CHAPTER 10 Sr UCtura| Sabl I Ity Of
discrete conservative

sysems

Structures subject to compression fail in differently than those subject to tension. For some ductile metalsthat are
short and thick, compression failure is associated with a shear mechanism with a fracture plane inclined with
respect to the axis of the compressive |oad. Other ductile metals may not fracture in compression but crush dur-
ing plastic deformation. Long and thin compression members fail by buckling in which the member responds by
displacing sideways with respect to the direction of the compressive load. Buckling is characterized by

« failure due to excessive displacements (loss of structural stiffness), and/or
» lossof stability of an equilibrium configuration

Stahility of equilibrium means that the response of the structure due to a small disturbance from its equilib-
rium configuration remains small; the smaller the disturbance the smaller the resulting magnitude of the displace-
ment in the response. If asmall disturbance causes large displacement, perhaps even theoretically infinite, then
the equilibrium state is unstable. Practical structuresin engineering are stable at no load. Now consider increas-
ing the load slowly. We are interested in the value of the load, called the critical load, at which buckling occurs.
That is, we are interested when a sequence of stable equilibrium states as afunction of theload, one state for each
value of the load, ceases to be stable.

In this chapter structural stability phenomena, concepts, and methods are presented by analyzing discrete
systems composed of rigid bars and springs. Stability of discrete systems are also presented by Simitses (1976),
and in amonograph by Huseyin (1975). The latter author presents a general non-linear theory of elastic stability
of discrete systems. Continuum analyses for the buckling of columns and plates are discussed in the next chapter.

10.1 Model A: stable symmetric bifurcation buckling

Thismodel is shown in figure 10.1 and it has one coordinate 6, —t < 6 < 7, to describe the configuration of the
model under the deadweight load P. (An external load independent of its corresponding displacement.) The
model consists of arigid rod of length L, connected by smooth hinge to arigid base. The rod can rotate about the
hinge, but it isrestrained by alinear elastic torsional spring of stiffness K (dimensional units of F-L/ radian). The
restoring moment of the spring acting on the bar is zero at 6 = 0. Neglect the weight of the rod with respect to the
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re.

re. "
initial deflected TO
Fig.10.1 Onedegree-of-freedom structural model.

applied load P. From the free body diagram of the rod shown in figure 10.1, the equation of motion for rotation
about the fixed hinge is

2
PLsin®—K6 = 10% 0=0() (>0 (10.1)

where | is the moment of inertia of the rod about the fixed point and t istime.

10.1.1 Equilibrium method
This method is a so known as the classical method or bifurcation method. Consider equilibrium states under the
static, downward load P which are characterized by the angle 6 being independent of timet. Hence, the inertia
term in eg. (10.1) vanishes and we have
PLsin6—K6 = 0 6] <m. (10.2)
One solution to eg. (10.2) is
pl: 8 =0 foranyP. (10.3)

Equilibrium path (10.3) is called the trivial equilibrium configuration. The equilibrium method is characterized
by the question

What are the values of the load for which the perfect system admits non-trivial equilibrium configurations?
(Ziegler, 1968)

A second solution of eg. (10.2) is

K\ 8
2:P = (=)— 10.4
P (L) sin@ (104
Recall from the calculus using I’ Hopital's rule that the limit of the indeterminate form 6/(sinf) as 6 — 0 is
one. The two equilibrium paths are plotted in the |oad-defl ection diagram shown in figure 10.2. Equilibrium path
p2 is called the secondary path and we note it is symmetric about 6 = 0. For P < K/ L thereisonly one equilib-
rium position: 6 = 0 on the primary path p1. For P > K/ L there are three equilibrium positions: 6 = 0 on
path p1, and two on the secondary path p2.
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Model A: stable symmetric bifurcation buckling

The two equilibrium pathsintersect at (6,P) = (0,K/L). Thisintersection of the two pathsis called a bifurca-
tion point, and represents the equilibrium state or position common to two separate equilibrium paths. At no load
therod is vertical and this corresponds to the origin in the load-deflection diagram. Asthe load P is slowly
increased from zero the rod remains vertical (6 = 0), and at P = K/L adjacent equilibrium states exists on the sec-
ondary path.

The existence of adjacent equilibrium statesin the vicinity of the

primary equilibrium path has been noted by investigators of struc- 1%
tural stability asthe onset of buckling. Hence, buckling is character-
ized by the bifurcation point on the load-deflection diagram. For 1

|
I
I
this reason, the term bifurcation buckling is used to describe this I
condition. Aswe will show later, the rod will not remain vertical for | p2 p2
loads P > K/L if there are infinitesimal disturbances present (there |
always are), but will rotate either to the left or right depending on |
type of infinitesimal disturbance. We note that the magnitude of the |
angle 6 becomes large asthe load isincreased from K/L onthe sec- |

pl

bk - — = — - - — -

ondary path. The load at the bifurcation point is called the critical n 0 0
|oad and is denoted as 7., . Thus, Fig. 0.2 Equilibrium paths
P.. = K/L. (10.5)
Small 6 analysis Consider the small angles of rotation such that sin® = 6 for 6 measured in radians. Equilib-
rium eg. (10.2) becomes
PLO-KO = 0. (10.6)
The solutions of this equation (10.6) are
pl': 6 = 0 forany P, and (10.7)
p2" P = K/L for any small 6 . (10.8)
These solutions are shown in the |oad-deflection plane in figure 10.3. The equilib- P
rium path p1’ coincides with path p1, but path p2" isnot agood approximation to 2 K/L
path p2 unless 6 is very small. However, the bifurcation point is the same as L
obtained in the large 6-analysis. Hence, the critical load from the small 6-analysisis 1
the same as obtained in eg. (10.5) from the large 6-analysis. < pl’
10.1.2 Kinetic method 0 0

