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CHAPTER 10

 

Structural stability of 
discrete conservative 
systems 

 

Structures subject to compression fail in differently than those subject to tension. For some ductile metals that are 
short and thick, compression failure is associated with a shear mechanism with a fracture plane inclined with 
respect to the axis of the compressive load. Other ductile metals may not fracture in compression but crush dur-
ing plastic deformation. Long and thin compression members fail by buckling in which the member responds by 
displacing sideways with respect to the direction of the compressive load. Buckling is characterized by

 

•

 

failure due to excessive displacements (loss of structural stiffness), and/or

 

•

 

loss of stability of an equilibrium configuration 

 

 Stability of equilibrium

 

 means that the response of the structure due to a small disturbance from its equilib-
rium configuration remains small; the smaller the disturbance the smaller the resulting magnitude of the displace-
ment in the response. If a small disturbance causes large displacement, perhaps even theoretically infinite, then 
the equilibrium state is unstable. Practical structures in engineering are stable at no load. Now consider increas-
ing the load slowly. We are interested in the value of the load, called the 

 

critical load

 

, at which buckling occurs. 
That is, we are interested when a sequence of stable equilibrium states as a function of the load, one state for each 
value of the load, ceases to be stable.

In this chapter structural stability phenomena, concepts, and methods are presented by analyzing discrete 
systems composed of rigid bars and springs. Stability of discrete systems are also presented by Simitses (1976), 
and in a monograph by Huseyin (1975). The latter author presents a general non-linear theory of elastic stability 
of discrete systems. Continuum analyses for the buckling of columns and plates are discussed in the next chapter.

 

10.1 Model A: stable symmetric bifurcation buckling 

 

This model is shown in figure 10.1 and it has one coordinate 

 

θ, 

 

, to describe the configuration of the 
model under the 

 

deadweight load P

 

. (An external load independent of its corresponding displacement.) The 
model consists of a rigid rod of length 

 

L

 

, connected by smooth hinge to a rigid base. The rod can rotate about the 
hinge, but it is restrained by a linear elastic torsional spring of stiffness 

 

K

 

 (dimensional units of F-L/ radian). The 
restoring moment of the spring acting on the bar is zero at 

 

θ

 

 = 0. Neglect the weight of the rod with respect to the 

π– θ π< <



 

Article 10.1

 

290

 

Aerospace Structures

 

applied load 

 

P

 

. From the free body diagram of the rod shown in figure 10.1, the equation of motion for rotation 
about the fixed hinge is

 

(10.1)

 

where 

 

I

 

0

 

 is the moment of inertia of the rod about the fixed point and 

 

t

 

 is time.

 

10.1.1 Equilibrium method

 

This method is also known as the classical method or bifurcation method. Consider equilibrium states under the 
static, downward load 

 

P

 

 which are characterized by the angle 

 

θ

 

 being independent of time 

 

t

 

. Hence, the inertia 
term in eq. (10.1) vanishes and we have

.

 

(10.2)

 

One solution to eq. (10.2) is

.

 

(10.3)

 

Equilibrium path (10.3) is called the trivial equilibrium configuration. The equilibrium method is characterized 
by the question

 

What are the values of the load for which the perfect system admits non-trivial equilibrium configurations? 
(Ziegler, 1968)

 

A second solution of eq. (10.2) is

 

(10.4)

 

Recall from the calculus using l’Hôpital’s rule that the limit of the indeterminate form  as  is 
one. The two equilibrium paths are plotted in the load-deflection diagram shown in figure 10.2. Equilibrium path 

 

p2

 

 is called the secondary path and we note it is symmetric about 

 

θ

 

 = 0. For  there is only one equilib-

rium position:  on the primary path 

 

p1

 

. For  there are three equilibrium positions:  on 
path

 

 p1

 

, and two on the secondary path 

 

p2

 

.
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L

Fig. 10.1  One degree-of-freedom structural model.
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Model A: stable symmetric bifurcation buckling

 

The two equilibrium paths intersect at (

 

θ

 

,

 

P

 

) = (0,

 

K/L

 

). This intersection of the two paths is called a 

 

bifurca-
tion point, 

 

and represents the equilibrium state or position common to two separate equilibrium paths. At no load 
the rod is vertical and this corresponds to the origin in the load-deflection diagram. As the load 

 

P

 

 is slowly 
increased from zero the rod remains vertical (

 

θ

 

 = 0), and at 

 

P = K/L

 

 adjacent equilibrium states exists on the sec-
ondary path.

