development with a stochastic model via the reference pathogens approach in order to identify potential discrepancies in FIB levels and GI illness risks. It was hypothesized that because risk has proven highly source-dependent in previous studies (Schoen and Ashbolt, 2010, Soller et al., 2010, USEPA, 2010), periods of highest human health risk may not always coincide with periods of highest total FIB concentration. The specific objectives were to: 1) partition the simulated waterbody *E. coli* concentrations among major watershed sources with the HSPF model; 2) estimate pathogen human doses of pathogens by source; 3) quantify source-specific and total human illness risks over multiple years; and 4) compare violations of *E. coli*-based criteria and equivalent illness rate.

5.2. Methods

5.2.1. Study area

The study targets the 31-km² upper Stroubles Creek watershed within the Ridge and Valley ecoregion of Virginia, USA, which has been described extensively in previous work (Thompson et al, 2012, Liao et al., 2014). An 11-km segment of the Stroubles Creek is currently included on the 303(d) list of impaired waters due to violation of Virginia *E. coli* standards (SWCB, 2010), with a related TMDL to reduce *E. coli* levels required (VADEQ, 2015a). Official potential pollutant sources of concern include discharges from municipal separate storm sewer systems

(MS4), pet wastes, livestock (grazing or feeding operations), wet weather discharges, municipal (urbanized high density area), wildlife other than waterfowl, and other unspecified domestic waste (VADEQ, 2015a).

5.2.2. Modeling source-specific *E. coli* concentrations

Daily waterbody *E. coli* concentration outputs from a continuous watershed-scale model (Hydrologic Simulation Program – Fortran, or HSPF) for the entire period of 1/1/2010-12/31/2014 (see Chapter 4 and Appendix C for model details) were partitioned into four major pollutant sources: wildlife (duck and geese); livestock (cattle); domestic pets (dog), and human (failing septics and sanitary sewer overflows). Major pollutant watershed sources of concern were selected based on presence in this watershed and the availability of literature data for subsequent risk calculations. Other potential sources (e.g. raccoons, muskrats, deer, or pig slurry, etc.) were assumed to have negligible effects on the overall illness risk of the watershed (USEPA, 2010). Source-specific *E. coli* concentrations were obtained from HSPF by eliminating contributions from the other sources during each run (see Appendix C for detailed model modifications).

5.2.3. Quantitative microbial risk analysis (QMRA)

In order to link these source-specific outputs with risk via QMRA, a stochastic model (Fig. 5-1) was constructed in Analytica Professional Version 4.5.3 (Lumina Decision Systems, Inc., Los Gatos, CA, USA). A Monte Carlo simulation approach was used to capture the natural variability of the model input parameters, with 10,000 iterations per run. Median values from each of the 10,000 iterations were entered into R version 3.1.1 (R Development Core Team, 2013) for calculating and plotting the monthly median-GI illness risks. The importance analysis feature in

Analytica was used to identify which inputs contributed the most uncertainty to the estimation of illness risks, which is evaluated based on the absolute rank-order correlation between each input sample and output sample.

Figure 5-1. Stochastic model construction in Analytica: (a) example module for illness risk from cattle; (b) overall model for total illness risk calculation

5.2.3.1. Selection of reference pathogens

Reference pathogens were selected based on recommendations from USEPA (2010) and potential pollutant sources in this specific watershed. Six reference pathogens were included in this study: *Campylobacter jejuni*, *E. coli* O157:H7, *Cryptosporidium* spp., *Giardia lambia*, *Salmonella enterica*, and *norovirus*.

5.2.3.2. Estimation of source-specific pathogen doses

The dose of each reference pathogen from each source was estimated as a function of sourcespecific FIB densities in the water as detailed in Eq. 5-1, which is a method similar to those used in previous QMRA studies of surface water (Schoen and Ashbolt, 2010, Soller et al., 2010, USEPA, 2010).

$$\mu_{rp}^{S} = \frac{c_{FIB}}{100} \times \frac{R_{rp}^{S}}{F_{FIB}^{S}} \times p_{rp}^{S} \times I_{rp}^{S} \times V$$
(5-1)

where S is the FIB source (i.e. livestock, human, dog, and bird), μ_{rp}^{S} is the dose of each reference pathogen from each source (CFU or oocysts), c_{FIB} is the concentration of FIB in water body (CFU 100mL⁻¹), R_{rp}^{S} is the density of reference pathogen in source feces (CFU or oocysts g⁻¹), F_{FIB}^{S} is the density of FIB in source feces (CFU g⁻¹), p_{rp}^{S} is the fraction of human-infectious pathogenic strains from source S, I_{rp}^{S} is the prevalence of infection in the non-human source (proportion of animals shedding the pathogen), and V is the volume of water ingested (mL).

The reference pathogens corresponding to cattle and human sources and their associated parameters for dose estimation were in keeping with previously published studies (Schoen and Ashbolt, 2010, Soller et al., 2010, USEPA, 2010). However, two additional sources not previously targeted were identified as critical for Stroubles Creek: wildlife (geese and duck), and dog feces. *Campylobacter jejuni* was selected as a reference pathogen for wild waterfowl and dog, as previous studies have suggested a high background prevalence of this pathogen in these animals (Fallacara et al., 2001, Roser et al., 2006, Ogden et al., 2009, Colles et al., 2011, Moriarty et al., 2011). In

addition, *Campylobacter jejuni* is a well-established zoonotic organism that has received considerable recent concern (Murphy et al., 2005, Moriarty et al., 2012). The values of each of the model input parameters in Eq. 5-1 are summarized in Table 5-1. The volume of water ingested was modeled as a log-normal distribution (median: 2.92, geometric standard deviation: 1.43) following previous studies (Dufour et al., 2006, Schoen and Ashbolt, 2010, Soller et al., 2010). When calculating dose of cattle manure, a 30-day storage time was applied following the similar method as described in Soller et al. (2014). The die-off rates (k, d⁻¹) used were 0.05 for *E. coli* in cattle manure (Soupir et al., 2008), 0.1 for *Salmonella* and *Campylobacter* (USEPA, 2010), and 0.07 for *E. coli* O157:H7 (USEPA, 2010).

c _{FIB}	F ^S _{FIB}	Reference Pathogen	R_{rp}^{S}	p_{rp}^{S}	I_{rp}^{S}	Reference(s)
	(log ₁₀ range, CFU/g)		(log ₁₀ range, Pathogens/g)			
HSPF	5.0 - 6.7	Campylobacter jejuni	1.2-7.3	67%-100%	5-38%	(Soller et al., 2010)
output		<i>E. coli</i> O157:H7	3.1-8.4	67%-100%	9.7-28%	
(cattle)		Cryptosporidium spp.	2.3-3.9	67%-100%	0.6-23%	
		Giardia lamblia	0-4.9	67%-100%	0.2-37%	
		Salmonella enterica	3-5.8	33-66%	5-18%	
HSFP	2.5-8.5	Campylobacter jejuni		33-66%		(Ogden et al., 2009,
output			1.7-6		13.4-38.3%	Meerburg et al.,
(duck)						2011, Moriarty et
· · · ·						al., 2011)
HSPF	2.0-8.1	Campylobacter jejuni	2-5.6	33-66%	14.7-35.5%	(Ogden et al., 2009,
output		17 55				Meerburg et al.
(geese)						2011. Moriarty et
(0)						al., 2011)
HSPF	6.9-8.1 ^a	Campylobacter jejuni	3-6	33-66%	0-46%	(Cox et al., 2005,
output	(EC: 6.3,					Ogden et al., 2009,
(dog)	7.4)					Chaban et al., 2010)
HSPF	6.7-8.0	Norovirus	3-6	100%	100%	(Soller et al., 2010)
output						
(human)						

Table 5-1. Summary of input	parameters to calculate dose.
------------------------------------	-------------------------------

Note values shown are minimum and maximum of log10-uniform distributions unless otherwise specified (e.g. 5.0 corresponds to $10^{5.0}$)

a. Values represented fecal coliform densities in dog feces, which were converted to *E. coli* densities for dose estimation via the USEPA recommended equation: *E. coli* = 0.98814866° (Fecal coliform^{0.91905}).

5.2.3.3. Converting dose to risk of GI illness

The infection probability for a healthy adult resulting from accidental ingestion of impaired recreational water was calculated by feeding the pathogen doses to corresponding dose-response relationships from the literature (Table 5-2). Subsequently, the risk of GI illness (conditional on infection) for each pathogen from source S (P_{ill}^{RP}) was calculated by multiplying the probability of infection and the morbidity data from the literature (Table 5-2). The distribution of GI illness risk from each source (P_{ill}^{S}) and the total GI illness risk (P_{ill}) were calculated using Eq. 5-2 and Eq. 5-3, respectively.

$$P_{ill}^{S} = 1 - \prod_{RP} (1 - P_{ill}^{RP})$$
(5-2)

$$P_{\rm ill} = 1 - \prod_{\rm S} (1 - P_{\rm ill}^{\rm S})$$
(5-3)

Does-response model	Reference pathogen	Parameter values	ID50ª	Morbidity ^b	References
Exponential	Cryptosporidium spp.	$\gamma = 0.09$	8 oocysts	50%	
$P_{inf} = 1 - e^{-rd}$	Giardia lamblia	γ =0.0199	35 cysts	45%	(Soller et al., 2010, USEPA,
Beta-Poisson P _{inf}	Salmonella enterica	$\begin{array}{l} \alpha = 0.3126\\ \beta = 2884 \end{array}$	23600 cfu	20%	2010, Soller et al., 2014)
$= 1 - (1 + d/\beta)^{-\alpha}$	<i>E. coli</i> O157:H7	$\alpha = 0.248$ $\beta = 48.8$	207 cfu	28%	
	Campylobacter jejuni	$\begin{array}{l} \alpha = 0.145\\ \beta = 7.59 \end{array}$	800 cfu	28%	
Hypergeometric P_{inf} $= 1 - {}_{1}F_{1} (\alpha, \alpha + \beta, -d)$	Norovirus	$\alpha = 0.04$ $\beta = 0.055$	1018 genome copies	60%	

Table 5-2. Dose-response relationships.

a Median infectious doses; the dose that will infect 50% of exposed individuals. For exponential model, $ID_{50} = -\ln(\frac{1}{2})/r \approx 0.693/r$; For Beta-Poisson model, $ID_{50} \approx \beta(2^{1/\alpha} - 1)$; For hypergeometric model, ID50 must be obtained by finding the value of the average dose (d) satisfying the exact relationship: $P_{inf} = 1 - {}_{1}F_{1}(\alpha, \alpha + \beta, -d) = \frac{1}{2}$, where ${}_{1}F_{1}$ is the confluent hypergeometric function.

b Percentage of infections resulting in illness

5.3. Results and discussion

5.3.1. Comparing monthly geometric means of *E. coli* concentrations with associated GI illness risks

The monthly geometric means of daily waterbody E. coli concentrations were compared to the existing E. coli geometric mean Recreational Water-Quality Criteria (RWQC) of 126 CFU/100 mL (Fig. 5-2a). Overall, consistent standard violations occurred over the course of study period (85.4% of time). The largest source of waterbody E. coli concentrations was geese/duck, followed by livestock and dog. Contributions from human sources was consistently lowest, which is not surprising giving that the watershed has separate storm and sewer systems. For model input, an average rate of 5% of failing septic systems was applied to the houses that do not connect to sewer, which represent only 2.7% of all houses within the watershed. In addition, only 10 sanitary sewer overflows were reported over the four years (VADEQ, 2015b) that were input into the model as point sources. However, it is worth noting that contributions of E. coli from human sources may be an underestimate, as our previous study suggested high levels of molecular markers from human sources (see Chapter 3). This may reflect a common problem in the development of TMDLs at urban watersheds, where human sources are typically evaluated using a standard estimated number of straight pipes, failing septic systems, and reported sanitary sewer overflows only. Based on several recent studies (Sercu et al., 2008, Sauer et al., 2011), molecular markers indicating sewer leakage are ubiquitous in urban areas due to aging infrastructure. Quantifying source origins is critical to estimating illness.

Median monthly GI illness risks exceeded the RWQC equivalent illness risk (36/1000) for the entire study period, even when the levels of *E. coli* were in compliance (Fig. 5-2). GI illness risks associated with duck and geese contributions dominated the overall GI illness risks for the majority of the study period. It is worth noting that although the monthly geometric means of human-specific *E. coli* concentrations remained very low (Fig. 5-2a), reported sanitary sewer overflows dramatically increased risk of GI illness, at times by over two orders of magnitude (Fig. 5-2b). This is in agreement with previous studies that demonstrated higher illness risks for pathogens from human sources as compared to other sources under hypothetic conditions (Soller et al., 2010). Therefore, given the possibility of systematic underestimation of *E. coli* concentration from human sources in the Stroubles Creek watershed (see Chapter 3), the actual illness risks might be higher. Although primary contact and direct ingestion of water in this stream is unlikely given a water depth ranging from 13 cm to 33.5 cm during baseflow conditions (Abel, 2012), minimizing health risks is important to protecting downstream discharges into the New River, which is a regional source of drinking water and home to a variety of recreation activities (Parece et al., 2010).

Figure 5-2. Contribution of *E. coli* concentrations and associated illness risk from each source. (a) Monthly geometric mean of *E. coli* concentrations and a comparison with the current geometric mean recreational water-quality criteria (RWQC) of 126 CFU/100mL *E. coli*; (b) median illness risks per month and a comparison with the current RWQC equivalent illness risk of 36/1000 (the median values from the 10,000 Monte Carlo simulations for each day were output to estimate the monthly illness risk via $1 - \prod_{month} (1 - P_{ill})$).

5.3.2. Importance and sensitivity analysis of stochastic input variables

In order to identify the parameters that are the primary contributors to the uncertainty in illness risk estimates, the importance of each variable is determined in Analytica by calculating the absolute rank-order correlation between each stochastic input variable and the resulting illness risk. This methodology is advantageous in that it is less sensitive to outliers and skewed distributions, and it works well even there are strong interactions between input variables (Lumina, 2014). Variables in the study model that have absolute rank-order correlation coefficient (r) greater than 0.5 were considered to have a significant impact on the estimation of illness risks (Lumina, 2014), and were summarized in Table 5-3. The sensitivity of each important variable was evaluated

by calculating the percent changes in illness risks associated with 1% increase in the important variables.

Source	Important variables (r>0.5)	Sensitivity (mean±sd ^a)
Duck and geese	Density of E. coli in duck feces	-0.27 ± 0.032
	Density of <i>E. coli</i> in geese feces	-0.31 ± 0.014
	Density of pathogen in duck feces	0.27 ± 0.032
	Density of pathogen in geese feces	0.31 ± 0.014
Human	Density of pathogen in sewage	1.00 ± 0.009
Dog	Density of pathogen in dog feces	1.00 ± 0.004
Cattle manure	Density of E. coli in cattle manure	-1.00 ± 0.002

Table 5-3. Summary of importance and sensitivity of stochastic input variables

^asd: standard deviation

The densities of *E. coli* and/or specific reference pathogens in the source feces were identified as of greatest importance to estimates of human illness risks (Table 5-3). Given the time and expense associated with establishment of a watershed-specific pathogen profile, densities of FIB and reference pathogens in source feces were typically assumed to follow log10-uniform distributions to account for the relatively wide range of possibilities reported in the literature in previous QMRA studies (Schoen and Ashbolt, 2010, Soller et al., 2010, USEPA, 2010, Soller et al., 2014). The variations of other input parameters were relatively smaller (Table 5-1). Consequently, given a certain percentage of change in input parameters, a greater change in illness risks would be expected to associate with *E. coli* and/or reference pathogens densities. As these parameters have also been identified as important in previous QMRA studies (Schoen and Ashbolt, 2010, USEPA, 2010), future research targeting improved quantification of these identified variables at specific sites would be critical to improve the accuracy of associated illness risk estimates.

5.4. Conclusion: risk management implications for urban watersheds

While previous studies have applied QMRA to estimate human health risks under idealized conditions (e.g. a hypothetical watershed with fixed sources of pollution, or a single time points, etc.), this present study is unique in that human health risks were estimated for a real urban watershed over a four-year period. By coupling a continuous watershed-scale microbial fate and transport model frequently used in existing TMDL processes with a study-specific stochastic model, a framework was provided to translate concentrations of *E. coli* (the existing TMDL targeted endpoint) into human illness risks, which can provide greater clarity to stakeholders and the general public, and perhaps direct more effective remediation strategies.

As observed in several previous studies, *E. coli* from human sources was associated with the greatest illness risk relative to observations of concentration, and can increase dramatically during sanitary sewer overflows. Giving that recent source-tracking studies, including Chapter 3 of this dissertation, indicate that human sewage inputs to urban watersheds may be systematically underestimated due to widespread infrastructure leakage not typically accounted for in model development strategies, caution should be taken to accurately characterize fecal contamination from human sources during TMDL assessments.

The biggest source of fecal contaminants and illness risks found in this study is from duck and geese feces, which has not commonly been included in previous QMRA studies. Even following five years of watershed implementation of various best management practices (BMPs, e.g. stream fencing, dog waste pick up stations, and bioretention cells) to address a benthic impairment of Stroubles Creek, high levels of *E. coli* are consistently detected (Liao et al., 2014). As these

existing BMPs do not target wildlife (e.g. duck and geese), or in fact may serve as additional wildlife habitat, this is not surprising; however, it may be of concern, given that an increasing number of studies have identified duck/geese feces as a potential human health hazard (Meerburg et al., 2011, Moriarty et al., 2011). Although at a given level of FIB, human sources would probably contribute to a greater risk of human illness relative to fecal wastes from duck and geese, the actual risk of human illness would depend on the magnitude of fecal wastes from human relative to duck and geese in a specific watershed. As no real feasible or effective mitigation strategies are available for controlling fecal wastes from duck/geese, it appears most reasonable to prioritize the control of fecal wastes from human sources (e.g. identify and fix aging and leaking infrastructures).

It is important to note that several simplifications and health-protective assumptions were made to facilitate the completion of a QMRA study for this watershed. The reference pathogens approach assumes the selected reference pathogens are representative of the fate and transport of all waterborne pathogens of potential health concern across all geographic regions. A relatively wide range of variables corresponding to each reference pathogen were derived from the literature, and a Monte Carlo simulation approach was used to account for the variability. In addition, median values from each Monte Carlo simulation were used to describe illness risks, and thus, risks associated with extreme, rare or low probability events were not counted. Another important assumption was the exposure scenarios. Although full-body recreational contact is unlikely in this specific stream, the volume of water ingested was assumed to follow a log-normal distribution as similar to previous studies (Schoen and Ashbolt, 2010, Soller et al., 2010), which would probably be inappropriate beyond the illustrative purposes. Nevertheless, the results of this study provide

important insight on the discrepancy in the source contributions to FIB levels and human illness risks, which would facilitate the development of more effective remediation plans.

Acknowledgements

The authors would like to acknowledge the Virginia Tech Institute for Critical Technology and

Applied Science (ICTAS), and College of Agriculture and Life Science (CALS) for providing

funding for this project.

References

- Abel, S.M. 2012. Near boundary turbulence characteristics among stream restorations of varying intensity. Master's thesis, West Virginia University, Morgantown, West Virginia, USA.
- Benham, B., L.A. Krometis, G. Yagow, K. Kline and T. Dillaha. 2011. Applications of Microbial Source Tracking in the TMDL Process. In: C. Hagedorn, A. R. Blanch and V. J. Harwood, editors, Microbial Source Tracking: Methods, Applications, and Case Studies. Springer Science+Business Media, LLC, 233 Springer Street, New York, NY 10013. doi:10.1007/978-1-4419-9386-1_14.
- Chaban, B., M. Ngeleka and J.E. Hill. 2010. Detection and quantification of 14 *Campylobacter* species in pet dogs reveals an increase in species richness in feces of diarrheic animals. BMC Microbiol. 10: 73. doi:10.1186/1471-2180-10-73.
- Colles, F.M., J.S. Ali, S.K. Sheppard, N.D. McCarthy and M.C. Maiden. 2011. *Campylobacter* populations in wild and domesticated Mallard ducks (Anas platyrhynchos). Environ. Microbiol. Rep. 3: 574-580. doi:10.1111/j.1758-2229.2011.00265.x.
- Collier, S., L. Stockman, L. Hicks, L. Garrison, F. Zhou and M. Beach. 2012. Direct healthcare costs of selected diseases primarily or partially transmitted by water. Epidemiol. Infect. 140: 2003-2013. doi:10.1017/S0950268811002858.
- Cox, P., M. Griffith, M. Angles, D. Deere and C. Ferguson. 2005. Concentrations of pathogens and indicators in animal feces in the Sydney watershed. Appl. Environ. Microb. 71: 5929-5934. doi:10.1128/AEM.71.10.5929–5934.2005.
- Dorevitch, S., N.J. Ashbolt, C.M. Ferguson, R. Fujioka, C.D. McGee, J.A. Soller and R.L. Whitman. 2010. Meeting report: knowledge and gaps in developing microbial criteria for inland recreational waters. Environ. Health Perspect. 118: 871. doi:10.1289/ehp.0901627.

- Dufour, A., O. Evans, T. Behymer and R. Cantu. 2006. Water ingestion during swimming activities in a pool: a pilot study. J. Water Health 4: 425-430. doi:10.2166/wh.2006.017.
- Fallacara, D., C. Monahan, T. Morishita and R. Wack. 2001. Fecal shedding and antimicrobial susceptibility of selected bacterial pathogens and a survey of intestinal parasites in freeliving waterfowl. Avian Dis. 45: 128-135. doi:10.2307/1593019.
- Field, K.G. and M. Samadpour. 2007. Fecal source tracking, the indicator paradigm, and managing water-quality. Water Res. 41: 3517-3538. doi:10.1016/j.watres.2007.06.056.
- Haas, C.N., J.B. Rose and C.P. Gerba. 2014. Quantitative microbial risk assessment. Second ed. John Wiley & Sons, Inc.
- Harwood, V.J., C. Staley, B.D. Badgley, K. Borges and A. Korajkic. 2014. Microbial source tracking markers for detection of fecal contamination in environmental waters: relationships between pathogens and human health outcomes. FEMS Microbiol. Rev. 38: 1-40. doi:10.1111/1574-6976.12031.
- Ishii, S., T. Nakamura, S. Ozawa, A. Kobayashi, D. Sano and S. Okabe. 2014. Water quality monitoring and risk assessment by simultaneous multipathogen quantification. Environ. Sci. Tech. 48: 4744-4749. doi:10.1021/es500578s.
- Liao, H., L.-A. Krometis, W.C. Hession, L. House, K. Kline and B. Badgley. 2014. Hydrometeorological and physicochemical drivers of fecal indicator bacteria in an urban stream bottom sediments. J. Environ. Qual. 43: 2034-2043. doi:10.2134/jeq2014.06.0255.
- Lumina. 2014. http://www.lumina.com/ (accessed 20 February 2015).
- McBride, G.B., R. Stott, W. Miller, D. Bambic and S. Wuertz. 2013. Discharge-based QMRA for estimation of public health risks from exposure to stormwater-borne pathogens in recreational waters in the United States. Water Res. 47: 5282-5297. doi:10.1016/j.watres.2013.06.001.
- Meerburg, B.G., M.G. Koene and D. Kleijn. 2011. *Escherichia coli* concentrations in feces of geese, coots, and gulls residing on recreational water in The Netherlands. Vector Borne Zoonotic Dis. 11: 601-603. doi:10.1089/vbz.2010.0218.
- Moriarty, E., N. Karki, M. Mackenzie, L. Sinton, D. Wood and B. Gilpin. 2011. Faecal indicators and pathogens in selected New Zealand waterfowl. New Zeal. J. Mar. Fresh 45: 679-688. doi:10.1080/00288330.2011.578653.
- Moriarty, E., L. Weaver, L. Sinton and B. Gilpin. 2012. Survival of *Escherichia coli*, enterococci and Campylobacter jejuni in Canada goose faeces on pasture. Zoonoses Public Health 59: 490-497. doi:10.1111/zph.12014.
- Murphy, J., M. Devane, B. Robson and B. Gilpin. 2005. Genotypic characterization of bacteria cultured from duck faeces. J. Appl. Microbiol. 99: 301-309. doi:10.1111/j.1365-2672.2005.02590.x.
- Ogden, I.D., J.F. Dallas, M. MacRae, O. Rotariu, K.W. Reay, M. Leitch, A.P. Thomson, S.K. Sheppard, M. Maiden and K.J. Forbes. 2009. *Campylobacter* excreted into the environment by animal sources: prevalence, concentration shed, and host association. Foodborne Pathog. Dis. 6: 1161-1170. doi:10.1089=fpd.2009.0327.

- Parece, T., S. DiBetitto, T. Sprague and T. Younos. 2010. The Stroubles Creek Watershed: History of development and chronicles of research.
- R Development Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org (accessed
- Roser, D., C. Davies, N. Ashbolt and P. Morison. 2006. Microbial exposure assessment of an urban recreational lake: a case study of the application of new risk-based guidelines. Water Sci. Technol. 54: 245-252. doi:10.2166/wst.2006.476.
- Sales-Ortells, H. and G. Medema. 2014. Screening-level microbial risk assessment of urban water locations: a tool for prioritization. Environ. Sci. Tech. 48: 9780-9789. doi:10.1021/es5020407.
- Sauer, E.P., J.L. VandeWalle, M.J. Bootsma and S.L. McLellan. 2011. Detection of the human specific Bacteroides genetic marker provides evidence of widespread sewage contamination of stormwater in the urban environment. Water Res. 45: 4081-4091. doi:10.1016/j.watres.2011.04.049.
- Schoen, M.E. and N.J. Ashbolt. 2010. Assessing pathogen risk to swimmers at non-sewage impacted recreational beaches. Environ. Sci. Technol. 44: 2286-2291. doi:10.1021/es903523q.
- Sercu, B., L.C.V.D. Werfhorst, J. Murray and P.A. Holden. 2008. Storm drains are sources of human fecal pollution during dry weather in three urban southern California watersheds. Environ. Sci. Tech. 43: 293-298. doi:10.1021/es801505p.
- Soller, J.A., M.E. Schoen, T. Bartrand, J.E. Ravenscroft and N.J. Ashbolt. 2010. Estimated human health risks from exposure to recreational waters impacted by human and nonhuman sources of faecal contamination. Water Res. 44: 4674-4691. doi:10.1016/j.watres.2010.06.049.
- Soller, J.A., M.E. Schoen, A. Varghese, A.M. Ichida, A.B. Boehm, S. Eftim, N.J. Ashbolt and J.E. Ravenscroft. 2014. Human health risk implications of multiple sources of faecal indicator bacteria in a recreational waterbody. Water Res. 66: 254-264. doi:10.1016/j.watres.2014.08.026.
- Soupir, M.L., S. Mostaghimi and J. Lou. 2008. Die-off of *E. coli* and enterococci in dairy cowpats. Trans. ASABE 51: 1987-1996.
- SWCB. 2010. Virginia water quality standards. http://water.epa.gov/scitech/swguidance/standards/wqslibrary/upload/vawqs.pdf (accessed 17 Mar. 2015).
- Thompson, T.W., W.C. Hession and D. Scott. 2012. StREAM Lab at Virgnia Tech. Resources: 8-9.
- USEPA. 2010. Quantitative microbial risk assessment to estimate illness in freshwaters impacted by agricultural animal sources of fecal contamination. EPA 822-R-10-005. Office of Waters, U.S. Environmental Protection Agency.

- USEPA. 2015. National summary of impaired waters and TMDL information. http://iaspub.epa.gov/waters10/attains_nation_cy.control?p_report_type=T#causes_303d (accessed 20 Feb. 2015).
- VADEQ. 2015a. Draft 2014 305(b)/303(d) water quality assessment integrated report. Richmond, VA.: Virginia Department of Environmental Quality. http://www.deq.virginia.gov/Programs/Water/WaterQualityInformationTMDLs/WaterQu alityAssessments/2014305(b)303(d)IntegratedReport.aspx (accessed 16 Feb. 2015).
- VADEQ. 2015b. PREP database files. Richmond, VA.: Virginia Department of Environmental Quality. http://www.deq.virginia.gov/Programs/PollutionResponsePreparedness/PREPDatabaseFil es.aspx (accessed 15 Apr. 2015).
- Wade, T.J., N. Pai, J.N. Eisenberg and J.M. Colford Jr. 2003. Do US Environmental Protection Agency water quality guidelines for recreational waters prevent gastrointestinal illness? A systematic review and meta-analysis. Environ. Health Perspect. 111: 1102-1109.
- Wu, J., S.C. Long, D. Das and S.M. Dorner. 2011. Are microbial indicators and pathogens correlated? A statistical analysis of 40 years of research. J. Water Health 9: 265-278. doi:10.2166/wh.2011.117.
- Yates, M.V. 2007. Classical Indicators in the 21st Century—Far and Beyond the Coliform. Water Environ. Res. 79: 279-286. doi:10.2175/106143006x123085.

Chapter 6. Conclusions

Pathogen contamination, typically quantified by elevated levels of fecal indicator bacteria (FIB), remains the leading cause of surface water-quality impairments in the United States and a global public health concern. Understanding microbial fate and transport in the natural environment is critical for the design of effective and efficient remediation strategies (e.g. the Total Maximum Daily Load, or TMDL program in the United States). However, the complexity of microbial fate and transport mechanisms, together with inherent variability of the natural systems, render it extremely challenging to rigorously quantify these processes for implementation in predictive watershed-scale models. This study observed streambed sediments that harbored 40 to 350 times the *E. coli* concentrations of the overlying water column, and 7 to 580 times the enterococci concentrations of the overlying water column, which is in agreement with many previous studies and highlights the potential for substantial sediment storage of FIB. Major hydrometeorological and physicochemical variables influencing concentrations of FIB in both the water column and bed sediments included antecedent 24-h rainfall, stream water temperature, and dissolved oxygen. In addition, a comparison of observations in our study with several previous studies indicates that variables often considered general indicators of non-point source pollution (e.g. turbidity, flow) may not be universally applicable surrogates for FIB levels in all watershed types.

While several studies have successfully included sediment impacts in modeling in-stream FIB concentrations under experimental conditions or short-term storm events, very few studies have attempted to evaluate sediment impacts on the long-term predictions of in-stream FIB concentrations using watershed-scale models. The high spatio-temporal monitoring data of FIB

concentrations in both the water column and bed sediments collected by the first phase of this study enabled a more highly refined calibration of HSPF (a model commonly used in TMDL development). This resulted in overall better model performance as compared to previous studies (i.e. 90-100% versus 70-90% predicted values within one-order magnitude of observed values). However, the model did not perform better under a "sediment-attached" scenario than under the conventional "free-phase" scenario. Specific watershed characteristics (e.g. steep slope, and high imperviousness) probably contributed to the dominance of wet-weather associated pollutant loading from upstream watershed sources, which dwarfed the effect of FIB release and resuspension from stream bed sediments. Careful site evaluation preceding modeling efforts would facilitate determination of whether the additional model complexity and effort associated with partitioning phases of FIB is sufficiently offset by gains in predictive capacity. It is worth noting that although wet-weather contributions are generally identified as the primary source of overall microbial loads in many types of receiving waters, dry-weather periods may be of greater public health concern as these periods represent times when humans are more likely to engage in recreational use and direct contact. Thus, future efforts to improve model accuracy through the incorporation of bacteria-sediment interactions are urged to examine dry weather periods associated with public use patterns (e.g. summer) at a much finer time-scale (e.g. daily), which will aid in the identification of conditions most likely to result in community health impacts and restrictions in appropriate designated uses.

Moderate to high levels of the human-specific HF183 *Bacteroides* 16S rRNA genetic marker were detected in high-frequency stormwater samples, which was surprising for an urban watershed with separate storm and sanitary sewers, but consistent with recent studies suggesting sewage intrusion

into storm sewers and urban streams is common given aging infrastructure. As fecal contamination from human sources is generally considered to present more severe human health risks as compared to other animal sources, and continuing urbanization, growing populations, and climate change can create more chances for exposure and dissemination, there is a critical need to develop or update strategies to properly identify and replace aging, leaking infrastructure. Ideally, future water-quality models will incorporate these advances, e.g., more accurate identification of nonpoint sources of fecal contamination via microbial source tracking techniques, improved load estimation of fecal contamination via higher-frequency sampling techniques, and more appropriate fate and transport pathways and parameters for relating upstream to downstream concentrations.

The Quantitative Microbial Risk Analysis (QMRA) framework presented can be readily integrated into the existing TMDL process to translate source-specific FIB concentrations output from HSPF model into human illness risks, providing more clarity to stakeholders and watershed managers. Median estimated illness risks were consistently higher than the USEPA suggested Recreational Water-Quality Criteria (RWQC) equivalent illness rate (36/1000), even when the monthly geometric mean of *E. coli* concentrations was in compliance. Concentrations of *E. coli* from human sources were relatively low, and yet were associated with great illness risk, which increases by several orders of magnitude following sanitary sewer overflows. Given that fecal inputs from human sources are often underestimated in urban watersheds, as demonstrated here by the detection of moderate to high levels of human-specific HF183 *Bacteroides* 16S rRNA genetic marker in Stroubles Creek (Chapter 3), caution should be taken in assigning load allocations and reductions for urban watersheds (e.g. integrating the emerging microbial/chemical source tracking techniques into existing standard source evaluation strategies based solely on GIS spatial analysis). Fecal contaminants from duck and geese represented a considerable human illness risk relative to other sources. Existing Best Management Practices (BMPs) like fencing streams, dog waste pick up stations and bio-retention cells would not be expected to reduce fecal inputs from duck and geese appreciably. Due to the lack of site-specific parameter values, the QMRA process is associated with considerable uncertainty. Improved quantification of the presence and distribution of reference pathogens at a specific site (e.g. density of *E. coli* and pathogens in source feces) would greatly improve the estimation of illness risks. Reductions in uncertainty would likely enhance buy-in from stakeholders and regulators in accepting and employing QMRA strategies in watershed remediation planning.

By focusing on a highly instrumented urban watershed, a wealth of high-resolution data were available for this study. However, data scarcity is much more common due to limited resources. Studies focusing on data-rich experimental watersheds allow in-depth understanding of complex environmental problems, and potentially provide a practical means for rapid problem identification and/or potential solutions to similar watersheds with less available monitoring data. Lessons from this study include:

 Intensive data collection on streambed sediment FIB levels may not always be justified, given that the considerable effort involved in monitoring FIB levels in streambed sediments resulted in minor change in the model accuracy in this study. Higher-frequency observational FIB levels in the water column (e.g. weekly vs. monthly, multiple monitoring stations vs. a single station) would more efficiently contribute to the improvement of model accuracy.

- 2. While a complex mechanistic watershed-scale model (HSPF) was used in this study, simpler empirical models linking statistical relationships between FIB levels with other hydrometeorological and physicochemical variables may more efficiently fill short-term needs. The establishment of these empirical statistical models would require high-frequency monitoring data over multiple years (e.g. at least one dry year and one wet year) to account for variations in climate/hydrology.
- 3. Accurate identification and characterization of upland pollutant sources is the key to effective and efficient TMDL restoration efforts, and deserves priority investment. The source identification methodology (based on GIS spatial analysis of geographic and census data) most commonly used in existing TMDL process can be improved by integrating emerging Microbial Source Tracking (MST) techniques. While GIS-based methodology is beneficial as a first-screening to explore potential pollutant sources, MST techniques are more powerful in confirming the relative contributions of major pollutant sources of concern.
- 4. In addition to documenting FIB levels, identifying and monitoring pathogens of concern in a particular water body (e.g. investigating available epidemiological data) should be an ultimate goal if substantial human exposure and risk of disease is expected. The uncertainty associated with QMRA strategies is greatly increased due to a lack of understanding of pathogen levels. Therefore, developing and standardizing high-throughput and economically feasible methodologies for pathogen detection require significant future research efforts to ensure public health protection.

Appendix A: Weekly FIB monitoring Data

Raw data for weekly water column and streambed sediment FIB concentrations (02/2012-01/2013) at the five sites along the Stroubles Creek.

			Positiv	e Wells		Concentration (MPN/100mL)			
					-		95% 95%		
Date	Site	Analyte	Large	Small	Volume	Mean	Lower CI	Upper CI	
2/6/2012	DPout	Coliforms	49	46	50	3972.6	2444.1	6600.5	
2/6/2012	B1	Coliforms	49	23	50	821.2	521.2	1237.8	
2/6/2012	B2	Coliforms	49	21	50	730.8	463.9	1110.9	
2/6/2012	B3	Coliforms	49	18	50	615.2	390.5	942.5	
2/6/2012	DPout	E. coli	49	22	50	774.6	491.7	1134.1	
2/6/2012	B1	E. coli	42	10	50	221.2	162	297.5	
2/6/2012	B2	E. coli	35	8	50	144.5	103	192.8	
2/6/2012	B3	E. coli	42	10	50	221.2	162	297.5	
2/6/2012	DPout	Enterococci	37	7	50	155.1	110.6	209	
2/6/2012	B1	Enterococci	16	4	50	47.6	29.3	71.5	
2/6/2012	B2	Enterococci	18	0	100	21.8	13.4	33.9	
2/6/2012	B3	Enterococci	19	2	100	25.9	16.4	39.1	
2/13/2012	DPout	Coliforms	47	12	50	344.7	239	484.4	
2/13/2012	B1	Coliforms	41	7	50	191.9	136.8	260.9	
2/13/2012	B2	Coliforms	44	8	50	237.5	169.3	325.3	
2/13/2012	B3	Coliforms	46	5	50	250	173.3	353.7	
2/13/2012	DPout	E. coli	19	2	50	51.8	32.9	78.2	
2/13/2012	B1	E. coli	15	1	50	37.4	21.5	60	
2/13/2012	B2	E. coli	30	4	50	100.8	69.9	140.2	
2/13/2012	B3	E. coli	31	3	50	102.4	71	143.4	
2/13/2012	DPout	Enterococci	6	1	50	14.8	6.5	28.8	
2/13/2012	B1	Enterococci	4	1	100	5.2	1.8	10.8	
2/13/2012	B3	Enterococci	2	0	100	2	0.3	7.1	
2/27/2012	DPout	Coliforms	49	23	50	821.2	521.2	1237.8	
2/27/2012	B1	Coliforms	48	16	50	456.4	316.4	646.2	
2/27/2012	B2	Coliforms	48	15	50	437.4	303.3	629.1	
2/27/2012	B3	Coliforms	48	10	50	357.8	248.1	515.6	
2/27/2012	DPout	E. coli	13	4	50	38.9	23.2	60.9	
2/27/2012	B1	E. coli	31	7	50	116.1	82.8	158.9	
2/27/2012	B2	E. coli	30	5	50	104.1	72.2	144.4	
2/27/2012	B3	E. coli	22	0	50	56.4	35.8	84.5	
2/27/2012	DPout	Enterococci	9	0	50	19.6	9.4	36.7	
2/27/2012	B1	Enterococci	8	0	100	8.6	4.5	16.9	
2/27/2012	B2	Enterococci	4	2	100	6.2	2.4	12.2	
2/27/2012	B3	Enterococci	9	1	100	10.9	5.6	19.5	
3/6/2012	DPout	Coliforms	49	35	50	1632.8	1100.2	2349.2	
3/6/2012	B1	Coliforms	49	26	50	976.9	620.1	1442.9	
3/6/2012	B2	Coliforms	49	15	50	522.5	341.9	796.9	
3/6/2012	B3	Coliforms	49	18	50	615.2	390.5	942.5	
3/6/2012	DPout	E. coli	32	9	50	128.9	91.9	174.6	

FIB concentrations in the water column:

3/6/2012	B1	E. coli	46	11	50	303	216	415.6
3/6/2012	B2	E. coli	23	7	50	79.3	53.4	110.7
3/6/2012	B3	E. coli	30	9	50	117.6	83.8	158.9
3/6/2012	DPout	Enterococci	16	5	100	25	15.9	37.1
3/6/2012	B1	Enterococci	0	2	100	2	0.3	5.6
3/6/2012	B2	Enterococci	1	0	100	1	0.1	5.5
3/6/2012	B3	Enterococci	2	2	100	4.1	1.2	9
3/12/2012	DPin	Coliforms	49	42	50	2599.3	1700.7	3793.1
3/12/2012	DPout	Coliforms	49	11	50	428.5	280.4	641.9
3/12/2012	B1	Coliforms	46	13	50	323.2	230.4	441.1
3/12/2012	B2	Coliforms	49	16	50	551	371.3	833.5
3/12/2012	B3	Coliforms	47	12	50	344.7	239	484.4
3/12/2012	DPin	E. coli	49	16	50	551	371.3	833.5
3/12/2012	DPout	E. coli	19	2	50	51.8	32.9	78.2
3/12/2012	B1	E. coli	39	5	50	162.5	115.9	222.8
3/12/2012	B2	E. coli	47	10	50	321.4	222.9	452.7
3/12/2012	B3	E. coli	43	7	50	216.1	154.1	294.5
3/12/2012	DPin	Enterococci	6	2	100	8.4	3.7	15.3
3/12/2012	DPout	Enterococci	3	1	100	4.1	1.2	9.1
3/12/2012	B1	Enterococci	1	0	100	1	0.1	5.5
3/12/2012	B2	Enterococci	5	0	100	5.2	2.3	11.9
3/12/2012	B3	Enterococci	1	0	100	1	0.1	5.5
3/19/2012	DPin	Coliforms	49	47	50	4839.1	3260.7	9432.2
3/19/2012	DPout	Coliforms	49	42	50	2599.3	1700.7	3793.1
3/19/2012	B1	Coliforms	49	28	50	1095	716.5	1608.9
3/19/2012	B2	Coliforms	49	34	50	1540.2	1098	2188.1
3/19/2012	B3	Coliforms	49	36	50	1732.9	1167.7	2490.8
3/19/2012	DPin	E. coli	49	31	50	1297.6	849	1882.9
3/19/2012	DPout	E. coli	45	14	50	305.7	223.9	412.4
3/19/2012	B1	E. coli	49	17	50	581.9	380.7	892.1
3/19/2012	B2	E. coli	49	21	50	730.8	463.9	1110.9
3/19/2012	B3	E. coli	49	18	50	615.2	390.5	942.5
3/19/2012	DPin	Enterococci	48	35	100	549.3	402.3	724.5
3/19/2012	DPout	Enterococci	14	2	100	18.5	11	29.2
3/19/2012	B1	Enterococci	6	0	100	6.3	2.9	13.7
3/19/2012	B2	Enterococci	1	1	100	2	0.3	5.9
3/19/2012	B3	Enterococci	2	0	100	2	0.3	7.1
3/26/2012	DPin	Coliforms	49	35	25	3265.6	2200.5	4698.4
3/26/2012	DPout	Coliforms	49	45	25	6931.6	4670.7	10837.9
3/26/2012	B1	Coliforms	49	43	25	5654.4	3699.7	8406.5
3/26/2012	B2	Coliforms	49	39	25	4185	2820	6036.1
3/26/2012	B3	Coliforms	49	33	25	2908	1902.7	4195.5
3/26/2012	DPin	E. coli	39	6	25	334.4	238.4	455.3
3/26/2012	DPout	E. coli	37	8	25	319	227.4	427.8
3/26/2012	B1	E. coli	49	29	25	2317.7	1516.5	3388.7
3/26/2012	B2	E. coli	49	19	25	1302.2	826.6	1992.3
3/26/2012	B3	E. coli	48	10	25	715.6	496.2	1031.1
3/26/2012	DPin	Enterococci	14	7	100	24.5	16	36.1
3/26/2012	DPout	Enterococci	9	6	100	16.4	9.5	26.4
3/26/2012	BI	Enterococci	6	2	100	8.4	3.7	15.3
3/26/2012	B2	Enterococci	10	2	100	13.2	7.1	22
3/26/2012	B3	Enterococci	35	4	100	64.4	44.6	88.6
4/2/2012	DPin	Coliforms	49	42	25	5198.6	3401.4	7586.2
4/2/2012	DPout	Coliforms	46	11	25	606.1	432	831.2

4/2/2012	B1	Coliforms	48	17	25	952.9	6607	1363 1
4/2/2012	B2	Coliforms	48	15	25	874.9	606.6	1258.2
$\frac{4}{2}/\frac{2}{2012}$	B2 B3	Coliforms	40	12	25	689.3	478	968.9
$\frac{4}{2}/\frac{2}{2012}$	DPin	E coli	47 49	26	25	1953.8	1240.2	2885.8
4/2/2012	DPout	E. coli	7	20	25	29.8	14.2	59.5
$\frac{4}{2}/\frac{2}{2012}$	B1 Out	E. coli	28	1	25	164.1	110.6	235.2
$\frac{1}{2}/2012$	B1 B2	E. coli	20	2	25	179.2	120.7	253.2
$\frac{4}{2}/\frac{2012}{12}$	B2 B3	E. coli	29	23	25	176.5	120.7	250.1
$\frac{1}{2}/2012$	DPin	E. con Enterococci	20	0	100	170.5	0.3	230.1
$\frac{4}{2}/\frac{2}{2012}$	DPout	Enterococci	1	0	100	1	0.5	7.1 5.5
$\frac{4}{2}/\frac{2}{2012}$	B1 Out	Enterococci	1	1	100	85	3.9	15.6
$\frac{4}{2}/\frac{2}{2012}$	B2	Enterococci	, 1	0	100	0.5	0.1	5.5
$\frac{4}{2}/\frac{2012}{12}$	B2 B3	Enterococci	10	1	100	12.1	6.5	21.1
4/2/2012	DD DPin	Coliforms	10	37	25	3683.4	2482	5128
4/9/2012	DPout	Coliforms	47	1/	25	002.4	649.3	1487.6
4/9/2012	B1	Coliforms	47	14	25	767.2	546.9	1058
4/9/2012	B1 B2	Coliforms	47	15	25	874.0	540.9	1058 2
4/9/2012	D2 B3	Coliforms	40	13	25	074.9 774	521.5	1258.2
4/9/2012	DDin	E coli	40	12	25	174	229.6	650.6
4/9/2012	DFIII	E. coli	44	0 2	25	475	556.0 17.6	030.0 67 7
4/9/2012		E. coli	22	ے 1	25	30.4 119.2	17.0	175.0
4/9/2012		E. coli E. coli	22 14	2	25	116.2	13	1/3.9
4/9/2012	D2 D2	E. coli E. coli	14	2	25	107.4	44	110.9
4/9/2012	DD:n	E. COll	10	4	100	107.4	00.2 65 9	139.2
4/9/2012	DPIII	Enterococci	52	21	100	07.5	05.8	2.7
4/9/2012		Enterococci	0 16	1	100	20.1	12.4	3./ 21.9
4/9/2012	BI D2	Enterococci	10	1	100	20.1	12.4	51.8
4/9/2012	DD:n	Coliforma	2 40	1	100) 2165 0	0.7	/.4
4/10/2012	DP1n DDaart	Colliforms	49	30 10	25	3403.8	2333.3	4981.5
4/10/2012	DPout	Colliforms	47	10	25	042.8	445.7	905.4
4/16/2012	BI	Coliforms	49	31	25	2595.3	1698.1	3/05.8
4/10/2012	Б2 D2	Colliforms	49	23	25	1042.5	1042.5	2475.7
4/10/2012	B3 DD:		49	22	25	1549.5	985.4	2208.2
4/10/2012	DP1n DDaart	E. coll	28	3	25	1/0.5	122.4	250.1
4/16/2012	DPout	E. coli	21 21	0	25	20.8	9.2	47.8
4/10/2012	BI	E. coll	20	8	25	239.2	170.5	325.5
4/16/2012	B2 D2	E. coli	29	4	25	191.9	133.1	268.7
4/16/2012	B3	E. coli	23	3	25	130.2	89.1	196.8
4/16/2012	DPin DD. (Enterococci	49	34	100	//0.1	549	1094
4/10/2012	DPout	Enterococci	1	0	100	1 21.0	0.1	5.5
4/10/2012	BI	Enterococci	21	4	100	51.8 27.5	20.8	40.4
4/10/2012	Б2 D2	Enterococci	20	2	100	27.5	17.5	41.2
4/16/2012	B3	Enterococci	10	1	100	12.1	0.5	21.1
4/25/2012	DP1n DDaart	Colliforms	49	47	20	2465.9	8151.9	23580.5
4/25/2012	DPout	Coliforms	49	30	25	3465.8	2335.3	4981.5
4/25/2012	BI	Coliforms	49	26	25	1953.8	1240.2	2885.8
4/25/2012	B2 D2	Coliforms	49	23	25	1042.3	1042.5	24/5./
4/25/2012	B3	Coliforms	49	18	25	1230.4	/81	1884.9
4/25/2012	DPin	E. coli	44	12	25	533.8	380.5	/11.6
4/25/2012	DPout D1	E. coli	11	1	25	55.4	29.8	89.2
4/25/2012	B1 B1	E. coli	19	4	25	113.9	12.3	167.2
4/25/2012	Б2 D2	E. COll	20	1	25	104.8	66.6	158.8
4/25/2012	B3 DD:-	E. COll	12	0	100	54 265 A	31.1	93.6
4/25/2012		Enterococci	49	21	100	365.4	231.9	555.5 05 7
4/23/2012	DPOUL	Enterococci	12	2	100	15.8	8.8	25.7

