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 Abstract  
 
Pathway diagrams, similar to the graph diagrams using a node-link representation, are 
used by biologists to represent complex interactions at the molecular level in living cells. 
The recent shift towards data-intensive bioinformatics and systems-level science has 
created a strong need for advanced pathway visualization tools that support exploratory 
data analysis. User studies suggest that an important requirement for biologists is the 
need to associate microarray data to pathway diagrams.  
 A design space for visualization tools that allow analysis of microarray data in 
pathway context was identified for a systematic evaluation of the visualization 
alternatives. The design space is divided into two dimensions. Dimension 1 is based on 
the method used to overlay data attributes onto pathway nodes. The three possible 
approaches are: overlay of data on pathway nodes one data attribute at a time by 
manipulating a visual property (e.g. color) of the node, along with sliders or some such 
mechanism to animate the pathway for other timepoints. In another approach data from 
all the attributes in data can be overlaid simultaneously by embedding small charts (e.g., 
line charts or heatmap) into pathway nodes. The third approach uses miniature version of 
the pathways-as-glyph view for each attribute in the data. Dimension 2 decides if 
additional view besides pathway diagrams were used. These pathway visualizations are 
often linked to other type of visualization methods (e.g., parallel co-ordinates) using the 
concept of brushing and linking.  
 The visualization alternatives from pathway + microarray data design space were 
evaluated by conducting two independent user studies. Both the studies used timeseries 
datasets. The first study used visualization alternatives from both dimension 1 and 
dimension 2. The results suggest that the method to overlay multidimensional data on 
pathway nodes has a non trivial influence on accuracy of participants’ responses, whereas 
the number of visualizations affect participants’ performance time for pre-selected tasks. 
The second study used visualization alternatives from dimension 1 that focuses on 
method used to overlay data attributes on pathway nodes. The study suggests that 
participants using pathway visualization that display data one attribute at a time on nodes 
have more controlled performance for all type of tasks as compared to the participants 
using other alternatives. Participants using pathway visualization that display data in 
node-as-glyphs view have better performance for tasks that require analysis for a single 
node, and identifying outlier nodes. Whereas, pathway visualizations with pathways-as-
glyph view provide better performance on tasks that require analysis of overall changes 
in the pathway, and identifying interesting timepoints in the data. 
 An insight-based method was designed to evaluate visualization tools for real world 
biologists’ data analysis scenarios. The insight-based method uses different quantifiable 
characteristics of an ‘insight’ that can be measured uniformly across participants. 
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These characteristics were identified based on observations of the participants analyzing 
microarray data in a pilot study. The insight-based method provides an alternative to 
traditional task-based methods. This is especially helpful for evaluating visualization 
tools on large and complicated datasets where designing tasks can be difficult. Though, 
the insight-based method was developed to empirically evaluate visualization tools for 
short term studies, the method can also be used in real world longitudinal studies that 
analyzes the usage of visualization tools by the intended end-users. 
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1 Introduction 
1.1 Problem Definition 

1.1.1 Pathways + Microarray Data Visualization 
Biological pathways represent complex reactions at the molecular level in living cells. 
Pathways may be sub-typed into different categories based on the overall effect they have 
on functioning of an organism. Three major categories are: metabolic pathways, 
transcriptional and protein synthesis pathways, and signal transduction pathways. As the 
requirements to analyze different kinds of pathways are similar from the software 
development point of view, unless explicitly stated otherwise, the term pathway refers 
collectively to all.  
 Biologists use pathways to integrate results from literature, formulate hypotheses, 
capture empirical results, share current understanding, and even run simulations. A 
common goal of research in the life sciences is to develop pathway models for biological 
processes of many different organisms. Pathways also serve as a focal point to integrate 
other diverse related information, such as literature citations, experimental data, research 
notes, etc. To facilitate usage and exploratory analysis of complex pathways, visual 
representations for the pathways are necessary. Some diagrams are manually generated 
such as found in textbooks [1], KEGG [2] and Biocarta [3], and others are generated by 
interactive visualization software such as GenMapp [4] and PathwayAssist [5].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.1 Example of a biological pathway. 

 
 In recent years, high throughput data capture technology such as microarray 
experiments have vastly improved life scientists’ ability to detect and quantify gene, 
protein, and metabolite expression. A microarray experiment can simultaneously provide 
data about thousands of entities [6-9]. Life scientists often use microarray experiments to 
find cures for life threatening diseases such as cancer [10, 11]. The advent of microarray 
experiments is causing a shift in the way biologists do research; a shift away from simple 
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reductionist testing on a few variables towards systems-level exploratory analysis of 
1000s of variables simultaneously.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.2 Represents a typical microarray chip. The intensity of light at each spot corresponds to gene 
expression of the cDNA [9]. The microarray experiments result in large quantitative datasets. 

 
 An important requirement for the biologists is the need to associate microarray data 
with pathway diagrams to get the most biologically relevant insights from the data [12]. 
This also provides them with a biological context to otherwise plain numerical data 
analysis [13]. Figure 1.3 shows overlay of time series data (as an example of 
multidimensional microarray data) on a pathway. In response to this requirement, a large 
number of visualization tools that allow users to perform such analyses have been 
developed [14, 15]. These visualizations use different approaches to overlay data on 
pathways. Often the pathway visualizations are linked to other additional visualizations 
such as parallel co-ordinates and heat maps.  
  
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.3 An example of overlaying multi-dimensional microarray data onto pathway diagrams, one time 

point at a time. 
 
 From information visualization point of view pathways are similar to graph 
visualizations using node + link diagrams. Also, microarray data are example of 
multidimensional datasets. Hence the main research question is: How to associate 
multidimensional data to the graph visualization that use node + link diagrams?   
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 A number of studies have been performed to evaluate different graph layout 
algorithms e.g., [16-20]. However, these studies do not address the problem of graph + 
multidimensional data. A systematic approach that begins by identifying the design space 
for visualization tools that link graph + multidimensional data and evaluating 
visualization alternatives therein can help biologists decide which visualization 
alternative may be most suited for their data analysis. 

1.1.2 Evaluation Method for Pathways + Microarray Data Visualization 
Biologists analyze microarray data using pathway context in exploratory fashion. Often 
when analyzing their data, biologists do not have predefined hypotheses. They use 
visualization tools to explore data and rely extensively on the tools to provide them with 
new hypotheses and research questions. One of their main aims is to get most insight into 
their data and be able to relate insights from the quantitative data analysis to underlying 
biological phenomenon. Most of the insights from the tool may be observations from 
serendipitous data exploration rather than pre-mediated benchmark tasks. 
 A variety of evaluation methodologies have been used to measure effectiveness of 
visualizations e.g. controlled experiments, usability testing, expert inspection etc.  Most 
of these methods fail to address the open ended and exploratory nature of the biologists’ 
data analysis tasks. Though exploratory data analysis methods have been developed in 
the fields of HCI and CSCW such as interaction analysis [21], design experiments [22], 
situated analysis [23], and breakdown analysis [24] etc., these methods are too broad to 
be used directly for the purpose of evaluating visualization tools. Thus, a new evaluation 
method is needed that simulates the exploratory data analysis of the biologists’ but is 
uniform enough to provide feedback about the insight capabilities of the visualization 
tools. 

1.2 Research Questions 
In order to address the problem scenarios the dissertation must address several important 
research questions. First, how do the pathway visualization tools fit in the overall 
research goals of the end users? What are the main user requirements for pathway 
visualization tools? How do the current pathway systems address user requirements? 
What are the end user reviews for these systems? Most importantly, which are the most 
critical requirements unmet by the current systems? 
 An important requirement identified in the earlier studies was the need to associate 
microarray data to pathways. This leads to the research questions: what is the design 
space for pathway + microarray data visualization tools that groups all the potential 
alternatives? Which is the most effective alternative from the design space in terms of the 
common data analysis tasks?  
 Most methods used so far for evaluating visualization tools do not address the real 
world exploratory data analysis tasks of the biologists. Hence, a new insight-based 
method to evaluate bioinformatics visualization was designed. This raises research 
questions such as: What is insight? How to identify and measure it quantifiably in 
experiment settings? How does the insight-based method compare to the traditional task-
based method used so far to evaluate visualization tools? Do the insights generated in the 
evaluation study represent benchmark tasks used for evaluating visualization tools? 
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 Finally, since the insight-based method was used for evaluating bioinformatics 
visualizations in a short term study, it will be interesting to know if the insight-based 
method can be used for a long term study. And to know if the short term Insight-based 
method is representative of the long term visualization tool usage. 

1.3 Content 
Chapter 2 describes user studies, requirements analysis, usage scenarios, literature survey 
for pathway visualization systems and also the approaches taken by these systems to 
address the end user requirements, and the heuristic evaluations on pathway visualization 
systems with a group of biologists. Based on these studies, a research agenda was 
presented concerning five critical requirements for pathway visualization systems. If 
addressed effectively, these requirements can prove to be most helpful in supporting 
exploratory pathway analysis. 
  An important requirement identified in Chapter 2 is the need to analyze microarray 
data in context of pathway diagrams. Biologists feel that the lack of pathway context can 
hamper their ability to derive biologically meaningful insight from microarray data [25]. 
Chapter 3 presents the space for microarray data + pathway visualization tools. The most 
common approaches to support analysis of pathways with associated microarray data 
include: overlay of data on pathway nodes for one treatment at a time, by manipulating 
color of the node. A slider is provided to animate the pathway for other treatment 
conditions. In another popular approach, data from all the treatments are overlaid 
simultaneously by using nodes-as-glyphs and alternatively miniature pathways as glyphs 
views. These pathway visualizations may also be linked to other visualizations (e.g., 
parallel co-ordinates) using brushing and linking. Systematic evaluation of visualization 
alternatives with these design space can help to identify the ones that will be most helpful 
to the biologists.  
 Chapter 3 also describes an initial study performed to evaluate and rank pathway + 
microarray visualization options based on users’ performance time and accuracy of 
responses on predefined tasks. A timeseries data was used as an example of microarray 
data. The results suggest that overlaying data on pathway nodes one timepoint at a time 
may lead to more accurate performance for tasks involving analysis of a graph at a single 
timepoint, and comparisons between graph nodes for two distinct timepoints. Overlaying 
data simultaneously for all the timepoints on graph nodes may lead to more accurate and 
faster performance for tasks involving searching for outlier vertices displaying different 
behavior than the rest of the graph vertices for all timepoints. Single views have 
advantage over multiple views on tasks that require topological information. Also, the 
method of data overlay on the graph nodes has a non trivial influence on accuracy of 
responses, whereas the number of visualizations affect the participants’ task performance 
time.  
 Chapter 4 presents an insight-based method to evaluate visualization tools. The 
method was designed as a part of the dissertation.  Typically visualizations are evaluated 
using task-based experiments, as described in Chapter 3, that measure users’ performance 
on predetermined tasks or using heuristic walkthroughs and expert reviews as described 
in Chapter 2. However, such studies fail to address the common data analysis scenario of 
the biologists which is exploratory and not pre-defined. Hence a more relevant evaluation 
method that focuses on real world data analysis scenarios is needed. The insight-based 



Saraiya: Insight-Based Studies for Pathway and Microarray Visualization Tools 

1 Introduction  5

method uses several characteristics of an ‘insight’ that allow us to recognize and quantify 
it in an open-ended user tests. Since the method does not use any pre-defined tasks this 
eliminates the need to design bench mark tasks for the user studies. This can be of help in 
evaluating visualization using complicated datasets for which designing tasks can be 
often very difficult. 
 Chapter 5 describes a study to evaluate visualization alternatives for pathway + 
microarray data using both insight-based and the task-based method. The results allow us 
to rank the visualization alternatives both in terms of insights reported by the participants 
and the performance of participants on the pre-selected tasks. Another by product of the 
study was the comparison between the insight and the task-based method. 
 Both studies reported in Chapters 4 and 5 use the insight-based method for short term 
studies. Chapter 6 presents a longitudinal study using the insight-based approach. Finally, 
Chapter 7 summarizes the lessons learnt from insight-based studies and evaluations for 
microarray data + pathway visualization tools. 



 

 

2 Visualization for Biological Pathways 
Pathway diagrams are used by biologists to represent complex interactions at the 
molecular level in living cells. The recent shift towards data-intensive bioinformatics and 
systems-level science has created a strong need for advanced pathway visualizations that 
support exploratory analysis. Several interviews were conducted with the biologists to 
understand their needs for pathway analysis. Based on these interviews, a detailed 
requirements analysis along with two user scenarios for pathway visualization systems 
are presented in this chapter. A variety of existing pathway visualization systems were 
also examined to list common approaches by which the contemporary systems address 
these requirements. A heuristic evaluation with biology domain experts for five popular 
pathway visualization systems was then conducted to analyze end-user perception of 
these systems. Based on these studies, a research agenda was presented concerning five 
critical requirements for pathway visualization systems. If addressed effectively, these 
requirements can prove to be most helpful in supporting exploratory pathway analysis. 
The requirements were: 1) automated construction and updating of pathways by 
searching literature databases, 2) overlaying information on pathways in a biologically 
relevant format, 3) linking pathways to multidimensional data from high throughput 
experiments such as microarrays, 4) overviewing multiple pathways simultaneously with 
inter-connections between them, 5) scaling pathways to higher levels of abstraction to 
analyze effects of complex molecular interactions at higher levels of biological 
organization. 

2.1 Biological Pathways 
Biological pathways represent networks of complex reactions at the molecular level in 
living cells. They model how biological molecules interact to accomplish a biological 
function and to respond to environmental stimuli. Pathways capture the current 
knowledge of biological processes and are derived through scientific experimentation and 
data analysis. Biologists use pathways to integrate results from literature, formulate 
hypotheses, capture empirical results, share current understanding, and even simulate 
processes. A common goal of research in the life sciences is to develop an ever-
broadening library of pathway models for biological processes of many different 
organisms. Such pathways can have significant broad impacts, such as making products 
in biotech applications and drug discovery in the pharmaceutical industry.  
 Pathways also serve as a focal point to integrate other diverse related information, 
such as literature citations, research notes, and experimental data. In recent years, high-
throughput data capture technology has vastly improved biologists’ ability to detect and 
quantify gene, protein, and metabolite expression. Such experiments can simultaneously 
provide data about thousands of entities [6-9]. All this data must be analyzed in the 
context of the pathway diagrams to enable biologists to make inferences about the 
underlying biological processes and to improve the current pathway models. Hence, the 
increasing complexity of pathway diagrams derives not only from their size and 
representations, but also from the large amount of important related information.  
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Figure 2.1 The p53 signaling pathway in a stylized diagram from BioCarta [3], including format to 
represent biological, spatial, and temporal properties. 

