
Decision Support Systems Design: A Nursing Scheduling Application

by
Wendy A. Ceccucci

Submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Management Science

APPROVED:

LED
Robert T. Sumichrast, Chairman

keer Ue Ce her Jone I. Kaho

Joanna R. Baker dry R. Rakes

a Fie ?. bees (sald Ul. Keaplre
Loren P. Rees Gerald W. Shapiro”

January 28,1994

Blacksburg, Virginia

Decision Support Systems Design: A Nursing Scheduling Application

by

Wendy A. Ceccucci

Robert T. Sumichrast, Chairman

Management Science

(ABSTRACT)

The systems development life cycle (SDLC) has been the traditional method of

decision support systems design. However, in the last decade several methodologies have

been introduced to address the limitations arising in the use of the traditional method.

These approaches include Courban's iterative design, Keen's adaptive design, prototyping

and a number of mixed methodologies incorporating prototyping into the SDLC.

Each of the previously established design methodologies has a number of differing

characteristics that make each of them a more suitable strategy for certain environments.

However, in some environments the current methodologies present certain limitations or

unnecessary expenditures. These limitations suggest the need for an alternative

methodology. This dissertation develops a new methodology, priority design, to meet this

need.

To determine what methodology would be most effective in a given situation, an

analysis of the operating environment must be performed. Such issues as project

complexity, project uncertainty, and limited user involvement must be addressed. This

dissertation develops a set of guidelines to assist in this analysis. For clarity, the guidelines

are applied to three, well-documented case studies.

As an application of the priority design methodology, a decision support system

for nurse scheduling is developed. The development of a useful DSS for nurse scheduling

requires that projected staff requirements and issues of both coverage and differential

assignment of personnel be addressed.

Dedication

Dedicated, with love to my parents,

Rudolph and Stasia Ceccucci, and

my sister, Cynthia McGrath,

Acknowledgements

I would like to thank my chairman and advisor, Dr. Robert T. Sumichrast for all of

his patience, guidance and support throughout my graduate studies.

I would also like to thank Dr. Joanna Baker, Dr. Terry Rakes, Dr. Loren Rees, Dr.

Gerald Shapiro, for their advise and for their support as members on my dissertation

committee. I would further like to extend my thanks to Dr. Lance Matheson for standing

in on my dissertation defense.

Finally, I would like to thank, with all of my love, both my parents and my sister.

Without their loving support, I would have never completed this dissertation.

Acknowledgements Vv

Table of Contents

Chapter 1: Introduction.................sccccsscsscsssssrccssccesssssseserscesssescccssssscssesssesessscseosees 1

Statement of the Problem0....ccceccccccceccecseeceeeseeeeeetceeececeenteeeeesetteeeecens 3

Objectives of the Study0..... cece cecceseceeeeeeeeeeceeeseeeeeseeseeeesseteestseeenaees 6

Methodology.cccccccsecsccccceeesssssseeeeeeeeeeeeeeseeseseeteessssessteseeeseeetesecceeeeeeseeeees 6

Scope and Limitations0cccccccecececeeeeeeteeennceeeeteeeseneeeeneeeeetaeeeseueeeenseeeens 7

Plan of Presentation0...00ccccceccccccccceeeeseeeeseceeeeeeesseeecsaseesssseeeesseeesenseesenes 8

Chapter 2: Nurse Scheduling Literature Reviewcssccccsssssssssssseccsessssenees 10

[Introductionccccccccsescssesssesssesssecesesssecesscssucesecsuesesessessuessessessesavessesseeanesseeae 10

The Nursing Environment00..c:cccccecseseccecesetseseeceeessteeeeeeeesteestsseeseeeeenns 11

Scheduling Criteria... .ccccccccccsccccsscceeseceecsseebesssseceeesseecesesssseecceessteteeennaes 12

The Traditional Approach to Nurse Scheduling0....0000ccceccceesseeeerne tees 13

Cyclical Scheduling000....c ccc cecccccccceccesseeeseseecessseeeeessseeecessseeeeceessseeeeseeseees 15

Computer-Based Nurse Scheduling Algorithms0.000..ccccccccccesssseeeeenssees 17

Warner's Mathematical Approach ..0......0......cccccecccecccesecceeseeeeestseeenneees 17

Miller, Pierskalla and Rath's Mathematical Programming Approach 20

Arthur and Ravindran's Multiple Objective Scheduling Model............... 23

Musa and Saxena's Goal Programming Approach:0 cece 27

Conclusions.0000cc cece ccescseesceseeeeeeessaeecceesseeseeeecessaeeeeeseessseeeecesesenttseseeees 29

Chapter 3: Decision Support Systems Designcccccsccssees sececececcccceesscsees 31

Tmtroduction0...ccccccccccessccecssneecceeseeeeesseceeeessaeeeeeeeessaeeeeessnasseeteseesesesntaeaeeees 31

Decision Support Systems0..ccccccccccccscccccensceseesseseeeesssseeseesssseeeecetesseeees 32

Table of Contents vi

Design Approaches00.ccccccccccccceceeseeeeeneeeecnseeeeseeeeeeceseeeeeeesenaeeeeeennneeeees 33

Traditional Systems Development Approach............0...0::cccccccceeeeeeeeeeees 33

Iterative Design 0.0.00... cccccc ccc ccccceccceeecnneeeeeeeeeensseeeeeeeeeeeensnsaeeeeeeens 36

Keen's Adaptive Designcccccccccccceecccccceeeeeeeeeeeeetteeeeeenteeeeeneias 39

Prototyping 2.0.0.0... cece ccccecccceeteeecentseaeecessnsseeeeeeeeenssseeeeeececeseseetssaeees 43

Mixed Methodologiesc:ccccccccccsescceceeseceeeeeeeeeeeceeteeeeeessesseeeeeess 48

Guidelines for Constructing a Decision Support System0....ccceeee 49

The ROMC Approachccccccccccccccccceeccceeeeeeeeceeeeeseeteeasseseneneeeeseees 49

Kroeber's Guidelines0...000ccccccecccccsseccesececeneeeeenseeeessseeeeeesseesensseeeens 50

Keen and Gambino's Guidelines for Constructing a DSS 48

Priority Design Methodologycccccccccccccsecseeeeeecsseceeeeueeseensttssseeeeeeesens 54

TntroductiOn.......0....cccccccccccccscccesssceesseeeeecsseccessaeecsesssseeesctsteeeees eee 54

The Steps to the Priority Design Methodology...................ccccccsseeeeeeen 55

Benefits of the Priority System..........0....ccccccccccccesssccceceetteeseeeeensssseeeens 58

The Selection of a Design Strategyccccccccccccsssceeeesteeeesentesseeseesentsseeeens 60

COnClUSION eee eee cece ceseseseeeseeeeeeceeeeeeeeeseeesacceseeesseeenseeesseeeesaeesesseeensaeeesseeess 67

Chapter 4: Case Study AmallySis............csccsssscsssssscessssscsssssssssscsssscsescessssccssssssecsscsss 69

Tintroductioneccccccccsccccsceceeeseeeeeseeeesseeeesseseeeeesseeeeeeeseeeeeeaeeseeseesssseeeeeeees 69

Case #1. A DSS for Tuition and Fee Policy Analysis00000..ccccceeeseseeeeees 70

Introduction.0...00cccccccccccccccsececeseeecsaeeceseeecessesessseeeceseseesesseeeeneeess 70

The Design Methodology .0..............cccccccccccessceceeseesssseceeeeeeesenstssaaeeeees 71

Amal SiScccccccccccceesseneeceeceeseseeeeeeeeeessesssuseeeeeeeeeeseseseestutnsssisssaaaaeaes 73

The Tuition and Fees Operating Environment.......................0.. 73

Priority Designccecccceccceccccceeneceeeeeeeeeesessaeeeeeessseeenssees 75

Table of Contents Vii

COnclusiOnccccccccccccccccccucecueccuceceucccucececsuscucccuscusceuccusescaeceustecensens 77

Case #2 The Eastern Manufacturing Companycccceeeeeeeeceteeeetteees 78

Introduction.cccccccccccceeeesecnneceeeeeeeeeeeeeeeeeeeseteeeeeeeeeeeeseeseeeeeeaeaeaeaaas 78

The Design Methodology:::cccccccceceseeeceeeeeeeesentnneeeees tse 79

Fe) ee 79

Eastern's Operating Environment...................:.c:cccccccccececeteeeeeeees 79

Priority Designccccccecccececesececeneeeeseeceeaseeseesseeeentseeesses 81

COmclusion 0.0.00... 0c. ccc cece ccecscecceesseeceeesneeeeeeessneeeeeeessesseeeeeeecesesesaeaeenes 83

Case #3: Decision Support at Conrail 0.0.0.0... ccc cccccccccccecceeeststseseeeceesenaaes 84

Introduction.ccccccccccccceeeesceeeeeeennceeeeseeeeeesseeeseessseeeeeeetseeessesseeeens 84

The Design Methodology:00005 bee e cease eseeeeeeeeesuaseseseeeeees 85

ANALYSIS 00... ec ccc ccccscccsseeccsceeeeseecceseeeecesseeecesseseecesssasececenssseeesenssaeess 87

Conrail's Operating Environment0.....cccccccessseceeeeesteeeeees 87

Priority Design0.cccccecceeceeceeeceeeseeceeeeeeevseeeessseeeetsteeenses 89

COmclusion 2.0.0... cc ccccccccccececssscessececseeeeesseeeessseeeeeesaes beeeeeeseeetstteeeeeees 92

SUMIMALY...00. eee cccccceceneeceeseseeeeeeneeeeeseneeeeeeeseeeeeeesseeeeeesseetsaeeeseusesenstsaeeeeeeeseeeas 93

Chapter 5: The DSS for Nurse Schedulliing....................ccscssssssssssssssensccssssssssessssessees 94

Imtroduction oo... ccccccccccccsesccesseeecesseesesseceeseeeceesseeeeesseeeeeesseeeesessseeeeesessseeeeens 94

Montgomery Regional Hospital0.......ccccccccccceeceeceeeeneeeesenneeeeeeeneeeeeeeneeeees 95

Nursing Classifications for Montgomery Regional Hospital................... 95

The Baylor Plan0..0.00000cccceccccccesscececcceeeesteseeeeeseesestseeeeeees 96

PRN Staffing... ccc ccc ccccccceeessseeessseeeeesssseeeeeetsseseeessaes 96

LPN and RN 0.0... ccccccceceeceeceeeeeeeceeeeeeeaeeseeeeeseneeeeeeeeeeeennaeeeees 97

The Intensive Care Unit ..0.....0.....cccccccccccccescecessseeeeeeeeeeeeeeeenseeeennaeees 97

Table of Contents Vill

The Scheduling Policies00cccccccccccececcctesseeeeeeesceeeeceeseeeesenenaaes 98

The Development Process0.....ccccceeseeeeeeeeteeeeeees ee ceeeeecceeeeeeeeesenentnneeeeeees 101

The Initial Meetingcccccccccccc cece cece ceceeeeececeeeeeessususaatssaaeaeseeeeees 101

Montgomery Regional Hospital's Environment.................0...c::cccceeeeees 104

The Priority Design Methodologycccccecceesseeeeeseeeeeseeeeeeeeeseeseenenaaaas 107

Stage 1. Determining the Minimum Requirements for the

Partial System0.0.....0000 cc cccccccccccscecceeesseseeeceestessesasseeeseccesenes 107

Stage 2. The Simulation0.00 ccc ccecccccceccccecceeeeeeeeeeeeeeeeeeees 110

Stage 3. Construction of the User's Priority List0.00..... 114

Stages 4 and 5. Developer Suggestions and User

Reevaluation0. ccc ccccccccccccseccensseeeceesseeeesesssaeeeeseessseeecens 114

Stage 6. Partial System Development0.ccccceeeceeeeeeees 117

Hardware & Software.............ccccccccccccccecccceceeeeeetenseneees 117

A Description of the DSS 000000... cece eeeeeeees 119

Development Problems and Limitations 125

Stage 7. System Implementation.............0.0000000ccccceeeeeeteeeeeee 125

Analysis of the Development Processccicceeeeececeeeeeceeceeeeeeeeeeaaaaaeaes 129

Oo 1G (0) | cee 131

Chapter 6: Conclusion..............cc0000 seeecreccccesecsvosesesescscccssssessecscecssessescssscccccsossssoseooees 132

Tmtroduction .0.......ecccccccccccsecesccecsecsessecessecesseceesseeeeeeesceeeccssseeseaseeeesseeseeseeeees 132

Summary of Research Results ..0..........00ccccccccccesseceesseeeeseeeeesseeesesseeeeeseneeesees 132

Priority Design 00.0... ccccccccccsceccesenseeeeeeesesssssseeeeseceesseseeeceseeenssaes 133

Guidelines for Selecting a Design Methodology0.. eects 134

The Nurse Scheduling DSS... occ cece cece cceeeesseceeeenettseeeenns 135

Table of Contents iX

Table of Contents

List of Illustrations

Figure 2.1

Figure 2.2

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 4.1

Figure 4.2

Figure 4.3

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Block Scheduling00.0 ccc cccccccecceceeessssececeeeeeeeeceeeeeeeseeteeenenas 14

Cyclical Schedulingcc ccc ccccccccceeesseceeeesenseeeeeeeseseaaseeneeees 16

The Traditional Systems Development Life Cycle..................000.0000. 34

User Involvement in the Traditional Systems Development Life

CYCLE. ccc cece cece cece cece cece cece eee cece eee eee eet eecaasaaaaaeaeeeeeeeeaaaaenees 37

Keen's DSS Design Cycle.......0...00.cccccccccccceceseteesessssesssssssceeeeeeseeees 40

Keen's Predesign Cycleccccccesescesssscecsesseeeeeeseasseseneeeeeeees 41

Prototyping cece ccccccccessceececeeseeeseeeseeescesssteeeeeeeeeeeeeceeseeeneeeeeees 45

A State-Transition Model for Application Development and

od £0) 00) 84 0) | ee 47

Priority Designcccccccccccccccccssccesseeeeesceeeeeeceeeessseeeeeessseeeseeeees 56

Guidelines for Design Methodology Selection00c0 62

Design Steps in the Development of the Tuition and Fees DSS......... 72

Design Steps in the Development of Conrail's DSS....................00.... 86

Conrail's Interactive Computing Softwarec ccc cseceeeeeeeeeees 88

Critical Care Organizational Chart..........000000.cccccccccccceesssssceeeeeeeeeees 99

Early List of Requirement0.0..ccccccccccccccecsessseeececeeenssssseeeeeees 108

Montgomery Regional Hospital's Work Schedule.................0000.000. 109

The Schedule and Edit Windows.................00ccccccccccctsceecesssseeeeenees 113

Priority List... ccc ccccccccscccessecceeseeccnseeesesseeeeeeseeetessseeeeessenseeeees 115

The Schedule with the Command Window:::cccssseeseees 121

The Schedule with the Selected Menu Feature...........0..0.....0cc eee 122

The Nurse Scheduling DSS Handout...........00000.ccccccessssssssceeeeeseees 127-128

List of Dlustrations

List of Tables

Table 2.1 Special Requestsccccccccccccccceeeeeeeeestesessesssssessessasssseeseeeeeeeeees 24

Table 4.1 Project Uncertainty00ccccccccccccccecssccessseecesseresenseaeeeeeneseeeees 75

Table 4.2 Design Methods0..ccccccccccccesssececeesseeeeeeecessesseceseenttsseteseeeeas 93

Table 5.1 Vacation Schedule..............00.ccccccccecscecessseeceesseeeceessseecessseeeeseessaaes 101

Table 5.2 Environmental Characteristics for Determining an Appropriate

Design Methodology0ccccccccccccccsesccecesssseccsessesssseeeeseeesennas 106

List of Tables xii

Chapter 1: Introduction

Decision support systems have become an integral part of today's businesses.

These systems have a wide range of business applications, including finance, marketing,

accounting and production. With the growing popularity of these systems, at all levels of

the business hierarchy, increased attention has been focused on the design methodologies

for decision support systems. In the past, the systems development life cycle (SDLC) has

been the conventional method for development. However, in the last decade several

approaches have emerged which have increased the level of communication between the

user and the developer. The developer is now confronted with the problem of determining

the most appropriate design methodology. To determine which design approach would be

most appropriate for a given project, its individual characteristics and operating

environment need to be compared and contrasted with the benefits and limitations of each

of the various design approaches.

Chapter] Introduction 1

This research reviews previously published approaches, proposes an alternative

design methodology, called priority design, and develops a set of guidelines for

recommending an appropriate design strategy based upon the user's operating

environment. To demonstrate the proposed design methodology, a significant, practical

semi-structured problem will be addressed: the problem of determining the work schedules

for hospital nurses.

The application proposed, as a part of this research, focuses on the issue of

scheduling in a system with variable demand and requiring specialized nursing services.

This part of the decade had witnessed a drastic decline in the availability of nursing

personnel. This research investigates the use of a decision support system (DSS) as a

practical aid to scheduling. The process for carrying out this investigation entails

developing and implementing a DSS, for a local hospital. The DSS environment provides

some unique characteristics from the standpoint of scheduling and DSS development, such

as stochastic demand, unreliable availability, variable skill requirements and schedule

preferences. The development of such a useful DSS for nurse scheduling requires that the

issues of coverage and differential assignment of personnel be addressed, given projected

staff requirements.

In determining a schedule, management must resolve the conflicting goals between

the hospital and the nursing staff. The hospital requires a schedule that maintains a high

level of care while keeping costs at a minimum. The nurses on the other hand, desire a

favorable on-off sequence of workdays and a balanced workload. In addition, the nurses

have varying shift and case preferences that must be taken into account when developing a

schedule. Several approaches have been used, including simulation and mathematical

programming, to address the problem of scheduling of health care personnel. However,

these approaches have lacked the flexibility needed to accommodate the dynamic nature of

Chapter 1 Introduction 2

the scheduling environment and to provide immediate feedback for alternative scheduling

scenarios; a flexibility that may be supported by a specific DSS.

Statement of the Problem

To date, there are five primary methods of DSS design: the traditional systems

development life cycle, Courban's iterative design, Keen's adaptive design, prototyping,

and a mixed methodology incorporating prototyping into the SDLC. The majority of the

approaches that have been applied to the development of a DSS have been adapted from

common design strategies. These strategies, with the exception of Keen's adaptive design,

were not developed to specifically deal with the unique environment of a DSS. As a

result, these approaches have varying limitations when applied to the DSS environment.

They do not provide the user with a formal method of communicating to the developer the

features that are most important to the success of the project and the features that are

considered auxiliary items, that the user would eventually like to see in the completion of

the DSS. These approaches, also, do not provide a structured method for the developer

to communicate to the user the amount of time and cost required for the development of

the various features requested by the user. In a complex environment, where the problem

is not well-defined, a discussion of these concepts between the user and the developer

becomes an important and integral part of the development process. The limitations in the

Chapter 1 Introduction 3

various design strategies can have a serious affect on the successful development of the

DSS. These limitations can result in:

e the development of a DSS that does not meet the needs of the user,

e unnecessary expenditures.

e excessive development times

These limitations suggest the need for an alternative methodology.

Due to the growing popularity of decision support systems, increased importance

has been placed on the selection of an appropriate design methodology. Depending on the

project's characteristics, a high degree of communication between the user and the

developer is not always necessary. Before the development process begins, the developer

needs to select a development methodology that complements its operating environment.

It is necessary for the developer, when selecting an appropriate design methodology, to

evaluate the user's operating environment and the project's characteristics before

proceeding. By evaluating the user's environment, an efficient methodology that best

complements the user's project characteristics can be determined.

To test the alternative methodology and the proposed selection guidelines the

problem of nurse scheduling was selected. The development of a nurse schedule is a semi-

structured task that often requires a large amount of management's time and is often met

with dissatisfaction by the corresponding nurses. The task entails generating a schedule

that meets the hospital's and nurses’ requirements, and maintaining concise records and

updated summary reports on both the individual employees and on the actual schedule

worked. Maintaining accurate records is important to the hospital, not only for payroll

purposes, but also for potential liability cases. The hospital must have records showing

who was responsible for the patients if a law suit ensues.

Chapter 1 Introduction 4

Much of the nurse scheduling literature has focused primarily on developing

schedules for large hospitals, through the use of mathematical models. However these

models have limited usage. The solution to the majority of the models determines the days

the nurses are to work and then the specific shifts that the nurse work are determined

through a second procedure. Using separate procedures assures suboptimal solutions.

The models, when determining the days, do not account for the effect different shifts

patterns may play on the day schedules. For example, a nurse would not work a night

shift and then the next day shift. The shift effects are not independent factors and should

be considered when the schedule is determined.

A DSS can provide the flexibility that is needed to support the nurse manager. It

will allow the nurse manager to offer a variety of shift lengths, which is not currently

practical with the use of a mathematical programming solution. A DSS will also provide

the nurse manager a user friendly atmosphere to develop alternative schedules and

maintain statistics on the nurses’ work history. By maintaining statistics on past schedules,

such as number of weekends, holidays, vacations, etc., the nurse manager will be able to

make better informed decisions in regard to future schedules. The DSS will help in

ensuring that the vacations, weekends and holidays are distributed in an equitable manner.

In addition, a DSS will provide statistics on the number of nurses worked during the

various shifts. A DSS will be able to provide the necessary flexibility to accommodate all

of these different issues.

Chapter 1 Introduction 5

Objectives of the Study

There are three main objectives of this study. The first objective of the study is to

address some of the limitations of the current DSS design methodologies by developing an

alternative methodology. The proposed alternative methodology would incorporate some

of the benefits of the various methodologies and expand on the methodologies, to

strengthen their weaknesses.

The most appropriate design methodology is dependent on the characteristics of

the project and its operating environment. The second objective of the study is to develop

a selection guideline to determine the most suitable design strategy.

The final objective of the study is to employ the proposed design methodology to

the problem of nurse scheduling at Montgomery Regional Hospital. The proposed DSS

would be developed to assist the nurse manager in the scheduling of nurses in the

Intensive Care Unit.

Methodology

The first step in developing an alternative technique is to evaluate existing design

strategies. When studying the strategies the weakest areas of the strategies need to be

noted. An alternative strategy is developed so that it compliments the existing strategies

i.e. it's strength is in the areas where the previous strategies are weakest.