4/25/2012	B1	Enterococci	19	8	100	33.7	22.7	48
4/25/2012	B2	Enterococci	6	1	100	7.4	3.2	14.4
4/25/2012	B3	Enterococci	7	1	100	8.5	3.9	15.6
5/3/2012	DPin	Coliforms	49	39	10	10462.4	7049.9	15090.3
5/3/2012	DPout	Coliforms	49	30	10	6131.4	4011.8	8792.1
5/3/2012	B1	Coliforms	49	13	10	2359.3	1589.7	3600
5/3/2012	B2	Coliforms	48	20	10	2723	1834.9	3828.9
5/3/2012	B3	Coliforms	48	14	10	2098.2	1454.8	3011.1
5/3/2012	DPin	E. coli	33	9	10	675.6	494.8	915.9
5/3/2012	DPout	E. coli	6	0	10	63.2	29	137.1
5/3/2012	B1	E. coli	17	1	10	215.7	128.5	337.1
5/3/2012	B2	E. coli	25	1	10	349.8	228.8	511.8
5/3/2012	B3	E. coli	10	2	10	132.3	71	220.1
5/3/2012	DPin	Enterococci	43	17	100	143	107.5	187.2
5/3/2012	DPout	Enterococci	2	3	100	5.1	1.6	10.6
5/3/2012	B1	Enterococci	18	5	100	28.1	18.4	41.3
5/3/2012	B2	Enterococci	13	3	100	18.3	10.5	28.8
5/3/2012	B3	Enterococci	5	3	100	8.4	3.7	15.3
5/10/2012	DPin	Coliforms	49	47	10	24195.7	16303.7	47161
5/10/2012	DPout	Coliforms	49	40	10	11198.7	7546	16140
5/10/2012	B1	Coliforms	49	27	10	5172.1	3384.1	7635.6
5/10/2012	B2	Coliforms	49	28	10	5475	3582.3	8044.5
5/10/2012	B3	Coliforms	49	46	10	19862.9	12220.3	33002.3
5/10/2012	DPin	E. coli	23	5	10	368.4	248.3	522.1
5/10/2012	DPout	E. coli	20	6	10	327.7	220.8	471.7
5/10/2012	B1	E. coli	16	4	10	237.8	146.3	357.7
5/10/2012	B2	E. coli	33	0	10	512.2	345.2	722.9
5/10/2012	B3	E. coli	49	45	10	17328.9	11676.7	27094.7
5/10/2012	DPin	Enterococci	43	22	100	163.8	123.1	212.3
5/10/2012	DPout	Enterococci	17	7	100	29.1	19	42
5/10/2012	B1	Enterococci	24	8	100	43.1	29.9	59.8
5/10/2012	B2	Enterococci	31	14	100	70.5	51.7	93.9
5/10/2012	B3	Enterococci	49	47	100	2419.6	1630.4	4716.1
5/16/2012	DPin	Coliforms	49	45	10	17328.9	11676.7	27094.7
5/16/2012	DPout	Coliforms	49	44	10	15531.2	10162	23530.6
5/16/2012	B1	Coliforms	49	25	10	4611.1	2927	6878.8
5/16/2012	B2	Coliforms	49	31	10	6488.2	4245.2	9414.6
5/16/2012	B3	Coliforms	49	30	10	6131.4	4011.8	8792.1
5/16/2012	DPin	E. coli	28	5	10	472.5	327.6	658.8
5/16/2012	DPout	E. coli	28	3	10	441.2	305.9	625.2
5/16/2012	B1	E. coli	23	3	10	340.5	222.8	491.9
5/16/2012	B2	E. coli	30	4	10	503.9	349.4	700.8
5/16/2012	B3	E. coli	27	1	10	389.3	262.4	558.9
5/16/2012	DPin	Enterococci	48	27	100	378.4	262.4	526.2
5/16/2012	DPout	Enterococci	46	10	100	146.7	104.6	201.1
5/16/2012	B1	Enterococci	38	11	100	91	66.6	121
5/16/2012	B2	Enterococci	37	10	100	84.2	61.7	112.2
5/16/2012	B3	Enterococci	43	17	100	143	107.5	187.2
5/23/2012	DPin	Coliforms	49	43	10	14136.1	9249.2	21016.2
5/23/2012	DPout	Coliforms	49	25	10	4611.1	2927	6878.8
5/23/2012	B1	Coliforms	49	26	10	4884.4	3100.4	7214.5
5/23/2012	B2	Coliforms	47	26	10	2924	2141.6	3883.8
5/23/2012	B3	Coliforms	48	20	10	2723	1834.9	3828.9
5/23/2012	DPin	E. coli	41	11	10	1071.2	784.6	1426.6

5/23/2012	DPout	E. coli	18	1	10	230.7	141.9	356.9
5/23/2012	B1	E. coli	15	1	10	186.9	107.7	299.8
5/23/2012	B2	E. coli	22	0	10	282	179	422.5
5/23/2012	B3	E. coli	19	1	10	246.2	151.4	376.4
5/23/2012	DPin	Enterococci	49	14	100	248.1	162.3	371.9
5/23/2012	DPout	Enterococci	33	11	100	71.4	52.3	94.6
5/23/2012	B1	Enterococci	37	6	100	75.4	53.8	102.6
5/23/2012	B2	Enterococci	34	5	100	63.1	45	86.9
5/23/2012	B3	Enterococci	28	2	100	42.6	28.7	60.7
5/30/2012	DPin	Coliforms	49	46	10	19862.9	12220.3	33002.3
5/30/2012	DPout	Coliforms	49	47	10	24195.7	16303.7	47161
5/30/2012	B1	Coliforms	49	44	10	15531.2	10162	23530.6
5/30/2012	B2	Coliforms	49	42	10	12996.5	8503.6	18965.6
5/30/2012	B3	Coliforms	49	41	10	12033.3	8108.4	17507
5/30/2012	DPin	E. coli	48	20	10	2723	1834.9	3828.9
5/30/2012	DPout	E. coli	46	17	10	1841.8	1349	2513.7
5/30/2012	B1	E. coli	26	5	10	428.4	297	600.8
5/30/2012	B2	E. coli	39	8	10	884.1	630.3	1191.7
5/30/2012	B3	E. coli	26	8	10	473.7	328.4	654.2
5/30/2012	DPin	Enterococci	49	43	100	1413.6	924.9	2101.6
5/30/2012	DPout	Enterococci	49	42	100	1299.7	850.4	1896.6
5/30/2012	B1	Enterococci	49	26	100	488.4	310	721.5
5/30/2012	B2	Enterococci	49	30	100	613.1	401.2	879.2
5/30/2012	B3	Enterococci	49	27	100	517.2	338.4	763.6
6/4/2012	DPin	Coliforms	49	42	10	12996.5	8503.6	18965.6
6/4/2012	DPout	Coliforms	49	47	10	24195.7	16303.7	47161
6/4/2012	B1	Coliforms	49	27	10	5172.1	3384.1	7635.6
6/4/2012	B2	Coliforms	49	30	10	6131.4	4011.8	8792.1
6/4/2012	B3	Coliforms	48	29	10	4160.2	2965.8	5566.7
6/4/2012	DPin	E. coli	27	2	10	404.4	272.5	574.1
6/4/2012	DPout	E. coli	6	2	10	84.4	37.1	153.4
6/4/2012	B1	E. coli	13	1	10	159.6	91.9	263.7
6/4/2012	B2	E. coli	17	1	10	215.7	128.5	337.1
6/4/2012	B3	E. coli	19	1	10	246.2	151.4	376.4
6/4/2012	DPin	Enterococci	49	35	100	816.4	550.1	1174.6
6/4/2012	DPout	Enterococci	27	2	100	40.4	27.3	57.4
6/4/2012	B1	Enterococci	44	11	100	129.6	95	174.4
6/4/2012	B2	Enterococci	48	11	100	186	125.3	268.8
6/4/2012	B3	Enterococci	45	8	100	127.4	90.8	176.4
6/11/2012	DPin	Coliforms	49	39	10	10462.4	7049.9	15090.3
6/11/2012	DPout	Coliforms	49	21	10	3654	2319.4	5554.5
6/11/2012	B1	Coliforms	49	19	10	3255.4	2066.4	4980.8
6/11/2012	B2	Coliforms	48	22	10	2986.6	2070.8	4231.7
6/11/2012	B3	Coliforms	48	20	10	2723	1834.9	3828.9
6/11/2012	DPin	E. coli	38	7	10	816.2	581.9	1103.2
6/11/2012	DPout	E. coli	14	3	10	196.7	117.2	306.9
6/11/2012	B1	E. coli	32	3	10	538.1	373.1	750.4
6/11/2012	B2	E. coli	18	3	10	255.9	157.4	383.6
6/11/2012	B3	E. coli	20	3	10	288.2	182.9	427.1
6/11/2012	DPin	Enterococci	49	25	100	461.1	292.7	687.9
6/11/2012	DPout	Enterococci	45	17	100	167.4	122.6	222.7
6/11/2012	B1	Enterococci	49	30	100	613.1	401.2	879.2
6/11/2012	B2	Enterococci	39	15	100	106.3	77.9	138.7
6/11/2012	B3	Enterococci	26	6	100	44.3	30.7	61.8

6/18/2012	DPin	Coliforms	49	46	2	99314.5	61101.5	165011.5
6/18/2012	DPout	Coliforms	49	47	5	48391.4	32607.4	94322
6/18/2012	B1	Coliforms	49	40	5	22397.4	15092	32280
6/18/2012	B2	Coliforms	49	44	5	31062.4	20324	47061.2
6/18/2012	B3	Coliforms	49	43	5	28272.2	18498.4	42032.4
6/18/2012	DPin	E. coli	39	7	2	4300	3065.5	5775.5
6/18/2012	DPout	E. coli	43	11	5	2422.4	1774.2	3265.2
6/18/2012	B1	E. coli	44	12	5	2668.8	1902.6	3558.2
6/18/2012	B2	E. coli	41	9	5	2028.8	1486	2722
6/18/2012	B3	E. coli	39	11	5	1917.2	1404.2	2551.2
6/18/2012	DPin	Enterococci	49	30	50	1226.3	802.4	1758.4
6/18/2012	DPout	Enterococci	49	47	100	2419.6	1630.4	4716.1
6/18/2012	B1	Enterococci	49	44	100	1553.1	1016.2	2353.1
6/18/2012	B2	Enterococci	49	46	100	1986.3	1222	3300.2
6/18/2012	B3	Enterococci	49	44	100	1553.1	1016.2	2353.1
6/25/2012	DPin	Coliforms	48	20	5	5446	3669.8	7657.8
6/25/2012	DPout	Coliforms	49	32	5	13733.4	8985.8	19488.2
6/25/2012	B1	Coliforms	49	20	5	6896	4377.4	10413.2
6/25/2012	B2	Coliforms	49	16	5	5510.2	3713	8335.2
6/25/2012	B3	Coliforms	49	16	5	5510.2	3713	8335.2
6/25/2012	DPin	E. coli	16	1	5	402.2	247.4	636.8
6/25/2012	DPout	E. coli	6	0	5	126.4	58	274.2
6/25/2012	B1	E. coli	15	1	5	373.8	215.4	599.6
6/25/2012	B2	E. coli	13	0	5	296	170.6	501.2
6/25/2012	B3	E. coli	12	2	5	315.8	175.8	514.2
6/25/2012	DPin	Enterococci	19	4	50	56.9	36.1	83.6
6/25/2012	DPout	Enterococci	47	15	100	191.8	136.7	264.5
6/25/2012	B1	Enterococci	42	13	100	120.1	87.9	159.8
6/25/2012	B2	Enterococci	43	10	100	117.8	86.3	158.2
6/25/2012	B3	Enterococci	36	6	100	71.7	51.1	97.5
7/2/2012	DPin	Coliforms	49	42	1	129965	85036	189656
7/2/2012	DPout	Coliforms	49	47	1	241957	163037	471610
7/2/2012	B1	Coliforms	49	46	1	198629	122203	330023
7/2/2012	B2	Coliforms	49	44	1	155312	101620	235306
7/2/2012	B3	Coliforms	49	42	1	129965	85036	189656
7/2/2012	DPin	E. coli	40	10	2	4927	3608.5	6607
7/2/2012	DPout	E. coli	49	43	5	28272.2	18498.4	42032.4
7/2/2012	B1	E. coli	49	26	5	9768.8	6200.8	14429
7/2/2012	B2	E. coli	49	21	5	7308	4638.8	11109
7/2/2012	B3	E. coli	49	17	5	5818.6	3807.2	8921
7/2/2012	DPin	Enterococci	49	46	50	3972.6	2444.1	6600.5
7/2/2012	DPout	Enterococci	49	47	100	2419.6	1630.4	4716.1
7/2/2012	B1	Enterococci	49	46	100	1986.3	1222	3300.2
7/2/2012	B2	Enterococci	49	46	100	1986.3	1222	3300.2
7/2/2012	B3	Enterococci	49	36	100	866.4	583.8	1245.4
7/9/2012	DPin	Coliforms	49	17	2	14546.5	9518	22302.5
7/9/2012	DPout	Coliforms	49	18	2	15379.5	9762.5	23561.5
7/9/2012	B1	Coliforms	49	32	2	34333.5	22464.5	48720.5
7/9/2012	B2	Coliforms	49	23	2	20529	13031	30946
7/9/2012	B3	Coliforms	44	10	2	6295.5	4611	8598
7/9/2012	DPin	E. coli	15	3	2	1054.5	628	1628
7/9/2012	DPout	E. coli	0	1	2	49.5	1.5	183.5
7/9/2012	B1	E. coli	23	1	2	1564.5	1023.5	2299.5
7/9/2012	B2	E. coli	16	0	2	945	563	1518

7/9/2012	B3	E. coli	4	2	2	310	118	612
7/9/2012	DPin	Enterococci	37	9	50	163.9	120.1	218.8
7/9/2012	DPout	Enterococci	7	2	50	19.2	8.8	33.9
7/9/2012	B1	Enterococci	46	34	50	662.8	511.3	846
7/9/2012	B2	Enterococci	47	31	50	715.5	524.1	942.5
7/9/2012	B3	Enterococci	11	2	50	29	15.6	47.1
7/16/2012	DPin	Coliforms	49	45	3	57763	38922.3	90315.7
7/16/2012	DPout	Coliforms	49	17	3	9697.7	6345.3	14868.3
7/16/2012	B1	Coliforms	49	16	3	9183.7	6188.3	13892
7/16/2012	B2	Coliforms	43	9	3	3815.3	2720	5182.7
7/16/2012	B3	Coliforms	43	16	3	4638	3397	6067.7
7/16/2012	DPin	E. coli	28	1	3	1367.7	921.7	1959.7
7/16/2012	DPout	E. coli	2	0	3	67.3	8.7	237.7
7/16/2012	B1	E. coli	10	2	3	441	236.7	733.7
7/16/2012	B2	E. coli	4	0	3	137.7	230.7	317.3
7/16/2012	B2 B3	E. coli	4	0	3	137.7	55	317.3
7/16/2012	DPin	Enterococci	49	32	50	1373.3	898.6	1948.8
7/16/2012	DPout	Enterococci	12	1	50	29.3	16.3	49.2
7/16/2012	B1	Enterococci	28	0	50	107.2	76.4	1/6
7/16/2012	B1 B2	Enterococci	13	5	50	107.2	25.4	63 7
7/16/2012	D2 B3	Enterococci	13	2	50	41.5	25.4	58.4
7/10/2012	DDin	Coliforms	14	2 41	30	40111	22	58356 7
7/22/2012	DFIII	Colliforms	49	41 29	2	22670.7	27028	47005.2
7/22/2012		Colliforms	49	20	2	32079.7	22020.3	47005.3
7/22/2012	D1 D2	Colliforms	49	20	2	12190	22020.3	47003.3
7/23/2012	D2 D2	Colliforms	49	21	2	12100	//51.5	16515
7/23/2012	D3 DD:		49	19	2	210.7	0000	10002.7
7/23/2012	DPIN	E. coll	0	0	3	210.7	90.7	457
7/23/2012	DPOUL	E. coll	12	0	3	248.3	118.7	495.7
7/23/2012	BI	E. coli	42	0	3	2/55.5	1909	3845
7/23/2012	B2	E. coli	4	1	3	172	58.7	358.7
7/23/2012	B3	E. coli	5	0	3	1/3./	76.3	398
7/23/2012	DPin	Enterococci	19	3	50	54.4	34.5	80.4
7/23/2012	DPout	Enterococci	32	/	50	121./	86.8	166.5
7/23/2012	BI	Enterococci	39	10	50	186./	136.7	248.4
7/23/2012	B2	Enterococci	31	8	50	119.6	85.3	162.7
7/23/2012	B3	Enterococci	23	5	50	73.7	49.7	104.4
7/30/2012	DPin	Coliforms	49	29	3	19314.3	12637.3	28239
7/30/2012	DPout	Coliforms	49	32	3	22889	14976.3	32480.3
7/30/2012	B1	Coliforms	46	9	3	4736.3	3376.7	6561
7/30/2012	B2	Coliforms	46	14	3	5565	3967	7596
7/30/2012	B3	Coliforms	44	5	3	3620	2580.7	4999.7
7/30/2012	DPin	E. coli	1	0	3	33.3	1.7	183
7/30/2012	DPout	E. coli	6	0	3	210.7	96.7	457
7/30/2012	B1	E. coli	6	1	3	246	108	480
7/30/2012	B2	E. coli	3	1	3	136.3	38.7	302.3
7/30/2012	B3	E. coli	1	0	3	33.3	1.7	183
7/30/2012	DPin	Enterococci	7	2	50	19.2	8.8	33.9
7/30/2012	DPout	Enterococci	29	3	50	92.8	62.5	130.7
7/30/2012	B1	Enterococci	23	3	50	68.1	44.6	98.4
7/30/2012	B2	Enterococci	21	4	50	63.7	41.7	92.7
7/30/2012	B3	Enterococci	22	1	50	59.1	37.5	87.9
8/7/2012	DPin	Coliforms	49	36	3	28881.3	19461	41512.7
8/7/2012	DPout	Coliforms	49	23	3	13686	8687.3	20630.7
8/7/2012	B1	Coliforms	46	9	3	4736.3	3376.7	6561

8/7/2012	B2	Coliforms	47	12	3	5744.3	3983	8074
8/7/2012	B3	Coliforms	48	8	3	5525.3	3831	7931.7
8/7/2012	DPin	E. coli	13	3	3	609.7	351.3	960.7
8/7/2012	DPout	E. coli	9	0	3	326.3	156	612
8/7/2012	B1	E. coli	3	0	3	102	23	298
8/7/2012	B2	E. coli	3	0	3	102	23	298
8/7/2012	B3	E. coli	2	1	3	101.3	22.7	245.7
8/7/2012	DPin	Enterococci	8	0	50	17.2	8.9	33.7
8/7/2012	DPout	Enterococci	21	0	50	53.1	33.7	80.2
8/7/2012	B1	Enterococci	16	2	50	42.7	25.4	65.2
8/7/2012	B2	Enterococci	16	1	50	40.2	24.7	63.7
8/7/2012	B3	Enterococci	7	2	50	19.2	8.8	33.9
8/13/2012	DPin	Coliforms	49	17	3	9697.7	6345.3	14868.3
8/13/2012	DPout	Coliforms	49	30	3	20438	13372.7	29307
8/13/2012	B1	Coliforms	48	14	3	6994	4849.3	10037
8/13/2012	B2	Coliforms	48	8	3	5525.3	3831	7931.7
8/13/2012	B3	Coliforms	47	10	3	5357	3714.3	7545
8/13/2012	DPin	E. coli	8	1	3	323	148.3	572
8/13/2012	DPout	E. coli	8	0	3	286.7	148.3	562.3
8/13/2012	B1	E. coli	8	1	3	323	148.3	572
8/13/2012	B2	E. coli	4	0	3	137.7	55	317.3
8/13/2012	B3	E. coli	1	1	3	67	8.3	197.3
8/13/2012	DPin	Enterococci	10	2	50	26.5	14.2	44
8/13/2012	DPout	Enterococci	44	9	50	244.6	174.4	334.5
8/13/2012	B1	Enterococci	22	2	50	61.8	39.2	90.9
8/13/2012	B2	Enterococci	14	1	50	34.6	20.6	56.3
8/13/2012	B3	Enterococci	9	1	50	21.8	11.3	39
8/20/2012	DPin	Coliforms	49	39	3	34874.7	23499.7	50301
8/20/2012	DPout	Coliforms	49	45	3	57763	38922.3	90315.7
8/20/2012	B1	Coliforms	49	27	3	17240.3	11280.3	25452
8/20/2012	B2	Coliforms	49	22	3	12910.7	8195.3	18901.3
8/20/2012	B3	Coliforms	49	16	3	9183.7	6188.3	13892
8/20/2012	DPin	E. coli	24	1	3	1103.3	722	1604.3
8/20/2012	DPout	E. coli	44	5	3	3620	2580.7	4999.7
8/20/2012	B1	E. coli	11	0	3	407.7	227	713.3
8/20/2012	B2	E. coli	9	2	3	399.7	199	675.7
8/20/2012	B3	E. coli	3	1	3	136.3	38.7	302.3
8/20/2012	DPin	Enterococci	49	41	100	1203.3	810.8	1750.7
8/20/2012	DPout	Enterococci	49	47	100	2419.6	1630.4	4716.1
8/20/2012	B1	Enterococci	48	15	100	218.7	151.7	314.5
8/20/2012	B2	Enterococci	43	12	100	124.6	91.2	167.8
8/20/2012	B3	Enterococci	42	13	100	120.1	87.9	159.8
8/27/2012	DPin	Coliforms	49	31	3	21627.3	14150.7	31382
8/27/2012	DPout	Coliforms	47	9	3	5175	3588.3	7290.7
8/27/2012	B1	Coliforms	47	7	3	4832.3	3350.7	6825.3
8/27/2012	B2	Coliforms	45	10	3	4513.3	3217.7	6133.7
8/27/2012	B3	Coliforms	42	5	3	3199.7	2281	4389.3
8/27/2012	DPin	E. coli	9	1	3	363	187.7	649.7
8/27/2012	DPout	E. coli	2	1	3	101.3	22.7	245.7
8/27/2012	B1	E. coli	10	1	3	403.7	216.7	703
8/27/2012	B2	E. coli	3	1	3	136.3	38.7	302.3
8/27/2012	B3	E. coli	8	1	3	323	148.3	572
8/27/2012	DPin	Enterococci	39	22	100	126.1	94.9	160.7
8/27/2012	DPout	Enterococci	17	3	100	24.1	14.8	36.5

8/27/2012	B1	Enterococci	41	14	100	116	87.2	152.6
8/27/2012	B2	Enterococci	15	2	100	19.9	11.9	30.9
8/27/2012	B3	Enterococci	20	6	100	32.8	22.1	47.2
9/3/2012	DPin	Coliforms	49	47	3	80652.3	54345.7	157203.3
9/3/2012	DPout	Coliforms	49	30	3	20438	13372.7	29307
9/3/2012	B1	Coliforms	49	27	3	17240.3	11280.3	25452
9/3/2012	B2	Coliforms	49	23	3	13686	8687.3	20630.7
9/3/2012	B3	Coliforms	49	25	3	15370.3	9756.7	22929.3
9/3/2012	DPin	E. coli	33	5	3	2005	1429.3	2765.7
9/3/2012	DPout	E. coli	27	1	3	1297.7	874.7	1863
9/3/2012	B1	E. coli	13	2	3	570.7	329	913
9/3/2012	B2	E. coli	13	1	3	532	306.3	879
9/3/2012	B3	E. coli	10	1	3	403.7	216.7	703
9/3/2012	DPin	Enterococci	33	34	100	120.5	95.3	148.2
9/3/2012	DPout	Enterococci	33	17	100	83.2	62.6	108.3
9/3/2012	B1	Enterococci	44	30	100	223.5	172.4	282.2
9/3/2012	B2	Enterococci	42	28	100	177.3	136.8	222.7
9/3/2012	B3	Enterococci	41	18	100	128.7	94.2	168
9/10/2012	DPin	Coliforms	49	33	3	24233	15855.7	34962.3
9/10/2012	DPout	Coliforms	48	18	3	8296.7	5752.7	11674.7
9/10/2012	B1	Coliforms	48	19	3	8675	5845.3	12173
9/10/2012	B2	Coliforms	48	11	3	6200	4177.7	8958.7
9/10/2012	B3	Coliforms	49	17	3	9697.7	6345.3	14868.3
9/10/2012	DPin	E. coli	2	2	3	135	38.3	298.3
9/10/2012	DPout	E. coli	6	1	3	246	108	480
9/10/2012	B1	E. coli	29	5	3	1653	1146	2282.7
9/10/2012	B2	E. coli	40	5	3	2858	2037.7	3906
9/10/2012	B3	E. coli	30	5	3	1734.7	1202.7	2407
9/10/2012	DPin	Enterococci	49	19	100	325.5	206.6	498.1
9/10/2012	DPout	Enterococci	49	38	100	980.4	660.6	1410.2
9/10/2012	B1	Enterococci	49	27	100	517.2	338.4	763.6
9/10/2012	B2	Enterococci	48	21	100	285.1	197.7	398.8
9/10/2012	B3	Enterococci	46	16	100	178.2	130.5	243.1
9/17/2012	DPin	Coliforms	49	46	3	66209.7	40734.3	110007.7
9/17/2012	DPout	Coliforms	48	11	3	6200	4177.7	8958.7
9/17/2012	B1	Coliforms	49	39	3	34874.7	23499.7	50301
9/17/2012	B2	Coliforms	49	20	3	11493.3	7295.7	17355.3
9/17/2012	B3	Coliforms	48	9	3	5738.7	3979	8165.3
9/17/2012	DPin	E. coli	27	3	3	1398.3	942.3	1990
9/17/2012	DPout	E. coli	11	1	3	445.3	248	743.7
9/17/2012	B1	E. coli	49	20	3	11493.3	7295.7	17355.3
9/17/2012	B2	E. coli	45	12	3	4795.7	3419	6500
9/17/2012	B3	E. coli	42	3	3	3016.3	2091.7	4165.7
9/17/2012	DPin	Enterococci	49	41	50	2406.7	1621.7	3501.4
9/17/2012	DPout	Enterococci	46	11	100	151.5	108	207.8
9/17/2012	B1	Enterococci	48	37	50	1203	881.1	1608.9
9/17/2012	B2	Enterococci	49	44	100	1553.1	1016.2	2353.1
9/17/2012	B3	Enterococci	49	41	100	1203.3	810.8	1750.7
9/22/2012	DPin	Coliforms	49	41	3	40111	27028	58356.7
9/22/2012	DPout	Coliforms	47	19	3	7412	5284	10108.3
9/22/2012	B1	Coliforms	45	12	3	4795.7	3419	6500
9/22/2012	B2	Coliforms	46	5	3	4166	2888.7	5894.7
9/22/2012	B3	Coliforms	45	4	3	3754.7	2603.3	5218.3
9/22/2012	DPin	E. coli	48	21	3	9503.3	6589.3	13292

9/22/2012	DPout	E. coli	8	1	3	323	148.3	572
9/22/2012	B1	E. coli	4	0	3	137.7	55	317.3
9/22/2012	B2	E. coli	5	0	3	173.7	76.3	398
9/22/2012	B3	E. coli	7	0	3	248.3	118.7	495.7
9/22/2012	DPin	Enterococci	21	3	50	61	38.7	89.5
9/22/2012	DPout	Enterococci	7	4	50	23.5	12.2	40.2
9/22/2012	B1	Enterococci	31	2	50	99.1	68.7	138.6
9/22/2012	B2	Enterococci	26	7	50	91.7	63.6	127
9/22/2012	B3	Enterococci	34	5	50	126.3	90	173.9
10/3/2012	DPin	Coliforms	49	35	3	27213.7	18337.3	39153
10/3/2012	DPout	Coliforms	48	14	3	6994	4849.3	10037
10/3/2012	B1	Coliforms	38	7	3	2720.7	1939.7	3677.3
10/3/2012	B2	Coliforms	39	7	3	2866.7	2043.7	3850.3
10/3/2012	B3	Coliforms	37	3	3	2302.3	1596.3	3185.3
10/3/2012	DPin	E coli	36	5 7	3	2302.3	1753.7	3317.3
10/3/2012	DPout	E. coli	13	, 1	3	532	306.3	879
10/3/2012	B1 Out	E. coli	6	0	3	210.7	96.7	457
10/3/2012	B7	E. coli	2	1	3	101.3	20.7	2457
10/3/2012	D2 B3	E. coli	5	1	3	101.5	76.3	245.7
10/3/2012	DDin	E. con Enteressesi	40	42	50	2500.2	1700.7	390 2702 1
10/3/2012	DFIII	Enterococci	29	42	50	2399.3	1/00.7	215.1
10/3/2012	DPOUL D1	Enterococci	20 26	5	50	130.7	115.1	213.4
10/3/2012	BI	Enterococci	30 20	5	50	139.4	99.4	190.5
10/3/2012	B2 D2	Enterococci	29	0	50	102.4	/1	141.4
10/3/2012	B3	Enterococci	27	6	50	93.1	64.5 9105 2	129.5
10/8/2012	DPin	Coliforms	49	22	3	12910.7	8195.3	18901.3
10/8/2012	DPout	Coliforms	41	9	3	3381.3	24/6./	4536.7
10/8/2012	BI	Coliforms	49	35	3	2/213.7	18337.3	39153
10/8/2012	B2	Coliforms	40	8	3	3110.3	2217.3	4180.7
10/8/2012	B3	Coliforms	41	6	3	3108.7	2216.3	4211.3
10/8/2012	DPin	E. coli	34	1	3	1857.7	1288	2595.3
10/8/2012	DPout	E. coli	12	1	3	488	271.7	820.7
10/8/2012	B1	E. coli	49	35	3	27213.7	18337.3	39153
10/8/2012	B2	E. coli	5	3	3	278.7	122.3	509.7
10/8/2012	B3	E. coli	7	1	3	284	130.3	521.3
10/8/2012	DPin	Enterococci	46	2	50	226.9	157.3	319.8
10/8/2012	DPout	Enterococci	42	0	50	165.2	114.5	230.7
10/8/2012	B1	Enterococci	39	7	50	172	122.6	231
10/8/2012	B2	Enterococci	32	5	50	114.6	79.5	158.2
10/8/2012	B3	Enterococci	29	7	50	105.7	73.3	144.6
10/15/2012	DPin	Coliforms	49	47	3	80652.3	54345.7	157203.3
10/15/2012	DPout	Coliforms	48	20	3	9076.7	6116.3	12763
10/15/2012	B1	Coliforms	49	11	3	7142	4673	10698
10/15/2012	B2	Coliforms	46	13	3	5387.3	3840.7	7351.7
10/15/2012	B3	Coliforms	47	16	3	6630	4726.3	9111.3
10/15/2012	DPin	E. coli	47	14	3	6167	4396.3	8541.7
10/15/2012	DPout	E. coli	22	1	3	984.7	625	1465.7
10/15/2012	B1	E. coli	14	3	3	655.7	390.7	1023
10/15/2012	B2	E. coli	12	2	3	526.3	293	857
10/15/2012	B3	E. coli	18	2	3	811	514.7	1235.3
10/15/2012	DPin	Enterococci	28	3	50	88.2	61.2	125
10/15/2012	DPout	Enterococci	15	1	50	37.4	21.5	60
10/15/2012	B1	Enterococci	18	2	50	48.7	30.9	74.1
10/15/2012	B2	Enterococci	29	7	50	105.7	73.3	144.6
10/15/2012	B3	Enterococci	35	10	50	152.7	111.8	202.3

10/22/2012	DPin	Coliforms	49	46	3	66209.7	40734.3	110007.7
10/22/2012	DPout	Coliforms	37	6	3	2513.7	1792	3419.3
10/22/2012	B1	Coliforms	20	2	3	917	582	1372.7
10/22/2012	B2	Coliforms	17	3	3	801.7	493.3	1215
10/22/2012	B3	Coliforms	25	2	3	1213.7	794	1751.7
10/22/2012	DPin	E. coli	38	13	3	3194.3	2339.7	4201
10/22/2012	DPout	E. coli	1	1	3	67	8.3	197.3
10/22/2012	B1	E. coli	2	1	3	101.3	22.7	245.7
10/22/2012	B2	E. coli	7	0	3	248.3	118.7	495.7
10/22/2012	B3	E. coli	5	2	3	243.7	97.7	463
10/22/2012	DPin	Enterococci	14	0	50	32.3	18.6	53.6
10/22/2012	DPout	Enterococci	8	2	50	21.6	10.3	37.2
10/22/2012	B1	Enterococci	9	2	50	24	11.9	40.5
10/22/2012	B2	Enterococci	11	0	50	24.5	13.6	42.8
10/22/2012	B3	Enterococci	13	2	50	34.2	19.7	54.8
10/29/2012	DPin	Coliforms	49	44	5	31062.4	20324	47061.2
10/29/2012	DPout	Coliforms	44	10	5	2518.2	1844.4	3439.2
10/29/2012	B1	Coliforms	49	31	5	12976.4	8490.4	18829.2
10/29/2012	B2	Coliforms	49	33	5	14539.8	9513.4	20977.4
10/29/2012	B3	Coliforms	49	30	5	12262.8	8023.6	17584.2
10/29/2012	DPin	E. coli	36	6	5	1434.6	1022.8	1949.2
10/29/2012	DPout	E. coli	4	0	5	82.6	33	190.4
10/29/2012	B1	E. coli	49	15	5	5225	3418.8	7969
10/29/2012	B2	E. coli	49	16	5	5510.2	3713	8335.2
10/29/2012	B3	E. coli	48	11	5	3720	2506.6	5375.2
10/29/2012	DPin	Enterococci	23	24	50	129.5	97.4	166.5
10/29/2012	DPout	Enterococci	12	3	50	33.9	18.9	54.1
10/29/2012	B1	Enterococci	36	25	50	230.5	177.8	290.8
10/29/2012	B2	Enterococci	42	43	50	514.9	417.4	621.8
10/29/2012	B3	Enterococci	47	44	50	1187.6	916.2	1527.1
11/5/2012	DPin	Coliforms	49	45	5	34657.8	23353.4	54189.4
11/5/2012	DPout	Coliforms	49	28	5	10950	7164.6	16089
11/5/2012	B1	Coliforms	35	4	5	1287.4	892.6	1772.2
11/5/2012	B2	Coliforms	33	2	5	1095	759.2	1528.2
11/5/2012	B3	Coliforms	31	4	5	1058.2	733.6	1473.2
11/5/2012	DPin	E. coli	45	11	5	2791.6	1990	3799.2
11/5/2012	DPout	E. coli	22	5	5	699.6	471.4	1006.8
11/5/2012	B1	E. coli	4	0	5	82.6	33	190.4
11/5/2012	B2	E. coli	12	0	5	270	155.6	468
11/5/2012	B3	E. coli	9	0	5	195.8	93.6	367.2
11/5/2012	DPin	Enterococci	47	48	50	1382.1	1093.2	1773.1
11/5/2012	DPout	Enterococci	33	14	50	154.4	116.1	202
11/5/2012	B1	Enterococci	6	3	50	19	8.7	33.9
11/5/2012	B2	Enterococci	6	5	50	23.3	12.1	40.2
11/5/2012	B3	Enterococci	7	1	50	17	7.8	31.3
11/12/2012	DPin	Coliforms	49	34	5	15402	10980	21880.6
11/12/2012	DPout	Coliforms	12	1	5	292.8	163	492.4
11/12/2012	B1	Coliforms	11	2	5	289.8	155.8	471.4
11/12/2012	B2	Coliforms	18	1	5	461.4	283.8	713.8
11/12/2012	B3	Coliforms	16	0	5	378	225.2	607.2
11/12/2012	DPin	E. coli	29	2	5	895.8	603.6	1267.2
11/12/2012	DPout	E. coli	1	0	5	20	1	109.8
11/12/2012	B1	E. coli	3	1	5	81.8	23.2	181.4
11/12/2012	B2	E. coli	3	0	5	61.2	13.8	178.8

11/12/2012	B3	E. coli	7	0	5	149	71.2	297.4
11/12/2012	DPin	Enterococci	49	24	50	870.3	552.5	1300.1
11/12/2012	DPout	Enterococci	11	0	50	24.5	13.6	42.8
11/12/2012	B1	Enterococci	20	1	100	26.2	16.6	39.7
11/12/2012	B2	Enterococci	20	0	100	24.9	15.8	38.1
11/12/2012	B3	Enterococci	28	0	100	39.5	25.9	57
11/18/2012	DPin	Coliforms	49	43	10	14136.1	9249.2	21016.2
11/18/2012	DPout	Coliforms	42	7	10	1016.8	724.8	1382.4
11/18/2012	B1	Coliforms	30	3	10	487.4	338	680.2
11/18/2012	B2	Coliforms	23	1	10	312.9	204.7	459.9
11/18/2012	B3	Coliforms	17	2	10	228.1	140.3	350.4
11/18/2012	DPin	E. coli	49	24	10	4351.7	2762.3	6500.4
11/18/2012	DPout	E. coli	9	0	10	97.9	46.8	183.6
11/18/2012	B1	E. coli	6	1	10	73.8	32.4	144
11/18/2012	B2	E. coli	2	0	10	20.2	2.6	71.3
11/18/2012	B3	E. coli	6	0	10	63.2	29	137.1
11/18/2012	DPin	Enterococci	49	47	50	4839.1	3260.7	9432.2
11/18/2012	DPout	Enterococci	16	6	100	26.2	17.2	38.5
11/18/2012	B1	Enterococci	6	2	100	8.4	3.7	15.3
11/18/2012	B2	Enterococci	15	1	100	18.7	10.8	30
11/18/2012	B3	Enterococci	4	0	100	4.1	1.7	9.5
11/26/2012	DPin	Coliforms	49	32	10	6866.7	4492.9	9744.1
11/26/2012	DPout	Coliforms	18	2	10	243.3	154.4	370.6
11/26/2012	B1	Coliforms	19	0	10	233.4	143.6	361.1
11/26/2012	B2	Coliforms	22	1	10	295.4	187.5	439.7
11/26/2012	B3	Coliforms	23	1	10	312.9	204.7	459.9
11/26/2012	DPin	E. coli	49	13	10	2359.3	1589.7	3600
11/26/2012	DPout	E. coli	2	0	10	20.2	2.6	71.3
11/26/2012	B1	E. coli	4	0	10	41.3	16.5	95.2
11/26/2012	B2	E. coli	3	0	10	30.6	6.9	89.4
11/26/2012	B3	E. coli	4	1	10	51.6	17.6	107.6
11/26/2012	DPin	Enterococci	43	24	50	345.6	266.6	443.5
11/26/2012	DPout	Enterococci	25	4	100	39.3	26.5	55.9
11/26/2012	B1	Enterococci	21	2	100	29.2	18.5	43.1
11/26/2012	B2	Enterococci	8	2	100	10.8	5.2	18.6
11/26/2012	B3	Enterococci	6	1	100	7.4	3.2	14.4
12/3/2012	DPin	Coliforms	49	25	10	4611.1	2927	6878.8
12/3/2012	DPout	Coliforms	18	1	10	230.7	141.9	356.9
12/3/2012	B1	Coliforms	28	2	10	425.7	286.9	606.9
12/3/2012	B2	Coliforms	28	1	10	410.3	276.5	587.9
12/3/2012	B3	Coliforms	27	7	10	480.8	333.4	661.1
12/3/2012	DPin	E. coli	43	12	10	1245.7	912.4	1678.4
12/3/2012	DPout	E. coli	4	0	10	41.3	16.5	95.2
12/3/2012	B1	E. coli	11	0	10	122.3	68.1	214
12/3/2012	B2	E. coli	8	1	10	96.9	44.5	171.6
12/3/2012	B3	E. coli	15	4	10	223	137.2	341.3
12/3/2012	DPin	Enterococci	49	31	50	1297.6	849	1882.9
12/3/2012	DPin	Enterococci	49	31	50	1297.6	849	1882.9
12/3/2012	DPout	Enterococci	47	8	100	150	104	211.8
12/3/2012	B1	Enterococci	30	3	100	48.7	33.8	68
12/3/2012	B2	Enterococci	24	3	100	35.9	24.2	51.9
12/3/2012	B3	Enterococci	18	2	100	24.3	15.4	37.1
12/10/2012	DPin	Coliforms	49	29	10	5794.3	3791.2	8471.7
12/10/2012	DPout	Coliforms	17	4	10	253	160.6	376.7

12/10/2012	B1	Coliforms	42	2	10	878.2	608.9	1219.1
12/10/2012	B2	Coliforms	38	5	10	771.2	549.8	1057.4
12/10/2012	B3	Coliforms	31	7	10	580.6	413.9	794.6
12/10/2012	DPin	E. coli	48	10	10	1789	1240.4	2577.8
12/10/2012	DPout	E. coli	3	1	10	40.9	11.6	90.7
12/10/2012	B1	E. coli	5	1	10	62.6	25.1	127.3
12/10/2012	B2	E. coli	15	0	10	174.9	100.8	285.5
12/10/2012	B3	E. coli	14	4	10	208.6	124.3	323
12/10/2012	DPin	Enterococci	49	41	50	2406.7	1621.7	3501.4
12/10/2012	DPout	Enterococci	30	9	100	58.8	41.9	79.5
12/10/2012	B1	Enterococci	38	10	100	88.6	64.9	118.3
12/10/2012	B2	Enterococci	36	10	100	80.1	58.7	106.4
12/10/2012	B3	Enterococci	29	6	100	51.2	35.5	70.7
12/18/2012	DPin	Coliforms	49	39	10	10462.4	7049.9	15090.3
12/18/2012	DPout	Coliforms	26	2	10	383.9	258.7	553.5
12/18/2012	B1	Coliforms	42	11	10	1137	832.8	1516.7
12/18/2012	B2	Coliforms	49	28	10	5475	3582.3	8044.5
12/18/2012	B3	Coliforms	44	7	10	1152.8	821.8	1580.7
12/18/2012	DPin	E. coli	49	16	10	2755.1	1856.5	4167.6
12/18/2012	DPout	E. coli	10	2	10	132.3	71	220.1
12/18/2012	B1	E. coli	10	1	10	121.1	65	210.9
12/18/2012	B2	E. coli	25	2	10	364.1	238.2	525.5
12/18/2012	B3	E. coli	9	1	10	108.9	56.3	194.9
12/18/2012	DPin	Enterococci	49	40	50	2239.7	1509.2	3228
12/18/2012	DPout	Enterococci	15	9	100	28.4	18.6	41.2
12/18/2012	B1	Enterococci	47	11	100	166.4	115.4	234
12/18/2012	B2	Enterococci	48	28	100	396.8	275.1	555.5
12/18/2012	B3	Enterococci	40	10	100	98.5	72.2	132.1
12/31/2012	DPin	Coliforms	49	38	20	4902	3303.1	7050.8
12/31/2012	DPout	Coliforms	49	20	20	1724	1094.4	2603.3
12/31/2012	B1	Coliforms	47	12	20	861.7	597.5	1211.1
12/31/2012	B2	Coliforms	46	10	20	733.6	523	1005.5
12/31/2012	B3	Coliforms	46	11	20	757.6	540.1	1039.1
12/31/2012	DPin	E. coli	48	13	20	1007.1	678.6	1420.1
12/31/2012	DPout	E. coli	23	1	20	156.5	102.4	230
12/31/2012	B1	E. coli	19	2	20	129.5	82.2	195.5
12/31/2012	B2	E. coli	16	2	20	106.7	63.6	163
12/31/2012	B3	E. coli	14	2	20	92.5	55.1	146.1
12/31/2012	DPin	Enterococci	16	9	50	59.9	39.2	85.4
12/31/2012	DPout	Enterococci	6	2	100	8.4	3.7	15.3
12/31/2012	B1	Enterococci	2	1	100	3	0.7	7.4
12/31/2012	B2	Enterococci	2	2	100	4.1	1.2	9
12/31/2012	B3	Enterococci	0	2	100	2	0.3	5.6
1/7/2013	DPin	Coliforms	49	37	20	4604.2	3102.5	6410
1/7/2013	DPout	Coliforms	28	1	20	205.2	138.3	294
1/7/2013	B1	Coliforms	23	1	20	156.5	102.4	230
1/7/2013	B2	Coliforms	18	0	20	109.1	67.1	169.5
1/7/2013	B3	Coliforms	13	1	20	79.8	46	131.9
1/7/2013	DPin	E. coli	49	18	20	1538	976.3	2356.2
1/7/2013	DPout	E. coli	8	0	20	43	22.3	84.4
1/7/2013	B1	E. coli	5	1	20	31.3	12.6	63.7
1/7/2013	B2	E. coli	2	0	20	10.1	1.3	35.7
1/7/2013	B3	E. coli	4	0	20	20.7	8.3	47.6
1/7/2013	DPout	Enterococci	24	4	50	74.7	50.3	106.6

1/7/2013	DPout	Enterococci	24	4	100	37.3	25.2	53.3
1/7/2013	B1	Enterococci	29	7	100	52.8	36.6	72.3
1/7/2013	B2	Enterococci	25	2	100	36.4	23.8	52.6
1/7/2013	B3	Enterococci	23	0	100	29.9	19	44.4
1/14/2013	DPin	Coliforms	49	48	20	12098	7197.5	12098
1/14/2013	DPout	Coliforms	28	0	20	197.5	129.3	285.2
1/14/2013	B1	Coliforms	49	28	20	2737.5	1791.2	4022.3
1/14/2013	B2	Coliforms	48	12	20	967.5	651.9	1397.3
1/14/2013	B3	Coliforms	46	10	20	733.6	523	1005.5
1/14/2013	DPin	E. coli	49	47	20	12097.9	8151.9	23580.5
1/14/2013	DPout	E. coli	9	0	20	49	23.4	91.8
1/14/2013	B1	E. coli	49	19	20	1627.7	1033.2	2490.4
1/14/2013	B2	E. coli	27	3	20	209.8	141.4	298.5
1/14/2013	B3	E. coli	21	3	20	152.6	96.8	223.9
1/14/2013	DPin	Enterococci	48	48	50	2022.3	1481.2	2647
1/14/2013	DPout	Enterococci	10	5	100	16.6	9.6	26.8
1/14/2013	B1	Enterococci	38	15	100	100.8	75.8	132.1
1/14/2013	B2	Enterococci	31	9	100	61.6	43.9	83.3
1/14/2013	B3	Enterococci	37	5	100	73.3	52.2	100.1
1/20/2013	DPin	Coliforms	49	37	20	4604.2	3102.5	6410
1/20/2013	DPout	Coliforms	49	36	20	4332.2	2919.2	6226.9
1/20/2013	B1	Coliforms	49	20	20	1724	1094.4	2603.3
1/20/2013	B2	Coliforms	49	15	20	1306.3	854.7	1992.3
1/20/2013	B3	Coliforms	49	12	20	1123.4	735.1	1717.7
1/20/2013	DPin	E. coli	49	18	20	1538	976.3	2356.2
1/20/2013	DPout	E. coli	37	9	20	409.9	300.2	547
1/20/2013	B1	E. coli	31	2	20	247.7	171.8	346.6
1/20/2013	B2	E. coli	26	3	20	199.3	134.3	282.5
1/20/2013	B3	E. coli	29	2	20	224	150.9	316.8
1/20/2013	DPin	Enterococci	48	28	50	793.6	550.3	1110.9
1/20/2013	DPout	Enterococci	46	35	100	343.3	264.8	439.5
1/20/2013	B1	Enterococci	24	11	100	47.5	33.9	64.7
1/20/2013	B2	Enterococci	19	7	100	32.4	21.8	46.5
1/20/2013	B3	Enterococci	6	1	100	7.4	3.2	14.4
1/27/2013	DPin	Coliforms	49	47	20	12097.9	8151.9	23580.5
1/27/2013	DPout	Coliforms	31	2	20	247.7	171.8	346.6
1/27/2013	B1	Coliforms	30	5	20	260.2	180.4	361.1
1/27/2013	B2	Coliforms	23	1	20	156.5	102.4	230
1/27/2013	B3	Coliforms	21	1	20	139.3	91.1	206.3
1/27/2013	DPin	E. coli	38	7	20	408.1	291	551.6
1/27/2013	DPout	E. coli	5	1	20	31.3	12.6	63.7
1/27/2013	B1	E. coli	7	2	20	48	22.1	84.7
1/27/2013	B2	E. coli	2	0	20	10.1	1.3	35.7
1/27/2013	B3	E. coli	4	0	20	20.7	8.3	47.6
1/27/2013	DPin	Enterococci	49	29	50	1158.9	758.2	1694.3
1/27/2013	DPout	Enterococci	7	2	100	9.6	4.4	16.9
1/27/2013	B1	Enterococci	5	0	100	5.2	2.3	11.9
1/27/2013	B2	Enterococci	4	2	100	6.2	2.4	12.2
1/27/2013	B3	Enterococci	4	1	100	5.2	1.8	10.8