The existence of adjacent equilibrium states in the vicinity of the 
primary equilibrium path has been noted by investigators of struc-
tural stability as the onset of buckling. Hence, buckling is character-
ized by the bifurcation point on the load-deflection diagram. For 
this reason, the term bifurcation buckling is used to describe this 
condition. As we will show later, the rod will not remain vertical for 
loads 

 

P > K/L

 

 if there are infinitesimal disturbances present (there 
always are), but will rotate either to the left or right depending on 
type of infinitesimal disturbance. We note that the magnitude of the 
angle 

 

θ

 

 becomes large as the load is increased from 

 

K/L

 

 on the sec-
ondary path. The load at the bifurcation point is called the critical 
load and is denoted as . Thus,

.

 

(10.5)

 

Small 

 

θ

 

 analysis  

 

Consider the small angles of rotation such that  for 

 

θ

 

 measured in radians. Equilib-
rium eq. (10.2) becomes

.

 

(10.6)

 

The solutions of this equation (10.6) are

, and

 

(10.7)

 

.

 

(10.8)

 

These solutions are shown in the load-deflection plane in figure 10.3. The equilib-
rium path  coincides with path 

 

p1

 

, but path  is not a good approximation to 
path 

 

p2

 

 unless 

 

θ

 

 is very small. However, the bifurcation point is the same as 
obtained in the large 

 

θ

 

-analysis. Hence, the critical load from the small 

 

θ

 

-analysis is 
the same as obtained in eq. (10.5) from the large 

 

θ

 

-analysis.

 

10.1.2 Kinetic method

 

The kinetic method, or the vibration method, is based on the definition of stability of 
equilibrium. The vibration method is characterized by the question

 

What is the value of the load for which the most general free motion of the perfect system in the equilibrium 
position ceases to be bounded? (Ziegler, 1968)

 

Let the rotation angle

 ,

 

(10.9)

 

where  is independent of time and satisfies the equilibrium eq. (10.2); i.e.,
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. (10.10)

Consider the additional rotation angle  to be small in magnitude but a function 
of time. Thus, we are considering small oscillations about an equilibrium state 

 as shown in figure 10.4. Substitute eq. (10.9) for  in the equation of 

motion, eq. (10.1), to get

, (10.11)

where the dots denote derivatives with respect to time (e.g., ). Using the 

trigonometric identity for the sine of the sum of two angles, and performing some 
minor rearrangements, equation (10.11) becomes

. (10.12)

Now expand the trigonometric functions of angle  in a Taylor Series about  to get

, (10.13)

in which  means terms of order  and higher. Arrange eq. (10.13) in powers of  to get

. (10.14)

Note that “coefficient” of the term  vanishes because of the equilibrium condition given by eq. (10.10).

For very small additional rotation angles  about the equilibrium configuration, eq. (10.14) is approxi-
mated by

, (10.15)

where

. (10.16)

The solution of the second order differential equation (10.15) for  is

, (10.17)

in which constants  and  are determined by initial conditions for  and . The solution given by 

eq. (10.17) is a harmonic oscillation about the equilibrium configuration and  is interpreted as the natural fre-

quency in radians per second. Initial conditions  and  are considered to be very small to simulate an 
arbitrary infinitesimal disturbance. The smaller the initial disturbance, the smaller the maximum amplitude of the 

oscillation in . Thus,  is a condition for a stable equilibrium configuration with respect to infinitesimal 
disturbances.

The solution of the second order differential equation, eq. (10.15), for  is
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. (10.18)

For arbitrary initial conditions, the term with the positive exponent in the dominates the solution. This corre-

sponds to large values of the  no matter how small the initial disturbance. Hence,  is a condition of 
unstable equilibrium configuration with respect to infinitesimal disturbances. The kinetic method for model A 
leads to the following criterion.

On the primary equilibrium path p1 given by eq. (10.3), we have from eq. (10.16) that

. (10.19)

Thus, equilibrium configurations are stable if , 

critical if , and unstable if . The pri-

mary equilibrium path ceases to be stable at , 

and  is the buckling load. On the secondary path 

(10.4) , and  for 

, Thus, the equilibrium configuration on the 

secondary path is critical at , and the equilibrium 

configurations for  are stable. Retaining the 

first non-zero term in the expansion of the differential equation of motion (10.13) at the bifurcation point 
 we get

. (10.20)

Differential equation of motion (10.20) is nonlinear. Since coefficient , its solution is a nonlinear 

oscillation about the bifurcation point for small initial disturbances (Simitses, 1976). Hence, equilibrium at the 
bifurcation point is stable. The stability of the equilibrium states for model A are shown in figure 10.5.