 
The increasing importance of exploratory pathway analysis corresponds to a major 

shift in emphasis in biological research; a shift beyond the reductionist scientific process, 
which rigorously examines individual interactions of biological molecules, towards 
systems-level science, which simultaneously explores entire systems of many biological 
molecules. Systems-level science highlights that the whole is greater than the sum of the 
parts.  A challenging goal for pathways is to try to convey complex global functionality, 
interconnections with other pathways, and their dynamic behavior. 
 To facilitate the exploratory analysis of complex pathways, visual representations are 
necessary. Pathways are typically represented as network diagrams (Figure 2.1).  Some 
pathway diagrams are manually generated such as those found in textbooks [1] or KEGG 
[2], whereas others are generated by interactive visualization software such as GenMapp 
[4] and PathwayAssist [5]. However, although several pathway visualization systems 
have been developed recently, there is little guidance for the design of such tools e.g. [26, 
27]. Though there have been a few studies on graph layout and aesthetics [19, 20] their 
utility and impact for pathway visualizations is unclear. 
 In discussions with biologists, we found that many are skeptical about the biological 
value of current pathway visualizations. When considering cost vs. benefit, the cost 
seems to outweigh the benefits. They are reluctant to invest time required to overcome 
the learning curve for many of these systems. A large amount of effort is required to gain 
biologically meaningful insight for specific projects from most of these systems. The 
tools lack many important data analysis capabilities that scientists need. Thus, to truly 
enable a shift towards systems-level science, more rigorous requirements analysis and 
evaluation of pathway visualization systems are needed. 
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2.2 Procedure 
Generally in HCI, analysis of requirements starts with interviewing and observing current 
work practices of users. These observations can be contextual (users are observed as they 
carry out their tasks), or participatory (users are engaged in discussions). Results of these 
observations are scenarios and requirements that help developers understand how users 
will eventually use a system and its impacts [28]. 
 We focused on biologists as the primary user class, and life science research as the 
primary usage scenario. To understand pathway usage, we interviewed four research 
professors and post-doctoral fellows having diverse research interests and several years 
of research experience, over a period of six months. We met with each researcher usually 
once or twice a week. The researchers were selected based on their availability and 
willingness to participate in the discussions.  
 We generally interviewed only one researcher at a particular time. Each interview 
session lasted for about one to two hours. Most of these interviews were informal and 
participatory. We did not ask the researchers a specific predefined set of questions. The 
biologists explained their research work to us and its biological significance. They also 
explained importance of biological pathways, different contexts in which pathways are 
used, different types of information needed from pathways and the current methods to 
obtain this. The biologists also discussed their research work, experiments, data analysis 
tasks, and how pathway diagrams fit into their overall research goals. We also attended 
presentations and seminars conducted by these biologists to understand their work in a 
broader context.  
 In addition to the interviews, we conducted two focus group meetings, with about ten 
biologists (two of these were researchers we interviewed extensively). In the group 
meetings, we discussed the requirements derived from earlier interviews. In addition, we 
attended the journal club meetings of a life science research group, where we discussed 
published research about high-throughput data experiments. Based on these studies and 
group meetings, we derived a final list of requirements for pathway analysis. To get 
feedback from additional biologists, a short questionnaire was sent via email listservs. 
The scientists were requested to rate the degree to which they agree or disagree with the 
requirements.  
 To analyze the end-user perception of existing pathway visualization systems, we 
conducted a heuristic evaluation with six biologists on five pathway analysis systems. 
Participation in the evaluation was voluntary. This heuristic evaluation was a form of user 
study in which biology domain experts reviewed systems to suggest advantages and 
disadvantages against the list of requirements [29]. This approach helps to further 
elucidate the requirements and how the systems meet biologists’ needs. The results 
provide useful guidance for developing pathway visualization software.  

2.3 Pathway User Scenarios 
The use of pathways depends on the progress of the research project. Two scenarios are 
described here. The first scenario is for a project in its initial stage. The second scenario 
describes microarray data analysis in context of pathways, and is more likely to occur 
towards the middle or completion of a project. 
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2.3.1 User Scenario -1 
Consider Jim, PhD in microbiology, working at a research institute. One of his primary 
research interests is to understand the effects of cigarette smoke on lung cells. Besides 
this, he also wants to know how flu’s effect on lung cells is altered by the presence of 
cigarette smoke. He is working with several different pathways. He started with the cell 
apoptosis, i.e., programmed cell death (an example of a signaling pathway) pathway. He 
wants to know which components of this pathway are affected by cigarette smoke and 
flu. 
  Due to his domain knowledge, Jim has some intuition and ideas about different 
entities and how they interact. But for his project, he needs an accurate, update and 
detailed knowledge. He needs to collect as much available information as possible about 
the apoptosis pathway. He started by looking at various sites on the Internet and scientific 
journals. Over time, a large of research articles, hyperlinks and papers relevant to his 
work were collected. 
  As he was collecting information, Jim wants to link these materials to understand how 
different part of pathway function collectively to produce an overall effect. He needs a 
way to organize information so that he can refer later part of the pathway and paper it 
belongs to. Some parts and interactions are well established where as some can be 
hypothesis proposed by researchers but need more proof to be validated. He agrees with 
some researchers whereas some he is skeptical about. Before he conducts an experiment, 
he may have hypothesis about parts of the pathway that can be affected by smoke and/or 
flu. He needs to represent this in his pathway diagrams so that he can later analyze his 
predictions in terms of final experimental results. 
 It is possible that as Jim is working, new results about the pathway are published in the 
scientific literature. So the pathway has to be constantly updated. He needs to keep track 
of how other scientists are dealing with similar pathways and their hypotheses and 
results. 
  Jim saw a demonstration, in a research seminar he attended, of Cytoscape, a pathway 
analysis tool. He felt that the tool is easy to use and will not require too much learning 
time. An important selection factor was that the tool is free. This was ideal for his early 
analysis and will help him to decide if a software tool can actually help. His experience 
will also guide him if he later decided to purchase a commercial product. 
 Figure 2.2 shows the apoptosis pathway diagram he constructed in Cytoscape. The 
color of the node reflects its type, i.e., gene, kinase, etc. Similarly the color of the edge 
reflects the type of interaction, i.e., inhibitory, stimulatory, etc. Jim also attached different 
annotations to the nodes, e.g., which paper was used to obtain information, the behavior 
of node in a particular experiment, etc. Jim wanted to include representation of cellular 
location (e.g., cytoplasm, nucleus, cell membrane, etc.). He found this difficult as no 
direct features are provided by Cytoscape to do this. He used shape and size of node to 
impart this information. He was using color to focus on type of node. He was considering 
use of arrow thickness and type to overlay information about reaction types.  
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Figure 2.2 Shows the apoptosis pathway that Jim is building. He still needs to add more proteins and genes 
to make it more complete. He used Cytoscape [30] to build his pathway. 

 
 A problem he faced with Cytoscape was to save and update pathways. He found this 
too time consuming. He needed to list names of nodes and edges in text files and then 
load this into the pathway displayer. The .gml files used by Cytoscape let him save the 
look of a pathway, but he could not directly add nodes to this files. Cytoscape lets users 
link gene ontology information to the pathways. Jim focused on human pathways, and so 
needed to link humane gene ontology information to the apoptosis but could not figure 
out how to do this in Cytoscape. 
  Later, when Jim conducts an experiment he will like to see how pathway components 
are affected by different experiment conditions.  He will also like to compare the result of 
his experiments with other researchers who have performed experiments, on the 
apoptosis pathway.  
  If the end results of Jim’s experiments are not as hypothesized, he will like to 
determine how the pathway or his hypotheses can be modified to explain the results. For 
this he will need to have deeper understanding into the functioning of the apoptosis 
pathway. He will need to understand the effects of different pathways on the cell 
apoptosis pathway to explain the overall observed results. This can lead to more 
hypothesis generation and experiments. 

2.3.2 User Scenario -2 
Drought is one of the several causes for decreased crop yields. To genetically engineer 
plants more resistant to drought stress and thereby increase crop production, biologists at 
present are trying to discover genes that enable plants to cope with reduced water 
conditions. For our second scenario we focus on Jonathan, a life scientist working in the 
area of plant physiology. He has a Ph.D. in horticulture. For his research he focuses on 
pine trees. 
  To identify genes associated with stress acclimation, he needs to understand changes 
in the gene expression patterns in response to the stress. He analyzes the genetic 
expression profile of trees that were subjected to stress compared with those that were not 
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stressed. For his experiment, pine trees were subjected to three cycles of either mild or 
severe drought stress and their physiologic response to the stress measured.  
  The gene expression profiles allowed him to analyze changes in gene expression 
related to acclimation under mild stress and to identify differences in the gene expression 
between mild and severe stress levels. He found that trees grown under mild stress 
acclimated to the stress such that they were able to maintain growth.  This was only 
noticeable in trees in the second and third cycles, meaning that after the initial cycle of 
stress, trees had acclimated and were able to withstand subsequent stress cycles.  No such 
acclimation was seen for severe stress.   
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3 Represents water levels and days. The measurements were taken for three mild and severe 
drought stress cycles [31]. 

 
About two thousand different pine genes were represented on the microarray.  These 
were selected from 5 pine EST libraries and were selected to represent all 15 MIPS [32] 
functional categories. Data for the six experimental conditions were recorded. While 
analyzing data, biologists generally look for genes that show change in expressions. 
Jonathan reclassified genes into functional categories designed to reflect drought stress 
specific responses. Some of the most important inferences are made by computer 
algorithms that associate gene expression changes with functional categorization 
  It is difficult and very time consuming to analyze microarray data manually, due to 
the quantity of data from a single experiment. To help him, Johnathan works with 
different computer scientists. He depends on different data mining algorithms and 
Inductive Logic Programming (ILP) [33] for identifying patterns of gene expression. An 
example of the ILP rules is: if a gene (X) is in the category of (Y), then it is positively 
expressed under (Z) stress. The functional categories with significant rules for both mild 
and severe stress cycles are shown in the figure 2.4. 
 As shown in the figure 2.4, Genes belonging to Carbon metabolism were found to 
show most change in all the three mild cycle conditions. However, they did not show 
significant changes in severe cycle. Jonathan wanted to analyze which genes belonging to 
this category changed and how they affect overall metabolism. He referred to different 
reference books and papers to determine how changes in carbon metabolism might affect 
or relate to other pathways understand what other pathways entities belonging to carbon 
metabolism pathway affect and if the changes in this pathway were reflected in other 
pathways. 
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Figure 2.4 Different functional categories identified by ILP that showed a significant change for both 
severe and mild stress cycles [31]. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 2.5 represents change in gene expressions of seven selected metabolic pathways in a time 

series dataset [34]. 
 
 He initially wanted to depict changes in these functional category on diagrams that 
also showed the inter relationships between these genes and pathways. He came across 
the following diagrams used in a research article and found them interesting. He tried to 
use similar visualizations to present his results. The initial pathway diagram, he 
constructed, are shown in Figure 2.7. He used Microsoft – Powerpoint to create the 
diagram. (We were not able to obtain the original diagram, the below diagram is very 
similar to the original. It was created using XFig). 
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 Figure 2.6 shows detailed view of the genes belonging to pathways shown in the figure 2.5 along 

with their expression values [34]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.7 Diagram representing genes involved in various carbon metabolisms and their interrelations. 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 2.8 Diagram used by Jonathan to show gene expression change in different experimental 
conditions [31]. 

  
 Jonathan wanted to overlay expression values for the entities in all the six 
experimental conditions. This would enable him to compare functionally how the 
pathways changed in different conditions. Some enzymes are encoded by multiple gene 
families, and for some enzymes several members of the gene family were present on the 
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array.  This means, that for some (nodes/edges) in the pathway, there were multiple genes 
with different expression profiles. He decided that it was too time consuming and 
difficult to show all this information using Microsoft powerpoint. So he decided to use 
the diagrams shown in Figure 2.8 to represent the changes detected in the microarray 
experiments. Figure 2.8 shows genes that show significant changes across different 
experimental conditions. Red color implies that the gene was up regulated and green 
means it was down regulated. The genes for this diagram were all in the same functional 
category.  Jonathan divided the diagram to represent different branches of the main 
carbon metabolism pathways. The sequence of interactions in the pathway is implied 
through linear ordering of genes in the table. The replicate genes have same names and 
can be uniquely identified by their clone Ids. From figure 2.8 he reached to conclusions 
that the genes showed more changes in their expression in mild cycle as compared to 
severe cycle. There were more positively expressed genes in the mild stress cycle. He had 
to refer to the scientific literature and also use his domain knowledge and intuitions to 
speculate what other pathways were affected by these genes.  
 Jonathan’s main compounds of interest are flavanoids. He knows that this group of 
molecules is involved with stress responses in plants. It would help him to see how the 
flavonoid biosynthetic pathways are changed and what entities or pathways might also 
affect flavonoid synthesis. This would help him make better conclusions about how the 
plant is able to control aspects of metabolism to mobilize a response to the stress. 
 Ideally, Jonathan would like to overlay the experimental data on an entire metabolic 
pathway and see how the pathway is changing in different experimental conditions. He 
would like to see how changes in some genes affect the overall metabolism, and if he 
could relate this change to the observed physical changes in an organism. Jonathan also 
wanted to know what experiments besides his showed similar results. He would like to 
refer this and present his work relating to the previous work done in this area. 
 Most biologists know the pathways shown in the above diagrams due to their domain 
knowledge. However, certain pathways such as Lignins and Flavonoids require more 
specialized knowledge. To readers unfamiliar with these pathways it would be more 
helpful to represent these pathways using a graphical map showing interactions between 
entities involved and connections with other pathways. 
 Subsequent to his analysis, he became aware of a tool called MapMan [35] in one of 
the presentations he attended. He found that the visualizations created by this tool were 
very simplistic, which made them easy to follow. However, it lacked details on members 
of gene families. The visualizations were very good for the experiments that were being 
explained at the conference. He felt that this tool may be useful for his future work. 