			Positive Wells		s MPN/gram dry sediment				
Date	Site	Analyte	Large	Small	Volume	Mean	Lower	Upper	Moisture(%)
2/6/2012	DPout	Coliforms	49	34	50	1498.2	1068.1	2128.6	41.3
2/6/2012	B1	Coliforms	49	36	50	1583.3	1066.9	2275.8	37.5
2/6/2012	B2	Coliforms	49	20	50	579.0	367.6	874.4	31.9
2/6/2012	B3	Coliforms	49	43	50	2713.2	1775.3	4033.8	40.5
2/6/2012	DPout	E. coli	32	4	50	108.1	75	150.1	41.3
2/6/2012	B1	E. coli	48	22	50	545.7	378.5	773.3	37.5
2/6/2012	B2	E. coli	8	1	50	16.3	7.5	28.8	31.9
2/6/2012	B3	E. coli	39	8	50	169.7	121.1	228.7	40.5
2/6/2012	DPout	Enterococci	3	3	100	6.0	2.3	11.8	41.3
2/6/2012	B1	Enterococci	8	9	50	33.8	20.8	52.2	37.5
2/6/2012	B2	Enterococci	3	5	100	6.9	3.1	12.9	31.9
2/6/2012	B3	Enterococci	9	11	100	21.1	13.5	31.3	40.5
2/13/2012	DPout	Coliforms	49	47	30	22096.4	14889.4	43069.4	79.1
2/13/2012	B1	Coliforms	49	29	30	2904.4	1900.4	4246.5	62.0
2/13/2012	B2	Coliforms	47	11	30	1155.6	801.3	1624.8	72.6
2/13/2012	B3	Coliforms	26	4	30	145.8	98.4	206.6	46.0
2/13/2012	DPout	E. coli	31	9	30	562.2	400.9	760.6	79.1
2/13/2012	B1	E. coli	34	11	30	374.9	274.6	493.9	62.0
2/13/2012	B2	E. coli	20	0	30	172.9	109.8	264.6	72.6
2/13/2012	B3	E. coli	5	1	30	22.1	8.9	44.9	46.0
2/13/2012	DPout	Enterococci	4	5	100	25.5	12.4	46.4	79.1
2/13/2012	B1	Enterococci	10	1	100	18.2	9.8	31.8	62.0
2/13/2012	B2	Enterococci	8	2	100	22.5	10.9	38.8	72.6
2/13/2012	B3	Enterococci	3	0	100	3.3	0.8	9.5	46.0
2/27/2012	DPout	Coliforms	49	17	50	612.5	400.8	939.1	45.7
2/27/2012	B1	Coliforms	49	44	50	4141.6	2709.9	6274.8	57.1
2/27/2012	B2	Coliforms	49	38	50	2064.0	1390.8	2968.8	45.7
2/27/2012	B3	Coliforms	49	45	50	3850.9	2594.8	6021.1	48.6
2/27/2012	DPout	E. coli	9	4	50	29.9	16.2	49.4	45.7
2/27/2012	B1	E. coli	38	7	50	217.6	155.2	294.2	57.1
2/27/2012	B2	E. coli	41	11	50	225.5	165.2	300.4	45.7
2/27/2012	B3	E. coli	45	13	50	329.6	234.9	444.3	48.6
2/27/2012	DPout	Enterococci	8	2	100	11.4	5.5	19.6	45.7
2/27/2012	B1	Enterococci	3	1	100	5.5	1.7	12.2	57.1
2/27/2012	B2	Enterococci	2	1	100	3.2	0.8	7.8	45.7
2/27/2012	B3	Enterococci	2	1	100	3.3	0.8	8.3	48.6
3/6/2012	DPout	Coliforms	49	44	50	2701.0	1767.4	4092.3	34.3
3/6/2012	B1	Coliforms	49	40	50	2357.6	1588.7	3397.9	45.7
3/6/2012	B2	Coliforms	49	38	50	1634.0	1101	2350.3	31.4
3/6/2012	B3	Coliforms	49	46	50	4181.7	2572.8	6947.9	45.7
3/6/2012	DPout	E. coli	35	10	50	132.8	97.3	176	34.3
3/6/2012	B1	E. coli	45	8	50	268.2	191.2	371.4	45.7
3/6/2012	B2	E. coli	42	8	50	174.3	124.3	236.8	31.4
3/6/2012	B3	E. coli	49	25	50	970.7	616.3	1448.3	45.7
3/6/2012	DPout	Enterococci	29	9	100	48.8	34.8	66.1	34.3
3/6/2012	B1	Enterococci	9	3	100	13.8	7.2	23	45.7
3/6/2012	B2	Enterococci	8	2	100	9.0	4.4	15.5	31.4
3/6/2012	В3	Enterococci	15	5	100	24.7	15.7	37.1	45.7
3/12/2012	DPin	Coliforms	49	37	50	1674.3	1128.2	2331	26.7

FIB concentrations in the stream bed sediments:

3/12/2012	DPout	Coliforms	49	27	50	1034.4	676.8	1527.1	33.3
3/12/2012	B1	Coliforms	49	22	50	860.7	546.4	1260.2	40.0
3/12/2012	B2	Coliforms	49	29	50	1007.7	659.4	1473.4	40.0
3/12/2012	B3	Coliforms	48	2	50	231.4	156	335.4	23.3
3/12/2012	DPin	E. coli	49	23	50	746.5	473.9	1125.3	26.7
3/12/2012	DPout	E. coli	27	3	50	83.9	56.5	119.4	33.3
3/12/2012	B1	E. coli	21	7	50	79.8	53.8	113.4	40.0
3/12/2012	B2	E. coli	36	3	50	114.2	79.2	157.1	40.0
3/12/2012	B3	E. coli	17	2	50	39.7	24.5	61	23.3
3/12/2012	DPin	Enterococci	31	6	100	51.2	35.6	70.6	26.7
3/12/2012	DPout	Enterococci	5	4	100	9.4	4.3	16.9	33.3
3/12/2012	B1	Enterococci	6	4	100	11.8	5.9	20.6	40.0
3/12/2012	B2	Enterococci	15	5	100	26.1	16.6	39.2	40.0
3/12/2012	B3	Enterococci	9	3	100	11.4	6	19	23.3
3/19/2012	DPin	Coliforms	49	39	50	1902.3	1281.9	2743.8	26.7
3/19/2012	DPout	Coliforms	49	46	50	5296.8	3258.8	8800.7	50.0
3/19/2012	B1	Coliforms	49	32	50	1445.6	945.9	2051.4	36.7
3/19/2012	B2	Coliforms	49	23	50	966.1	613.2	1456.3	50.0
3/19/2012	B3	Coliforms	45	17	50	394.0	288.6	524	43.3
3/19/2012	DPin	E. coli	47	8	50	272.7	189.1	385.1	26.7
3/19/2012	DPout	E. coli	41	6	50	248.7	177.4	337	50.0
3/19/2012	B1	E. coli	27	3	50	88.3	59.5	125.7	36.7
3/19/2012	B2	E. coli	26	8	50	111.4	77.3	153.9	50.0
3/19/2012	B3	E. coli	20	3	50	67.8	43.1	100.5	43.3
3/19/2012	DPin	Enterococci	38	12	100	84.9	62.2	112	26.7
3/19/2012	DPout	Enterococci	3	2	100	6.8	2.3	14.2	50.0
3/19/2012	B1	Enterococci	7	1	100	8.9	4.2	16.5	36.7
3/19/2012	B2	Enterococci	8	1	100	11.4	5.3	20.3	50.0
3/19/2012	B3	Enterococci	13	2	100	20.1	11.7	32.3	43.3
3/26/2012	DPin	Coliforms	49	40	30	3393.5	2286.7	4891	26.7
3/26/2012	DPout	Coliforms	49	30	30	1858.0	1215.8	2664.3	26.7
3/26/2012	B1	Coliforms	49	44	30	6471.4	4234.2	9804.4	40.0
3/26/2012	B2	Coliforms	49	47	30	8065.2	5434.6	15720.3	46.7
3/26/2012	B3	Coliforms	49	41	30	4011.1	2702.8	5835.7	33.3
3/26/2012	DPin	E. coli	32	8	30	189.9	135.4	258.4	26.7
3/26/2012	DPout	E. coli	23	2	30	99.0	64.9	144.5	26.7
3/26/2012	B1	E. coli	49	15	30	1088.5	712.3	1660.3	40.0
3/26/2012	B2	E. coli	49	30	30	2043.8	1337.3	2930.7	46.7
3/26/2012	B3	E. coli	47	9	30	517.5	358.8	729.1	33.3
3/26/2012	DPin	Enterococci	10	6	100	16.1	9.7	25	26.7
3/26/2012	DPout	Enterococci	8	2	100	9.8	4.8	17	26.7
3/26/2012	B1	Enterococci	6	7	100	17.3	9.7	27.8	40.0
3/26/2012	B2	Enterococci	4	2	100	6.2	2.4	12.2	46.7
3/26/2012	B3	Enterococci	39	8	100	88.4	63	119.2	33.3
4/2/2012	DPin	Coliforms	36	8	25	276.0	196.8	368.6	26.7
4/2/2012	DPout	Coliforms	49	42	25	5472.2	3580.5	7985.5	36.7
4/2/2012	B1	Coliforms	49	41	25	4813.3	3243.4	7002.8	33.3
4/2/2012	B2	Coliforms	49	43	25	5952.0	3894.5	8849	36.7
4/2/2012	B3	Coliforms	49	30	25	2335.8	1528.3	3349.4	30.0
4/2/2012	DPin	E. coli	1	1	25	7.3	1	21.6	26.7
4/2/2012	DPout	E. coli	37	2	25	282.1	195.6	387.3	36.7
4/2/2012	B1	E. coli	20	2	25	110.0	69.8	164.7	33.3
4/2/2012	B2	E. coli	49	33	25	3061.1	2002.9	4416.4	36.7
4/2/2012	B3	E. coli	20	3	25	109.8	69.8	162.7	30.0

4/2/2012	DPin	Enterococci	4	1	100	4.7	1.7	9.9	26.7
4/2/2012	DPout	Enterococci	2	4	100	6.4	2.5	12.8	36.7
4/2/2012	B1	Enterococci	2	0	100	2.0	0.3	7.1	33.3
4/2/2012	B2	Enterococci	5	1	100	6.6	2.7	13.4	36.7
4/2/2012	B3	Enterococci	3	1	100	3.9	1.2	8.7	30.0
4/9/2012	DPin	Coliforms	49	47	25	8415.9	5670.9	16403.9	23.3
4/9/2012	DPout	Coliforms	49	47	25	27652.3	18632.9	53898.3	76.7
4/9/2012	B1	Coliforms	49	47	25	17596.9	11857.3	34299	63.3
4/9/2012	B2	Coliforms	49	44	25	9557.7	6253.6	14480.4	56.7
4/9/2012	B3	Coliforms	49	42	25	4951.0	3239.5	7225	30.0
4/9/2012	DPin	E. coli	35	9	25	258.4	184.3	343.5	23.3
4/9/2012	DPout	E. coli	49	18	25	3515.4	2231.5	5385.5	76.7
4/9/2012	B1	E. coli	45	14	25	1111.6	814.2	1499.7	63.3
4/9/2012	B2	E. coli	48	9	25	1059.4	734.7	1507.4	56.7
4/9/2012	B3	E. coli	30	6	25	204.6	146	281.9	30.0
4/9/2012	DPin	Enterococci	17	4	100	22.0	14	32.8	23.3
4/9/2012	DPout	Enterococci	2	1	100	8.6	2	21.2	76.7
4/9/2012	B1	Enterococci	6	15	100	40.9	26.8	59.3	63.3
4/9/2012	B2	Enterococci	0	1	100	1.5	0	5.7	56.7
4/9/2012	B3	Enterococci	0	4	100	3.8	1.1	8.5	30.0
4/16/2012	DPin	Coliforms	43	8	15	644.8	459.7	879.3	23.3
4/16/2012	DPout	Coliforms	49	47	15	21507.3	14492.2	41921	50.0
4/16/2012	B1	Coliforms	49	37	15	6821.0	4596.3	9496.4	40.0
4/16/2012	B2	Coliforms	49	21	15	2865.9	1819.2	4356.5	43.3
4/16/2012	B3	Coliforms	47	12	15	1094.2	758.7	1538	30.0
4/16/2012	DPin	E. coli	8	2	15	62.5	30	108	23.3
4/16/2012	DPout	E. coli	47	13	15	1586.9	1100.3	2226.3	50.0
4/16/2012	B1	E. coli	12	3	15	125.4	69.9	200.4	40.0
4/16/2012	B2	E. coli	16	0	15	148.2	88.4	238.2	43.3
4/16/2012	B3	E. coli	11	2	15	92.0	49.5	149.7	30.0
4/16/2012	DPin	Enterococci	34	2	100	50.1	34.7	69.6	23.3
4/16/2012	DPout	Enterococci	1	0	100	1.3	0.2	7.4	50.0
4/16/2012	B1	Enterococci	4	0	100	4.6	1.9	10.6	40.0
4/16/2012	B2	Enterococci	5	0	100	6.1	2.8	14.1	43.3
4/16/2012	B3	Enterococci	0	2	100	1.9	0.3	5.4	30.0
4/25/2012	DPin	Coliforms	49	43	15	7853.4	5138.5	11675.7	20.0
4/25/2012	DPout	Coliforms	49	47	15	11521.8	7763.7	22457.7	6.7
4/25/2012	B1	Coliforms	49	47	15	15362.4	10351.6	29943.6	30.0
4/25/2012	B2	Coliforms	49	46	15	13938.8	8575.7	23159.5	36.7
4/25/2012	B3	Coliforms	49	44	15	10354.1	6774.7	15687.1	33.3
4/25/2012	DPin	E. coli	19	4	15	158.2	100.5	232.2	20.0
4/25/2012	DPout	E. coli	43	7	15	514.6	366.9	701.2	6.7
4/25/2012	B1	E. coli	35	3	15	396.5	274.9	547.2	30.0
4/25/2012	B2	E. coli	33	8	15	460.9	328.6	626.3	36.7
4/25/2012	B3	E. coli	37	1	15	433.1	300.3	597.4	33.3
4/25/2012	DPin	Enterococci	6	3	100	7.9	3.7	14.1	20.0
4/25/2012	DPout	Enterococci	8	2	100	7.7	3.8	13.3	6.7
4/25/2012	B1	Enterococci	48	48	100	963.0	705.4	1260.5	30.0
4/25/2012	B2	Enterococci	32	8	100	66.0	47.1	89.8	36.7
4/25/2012	B3	Enterococci	12	3	100	16.9	9.4	27	33.3
5/3/2012	DPin	Coliforms	47	10	10	1339.3	928.6	1886.3	20.0
5/3/2012	DPout	Coliforms	45	10	10	1230.9	877.6	1672.9	26.7
5/3/2012	B1	Coliforms	49	23	10	3570.3	2266.3	5382	23.3
5/3/2012	B2	Coliforms	49	21	10	3846.3	2441.5	5846.9	36.7

5/3/2012	B3	Coliforms	49	26	10	4440.4	2818.6	6558.7	26.7
5/3/2012	DPin	E. coli	11	2	10	120.8	65	196.5	20.0
5/3/2012	DPout	E. coli	1	1	10	18.3	2.3	53.9	26.7
5/3/2012	B1	E. coli	9	10	10	181.8	115.4	271.3	23.3
5/3/2012	B2	E. coli	12	1	10	154.1	85.8	259.2	36.7
5/3/2012	B3	E. coli	11	2	10	131.7	70.9	214.3	26.7
5/3/2012	DPin	Enterococci	29	7	100	44.0	30.5	60.3	20.0
5/3/2012	DPout	Enterococci	3	0	100	2.8	0.7	8.1	26.7
5/3/2012	B1	Enterococci	2	1	100	2.6	0.7	6.5	23.3
5/3/2012	B2	Enterococci	2	13	100	16.2	9.9	25.3	36.7
5/3/2012	B3	Enterococci	0	4	100	3.6	1	8.1	26.7
5/10/2012	DPin	Coliforms	49	47	10	21039.7	14177.2	41009.6	23.3
5/10/2012	DPout	Coliforms	49	47	10	25469.2	17161.8	49643.2	36.7
5/10/2012	B1	Coliforms	48	17	10	2382.2	1651.8	3407.8	33.3
5/10/2012	B2	Coliforms	49	38	10	15082.9	10163.3	21694.8	56.7
5/10/2012	B3	Coliforms	40	5	10	779.5	555.8	1065.3	26.7
5/10/2012	DPin	E. coli	37	4	10	618.8	441.2	854.8	23.3
5/10/2012	DPout	E. coli	29	2	10	471.5	317.7	667	36.7
5/10/2012	B1	E. coli	3	1	10	40.9	11.6	90.7	33.3
5/10/2012	B2	E. coli	29	1	10	664.8	448.1	944.4	56.7
5/10/2012	B3	E. coli	17	3	10	218.6	134.6	331.4	26.7
5/10/2012	DPin	Enterococci	23	5	100	32.0	21.6	45.4	23.3
5/10/2012	DPout	Enterococci	20	5	100	33.2	21.7	48.2	36.7
5/10/2012	B1	Enterococci	16	1	100	20.1	12.4	31.8	33.3
5/10/2012	B2	Enterococci	28	26	100	127.1	98.1	159.9	56.7
5/10/2012	B3	Enterococci	13	2	100	15.5	9.1	25	26.7
5/16/2012	DPin	Coliforms	49	27	10	5172.1	3384.1	7635.6	33.3
5/16/2012	DPout	Coliforms	49	47	10	25469.2	17161.8	49643.2	36.7
5/16/2012	B1	Coliforms	48	19	10	2478.6	1670.1	3478.1	30.0
5/16/2012	B2	Coliforms	49	44	10	25885.3	16936.7	39217.7	60.0
5/16/2012	B3	Coliforms	49	32	10	6539.7	4279	9280.1	30.0
5/16/2012	DPin	E. coli	38	3	10	727.3	518.5	1009.7	33.3
5/16/2012	DPout	E. coli	26	8	10	498.6	345.7	688.7	36.7
5/16/2012	B1	E. coli	8	1	10	92.3	42.4	163.5	30.0
5/16/2012	B2	E. coli	24	3	10	598.7	403.4	864.4	60.0
5/16/2012	B3	E. coli	11	2	10	138.0	74.2	224.5	30.0
5/16/2012	DPin	Enterococci	40	4	100	83.3	59.4	114.6	33.3
5/16/2012	DPout	Enterococci	27	7	100	50.6	35.1	69.6	36.7
5/16/2012	B1	Enterococci	22	6	100	34.7	23.4	48.9	30.0
5/16/2012	B2	Enterococci	23	29	100	120.8	93.4	152.7	60.0
5/16/2012	B3	Enterococci	10	7	100	18.0	11.1	27.5	30.0
5/23/2012	DPin	Coliforms	49	25	10	3842.6	2439.2	5732.4	20.0
5/23/2012	DPout	Coliforms	49	40	10	10180.6	6860	14672.8	26.7
5/23/2012	B1	Coliforms	49	45	10	16503.7	11120.7	25804.5	30.0
5/23/2012	B2	Coliforms	49	45	10	38508.7	25948.3	60210.5	70.0
5/23/2012	B3	Coliforms	49	42	10	12377.6	8098.7	18062.5	30.0
5/23/2012	DPin	E. coli	16	4	10	198.2	122	298.1	20.0
5/23/2012	DPout	E. coli	21	2	10	265.2	168.4	391.8	26.7
5/23/2012	B1	E. coli	29	4	10	457.0	316.9	639.9	30.0
5/23/2012	B2	E. coli	28	1	10	911.8	614.5	1306.5	70.0
5/23/2012	B3	E. coli	21	1	10	265.2	173.6	393	30.0
5/23/2012	DPin	Enterococci	28	5	100	39.4	27.4	55	20.0
5/23/2012	DPout	Enterococci	13	0	100	13.5	7.8	22.9	26.7
5/23/2012	B1	Enterococci	28	13	100	57.3	42	76.2	30.0

5/23/2012	B2	Enterococci	37	33	100	320.4	253.6	393.4	70.0
5/23/2012	B3	Enterococci	43	9	100	109.0	77.8	148.1	30.0
5/30/2012	DPin	Coliforms	49	18	10	2674.7	1697.9	4097.7	23.3
5/30/2012	DPout	Coliforms	49	29	10	5518.4	3610.7	8068.3	30.0
5/30/2012	B1	Coliforms	49	22	10	3688.8	2341.6	5400.4	30.0
5/30/2012	B2	Coliforms	49	41	10	26740.7	18018.7	38904.5	70.0
5/30/2012	B3	Coliforms	49	47	10	21996.1	14821.6	42873.7	26.7
5/30/2012	DPin	E. coli	19	1	10	214.1	131.7	327.4	23.3
5/30/2012	DPout	E. coli	10	3	10	136.7	73.5	224.3	30.0
5/30/2012	B1	E. coli	42	8	10	996.2	710.2	1352.9	30.0
5/30/2012	B2	E. coli	24	6	10	893.3	602	1252.3	70.0
5/30/2012	B3	E. coli	48	47	10	8732.8	6396.2	11321.7	26.7
5/30/2012	DPin	Enterococci	30	4	100	43.8	30.4	61	23.3
5/30/2012	DPout	Enterococci	22	3	100	30.8	20.1	45	30.0
5/30/2012	B1	Enterococci	32	4	100	53.0	36.7	73.6	30.0
5/30/2012	B2	Enterococci	16	2	100	47.3	28.3	72.5	70.0
5/30/2012	B3	Enterococci	49	31	100	589.8	386	856	26.7
6/4/2012	DPin	Coliforms	49	36	10	7534.3	5076.8	10829.4	23.3
6/4/2012	DPout	Coliforms	49	47	10	24195.7	16303.7	47161	33.3
6/4/2012	B1	Coliforms	49	34	10	7701.0	5490	10940.3	33.3
6/4/2012	B2	Coliforms	48	48	10	16852.7	12343.4	22058.4	60.0
6/4/2012	B3	Coliforms	49	42	10	12996.5	8503.6	18965.6	33.3
6/4/2012	DPin	E. coli	44	12	10	1160.3	827.3	1547.1	23.3
6/4/2012	DPout	E. coli	26	3	10	398.6	268.6	565	33.3
6/4/2012	B1	E. coli	13	1	10	159.6	91.9	263.7	33.3
6/4/2012	B2	E. coli	46	15	10	2874.5	2049.4	3925	60.0
6/4/2012	B3	E. coli	18	3	10	255.9	157.4	383.6	33.3
6/4/2012	DPin	Enterococci	34	10	100	63.3	45.2	83.7	23.3
6/4/2012	DPout	Enterococci	28	7	100	50.4	35	69.1	33.3
6/4/2012	B1	Enterococci	13	3	100	18.3	10.5	28.8	33.3
6/4/2012	B2	Enterococci	15	5	100	39.2	24.9	58.7	60.0
6/4/2012	B3	Enterococci	15	3	100	21.1	12.6	32.6	33.3
6/11/2012	DPin	Coliforms	47	12	10	1566.6	1086.3	2202.1	26.7
6/11/2012	DPout	Coliforms	49	47	10	25469.2	17161.8	49643.2	36.7
6/11/2012	B1	Coliforms	49	40	10	11198.7	7546	16140	33.3
6/11/2012	B2	Coliforms	49	46	10	24828.6	15275.4	41252.9	46.7
6/11/2012	B3	Coliforms	49	40	10	11198.7	7546	16140	33.3
6/11/2012	DPin	E. coli	4	0	10	37.5	15.1	86.6	26.7
6/11/2012	DPout	E. coli	19	3	10	286.1	181.6	423.1	36.7
6/11/2012	B1	E. coli	24	1	10	331.0	216.6	481.3	33.3
6/11/2012	B2	E. coli	24	0	10	396.3	259.3	583	46.7
6/11/2012	B3	E. coli	17	1	10	215.7	128.5	337.1	33.3
6/11/2012	DPin	Enterococci	3	7	100	9.4	4.7	16.7	26.7
6/11/2012	DPout	Enterococci	15	6	100	26.0	16.6	38.5	36.7
6/11/2012	B1	Enterococci	21	2	100	29.2	18.5	43.1	33.3
6/11/2012	B2	Enterococci	2	3	100	6.4	2	13.3	46.7
6/11/2012	B3	Enterococci	6	0	100	6.3	2.9	13.7	33.3
6/18/2012	DPin	Coliforms	49	34	5	13393.0	9547.9	19026.7	23.3
6/18/2012	DPout	Coliforms	49	34	5	16212.6	11557.9	23032.3	36.7
6/18/2012	B1	Coliforms	49	20	5	6896.0	4377.4	10413.2	33.3
6/18/2012	B2	Coliforms	49	15	5	5225.0	3418.8	7969	33.3
6/18/2012	B3	Coliforms	43	11	5	2307.0	1689.8	3109.8	30.0
6/18/2012	DPin	E. coli	30	3	5	847.7	587.9	1183	23.3
6/18/2012	DPout	E. coli	23	2	5	687.8	450.2	1003.6	36.7

6/18/2012	B1	E. coli	12	3	5	338.8	188.6	540.8	33.3
6/18/2012	B2	E. coli	3	0	5	61.2	13.8	178.8	33.3
6/18/2012	B3	E. coli	6	0	5	120.4	55.3	261.2	30.0
6/18/2012	DPin	Enterococci	19	21	100	44.5	32.7	58.6	23.3
6/18/2012	DPout	Enterococci	49	32	100	722.8	473	1025.7	36.7
6/18/2012	B1	Enterococci	33	2	100	54.8	38	76.4	33.3
6/18/2012	B2	Enterococci	13	0	100	14.8	8.5	25.1	33.3
6/18/2012	B3	Enterococci	10	5	100	15.8	9.2	25.6	30.0
6/25/2012	DPin	Coliforms	31	5	2	2275.4	1578	3148.8	20.0
6/25/2012	DPout	Coliforms	49	44	2	91360.0	59776.5	138415.3	43.3
6/25/2012	B1	Coliforms	49	44	2	86284.4	56455.6	130725.6	40.0
6/25/2012	B2	Coliforms	49	45	2	216611.3	145958.8	338683.8	73.3
6/25/2012	B3	Coliforms	49	47	2	302446.3	203796.3	589512.5	73.3
6/25/2012	DPin	E. coli	4	1	2	215.0	73.4	448.4	20.0
6/25/2012	DPout	E. coli	28	1	2	2413.5	1626.5	3458.3	43.3
6/25/2012	B1	E. coli	32	36	2	6655.6	5264.5	8120.6	40.0
6/25/2012	B2	E. coli	29	4	2	5997.5	4158.8	8397.5	73.3
6/25/2012	B3	E. coli	38	4	2	9363.8	6675	12860	73.3
6/25/2012	DPin	Enterococci	3	0	100	2.6	0.6	7.5	20.0
6/25/2012	DPout	Enterococci	41	21	100	163.3	126	208.3	43.3
6/25/2012	B1	Enterococci	39	20	100	133.7	103.2	171.9	40.0
6/25/2012	B2	Enterococci	39	12	100	246.0	180.3	326.5	73.3
6/25/2012	B3	Enterococci	37	13	100	227.8	166.8	300.5	73.3
7/2/2012	DPin	Coliforms	49	43	5	26250.9	17175.9	39027.3	28.2
7/2/2012	DPout	Coliforms	49	45	5	32435.9	21856.3	50715.4	28.8
7/2/2012	B1	Coliforms	49	47	5	46709.8	31474.4	91044.5	30.9
7/2/2012	B2	Coliforms	49	47	5	54008.3	36392.2	105270.1	40.3
7/2/2012	B3	Coliforms	49	18	5	5584.9	3545.2	8556.2	26.6
7/2/2012	DPin	E. coli	19	3	5	504.7	320.4	746.4	28.2
7/2/2012	DPout	E. coli	37	6	5	1411.5	1006.3	1920.1	28.8
7/2/2012	B1	E. coli	38	7	5	1575.7	1123.4	2129.8	30.9
7/2/2012	B2	E. coli	18	2	5	543.1	344.7	827.3	40.3
7/2/2012	B3	E. coli	8	0	5	156.2	80.8	306.4	26.6
7/2/2012	DPin	Enterococci	49	25	100	428.1	271.8	638.8	28.2
7/2/2012	DPout	Enterococci	34	19	100	85.5	64.3	110.5	28.8
7/2/2012	B1	Enterococci	12	13	100	27.6	18.7	39.2	30.9
7/2/2012	B2	Enterococci	4	5	100	10.4	5.1	18.9	40.3
7/2/2012	B3	Enterococci	11	2	100	13.2	7.1	21.5	26.6
7/9/2012	DPin	Coliforms	37	6	2	3462.4	2468.4	4709.9	27.4
7/9/2012	DPout	Coliforms	49	47	2	433614.7	292181.1	845179.3	81.4
7/9/2012	B1	Coliforms	49	17	2	14047.8	9191.7	21538	31.0
7/9/2012	B2	Coliforms	49	15	2	12123.0	7932.3	18489.6	28.2
7/9/2012	B3	Coliforms	47	4	2	5730.0	3860.9	8193	23.8
7/9/2012	DPin	E. coli	3	1	2	187.8	53.3	416.5	27.4
7/9/2012	DPout	E. coli	29	2	2	8026.9	5408.7	11354.9	81.4
7/9/2012	B1	E. coli	8	0	2	415.3	214.9	814.6	31.0
7/9/2012	B2	E. coli	3	0	2	142.0	32.1	414.9	28.2
7/9/2012	B3	E. coli	2	0	2	88.4	11.4	312.1	23.8
7/9/2012	DPin	Enterococci	45	13	100	136.2	97.1	183.6	27.4
7/9/2012	DPout	Enterococci	6	1	100	26.5	11.5	51.7	81.4
7/9/2012	B1	Enterococci	32	2	100	50.3	34.9	70.5	31.0
7/9/2012	B2	Enterococci	7	1	100	7.9	3.7	14.5	28.2
7/9/2012	B3	Enterococci	10	0	100	9.6	5	17.6	23.8
7/16/2012	DPin	Coliforms	49	41	3	37522.0	25283.5	54590	28.7

7/16/2012	DPout	Coliforms	49	26	3	16379.6	10397.1	24193.5	33.7
7/16/2012	B1	Coliforms	49	38	3	30231.0	20370.4	43483.2	27.9
7/16/2012	B2	Coliforms	49	45	3	83352.1	56165	130325.7	53.8
7/16/2012	B3	Coliforms	49	27	3	17052.7	11157.6	25175.1	32.6
7/16/2012	DPin	E. coli	23	4	3	1105.4	744.7	1591	28.7
7/16/2012	DPout	E. coli	7	0	3	249.8	119.5	498.7	33.7
7/16/2012	B1	E. coli	25	2	3	1122.8	734.6	1620.5	27.9
7/16/2012	B2	E. coli	18	1	3	1109.7	682.6	1716.8	53.8
7/16/2012	B3	E. coli	5	0	3	171.8	75.5	393.7	32.6
7/16/2012	DPin	Enterococci	49	47	100	2263.4	1525.2	4411.7	28.7
7/16/2012	DPout	Enterococci	15	0	100	17.6	10.2	28.8	33.7
7/16/2012	B1	Enterococci	40	13	100	98.7	72.4	129.9	27.9
7/16/2012	B2	Enterococci	6	4	100	15.3	7.7	26.7	53.8
7/16/2012	B3	Enterococci	5	2	100	7.2	2.9	13.8	32.6
7/23/2012	DPin	Coliforms	49	17	3	8662.5	5668	13281.2	25.4
7/23/2012	DPout	Coliforms	49	38	3	32647.1	21998.4	46958.4	33.3
7/23/2012	B1	Coliforms	49	39	3	33630.4	22661.3	48506.3	30.9
7/23/2012	B2	Coliforms	49	40	3	33404.0	22508.6	48143.2	25.5
7/23/2012	B3	Coliforms	49	47	3	73823.6	49744.4	143893.2	27.2
7/23/2012	DPin	E. coli	6	0	3	188.2	86.4	408.3	25.4
7/23/2012	DPout	E. coli	2	2	3	134.9	38.3	298.1	33.3
7/23/2012	B1	E. coli	7	2	3	308.6	141.8	544.2	30.9
7/23/2012	B2	E. coli	6	0	3	188.5	86.6	409	25.5
7/23/2012	B3	E. coli	15	1	3	570.3	328.7	914.7	27.2
7/23/2012	DPin	Enterococci	19	5	100	26.6	17.5	38.8	25.4
7/23/2012	DPout	Enterococci	7	0	100	7.5	3.6	14.9	33.3
7/23/2012	B1	Enterococci	40	26	100	141.9	109.5	180.3	30.9
7/23/2012	B2	Enterococci	11	2	100	13.0	7	21.2	25.5
7/23/2012	B3	Enterococci	32	8	100	57.4	41	78.1	27.2
7/30/2012	DPin	Coliforms	49	31	3	20412.7	13356.1	29619.7	29.4
7/30/2012	DPout	Coliforms	48	9	3	5051.7	3502.7	7187.8	24.3
7/30/2012	B1	Coliforms	48	22	3	10880.1	7544	15416.1	39.0
7/30/2012	B2	Coliforms	49	47	3	199387.6	134352.8	388636.1	73.0
7/30/2012	B3	Coliforms	49	35	3	25893.1	17447.5	37253.1	29.9
7/30/2012	DPin	E. coli	1	0	3	31.4	1.7	172.8	29.4
7/30/2012	DPout	E. coli	4	0	3	121.2	48.5	279.4	24.3
7/30/2012	B1	E. coli	10	0	3	400.8	207.4	731.5	39.0
7/30/2012	B2	E. coli	35	4	3	5304.6	3677.9	7302.2	73.0
7/30/2012	B3	E. coli	10	2	3	419.6	225.3	698.1	29.9
7/30/2012	DPin	Enterococci	3	0	100	2.9	0.7	8.5	29.4
7/30/2012	DPout	Enterococci	31	7	100	51.1	36.5	70	24.3
7/30/2012	B1	Enterococci	6	4	100	11.6	5.8	20.3	39.0
7/30/2012	B2	Enterococci	18	40	100	187.6	148.4	232.2	73.0
7/30/2012	B3	Enterococci	10	8	100	19.0	12.1	29	29.9
8/7/2012	DPin	Coliforms	48	16	3	6291.1	4362.1	8907.7	19.4
8/7/2012	DPout	Coliforms	47	14	3	5496.4	3918.3	7613	25.2
8/7/2012	B1	Coliforms	49	12	3	6563.8	4294.8	10036	23.9
8/7/2012	B2	Coliforms	48	14	3	6258.6	4339.5	8981.7	25.5
8/7/2012	B3	Coliforms	48	17	3	7335.5	5086.4	10493.6	27.8
8/7/2012	DPin	E. coli	1	0	3	27.5	1.5	151.4	19.4
8/7/2012	DPout	E. coli	9	0	3	290.8	139.1	545.5	25.2
8/7/2012	B1	E. coli	7	1	3	248.9	114.2	456.9	23.9
8/7/2012	B2	E. coli	5	1	3	186.8	74.9	379.7	25.5
8/7/2012	B3	E. coli	4	0	3	127.2	50.9	293.2	27.8

8/7/2012	DPin	Enterococci	14	2	100	15.3	9.1	24.2	19.4
8/7/2012	DPout	Enterococci	10	1	100	10.8	5.8	18.9	25.2
8/7/2012	B1	Enterococci	35	8	100	63.4	45.2	84.5	23.9
8/7/2012	B2	Enterococci	27	3	100	37.6	25.4	53.5	25.5
8/7/2012	B3	Enterococci	27	2	100	37.3	25.3	53.1	27.8
8/13/2012	DPin	Coliforms	49	13	3	6794.2	4578	10367.2	22.8
8/13/2012	DPout	Coliforms	49	37	3	28500.2	19204.3	39678.1	28.2
8/13/2012	B1	Coliforms	48	22	3	8690.8	6026	12314.1	23.6
8/13/2012	B2	Coliforms	49	33	3	21127.3	13823.7	30481.6	23.5
8/13/2012	B3	Coliforms	49	39	3	31704.3	21363.4	45728.2	26.7
8/13/2012	DPin	E. coli	6	0	3	182.0	83.6	394.9	22.8
8/13/2012	DPout	E. coli	20	1	3	811.2	515.1	1228.7	28.2
8/13/2012	B1	E. coli	2	0	3	58.8	7.6	207.6	23.6
8/13/2012	B2	E. coli	13	2	3	497.6	286.9	796	23.5
8/13/2012	B3	E. coli	19	- 1	3	746.1	458.9	1140 7	26.7
8/13/2012	DPin	Enterococci	12	1	100	12.6	7.1	21.3	22.8
8/13/2012	DPout	Enterococci	14	4	100	19.4	11.6	30	28.2
8/13/2012	B1 out	Enterococci	30	2	100	41.1	27.8	58.2	23.6
8/13/2012	B7	Enterococci	28	9	100	46.7	33.4	63.7	23.0
8/13/2012	B2 B3	Enterococci	20 24	2	100	31.4	21.2	45.6	25.5
8/20/2012	DPin	Coliforms	24 48	13	3	5748.3	3873.3	8105.6	20.7
8/20/2012	DPout	Coliforms	-10 /10	17	3	8385 /	54867	12856.3	22.1
8/20/2012	B1	Coliforms	4) /0	17 /1	3	378763	25522.2	55105.5	22.9
8/20/2012	B1 B2	Coliforms	49	30	3	33025.3	23322.2	17633.6	29.4
8/20/2012	D2 B3	Coliforms	49	39 27	3	155020.0	10144.2	17888 5	25.0
8/20/2012	DDin	E coli	49	27	3	57.6	7.5	22000.5	23.9
8/20/2012	DFIII	E. coli E. coli	12	0	2	57.0 455.1	252.4	203.0	22.1
8/20/2012		E. coli E. coli	12	2 4	2	455.1	233.4	/41.1	22.9
8/20/2012		E. coli E. coli	12	4	2	750.2	526.4 467.2	901.2	29.4
8/20/2012	B2 D2	E. coll	1/	3	3	159.2	407.2	(41.5	29.0
8/20/2012	D):	E. coll	20	0	100	300.0	204.2	041.3 57.1	23.9
8/20/2012	DPIII	Enterococci	50 25	ے 1	100	40.5	27.5	37.1	22.1
8/20/2012	DFOUL	Enterococci	23	1	100	50.5 92.5	19.9	44.5	22.9
8/20/2012		Enterococci	29	0	100	05.5	21.1	62.5	29.4
8/20/2012	D2 D2	Enterococci	20 10	5	100	44.0	31.1 12.6	02.5	29.0
8/20/2012 8/27/2012	DD:n	California	19	1	100	22.1	1922.2	2424.9	25.9
8/27/2012	DPIII	Colliforme	39	20	2	2337.5	1625.2	24152.0	25.5
8/27/2012	DPOUL	Colliforms	49	32 12	3	24008.3	15/48	54155.9	30.0 28.2
8/27/2012	BI	Colliforms	45	12	3	4452.8	51/4.0 10224.7	0055.5	28.2
8/27/2012	B2 D2	Colliforms	49	27	3	15/95.1	10334.7 5225.5	23318.4	27.2
8/27/2012	B3 DD:		49	1/	3	8139.1	3325.5	124/8./	20.0
8/27/2012	DPIN	E. coll	1	0	3	29.7	1.0	103.3	25.5
8/2//2012	DPout	E. coli	21	2	3	1022.4	649.2	1510.4	36.6
8/2//2012	BI	E. coli	4	1	3	159.7	54.0 125.0	535.1	28.2
8/2//2012	B2 D2	E. coli	8	1	3	295.9	135.9	524.1	27.2
8/27/2012	DD.	E. coll	0	1	3	200.5	90.7	402.9	20.6
8/2//2012	DPin	Enterococci	9	0	100	8.7	4.2	16.5	25.3
8/2//2012	DPout	Enterococci	3	1	100	4.3	1.3	9.0	36.6
8/2//2012	BI	Enterococci	10	1	100	11.2	6.1	19.6	28.2
8/27/2012	B2 D2	Enterococci	17	4	100	23.2	14.8	34.6	27.2
8/2//2012	RQ RQ	Enterococci	8	2	100	9.1	4.4	15.7	20.6
9/3/2012	DPin	Coliforms	49	22	3	112/5.7	7157.5	16507.7	23.7
9/3/2012	DPout	Coliforms	49	25	3	14192.3	9009	21172.1	27.8
9/3/2012	BI	Coliforms	49	24	3	13056.4	8287.8	19503.2	25.9
9/3/2012	B 2	Coliforms	49	29	3	17/19.5	11593.9	25907.4	27.3

9/3/2012	B3	Coliforms	49	38	3	28429.5	19156.5	40892	23.4
9/3/2012	DPin	E. coli	9	2	3	349.1	173.8	590.2	23.7
9/3/2012	DPout	E. coli	6	0	3	194.6	89.3	422	27.8
9/3/2012	B1	E. coli	12	1	3	439.2	244.6	738.8	25.9
9/3/2012	B2	E. coli	13	2	3	523.6	301.9	837.7	27.3
9/3/2012	B3	E. coli	7	0	3	216.0	103.3	431.3	23.4
9/3/2012	DPin	Enterococci	38	4	100	65.4	46.7	89.9	23.7
9/3/2012	DPout	Enterococci	2	1	100	2.8	0.7	6.9	27.8
9/3/2012	B1	Enterococci	40	6	100	79.4	56.7	108.2	25.9
9/3/2012	B2	Enterococci	45	16	100	149.0	109.2	197.9	27.3
9/3/2012	B3	Enterococci	43	7	100	94.0	67	128.1	23.4
9/10/2012	DPin	Coliforms	47	12	3	5085.7	3526.4	7148.3	24.7
9/10/2012	DPout	Coliforms	49	23	3	12917.4	8199.5	19472.2	29.4
9/10/2012	B1	Coliforms	49	35	3	23592.3	15897.1	33942.8	23.1
9/10/2012	B2	Coliforms	49	23	3	11854.5	7524.8	17869.9	23.0
9/10/2012	B3	Coliforms	49	23	3	12737.1	8085	19200.3	28.4
9/10/2012	DPin	E. coli	7	0	3	219.8	105.1	438.9	24.7
9/10/2012	DPout	E. coli	4	1	3	162.3	55.5	338.6	29.4
9/10/2012	B1	E. coli	11	3	3	451.7	251.5	730.3	23.1
9/10/2012	B2	E. coli	7	0	3	215.1	102.9	429.4	23.0
9/10/2012	B3	E. coli	3	1	3	126.8	36.1	281.4	28.4
9/10/2012	DPin	Enterococci	13	1	100	14.2	8.2	23.4	24.7
9/10/2012	DPout	Enterococci	1	0	100	0.9	0.1	5.2	29.4
9/10/2012	B1	Enterococci	13	1	100	13.9	8	22.9	23.1
9/10/2012	B2	Enterococci	9	0	100	8.5	4.1	16	23.0
9/10/2012	B3	Enterococci	5	1	100	5.9	2.4	11.9	28.4
9/17/2012	DPin	Coliforms	44	8	3	3416.5	2435.7	4680	22.8
9/17/2012	DPout	Coliforms	46	10	3	4917.7	3506	6740.4	33.7
9/17/2012	B1	Coliforms	48	9	3	6137.6	4255.7	8733	37.7
9/17/2012	B2	Coliforms	49	19	3	9775.9	6205.5	14957.4	26.0
9/17/2012	B3	Coliforms	48	22	3	9037.9	6266.7	12806	26.6
9/17/2012	DPin	E. coli	15	1	3	537.8	309.9	862.6	22.8
9/17/2012	DPout	E. coli	4	0	3	138.5	55.4	319.1	33.7
9/17/2012	B1	E. coli	37	21	3	3945.8	2967.2	5064.2	37.7
9/17/2012	B2	E. coli	20	2	3	826.1	524.4	1236.7	26.0
9/17/2012	B3	E. coli	8	1	3	293.2	134.7	519.3	26.6
9/17/2012	DPin	Enterococci	8	1	100	8.4	3.9	14.9	22.8
9/17/2012	DPout	Enterococci	4	1	100	5.2	1.9	10.9	33.7
9/17/2012	B1	Enterococci	37	21	100	118.4	89	152	37.7
9/17/2012	B2	Enterococci	20	2	100	24.8	15.8	37.2	26.0
9/17/2012	B3	Enterococci	8	1	100	8.8	4.1	15.7	26.6
9/22/2012	DPin	Coliforms	49	21	3	10826.7	6872.3	16457.8	25.0
9/22/2012	DPout	Coliforms	49	20	3	9785.7	6211.8	14776.8	21.7
9/22/2012	B1	Coliforms	46	14	3	4991.0	3557.9	6812.6	25.7
9/22/2012	B2	Coliforms	46	17	3	5684.5	4163.7	7758.4	28.0
9/22/2012	B3	Coliforms	49	22	3	11899.3	7553.3	17420.6	27.7
9/22/2012	DPin	E. coli	35	1	3	1737.2	1204.5	2415.4	25.0
9/22/2012	DPout	E. coli	4	0	3	117.2	46.9	270.2	21.7
9/22/2012	B1	E. coli	12	2	3	472.0	262.8	768.7	25.7
9/22/2012	B2	E. coli	5	0	3	160.8	70.7	368.6	28.0
9/22/2012	B3	E. coli	5	1	3	192.4	77.2	391.1	27.7
9/22/2012	DPin	Enterococci	1	2	100	2.7	0.6	6.5	25.0
9/22/2012	DPout	Enterococci	2	0	100	1.7	0.3	6.1	21.7
9/22/2012	B1	Enterococci	2	0	100	1.8	0.3	6.4	25.7
9/22/2012	B2	Enterococci	1	5	100	5.6	2.2	11.3	28.0
-----------	-------	-------------	----	----	-----	---------	---------	---------	------
9/22/2012	B3	Enterococci	1	0	100	0.9	0.1	5.1	27.7
10/3/2012	DPin	Coliforms	49	17	3	8407.2	5501	12889.8	23.1
10/3/2012	DPout	Coliforms	45	7	3	3547.5	2459.7	4884.6	22.6
10/3/2012	B1	Coliforms	45	18	3	5230.3	3831	6924	26.7
10/3/2012	B2	Coliforms	47	15	3	5607.9	3998	7733.6	24.0
10/3/2012	B3	Coliforms	45	18	3	5183.2	3796.4	6861.6	26.0
10/3/2012	DPin	E. coli	12	2	3	456.3	254.1	743	23.1
10/3/2012	DPout	E. coli	6	1	3	211.9	93.1	413.5	22.6
10/3/2012	B1	E. coli	19	1	3	746.1	458.9	1140.7	26.7
10/3/2012	B2	E. coli	11	1	3	390.6	217.6	652.4	24.0
10/3/2012	B3	E. coli	11	0	3	367.3	204.6	642.7	26.0
10/3/2012	DPin	Enterococci	48	2	100	115.4	77.8	167.3	23.1
10/3/2012	DPout	Enterococci	5	1	100	5.4	2.2	11	22.6
10/3/2012	B1	Enterococci	25	9	100	42.5	30.3	58.4	26.7
10/3/2012	B2	Enterococci	10	5	100	14.6	8.5	23.6	24.0
10/3/2012	B3	Enterococci	10	6	100	15.9	9.6	24.8	26.0
10/8/2012	DPin	Coliforms	49	29	3	16486.8	10787.3	24105	21.9
10/8/2012	DPout	Coliforms	42	6	3	3035.7	2164.1	4157.9	27.7
10/8/2012	B1	Coliforms	32	0	3	1489.4	1003.7	2112.4	27.4
10/8/2012	B2	Coliforms	38	2	3	1959.4	1358.7	2735.8	20.0
10/8/2012	B3	Coliforms	47	12	3	5023.4	3483.2	7060.8	23.8
10/8/2012	DPin	E. coli	11	3	3	444.7	247.6	719	21.9
10/8/2012	DPout	E. coli	4	1	3	158.5	54.2	330.6	27.7
10/8/2012	B1	E. coli	6	0	3	193.5	88.8	419.7	27.4
10/8/2012	B2	E. coli	3	0	3	85.0	19.2	248.3	20.0
10/8/2012	B3	E. coli	13	1	3	465.2	267.9	768.7	23.8
10/8/2012	DPin	Enterococci	39	11	100	81.9	60	109	21.9
10/8/2012	DPout	Enterococci	10	4	100	14.3	8	23.2	27.7
10/8/2012	B1	Enterococci	21	1	100	25.6	16.8	38	27.4
10/8/2012	B2	Enterococci	19	2	100	21.6	13.7	32.6	20.0
10/8/2012	B3	Enterococci	23	6	100	33.5	22.6	47.1	23.8
#######	DPin	Coliforms	49	17	3	8578.2	5612.9	13152	24.6
#######	DPout	Coliforms	38	3	3	2099.9	1497.1	2915.3	23.0
#######	B1	Coliforms	41	8	3	2851.3	2088.5	3862.5	23.1
#######	B2	Coliforms	31	2	3	1403.6	973.3	1963.8	21.6
#######	B3	Coliforms	41	8	3	3116.1	2282.4	4221.1	29.6
#######	DPin	E. coli	17	5	3	782.8	496.9	1154.7	24.6
#######	DPout	E. coli	2	0	3	58.3	7.6	205.9	23.0
#######	B1	E. coli	11	1	3	386.0	215	644.8	23.1
#######	B2	E. coli	3	0	3	86.7	19.6	253.3	21.6
#######	B3	E. coli	11	2	3	457.6	246.1	744.4	29.6
#######	DPin	Enterococci	21	1	50	49.3	32.2	73	24.6
#######	DPout	Enterococci	2	2	100	3.6	1.1	7.8	23.0
#######	B1	Enterococci	17	2	100	19.8	12.2	30.4	23.1
#######	B2	Enterococci	6	0	100	5.4	2.5	11.7	21.6
#######	B3	Enterococci	13	2	100	16.2	9.4	26	29.6
#######	DPin	Coliforms	49	43	3	43976.0	28773.5	65379.4	28.6
#######	DPout	Coliforms	49	22	3	12480.1	7922	18271	31.0
#######	B1	Coliforms	49	19	3	10856.7	6891.5	16611.1	33.4
#######	B2	Coliforms	0	1	3	41.0	1.3	151.9	46.3
#######	B3	Coliforms	43	4	3	2753.2	1962.7	3803.9	20.1
#######	DPin	E. coli	37	7	3	2413.2	1720.3	3251.6	28.6
#######	DPout	E. coli	9	3	3	422.1	218.5	701.2	31.0