I I , — . Fig.10.3 Small 0
Thekinetic method, or the vibration method, is based on the definition of stability of  gnalysis,

equilibrium. The vibration method is characterized by the question

What is the value of the load for which the most general free motion of the perfect systemin the equilibrium
position ceases to be bounded? (Ziegler, 1968)

L et the rotation angle
8(1) = 6+ (1), (10.9)

where 0, isindependent of time and satisfies the equilibrium eq. (10.2); i.e.,
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PLsin0,—K0, = 0. (10.10)

p Consider the additional rotation angle ¢(¢) to be small in magnitude but a function
of time. Thus, we are considering small oscillations about an equilibrium state

0 T () (P,8,) asshowninfigure 10.4. Substitute eq. (10.9) for 6(7) in the equation of
I\ motion, eq. (10.1), to get
0
: 0 ( Iy + K(6,+ @) —PLsin(0, + ) = 0, (10.11)
2
5% where the dots denote derivatives with respect to time (e.g., ¢ = :T;P ). Using the

Fig.10.4 Rotationsin  trigonometric identity for the sine of the sum of two angles, and performing some
the stability analysis.  minor rearrangements, equation (10.11) becomes

1,9 + K6, + Ko — PL[ sinB,cos@ + cosO,sing] = 0. (10.12)

Now expand the trigonometric functions of angle ¢ inaTaylor Seriesabout ¢ = 0 to get
Iy + K6, + Ko —PLsineO[l —%(pz + O(cpﬂ —PLcoseo[cp - éqﬁ + 0(@5)} =0, (10.13)
inwhich O(g™) meansterms of order ¢” and higher. Arrange eg. (10.13) in powers of ¢ to get

Iy + (KB,—PLsin6) +(K—PLCOSGO)cp+(%sin60>cp2+<%cosﬁo)cp3+0(cp4) =0
=0

(10.14)

Note that “coefficient” of the term ¢ vanishes because of the equilibrium condition given by eg. (10.10).
For very small additional rotation angles ¢(#) about the equilibrium configuration, eq. (10.14) is approxi-
mated by
Iy¢ + (K—PLcosBy)p = 0 or Q+wigp =0, (10.15)
where
w? = (K—=PLcosH,)/1,. (10.16)
The solution of the second order differential equation (10.15) for w2 > 0 is
(1) = A,sin(wt) + A,cos(wt) w?>0, (10.17)

in which constants 4, and 4, are determined by initial conditionsfor ¢(0) and ¢(0) . The solution given by
eg. (10.17) isa harmonic oscillation about the equilibrium configuration and o isinterpreted asthe natural fre-

quency in radians per second. Initia conditions ¢(0) and ¢(0) are considered to be very small to simulate an
arbitrary infinitesimal disturbance. The smaller theinitial disturbance, the smaller the maximum amplitude of the
oscillationin ¢ . Thus, w2 > 0 isacondition for a stable equilibrium configuration with respect to infinitesimal
disturbances.

The solution of the second order differential equation, eq. (10.15), for w2 <0 is
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Model A: stable symmetric bifurcation buckling

(1) = A,e® + A, e~ ®? = —w? = «(K—PLcos6,)/1,. (10.18)

For arbitrary initial conditions, the term with the positive exponent in the dominates the solution. This corre-
sponds to large values of the ¢ no matter how small theinitial disturbance. Hence, w? < 0 isa condition of

unstable equilibrium configuration with respect to infinitesimal disturbances. The kinetic method for model A
leads to the following criterion.

Dynamic criterion for stability of an equilibrium state

The equilibrium state is stable if wl>0

The equilibrium state is critical if w2 =0

The equilibrium state is unstable if w2<0

On the primary equilibrium path p1 given by eg. (10.3), we have from eg. (10.16) that
w? = (K-PL)/I, on pl. (10.19)

Thus, equilibrium configurations are stableif P < K/L,
critical if P = K/L, and unstableif P> K/L . The pri-

mary equilibrium path ceasesto be stableat P = P,,, Fig. 10.5
and P, isthe buckling load. On the secondary path %?Jlialiilki)tr% L?rfnthe
10.4) w2 = [K(1—-0,c0t0,)]/1,,and w2 =0 for states for
(0 < go <m, '[th(Js, theoequiliot))giw:1 configuration on the modd A 1 ; ugrilstt)!aeblscteastt%te
secondary pathiscritical at 6, = 0, and the equilibrium 0 > 0

configurationsfor 0 < |6 < are stable. Retaining the
first non-zero term in the expansion of the differential equation of motion (10.13) at the bifurcation point
(69, P) = (0,K/L) weget

@+ (6_12) @ =0. (10.20)

Differential equation of motion (10.20) is nonlinear. Since coefficient K/(61,) > 0, its solution is a nonlinear

oscillation about the bifurcation point for small initial disturbances (Simitses, 1976). Hence, equilibrium at the
bifurcation point is stable. The stability of the equilibrium states for model A are shown in figure 10.5.

10.1.3 Energy method

Theorem. A conservative mechanical systemisin aconfiguration of stable equilibriumif, and only if, the value
of the potential energy is arelative minimum, otherwiseit is unstable.