The development of a DSS can address a wide range of different problems and

may occur in many different types of environments. For example the problem may be

highly complex, requiring a large amount of new information, or it may be a small system

Chapter 1 Introduction 6

with very low complexity. The environment may be uncertain, the user unclear as to the

requirements of the system or the task may be well-defined. Each design strategy,

including the proposed methodology is more suitable for environments with certain

characteristics. To determine which methodology is most appropriate for the

development of a specific DSS, a set of guidelines is created. These guidelines aid in

evaluating the characteristics of the project and its corresponding environment, to

determine the most appropriate design methodology.

To demonstrate the proposed design methodology, the strategy is applied to a

specific problem. The selected problem was that of developing a DSS for nurse

scheduling. The nurse scheduling DSS provides a mechanism to further articulate the

steps of the proposed methodology and provides a platform for testing the strategy.

To evaluate the guidelines for selecting an appropriate design methodology, three

DSS development cases, with different operating environments are used as test cases. In

each case, the operating environment and the steps employed in the development process

are studied. Following the study, the proposed guidelines are used to recommend a more

suitable strategy based on the case's operating environment and its unique characteristics.

An analysis followed, comparing and contrasting the situation had the recommended

design approach been employed.

Scope and Limitations

As previously stated in the objectives, this research is intended to evaluate the

issues of designing a decision support system. In evaluating the DSS, a prototype,

interactive, scheduling system will be constructed. This system enabled the hospital to

Chapter 1 Introduction 7

develop an efficient nurse schedule and provided the capability for the manager to

generate alternative scenarios. The DSS did not provide a mechanism for recommending

and developing schedules. But, the DSS was intended to assist the hospital in this

process. This research required data from past records and knowledge on the various

nurses, which was acquired from Montgomery Regional Hospital. Since the information

gathered was from the local hospital, the system was designed to meet its specific needs

and to follow its current scheduling notation.

Plan of Presentation

Chapter 2, entitled Nurse Scheduling Literature Review, contains a review of prior

literature pertinent to the area of nurse scheduling. First, the importance of nurse

scheduling is presented. This is followed by a discussion of the problems and the different

criterion that must be considered in determining an effective schedule. Finally, a review

of the different approaches to nurse scheduling is presented.

Chapter 3, entitled Decision Support Systems Development, contains a discussion

of the limitations and assumptions of the various methods of systems development and

proposes an alternative methodology. In addition, a guided search is recommended for

the selection of a development methodology based on the project characteristics and the

operating environment.

Chapter 4, entitled Case Study Analysis, contains a review and analysis of the

design approach used in three documented DSS development cases. For each of the three

cases, a synopsis of the steps employed in the development process is given. The cases

are then evaluated, as proposed in Chapter 3, to determine which methodology would

Chapter 1 Introduction 8

have been most appropriate, and what advantages might have been gained had a different

methodology been employed.

Chapter 5, entitled The DSS for Nurse Scheduling, gives an overview of the

development methodology used in the construction of a nurse scheduling DSS for

Montgomery Regional Hospital. The chapter opens with a discussion of the dynamic

nature of the environment and the constraining factors which influence the hospital's

decision making. This is followed by a detailed account of the DSS and the development

process.

Chapter 6, entitled Summary and Conclusions, provides a summary of the research

results and a discussion of the limitations and possible enhancements to the system.

Chapter 1 Introduction 9

Chapter 2: Nurse Scheduling Literature Review

Introduction

The beginning section of this chapter explains the importance of nurse scheduling

as a means of better utilizing a valuable resource, namely nurses. This is followed by a

discussion of the factors that influence the scheduling task. The second section of this

chaper focuses on the different approaches that have been presented in the literature to

solve the scheduling problem. A review of each method is followed by an analysis of the

limiations and the shortcomings of each of the different approaches.

Chapter 2: Nurse Scheduling Literature Review 10

The Nursing Environment

The increasing cost of health care and the shortage of nurses have become critical

issues in the United States today. The shortage of nurses can be attributed to both

increased demand for nursing services and diminished supply (Easton, et al., 1992).

There are a number of reasons for the increased level of demand for nurses. One reason

explained by Dr. Fitzpatrick, Dean of the Bolton School, is that "advances in medical

technology enable people to live longer. And because hospital patients are sicker now

than ever before, the demand for nurses is greater," (Pross, 1991). This can be supported

by the number of nurses that are now required in acute care hospitals. In 1986, acute

care hospitals required an average of 91 nurses per 100 inpatients, up from 50 per 100 in

1972 (Moran, 1988). Another reason for the increased demand for nurses is the

proliferation of outpatient clinics, along with home care diversification strategies (Easton,

1992). |

The supply of nurses entering the health care profession has also declined. Aiken

and Millinex expect the number of new nurses graduating annually to decrease from

82,700 in 1985 to 68,700 by 1995 (Aiken and Mullinex, 1987). Another issue that

compounds this problem is the approaching retirement age of many of the licensed nurses

(Curran, et al., 1989).

In order to more efficiently utilize the available resources, a flexible and effective

nurse scheduling system needs to be developed. The potential benefits from an effective

scheduling system are innumerable. Currently, the nurse manager and the clerical staff

spend a large number of hours determining a proper nursing schedule. This administrative

function is one of the most expensive for management in terms of time and money

(Eusanio, 1978). In addition to improving the nurses' time management, an effective

Chapter 2: Nurse Scheduling Literature Review 11

schedule has several indirect benefits. Nursing turnover and absenteeism rates are lowered

when the nurses are satisfied with the scheduling system (Melbin, 1968). The quality of

patient care is also increased by a scheduling system that maintains a continual level of

care, rather than a system that just fills in the gaps. In addition, by maintaining a

continuous staffing level, nurses become more acquainted with one another and a greater

level of communication develops, resulting in an effective team atmosphere (Eusanio,

1978).

Scheduling Criteria

A high quality schedule must weigh the goals of both the hospital and the nursing

staff. In order to evaluate a scheduling system several criteria should be addressed. These

criteria include the following:

e Coverage - The schedule must meet the minimum staffing requirements and provide

"even" coverage.

e Schedule Quality - The schedule should meet the nurses’ desires in terms of various

scheduling patterns, including work stretch length, days-off patterns and requests for

days-off

e Stability - The policy should be consistent and enable the nurses to be able to predict

their future work schedule.

e Flexibility - The system must be able to adapt to changes in the work environment.

The schedule should be flexible enough to adjust to changes in the nurses’ shift

preferences, 1.e. full-time vs. part-time, day vs. night.

Chapter 2: Nurse Scheduling Literature Review 12

e Cost - This criterion is two-fold. First, the cost in the development of a schedule

including typing time, management's time, and computer time should be at a minimum.

Second, the cost in terms of the utilization of the available nurses, taking into account

that the various nursing levels have different levels of cost associated with them, must

also be kept low (Warner, 1976).

e Fairness - The "bad" shifts should be distributed in some equitable manner.

The Traditional Approach to Nurse Scheduling

Currently, there are three primary methods of nurse scheduling, they include: (1)

the traditional approach or block scheduling (2) cyclical scheduling, and (3) computer

scheduling (Stevens, 1985). Each of these represents an improvement on the preceding

method. But, all three methods are used today. Although the traditional approach is the

most frequently used, it is the most time consuming strategy. It involves developing from

scratch a schedule for each planning horizon or block, usually four to eight weeks, thus

allowing the nurse manager the flexibility to adapt to any changes in the working

environment. The term "block" originates from the fact that the days to be worked were

often blocked together to form specific patterns, such as the one given in Figure 2.1

(Stevens, 1985). However, the disadvantages to this system are numerous; not only does

it take a considerable amount of time, but it is often very difficult for the manager to

develop a schedule that is considered fair and consistent to all the participating nurses. As

a result, the relationships between the nurses and the nurse manager often become strained

and the manager becomes the "bad guy" if he refuses requests for days-off (Gahan and

Chapter 2: Nurse Scheduling Literature Review 13

RN

A

B

C

X = days worked in the week

Figure 2.1: Block Scheduling
Source: Stevens, Barbara, The Nurse as Executive, 3rd Edition, Aspen Publishers

Inc., Rockville, MD, 1985, pg. 128.

Chapter 2: Nurse Scheduling Literature Review 14

Talley, 1975). Another disadvantage is the lack of consistency in the schedule. The

system does not provide a mechanism that would allow the nurses to be able to predict

what days they would be working in the next planning horizon.

Cyclical Scheduling

The second approach, cyclical scheduling, is an improvement on block scheduling

in that it attempts to alleviate the disadvantage given above by creating repetitive work

patterns for the nurses. Since each nurse has a permanent work pattern he can determine

in advance when he will be on duty. A cyclical schedule consists of repeated patterns of

interwoven schedules. These interwoven schedules are a part of a permanent plan, or a

fixed schedule of usually four to six weeks. A nurse may have a different schedule for

each of the weeks contained in the cycle, but the individual nurses have their own schedule

pattern that repeats without change. An example schedule using the cyclical pattern,

adapted from Rowland is given in Figure 2.2 (Rowland, 1985). The advantages of the

cyclical schedule, once it has been established include the following:

e A drastic reduction in the amount of time the nurse manager spends developing a

schedule. This frees up the manager's time for more personal patient care.

e Favored days-on and off are distributed fairly among all the nurses.

e Individual schedules are known in advance by the nurses, which allows the nurses to

plan their personal activities on the given days-off (Eusanio, 1978).

Chapter 2: Nurse Scheduling Literature Review 15

A Three-Week Schedule for Nursing Unit Staff:

Nurse S S S T

A xX xX

B Xx xX | X

C {|xX{xX X |X |X |X Xx

A Six-Week Schedule for Nursing Unit Staff:

Nurse M|T{[W]T S Ss T

A xX | X xX | X

B X | X Xx X | X

C Xx

M

Xx

x

Figure 2.2: Cyclical Scheduling

Source: Rowland, Howard S. and Beatrice L., The Nursing Administration
Handbook, 2nd Edition, Aspen Publishers, Inc., Rockville, MD, 1985, pg168.

Chapter 2: Nurse Scheduling Literature Review 16

However, a crucial disadvantage to this system is that it lacks the flexibility to

adapt to changes in the environment. This was shown in a survey done by Warner

indicating that out of 13 cyclical scheduling systems, only one survived longer that a year

(Warner, 1976).

Computer-Based Nurse Scheduling Algorithms

The third approach, computer scheduling, has received a lot of attention in the last

fifteen years. Many of the new approaches have focused on solving the scheduling

problem by the use of a heuristic or a mathematical formulation. This section reviews

several of the methodologies that have been presented in the literature. Although, this is

not an exhaustive coverage of the literature, it is a representative one (Easton, et al.,

1992).

Warner's Mathematical Approach

One of the earlier scheduling systems, a mathematical programming formulation

developed by Warner, consists of a modification of an algorithm proposed by Balintfy and

Blackburn to configure a schedule based upon nursing preferences (Warner, 1975). The

system can be broken into two phases, a policy definition phase and a mathematical

programming phase.

Chapter 2: Nurse Scheduling Literature Review 17

The first phase, policy definition, is used to determine the parameters and variables

used in the programming model. These parameters and variables set by the nurse manager

include the following:

e coverage - the minimum number of nurses required for each shift.

e weekend - the number of weekends-off per cycle per nurse.

e rotation - each nurse is classified as "permanent shift" or "rotating shift". If the nurse

rotates, the manager must also set the shifts onto which he will rotate (day to evening,

day to night, or both).

e schedule quality evaluation - Each nurse rates his aversion to certain scheduling

patterns. For example, a nurse would indicate that he is four times averse to a "single

day on" as he is to an eight-day stretch.

e restrictions - Any special restrictions, such as requiring a nurse to work a specific

shift.

e requests for days-off - the requests for days-off or vacations are handled in one of

three ways:

(1) The nurse manager grants or denies the request.

(2) The nurse manager weights each request, the higher the weight the more likely

the nurse will be granted the request.

(3) The weighting in method (2) is done by the nurses themselves.

Once the first phase is complete, the second phase is presented as a multiple choice

programming problem, where each nurse defines a category of variables and each variable

within a category is a potential schedule for the nurse. The program then generates the

alternative schedules with a planning horizon of 14 days and allowing up to three

categories of nurses, e.g. LPN, RN. The model is constructed as follows:

Chapter 2: Nurse Scheduling Literature Review 18

Variables and Parameters:

i= 1,2,....,L the subscript indicating the nurse to be scheduled, the first set, from

1 to R are the RNs and the second set, from R+1 to L are the LPNs.

j= 1,2....J; the subscript used to index the potential 14-day schedules for each

nurse, with i representing the nurse.

Ajj - a 0-1 vector of length 42 (14 days time 3 shifts) indicating the jth possible
schedule for nurse i. An element in the vector with a value of a 1 indicates the

nurse will work the shift, a 0 indicates that he will not work the shift.

1 if nurse 1 is to work schedule A,,

" ~ \0 if not

C;j - the relative value of schedule j to nurse i

k - index used to represent the 42 shift combinations in the scheduling period

E,;, - value of having an extra RN on shift k

F, - maximum additional RN coverage for shift k

S, - Slack variable associated with the kth RN minimum coverage constraint

RN - a vector of length 42 representing the minimum coverage of RNs.

TOT - a similar vector for total coverage (RN + LPN)

0 ifs, =0 - Optimal assignment

g(s,)= 5, if0<s, <F, of slack (extra nurses)

E, (8, -F,) if's, > F,

t, - slack variable associated with the kth minimum coverage TOT constraint

g(t) - the same manner as g(s;,) using values from the TOT coverage

t - a vector of length 42 of which ty is the kth element

s - a vector of length 42 of which sy is the kth element

Chapter 2: Nurse Scheduling Literature Review 19

Objective Function:

Maximize > x CX, + Di[g(s,) + 84)
i=l j=l

Constraints:

R

> >, X;Ay —S= RN (minimum coverage of RNs)

> >, X;Ay-t= TOT (minimum total coverage)

> X,=1, 1,2,...L, (nurse works exactly 1 schedule)

Xij = (Oor 1), i=1,2...L; j=1,2,..Jj

The model was successfully employed at the University of Michigan Hospital and

as a result, the average time to make a six-week schedule had been decreased from 18-24

hours to 1 hour (including 40-80 seconds of CPU time on a IBM 386/67).

Miller, Pierskalla and Rath's Mathematical Programming Approach

Miller, Pierskalla and Rath used a mathematical approach, similar to the aprroach

by Warner, to solve the nurse scheduling problem. They divided the constraints into two

classes: a feasibility set, which defined the set of feasible nurse schedules, and a

nonbinding set, whose violation incurs a variety penalty costs. Although, Miller et al. did

not indicate the mathematical formulations of the constraints, they did give a description

of each set of constraints. The feasibility set, z,, was described as follows:

Chapter 2: Nurse Scheduling Literature Review 20

A nurse works ten days every pay period

No work stretches are allowed in excess of o days

No work stretches of 7 or fewer days are allowed

Satisfy as many as possible, of the constraints we would like to see binding, given the

nurse's special requests

The indexed set of nonbinding constraints, N; included:

No work stretches longer than S; days (where S;< o)

No work stretches shorter that T; days (where 7; = 7)

No day-on, day-off, day-on patterns (101 patterns)

No more than k consecutive 101 patterns

Q; weekends off every scheduling period

No more than Wj consecutive weekends working each scheduling period;

No patterns containing four consecutive days-off;

No patterns containing split weekends (i.e., a Saturday-on, Sunday-off pattern)

the number of nurses scheduled to work on day k is greater than or equal to mx, the

minimum staffing level

the number of nurses scheduled to work on day k is equal to dx, the desired staffing

level for day k

The following steps describe the solution algorithm that finds the near optimal solutions:

1. Determine the set of feasible schedules for each employee, z,. Let ||z,|| denote
the number of schedules in z,.

2. Calculate the schedule pattern costs for each schedule x, € z,, for i=1,..I, where

the cost is calculated as follows:

Chapter 2: Nurse Scheduling Literature Review 2]

Define:

Zin(x!) = the cost of violating nonbinding constraint neNi of
schedule x!;

a,, = the "weight" nurse i gives a violation of nonbinding constraint

neNi.

Aj - the aversion index of nurse i, i.e., a measure of how good or
bad nurse i's schedules have been historically in regard to
preferences.

The total schedule pattern cost to nurse i for a schedule pattern x! is:

A, DY inex, G8in(')

3. Choose an initial schedule mix (i.e., a schedule for each nurse i=1..1) and let
BEST=its cost (e.g., choose the lowest cost schedule from each 7,).

4. Leti=1,K=|[z,

|, k= 1, and cycle = 0.

5. Try the kth candidate schedule, xik, in the schedule mix by temporarily
removing the present schedule for nurse i from the current schedule mix and

inserting x!K_ Let TEST=the cost of this new schedule.

6. If TEST<BEST, go to step 8.

7. Let k=k+1. If k=K+1 go to step 9. Otherwise, go to Step 5.

8. Let CYCLE=0 and BEST=TEST. Insert x! in place of the current schedule

for nurse in the schedule mix. The schedule mix now contains the best schedules

found so far.. Go to step 7.

9. If CYCLE=I, stop. Otherwise, let i=i+1 (if i>I, let i=1) and let K=||z,||, k=1,

and CYCLE= CYCLE+1. Go to step 5.

The schedules generated by the algorithm were compared to actual schedules used

by the hospitals. The results were favorable. The algorithm generated 13 more three and

two day weekends and far fewer split weekends than the hospital. In addition, the

Chapter 2: Nurse Scheduling Literature Review 22

deviation of the desired staffing level from the actual level was as small or smaller than the

hospital's schedule. This approach was employed at a number of hospitals in the United

States and Canada with successful results.

Arthur and Ravindran's Multiple Objective Scheduling Model

Arthur and Ravindran viewed scheduling as a multiple objective problem and

implemented a two-phase goal programming approach to solve it (Arthur and Ravindran,

1981). Before the first phase begins, the weekend shifts are assigned based upon the

nurse's individual preferences and hospital policy. The first phase then assigns the nurses

their days-on and off schedules with a goal programming model. The objective function

prioritizes the following four goals: (1) minimum staffing requirements, (2) desired

staffing requirements (3) nurses’ preferences, and (4) nurses' special requests. The results

of phase one indicate what days the nurses should work but not which shifts. The second

phase uses a heuristic procedure based upon the nurses' shift requirements to determine

the overall schedule. To better, illustrate the model, an example of the goal programming

model for a unit of four nurses and a planning horizon of one week is given below.

Variables and Parameters:

_ Jl ifnurse iis to work the jth day

* lo ifnot

d, - the positive deviation corresponding to the kth constraint

d, - the negative deviation corresponding to the kth constraint

Chapter 2: Nurse Scheduling Literature Review 23

a; - represents the number of points that RN number i assigned to the day-off/day-

on/day-off schedule pattern on the individual preference form

mj - represents the total minimal RN requirement for all three shifts on day j

nj - represents the total number of RNs desired for all three shifts on day j

P;, - the weight of the priority given to the kth constraint

N - represents the total number of nurses

sj - represents the shortage cost assigned to day j

Assume the following special requests and weekend assignments given in Table 2.1.

Table 2.1 Special Requests:

Special Requests | Weekend Requests

RN Number] Day | Request | Sunday | Saturday

1 F Off On Off

2 F On Off On
3 Ww Off Off On
4 On Off

Objective Function:

5

MIN Z=P, o sd,)+P,(d; +d, +d,)+P,(a,d, +a, +a,d,, +a,d;,)+
j=l

P, (a,d,, + and, +a,d,, +a,d\,) + P, (a,d), + ad, +a,d), +a,d>,) +

P,(€,d,, + A,dy, +,d;, + ,d,,) + P, (dj; + dy, +d, +d, +3, +dyy)

Constraints:
4

» X,,+d;-d; =m, forj=1,2..5 (minimum staffing requirements)
i=]

-X,,+d;-—d;=0 (request by nurse 1 for day 5 off)

Chapter 2: Nurse Scheduling Literature Review 24

-X,,+d;,-d;=0 (request by nurse 4 for day 3 off)

X,,+d, —d; =0 (request by nurse 2 to work day 5)

5

» X,, =5 fori=1,2,..N (each nurse must work exactly 5 days)
;

the following constraints are in regard to the nurse 1's preferences to the day

off/day on/day/off schedule patterns, assuming he is working Sunday and is off on
Saturday:

X,- X12 +d, —d; =0

-X,,+X,,-X, +d,,-d,, =-1

-X,,+X,,-X), +d,,-d\,=-1

-X,,+X,,-X,;+d, -dj, =-1

the following constraints are in regard to the nurse 2's preferences to the schedule
patterns. Note: nurse 2's constraints vary due to the different weekend
assignments.

-X,,+X,,-X), +d;,-d), =-1

-X,+Xj;-X, tdy-dé=-1

~X,,+X,,—-X,,+d4, -d, =—1

-X,,+X,,+d,-d, =0

The constraints corresponding to nurse 3 and 4 are similar to nurse 1 and 2's

preference constraints.

Chapter 2: Nurse Scheduling Literature Review 25

The following constraints apply to the desired staffing levels:
4

>, X,, + 45.; -Us.j =; , for j= 1,2..5
i=]

5 4 5

—Y YX, +d, -d3, =-Din,
j=l j=l i=l

Having determined which day each of the nurses will work, the next phase is to

determine the corresponding shifts for the scheduled days. The following steps describe

the heuristic used to schedule the shifts.

1. Assign those nurses who work only one shift.

2. Assign shifts to the nurses who rotate between two shifts

A. Evaluate the minimum requirements for the two shifts.

B. Assign the nurse to the shift with the largest unattained minimal requirement.
If the minimal requirements are met the desired levels are then compared.

3. Assign shifts to the nurses who rotate between three shifts.

A. Evaluate the minimum requirements for the three shifts.

B. Assign the nurse to the shift with the largest unattained minimal requirement.
If the minimal requirements are met the desired levels are then compared.

The scheduling algorithm was developed with the assistance of the Wishard Memorial

Hospital and the Health and Hospital Corporation of Marion County in Indianapolis,

Indiana. However, there is little indication to suggest that the system was employed by

the hospital.