10.1.3 Energy method

Theorem.   A conservative mechanical system is in a configuration of stable equilibrium if, and only if, the value 
of the potential energy is a relative minimum, otherwise it is unstable.

This method is characterized by the question:

What is the value of the load for which the potential energy of the system in the equilibrium position ceases 
to be positive definite? (Ziegler, 1968)

 Dynamic criterion for stability of an equilibrium state

The equilibrium state is stable if

The equilibrium state is critical if

The equilibrium state is unstable if
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First we have to determine if model A is a conservative mechanical system. The incremental work of the 
external load and the rotational spring acting on the bar shown in figure 10.6 are given by

. (10.21)

The incremental external work is positive since 
load P and the shortening  act in the same 
direction, but the incremental work of the spring 
on the bar opposes the increase in rotation. The 
shortening is given by

. (10.22)

The increment in the shortening with respect to an 
infinitesimal change in the rotation is

. (10.23)

The incremental external work is . Since the load P is independent of angle θ for dead-

weight loading, we can integrate incremental work expression to get . The constant C is 

determined if we define  when θ = 0. The external work function is

. (10.24)

Note that the work of P is independent of path. For example, the value of  is the same if the bar first rotated 

to 2θ and then rotated back to θ. The expression for the incremental work of the spring acting on the bar is inte-

grated with respect to θ to get . The constant  is determined if we define  at  θ = 

0. Hence,

. (10.25)

Since the work done by the external load and the spring force are independent of the process of how the final 
value of θ is achieved, they are conservative forces. The potential energy is defined as the negative of the work 
function. The negative sign means that the work done by the spring force against the rotation increases the poten-
tial energy while the work done by the force P with the rotation decreases the potential energy. Let  denote the 

potential energy of the spring and let  denote the potential energy of the external load. Then

. (10.26)

The total potential energy is denoted by V, where

. (10.27)

Second, we must determine the equilibrium positions and if these correspond to a relative minimum of V. A 
necessary condition for a relative minimum is that V is stationary with respect to θ, and this leads to equilibrium. 
That is,

, (10.28)
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which is the same equation (10.2) governing equilibrium found from the free body diagram approach. Let     

denote the rotation of the bar in equilibrium under load P, or . The Taylor series of the 

potential energy about the equilibrium position is

, (10.29)

where

. (10.30)

At equilibrium .The change in potential energy  is

 (10.31)

For infinitesimal changes in  from the equilibrium position, the lowest degree term in h dominates the 

series of . Consequently, the potential energy is positive definite if , indefinite if , and 

negative definite if . The second derivative of  is 

. (10.32)

On trivial equilibrium path  for any P, and the second derivative . Therefore,

. (10.33)

In answer to the question characterizing the 
energy method, the potential energy ceases 
to be positive definite on the primary equi-
librium path when . On the sec-

ondary path , and the 

second derivative of the potential energy is

. (10.34)

A graph of eq. (10.34) is shown in figure 
10.7. Thus,

. (10.35)

These results from the energy method confirm the previous results from the kinetic method. At the bifurcation 
point , and the second derivative . Evaluate the next two terms in the series 
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(10.31) for  at the bifurcation point to find

. (10.36)

The series for  a the bifurcation point is

. (10.37)

Hence, , and the bifurcation point  is stable.

10.1.4 Eccentric load

Consider the applied load P applied slightly off the center line of the bar by  as shown in figure 10.8. Moment 

equilibrium about the fixed pin is

. (10.38)

The equilibrium equation (10.38) solved numerically and the equilibrium paths in the load-deflection plane are 
shown as dashed lines in figure 10.9. There are two equilibrium paths: the first one begins from the unloaded 
state (P = 0, θ = 0), and a second complementary path that is not connected to the first path. As the load P 
increases from zero along the first path, the angle θ increases slowly until P is in the vicinity of . 

Equilibrium positions on the first path are stable ( ). 

Note the following characteristics.

• The deflection for the path beginning from the unloaded state is always the same sign as .

• If  is small, the equilibrium path of the imperfect system approaches that of the perfect model as the de-

flection becomes large.

• There is no intersection of two equilibrium paths.

• Even if  there are three equilibrium states for .

• There is a minimum load on the complementary path that divides unstable and stable equilibrium states.
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Fig. 10.8  Model A subject to eccentric load.
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10.1.5 Initial angle

When P = 0, suppose the bar is not vertical but is at an initial angle  with the spring restoring moment 

equal to zero as shown in figure 10.10.   Moment equilibrium about the fixed pin is

. (10.39)

Equilibrium equation (10.39) is plotted in figure 10.11. The response of model A with the initial angle is similar 
to the response of model A subject to the eccentric load in figure 10.9

Discussion.  Eccentricity in load and the initial slope of the bar are examples of imperfections. The structural 
systems are imperfect. Small imperfections of model A do not change the fact that there are large displacements 
when  of the perfect system. Model A is classified as stable symmetric bifurcation. The secondary 

equilibrium path p2 of the perfect system in figure 10.2 is symmetric about θ = 0 and it is stable.