2.4 Biological Pathways 

2.4.1 Pathway Description 
There is not yet a standardized language for pathway components, as it is highly 
dependent on the domain and the particular need that motivates the construction of any 
given pathway. In many cases, a “pathway” is the user-defined network of the biological 
interactions under study in a particular research group. Pathways in life science research 
are extremely diverse. Some capture higher level abstractions, while others are very 
specific. Some are sketchy, while others are rigorous. Figure 2.1 shows an example of a 
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pathway. Overall, pathways provide an approximate model or explanation of the 
underlying biological process.  
 Typically pathways are represented as a graph, consisting of nodes and edges. A node 
in a pathway usually represents a biological molecule, but could also be used to 
summarize another entire pathway that interconnects with the one under study, or to 
represent any other relevant phenomena such as an environmental stimulus (e.g., heat or 
light). A node representing a biological molecule in a pathway diagram may be either 
metabolite, nucleic acid, or protein. Nucleic acids can be DNA, mRNA, tRNA, and 
structural RNA, etc. Proteins can be enzymes, structural proteins, chemical effectors, etc. 
Enzymes are further divided into ligases, phosphatases, kinases, etc. Structural protein 
can be microtubules, actin filaments, etc. Chemical effectors can be hormones, cytokines, 
chemokines, growth factors, etc. An edge in a pathway usually represents a relationship 
or some form of interaction between the nodes. The interaction could of many types: 
gene expression, inhibition, catalysis, chemical modification, etc.  
 Pathway graphs can be complex multi-modal or hyper-graphs.  While simple graphs 
can capture the very basic events represented in the pathway, complex biochemical 
dynamics do not lend themselves well to basic graph representations. An edge could 
connect three nodes or might connect a node to another edge.  For example, an inhibitory 
interaction (edge) actually indicates a deeper process by which one molecule (node) 
might prevent some other interaction (edge) from occurring. 
 Based on the overall effect they have on the functioning of an organism, pathways 
may be divided into several different categories. Three example categories are: metabolic 
pathways, gene regulation/transcription pathways, and signal transduction pathways. In 
this dissertation, we emphasize this fairly broad notion of pathways. We do not focus on 
one type of pathway or specific set of pathway elements because (a) the requirements to 
analyze different kinds of pathways are similar, and (b) it is a long term goal to produce 
software that can integrate a broad variety of pathways to support the grand vision of 
combined systems-level analysis. Unless explicitly stated otherwise, a pathway in this 
discussion refers collectively to all types. 

2.4.2 User Classes 
The primary users of pathway visualization tools are advanced academic, industrial and 
government researchers in the life sciences (i.e. biologists, biochemists, chemists, 
biomedical researchers, etc.). Their goals are to construct pathway diagrams that model 
biological phenomena as closely as possible, based on literature and experimental results.  
This is somewhat analogous to a computer scientist attempting to reverse engineer an 
algorithm by running the compiled code on a variety of inputs and examining the outputs. 
Each researcher is generally focused on contributing to a small set of pathways 
representing their area of interest and expertise.  They are very knowledgeable about the 
details of these pathways. However, they must make use of other pathways for which 
they may have only general knowledge or know little about. 
 The biologists interviewed in this study work in small teams of about 5-10 people. A 
team includes undergraduate and graduate students, lab technicians, post-docs and senior 
researchers. Data to construct pathways is generally provided by more senior 
investigators. Multiple research scientists in the same or different research institutes may 
collaborate on identical problems. At the highest levels, there are internationally 
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renowned scientists who curate newly made discoveries and resolve discrepancies in 
research findings, e.g., The Alliance for Cellular Signaling [32]. 

2.4.3 Pathway Research Overview 
Pathway research is strongly iterative and evolving. A critical component of the research 
process that enables biologists to continue the experimental feedback loop [36] is 
inference. Inference enables them to turn experimental data results into refined 
hypotheses. Some common pathway inference tasks that biologists perform include: 1) 
recognition of changes between experiment and control or between time points; 2) 
detection of changes in relationship between components of a pathway or between entire 
pathways; 3) identification of global patterns across a pathway; and 4) mapping pathway 
state to phenotype (observable effects at the physical level in living organisms) or other 
biological information [13]. Sometimes, the new discoveries fail to support past 
assumptions, leading to further experimentation and research, culminating in modified 
pathways. Pathway modification is a continuous, evolutionary process. 
 Some hypotheses and research questions are relatively simple, and can be answered 
through scientific reduction methods. However, with the advent of systems-level 
analysis, it is becoming more common to examine hypotheses that are significantly more 
complex. Researchers are typically interested in pathways that contain approximately 50 
to 500 nodes. But when inputs to these nodes from other pathways (that in turn may be 
affected by several other pathways) need to be taken into account, things quickly get 
more complicated. Inferences that must be made in these cases are equally complex, 
requiring the recognition of subtle effects at various levels of scale involving multiple 
pathway networks. These inferences are well beyond the capabilities of current pathway 
visualization techniques. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.9 represents a sequence of tasks carried out by a life scientist to perform their research. 



Saraiya: Insight-Based Studies for Pathway and Microarray Visualization Tools 

2 Visualization for Biological Pathways   17

2.5 Requirements Analysis 
Based on the interviews and focus group meetings with biologists, a list of requirements 
for pathway visualizations were developed as shown in Table 2.1. The requirements are 
grouped into three main categories: pathway assembly, information overlay, and pathway 
analysis. These categories are described in the following subsections.  
 Accomplishing these requirements will require interactive dynamic visualizations. 
Static, textbook-like pathway representations will not be adequate in the long term. While 
these functional requirements provide guidance, they do not directly dictate visualization 
design. It might not be possible to adequately satisfy all requirements with a single 
design, and tradeoffs will likely need to be carefully balanced. 
 

Categories Requirements Tasks 
1. Construct & Update Collect and link pathways from multiple resources 
2. Context Provide information about pathways  
3. Uncertainty Maintain alternate hypotheses and information 

reliability  

Pathway 
assembly 

4. Collaboration Enable group work 
5. Node & edge representation Details about pathway entities and interactions 
6. Source Details about source resources 
7. Spatial information Physical locations of pathway entities in the cell 
8. Temporal  information Time related properties  

Information 
overlay 

9. High throughput data  Expression data from high-throughput experiments 
10. Overview Comprehend large or multiple pathways 
11. Interconnectivity Intra- and inter-pathway effects of entities on each 

other 
12. Multi-scale Relate pathways at different levels of abstraction 

Pathway 
analysis 

13. Notebook Track accumulated research information 
Table 2.1 Summarizes requirements for pathway visualization systems. The requirements are grouped into 

three main categories: pathway assembly, information overlay, and pathway analysis. 

2.5.1 Category: Pathway Assembly 
The requirements in the pathway assembly category support the assembly and 
maintenance process for pathways. 
 
R1. Construct & Update: A complete pathway is generally not available from a single 
source. Biologists often must combine different parts of a pathway from various sources, 
including reference archives such as KEGG[2], research articles, etc. It is also important 
to continually capture updates of source information in order to keep a pathway in sync 
with the latest knowledge. 
R2. Context: A pathway may be clear to the author because of deeper understanding of 
the components (nodes and edges) involved. But the same diagram may be difficult to 
understand by someone not familiar with the underlying biological process. It is therefore 
advisable to include information such as pathway significance, specific conditions for it 
to function, collective effects of the pathway components, history of updates, etc., in 
some form when creating a pathway. If a pathway from a community resource is 
modified, then the rationale for doing so should be stated explicitly.  
R3. Uncertainty: Pathways are constantly evolving. Some relationships between 
pathway components may be uncertain, and may require more research to be accepted. 
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Known facts should be distinguished from hypotheses. Representations for alternate, 
potentially conflicting, hypothesis should be supported. 
R4. Collaboration: More than one life scientist can be working together on the same 
pathways. They need ways to communicate effectively with each other. 

2.5.2 Category: Information Overlay 
Pathways are tightly linked to many other types of biological information, and it is 
critical that pathway visualizations depict this richness of information in order to be 
biologically relevant. Pathway visualizations that look like simple ball-and-stick graph 
drawings are likely to be considered information-poor, and not biologically meaningful.  
 
R5. Node and Edge Representation: Pathway nodes and edges have information 
attributes that visualizations should reveal through their visual representations. Quick 
interactive access to further details should also be provided.  Pathway nodes can represent 
many different types of entities (e.g., genes, enzymes, etc.), which may have different 
chemical properties that visualizations should depict. Nodes labels for the entity names 
must be clearly visible. Biologists need to attach notes to pathway nodes for future 
reference, and be able to link them to databases such as GenBank and Gene Ontology for 
up-to-date information. An edge between two nodes usually implies a certain type of 
relationship (e.g., expression, catalysis, etc.), perhaps with properties such as rates, that 
visualizations should depict.  
R6. Source: To evaluate a pathway, it is important to have access to the source 
information for its components, such as literature citations, experimental data, etc. 
R7. Spatial Information: Visualizations should represent the physical, spatial attributes 
of the biology of the pathway, such as location within the cell, relative distance, 
containment, nodes bound to each other, etc. Sometimes the entity represented by the 
node can be present in different parts of the cell in different states.  
R8. Temporal Information: Pathways often have time lag information associated with 
edges. Events can occur strictly in a particular sequence, simultaneously, cyclic, or 
mutually exclusive.  Many pathways have a primary linear structure, with supporting 
secondary branches. 
R9. High-throughput Data: A crucial requirement is to examine changes in pathway 
components based in high throughput data experiments such as microarrays. Microarrays 
allow biologists to measure expression of several thousand genes simultaneously. The 
raw dataset needs to be preprocessed before it can be used for analysis. Typically, for 
each experiment, data can be captured for each gene over multiple time points as well as 
multiple conditions. Hence, pathway nodes contain multi-dimensional quantitative data. 
This data could also be generated through simulation. 

2.5.3 Category: Pathway Analysis 
Pathway visualizations must enable analysis of complex pathways and hypotheses, 
beyond simple small effects to very large systems-level interactions. 
 
R10. Overview: Pathways can be large, containing hundreds or even thousands of nodes, 
with complex interactions throughout. Furthermore, since each pathway provides a 
specialized focused ‘view’ on a certain biological function within the larger biological 
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system, pathways are neither independent nor isolated. Biologists need to overview 
multiple pathways collectively, with layouts that reveal global patterns and effects in 
context. Figure 2.10 from KEGG, provides a comprehensive overview for metabolic 
processes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.10 Provides an overview diagram that shows interconnectivity between metabolic pathways, taken 

from KEGG. 
 
R11. Interconnectivity: Pathways are highly interconnected. Components can affect 
each other directly or indirectly. A single node could be involved in multiple pathways. 
As complexity increases, it becomes more difficult to understand connections between 
distant components. Biologists need to see both upstream and downstream effects from a 
local region of interest, including other pathways that might be affecting the focal 
pathway.  
R12. Multi-scale: Higher level pathways can be composites of more basic pathways. In 
the extreme, a small change in a molecular interaction can have substantial effects at 
physiological levels. In such cases it is necessary to create multiple levels of abstractions 
to relate molecular components to higher level abstractions, and to be able to relate 
effects across these levels of scale. 
R13. Notebook: A research group might work for several years on a set of pathways. 
During this time, they might obtain many results about the pathway entities. They need a 
logical way to keep track of collected information, along with textual notes. 

2.5.4 Questionnaire 
To validate and prioritize requirements and get feedback from more biologists, we sent a 
questionnaire to about 100 biologists using email listservs. We asked the scientists to rate 
each requirement according how much they agreed or disagreed with the requirement. 
Ten scientists responded to the questionnaire. Requirements that are highly rated 



Saraiya: Insight-Based Studies for Pathway and Microarray Visualization Tools 

2 Visualization for Biological Pathways   20

(strongly agree) by more scientists provides a basis for priority over lower rated (strongly 
disagree) requirements. Table 2.2 describes the questionnaire and the number of 
responses. 
 Most of the biologists agreed with the requirements list we compiled. A few of the 
requirements received many high ratings. The need to assemble pathways from different 
resources, to link source information, to infer the change in pathway components over 
several different experiment treatments, and to analyze the influence of pathways on one 
another were considered very important requirements. Most biologists commented that 
they were not satisfied with diagrams provided by current pathway visualization 
software. The visualizations should provide information about the biological properties 
and about the spatial and temporal relationships between the pathway components. 
 

 Pathway Questions Strongly 
Agree 

Agree Neutral Dis-
agree 

Category: Pathway Assembly 
R1: Construct & Update 

1 
In my work, the entire pathway(s) is generally not available from 
a single source.  4 6   

2 
It would be valuable to have tools that allow pathway import 
from multiple sources. 7 3   

3 
Assembling the pathway manually is one of the most time 
consuming processes in the whole endeavor. 4 4 1  

4 
Tools that can partially build the pathway from literature or other 
sources would be of great value to me. 6 2 2  

R2: Context 

5 
For my work, even if the pathway is fairly well known, I need to 
be able to modify it if I got it from a published source. 2 5 3  

R3: Uncertainty 

6 
I want to represent hypothetical connections and/or nodes that 
have not yet been validated. 2 4 4  

R4: Collaboration 

7 
I collaborate with others and need my tool to allow them to enter 
changes from remote sites. 1 4 4 1 

Category: Information Overlay 
R5: Node and Edge Representation 

8 
I am satisfied if just the name of the bio-molecules is displayed 
on the pathway diagram.  2 4 4 

9 
I need to have more information displayed on the pathway 
diagram than just names and connectivity.  8 2  

10 
If two molecules interact, a line drawn between them is adequate 
for my needs. 1 1 5 3 

11 
I want the edge between the interacting components to have 
information about the nature of the interaction attached. 3 6 1  

12 
I need the edges to provide more information about the nature of 
the interaction.  4 5 1  

13 
I need the line to indicate in some manner how certain it is that 
the interaction actually exists. 3 5 2  

14 
I want the lines to indicate in some manner alternate 
options/theories in pathway connectivity. 1 6 3  

R6: Source 

15 
I need to link the molecule to a database or other sources of 
additional information.  6 3 1  

16 I need to have a lot of annotation and references for my diagram. 2 7 1  
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R7: Spatial Information 

17 
Representing the cellular compartment where the components are 
located is important for my work. 3 3 4  

R8: Temporal Information 

18 
I need to view time series data and want to see how the pathways 
change with time. 2 4 3  

19 
I need to view how components move between cell 
compartments over time. 1 6 3  

R9: High-throughput data overlay 

20 
Adding results from multiple experiments to the pathway 
diagram would be of value to me. 2 7 1  

21 
I need my pathway tool to link to statistical programs for further 
analysis. 3 4 2 1 

Category: Pathway Analysis 
R10: Overview 

22 
I need information about how the pathway I am viewing links to 
other pathways not displayed. 7 3   

R11: Interconnectivity 
23 I need a large amount of interactivity with the pathway diagram. 2 3 5  

R13: Notebook 

24 
I need to have a history function to record all the changes I’ve 
made to the diagram with reasons for them 4 4 2  

25 I perform repetitive steps for pathway analysis session to session. 1 5 4  
Table 2.2 The questionnaire used to rate each individual requirement. The biologists were requested to rate 

each requirement according to how much they agree or disagree with it. The table shows the number of 
scientists (out of 10) that agree or disagree with each individual requirement.  There were no ‘strongly 

disagree’ ratings. 