Chapter 2: Nurse Scheduling Literature Review 26

Musa and Saxena's Goal Programming Approach

Musa and Saxena also used a goal programming approach to address the

scheduling problem (Musa and Saxena, 1984). Their method used the following single

phase model:

Variables and Parameters:

_ (if nurse i is to work the jth day

"0 ifnot

d;* - the positive deviation corresponding to the kth constraint

d;- - the negative deviation corresponding to the kth constraint

Dj - the contracted number of days the ith nurse works

DLj - the desired number of LPNs required for day j -

DR; - the desired number of RNs required for day j

k - index the constraint

Lj - the minimum number of LPNs required for day j

m - the total number of constraints:

M - number of days in the planning horizon

N - number of nurses

P,,- the weight of the priority given to constraint k

Rj - the minimum number of RNs required for day j

Objective Function:

MIN Z=>> P,(d, +4;)
k=)

Constraints:
M

> X,,+4 -d; =D, fori=1,2..N (contracted number of hours for nurse i)
j=l

Chapter 2: Nurse Scheduling Literature Review 7

N

> X,, +4; -dj =R, forj=1,2.M (minimum number of nurses for day j)
i=]

N

X,,+d, —d; =L, forj=1,2..M (minimum number of nurses for day j)
]

z

> X,, +d, -d; = DR, forj=1,2..M (desired number of nurses for day j)
i=]

>» X,, +d, -dj = DL, forj=1,2..M (desired number of nurses for day j)
i=]

for each full time nurse (1)
7

> X,, +d, —4 =5 (each full time nurse has two days-off in the 1st week)

4
» X,, +d, -d; =5 (each full time nurse has two days of in the 2nd week)
j=8

for each full time nurse, who prefers the first weekend off (1)

X,,+X,,+d, -d, =0 (attempts to assign the 1st weekend off)

for each full time nurse, who prefers the second weekend off (1)

Xi3t+Xi4+d, -d; =0 (attempts to assign the 2nd weekend off)

for each part time nurse, who prefers the first weekend off (1)

Xi6+X,,+d, —d; = (attempts to assign the 1st weekend off)

for each part time nurse, who prefers the second weekend off (1)

Xii3+Xn4+d, —d; =0 (attempts to assign the 2nd weekend off)

Musa's model allows the nurse manager to set priorities on the following goals: (1) for

each nurse to work the contracted number of hours (2) to meet the desired staffing

requirements (3) to satisfy the weekend preferences for the full-time nurses, and (4) to

satisfy the weekend preferences for the part-time nurses. Musa et al. took a different

approach from Warner's in considering nurses' preferences. Previously, the nurses'

preferences were based on their aversion to different scheduling sequences, Musa, on the

other hand regards their preferences in terms of which weekend out of the two available

Chapter 2: Nurse Scheduling Literature Review 28

they would prefer off. An example problem, with 154 decision variables and 120

constraints was run on a UNIVAC 1100 with a resulting CPU time of 28.3 seconds. This

methodology is limited, for it only determines the day the nurse's should work and does

not determine the corresponding shifts.

Conclusions

The traditional and cyclical approach to scheduling do not provide a mechanism,

other than by hand, of calculating statistics on the nurses. This includes such statistics as

the number of nurses working each shift, the number of holidays taken, and the number of

unexcused absences. A decision support system would provide a variety of capabilities

including a mechanism to calculate these statistics. The other capabilities that a DSS

could provide include, a feature to better save the schedules for the future, rather than

simply saving the schedule on a sheet of paper, and a database to quickly access the

nurse's records.

All of the mathematical models presented above limit the nurses to eight-hour

shifts and do not provide the versatility to enable the nurse manager to schedule a variety

of shift lengths. Although it is possible to modify the formulations to accomodate for

four, eight or twelve hours shifts, the computational effort for the current formulations is

already significant and further subdividing the shifts will increase it significantly. The

eight-hour shift as been the most common scheduling pattern, yet many hospitals, in order

to improve job satisfaction, have developed twelve-hour shifts (Atwood and Hinshaw,

1977). Studies on the effect of twelve-hours shift have indicated nurse satisfaction by, the

general preference for the twelve-hour shift, the increased morale, the additional leisure

Chapter 2: Nurse Scheduling Literature Review 29

time and the feeling of providing more efficient patient care (Vik, 1982). Thus, it is

important to have a scheduling system that is flexible to easily incorporate a variety of shift

lengths.

All the mathematical models, except Warner's provide limited schedule details.

Either the specific shifts are not assigned or they are assigned through a second procedure.

Using separate procedures, independent of the day assignments, to assign shifts to the set

days assures suboptimal solutions. The models, when computing the scheduled work days

do not account for the effect the different time patterns may play on the overall schedule.

For example, a nurse would not work a night shift followed immediately by a day shift.

The shift effects are not independent factors and should be considered when the schedule

is determined.

A DSS can provide the flexibility that is needed to support the nurse manager. It

could allow the nurse manager to offer a variety of shift lengths. A DSS could also

provide the nurse manager with a user friendly atmosphere to develop alternative

schedules and maintain statistics on the nurses' work history. By maintaining statistics on

past schedules, such as number of weekends, holidays, vacations, etc., the nurse manager

would be able to make better informed decisions on future schedules. The DSS could help

to ensure that vacations, weekends and holidays are distributed in an equitable manner. In

addition, a DSS could provide statistics on the number of nurses worked during the

various shifts. A DSS could provide the necessary flexibility to accommodate all of these

issues.

Chapter 2: Nurse Scheduling Literature Review 30

Chapter 3: Decision Support Systems Design

Introduction

In the past, the systems development life cycle (SDLC) has been the traditional

method of decision support system design. However, in the last decade several design

approaches have been introduced which focus on an increased level of user involvement.

These approaches include Courban's iterative design, Keen's adaptive design, prototyping

and a number of mixed methodologies integrating prototyping into the SDLC.

This chapter addresses several areas related to decision support development.

First, the main decision support development strategies are summarized and contrasted.

Second, an alternative methodology, titled priority design, is proposed. This is then

followed by a review of a variety of guidelines for the development of a DSS. Lastly, a

guided search is proposed for the selection of a development methodology based on the

project's characteristics and the operating environment.

Chapter 3 : Decision Support Systems Design 31

Decision Support Systems

To assist management in its decision making process, companies have invested

large amounts of time and money in decision support systems (DSS) (Pracht and

Courtney, 1988). The increasing interest in DSS is due to the inability of traditional

management information systems to aid in solving semi-structured and ill-structured

problems (Sprague and Carlson, 1982). Unlike other operational information systems that

collect, manipulate, and distribute information, DSS are designed to work with managers

as they develop their decision strategy and arrive at a solution.

The goal of a decision support system is to assist managers in solving semi-

structured problems by generating a range of alternative solutions so that managers can

better understand the options that are available to them. Although there is no universally

accepted definition of a DSS, one definition given by Keen and Scott-Morton is as

follows: "Decision support systems couple the intellectual resources of individuals with

the capabilities of the computer to improve the quality of decisions. It is a computer-

based support system for management decision makers who deal with semi-structured

problems." (Keen and Scott-Morton, 1978) Three major characteristics that better

describe the features of a DSS include:

1. DSS incorporate both computational models and data,

2. They assist managers in solving semi-structured problems,

3. The user interface is interactive and user friendly.

These characteristics aid the DSS in providing the capability to provide a valid

representation of a real world system and to evolve as the decision maker learns more

Chapter 3: Decision Support Systems Design 32

about the problem. This enables the user to explore a range of decision-making

alternatives and their consequences.

Design Approaches

The design and implementation strategy are crucial to the success of a decision

support system. Several methods have been proposed to develop information systems

over the years. The earliest formal method, called the traditional systems development life

cycle (SDLC) approach is still widely used. Other, more recently proposed methods,

include iterative design, prototyping, evolutionary development and heuristic

development. These methods may partially or completely replace traditional systems

development in many applications. This section provides a brief overview of each of these

methods.

Traditional Systems Development Approach

The traditional framework for information systems development during the past

thirty years has been the system development life cycle, consisting of a series of sequential

phases illustrated in Figure 3.1. The primary purpose of this life cycle is to provide a

| highly structured and controlled method of system development. In the first phase,

analysis, the developer works with the user to study and define the system's requirements.

In the second phase, design, the system is constructed on paper. Approval, from the user,

for the proposed system is required in order to proceed to the next phase, development.

Chapter 3 : Decision Support Systems Design 33

ANALYSIS

’
DESIGN

Y
DEVELOPMENT

.
IMPLEMENTATION

Figure 3.1: The Traditional Systems Development Life Cycle

Chapter 3: Decision Support Systems Design 34

Generally, once the system has been approved and development has begun, no changes to

the system are permitted until the final phase, implementation, has been completed (Burns

and Dennis, 1985).

The traditional systems development approach has been the subject of much debate

by both academicians and practitioners (Cerveny, et al., 1986). Three primary criticisms

of this approach include:

1. the large amount of time and money the development cycle requires,

2. the limited amount of communication between the user and designer, and

3. the inflexibility of the design phase.

To reduce the errors in system design, the traditional approach recommends a high degree

of formalization. Formal sign-offs, or agreements between the user and the developer are

required to mark the completion of each stage and a formal division of labor between the

user and the developers is also emphasized. This high level of formalization results in an

increased level of bureaucracy. Generating the paperwork and the large amount of

specifications, and the sign-off documents are very time consuming and costly and may

delay the installation of a system for several years (Laudon and Laudon, 1993).

SDLC has several additional limitations and makes assumptions about the user that

are not always valid. The methodology assumes that the user understands at the onset of

the design process, what the problem is and what the desired system characteristics and

capabilities are. However, this is not always the case. It has been noted that 60-80% of

the failures can be traced to an inadequate understanding of user requirements, by either

the designer or by the user, when the user approved the initial system design (Boar, 1984).

In addition, SDLC does not encourage user/designer interaction that would

promote the concurrent learning process between the user and designer. (Cerveny, et al.,

1986) Communication between the developer and the user is primarily limited to the

Chapter 3 : Decision Support Systems Design 35

Analysis Phase. During the Development stage, the designer consults with the user only if

some specifications are unclear. Rarely are there system performance reviews, which

would enable a user to see the progress to date. In addition, the user is not allowed to see

the system or make suggestions for improvements until the entire system is complete.

Figure 3.2 illustrates the phases of the development life cycle indicating where the user is

involved in the design process. From the figure, it can be noted that the user is involved in

only a small portion of the life cycle and only at the end of the cycle is the user allowed to

make changes. This makes enhancements inefficient and costly. The traditional method is

best suited to applications that are well-defined. In this type of application, the user

knows, to a large extent, the requirements of the system and can successfully convey these

ideas to the developer.

Iterative Design

Courban and Bouirgeois suggested an iterative or evolutionary strategy in which

the designer first builds a small system or module that addresses a small portion of the

overall problem, and then expand it in cycles (Courban and Bourgeois, 1980) This enables

the user to be kept abreast on the status of the system, and provides the user with the

capability to make changes throughout development. The iterative development process

consists of the following four primary steps:

1. Identify an important module of the system, which is of high interest to the user.

2. Develop a small system that is appropriate for end-user development. This enables

the user to contribute simple ideas and facts to individual modules and not be

Chapter 3 : Decision Support Systems Design 36

ANALYSIS

v

DESIGN

sete ct een een ee enab ene reaeenenee erent

Specifications
User

Involvement

 Feasibility

Logical Design

v

DEVELOPMENT

 Physical Design

Programming

v

IMPLEMENTATION

Testing

Orientation User
Involvement

System Use (———_——- User
Involvement

 Maintenance

Figure 3.2: User Involvement in the Traditional Systems

Chapter 3: Decision Support Systems Design

Development Life Cycle

37

concerned with the overall organization of the modules or their relationships in the

system.

3. Expand and modify the system in cycles. Each cycle goes through the traditional

life cycle phases including analysis, design, development, and implementation. At this

step there is a large degree of communication between the user and analyst to

determine the characteristics of the desired system.

4. Evaluate the system constantly. The user's continuous evaluation of the process

normally results in a satisfactory system (Courban and Bourgeois, 1980).

An important benefit of this approach is the increased amount of user involvement

early in the design phase of development. Continuous user involvement is assured as

additional modules are added, each requiring analysis, design, development, and testing.

However there are several drawbacks to this strategy. While the iterative approach has

improved the development and usability of the system (Alavi and Mullinex, 1984) it is not

always easy to implement. For example, if the time frame is short the designer may not be

able to respond quickly enough, especially if the variety of information is large. Also, if

the time frame is short it is important that the system have some incremental value to the

user. In other words, the completion of the initial module should be of some use and

importance to the user. In addition, if the goals and perceptions between the user and the

developer or between multiple users are not similar, it may take several iterations before a

satisfactory system can be reached (Sauter and Schofer, 1988).

Another drawback to this approach is that the development of the system stems

from one significant module. This requires that important decisions be made, based on the

current module, which may not be efficient or applicable to the system later in the

Chapter 3 : Decision Support Systems Design 38

development life cycle. As a result, large portions of the system may need to be

reconstructed and the resulting system may not be efficient.

Keen's Adaptive Design

The design of a DSS is not a one-step process, but is an iterative process. At each

iteration the designer and user must interact at various phases of the design process. Keen

summarized the design phase in terms of a cycle in which the analyst provides "quick

delivery of an initial system to which users can respond and thus clarify what they really

want," (Keen, 1979). Keen's adaptive design approach is based on the assumption that a

final system can most effectively be developed through an adaptive process of learning and

evolution. An adaptive design means that the system can adapt to the user's changing

requirements.

The first phase in Keen's design framework, illustrated in Figure 3.3, is defined as

the predesign cycle, and its major objective is to ensure that the correct problem is

addressed. The right hand side of the predesign cycle defined as entry, shown in Figure

3.4, is what Keen defines as the steps of the implementation process. This process focuses

on: "building momentum for change and developing a 'contract' for action that involves

realistic, mutual expectations and commitment among the parties involved" (Keen, 1978).

The first stage in the entry portion of the predesign stage is to identify the degree of

commitment to the project determine the key ideas and perspectives. Once these have

been established, the objectives for support need to be defined and resources identified.

At this point the developer should be able to create a number of alternatives and

operationalize the goals, costs and benefits.

Chapter 3 : Decision Support Systems Design 39

Design

Interface

Y
Check Out

Predesign
> Cycle

Y

Operationalize
Design

Objectives

v
4

Identify

imperatives

Define

Database

v

Y

Usability human
engineering,

etc.
Assign

Priorities

Define
Collection

Maintenance
Procedures

y
Y

Design Initial

Routines

Design
Management
Software

vvY

i
Test System
Release when

Robust

y

 Make
Adjustments

. er
Preliminary Use

Assess System
in relation to

objectives

y
 When complete

Repeat Predesign

Figure 3.3: Keen's DSS Design Cycle
Keen, P.G.W. and M.S. Scott-Morton, Decision Support Systems: An

Organizational Perspective. Reading, MA: Addison-Wesley, 1978.

Chapter 3: Decision Support Systems Design 40

Decision Analysis

Monitor and

Decision Process

!
Determine Key

Decisions

Define Normative

Models

!
Compare

Descriptive and

Normative Models

!
Select Areas of

Support

Entry

Describe Current <———

Identify -degree of commitment

key ideas and perspectives.

Build momentum for change

| A

Define Objectives

for Support Effort

Identify Resources

Available

Design Alternatives. Operationalize

goals, costs and benefits. Identify

constraints on implementation

Design

Stage

Figure 3.4 Keen's Predesign Cycle
Keen, P.G.W. and M.S. Scott-Morton, Decision Support Systems: An

Organizational Perspective. Reading, MA: Addison-Wesley, 1978.

Chapter 3: Decision Support Systems Design 41

The next process of the predesign phase is described as decision analysis. The first

phase in this process is to monitor and describe the current decision process. The key

decisions must then be determined. The next phase is to define the normative models that

are the proposals for change, that indicate the potential range of designs. Once the

normative models are defined, they need to be compared to the descriptive models. This

is in essence comparing the measure of payoff with the difficulty of implementation. The

final phases in the predesign cycle focus on first defining the areas of support and then

redefining the objectives and goals. Once the goals are defined and there still exists a

commitment to the project then the design can be implemented.

Once the predesign cycle has been completed, the next phase of the design

_ framework or cycle is to operationalize the design objectives. In the predesign phase the

objectives were fairly broad, now they must be more precise in terms of identifying the

main criteria. Once this has been completed, the imperatives or commands, must be

identified and priorities set for the various routines. Many of the needs of the user can be

described by a set of verbs, which is often common in many other systems. Imperatives

such as Plot, Display, Table, etc., can easily be identified. The design of the imperatives is

only one portion of the design process of a typical DSS. Keen suggests that the design

process involves three separate areas: the imperatives, the user interface and the data

base. Once these items have been established, the initial design routines can be

constructed and the system tested for robustness. When the system is found robust, it

then can be implemented and preliminary adjustments can be made. Following some

preliminary use, the system is then assessed in relation to the objectives and adjustments

made accordingly. In order to maintain an evolutionary design structure the predesign

cycle should be repeated to keep up with changes in management's decision process.

Chapter 3 : Decision Support Systems Design 42

Keen's approach was employed in the development of a DSS for the conversion of

a job shop system to a cellular manufacturing system (Durmusoglu, 1993). Durmusoglu

found that Keen's approach of developing the user interface, the database and the models

independently made the system easy to modify and the enhance, which allowed the system

to evolve without difficulty.

Keen's adaptive design was also used in the development of an online retail

banking DSS (Omar, 1991). It was found that the adaptive process "stimulated the

learning of the users and their understanding to what the system might offer. This resulted

in active participation and constructive feedback that helped expand the system's

capabilities and the range of its uses" (Omar, 1991).

Prototyping

One of the shortcomings in the traditional systems development life cycle method

has been the assumption that the user understands and can describe the systems

requirements. Prototyping attempts to alleviate this problem by first developing and

presenting to the user, a working model that encompasses the essential elements of the

desired system. After development, the prototype is evaluated and revisions and

enhancements are recommended for the system. The prototype is then redeveloped and

presented again to the user. This process of analysis, design, coding and implementation is

repeated several times until a satisfactory system is developed. This repetitive approach

increases the amount of communication between the user and the developer and enables

the user to visualize the entire system at each iteration.

Janson et al. categorized three types of prototypes: real life, simulated and real

life/simulated (Janson and Smith, 1985). The real life prototype is a full-scale

representation of the basic design using the technology that is intended to be used for the

Chapter 3 : Decision Support Systems Design 43

final system. The primary purpose of this type of prototype is to verify the soundness of

the design and to ensure that the design specifications are met. The simulated prototype is

constructed using technology that is not going to be used for the final design. This

prototype is not intended to show how the model will work in real life, but to provide an

understanding of the proposed design concepts. The real life/simulated prototype is

constructed partially with real life or final design components and partially with simulated

components. Thus, the prototype shows how parts of the final design work in real life and

also provide insight into why the design works (Janson and Smith, 1985)

Naumann et al. described prototyping as a revolutionary process rather than an

evolutionary process consisting of four principle stages, illustrated in Figure 3.5 (Naumann

and Jenkins, 1982). The first stage is to identify the user's basic information requirements,

which can be accomplished by implementing one of the following two distinct approaches,

the data abstracting approach and the process simulating approach. The data abstracting

approach suggests that emphasis should be placed on the essential characteristics of the

data and the data relationships. Konsynski describes the data abstracting approach as a

new system design paradigm, in which determining the requirements means constructing a

model of the relevant data (Konsynski, 1981). The process simulating approach, on the

other hand, assumes that both data and model processing must be emphasized. However,

it is important to note that both of these approaches place little emphasis on completeness

at this stage (Naumann and Jenkins, 1982).

The second stage is to develop a simple working prototype, which should be

implemented in a very short time. McCracken suggests that a running prototype should

not take more than a day or two (McCracken, 1980). The initial prototype should not be

considered a completed system, but is generally a simulation that represents the essential

elements of the system desired by the user. The third phase and fourth phase include the

Chapter 3 : Decision Support Systems Design 44

Identify

— basic

Develop

 Y

requirements

— working prototype

Next Version

> Implement and

Use
<

Problems & Misfits
Revise and

Enhance

Figure 3.5: Prototyping

Chapter 3: Decision Support Systems Design 45

implementation and use of the prototype system and then the revision and enhancement of

the system. Both of these phases should be repeated until a satisfactory system is

developed. | One problem with the prototyping approach is that it often produces less

efficient systems than the traditional method (Alavi and Mullinex, 1984). This decrease in

efficiency is partially due to the lack of initial analysis and design and to the less efficient

nature of some of the software tools used (Burns and Dennis, 1985). Kraushaar presents

another criticism of the prototyping process indicating that the approach does not clearly

show the potential relationship between prototyping and alternative development

approaches within the same project (Kraushaar and Shirland, 1985). Kraushaar addresses

this problem by considering the application development and prototyping as a state-

transition process shown in Figure 3.6 (Kraushaar and Shirland, 1985). The state-

transition approach indicates that each transition requires its own development process,

and that the application development methods such as prototyping can be viewed as

transitions between system states. This type of prototyping approach is appropriate for

application projects that are generally developed by information specialists and/or end

users and is not recommended for well-defined problems, or when development

experience on similar projects is extensive.

Another problem with the prototyping methodology is that to be successful,

prototyping requires short turn around times between the user request and the prototype

implementation (Ress and Currie, 1993). In addition, there is a tendency for the user to

accept the initial version of the system as the final product (Dennis, et al., 1987).

Ress and Currie applied the prototyping strategy in the development of an expert

scheduling decision support tool. They found that although prototyping appears simple, in

practice it could become complex if the steps are not followed in sequence (Ress and

Chapter 3 : Decision Support Systems Design 46

t=0

t=1

t=

t=n-1

State

#0

y transition #1

State

#1

transition #2

State

#2

transition #N-1

G
o
o

State
#N-1

v transition #N

State

#N

Chapter 3: Decision Support Systems Design

Existing System <—_

Prototype #1

Prototype #2

Prototype #N-1

Operational Systentj-———_

Figure 3.6: A State-Transition Model for Application

Development and Prototyping

47

s
S
o
m
r

T
H
B

Ha
AI

#n+1

Currie, 1993). They also noted that it was importatn when constructing the prototype to

remember that prototyping is a repetitive task and not everything has to be accomplished

in the first loop.

Mixed Methodologies

Several methodologies that incorporate prototyping into the traditional

development life cycle have been discussed in the literature. One method suggested by

Berrisford et al., is to incorporate a design/develop output step into SDLC. Berrisford

found a major flaw exists in the design phase of SDLC. The design phase assumes that

management knows what information is required (Berrisford and Wetherbe, 1979).