Real structures exhibiting stable symmetric bifurcation are,

a. long straight columns subject to axial compression, and
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Fig. 10.9 Load-deflection plots for model A subject to the eccentric load are shown by the dashed 
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b. flat plates subject to in-plane edge loading.

10.2 Model B: unstable symmetric bifurcation

This model consists of a coplanar arrangement of two rigid bars of length L and a linear elastic spring of stiffness 
K. The bars are horizontal in the initial position and connect to a center hinge, with the opposite ends of each bar 
supported on roller support. The vertical spring connects to the center hinge and is not stretched when the bars 
are in the horizontal position. A horizontal load P acts at each roller support to subject the model to compression.

The deflected configuration of the model is symmetric with respect to the vertical line through the spring, 
and each bar rotates through an angle θ with respect to the original horizontal position. The deflection of the 
spring is , and the load P is independent of the corresponding displacement . The potential energy is

. (10.40)

The potential energy is stationary at equilibrium, or , which leads to
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. (10.41)

The solutions of eq. (10.41) are

. (10.42)

The equilibrium paths are shown on the load-deflection plot in figure 10.13. Equilibrium paths intersect at the 
bifurcation point .   By the equilibrium method the critical load is . However, 

equilibrium states in figure 10.13 are different than those of model A shown in figure 10.2. Note that there are 
three equilibrium positions for . 

The stability of the equilibrium states is assessed from the second derivative of the potential energy (10.40). 
The second derivative is

. (10.43)

On equilibrium path p1

. (10.44)

Therefore, on equilibrium path p1

.(10.45)

On equilibrium path p2 . The second derivative is

. (10.46)

Therefore, on equilibrium path p2

.(10.47)

At the bifurcation point  on path p2 the derivatives of the potential energy are

. (10.48)

The potential energy is a relative maximum at the bifurcation point, so the bifurcation point is unstable. Model B 
exhibits unstable symmetric bifurcation.
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10.2.1 Initial angle imperfection

Consider a small deviation of the bars from the horizontal position represented by angle  as shown in figure 

10.14. The spring is not stretched in the initial position. 

The potential energy of the system is

. (10.49)

The potential energy is stationary at equilibrium, or . Hence, the equilibrium equation is

. (10.50)

Equation (10.50) is written in the equivalent form as

, (10.51)

where the critical load of the perfect system is . One solution to eq. (10.51) is the unloaded state at 

. Other solutions are plotted as dashed lines in the load-deflection plane of figure 10.15. Equi-

librium states along the path beginning at the unloaded state are stable until a relative maximum on the path is 
encountered at , which is indicated by the filled circles in figure 10.15. There are no stable adjacent 

equilibrium states if the load P increases from  or if θ is increases from . Any small increase in load or 

rotation from the relative maximum results in a dynamic motion of the system that may lead to catastrophic col-
lapse.

δ0

L L

K

initial

δ0 δ0

deflected

P ∆, P ∆,

θ θ

LL

K

Fig. 10.14 Imperfect model B.

V 1
2
---K L θsin L δ0sin–( )2 2PL δ0cos θcos–( )–=

dV
dθ
------- 0=

KL2 θsin δ0sin–( ) θcos 2PL θsin– 0=

θsin δ0sin–( ) θcos P Pcr⁄( ) θsin– 0=

Pcr KL 2⁄=

θ P,( ) δ0 0,( )=

θm Pm,( )

Pm θm
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The relative maximum on the equilibrium path emanating from the unloaded state is determined from

, where . (10.52)

For selected values of angle  the values of  are plotted from eq. (10.52) in figure 10.16. There is a 

rapid decrease in the maximum load for small increases in the imperfection angle. For example, at  

( ) , which is a 30% reduction of the buckling load with respect to the perfect system. For 

, the value of , or , which is a large rotation at the maximum load.

Discussion.  All real structures are imperfect. For columns and plates these imperfections if small did not signif-
icantly reduce the actual buckling load from the critical load  obtained in the analysis of the perfect structure. 