2.6 Survey of Pathway Visualization Systems 
A large number of systems are available for pathway visualization [14, 15, 37]. It would 
be very difficult to review all the pathway systems. Here, we focus on systems that were 
selected based on availability, popularity in the bioinformatics community, and 
visualization and data analysis capabilities. Though the list is not exhaustive, it provides a 
general overview of capabilities provided and approaches used by the current pathway 
visualization systems. Due to the wide range of requirements, it would be difficult for any 
one system to address all. We group the systems based on the category of requirements 
they address and the approach that they use.  

2.6.1 Category: Pathway Assembly 
A large number of systems have been developed to facilitate pathway construction, using 
different approaches. Table 2.3 groups the systems based on the pathway assembly 
requirements they address and the approaches used by these systems to meet the 
requirements. Reference archives such as KEGG provide a comprehensive list of 
pathways for different cellular processes. Biologists frequently use these databases for 
accurate and up-to-date information on pathway components. A comprehensive list of 
such reference databases is provided by Pathway Databases [38]. The visualizations 
provided by these databases are typically static and textbook-like.  
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Requirements Approaches Systems 

Reference KEGG, BIND [39], STKE [40], BioCarta [3], 
EcoCyc [41] 

Pathway editor tools Pathway Editor [42], Knowledge Editor [43], Unipath 
[44] 

Construct pathways using NLP algorithms 
on literature databases 

PathwayAssist  [5],  Pathway Finder [45], PubGene 
[46], GENIES [47], VectorPathBlazer[48], Omniviz 
[49] 

Construct pathways from microarray data GenePath [50], GeneSys [51], GENEW [52] 
NLP algorithms to update local database PathwayAssist 
Update database manually  Patika [53] 

R1: Construct & 
Update 

Update pathways manually GenMapp [4], Cytoscape [30] 
R2: Context Attach notes  GenMapp, PathwayAssist, Cytoscape 
R3: Uncertainty manipulate node and edge properties (e.g., 

shape, size and color)  
GenMapp, Cytoscape 

R4: Collaboration Facilitate sharing across group members Omniviz, Biological Story Editor [54] 

Table 2.3 Groups systems by the Pathway Assembly requirements addressed and approaches used. 
 
 Editor tools, such as Pathway Editor [42] and Knowledge Editor [43], allow users to 
create pathway visualizations manually. A large number of systems, such as 
PathwayAssist, Pathway Finder [45], and PubGene [46], use Natural Language 
Processing (NLP) algorithms to generate pathways automatically from research articles 
retrieved from search engines. Systems such as GenePath [50] infer pathways from 
microarray data. VectorPathBlazer [48] can create pathways by combining information 
from different reference databases such as KEGG and BIND [39]. 

2.6.2 Category: Information Overlay 
Table 2.4 presents pathway systems grouped by the information overlay requirements 
they address and the approaches they use. Different systems provide different ways to 
visually represent biological properties of pathway elements. Biological properties of 
pathway elements are represented in Cytoscape by manipulating visual node properties 
such as shape, size, and color. Systems such as Patika [53], PathwayAssist, and GenMapp 
provide pre-defined shapes to represent different types of pathway nodes. The Patika 
visualization is spatially divided into fixed areas to represent different cellular locations, 
such as nucleus or cytoplasm. Temporal information can be shown through animation, 
and is often partially revealed with top-to-bottom or left-to-right ordering of primary 
pathway flows. Because the amount of information to overlay on nodes is large, 
visualizations can easily become confusing if too many node properties are visually 
represented. 
 
Requirements Approaches Systems 

Manipulate node and edge visual properties 
(shape, size, color, etc.) 

GenMapp, Cytoscape, GScope [55] R5: Node and edge  
Representation 

Provide shapes for different types of nodes Unipath[44] , Patika, PathwayAssist 

R6: Source Attach source information on nodes and edges GenMapp, Cytoscape, PathwayAssist 

R7: Spatial  
Information 

Provide different shapes to show different 
cellular locations 

GenMapp  
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Manipulate node properties or use fixed layout Cytoscape, GenMapp, STKE [40], 
PathwayAssist 

Divide visualization into different areas Patika 

Manipulate edge length, or layout pathway 
elements in the order in which they react 

Cytoscape , GenMapp, PathwayAssist, 
VectorPathBlazer [48] 

R8: Temporal 
Information 

Animations STKE 

Overlay data on nodes (using color), 
one condition at a time 

Cytoscape, Pathway Assist, GenMapp 

Embedded views, for multiple conditions 
(data visualizations such as heatmaps or line 
charts embedded on or near nodes) 

GScope [55] 

Multiple linked views, for multiple conditions 
(pathways linked to other data visualizations) 

GeneSpring [56] 

Visualizations for a functional group MapMan [35] 

Automatically infer relationships between 
entities from data 

GenePath [50] 

R9: High-throughput 
Data 

Overlaying replicates GenMapp 
Table 2.4 Groups systems by the Information Overlay requirements addressed and approaches used. 

 
 MapMan [35] enables users to analyze microarray data for genes grouped by their 
functional relationships. Users can zoom into pathways to focus on areas of interest. 
GenMapp (Figure 2.11), Cytoscape (Figure 2.12), and PathwayAssist (Figure 2.14) allow 
users to overlay data from microarray experiments on pathways. Usually, the color of a 
node is used to encode its expression value in an experiment, using a standard color ramp 
from green (down expressed) to yellow (no change) to red (up expressed). Most tools 
limit users to overlay microarray data for one experiment condition at a time. Then, users 
can animate the colors to infer changes across conditions. GScope (Figure 2.13) [55] 
allows users to overlay expression data for several experiment conditions at once, by 
embedding small charts onto each node within the pathway visualization. GeneSpring 
[56] uses multiple views to display separate data visualizations (such as parallel-
coordinate plots or heatmaps) of multiple experiment conditions, which are interactively 
linked to the pathway visualization. Users can then relate the information by interactively 
selecting nodes in the pathway to highlight the corresponding nodes’ data in the data 
visualizations, and vice versa. 

2.6.3 Category: Pathway Analysis 
Table 2.5 groups systems by the analysis requirements they address and approaches used. 
As shown in Figure 2.10, KEGG provides an overview representing all the 
interconnections between the metabolic pathways. GScope uses fisheye techniques to 
provide an overview for pathways, with a magnified focus region for details. Gscope also 
allows users to dynamically simulate the effects of a change in a relationship between 
two nodes on all pathways of interest. Patika and PathwayAssist let users query pathway 
interconnections, such as finding all nodes between two nodes of interest, or finding 
relationships between pathways of interest. As one form of multi-scale view, GeneSpring  
links pathways to separate visualizations of gene locations on the chromosome.  
Biological Story Editor [54] uses a novel metaphor of story telling to organize and share 
research information and arguments about a pathway among collaborators. 
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Requirements Approaches Systems 

Functional groups KEGG, MapMan 
Zooming Cytoscape  

R10: Overview 

Fish eye views  GScope  
Up-down cascades GScope R11: Inter-

connectivity Query pathways PathwayAssist, Patika 
R12: Multi-scale Chromosome location + pathways GeneSpring 

Attach notes to nodes and edges GenMapp, Cytoscape R13: Notebook 

Build stories about pathway elements Biological Story Editor  

Table 2.5 Groups systems by the Pathway Analysis requirements addressed and approaches used. 

2.7 Heuristic Evaluation 
Based on the systems survey (Section 2.5), we selected six systems for evaluation against 
the requirements with users. These were selected based on their availability. Some users 
had favorable experiences with GenMapp and PathwayAssist and requested their 
inclusion in our analysis. The systems were evaluated with six biologists divided into two 
groups. Although most users were not familiar with all systems, their reviews are 
important as end-user perception, and valuable to visualization designers. The systems 
are listed in the order in which they were evaluated.  

2.7.1 User Reviews 
GenMapp: GenMapp (Figure 2.11) provides drafting tools for biologists to create 
pathways. Though the scientists felt that the tool was easy to use, they said that they 
would be interested in using GenMapp only if pre-made pathways for their interests were 
available. Creating pathways from scratch would be too time consuming.  
 GenMapp does not allow users to link pathways and analyze interconnectivity 
between them. The biologists felt that it would be difficult to show concurrent, dependent 
and mutually exclusive events. Unless arrows representing relationships were labeled it 
was not easy to tell their type (e.g., stimulatory or inhibitory). Ability to overlay 
information from microarray experiments was considered helpful. GenMapp allows users 
to overlay information from one experimental treatment at a time. GenMapp also 
recognizes and highlights replicates in a microarray experiment. The scientists were 
skeptical of the statistical algorithms used by MappFinder [57], but said it can provide a 
good start to suggest pathways of interest from a long list.  
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Figure 2.11 GenMapp [58]. A visualization of Glycolysis pathway in GenMapp linked to MappFinder [57]. 
Mappfinder, along with GenMapp, lets users perform statistical analysis on pathways to identify the most 
changed for a treatment. Results are displayed using the GO hierarchy as shown in (a). Users can click a 

pathway of interest in the hierarchy (a) for more detailed information. Pathway nodes are listed in (b).  The 
relationships between nodes are shown in (c). The nodes are color coded based on their expression in a 

microarray treatment (b, c). 
 
Cytoscape: The biologists commented it would be very difficult to understand maps 
created by someone else in Cytoscape (Figure 2.12). Some commented that the tool 
represents computer scientists’ conceptions of pathways. In the overview mode, it was 
difficult to see the labels of genes and their properties. Without this information, a 
pathway is not helpful to them. They felt it would be difficult to include spatial and 
temporal information in Cytoscape. While information about connectivity of a node to 
other nodes in a pathway can be analyzed, it is difficult to comprehend overall pathway 
connectivity. Because of these fundamental problems, they were not impressed by the 
zooming capability to overview pathways. Cytoscape is created for analyzing microarray 
data in pathway context and provides various analytical plug-ins. Our users were mainly 
focused on the visualization aspects.  
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Figure 2.12 Cytoscape [59]. The color of nodes corresponds to expression data for a microarray experiment 

as shown in (a). Users are provided with various menus to manipulate node and edge properties (b). It is 
also possible to overlay annotation (c) and gene ontology information (d) on pathway nodes. 

 
GScope: For biologists not familiar with them, fish-eye views were confusing. The 
distorted view and the re-orientation of the nodes when moving the fish-eye caused 
disorientation. Visualizations either showed too much information in the overview, or too 
few nodes in the case of the ‘clipped view’ option. It was difficult to see how a single 
node is related to the overall pathway. GScope (Figure 2.13) lets users simultaneously 
overlay gene expression data for multiple experimental treatments on the nodes. 
However, the pathway nodes are divided to show values for different conditions using 
heat map visualizations. The division of nodes, combined with fish-eye distortion, made 
it difficult to see overall changes in the pathway for different conditions. The scientists 
preferred animating the pathway node colors, showing one experiment condition at a time 
as done in GenMapp, over the GScope approach. There were mixed comments about the 
‘cascade’ functionality that simulates the effect of a node manipulation on the overall 
pathway. One group said that this could be helpful when combined with a better means to 
overview the pathway. The other group, more familiar with pathway simulation tools that 
use differential equations (e.g, Copasi [60]), was skeptical of this implementation. 
PathwayAssist: All the scientists were impressed with PathwayAssist’s (Figure 2.14) 
pathway assembly capabilities. Some wanted to analyze the software to check if the tool 
really fulfills its claims of creating pathways automatically by searching the literature. 
They liked the ability to create pathways directly from the ResNet database [5] and from 
PubMed using NLP algorithms. They were excited to learn that its database has 
information about more than 140,000 entities, and that more can be added as required. 
They said that the ability to automatically link scientific references with node interactions 
was very helpful. The visualization also depicts the interaction type. One of the scientists 
was concerned about the possibility for misuse and failure to appreciate the shortcomings 
of NLP. Proper indication of the reliability of NLP derived information should be 
indicated. 
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Figure 2.13 GScope [55]. Fish-eye view is used to reveal details within global context. Multiple treatments 

of microarray time-series data are overlaid on pathways, using colored heatmaps and line charts. 
 