Prototyping attempts to alleviate this problem, by enabling the developers to heuristically

define the user's information requirements while developing an output system. Berrisford

recommends that a "Heuristically Design/Develop Output System" phase be integrated

between the Analyze and Design Phases of the SDLC. Thus the design and development

of an input system will be accomplished after the development of an output system.

Another mixed methodology, phase design, has been proposed by Dennis et al.

(Dennis, et al., 1987). The first step in this approach is the sequential development of

each major subsystem. The entire system is designed at a coarse level of detail. The next

step is to sequentially refine each subsystem. The refinement requires each subsystem be

presented to the user, refined, and approved before the next subsystem is designed in

detail (Burns and Dennis, 1985).

Chapter 3 : Decision Support Systems Design 48

Guidelines for Constructing a Decision Support System

Once an appropriate design strategy has been selected, the steps involved in the

construction of the decision support system become an important, integral part of the

development process. To clarify the information requirements, Sprague and Carlson have

developed a framework for DSS analysis, called the ROMC approach (Sprague and

Carlson, 1982). This approach identifies four components that every DSS contains.

Similarly, Kroeber suggests answering a number of preliminary questions before the design

process begins, to ensure the successful completion of the DSS. In addition, to simplify

the construction process, Keen and Gambino have assembled a list of twelve rules of

thumb for building a DSS (Bennett, 1983).

The ROMC Approach

The Representations, Operations, Memory Aids, and Control Mechanisms

Approach, or simply the ROMC Approach, developed by Sprague and Carlson, is a

systematic development approach to assist in the construction of a DSS. These four

components, ROMC, which are described below, define and constitute a specific DSS.

e Representations - The representations are the schemata used to display the data and

operations to the user. Every DSS requires representations to aid the user in

conceptualizing and interpreting the problem. Examples of representations include:

lists, graphs, icons, windows, spreadsheets, and organizational charts (Carlson, 1979).

e Operations - The operations are the procedures required to create representations and

process data. Examples of operations include: plot data, analyze, generate reports,

generate statistics on alternatives, and simulate results of alternatives.

Chapter 3 : Decision Support Systems Design 49

« Memory Aids - Memory Aids assist the user in linking the representations and

operations. The following are some examples: database, function key labels, rolodex

card files, and note pads.

e Control Mechanisms - The mechanisms used to control and operate the entire system,

thereby, integrating the previous three components into one system. Some examples

of control mechanisms are: menus, function keys for operation selections, windows,

help comments and tutoring.

The ROMC approach is not a step-by-step procedure, but describes the characteristics and

capabilities that a DSS needs to have. It can be incororated into many of the design

methodologies, inlcuding Keen's adaptive design. The ROMC approach conceptualizes

the requirements of the user into components, that should be integrated into the DSS.

Kroeber's Guidelines

To determine if a Decision Support System is the appropriate solution to the

problem and to help ensure that the DSS is successfully implemented, Kroeber

recommends addressing the following questions before proceeding to design the DSS.

Is there a need for a DSS and will it enhance the decision maker's effectiveness?

Do the benefits of the DSS outweigh the cost of the development?

Is there time available for approval of the system?

e Does a champion exist?

Before a decision support system is constructed, the developers and the organization must

first establish the need for a DSS. The purpose of a DSS is to support the organization's

decision making tasks. The DSS that is ultimately constructed should support the

Chapter 3 : Decision Support Systems Design 50

organization in this area. Otherwise, it would be pointless to construct the DSS. Even if it

were to be developed, management would not employ the tool because it did not help

them in the decision making process. The next issue that should be addressed is the cost

trade-off. The cost of the DSS needs to be justified by the increased efficiency or

effectiveness of management's decision making process. If the organization cannot justify

the cost of the system, the organization may want to look into other avenues to address

the problem.

For the DSS to be successful there must be time for the organization to approve

the system and to make any necessary adjustments to it. If there is not time for

management to approve the system, management may find that the system does not meet

its needs and resent the fact that it was thrust upon them without their approval. In

addition, management is less likely to adopt the system. The final requirement is the need

for a champion. The DSS needs to have at least one person, who believes in the value of

the system and is willing to champion the project. This person must be available to meet

periodically, with the developer, to assist in any questions that may arise during the

development process. This champion would also motivate the other users to employ the

system. The DSS will not be successful unless someone is willing and able to support and

promote the project.

Keen and Gambino's Guidelines for Constructing a DSS

Keen and Gambino have developed a list of rules of thumb to aid in the design

process. The list is composed of the following items:

Chapter 3 : Decision Support Systems Design 51

1. Design the dialog first.

a. Define what the user says and sees.

b. Define the representation of data.

c. Adopt a system model which matches the user's conceptual model.

2. Identify the user's special-purpose verbs.

3. Identify generic verbs relevant to this DSS.

4. Translate the verbs into commands, and vice-versa.

5. Check public libraries for off-the-shelf routines.

Set priorities for implementing commands for Version 0.

4

om

Support first, extend later.

8. Deliver Version 0 quickly and cheaply

a. Evolve a complex DSS out of a simple Version 0.

b. Version 0 is intended to establish value and to sell itself.

9. Pick a good user who:

a. Has substantial knowledge of the task,

b. Has intellectual drive and curiosity,

c. Will take the initiative in testing and evolving Version 0, and

d. Enjoys being an innovator.

10. Recognize data management, rather than commands, as a main constraint.

11. Remember that Brooks is right - programming is 10% of the effort.

12. Know your user at all times. (Bennett, 1983)

The guidelines can be divided into three phases, with the first phase focusing on

the development of a preliminary, working system or prototype, which Keen refers to as

Version 0. Keen recommends that the first step in the construction of the prototype is to

Chapter 3 : Decision Support Systems Design 52

determine the dialogue or user interface, and the representation of the data. The next

stage in the development of the prototype is to identify the verbs, the actions or

commands that the user would like to see. For example, list, rank, and histogram are

generic verbs that are commonly found in decision support systems.

The second phase of the guidelines centers on soliciting the user reaction to the

prototype. At this stage the prototype is not bug-free, but, should be able to give the user

an overview of the system and the representation of the data. The qualities that Keen

recommends a developer consider when choosing a user to promote the system are listed

in Rule 9.

The third phase of the guidelines focuses on converting the system into a product.

The developer must now deal with the construction of the system as a product, including

such issues as technical support, documentation, training, and cost. Rule 10 in the above

list refers to the area of data management, an area which Keen found significantly adds to

the system overhead. In the development of the prototype, the data is gathered in a loose

or ad-hoc manner, so that the value of the DSS can be established. Once the system is

justified, the required investment can be made into the development of the DSS/Data Base

link (Bennett, 1983).

The first phase of these guidelines is more applicable to the prototyping and mixed

design methodologies. The rapid development of a working system, supports the

prototyping strategy, as opposed to the iterative or traditional strategies. However, the

remaining two phases of the guidelines can be applied to all of the design methodologies.

The guidelines for the selection of a supporting user and other guidelines dealing with the

construction of the DSS can also be employed in each of the methodologies.

There is some overlap between Kroeber's guidelines and Keen's predesign cycle

and Keen and Gambino's development guidelines. The issues of need and cost benefit

Chapter 3 : Decision Support Systems Design 53

analysis, presented by Kroeber are further developed in the entry phase of Keen's

predesign cycle. Furthermore, the need of a champion also presented by Kroeber 1s given

greater detail in Keen and Gambino's development guidelines. Kroeber's guidelines and

many of the phases of Keen's predesign cycle should be employed before the development

of the DSS begins regardless of the design methodology that is to be used. However, it

should be noted, that all of the steps of the predesign cycle are not appropriate for all

types of DSS. For a small scale system, with low complexity the large amount of time and

detail given to the analysis of the project is often unnecessary.

Priority Design Methodology

Introduction

All of the development methodologies have a number of shortcomings that arise

when used in different operating environments. For example, when there is significant

user involvement and the environment is not uncertain, all of the methods presented have

some drawbacks. Both prototyping and adaptive design require that a prototype be

constructed. In an environment that is not uncertain this is unnecessary. An alternative

methodology, called priority design is proposed. Although, similar to Keen's adaptive

design it addresses some of these shortcomings that may be found when used in different

operating environments.

Chapter 3 : Decision Support Systems Design 54

The Steps to the Priority Design Methodology

The Priority Design methodology focuses on determining, early on in the

development process, a priority list of items and requirements for the system. This list will

enable the developer to have a better idea of what aspects of the system the user considers

most important to the success of the DSS and will allow the developer to focus on the

development issues that are most important to the user. In addition, the design

methodology, illustrated in Figure 3.7 contains a feedback loop that allows the developer

to communicate to the user the cost and development time required for each of the items

on the priority list. The steps of the priority system methodology are as follows:

Step 1. Define the minimum requirements.

The first stage of the development is to establish what the user defines as the items

of highest priority or the minimum requirements for the partial system. Keen's predesign

cycle is recommended as one alternative approach for determining these requirements

(Turban, 1992). The requirements should be technologically feasible. Although the user

may be unclear of the capabilities of the system and all of the requirements, he should be

able to identify the essential components. These components define the necessary

boundaries for the system.

Step 2. Develop a Simulation Prototype

To assist the user to fully define and conceptualize the problem, before

development of the actual system begins, a simulation prototype should be built. The

prototype need not employ the technology that the actual system will be constructed with,

but should aid the user in visualizing the actual system. In fact, the simulation prototype

may not even perform actual operations, such as data retrieval or model solution. It

Chapter 3: Decision Support Systems Design 55

Establish Minimum

Requirements

v

Develop a Simulation

Prototype

Developer

Evaluation

v

Construction of User's

Priority List

v

Partial System

Development

v

Implement

System

Figure 3.7: Priority Design

Chapter 3: Decision Support Systems Design 56

primarily displays the user interface and the data that is available. This step will aid the

user in clarifying the true requirements for the system. This simulation prototype should

be created quickly, one to two days if possible.

Step 3. Develop a Priority List

Having been able to better visualize the system characteristics and its capabilities,

the user should now be able to construct a priority list of suggested requirements and

enhancements for the system. The requirements that management considers most

important and beneficial to the overall system should be given the highest priority and the

minor "extras" should be given lower priorities.

Step 4. Developer Evaluation

The developer should then go over the user's "wish list", evaluating the time and

expense it would take to meet each of the user's requests and adding suggestions that may

enhance the system. With the growing advancement of technology, the user is not always

knowledgeable of the capabilities of the DSS tool. The developer, having more

knowledge in this area may be able to suggest possible refinements and additions to the

system. These refinements may or may not be of significant additional cost to the user,

but may greatly enhance the overall quality of the system. Thus, this revised list will both

enable the user to get a better idea of the time and cost involved in each of the items on

the list and will provide the developer an opportunity to make suggested refinements.

Step 5. Reevaluation of the Priority List by the User

The user should then reevaluate the priority list, considering the expense and time

required for each of the enhancements. At this point, the user will have a better idea of

Chapter 3 : Decision Support Systems Design 57

the resources required for the project and can present this to upper management, for

review as required. The resulting list will essentially be divided into two parts. The first

section will include the items to first be developed for the partial system. The second

section will be the items that will be constructed later as the system develops.

Step 6. Develop the System Based on the Priority List.

Construct the system based solely on the highest priority requirements for the

partial system. A workable system that meets the user's minimum requirement should then

be available.

Step 7. Repeat Steps 3-6

Steps 3-6 should be repeated with several iterations, until a satisfactory system is

developed. By presenting a partial system for use, it will teach the user and the builder

more about the problem and the process required to solve it. This new information and

experience will alter the list perviously established in Step 3.

Benefits of the Priority System

By constructing the system based solely on the requirements for a partial system, a

usable system can be developed in a short time frame. This method differs from Courban's

iterative design in that the initial design strategy of the priority system stems from the

minimum requirements, rather that an important module. This is an important feature,

because one of the short falls of the iterative design is that important design decisions are

made from the viewpoint of a specific module and may not complement the overall

Chapter 3 : Decision Support Systems Design 58

system. By maintaining a priority list, the development of an initial system is not hindered

by unnecessary enhancements. This allows the development to focus on the most critical

aspects of the DSS, as defined by the user. This ultimately keeps the time for the initial

system to a minimum. In addition, by keeping a list of the lower items the developer is

aware of where and how the system is going to expand. This will prevent the developer

from creating "dead ends", where it would be impossible or very costly to develop the

other requests.

The simulated prototype provides the user with the capability to view the system

before the construction process begins. The simulated prototype also allows the user the

opportunity to see the user interface and the capabilities of the system. By viewing the

prototype, the user can flesh out any characteristics that were not originally foreseen

during the requirements phase, before any expenditures have been made. On the other

hand, if a working prototype is developed, the user must invest in the necessary hardware

and software, before seeing the system. By developing a simulation, the user does not

have to make any investments until he has a clear understanding of the system's

capabilities and its user interface. In addition, the simulation prototype provides the user

with a mechanism to make suggestions, which will help reduce the number of problems

that may arise during the construction and implementation phases.

The feedback loop between the user and the developer is a step that is not clearly

defined in the other methodologies. However, it is an important step in the design

process. It allows the user to have an idea of the cost of the various items in the project.

If the budget needs to be revised and items cut from the list, the user will have a more

educated idea of which parts of the system are most expensive to the project. The user

unknowingly, may have requested a specific capability, that was not of high importance,

but, was very expensive to construct. It is important to remember that the user may have

Chapter 3 : Decision Support Systems Design 59

little knowledge of the cost of the various requests. With the addition of the feedback

loop, the user will be more educated to make better decisions regarding the overall

capabilities of the system. In addition, this feedback loop provides the developer an

opportunity for make suggestions to the system, that the user may not have considered.

In Keen's design the components of the DSS including the user interface, database

and the model base are developed iindependently.The first release of the system may have

parts of each of these components developed. In the Priority design the user interface or

the representions of the ROMC is developed first and presented as a simulation prototype.

In addition, Keen's design does not have an integrated feedback loop between the user and

the developer.

The Selection of a Design Strategy

Several design approaches have been presented. To determine which type of

design methodology should be implemented, the characteristics of the user's operating

environment need to be evaluated. Each of the design strategies previously presented

makes assumptions about the users and their environments, and each is more beneficial

when certain operating characteristics exist. Therefore, to select a design methodology

the developer must address a number of issues to compare and contrast the user's

environment with the benefits and shortcomings of each of the design methodologies.

Some of the issues that should be addresses include:

e Is the user's time limited? Is the user able or willing to spend time throughout the

development process?

Chapter 3: Decision Support Systems Design 60

e Does a subproblem or module have value? Ifa portion of the system is developed is it

considered usable, or does the system need to be near completion before it is of any

use?

e Is the project uncertain? Does the user know the requirements for the system and is

he able to convey these ideas to the developer?

e Is the project complex? Is the project size large or is a vast amount of new

information continuously needed?

Depending on the characteristics of the user's environment, some or all of these

questions must be answered before a development method is selected. A framework is

presented in Figure 3.8 as a selection guideline. The first question that should be

addressed is the extent that the user will be available to work with the developer. In some

cases, the user's time is extremely limited and the user is either unwilling or unable to

spend time periodically evaluating the system. In this situation, before development

begins, the user should evaluate the level of uncertainty involved in the project.

The project uncertainty can be determined by evaluating three project

characteristics: degree of stability, user task comprehension, and developer task

proficiency. The degree of stability refers to how well defined the project is and how

likely the system definition would change during the development of the system. A highly

structured system, that has a low level of uncertainty, is typically clearly defined and has a

stable system definition throughout the development life cycle. The second characteristic

of uncertainty, user task comprehension, measures the degree to which the user

understands the project characteristics and comprehends the manner in which the DSS will

be applied. The last component of uncertainty, developer task proficiency is the degree of

training and experience the developer brings to the project. This includes both the

developer's experience in the user's operating environment and his familiarity with the

Chapter 3 : Decision Support Systems Design 61

Limited

User Availability

Extensive

Level of Uncertainty

Level of Uncertainty

High Low High Low

| | |
Level Reevaluate SDLC of Priority Design

need for DSS Complexity

Low High

Incremental

Yes

or
Adaptive Design

Figure 3.8 Guidelines

Chapter 3: Decision Support Systems Design

Priority, Iterative,

Priority Design
Value

No |

Priority, Iterative,
Adaptive Design,

or Prototyping

for Design Methodology Selection

62

tools that will be used in the construction process (Davis and Olson, 1985) (McFarlan,

1981). Each of these three components is an important factor in determining the level of

uncertainty involved in any DSS project.

If the project has a high degree of uncertainty the user should reconsider whether

the construction of a DSS is an appropriate mechanism for addressing the problem. If the

project is highly uncertain, the probability of constructing and implementing a decision

support system successfully is very low. Decision support systems are inherently

interactive systems. If the project is uncertain and the user is not available, there is no

mechanism available to the developer to clarify the desired system's goals and to guide the

form the interaction between the user and the system. In this case, the developer may

want to reevaluate the availability of the user's time or consider other avenues to deal with

the problem.

When the user's time is limited and the project has little uncertainty, the traditional

systems development life cycle would be the more appropriate method of system

development. The traditional life cycle only requires the user to be involved with

development during the initial analysis phase. In contrast, both prototyping and the

iterative approach require a high level of user involvement for the initial design and for

periodic evaluations.

If the user is willing to devote extensive time to the project, other issues must be

addressed to determine an appropriate methodology. It should be noted that the term

"extensive" does not imply that the user has an infinite amount of time to devote to the

project. However, it reflects that the user's time is valuable, and that he does have

sufficient time available to periodically meet with the developer.

Assuming that the user's time is not limited, the first issue that should be

considered is the uncertainty of the project. Given a well-defined project, in this

Chapter 3 : Decision Support Systems Design 63

environment the appropriate methodology would be the priority design. This

methodology is better suited to the environment than the other commonly used design

methodologies. The alternative approaches to priority design for high user involvement

and low uncertainty would include the SDLC, iterative design, adaptive design and

prototyping. Although, the SDLC does not require a large amount of interaction between

the user and the developer, which is often unnecessary in the situation where the project is

well-defined, it however, it is not the most effective methodology. A significant drawback

of the SDLC is that it requires a large degree of formalization that generally results in

higher project costs and longer development times. Both prototyping and the iterative

design rely on detailed steps to reduce the amount of uncertainty. Both the user and the

developer are required to perform many of these steps. Since in this situation the project

is not uncertain, the extended developer/user participation is unnecessary. In addition,

prototyping focuses on developing a working prototype quickly. For a well-defined

project the development of a prototype is frequently superfluous (Burns and Dennis,

1985). Keen's rules for development also include a prototype step and therefore introduce

unnecessary effort.

Priority design methodology does not suffer the same limitations. Priority design

includes a simulation step. The priority design suggests developing a simulation as

opposed to a prototype. When developing a prototype there is always some initial

investment in both time and money. While both the simulation and the prototype can be

considered unnecessary in an uncertain environment, it does help establish that the user

has successfully conveyed his needs and the characteristics of the desired system to the

developer. A simulation of the system is a cheaper and quicker mechanism for establishing

that both the user and the developer are clear on the requirements for the system. After

evaluating all of the alternative methodologies, the priority design methodology should be

Chapter 3 : Decision Support Systems Design 64

employed when user involvement is significant and the project has a low degree of

uncertainty.

When the user participation is ongoing and there is considerable uncertainty,

SDLC would not be an appropriate methodology. To reduce the uncertainty of the

project, there needs to be an increased amount of user involvement. However, the SDLC

provides little interaction between the user and the developer (Cerveny, et al., 1986) and

would not be an effective methodology for alleviating this uncertainty. Assuming user

participation and a project with a high degree of uncertainty, the complexity of the systems

should be addressed.

The project complexity is defined by four components: project size, number of

users, volume of new information, and the complexity of new information. Complex

projects are typically large, requiring a considerable number of man-hours. The increasing

number of users implementing the system and the increasing volume of information also

adds to the complexity of the project. The increased number of users, requires that the

developer contend with the conflicting desires that may arise between the different users.

The users have their own goals and ideas for the system. The developer must merge these

different and perhaps opposing ideas to develop a system that will meet the approval of

the users as a whole. The last factor that affects the project complexity is the complexity

of new information. Is there a large amount of formulation or complex programming

required to create the new information? The need for new information can manifest itself

in three different ways. The user may have the need for data that is not in a convenient

form. The DSS must be required to present this information in a suitable manner that is

easily understood by the user. The DSS may also be required to generate data that does

not already exist and has not been previously stored. Finally, the DSS may need to

develop models and create or customize a variety of solution techniques. Projects that

Chapter 3 : Decision Support Systems Design 65

require a great deal of effort to produce the new information are commonly more

complex.

If the complexity of the project is high, the approach that would be most

appropriate in this environment is the priority design. This method focuses on increasing

the amount of communication between the user and the developer to reduce the

uncertainty. Although, prototyping, adaptive design and Courban's iterative design also

concentrate on reducing the uncertainty, they are not as applicable for large, complex

systems. Prototyping and adaptive design suggest that a prototype be built cheaply and

quickly. However, the larger and more complex the project, the more difficult it is to

prototype the entire system (Burns and Dennis, 1985). The iterative design methodology

starts with an important module and then expands upon in cycles. In a complex

environment, when starting from one specific module, problems can arise, as other

modules that may be incompatible with the initial module are developed. As a result large

portions of the system may need to be reconstructed and the resulting system may not be

efficient. The priority design methodologies establish the initial format of the system by

evaluating the important characteristics of the overall system as defined by the user. This

enables the development to stem from the more important characteristics and not one

specific module.

When user's time is not a restriction, the environment is uncertain, and the

complexity is low, the next issue that needs to be addressed is the importance of

developing a partial working system quickly. In other words, if a module or an important

subproblem is developed, does it have any value to the user or does the entire system have

to be constructed before it can be of any use? For example, if the system has a large

model that is of prime importance and the user interface and other components are

considered secondary, the development of the model would have incremental value to the

Chapter 3: Decision Support Systems Design 66

user. For the class of projects that have incremental value, the appropriate design strategy

would be either priority, iterative or adaptive design. All three of these methodologies

advocate constructing a partial system based upon an important component of the system.

One of the benefits of the iterative design is that it enables the user to have, in a short time

span, an important module of the system developed. Priority design and adaptive design,

the alternative methodologies that could be employed, focuses on first developing the

more important items. By focusing on the higher priority items, a system that can be of

some incremental value to the user is developed promptly. Prototyping should not be

used, because it does not guarantee that the prototype will be of any value to the user.