However, the buckling loads for axially compressed cylindrical shells in experiments are significantly less than 
the critical load determined from the perfect analysis (small displacements and slopes). Refer to Brush and Alm-
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Fig. 10.15 Equilibrium paths of the imperfect model B are shown in the load-deflection plane by 
dashed lines for (a)  and (b) .δ0 0> δ0 0<
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Fig. 10.16 The maximum load as a 
function of the imperfection            
angle for model B.
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roth (1975). Even for small imperfections in axially compressed shells the maximum load  is much lower 

than . The axially compressed cylindrical shell is sensitive to imperfections.

Is is concluded then, that the value of  may not be meaningful in practice. It depends on the nonlinear 

behavior of the equilibrium paths.

• Model B is imperfection sensitive.

• Model A is imperfection insensitive.

The question of whether a structure is imperfection sensitive is answered completely by the stability or insta-
bility of the bifurcation point or by the initial, nonlinear post-buckling path.

10.3 Model C: asymmetric bifurcation

Model C is a coplanar arrangement of two rigid bars of length L and a linear elastic spring with stiffness K. In the 
initial configuration the bars are horizontal and the spring is at a  angle with respect to the bars. The bars and 
the spring are connected to a smooth central pin. The opposite end of the left bar is pinned to a fixed point, and 
the opposite end of the spring is connected to a fixed pin at distance L below the fixed end of the left bar. The 
opposite end of the right bar is pinned to a roller support free to move horizontally. A compressive force P acts at 
the roller support and under its action the bars can rotated through an angle θ with respect to the original horizon-
tal position..

The potential energy is , where  denotes the change in the length of the spring and ∆ 

denotes the shortening of the distance between supports. These changes in length are related to angle θ by

. (10.53)

The total potential energy  is given by

. (10.54)

The potential energy is stationary at equilibrium which leads to

. (10.55)

The solutions of eq. (10.55) are

Pm

Pcr

Pcr

45°

LL

L
K

θθ

P ∆,

L

LL

K

initial deflected

Fig. 10.17 Model C.

V K∆s
2 2⁄ P∆–= ∆s

∆s L θcos( )2 L L θsin–( )2+ 2L– 2L 1 θsin– 1–( )= = ∆ 2L 2L θcos–=

V θ( )

V θ( ) KL2 1 θsin– 1–( )2 2PL 1 θcos–( )–=

KL2 θcos 1 θsin–( ) 1 2/– 1–[ ] 2PL θsin– 0=
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. (10.56)

On path p2 as , we get the indeterminate form . The limit of this indeterminate 

form is found from l’Hôpital’s rule to be

. (10.57)

The equilibrium paths are plotted on the load-deflection plane in figure 10.18. Equilibrium path p2 is asymmetric     
about θ = 0. Stability analysis leads to path p2 being stable for θ > 0 and unstable for θ < 0. Path p1 is stable for 

 and unstable for . At the bifurcation point  higher derivatives of the poten-

tial energy are  and . That is, the potential energy is neither a minimum nor maximum, 

but has a horizontal inflection point at . 

Consider a geometric imperfection of model C in which the bars 
are at an angle  with respect to the horizontal before the load is 

applied as is shown in figure 10.19. In the unloaded configuration the 
spring is not stretched nor contracted. The change in spring length is 

. (10.58)

The potential energy is

. (10.59)

The potential energy is stationary at equilibrium, which leads to

. (10.60)

Solve eq. (10.60) for P and divide by  to get

. (10.61)

Note that a solution of eq. (10.61) is . The equilibrium paths determined from eq. (10.61) are 

p1:  θ 0 for any P= p2: P KL
2

------- θcot 1 θsin–( ) 1 2/– 1–[ ]=

θ 0→ KL
2

-------1
0
--- 1

1
--- 1– 
  KL

2
-------1

0
--- 0×=

P Pcr KL 4⁄= =     at  θ 0=

0 P Pcr<≤ P Pcr> θ P,( ) 0 Pcr,( )=

V2 0= V3 3KL2( ) 4⁄=

θ P,( ) 0 Pcr,( )=
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Fig. 10.18 Model C equilibrium states.
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Fig. 10.19 Imperfect model C.
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shown as dashed lines in the load-deflection plane of figure 10.20. The equilibrium path beginning at the 
unloaded state for  in figure 10.20(a) is stable and the deflection increases rapidly as the load approaches 

the critical load of the perfect system. The equilibrium path beginning at the unloaded state for  in figure 

10.20(b) is stable until the maximum load is encountered, which is indicated by the filled circle. There are no 

stable adjacent equilibrium states if P is increased from  or if θ decreases from the maximum load point. 

Hence, model C is imperfection sensitive for . 