Patika: Currently, Patika (Figure 2.15) is a niche product for use in cancer research. A 
serious limitation is that its database is limited, and has information for just 4,000 
different entities. The scientists stated that visualizations provided by Patika were more 
informative than other tools, because it shows multiple states of a molecule in a pathway 
and shows the cell compartments where the reactions take place. If information is 
available from the database, they found it easy to create a pathway in Patika by 
formulating simple queries to search for connecting entities.  
BioCarta: Though we had not originally planned to include it, several scientists 
commented during the analysis that pathway diagrams provided by BioCarta (Figure 2.1) 
are among the best they have seen for providing biological context to pathways. Different 
types of pathway entities, the sequence of reactions between them, and the spatial 
relationships are all shown clearly. The symbols, shapes, and organization of the 
diagrams are familiar, and similar to those found in textbooks. Simply clicking on a node 
name reveals more information about a pathway entity. They said it is easy to 
comprehend the information-richness of biological pathways from these cartoon-like 
visualizations. They felt that none of the other pathway analysis tools provided as much 
information in such a helpful and biologically-meaningful visual format. It should be 
noted that BioCarta, unlike the other tools discussed, is simply a repository of pathway 
diagrams. The diagrams are manually constructed.  It does not provide features like the 
other tools to automate pathway analysis or overlay gene expression data, but can serve 
as a reference library for users to construct their pathways. Hence, it serves as an 
excellent educational resource. 
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Figure 2.14 PathwayAssist [5]. EGF signaling pathway visualized in PathwayAssist. The pathway is 
constructed automatically using NLP algorithms, and needs to be curated by a researcher.  The color and 

shape of the nodes denote different types of biological molecules. Also, the edges indicate if the 
relationship between two biological molecules is inhibitory or stimulatory. The research papers from which 

the information is obtained are linked to the edges. Note PathwayAssist is now called PathwayStudio. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.15 Patika [53]. The pathway diagram is divided into different regions to represent different 

cellular regions, such as nucleus, cytoplasm, etc. The visual properties of nodes indicate their biological 
properties. 

2.8 Research Agenda 
Chapter 2 provides a comprehensive list of requirements for pathway visualizations. We 
also conducted a software survey and heuristic evaluation to analyze how existing 
pathway visualization tools address user needs. We found that most tools allow users to 
perform broader data analysis tasks. A serious shortcoming of these tools at present is 
that they do not provide adequate domain-specific biological meaning, and users must 
perform many tedious operations to search for and extract relevant information. Unless 
the tools provide users with rapid biologically-relevant insight that relates the data to the 
underlying biological meanings (for example, to phenotype), most biologists will be 
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reluctant to use them. The sections (2.8.1 – 2.8.5) discuss the most important unmet 
requirements, and a research agenda to address these shortcomings. 

2.8.1 Pathway Construction & Update 
Biologists use many references to construct the pathways they need. Hence, creating 
pathways requires a significant time investment. Most biologists pointed out that no 
matter how valuable the other visualization capabilities, they will not be interested in 
tools that require them to create large pathways (approximately greater than 100 nodes) 
from scratch; it is simply too large a time investment, and requires a huge amount of 
background work to make it meaningful. The tools must be able to construct pathways by 
retrieving and building on previous relevant pathways. All the biologists in this study 
showed particular interest in PathwayAssist, because this tool allows users to 
automatically search for relevant pathway information and periodically update local 
databases. The biologists felt that this capability could save them a significant amount of 
time and effort. At the same time, users were very wary about a completely automated 
pathway builder and wanted some degree of human curation. 

2.8.2 Information Overlay 
Much information needs to be overlaid on pathway entities. Most tools let users impart 
various entity attributes by manipulating simple visual properties of nodes and edges. 
Different graph layouts can help reveal spatial and temporal relationships. Patika 
visualizations were appreciated by the biologists due to the representation of different 
states of molecules, along with their spatial cellular locations. BioCarta diagrams were 
considered most biologically meaningful, and were preferred by biologists over ball-and-
stick graphs. None of the visualizations capture the actual complexity of pathway 
dynamics.  For example, STKE provides some animated visualizations to explicitly show 
sequences of events in a signaling pathway, including movement of biological molecules 
within the cellular structure. One potential approach for more meaningful visualizations 
is to represent pathways based on central dogma. Pathway entities can be presented based 
on their categories such as genes, RNA message, proteins, metabolites, etc.   
 Defining consistent representations for pathways and entities is needed. Though a 
large number of pathway visualization systems exist, there is no standardized vocabulary. 
The green-yellow-red color encoding for gene expression data is one of the few 
standardized features among these tools (a side effect of microarray imaging technology). 
This is also true for reference databases and other reference sources. Biologists need to 
constantly learn new representation styles for visualizations created in different systems. 
An important research area is to define a consistent language for pathways and their 
visual representations. 

2.8.3 Overlay Data from High-throughput Experiments 
The goal of high-throughput data analysis is to infer biological meaning. Biologists must 
observe high-throughput data within the context of information-rich pathways. In a 
separate evaluation study of microarray data visualization tools, it was found that the lack 
of pathway context severely hampered scientists’ ability to derive biologically 
meaningful insight from the microarray data [13]. Further work is needed to effectively 
combine pathway and microarray visualization tools. 
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 It will be difficult to design visualizations that relate pathway diagrams to quantitative 
multi-dimensional microarray data, consisting of expression values for potentially 
multiple treatments and multiple time points.  In general, there are several possible design 
alternatives that must be comparatively evaluated to determine effectiveness: 

• Nodes as data glyphs:  Most pathway tools will color nodes according to a single 
microarray treatment (usually the green/red color scale for down/up-regulated).  

• Pathway animation:  Cycling through several nodes-as-glyphs views over time 
enables the visualization of a time series.  Sliders or other controls can be used to 
directly navigate the animation loop. 

• Small multiples [61] of pathways: Layout several nodes-as-glyphs pathway views 
in miniature form, likely in a grid of treatments vs. time series. 

• Complex node glyphs, or data visualizations embedded within nodes:  While 
nodes-as-glyphs supports only one value per node, embedding small 
visualizations of microarray data within each node enables the simultaneous 
display of values for multiple treatments or time points. For example, GScope 
embeds heatmaps and line charts. Cytoscape has explored the use of radial bars of 
different lengths around a node [62]. A disadvantage is that these visualizations 
can become complex and difficult to read. 

• Linked pathway and microarray visualizations:  Pathway and microarray 
visualizations can be separated, enabling advanced microarray data visualization 
methods such as parallel coordinates and clustering (e.g. GeneSpring). The 
visualizations are interactively linked to enable users to relate nodes to their 
corresponding microarray data values. 

2.8.4 Pathway Overview and Interconnectivity 
Most systems list pathway names (as Windows Explorer lists directory names) to let 
users select a particular pathway of interest. Biologists prefer visualizations that provide 
an overview of pathways displaying interconnections between them, as in Figure 2.10. 
Incoming and outgoing visual links could enable users to view how other pathways can 
potentially affect or be affected by the focus pathway at each node. In a densely 
populated pathway, it is important to be able to analyze connectivity between 
components. Simple interactive queries for pathway analysis, such as upstream and 
downstream components from a node at predefined depths or steps, are considered more 
useful than having to do this manually. This all suggests highly interactive pathway 
visualizations [63]. 

2.8.5 Multi-scale Pathways 
As pathways become large and complex, methods such as semantic zooming [64] or 
hierarchical decomposition [65] are needed to aggregate and abstract entire pathways or 
pathway portions into small units that can be displayed within larger pathway systems. 
These aggregates should be simple visual representations that reveal enough information 
of its contents to enable analysis of the high-level effects. For most applications, pathway 
visualizations must provide sophisticated multi-scaling to view lower level molecular 
interactions in the context of higher level physiological changes. 



Saraiya: Insight-Based Studies for Pathway and Microarray Visualization Tools 

2 Visualization for Biological Pathways   31

2.9 Conclusions 
Thus, though a large number of pathway tools have been developed, the tools that allow 
researchers to effectively explore large complex biological systems of many integrated 
pathways are still needed. We believe that pursuit of this research agenda to develop tools 
that address the requirements listed here will lead to significant improvements in 
biologists’ ability to utilize pathway representations, and facilitate the transition to 
systems-level science in bioinformatics. The dissertation addresses the requirement: 
Overlay of data from high throughput experiments on pathway diagrams. The later 
chapters describe design space based on the approaches taken by the current tools to 
address this requirement, and also the user studies conducted to evaluate visualization 
alternatives from the design space. 
 A critical component of the pathway research is ‘insight’. Insight enables the 
biologists to turn experimental data into refined hypothesis. Some data analysis tasks that 
biologists typically perform include: 1) recognition of changes between experiment and 
control or between time points; 2) detection of changes in relationship between 
components of a pathway or between entire pathways; 3) identification of global patterns 
across a pathway; and 4) mapping pathway state to phenotype (observable effects at the 
physical level in living organisms) or other biological information. Chapter 3 describes a 
pilot study conducted to evaluate pathway visualization tools using these common data 
analysis tasks biologists perform for insight into the data. 



 

 

3 Visualization for Pathways + Microarray Data 
This chapter presents a design space to describe possible alternatives for pathways + 
microarray data visualization tools. We are focused on pathway diagrams that use a node-
link representation. The design space groups visualization tools on two dimensions. Such 
grouping allows for a more systematic selection of the visualization alternatives to 
evaluate and relate results to the range of possible options. 
 A user study to evaluate and rank pathway + microarray data visualization options 
based on users’ performance time and accuracy of responses on predefined tasks is also 
described. The tasks were selected based on the common biologists’ data analysis tasks 
for pathway + microarray data analysis listed in Chapter 2. Timeseries data was used as 
an example of multidimensional data. The results suggest that overlaying data on 
pathway nodes one timepoint at a time may lead to more accurate performance for tasks 
involving analysis of a graph at a single timepoint, and comparisons between graph nodes 
for two distinct timepoints. Overlaying data simultaneously for all the timepoints on 
graph nodes may lead to more accurate and faster performance for tasks involving 
searching for outlier nodes displaying different behavior as compared to the rest of the 
graph nodes for all timepoints. Single views have advantage over multiple views on tasks 
that require topological information.  

3.1 Introduction 
In bioinformatics, pathways are often used to show how bio-molecules (genes and 
proteins) interact with each other. Data from high throughput experiments such as gene 
expression microarrays [7] measure quantity levels of the molecules, and are often 
analyzed in context of biological graphs. Usually, data is collected for several 
experimental treatments. An example dataset could be expression values for a viral 
infection over time. The pathways represent complex biological phenomenon and provide 
a biological context to otherwise numerical data analysis [12]. In a separate evaluation 
study, it was found that the lack of graph context severely hampered scientists’ ability to 
derive biologically meaningful insight from microarray data [13]. Figure 3.1 shows 
overlay of time series data (as an example of multidimensional data) on a pathway. Each 
node in the pathway corresponds to a tuple row in the dataset, and each experiment 
treatment is an attribute column.  
 Some common tasks for analyzing multidimensional data in pathway context for 
bioinformatics are: What are the values of a specific pathway node in a particular 
experimental treatment? How do different pathway nodes change over different 
conditions? Which node displays a particular pattern of behavior across different 
experimental treatments? How does the behavior of a particular pathway node affect 
other nodes connected directly or indirectly to it?  
 A wide variety of pathway visualizations have been created to support analysis of 
multidimensional data in pathway context [14], and [15]. These visualizations use 
different approaches to overlay data on pathways. Often the pathway visualizations are 
linked to other additional visualizations such as parallel co-ordinates and heat maps.  



Saraiya: Insight-Based Studies for Pathway and Microarray Visualization Tools 

3 Visualization for Pathways + Microarray Data  33

 The goal of this chapter is to present a design space for overlaying multidimensional 
data on pathways, and to comparatively evaluate instances of visualizations within the 
design space on the common data analysis tasks. This study was performed as a pilot 
study to investigate if there were differences in the participants’ performance based on 
the different visualization alternatives used. The results from this study will guide further 
research towards evaluating pathway + microarray data visualization.  

3.2 Literature Survey 

3.2.1 Visualization for Graph + Multidimensional Data 
A large variety of tools that allow analysis of multidimensional data in context of graphs 
have been created. A survey of different graph visualization tools is presented in [63]. In 
bioinformatics, a variety of tools use different visualizations to support graph data 
analysis. GenMapp [4] and PathwayAssist [5] allow overlay of data on graphs using one 
attribute at a time. The nodes are colored on a user defined scale to represent their values 
in a particular attribute. Though data is overlaid one attribute at a time in GeneSpring 
[56], users can link graph visualization to other visualizations such as heat maps, parallel 
co-ordinate, etc., using brushing and linking. The tools that lay data one attribute at a 
time on graph vertices usually provide sliders or similar mechanisms to let users iterate 
over other attributes.    
 In another approach, more complex glyphs or miniature charts can be embedded in 
graph vertices. This enables the simultaneous display of values for multiple conditions on 
the node. For example, GScope [55] embeds heatmaps and line charts on graph vertices. 
The graph visualizations are linked to a parallel co-ordinate display in GScope. 
Cytoscape has explored the use of radial bars of different lengths around a node [62] to 
represent multiple attribute values simultaneously. Visual elements such as images or 
renderable geometry is used in MoireGraphs [66] to represent various physical entities 
(e.g., Protein structure, web page, etc). A new focus+context radial layout algorithm 
along with other interaction techniques assist in exploration of the graphs. 
 Besides bioinformatics, graph visualizations have been created for other domains too. 
SeeNet [67] uses static display for spatial information, animation and manipulates 
different visual properties of vertices and links to represent network data. GraphViz [68] 
allows users to represent structural information in large number of domains. A few visual 
properties of nodes can be manipulated to represent different attributes of the nodes. [69] 
use arc height, grouping and thresholding to visualize topology and properties of 
Internet’s Multicasting Backbone (MBone).  

3.2.2 Evaluation for Graph Visualization 
A number of studies have been performed to evaluate different graph layout algorithms. 
E.g., a study to measure cognitive cost of graph aesthetics for the task of finding shortest 
paths in spring layout algorithm is described in [20]. An evaluation to access readability 
of two graph representations: matrix based and node-link based is described in [19]. The 
evaluation was based on seven generic tasks and provides recommendations regarding 
graph representation based on their size and density. A framework for defining and 
validating metrics to measure difference between two drawings of the same graph is 
presented in [17]. The paper also presents experimental analysis on several simple 
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metrics. Several ideas to define similarity for comparisons between two graph drawings 
are presented in [16] and evaluated in a user study. A formal metrics based on seven 
common aesthetics criteria, applicable to any graph drawing of any size are presented in 
[70]. An analysis of graph drawings produced by some common layout algorithms (e.g., 
spring layout algorithm, DAG, etc.) based on the seven metric formulae is also presented 
to demonstrate the application of the metrics. A comparison of hyperbolic tree browser 
and conventional browser is described in [18]. The users finished their tasks faster with 
the hyperbolic tree browser in presence of strong information scent. 
 Thus, though a wide range of studies have been performed to analyze graph drawings 
and layouts, little work has been conducted to evaluate visualization of multidimensional 
data associated with graph vertices. The rise of bioinformatics pathways and gene 
expression analysis has brought this need to the forefront. 