Returning back to the incremental value issue, if the user does not need a module

or portion of the system working quickly, any of the four methodologies, disregarding

SDLC could be employed. In a relatively simple environment any of the methods would

be effective, with no one methodology being more beneficial. It should be left to the

discretion of the developer to decide which methodology he would prefer to employ.

Conclusion

The operating environment and the nature of the task at hand play a vital role in

determining which design methodology is most appropriate. The previously established

design methodologies have a number of differing characteristics that make each of them a

more suitable strategy for certain environments. However, in some environments the

current methodologies present certain limitations or unnecessary expenditures. These

limitations suggest the need for an alternative methodology. A new methodology, Priority

Design, was proposed to meet this need.

Chapter 3 : Decision Support Systems Design 67

To determine what methodology would be most effective in a given situation an

analysis of the operating environment must be performed. Such issues as project

complexity, project uncertainty, and limited user involvement must be addressed. A

guided search to assist in the analysis was presented.

Chapter 3 : Decision Support Systems Design 68

Chapter 4: Case Study Analysis

Introduction

This chapter contains a review and analysis of the design approach used in three

DSS development cases, each with a different operating environment and employing

different methodologies for developing the decision support system. The three cases that

are addressed include:

"A Decision Support System for Tuition and Fee Policy Analysis," (Greenwood,

1984) |

"The Eastern Manufacturing Company," (Bennett, 1983).

"Decision Support at Conrail," (Hoover, 1983)

For each of the above cases, a synopsis is first given of the operating environment and the

steps that were employed in the development of the DSS. Following the synopsis, the

environment and the characteristics of the project are analyzed, according to the guidelines

recommended in Chapter 3, to determine if another development methodology may have

Chapter 4: Case Study Analysis 69

been more appropriate. It should be noted that the analysis is based on limited available

information and several assumptions are drawn from the limited information. In addition,

the analysis benefits from information that was determined after the system was

implemented.

Case #1. A DSS for Tuition and Fee Policy Analysis

Introduction

The DSS for tuition and fee policy was designed, developed and implemented at

Virginia Polytechnic Institute and State University, a large university with an enrollment of

approximately 22,000 students. The DSS was designed to (1) aid the university's

administration in effectively setting their tuition policies, (2) generate and evaluate

alternative plans, (3) perform sensitivity analysis, and (4) determine the impact and analyze

the effect of policy changes (Turban, 1990). Prior to the construction of the DSS, the

Office of Financial Planning and Analysis had developed a series of financial planning

models employing the spreadsheet-oriented language IFPS (Interactive Financial Planning

System), to aid them in their decision making process. After using the models, it became

evident that the process could be categorized as a multicriteria resource allocation

problem. Subsequently, it was decided that a goal programming (GP) model would be

used to address the problem.

Chapter 4: Case Study Analysis 70

The Design Methodology

The design methodology employed in the development of the DSS for tuition and

fee analysis was an iterative approach similar to the methodology proposed by Courban.

The DSS did not begin with a set of preconceived detailed plans for its development, but

began with the automation of the existing models and evolved into a large, comprehensive

DSS (Turban, 1990). The developer determined that the modular structure of the DSS

indicated that iterative approach would be most appropriate. The steps used in the

development cycle of the DSS are given in Figure 4.1. The first step employed in the

development cycle was to determine a contact group, consisting primarily of members

from the administration who would support the project and aid in the development

process.

After an initial meeting with the contact group, the next step in the development

process was to establish the modeling aspect of the DSS. A GP model was used to

assimilate the university's tuition philosophy and policy into a mathematical form. In order

to facilitate accurately establishing the model goals, a number of meetings with the

administration was conducted. During the development of the model, it became apparent

that "a comprehensive interactive on-line decision support system would be a necessity if

the GP was to be used" (Greenwood, 1984). Once the goals were established, the design

and development of the DSS process were initiated. The construction of the DSS, took on

a modular format, in which small manageable portions of the DSS were constructed and

tested before being integrated into the overall system.

Chapter 4: Case Study Analysis . 71

Figure 4.1: Design Steps in the Development of the

Chapter 4: Case Study Analysis

Establish

Contact Group

v

Analysis

Y

>

Design an

Important Module

Vv

Develop Module

Y

Implementation

Tuition and Fees DSS

72

"The philosophy used in the development process was to have the large complex
system evolve from a series of small operable and proven components. The system's

development was iterative in that quite often the components had to be modified after they

were integrated into the system. Modification was necessary because all of the

requirements of the system could not have been foreseen initially and improvements were

identified as the development process progressed." (Greenwood, 1984)

Once construction of the DSS was completed, the system was then demonstrated,

with a hypothetical example, to the contact group. During the demonstration, several

important modifications were suggested by the group. After the changes had been

incorporated into the system, another demonstration was given, except this time, an

application of a real problem was used during the presentation. One problem became

apparent, the system needed to have the capability of handling two sets of enrollment data.

Upon completion of the changes suggested, the DSS was then ready to be implemented.

Analysis

The Tuition and Fees Operating Environment

Although the construction of the DSS was successful, in reviewing the iterative

design methodology used, another method may have been more appropriate and would

have reduced the number of modifications that occurred after the DSS was constructed.

In determining which methodology would have been most appropriate, the operating

environment must first be evaluated as described in Figure 3.8. The university

administration was willing to be involved in the decision making process and was able to

commit time needed to periodically evaluate the system. Therefore, user involvement

could not be considered as a limiting factor in the development process. The next issue

that needs to be addressed is the uncertainty of the project. When determining the

Chapter 4: Case Study Analysis 73

uncertainty of the project three contingencies need to be evaluated. These three

contingencies proposed by Davis and Olson (Davis and Olson, 1985), and McFarlan

(McFarlan, 1981) include:
(1) Degree of stability - The degree of stability associated with the task.

(2) User task comprehension - The degree to which the user understands the
characteristics of the project and comprehends the manner in which the

DSS will be applied.
(3) Developer task proficiency - This is the degree of training and experience the

developer brings to the project. This includes both the developer's

experience in the user's operating environment and his familiarity with the
tools that will be used in the construction process.

The development of the DSS for tuition and fees appears to have operated in an

environment with a relatively low degree of uncertainty. Although the project did not

begin with a predefined set of plans, the task itself was stable. It appears that from the

onset of the project, both the developer and users had significant knowledge of the

project's goals. Many of the tools were already in place, and what needed to be

accomplished was the development of a goal programming model to describe the

university's tuition policies and to automate the existing models. At the start of the

project, the developer had some degree of proficiency in all the languages used in the

DSS. He was quite familiar with the budgeting process and the tuition and fee issues, had

a good working knowledge of the university's computer system (Turban, 1990). Drawing

from these project characteristics, summarized in Table 4.1, one can conclude that the

project maintained a low level of uncertainty. Following the guidelines in Chapter 3 the

suggested design methodology would be the priority design.

Chapter 4: Case Study Analysis 74

Table 4.1 Project Uncertainty

Degree of Stability

User Task Comprehension High Low High

Developer Task Proficiency High High High

Priority Design

After analysis of the environment it was determined that the appropriate

methodology was priority design. The following section describes the steps that would

have been taken had the priority design methodology been employed.

Regardless of the methodology employed, the contact group would have been

determined first. However, if the priority design methodology had been employed, the

next step that would have been to establish the minimum requirements for the partial

system. In this case the developer, having been familiar with the tuition process, probably

had a general idea of the requirements for the system before the construction process

began. However, these requirements should have been formalized in writing before the

development process was implemented.

Once the requirements of the system were completed, a simulation of the DSS

would have been developed. The simulation of the DSS would have forced the developer

to clarify the requirements for the system, the method of presenting the interface to the

user, and the capabilities to be provided by the DSS. In addition, the simulation would

have allowed the user to have an idea of the overall appearance of the system and to make

contributions, early in the development process. For example, not until the working DSS

Chapter 4: Case Study Analysis 75

was first demonstrated to the contact group was it revealed that the procedure for

handling the enrollment data was very confusing. Ifa simulation had been presented, this

problem would have become apparent before the construction had begun. This problem

may have only required minor changes in the programming, but other modifications may

have arisen that would have required major changes in the overall system. This is an

important aspect of the design process, the simulation enables both the user and the

developer to flesh out the characteristics of the project and aids in reducing the problems

that will arise once the construction process has begun.

The next step in the development process would have involved the construction of

the user's priority list of system requirements. This would have enabled the users to clarify

what capabilities they consider most important and allowed the developer to focus on the

key aspects of the system. In the development of the tuition and fees DSS, instead of the

system just "evolving into a large, comprehensive, yet user friendly DSS” a detailed plan

of the requirements should have been constructed. Time spent on constructing the overall

system may have been reduced by focusing the construction process on the key aspects

and giving the developer a clear plan of the entire desired system.

The subsequent stage of the priority design methodology is for the developer to

evaluate the user's priority list. The developer would present a critique and evaluation of

the list from a designing viewpoint. The developer should convey an idea of the cost in

terms of both time and money required to complete the items of the list. He should also

make recommendations for enhancements to the system and clarify if certain aspects of the

project must be placed higher on the list. The user may be unaware that certain aspects of

the DSS may be dependent on the completion of another part of the system, that was

unknowingly placed lower on the list. For example, if the user had placed a specific model |

high on the list, and the generation of the data employed in the model low in the list, the

Chapter 4: Case Study Analysis 76

developer should clarify the importance of the data generation and give it a higher priority.

Although in this case, the cost was in terms of time only, the developer needs to convey all

of these aspects to the user, so that the user can make an informed decision on the final

priority list.

The next stage is the partial development of the system. The modularity of the

system makes this case ideal for developing a partial system. In this case, the builder may

have developed the system using a modular format focused on his own preconceived

priority list. However, the development should have followed a modular format based on

the user's formal priority list. The developer's idea of what is most important to the

success of the system does not always coincide with the user's perspective of the

important system characteristics. The user's priority list has taken into account both the

developers’ and the users' viewpoints. Thus, the key aspects of the system are constructed

first and can be presented for evaluation, and if applicable can begin to be implemented. If

the partial system is working and meets the preliminary needs of the user, the partial

system may be implemented while the developer continues to complete the remaining

items on the list that were not originally considered of high importance.

Conclusion

In analyzing the environment of the decision support for tuition and fees, it can be

argued that the priority design methodology would have been more appropriate than the

methodology actually used. By employing the priority design methodology, additional

time would have been spent up front, determining the user's requirements, in order to

reduce the time spent on making alterations to the system later during the construction

Chapter 4: Case Study Analysis 77

phase. The added time spent on determining the administration's requirements would have

outweighed the time saved during the construction process. Although the decision

support system was ultimately successful, the overall development time might have been

reduced by employing the recommended priority design methodology.

Case #2 The Eastern Manufacturing Company

Introduction

Eastern Manufacturing Company, with $4 billion in sales, produces heavy

machinery for other manufacturers in production and transportation. The company

needed a system to aid them in their procurement planning activities. Management

requested a procurement decision support system that would support them in two key

issues: (1) maintenance of the decision making power at the local or plant level, and (2)

sharing information and experience among the buyers. [Eastern's top management

approved of the system as a two-year project, with targeted savings of at least one-tenth

of one percent on one fourth of the purchased items. Once approval was obtained, a

supervisor and two program analysts were hired to develop the system (Bennett, 1983).

Chapter 4: Case Study Analysis 78

The Design Methodology

The development process followed a modified version of the traditional

development life cycle. The first steps that the development team employed were to

assess the user's information requirements and to design potential screen layouts (Bennett,

1983). The team then proceeded, in isolation, to write the programs and test the resulting

system. The design approach diverged form the traditional method in that the system was

actually developed and released to users in increments. Although it might appear from the

steps listed above, that the process was an iterative one, it did not take on the form of

Courban's iterative design. In the development of Eastern's DSS, little attention was given

to obtaining the necessary feedback and clarification of requirements when the different

increments were delivered. "This incremental approach actually failed in practice, since no

notification was ever given to user that new screens were available or that existing ones

had been updated to correct bugs or provide new capabilities," (Bennett, 1983).

Analysis

Eastern's Operating Environment

According to Moore, who later analyzed the resulting system, it appears that the

system evolved into a structured MIS, rather than the DSS that was originally intended

(Bennett, 1983) A DSS focuses on supporting decisions with ad-hoc analysis and

modeling capabilities, rather than on efficient information retrieval. Eastern's system was

an on-line information retrieval system, not a personalized DSS, The reason the system

Chapter 4: Case Study Analysis 79

had migrated from its original intent was due to the traditional life cycle approach that was

implemented (Bennett, 1983).

To determine which design methodology would have been more appropriate the

Operating environment must first be evaluated as illustrated in Figure 3.8. User

involvement did not appear to be a limitation on the project. Since the users were using

the incremental system that had been developed during the development process, it

probably would have been feasible for the developer to receive periodic evaluations and

suggestions for the system. In addition, management was very enthusiastic about the

project, which further supports the hypothesis that user involvement was not a limiting

factor.

Another issue that must be addressed is uncertainty of the project. As described

earlier, the project uncertainty is based on three factors, degree of stability, user task

comprehension, and the developer task proficiency. While it was clear that Eastern's

management desired a strategic system to assist them in their procurement planning

process, it was not clear at the onset of the project, which tasks were to be part of this

project. Both the degree of stability and the user task comprehension was low. The

programmers were knowledgeable of the tools required for the project. However, the

experience of the supervisor on projects of this magnitude was limited. Moore states that

the "designer adequately treated the technical system details but failed to address the

problem of system introduction - identifying key interests and objectives and obtaining

management commitment to the specific design - and was subsequently transferred to

another project after the design work was completed," (Bennett, 1983). This failure may

have been due to the inexperience or ignorance on the developer's part. Taking all of

these factors into account, one can conclude that the project was highly uncertain.

Chapter 4: Case Study Analysis 80

Assuming that there was some uncertainty, the next factor that must be evaluated

is the complexity of the project. The project complexity is defined by four components:

project size, number of users, volume of new information, and the complexity of new

information. The project was large, employing a supervisor and two developers for an

estimated project time of two years. It is not clear if the volume of information was large

or if it was complex to develop. However, it appears that there was a large amount of

new information being shared between the many users including at the plant and local level

and amongst the buyers. In this case it would appear that the system was complex.

Having completed the evaluation of Eastern's environment, the suggested design

methodology would be priority design.

Priority Design

The first step in the priority design methodology is to establish the minimum

requirements of the partial system. The developer determined the users' information

requirements, but failed to discover what requirements were most important. This is an

important component because the resulting system became an on-line retrieval system,

with no mechanism for answering the "what if" questions for which the system was

originally intended. It is important for the developer to get an overall picture of the

required system, not just the information that is required.

The second step of the priority design methodology is to develop a simulation of

the system. Although, the developers designed the potential screen layouts, this was not

enough. The simulation should indicate most of the features that would be available to the

user, including the capability of addressing what if questions. The actual mathematical

Chapter 4: Case Study Analysis 81

models to do this should not have been constructed, at this point. But, a simulation of the

results should have been presented to the users. The simulation would have enabled both

the users and the developers to get a more complete understanding of the desired system.

Having seen a simulation of the system, the users would now have been prepared

to develop a priority list of their requirements. This list would enable the user to clarify

what capabilities they consider most important and allow the developer to focus on the

key aspects of the system. This step plays an important role in the outcome of the overall

system. The developers, in this case, focused their development energies on computer

efficiency issues, which is normally required by large data bases. However, the system

was originally intended to be a strategic one, development should have shifted "from the

purchase of specific parts to the procurement of commodities or classes of parts, such as

molded rubber parts or fasteners" (Bennett, 1983). If the developers had received a

detailed list of the requirements with the different priorities, they might have seen the

necessity of focusing their energies on the overall planning activities and not on providing

access to the large volumes of data. The developers had designed the system based on

their own priorities and not the users’.

The next stage is for the developers to evaluate the users’ priority list. At this

stage the developers should have conveyed to the user, that in order to meet the desire for

rapid response times, some flexibility in the design may have to be given up. In addition,

the developers should have given the users any recommendations that might enhance the

system or clarify some of the problems that may arise, when implementing their

suggestions. Having obtained the advise from the developers, the users might want to

reevaluate their list. At this point, the users might have been able to further convey that

the processing of the data was not the highest priority, and might have given the

Chapter 4: Case Study Analysis 82

developers further details on their requirements. The users might have been able to clarify

their need for a strategic system.

The subsequent stage is the partial development of the system. The development

should focus on the important aspects as defined by the user, with the developers'

suggestions taken into account earlier during the revisions of the priority list. The system

was initially developed in increments. However, now the developer should deliver a

partial system based on the user's list. Development should focus on the higher priority

items. In addition, the developers should obtain feedback and clarification after the partial

system had been implemented. The developers clearly failed in this area. The evolution

process should be user driven, not developer driven. The partial development should

continue until a system that meets all of the users requirements and requests is complete.

Conclusion

The developers, in not correctly evaluating management's requirements and plans

for the system, constructed a system that was more of an MIS than the DSS that was

desired. The traditional development strategy that was employed was too rigid and did

not provide a suitable platform for the developers to fully determine management's

requirements. By evaluating the environment, it was determined that the priority design

would have been a more appropriate design strategy. The priority design methodology

would have provided the necessary mechanism for the developers to accurately determine

management's needs. The priority design methodology forces the developer to spend

more time in analyzing the user's requirements before the construction process begins,

rather than making alterations during the construction phase when it may be too late.

Chapter 4: Case Study Analysis 83

Thus, by employing the priority methodology the desired DSS would have been developed

and not the limited MIS system that was ultimately constructed.

Case #3: Decision Support at Conrail

Introduction

Consolidated Rail Corporation (Conrail), was created by Congress as a for profit

corporation to organize and revitalize most of the railroad freight service of six bankrupt

railroads in the northeastern United States. Conrail, in operation for less than four years,

was faced with a new competitive market; Congress was preparing to reform the

regulatory structure of the railroad industry through the Staggers Act of 1980. To

prepare for that environment, Conrail required a marketing decision support system that

would help place the company in the forefront of the changes in the transportation market.

The marketing analysts needed a system that would enable them to make a

hypothesis about a marketing opportunity and then measure its potential effect by using

historical data on profitability and volume of business. The marketing department was

looking for a system that would drastically reduce the typical turnaround time for

historical extractions. In short, the department was requesting an interactive, efficient,

user-friendly, large-scale decision support system that was compatible with existing

software.

Chapter 4: Case Study Analysis 84

The Design Methodology

The design methodology employed by Conrail in the development of their

marketing DSS does not accurately match any of the well-known design approaches, but

many of the steps closely resemble those involved in prototyping. However, the

development steps illustrated in Figure 4.2, followed more of an ad-hoc procedure than a

formalized methodology. The first step involved analyzing the requirements for the

system. The marketing department wanted a system that could model the effect of a

particular pricing strategy on the company's business and felt that a DSS would

accomplish this. In order to accomplish this the department determined the environmental

factors related to data management that were needed. The factors included the following:

one year of detailed historical revenue data contained 4 million to 5 million records

each record contained 100 fields of data

more than 30 fields were commonly used for selection criteria

approximately 10 concurrent users of these data would be expected during normal

business hours

resulting selection volumes would be known in advance of queries.

The primary data manipulation features requested were as follows:

user-defined computations

automatic data reduction (sorting and summarizing)

data combinations from multiple sources

full range of data presentation formats (tables, graphs, labeled statements, etc.)

data exchange interfaces to other analytical software tools

ease of use by personnel without data processing experience.

Chapter 4: Case Study Analysis 85

Analysis

 v

Software

Research Existing

Develop

— basic requirements

— working prototype

Implement and

Use

Next Version
 —>
 <

Figure 4.2: Design Steps in the Development of Conrail's DSS

Chapter 4: Case Study Analysis

Revise and

Enhance

Problems & Misfits

86

The second step was to research the current software packages that were on the

market for the desired functions. After finding that many of the desired functions were

distributed amongst several packages, the marketing and systems personnel decided to try

interfacing several software products. Figure 4.3 illustrates the network of software

Conrail ultimately laced together. Where available, standard interfaces between products

were purchased from the software vendors and any additional interfaces were developed

at Conrail using simplistic techniques.

Between December 1980 and April 1981, Conrail implemented the third step in

the design process by developing a prototype decision support system with the software

products. The prototype featured optional prompting menus, utilities, help screens, and

interfaces to other products. In May 1981 the new hardware ordered for deregulation

studies arrived and a full, 5 million record database was loaded.

Analysis

Conrail's Operating Environment

Although, the development of Conrail's DSS was successful, some of the obstacles

that were encountered during the development process may have been avoided if a more

formal design methodology had been employed. In determining which methodology

would have been appropriate for Conrail's DSS, the project's characteristics and

environment must be evaluated as described in Chapter 3. The marketing department

Chapter 4: Case Study Analysis 87

CRT

VSPC Access TSO Access
Batch Submissions —- Batch Submissions

|

APL
ADRS II

Easytrieve
Cobol PL/1
Fortran

Ramis II

DBM
Natural Ramis Il

ADABAS

DBM

TSIO

interface

Figure 4.3: Conrail's Interactive Computing Software
Source: Hoover, Thomas B., "Decision Support at Conrail", Datamation,

June 1983, pg. 222.

Chapter 4: Case Study Analysis 88

realized the importance of the DSS and appeared willing to devote its time to the

development process. Therefore, user involvement was not a limiting factor in the

development process.

The next issue that must be addressed is the uncertainty of the project. The

uncertainty is measured by the degree of structure, user task comprehension and developer

task proficiency. It appeared hat the project maintained a low degree of uncertainty.

From the manner in which the different software packages were evaluated, it appeared

that the developer and a clear understanding of the problem from both the user's

perspective and the development perspective. It seems he was highly knowledgeable of

the tools to be used and was clear on the steps involved in the development of the system.

It also appeared that the user had a good understanding of the characteristics of the

desired system.

The next issue that needs to be addressed is the complexity of the project.

Although, the time spent on developing the project was not large, approximately six

months, the size of the system and the complexity of producing new information described

earlier, categorizes this project as complex. Given the nature of the problem environment

the most suitable design methodology would be priority design.