This method is characterized by the question:

What is the value of the load for which the potential energy of the systemin the equilibrium position ceases
to be positive definite? (Ziegler, 1968)
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First we have to determineif model A is a conservative mechanical system. The incremental work of the
external load and the rotational spring acting on the bar shown in figure 10.6 are given by

dW,, = P(A+dA)—PA = PdA dW,, = 4K(0+d0)—K0] = —(K0)d6 . (10.21)

Theincremental external work is positive since
load P and the shortening A act in the same
direction, but the incremental work of the spring
on the bar opposes the increase in rotation. The
shortening is given by

A

Fig. 10.6

Forces acting on the
bar of model A for an
increment in its

rotation. A = L(1 —cos0). (10.22)

Theincrement in the shortening with respect to an
infinitesimal changein therotationis

dA = ‘;igde = (Lsin0)do . (10.23)

Theincremental external work is dW,,, = PLsin0d8 . Sincethe load P isindependent of angle 6 for dead-
weight loading, we can integrate incremental work expression to get W, = —PLcos8 + C. The constant C is

determined if we define 7, = 0 when 6 = 0. The external work function is
Wy = PL(1—cos0). (10.24)
Note that the work of P isindependent of path. For example, the value of 77,,, isthe sameif the bar first rotated
to 26 and then rotated back to 6. The expression for the incremental work of the spring acting on the bar isinte-
grated with respect to 6 to get W, = —%Ke2 + C'. Theconstant C' isdetermined if we define W, = 0 a 6 =
0. Hence,
Wi = —K0%2/2. (10.25)

Since the work done by the external load and the spring force are independent of the process of how the final
value of 0 is achieved, they are conservative forces. The potential energy is defined as the negative of the work
function. The negative sign means that the work done by the spring force against the rotation increases the poten-

tial energy while the work done by the force P with the rotation decreases the potential energy. Let U denote the
potential energy of the spring and let Q2 denote the potential energy of the external load. Then

U = %K(-)2 Q = —PL(1—cos0). (10.26)
Thetotal potential energy is denoted by V, where

7(0) = U(B) +Q(0) = %K@z—PL(l —cosh). (10.27)

Second, we must determine the equilibrium positions and if these correspond to a relative minimum of V. A
necessary condition for arelative minimum isthat V is stationary with respect to 6, and this |eads to equilibrium.
That is,

dv

70 =0 = K06-PLsin0, (10.28)
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Model A: stable symmetric bifurcation buckling

which is the same equation (10.2) governing equilibrium found from the free body diagram approach. Let 6,

denote the rotation of the bar in equilibrium under load P, or K6, —PLsin®, = 0. The Taylor series of the
potential energy about the equilibrium position is

1 1 1
V(By+h) = V(B8 +V,(0y)h + in(eo)h2 + 3 V3(00)h3 + 2l Vy(0)h*+ ..., (10.29)
where
2
h =0-0, Vi(8y) = ar V,(0,) = arv et cetera . (10.30)
dof, _, de?|, _,
0 ~— Yo

At equilibrium 7,(8,) = 0.The changein potential energy AV = V(6,+d0)—V(0,) is
AV = %Vz(eo)h2 + %V3(60)h3 + ZITV4(60)h4 ... (1031)

For infinitesimal changesin % = 0 from the equilibrium position, the lowest degree term in h dominates the
seriesof AV . Consequently, the potential energy is positive definiteif 7,(6,) > 0, indefiniteif 7,(6,) = 0, and
negative definiteif 7,(6,) < 0. The second derivative of 7(0) is

2
dl = K—PLcos0,. (10.32)
de?
2
On trivial equilibrium path 6, = 0 for any P, and the second derivative ETZ = K—PL . Therefore,
pl
2 2 2
dl >0, stable, P<K/L dl = 0, critical, P = K/L dl < 0, unstable, P > K/L . (10.33)
de? de?z de?
rl pl pl
In answer to the question characterizing the
energy method, the potential energy ceases  Fig. 10.7
to be positive definite on the primary equi- ~ Second
libri hwh h derivative of
ibrium path when P > K/L . On the sec- the potential
ondary path PL = K6,/sin6,, and the energy on
ative of th . . the
second derivative of the potential energy is secondary
5 equilibrium
dv path.
Frrii K(1—-6,cot,). (10.34) ‘ ‘ 0,
p2 —3 —2 —1
A graph of eg. (10.34) isshown in figure
10.7. Thus,
2 2 2
ar > 0, stable, O<‘90‘ <m arl - 0, critical, P = K/L ar < 0, unstable, no 6 of interest . (10.35)
de? 2 de? 2 de? 2

These results from the energy method confirm the previous results from the kinetic method. At the bifurcation
point (8,, P) = (0, K/L), and the second derivative V,(0,) = 0. Evaluate the next two termsin the series
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(10.31) for AV at the bifurcation point to find

V5(00) = — 1 (8, — cosB,sinb,) =0 V,(8y) = .2 (sinB,—0,cosB,) = 2. (10.36)
sin0, sin0,, 3
0,—0 0,0
The seriesfor AV athe bifurcation point is
=24 5
AV = §h +O(h°). (10.37)

Hence, 7,(0) > 0, and the bifurcation point (8, P) = (0, K/L) isstable.

10.1.4 Eccentric load
Consider the applied load P applied slightly off the center line of the bar by §,, as shown in figure 10.8. Moment

)

K

e

initial deflected
Fig. 10.8 Model A subject to eccentric load.

equilibrium about the fixed pinis
P(Lsin® +98,cos0)—K6 = 0. (10.38)

The equilibrium equation (10.38) solved numerically and the equilibrium paths in the load-deflection plane are
shown as dashed linesin figure 10.9. There are two equilibrium paths: the first one begins from the unloaded
state (P =0, 6 = 0), and a second complementary path that is not connected to the first path. As the load P

increases from zero along the first path, the angle 6 increases slowly until P isin thevicinity of P, = K/L.
Equilibrium positions on the first path are stable (A} > 0).

Note the following characteristics.
» Thedeflection for the path beginning from the unloaded state is always the same sign as 9, .

» If 3, issmall, the equilibrium path of the imperfect system approaches that of the perfect model as the de-
flection becomes large.
e Thereisno intersection of two equilibrium paths.

* Evenif 8, =0 therearethree equilibrium statesfor P > P_, .

e Thereisaminimum load on the complementary path that divides unstable and stable equilibrium states.
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20, P 20, £
K/L . K/L
1
15 1501
] \
] \
05 8y >0 0.5, 8y <0
i i
‘ ‘ I \ 0 (rad) : : : -~ 0 (rad)
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
@ (b)

Fig. 10.9 Load-deflection plotsfor model A subject to the eccentric load are shown by the dashed
linesfor (a) 8,>0 and (b) 6,<0.