A real structure exhibiting asymmetric bifurcation is a 
pin-supported, two-member frame. The joint connecting 
the members is assumed rigid. Thus, each bar rotates 
through the same angle at the joint as shown in figure 
10.21. For  the horizontal member is in tension, 

which is a stabilizing effect. For  the horizontal 
member is in compression, which is a destabilizing 
effect.

10.4 Discussion of models A, B, and C

We have considered three one-degree-of-freedom models (one coordinate is sufficient to describe the equilibrium 
configuration). The equilibrium paths were plotted on the  plane. For the perfect system θ = 0 for any P is 
an equilibrium state (trivial equilibrium). Two equilibrium paths of the perfect system cross at the bifurcation 
point . There are three basic bifurcation points: stable symmetric, unstable symmetric, and 

asymmetric. The unstable symmetric and asymmetric cases are imperfection sensitive. A maximum load  

below  is possible when the system has imperfections. This theory was originally developed in the PhD dis-

sertation by Koiter (1945 in Dutch, English translation 1970).
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Fig. 10.20 Equilibrium paths of the imperfect model C shown as dashed lines for (a)  and (b) 
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10.5 Model D: snap-through instability

Model D is a coplanar arrangement of two rigid bars and a linear elastic spring in the shape of an arch as shown 
in figure 10.22. Each bar has the same length L, and the bars connect to a central pin. The bars are at angle α with 
respect to a horizontal line passing through the supported ends of the bars. The left end of the left bar is pin-con-
nected to a fixed support. The right end of the right bar is pin-connected to a roller support restrained to move 
horizontally by a linear elastic spring with stiffness K. The model is subject to a downward, deadweight load P 
acting at the central pin.

The total potential energy is , where  is the change in length of the spring and  is 

the downward displacement corresponding to the load P. The change in length of the spring and the downward 
displacement are

. (10.62)

Hence, the total potential energy is

. (10.63)

The total potential energy is stationary at equilibrium, which yields the equilibrium equation

. (10.64)

Solve eq. (10.64) for load P to get

. (10.65)

Note that the range of θ in eq. (10.65) is  for finite values of the load P. On a plot of the load P 

as a function of θ, horizontal slopes occur at . The derivative of eq. (10.65) with respect to θ is

. (10.66)

Therefore horizontal slopes occur at

, (10.67)

Substitute  into eq. (10.65) and use trigonometric identities to find the load at the horizontal 
slope to be

. (10.68)

αα
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P ∆,

θθ
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initial deflected

Fig. 10.22 Model D.

V K ∆s( )2 2⁄ P∆–= ∆s ∆

∆s 2L θcos αcos–( )= ∆ L αsin θsin–( )=

V θ( ) 2KL2 θcos αcos–( )2 PL αsin θsin–( )–=

4KL2 θcos αcos–( ) θsin–( ) PL θcos+ 0=

P 4KL θcos αcos–( ) θtan=

π– 2⁄ θ π 2⁄< <

dP
dθ
------- 0=

dP
dθ
------- 4KL θsin θtan– θcos αcos–( )
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-----------------------------------+ 4KL θcos3 αcos–( )
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-------------------------------------= =
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For , . At  the load  with the corresponding displace-

ment . At  the load  with the corresponding displacement 

. The load-displacement response is plotted in figure 10.23 by selecting θ and computing P from     

eq. (10.65) and ∆ from eq. (10.62). There is one continuous path with no bifurcation. The loads at the horizontal 
slopes are indicated by filled circles in figure 10.23. 

The stability of the equilibrium states are determined from the second derivative of the potential energy. The 
second derivative is

. (10.69)

Substitute the expression for P from eq. (10.65) into eq. (10.69) to evaluate the second derivative on the equilib-
rium path to find

. (10.70)

For , . Select a value of θ in the range . Then, the value of  is computed from eq. 
(10.62) and the value of the second derivative of the potential energy is computed from eq. (10.70). The plot of 

the second derivative divided by  with respect to  is shown in figure 10.24. 
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Fig. 10.23 Equilibrium path on the load-
displacement plane for model D.  
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For  the range of ∆ is  when θ is in the interval . From figure 
10.24 the stability of the equilibrium path is determined as

, (10.71)

, and (10.72)

. (10.73)

The stability of the equilibrium path is depicted in figure 10.25. As the load P is increased from  a maxi-

mum load is encountered. If the load is increased further the system snaps-through. The maximum point is 

called a limit point. This is a different kind of instability from the perfect systems of models A, B, and C. In 
models A, B, and C θ = 0 was an equilibrium state of the perfect system. Model D is said to have pre-buckling 
“deformations.” That is  before buckling. Snap-through is a dynamic event, and the system can settle to an 
inverted, stable equilibrium state. If the load is decreased from the inverted state to the lower limit point the sys-
tem can snap back to a shape resembling the original configuration.    