Priority Design

The first stage in the priority design methodology is to determine the minimum

requirements of the desired partial system. It appears that Conrail had successfully

implemented this stage. Although the methodology employed in determining the

requirements was not a formalized process, the developers were knowledgeable of the

Chapter 4: Case Study Analysis 89

user's requirements. This is evidenced by the rigorous search that was employed to find

suitable software and linking several products to develop the desired interface.

Once the developers had a clear idea of the marketing department's requirements,

the next phase would have been the development of a simulation prototype. Conrail had

developed a prototype. It was not a simulation and employed the software that was

purchased for the system. A simulation prototype has several advantages over the

construction of a working prototype. One of the advantages of the simulation is that it

would have allowed the developers to demonstrate the user interface to the marketing

department before making any of the necessary software purchases. If the simulation was

successful and met the approval of the department, then the necessary software could have

been purchased. Another advantage of the simulation prototype is that it could have been

constructed in a much quicker time frame than the actual prototype. Although as a

general rule prototypes should be constructed quickly, Conrail spent five months

developing the prototype. If the prototype did not meet the needs of the users, five

months of work would have been invested needlessly. The simulation could have been

developed in a week with very little cost and would have enabled both the developer and

the marketing department to clarify the requirements for the system.

The next phase in the development process would involve construction of the

user's priority list of the system requirements. The developers had generated a list of the

database requirements and the data manipulation features requested. However, the

desired system was more than an MIS or a large database management program. A DSS

was desired. The marketing department required a system that would enable them to

analyze the potential effect of a variety of pricing strategies. The list of requirements did

not reflect this goal. In addition, the requirements should have been given priority levels

in order for the developer to have a clear understanding of what the marketing department

Chapter 4: Case Study Analysis 90

felt was most important to the success of the DSS and what items were considered

secondary.

The subsequent phase of the priority design methodology is for the developers to

evaluate the user's priority list. At this stage the developers should critique the list for any

shortcomings and evaluate it from a development viewpoint. The developers should also

provide a cost estimate for the various items on the list and an estimate of the cost of the

overall project. The system Conrail developed required over $4 million of computer

expansion in order to meet the needs of the marketing department. The department

should have an idea of the cost of their requests and an idea of where their money was

being spent. With this knowledge the marketing department may have considered that the

cost involved did not justify some of their requests. This stage also provides the

developers an opportunity to make suggestions, the marketing department, may not have

considered.

The next phase is the partial development of the system. The development should

focus on the key aspects of the system as defined by the user. It appears that in some

aspects that the developer did construct the system focusing on the some of the more

important components. It is unclear if the developers decided which items to focus the

construction effort on or if the users were able to define what they needed most. The

developers first focused their construction effort on the ad-hoc database. Then, while the

system was employed, the developers constructed the production systems. However,

when they started developing the production systems in the same database as the ad-hoc

queries response time began to slow. The system could not handle both the ad-hoc files

and the production files in the same database. In order to remedy the problem, the files

were divided into two databases. Another problem that arose during implementation

resulted from some of the users unknowingly making requests that would require the

Chapter 4: Case Study Analysis 91

selection and processing of millions of records. This resulted in the terminal being tied up

for hours and it seriously degraded the response time for other users. To resolve the

problem, the software vendor modified the selection process to pause after processing the

index and inform the user how many records would be retrieved if he were to continue.

Both of these problems probably would have still arisen had development clearly focused

on the marketing department's highest priority items. These problems would only arise

when the system was employed and could not have been foreseen by a simulation or by the

partial development of the system based on the higher priority items.

Conclusion

In analyzing the Conrail's environment, priority design it would have been a more

appropriate development methodology. Conrail's development strategy did not follow any

formalized methodology. Although, it appeared that the developers' were well organized

and had a clear idea of the development steps that needed to be employed; by following a

formal methodology the development process would have clarified both the developer's

and management's responsibilities. The priority design methodology would have provided

management, once they had been informed of the cost of the system, with the opportunity

to make alterations to the system requirements before the construction process began and

before any software or hardware was purchased. Fortunately, for Conrail the software did

match the needs of the user and was not purchased needlessly. The problems that arose

during the development were encountered during the implementation phase and may not

have been alleviated if the priority design methodology had been employed. However,

Chapter 4: Case Study Analysis 92

Conrail took some unnecessary risks in using an informal methodology, that would not

have occurred had the priority design methodology been implemented.

Summary

Three cases, with differing operating environments were analyzed to determine the

most appropriate design methodology. Table 4.2 summarizes the three methodologies and

the design methods suggested after analysis. Included in the table is a list of the benefits

or changes that would have occurred had the recommended methodology been employed.

From the table, it is evident that the design methodology plays an important role in the

successful completion of a DSS. Significant problems may have been alleviated had a

different, more appropriate strategy been employed. By first analyzing the environment,

an appropriate strategy can quickly be determined.

Table 4.2 Design Methods

DSS for Tuition & . . . Reduction in number of
Iterative Priority Design . .

Fees final alterations

Eastern clearer understanding of
Manufacturing's SDLC Priority Design ' g

the user's needs
DSS

clarification of user's an

Conrail's DSS Ad-hoc / Prototyping Priority Design developers

responsibilities

Chapter 4: Case Study Analysis 93

Chapter 5: The DSS for Nurse Scheduling

Introduction

This chapter presents an overview of the development methodology used in the

construction of a nurse scheduling decision support system for Montgomery Regional

Hospital. The chapter opens with a discussion of the Montgomery Regional Hospital's

scheduling policies and its operating environment. This is followed by an evaluation of the

hospital's environment, as proposed in Chapter 3, to determine the most appropriate

methodology for developing a decision support system. The last portion of this chapter

contains a detailed account of the steps followed in implementing the Priority Design

Methodology for the nurse scheduling DSS.

Chapter 5: The DSS for Nurse Scheduling 94

Montgomery Regional Hospital

Built in 1971, Montgomery Regional Hospital (MRH), located just outside

Blacksburg, maintains approximately 150 beds. Its size is small enough to enable the

hospital to provide personal attention and care, while still providing the specialty services

of a major medical center. With over 80 physicians on the staff, MRH provides a large

range of specialties, ranging from obstetrics to ophthalmology, from neurology to urology.

MRH is a modern, well-kept facility with state of the art equipment. The facility includes

an emergency department with physicians on duty 24 hours-a-day, an intensive care unit

for the seriously ill patients; a progressive care unit for patients who have "graduated"

from the intensive care/coronary unit; and many other traditional units.

Nursing Classifications for Montgomery Regional Hospital

Nurses have become a scarce resource in the United States today, and in order to

entice more people into the nursing field, MRH has developed a number of different job

classifications to better fit the diverse lifestyles of its employees. Another benefit to

maintaining a variety of job classifications is that the hospital is able to fill in those

positions that are often considered undesirable to the rest of the nursing work force. This

section reviews the particular classifications used at MRH to demonstrate its need for

creativity and better scheduling practices.

Chapter 5: The DSS for Nurse Scheduling 95

The Baylor Plan

The Baylor Plan, is one job classification employed by MRH which appeals to

those people who would prefer to work weekends. The nurses on the Baylor plan are

committed to working a total of 50 weekends a year and are required to work two twelve-

hour weekend shifts each two-week pay period plus an additional eight-hour shift during

each week. The greatest benefit to the nurse on the Baylor plan is that the employee is

-paid as if he was working 80 hours per pay period rather than the actual 64 hours worked.

Although this plan is more costly, it enables the hospital to increase its weekend staffing

without requiring additional weekend coverage by the existing staff.

PRN Staffing

The PRN personnel are those nurses who want to work occasionally and work

only when the hospital has a shortage of nurses. Their position is very similar to that of

substitute teachers in the school system. The purpose of PRN staffing is to provide the

hospital with additional staffing during high patient care activity periods and to provide

coverage for absent nursing personnel. The PRN staff are required to work at least once

every two months to be maintained on the roster. The personnel may work completely

flexible hours that can be scheduled in advance or "on call." The base salary for those on

the PRN plan is five percent above the established scale for in-house personnel. However,

benefits are not available to the PRN personnel.

Chapter 5: The DSS for Nurse Scheduling 96

LPN and RN

The difference between a registered nurse, RN, and a licensed practical nurse,

LPN, lies in the amount of formal education he has obtained. An LPN undergoes 13

months of training at a state certified school. This includes approximately 2,000 hours of

specialized training, primarily dealing with bedside patient care. Upon finishing his

education, an LPN must pass state exams to be licensed, and must continue to pass yearly

exams to renew his license. On the other hand, a RN has two years of intensive training,

as opposed to the 13 months required of the LPN. These two years, include over 3,840

hours of training, dealing with bedside care and management orientation. RNs have

additional training from a management perspective and, depending on the school, they

will have an associates or even a bachelors degree.

The Intensive Care Unit

At Montgomery Regional Hospital, scheduling is done at the floor or unit level.

Each unit's nurse manager is in charge of determining the work schedule for the

corresponding nurses. Since the procedure for determining the schedule for each unit is

similar and a level of autonomy exists between the floors, it was decided to focus on one

particular unit of the hospital, namely the Intensive Care Unit (ICU).

The ICU is an eight bed, multi-service unit for adult and pediatric patients. It is

comprised of five rooms, with ICU A designated as an isolation room. The purpose of the

ICU is to provide care to adult and pediatric patients who are critically ill or injured and in

varying stages of recuperation from diagnostic and therapeutic interventions.

Chapter 5: The DSS for Nurse Scheduling 97

The overall management of the ICU is the responsibility of the nurse manager.

Figure 5.1 depicts the organizational structure of the ICU. The unit employs

approximately twenty nurses and requires three nurses, two RNs and one LPN for each

shift. An RN may be substituted for an LPN. But, this results in the inefficient utilization

of a costly resource and is generally not recommended. The ICU currently develops the

schedule by the traditional approach, in other words, by hand, each planning horizon or

every four weeks. The nurse manager develops the schedule based upon the requested

days off and the shifts that are preferred by the nurses. This task often takes many hours

and is met with dissatisfaction by many of the nurses.

The ICU has not been able to establish a cyclical schedule due to the dynamic

nature of the environment. Nurses are frequently changing their job characteristics making

a consistent cyclical schedule impossible to follow. Thus, the nurses are not able to

predict what their future work schedule will be with any level of accuracy. The nurses

work primarily eight- or twelve-hour shifts, with the weekends primarily consisting of

twelve-hour shifts. The shifts are divided into three eight-hour shifts, day, evening or

night, or two twelve-hour shifts.

The Scheduling Policies

The following scheduling policies are taken from Montgomery Regional Hospital

Healthtrust policy number 603-17 and have been in effect since 1984.

e Personnel will be hired for straight evening, straight night shift or a rotating shift. No
one will be hired for straight day shifts.

Chapter 5: The DSS for Nurse Scheduling 98

Director of

Nursing

Nurse Manager
Critical Care

_|

ICU/CCU

RN

LPN

Figure 5.1 Critical Care Organizational Chart

Chapter 5: The DSS for Nurse Scheduling

PCU

PCU

Telemet

 Tech.

99

e Personnel hired for permanent 11/7 shift will have "days off" when possible scheduled
together unless requested otherwise by the employee.

e Personnel rotating shifts will not be scheduled more than two shifts within a pay
period.

e Personnel will not be scheduled for more than seven consecutive work "days" without
day(s) off, unless requested by the employee.

e To the extent possible personnel hired for permanent evenings or night shifts will not
be expected to rotate shifts.

e Time schedules will be posted 2 weeks prior to the end of the current schedule.

e Weekends: (defined as Friday, Saturday, or Sunday)
a. Permanent nursing staff hired for evening or night shift may be scheduled

every weekend off if staffing permits.

b. Personnel rotating between day shift and a second shift will be scheduled off

at least every third weekend.

c. Part-time personnel will be expected to work at least two weekends out of
every four.

d. Those personnel who fail to work their scheduled weekend due to unexcused
absence will be required to work an additional weekend on the next schedule.

e Requests for days off:
a. Will be submitted in writing by the Monday of the second week of the current

schedule.

b. Special requests will be granted according to the specific staffing needs of the
unit, on an equitable basis.

c. Employees will receive a response from their Nurse Manager within two weeks
of submitting the request.

e Holidays:

a. Must be taken within 30 days before or after the holiday.

b. Major holidays (Thanksgiving, Christmas, and New Years) will be covered on a
rotating basis by unit personnel.

Chapter 5: The DSS for Nurse Scheduling 100

e Vacation Accumulation and Usage:

a. Full- time employees accrue vacation on the basis of 5/6 day or 6.7 hours of
vacation per month worked commencing on the date of employment. After six
years of continuous employment one additional day of vacation is accumulated for

each additional year of continuous employment through the tenth year. Vacation

is accrued according to Table 5.1.

Table 5.1 Vacation Schedule:

Employment Period Vacation Accrual

During first 5S years 5/6 days per month or
6.7 hours/month

During 6th year of employment 11/12 days per month or
7.3 hours/month

During 7th year of employment 12/12 days per month or
8.0 hours/month

During 8th year of employment 13/12 days per month or
8.7 hours/month

During 9th year of employment 14/12 days per month or

9.3 hours/month

During 10th year of employment 15/12 days per month or
10.0 hours/month

b. Vacation may only be taken once the employee has worked six months.

c. Weekends requested off for vacation are determined by length of employment

During first 5 years of employment - 2 weekends/year

During sixth year of employment - 3 weekends/year

During tenth year of employment - 4 weekends/year

The Development Process

The Initial Meeting

The Montgomery Regional Hospital was contacted to investigate the possibility of

a cooperative project between their organization and the author. A project was proposed

Chapter 5: The DSS for Nurse Scheduling

which would lead to an improved personnel scheduling system for the hospital and which

would advance the state of research in the area of personnel scheduling. Possibly this

project would be the creation of a customized decision support system. The hospital

administrators agreed to support a plan which would result in building a nurse scheduling

system for one hospital unit with the intention of reviewing and expanding the system after

successful implementation. Subsequently, the hospital administration arranged for a

meeting between Carol Mackes, the nurse manager of the Intensive Care Unit (ICU), and

the author.

At the initial meeting between the ICU nurse manager and the author, background

for the project, goals and possible solution methods were discussed. The nurse manager

explained the present scheduling system in the ICU, which is entirely her responsibility.

Schedules for the twenty ICU nurses are prepared manually each four-week block. This

process is performed on paper; there is no mechanism for quickly and accurately

determining the number of vacation days, sick days, holidays, etc. each nurse had taken.

The nurse manager explained the features and characteristics which would be

useful if a computer based system was created to help schedule the ICU's nurses. Her

requirements relied on the successful, although limited, manual scheduling system already

in operation as a base model. Several features expanded on those available with the

current manual system. The author discussed how the requirements might be supported

through a computer based decision support system.

The initial meeting also highlighted important factors to the successful design and

implementation of a computer-based scheduling system. Most significant was the lack of

computer support within the unit. The nurse manager did not have a personal computer

available to assist her in the scheduling process. The nurse manager did foresee obtaining

a computer, but was unsure of the hardware that would be made available to her. Since

Chapter 5: The DSS for Nurse Scheduling 102

the nurse manager may have limited computer capabilities, it was decided that the DSS

would be constructed to have the capability of working on any of the machines which

might become available. The second factor was the time constraints of the project.

Although the hospital did not have a critical deadline for the system, there was a desire on

the parts of both the hospital and the developer to have a useful DSS in a short time

period. A DSS that assisted the nurse manager with the scheduling process would be

nearly as useful as one that included a scheduling algorithm, but could be deployed faster

and would be easier to port to a variety of equipment. In general, the system should

reflect the needs of the user, in this case the nurse manager, and not the desires of the

developer. It is, however, appropriate for the developer to help determine the necessary

boundaries of the system.

To determine if a DSS is the appropriate tool for addressing the hospital's

scheduling problem, Kroeber recommends answering four questions, before starting the

design process. These questions, which are described in further detail in Chapter 3,

include:

1. Is there a need for a DSS and will it enhance the decision maker's effectiveness?

2. Do the benefits of the DSS outweigh the cost of the development?

3. Is there time available for approval of the system?

4. Does a champion exist?

These questions were applied to the scheduling problem facing Montgomery Regional

Hospital. In response to the first question, a DSS would enhance the effectiveness of the

nurse manager by aiding her in developing a schedule that meets the needs of the hospital

and is fair to the nurses. The DSS would allow the nurse manager to quickly verify that

the nursing requirements are being met and provide up to date statistics on the number of

weekends, and number of excused and unexcused absences, taken by each of the nurses.

Chapter 5: The DSS for Nurse Scheduling 103

This will enable the nurse manager to develop a schedule that fairly distributes the

weekend shifts, holidays, vacations, etc. over the given year.

In response to the second question, the cost of developing the DSS to the hospital

is minimal. The only real cost is time, with the hospital investing a little amount of time

and the developer investing a significant amount. The time saved in maintaining the

statistics and developing a schedule, will far outweigh the cost of the system. In response

to the third question, there was ample time for the nurse manager to approve of the

system. The nurse manager was willing to champion the project and devote her time in

the development process. Carol Mackes was very enthusiastic about the DSS and was

happy to periodically meet with the developer, during the development process, to discuss

the different aspects of the system.

Once it had been established that a DSS was the correct tool for this application.

The next step was to determine the appropriate design methodology that should be

implemented. In order to accomplish this, a number of questions regarding the operating

environment had to be answered first. These questions follow the heuristic search

developed in Chapter 3.

Montgomery Regional Hospital's Environment

In evaluating the environment, the first question that needed to be answered was

the willingness of the user to devote time to the project. In the hospital's scheduling

environment the user and the champion were one in the same. This being the case, it was

found earlier, when determining if there was a champion, that the user/champion was

willing to spend time with the developer. The next question that was addressed, was the

Chapter 5: The DSS for Nurse Scheduling 104

level of uncertainty in the development process. To measure the degree of uncertainty,

three characteristics proposed by Davis and Olson and McFarlan, were identified. These

characteristics include:

1. Degree of stability - the level in which the task is defined. A system that is considered

well defined has a system definition that is fixed and is not subject to change during

the development process.

2. User task comprehension - the degree to which the user understands the characteristics

of the project and comprehends the manner in which the DSS will be applied.

3. Developer task proficiency - The degree of training and experience the developer

brings to the project. This includes both the developer's experience in the user's

operating environment and his familiarity with the tools that will be used in the

construction process (McFarlan, 1981).

The DSS for nurse scheduling was moderately structured. Although the task of

determining a schedule 1s a semi-structured decision, the goals and the structure of the

desired DSS were fairly well-defined. The nurse manager had complete control over the

development decisions. The nurses in the unit did not have to be conferred with to

determine the different issues that were involved in constructing the DSS. In terms of the

user task comprehension, the user, Carol Mackes had a large degree of knowledge on the

scheduling process and after the initial meeting, had a clear idea of how the DSS would

support the scheduling process. The final criterion is the level of the developer task

proficiency. Although the developer had little to no experience in the hospital

environment, the developer engaged in a large degree of research on the process of nurse

scheduling, before entering into the development of the DSS. In addition, the developer

was able to select the tools that would to be employed in the development of the system.

Chapter 5: The DSS for Nurse Scheduling 105

Thus, the developer was able to select a tool in which she was highly proficient. In

evaluating each of these characteristics, it is safe to conclude that the development of the

nurse scheduling DSS maintained a low level of uncertainty. Following the guidelines

proposed in Chapter 3, and given the environmental characteristics of MRH, as

summarized in Table 5.2, the recommended development methodology for the nurse

scheduling DSS was the priority design methodology. Some of the benefits of employing

the priority design methodology, which are stated in greater detail in Chapter 3 include:

e provides the user with the capability to view a simulation of the system before the

design process begins;

e clarifies the goals of the project, early in the development process;

e enables the developer to focus on the most critical aspects of the DSS, as defined by

the user.

These benefits made it advantageous for the DSS for nurse scheduling to be developed

using the priority design methodology.

Table 5.2 Environmental Characteristics for Determining an Appropriate

Design Methodology

User InvolvementTime Unlimited

| Level of Uncertainty Low l

Chapter 5: The DSS for Nurse Scheduling 106

The Priority Design Methodology

Stage 1. Determining the Minimum Requirements for the Partial System

The first stage in the development of the decision support system was to determine

the minimum requirements of the partial system. A list of the requirements, determined by

Carol Mackes, is given in Figure 5.2. The first requirement was for the system to provide

an interface that was identical in appearance to the current scheduling sheet, shown in

Figure 5.3. The sheet lists when the nurses work each of the shifts, in the planning

horizon. A three character code was used to represent the time and length of a given shift.

The notation was as follows:

E-08

The first character represents the time of the shift:
D-Day, E-Evening, N-Night, or X if the worker cannot work the given shift.

The digits represent the length of the work shift in hours.

An empty cell indicated that the nurse was willing , but was not scheduled to work the

corresponding shift.

The second requirement for the system was a database containing the nurses'

personal data, including material such as address, phone numbers, etc. The database

should also maintain updated records on the number of holidays, weekends, vacation days,

etc., the nurse had taken off, during the year. Due to the dynamic nature of the

environment, in which the nursing staff is constantly changing, the fourth requirement was

a facility to easily add and delete nurses from the database and the schedule.

The hospital is required to maintain historic data on the schedules worked,

indicating who actually worked each given shift. Thus, the final requirement was that the

Chapter 5: The DSS for Nurse Scheduling 107

List of Requiremets:

1. An interface identical to current time sheet

2. A database containing information on the nurse's

personal and work history including:

a. Full name

b. Address

c. Phone number

d. Number of vacation days

e. Number of weekends worked

f. Number of sick days

g. Number of holidays

h. Number of excused absences

i. Number of unexcused absences

3. A mechanism to save the worked schedules for
insurance purposes

4. A facility to add and delete nurses from the
database and the schedule

Figure 5.2: Early List of Requirements

Chapter 5: The DSS for Nurse Scheduling . 108

nm fe as x zslasizsias on

n |e x jas x as s aN

[on A x a alas am

be |e Zo as adizs 9

= |m a ia) a eS as on

|e Zo as gIz 8 8 am

s |- 8 as Zalzea a on

~ |e a zcalasizs am

a |e a alas a adizea a

i 1% a zajac a SZ St] gp 00 oa

be IS aAlzs (2) agiz |za on

B |e alas ea as alas on

RK |x alzs fa as 8 As en

= |8 zalasia as 2 a ”

a 9 AlaAZ a slas|zs ”

a |& AlAZ agizes aa

m |x Alz |m jas slagizs nm

e 18 g]Q s]0 a agizs Zz. on

a S10 St] QA |za Az ro)

ee |e 8 J a zs as n

= 5 za as Arizealzes a on

nm |e xlasizea zZzcdlasizes ag ”n

n |% xjasizs Asizs|zsjas on

be = * s3a Ss a Sz223|aa a)

Be | x Z jas|a a Asizs|za n

z |e Za Aglz A lasizs Zz on

BK |= Zz za) asia lz am

s |e aAlzs $0 aslasizaizes on

&|&
S = o me A

Bs |2 lo |e Jelelelele ele le
ZS |E leis Zi2Q|ZIS|SlElolsis
Zig\s |3 |2£ | 18 |S 3 je |S lz |> [> "

Chapter 5: The DSS for Nurse Scheduling 109

1
Ho

sp
it

al
's

Wo

rk

Sc

he
du

le

1i
on

a
M
o
n
t
g
o
m
e
r
y

Re
gi

Fi
gu
re

5.
3

system would provide a mechanism to store the worked schedules for security reasons.