10.1.5 Initial angle

When P = 0, suppose the bar is not vertical but isat aninitial angle 8 = 3, with the spring restoring moment
equal to zero as shown in figure 10.10. Moment equilibrium about the fixed pinis

re.

re.
initial deflected
Fig. 10.10 Model A with an initial angle.

PLsin—K(6-9,) = 0. (10.39)
Equilibrium equation (10.39) is plotted in figure 10.11. The response of model A with the initial angleis similar
to the response of model A subject to the eccentric load in figure 10.9

Discussion. Eccentricity inload and the initial slope of the bar are examples of imper fections. The structural
systems are imperfect. Small imperfections of model A do not change the fact that there are large displacements

when P = P, of the perfect system. Model A is classified as stable symmetric bifurcation. The secondary
equilibrium path p2 of the perfect system in figure 10.2 is symmetric about 6 = 0 and it is stable.

Real structures exhibiting stable symmetric bifurcation are,

a. long straight columns subject to axial compression, and
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b. flat plates subject to in-plane edge loading.

200 p 2.0,
i K/L P
1.5 K/Lq50\
/’ \\
%—: o _____/ % 4-0 Se—em====
/"— o AN
0.57',’ 8,>0 0.)“-:7 8,<0
I 1
| ‘ H | 0(rad) ‘ ! ‘ 0(rad)
-1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0
(@ (b)

Fig. 10.11 L oad-deflection plotsfor model A with theinitial angle are shown by the dashed lines for
(@ 9,>0 and (b) §,<0.

10.2 Model B: unstable symmetric bifurcation

Thismodel consists of acoplanar arrangement of two rigid bars of length L and alinear elastic spring of stiffness
K. The bars are horizontal in theinitial position and connect to a center hinge, with the opposite ends of each bar
supported on roller support. The vertical spring connects to the center hinge and is not stretched when the bars

areinthe horizontal position. A horizontal load P acts at each roller support to subject the model to compression.

P, A

zé L . L é At zéT_

K
Eg K
| 7 7|
initial deflected

Fig. 10.12 Model B.

The deflected configuration of the model is symmetric with respect to the vertical line through the spring,
and each bar rotates through an angle 6 with respect to the original horizontal position. The deflection of the

springis Lsin6 , and the load P isindependent of the corresponding displacement A(0) . The potential energy is

V= %K(Lsine)z—ZP [L(1 = cos8)]
—_—
A . (10.40)

The potential energy is stationary at equilibrium, or % = 0, which leadsto
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Model B: unstable symmetric bifurcation

(KL?cos® —2PL)sin® = 0. (10.41)
The solutions of eg. (10.41) are

pl: 0 = 0forany P p2: P = %KLCOSG. (10.42)

The equilibrium paths are shown on the load-deflection plot in figure 10.13. Equilibrium paths intersect at the
bifurcation point (6, P) = (0, KL/2). By theequilibrium method the critical loadis P,. = KL/2 . However,
equilibrium states in figure 10.13 are different than those of model A shown in figure 10.2. Note that there are
three equilibrium positionsfor P < P, .

1 4| P/ (KL/2)

1.2f p1

2
Fig. 10.13 Model B equilibrium states. P

0(rad)

-1.5 -10 -05 00 05 1.0 1.5

The stability of the equilibrium states is assessed from the second derivative of the potential energy (10.40).
The second derivativeis

2
g?z = V,(0) = KL?(cos>6 —sin?0) —2PLcos® = KL?cos26 —2PLcosf . (10.43)
On equilibrium path p1
V,(0) = KL?>-2PL. (10.44)

Therefore, on equilibrium path p1

V,(0)] >0, stable, P < KL V,(0)] = 0, critical, P = KL V,(0)] <0, unstable, P> ]2(10.45)
2 pl 2 2 pl 2 2 pl 2

On equilibrium path p2 P = (KL/2)cos8, . The second derivative is

V5(0y) = KL?(cos?0 —sin?0) —2(KL/2)cos?’8 = —KL?sin?0, . (10.46)
Therefore, on equilibrium path p2

V5(6¢)] >0, stable, for no 0|0 s%‘ V2(60)] | = 0, critical, 6, = 0 V5(6)] <0, unstable, 0 < \eo\(m;-b)
P P P

At the bifurcation point (6,, P) = (0, KL/2) on path p2 the derivatives of the potential energy are
V,(0) =0 V5(0) = 0 V,(0) = =3KL?. (10.48)

The potential energy isarelative maximum at the bifurcation point, so the bifurcation point is unstable. Model B
exhibits unstable symmetric bifurcation.
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10.2.1 Initial angleimperfection

Consider asmall deviation of the bars from the horizontal position represented by angle §, asshown infigure
10.14. The spring is not stretched in the initial position.

initial deflected

Fig. 10.14 Imperfect model B.

The potential energy of the systemis
V= %K(L sin® — Lsind,)? —2PL(cosd,— cosh). (10.49)

The potentia energy is stationary at equilibrium, or i—%/ = 0. Hence, the equilibrium equation is

KL?(sinB —sind,)cos® —2PLsin6 = 0. (10.50)
Equation (10.50) is written in the equivalent form as

(sin® —sind,)cos® —(P/P,.)sinB = 0, (10.51)

where the critical load of the perfect systemis P, = KL/2.Onesolutionto eqg. (10.51) is the unloaded state at

(6, P) = (8, 0). Other solutions are plotted as dashed lines in the load-deflection plane of figure 10.15. Equi-
librium states along the path beginning at the unloaded state are stable until arelative maximum on the path is
encountered at (0., P,,), which isindicated by thefilled circlesin figure 10.15. There are no stable adjacent
equilibrium states if the load P increases from P, or if 6 isincreasesfrom 6, . Any small increase in load or

rotation from the relative maximum results in a dynamic motion of the system that may lead to catastrophic col-
lapse.
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14 p/p

‘ ‘ ‘ 1 ‘ ‘ \. O(rad) ‘ ‘ ‘ ‘ ‘ !
-15 -1.0 -05 00 05 1.0 1.5 -15 -1.0 -05 00 05 1.0 1.5
@ (b)

Fig. 10.15 Equilibrium paths of theimperfect model B are shown in the load-deflection plane by
dashed linesfor (a) 6,> 0 and (b) 8,<0.