3.3 Design Space 
The design space is based on identifying design dimensions that will allow us to group 
visualization tools. All the systems that analyzed for pathways + microarray data in 
Chapter 2 can be grouped along this space. 

3.3.1 Dimension 1: Data Overlay Method 
This dimension defines the method to overlay multidimensional data on pathways. The 
pathway maintains it node-link structure. The three possible alternatives are: 
Single Attribute (using single glyphs): In this approach a visual property of nodes is 
manipulated (usually color) to overlay a single data attribute (Figure 3.1). Cycling 
through several views for other attributes enables visualization of multidimensional data. 
Sliders or other controls are often used to directly navigate the animation loop. This 
design strategy focuses on the display of 1 data attribute at a time, using simple node 
glyphs, with interactive access to other attributes. 
Small Multiples (graph as glyphs): For this visualization design, multiple repeated 
views of the graph in miniature form are presented, one view for each attribute [61] 
(Figure 3.2). This design strategy focuses on separating each data attribute into multiple 
views of the pathway, still using simple node glyphs. 
Multiple Attributes (nodes as glyphs): While colored pathway supports only one value 
per node, embedding small visualizations of multidimensional data attributes within each 
node enables the simultaneous display of values for all the attributes. E.g., Gscope  uses a 
heatmap and line graphs (Figure 3.3) to display attribute values of nodes. This design 
strategy focuses on simultaneously combining all data attributes into a single pathway 
view, using complex node glyphs. 
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Figure 3.1 An example of overlaying data one condition at a time using color encoding. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Figure 3.2 An example of laying out multiple graph views in a grid of conditions or treatments in 

data. 
 

 
 
 
 
 
 
 
 
 
 

Figure 3.3 An example of embedding multiple data attributes simultaneously within each node. 

3.3.2 Dimension 2: Number of Views 
Dimension 2 determines if other linked multidimensional data views are used in addition 
to the graph visualization for data analysis. Each of the pathway visualizations mentioned 
in Dimension 1 can be linked with other multidimensional visualizations of the data. 
Thus, for three options in dimension 1, there are three possible options in dimension 2. 
Using brushing-and-linking approach users can select nodes in the graph to highlight the 
corresponding data in the multidimensional view, and vice versa. 
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Figure 3.4 Pathway diagrams that overlay data one condition at a time is linked to parallel co-ordinate 

visualization. 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5 Pathway diagrams that use graph as glyph view is linked to parallel co-ordinate visualization. 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.6 Pathway diagrams that use node as glyph view is linked to parallel co-ordinate visualization. 

3.4 Pilot Study 
Common options were developed for overlaying all timeseries data attributes 
simultaneously on graph nodes (Figure 3.7). These were evaluated in a pilot study, to 
select the final version for the main experiment. The alternatives used line graph (A), 
color (B), and both color + line graph (C) to display values of node in different 
conditions. We used different intensities of green color to display negative values, yellow 
for values around zero, and different intensities of orange color for positive values. 
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 Time series data for 10 time points was overlaid on a 50 node directed graph for the 
study. The visualizations were evaluated between subjects. We had a total of 15 
participants, five for each representation. The participants performed predefined tasks 
described in table 3.4. The tasks were in the form of multiple choice questions. 
Participants’ answers to each task, and the response times were measured. We ranked the 
visualizations based on the number of correct user responses and shortest time taken to 
answer.  
 We observed that participants using color and color + line graphs had more correct 
responses to the tasks. On an average, participants using just the line graphs had 5.8/11, 
color had 6.8/11 and color + line graph had 7.2/11 correct answers. On performing 
ANOVA analysis on performance times we found that participants using color + line 
graph displays performed faster (p<0.05) than participants using line graphs and color 
only. The average times for all the 11 tasks for the participants were, for line graph: 64.51 
sec, color: 54.95 sec, and color + line graph 47.6 sec. Based on these results, we selected 
color + line graph for the main study. 
 
 
 
 
 
 
 
 
 
 
 
 
 (A) (B) (C) 
Figure 3.7 Nested visualization alternatives to overlay multidimensional timeseries data simultaneously on 

graph nodes. 

3.5 Experiment Design 
The aim of this study is to evaluate alternate visualizations in the design space that 
support analysis of multidimensional data in context of a pathway. A 2x2 between-
subjects design examines the following two independent variables. 
 1.  Data overlay method: Two methods were used, single attribute (simple glyphs 

with animation), and multiple attributes (complex glyphs in nested visualization). 
 2. Two choices for use of additional multidimensional view:  single view (pathway 

visualization only), vs. multiple views (pathway visualization + linked parallel 
coordinates visualization). 

The design space identified six different possible design alternatives for pathway + 
microarray data visualization tools. Since our main focus is on visualizations used in the 
bioinformatics domain, we selected the option to overlay data using the simple glyph 
with animation and the nested visualization approach, as these are the two most widely 
used methods. We used these in both single and multiple view conditions. This would 
allow us to evaluate the alternatives along both dimensions in the design space. Table 3.1 
highlights the portion of the design space selected for evaluation. 
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Number of Views 
Data overlay method 

Single View Multiple View 

Single Attribute Yes Yes 
Small Multiples No No 
Multiple Attributes Yes Yes 

Table 3.1 Lists the alternatives from design space selected for evaluation. 
 
 Most often in bioinformatics, green color is used to show down regulation or negative 
values, yellow to display values around zero and red for positive values. We preserved 
this standard color scale for the visualizations in the study. Since we worked with a 
timeseries data, we linked the graph visualizations to parallel co-ordinate displays for 
multiple view visualizations.  

3.5.1 Visualization Tools 
We used four visualizations in the study. Table 3.2 lists visualization alternatives and 
their interaction features for the experiment. Confirming to the general trend in 
bioinformatics, we used a color scale from yellow to green for displaying negative 
values, and yellow to red for displaying positive values. The tools were custom 
developed for this study to ensure consistency between conditions. For all the 
visualizations, moving the mouse over a node displayed numerical values corresponding 
to the color. For both the single attribute visualizations a slider was provided to let users 
iterate over all the attributes in the data.  
Single Attribute + Single View (SS): This visualization overlaid values for one attribute 
on a node at a time. It was same as in Figure 3.8, but did not have parallel co-ordinates 
view linked to it.  
Single Attribute + Multiple Views (SM): This visualization is shown in Figure 3.9. It 
was similar to Single Attribute + Single View but was linked to a parallel co-ordinate 
view using brushing and linking.   
Multiple Attribute + Single View (MS):  This visualization overlays data from all the 
attributes on a node using both a heat map and a line graph. It was similar to visualization 
in Figure 3.10, but did not have a parallel co-ordinate view linked to it. 
Multiple Attribute + Multiple Views (MM): Figure 3.11 shows this visualization. It 
was similar to Multiple Attributes + Single View but was linked to a parallel co-ordinate 
visualization using brushing and linking 
 

Number of Views 
Data Overlay Methods: 

Single View Multiple Views  

Single Attribute 
 
 

Slider 
Mouse over 
(Figure 3.8) 
 

Slider  
Brushing 
Mouse over 
(Figure 3.9) 

Multiple Attributes 
 

Mouse Over 
(Figure 3.10) 

Brushing 
Mouse over 
(Figure 3.11) 

Table 3.2 Design space and interaction features for visualization tools in the experiment. 
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Figure 3.8 Overlay of a single attribute on graph nodes by color, and using single view (SS). A slider 
enables user to select which attribute to visually overlay on the graph.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.9 Overlay of a single attribute on graph nodes by color, and using multiple views (SM). The graph 
visualization is linked with parallel co-ordinate visualization using brushing and linking.  A slider enables 

user to select which attribute to visually overlay on the graph.  
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Figure 3.10 Overlay of multiple attributes on graph nodes by heat maps and line charts, and using single 
view (MS). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.11 Overlay of multiple attributes on graph nodes by heat maps and line charts, and using multiple 
views (MM). The graph visualization is linked with parallel co-ordinate visualization using brushing and 

linking. 
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3.5.2 Data 
A pathway having 50 nodes and time series data with 10 time point attributes was used. 
Some of the nodes in the pathway were grouped together and named by displaying 
textual information next to them, as shown in Figures 3.8 – 3.11, as is common in 
bioinformatics pathways. The sizes of the graph and dataset are based on typical needs in 
bioinformatics.  The average size of graphs in the STKE library (www.stke.org) is under 
50 nodes. Table 3.3 summarizes the data used for the experiment. 
 

Table 3.3 Data used for the experiment. 

3.5.3 Task List 
Participants performed 11 tasks listed in Table 3.4.  Tasks are based on common needs in 
bioinformatics pathway analysis, but abstracted to general graph tasks. Since a time-
series data was used for the study, the tasks are more relevant to such type of data.  
Participants performed four practice tasks to get familiar with the user interface and the 
visualization after which they were given the actual tasks to perform. All the tasks were 
described as multiple choice questions, with five possible choices. We recorded 
responses to the tasks, and time taken by the participants’ to perform each task.  
 

T pts. Nodes Goal Task #,  Task 
1 
1 
1 

4 
4 
50 

Read value 
Search node 
Search nodes 

1. What are the values of Nodes C 17-18-23-24 at time point 6? 
2. Which node of the group G 29-31-32-33 is most positive at time 

point 7? 
3. Find a group of 4 nodes, out of which three are positive and one is 

negative at time point 7? 
2 
2 

1 
4 

Differences 
Differences 

4. What is change in N7 from time point 5 to time point 8? 
5. What is change in value of nodes C 17-18-23-24 from time point 6 

to time point 8? 
10 
10 
10 
 
10 
 
10 
 
10 

1 
3  
5 
 
4 
 
50 
 
50 

Trend  
Topology 
Outlier - node 
 
Search –T pt 
 
Trend Search – 
nodes 
Outlier  group  

6. How does N8 change over time? 
7. How many time points does it take for N29 and N30 to trigger N40? 
8. Which node is an outlier in the group B 8-9-15-16-22 that displays 

most different behavior than the others? 
9. At what time point is the value of nodes D 12-13-19-20 most 

negative? 
10. Find a node that shows a continuous increase up to timepoint 9 and 

then a sharp decrease. 
11. Find a group of nodes that display most different behavior than the 

rest of the graph over all the time points?  
Table 3.4 Lists the tasks used in the study, T pts. = number of timepoints, Nodes = number of nodes 

required for the task, goal = task type, Task = the task participants performed. 

3.5.4 Experiment Protocol 
40 participants, 10 for each visualization participated in the experiment. All the 
participants in the study were freshman or sophomore undergraduate students and 
business majors. None of the data analysis tasks required specific biological knowledge. 

Data Type Description 
Graph A directed graph having 50 nodes and 56 edges. Each node had an out degree of 

0 to 3.  
Multi-Dimensional  Time series data, having values for 10 time points for each node. 
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So we did not require participants to have biological background. The participants were 
given a brief introduction to the visualization and explanation of some basic terminology 
used to describe tasks in the study. Table 3.5 lists the independent and dependent 
variables for the study.  
 

Independent Variables • Tool: data overlay method 
• Tool: Single vs. multiple views 
• Task 

Dependent Variable • Time to answer each question 
• Number of correct responses 

Table 3.5 Lists independent and dependent variables for the study. 

3.6 Hypothesis 

3.6.1 Overall Performance 
Single Attribute vs. Multiple Attributes: Since the data for all the timepoints is 
displayed simultaneously on the graphs nodes for the multiple attribute visualization, we 
thought that this would make it easier for the participants to analyze changes in the graph 
over time. Hence, participants using multiple attribute visualization alternatives may 
complete the tasks faster than the participants using single attribute visualization.  
Single View vs. Multiple Views: We believed that participants using multiple view 
visualization may perform faster, as they had an advantage of an additional view over the 
participants using single views especially for tasks that required analysis for all the 10 
timepoints.  
Accuracy: We also believed that since all the visualizations were simple and easy to 
understand there may be no significant overall differences in the participants’ 
performance on accuracy. 
 Based on above assumptions participants using multiple attributes + multiple views 
should display faster performance on the pre-selected tasks as compared to the other 
participants using other visualization alternatives. Most of the hypotheses were based on 
the general guidelines for single view vs. multiple view visualization tools [71], [72] and 
previously conducted experiments [73]. 

3.6.2 Task-based 
Tasks involving 1 Timepoint 
Tasks 1 – 3 (Table 3.4) required analyzing graphs at a single timepoint. We believed that 
participants using single attribute visualization may perform faster than participants using 
multiple attribute visualizations, as the single attribute visualization method displays data 
on the graph just for a single timepoint. This allows the participants to focus on the 
timepoint of interest. Since the tasks did not require much usage of the additional non-
graph visualization, there should be no performance differences between participants 
using single view vs. multiple views. We did not hypothesize that the visualization 
alternatives will have effects on the accuracy of participants’ responses. 
 
Tasks involving 2 Timepoints 
Tasks 4 and 5 (Table 3.4) involved comparing values of node(s) at two different 
timepoints. Since the multiple attribute visualization method overlays all the values for 
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the nodes at different timepoints simultaneously we believed that participants using 
multiple attribute may perform faster than single attribute visualization.  
 Since task 5 required participants to analyze changes in values for several nodes 
simultaneously, we believed that participants using multiple view visualization may have 
an advantage over single view visualization alternatives. We did not have any hypothesis 
of effect of different visualization types on accuracy of participants’ responses. 
 
Tasks involving all 10 Timepoints 
Since the tasks 6 – 11 (Table 3.4) required participants to analyze changes for node(s) 
related to all the 10 timepoints. We believed that the participants using multiple attribute 
visualization may perform faster than the participants using single attribute visualization. 
Also, participants using multiple view visualization alternatives may have an advantage 
of having an additional view over participants using single view visualization 
alternatives. 