The stored records would then be retrievable, in order to be reviewed at a future date.

Stage 2. The Simulation

After the meeting with the nurse manager, a simulation of the user interface for the

DSS was constructed. The simulation would allow the hospital to experience the user

interface first hand and be aware of the information that was conveyed in the DSS. The

hospital could then request any changes they might deem necessary, before the actual

construction process began. Although, the ultimate system had limitations on the memory

requirements, the simulation was not as restricted. Since it was not necessary for the

simulation to be constructed on the same software as the construction of the DSS and the

simulation only needed to be presented to the user, it was not required that the simulation

be developed on tools that would be ultimately available to the hospital.

There were several different platforms that could have been employed to develop

the simulation. Several different platforms were evaluated, including the use of a third

generation language, user interface software, or a spreadsheet package. For the

construction of the simulation, two aspects were of prime importance, the look of the

interface and the time to develop the interface. The interface needed to be able to convey

what information was going to be presented to the user and provide a realistic simulation

of the actual DSS. Another aspect of moderate importance, that would affect the

development process was the time involved in learning new software. Other issues that

were not important in the selection of the simulation platform, but would play an

important role in the platform used for the actual DSS were such items as: the calculation

speed, size of the on-line data and security.

Chapter 5: The DSS for Nurse Scheduling 110

After reviewing several software programs from each of the different platforms

including Turbo Pascal, Object Vision, Lotus 1-2-3, and Symphony; Lotus Symphony

was found to be most appropriate. There were several benefits of using Symphony as

opposed to Lotus 1-2-3. Symphony provides a unique windows environment, which

enables the developer to construct work areas or windows that constrict the movement of

the user to the selected area. Thus, preventing unauthorized users from moving into areas

without the proper identification. Louts 1-2-3 does provide a windows environment, but

it lacks the capability of restricting the user's movement in the given working area.

Symphony provides a unique windows environment that would allow a simulation to be

constructed quickly, without a large amount of programming. In addition, the builder had

previous consulting experience using Symphony and could quickly write the necessary

code to develop the simulation.

If the simulation prototype had been developed in a third generation language, for

example Turbo Pacscal, a large amount of programming would have been required to

construct the appropriate windows. One user interface that was evaluated, Object Vision,

was rejected because it was not designed to support tables as a primary interface and

would not be efficient to create a screen which would present a realistic view of the DSS.

Another detriment of using Object Vision was the amount of time it would take for the

developer to be familiar with the software package. Although this was not of prime

importance it needed to be considered when selecting an appropriate platform.

As a result of employing Symphony, little time was spent on actually writing the

code for the simulation. The majority of the time was devoted to determining the material

that was to be presented and the corresponding user interface. Symphony also provided a

mechanism to create an attractive interface with buttons and menus. Another benefit that

Chapter 5: The DSS for Nurse Scheduling 111

resulted by the use of Symphony was that the interface developed during this phase was

able to be salvaged as part of the interface for the actual DSS.

The construction of the simulation took approximately forty-five man-hours to

complete. It was necessary to consult with the nurse manager midterm in the production

of the simulation to further clarify the user's needs. The resulting simulation displayed the

various windows that would be available to the nurse manager, including the schedule,

edit and data windows. The schedule window and edit window, shown in Figure 5.4 were

very similar in format, except in the edit window the schedule was not write protected, in

other words, changes were allowed in certain areas. The data window displayed

information about the nurses. The formulas and the data for each of the nurse's work

history were not developed as part of the simulation. But, the nurse manager was able to

see what information would be available. A number of the programs that allowed the user

to switch from window to window were available. The security feature of password

requirement was also used to demonstrate which windows would require password

access. In addition, the update program to store the previously worked schedule and

replace it with the next schedule was available. The program for the simulation was

written to indicate the questions the user would need to address and how the interface

would be constructed, but the actual procedures for updating were not available at this

point.

The simulation required writing approximately 60 lines of code. The majority of

the development time was spent designing the varying windows that would be provided.

The memory and space required for the development for the simulation was negligible.

Chapter 5: The DSS for Nurse Scheduling 112

The Schedule Window:

NURSE LEVEL S-31

SCHEDULE

01-31-93 TO 2-27-93

M-1_ T-2.W-3 T-4_F-5._S-6 S-7 M-8 T-9 W-10 T-11

01-31-93 TO 2-27-93

AKERS RN N-12) | D-12D-12 D-12D-12 D-12:
BONNER: RN | N-8 N-8 N-8 N-8 'N-8 N-8 |N-8 N-8 | N-8
CLARK RN E-8 D-8 E-8 D-8 D-8 E-8 D-8 D-8
DENNIS RN_ D-12 p-12D-12._D-12D-12 D-12D-12
ELGIN RN. E-8'D-8 'E-8 N-12 E-8 E-8 E-8
FLASK | RN D-8:E-8 E-8: 'D-8 E-8 D-8 D-8 E-8 2
GRANT RN ES NS 'N-8 N-8 [N-8 |N-8 [N-8 N-8
HENLEY RN | D-8 :D-8:D-8 D-8 D-8 ; E-8 'E-8
KLEIN | LPN N-8 N-8) = 'E-8 N-8.N-8 N-12N-12
ADAMS | LPN E-8 E-8 N-8 __E-8 N-12/N-12'N-8
LINKS LPN _D-8 D-8 D-8. E-8 D-8 D-8 D-8
JONES : LPN 'N-8 N-12N-12' E-8 : E-8 N-12: E-8
SMITH __: LPN__.N-8 N-8N-12N-12) | —_-N-12 D-8 D-8 -D-8

DAY 3° 35°3,3°3°3° 35°53 :3 3 +=3 ~=3
EVE1 3235353, 3,-3°3:°53:'3~=3 ~=3 ~=3
EVE2 32353 53°53:°53:53:'3-3~ 3-3 ~=3
NIGHT 35353253 -°53°53°3 3.3 ,-3:53 53

The Edit Window:

SCHEDULE

NURSE LEVEL S-31 M-1 T-2 W-3 T-4.F-5 S-6 8-7. M-8 T-9 W-10 T-11

AKERS = RN N-12 D-12D-12 D-12D-12)50 D-12,
BONNER RN #N-8_N-8 N-8 N-8N-8 N-8 N-8:N-8 N-8
CLARK RN E-8'D-8 E-8 . #D-8 : D-8 E-8 D-8 D-8
DENNIS. RN_ D-12 D-12D-12 D-12D-12 D-12:D-12
ELGIN RN .~— E-8 D8 E-8 N-12 E-8 E-8 E-8
FLASK RN D-8:E-8 E-8 'D-8 E-8 D-8 'D-8 E-8 :
GRANT RN §E-8N-8 :N-8 .N-8 N-8 N-8 N-8 N-8
HENLEY RN ._ D-8:D-8'D-8 D-8'D-8 E-8 E-8
KLEIN = LPN :N-8'N-8 'E-8 N-8 N-8 N-12.N-12
ADAMS LPN ~~ _E-8 E-8:N-8: = —_E-8 N-12.N-12'N-8
LINKS LPN D-8 D-8 D-8 'E-8 D-8 'D-8 D-8
JONES LPN ~~ = (N-8N-12N-12:E-8 | | E-8N-12: E-8.
SMITH LPN .N-8: N-8 N-12N-12 N-12,_D-8 D-8 D-8.

DAY 353535 3:53 53:53 ~~ 3353 :3 53
EVE1 353533 3°33 3° 3:3 ~=3 ~=3
EVE2 3 232°63~=3~=3~,63+°-3~ 3 +-3°3 ~ 3 3
NIGHT 3.3 ~=3263263°53°53'3 35°53 53 23

- The bolded area is not write protected

Figure 5.4: The Schedule and Edit Windows
Chapter 5: The DSS for Nurse Scheduling 113

Stage 3. Construction of the User's Priority List

After seeing the simulation of the system, the user constructed a priority list,

shown in Figure 5.5, which was essentially an extension of the minimum requirements that

were previously established in the development process. One added feature that was high

on the priority list, was for the system to provide an area for developing the schedule for

the next planning horizon. The system would then be able to maintain two schedules, the

current working schedule and the schedule for the next planning horizon.

Another feature that was overlooked in the initial simulation, that the nurse

manager requested was a printing option. The nurse manager requested that the system

provide a function to quickly print the nurse database, and the current and future

schedules.

The initial simulation was constructed with the capability of allowing the schedule

to start on any given day of the week, i.e. Monday, Tuesday, etc. The nurse manager,

would indicate the starting date. However, during the simulation, the nurse manager

assured the developer that the schedule always started on Monday and ended four weeks

later on a Sunday. Therefore, the program did not have to calculate the corresponding

days, the days could simply be hard coded into the system.

Stages 4 and 5. Developer Suggestions and User Reevaluation

At this stage the developer evaluated user's priority list, Figure 5.5 and determined

that all of the items were feasible and considered reasonable in terms of the required

development time. If the system was to be a large DSS, with time and cost being

important aspects of the development process, the developer would have given the

Chapter 5: The DSS for Nurse Scheduling 114

List of Requiremets:

1. An interface identical to current time sheet

2. A database containing information on the nurse's

personal and work history including:

a. Full name

b. Address

c. Phone number

d. Number of vacation days

e. Number of weekends worked

“n
h Number of sick days

Number of holidays ©

h. Number of excused absences

i. Number of unexcused absences

3. The maintenance of two schedules, the current and

the future schedules

4. A mechanism to save the worked schedules for

insurance purposes

5. A printing feature.

6. A facility to add and delete nurses from the
database and the schedule

Figure 5.5: Priority List

Chapter 5: The DSS for Nurse Scheduling 115

hospital an itemized estimate of the time and cost of many of the items on the list.

However, in this situation, there was no direct cost to the hospital for the DSS.

Also at this time the developer made recommendations to the user for other system

enhancements. One suggestion of the developer was the establishment of a password

feature that would prevent others, without proper authorization, from changing the

database or the schedule. Another feature that was suggested is a notebook, or memo

area, in which the nurse manager can write notes regarding the nurses and the shifts.

The developer also recommended including a nurses' preference ratio. This ratio

could be used to measure how the nurses regarded their work pattern. However, the

nurse manager rejected this concept. She explained that the unit was small enough for her

to personally know the nurses and have a good idea on their individual preferences.

The final suggestion by the developer was a feature to keep track of the cost of the

various schedules in terms of the type of nurses employed. For example, the use of nurses

on the Baylor plan or PRN staffing is more expensive to the hospital than the full time

LPNs and RNs. However, this feature was also rejected as unnecessary. The nurse

manager, when developing the schedule, was aware of the additional cost of the different

staffing levels, and took this into consideration.

If the DSS had the capability of developing a schedule for the nurses, the

developer's suggestions on improving the system would have had more merit and played

an important role in that scheduling process. However, since the DSS was focused on

aiding the nurse manager in the scheduling process, these extra features that were

recommended by the developer did not appeal to the nurse manager and were deemed

unnecessary.

Chapter 5: The DSS for Nurse Scheduling 116

Stage 6. Partial System Development

Hardware & Software

At this stage, it was still unclear as to what type of computer support the ICU

would obtain. Therefore, the DSS had to be constructed so that it could be run on any

IBM compatible machine, with limited memory capacity. Early in the development

process, this decision did not seem to play an important role. However later, as the

system was expanded, it had a large effect.

There were many applicable software packages available for PC-based systems

that could have been used to support the DSS. However, software that required a large

amount of memory or a Microsoft Windows environment would not be applicable for the

hospital environment. Several software programs, which were compatible with this

limited environment were evaluated including, Turbo Pascal, Lotus 1-2-3, and Lotus

Symphony. While contrasting the different options, it was determined that if the DSS

was to be developed using Turbo Pascal the system would operate very fast, but would

have a longer development time and be more difficult to modify than a spreadsheet

environment. The top item on the user's priority list, required that the user interface

resemble the time sheet. When evaluating the layout of the time sheet it appeared that it

would be advantageous for the time sheet to be constructed in a spreadsheet environment,

with the rows representing the nurses and the columns representing the individual days,

during the planning horizon. The advantage of a spreadsheet is that when you change a

value, all other related values are automatically recomputed. The nurse manager

frequently makes several changes in the schedule, and these changes can be quickly

recalculated in a spreadsheet environment. When comparing the spreadsheet environment

Chapter 5: The DSS for Nurse Scheduling 117

to a third generation language, it was decided that the development time and flexibility

were more important qualities to the success of the DSS than the operational speed.

Once it had been determined that the DSS would be most effectively constructed

using the a spreadsheet environment, the choices of software packages were narrowed to

Lotus Symphony or Lotus 1-2-3. Symphony performs a number of tasks, including word

processing, database management, and spreadsheet calculations, that were not available

from some of the other software packages. As stated earlier in the simulation discussion,

Symphony provides a unique windows feature not available in Lotus 1-2-3. Another

benefit to Symphony, that was not important for the simulation but is relevant for the

actual system is word processing. Symphony provides a word processor environment that

will enable the nurses to write and print memos or notes. Word processing is not available

with Lotus 1-2-3.

Symphony is a PC-based system that requires a minimum of 512K of random

access memory (RAM). Symphony can access both conventional memory and expanded

memory. While constructing the simulation, memory was not a problem. There was very

little programming involved and the simulation was basically a shell of the DSS that would

be constructed later. However, during the construction process of the DSS, it was found

that the system was large enough to require at least 2MB of expanded memory.

Symphony requires very few other additional capabilities. Symphony is capable of running

on any type of monitor, black and white or color, does not require a mouse, and the

required hard disk space is minimal.

Chapter 5: The DSS for Nurse Scheduling 118

A Description of the DSS

When the nurse user runs the program, the initial screen is the current schedule in a

spreadsheet environment as shown in Figure 5.4. The current schedule was selected to

first appear, rather than a menu displaying the various options, due to the frequency with

which the current schedule is examined and altered. The current schedule is evaluated on

a daily basis and is the window that is most often needed. Once in this area, no alterations

can be made to the current schedule. This allows the nurses in ICU to use the system to

examine the schedule, but prevents them from making any unauthorized changes.

The display matches the ICU's current scheduling time sheet. The rows represent

each nurse in the unit and the columns indicate the dates in the schedule. The notation in

the cells follows the format previously described in the minimum requirements phase. The

available starting times are as follows:

e Day shift starting at 8 am.

e Evening shift starting at 4 pm.

e Night shift starting at 8 pm or 12 am, depending in the length of the shift.

The length of the shifts can vary from 1 hour to 12 hours. Although, four, eight and

twelve-hour shifts are most common, the system was designed to handle shifts of any

length from 1 to 12 hours. The bottom rows of the schedule, indicate the number of

nurses scheduled to work on each of the selected shifts. The shifts are divided into the

following time frame:

e Day: 8am-4pm

e Evening]: 4pm -8pm

e Evening2: 8 pm - 12am

e Night: 12 am-8am

Chapter 5: The DSS for Nurse Scheduling 119

The evening shift is divided into two components, because during the evening shift the

eight-hour evening nurses are on duty the entire period but the twelve-hour day or night

nurses are only on duty for half the evening shift. Therefore, in order to distinguish the

number of nurses on duty throughout the shift it was necessary for the shift to be broken

into two components.

In Symphony, there are two calculating modes, automatic recalculating and manual

recalculating. In automatic recalculating, every time a change is made in the worksheet,

the entire sheet is recalculated. This mode was found to be inefficient and time

consuming, since the worksheet was large and changes were frequent. Therefore, the

manual method was selected. Every time the user needs to calculate the correct number

of nurses on the given shifts, the recalculate key must be pressed.

The system was constructed so that the various features can be run from a

spreadsheet menu environment or with the use of the alt key and the established letters. If

the user is unable to recall the letter that corresponds to the desired feature, a help menu

with a list of the possible commands, shown in Figure 5.6, is available. The menu,

displayed in Figure 5.7, appears by typing Alt-M, for menu. The second line in the menu

indicates the various features available from the menu interface. The first line displays the

corresponding submenu or a brief description of the selected or highlighted feature. The

features available to the user include:

e Add a Nurse to the Schedule and Database (Alt-A) - This enables the nurse manager

to add a nurse to the database and to the current and next schedules. When this option

is selected, the user is prompted to insert the nurse's first and last name and his level,

RN, LPN, etc. The nurse is then placed in the correct position in the schedule and

database, based on the level and then alphabetically.

Chapter 5: The DSS for Nurse Scheduling 120

01

NURSE LEVEL S-31 M-1.
AKERS ; RN N-12
BONNER RN | N-8
CLARK RN E-8 D-8.
DENNIS RN_ D-12 ,
ELGIN . RN | E-8 |
FLASK = RN D-8'E-8)

GRANT RN E-8 N-8
HENLEY’ RN | D-8 |

KLEIN » LPN N-8:N-8.
ADAMS | LPN E-8
LINKS LPN D-8 D-8
JONES : LPN

SMITH | LPN __N-8

DAY 33
EVE1 337
EVE2 3 3 |

NIGHT 337

Commands:

Alt Key

A - Add a Nurse
E - Edit Current Schedule
G - Generate Next Schedule
H - Home (Returns to Current Schedule
I - Nurse Database
M - Menu
N - Notebook
P - Print Menu
Q -Quit
S - Save Changes
U - Update (Replace Current Schedule)

F8 - Calculate

Figure 5.6: The Schedule with the Command Window

Chapter 5: The DSS for Nurse Scheduling 12]

Edit the Schedules or the Database

Edit Home Notes Save Print Quit Update
Rislestlee cele

SCHEDULE

01-31-93 TO 2-27-93

NURSE LEVEL S-31 M-1 T-2 W-3 T-4 F-5 S-6 S-7 M-8 T-9 W-10 T-11]
AKERS ~ RN N-i200 0 D-12D-12. D-12D-12 D-12 ,
BONNER RN __sN-8_N-8 N-8 N-8 N-8 2 N-8 |N-8 | N-8 | N-8:
CLARK . RN E83 D8 E8 © D-8 D-8:E-8: D-8 D-8 |
DENNIS. RN D-12) = D-12D-12 = D-12D-12 D-12D-12,
ELGIN RN : E8 D8. © (E-8N-12 E-8 : E-8 | E-8
FLASK . RN D-8 E-8 E8:' (D-8:E-8 D-8 D-8 E-8
GRANT RN E8N8 » _— [N-8 N-8 N-8 N-8 N-8 N-8
HENLEY: RN _—s'D-8 'D-8 'D-8 D-8 D-8 2 E-8 'E-8
KLEIN LPN N-8 N-8> — -E-8:N-8 .N-8. N-12.N-12
ADAMS LPN E-8 E-8.N-8:; = —_-E-8 N-12.N-12'N-8
LINKS LPN D-8 D8 D8 = E8.D-8 D-8 D-8 2
JONES LPN = ~~ _—_'N-8 N-12N-12 E-8 | E-8 N-12' E-8
SMITH __ LPN___N-8 N-8 N-12'N-12 N-12. D-8 D-8 D-8

DAY
EVE]
EVE2
NIGHT

 WW

WwW

WwW

Ww

wo

wo

W
w

W

WW

Figure 5.7: The Schedule with the Selected Menu Feature

Chapter 5: The DSS for Nurse Scheduling 122

(Alt-E) - This feature allows the nurse manager to edit the current schedule. The user

is first prompted for the correct password before allowing any changes to be made.

This prevents any nurses without proper authorization from altering the schedule. The

areas that can be altered are shown in green. Areas that can not be altered, such as the

days of the schedule, are indicated in white. The changes made in this area must be

saved before they replace the previous schedule. This allows the manager, once

having made changes the option of returning to the previous schedule without losing

the original schedule.

Generate (Alt-G) - This feature enables the nurse manager to edit or create the

schedule for the next planning horizon. When this option is selected the user is

prompted for the password. Ifthe next schedule has not yet been created, the user is

prompted for the starting date of the next schedule. At this point, if an incorrect date

is entered, the system beeps to indicate that a wrong date was entered and prompts the

user again for the correct date. A blank schedule then appears with the nurses’ last

names and levels on the first and second columns and the corresponding dates along

the first row. If the schedule for the next planning horizon has been previously

created, that schedule appears and allows the user to make necessary alterations.

Home (Alt-H) - This feature allows the user to return automatically to the current

schedule.

Information (Alt-I) - The information feature moves the user to the database window

where the data on the individual nurses are stored.

Chapter 5: The DSS for Nurse Scheduling 123

e Notebook (AlIt-N) - The notebook command moves the user to the word processor

area, where they can write notes regarding the nurses and their desired shifts. This

feature does not require a password and any of the nurses who had access to the

computer could enter and relevant information to the notebook area.

e Print (Alt-P) - The print feature enables the user to print either the current and next

schedules or the nurse database. When the user selects the print option a menu comes

up asking the user what he would like printed. The options include (1) the current

schedule, (2) the schedule for the next planning horizon, (3) personal data on the

nurses, which includes material such as their address, phone number etc., and (4)

information on the work history of the nurses, including data on the years worked at

the hospital, number of holidays taken, vacations, etc.

e Quit (Alt-Q) - Exits the program and returns the user to the DOS prompt.

e Save (Alt-S) - The save feature saves the changes made to the current work area.