0(rad)

The relative maximum on the equilibrium path emanating from the unloaded state is determined from

(sin@,, —sind,)cosO,, — (P, /P,.)sinB, = 0, where sinf_, = 3/sind,, . (10.52)

For selected values of angle 6, thevaluesof P, /P, areplotted from eq. (10.52) in figure 10.16. Thereisa
rapid decrease in the maximum load for small increases in the imperfection angle. For example, at §, = 0.1 rad

1.0y

0.8/
Fig. 10.16 The maximum load asa 0-6,
function of theimperfection Py

angle for model B. I
J Pa 04

0.21

I I I I | 60(rad)
02 04 06 08 1.0

(5.7°) P,,/P, = 0.70, which isa30% reduction of the buckling load with respect to the perfect system. For
8, = 0.1 rad, thevalueof 8, = 0.482 rad, or 27.6°, which isalarge rotation at the maximum load.

Discussion. All real structures are imperfect. For columns and plates these imperfectionsif small did not signif-
icantly reduce the actual buckling load from the critical load P, obtained in the analysis of the perfect structure.

However, the buckling loads for axially compressed cylindrical shellsin experiments are significantly less than
the critical load determined from the perfect analysis (small displacements and slopes). Refer to Brush and Alm-
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roth (1975). Even for small imperfectionsin axially compressed shells the maximum load P, is much lower
than P, . The axially compressed cylindrical shell is sensitive to imperfections.

Isis concluded then, that the value of P, may not be meaningful in practice. It depends on the nonlinear
behavior of the equilibrium paths.

e Model B isimperfection sensitive.
* Model A isimperfection insensitive.

The question of whether a structureisimperfection sensitive is answered completely by the stability or insta-
bility of the bifurcation point or by theinitial, nonlinear post-buckling path.

10.3 Model C: asymmetric bifurcation

Model Cisacoplanar arrangement of two rigid bars of length L and alinear elastic spring with stiffnessK. In the
initial configuration the bars are horizontal and the spring isat a 45° angle with respect to the bars. The bars and
the spring are connected to a smooth central pin. The opposite end of the left bar is pinned to afixed point, and
the opposite end of the spring is connected to afixed pin at distance L below the fixed end of the left bar. The
opposite end of the right bar is pinned to aroller support free to move horizontally. A compressive force P acts at
theroller support and under its action the bars can rotated through an angle 6 with respect to the original horizon-
tal position..

% & SR

K

initial deflected

Fig. 10.17 Model C.

The potential energy is V' = KA2/2 —PA , where A, denotes the change in the length of the spring and A
denotes the shortening of the distance between supports. These changesin length are related to angle 6 by

A, = J(LcosB)?+(L—Lsin®)2—.2L = J2L(J1—sin®—1) A = 2L —2LcosH . (10.53)
Thetotal potential energy 7(0) isgiven by
V(8) = KL2(J1—sin@—1)>=2PL(1 —cos0). (10.54)
The potential energy is stationary at equilibrium which leads to
KL2cosO[(1 —sin®)"1/2—1]-2PLsin® = 0. (10.55)
The solutions of eg. (10.55) are
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pl: 6 = 0 forany P p2: P = I%LcotG[(l—sinB)‘”z—l]. (10.56)
On path p2 as 6 — 0, we get the indeterminate form I—%é(% - 1) = %é x 0. The limit of thisindeterminate
formisfound from I’Hépital’s rule to be
P=P,=KL/4 at 6 =0. (10.57)

Theequilibrium paths are plotted on the | oad-defl ection planein figure 10.18. Equilibrium path p2 isasymmetric
about 6 = 0. Stability analysis leads to path p2 being stable for 6 > 0 and unstable for 6 < 0. Path pl is stable for

0=<P<P, andunstablefor P> P_, . At the bifurcation point (6, P) = (0, P,,) higher derivatives of the poten-
tiad energy are 1, = 0 and V; = (3KL?)/4 . Thatis, the potential energy is neither aminimum nor maximum,
but has a horizontal inflection point at (0, P) = (0, P,,).

20y P/P

cr

Fig. 10.18 Model C equilibrium states.

0(rad)

-1.0 -0.5 0.5 1.0

Consider a geometric imperfection of model C in which the bars A SILST
are at an angle §, with respect to the horizontal before the load is M %
applied asis shown in figure 10.19. In the unloaded configuration the .
spring is not stretched nor contracted. The change in spring length is

K

A, = 2L(J1=5in6 - J1—sind). (10.58)

The potential energy is Fig. 10.19 Imperfect model C.

V = KL2(J1—5sin0 — /1 —sind)* —2PL(cosd, — cos) . (10.59)
The potential energy is stationary at equilibrium, which leads to

J1—sinB — /1 —sind,
A1 —sin0

Solve eg. (10.60) for P and divide by P,. = KL/4 to get

KLZCOSG( ) —2PLsin® = 0. (10.60)

P _ 2 coth J1—sinB —Jl —singd, . (1061)
P A1 —sin®

Note that a solution of eg. (10.61) is (6, P) = (3, 0) . The equilibrium paths determined from eg. (10.61) are
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shown as dashed lines in the load-deflection plane of figure 10.20. The equilibrium path beginning at the
unloaded state for 8, > 0 in figure 10.20(a) is stable and the deflection increases rapidly as the load approaches

the critical load of the perfect system. The equilibrium path beginning at the unloaded state for 8, < 0 infigure
10.20(b) is stable until the maximum load P, is encountered, which isindicated by thefilled circle. There are no
stable adjacent equilibrium statesif P isincreased from P, or if 6 decreases from the maximum load point.
Hence, model C isimperfection sensitivefor 6,< 0.