3.7 Results 

3.7.1 Overall Performance 
On performing ANOVA analysis over all tasks, we found that there were significant 
differences in accuracy of participants’ responses based on the overlay method used. 
Participants using single attribute graph visualizations were significantly more accurate 
[F(1, 360) = 1.94, p =0.001] than participants using multiple attribute graph visualization. 
There was no interaction between views and attributes on accuracy [F(1, 360) = 0.24, p = 
0.625].   
 Participants using single view visualizations performed significantly faster [F(1,360) 
= 7.10, p = 0.011]) as compared to multiple view visualizations. There was no interaction 
between views and attributes on performance time [F(1, 360) = 0.00, p = 0.991] The 
ANOVA model and analysis are presented in Appendix A. The results are summarized in 
table 3.6. 
 
Overall Performance Single Views Multiple Views 
Single Attribute More accurate 

Faster 
More accurate 
Slower  

Multiple Attributes Less accurate 
Faster 

Less accurate 
Slower 

Table 3.6 Summary from ANOVA analysis for overall performance and accuracy between participants for 
all the tasks. 

 
 The results were further strengthened on performing ANOVA analysis between 
visualization options. We found that participants using single attribute + single view 
visualization were more accurate than participants using multiple attribute + single view  
visualization [F(1, 218) = 6.96, p =0.008], and participants using single attribute + 
multiple view visualization performed significantly more accurate than the participants 
using multiple attribute + multiple view visualization [F(1, 218) = 12.18, p =0.000584]. 
There were no differences in the accuracy of responses between participants using single 
attribute + single view and single attribute + multiple views (p=0.87), and participants 
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using multiple attribute + single views and participants using multiple attribute + multiple 
views (p=0.64).  
 Similarly for performance times: participants using single attribute + single view 
were faster than participants using single attribute + multiple views [F(1, 218) = 7.73, p 
=0.00589], and participants using multiple attribute + single view were faster than 
participants using multiple attribute + multiple views [F(1, 218) = 8.36, p =0.004]. There 
was not much performance difference between participants using single attribute + single 
views, and multiple attribute + single views and participants using single attribute + 
multiple views and participants using multiple attribute + multiple views. The results are 
summarized in the table 3.7. 
 

Overall Performance 
Single Attribute 
Single View 

Single Attribute 
Multiple Views 

Multiple Attribute 
Single View 

Multiple Attribute 
Multiple Views 

% Accurate 
Responses 68* 69* 50 46 
Average Time per 
task (in sec) 51* 66 47* 62 

Table 3.7 Lists average time in seconds for each task, and percentage of correct responses for all the four 
visualization options. * indicates better performance.   

3.7.2 Tasks Involving 1 Timepoint 
On performing ANOVAs we found that participants using Single attribute visualizations 
were somewhat more accurate than participants using multiple attribute visualization 
tools [F(1, 116) = 3.45, p = 0.065]. There was no interaction between views and node 
attributes for the accuracy [F(1, 116) = 1.24, p = 0.267]. Since the overall analysis 
combines multiple task types, a deeper analysis broken down by task type is warranted. 
There were no performance differences between participants on accuracy for tasks 1 and 
3, however, participants using single attribute were significantly more accurate [F(1, 36) 
= 10.56, p=0.0025] than participants using multiple attributes on task 2. The data analysis 
is presented in Appendix A.1.3.1. 
 On performing ANOVAs we found that participants using single view visualization 
were significantly faster [F(1, 116) = 12.17, p=0.006] than participants using multiple 
view visualization tools. There was no interaction between views and attributes on 
participants’ task performance time [F(1,116) = 1.74, p =0.189]. There were no 
significant time performance differences on task 1 and task 2. However, participants 
using single view visualizations were significantly faster than participants using multiple 
view visualization on task 3 [F(1, 36) = 5.64, p = 0.022]. The results are summarized in 
tables 3.8 and 3.9. Table 3.10 summarizes the results on individual task analysis. 
 
T1 – T3 Single View Multiple Views 
Single Attribute Faster Slower 
Multiple Attribute Faster Slower 

Table 3.8 Summary of ANOVA analyses for overall accuracy and performance time differences between 
the participants on tasks tasks 1 – 3. 

 
Overall 
Performance 

Single Attribute 
Single View 

Single Attribute 
Multiple Views 

Multiple Attribute 
Single View 

Multiple Attribute 
Multiple Views 

% Accurate 
Responses 

73* 60* 46 53 
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Average Time per 
task (in sec) 

45* 81 42* 69 

Table 3.9 Lists average time in seconds for the tasks, and percentage of correct responses for all the 
visualization options. * indicates better performance.   

 
Task Description Factor 
T2 Which node of the group G 29-31-32-33 is most 

positive at time point 7? 
Accuracy: Single attributes 

T3 Find a group of 4 nodes, out of which three are 
positive and one is negative at time point 7? 

Performance Time: Single view 

Table 3.10 Summarizing results from Individual task analysis. 

3.7.3 Tasks Involving 2 Timepoints 
For both the tasks T4 and T5 (Table 3.12), ANOVA analysis, participants using single 
attribute performed were significantly more accurate than participants using multiple 
attribute visualizations [F(1,76) = 5.21, p=0.025] whereas on both the tasks, participants 
using multiple attribute visualizations were faster[F(1,76)  = 4.00, (p=0.008)] than single 
attribute displays. There was no interaction between attributes and visualization [F(1,76) 
= 0.379, p = 0.539]. Table 3.11 summarizes these results. 
 
T4 – T5 Single View Multiple Views 
Single Attribute More accurate 

Slower 
More accurate 
Slower 

Multiple Attribute Less accurate 
Faster 

Less accurate 
Faster 

Table 3.11 Summary of ANOVA analyses for overall accuracy and performance differences between the 
participants on tasks 4 and 5. 

 
 
Overall 
Performance 

Single Attribute 
Single View 

Single Attribute 
Multiple Views 

Multiple Attribute 
Single View 

Multiple Attribute 
Multiple Views 

% Accurate 
Responses 

85* 90* 60 50 

Average Time per 
task (in sec) 

56 64 45 50 

Table 3.12 Lists average time in seconds for the tasks, and percentage of correct responses for all the 
visualization options. * indicates better performance. 

3.7.4 Tasks Involving all 10 Timepoints 
For tasks (T6 – T11) involving all the 10 time points, on performing ANOVA analysis, 
participants using single attribute graph visualizations were more accurate than 
participants using multiple attribute visualizations [F(1, 236) = 10.82, p = 0.0011]. There 
was no interaction between attributes and views for accuracy [F(1, 236) = 0.43, p = 
0.511]. There were no significant differences on the performance time. 
  Also, participants using single view visualization were faster than participants using 
multiple view visualization. Also, participants using multiple attribute visualization were 
faster than participants using single attribute visualization (p <0.05) Table 3.13 
summarizes these results.  
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T6 – T11 Single View Multiple View 
Single Attribute More accurate More accurate 
Multiple Attribute Less accurate Less accurate 

Table 3.13 Summary of ANOVA analyses for overall accuracy and performance differences between the 
participants on tasks 6 -11. 

 
Both T6 and T10 (Table 3.14) required analyzing a node behavior over 10 time points. 
For both the tasks there were no differences for the accuracy of results. Also, participants 
using multiple view visualization were faster than participants using single attribute 
visualization. Also, participants using single attribute displays were somewhat more 
accurate than participants using multiple attribute displays. Table 3.14 summarizes these 
results. On both the tasks T6 and T10 participants using multiple views performed faster 
than participants using single views. For T6, the performance difference was [F(1, 36) = 
3.124 , p=0.08]. 
 

T6 
Single Attribute 
Single View 

Single Attribute 
Multiple Views 

Multiple Attribute 
Single View 

Multiple Attribute 
Multiple Views 

% Accurate 
Responses 

80 100 80 70 

Average Time per 
task (in sec) 

43 36 59 48 

T10     
% Accurate 
Responses 

80 80 40 50 

Average Time per 
task (in sec) 

38 32 64 53 

Table 3.14 Lists average time in seconds for the tasks T6 and T11, and percentage of correct responses for 
all the visualization options. * indicates better performance. 

 
On T7, that required searching for the number of time points involving topological 
information, we found that single attribute displays were better than multiple attribute 
displays in terms of accuracy [ F(1, 36) = 4.891, (p <0.05)]. Tables 3.15 and 3.16 
summarize these results. 
 
T7 Single Attribute 

Single View 
Single Attribute 
Multiple Views 

Multiple Attribute 
Single View 

Multiple Attribute 
Multiple Views 

% Accurate 
Responses 

90* 80* 50 60 

Average Time per 
task (in sec) 

32 56 45 55 

Table 3.15 Lists average time in seconds for the tasks T7, and percentage of correct responses for all the 
visualization options. * indicates better performance. 

 
Thus for task 7, the following table summarizes the results: 
 
Task Description Factor 
T7 How many time points does it take for N29 and 

N30 to trigger N40? 
Accuracy: Single attributes 

Table 3.16 Summarizing results from Individual task analysis for T7. 
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On the most complex tasks, T8 and T11 (Table 3.17), that required searching for a node 
showing different behavior than the rest of the graph, participants using multiple attribute 
views were faster [F(1, 36) = 4.98, p = 0.035] than the participants using single attribute 
views. Also participants using multiple attribute visualization were more accurate than 
participants using single attribute visualizations on task 8 [F(1,36) = 5.56, p = 0.039], and 
somewhat more accurate on task 11 [F(1,36) = 4.0186, p = 0.07]. 
 
T8 Single Attribute 

Single View 
Single Attribute 
Multiple Views 

Multiple Attribute 
Single View 

Multiple Attribute 
Multiple Views 

% Accurate 
Responses 40 40 75* 70* 
Average Time per 
task (in sec) 67 81 54* 67* 
T11     
% Accurate 
Responses 35 40 60 65 
Average Time per 
task (in sec) 47 65 38 46 
Table 3.17 Lists average time in seconds for the tasks T8 and T11, and percentage of correct responses for 

all the visualization options. * indicates better performance. 
 
Task Description Factor 
T8 Which node is an outlier in the group B 8-9-15-16-

22 that displays most different behavior than the 
others? 

Accuracy: Multiple attributes 
Performance time: Multiple attributes 

Table 3.18 Summarizing results from Individual task analysis for tasks T8 and T11. 
 
For task 9 (Table 3.19), though participants using single attribute display were more 
accurate than participants using multiple attribute displays [F(1,36), p=0.04], participants 
using multiple attribute displays were faster than the participants using single attribute 
display (p=0.1). These results are summarized in tables 3.19 and 3.20. 
 
T9 Single Attribute 

Single View 
Single Attribute 
Multiple Views 

Multiple Attribute 
Single View 

Multiple Attribute 
Multiple Views 

% Accurate 
Responses 70* 90* 60 40 
Average Time per 
task (in sec) 82 71 49 48 

Table 3.19 Lists average time in seconds for the task T9, and percentage of correct responses for all the 
visualization options. * indicates better performance. 

 
Task Description Factor 
T9 At what time point is the value of nodes D 12-13-

19-20 most negative? 
 

Accuracy: Single attributes 
 

Table 3.20 Summarizing results from Individual task analysis for task T9. 
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3.8 Hypothesis vs. Results 

3.8.1 Overall Performance 
We had assumed that participants using Multiple Attribute + Multiple View visualization 
may turn out to be fastest. However, from results we found that participants using Single 
Attribute + Single View visualization outperformed the other visualization methods in 
terms of both performance time and accuracy.  The comparison of the hypothesis vs. 
results for the participants’ overall performance for 11 tasks is listed in Table 3.21. 
 
Visualization Method Hypothesis Results 
Single vs. Multiple Attributes Multiple attribute will be faster 

than the single attribute 
No differences 

Single vs. Multiple Views Multiple views will be faster than 
the single views 

Single views were found to be 
faster than the multiple views 

Accuracy There will be no differences in 
the participants’ performance on 
accuracy  

Single attributes were found to be 
more accurate than the multiple 
attribute. 

Table 3.21 Comparing results with hypothesis for the overall performance on all the 11 predefined tasks. 

3.8.2 Tasks Involving 1 Timepoint 
We believed that participants using single attribute + single view visualization would 
perform faster than the other participants. However, we found that participants using 
single view visualization performed faster than the participants using multiple view 
visualization alternatives.  Also, we had assumed that there may not be any differences on 
accuracy of participants’ responses for the visualization alternatives. We found that 
participants using single attribute visualization method were more accurate on task 2. 
Table 3.22 summarizes the comparisons between hypothesis and results for tasks 1 -3. 
 
Tasks Hypothesis Results 
T1 – T3 
 
 
 
 
 
 
 
 
 
 
 
T2 

For tasks 1 – 3 we had believed that 
participants using single attribute 
visualization may perform faster than 
participants using multiple attribute 
visualization methods. Also, since the 
tasks required analysis for 1 timepoint 
only we believed that there will be no 
benefits of having additional views. Thus, 
there may be no differences between 
participants using single view vs. multiple 
views.  
 
We believed that there will be no 
significant differences between the 
participants performance on accuracy. 

We found that number of visualization 
alternatives rather than the number of attributes 
displayed on the nodes had effect on participants’ 
performance time. We found that participants 
using single view visualization were faster than 
the participants using multiple view visualization. 
 
 
 
 
 
 
We found for task 2 that participants using single 
attribute were more accurate than participants 
using multiple attribute visualization methods. 

Table 3.22 Comparing results with hypothesis for participants’ performance on tasks 1 – 3. 

3.8.3 Tasks Involving 2 Timepoints 
We hypothesized that participants using multiple attribute visualization may be faster 
than the participants using single attribute visualization alternatives. This was indeed 
found on performing data analysis. We also found that participants using single attribute 
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visualization alternatives were more accurate than the participants using multiple attribute 
visualization alternatives. The comparisons between hypothesis and results for tasks 4 – 5 
are listed in Table 3.23. 
 
Tasks Hypothesis Results 
T4 – T5 We assumed that participants using 

multiple attribute visualization 
alternatives may be faster than the 
participants using single attribute 
visualization methods. Also, we assumed 
that participants using Multiple attribute 
+ multiple view may perform faster than 
the participants using other visualization 
alternatives. 
 
 
 
We had assumed that there will be no 
differences in participants’ accuracy of 
responses between visualization types. 

We indeed found that participants using multiple 
attribute visualization alternatives were faster 
than the participants using single attribute 
visualization alternative. However, we did not 
find any significant differences in performance 
times between multiple view vs. single view 
visualization alternatives. 
 Participants using multiple attribute + multiple 
view visualization alternative were slower than 
the participants using multiple attribute + single 
view visualization alternative. 
 