Depending on the location of the user, the corresponding material is saved, this

includes the nurse database, the current schedule or the next schedule.

e Update (Alt-U) - The update feature files the current schedule and replaces it with the

next schedule that was previously created. When this feature is selected, the user is

first prompted for the name of the file under which the current schedule should be

saved. It is recommended that the name should represent the dates of the schedule, so

that at a future time, the schedule can be easily retrieved. At this point the nurse's

work history is updated, including number of vacation days, holidays, weekend, sick

Chapter 5: The DSS for Nurse Scheduling 124

days, etc. The user is then asked if he would like to delete a nurse from the schedule

and database. If the user responds with a yes, he is asked to input the first and last

name of the nurse to be deleted. If the name does not occur in the database he is

notified and asked if he would like to enter in the name again.

Development Problems and Limitations

The time spent developing the system would have been greatly reduced had the

problems of memory with using a 286 IBM compatible computer had not been

encountered. Since it was still unclear as to what type of hardware the hospital would

maintain, the partial DSS was developed on a 286 machine. A lot of time was spent

determining the formulas in the cells to compute the number of nurses on duty. Once it

was complete and expanded for the entire scheduling period it was discovered that there

was not enough memory. The formulas needed to be rewritten in the form of macros.

The size of the program, 4 weeks with 15 nurses, and the slow calculation speed of the

286 computer, increased the computation time of the macros to determine the number of

nurses to approximately 25 minutes. The same problem arose with the update feature.

The limited amount of memory and the slow speed of the computer resulted in the update

feature having a run time of approximately 40 minutes.

Stage 7. System Implementation

At the time of installation, the hospital was able to obtain a 486 Gateway

computer, with Microsoft Windows. This had a large affect on the design of the system.

As a result, the features that were originally written for a system with a limited amount of

memory could then be redesigned to take advantage of the additional memory. These

Chapter 5: The DSS for Nurse Scheduling 125

alterations to the DSS took approximately two days to accomplish. Both the update

feature and the calculation of the number of nurses on duty were rewritten with a resulting

run time of only 10-25 seconds.

At the meeting to install the system, the nurse manager informed the developer of

two changes that had been made since the last meeting. One change, made by budgeting,

concerned the starting day of the schedule. The schedule now started on a Sunday, rather

than on Monday as originally established. Fortunately the DSS was versatile enough for

the developer to quickly incorporate this change when installing the system. Another

item, not indicated earlier, was a new shift length. Originally the system was constructed

to handle shifts from one to twelve hours in length. It was now necessary to include the

possibility of a sixteen-hour shift. Again the DSS was versatile enough for both of the

changes to be made in approximately 40 minutes at the time of installation. The system

was then initialized to include the current schedule and the schedule for the next planning

horizon. At the meeting the nurse manager was given a two page handout, shown in

Figure 5.8 describing the features and the DSS. It was also recommended that each

schedule and the program be backed up and stored in a safe location. These records are

important for security reasons and the hospital should always have additional copies in

case the original was damaged.

The development of the DSS was a part-time endeavor covering an eight months

time span. The overall development time for constructing the DSS took approximately

two hundred man hours to complete, resulting in a system consisting of 300 lines of code

and over a dozen macros.

Chapter 5: The DSS for Nurse Scheduling 126

A Decision Support System for Nurse Scheduling

To Load:

Once in DOS move into the sysmphony directory by typing:

cd\symph

To run symphony type:

symphony

To load the file:

Press the F9 key and then type F R Sched Enter

For a list of the commands: Press Alt C

When typing in the zip code, address, and telephone you must

type a ' before typing in a number. Any cell that begins

with a number, if it is not a formula must have a ' before it.

Whenever you are editing you must remember to save afterwards,

otherwise your changes will not be saved. In addition, when exiting

the program will ask you if you want to save the changes you have

made during the session. If you want to save the work that has been

completed, even though you have already saved the edited material,

you must indicate a yes.

In order to recalculate the number if nurses on each of the given

shifts you must press F8 to recalculate the screen.

At the end of the year you must go through the update procedure

available in the menu feature. At the menu (Alt M) select update
and at the next menu select year.

The program should be run with the Cap Lock on at all times

In the schedule the following characters denote:

unexcused absence

excused absence

Vv a vacation day

H holiday

S sick day

U

O

Figure 5.8 The Nurse Scheduling DSS Handout

Chapter 5: The DSS for NUrse Scheduling 127

A Decision Support System for Nurse Scheduling

The Alt keys

A Add a nurse to the database

C A list of the commands will appear (Hit any key to exit)

E Edit the current schedule

G Generate the next schedule (Note: this will not replace the

current schedule

H Home (return to the current schedule)

I Move to the database

M Menu

N Notebook

P Print Menu

Q Quit

S Save |
U Update (File the current schedule and replace the current

schedule with the next schedule)

If you have any problems or would like some changes made

please let me know. My phone number and address is on

the attached card.

Figure 5.8 The Nurse Scheduling DSS Handout

Chapter 5: The DSS for NUrse Scheduling 128

Analysis of the Development Process

When analyzing the development process of the DSS one question that must be

asked is if priority design was the appropriate design methodology for the hospital

environment. One method of addressing this question, is to address the alternative. What

would have been lost or gained had a different methodology been employed? If the

traditional life cycle had been used the nurse manager and the developer would have met

initially and the requirements would have been determined without the benefit of the

prototype simulation. Although the environment had a low level of uncertainty, the

simulation was needed to allow the nurse manager to picture the system and its

capabilities. Once the nurse manager had a clear idea of the system only then could she

make educated decisions concerning the list of requirements for the system. The entire

system would have been designed, with the developer having little knowledge on what

requirements were most important and what was of little importance to the user. If the

traditional methodology was used, the most important feature might have been unclear.

From the developer's viewpoint, it might have been the generation of data rather than the

schedule itself. The resulting system may have not met the needs of the nurse manager.

Similarly, if Courban's iterative design was implemented, the nurse manager would

not have had the benefit of the simulation prototype before the developer and the user met

to determine the characteristics of the system and before the construction process began.

For example, during the simulation it was determined that the schedule would always start

on a Monday. The simulation did not have any real formulas, it only simulated the option

of starting on any given day. If Courban's method had been employed, all of the formulas

would have been constructed to allow the schedule to start on any day.

Chapter 5: The DSS for Nurse Scheduling 129

In addition, development would have stemmed from one important module of the

system. In this case, the development would have started with the development of the

user interface matching the time sheet. The actual system, developed using priority design

did start with the time sheet interface, but some of the other functions, that were to be

developed, later were taken into account during the construction process. Although, in

this case it is not clear that the time sheet interface would have differed in any way from

the interface that would have been developed using Courban's process it is important to

note that it may have had an affect on the development process.

Another methodology that could have been employed is prototyping, which is

generally recommended for an uncertain environment. This did not match the hospital's

environment. However, if the prototyping methodology had been employed, a working

model of the system would have been first developed. The prototype would have been

examined by the user and another prototype constructed. The would be no opportunity to

quantify the development time and the cost of the user's requests, and no mechanism for

determining the priority of the items.

Another question that should be addressed when analyzing the system, is if

Symphony was an appropriate tool for the development of the DSS. Although during the

system development, there appeared to be a problem with limited memory which forced

the system to be slow, Symphony was an appropriate tool. The speed and memory

limitations were resolved when it was determined that the hospital would be getting an

computer with expanded memory. Symphony was a good choice for a number of other

reasons. It did not require a large amount of programming and there is a great deal of

flexibility in the system. This is illustrated by the speed in which the changes were made

during the implementation stage. If a third generation language had been used these

changes could not have been incorporated as quickly.

Chapter 5: The DSS for Nurse Scheduling 130

Conclusion

The development of the nurse scheduling DSS accomplished two goals. First, it

provided a mechanism to further articulate the proposed priority design and provided a

platform for testing the proposed priority design methodology. The development process

followed the steps proposed in the design methodology. Each step was carefully noted

and further analyzed. Second, the development of the DSS assisted the nurse manager in

her scheduling task.

Chapter 5: The DSS for Nurse Scheduling 131

Chapter 6: Conclusion

Introduction

This chapter summarizes the results of the research. This includes a discussion of:

(1) the distinguishing features and benefits of the priority design, (2) the guidelines for the

~ selection of a design methodology and (3) the limitations and possible enhancements for

the nurse scheduling DSS.

Summary of Research Results

When decision support systems were first conceptualized, the traditional method

of design was the systems development life cycle. However, it was soon recognized that

decision support systems have distinctive characteristics that suggest the need for

alternative development strategies. In the last two decades, several different

methodologies have been applied to the development of decision support systems. These

Chapter 6: Conclusion 132

approaches include Courban's iterative design, Keen's adaptive design, prototyping and a

mixed methodology, integrating prototyping into the systems development life cycle.

Priority Design

Each of these existing methodologies were carefully studied and the strengths and

weaknesses were evaluated. An alternative methodology called priority design was

developed to augment the existing methodologies. The two most distinguishing features

of the priority design methodology include the development of a simulation prototype and

the idea that the design of the DSS should stem from a priority list of items, which is

evaluated by the developer. |

The simulation prototype in priority design incorporates the advantages of the

prototype methodology. Prototyping is usually recommended when the problem and the

system requirements are unclear. By constructing a prototype, the user is able to view the

system before the construction process begins. After seeing the system and interacting

with the interface, the user can then further clarify the system requirements. A simulation

prototype, as opposed to a working prototype, was recommended to prevent the user

from investing in the system before seeing it. The user will then have a clearer

understanding of the desired system's capabilities and limitations before a large investment

is made.

In priority design, the recommended priority list is created by the user and then

evaluated by the developer. The partial construction of the DSS then stems from the

higher priority items. The development of the priority list has a number of benefits. By

allowing the user to create his own priority list, the developer receives a clear

Chapter 6: Conclusion 133

understanding of the items that are considered most important to the success of the DSS

and which items are considered secondary. Thus, the construction process is focused on

the most important capabilities. This ultimately keeps the development time of the partial

system to a minimum.

One of the advantages of Courban's iterative design, is that it provides the user

with a partial system to use. The priority system incorporates this idea. However

development does not start with one important module, but from the most important items

on the priority list. In addition, by maintaining the list of lower priority items the

developer can foresee how the system will need to expand in the future.

The evaluation of the list by the developer provides an opportunity for the

developer to suggest enhancements and additions to the system, which the user may have

not considered. The evaluation also provides the user with estimates on the development

time and cost required to meet each of the user's requests. If the budget or the time

schedule for the partial system development needs to be adjusted, the user can then make

a better decision on what items to cut or postpone.

In conclusion, the priority design was not developed to replace any of the current

design methodologies. The characteristics of the priority design are advantageous in

certain environments. Priority design was developed to complement the existing ones.

Guidelines for Selecting a Design Methodology

Most decision support systems share some general characteristics. They are

designed to aid in solving semi-structured problems. They are generally user friendly and

are adaptive over time. Although DSS share some of these common characteristics, they

Chapter 6: Conclusion 134

are applied to solve a number of different problems in a variety of environments. The

different characteristics of the problems and their corresponding environments suggest the

need for a design methodology that best complements these characteristics.

Characteristics such as the complexity, uncertainty, and user involvement are some of the

issues that need to be evaluated in order to determine an appropriate design methodology.

In this research, guidelines were proposed to evaluate the environment and characteristics

of a project and to recommend an appropriate design strategy.

To illustrate the use of the selection guidelines, they were applied to three case

studies. The environment of each of the cases were examined and a design strategy was

recommended. An analysis followed which discussed how the development process might

have differed if the recommended process had been employed. In all three cases, a number

of different advantages were foreseen if the recommended methodology had been

employed. Some of the advantages include a shorter development time, a clarification of

the user's requirements of the system and financial savings.

The Nurse Scheduling DSS

To apply the proposed priority design, a DSS for nurse scheduling was developed.

The DSS was constructed to assist the nurse manager, of the ICU at Montgomery

Regional Hospital in the nurse scheduling process. The development of the DSS followed

the steps of the priority design methodology. The DSS was successfully completed and

employed by the hospital.

After the nurse manager had used the system for a period of time, a follow up visit

was conducted, to determine the nurse manager's opinion of the system and if any changes

would be necessary. Generally the nurse manager was pleased with the system. She

Chapter 6: Conclusion 135

reported that the data was very easy to enter and that the system met all of her requests.

When asked if the manager would like any additional data or statistics to be provided, her

reply was no and further added that some of the statistics that were originally requested

were now unnecessary and were being provided by payroll.

The nurse manager also commented that she would like the system to create the

schedule. For the future, this is would be an enhancement that would greatly add to the

value of the DSS. This process would require a large amount of time and some major

changes in the DSS. It would probably require that the computations be carried out using

a third generation language and then be imported into the current spreadsheet environment

of the DSS.

The nurse manager's final comment was that she was happy with the overall

system, but would have liked to have used it in a Microsoft Windows environment. The

developer responded that when the system was initially constructed it was not clear if they

would have the computing power to operate in a Windows environment. However, if the

hospital was willing to invest in the necessary software the system could easily be

converted to a Windows application.

As a final comment, the developer, foresees that the long-run continued value of

the system is questionable. The DSS was constructed to be as flexible and adaptive as

possible and to be able to withstand any foreseeable changes in the scheduling process.

However, if in the future, there are changes that were unforeseeable it would be difficult

for the hospital to implement them. There is no one currently available at the hospital with

the technical expertise to incorporate changes into the system. The availability of

someone to maintain the system and make necessary changes should be considered before

the development process begins. In this case, the hospital has been left with information

on where to contact the developer for any problems in the near future.

Chapter 6: Conclusion 136

Bibliography

Aiken, L. and C. Mullinex, "Special Report: the Nursing Shortage: Myth or Reality?"
New England Journal of Medicine, 317, 1987, pp. 641-646.

Alavi, Maryam, "The Evolution of Information Systems Development Approach: Some

Field Observations," Data Base, Spring, 1984, pp. 19-24.

Arthur, J.L. and A. Ravindran, "A Multiple Objective Nurse Scheduling Model," AJIE
Transactions, Vol. 13, 1981, No. 1, pp. 55-60.

Atwood, J.R. and A.S. Hinshaw, "Multiple Indicators of Nurse and Patient Outcomes as
a Method for Evaluating a Change in Staffing Patterns," Comunnicating Nurse Res.,

10: 235, 1977, pg 255.

Balintfy, J. L. and C.R. Blackburn, "General Purpose Multiple Choice Programming by
Truncated Block Enumeration," presented at the 36th National Meeting of ORSA,

Miami Beach, Florida, November, 1969.

Bennett, John L., Building Decision Support Systems, Reading, Massachusetts:
Addison-Wesley Publishing Co., 1983.

Berrisford, Thomas, and James Wetherbe, "Heuristic Development: A Redesign of

Systems Design", MIS Quarterly, March 1979, pp. 11-19.

Boar, B.H. Application Prototyping, New York, New York: John Wiley and Sons, 1984.

Burns, R.N., and A.R. Dennis, "Selecting the Appropriate Application Development

Methodology," Data Base, Fall, 1985, pp. 19-23.

Carlson, E.D., "An Approach for Designing Decision Support Systems," Data Base,

Winter, 1979.

Cerveny, R., E. Garrity, and G. Sanders, "The Application of Prototyping to Systems

Development: A Rationale and Model", Journal of Management Information
Systems, Vol III, 1986, No. 2, pp. 52-62.

Courban, J.C. and M. Bourgeois, The Information Systems Designer as a Nurturing

Agent of a Socio-Technical Process. In Lucas, H., et al.(eds.). Information Systems
Environment, New York:North Holland, 1980.

Bibliography 137

Curran, C., A. Minnick, and J. Moss, "Who Needs Nurses?" American Journal of

Nursing, 1981, 81, pp. 2162-2164.

Davis, G.B. and M.H. Olson, Management Information Systems: Conceptual

Foundations, Structure, and Development, New York: McGraw-Hill Book

Company, 1985.

Dennis, A.R. and R.N. Burns, and R.B. Gallupe, "Phased Design: a Mixed Methodology

for Application System Development," Data Base, Summer, 1987, pp. 31-37.

Durmusoglu, M. Bulent, "Analysis of the Conversion From a Job Shop System to a

Cellular Manufacturing System," /nternational Journal of Production Economics,
Vol. 30-31, 1993, pp. 427-436.

Easton, Fred F, Donald F. Rossin, and William S. Borders, "Analysis of Alternative

Scheduling Policies for Hospital Nurses," Production and Operations Management,
Vol. 1, No. 2, Spring 1992, pp.159-174.

Eusanio, Patricia L., "Effective Scheduling - The Foundation for Quality Care," Journal

of Nursing Administration, Vol. 8 1978, No. 1, pp. 12-17.

Felton, Geraldene, "Body Rhythm Effects on Rotating Work Shifts," Journal of Nursing
Administration, March-April, 1975, pp. 16-19.

Gahan, Karen, and Rosanne Talley, "A Block Scheduling System," Journal of Nursing

Administration, Vol. 5 1975, No. 9, pp. 39-41.

Greenwood, Allen G., Dissertation: A Decision Support System for Tuition and Fee
Policy Analysis, Department of Management Science, Virginia Tech, Blacksburg, VA

1984.

Hoover, Thomas B., "Decision Support at Conrail", Datamation, June 1983, pp. 220-

230.

Janson, M.A., and L.D. Smith, "Prototyping for Systems Development: A Critical

Appraisal," MS Quarterly, Vol. 9 1985, No. 4, pp. 305-316.

Keen, P.G.W., "Adaptive Design for Decision Support Systems," Database, Vol. 12, 1

and 2, Winter 1979, pp. 15-25.

Keen, P.G.W., and M.S. Scott-Morton, Decision Support Systems, An Organizational
Perspective. Reading, MA: Addison-Wesley, 1978.

Bibliography 138

Konsynski, B.R. "Data Base Driven System Design," Proceedings of the 1st Conference

on Systems Analysis and Design, Elsevier-North Holland, Atlanta, Georgia, 1981.

Kraushaar, James, and Larry Shirland, "A Prototyping Method for Applications
Development by End Users and Information Systems Specialists", A/S Quarterly,
September, 1985, pp.189-197.

Kroeber, R. "Designing Decision Support Systems: Critical Issues", Database, 1989,

pp. 152-160.

Laudon, Kenneth and Jane Price, Business Information Systems, A Problem-Solving
Approach, Philadelphia, PA, The Dryden Press, 1991, pp.389-390.

McCracken, D.D. "A Maverick Approach to Systems Analysis and Design,",
Proceedings from Naumann's article.

McKibbin, R. and C. Boston, "An Overview: Characterisitcs, Impact, and Solutions,"

Monograph 1 in The Nursing Shortage: Opportunities and Solutions, American
Organization of Nurse Executives and American Nurses' Association, Chicago, IL,

1990.

McFarlan, F.W., "Portfolio Approach to Information Systems", Harvard Business

Review, Sept.-Oct. 1981, pp. 142-150.

Melbin, M. "Curbing Absenteeism and Turnover Among Nursing Personnel,"
Massachusetts General Hospital, Boston, Massachusetts, 1968.

Miller, H.E., W.P. Pierskalla, and J.R. Gustave, "Nurse Scheduling Using Mathematical

Programming," Operations Research, Vol. 24, 1976, No. 5, pp. 856-870.

Moran, "At Work; Pushing Nurses to a Breaking Point," 7he New York Times, The

New York Times Company, January 10, 1993.

Musa, A.A., and U. Saxena, "Scheduling Nurses Using Goal-Programming Techniques,"
ITE Transactions, Vol. 16 ,1984, No. 3, pp. 216-221.

Naumann, Justus, and Milton Jenkins, "Prototyping: The New Paradigm for Systems

Development," M/S Quarterly, September, 1982, pp. 29-43.

Omar, Mohammed H., "A DSS Approach for Implementing an Online Retail Banking
System," Information & Management, Vol 21, 1991, pp. 89-98.

Pracht, W.E. and J.F. Courtney, "The Effects of an Interactive Graphics-Based DSS to
Support Problem Structuring," Decision Sciences, Vol. 19, 1988, pp. 598-620.

Bibliography 139

Pross, "ANA Says Staffing Concerns Not New to Nurses; Inadequacies Seen As Part of

Overriding Concern for Qualtiy Patient Care", U.S. Newswire, January 7, 1993.

Ress, David A. and Kenneth R. Currie, "Development of an Expert System for

Scheduling Work Content in a Job Shop Environment," Computers and Industrial
Engineering, Vol. 25, No. 1-4, 1993, pp. 131-134.

Rowland, Howard S., and Beatrice L. Rowland, 7he Nursing Administration Handbook,

Second Edition, Aspen Publishers, Inc., Rockville, MD., 1985, pp. 166-182.

Sauter, Vicki L., and Joseph L. Schofer, "Evolutionary Development of Decision

Support Systems: Important Issues for Early Phases of Design," , Vol. 4, 1988,

Journal of Management Information Systems, No. 4, pp. 77-92.

Sprague, R. H., Jr., and E. D. Carlson, Building Effective Decision Support Systems.

Englewood Cliffs, NJ: Prentice-Hall, 1982.

Stevens, Barbara, The Nurse as Executive, Third Edition, Aspen Publishers, Inc.,

Rockville, MD., 1985, pp. 127-130.

Turban, Efraim, Decision Support and Expert Systems: Management Support Systems,
Second Edition, Macmillan Publishing Co., New York, 1990.

Vik, G. Astrid, and Ruth MacKay, "How Does the 12-Hour Shift Affect Patient Care?"

The Journal of Nurse Administration, January 1982, pp. 11-14.

Warner, D.M., "Scheduling Nursing Personnel According to Nursing Preference: A

Mathematical Programming Approach", Operations Research, Vol. 24, No. 5, pp.
843-855.

Warner, D.M., "Nurse Staffing, Scheduling, and Reallocation in theHospital," Hospital

and Health Services Administration, Summer, 1976, pp. 77-90.

Bibliography 140

iy

Vita

Wendy Ann Ceccucci was born in Cohoes, New York on December 30, 1965. She attended

elementary school in Nashua, New Hampshire and graduated from Newport High School in Bellevue,

Washington, in 1983. In September of that year she entered Union College in Schenectady, New York.

In August 1987 she received her Bachelor of Science degree in Math-Computer Science. In September

she entered the Masters of Business Administration program at Virginia Polytechnic and State University.

She completed the degree in August 1989. Immediately following the Masters, she entered the doctoral

program in Management Science. While attending her studies at Virginia Polytechnic Institute and State

University she worked as a graduate assistant and as a part-time instructor. In September 1992 while

working on her dissertation, she took a position as assistant professor at Central Connecticut State

University in New Britain, Connecticut.

bya y Cee CLECC (

14]