#######	B1	E. coli	10	1	3	403.9	216.9	703.4	33.4
#######	B2	E. coli	0	1	3	41.0	1.3	151.9	46.3
#######	B3	E. coli	3	1	3	113.8	32.4	252.4	20.1
#######	DPin	Enterococci	36	10	100	74.8	54.8	99.4	28.6
#######	DPout	Enterococci	0	1	100	1.0	0	3.6	31.0
#######	B1	Enterococci	10	0	100	11.0	5.8	20.2	33.4
#######	B2	Enterococci	5	0	100	6.5	2.9	14.8	46.3
#######	B3	Enterococci	0	1	100	0.8	0	3.1	20.1
#######	DPin	Coliforms	49	16	5	4831.4	3255.6	7308.4	24.0
#######	DPout	Coliforms	48	15	5	4142.4	2872.2	5957.2	29.6
#######	B1	Coliforms	49	17	5	5323.5	3483.3	8162	27.1
#######	B2	Coliforms	28	3	5	790.0	547.8	1119.5	25.5
#######	B3	Coliforms	49	17	5	8910.6	5830.4	13661.6	56.5
#######	DPin	E. coli	4	2	5	108.7	41.4	214.7	24.0
#######	DPout	E. coli	5	1	5	118.6	47.6	241.1	29.6
#######	B1	E. coli	12	2	5	288.9	160.9	470.5	27.1
#######	B2	E. coli	9	1	5	195.0	100.9	349	25.5
#######	B3	E. coli	16	2	5	653.3	389.3	998.5	56.5
#######	DPin	Enterococci	7	3	100	9.4	4.5	16.3	24.0
#######	DPout	Enterococci	3	1	100	3.9	1.2	8.7	29.6
#######	B1	Enterococci	5	0	100	4.8	2.2	10.9	27.1
#######	B2	Enterococci	3	2	100	4.6	1.6	9.5	25.5
#######	B3	Enterococci	5	1	100	9.6	3.9	19.5	56.5
11/5/2012	DPin	Coliforms	49	48	5	43498.4	25878.7	########	25.8
11/5/2012	DPout	Coliforms	49	33	5	16645.4	10891.2	24015.4	41.8
11/5/2012	B1	Coliforms	43	10	5	2059.6	1508.6	2767.5	23.8
11/5/2012	B2	Coliforms	49	39	5	31091.8	20950.7	44844.9	55.1
11/5/2012	B3	Coliforms	49	12	5	4005.0	2620.5	6123.6	25.2
11/5/2012	DPin	E. coli	16	1	5	361.5	222.4	572.5	25.8
11/5/2012	DPout	E. coli	24	4	5	855.0	576.1	1220	41.8
11/5/2012	B1	E. coli	2	0	5	35.3	4.6	124.8	23.8
11/5/2012	B2	E. coli	40	6	5	2622.0	1869.3	3573.3	55.1
11/5/2012	B3	E. coli	7	1	5	151.9	69.7	278.8	25.2
11/5/2012	DPin	Enterococci	27	9	100	46.0	32.9	62.7	25.8
11/5/2012	DPout	Enterococci	8	4	100	14.9	7.7	25	41.8
11/5/2012	B1	Enterococci	4	2	100	5.4	2.1	10.7	23.8
11/5/2012	B2	Enterococci	10	6	100	26.3	15.8	40.9	55.1
11/5/2012	B3	Enterococci	2	0	100	1.8	0.3	6.4	25.2
#######	DPin	Coliforms	49	19	5	5659.1	3592.2	8658.5	23.3
#######	DPout	Coliforms	24	6	5	779.4	525.3	1092.6	31.2
#######	B1	Coliforms	25	2	5	669.6	438.1	966.5	27.5
#######	B2	Coliforms	21	3	5	553.0	350.9	811.5	26.4
#######	B3	Coliforms	20	1	5	455.4	289.2	689.9	23.3
#######	DPin	E. coli	6	0	5	109.9	50.5	238.4	23.3
#######	DPout	E. coli	0	l	5	19.2	0.6	71.2	31.2
#######	B1	E. coli	3	0	5	56.3	12.7	164.5	27.5
########	B2	E. coli	3	0	5	55.5	12.6	162.1	26.4
########	B3	E. coli	2	0	5	35.1	4.6	123.9	23.3
########	DP1n	Enterococci	14	0	100	14.0	8.1	23.3	23.3
########	DPout	Enterococci	3	2	100	4.9	1.7	10.3	31.2
########	BI	Enterococci	1	0	100	0.9	0.1	5.1	27.5
########	B2	Enterococci	1	1	100	1.8	0.3	5.4	26.4
########	B3	Enterococci	3	0	100	2.7	0.7	7.8	23.3
########	DPin	Coliforms	49	43	10	6234.2	4079.1	9268.5	24.4

#######	DPout	Coliforms	49	44	10	7832.2	5124.6	11866.2	33.9
#######	B1	Coliforms	45	12	10	619.7	441.9	840	22.6
#######	B2	Coliforms	49	32	10	2988.1	1955.2	4240.3	23.4
#######	B3	Coliforms	49	11	10	936.0	612.5	1402.1	23.7
#######	DPin	E. coli	40	8	10	411.5	293.4	553.2	24.4
#######	DPout	E. coli	25	7	10	220.4	152.9	306.1	33.9
#######	B1	E. coli	11	0	10	52.7	29.4	92.2	22.6
#######	B2	E. coli	18	1	10	100.4	61.8	155.4	23.4
#######	B3	E. coli	7	2	10	41.9	19.3	74	23.7
#######	DPin	Enterococci	48	15	100	96.4	67	138.7	24.4
#######	DPout	Enterococci	19	5	100	15.0	9.9	21.9	33.9
#######	B1	Enterococci	6	2	100	3.6	1.6	6.6	22.6
#######	B2	Enterococci	7	0	100	3.3	1.6	6.5	23.4
#######	B3	Enterococci	5	3	100	3.7	1.7	6.7	23.7
#######	DPin	Coliforms	49	25	20	2059.5	1307.3	3072.3	25.4
#######	DPout	Coliforms	49	47	20	12031.7	8107.4	23451.6	33.0
#######	B1	Coliforms	43	7	20	487.1	347.2	663.6	26.0
#######	B2	Coliforms	46	10	20	628.4	448	861.3	22.2
#######	B3	Coliforms	49	18	20	1320.7	838.4	2023.4	22.4
#######	DPin	E. coli	24	2	20	154.2	103.9	223.9	25.4
#######	DPout	E. coli	25	4	20	195.5	131.8	278	33.0
#######	B1	E. coli	5	1	20	28.2	11.4	57.5	26.0
#######	B2	E. coli	4	1	20	22.1	7.6	46.1	22.2
#######	B3	E. coli	11	1	20	57.4	32	95.9	22.4
#######	DPin	Enterococci	47	12	100	153.9	106.8	216.4	25.4
#######	DPout	Enterococci	7	1	100	8.5	3.9	15.6	33.0
#######	B1	Enterococci	1	0	100	0.9	0.1	5	26.0
#######	B2	Enterococci	0	1	100	0.9	0	3.2	22.2
#######	B3	Enterococci	1	1	100	1.7	0.3	5.1	22.4
12/3/2012	DPin	Coliforms	49	14	20	1083.4	708.9	1624.1	23.7
12/3/2012	DPout	Coliforms	49	29	20	2904.5	1900.4	4246.6	33.5
12/3/2012	B1	Coliforms	36	5	20	297.9	212.4	407.3	22.0
12/3/2012	B2	Coliforms	49	31	20	3363.5	2200.8	4880.6	35.7
12/3/2012	B3	Coliforms	49	22	20	1954.2	1240.5	2861	33.9
12/3/2012	DPin	E. coli	19	0	20	101.9	62.8	157.8	23.7
12/3/2012	DPout	E. coli	15	0	20	87.7	50.6	143.2	33.5
12/3/2012	B1	E. coli	6	2	20	36.1	16	65.6	22.0
12/3/2012	B2	E. coli	25	1	20	181.3	118.7	265.4	35.7
12/3/2012	B3	E. coli	19	2	20	130.7	83	197.3	33.9
12/3/2012	DPin	Enterococci	26	6	100	38.7	26.9	54	23.7
12/3/2012	DPout	Enterococci	7	2	100	9.6	4.5	17	33.5
12/3/2012	B1	Enterococci	5	0	100	4.4	2	10.2	22.0
12/3/2012	B2	Enterococci	4	0	100	4.3	1.8	9.9	35.7
12/3/2012	B3	Enterococci	1	0	100	1.0	0.2	5.6	33.9
#######	DPin	Coliforms	47	7	20	620.4	430.2	876.2	22.1
#######	DPout	Coliforms	49	18	20	2026.4	1286.3	3104.4	49.4
#######	B1	Coliforms	40	6	20	381.7	272.1	520.1	22.9
#######	B2	Coliforms	48	15	20	1067.4	740.2	1535.1	31.7
#######	B3	Coliforms	25	2	20	154.5	101.1	223	21.4
#######	DPin	E. coli	21	1	20	119.2	78	176.6	22.1
#######	DPout	E. coli	10	1	20	79.8	42.9	139	49.4
#######	B1	E. coli	6	0	20	27.3	12.6	59.4	22.9
#######	B2	E. coli	5	0	20	25.5	11.3	58.3	31.7
#######	B3	E. coli	0	1	20	4.2	0.2	15.7	21.4

#######	DPin	Enterococci	10	4	100	13.3	7.4	21.5	22.1
#######	DPout	Enterococci	0	2	100	2.6	0.4	7.4	49.4
#######	B1	Enterococci	6	0	100	5.4	2.6	11.9	22.9
#######	B2	Enterococci	4	0	100	4.0	1.7	9.3	31.7
#######	B3	Enterococci	0	1	100	0.8	0	3.2	21.4
#######	DPin	Coliforms	49	31	20	2771.6	1813.5	4021.7	22.0
#######	DPout	Coliforms	43	14	20	616.6	451.6	816.5	28.8
#######	B1	Coliforms	47	13	20	869.2	602.7	1219.4	31.5
#######	B2	Coliforms	41	5	20	477.1	340.2	653	36.7
#######	B3	Coliforms	39	6	20	371.1	264.7	505.3	24.9
#######	DPin	E. coli	28	7	20	215.4	149.4	295.2	22.0
#######	DPout	E. coli	9	1	20	51.0	26.5	91.3	28.8
########	B1	E. coli	19	4	20	138.7	88.1	203.6	31.5
########	B2	E. coli	11	1	20	70.3	39.2	117.5	36.7
########	B3	E. coli	6	0	20	28.1	12.9	60.9	24.9
########	DPin	Enterococci	0	3	100	2.6	0.6	63	22.0
########	DPout	Enterococci	0 0	1	100	0.9	0.0	3.5	28.8
########	B1 out	Enterococci	3	1	100	4.0	12	8.9	31.5
########	B2	Enterococci	1	0	100	1.0	0.2	5.8	36.7
########	B2 B3	Enterococci	1	0	100	0.0	0.2	J.0	24.9
########	DD DPin	Coliforms	18	18	50	411.1	285.1	578.5	10.3
######################################	DPout	Coliforms	40	40	50	2068.1	1303.6	2080.7	17.5
######################################	B1 Out	Coliforms	49	40	50	2008.1	200.1	2960.7	27.8
######################################	D1 D2	Coliforms	40	11	50	2120.5	209.1	440.2	20.0
########	D2 D2	Coliforms	49	43	50	1261.1	2041.0	4039.3	39.0 22.1
########	DDin		49	1	50	1201.1 82.2	62J.1 56 1	1019.4	23.1
########	DFIII	E. coli	32 28	1	50	03.2 81.4	56.6	117.1	19.3
######################################		E. coli E. coli	20	2	50	01.4	12.1	20.2	27.8
######### #########		E. coli	20	2	50	160.6	13.1	222.0	20.0
######## ########	B2 D2	E. coll	38 10	3	50	100.0	21.4	222.9	39.0
######## ########	B3 DD:	E. COll	19	4	100	49.5	31.4 1246 4	72.0	23.1
######## ########	DPIN	Enterococci	49	47	100	1998.0	1340.4	3894.4	19.3
######### #########		Enterococci	40	21	100	205.5	162.0	100.0	27.8
######## ########	B1 B1	Enterococci	38 22	11	100	(1)	55.0 44.9	100.9	20.0
######## ########	B2 D2	Enterococci	20	4	100	04.3	44.8	89 (7	39.0
######## 1/7/2012	B3	Enterococci	32	4	100	48.2	33.4	0/	23.1
1/7/2013	DPin	Coliforms	49	16	50	500.9	337.0	/5/.8	26.7
1/7/2013	DPout	Coliforms	48	22	50	595.8	413.2	844.2	33.2
1/7/2013	BI	Coliforms	31	4	50	92.5	64.2	128.9	23.8
1/7/2013	B2	Coliforms	4/	9	50	294.7	204.4	415.2	29.8
1/7/2013	B3	Coliforms	49	24	50	/42.3	4/1.3	1108.9	21.8
1/7/2013	DPin DD	E. coli	27	2	50	/3.5	49.6	104.4	26.7
1/7/2013	DPout	E. coli	14	I	50	34.5	20.6	56.2	33.2
1/7/2013	BI	E. coli	3	0	50	5.3	1.3	15.7	23.8
1/7/2013	B2	E. coli	6	0	50	12.0	5.6	26.1	29.8
1/7/2013	B3	E. coli	15	2	50	33.9	20.3	52.8	21.8
1/7/2013	DPin	Enterococci	28	6	100	44.4	30.9	61.4	26.7
1/7/2013	DPout	Enterococci	3	2	100	5.1	1.7	10.6	33.2
1/7/2013	BI	Enterococci	1	1	100	1.7	0.3	5.2	23.8
1/7/2013	B2	Enterococci	0	1	100	0.9	0	3.6	29.8
1/7/2013	B3	Enterococci	1	2	100	2.6	0.6	6.3	21.8
1/14/2013	DPin	Coliforms	49	36	50	1473.6	993	2118.1	21.6
1/14/2013	DPout	Coliforms	46	13	50	295.8	210.9	403.8	27.2
1/14/2013	B1	Coliforms	38	6	50	136.8	97.5	185.7	22.6
1/14/2013	B2	Coliforms	49	16	50	501.4	337.9	758.5	26.7

1/14/2013	B3	Coliforms	49	18	50	553.2	351.2	847.6	25.9
1/14/2013	DPin	E. coli	49	25	50	784.2	497.8	1169.9	21.6
1/14/2013	DPout	E. coli	8	0	50	15.7	8.2	30.9	27.2
1/14/2013	B1	E. coli	5	1	50	10.8	4.4	22	22.6
1/14/2013	B2	E. coli	11	0	50	22.3	12.4	39	26.7
1/14/2013	B3	E. coli	10	0	50	19.8	10.3	36.2	25.9
1/14/2013	DPin	Enterococci	39	13	100	85.9	63	113.7	21.6
1/14/2013	DPout	Enterococci	0	1	100	0.9	0	3.4	27.2
1/14/2013	B1	Enterococci	2	0	100	1.7	0.3	6.2	22.6
1/14/2013	B2	Enterococci	1	2	100	2.7	0.6	6.7	26.7
1/14/2013	B3	Enterococci	2	2	100	3.7	1.1	8.1	25.9
1/20/2013	DPin	Coliforms	49	42	50	2349.1	1537.1	3428.1	26.2
1/20/2013	DPout	Coliforms	49	40	50	2130.0	1435.3	3070	29.9
1/20/2013	B1	Coliforms	45	16	50	294.7	215.9	391.4	26.5
1/20/2013	B2	Coliforms	49	45	50	3462.3	2333	5413.5	33.3
1/20/2013	B3	Coliforms	49	26	50	883.3	560.7	1304.7	26.3
1/20/2013	DPin	E. coli	49	32	50	1241.1	812.2	1761.3	26.2
1/20/2013	DPout	E. coli	43	17	50	272.0	204.6	356.1	29.9
1/20/2013	B1	E. coli	19	6	50	56.4	38.1	81.5	26.5
1/20/2013	B2	E. coli	46	17	50	368.0	269.6	502.2	33.3
1/20/2013	B3	E. coli	39	6	50	151.2	107.8	205.9	26.3
1/20/2013	DPin	Enterococci	48	18	100	224.9	156	316.5	26.2
1/20/2013	DPout	Enterococci	28	5	100	45.0	31.2	62.7	29.9
1/20/2013	B1	Enterococci	11	0	100	11.1	6.2	19.5	26.5
1/20/2013	B2	Enterococci	28	6	100	48.8	33.9	67.5	33.3
1/20/2013	B3	Enterococci	24	3	100	32.5	21.9	47	26.3
1/27/2013	DPin	Coliforms	48	14	50	352.3	244.4	505.7	20.6
1/27/2013	DPout	Coliforms	49	15	50	497.4	325.5	758.6	30.0
1/27/2013	B1	Coliforms	46	12	50	277.7	198	382.2	24.9
1/27/2013	B2	Coliforms	41	8	50	169.3	124	229.4	22.3
1/27/2013	B3	Coliforms	35	5	50	116.1	82.9	158.3	23.9
1/27/2013	DPin	E. coli	14	1	50	29.1	17.3	47.3	20.6
1/27/2013	DPout	E. coli	13	3	50	34.8	20.1	54.9	30.0
1/27/2013	B1	E. coli	7	2	50	17.0	7.9	30.1	24.9
1/27/2013	B2	E. coli	3	1	50	7.0	2	15.6	22.3
1/27/2013	B3	E. coli	10	0	50	19.3	10	35.3	23.9
1/27/2013	DPin	Enterococci	26	3	100	33.5	22.6	47.5	20.6
1/27/2013	DPout	Enterococci	14	3	100	18.8	11.2	29.3	30.0
1/27/2013	B1	Enterococci	1	3	100	3.5	1	7.9	24.9
1/27/2013	B2	Enterococci	2	1	100	2.6	0.7	6.4	22.3
1/27/2013	B3	Enterococci	1	0	100	0.9	0.1	4.9	23.9

Appendix B: Intrastorm FIB monitoring data

Data for intrastorm sampling from the sampling bridge 1 of the StREAM Lab: sampling and subsequent measurements of FIB (*E. coli* and Enterococci) concentrations via culture-based methods by 2013 NSF-REU students (Romnia Benitez, Richard Sawyer, Erin Schaberg, and Emily von Wagoner).

Storm #1 (6/26/2013)

		MP	N/100mL	CN/100n	nL
Date Time	SampleID	E. coli	Enterococci	Enterococcus spp.	HF183
6/26/2013 13:37	1	13327	8420	197586.3	7588
6/26/2013 13:52	2	20459	10497	258348.7	1828
6/26/2013 14:07	3	19559	24809	526935.5	3104
6/26/2013 14:22	4	18600	6695	195641.1	6400.8
6/26/2013 14:37	5	7800	3692	138472.3	4059.2
6/26/2013 14:52	6	6631	1336	70000	4802
6/26/2013 15:07	7	8162	2462	30641.1	3040
6/26/2013 15:22	8	5833	1579	29843.8	2200
6/26/2013 15:37	9	5653	2847	34186.1	5752
6/26/2013 15:52	10	6294	512	50555.6	3576
6/26/2013 16:07	11	6828	1089	42790.7	4696
6/26/2013 16:22	12	8088	516	43077	4704
6/26/2013 16:37	13	7894	571	51621.7	4392
6/26/2013 16:52	14	3170	626	60810.9	5488
6/26/2013 17:07	15	3451	1712	45618	4168
6/26/2013 17:22	16	2751	979	45232.6	4704
6/26/2013 17:37	17	1731	1449	149777.8	9590
6/26/2013 17:52	18	1890	1731	151754.4	9184
6/26/2013 18:07	19	2718	632	65545.5	3232
6/26/2013 18:22	20	2086	979	68089.9	4120
6/26/2013 18:37	21	2751	738	45116.3	2536
6/26/2013 18:52	22	2433	306	42687.5	2042
6/26/2013 19:07	23	1596	632	40258.7	1548

qPCR standard curves for Enterococcus spp. 23S rRNA and HF183 Bacteroides 16S rRNA

Storm #2 (6/27/2013)

		MPN/100mL E. coli Enterococci 8859 4434 4954 2785 30759 13735 30759 13735 22468 11455 21426 6871 18501 9854 9063 3966 10193 3544 8197 4969 7712 3545 11528 2405 13169 7227		CN/100mL		
Date Time	SampleID	E. coli	Enterococci	Enterococcus spp.	HF183	
6/27/2013 10:00	6	8859	4434	11389	1035.5	
6/27/2013 10:15	7	4954	2785	12478.3	1741.9	
6/27/2013 10:30	8	30759	13735	10801	1244	
6/27/2013 10:45	9	30759	13735	8993.3	923.3	
6/27/2013 11:00	10	22468	11455	7151	902.4	
6/27/2013 11:15	11	21426	6871	51993.4	1968.8	
6/27/2013 11:30	12	18501	9854	172873.2	3437.8	
6/27/2013 11:45	13	9063	3966	41160.2	1312.3	
6/27/2013 12:00	14	10193	3544	165093.5	1449.4	
6/27/2013 12:15	15	8197	4969	112372.6	1982.8	
6/27/2013 12:30	16	7712	3545	23649.3	1438.4	
6/27/2013 12:45	17	11528	2405	127319.1	2124	
6/27/2013 13:00	18	13169	7227	47968	1741.2	
6/27/2013 13:15	19	15386	8014	96007.2	2382	
6/27/2013 13:30	20	16162	5043	105226.7	2512.9	
6/27/2013 13:45	21	9075	9075	89722	2474.8	
6/27/2013 14:00	22	11370	8392	40716.9	2456	
6/27/2013 14:15	23	11776	8624	55519.9	2905.7	

qPCR standard curves for Enterococcus spp. 23S rRNA and HF183 Bacteroides 16S rRNA

Storm #3 (6/30/2013)

		MP	N/100mL	CN/100n	nL
Date Time	SampleID	E. coli	Enterococci	Enterococcus spp.	HF183
6/30/2013 18:45	1	12498	2624	510800	2552
6/30/2013 19:00	2	36540	7430	947440	4784
6/30/2013 19:15	3	23593	12669	1267360	8640
6/30/2013 19:30	4	13344	5850	541360	6192
6/30/2013 19:45	5	12591	7279	723120	4904
6/30/2013 20:00	6	17853	7634	781440	3808
6/30/2013 20:15	7	12007	7000	562480	4104
6/30/2013 20:30	8	17216	6049	464240	3144
6/30/2013 20:45	9	20635	8709	470640	2784
6/30/2013 21:00	10	15967	6116	353200	2856
6/30/2013 21:15	11	17890	4638	285520	2392
6/30/2013 21:30	12	15286	8907	316800	2168
6/30/2013 21:45	13	12112	1458	549760	2944
6/30/2013 22:00	14	11190	8668	381680	3232
6/30/2013 22:15	15	13169	7976	384160	4160
6/30/2013 22:30	16	14209	14695	663920	2840
6/30/2013 22:45	17	19890	3129	607200	2776
6/30/2013 23:00	18	17890	2405	671280	2696
6/30/2013 23:15	19	16640	4890	706000	2560
6/30/2013 23:30	20	12740	4307.5	429200	2920
6/30/2013 23:45	21	10758	3725	419680	2632
7/1/2013 0:00	22	13135	3877	410160	2192
7/1/2013 0:15	23	8574	4284	265760	4336
7/1/2013 0:30	24	12356	4585	297840	2128

Storm #4 (7/2/2013)

		MP	N/100mL	CN/100n	nL
Date Time	SampleID	E. coli	Enterococci	Enterococcus spp.	HF183
7/2/2013 8:47	1	1068	3442.5	7603.8	2761.1
7/2/2013 9:17	2	2954	2300	44483.1	46469.3
7/2/2013 9:47	3	2992	3405	117243.8	83788.4
7/2/2013 10:17	4	2378	5121	3877	3170.2
7/2/2013 10:47	5	5371	3684	84295.9	141644.5
7/2/2013 11:17	6	3839	2718	89060.9	94229.6
7/2/2013 11:47	7	2751	1336	124725.6	102374
7/2/2013 12:17	8	1596	409	119686.5	152827.7
7/2/2013 12:47	9	3319	516	149130.8	84369.2
7/2/2013 13:17	10	3361	512	52461	98898.3
7/2/2013 13:47	11	2992	521	33100.7	94882.8
7/2/2013 14:17	12	2307	516	63594.3	167187.8
7/2/2013 14:47	13	1989	202	37718.4	103798.3
7/2/2013 15:17	14	2182	852	37460	110456.7
7/2/2013 15:47	15	1989	306	19231.6	3350.4
7/2/2013 16:17	16	1613	413	60191.9	9574.6
7/2/2013 16:47	17	969	304	21615.4	5586.1
7/2/2013 17:17	18	836	306	74999.8	9574.6
7/2/2013 17:47	19	1350	1199	62296.4	4603.6
7/2/2013 18:17	20	13327	9831	62296.4	4541.3
7/2/2013 18:47	21	5475	6408	200412.9	4479
7/2/2013 19:17	22	8014	4223	72965.9	4416.7
7/2/2013 19:47	23	13540	5948	734690.9	2388.3
7/2/2013 20:17	24	15152	7478	1073	5036.2

qPCR standard curves for Enterococcus spp. 23S rRNA and HF183 Bacteroides 16S rRNA

Storm #5 (7/10/2013)

		MP	N/100mL	CN/100n	nL
Date Time	SampleID	E. coli	Enterococci	Enterococcus spp.	HF183
7/10/2013 16:00	6	306	3839.5	27493.1	462.2
7/10/2013 16:30	7	100	201	15346.6	567.4
7/10/2013 17:00	8	11528	24890	668441.3	10708.1
7/10/2013 17:30	9	43517	21426	804297	4756.3
7/10/2013 18:00	10	16162	10758	420572.2	3829.9
7/10/2013 18:30	11	7478	11264	360429.2	4826.9
7/10/2013 19:00	12	13344	24890	718376.6	6473.5
7/10/2013 19:30	13	13327	14497	375587.6	6657
7/10/2013 20:00	14	8296	9895	319451.6	6428.4
7/10/2013 20:30	15	11874	11528	1099563.9	7496.7
7/10/2013 21:00	16	16695	8329	1029799	13865.6
7/10/2013 21:30	17	13344	13135	991445.7	8621.2
7/10/2013 22:00	18	10497	8624	791913.4	6942
7/10/2013 22:30	19	8624	7712	509598.1	6428.4
7/10/2013 23:00	20	8361	6844	663307.6	3102.4
7/10/2013 23:30	21	4959	6053	487458.8	4734.3
7/11/2013 0:00	22	6367	4479	858243.5	3893
7/11/2013 0:30	23	6504	2281	485394.4	5137.6
7/11/2013 1:00	24	3405	2133	369102.4	5821.5

qPCR standard curves for Enterococcus spp. 23S rRNA and HF183 Bacteroides 16S rRNA

Storm #6 (7/21/2013)

		MP	N/100mL	CN/100n	nL
Date Time	SampleID	E. coli	Enterococci	Enterococcus spp.	HF183
7/21/2013 11:55	3	100	201	4080	157.9
7/21/2013 12:10	4	202	202	3800	188.8
7/21/2013 12:25	5	512	1118	14460	339.3
7/21/2013 12:40	6	3545	2034	84280	12512.6
7/21/2013 12:55	7	5291	6945	120760	12233.6
7/21/2013 13:10	8	8574	13914	253400	8251.2
7/21/2013 13:25	9	5392	4808	62240	6009.8
7/21/2013 13:40	10	4434	2621	72800	4558
7/21/2013 13:55	11	3267	2011	50240	3466.5
7/21/2013 14:10	12	1350	1849	36280	3161.8
7/21/2013 14:25	13	1849	951	56120	3295.4
7/21/2013 14:40	14	1869	1323	63280	3482.5
7/21/2013 14:55	15	2230	1310	57600	2500.5
7/21/2013 15:10	16	1712	626	57440	3434.8
7/21/2013 15:25	17	1946	860	33640	2642.5
7/21/2013 15:40	18	2334	1089	44200	2831.3
7/21/2013 15:55	19	1336	626	39720	2735.2
7/21/2013 16:10	20	1596	306	30120	2005.1
7/21/2013 16:25	21	1563	516	42920	1047.4
7/21/2013 16:40	22	1749	951	38000	1438.7
7/21/2013 16:55	23	1890	745	23660	969.2
7/21/2013 17:10	24	1677	516	40500	892.1

qPCR standard curves for Enterococcus spp. 23S rRNA and HF183 Bacteroides 16S rRNA

Appendix C: HSPF model

HSPF UCI file under "free-phase" scenario:

```
***Simulated fecal coliform concentrations were converted to E. coli
concentrations via: E. coli = 0.98814866* (Fecal coliform^0.91905).
RUN
GLOBAL
 UCI Stroubles Creek Watershed-"free-phase" scenario
           2008/01/01 00:00 END
                                 2013/12/31 24:00
 START
 RUN INTERP OUTPT LEVELS 1
                             0
 RESUME
         0 RUN
                                            UNITS
                                                    1
                  1
END GLOBAL
FILES
---->
MESSU
         24
            N22 sed.ech
            N22 sed.out
         91
         44
            ..\Cattle.mut
         45 ..\Wildlife.mut
         46 ..\Straight Pipes.mut
         60 ..\N22 Spills.mut
WDM2
         26 ..\..\N22 MET1.wdm
         27 ..\..\N22 MET2.wdm
WDM3
         55 FreeFC.OUT
END FILES
OPN SEQUENCE
   INGRP
                   INDELT 01:00
     MUTSIN
                1
     MUTSIN
                2
     MUTSIN
               3
     MUTSIN
               20
              101
     PERLND
     PERLND
              201
             301
     PERLND
             401
     PERLND
              102
     PERLND
     PERLND
              202
              302
     PERLND
     PERLND
              402
              103
     PERLND
              203
     PERLND
     PERLND
              303
     PERLND
              403
     PERLND
              104
              204
     PERLND
              304
     PERLND
              404
     PERLND
     PERLND
              105
     PERLND
              205
```