0(rad) 0(rad)

(b)

Fig. 10.20 Equilibrium paths of the imperfect model C shown as dashed linesfor (a) §,> 0 and (b)
8,<0.

A real structure exhibiting asymmetric bifurcation isa

Fig. 10.21 pin-supported, two-member frame. The joint connecting
ﬁ/v for ame of the members is assumed rigid. Thus, each bar rotates
members through the same angle z-at the joint as sh(.wv-n in fi gure
supported 10.21. For e > 0 the horizontal member isin tension,
Biynzﬂooth which is astabilizing effect. For ¢ < 0 the horizontal

member isin compression, which is a destabilizing
effect.

10.4 Discussion of models A, B, and C

We have considered three one-degree-of -freedom model s (one coordinate is sufficient to describe the equilibrium
configuration). The equilibrium paths were plotted on the (6, P) plane. For the perfect system 6 =0 for any P is
an equilibrium state (trivial equilibrium). Two equilibrium paths of the perfect system cross at the bifurcation
point (6, P) = (0, P,,.). There are three basic bifurcation points: stable symmetric, unstable symmetric, and

asymmetric. The unstable symmetric and asymmetric cases are imper fection sensitive. A maximum load P,

below P_, is possible when the system has imperfections. This theory was originally developed in the PhD dis-
sertation by Koiter (1945 in Dutch, English translation 1970).

304 Aerospace Structures



Model D: snap-through instability

10.5 Model D: snap-through instability

Model D is a coplanar arrangement of two rigid bars and alinear elastic spring in the shape of an arch as shown
infigure 10.22. Each bar hasthe samelength L, and the bars connect to a central pin. The barsare at angle o with
respect to a horizontal line passing through the supported ends of the bars. The left end of the left bar is pin-con-
nected to a fixed support. The right end of the right bar is pin-connected to aroller support restrained to move
horizontally by alinear elastic spring with stiffness K. The model is subject to a downward, deadweight load P
acting at the central pin.

initial deflected

Fig. 10.22 Model D.

Thetotal potential energy is V' = K(A,)?/2 —PA , where A, isthe changein length of the springand A is

the downward displacement corresponding to the load P. The change in length of the spring and the downward
displacement are

A, = 2L(cosB —cosa) A = L(sino —sin6). (10.62)
Hence, the total potential energy is

V(0) = 2KL?*(cos® —cosa)?2 —PL(sino—sinB). (10.63)
Thetotal potential energy is stationary at equilibrium, which yields the equilibrium equation

4KL*(cos® —cosa)(—sinB) + PLcos® = 0. (10.64)
Solve eqg. (10.64) for load P to get

P = 4KL(cosB —cosa)tanb . (10.65)
Note that the range of 6 in eg. (10.65) is —t/2 < 6 <xt/2 for finite values of the load P. On a plot of the load P
as afunction of 6, horizontal slopes occur at %g = 0. Thederivative of eq. (10.65) with respect to 6 is

_ 39 —
P _ 4KL|~ sin6tan® + (cos — cosa) |= g o080 = cosa). (10.66)
do cos26 cos’0

Therefore horizontal slopes occur at

0, = xacos[3/cosa], (10.67)

Substitute cos® = cos!/3a into eg. (10.65) and use trigonometric identities to find the load at the horizontal
dopeto be

P, = 4KL(1—cos?3a)3/2. (10.68)
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For o = 45°,8,, = £27.01°.At 6, = —27.01° theload P,, = —0.375KL with the corresponding displace-
ment A, = 1.16L.At 6, = 27.01° theload P, = 0.375KL with the corresponding displacement

A,, = 0.253L . Theload-displacement responseis plotted in figure 10.23 by selecting 6 and computing P from

eg. (10.65) and A from eg. (10.62). There is one continuous path with no bifurcation. The loads at the horizontal
slopes are indicated by filled circlesin figure 10.23.

P®) 04
KL
I 0.2}
Fig. 10.23 Equilibrium path on the load- A0)
displacement plane for model D. |6] < 52° ‘ ‘ ‘ 7
and o = 45° od 0.5 1.0 1.5
-0.

The stahility of the equilibrium states are determined from the second derivative of the potential energy. The
second derivative is
2
STZ = 4KL?[sin?0 — cosO(— coso. + cosO)] —PLsin0 . (10.69)

Substitute the expression for P from eg. (10.65) into eq. (10.69) to evaluate the second derivative on the equilib-
rium path to find

2
30 —
7,(0) = dV _ 4xj2(cos’0 —cosa) (10.70)
do2 cos0

For |6] <m/2, cosB > 0. Select avalue of 6 intherange |6] < /2. Then, thevalue of A iscomputed from eq.
(10.62) and the value of the second derivative of the potential energy is computed from eg. (10.70). The plot of

the second derivative divided by K2 with respect to A/L isshown in figure 10.24.
: : V5(6)
Fig. 10.24 Parametric plot of the

;\
second derivative of the potential KL? [
energy with respect to the I0'253 116

N

displacement along theequilibrium
path for model D. |6] < 52° and ‘ ‘
a = 45°. 0.5 1.0

AO)
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Model E: a two-degree-of freedom system

For o = 45° therangeof Ais—0.2929L <A < 1.707L when 6 isintheinterva n/2 >0 >—x/2. From figure
10.24 the stability of the equilibrium path is determined as

V,>0, stable, -0.293 <A/L <0.253 & 1.16 <A/L<1.1707, (10.71)
V, =0, critical A/L=0.253 & A/L = 1.16, and (10.72)
V, <0, unstable, 0.253 <A/L <1.16. (10.73)

The stability of the equilibrium path is depicted in figure 10.25. Asthe load P isincreased from A = 0 amaxi-
mum load P, is encountered. If theload is increased further the system snaps-through. The maximum point is
called alimit point. Thisisadifferent kind of instability from the perfect systems of modelsA, B, and C. In
modelsA, B, and C 6 = 0 was an equilibrium state of the perfect system. Model D is said to have pre-buckling
“deformations.” Thatis 6 = 0 before buckling. Snap-through is a dynamic event, and the system can settleto an

inverted, stable equilibrium state. If the load is decreased from the inverted state to the lower limit point the sys-
tem can snap back to a shape resembling the original configuration.