10.6 Model E: a two-degree-of freedom system

Models A to D are single-degree-of-freedom systems. Only one coordinate θ determines the position of the sys-
tem. Consider a two-degree-of-freedom system consisting of rigid bar restrained by two rotational springs with 
stiffnesses K1 and K2, and subject to a vertical, deadweight load P as shown in figure 10.26. This model is known 
as Augusti’s column. See Bazant and Cedolin (1991). The position of the bar is referenced to a right-handed Car-

tesian coordinate system x-y-z, with corresponding unit vectors . The initial position of the bar is vertical 
coinciding with the z-axis shown in figure 10.26(a), and in the deflected position it is located by two angles θ1 
and θ2 shown in figure 10.26(b) The projection of the bar into the x-z plane is at angle θ1 with respect to the z-
axis. The projection of the bar in the y-z plane is at angle θ2 with respect to the z-axis. 

The angle between the bar and the z-axis is denoted by . The Cartesian coordinates at the end of the bar in 

its deflected position in shown in figure 10.26 (c) are . By the Pythagorean theorem the 

square of the length of the bar in the deflected position is given by

α 45°= 0.2929L– ∆ 1.707L< < π 2⁄ θ π– 2⁄> >

V2 0  stable, 0.293– ∆ L⁄ 0.253< <  &  1.16 ∆ L⁄ 1.1707< <,>

V2 0  critical   ∆ L⁄, 0.253 & ∆ L⁄= 1.16= =

V2 0  unstable, 0.253 ∆ L⁄ 1.16< <,<

∆ 0=

Pm

θ 0≠

P

∆0

snap through

snap back

stable states

unstable states

Fig. 10.25 Stability of the 
equilibrium path for model D. 

.α 45°=
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. (10.74)

From eq. (10.74) we find that the cosine of the angle  is

. (10.75)

The displacement corresponding to load P is . The total potential energy is

. (10.76)

The series expansion of  is

. (10.77)

Neglect terms of order six and higher in the series expansion to get the total potential energy as

. (10.78)

Let  and  denote the angles in an equilibrium state, and let small changes in the angles 

with respect to the equilibrium state be denoted by

. (10.79)

The Taylor series of the potential energy about the equilibrium state is

, (10.80)

where  is called the first variation with terms linear in h1 and h2, and  is called the second variation with 
terms quadratic in h1 and h2, etc. The change in potential energy about the equilibrium state is 

. Thus,

. (10.81)

Partial derivatives of the potential energy evaluated at the equilibrium state are represented by the notation
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Fig. 10.26 Model E. (a) Initial unloaded configuration. (b) Deflected configuration 
under a downward applied load. (c) Coordinates at end of the bar.
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. (10.82)

For example,

. (10.83)

The terms in the Taylor series expansion (10.81) are

. (10.84)

A necessary condition for the potential energy to be a relative minimum or maximum at the equilibrium state 

is  for every h1 and h2, but both not equal to zero. Thus, “coefficients”  and . The 

potential energy is stationary at equilibrium. Take the partial derivatives of the potential energy (10.78) to get the 
equilibrium equations

, and (10.85)

. (10.86)

A solution to the equilibrium equations (10.85) and (10.86) is

. (10.87)

The next non-zero term in the expansion of  is the second variation. Evaluating the second order partial deriv-
atives of the potential energy (10.78) followed by evaluation on equilibrium path p1 we get

. (10.88)

Buckling loads are determined when second variation vanishes for every value of h1 
and h2, but both not equal to zero. This leads to two buckling loads and associated 
modes

, and (10.89)

. (10.90)

The critical loads and modes are shown in the load-deflection plane of figure 10.27. 
Take the case of . Then, the critical load is  and the asso-

ciated mode is .
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The second variation  is a quadratic form in variables h1 and h2. Examples of quadratic forms and their 
descriptions are listed in Table 10.1. 

The second variation (10.88) is positive definite for . At the critical load the second variation is

. (10.91)

The second variation at the critical load is said to be positive semidefinite. It is zero for all non-zero values of h1 
and h2 = 0, but is positive for all non-zero values of h2 and h1 = 0. The second variation ceases to be positive def-

inite at the critical state. The stability of equilibrium path  is determined from eq. (10.88) as follows:

. (10.92)

The stability of the bifurcation point  is not determined from the second variation of 

the potential energy.