PERLND	305										
PERLND	405										
PERLND	106										
PERLND	206										
PERLND	306										
PERLND	406										
PERLND	407										
PERLND	607										
PERLND	108										
PERLND	308										
PERLND	408										
PERLND	109										
PERLND	309										
PERLND	409										
TMPLND	101										
RCHRES	9										
RCHRES	8										
DCUDES	0 7										
DCUDEC	í E										
RCHRES	ю Г										
RCHRES	C										
RCHRES	4										
RCHRES	3										
RCHRES	2										
RCHRES	1										
PLTGEN	13										
END INGRP											
PERLND											
ACIIVIII	-	Nationa	Coot								+++
~~~ \FLO / *** v - v лтмр		ACUIVE	Dem		DOAT	метт	ਹਦਾਵਾਸ਼ਾ	NTTD	DUOC	TD A C	***
101  cord  0	SNOW PWAI	SED	PSI	PWG	PQAL 1	MSIL	PESI	NIIR	PRUS	1 RAC	
	0 1	0	0	0	T	0	0	0	0	0	
END ACTIVITY											
PRINT-INFO											
*** < PLS>			Pri	nt-f	lags						
PIVL PYR					- L						
*** x - x ATMP	SNOW PWAT	SED	PST	PWG	POAL	MSTL	PEST	NITR	PHOS	TRAC	
101 607 4	4 4	4	-~-4	0	- 2 4	4	4	4	5 - 4		
1 12		1	1	1	1	1	1	1	1	1	
 END PRINT-INT	$\cap$										
END EKINI-INE	U										
GEN-INFO											
* * *	Name			Un	it-sv	stems	Pr	inter	Bina	ryOut	
*** <pls></pls>					t-s	eries	Enql	Metr	Engl	Metr	
*** x - x					in	out	ر		2		
101 Fores	t -1					1	0	0	0	0	
201 Cronl	and-1				1	1	0	0	0	0	
301 Paetu	re-1				1	1	0	0	0	0	
401 Regid	ential-1				⊥ 1	⊥ 1	0	0	0	0	
102 Force	+=2				⊥ 1	⊥ 1	0	0	0	0	
202 Cronl	and-2				⊥ 1	⊥ 1	0	0	0	0	
	anu-Z				1	1	0	0	0	0	
302 Pastu	re-2				T	T	U	U	U	U	

402	Resi	idential-2				1	1	0	0	0	0
103	Fore	est-3				1	1	0	0	0	0
203	Crop	pland-3				1	1	0	0	0	0
303	Past	ture-3				1	1	0	0	0	0
403	Resi	idential-3				1	1	0	0	0	0
104	Fore	est-4				1	1	0	0	0	0
204	Crop	pland-4				1	1	0	0	0	0
304	Past	cure-4				1	1	0	0	0	0
404	Resi	idential-4				1	1	0	0	0	0
105	Fore	est-5				1	1	0	0	0	0
205	Crop	pland-5				1	1	0	0	0	0
305	Past	cure-5				1	1	0	0	0	0
405	Res	idential-5				1	1	0	0	0	0
106	Fore	est-6				1	1	0	0	0	0
206	Crop	pland-6				1	1	0	0	0	0
306	Past	cure-6				1	1	0	0	0	0
406	Resi	idential-6				1	1	0	0	0	0
407	Resi	idential-7				1	1	0	0	0	0
607	Wate	er-7				1	1	0	0	0	0
108	Fore	est-8				1	1	0	0	0	0
308	Past	cure-8				1	1	0	0	0	0
408	Resi	idential-8				1	1	0	0	0	0
109	Fore	est-9				1	1	0	0	0	0
309	Past	cure-9				1	1	0	0	0	0
409	Resi	idential-9				1	1	0	0	0	0
END GEN	J-INF(	C									
*** x - 101 60 END PWA	x CSN )7 AT-PAR	NO RTOP UZFG 0 1 1 RM1	VCS 1	VUZ 1	VNN 0	VIFW O	VIRC 0	VLE 1	IFFC 0	HWT O	IRRG 0
PWAT-PA	ARM2										
*** < PLS	3>	FOREST	LZSN	IN	FILT		LSUR	S	LSUR	ŀ	KVARY
AGWRC			<i>.</i>	, .	(1)						
(1 ( )	Х		(ın)	(ın	/hr)		(It)			( _	L/ın)
(1/day)		1	15 0	0	257	1	24 2	0	107		0 1
101		1.	13.0	0.	557	T	24.2	0	.107		0.1
102		1	15 0	0	250	1	32 6	0	100		0 1
102		1.	13.0	0.	200	T	32.0	0	.100		0.1
102		1	1 5 0	0	272	1	22 1	0	100		0 1
103		1.	15.0	0.	5/5	T	33.I	U	.125		0.1
104		1	1 5 0	0	26	2	20 1		0 1 1		0 1
104		1.	15.0	0.	30	Z	30.1		0.11		0.1
105		1	1 5 0	0	200	1	C 1 2	0	110		0 1
105		1.	15.0	0.	368	T	64.3	U	.118		0.1
100		1	1 5 0	0	240	1	01 1	0	000		0 1
106		1.	15.0	0.	342	T	21.1	U	0.092		0.1
J. 77U 100		1	15 0	$\circ$	210	1	00 0	0	0.60		0 1
0 000 0 001		± •	TJ.0	υ.	JT0	T	2.7	U	.000		0.1
109		1	15 0	$\cap$	227	r	3 <b>4</b> 3	$\cap$			0 1
109 N 99N		± •	T0.0	0.	551	2	JI.J	0			0.1
0.220											

201	0.	12.0	0.268	141.8	0.118	0.1
0.990	0.	12.0	0.297	122.5	0.147	0.1
0.990	•••	12.0	0.20,		00111	
203	0.	12.0	0.274	184.1	0.124	0.1
0.990	0	12 0	0 22	206 1	0 17	0 1
0.990	0.	12.0	0.52	200.4	0.17	0.1
205	0.	12.0	0.312	198.2	0.162	0.1
0.990						
206	0.	12.0	0.252	247.3	0.102	0.1
301	0.	12.0	0.267	123.9	0.117	0.1
0.990						
302	0.	12.0	0.301	130.6	0.151	0.1
0.990	0	12 0	0 286	111 1	0 136	0 1
0.990	0.	12.0	0.200	<u> </u>	0.150	0.1
304	0.	12.0	0.316	145.1	0.166	0.1
0.990						
305	0.	12.0	0.307	143.7	0.157	0.1
306	0.	12.0	0.329	125.9	0.179	0.1
0.990						
308	0.	12.0	0.222	176.8	0.072	0.1
0.990	0	12 0	0 276	1/8 3	0 126	0 1
0.990	0.	12.0	0.270	140.5	0.120	0.1
401	0.	10.0	0.254	137.5	0.124	0.1
0.966	0	10.0		100 -		0.1
402	0.	10.0	0.26	132.5	0.13	0.1
403	0.	10.0	0.256	139.4	0.126	0.1
0.966						
404	0.	10.0	0.255	156.7	0.125	0.1
405	0	10 0	0 248	146 2	0 118	0 1
0.966	0.	10.0	0.210	± 10•2	0.110	0.1
406	0.	10.0	0.234	147.6	0.104	0.1
0.966	0	10 0	0 0 0 0	142 0	0 070	0 1
407	0.	10.0	0.209	143.6	0.079	0.1
408	0.	10.0	0.204	153.2	0.074	0.1
0.966						
409	0.	10.0	0.221	151.0	0.091	0.1
607	0.	10.0	0.500	143	0.100	0.1
0.966						
END PWAT-PA	ARM2					
PWAT-PARM3						
*** < PLS>	PETMAX	PETMIN	INFEXP	INFILD	DEEPFR	BASETP
AGWETP						
*** x - x	(deg F)	(deg F)				

101	607		40.		35.		2.		2.		0.29	(	0.030
END	PWAT-	-PARM	3										
PWA	r-pari	44											
*** <]	PLS >	(	CEPSC		UZSN		NSUR		INTFW		IRC	I	LZETP
*** X	- x		(in)		(in)		0 50		- 0	(1,	/day)	)	
101 201	206		0.20		1.00		0.50		5.0		0.90		0.6
201	200		0.10		1 00		0.35		5.0		0.90		0.4
401	409		0.05		1.00		0.20		5.0		0.90		0.2
607			0.00		1.00		0.35		5.0		0.90		0.2
END	PWAT-	-PARM4	4										
PWA	I-STA	re1											
*** <	PLS>	PWA	TER st	tate v	varia	oles	(in)						
*** X	- x		CEPS		SURS		UZS		IFWS		LZS		AGWS
GWVS	C 0 7		0 0		0 00		0 0		0 00		0 1		1
0.00	607		0.0		0.00		0.9		0.00		9.4		T
END	PWAT-	-STATI	Ξ1										
MON-	-INTER	RCEP											
*** <]	PLS >	Inte	ercept	tion s	stora	ge cap	pacit	y at s	start	of ea	ach mo	onth	(in)
*** X	- x	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
101	109	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
201 301	206 309	0.20	0.20	0.20	0.20	0.20	0.22	0.22	0.22	0.20	0.20	0.20	0.20
401	409	0.15	0.15	0.15	0.15	0.15	0.10	0.10	0.10	0.10	0.05	0.05	0.05
607	105	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
END	MON-	INTER	CEP										
MON-	-UZSN												
*** <]	PLS >	Uppe	er zom	ne sto	orage	at st	cart d	of ead	ch mor	nth	(inche	es)	
*** X	- x	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
101	109	1.10	1.10	1.10	1.00	1.00	1.00	1.00	1.00	1.00	1.10	1.10	1.10
201	206	1.10	1.10	1.10	1.00	1.00	1.00	1.00	1.00	1.00	1.10	1.10	1.10
301	309	1.10	1.10	1.10	1.00	1.00	1.00	1.00	1.00	1.00	1.10	1.10	1.10
401 607	409	1.10	1 10	1.10	1.00	1.00	1.00	1.00	1.00	1.00	1.10	1 10	1.10
END	MON-U	JZSN	1.10	1.10	1.00	1.00	1.00	1.00	1.00	1.00	1.10	1.10	1.10
MON-	-1.7571	DARM											
*** <]	PLS >	Lowe	er zoi	ne eva	apotra	ansp	parr	n at :	start	of ea	ach mo	onth	
*** x	- x	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
101	109	0.65	0.65	0.65	0.65	0.65	0.66	0.66	0.66	0.65	0.65	0.65	0.65
201	206	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40
301	309	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40
401	409	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
607 דיאיד	MONT 1	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
ЕND		니스트 1 11	HT.M										
NQUA	ALS "												
#	#	NQAL	***										

1 9 1 END NOUALS OUAL-PROPS *** <PLS > Identifiers and Flags *** x - x QTID QSD VPFW VPFS QSO VQO QIFW VIQC QAGW OUALID VAQC 101 634FC # 0 0 0 1 1 1 0 1  $\cap$ END OUAL-PROPS OUAL-INPUT *** Storage on surface and nonseasonal parameters *** POTFW POTFS ACQOP SQOLIM SQO WSQOP IOQC AOQC *** <PLS > qty/ac qty/ton qty/ton qty/ qty/ac in/hr gty/ft3 gty/ft3 *** x - x ac.dav *** Forest 101 109 0E+10 Ο. Ο. 1E+10 9E+10 2.00 177. 118. *** Cropland 201 203 Ο. Ο. 9E+10 0.20 531. 354. 0E+10 1E+10 204 206 0E+10 1E+10 9E+10 0.10 531. 354. 0. Ο. *** Pasture Ο. Ο. 0.20 301 303 0E+10 1E+10 9E+10 177. 118. 304 309 0E+10 0. Ο. 1E+10 9E+10 0.10 177. 118. *** Residential 401 403 Ο. Ο. 531. 354. 0E+10 1E+10 9E+10 0.10 404 409 0E+10 0. Ο. 1E+10 9E+10 0.01 531. 354. *** Water 607 0E+10 Ο. Ο. 1E+10 9E+10 0.10 531. 354. END QUAL-INPUT MON-POTFW # JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC # +++ 109 .030 .010 .180 .060 .120 .302 .201 .804 .400 .120 .240 .015 101 201 209 2.55 0.43 0.50 1.59 3.17 4.75 3.17 2.66 3.17 3.17 2.66 1.28 309 2.55 0.43 0.50 1.59 3.17 4.75 3.17 2.66 3.17 3.17 2.66 1.28 301 409 .21 .28 .48 1.28 2.57 1.93 2.57 5.14 0.28 1.24 1.24 .42 401 607 END MON-POTFW MON-ACCUM *** <PLS > Value at start of each month for accum rate of QUALOF (#/ac.day) *** x - x JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC *** N22-1 201 12E0612E0611E0712E0711E0712E0612E0612E0612E0630E0631E0612E06 301 15E0716E0717E0717E0717E0717E0718E0718E0718E0714E0714E0714E0714E07 401 101 *** N22-2 60E0560E0589E0592E0591E0560E0560E0560E0560E0566E0565E0560E05 202 302 60E0560E0580E0582E0581E0560E0560E0560E0582E0581E0580E0560E05 402 

102	66E056	6E056	6E05	66E0	566	E056	6E05	66E0	566	SE05	66E	056	6E0	56	6E05	666	E05
*** N22-3																	
203	16E061	6E061	6E081	16E0	816	E081	6E06	16EC	616	5E06	16E	063	0E0	730	)E07	16	E06
303	14E091	6E091	6E093	16E0	917	E091	7E09	17EC	918	3E09	18E	091	3E0	91	3E09	913	E09
403	26E072	26E072	6E072	26E0	726	E072	6E07	26E0	726	5E07	26E	072	6E0	72	6E07	26	E07
103	16E061	6E061	6E063	16E0	616	E061	6E06	16EC	616	5E06	16E	061	6E0	61	6E06	516	E06
*** N22-4																	
204	29E062	29E062	8E072	29E0	728	E072	9E06	29EC	629	9E06	29E	067	'5E0	67	7E06	529	E06
304	38E084	2E084	3E084	44E0	845	E084	5E08	46E0	847	7E08	48E	083	5E0	83	6E08	37	E08
404	47E074	17E074	7E074	17E0	747	E074	7E07	47EC	747	7E07	47E	074	7E0	74	7E07	47	E07
104	33E063	3E063	3E063	33E0	633	E063	3E06	33E0	633	3E06	33E	063	3E0	633	3E06	533	E06
*** N22-5																	
205	20E062	20E061	1E081	11E0	811	E082	0E06	20E0	620	DE06	20E	062	2E0	722	2E07	20	E06
305	83E089	4E089	7E082	10E0	910	E091	0E09	11EC	911	LE09	11E	097	7E0	880	)E08	881	E08
405	11E081	1E081	1E083	11E0	811	E081	1E08	11EC	811	LE08	11E	081	1E0	813	1E08	811	E08
105	22E062	2E062	2E062	22E0	622	E062	2E06	22E0	622	2E06	22E	062	2E0	622	2E06	522	E06
*** N22-6																	
206	45E064	5E068	5E078	37E0	785	E074	5E06	45EC	645	5E06	45E	061	9E0	720	)E07	45	E06
306	11E101	2E101	3E101	13E1	013	E101	3E10	14E1	014	1E10	14E	109	9E0	91(	)E10	)11	E10
406	13E071	3E071	3E071	13E0	713	E071	3E07	13E0	)713	3E07	13E	071	3E0	713	3E07	13	E07
106	45E064	5E064	5E064	45E0	645	E064	5E06	45EC	645	5E06	45E	064	5E0	64	5E06	545	E06
*** N22-7																	
407	59E075	9E075	9E075	59E0	759	E075	9E07	59EC	759	9E07	59E	075	9E0	75	9E07	59	E07
*** N22-8																	
308	42E064	2E064	4E064	44E0	644	E064	2E06	42EC	642	2E06	44E	064	4E0	644	4E06	542	E06
408	18E081	8E081	8E083	18E0	818	E081	8E08	18E0	818	3E08	18E	081	8E0	818	3E08	818	E08
108	46E064	6E064	6E064	46E0	646	E064	6E06	46E0	646	5E06	46E	064	6E0	64	6E06	546	E06
*** N22-9																	
309	66E066	6E066	8E06	68E0	668	E066	6E06	66E0	666	5E06	68E	066	8E0	668	BE06	666	E06
409	33E083	3E083	3E083	33E0	833	E083	3E08	33E0	833	3E08	33E	083	3E0	83	3E08	333	E08
109	13E071	3E071	3E072	13E0	713	E071	3E07	13EC	)713	3E07	13E	071	3E0	713	3E07	13	E07
END MON-	ACCUM																
MON-SQOI	MIL																
*** <pls></pls>	>																
*** x - x	K JAN	FEB	MAR	AP	R	MAY	JUN	JU	JL	AUG	S	ΕP	OC	Т	NOV	7	DEC
*** N22-1																	
201	11E071	1E071	0E081	11E0	810	E081	1E07	11EC	)711	LE07	11E	072	27E0	728	BE07	11	E07
301	13E081	5E081	5E081	15E0	816	E081	6E08	16EC	816	5E08	17E	081	3E0	813	3E08	313	E08
401	48E084	8E084	8E084	48E0	848	E084	8E08	48EC	848	3E08	48E	084	8E0	848	3E08	848	E08
101	11E071	1E071	1E071	11E0	711	E071	1E07	11EC	)711	LE07	11E	071	1E0	71	1E07	11	E07
*** N22-2																	
202	54E065	64E068	1E068	33E0	682	E065	4E06	54EC	654	1E06	54E	065	9E0	65	9E06	554	E06
302	54E065	64E067	2E06	73E0	673	E065	4E06	54EC	654	1E06	73E	067	'3E0	672	2E06	554	E06
402	61E086	51E086	1E080	61E0	861	E086	1E08	61EC	861	LE08	61E	086	51E0	863	1E08	861	E08
102	59E065	9E065	9E065	59E0	659	E065	9E06	59EC	659	9E06	59E	065	9E0	65	9E06	559	E06
*** N22-3																	
203	14E071	4E071	4E091	14E0	914	E091	4E07	14EC	)714	1E07	14E	072	27E0	82	7E08	314	E07
303	12E101	4E101	4E101	15E1	015	E101	5E10	16E1	.016	5E10	16E	101	1E1	012	2E10	)12	E10
403	24E082	24E082	4E082	24E0	824	E082	4E08	24E0	824	1E08	24E	082	4E0	824	4E08	324	E08
103	15E071	5E071	5E071	15E0	715	E071	5E07	15EC	)715	5E07	15E	071	5E0	71	5E07	15	E07
*** N22-4																	
204	00000		ETOO		0 0 5		6007	$2 \in \mathbb{R}^{n}$	0700		265	076		760		$n \sim c$	

20426E0726E0725E0826E0825E0826E0726E0726E0726E0768E0769E0726E0730434E0938E0939E0939E0940E0941E0941E0942E0943E0932E0933E0933E09

404 104	42E084 30E073	42E08 30E07	42E084 30E073	42E084 30E073	2E084 0E073	12E084 30E073	2E084 0E073	2E0842 0E0730	E0842 E0730	2E084 )E073	2E084 0E073	2E08 0E07
*** N22-5 205	18E071	18E07	10E093	10E091	0E091	L8E071	8E071	8E0718	E0720	)E082	0E081	8E07
405 105	10E091 20E072	10E09 20E07:	10E091 20E072	90E099 10E091 20E072	0E091 0E072	SE099 LOE091 20E072	0E099 0E091	0E0999 0E0910 0E0720	E097( E091( E072(	)E097 )E091 )E072	0E091 0E072	0E09 0E09
*** N22-6 206	41E074	41E07	76E08	79E087	6E084	11E074	1E074	1E0741	E0717	7E081	8E084	1E07
306 406 106	99E101 12E081 41E074	L1E11 L2E08 41E07	11E11 12E08: 41E074	L2E111 L2E081 41E074	2E111 2E081 1E074	L2E111 L2E081 11E074	2E111 2E081 1E074	3E1113 2E0812 1E0741	E1189 E0812 E0741	9E109 2E081 1E074	3E109 2E081 1E074	6E10 2E08 1E07
*** N22-7 407	53E085	53E08	53E08	53E085	3E085	53E085	3E085	3E0853	E0853	3E085	3E085	3E08
*** N22-8 308	38E073	38E07	40E074	40E074	0E073	38E073	8E073	8E0740	E074(	)E074	0E073	8E07
108 *** N22-9	41E074	41E07	41E074	41E074	1E074	11E074	1E074	1E0741	E0910 E0741	LE074	1E074	1E07
309 409 109 END MON- END PERLNI	59E075 29E092 11E082 -SQOLIN	59E07 29E09: 11E08: 4	61E070 29E092 11E082	61E076 29E092 11E081	1E075 9E092 1E081	59E075 29E092 L1E081	9E075 9E092 1E081	9E0761 9E0929 1E0811	E0761 E0929 E0811	LE076 9E092 LE081	1E075 9E092 1E081	9E07 9E09 1E08
IMPLND ACTIVITY *** <ils> *** x - x 101 END ACTI</ils>	X ATMP 0 VITY	SNOW O	IWAT 1	Active SLD O	Sect IWG 0	cions IQAL 1						
PRINT-IN *** <ils> *** x - x 101 END PRIN</ils>	JFO ► ***** ▲ ATMP 4 JT-INF(	**** SNOW 4	Print IWAT 4	-flags SLD 4	***; IWG 4	**** IQAL 4	PIVL ***** 1	PYR **** 9				
GEN-INFC *** *** <ils> *** x - x 101 END GEN-</ils>	) K -INFO	Name			Uni	t-sys t-se in 1	etems eries out 1	Prin Engl M O	lter H Netr H O	Binar Engl O	yOut Metr O	
IWAT-PAF *** <ils> *** x - x 101 END IWAT</ils>	RM1 CSNO 0 C-PARM	Fla RTOP 1	ags VRS 0	VNN 0	RTLI O							
IWAT-PAF *** <ils> *** x - x</ils>	XM2 >	LSUR (ft)	2	SLSUR		NSUR	R	RETSC (in)				

101106100.0.1500.100.150107100.0.1500.100.300108109100.0.1500.100.250 END IWAT-PARM2 IWAT-PARM3 *** <ILS > PETMAX PETMIN *** x - x (deg F) (deg F) 40. 35. END IWAT-PARM3 IWAT-STATE1 *** <ILS > IWATER state variables (inches) *** x - x RETS SURS 101 0.0 0.00 END IWAT-STATE1 OUAL-PROPS *** <ILS > *** x - x QUALID QTID QSD VPFW QSO VQO 101 FC # 0 0 1 0 END OUAL-PROPS OUAL-INPUT *** SQO POTFW ACQOP SQOLIM WSQOP *** <ILS > qty/ac qty/ton qty/ qty/ac in/hr *** x - x ac.day 1E+07 0. 1E+07 3E+07 0.01 101 END QUAL-INPUT END IMPLND RCHRES ACTIVITY *** RCHRES Active sections *** x - x HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG 1 9 1 1 0 0 1 1 0 0 0 0 END ACTIVITY PRINT-INFO *** RCHRES Printout level flags *** x - x HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR 1 9 4 4 4 4 4 4 4 4 4 1 9 END PRINT-INFO GEN-INFO Name Nexits Unit Systems Printer * * * *** RCHRES t-series Engl Metr LKFG in out *** x - x 1 9 StroublesCrk 1 1 1 0 0 0 0  $\cap$ END GEN-INFO HYDR-PARM1

*** Flags for HYDR section ***RC HRES VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each *** x - x FG FG FG FG possible exit *** possible exit possible exit 9 0 1 1 1 4 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 END HYDR-PARM1 hydr-parm2 *** RCHRES FTBW FTBU LEN DELTH STCOR KS DB50 

 (miles)
 (ft)
 (ft)

 0.
 1
 2.29
 119.7
 3.2
 0.5

 0.
 2
 2.41
 62.91
 3.2
 0.5

 0.
 3
 0.49
 6.7
 3.2
 0.5

 0.
 4
 0.54
 7.17
 3.2
 0.5

 0.
 5
 0.80
 16.28
 3.2
 0.5

 0.
 6
 0.62
 17.07
 3.2
 0.5

 0.
 7
 0.28
 7.87
 3.2
 0.5

 0.
 8
 1.30
 90.65
 3.2
 0.5

 0.
 9
 1.78
 173.9
 3.2
 0.5

 (ft) *** x - x (miles) (ft) (in) 0. 1 0. 2 1 0.2 2 0.2 3 0.2 4 0.2 5 0.2 6 0.2 7 0.2 8 0.2 0.2 9 END HYDR-PARM2 MON-CONVF *** RCHRES Monthly f(VOL) adjustment factors *** x - x JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1 9 0.90 0.89 0.89 0.91 0.93 1.99 1.99 1.99 0.99 0.98 0.98 0.90 END MON-CONVF HYDR-INIT *** Initial conditions for HYDR section *** RCHRES VOL CAT Initial value of COLIND initial value of OUTDGT *** x - x ac-ft for each possible exit for each possible exit,ft3 10.0 4.2 4.5 4.5 4.5 4.2 2.1 1.2 0.5 1 9 1.2 1.8 END HYDR-INIT GO-OALDATA GQID DQAL CONCID CONV QTYID *** RCHRES *** x - x concid 1 9FC 100. #/10 0.0035 # END GQ-QALDATA GO-OALFG *** RCHRES HDRL OXID PHOT VOLT BIOD GEN SDAS *** x - x 1 9 0 0 0 0 1 0 END GQ-QALFG GO-GENDECAY *** RCHRES FSTDEC THFST *** x - x (/day)

1 3 1.15 1.05 7 4.00 1.05 4 6 1.15 8 9 1.15 1.05 1.05 END GQ-GENDECAY END RCHRES FTABLES FTABLE 1 *** rows cols 4 4 

 depth
 area
 volume
 outflow1
 ***

 0.
 5.22
 0.
 0.

 0.01
 5.22
 0.05
 0.

 2.93
 11.55
 24.61
 476.35

 45.59
 601.48
 1773.82
 169167.

 depth END FTABLE 1 FTABLE 2 *** rows cols 4 4 area volume outflow1 *** 19.43 0. 0. depth Ο. 0.0119.430.190.1.919.236.68252.8483.92437.5225063.551006730.09 END FTABLE 2 FTABLE 3 *** rows cols 4 4 
 depth
 area
 volume
 outflow1
 ***

 0.
 3.38
 0.
 0.
 0.

 0.01
 3.38
 0.03
 0.
 0.

 1.76
 3.34
 5.9
 203.87
 1.763.345.9203.828.47.32853.6864940.09 END FTABLE 3 FTABLE 4 *** rows cols 4 4 area volume outflow1 *** depth 3.590.0.3.590.040.3.545.92174.8 Ο. 0.01 1.663.545.92174.25.2871.51901.7344353.9 END FTABLE 4 FTABLE 5 *** rows cols 4 4 depthareavolumeoutflow1***0.5.120.0.0.015.120.050.

1.63 11.48 END FTABLE	5.05 95.09 5	8.3 569.86	166.8 13866.32	34			
FTABLE rows cols	6			* * *			
4 4 depth	area	volume	outflow1	* * *			
0. 0.01 1.44	3.38 3.38 3.32	0.03	0. 0. 118.2	1			
11.61 END FTABLE	143.71 6	940.84	22476.73				
FTABLE rows cols	7			* * *			
7 4							
depth 0.	area 0.00	volume 0.	outflow1 0.	* * *			
1.46	1.82 3.82	2.2568	0.405				
6.84	4.64	8.9544	2.066				
14.84	7.20	34.383	2000				
31.01	338.78	3848.03	30707.05				
END FTABLE	7						
FTABLE	8						
rows cols 4 4				* * *			
depth	area 2 51	volume	outflow1	* * *			
0.01	2.51	0.03	0.				
1.16	2.46	2.89	65.36	)			
25.77 END FTABLE	186.12 8	2992.61	295449.88				
FTABLE	9			* * *			
4 4							
depth	area	volume	outflow1	* * *			
0.	5.43	0.	0.				
1.01	5.43	0.05	U. 44.58	}			
11.84	132.28	848.34	19856.96				
END FTABLE END FTABLES	9						
NETWORK							
MUTSIN 01 0	UTPUT	01	1 SAM	IE RCHRES	01	INFLOW	IDQAL
MUTSIN UI O MUTSIN 01 0	υΊΡΟΊ ΙΠΡΓΙΤ	U∠ 03	I SAM 1 SAM	IE RCHRES	U∠ 03	TNFLOW TNFLOW	TDQAL
MUTSIN 01 0	UTPUT	04	1 SAM	IE RCHRES	04	INFLOW	IDQAL
MUTSIN 01 0	UTPUT	05	1 SAM	IE RCHRES	05	INFLOW	IDQAL

MUTSIN	01	OUTPUT	06	1	SAME	RCHRES	06	INFLOW	IDQAL	
MUTSIN	01	OUTPUT	07	1	SAME	RCHRES	07	INFLOW	IDQAL	
MUTSIN	01	OUTPUT	08	1	SAME	RCHRES	08	INFLOW	IDQAL	
MUTSIN	01	OUTPUT	09	1	SAME	RCHRES	09	INFLOW	IDQAL	
*** Wild	dli	Ee		1						
MUTSIN	02	OUTPUT	01	1	SAME	RCHRES	01	INFLOW	IDQAL	
MUTSIN	02	OUTPUT	02	1	SAME	RCHRES	02	INFLOW	IDQAL	
MUTSIN	02	OUTPUT	03	1	SAME	RCHRES	03	INFLOW	IDQAL	
MUTSIN	02	OUTPUT	04	1	SAME	RCHRES	04	INFLOW	IDQAL	
MUTSIN	02	OUTPUT	05	1	SAME	RCHRES	05	INFLOW	IDOAL	
MUTSIN	02	OUTPUT	06	1	SAME	RCHRES	06	INFLOW	IDÕAL	
MUTSIN	02	ΟΠΨΡΠΨ	07	1	SAME	RCHRES	07	TNFLOW	TDOAL	
MUTSIN	02	ΟΠΨΡΠΨ	0.8	1	SAME	RCHRES	0.8	TNFLOW	TDOAL	
MUTSIN	02	ΟΠΤΡΠΤ	09	1	SAME	RCHRES	09	INFLOW	TDOAL	
*** Str	ai al	t Pines	0.5	1	011111	10111020	0.5	1111 2011	TDQIIL	
MITSTN	03		01	1	SAME	RCHRES	01	TNFLOW		
MUTSIN	03		01	1	SAME	DCUDES	02	INFLOW	тролт	
MUTSIN	03		02	1	SAME	DCUDEC	02	INFLOW	TDQAL	
MUISIN	03	OUIPUI	03	1	SAME	RCHRES	03	INFLOW	TDQAL	
MUTSIN	03	OUTPUT	04	1	SAME	RCHRES	04	INFLOW	IDQAL	
MUTSIN	03	OUTPUT	05	1	SAME	RCHRES	05	INFLOW	IDQAL	
MUTSIN	03	OUT PUT	06	1	SAME	RCHRES	06	INFLOW	IDQAL	
MUTSIN	03	OUTPUT	0 /	1	SAME	RCHRES	0 /	INF'LOW	IDQAL	
MUTSIN	03	OUTPUT	08	1	SAME	RCHRES	08	INFLOW	IDQAL	
MUTSIN	03	OUTPUT	09	1	SAME	RCHRES	09	INFLOW	IDQAL	
*** PRel	P Sp	pills into R	each	es						
MUTSIN	20	OUTPUT	01	1	SAME	RCHRES	05	INFLOW	IVOL	
MUTSIN	20	OUTPUT	02	1	SAME	RCHRES	05	INFLOW	IDQAL	
MUTSIN	20	OUTPUT	03	1	SAME	RCHRES	07	INFLOW	IVOL	
MUTSIN	20	OUTPUT	04	1	SAME	RCHRES	07	INFLOW	IDQAL	
MUTSIN	20	OUTPUT	05	1	SAME	RCHRES	08	INFLOW	IVOL	
MUTSIN	20	OUTPUT	06	1	SAME	RCHRES	08	INFLOW	IDQAL	
MUTSIN	20	OUTPUT	07	1	SAME	RCHRES	09	INFLOW	IVOL	
MUTSIN	20	OUTPUT	08	1	SAME	RCHRES	09	INFLOW	IDQAL	
RCHRES	9	GQUAL DQAL				PLTGEN	13	INPUT	MEAN	1
RCHRES	8	GQUAL DQAL				PLTGEN	13	INPUT	MEAN	2
RCHRES	7	GQUAL DQAL				PLTGEN	13	INPUT	MEAN	3
RCHRES	6	GQUAL DQAI				PLTGEN	13	INPUT	MEAN	4
RCHRES	5	GQUAL DOAL				PLTGEN	13	INPUT	MEAN	5
RCHRES	4	GQUAL DQAL				PLTGEN	13	INPUT	MEAN	6
RCHRES	3	GOUAL DOAL				PLTGEN	13	INPUT	MEAN	7
RCHRES	2	GOUAL DOAL				PLTGEN	13	INPUT	MEAN	8
RCHRES	1	GOUAL DOAL				PLTGEN	1.3	TNPUT	MEAN	9
END NET	WORI	ζ ζ				1 1 1 0 1 1	10	1111 0 1	112111	2
MUTSIN										
MUTSI	NFO									
<-ran	ae>∢	<mfl><npt><n< td=""><td>mn&gt;&lt;ı</td><td>nli&gt;<mis></mis></td><td>&gt; ***</td><td></td><td></td><td></td><td></td><td></td></n<></npt></mfl>	mn><ı	nli> <mis></mis>	> ***					
# -	#	MFL NPT	NMN	NLI MSFO	3 * * *					
01		44 0	09	2.5	-					
02		4.5 0	09	2.5 2	-					
03		46 0	09	25 2	- )					
20		60 0	08	25 2	- >					
END MI	TL.	INFO	00	20 2	-					
שוו עום	OTN:									
чил мол.	ЛΤС									

PLTGEN PLOTINFO # - # FILE NPT NMN LABL PYR PIVL 13 55 0 9 0 12 1 END PLOTINFO GEN-LABELS # - #<-----Y axis-----> 13 FC concen. in free-phase #/100mL END GEN-LABELS SCALING # - # YMIN YMAX IVLIN THRESH *** 13 0. 1.E+10 100. END SCALING (First curve) CURV-DATA <-Curve label--> Line Intg Col Tran *** - # type eqv code code *** subwatershed 9 AVER # - # 13 END CURV-DATA CURV-DATA (Second curve) <-Curve label--> Line Intg Col Tran *** type eqv code code *** subwatershed 8 AVER # - # 13 END CURV-DATA CURV-DATA (Third curve) <-Curve label--> Line Intg Col Tran *** # - #typeeqvcodecode***13subwatershed7AVER END CURV-DATA CURV-DATA (Fourth curve) <-Curve label--> Line Intg Col Tran *** # - # type eqv code code *** 13 subwatershed 6 AVER END CURV-DATA CURV-DATA (Fifth curve) <-Curve label--> Line Intg Col Tran *** # - #type eqv code code ***13subwatershed 5AVER END CURV-DATA CURV-DATA (Sixth curve) <-Curve label--> Line Intg Col Tran *** type eqv code code *** # - # # - # 13 subwatershed 4 AVER END CURV-DATA

CURV-DATA <-Curve label--> Line Intg Col Tran *** # - # type eqv code code *** # - #
13 subwatershed 3 AVER END CURV-DATA CURV-DATA <-Curve label--> Line Intg Col Tran *** # - # type eqv code code *** # - #
13 subwatershed 2 AVER END CURV-DATA CURV-DATA <-Curve label--> Line Intg Col Tran *** # - # type eqv code code *** 13 subwatershed 1 AVER END CURV-DATA END PLTGEN EXT SOURCES <-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> x <Name> x tem strg<-factor->strg <Name> x x <Name> x x ***WDM311PRECENGLIERENGLFRECNAMEWDM311PRECENGLZEROSAMEPERLND101607EXTNLPRECWDM213ATEMENGLSAMEPERLND101607EXTNLGATMPWDM217DEWPENGLSAMEPERLND101607EXTNLDTMPGWDM214WINDENGLSAMEPERLND101607EXTNLDTMPGWDM215SOLRENGLSAMEPERLND101607EXTNLSOLRADWDM216PEVTENGLSAMEPERLND101607EXTNLPETINPWDM311PRECENGLZEROSAMEIMPLND101EXTNLPRECWDM217DEWPENGLSAMEIMPLND101EXTNLGATMPWDM217DEWPENGLSAMEIMPLND101EXTNLDTMPGWDM214WINDENGLSAMEIMPLND101EXTNLDTMPGWDM216PEVTENGLSAMEIMPLND101EXTNLSOLRADWDM216PEVTENGLSAMEIMPLND101EXTNLSOLRADWDM216PEVTENGLSAMEIMPLND101EXTNLSOLRADWDM216PEVTENGLSAMEIMPLND101EXTNLPETINPWDM311PRECENGLZERO<td x *** WDM214WINDENGLWDM215SOLRENGLWDM218CLOUENGLWDM212EVAPENGL SAME RCHRES 1 9 EXTNL WIND SAME RCHRES 1 9 EXTNL SOLRAD SAME RCHRES 1 9 EXTNL CLOUD SAME RCHRES 1 9 EXTNL POTEV END EXT SOURCES SCHEMATIC <--Area--> <-Volume-> <ML#> *** <-Volume-> <sb> <-factor-> <Name> x *** <Name> x х х PERLND 101 806.55 RCHRES 1 2 PERLND 201 113.73 RCHRES 1 2 447.2 RCHRES 1 266.02 RCHRES 1 2 PERLND 301 PERLND 401 2

PERLND 102	1136.15	RCHRES	2	2
PERLND 202	29.37	RCHRES	2	2
PERLND 302	125.28	RCHRES	2	2
PERLND 402	95.67	RCHRES	2	2
PERLND 103	280.88	RCHRES	3	2
PERLND 203	39.29	RCHRES	3	2
PERLND 303	325.81	RCHRES	3	2
PERLND 403	247.12	RCHRES	3	2
PERLND 104	10.95	RCHRES	4	2
PERLND 204	35.7	RCHRES	4	2
PERLND 304	95.92	RCHRES	4	2
PERLND 404	51 4	RCHRES	4	2
PERLND 105	50 5	RCHRES	5	2
PERLND 205	23 72	RCHRES	5	2
DEDIND 205	200 17	DCUDEC	5	2
PERLIND JUJ	290.17 524 22	RCHRES	5	2
PERLND 403	554.25	RCHRES	5	2
PERLND 106	3.54	RCHRES	6	2
PERLND 206	33.63	RCHRES	6	2
PERLND 306	24.01	RCHRES	6	2
PERLND 406	197.27	RCHRES	6	2
PERLND 407	139.63	RCHRES	7	2
PERLND 607	6.86	RCHRES	7	2
PERLND 108	57.21	RCHRES	8	2
PERLND 308	77.28	RCHRES	8	2
PERLND 408	698.21	RCHRES	8	2
PERLND 109	3.71	RCHRES	9	2
PERLND 309	6.37	RCHRES	9	2
PERLND 409	491.81	RCHRES	9	2
IMPLND 101	98.63	RCHRES	1	1
IMPLND 101	27.88	RCHRES	2	1
TMPLND 101	78.69	RCHRES	3	1
TMPLND 101	18.77	RCHRES	4	1
IMPLND 101	351 80	RCHRES	5	1
	72 96	RCHRES	6	1
	51 64	DCUDEC	7	1
IMPIND 101	250 24	DCUDEC	0	⊥ 1
IMPLIND 101	230.24	RCHRES	0	1
	181.90	RCHRES	9	L 
	* * * * * * * * * * * * * *	*****	****	****
*** Reach Connections				***
****	* * * * * * * * * * * * * *	* * * * * * * * * * *	* * * * *	* * * * *
*** Reach 2 => Reach 1				
RCHRES 2		RCHRES	1	3
*** Reach $3 \Rightarrow$ Reach $2$				
RCHRES 3		RCHRES	2	3
*** Reach 4 => Reach 3				
RCHRES 4		RCHRES	3	3
*** Reach 05 => Reach 4				
RCHRES 5		RCHRES	4	3
*** Reach 06 => Reach 5				
RCHRES 6		RCHRES	5	3
*** Reach 07 => Reach 6			-	5
RCHRES 7		RCHRES	6	٦
*** Reach $08 => Reach 7$		1(0111(110	U	5
RCHREG 8		BCHDEC	7	3
		I/CII/CD	1	5

*** Reach 09 => Reach 7 RCHRES 9 RCHRES 7 3 END SCHEMATIC MASS-LINK MASS-LINK 2 <-Volume-> <-Grp> <-Member-><--Mult--> <-Target vols> <-Grp> <-Member-> *** <Name> x x<-factor-> <Name> <Name> <Name> x x *** PERLND PWATER PERO 0.0833333 RCHRES INFLOW IVOL PQUAL POQUAL 1 1.00 RCHRES INFLOW IDOAL 1 PERLND END MASS-LINK 2 MASS-LINK 3 <-Volume-> <-Grp> <-Member-><--Mult--> <-Target vols> <-Grp> <-Member-> *** <Name> x x<-factor-> <Name> <Name> <Name> x x *** RCHRES ROFLOW RCHRES INFLOW END MASS-LINK 3 MASS-LINK 4 <-Volume-> <-Grp> <-Member-><--Mult--> <-Target vols> <-Grp> <-Member-> *** <Name> x x<-factor-> <Name> <Name> <Name> x x *** ROFLOW ROVOL RCHRES COPY INPUT MEAN 1 INPUT MEAN 2 RCHRES HYDR RO COPY END MASS-LINK 4 MASS-LINK 5 <-Volume-> <-Grp> <-Member-><--Mult--> <-Target vols> <-Grp> <-Member-> *** <Name> x x<-factor-> <Name> <Name> <Name> x x *** RCHRES OFLOW 1 RCHRES INFLOW 5 END MASS-LINK MASS-LINK 6 <-Volume-> <-Grp> <-Member-><--Mult--> <-Target vols> <-Grp> <-Member-> *** <Name> <Name> x x<-factor-> <Name> <Name> x x *** RCHRES OFLOW 2 RCHRES INFLOW END MASS-LINK 6 END MASS-LINK

END RUN

#### HSPF UCI file under "sediment-attached" scenario:

***Simulated fecal coliform concentrations were converted to E. coli concentrations via: E. coli = 0.98814866* (Fecal coliform^0.91905). RUN GLOBAL UCI Stroubles Creek Hydrology Calibration 2008/01/01 00:00 END START 2013/12/31 24:00 RUN INTERP OUTPT LEVELS 1 0 RESUME 0 RUN 1 UNITS 1 END GLOBAL FILES <FILE> <UN#>***<----FILE NAME------</pre> ----> 24 N22 sed.ech MESSU 91 N22 sed.out 44 ..\Cattle.mut ..\Wildlife.mut 45 46 ..\Straight Pipes.mut 60 .. \N22 Spills.mut  $\dots \ \overline{N22} MET1.wdm$ 26 WDM2 27 ..\..\N22 MET2.wdm WDM3 31 SedStorage.OUT 32 BedDepth.OUT 33 ShearStress.OUT 34 TSS.OUT 37 Inflows.OUT 35 Outflow.OUT 36 DepScour.OUT 38 Flow.OUT 51 SusSiltFC.OUT 52 SusClayFC.OUT 53 BedSiltFC.OUT BedClayFC.OUT 54 55 FreeFC.OUT 56 DSQAL.OUT END FILES OPN SEQUENCE INGRP INDELT 01:00 MUTSIN 1 MUTSIN 2 MUTSIN 3 20 MUTSIN 101 PERLND 201 PERLND PERLND 301 401 PERLND PERLND 102 PERLND 202 302 PERLND 402 PERLND PERLND 103

PERI	LN	D														
A	СТ	IVI	ΓY													
***	<	PLS	>				Active	Sect	ions							* * *
***	Х	-	Х	ATMP	SNOW	PWAT	SED	PST	PWG	PQAL	MSTL	PEST	NITR	PHOS	TRAC	***

	PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	203 303 403 104 204 304 404 105 205 305 405 206 306 406 407 607 108 308 409 309 409 101 9 8 7				
	RCHRES RCHRES RCHRES	6 5 4				
	RCHRES	3				
	RCHRES	2				
	RCHRES	1				
	PLTGEN	1				
	PLTGEN	2				
	PLTGEN	4				
	PLTGEN	5				
	PLTGEN	6				
	PLTGEN	7				
	PLTGEN	8				
	PLTGEN	9				
	PLTGEN	10				
	PLTGEN	11				
	PLTGEN	12				
	PL'TGEN	13				
	PLTGEN	⊥4				
ការបា	END INGKY					
сиυ	OLN SEÄNFINCE					
PWAT-PARM2						
------------	--------	-------	---------	---------	---------	--------
*** < PLS>	FOREST	LZSN	INFILT	LSUR	SLSUR	KVARY
AGWRC						
*** x - x		(in)	(in/hr)	(ft)		(1/in)
(1/day)	_	4 5 0		101.0		
101	1.	15.0	0.357	124.2	0.107	0.1
0.990	1	1 - 0	0 0 0 0	120 0	0 1 0 0	0 1
102	1.	15.0	0.358	132.6	0.108	0.1
102	1	15 0	0 272	1 2 2 1	0 1 2 2	0 1
103	⊥•	13.0	0.375	100.1	0.123	0.1
104	1	15 0	036	238 1	0 11	0 1
0.990	± •	10.0	0.00	200.1	0.11	0.1
105	1.	15.0	0.368	164.3	0.118	0.1
0.990						
106	1.	15.0	0.342	121.1	0.092	0.1
0.990						
108	1.	15.0	0.318	189.9	0.068	0.1
0.990						
109	1.	15.0	0.337	234.3	0.087	0.1
0.990						
201	0.	12.0	0.268	141.8	0.118	0.1
0.990	0	10.0	0 0 0 7	100 5	0 1 4 7	0 1
202	0.	12.0	0.297	122.5	0.14/	0.1
0.990	0	10 0	0 074	101 1	0 1 2 4	0 1
203	0.	12.0	0.2/4	104.1	0.124	0.1
204	0	12 0	0 32	206 4	0 17	0 1
0.990	0.	12.0	0.52	200.1	0.17	0.1
205	0.	12.0	0.312	198.2	0.162	0.1
0.990						
206	0.	12.0	0.252	247.3	0.102	0.1
0.990						
301	0.	12.0	0.267	123.9	0.117	0.1
0.990						
302	0.	12.0	0.301	130.6	0.151	0.1
0.990	2					
303	0.	12.0	0.286		0.136	0.1
0.990	0	10 0	0 216		0 166	0 1
0 990	0.	12.0	0.310	143.1	0.100	0.1
305	0	12 0	0 307	143 7	0 157	0 1
0.990	0.	12.0	0.307	110.7	0.107	0.1
306	0.	12.0	0.329	125.9	0.179	0.1
0.990						
308	0.	12.0	0.222	176.8	0.072	0.1
0.990						
309	0.	12.0	0.276	148.3	0.126	0.1
0.990						
401	0.	10.0	0.254	137.5	0.124	0.1
0.966	~	10.0	0.00	100 -	0.10	~ -
402	Ο.	T0.0	0.26	132.5	0.13	0.1
0.900						

403	0.	10.0	0.256	139.4	0.126	0.1
404	0.	10.0	0.255	156.7	0.125	0.1
0.966	0	10 0	0 248	146 2	0 118	0 1
0.966	•••	10.0	0.210	110.2	0.110	0.1
406	0.	10.0	0.234	147.6	0.104	0.1
407	0.	10.0	0.209	143.6	0.079	0.1
0.966	0	10 0	0 204	153 2	0 074	0 1
0.966	•••	2000	0,201	100.1	0.071	
409 0 966	0.	10.0	0.221	151.0	0.091	0.1
607	0.	10.0	0.500	143	0.100	0.1
0.966 END DWATT-	-DARM2					
END IWAI	I AIVIZ					
PWAT-PAR	43					
XCWETP	PETMAX	PETMIN	INFEXP	INFILD	DEEPFR	BASETP
*** x - x	(dea F)	(dea F)				
101 607	40.	35.	2.	2.	0.29	0.030
0.00						
END PWAT-	-PARM3					
	лА					
*** < PI.C >	14 CFDSC	117 SN	NGUR	тытғы	TRC	Τ.σϝͲϷ
*** x - x	(in)	(in)	NOON		(1/day)	
101 109	0.20	1.00	0.50	5.0	0.90	0.6
201 206	0.10	1.00	0.35	5.0	0.90	0.4
301 309	0.10	1.00	0.35	5.0	0.90	0.3
401 409	0.05	1.00	0.20	5.0	0.90	0.2
607	0.00	1.00	0.35	5.0	0.90	0.2
END PWAT-	-PARM4					
	n <del>ت.</del> 1					
*** < PIS>	DWATER of	ato varial	oles (in)			
*** x - x	CEPS	SURS		TEWS	T/7.S	AGWS
GWVS		60105	020	11100		110110
101 607	0.0	0.00	0.9	0.00	9.4	1
0.00						
END PWAT-	-STATE1					
ΜΟΝ_ΤΝΠΕΙ						
MON-INIE	Intercent	ion storad	ne canacita	, at start	of each m	onth (in)
*** x - x	JAN FEB	MAR APR	MAY JUN	JUIL AUG	SEP OCT	NOV DEC
101 109	0.20 0.20	0.20 0.20	0.20 0.20	0.20 0.20	0.20 0.20	0.20 0.20
201 206	0.20 0.20	0.20 0.20	0.20 0.22	0.22 0.22	0.20 0.20	0.20 0.20
301 309	0.15 0.15	0.15 0.15	0.15 0.16	0.16 0.16	0.16 0.16	0.16 0.16
401 409	0.05 0.05	0.05 0.05	0.05 0.05	0.05 0.05	0.05 0.05	0.05 0.05
607	0.01 0.01	0.01 0.01	0.01 0.01	0.01 0.01	0.01 0.01	0.01 0.01
END MON-I	INTERCEP					

MON-UZSN *** <PLS > Upper zone storage at start of each month (inches) *** x - x JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 607 END MON-UZSN MON-LZETPARM *** <PLS > Lower zone evapotransp parm at start of each month *** x - x JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 607 END MON-LZETPARM *** Section SEDMNT *** SED-PARM1 <PLS >*** # - # CRV VSIV SDOP *** 101 607 1 0 1 END SED-PARM1 SED-PARM2 *** <PLS > KRER AFFIX SMPF JRER COVER NVST *** x - x (/day) lb/ac-day 101 109 1.000 0.268 2.000 0.010 0.000 1.000 201 206 1.000 0.300 2.000 0.010 0.000 1.000 2.0000.0100.0002.0000.0100.0002.0000.0100.000 301 309 0.310 0.300 1.000 1.000 401 409 1.000 1.000 607 1.000 0.100 0.000 1.000 END SED-PARM2 SED-PARM3 *** <PLS > Sediment parameter 3 *** x - x KSER JSER KGER JGER 101 109 1.10 5.0000 0.000 2.00 201 206 10.000 0.90 10.00 1.00 301 309 8.5000 1.10 1.000 1.00 401 409 10.000 1.60 0.000 2.00 1.60 05.000 607 0.000 2.00 END SED-PARM3 MON-COVER # - # JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC +++ 101 109 .920 .920 .920 .920 .970 .970 .970 .970 .970 .920 .920 .920 201 206 .350 .340 .230 .270 .370 .440 .740 .920 .920 .520 .430 .370 301 309 .875 .875 .910 .930 .930 .890 .890 .880 .875 .875 401 409 .900 .900 .900 .910 .930 .930 .930 .930 .930 .910 .900 .900

607 .900 .900 .900 .910 .930 .930 .930 .930 .930 .910 .900 .900 END MON-COVER SED-STOR # # DETS 101 109 0.03 201 206 0.70 301 309 0.01 401 409 0.03 607 0.03 END SED-STOR *** section GQUAL (for fecal indicator bacteria) NQUALS *** #NQUAL # 101 607 1 END NQUALS QUAL-PROPS *** <PLS > Identifiers and Flags *** x - x QUALID QTID QSD VPFW VPFS QSO VQO QIFW VIQC QAGW VAOC 101 607FC # 1 2 0 1 1 1 0 1 0 END QUAL-PROPS OUAL-INPUT *** Storage on surface and nonseasonal parameters * * * SQO POTFW POTFS ACQOP SQOLIM WSQOP IOQC AOQC *** <PLS > qty/ qty/ac in/hr qty/ft3 qty/ft3 qty/ac qty/ton qty/ton *** x - x ac.day 101 109 0E+10 Ο. 0. 1E+10 9E+10 2.00 177. 118. 9E+10 531. 201 203 0E+10 Ο. 1E+10 0.20 Ο. 354. 204 206 9E+10 0E+10 Ο. Ο. 1E+10 0.10 531. 354. 301 303 0E+10 Ο. 0. 1E+10 9E+10 0.20 177. 118. 304 309 0E+10 Ο. 0.10 0. 1E+10 9E+10 177. 118. 0. 1E+10 9E+10 401 403 0E+10 Ο. 0.10 531. 354. 404 409 9E+10 0.01 531. 0E+10 Ο. 0. 1E+10 354. 607 Ο. 0. 1E+10 9E+10 531. 0E+10 0.10 354. END OUAL-INPUT MON-POTFW # # JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC +++ 109 .030 .010 .180 .060 .120 .302 .201 .804 .400 .120 .240 .015 101 209 2.55 0.43 0.50 1.59 3.17 4.75 3.17 2.66 3.17 3.17 2.66 1.28 201 301 309 2.55 0.43 0.50 1.59 3.17 4.75 3.17 2.66 3.17 3.17 2.66 1.28 401 409 .21 .28 .48 1.28 2.57 1.93 2.57 5.14 0.28 1.24 1.24 .42 607 END MON-POTFW MON-ACCUM *** <PLS > Value at start of each month for accum rate of QUALOF (#/ac.day)

* * *	х -	Х	JAI	Ν	FEB	MA	R	APF	ર	MAY	J	UN	JU	L	AUC	G	SEP	(	OCI	2	NOV	V	DEC	
* * *	N22-	1																						
2	01	-	L2E0	612	2E061	11E0	71	2E07	711	E07	12E	061	.2E0	612	2E00	612	E06	301	EOE	531	EO	612	2E06	
٦	01	-	15E0	716	E071	17E0	71	7E07	717	E07	17E	071	8E.0	71	8 E 0 7	718	RE07	141	E.07	714	LE O	71.	4E07	
Л	01	- 1	2350.	753	, <u> </u>	2350	75	3 E U -	, ± , 753	E07	535		2350	75	3 E U . 0 E 0 .	, ±0 753	2 2 2 2 1 0 7	5 21		753	2 E O .	, <u> </u>	3507	
4	01			( ) )		1000	10.	0 II C	-10		100	07.	0100	10.	0 <u>1</u> 0	$r_{\rm 10}$		1 01		1 J L - 1 C		$r_{J}$		
⊥ 	UI		LZEU	012	E061	LZEU	бΤ.	ZEU	sτζ	E06	ΙΖĔ	061	_ Z E U	61.	ZEU	o⊥∠	EU6	12	EUe		2EU	ο⊥.	2EU6	
***	N22-	2																						
2	02	(	50E0!	560	)E058	39E0	59	2E05	591	E05	60E	056	50E0	56	0E05	560	)E05	661	E05	565	5E0!	56	0E05	
3	02	(	50E0!	560	)E058	30E0	58	2E05	581	E05	60E	056	50E0	56	0E05	582	2E05	81	E05	580	)E0	56	0E05	
4	02	(	58E0'	768	3E076	58E0	76	8E07	768	E07	68E	076	58E0	76	8E0	768	BE07	681	E07	768	3E0.	76	8E07	
1	02	(	56E0!	566	SE056	66E0	56	6E05	566	E05	66E	056	56E0	56	6E05	566	SE05	661	E05	566	SEO!	56	6E05	
***	N22-	3																						
2	03		1650	6 1 G	5061	1600	Q 1	ሬፑበያ	216	<b>F</b> 08	165	061	ሬፑበ	61	ሬፑበሬ	6 1 G		301		120	) Er () '	71	6 <b>〒</b> 06	
2	0.0	-					01 01		0 ב נ ר 1 נ	E00	170	001		01		3 1 C		1 21		112		ν <u>τ</u> ι 0 1 ·		
2	03	-		9 T 0			91 70	0E03	9 L / 7 O C	E09		091		91) 70	0EU:	9 T C	5009 5007	T 21		913 707		91. 70	2E09	
4	03	4	26EU	126	)EU/2	26EU	12	6EU	126	E0 /	26E	0/2	26EU	12	6EU	126	b년()/	26	EU	126	5년()	12	6EU/	
1	03	-	L6E00	616	E061	16E0	61	6E06	516	E06	16E	061	-6E0	61	6E06	516	E06	16	E06	516	bΕ0	61	6E06	
***	N22-	4																						
2	04	2	29E0	629	)E062	28E0	72	9E07	728	E07	29E	062	29E0	62	9E06	629	)E06	75	E06	577	7E0	62	9E06	
3	04	ć	38E08	842	2E084	43E0	84	4E08	345	E08	45E	084	16E0	84	7E08	348	8E08	351	E08	336	5E08	83'	7E08	
4	04	2	17E0'	747	/E074	17E0	74	7E07	747	E07	47E	074	17E0	74'	7E0	747	'E07	47	E07	747	7E0	74'	7E07	
1	04		33E00	633	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	33E0	63	3E06		E06	33E	063	33E0	63	3E06	· 	3E06	33	EOP	333	RE O	63.	3E06	
***	N22-	5		000	, 1000	0000	00		500	ЦОО	000	000		00.		000		00.				00.	000	
2		J,		< 2 0		1100	01	1 - 0 0			<u> ~ ~ п</u>	000	0.000	<u> </u>	0 0	< <b>^</b> ^ ^		<u></u>		,			0000	
2	05	4	LOLU	020	1E061	LIEU	8 I .	LEO 6	311	EU8	ZUE	062	20E0	021			)EU6				(탄U	121	JEU6	
3	05	8	33E08	394	F088	97E0	81	OEOS	910	E09	10E	091	1E0	91.	1E09	911	E09	77	E08	380	E 0	88.	LE08	
4	05	-	L1E08	311	E081	11E0	81	1E08	311	E08	11E	081	.1E0	81:	1E08	311	E08	111	E08	311	E08	81:	1E08	
1	05	4	22E0	622	2E062	22E0	62	2E06	522	E06	22E	062	22E0	622	2E06	622	2E06	221	E06	522	2E0	622	2E06	
* * *	N22-	6																						
2	06	2	15E0	645	5E068	35E0	78	7E07	785	E07	45E	064	15E0	64	5E00	645	5E06	191	E07	720	)E0'	74	5E06	
З	06	-	11E1(	012	PE101	13E1	01	3E1(	)13	E10	13E	101	4E1	014	4E1(	014	E10	99	E.O.C	910	)E1(	<u>)</u> 1.	1E10	
Л	06	-	1350.	713	.⊡±01 ≀⊑∩71	1350	71	350.	71 3	± 10 10 10 10 10 10 10 10 10 10	125	071	350	71 [.]	350.	713		1 31		713	2	71	3 - 0 - 7	
1		-							7 I J 7 A E		1 D D	071				/ I U		101		/ - / E		/ <u>т</u> . С л і		
1	06	_ 4	1 DE U	043	)EU64	1 D F O	64	SEU	54 S	上06	4つ比	064	13日0	64	SEU	54 J	)EU6	43.	LUC	04J	) E U I	04:	SE00	
***	N22-	/																						
4	07		59E0'	759	)E075	59E0	75	9E07	759	E07	59E	075	59E0	75	9E0	759	)E07	591	E07	759	9E0.	75	9E07	
* * *	N22-	8																						
3	08	2	12E0	642	2E064	44E0	64	4E06	544	E06	42E	064	12E0	642	2E06	644	E06	44	E06	544	1E0	642	2E06	
4	8 0	-	L8E08	818	3E081	18E0	81	8E08	318	E08	18E	081	8E0	81	8E08	318	8E08	181	E08	318	BEOS	81	8E08	
1	08	2	16E0)	646	SE064	46E0	64	6E06	546	E06	46E	064	16E0	64	6E06	546	5E06	46	EOF	54 F	SEO	64	6E06	
***	N22-	9		0 - 0			• -	020						• -	020	0 - 0						-	0200	
З	NQ	, ,		6 6 6	50060	28 <b>5</b> 0	66	ឧភ្ហរ	568	r n c	665	066	5650	66	ሬፑበሬ	222	2	681	ΓΛ¢	568		66	6 <b>〒</b> 06	
1	0.9			222		2220	0.0		) 000 000	E00	220	000	0000	00		200		221				200		
4	09		53EU0	533	)EU8:	33EU	83.	3500 2500	333	EU8	33E	083	33EU	83.	3EU0	533	5EU8	33	EU8	333	SEU(	53.	3EU8	
1	09	-	L3E0	/13	3E071	L3E0	71.	3E0	/13	E07	13E	0.71	3E0	/1.	3E0	/13	BE07	13	E0	/13	BE0	/1.	3E07	
E.	ND MO	N-7	ACCUI	M																				
М	ON-SQ	)LI	ГM																					
***	<pls< td=""><td>&gt;</td><td>Va</td><td>lue</td><td>at ؛</td><td>sta</td><td>rt</td><td>of</td><td>mo</td><td>nth</td><td>fo</td><td>r l</td><td>imi</td><td>ti</td><td>ng s</td><td>stc</td><td>rag</td><td>e</td><td>of</td><td>QU</td><td>JAL</td><td>ΟF</td><td>(#/a</td><td>iC)</td></pls<>	>	Va	lue	at ؛	sta	rt	of	mo	nth	fo	r l	imi	ti	ng s	stc	rag	e	of	QU	JAL	ΟF	(#/a	iC)
***	х –	Х	JAI	N	FEB	MA	R	APF	ર	MAY	J	UN	JU	L	AUC	Ĵ	SEP	(	ОСЛ	Ľ	NO	V	DEC	
***	N22-	1																						
2	01	-	11 🖬 🔿 '	711	E071	1050	81	1 E O 9	310	EUS	11 ្	071	1 🗉 🔿	71.	1 ፹ በ 1	711	E07	27	ΕOΓ	728	×E.∪.	71.	1E07	
2	0⊥ ∩1	-	13¤00	, ⊥⊥ 2 1 ⊑			01 01	5500	) ± U ) 1 /		165	001	0 تت ـ ـ	γ <u>⊥</u> . 0 1 .	 	, ⊥⊥ 21 ⊓	. L V /	ム / J 1 つ		210	2 단 이	, ⊥. 01.	3E00	
3	0 L 0 1	-	LOLU	0 1 O	) 프 O O I	LOPO	O 1	ULU ULU ULU ULU	στο	EUO DOO	TOF	001		O L I	0000		с П П С О	101		)	い し し し し	ο Λ.		
4	U L	2	4 2 E U 8	548	) EU 8 4	19FO	84 -	8년() 8	348	F08	48년	084	FQF0	84) 84	8년()	548	5년(J8	48	<b>ビリと</b>	348	SEU C	54	8 E U 8	
1	01	-	L1E0'	/11	.E071	L1E0	71	LE0	/11	E07	11E	071	.1E0	71:	TE0.	/11	.E07	111	E07	/11	E0'	/1:	LE07	
* * *	N22-	2																						
2	02	[	54E0	654	1E068	31E0	68	3E06	582	E06	54E	065	54E0	65	4E00	654	E06	591	E06	559	)E0	65	4E06	
3	02	ſ	54E0	654	1E06	72E0	67	3E06	573	E06	54E	065	54E0	65	4E06	673	BE06	73	E06	572	2E0	65	4E06	

402	61E0861	1E086	1E08	61E0	861	E08	61E	086	51E)	086	51E0	86	1E0	86	1E0	86	1E0	861	LE08
102	59E0659	9E065	9E06	59E0	659	E06	59E	065	59E	065	9E0	65	9E0	65	9E0	65	9E0	659	9E06
*** N22-3																			
203	14E0714	4E071	4E09	14E0	914	E09	14E	071	L4E(	071	.4E0	71	4E0	72	/E0	82	7E0	814	1E07
303	12E1014	4E101	4E10	15E1	015	E10	15E	101	L6E:	101	.6E1	.01	6E1	01:	1E1	01	2E1	012	2E10
403	24E0824	4E082	4E08	24E0	824	E08	24E	082	24E)	082	24E0	82	4E0	824	4E0	82	4E0	824	1E08
103	15E0715	5E071	5E07	15E0	/15	E07	15E	0.7	L5E(	0.71	.5E0	1/1	5E0	71	5E0	71.	5E0	/1:	5E07
*** N22-4	0.0-0-0-0			0 0 - 0	~ ~ -		o c =	0 -					<				~ - ~		
204	26E0/26	5E072	5E08	26EU	825	E08	26E	0/2	26E)	072	26E0	1/2	6E0	/68	SEO	/6	9E0	126	oEU /
304	34E0938	3E093	9E09	39E0	940	E09	41E	094	HIE!	094	2EO	94	3E0	932	250	93.	3EO	933	3E09
404	42E0842	2E084	2E08	42E0	842	E08	42E	084	12E(	084	2E0	84	2E0	842	2E0	84:	2E0	842	2E08
104	30E0/30	JEO/3	OE0/	30E0	/30	E0/	30E	0/3	30E0	0/3	30E0	1/3	0E0	/3(	JEO	13	0E0	/3(	) 돈() /
*** N22-5	100010	2-0-7-1	0 0 0	1000	010		10-	0.7.2	0.00	0 - 1	0 - 0	- 1	00		<u></u>	~ ~	~ - ~	010	
205	18E0/18	350/1	0E09	TOEO	910 910	E09	18E	0/_	L8E0	)/I	.8E0	1/1	8E0	/20	JEO	82	0E0	818	3E0/
305	/5E0984	4E098	8E09	90E0	991 010	E09	93E	099	95E	099	)/EO	99	9E0	9/(	JEO	97	250	9/3	3E09
405	10E091(	JE091	0E09	TOFO	910 910	E09	TOE	09.	LOE	091 091	.0E0	91	0E0	91( 91(	JEO	91	OEO	910	)E09
105	20E0/20	JE072	0E0/	20E0	/20	E0/	20E	0/2	20E0	072	20E0	/2	0E0	/20	JEO	12	0E0	/20	) 돈() /
*** N22-6					~			~ -		~ - 4	1 - 0		1 - 0			0.1	~ - ^	~	
206	41E0/41	LEO//	6E08	/9E0	8/6	E08	41E	0 / 4	HIE(	)/4	LEO	1/4	LEO	/ _ 1	/E0	8 T 8	8E0	84.	LEO/
306	99E1011	LEIII	1E11	12E1	112	E11	12E	11	L2E	111	.3E1	11	3E1	189	9E1	09	3E1	096	bE10
406	12E0812	2E081	2E08	12E0	812	E08	12E	081	L2E(	081	.2E0	81	2E0	812	2E0	81:	2E0	812	2E08
106	41E0741	1E074	1E07	41E0	741	E07	41E	074	11E)	074	1E0	74	1E0	74:	1E0	74	1E0	741	LE07
*** N22-7					~ - ~							~ -		o = .		~ -			
407	53E0853	3E085	3E08	53E0	853	E08	53E	085	3E	085	3E0	85	3E0	85.	3E0	85	3E0	853	3E08
*** N22-8										. – .									
308	38E0738	3E074	0E07	40E0	740	E07	38E	073	38E)	073	88E0	1/4	0E0	74(	JE0	/4	0E0	738	3E07
408	16E0910	5E091	6E09	16E0	916	E09	16E	091	L6E(	091	.6E0	91	6E0	910	6E0	91	6E0	916	5E09
108	41E0741	LE074	1E07	41E0	/41	E07	41E	0.72	11E(	074	1E0	/4	1E0	/4.	LE0	/4	1E0	/4	LE07
*** N22-9						. –													
309	59E0759	9E076	1E07	61E0	761	E07	59E	075	59E	075	9E0	76	1E0	76:	1E0	76	1E0	759	9E07
409	29E0929	9E092	9E09	29E0	929	E09	29E	092	29E)	092	9E0	92	9E0	929	9E0	92	9E0	929	9E09
109	11E0811	LE081	1E08	11E0	811	E08	11E	081	L1E	081	.1E0	81	1E0	81:	1E0	81	1E0	811	LE08
END MON-	-SQOLIM																		
END PERLNI	)																		
IMPLND																			
ACTIVITY	-																		
*** <ils></ils>	>			Acti	ve	Sec	tio	ns											
*** x - x	K ATMP S	SNOW	IWAT	SL	D	IWG	IQ	AL											
101	0	0	1		1	0		1											
END ACTI	VITY																		
PRINT-IN	IFO																		
*** <ils></ils>	· *****	*** P	rint	-fla	gs	***	***	**	PI	VL	ΡY	R							
*** x - x	K ATMP S	SNOW	IWAT	SL	D	IWG	IQ	AL	**	* * *	***	*							
101	4	4	4		4	4		4		1		9							
END PRIN	IT-INFO																		
GEN-INFC	)																		
* * *	1	Name				Un	it-	sys	ster	ns	P	ri	nte	r l	Bin	ar	yOu	t	
*** <ils></ils>	>						t	-se	eri	es	Eng	ſl	Met	r l	Eng	11	Met	r	
*** x - x	Ζ							in	01	ut									
101								1		1		0		0		0		0	
END GEN-	INFO																		

IWAT-PARM1 *** <ILS > Flags *** x - x CSNO RTOP VRS VNN RTLI 101 0 1 0 0 0 END IWAT-PARM1 IWAT-PARM2 *** <ILS > LSUR SLSUR NSUR RETSC 
 ** x - x
 (ft)
 (in)

 101
 106
 100.
 0.150
 0.10
 0.150

 107
 100.
 0.150
 0.10
 0.300

 108
 109
 100.
 0.150
 0.10
 0.250
 *** x - x END IWAT-PARM2 IWAT-PARM3 *** <ILS > PETMAX PETMIN *** x - x (deg F) (deg F) 101 40. 35. END IWAT-PARM3 IWAT-STATE1 *** <ILS > IWATER state variables (inches) *** x - x RETS SURS 101 0.0 0.00 END IWAT-STATE1 SLD-PARM1 <PLS >*** # - # VASD VRSD SDOP *** 101 0 0 1 END SLD-PARM1 SLD-PARM2 * * * KEIM JEIM ACCSDP REMSDP *** <ILS > /day tons/ *** x - x ac.day *** 101 0.10 2.0 0.0005 0.60 END SLD-PARM2 SLD-STOR *** <ILS > Solids storage (tons/acre) *** x - x 101 0.1 END SLD-STOR *** FIB section for IMPLND NQUALS # #NQUAL *** 1 101 END NQUALS QUAL-PROPS

*** <ILS > *** x - x QUALID QTID QSD VPFW QSO VQO 101 FC # 0 0 1 0 END OUAL-PROPS OUAL-INPUT *** Storage on surface and nonseasonal parameters * * * SQO POTFW ACQOP SQOLIM WSQOP *** <ILS > qty/ac qty/ton qty/ qty/ac in/hr *** x - x ac.day 1E+07 0. 1E+07 3E+07 0.01 101 END OUAL-INPUT END IMPLND RCHRES ACTIVITY *** RCHRES Active sections *** x - x HYFG ADFG CNFG HTFG SDFG GOFG OXFG NUFG PKFG PHFG 1 9 1 1 0 0 1 1 0 0 0 0 END ACTIVITY PRINT-INFO *** RCHRES Printout level flags *** x - x HYDR ADCA CONS HEAT SED GOL OXRX NUTR PLNK PHCB PIVL PYR 1 9 4 4 4 4 4 4 4 4 4 1 9 END PRINT-INFO GEN-INFO * * * Name Nexits Unit Systems Printer *** RCHRES t-series Engl Metr LKFG *** x - x in out 1 9 StroublesCrk 1 1 1 0 0 0 0 0 END GEN-INFO HYDR-PARM1 *** Flags for HYDR section ***RC HRES VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each *** x - x FG FG FG FG possible exit *** possible exit possible exit 1 9 0 1 1 1 4 0 0 0 0 0 0 0 0 0 1 1 1 1 1 END HYDR-PARM1 HYDR-PARM2 *** RCHRES FTBW FTBU LEN DELTH STCOR KS DB50 (miles) *** x - x (ft) (ft) (in) 0.12.29119.73.20.50.010.22.4162.913.20.50.010.30.496.73.20.50.010.40.547.173.20.50.010.50.8016.283.20.50.010.60.6217.073.20.50.01 (miles) (ft) 2.29 119.7 2.41 62.91 1 2 3 4 5 6

0.70.287.873.20.50.010.81.3090.653.20.50.010.91.78173.93.20.50.01 7 8 9 END HYDR-PARM2 MON-CONVF *** RCHRES Monthly f(VOL) adjustment factors *** x - x JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1 9 0.90 0.89 0.89 0.91 0.93 1.99 1.99 1.99 0.99 0.98 0.98 0.90 END MON-CONVE HYDR-INIT *** Initial conditions for HYDR section *** RCHRES VOL CAT Initial value of COLIND initial value of OUTDGT *** x - x ac-ft for each possible exit for each possible exit,ft3 1 9 10.0 4.2 4.5 4.5 4.5 4.2 2.1 1.2 0.5 1.2 1.8 END HYDR-INIT SANDFG *** RCHRES *** x - x SNDFG 1 9 3 END SANDFG SED-GENPARM *** x - x (ft) (ft) *** BEDWID is the effective width over which bed sediment is deposited; BEDWRN is the depth of sediment in the bed *** The channel width at low flow: 2.7-4.0 m (8.8-13.1 ft) *** The water depth at low flow: 0.1-0.3 m (0.3-1 ft) *** Porosity estimation: 0.3-0.7 POR *** RCHRES BEDWID BEDWRN * * * # - # 
 09.0
 0.3

 09.0
 3.0
 1 6 0.4 7 0.4 8 9 09.0 0.3 0.4 END SED-GENPARM SAND-PM 
 SAND-FM

 *** RCHRES
 D
 W
 RHO

 *** x - x
 (in)
 (in/sec)
 (g/cm3)
 RHO KSAND EXPSND *** x - x (in) (in/sec) 1 9 0.01 0.25 2.6 0.1 2.0 END SAND-PM SILT-CLAY-PM M *** D W RHO TAUCD TAUCS RCHRES # - # *** 1 0.0003 0.0005 2.30 0.034 0.123 0.01 2 0.0003 0.0005 2.30 0.021 0.114 0.01 
 2.30
 0.014
 0.078
 0.01

 2.30
 0.012
 0.044
 0.01
 0.0003 0.0005 0.0003 0.0005 3 4

5	0.0003	0.0005	2.30	0.014	0.056	0.01
6	0.0003	0.0005	2.30	0.024	0.127	0.01
7	0.0003	0.0005	2.30	0.582	0.620	0.01
8	0.0003	0.0005	2.30	0.032	0.10	0.01
9	0.0003	0.0005	2.30	0.039	0.184	0.01
END SILT-	-CLAY-PM					
SILT-CLAY	-PM					
RCHRES	D	W	RHO	TAUCD	TAUCS	M ***
# - #						* * *
1	0.0001	0.00005	2.00	0.028	0.11	0.01
2	0.0001	0.00005	2.00	0.018	0.072	0.01
3	0.0001	0.00005	2.00	0.012	0.04/	0.01
4 F	0.0001	0.00005	2.00	0.01	0.035	0.01
S	0.0001	0.00005	2.00	0.012	0.047	0.01
0 7	0.0001	0.00005	2.00	0.021	0.07	0.01
8	0.0001	0.00005	2.00	0.029	0.010	0.01
9	0.0001	0.00005	2.00	0.025	0.072	0.01
END SILT-	-CLAY-PM	0.00000	2.00	0.007	0.100	0.01
SSED_TNIT	1					
BCHBES	Suspende	ad sed conce	$= (m\alpha/1) *$	* *		
***These ir	itial value	s 8 mg/I, we	ere taken	from Abram	9	
# - #	Sand	Silt.	Clav *	**	5	
1 9	0.	8.	8.			
END SSED-	-INIT					
BED-INIT						
*** Initial	conditions	5				
*** The soi	l from the	full vertio	cal profil	e of a str	eam bank: 2	3% sand,
54% silt, 2	23% clay. (1	Yler's The	sis, pg54)	•		
*** Based c	on the Tech	Note 8 (pag	ge33), the	fractions	should ref	lect the
relative pe	ercent of sa	and, silt, o	clay avail	able for e	rosion in t	he
watershed,				<b>.</b>		
*** but sho	ould also ir	nclude an er	nrichment	factor of	silt and cl	ay to
represent t	ne likelind	od of these	e finer ma	terials re	aching the	channel.
silt and al	ie sand woul	a be somewi	lat transp	ort limite	d, compared	to the
DCUDEC	ay. BEDDED	Initial box	d composit	ion *	* *	
# _ #	(f+)	Sand	sil+	Clav *	* *	
π π 1 6		05	511C 60	Ciay 35		
7	1	.05	.00 60	.55		
89	0.2	.05	.00	.35		
END BED-I	INIT		• 0 0	••••		
FIR section	1**********	<del>.</del> *				
GO-OAT.DAT	'Α					
*** RCHRES		GOTD	DOAT.	CONCID	CONV	ΟͲΥΤΟ
*** x - x		OZID	concid	CONCID	0011 1	$\chi_{+++D}$
1 9F	ГС		100.	#/10	0.0035 #	
END GO-OA	ALDATA					
· ~ £-						