P

snap through —p B—a Stable states
O0—O Unstable states

Fig. 10.25 Stability of the
A equilibrium path for model D.

a = 45°.

10.6 Model E: a two-degree-of freedom system

Models A to D are single-degree-of-freedom systems. Only one coordinate 6 determines the position of the sys-
tem. Consider a two-degree-of-freedom system consisting of rigid bar restrained by two rotational springs with
stiffnesses K4 and K5, and subject to avertical, deadweight load P as shown in figure 10.26. Thismodel is known

asAugusti’s column. See Bazant and Cedolin (1991). The position of the bar is referenced to aright-handed Car-

tesian coordinate system x-y-z, with corresponding unit vectors i, 7, k. Theinitial position of the bar is vertical
coinciding with the z-axis shown in figure 10.26(a), and in the deflected position it is located by two angles 6,
and 6, shown in figure 10.26(b) The projection of the bar into the x-z plane is at angle 6, with respect to the z-
axis. The projection of the bar in the y-z plane is at angle 8, with respect to the z-axis.

The angle between the bar and the z-axisis denoted by ¢ . The Cartesian coordinates at the end of the bar in

its deflected position in shown in figure 10.26 (c) are (L sihel, Lsin®,, Lcos) . By the Pythagorean theorem the
square of the length of the bar in the deflected position is given by
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Fig. 10.26 Model E. (a) Initial unloaded configuration. (b) Deflected configuration
under a downward applied load. (c) Coordinatesat end of the bar.

L? = (Lsin6,)? + (Lsin0,)? + (Lcosp)?. (10.74)

From eg. (10.74) we find that the cosine of the angle ¢ is

cosQ = Jl —sin?0, —sin%0, . (10.75)

The displacement correspondingto load Pis A = L(1 —cosg). Thetotal potentia energy is

V(0,,0,) = K,02/2+K,02/2—PL(1 - /1 —sin?0, —sin’6,). (10.76)

The series expansion of 1 —cosg is

1 - /1= sin20, — sin26, = %(e% + 02+ %e%eg —éef—éeg +0(0°)) (10.77)

Neglect terms of order six and higher in the series expansion to get the total potential energy as

(0, 0,) = K,02/2+K,02/2 —PL(G% +02+ %e%eg —éef - éeg) /2. (10.78)

LetO, = 0,, and 6, = 0,, denote the angles in an equilibrium state, and let small changes in the angles
with respect to the equilibrium state be denoted by

hy =0,-0 and hy = 0,—0y. (10.79)
The Taylor series of the potential energy about the equilibrium state is
V(0,,0,) = V(0,0 05) +OV+ 32V + 3V + 64V + ..., (10.80)

where 8V is called the first variation with terms linear in hy and h,, and 82V is called the second variation with
terms quadratic in hy and h,, etc. The change in potential energy about the equilibrium state is

AV = V(6,,0,)—V(6,4, 0,) - Thus,

AV =3V +32V+ 33V + o4V +.... (10.81)
Partial derivatives of the potential energy evaluated at the equilibrium state are represented by the notation
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Model E: a two-degree-of freedom system

(m +n)

ygmm = &0V mn=01,2,... (10.82)
007004

610’ 620
For example,
2 4
VSLO) - I Vél,l) =9V V(SZ,Z) = 0V . (10.83)
00, 00,00, 07903
610 059 610, 059 100 Y20

Thetermsin the Taylor series expansion (10.81) are
3V = V{LOh, + V(% Dh,
82V = %(V&Z"))h% £ 2V DRy by + V-DR3)

3 1 3,0)43 2,1),2 1,2 2 0,3)}3 (10.84)
OF = S(V D} + 3V Dithy + 3V Dy k3 + Vi Vhi)

O = LV Ot + 4V Dhihy + 6V DRI + 4V b + VD)

A necessary condition for the potential energy to be arelative minimum or maximum at the equilibrium state
isdV = 0 for every hy and h,, but both not equal to zero. Thus, “coefficients” V{9 = 0 and V{®1 = 0.The

potential energy is stationary at equilibrium. Take the partial derivatives of the potential energy (10.78) to get the
equilibrium equations

Vb0 = K,0,)—LP(0,,—03,/6 +0,,03/2) = 0,and (10.85)
V01 = K,0,0—LP(0,,—03,/6 +0%,0,,/2) = 0. (10.86)

A solution to the equilibrium equations (10.85) and (10.86) is
pl: 06,5 = 0,, = 0forany P. (10.87)

The next non-zero term in the expansion of AV isthe second variation. Evaluating the second order partial deriv-
atives of the potential energy (10.78) followed by evaluation on equilibrium path p1 we get

02 = %[(Kl _LP)h, +(K,—LP)h3]. (10.89)
Buckling loads are determined when second variation vanishes for every value of hy »
and h,, but both not equal to zero. This leads to two buckling loads and associated A Fig.10.27.
modes P/2 .ﬁ
P, =K,/L (hy, hy) = (1,0),and (10.89)
h

Py= KL (hyhy) = (0,1). oo PN 6,

The critical loads and modes are shown in the load-defl ection plane of figure 10.27. 0

Tekethe case of K, < K, . Then, the critical load is P, = P, = K,/L and the asso-
ciated modeis (A, h,) = (1,0).
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The second variation 82V isaquadratic form in variables h; and h,. Examples of quadratic forms and their
descriptions are listed in Table 10.1.