At the critical load . This suggests we seek a solution to equilibrium equations (10.85) and (10.86) 

with  and . Equation (10.86) is identically satisfied, and eq. (10.85) reduces to

. (10.93)

Solve eq. (10.93) for P to get

. (10.94)

The equilibrium path described by eq. (10.94) is shown in figure 10.28. The load increases in the initial post-
buckling response indicating the bifurcation point is stable. 

Consider the case where . The critical points P1 and P2 coincide on the path p1 and simulta-

neous buckling modes  and  interact at . In this 

case both  and  at the bifurcation point, and we have to consider the next non-zero term in the 
expansion of the change in potential energy (10.81). To evaluate the third variation at the bifurcation point, the 
third partial derivatives of the total potential energy evaluated a the bifurcation point are

Table 10.1 Examples of quadratic forms
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Negative definite
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. (10.95)

Hence,  for all values of h1 and h2. Evaluate the fourth partial derivatives of the total potential energy at 
the bifurcation point to find

. (10.96)

The fourth variation of the potential energy is

. (10.97)

The fourth variation vanishes at  and . Regions in the h1-h2 plane where the 

fourth variation is positive and negative are established by plotting the locus where it is zero as shown in figure 

10.29. The minimum values of the fourth variation occur along the directions  and are 

. Since the fourth variation can be positive, zero, and negative depending on the values of h1 

and h2, the fourth variation is indefinite. The bifurcation point is unstable. It is shown in Bazant and Cedolin 
(1991) that the condition for existence of a non-zero solution to equilibrium equations (10.85) and (10.86) is 

. The two equilibrium equations reduce to the single equation

. (10.98)

Solve eq. (10.98) for the load P to get
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0.2
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θ10 rad( )

P Pcr⁄Fig. 10.28 Post-buckling equilibrium path 
for model E with  and K1 < K2.θ20 0=

V0
3 0,( ) V0

2 1,( ) V0
1 2,( ) V0

0 3,( ) 0= = = =

δ3V 0=

V0
4 0,( ) K1= V0

3 1,( ) 0= V0
2 2,( ) K1–= V0

1.3( ) 0= V0
0 4,( ) K1=

δ4V 1
24
------ K1h1

4 6K1h1
2h2

2– K1h2
4+( )=

h2 0.414h1±= h2 2.414h1±=

h1

h2

Fig. 10.29 Regions in the h1-h2 plane where the 
fourth variation is positive and negative, Along 
the dashed lines the fourth variation is zero.

h2 3h1±=

δ4V K1– h1
4 3⁄=

θ10 θ20 θ= =

Kθ PL θ θ3 3⁄+( )– 0=
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. (10.99)

The load decreases from the critical value on the post-buckling path for  as shown in figure 10.30.

For  the bifurcation point stable and the system is imperfection insensitive. For  

the bifurcation point is unstable and the system is imperfection sensitive.
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10.8 Practice exercises

1. A rigid, straight bar of length L is pinned a point O, restrained by a linear elastic spring with stiffness K, and 
subject to a downward load P. Neglect the weight of the bar. The bar is vertical in the initial configuration as 
shown in figure 10.31(a).The spring remains horizontal as the bar rotates from the vertical through angle  as 
shown in figure 10.31(b). Refer to the free body diagram in figure 10.31(c) to find the equation of motion is

P Pcr⁄ θ
θ θ3 3⁄+
----------------------=

θ 0>

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

P
Pcr
-------

θ rad( )

Fig. 10.30 Model E post-buckling 
equilibrium path for K1 = K2 and θ1 = 
θ2 = θ.

K1 K2< K1 K2 K= =

θ
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, (10.100)

where I0 is the moment of inertia of the rod about the fixed point and t is time.  clockwise. 

a) Plot the equilibrium paths on the  plane for  and P > 0. Note,  is independent of t.

b) What is the critical load ?

c) Let the rotation angle  where  is independent of time and satisfies the equilibrium 

equation of part (a), and where the additional rotation about the equilibrium configuration  is infin-

itesimal. Determine  on the equilibrium paths, and from the dynamic criterion state the stability of 
the equilibrium states on each equilibrium path.

2. Determine the stability of the post-buckling path for model E given by eq. (10.94) and shown in figure 10.28.

PL θsin K a θsin( )[ ]a θcos– I0 t2

2

d
d θ= θ θ t( )=

θ 0>

P θ– π
2
---– θ π

2
---< < θ

Pcr

θ t( ) θ0 ϕ t( )+= θ0

ϕ t( )

ω2

L

K

a
O

θ
P

LaOx

θ

P

K a θsin( )

Oy

L

K

a

O

(a) (b) (c)

Fig. 10.31 (a) initial configuration. (b) Deflected configuration. (c) Free body diagram.
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