```
GQ-QALFG
```

*** x - x 1 9 0 0 0 0 1 1 END GQ-QALFG GQ-GENDECAY *** RCHRES FSTDEC THFST *** x - x (/day) 1.05 3 1 1.15 7 4.00 1.05 4 9 1.05 1.15 END GQ-GENDECAY ***Bacteria-sediment association GQ-SEDCONC ***<range><-----> *** RCHRES1-3: suspend sand silt clay; 4-6 bed sand silt clay*** x - xSQAL1190.0110.10.0.0010.10.1 END GQ-SEDCONC GO-KD ***<range><-------k-part-----> *** RCHRES 1-3: suspend sand silt clay; 4-6 bed sand silt clay *** x - x ADPM1 ADPM2 ADPM3 ADPM4 ADPM5 ADPM6 1 9 1.0E-8 0.5 0.5 1.0E-8 0.0005 0.0005 END GQ-KD GO-ADRATE ***<range><------k-adsdes------> *** RCHRES 1-3: suspend sand silt clay; 4-6 bed sand silt clay *** x - x ADPM1 ADPM2 ADPM3 ADPM4 ADPM5 ADPM6 1 9 1.0E-4 10000 10000 1.0E-4 1000 1000 END GO-ADRATE GQ-SEDDCAY ***<range><-----ads-decay-----> *** RCHRES KSUSP THSUSP KBED *** x - x (/day) (/day) THBED *** x - x (/day) (/day) 1 9 0.6 1.06 0.20 1.03 END GO-SEDDCAY END RCHRES FTABLES FTABLE 1 * * * rows cols 4 4 
 depth
 area
 volume
 outflow1
 ***

 0.
 5.22
 0.
 0.

 0.01
 5.22
 0.05
 0.

 2.93
 11.55
 24.61
 476.35
 45.59 601.48 1773.82 169167. END FTABLE 1

FTABLE 2 *** rows cols 4 4 

 4
 4

 depth
 area
 volume
 outflow1
 ***

 0.
 19.43
 0.
 0.

 0.01
 19.43
 0.19
 0.

 1.9
 19.2
 36.68
 252.84

 83.92
 437.52
 25063.551006730.09

 depth END FTABLE 2 FTABLE 3 *** rows cols depth area volume outflow1 *** 0. 3.38 0. 0. 0.01 3.38 0.03 4 4 depth 0.013.380.030.1.763.345.9203.8728.47.32853.6864940.09 0.03 0. 5.9 203.87 1.76 END FTABLE 3 FTABLE 4 *** rows cols 4 4 depthareavolumeoutflow1***0.3.590.0.0.013.590.040.1.663.545.92174.825.2871.51901.7344353.9 depth END FTABLE 4 FTABLE 5 *** rows cols 4 4 area volume outflow1 *** 5.12 0. 0. depth 0. 0. Ο. 0.05 5.12 0.01 Ο. 1.635.058.3166.8411.4895.09569.8613866.32 8.3 166.84 END FTABLE 5 FTABLE 6 *** rows cols 4 4 

 depth
 area
 volume
 outflow1
 ***

 0.
 3.38
 0.
 0.

 0.01
 3.38
 0.03
 0.

 1.44
 3.32
 4.83
 118.21

 11.61
 143.71
 940.84
 22476.73

 END FTABLE 6 7 FTABLE *** rows cols 7 4 depth area volume outflow1 ***

1 2 9 14 31 END F	0. .46 .92 .84 .84 .84 .01 TABLE	0.00 1.82 3.82 4.64 7.28 7.30 338.78	0 2.256 6.256 8.954 9.563 34.38 3848.0	8 4 0 3 3 307	0. 0.405 0.567 2.066 2000 6000 07.05				
FTABL	E	8			4.	۲ - <del>۲</del>			
rows co	015 A				~ ~ ~				
r dei	nth	area	volum		flow1 *;	* *			
uc]	0.	2.51	0		0.				
0	.01	2.51	0.0	3	0.				
1	.16	2.46	2.8	9	65.36				
25	.77	186.12	2992.6	1 2954	49.88				
END F	TABLE	8							
FTABL	E	9							
rows c	ols				* 7	* *			
4	4								
dej	pth	area	volum	e out	flow1 *	* *			
0	0.	5.43	0 0	•	0.				
1	.01	J.43 5 31	5.4	3 J	U. 11 58				
⊥ 11	84	132 28	848 3	J 4 198	56 96				
END F	. O I TABLE	2 9	010.0	1 190	00.90				
END FTA	BLES								
NETWORK									
*** Cat	tle								
MUTSIN	01 C	UTPUT	01	1.0	SAME	RCHRES	01	INFLOW	IDQAL
MUTSIN	01 C	UTPUT	02	1.0	SAME	RCHRES	02	INFLOW	IDQAL
MUTSIN	01 C	UTPUT	03	1.0	SAME	RCHRES	03	INFLOW	IDQAL
MUTSIN	01 C	UTPUT	04	1.0	SAME	RCHRES	04	INFLOW	IDQAL
MUTSIN	01 C	DUTPUT	05	1.0	SAME	RCHRES	05	INFLOW	IDQAL
MUTSIN	01 C	UTPUT	06	1.0	SAME	RCHRES	06	INFLOW	IDQAL
MUTSIN		UTPUT	07	1.0	SAME	RCHRES	07	INFLOW	IDQAL
MUTSIN			00	1.0	SAME	RCHRES	00	INFLOW	TDQAL
MUISIN *** Wil/	J IU Alifa	)01P01	09	1 0	SAME	RCHKES	09	THETOM	IDQAL
MITSTN		; ווייסווי	01	1 0	SAME	RCHRES	01	TNFL.OW	
MUTSIN	02 0	)UTPUT	02	1.0	SAME	RCHRES	02	INFLOW	TDOAL
MUTSIN	02 C	UTPUT	03	1.0	SAME	RCHRES	03	INFLOW	IDOAL
MUTSIN	02 C	UTPUT	04	1.0	SAME	RCHRES	04	INFLOW	IDQAL
MUTSIN	02 C	UTPUT	05	1.0	SAME	RCHRES	05	INFLOW	IDQAL
MUTSIN	02 C	UTPUT	06	1.0	SAME	RCHRES	06	INFLOW	IDQAL
MUTSIN	02 C	UTPUT	07	1.0	SAME	RCHRES	07	INFLOW	IDQAL
MUTSIN	02 C	UTPUT	08	1.0	SAME	RCHRES	08	INFLOW	IDQAL
MUTSIN	02 C	UTPUT	09	1.0	SAME	RCHRES	09	INFLOW	IDQAL
*** Stra	aight	Pipes		1.0			<b>6</b> 4		
MUTSIN	03 C	)U'TPUT	01	1.0	SAME	RCHRES	01	INFLOW	IDQAL
MUTSIN	03 C	00.1.50.1,	02	1.0	SAME	RCHRES	02	tnf,fom	LDQAL

MUTSIN	03	OUTPUT	(	03	1.0	SAME	RCHRES	03	INFLOW	IDQAL	
MUTSIN	03	OUTPUT	(	)4	1.0	SAME	RCHRES	04	INFLOW	IDQAL	
MUTSIN	03	OUTPUT	(	)5	1.0	SAME	RCHRES	05	INFLOW	IDQAL	
MUTSIN	03	OUTPUT	(	06	1.0	SAME	RCHRES	06	INFLOW	IDQAL	
MUTSIN	03	OUTPUT	(	7	1.0	SAME	RCHRES	07	INFLOW	IDOAL	
MUTSIN	03	OUTPUT	(	8	1.0	SAME	RCHRES	08	INFLOW	IDOAL	
MUTSIN	03	OUTPUT	(	)9	1.0	SAME	RCHRES	09	INFLOW	IDÕAL	
*** PRe	P Sr	oills in	nto Read	ches	1.0					£	
MUTSIN	20	OUTPUT	(	01	1.0	SAME	RCHRES	05	INFLOW	IVOL	
MUTSIN	20	OUTPUT	(	)2	1.0	SAME	RCHRES	05	INFLOW	IDOAL	
MUTSIN	2.0	Ουτρυτ	(	).3	1.0	SAME	RCHRES	07	TNFLOW	TVOL	
MUTSIN	20	ΟΠΤΡΠΤ	(	14	1.0	SAME	RCHRES	07	TNFLOW	TDOAL	
MUTSIN	20	ΟΠΤΡΠΤ	(	)5	1.0	SAME	RCHRES	08	TNFLOW	TVOL	
MUTSIN	20	OUTPUT	(	16	1.0	SAME	RCHRES	08	INFLOW	TDOAL	
MUTSIN	20		(	ט דר	1 0	SAME	RCHRES	00	INFLOW	TVOL.	
MUTSIN	20		(	18	1 0	SAME	RCHRES	09	INFLOW	TDOAT.	
RCHRES	20	SEDTEN	RGED	5	<b>T</b> •O	0711111	PLTCEN	1	TNDIIT	MEZN	1
DCUDEC	2	SEDINI SEDTRI	DGED	5			DITCEN	⊥ 1	TNDIT	MEAN	2
DCUDEC	7	CEDEDIN	DCED	5			DITCEN	⊥ 1	TNDUT	MEAN	2
DCUDEC	G	SEDIM	ROED	5			PLIGEN	⊥ 1	INFUI	MEAN	7
RCHRES	5	SEDIKN	RSED	5			PLIGEN	⊥ 1	INPUI	MEAN	4
RCHRES	5	SEDIRN	RSED	5			PLIGEN	1	INPUT	MEAN	5
RCHRES	4	SEDTRN	RSED	С Г			PLTGEN	1	INPUT	MEAN	07
RCHRES	3	SEDTRN	RSED	5			PLTGEN	1	INPUT	MEAN	/
RCHRES	2	SEDTRN	RSED	5			PLTGEN	1	INPUT INPUT	MEAN	8
RCHRES	Ţ	SEDTRN	RSED	5			PLTGEN	1	INPU'I'	MEAN	9
RCHRES	9	SEDTRN	ISED	4			PLTGEN	-/	INPUT	MEAN	1
RCHRES	8	SEDTRN	ISED	4			PLTGEN	7	INPUT	MEAN	2
RCHRES	7	SEDTRN	ISED	4			PLTGEN	7	INPUT	MEAN	3
RCHRES	6	SEDTRN	ISED	4			PLTGEN	7	INPUT	MEAN	4
RCHRES	5	SEDTRN	ISED	4			PLTGEN	7	INPUT	MEAN	5
RCHRES	4	SEDTRN	ISED	4			PLTGEN	7	INPUT	MEAN	6
RCHRES	3	SEDTRN	ISED	4			PLTGEN	7	INPUT	MEAN	7
RCHRES	2	SEDTRN	ISED	4			PLTGEN	7	INPUT	MEAN	8
RCHRES	1	SEDTRN	ISED	4			PLTGEN	7	INPUT	MEAN	9
RCHRES	9	SEDTRN	ROSED	4			PLTGEN	5	INPUT	MEAN	1
RCHRES	8	SEDTRN	ROSED	4			PLTGEN	5	INPUT	MEAN	2
RCHRES	7	SEDTRN	ROSED	4			PLTGEN	5	INPUT	MEAN	3
RCHRES	6	SEDTRN	ROSED	4			PLTGEN	5	INPUT	MEAN	4
RCHRES	5	SEDTRN	ROSED	4			PLTGEN	5	INPUT	MEAN	5
RCHRES	4	SEDTRN	ROSED	4			PLTGEN	5	INPUT	MEAN	6
RCHRES	3	SEDTRN	ROSED	4			PLTGEN	5	INPUT	MEAN	7
RCHRES	2	SEDTRN	ROSED	4			PLTGEN	5	INPUT	MEAN	8
RCHRES	1	SEDTRN	ROSED	4			PLTGEN	5	INPUT	MEAN	9
RCHRES	9	SEDTRN	DEPSCR	3			PLTGEN	6	INPUT	MEAN	1
RCHRES	8	SEDTRN	DEPSCR	3			PLTGEN	6	INPUT	MEAN	2
RCHRES	7	SEDTRN	DEPSCR	3			PLTGEN	6	INPUT	MEAN	3
RCHRES	6	SEDTRN	DEPSCR	3			PLTGEN	6	INPUT	MEAN	4
RCHRES	5	SEDTRN	DEPSCR	3			PLTGEN	6	INPUT	MEAN	5
RCHRES	4	SEDTRN	DEPSCR	3			PLTGEN	6	TNPUT	MEAN	6
RCHRES	3	SEDTRN	DEPSCR	3			PLTGEN	6	INPUT	MEAN	7
RCHRES	2	SEDTRN	DEPSCR	3			PLTGEN	6	TNPIIT	MEAN	8
RCHRES	- 1	SEDTRN	DEPSCR	3			PLTGEN	6	TNPIIT	MEAN	g
RCHRES	9	HYDR	TAU	~			PLTGEN	3	TNPUT	MEAN	1
RCHREC	Ŕ	HYDR	тат тат				PLTCEN	י ר	TNDIIT	MEAN	2
	0		T 1 7 0					5	TTAT O T	T TTT T TTN	~

RCHRES	7	HYDR	TAU	
RCHRES	6	HYDR	TAU	
RCHRES	5	HYDR	TAU	
RCHRES	4	HYDR	TAU	
RCHRES	3	HYDR	TAU	
RCHRES	2	HYDR	TAU	
RCHRES	1	HYDR	TAU	
RCHRES	9	SEDTRN	SSED	3
RCHRES	8	SEDTRN	SSED	3
RCHRES	7	SEDTRN	SSED	3
RCHRES	6	SEDTRN	SSED	3
RCHRES	5	SEDTRN	SSED	3
RCHRES	Δ	SEDIN	SSED	3
RCHRES	3	SEDTRN	SSED	3
RCHRES	2	SEDIN	SSED	3
RCHRES	1	SEDINN	SSED	ר א
DCUDES	a T	SEDIN SEDTON		5
DCUDEC	0	CEDTUN		
RCHRES	0	OFDUDN		
RCHRES	G	SEDIKN		
RCHRES	ю Б	SEDIRN	BEDDEP	
RCHRES	2	SEDIRN	BEDDEP	
RCHRES	4	SEDTRN	REDDEL	
RCHRES	3	SEDTRN	BEDDED	
RCHRES	1	SEDTRN	BEDDEL	
RCHRES	Ţ	SEDTRN	BEDDEP	
RCHRES	9	HYDR	RO	
RCHRES	8	HYDR	RO	
RCHRES	1	HYDR	RO	
RCHRES	6	HYDR	RO	
RCHRES	5	HYDR	RO	
RCHRES	4	HYDR	RO	
RCHRES	3	HYDR	RO	
RCHRES	2	HYDR	RO	
RCHRES	1	HYDR	RO	
RCHRES	9	GQUAL	SQAL	2
RCHRES	8	GQUAL	SQAL	2
RCHRES	7	GQUAL	SQAL	2
RCHRES	6	GQUAL	SQAL	2
RCHRES	5	GQUAL	SQAL	2
RCHRES	4	GQUAL	SQAL	2
RCHRES	3	GQUAL	SQAL	2
RCHRES	2	GQUAL	SQAL	2
RCHRES	1	GQUAL	SQAL	2
RCHRES	9	GQUAL	SQAL	3
RCHRES	8	GQUAL	SQAL	3
RCHRES	7	GQUAL	SQAL	3
RCHRES	6	GQUAL	SQAL	3
RCHRES	5	GQUAL	SQAL	3
RCHRES	4	GQUAL	SQAL	3
RCHRES	3	GQUAL	SQAL	3
RCHRES	2	GQUAL	SQAL	3
RCHRES	1	GQUAL	SQAL	3
RCHRES	9	GQUAL	SQAL	5
RCHRES	8	GQUAL	SQAL	5
-	-			

PLTGEN	3	INPUT	MEAN	3
PLTGEN	3	INPUT	MEAN	4
PLTGEN	3	INPUT	MEAN	5
PLTGEN	3	INPUT	MEAN	6
PLTGEN	3	INPUT	MEAN	7
PLTGEN	3	INPUT	MEAN	8
PLTGEN	3	INPUT	MEAN	9
PLTGEN	4	INPUT	MEAN	1
PLTGEN	4	INPUT	MEAN	2
PLTGEN	4	INPUT	MEAN	3
PLTGEN	4	ТИРИТ	MEAN	4
PLTGEN	4	TNPUT	MEAN	5
PLTGEN	4	TNPUT	MEAN	6
PLTCEN	1	TNDUT	MEZN	7
DITCEN	л Л	TNDUT	MEAN	, 8
DITCEN		TNEUT	MEAN	a a
DITCEN	7	TNEUL	MEAN	1
PLIGEN	2	INFUI		1 2
PLIGEN	2	INPUT	MEAN	2
PLTGEN	2	INPUT	MEAN	3
PLTGEN	2	INPU'I'	MEAN	4
PLTGEN	2	INPUT	MEAN	5
PLTGEN	2	INPUT	MEAN	6
PLTGEN	2	INPUT	MEAN	7
PLTGEN	2	INPUT	MEAN	8
PLTGEN	2	INPUT	MEAN	9
PLTGEN	8	INPUT	MEAN	1
PLTGEN	8	INPUT	MEAN	2
PLTGEN	8	INPUT	MEAN	3
PLTGEN	8	INPUT	MEAN	4
PLTGEN	8	INPUT	MEAN	5
PLTGEN	8	INPUT	MEAN	6
PLTGEN	8	INPUT	MEAN	7
PLTGEN	8	INPUT	MEAN	8
PLTGEN	8	INPUT	MEAN	9
PLTGEN	9	INPUT	MEAN	1
PLTGEN	9	INPUT	MEAN	2
PLTGEN	9	INPUT	MEAN	3
PLTGEN	9	INPUT	MEAN	4
PLTGEN	9	INPUT	MEAN	5
PLTGEN	9	ТИРИТ	MEAN	6
PLTGEN	9	TNPUT	MEAN	7
PLTGEN	9	TNPUT	MEAN	8
PLTCEN	g	TNDIT	MFAN	g
DITCEN	10	TNDUT	MEAN	1
DITCEN	10	TNDUT	MEAN	2
DITCEN	10	TNEUL	MEAN	2
DITORN	10	INFUL		1
PLIGEN	10	INPUI	MEAN	4
PLIGEN	10	INPUT	MEAN	с С
PLTGEN	T U	INPU'I'	MEAN	6
PLTGEN	10	INPUT	MEAN	/
PL'I'GEN	10	LNPUT	MEAN	8
PLTGEN	10	INPUT	MEAN	9
PLTGEN	11	INPUT	MEAN	1
PLTGEN	11	INPUT	MEAN	2

RCHRES	7	GQUAL	SQA	L	5			PLTGEN	11	INPUT	MEAN	3
RCHRES	6	GQUAL	SQA	L.	5			PLTGEN	11	INPUT	MEAN	4
RCHRES	5	GQUAL	SQA	L.	5			PLTGEN	11	INPUT	MEAN	5
RCHRES	4	GQUAL	SQA	L .	5			PLTGEN	11	INPUT	MEAN	6
RCHRES	3	GOUAL	SOA	L.	5			PLTGEN	11	INPUT	MEAN	7
RCHRES	2	GOUAL	SÕA	L.	5			PLTGEN	11	INPUT	MEAN	8
RCHRES	1	GOUAL	SÕA	L.	5			PLTGEN	11	INPUT	MEAN	9
RCHRES	9	GOUAL	SOA	Τ.	6			PLTGEN	12	TNPUT	MEAN	1
RCHRES	8	GOUAL	SOA	— T.	6			PLTGEN	12	TNPUT	MEAN	2
RCHRES	7	GOUAL	SOA	т.	6			PLTGEN	12	TNPUT	MEAN	3
RCHRES	6	GOUAL	SOA	т.	6			PLTGEN	12	TNPUT	MEAN	4
RCHRES	5	COULT.	502 202	т.	6			PLTGEN	12	TNPUT	MEAN	5
RCHRES	4	COULT	202	т.	6			PLUCEN	12	TNDIT	MFAN	6
DCUDES	7	COUNT	SQA	т	6			PITCEN	12	TNDIT	MEAN	0
DCUDES	2	COUNT	SQA	т	6			DITCEN	12	TNDIT	MEAN	, 8
DCUDES	1	COUNT	SQA	т	6			PITCEN	12	TNDIT	MEAN	Q
DCUDEC	0 T	COUNT	DON	т	0			DITCEN	12	TNEUT		1
RCHRES	9 0	COUNT	DQA	ц т				PLIGEN	12	TNEOI		1 2
RCHRES	0	GQUAL	DQA	ப் 7				PLIGEN	10	INPUT	MEAN	2
RCHRES		GQUAL	DQA	ц т				PLTGEN	10	INPUT	MEAN	3
RCHRES	6	GQUAL	DQA	ட -				PLTGEN	10	INPUT	MEAN	4
RCHRES	5	GQUAL	DQA	ட -				PLTGEN	13	INPUT	MEAN	5
RCHRES	4	GQUAL	DQA	ட -				PLTGEN	13	INPUT	MEAN	6
RCHRES	3	GQUAL	DQA	ட -				PLTGEN	13	INPUT	MEAN	/
RCHRES	2	GQUAL	DQA	ட -				PLTGEN	13	INPUT	MEAN	8
RCHRES	Ţ	GQUAL	DQA	ட் 				PLTGEN	13	INPU'I'	MEAN	9
RCHRES	9	GQUAL	DSQ	AL ·	4			PLTGEN	14	INPUT	MEAN	1
RCHRES	8	GQUAL	DSQ	AL ·	4			PLTGEN	14	INPUT	MEAN	2
RCHRES	7	GQUAL	DSQ	AL ·	4			PLTGEN	14	INPUT	MEAN	3
RCHRES	6	GQUAL	DSQ	AL	4			PLTGEN	14	INPUT	MEAN	4
RCHRES	5	GQUAL	DSQ	AL	4			PLTGEN	14	INPUT	MEAN	5
RCHRES	4	GQUAL	DSQ	AL	4			PLTGEN	14	INPUT	MEAN	6
RCHRES	3	GQUAL	DSQ	AL	4			PLTGEN	14	INPUT	MEAN	7
RCHRES	2	GQUAL	DSQ	AL	4			PLTGEN	14	INPUT	MEAN	8
RCHRES	1	GQUAL	DSQ	AL	4			PLTGEN	14	INPUT	MEAN	9
END NETW	IORF	K										
MUTSIN												
MUISIN		(mf1\/,	n+>	nmn	<pli><pli><td><pre>/mia&gt;</pre></td><td>* * *</td><td></td><td></td><td></td><td></td><td></td></pli></pli>	<pre>/mia&gt;</pre>	* * *					
<-rang	le/\ 				✓⊥⊥11/		+++					
# - 01	Ŧ	№ЕЬ	IN P.T.		ИГТ	MDFC ~	~ ~ ^					
01		44	0	09	20	2						
02		45	0	09	25	2						
03		46	0	09	25	2						
20		60	0	08	25	2						
END MUTS	SIN	LNFO										
PLTGEN												
PLOTIN	IFO											
# -	#	FILE	NPT	NMN	LABL	PYR	PIVL	*** -1=mo	nthly;	-2=annu	al;	
1		31	0	9	0	12	1		<u>,</u> ,			
2		32	0	9	0	12	-2					
3		33	0	9	0	12	24					
4		34	0	9	0	12	1					

5 6 7 8 9 10 11 12 13 14 END PLO	35 36 37 38 51 52 53 54 55 56 FINFO		9       0         9       0         9       0         9       0         9       0         9       0         9       0         9       0         9       0         9       0         9       0         9       0         9       0         9       0         9       0	12 12 12 12 12 12 12 12 12 12 12	-2 1 -2 24 1 1 1 1 1					
GEN-LABI # - ;	ELS #<		Tit	le			>	* * :	* <	Y axis-
> 1 (tons)	Bed Stor	age								
$\frac{2}{3}$	Bed Dept Bed Shea	h r Stre	SS							(ft)
(mg/l)	TSS Conc	entrat	ion							
5 (tons) 6	Depositi	on or	Scour							
(tons) 7 (tons)	Upstream	In								
$\frac{8}{10}$	Hourly f	low							(wa	atershed-
9 10 11 12 13 14 END GEN-	FC conce FC conce FC conce FC conce FC conce Depositi -LABELS	n. in n. in n. in n. in on/Sco	suspend suspend bed sil bed cla free-pl our of l	ded si ded cl lt ay nase FC	ilt lay					#/mg #/mg #/mg #/l #/l
SCALING # - ; 1 14 END SCAL	# YM 4 LING	IN O.	YMAX 1.E+10	3	IVLIN 100.	Tŀ	IRESH	***		
CURV-DA # - ; 1 c END CURV	TA <-Cu # 4 sub V-DATA	(Fir rve la waters	st curv abel> shed 9	ve) Line type	Intg eqv	Col code	Tran code AVER	* * *		
CURV-DA # - ; 1 4 END CUR	IA <-Cu # 4 sub V-DATA	(Sec rve la waters	cond cu: abel> shed 8	rve) Line type	Intg eqv	Col code	Tran code AVER	* * *		

CURV-DATA (Third curve) <-Curve label--> Line Intg Col Tran *** # - # type eqv code code *** # - # 1 4 subwatershed 7 AVER END CURV-DATA CURV-DATA (Fourth curve) <-Curve label--> Line Intg Col Tran *** # - #type eqv code code ***14subwatershed 6AVER END CURV-DATA CURV-DATA (Fifth curve) <-Curve label--> Line Intg Col Tran *** # - #type eqv code code ***14subwatershed 5AVER END CURV-DATA CURV-DATA (Sixth curve) <-Curve label--> Line Intg Col Tran *** 
 # - #
 type
 eqv
 code
 code

 1
 4
 subwatershed
 AVER
 END CURV-DATA CURV-DATA <-Curve label--> Line Intg Col Tran *** # - #type eqv code code ***14subwatershed 3AVER END CURV-DATA CURV-DATA <-Curve label--> Line Intg Col Tran *** # - # 1 4 subwatershed 2 type eqv code code *** AVER END CURV-DATA CURV-DATA <-Curve label--> Line Intg Col Tran *** # - # type eqv code code *** 1 4 subwatershed 1 AVER END CURV-DATA CURV-DATA <-Curve label--> Line Intg Col Tran *** # - # type eqv code code *** # - # type eqv code
5 7 subwatershed 9 SUM END CURV-DATA CURV-DATA (Second curve) <-Curve label--> Line Intg Col Tran *** # - # 5 7 subwatershed 8 type eqv code code *** SUM END CURV-DATA CURV-DATA (Third curve) <-Curve label--> Line Intg Col Tran *** # - # type eqv code code *** # - #
5 7 subwatershed 7 SUM END CURV-DATA CURV-DATA (Fourth curve) <-Curve label--> Line Intg Col Tran *** # - # 5 7 subwatershed 6 type eqv code code *** SUM

END CURV-DATA CURV-DATA (Fifth curve) <-Curve label--> Line Intg Col Tran *** # - #type eqv code code ***57subwatershed 5SUM END CURV-DATA CURV-DATA (Sixth curve) <-Curve label--> Line Intg Col Tran *** # - # type eqv code code *** # - #
5 7 subwatershed 4 SUM END CURV-DATA CURV-DATA (Fourth curve) <-Curve label--> Line Intg Col Tran *** # - # type eqv code code *** # - # 5 7 subwatershed 3 SUM END CURV-DATA CURV-DATA (Fifth curve) <-Curve label--> Line Intg Col Tran *** # - # type eqv code code *** # - # 5 7 subwatershed 2 SUM END CURV-DATA CURV-DATA (Sixth curve) <-Curve label--> Line Intg Col Tran *** # - # type eqv code code ***  $\frac{\pi}{5}$  7 subwatershed 1 SUM END CURV-DATA CURV-DATA (First curve) <-Curve label--> Line Intg Col Tran *** # - # type eqv code code *** subwatershed 9 8 AVER END CURV-DATA CURV-DATA (Second curve) <-Curve label--> Line Intg Col Tran *** type eqv code code *** # - # subwatershed 8 8 AVER END CURV-DATA CURV-DATA (Third curve) <-Curve label--> Line Intg Col Tran *** # - # type eqv code code *** 8 subwatershed 7 AVER END CURV-DATA CURV-DATA (Fourth curve) <-Curve label--> Line Intg Col Tran *** type eqv code code *** subwatershed 6 AVER # - # 8 END CURV-DATA (Fifth curve) CURV-DATA <-Curve label--> Line Intg Col Tran *** type eqv code code *** # - # subwatershed 5 8 AVER END CURV-DATA CURV-DATA (Sixth curve) <-Curve label--> Line Intg Col Tran ***

# - #typeeqvcode***8subwatershed4AVER # - # END CURV-DATA CURV-DATA (Fourth curve) <-Curve label--> Line Intg Col Tran *** # - #type eqv code code ***8subwatershed 3AVER END CURV-DATA CURV-DATA (Fifth curve) <-Curve label--> Line Intg Col Tran *** # - #type eqv code code ***8subwatershed 2AVER END CURV-DATA CURV-DATA (Sixth curve) <-Curve label--> Line Intg Col Tran *** # - #type eqv code code ***8subwatershed 1AVER END CURV-DATA CURV-DATA (First curve) <-Curve label--> Line Intg Col Tran *** # - #typeeqvcode914subwatershed9AVER type eqv code code *** END CURV-DATA CURV-DATA (Second curve) <-Curve label--> Line Intg Col Tran *** # - # type eqv code code *** 9 14 subwatershed 8 AVER END CURV-DATA CURV-DATA (Third curve) <-Curve label--> Line Intg Col Tran *** # - # type eqv code code *** # - # 9 14 subwatershed 7 AVER END CURV-DATA CURV-DATA (Fourth curve) <-Curve label--> Line Intg Col Tran *** # - # type eqv code code *** # - # 9 14 subwatershed 6 AVER END CURV-DATA CURV-DATA (Fifth curve) <-Curve label--> Line Intg Col Tran *** # - # type eqv code code *** # - # 9 14 subwatershed 5 AVER END CURV-DATA CURV-DATA (Sixth curve) <-Curve label--> Line Intg Col Tran *** # - # # - #type eqv code code914subwatershed 4AVER type eqv code code *** END CURV-DATA CURV-DATA <-Curve label--> Line Intg Col Tran *** # - # type eqv code code *** # - #type eqv code code914subwatershed 3AVER END CURV-DATA

CURV-DATA <-Curve label--> Line Intg Col Tran *** type eqv code code *** 9 14 subwatershed 2 AVER END CURV-DATA CURV-DATA <-Curve label--> Line Intg Col Tran *** # - # type eqv code code *** 9 14 subwatershed 1 AVER END CURV-DATA END PLTGEN EXT SOURCES <-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> x <Name> x tem strg<-factor->strg <Name> x x <Name> x X***WDM311PRECENGLZEROSAMEPERLND101607EXTNLPRECWDM213ATEMENGLSAMEPERLND101607EXTNLGATMPWDM217DEWPENGLSAMEPERLND101607EXTNLDTMPGWDM217DEWPENGLSAMEPERLND101607EXTNLDTMPGWDM214WINDENGLSAMEPERLND101607EXTNLWINMOVWDM215SOLRENGLSAMEPERLND101607EXTNLSOLRADWDM216PEVTENGLSAMEPERLND101607EXTNLPETINPWDM311PRECENGLZEROSAMEIMPLND101EXTNLPETCWDM213ATEMENGLSAMEIMPLND101EXTNLDTMPGWDM214WINDENGLSAMEIMPLND101EXTNLDTMPGWDM214WINDENGLSAMEIMPLND101EXTNLDTMPGWDM216PEVTENGLSAMEIMPLND101EXTNLSOLRADWDM311PRECENGLZEROSAMERCHRES19EXTNLPETINPWDM216PEVTENGLSAMEIMPLND101EXTNLPETINPWDM311PRECENGLZEROSAMERCHRES19EXTNLPETINP x *** END EXT SOURCES SCHEMATIC <--Area--> <-Volume-> <ML#> *** <-Volume-> <sb> <Name> x <-factor-> <Name> x * * * x х PERLND 101 806.55 RCHRES 1 2 113.73 PERLND 201 2 RCHRES 1 447.2RCHRES266.02RCHRES PERLND 301 1 2 2 PERLND 401 266.02 1 PERLND 102 1136.15 RCHRES 2 2 PERLND 202 29.37 RCHRES 2 2 PERLND 302 125.28 2 2 RCHRES 2 RCHRES 2 PERLND 402 95.67 2 PERLND 103 280.88 RCHRES 3 39.29 RCHRES 3 325.81 RCHRES 3 2 PERLND 203 PERLND 303 2

PERLND 403	247.12	RCHRES	3	2
PERLND 104	10.95	RCHRES	4	2
PERLND 204	35.7	RCHRES	4	2
PERLND 304	95.92	RCHRES	4	2
PERLND 404	51.4	RCHRES	4	2
PERLND 105	50.5	RCHRES	5	2
PERLND 205	23.72	RCHRES	5	2
PERLND 305	290.17	RCHRES	5	2
PERLND 405	534.23	RCHRES	5	2
PERLND 106	3 54	RCHRES	6	2
PERLND 206	33 63	RCHRES	6	2
DEDIND 306	24 01	DCUDEC	6	2
DEDIND 406	107 27	DCUDEC	G	2
PERLND 400	120.62	RCHRES	о Т	2
PERLND 407	139.63	RCHRES	/	2
PERLND 607	6.86	RCHRES	/	2
PERLND 108	57.21	RCHRES	8	2
PERLND 308	77.28	RCHRES	8	2
PERLND 408	698.21	RCHRES	8	2
PERLND 109	3.71	RCHRES	9	2
PERLND 309	6.37	RCHRES	9	2
PERLND 409	491.81	RCHRES	9	2
IMPLND 101	98.63	RCHRES	1	1
IMPLND 101	27.88	RCHRES	2	1
IMPLND 101	78.69	RCHRES	3	1
TMPLND 101	18.77	RCHRES	4	1
TMPLND 101	351 80	RCHRES	5	- 1
IMI IND 101	72 96	DCUDEC	6	1
IMI IND 101	51 67	DCUDEC	7	1
IMPLIND 101	JI.04	DCUDEC	0	1
IMPLND IUI	238.24	RCHRES	8	1
IMPLND IUI	181.90	RCHRES	9	1
****	* * * * * * * * * * * * * * *	*********	*****	****
*** Reach Connections				***
****	* * * * * * * * * * * * * *	* * * * * * * * * * * *	*****	****
*** Reach $2 \Rightarrow$ Reach $1$				
RCHRES 2		RCHRES	1	3
*** Reach $3 \Rightarrow$ Reach $2$				
RCHRES 3		RCHRES	2	3
*** Reach 4 => Reach 3				
RCHRES 4		RCHRES	3	3
*** Reach 05 => Reach 4				
RCHRES 5		RCHRES	4	3
*** Reach 06 => Reach 5				
RCHRES 6		RCHRES	5	З
*** Reach $07 =>$ Reach 6		1(0111(20	Ũ	0
DCUDES 7		DCUDEC	6	З
$\star \star \star$ Popch 08 -> Popch 7		ICHINES	0	J
DCUDEC 0		DOUDEO	7	2
RCHRES O		RCHRES	/	3
*** Reach U9 => Reach /			_	2
RUHRES 9		RCHRES	/	3
END SCHEMATIC				
MASS-LINK				
MASS-LINK 2				

<-Volume-> <-Grp> Member-> ***		<-Membe	er-	-> <mult></mult>	<-Target	<-		
<name></name>		<name></name>	х	x<-factor->	<name></name>		<name></name>	х
x ***								
PERLND	PWATER	PERO		0.0833333	RCHRES	INFLOW	IVOL	
PERLND	SEDMNT	SOSED	1	0.05	RCHRES	INFLOW	ISED	1
PERLND	SEDMNT	SOSED	1	0.60	RCHRES	INFLOW	ISED	2
PERLND	SEDMNT	SOSED	1	0.35	RCHRES	INFLOW	ISED	3
PERLND	PQUAL	POQUAL	1	1.00	RCHRES	INFLOW	IDQAL	1
END MASS-	-LINK	2						
MASS-LINH	Κ	1						
IMPLND	IWATER	SURO		0.0833333	RCHRES	INFLOW	IVOL	
IMPLND	SOLIDS	SOSLD	1	0.10	RCHRES	INFLOW	ISED	1
IMPLND	SOLIDS	SOSLD	1	0.50	RCHRES	INFLOW	ISED	2
IMPLND	SOLIDS	SOSLD	1	0.40	RCHRES	INFLOW	ISED	3
IMPLND	IQUAL	SOQUAL	1	1.00	RCHRES	INFLOW	IDQAL	1
END MASS-	-LINK	1						
MASS-LINF	K	3						
RCHRES	ROFLOW				RCHRES	INFLOW		
END MASS-	-LINK	3						
MASS-LINF	K	4						
RCHRES	ROFLOW	ROVOL			COPY	INPUT	MEAN	1
RCHRES	HYDR	RO			COPY	INPUT	MEAN	2
END MASS-	-LINK	4						
MASS-LINH	K	5						
RCHRES	OFLOW		1		RCHRES	INFLOW		
END MASS-	-LINK	5						
MASS-LINH	K	6						
RCHRES	OFLOW		2		RCHRES	INFLOW		
END MASS- END MASS-LI	-LINK INK	6						

END RUN

## HSPF UCI file for source breakdown:

RUN GLOBAL UCI Strouble START RUN INTERP O RESUME 0 END GLOBAL	s Creek Hydrolog 2008/01/01 00:00 UTPT LEVELS 1 RUN 1	y Calibration END 2013/ 0	12/31 24:00 UNITS	1
FILES <file> <un#>*</un#></file>	** <file name<="" td=""><td>]</td><td></td><td></td></file>	]		
MESSU 24 91 40 41 42 44 45 46 60	N22_sed.ech N22_sed.out WQCalAvg.plt WQCalMax.plt WQCalMin.plt Cattle.mut Wildlife.mut Straight_Pipes \N22 Spills.	s.mut mut		
WDM2 26 WDM3 27	\N22_MET1.wd \N22_MET2.wd	lm lm		
END FILES				
OPN SEQUENCE INGRP MUTSIN MUTSIN MUTSIN MUTSIN PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND	INDELT 1 2 3 20 101 201 301 401 102 202 302 402 103 203 303 403 104 204 304 404 105 205 305 405 106	01:00		

PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND PERLND RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES RCHRES	206 306 407 607 108 308 409 309 409 101 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 1 2 3											
END INGRP END OPN SEQUENC	E											
PERLND ACTIVITY *** <pls> *** x - x ATMP 101 607 0 END ACTIVITY</pls>	SNOW O	A PWAT 1	ctive SED O	Sect PST 0	ions PWG 0	PQAL 1	MSTL O	PEST O	NITR O	PHOS 0	TRAC 0	* * *
PRINT-INFO *** < PLS> PIVL PYR *** x - x ATMP 101 607 4 1 12 END PRINT-INF	SNOW 4 O	PWAT 4	SED 4	Pri PST 4	nt-fi PWG 4	lags PQAL 4	MSTL 4	PEST 4	NITR 4	PHOS 4	TRAC 4	
GEN-INFO *** *** <pls></pls>	Name				Un:	it-sy: t-se	stems eries	Pr: Engl	inter Metr	Bina: Engl	ryOut Metr	

*** x -	x				in	out				
101	Forest -1				1	1	0	0	0	0
201	Cropland-1				1	1	0	0	0	0
301	Pasture-1				1	1	0	0	0	0
401	Residential-1				1	1	0	0	0	0
102	Forest-2				1	1	0	0	0	0
202	Cropland-2				1	1	0	0	0	0
302	Pasture-2				1	1	Õ	Õ	0	0
402	Residential-2				1	1	Õ	0	0	Õ
102	Forest-3				1	1	0	0	0	0
203	Cropland-3				1	1	0	0	0	0
203	Pasturo-3				1	1	0	0	0	0
103	Pagidontial-3				⊥ 1	⊥ 1	0	0	0	0
403	Residential-5				⊥ 1	⊥ 1	0	0	0	0
204	Cropland-4				⊥ 1	⊥ 1	0	0	0	0
204					⊥ 1	⊥ 1	0	0	0	0
304	Pagidontial /				1	⊥ 1	0	0	0	0
404	Residential-4				1	1	0	0	0	0
105	Forest-5				1	1	0	0	0	0
205	Cropiand-5				1	1	0	0	0	0
305	Pasture-5				1	1	0	0	0	0
405	Residential-5				1	1	0	0	0	0
106	Forest-6				1	1	0	0	0	0
206	Cropland-6				1	1	0	0	0	0
306	Pasture-6				1	Ţ	0	0	0	0
406	Residential-6				Ţ	Ţ	0	0	0	0
407	Residential-/				1	1	0	0	0	0
607	Water-/				1	1	0	0	0	0
108	Forest-8				1	1	0	0	0	0
308	Pasture-8				1	1	0	0	0	0
408	Residential-8				1	1	0	0	0	0
109	Forest-9				1	1	0	0	0	0
309	Pasture-9				1	1	0	0	0	0
409	Residential-9				1	1	0	0	0	0
END GEN	-INFO									
PWAT-PA	RM1									
*** <pls< td=""><td>&gt;</td><td>Fl</td><td>ags</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pls<>	>	Fl	ags							
*** x -	x CSNO RTOP UZFG	VCS	VUZ	VNN	VIFW	VIRC	VLE	IFFC	HWT	IRRG
101 60	7 0 1 1	1	1	0	0	0	1	0	0	0
END PWA	T-PARM1									
PWAT-PA	RM2									
*** < PLS	> FOREST	LZSN	IN	FILT		LSUR	02	SLSUR	ŀ	WARY
AGWRC										
*** x -	X	(in)	(in	/hr)		(ft)			(1	./in)
(1/day)										
101	1.	15.0	0.	357	-	124.2	C	.107		0.1
0.990										
102	1.	15.0	0.	358	-	132.6	C	.108		0.1
0.990										
103	1.	15.0	0.	373	-	L33.1	C	.123		0.1
0.990										
104	1.	15.0	0.	36	2	238.1		0.11		0.1
0.990										

105	1.	15.0	0.368	164.3	0.118	0.1
106	1.	15.0	0.342	121.1	0.092	0.1
0.990						
108	1.	15.0	0.318	189.9	0.068	0.1
109	1.	15.0	0.337	234.3	0.087	0.1
0.990	0	10 0	0 0 0	141 0	0 110	0 1
201	0.	12.0	0.208	141.8	0.118	0.1
202	0.	12.0	0.297	122.5	0.147	0.1
203	0.	12.0	0.274	184.1	0.124	0.1
0.990	0	10.0	0 00		0 1 7	0 1
204	0.	12.0	0.32	206.4	0.17	0.1
205	0.	12.0	0.312	198.2	0.162	0.1
0.990						
206	0.	12.0	0.252	247.3	0.102	0.1
0.990	0	10 0	0 0 0 7	100 0	0 117	0 1
301	0.	12.0	0.267	123.9	0.11/	0.1
302	0.	12.0	0.301	130.6	0.151	0.1
0.990						
303	0.	12.0	0.286	111.1	0.136	0.1
304	0	12 0	0 316	145 1	0 166	0 1
0.990	0.	12.0	0.510	110.1	0.100	0.1
305	0.	12.0	0.307	143.7	0.157	0.1
0.990	0	12 0	0 220	125 0	0 170	0 1
0.990	0.	12.0	0.329	125.9	0.179	0.1
308	0.	12.0	0.222	176.8	0.072	0.1
0.990	_					
309	0.	12.0	0.276	148.3	0.126	0.1
401	0.	10.0	0.254	137.5	0.124	0.1
0.966						
402	0.	10.0	0.26	132.5	0.13	0.1
0.966	0	10 0	0 256	130 /	0 126	0 1
0.966	0.	10.0	0.230	139.4	0.120	0.1
404	0.	10.0	0.255	156.7	0.125	0.1
0.966	0	10 0	0 0 4 0	146 0	0 110	0 1
405	0.	10.0	0.248	146.2	0.118	0.1
406	0.	10.0	0.234	147.6	0.104	0.1
0.966	-				o • = -	<b>.</b> .
407	0.	10.0	0.209	143.6	0.079	0.1
408	0	10.0	0.204	153.2	0.074	0.1
0.966	~ •	10.0	J. L. J. I	100.2	0.0011	U • 1
409	0.	10.0	0.221	151.0	0.091	0.1
0.966						

607 0.966 END	PWAT	-PARM2	0.		10.0	0	.500		143	(	0.100		0.1
PWAT *** < AGWETI	F-PARI PLS>	M3 Pe	CTMAX	P	ETMIN	II	NFEXP	II	NFILD	DI	EEPFR	BZ	ASETP
*** x 101 0.00 END	- x 607 PWAT	(de -PARM3	eg F) 40.	(d	eg F) 35.		2.		2.		0.29	(	).030
ר געכו	זסגס ח	лЛ											
PWA *** <i *** x</i 	PLS > - x	C	CEPSC (in)		UZSN (in)		NSUR		INTFW	(1,	IRC /day)	]	LZETP
101 201 301	109 206 309		0.20 0.10 0.10		1.00 1.00 1.00		0.50 0.35 0.35		5.0 5.0 5.0		0.90		0.6 0.4 0.3
401 607 END	409 PWAT	-parm4	0.05		1.00		0.20		5.0 5.0		0.90		0.2
			L										
PWA' *** <	PLS>	PWAT	ER st	tate '	varia	oles	(in)						
*** x GWVS	- x		CEPS		SURS		UZS		IFWS		LZS		AGWS
101 0.00	607		0.0		0.00		0.9		0.00		9.4		1
END	PWAT	-STATE	:1										
MON- *** <1	-INTE PLS >	RCEP Inte	ercept	cion	stora	ge cap	pacit	y at :	start	of ea	ach mo	onth	(in)
*** x 101 201 301 401 607 END	- x 109 206 309 409 MON-3	JAN 0.20 0.20 0.15 0.05 0.01 INTERC	FEB 0.20 0.20 0.15 0.05 0.01 CEP	MAR 0.20 0.20 0.15 0.05 0.01	APR 0.20 0.20 0.15 0.05 0.01	MAY 0.20 0.20 0.15 0.05 0.01	JUN 0.20 0.22 0.16 0.05 0.01	JUL 0.20 0.22 0.16 0.05 0.01	AUG 0.20 0.22 0.16 0.05 0.01	SEP 0.20 0.20 0.16 0.05 0.01	OCT 0.20 0.20 0.16 0.05 0.01	NOV 0.20 0.20 0.16 0.05 0.01	DEC 0.20 0.20 0.16 0.05 0.01
MON-	-UZSN												
*** <p *** x 101 201 301 401 607 END MON-</p 	- x 109 206 309 409 MON-T	Uppe JAN 1.10 1.10 1.10 1.10 1.10 JZSN PARM	FEB 1.10 1.10 1.10 1.10 1.10	MAR 1.10 1.10 1.10 1.10 1.10	APR 1.00 1.00 1.00 1.00 1.00	at st MAY 1.00 1.00 1.00 1.00	JUN 1.00 1.00 1.00 1.00 1.00	JUL 1.00 1.00 1.00 1.00 1.00	AUG 1.00 1.00 1.00 1.00 1.00	SEP 1.00 1.00 1.00 1.00 1.00	OCT 1.10 1.10 1.10 1.10 1.10	NOV 1.10 1.10 1.10 1.10 1.10	DEC 1.10 1.10 1.10 1.10 1.10
*** <f< td=""><td>PLS &gt;</td><td>Lowe</td><td>r 70</td><td></td><td>anotr</td><td>ansn</td><td>pari</td><td>n at 4</td><td>start</td><td>of ea</td><td>ach mo</td><td>onth</td><td></td></f<>	PLS >	Lowe	r 70		anotr	ansn	pari	n at 4	start	of ea	ach mo	onth	

607 END MON-LZETPARM *** section GQUAL (for fecal indicator bacteria) NQUALS #NQUAL *** # 101 607 4 END NOUALS QUAL-PROPS *** <PLS > Identifiers and Flags *** x - x QUALID QTID QSD VPFW VPFS QSO VQO QIFW VIQC QAGW VAOC 101 607FC livestock # 0 0 0 1 1 1 0 1  $\cap$ END QUAL-PROPS QUAL-INPUT * * * SQO POTFW POTFS ACQOP SQOLIM WSQOP IOQC AOQC *** <PLS > qty/ac qty/ton qty/ton qty/ qty/ac in/hr qty/ft3 qty/ft3 *** x - x ac.day 101 109 0E+10 Ο. Ο. 1E+10 9E+10 2.00 177. 118. 201 203 0E+10 Ο. 9E+10 0.20 Ο. 1E+10 531. 354. 204 206 0E+10 0.10 Ο. 0. 1E+10 9E+10 531. 354. 301 303 0E+10 Ο. 0. 1E+10 9E+10 0.20 177. 118. 1E+10 9E+10 304 309 0E+10 Ο. Ο. 0.10 177. 118. 0.10 401 403 0. 1E+10 9E+10 531. 0E+10 Ο. 354. 404 409 0E+10 Ο. 0. 1E+10 9E+10 0.01 531. 354. Ο. 0. 1E+10 9E+10 0.10 607 0E+10 531. 354. END OUAL-INPUT MON-POTFW # # JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 109 .030 .010 .180 .060 .120 .302 .201 .804 .400 .120 .240 .015 101 201 209 2.55 0.43 0.50 1.59 3.17 4.75 3.17 2.66 3.17 3.17 2.66 1.28 309 2.55 0.43 0.50 1.59 3.17 4.75 3.17 2.66 3.17 3.17 2.66 1.28 301 409 .21 .28 .48 1.28 2.57 1.93 2.57 5.14 0.28 1.24 1.24 .42 401 607 END MON-POTFW MON-ACCUM *** <PLS > Value at start of each month for accum rate of QUALOF (#/ac.day) *** x - x JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC *** N22-1 201 301 14E0715E0715E0716E0716E0716E0716E0717E0717E0713E0713E0713E07 401 101 

*** N22-2	
202	0E+000E+0030E0533E0532E050E+000E+000E+000E+0057E0456E040E+00
302	0E+000E+0020E0522E0521E050E+000E+000E+0022E0521E0520E050E+00
402	0E+000E+000E+000E+000E+000E+000E+000E+
102	0E+000E+000E+000E+000E+000E+000E+000E+
*** N22-3	
203	0E+000E+0015E0816E0815E080E+000E+000E+000E+0028E0729E070E+00
303	14E0916E0916E0916E0917E0917E0917E0918E0918E0913E0913E0913E09
403	0E+000E+000E+000E+000E+000E+000E+000E+
103	0E+000E+000E+000E+000E+000E+000E+000E+
*** N22-4	
204	0E+000E+0025E0726E0725E070E+000E+000E+000E+0046E0648E060E+00
304	38E0842E0843E0843E0844E0845E0846E0846E0847E0835E0836E0837E08
404	0E+000E+000E+000E+000E+000E+000E+000E+
104	0E+000E+000E+000E+000E+000E+000E+000E+
*** N22-5	
205	0E+000E+0011E0811E0811E080E+000E+000E+00
305	83E0893E0897E0899E0810E0910E0911E0911E0911E0977E0880E0880E08
405	0E+000E+000E+000E+000E+000E+000E+000E+
105	0E+000E+000E+000E+000E+000E+000E+000E+
*** N22-6	
206	0E+000E+0080E0783E0780E070E+000E+000E+000E+0015E0715E070E+00
306	11E1012E1013E1013E1013E1013E1014E1014E1014E1099E0910E1011E10
406	0E+000E+000E+000E+000E+000E+000E+000E+
106	0E+000E+000E+000E+000E+000E+000E+000E+
*** N22-7	
407	0E+000E+000E+000E+000E+000E+000E+000E+
*** N22-8	
308	0E+000E+0020E0522E0521E050E+000E+000E+0022E0521E0520E050E+00
408	0E+000E+000E+000E+000E+000E+000E+000E+
108	0E+000E+000E+000E+000E+000E+000E+000E+
*** N22-9	
309	0E+000E+0020E0522E0521E050E+000E+000E+0022E0521E0520E050E+00
409	0E+000E+000E+000E+000E+000E+000E+000E+
109	0E+000E+000E+000E+000E+000E+000E+000E+
END MON-	-ACCUM
MON-SQOI	LIM
*** <pls></pls>	> Value at start of month for limiting storage of QUALOF (#/ac)
*** x - >	A JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
*** N22-1	
201	1E-011E-0193E0796E0793E071E-011E-011E-011E-0117E0717E071E-01
301	12E0814E0814E0814E0814E0815E0815E0815E0815E0811E0812E0812E08
401	1E-011E-011E-011E-011E-011E-011E-011E-0
101	1E-011E-011E-011E-011E-011E-011E-011E-0
*** N22-2	
202	1E-011E-0127E0629E0628E061E-011E-011E-011E-0152E0550E051E-01
302	1E-011E-0118E0620E0619E061E-011E-011E-0120E0619E0618E061E-01
402	1E-011E-011E-011E-011E-011E-011E-011E-0
102	1E-011E-011E-011E-011E-011E-011E-011E-0
*** N22-3	
203	1E-011E-0114E0914E0914E091E-011E-011E-011E-0125E0826E081E-01
303	12E1014E1014E1015E1015E1015E1016E1016E1016E1011E1012E1012E10
403	1E-011E-011E-011E-011E-011E-011E-011E-0

103	1E-011E-	011E-011	E-011E-01	1E-011	E-011E-	-011E-0	11E-(	011E-011	E-01
*** N22-4									
204	1E-011E-	0123E082	4E0823E08	31E-011	E-011E-	-011E-0	141E(	0743E071	E-01
304	34E0937E	0938E093	9E0940E09	940E094	1E0942E	C0943E0	932E	)932E093	3E09
404	1E-011E-	011E-011	E-011E-01	1E-011	E-011E-	-011E-0	11E-0	011E-011	E-01
104	1E-011E-	011E - 011	E-011E-01	1E - 011	E-011E-	-011E-0	11E-(	0.11 = 0.11	E-01
*** N22-5		0110 011				0110 0		0110 011	
205	1 - 0 1 1 -	01000001	00000000	21〒_011	<b>₽_011</b> ₽_	_011〒_0	11000	1010E001	<b>F</b> _01
205		0190E001							
305	10 0110	09006099				011-0	11D (	3972E097	
405	IE-UIIE-	011E-011	E-UIIE-UI	LIE-UII	E-UIIE-	-UIIE-U			
105	TE-OTTE-	OIIE-OII	E-OTTE-OT	LIE-0II	E-OTTE-	-011E-0	11E-(	JIIE-OII.	E-01
*** N22-6									
206	1E-011E-	0172E087	4E0872E08	31E-011	E-011E-	-011E-0	113E(	0814E081	E-01
306	99E1011E	1111E111	2E1112E11	.12E111	2E1113E	E1113E1	189EI	1093E109	6E10
406	1E-011E-	011E-011	E-011E-01	1E-011	E-011E-	-011E-0	11E-(	011E-011	E-01
106	1E-011E-	011E-011	E-011E-01	1E-011	E-011E-	-011E-0	11E-0	011E-011	E-01
*** N22-7									
407	1E-011E-	011E-011	E-011E-01	1E-011	E-011E-	-011E-0	11E-0	011E-011	E-01
*** N22-8									
308	1E-011E-	0118E062	0E0619E06	51E-011	E-011E-	-0120E0	619E	0618E061	E-01
408	1E-011E-	011E-011	E-011E-01	L1E-011	E-011E-	-011E-0	11E-0	011E-011	E-01
108	1E-011E-	011E - 011	E-011E-01	1E - 011	E-011E-	-011E-0	11E-(	0.11 E - 0.11	E-01
*** N22-9		0110 011				0110 0		0110 011	
309	1〒-011〒-	01185062	000619006	S1F-011	F-011F-	-0120〒0	61 9 F (	16185061	F-01
109	1E 011E	0115-011	F-011F-01	15_011	5 0115 5-0115-	012010 -0115-0		)11 <u></u> _011	E 01 F=01
100	1E 011E	011E 011						)11E 011.	
IU9	IE-UIIE-	OIIE-OII	E-OIIE-OI		E-OIIE-	-0116-0	TTE-(	JIIE-UII.	E-01
	рдопты								
	ססר								
VUAL-FRO	JES N Tdonti	fiora an							
*** ·· · · · · · · · · · · · · · · · ·		TTELS all	OTTO OCT						
X = 2	X QUAL	ID	QTID QSL	) VPEW	VPES Ç	ĮSO VŲ	U QII	EW VIQC	QAGW
VAQC				· · · ·	0	1	1	1 0	1
101 60	/FC pet		# (	) ()	0	T	T	1 0	T
0									
END QUAI	L-PROPS								
QUAL-INI	PUT								
* * *	SQO	POTFW	POTFS	ACQO	P SQOI	JIM W	SQOP	IOQC	AOQC
*** <pls></pls>	> qty/ac	qty/ton	qty/ton	qty	/ qty/	'ac i	n/hr	qty/ft3	qty/ft3
*** x - x	X			ac.da	У				
101 109	9 0E+10	Ο.	Ο.	1E+1	0 9E+	-10	2.00	177.	118.
201 203	3 0E+10	Ο.	0.	1E+1	0 9E+	-10	0.20	531.	354.
204 206	6 0E+10	0.	0.	1E+1	0 9E+	-10	0.10	531.	354.
301 303	3 0E+10	0.	0.	1E+1	0 9E+	-10	0.20	177.	118.
304 309	9 0E+10	0	0	1E+1	0 9E+	-10	0 10	177	118
401 403	) 0E+10	0.	0.	1 5 + 1	0 0 5 1	-10	0.10	531	357
401 40.		0.	0.	1 - 1 - 1	0 0	10	0.10	501. 501	254.
404 403	9 06+10	0.	0.		0 9E-1	10	0.01	JJI. F 21	3J4. 2E4
607	UE+IU	0.	0.	TF+T	0 9년1	-10	0.10	531.	354.
END QUAI	Γ−ΙΝΡΟΊ.								
MONT 7 000	7. 4								
MON-ACCU					<b>C</b>			0113 7 0 7	
*** <pls></pls>	> Value	at start	oi each	month	ior acc	cum rat	e of	QUALOF	
(#/ac.day)	)								
***	TAN F	ER MAR	APR MAY	/ JUIN	TTIT. Z	ALIG SE	P O	TT NOV	DEC

*** N22-1	
201	0E+000E+000E+000E+000E+000E+000E+000E+
301	0E+000E+000E+000E+000E+000E+000E+000E+
401	38E0738E0738E0738E0738E0738E0738E0738E07
101	0E+000E+000E+000E+000E+000E+000E+000E+
*** N22-2	
202	0E+000E+000E+000E+000E+000E+000E+000E+
302	0E+000E+000E+000E+000E+000E+000E+000E+
402	37E0737E0737E0737E0737E0737E0737E0737E0
102	0E+000E+000E+000E+000E+000E+000E+000E+
*** N22-3	
203	0E+000E+000E+000E+000E+000E+000E+000E+
303	0E+000E+000E+000E+000E+000E+000E+000E+
403	24E0724E0724E0724E0724E0724E0724E0724E07
103	0E+000E+000E+000E+000E+000E+000E+000E+
*** N22-4	
204	0E+000E+000E+000E+000E+000E+000E+000E+
304	0E+000E+000E+000E+000E+000E+000E+000E+
404	42E0742E0742E0742E0742E0742E0742E0742E07
104	0E+000E+000E+000E+000E+000E+000E+000E+
*** N22-5	
205	0E+000E+000E+000E+000E+000E+000E+000E+
305	0E+000E+000E+000E+000E+000E+000E+000E+
40.5	11E0811E0811E0811E0811E0811E0811E0811E0
105	0E+000E+000E+000E+000E+000E+000E+000E+
*** N22-6	
206	0E+000E+000E+000E+000E+000E+000E+000E+
306	0E+000E+000E+000E+000E+000E+000E+000E+
406	62E0662E0662E0662E0662E0662E0662E0662E0
106	0E+000E+000E+000E+000E+000E+000E+000E+
*** N22-7	
407	16E0716E0716E0716E0716E0716E0716E0716E07
*** N22-8	1010,1010,1010,1010,1010,1010,1010,1010,1010,1010,1010,1010,1010,1010,1010,1010,1010,1010,1010,1010,1010,1010,1010,1010,1010,1010,1010,1010,1010,1010,1010,1010,1010,1010,1010,1010,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,1000000
308	0E+000E+000E+000E+000E+000E+000E+000E+
408	17E0817E0817E0817E0817E0817E0817E0817E08
108	0 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 = +0.00 =
*** N22-9	
309	
409	32E0832E0832E0832E0832E0832E0832E0832E08
109	DE+000E+000E+000E+000E+000E+000E+000E+0
END MON-	-ACCIIM
MON-SOOT	TM
*** <pls></pls>	> Value at start of month for limiting storage of OUALOF
(#/ac) END	PERIND
*** x - x	, JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
*** N22-1	
2.01	1E-011E-011E-011E-011E-011E-011E-011E-0
301	1E-011E-011E-011E-011E-011E-011E-011E-0
401	35E0835E0835E0835E0835E0835E0835E0835E08
101	1E-011E-011E-011E-011E-011E-011E-011E-0
*** N22-2	
202	1E-011E-011E-011E-011E-011E-011E-011E-0
302	1E-011E-011E-011E-011E-011E-011E-011E-0

402	33	E0833E	0833E08	33E08	333E08	33E083	33E08	33E08	33E083	33E08	333E083	3E08
102	1E	-011E-	011E-01	1E-01	L1E-01	1E-011	E-01	1E-01	1E-013	1E-01	11E-011	E-01
*** N22	2-3											
203	1E	-011E-	011E-01	1E-01	L1E-01	1E-011	E-01	1E-01	1E-013	1E-01	11E-011	E-01
303	1E	-011E-	011E-01	1E-01	L1E-01	1E-011	E-01	1E-01	1E-013	1E-01	11E-011	E-01
403	21	E0821E	0821E08	21E08	321E08	21E082	21E08	21E08	21E082	21E08	321E082	1E08
103	1E	-011E-	011E-01	1E-01	L1E-01	1E-011	E-01	1E-01	1E-01	1E-0	11E-011	E-01
*** N22	-4	•										_ • _
204	 1 F.	-011E-	011E-01	1E-01	11E-01	1E-011	E-01	1E-01	1E-01	1E-01	11E-011	E-01
304	1 E	-011E-	011E-01	1E-01	11E-01	1E-011	E-01	1E-01	1E-01	1E-01	11E-011	E-01
404	38	E0838E	0838E08	38E08	338E08	38E083	0 88E08	38E08	38E081	38E08	338E083	8E08
101	1E	-011E-	000000000000000000000000000000000000	1E-01	11E-01	1E-011	E = 01	1E-01	$1E = 01^{\circ}$	1E-01	11E-011	E-01
±01 *** N22	-5	UIID	UIID UI			ID UII		10 01	10 01.			
205	1ច 1	_011〒_	0115-01	1 - 0 1	110-01	1〒_011	<b>v</b> _01	1 - 0 1	1 - 0 1	1 - 0 -	11〒_011	<b>₽</b> _01
205	10	-011E-		1 E 0 I				1 01	1 . 01	1 E 0 1		
305 40E	15									18-0. 3750(		
405	97	EU09/E	009/600	1 - 01	97EU0	9/EU05	97EU8	9/EU0	9/EU0:	97E00	597EU69	7EU8 7 01
LU5	LE	-OIIE-	UTTE-UT	.IE-01	LIE-UI	TE-OII	LE-OI	TE-01	IE-UI.	LE-U.	LIE-UII	E-01
*** N22	2-6		~ ~ ~ ~ ~ ~									- 01
206	1E	-011E-	011E-01	1E-01	L1E-01	1E - 011	E-01	1E-01	1E-01.	LE-0	L1E-011	E-01
306	1E	-011E-	011E-01	1E-01	L1E-01	1E-011	E-01	1E-01	1E - 011	1E-01	11E-011	E-01
406	56	E0756E	0756E07	56E07	756E07	56E075	56E07	56E07	56E07	56E0	756E075	6E07
106	1E	-011E-	011E-01	1E-01	L1E-01	1E-011	LE-01	1E-01	1E-011	1E-01	11E-011	E-01
*** N22	2-7											
407	14	E0814E	0814E08	814E08	314E08	14E081	4E08	14E08	14E083	14E08	314E081	4E08
*** N22	2-8											
308	1E	-011E-	011E-01	1E-01	L1E-01	1E-011	E-01	1E-01	1E-013	1E-01	11E-011	E-01
408	16	E0916E	0916E09	16E09	916E09	16E091	6E09	16E09	16E092	16E09	916E091	6E09
108	1E	-011E-	011E-01	1E-01	L1E-01	1E-011	E-01	1E-01	1E-013	1E-01	11E-011	E-01
*** N22	2-9											
309	1E	-011E-	011E-01	1E-01	L1E-01	1E-011	E-01	1E-01	1E-013	1E-01	11E-011	E-01
409	29	E0929E	0929E09	29E09	929E09	29E092	29E09	29E09	29E092	29E09	929E092	9E09
109	1E	-011E-	011E-01	1E-01	L1E-01	1E-011	E-01	1E-01	1E-013	1E-01	11E-011	E-01
END M	10N-SO	OLIM										
	~											
OUAL-	-PROPS											
*** <pi< td=""><td>LS &gt;</td><td>Identi</td><td>fiers a</td><td>ind Fl</td><td>lags</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pi<>	LS >	Identi	fiers a	ind Fl	lags							
*** x -	- x	OUAT.	TD	ΟΤΤΙ		VPFW	VPFS	050	VOO	OTFV	V VTOC	OAGW
VAOC	21	QUIID	10	2111	20D		VIIO	200	vço	×11,	1 1120	QIIGN
101	607FC	Senti	C	#	0	0	0	1	1	-	1 0	1
0	00710	pebci	C	π	0	0	0	T	Ŧ	-		Ŧ
	ם – ד גדור	DODC										
еир С	JOAL-P	RUPS										
0117 T												
QUAL-	-INPU'I		DOFT					007 T.			<b>T</b> 000	1000
***	~ .	SQO	POTE	W F	POTES	ACQC	)P S	QOLIM . (	. wsq	20P	LOQC	AOQC
*** <pi< td=""><td>_S &gt;</td><td>qty/ac</td><td>qty/to</td><td>on qty</td><td>//ton</td><td>qtj</td><td>// q</td><td>ty/ac</td><td>ın,</td><td>/hr (</td><td>qty/it3</td><td>qty/it3</td></pi<>	_S >	qty/ac	qty/to	on qty	//ton	qtj	// q	ty/ac	ın,	/hr (	qty/it3	qty/it3
*** X -	- X					ac.da	аy					
101	109	0E+10	С	•	0.	1E+1	_0	9E+10	2	.00	177.	118.
201	203	0E+10	С	•	Ο.	1E+1	_ 0	9E+10	0	.20	531.	354.
204	206	0E+10	С	•	Ο.	1E+1	0	9E+10	0	.10	531.	354.
301	303	0E+10	С	).	Ο.	1E+1	0	9E+10	0	.20	177.	118.
304	309	0E+10	C	).	Ο.	1E+1	0	9E+10	0	.10	177.	118.
401	403	0E+10	С	).	Ο.	1E+1	0	9E+10	0	.10	531.	354.
404	409	0E+10	C	).	Ο.	1E+1	0	9E+10	0	.01	531.	354.
607		0E+10	С	).	0.	1E+1	0	9E+10	0	.10	531.	354.

END QUAL-INPUT

MON-ACCUM

*** <pls 2<="" th=""><th>&gt; Valu</th><th>ie at</th><th>start</th><th>of</th><th>each</th><th>month</th><th>for</th><th>accum</th><th>rate</th><th>of QU</th><th>JALOF</th><th></th></pls>	> Valu	ie at	start	of	each	month	for	accum	rate	of QU	JALOF	
(#/ac.day)	)									-		
*** x z	x JAN	FEB	MAR	APR	MA'	Y JUN	JUL	L AUG	SEP	OCT	NOV	DEC
*** N22-1												
201	0E+000	E+000	)E+0001	E+00	0E+0	00E+00	0E+0C	)0E+00	0E+000	)E+000	E+000	E+00
301	0E+000	E+000	)E+0001	E+00	0E+0	00E+00	0E+0C	)0E+00	0E+000	)E+000	E+000	E+00
401	13E071	3E071	L3E071	3E07	13E0	713E07	13E07	713E07	13E073	13E071	3E071	3E07
101	0E+000	E+000	)E+0001	E+00	0E+0	00E+00	0E+0C	)0E+00	0E+000	)E+000	E+000	E+00
*** N22-2												
202	0E+000	E+000	)E+0001	E+00	0E+0	00E+00	0E+0C	)0E+00	0E+00(	)E+000	E+000	E+00
302	0E+000	E+000	)E+0001	E+00	0E+0	00E+00	0E+0C	)0E+00	0E+000	)E+000	E+000	E+00
402	30E073	0E073	30E073	)E07	30E0	730E07	30E07	730E07	30E073	30E073	0E073	0E07
102	0E+000	E+000	)E+0001	E+00	0E+0	00E+00	0E+0C	)0E+00	0E+000	)E+000	E+000	E+00
*** N22-3												
203	0E+000	E+000	)E+0001	E+00	0E+0	00E+00	0E+0C	)0E+00	0E+000	)E+000	E+000	E+00
303	0E+000	E+000	)E+0001	E+00	0E+0	00E+00	0E+0C	)0E+00	0E+000	)E+000	E+000	E+00
403	0E+000	E+000	)E+0001	E+00	0E+0	00E+00	0E+0C	)0E+00	0E+000	)E+000	E+000	E+00
103	0E+000	E + 0.00	E + 0.001	E+00	0E+0	00E+00	0E+0C	)0E+00	0E+000	DE+000	E + 0.00	E+00
*** N22-4												
204	0E+000	E+000	)E+0001	Ξ+00	0E+0	00E+00	0E+00	)0E+00	0E+000	)E+000	E+000	E+00
304	0E+000	E + 0.00	)E+0001	Ξ+00	0E+0	00E+00	0E+0C	0E+00	0E+000	)E+000	E + 0.00	E+00
404	0E+000	E + 0.00	E + 0.001	Ξ+00	0E+0	00E+00	0E+0C	0E+00	0E+000	)E+000	E + 0.00	E+00
104	0E+000	E + 0.00	)E+0001	Ξ+00	0E+0	00E+00	0E+00	0E+00	0E+000	)E+000	E + 0.00	E+00
*** N22-5	01.000	1.000			01.0	001.00	01.00	000.00	0	0000		
205	0E+000	E+000	)E+0001	Ξ+00	0E+0	00E+00	0E + 0C	)OE+00	0E+00(	)E+000	E+000	E+00
305	0E+000	E + 0.00	)E+0001		0E+0	00E+00	0E+00	)0E+00	0E+000	)E+000	E+000	E+00
405	001000		) E + 0 0 0 1		000+0	000-000 005+00	00100	)0F+00	00,000 05+000	)E+000	E+000	F+00
105	05+000		)E+0001			005+00 005+00	05+00	)0E+00	05+000	)E+000	1E+000	E+00
*** N22-6	011000	штоос		1.00		001100						
206	0E+000	E+000	) E + 0 0 01	₹+00	0.0.0.0.0	00E+00	05+00	)OE+00	0.0.000	)E+000	E+000	E+00
306	0E+000	E+000	)E+0001	1+00 7+00	000+0	000-000 00E+00	0E+00	000+00	00-000 0E+000	)E+000	E + 0.00	E+00
406	0E+000	E+000	)E+0001	1+00 7+00	000+01	000-000 00E+00	0E+00	0E+00	0E+00(	)E+000	E+000	E+00
106	001000		) E + 0 0 0 1		000+0	000-000 005+00	00100	)0F+00	00-000 05+000	)E+000	E+000	F+00
*** N122-7	011000	штоос		1.00		001100						
407	0	F+000		7+00		005+00	0.5.4.00	0.5+00	0	TE + OOO	F+000	F+00
+++ N22-8	011000	1000		100	0110	00100					1000	100
308	0	F+000		7+00		005+00	0.5.4.00	0.5+00	0	TE + OOO	F+000	F+00
108	675056	75050	575056'	7 <b>E</b> 0 5	6750	567 <b>5</b> 05	67505	567 <b>F</b> 05	67 <b>F</b> 050	201000 875056	75000 75056	7 F 0 5
108	0750000		) E T U U U I	7 E O O		005+00 005+00		)0F+00		7870000 1870000		7E05
±00 *** N22_0	011000	1000		100	012101	001100					1000	0010
300	0.5.7.000			7 L O O		005100				$\nabla \overline{w} \perp O \cap O$		$\nabla \perp 0.0$
109	05+000			5+00 7+00					05+000			E+00 E+00
409	05+000			5+00 7+00		00 <u>6</u> +00				)E+000		E+00 E+00
IU9 END MON.				5+00		006+00		JOE+00		JE+000		B+00
TION.	ACCUM											
MON COO	ттм											
. טעכ <i>א</i> אא	⊔⊥™ ╲ 77~1・-		a+ - **+	٥f	m ~ ~ + 1	h fo∽	1;	ina a	toraci			(#/~~)
***	<ul> <li>valu</li> <li>тлм</li> </ul>	ਾਦ ਕਹ ਦਾਦਾਹ	MND	UT UT		TOT TIME	ן ⊥ווו⊥ ⊥ דדדד	ATTC	CULAY		NOV	(#/aC)
X = 2	a JAN	сгр	MAK	APR	MA	T JUN	JUL	J AUG	SEP	UCT	NOV	DEC
NZZ-1												

401 101 *** N22-2 202 302 402 102 *** N22-3 203 303 403 103 *** N22-4 204 304 404 104 *** N22-5 205 305 405 105 *** N22-6 206 306 406 106 *** N22-7 407 *** N22-8 308 408 108 *** N22-9 309 409 109 END MON-SQOLIM OUAL-PROPS *** <PLS > Identifiers and Flags *** x - x OUALID QTID QSD VPFW VPFS QSO VQO QIFW VIQC QAGW VAOC # 0 0 101 607FC wildlife 0 1 1 1 0 1  $\cap$ END QUAL-PROPS OUAL-INPUT *** SOO POTFW POTFS ACQOP SQOLIM WSOOP IOOC AOOC *** <PLS > gty/ac gty/ton gty/ton qty/ qty/ac in/hr qty/ft3 qty/ft3 *** x - x ac.day 109 Ο. 2.00 177. 101 0E+10 Ο. 1E+10 9E+10 118. 201 203 0E+10 0. 0. 1E+10 9E+10 0.20 531. 3.54. 204 206 0E+10 0. 0. 1E+10 9E+10 0.10 531. 354. 301 303 0E+10 0. 0. 1E+10 9E+10 0.20 177. 118.

304 309	0E+10	0.		0.	1E+1	0	9E+10	Ο.	10	177.	-	118.
401 403	3 0E+10	Ο.		0.	1E+1	0	9E+10	0.	10	531.		354.
404 409	) 0E+10	Ο.		0.	1E+1	0	9E+10	0.	01	531.		354.
607	0E+10	Ο.		0.	1E+1	0	9E+10	Ο.	10	531.		354.
END QUAI	L-INPUT											
MON-ACCU	JM											
*** <pls></pls>	> Value a	at start	of e	ach mo	onth	for	accum	rate	of Ç	UALOF		
(#/ac.day)												
*** x - >	K JAN FI	EB MAR	APR	MAY	JUN	JUL	AUG	SEP	OCI	. NOV	DEC	
*** N22-1												
201	12E0612E0	0612E061	2E061	2E0612	2E061	2E06	512E061	2E061	2E06	512E061	2E06	
301	12E0612E0	0612E061	2E061	2E0612	2E061	2E06	512E061	2E061	2E06	512E061	2E06	
401	19E0619E0	0619E061	9E061	9E061	9E061	9E06	519E061	9E061	9E06	519E061	9E06	
101	12E0612E0	0612E061	2E061	2E0612	2E061	2E06	512E061	2E061	2E06	512E061	2E06	
*** N22-2												
202	60E0560E	0560E056	0E056	0E056	DE056	0E05	60E056	0E056	0E05	60E056	0E05	
302	60E0560E	0560E056	0E056	0E056	DE056	0E05	60E056	0E056	0E05	60E056	0E05	
402	92E0592E0	0592E059	2E059	2E0592	2E059	2E05	92E059	2E059	2E05	92E059	2E05	
102	66E0566E	0566E056	6E056	6E056	6E056	6E05	66E056	6E056	6E05	66E056	6E05	
*** N22-3												
203	16E0616E0	0616E061	6E061	6E061	6E061	6E06	516E061	6E061	6E06	516E061	6E06	
303	16E0616E0	0616E061	6E061	6E061	6E061	6E06	516E061	6E061	6E06	516E061	6E06	
403	25E0625E0	0625E062	5E062	5E062	5E062	5E06	525E062	25E062	5E06	525E062	5E06	
103	16E0616E0	0616E061	6E061	6E061	6E061	6E06	516E061	6E061	6E06	516E061	6E06	
*** N22-4												
204	29E0629E0	0629E062	9E062	9E062	9E062	9E06	529E062	9E062	9E06	529E062	9E06	
304	29E0629E0	0629E062	9E062	9E062	9E062	9E06	529E062	9E062	9E06	529E062	9E06	
404	46E0646E0	0646E064	6E064	6E064	6E064	6E06	646E064	6E064	6E06	546E064	6E06	
104	33E0633E0	0633E063	3E063	3E063	3E063	3E06	33E063	3E063	3E06	533E063	3E06	
*** N22-5												
205	20E0620E	0620E062	0E062	0E062	0E062	0E06	520E062	20E062	0E06	520E062	0E06	
305	20E0620E	0620E062	0E062	0E062	DE062	0E06	520E062	0E062	0E06	520E062	0E06	
405	32E0632E0	0632E063	2E063	2E0632	2E063	2E06	32E063	32E063	2E06	532E063	2E06	
105	22E0622E0	0622E062	2E062	2E0622	2E062	2E06	522E062	2E062	2E06	522E062	2E06	
*** N22-6												
206	45E0645E0	0645E064	5E064	5E064	5E064	5E06	645E064	5E064	5E06	545E064	5E06	
306	45E0645E0	0645E064	5E064	5E064	5E064	5E06	645E064	5E064	5E06	545E064	5E06	
406	72E0672E	0672E067	2E067	2E0672	2E067	2E06	572E067	2E067	2E06	572E067	2E06	
106	45E0645E0	0645E064	5E064	5E064	5E064	5E06	645E064	5E064	5E06	545E064	5E06	
*** N22-7												
407	44E0744E0	)744E074	4E074	4E074	4E074	4E07	44E074	4E074	4E07	44E074	4E07	
*** N22-8												
308	42E0642E0	0642E064	2E064	2E0642	2E064	2E06	642E064	2E064	2E06	542E064	2E06	
408	61E0661E0	0661E066	1E066	1E066	1E066	1E06	61E066	51E066	1E06	61E066	1E06	
108	46E0646E0	0646E064	6E064	6E064	6E064	6E06	646E064	6E064	6E06	546E064	6E06	
*** N22-9												
309	66E0666E	0666E066	6E066	6E066	6E066	6E06	66E066	6E066	6E06	66E066	6E06	
409	61E0661E0	0661E066	1E066	1E0663	1E066	1E06	61E066	51E066	1E06	61E066	1E06	
109	13E0713E0	0713E071	3E071	3E071	3E071	3E07	'13E071	3E071	3E07	13E071	3E07	
END MON-	-ACCUM											

MON-SQOLIM

*** <PLS > Value at start of month for limiting storage of QUALOF (#/ac)
*** x - >	K JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
*** N22-1												
201	11E071	1E0713	1E071	1E071	1E0711	LE071	1E071	1E071	1E0711	LE071	1E071	1E07
301	11E071	1E0711	1E071	1E071	1E0711	E071	1E071	1E071	1E0711	E071	1E071	1E07
401	175071	7 - 0 7 1	7〒071'	7 - 0 7 1	750715	7〒071	7 - 0 7 1	7 - 071	7〒0715	7〒071	7 - 0 7 1	7 - 0 7
101	110071	1 - 0 - 1 -					1 - 0 - 1	1 0 7 1	1 - 0 - 1 1		1 - 0 - 1	
TOT	TIEO/I	160/1.				LEO/I	TEO/I			LEO/I	TEOIT	IE0/
^ ^ NZZ-Z		1 - 0 6 -	1-0.65	1-0.65	1 - 0 6 -		4-065	4 - 0 6 -	1-0.65		4 - 0 6 -	1-06
202	54E065	4E0654	4E065	4E065	4E0654	1E065	4E065	4E065	4E0654	1E065	4E065	4E06
302	54E065	4E0654	4E065	4E065	4E0654	1E065	4E065	4E065	4E0654	1E065	4E065	4E06
402	83E068	3E0683	3E068	3E068	3E0683	3E068	3E068	3E068	3E0683	3E068	3E068	3E06
102	59E065	9E0659	9E065	9E065	9E0659	9E065	9E065	9E065	9E0659	9E065	9E065	9E06
*** N22-3												
203	14E071	4E0714	4E071	4E071	4E0714	1E071	4E071	4E071	4E0714	1E071	4E071	4E07
303	14E071	4E0714	4E0714	4E071	4E0714	1E071	4E071	4E071	4E0714	1E071	4E071	4E07
403	22E072	2E0723	2E072	2E072	2E0723		2E072	2E072	2E0722	2E072	2E072	2E07
103	15071	500722	500722 50071	5 E 0 7 1	200722 500719	50072	5071	5071	500722 500719	50072	5071	507
10J	TOROIT	JE071.			JE071.		JE0/1	00/1			JU011	0107
~~~ NZZ=4	0 0 - 0 - 0 - 0	C = 0 = 0	<	<	C = 0 = 0		C= 0 7 0	C = 0 = 0	<		<	<
204	26EU/2	6EU/20	6EU/2	6EU/2	6EU/20	5년072	6EU/2	6EU/2	6EU/20	5E072	6EU/2	6EU/
304	26E072	6E0726	6E072	6E072	6E0726	5E072	6E072	6E072	6E0726	5E072	6E072	6E07
404	42E074	2E0742	2E0742	2E074	2E0742	2E074	2E074	2E074	2E0742	2E074	2E074	2E07
104	30E073	0E0730	0E073	0E073	0E0730)E073	0E073	0E073	0E0730)E073	0E073	0E07
*** N22-5												
205	18E071	8E0718	8E071	8E071	8E0718	3E071	8E071	8E071	8E0718	3E071	8E071	8E07
305	18E071	8E0718	8E071	8E071	8E0718	3E071	8E071	8E071	8E0718	3E071	8E071	8E07
405	285072	8F0729	8F072	8F072	850729	20072 20072	8F072	8F072	8F0729	20072 20072	8F072	8F07
105	200072						00072					
T00	206072	060720		06072			06072	06072	060720			0607
*** NZZ-6	41-0-4	1 - 0 - 4		1 - 0 - 4	1 - 0 - 4		1 - 0 - 4	1 - 0 - 4	1 - 0 - 4 -		1 - 0 - 4	1 - 0 -
206	41E074	1 ± 0.74	1 ± 0.74	1 ± 0.74	1 ± 0.74	LE074	1E074	1 ± 0.74	1 ± 0.741	LE074	1E074	1E07
306	41E074	1E0741	1E074:	1E074	1E0741	LE074	1E074	1E074	1E0741	LE074	1E074	1E07
406	65E076	5E0765	5E076	5E076	5E0765	5E076	5E076	5E076	5E0765	5E076	5E076	5E07
106	41E074	1E0741	1E074	1E074	1E0741	LE074	1E074	1E074	1E0741	LE074	1E074	1E07
*** N22-7												
407	39E083	9E0839	9E083	9E083	9E0839	9E083	9E083	9E083	9E0839	9E083	9E083	9E08
*** N22-8												
308	38E073	8E0738	8E073	8E073	8E0738	3 E 0 7 3	8E073	8E073	8E0738	3E073	8E073	8E07
109	550075	500750	5 E 0 7 5 1	50075	5 E 0 7 5 9	5075	50075	50075	500,50 500750	5075	50075	5007
400	JJE07J	10074			1 E O 7 J .		10074	10074	1 D O 7 A 1		10074	
108 108	41E0/4	IE0/4.	LE0/4.	IE0/4	IE0/4.	LEU/4	IE0/4	工匠0/4	LE0/41	LEU/4	IEU/4	IE0/
*** N22-9												
309	59E075	9E0759	9E075	9E075	9E0759)E075	9E075	9E075	9E0759)E075	9E075	9E07
409	55E075	5E0755	5E075	5E075	5E0755	5E075	5E075	5E075	5E0755	5E075	5E075	5E07
109	11E081	1E0811	1E081	1E081	1E0811	LE081	1E081	1E081	1E0811	LE081	1E081	1E08
END MON-	SQOLIM											
END PERLNI)											
	7											
ACTIVITY	-		-		0							
· · · · <ils></ils>	> 		A0	ctive	sect:	LONS						
*** X - >	K ATMP	SNOW 1	IWAT	SLD	IWG 1	lqal						
101	0	0	1	0	0	1						
END ACTI	VITY											
GEN-INFC)											
* * *		Name			Unit	-svs	tems	Pri	nter F	Binar	vOut	
*** <ils></ils>	>	-				t-se	ries	Enal	Metr H	Engl	Metr	