Table 10.1 Examples of quadratic forms

02V Description

h? + h? Positive definite
(hy + h,)? Positive semidefinite
—h2—h3 Negative definite

—(hy + hy)? Negative semidefinite

hh, Indefinite

The second variation (10.88) is positive definitefor 0 < P < K, /L . At the critical load the second variation is
21 = %[0-h%+(K2—K1)h§]. (10.91)

The second variation at the critical load is said to be positive semidefinite. It is zero for all non-zero values of hy
and h, =0, but is positive for all non-zero values of h, and h; = 0. The second variation ceases to be positive def-

inite at the critical state. The stability of equilibrium path p, is determined from eg. (10.88) as follows:
ézV\pl>0, stable, 0 < P<K /L 62V\pl = 0, critical, P = K, /L 62V\p1<0,unstable,P>K1/L. (10.92)

The stability of the bifurcation point (6,, 6,, P) = (0, 0, K, /L) isnot determined from the second variation of
the potential energy.

At the critical load 6, = 0. This suggests we seek a solution to equilibrium equations (10.85) and (10.86)
with 6,,=0 and 8,, = 0. Equation (10.86) isidentically satisfied, and eq. (10.85) reduces to

K10,0—LP(8,,—67,/6) = 0. (10.93)
Solve eqg. (10.93) for P to get

0
Lo o (10.94)
Pcr 910—6130/6

The equilibrium path described by eg. (10.94) is shown in figure 10.28. The load increases in the initial post-
buckling response indicating the bifurcation point is stable.

Consider the case where K, = K, = K. Thecritical points P, and P, coincide on the path p; and simulta-
neous buckling modes (4, h,) = (1,0) and (h,, h,) = (0, 1) interactat (8, 6,, P) = (0,0, K/L).Inthis
caseboth 87 = 0 and 82V = 0 at the bifurcation point, and we have to consider the next non-zero term in the

expansion of the change in potential energy (10.81). To evaluate the third variation at the bifurcation point, the
third partial derivatives of the total potential energy evaluated a the bifurcation point are
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\ 4 N

L~

0.8F
0.6+
0.4+
0.2+

Fig. 10.28 Post-buckling equilibrium path
for model E with 6,, = 0 and K; <K,.

P/P

cr

-0.6 -04 -0.2

V63’0) = V(Sz’l) = V61,2) = V60’3) =0.

02 04 06

0,0(rad)

(10.95)

Hence, 63V = 0 for al values of h; and h,. Evaluate the fourth partial derivatives of the total potential energy at

the bifurcation point to find

V64’0) = Kl V63’1) =0 V62,2) = _Kl

The fourth variation of the potential energy is

o4y = élz(th;‘—6K1h%h§ + K hi) |

V(SLB) =0

Vo = K,

(10.96)

(10.97)

Thefourth variation vanishes at 7, = £0.4144, and h, = +2.414h, . Regionsin the h,-h, plane where the
fourth variation is positive and negative are established by plotting the locus where it is zero as shown in figure

10.29. The minimum values of the fourth variation occur along the directions #, = =./34, and are

Fig. 10.29 Regionsin the h4-h, plane where the
fourth variation is positive and negative, Along

the dashed linesthefourth variation is zero.

%V = =K, ht/3 . Since the fourth variation can be positive, zero, and negative depending on the values of h;
and hy, the fourth variation is indefinite. The bifurcation point is unstable. It is shown in Bazant and Cedolin
(1991) that the condition for existence of a non-zero solution to equilibrium equations (10.85) and (10.86) is

e10

KO—PL(0+03/3) = 0.
Solve eqg. (10.98) for the load P to get

= 0,, = 0. Thetwo equilibrium equations reduce to the single equation

(10.98)
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P/P. = 8 (10.99)

T 9+03/3"

The load decreases from the critical value on the post-buckling path for [6] > 0 as shown in figure 10.30.

. . P
Fig. 10.30 Model E post-buckling 0.6F" ¢
equilibrium path for K; =K, and 6, =
0,=0 0.4

2— .

0.2}
: : : 0(rad)
-1.0 -0.5 0.5 1.0

For K, < K, thebifurcation point stableand the system isimperfection insensitive. For K, = K, = K
the bifurcation point isunstable and the system isimperfection sensitive.
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10.8 Practice exercises

1. Arrigid, straight bar of length L is pinned apoint O, restrained by alinear elastic spring with stiffness K, and
subject to a downward load P. Neglect the weight of the bar. The bar is vertical in theinitial configuration as
shown in figure 10.31(a). The spring remains horizontal as the bar rotates from the vertical through angle 6 as
shown in figure 10.31(b). Refer to the free body diagram in figure 10.31(c) to find the equation of motion is
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2
doe

PLsin® —[K(asinB)]acosf = Iodf2
t

0 = 0(1), (10.100)
where | isthe moment of inertia of the rod about the fixed point and tistime. 6 > 0 clockwise.
a) Plot the equilibrium paths on the P — 6 plane for —g <6< g and P > 0. Note, 6 isindependent of t.

b) What isthe critical load P, ?

c) Lettherotationangle 6(¢) = 6, + ¢(¢) where 6, isindependent of time and satisfies the equilibrium
equation of part (a), and where the additional rotation about the equilibrium configuration ¢(z) isinfin-

itesimal. Determine m? on the equilibrium paths, and from the dynamic criterion state the stability of
the equilibrium states on each equilibrium path.

;\\\\\\@\\
~
~
; @
S
~

N
N
—
;\\\\\@\‘
N\
\
N\
\
!

@ (b)
Fig. 10.31 (@) initial configuration. (b) Deflected configuration. (c) Free body diagram.

2. Determinethe stability of the post-buckling path for model E given by eq. (10.94) and shown in figure 10.28.
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