*** x - x in out 1 1 0 0 0 0 101 END GEN-INFO IWAT-PARM1 *** <ILS > Flags *** x - x CSNO RTOP VRS VNN RTLI 101 0 1 0 0 0 END IWAT-PARM1 IWAT-PARM2 SLSUR NSUR *** <ILS > LSUR RETSC *** x - x (ft) (in) 100.0.1500.100.150100.0.1500.100.300100.0.1500.100.250 101 106 107 108 109 END IWAT-PARM2 IWAT-PARM3 *** <ILS > PETMAX PETMIN *** x - x (deg F) (deg F) 40. 35. END IWAT-PARM3 IWAT-STATE1 *** <ILS > IWATER state variables (inches) *** x - x RETS SURS 101 0.0 0.00 END IWAT-STATE1 QUAL-PROPS *** <ILS > *** x - x QUALID QTID QSD VPFW QSO VQO 101 FC # 0 0 1 0 END QUAL-PROPS QUAL-INPUT *** Storage on surface and nonseasonal parameters * * * SQO POTFW ACQOP SQOLIM WSQOP *** <ILS > qty/ac qty/ton qty/ qty/ac in/hr *** x - x ac.day 1E+07 0. 1E+07 3E+07 0.01 101 END QUAL-INPUT END IMPLND RCHRES ACTIVITY *** RCHRES Active sections *** x - x HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG 1 9 1 1 0 0 0 1 0 0 0 END ACTIVITY GEN-INFO *** Name Nexits Unit Systems Printer

*** RCHRES t-series Engl Metr LKFG in out *** x - x 1 9 StroublesCrk 1 1 1 0 0 0 0 0 END GEN-INFO HYDR-PARM1 *** Flags for HYDR section ***RC HRES VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each *** x - x FG FG FG FG possible exit *** possible exit possible exit 9 0 1 1 1 4 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 END HYDR-PARM1 HYDR-PARM2 *** RCHRES FTBW FTBU LEN DELTH STCOR KS DB50

 x
 (miles)
 (ft)
 (ft)

 0.
 1
 2.29
 119.7
 3.2
 0.5

 0.
 2
 2.41
 62.91
 3.2
 0.5

 0.
 3
 0.49
 6.7
 3.2
 0.5

 0.
 4
 0.54
 7.17
 3.2
 0.5

 0.
 5
 0.80
 16.28
 3.2
 0.5

 0.
 6
 0.62
 17.07
 3.2
 0.5

 0.
 7
 0.28
 7.87
 3.2
 0.5

 0.
 8
 1.30
 90.65
 3.2
 0.5

 0.
 9
 1.78
 173.9
 3.2
 0.5

*** x - x (ft) (in) 1 0.2 2 0.2 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 3 0.2 0.2 4 5 0.2 0.2 6 7 0.2 8 0.2 9 0.5 0.2 END HYDR-PARM2 MON-CONVF *** RCHRES Monthly f(VOL) adjustment factors *** x - x JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1 9 0.90 0.89 0.89 0.91 0.93 1.99 1.99 1.99 0.99 0.98 0.98 0.90 END MON-CONVF HYDR-INIT *** Initial conditions for HYDR section *** RCHRES VOL CAT Initial value of COLIND initial value of OUTDGT *** x - x ac-ft for each possible exit for each possible exit,ft3 1 9 10.0 4.2 4.5 4.5 4.5 4.2 2.1 1.2 0.5 1.2 1.8 END HYDR-INIT ADCALC-DATA *** RCHRES CRRAT VOL *** x - x 1 9 1.5 100 END ADCALC-DATA

GÇ	Q-GENDAT	ΓA										
***	RCHRES											
***	x - x	NGQL	TPFG	PHFG	ROFG	CDFG	SDFG	PYFG	LAT			
	1 9	4	2	2	2	2	2	2	2			
El	ND GQ-GH	ENDATA	A									
GÇ	2-QALDA	ΓA										
***	RCHRES				GQID		DQAL	CC	DNCID	CONV		QTYID
***	х – х					CC	oncid					
	1 91	FC					100.		#/10	0.0035	#	
El	ND GQ-QA	ALDATA	4									
GÇ	Q-QALDA	ΓA										
***	RCHRES				GQID		DQAL	CC	DNCID	CONV		QTYID
***	х – х					CC	oncid					
	1 91	FC					100.		#/10	0.0035	#	
El	ND GQ-QA	ALDATA	4									
Gς	Q-QALDA	ΓA										
***	RCHRES				GQID		DQAL	CC	DNCID	CONV		QTYID
***	х – х					C	oncid					
	1 91	ΞC					100.		#/10	0.0035	#	
El	ND GQ-QA	ALDATA	7									
GÇ	Q-QALDA	ΓA										
***	RCHRES				GQID		DQAL	CC	ONCID	CONV		QTYID
***	х – х					CC	oncid					
	1 91	FC					100.		#/10	0.0035	#	
El	ND GQ-QA	ALDATA	A									
GÇ	Q-QALFG											
***	RCHRES	HDRL	OXID	PHOT	VOLT	BIOD	GEN	SDAS				
***	x - x											
	1 9	0	0	0	0	0	1	0				
El	ND GQ-QA	ALFG										
GÇ	2-QALFG											
***	RCHRES	HDRL	OXID	PHOT	VOLT	BIOD	GEN	SDAS				
***	x - x											
	1 9	0	0	0	0	0	1	0				
EI	ND GQ-QA	ALFG										
GÇ	2-QALFG						~=>	~~~~~				
***	RCHRES	HDRL	OXID	PHOT	VOLT	BIOD	GEN	SDAS				
***	x - x											
	1 9	0	0	0	0	0	1	0				
EI	ND GQ-QA	ALFG										
GÇ	2-QALFG											
***	RCHRES	HDRL	OXID	PHOT	VOLT	BIOD	GEN	SDAS				
***	x - x	0	0	0	0	0	1	0				
	1 9	0	0	0	0	0	Ţ	0				
El C	ND GQ-QA	ALF.G										
4 4 4 4	2-GENDE(AI	~~~~									
***	KCHKES	E.5			тиг 2.1,							
	x - X	()	1 1 5		1 0 5							
	⊥ 3 7		C1.1		1 0F							
	/		4.00 1 15		1 05							
יים	יש איש אם כס-כי	NDECT	VV.		T.03							
뜨미	יה פאפו	ыллы⊂₽	-7 T									

GÇ	-GENDECA	Y			
***	RCHRES	FSTDEC	THFST		
* * *	х – х	(/day)			
	1 3	1.15	1.05		
	7	4.00	1.05		
	4 9	1 15	1 05		
ም እ	ID CO-CEN	DECAV	1.05		
CC	ID GQ GEN V-CENDECA	V			
يى ***	J-GENDECA DCUDEC	T	murem		
+++	KCHKES	r SIDEC	INFSI		
~ ~ ~	X - X	(/day)	1 0 5		
	1 3	1.15	1.05		
	/	4.00	1.05		
	4 9	1.15	1.05		
EN	ID GQ-GEN	DECAY			
GÇ	-GENDECA	Y			
***	RCHRES	FSTDEC	THFST		
***	х – х	(/day)			
	1 3	1.15	1.05		
	7	4.00	1.05		
	4 9	1.15	1.05		
EN	ID GO-GEN	DECAY			
END	RCHRES				
FTAE	BLES				
FT	ABLE	1			
row	us cols			* * *	
TON	4 4				
	denth	area	volume	outflow1 ***	
	0 0	5 22	vorume 0	OUCTIONI	
	0.01	5.22	0.05	0.	
	0.01	J.ZZ 11 FF	0.05		
	2.93	11.55	24.01	4/0.33	
	45.59	601.48 1	1//3.82	169167.	
ΕN	ID F.I.ABLE	Ţ			
		0			
F 1	ABLE	2		+ + +	
row	IS COIS			* * *	
	4 4		_		
	depth	area	volume	outilowl ***	
	0.	19.43	0.	0.	
	0.01	19.43	0.19	0.	
	1.9	19.2	36.68	252.84	
	83.92	437.52	25063.551	006730.09	
EN	ID FTABLE	2			
FΊ	ABLE	3			
row	s cols			* * *	
	4 4				
	depth	area	volume	outflow1 ***	
	0	3 38	0	0	
	0.01	2.20 3 38		0	
	1 76	2.20 2.21	5 Q	203 87	
	20	7.24 VJ 20	2.9 853 60	61910 09	
EN	LO. ID FTARIF	۲/۰ <i>۵</i> ۲	000.00	01010000	

44depthareavolumeoutflowl0.3.590.040.1.663.545.92174.825.2871.51901.7344353.9END FTABLE4****440.depthareavolumeoutflowl***40.0.015.120.0.0.015.120.050.1.635.058.3166.8411.4895.09569.8613866.32END FTABLE5****444depthareavolumeoutflowl ***0.3.380.0.0.013.380.30.1.443.324.83118.2111.61143.71940.8422476.73END FTABLE6****744depthareavolumeoutflowl******* (feet)(acres)(ac-ft)0.0.000.0.1.461.822.25680.4052.923.826.25680.5676.844.648.95442.0669.847.289.5630200014.847.3034.383600031.01338.783848.0330707.05END FTABLE77FTABLE8****0.2.510.030.1.16 </th <th>FTABLE</th> <th>4</th> <th></th> <th></th> <th>* * *</th>	FTABLE	4			* * *
depthareavolumeoutflow1***0.3.590.0.0.1.663.545.92174.825.2871.51901.7344353.9END FTABLE4901.7344353.9FTABLE5 $****$ 440.depthareavolumeoutflow10.5.120.0.0.015.120.050.1.635.058.3166.8411.4895.09569.8613866.32END FTABLE5****444depthareavolumeoutflow1 ***0.3.380.030.1.443.324.83118.2111.61143.71940.8422476.73END FTABLE6**** 7 4 4 depthareavolume0.0.000.1.461.822.25680.5076.844.648.95442.0669.847.289.56302.923.826.25680.5676.844.649.5630200014.847.3034.3830.01338.783848.0330707.05END FTABLE7FTABLE8rows cols***44depthareavolumeoutflow11.612.510.030.1.6	rows cols 4 4				^ ^ ^
0. 3.59 0. 0. 1.66 3.54 5.92 174.8 25.28 71.51 901.73 44353.9 END FTABLE 4 901.73 44353.9 FTABLE 5	depth	area	volume	outflow1	***
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.	3.59	0.	0.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.01	3.59	0.04	0.	0
END FTABLE 4 FTABLE 5 Year of the stress of	1.66 25.28	3.54 71 51	5.92 901 73	1/4. 1/353 9	. 8
FTABLE 5 *** 4 4 depth area volume outflowl *** 0. 5.12 0.0 0. 0.01 5.12 0.05 0. 1.63 5.05 8.3 166.84 11.48 95.09 569.86 13866.32 END FTABLE 5 *** 4 4	END FTABLE	4	JUL . / J	44000.0	
FTABLE 5 rows cols **** 4 4 depth area volume outflowl **** 0. 5.12 0. 0. 0.01 5.12 0.05 0. 1.63 5.05 8.3 166.84 11.48 95.09 569.86 13866.32 END FTABLE 5 **** 4 4					
rows cols **** 4 4 depth area volume outflowl **** 0. 5.12 0. 0. 0.001 5.12 0.005 0. 1.63 5.05 8.3 166.84 11.48 95.09 569.86 13866.32 END FTABLE 5 **** 4 4 **** 0. 3.38 0. 0. 0.01 3.38 0.3 0. 1.44 3.32 4.83 118.21 11.61 143.71 940.84 22476.73 END FTABLE 7 **** (acres) (ac-ft) (cfs) 0. 0.00 0. 0. 0. 0. 1.46 1.82 2.2568 0.405 2.92 3.82 6.2568 0.567 6.84 4.64 8.9544 2.066 9.84 7.28 9.5630 2000 14.84 7.30 34.383 6000 31.01 338.78 3848.03 30707.05	FTABLE	5			
depth area volume outflowl **** 0. 5.12 0. 0. 1.63 5.05 8.3 166.84 11.48 95.09 569.86 13866.32 END FTABLE 5 **** 4 4 **** depth area volume outflowl **** 0. 3.38 0.0 0. 0.01 3.38 0.03 0. 1.44 3.32 4.83 118.21 11.61 143.71 940.84 22476.73 END FTABLE 6 **** 7 4 area volume outflowl **** 7 4 area volume outflowl **** *** (feet) (acres) (ac-ft) (cfs) 0. 0.00 0. 0. 1.46 1.82 2.2568 0.405 2.92 3.82 6.2567 6.84 4.64 8.9544 2.066 9.84 7.28 9.5630 2000 14.84 7.30 34.383	rows cols				* * *
0. 5.12 0. 0. 0.01 5.12 0.05 0. 1.63 5.05 8.3 166.84 11.48 95.09 569.86 13866.32 END FTABLE 5 **** 4 4 **** 0. 3.38 0. 0. 0.01 3.38 0.3 0. 1.44 3.32 4.83 118.21 11.61 143.71 940.84 22476.73 END FTABLE 6 **** 7 4 volume outflow1 *** **** (feet) (acres) (ac-ft) (cfs) 0. 0.00 0. 0. 1.46 1.82 2.2568 0.405 2.92 3.82 6.2568 0.567 6.84 4.64 8.9544 2.066 9.84 7.28 9.5630 2000 14.84 7.30 34.383 6000 31.01 338.78 3848.03 30707.05 <td>depth</td> <td>area</td> <td>volume</td> <td>outflow1</td> <td>***</td>	depth	area	volume	outflow1	***
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.	5.12	0.	0.	
1.63 5.05 8.3 166.84 11.48 95.09 569.86 13866.32 END FTABLE 5 FTABLE 6 rows cols **** 4 4 depth area volume outflow1 *** 0. 3.38 0.03 0. 1.44 3.32 4.83 118.21 11.61 143.71 940.84 22476.73 END FTABLE 6 FTABLE 7 rows cols **** 7 4 depth area volume outflow1 *** *** (feet) (acres) (ac-ft) (cfs) 0. 0.00 0. 0. 1.46 1.82 2.2568 0.405 2.92 3.82 6.2568 0.567 6.84 4.64 8.9544 2.066 9.84 7.28 9.5630 2000 14.84 7.30 34.383 6000 31.01 338.78 3848.03 30707.05 END FTABLE 7 FTABLE 7 FTABLE 7 FTABLE 8 rows cols **** 4 4 depth area volume outflow1 *** 0. 2.51 0. 0. 0.01 2.51 0.03 0. 1.16 2.46 2.89 65.36 25.77 186.12 2992.61 295449.88	0.01	5.12	0.05	0.	
END FTABLE 5 FTABLE 6 rows cols **** 4 4 depth area volume outflow1 *** 0. 3.38 0. 0. 0. 1.44 3.32 4.83 118.21 11.61 143.71 940.84 22476.73 END FTABLE 6 **** 7 4 area volume outflow1 *** *7 4 area volume outflow1 *** *** (feet) (acres) (ac-ft) (cfs) . 0. 0.00 0. 0. . . 1.46 1.82 2.2568 0.405 . . 2.92 3.82 6.2568 0.567 . . . 6.84 4.64 8.9544 2.066 9.84 7.28 9.5630 2000 FTABLE 7 .	1.63	5.05	560 96	13966 32	34
FTABLE 6 rows cols *** 4 4 depth area volume outflowl *** 0. 3.38 0. 0. 0.01 3.38 0.03 0. 1.44 3.32 4.83 118.21 11.61 143.71 940.84 22476.73 END FTABLE 6 *** 7 4 volume outflowl *** depth area volume outflowl *** *** (feet) (acres) (ac-ft) (cfs) 0. 0.00 0. 0. 1.46 1.82 2.2568 0.405 2.92 3.82 6.2568 0.567 6.84 4.64 8.9544 2.066 9.84 7.28 9.5630 2000 14.84 7.30 34.383 6000 31.01 338.78 3848.03 30707.05 END FTABLE 7 *** 0. 0. Gepth area volume outflowl *** 0. 0.251 0.03	END FTABLE	5	509.00	13000.32	
FTABLE 6 rows cols *** 4 4 depth area volume outflow1 *** 0. 3.38 0. 0. 0.001 3.38 0.03 0. 1.44 3.32 4.83 118.21 11.61 143.71 940.84 22476.73 END FTABLE 6 *** 7 4 22476.73 Mother Cols *** *** 7 4 3.32 depth area volume outflow1 *** 7 4 *** depth area volume outflow1 *** (feet) (acres) (ac-ft) (cfs) 0. 0.00 0. 0. 1.46 1.46 1.82 2.2568 0.405 2.92 3.82 6.2568 0.567 6.84 4.64 8.9544 2.066 9.84 7.28 9.5630 2000 14.84 7.30 34.383 600		-			
rows cols *** 4 4 depth area volume outflowl *** 0. 3.38 0. 0. 0.01 3.38 0.03 0. 1.44 3.32 4.83 118.21 11.61 143.71 940.84 22476.73 END FTABLE 6 *** 7 4 22476.73 END FTABLE 6 *** 7 4 22476.73 Mepth area volume outflowl *** 7 4 3.32 4.83 depth area volume outflowl *** 7 4 4 22476.73 with cfeet) (acres) (ac-ft) (cfs) 0. 0.00 0. 0. 1.46 1.82 2.2568 0.405 2.92 3.82 6.2568 0.567 6.84 4.64 8.9544 2.066 9.84 7.28 9.5630 2000 14.84 7.30 34.383	FTABLE	6			
depth area volume outflowl *** 0. 3.38 0. 0. 0.01 3.38 0.03 0. 1.44 3.32 4.83 118.21 11.61 143.71 940.84 22476.73 END FTABLE 6 *** 7 4 4.83 118.21 11.61 143.71 940.84 22476.73 END FTABLE 6 *** 7 4 4.83 118.21 depth area volume outflowl *** *** (feet) (acres) (ac-ft) (cfs) 0. 0.00 0. 0. 1.46 1.46 1.82 2.2568 0.405 2.92 2.92 3.82 6.2568 0.567 6.84 4.64 8.9544 2.066 9.84 7.28 9.5630 2000 14.84 7.30 34.383 6000 31.01 338.78 3848.03 30707.05 END FTABLE 7 ****	rows cols				* * *
0. 3.38 0. 0. 0. 0.01 3.38 0.03 0. 1.44 3.32 4.83 118.21 11.61 143.71 940.84 22476.73 END FTABLE 6 FTABLE 7 rows cols **** 7 4 depth area volume outflowl *** *** (feet) (acres) (ac-ft) (cfs) 0. 0.00 0. 0. 1.46 1.82 2.2568 0.405 2.92 3.82 6.2568 0.567 6.84 4.64 8.9544 2.066 9.84 7.28 9.5630 2000 14.84 7.30 34.383 6000 31.01 338.78 3848.03 30707.05 END FTABLE 7 FTABLE 8 rows cols **** 4 4 depth area volume outflowl *** 0. 2.51 0. 0. 0.01 2.51 0.03 0. 1.16 2.46 2.89 65.36 25.77 186.12 2992.61 295449.88	depth	area	volume	outflow1	***
0.01 3.38 0.03 0. 1.44 3.32 4.83 118.21 11.61 143.71 940.84 22476.73 END FTABLE 6 FTABLE 7 rows cols **** 7 4 depth area volume outflowl *** *** (feet) (acres) (ac-ft) (cfs) 0. 0.00 0. 0. 1.46 1.82 2.2568 0.405 2.92 3.82 6.2568 0.567 6.84 4.64 8.9544 2.066 9.84 7.28 9.5630 2000 14.84 7.30 34.383 6000 31.01 338.78 3848.03 30707.05 END FTABLE 7 FTABLE 8 rows cols *** 4 4 depth area volume outflowl *** 0. 2.51 0. 0. 0.01 2.51 0.03 0. 1.16 2.46 2.89 65.36 2.92.61 295449.88	0.	3.38	0.	0.	
1.44 3.32 4.83 118.21 11.61 143.71 940.84 22476.73 END FTABLE 6 FTABLE 7 rows cols **** 7 4 depth area volume outflowl *** *** (feet) (acres) (ac-ft) (cfs) 0. 0.00 0. 0. 1.46 1.82 2.2568 0.405 2.92 3.82 6.2568 0.567 6.84 4.64 8.9544 2.066 9.84 7.28 9.5630 2000 14.84 7.30 34.383 6000 31.01 338.78 3848.03 30707.05 END FTABLE 7 FTABLE 8 rows cols *** 4 4 depth area volume outflowl *** 0. 2.51 0. 0. 0.01 2.51 0.03 0. 1.16 2.46 2.89 65.36 25.77 186.12 2992.61 295449.88	0.01	3.38	0.03	0.	
II.01 I43.71 940.84 22476.73 END FTABLE 6 FTABLE 7 rows cols *** 7 4 depth area volume outflow1 *** (feet) (acres) (ac-ft) (cfs) 0. 0.00 0. 0. 1.46 1.82 2.2568 0.405 2.92 3.82 6.2568 0.567 6.84 4.64 8.9544 2.066 9.84 7.28 9.5630 2000 14.84 7.30 34.383 6000 31.01 338.78 3848.03 30707.05 END FTABLE 7 7 *** 4 4 4 4 depth area volume outflow1 *** 0. 2.51 0. 0. 0. 1.16 2.46 2.89 65.36 25.77 186.12 2992.61 295449.88 7 7	1.44	3.32	4.83	118.2	21
FTABLE 7 rows cols *** 7 4 depth area volume outflow1 *** *** (feet) (acres) (ac-ft) (cfs) 0. 0.000 0. 0. 1.46 1.82 2.2568 0.405 2.92 3.82 6.2568 0.567 6.84 4.64 8.9544 2.066 9.84 7.28 9.5630 2000 14.84 7.30 34.383 6000 31.01 338.78 3848.03 30707.05 END FTABLE 7 *** 0. 2.51 0. 0. 0.01 2.51 0.03 0. 1.16 2.46 2.89 65.36 25.77 186.12 2992.61 295449.88	END FTABLE	143.71 6	940.04	22470.73	
FTABLE 7 rows cols *** 7 4 depth area volume outflowl *** *** (feet) (acres) (ac-ft) (cfs) 0. 0.000 0. 0. 1.46 1.82 2.2568 0.405 2.92 3.82 6.2568 0.567 6.84 4.64 8.9544 2.066 9.84 7.28 9.5630 2000 14.84 7.30 34.383 6000 31.01 338.78 3848.03 30707.05 END FTABLE 7 **** 4 4 4 4 depth area volume outflowl *** 0. 2.51 0. 0. 0.01 2.51 0.03 0. 1.16 2.46 2.89 65.36 25.77 186.12 2992.61 295449.88					
rows cols *** 7 4 depth area volume outflow1 *** *** (feet) (acres) (ac-ft) (cfs) 0. 0.00 0. 0. 1.46 1.82 2.2568 0.405 2.92 3.82 6.2568 0.567 6.84 4.64 8.9544 2.066 9.84 7.28 9.5630 2000 14.84 7.30 34.383 6000 31.01 338.78 3848.03 30707.05 END FTABLE 7 *** 4 4 depth area volume outflow1 *** 0. 2.51 0. 0. 0. 0.01 2.51 0.03 0. 1.16 2.46 2.89 65.36 25.77 186.12 2992.61 295449.88 38	FTABLE	7			
depth area volume outflow1 *** *** (feet) (acres) (ac-ft) (cfs) 0. 0.000 0. 0. 1.46 1.82 2.2568 0.405 2.92 3.82 6.2568 0.567 6.84 4.64 8.9544 2.066 9.84 7.28 9.5630 2000 14.84 7.30 34.383 6000 31.01 338.78 3848.03 30707.05 END FTABLE 7 *** 4 depth area volume outflow1 *** 0. 2.51 0. 0. 0.01 2.51 0.03 0. 1.16 2.46 2.89 65.36 25.77 186.12 2992.61 295449.88	rows cols 7 4				* * *
<pre>*** (feet) (acres) (ac-ft) (cfs)</pre>	depth	area	volume	outflow1	***
0. 0.00 0. 0. 0. 1.46 1.82 2.2568 0.405 2.92 3.82 6.2568 0.567 6.84 4.64 8.9544 2.066 9.84 7.28 9.5630 2000 14.84 7.30 34.383 6000 31.01 338.78 3848.03 30707.05 END FTABLE 7 FTABLE 8 rows cols *** 4 4 depth area volume outflow1 *** 0. 2.51 0. 0. 0.01 2.51 0.03 0. 1.16 2.46 2.89 65.36 25.77 186.12 2992.61 295449.88	*** (feet)	(acres)	(ac-ft)	(cfs)	
1.46 1.82 2.2568 0.405 2.92 3.82 6.2568 0.567 6.84 4.64 8.9544 2.066 9.84 7.28 9.5630 2000 14.84 7.30 34.383 6000 31.01 338.78 3848.03 30707.05 END FTABLE 7 7 7 FTABLE 8 *** 4 depth area volume outflow1 0. 2.51 0. 0. 0.01 2.51 0.03 0. 1.16 2.46 2.89 65.36 25.77 186.12 2992.61 295449.88	0.	0.00	0.	0.	
6.84 4.64 8.9544 2.066 9.84 7.28 9.5630 2000 14.84 7.30 34.383 6000 31.01 338.78 3848.03 30707.05 END FTABLE 7 7 FTABLE 8 *** 4 4 4 depth area volume outflow1 0. 2.51 0. 0. 0.01 2.51 0.03 0. 1.16 2.46 2.89 65.36 25.77 186.12 2992.61 295449.88	1.46	1.82	2.2568	0.405	
9.84 7.28 9.5630 2000 14.84 7.30 34.383 6000 31.01 338.78 3848.03 30707.05 END FTABLE 7 *** 4 4 *** 0. 2.51 0. 0. 0.01 2.51 0.03 0. 1.16 2.46 2.89 65.36 25.77 186.12 2992.61 295449.88	6.84	4.64	8.9544	2.066	
14.84 7.30 34.383 6000 31.01 338.78 3848.03 30707.05 END FTABLE 7 7 7 FTABLE 8 *** 4 4 *** 0. 2.51 0. 0. 0.01 2.51 0.03 0. 1.16 2.46 2.89 65.36 25.77 186.12 2992.61 295449.88	9.84	7.28	9.5630	2000	
31.01 338.78 3848.03 30707.05 END FTABLE 7 FTABLE 8 rows cols *** 4 4 depth area volume outflow1 0. 2.51 0. 0. 0.01 2.51 0.03 0. 1.16 2.46 2.89 65.36 25.77 186.12 2992.61 295449.88	14.84	7.30	34.383	6000	
FTABLE 8 rows cols *** 4 4 depth area volume outflow1 *** 0. 2.51 0. 0. 0. 0.01 2.51 0.03 0. 1.16 2.46 2.89 65.36 25.77 186.12 2992.61 295449.88	JI.UL END ETARIE	338./8 7	3848.03	30/0/.05	
FTABLE 8 rows cols *** 4 4 depth area volume outflow1 *** 0. 2.51 0. 0. 0.01 2.51 0.03 0. 1.16 2.46 2.89 65.36 25.77 186.12 2992.61 295449.88	END FIADLE	1			
rows cols *** 4 4 depth area volume outflow1 *** 0. 2.51 0. 0. 0.01 2.51 0.03 0. 1.16 2.46 2.89 65.36 25.77 186.12 2992.61 295449.88	FTABLE	8			
4 4 depth area volume outflow1 *** 0. 2.51 0. 0. 0.01 2.51 0.03 0. 1.16 2.46 2.89 65.36 25.77 186.12 2992.61 295449.88	rows cols				* * *
0. 2.51 0. 0. 0.01 2.51 0.03 0. 1.16 2.46 2.89 65.36 25.77 186.12 2992.61 295449.88	4 4 denth	area	volume	outflow1	* * *
0.01 2.51 0.03 0. 1.16 2.46 2.89 65.36 25.77 186.12 2992.61 295449.88	0.	2.51	0.	0.	
1.16 2.46 2.89 65.36 25.77 186.12 2992.61 295449.88	0.01	2.51	0.03	0.	
25.// 186.12 2992.61 295449.88	1.16	2.46	2.89	65.36	5
END F'L'ABLE 8	25.// End Ftable	186.12 8	2992.61	295449.88	

FTABLE 9 *** rows cols 4 4 area volume outflow1 *** depth 5.43 0. 0. Ο.
 0.01
 5.43
 0.05
 0.

 1.01
 5.31
 5.43
 44.58

 11.84
 132.28
 848.34
 19856.96
 END FTABLE 9 END FTABLES GENER OPCODE #thru# OP- *** CODE *** 1 8 10 END OPCODE PARM # – # *** K 1 8 0.91905 END PARM END GENER MUTSIN MUTSINFO <-range><mfl><npt><nmn><nli><mis> *** # - # MFL NPT NMN NLI MSFG *** 01 44 0 09 25 2 02 45 0 09 25 2
 45
 0
 09
 25
 2

 46
 0
 09
 25
 2

 60
 0
 08
 25
 2
 03 20 END MUTSINFO END MUTSIN PLTGEN PLOTINFO # - # FILE NPT NMN LABL PYR PIVL *** -1=monthly; -2=annual; 40 0 8 0 12 24 1 0 8 0 12 24 0 8 0 12 24 41 2 3 42 END PLOTINFO GEN-LABELS # - #<------Title-----> *** <-----Y axis-----> 1 Daily Average E.coli #/100mL 2 Daily Maximum E.coli #/100mL 3 Daily Minimum E.coli #/100mL END GEN-LABELS SCALING # - # YMIN YMAX IVLIN THRESH *** 1 3 0. 1.E+10 100. END SCALING

CURV-DATA (First curve) <-Curve label--> Line Intg Col Tran *** type eqv code code *** # - # R1.EC(livestock) 0 0 1 AVER 1 R1.EC(livestock) 0 0 1 MAX 2 3 R1.EC(livestock) 0 0 1 MIN END CURV-DATA CURV-DATA (Second curve) <-Curve label--> Line Intg Col Tran *** type eqv code code *** # - # 0 0 1 AVER 1 R1.EC(pet) 0 0 1 MAX 0 0 1 MIN 2 R1.EC(pet) R1.EC(pet) 3 END CURV-DATA CURV-DATA (Second curve) <-Curve label--> Line Intg Col Tran *** # - # type eqv code code *** 0 0 1 AVER R1.EC(septic) 1 0 0 1 MAX 0 0 1 MIN 2 R1.EC(septic) 3 R1.EC(septic) END CURV-DATA (Second curve) CURV-DATA <-Curve label--> Line Intg Col Tran *** # - # type eqv code code *** R1.EC(wildlife) 0 0 1 AVER 1 2 R1.EC(wildlife) 0 0 1 MAX R1.EC(wildlife) 0 0 1 MIN 3 END CURV-DATA CURV-DATA (Second curve) <-Curve label--> Line Intg Col Tran *** # - # type eqv code code *** 1 R5.EC(livestock) 0 0 1 AVER R5.EC(livestock) 0 0 2 1 MAX R5.EC(livestock) 0 0 1 MIN 3 END CURV-DATA CURV-DATA (Second curve) <-Curve label--> Line Intg Col Tran *** type eqv code code *** # - # 0 0 1 AVER 1 R5.EC(pet) 0 2 R5.EC(pet) 0 1 MAX R5.EC(pet) 0 0 1 MIN 3 END CURV-DATA CURV-DATA (Second curve) <-Curve label--> Line Intg Col Tran *** type eqv code code *** # - # 1 R5.EC(septic) 0 0 1 AVER 0 0 1 MAX 2 R5.EC(septic) 0 0 1 MIN 3 R5.EC(septic) END CURV-DATA CURV-DATA (Second curve) <-Curve label--> Line Intg Col Tran *** # - # type eqv code code ***

1		R5.H	EC(wildlif	e) 0	0	1 AVER				
2		R5.H	EC(wildlif	e) 0	0	1 MAX				
3		R5.H	EC(wildlif	e) 0	0	1 MIN				
END C	CURV-	-DATA								
END PLI	GEN									
NETWORK	ζ.									
<svol><</svol>	(0#>	<sgrp></sgrp>	<smem><m#< td=""><td>><-mfact</td><td>></td><td><tvol><</tvol></td><td>range></td><td><tgrp></tgrp></td><td></td><td></td></m#<></smem>	><-mfact	>	<tvol><</tvol>	range>	<tgrp></tgrp>		
<tmem><</tmem>	(m#>	* * *								
<-Volum	ie->	<-Grp>	<-Member-	> <mult< td=""><td>>Tran</td><td><-Targe</td><td>t vols></td><td><-Grp></td><td><-</td><td></td></mult<>	>Tran	<-Targe	t vols>	<-Grp>	<-	
Member-	-> *'	**								
<name></name>	#		<name> #</name>	#<-facto:	r->strg	<name></name>	# #		<name></name>	#
# ***										
*** Dir	ect	deposit	ts (repeat	each da	ta line	for eac	h subwat	cershed)		
*** Cat	tle									
MUTSIN	01	OUTPUT	01	1	SAME	RCHRES	01	INFLOW	IDQAL	1
MUTSIN	01	OUTPUT	02	1	SAME	RCHRES	02	INFLOW	IDQAL	1
MUTSIN	01	OUTPUT	03	1	SAME	RCHRES	03	INFLOW	IDQAL	1
MUTSIN	01	OUTPUT	04	1	SAME	RCHRES	04	INFLOW	IDQAL	1
MUTSIN	01	OUTPUT	05	1	SAME	RCHRES	05	INFLOW	IDQAL	1
MUTSIN	01	OUTPUT	06	1	SAME	RCHRES	06	INFLOW	IDQAL	1
MUTSIN	01	OUTPUT	07	1	SAME	RCHRES	07	INFLOW	IDQAL	1
MUTSIN	01	OUTPUT	08	1	SAME	RCHRES	08	INFLOW	IDQAL	1
MUTSIN	01	OUTPUT	09	1	SAME	RCHRES	09	INFLOW	IDQAL	1
*** Wil	dlii	fe								
MUTSIN	02	OUTPUT	01	1	SAME	RCHRES	01	INFLOW	IDQAL	4
MUTSIN	02	OUTPUT	02	1	SAME	RCHRES	02	INFLOW	IDQAL	4
MUTSIN	02	OUTPUT	03	1	SAME	RCHRES	03	INFLOW	IDQAL	4
MUTSIN	02	OUTPUT	04	1	SAME	RCHRES	04	INFLOW	IDQAL	4
MUTSIN	02	OUTPUT	05	1	SAME	RCHRES	05	INFLOW	IDQAL	4
MUTSIN	02	OUTPUT	06	1	SAME	RCHRES	06	INFLOW	IDOAL	4
MUTSIN	02	OUTPUT	07	1	SAME	RCHRES	07	INFLOW	IDQAL	4
MUTSIN	02	OUTPUT	08	1	SAME	RCHRES	08	INFLOW	IDÕAL	4
MUTSIN	02	OUTPUT	09	1	SAME	RCHRES	09	INFLOW	IDÕAL	4
*** Str	aigh	nt Pipes	5						~	
MUTSIN	03	OUTPUT	01	1	SAME	RCHRES	01	INFLOW	IDOAL	3
MUTSIN	03	OUTPUT	02	1	SAME	RCHRES	02	INFLOW	IDÕAL	3
MUTSIN	03	OUTPUT	03	1	SAME	RCHRES	03	INFLOW	IDOAL	3
MUTSIN	0.3	OUTPUT	04	1	SAME	RCHRES	04	INFLOW	TDOAL	3
MUTSIN	03		05	1	SAME	RCHRES	05	TNFLOW	TDOAL	3
MUTSIN	03		06	1	SAME	RCHRES	06	INFLOW	TDOAL	3
MITSIN	03		07	1	SAME	RCHRES	07	INFLOW	TDOAL	с 2
MUTCIN	03		0.8	1	SAME	DCUDES	0.8	TNETOW	TDOVI	2
MUTSIN	03		00	1	SAME	RCHRES	00	INFLOW	TDOAL	2 2
*** DDc	D Cr	villa ir	nto Poscho	с <u>т</u>	5AND	I(CIII(ED	0.5	TINT TOM	трбип	5
MITCIN	20		01	1	SAME	RCHRES	05	TNFLOW	TVOL	
MUTCIN	20		02	1	CAME	DCUDES	05	TNELOW		З
MILLGIN	20		02	± 1	CANE	BCHBEG	07	TNETOM	TVOI	5
MILGIN	20		0.3	⊥ 1	C J ME	DCUDEC	07	TNET OM	тоолт	2
MILGIN	∠ U 2 ∩		04	⊥ 1	CAME	NCUKES	07	TNETOW	тиот	S
MITCIN	20	OUTPUT	05	1	SAME	NCHKES	00	TNETOW	TDONT	2
MITCIN	20	OUTPUT	00	1	SAME	KURKES Douddo	00	TNETOR	TNŐT	З
MUTSIN	20	OUT PUT	U /	1	SAME	KUHKES Douddo	09	TNETOR	TNOT	2
MUTSIN	ΖU	OUT PUI	08	T	SAME	KCHKES	09	TINETOM	трүат	3

*** crea	ite	E. coli	l time	serie	es using F	C-EC 1	ranslat	cor e	equat	tion		
EC=(FC^C *** Live).91 esto	L905)×0. ock; pet	.98814 ; sep	866 f tic	for RCHRES	#1 ar	nd #5		-			
RCHRES	1	GOUAL	DOAL	1			GENER	1		τνρυτ		
RCHRES	1	GOUAL	DOAT.	2			GENER	2		ΤΝΡΙΙΤ		
RCHRES	1	COULAL		ן ג			GENER	2		TNPIIT		
RCHRES	1	COUNT		<u>л</u>			CENER			TNDIT		
RCHRES	5	COUAL		1			CENER	5		TNDIIT		
RCHRES	5	COULT.		2			GENER	6		TNPIIT		
DCUDEC	5	COUNT		2			CENED	7		TNDIIT		
RCHRES	5	GQUAL	DQAL	4			GENER	8		INPUT		
CENED	1				0 0001406	C		1		TNDIE		1
GENER	T 2	OUTPUT			0.9881486	0	PLTGEN	1		INPUT	MEAN	1
GENER	2	OUTPUT			0.9881486	0	PLTGEN	1		INPUT	MEAN	2
GENER	3	OUTPUT			0.9881486	6	PLTGEN	1		INPUT	MEAN	3
GENER	4	OUTPUT			0.9881486	6	PLTGEN	T		INPU'I'	MEAN	4
GENER	5	OUTPUT			0.9881486	6	PLTGEN	1		INPUT	MEAN	5
GENER	6	OUTPUT			0.9881486	6	PLTGEN	1		INPUT	MEAN	6
GENER	7	OUTPUT			0.9881486	6	PLTGEN	1		INPUT	MEAN	7
GENER	8	OUTPUT			0.9881486	6	PLTGEN	1		INPUT	MEAN	8
GENER	1	OUTPUT			0.9881486	6	PLTGEN	2		INPUT	MEAN	1
GENER	2	OUTPUT			0.9881486	6	PLTGEN	2		INPUT	MEAN	2
GENER	3	OUTPUT			0.9881486	6	PLTGEN	2		INPUT	MEAN	3
GENER	4	OUTPUT			0.9881486	6	PLTGEN	2		INPUT	MEAN	4
GENER	5	OUTPUT			0.9881486	6	PLTGEN	2		INPUT	MEAN	5
GENER	6	Ουτρυτ			0.9881486	6	PLTGEN	2		ТИРИТ	MEAN	6
GENER	7	OUTPUT			0.9881486	6	PLTGEN	2		TNPUT	MEAN	7
GENER	8	OUTPUT			0.9881486	6	PLTGEN	2		INPUT	MEAN	8
GENER	1				0 9881486	6	PLTGEN	З		τνριίψ	MFAN	1
GENER	2				0.9881486	6	PLTGEN	े २		TNPIIT	MEAN	2
CENER	2				0.9881486	6	PLTCEN	2 2		TNDIIT	MEAN	2
CENER	1				0.9001400	6	DITCEN	3		TNDIT	MEAN	7
CENER	т 5				0.9001400	6	DITCEN	3		TNDUT	MEAN	ч 5
GENER	5				0.9001400	c c	DITCEN	ン つ		TNEUI	MEAN	ر د
GENER	07	OUIPUI			0.9001400	c c	PLIGEN	ン つ		INPUI	MEAN	07
GENER	/	OUTPUT			0.9001400		PLIGEN	с С		INPUT	MEAN	/
END NETW	8 IORI	K			0.9881486	0	PLTGEN	3		INPUT	MEAN	8
	~	~										
EXT SOUF	CES	5				<u></u>	DEE	1 . 1	c > -		5555	
WDM3	11	PREC	ENG	LZERC -)	SAME	PERLND	101	607	EXTNL	PREC	
WDM2	13	ATEM	ENG	L		SAME	PERLND	101	607	EXTNL	GATMP	
WDM2	17	DEWP	ENG	L		SAME	PERLND	101	607	EXTNL	DTMPG	
WDM2	14	WIND	ENG	L		SAME	PERLND	101	607	EXTNL	WINMOV	
WDM2	15	SOLR	ENG	L		SAME	PERLND	101	607	EXTNL	SOLRAD	
WDM2	16	PEVT	ENG	L		SAME	PERLND	101	607	EXTNL	PETINP	
WDM3	11	PREC	ENG	LZERC)	SAME	IMPLND	101		EXTNL	PREC	
WDM2	13	ATEM	ENG	L		SAME	IMPLND	101		EXTNL	GATMP	
WDM2	17	DEWP	ENG	L		SAME	IMPLND	101		EXTNL	DTMPG	
WDM2	14	WIND	ENG	L		SAME	IMPLND	101		EXTNL	WINMOV	
WDM2	15	SOLR	ENG	L		SAME	IMPLND	101		EXTNL	SOLRAD	
WDM2	16	PEVT	ENG	L		SAME	IMPLND	101		EXTNL	PETINP	
WDM3	11	PREC	ENG	LZERC)	SAME	RCHRES	1	9	EXTNL	PREC	

WDM2 WDM2 WDM2 WDM2 WDM2 WDM2	13 AT 17 DE 14 WI 15 SC 18 CI 12 EV	YEM SWP SND DLR SOU YAP	ENGL ENGL ENGL ENGL ENGL		SAME SAME SAME SAME SAME SAME	RCHRES RCHRES RCHRES RCHRES RCHRES	1 1 1 1 1	9 9 9 9 9 9 9	EXTNL EXTNL EXTNL EXTNL EXTNL EXTNL	GATMP DEWTMP WIND SOLRAD CLOUD POTEV	
END EXT	SOURC	ES									
SCHEMATI	IC										
PERLND 1	L01			806.55	5	RCHRES	1		2		
PERLND 2	201			113.73	3	RCHRES	1		2		
PERLND 3	301			447.2	2	RCHRES	1		2		
PERLND 4	401			266.02	-	RCHRES	1		2		
PERLND I	102			1136.15)	RCHRES	2		2		
PERLND 2	202			29.37	/	RCHRES	2		2		
PERLND 3	3UZ			123.28	5	RCHRES	2		2		
PERLND 4	±UZ			95.67	/ >	RCHRES	2		2		
PERLND 1	103			280.88	5	RCHRES	3		2		
PERLND 2	203			39.25	9	RCHRES	3		2		
PERLND 3	103			323.81	-	RCHRES	3		2		
PERLND 4	104			247.12	2 :	RCHRES	د ۱		2		
PERLND 1	LU4			10.90 25 5) 7	RCHRES	4		2		
PERLND 2	204				, >	RCHRES	4		2		
PERLND 3	104			90.92 51 /	1	RCHRES	4		2		
FERLIND -	105			JI.4	t	DCUDEC	4 5		2		
PERLIND 1	205			20.5)	DCUDEC	J 5		2		
PERLND 2	205			290 15	- 7	RCHRES	5		2		
PERLND (105			534 23	2	RCHRES	5		2		
PERLND 1	105			3 54	1	RCHRES	6		2		
PERLND 2	206			3.5	2	RCHRES	6		2		
PERLND 3	306			24.01	, ,	RCHRES	6		2		
PERLND 4	106			197.27	- 7	RCHRES	6		2		
PERLND 4	107			139.63	3	RCHRES	7		2		
PERLND 6	507			6.86	5	RCHRES	7		2		
PERLND 1	108			57.21	_	RCHRES	8		2		
PERLND 3	308			77.28	3	RCHRES	8		2		
PERLND 4	408			698.21	_	RCHRES	8		2		
PERLND 1	L09			3.71	-	RCHRES	9		2		
PERLND 3	309			6.37	7	RCHRES	9		2		
PERLND 4	109			491.81	_	RCHRES	9		2		
IMPLND 1	101			98.63	3	RCHRES	1		1		
IMPLND 1	L01			27.88	3	RCHRES	2		1		
IMPLND 1	L01			78.69)	RCHRES	3		1		
IMPLND 1	L01			18.77	7	RCHRES	4		1		
IMPLND 1	L01			351.80)	RCHRES	5		1		
IMPLND 1	L01			72.96	5	RCHRES	6		1		
IMPLND 1	L01			51.64	1	RCHRES	7		1		
IMPLND 1	L01			258.24	ł	RCHRES	8		1		
IMPLND 1	L01			181.90)	RCHRES	9		1		
*******	*****	******	******	* * * * * * * * * * *	*****	******	***	* * *	****		
*** Read	ch Con	nectior	ıs						***		
******	*****	******	******	* * * * * * * * * * *	*****	******	***	* * *	****		
RCHRES	2					RCHRES	1		3		

RCHRES 2 RCHRES 3 RCHRES 3 3 RCHRES 4 3 RCHRES 5 RCHRES 4 3 RCHRES 5 3 RCHRES 6 RCHRES 6 RCHRES 7 RCHRES 7 RCHRES 7 3 RCHRES 8 3 3 RCHRES 7 RCHRES 9 END SCHEMATIC MASS-LINK MASS-LINK 2 <-Volume-> <-Grp> <-Member-><--Mult--> <-Target vols> <-Grp> <-Member-> *** <Name> <Name> x x<-factor-> <Name> <Name> x x *** x***PERLNDPWATERPERO0.0833333RCHRESPERLNDSEDMNTSOSED10.05RCHRESPERLNDSEDMNTSOSED10.60RCHRESPERLNDSEDMNTSOSED10.35RCHRESPERLNDPQUALPOQUAL11.00RCHRESPERLNDPQUALPOQUAL21.00RCHRESPERLNDPQUALPOQUAL31.00RCHRESPERLNDPQUALPOQUAL41.00RCHRESPERLNDPQUALPOQUAL41.00RCHRES INFLOW IVOL INFLOW ISED 1 2 INFLOW ISED INFLOW ISED 3 INFLOW IDQAL 1 INFLOW IDQAL 2 INFLOW IDQAL 3 INFLOW IDQAL 4 END MASS-LINK 2 1 MASS-LINK
 IMPLND
 IWATER SURO
 0.0833333
 RCHRES
 INFLOW IVOL
 SOLIDS SOSLD 1 0.10 RCHRES RCHRES INFLOW ISED 1 IMPLND SOLIDS SOSLD 1 0.50 INFLOW ISED 2 IMPLND IMPLNDSOLIDSSOSID10.30IMPLNDSOLIDSSOSID10.40IMPLNDIQUALSOQUAL10.00 RCHRES INFLOW ISED 3 RCHRES INFLOW IDQAL 1 END MASS-LINK 1 MASS-LINK 3 RCHRES ROFLOW RCHRES INFLOW END MASS-LINK 3 MASS-LINK 4 RCHRES ROFLOW ROVOL RCHRES HYDR RO COPY INPUT MEAN 1 COPY INPUT MEAN 2 END MASS-LINK 4 MASS-LINK 5 RCHRES OFLOW RCHRES INFLOW 1 END MASS-LINK 5 6 MASS-LINK 2 RCHRES INFLOW RCHRES OFLOW END MASS-LINK 6 END MASS-LINK

END RUN