However, we found that participants using single 
attribute visualization alternatives were more 
accurate than the participants using multiple 
attribute visualization alternatives.  

Table 3.23 Comparing results with hypothesis for participants’ performance on tasks 4 & 5. 

3.8.4 Tasks Involving all 10 Timepoints  
Tasks Hypothesis Results 
T6 – T11 Since these tasks required participants to 

perform analyses for all the 10 
timepoints, we believed that participants 
using multiple attribute visualization 
method may complete these tasks faster 
than the participants using single attribute 
visualization method. 
 
We did not have any hypothesis regarding 
accuracy of participants’ responses. 

We found that participants using single attribute 
visualization were more accurate than the 
participants using multiple attribute visualization 
alternatives. We did not find any significant 
differences in overall performance time between 
participants using single attribute visualization vs. 
multiple attribute visualization. 
 

Table 3.24  Comparing results with hypothesis for participants’ performance on tasks 6 – 11. 
 
Thus, we found that participants using single attribute visualization were more accurate 
than the participants using multiple attribute visualization. Also the results did not 
confirm our hypothesis that the participants using multiple attribute visualization method 
would be faster than the participants using single attribute visualization. However, there 
were some tasks (T8 and T11) on which participants using multiple attribute visualization 
had faster performance than the participants using single attribute visualization. 

3.9 Summary of Results 
We conducted a study to measure performance of participants on predefined tasks for 
graph visualizations that used different options to overlay data on the nodes. We had 
earlier hypothesized that participants using multiple views may complete the tasks faster 
as they had an added advantage of using an additional visualization. However, the results 
failed to support this. For most tasks single views were faster than the multiple views.  
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 We had hypothesized that the participants using multiple attribute visualization may 
perform tasks faster as compared to single attribute visualization. The results suggested 
that the multiple attribute visualizations are indeed faster than single attribute 
visualizations for tasks that require comparisons of node values between two timepoints, 
searching for outlier nodes that display different behavior than most other nodes in the 
graph, and searching for a timepoint at which a node displays particular behavior. 
 Finally, we believed that there will be no differences in terms of accuracy between 
participants using different visualization alternatives. However, the results suggested that 
for most tasks single attribute visualization alternative proved to be more accurate than 
the multiple attribute alternative. Tables 3.25 and 3.26 summarize the data analysis.  
 
Single Attribute Multiple Attribute 
+ More accurate for single time point analysis. 
+ More accurate for comparisons between two time 

points. 
+ More accurate for analyzing behavior of a single 

node for all the time points. 
+ More accurate for searching graph requiring 

topological information 
+ More accurate for searching a timepoint for which 

a node shows a particular behavior. 

+ Faster results for comparisons between two 
timepoints. 

+ More accurate and faster performance for 
searching graph for outlier nodes i.e. nodes or 
group of nodes that display different behavior 
than the other nodes  

+ Faster performance for searching a timepoint at 
which a node shows a particular behavior. 

Table 3.25 Results for Single vs. Multiple Attribute visualization based on the data analysis. 
 
Single View Multiple Views 
+ Faster graph analysis at a single time point 
+ Faster for searching a node requiring topological 

information. 
+ Faster performance for searching graph for outlier 

nodes i.e. nodes or group of nodes that display 
different behavior than the other nodes 

+ Faster performance for analyzing behavior of a 
single node for all the time points. 

+ Faster performance on searching for a node/group of 
nodes that displays a particular behavior  

+ Faster performance for analyzing values for 
multiple nodes at one or more time points. 

Table 3.26 Results for Single vs. Multiple view visualization based on the data analysis. 

3.10 Discussion of Results 
The most interesting finding of the study is that the number of attributes displayed on the 
nodes has more influence on accuracy of user responses, whereas the number of 
visualizations affects the performance time. However, as can be inferred from the results, 
visualizations should be designed based on which data analysis tasks need to be 
supported. 
 Most participants in the study were non-technical (freshman or sophomore business 
majors) and unfamiliar with graph terminology. Though, once given an explanation they 
understood the visualizations and graph terms used in the tasks. The participants were 
given a more thorough explanation of the graph than the parallel co-ordinate 
visualization. Since the participants were novice users, they were also not experienced 
with performing data analysis on multiple views simultaneously. Also, the data used for 
analysis in the study was fairly straightforward, wherein almost all the nodes in the graph 
followed a regular pattern except a few. Many of the tasks for the study could be 
performed using just the graph visualization, eliminating the necessity for using parallel 
co-ordinates. Due to these reasons, it is likely that the experimental design biased the 
overall results towards single views.   



Saraiya: Insight-Based Studies for Pathway and Microarray Visualization Tools 

3 Visualization for Pathways + Microarray Data  51

 We also noticed that the participants using multiple views performed most of the 
tasks in the graph visualization, and used the additional parallel coordinate view for 
confirming their results. Perhaps having more noisy data where graph nodes did not 
follow a regular pattern would have required participants to utilize both the 
visualizations. Also, giving participants a longer training period on brushing and linking 
might have been helpful for them to better utilize the reverse brushing direction in which 
the parallel coordinate view is used to query the graph view. Despite these concerns, we 
noticed that multiple views were utilized by participants to analyze behavior of nodes 
over all the time points, mainly as a read-only view. It also helped participants to 
compare behavior of a group of nodes simultaneously. 
 Graph visualizations that overlaid data by a single attribute at a time were most 
helpful to analyze graphs at a particular time point. The reason being this visualization 
technique lets users focus just on a particular timepoint of interest. These views are also 
helpful on search tasks that require topological information. The graph visualization 
using multiple attributes can get cluttered due to the amount of information being 
visualized simultaneously. This may make interpretation of topology of a graph more 
difficult. We found that the graph visualization with multiple attributes needs an 
interaction mechanism to select and highlight a single timepoint across all the nodes, 
somewhat analogous to the slider’s behavior in the single-attribute version. 
 Displaying multiple attributes on nodes leads to better performance for tasks that 
requires searching graphs for outlier nodes, i.e., nodes that display most different 
behavior than most other nodes in the graph. This option lets users visualize behavior of 
nodes at all the time points simultaneously, making it easier to pick the nodes that are 
outliers.  
 For tasks that involved comparing graph nodes between two time points we found 
that graph visualization that overlaid data for multiple attributes simultaneously on nodes 
were faster than visualizations that overlaid data just one time point at a time. However 
single time point displays were more accurate. This may be due to the fact that though 
mousing-over nodes in both the graph visualizations displayed values, they didn’t display 
the time point’s label (attribute name). More accurate results may have been possible if 
the mouse-over tooltip in multiple attributes displayed both the value and the timepoint 
label. 
 The study under discussion was influenced for the data analysis needs in the 
bioinformatics domain. The choice of color scale (green – yellow – red), number of graph 
nodes, visual representations were based on the data representation typically used by the 
life scientists. But the need to associate time series data with graph representations is 
common in other domains (computer networks, communications, etc). The data analysis 
tasks though influenced by pathway analysis requirements in Chapter 2, were generalized 
enough to be applicable for other types of graph analysis too.  However, more niche 
visualization representations (the color scale, number of nodes used) for a particular 
domain may cause different results. The users were not tested for green – red color 
blindness.  
 The data used for this study was time series. The data analysis requirements for time 
series data are different than for categorical data or multi-categorical data. Hence, though 
we can use the results as an initial guide to design visualizations for other datasets for 
similar tasks to time series data, unless a study is conducted for tasks with respect to a 
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particular dataset we cannot accurately generalize these results to other datasets. Also, the 
participants for the study were non experienced data analysts. It is possible that a 
different trend of results is observed with more experienced users. 

3.11 Limitations of the Task-Based Method 
The study reported in this chapter evaluated the selected pathway visualization 
alternatives using pre-selected benchmark tasks. The use of such controlled studies with 
benchmark tasks is one of the primary methods for evaluating visualization tools. Since 
the benchmark-task method relies on the pre-selected tasks to evaluate visualization tools, 
the usefulness of results from the method is dependent primarily on the tasks used in the 
study. It is important that the pre-selected tasks have definite completion times and 
responses to reliably measure performance times and accuracy of participants’ responses. 
To uniformly evaluate accuracy of participants’ responses, the selected tasks are often 
specified as multiple choice questions. The multiple responses have to be specified as 
clearly as possible so that the participants can understand them unambiguously. Because 
of these the experimenters are often forced to use over simplify the tasks. Such tasks 
often are not representative of the real world visualization usage. 
 The task-based study may allow determining if the users can quickly and accurately 
complete the tasks. However, the method is too limited to provide a broader indication of 
the different kinds of insight a visualization tool can provide. Conclusions can be made 
about the visualization tools only about the selected tasks. The results may not be 
indicative for other tasks that were not selected. Also, providing tasks to the participants 
may force them into line of thoughts that they may not take otherwise. Even the choice 
and phrasing of the tasks can bias the participants towards a particular visualization tool. 
Thus, though benchmark task method can provide a rigorous method to evaluate 
visualization tools they do not provide reliable methods to evaluate effectiveness of the 
visualization tools for insight [74].  The task-based method fails to address the open 
ended nature of biologists’ data analysis process. To address these issues, a new 
evaluation method is presented in Chapter 4 that addresses the limitations of the 
benchmark task method and is better representative of biologists’ real world visualization 
usage scenarios. 
 



 

  

4 Insight-Based Evaluation Method 
This chapter presents an insight-based evaluation method. The method provides a way to 
evaluate and rank bioinformatics visualization tools based on real world data analysis 
scenarios and addresses the limitations of the task-based method discussed in Chapter 3. 
The method was used to evaluate microarray data visualization tools rather than pathway 
+ microarray data visualization tools.  
 The dissertation started by identifying critical requirement for pathway visualization 
tools. An important requirement identified was the need to associate microarray data to 
pathway diagrams. Design space to group all the visualization alternatives that allow 
overlay of microarray data over pathway diagrams was presented in Chapter 3. Though 
the study reported in Chapter 3 presented interesting results about the pathway + 
microarray data visualization alternatives it had several limitations. Primarily, it failed to 
address the open-ended exploratory nature of biologists’ data analysis tasks. To evaluate 
the visualization alternatives based on biologists’ real world analysis scenarios a new 
evaluation method is needed. Since the focus was on defining a new method we worked 
with microarray data visualization tools. Later chapters use the method in evaluating 
visualization alternatives that overlay microarray data on pathways and extend the study 
and results reported in Chapter 3. But for the purpose of this chapter we are more focused 
primarily on the insight-based evaluation method. 

4.1 Introduction 
The advent of microarray experiments is causing a shift in the way biologists do research; 
a shift away from simple reductionist testing on a few variables towards systems-level 
exploratory analysis of 1000s of variables simultaneously [75]. These experiments result 
in datasets that are very large. Biologists use these data to infer complex interactions 
between genes and proteins. Due to its magnitude, it is prohibitively difficult to analyze 
microarray data without the help of computational methods. Hence, the biologists use 
various data visualizations to derive domain-relevant insights. The main purpose in using 
these visualizations is to gain insight into the extremely complex and dynamic 
functioning of living cells.  
 In response to these needs, a large number of visualization tools targeted at this 
domain have been developed [14, 15]. However, in collaborations with biologists, we 
received mixed feedback and reviews about these tools. With such a wide variety of 
available options, we need an evaluation method that allows biologists to choose the right 
tool for their needs. The method should address the open-ended and exploratory nature of 
the biologists’ tasks, and allow us to determine if the tools provide insights valuable to 
their end users.  
 A primary purpose of visualization is to generate insight [76], [77]. The main 
consideration for any life science researcher is discovery. Arriving at an insight often 
sparks the critical breakthrough that leads to discovery: suddenly seeing something that 
previously passed unnoticed, or seeing something familiar in a new light. The primary 
function of any visualization and analysis tool is to make it easier for an investigator to 
glean insight, whether from their own data or from external databanks. A measure of an 
effective visualization can also be its ability to generate unpredicted new insights, beyond
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predefined data analysis tasks. After all, visualization should not only enable biologists to 
find answers but to also find questions that identify new hypotheses. We sought to 
evaluate a few popular microarray data visualization tools, such as Spotfire® [78]. Some 
research questions we addressed are: How successful are these tools in assisting the 
biologists in arriving at domain-relevant insights? How do various visualization 
techniques affect users’ perception of data? How does user’s background affect the tool 
usage? How do visualizations support hypothesis generation and suggest directions for 
future investigation? Most importantly, can insight be measured in a controlled 
experimental setting, uniformly across a group of participants? Our primary focus here is 
on insight.  
 Typically, visualization evaluations have previously focused on controlled 
measurements of user performance and accuracy on predetermined tasks [79, 80]. 
However, to answer these research questions requires an evaluation methodology that 
better addresses the needs of the bioinformatics data analysis scenario. Hence, we 
developed an evaluation protocol that focuses on recognition and quantification of 
insights gained from actual exploratory use of visualizations. This chapter presents a 
detailed explanation and discussion of the methodology, as well as detailed results of 
applying the method to bioinformatics visualizations. 

4.2 Survey of Evaluation Research 

4.2.1 Methods to Evaluate Visualization Tools 
A variety of evaluation methodologies have been used to measure effectiveness of 
visualizations. Many studies have evaluated visualization effectiveness through 
rigorously controlled experiments[79, 80] for summative or scientific hypothesis testing. 
In these studies, typical independent variables control aspects of the tools, tasks, data, and 
participant classes. Dependent variables include accuracy and performance measures. 
Accuracy measures include precision, error rates, number of correct and incorrect 
responses, whereas performance includes measures of time to complete predefined 
benchmark tasks. Such studies compare effectiveness of two or more tools (e.g. [81] 
compares three different visualization systems), or examine human visual perception (e.g. 
[82] compares graphical mappings of information).  
 Formative usability tests typically evaluate visualizations to identify and solve user 
interface problems. A typical method for usability studies involves observing participants 
as they perform designated tasks, using a ‘think aloud’ protocol. Evaluators note the 
usability incidents that may suggest incorrect use of the interface, and compare results 
against a predefined usability specification [83]. Refer to [84] for an example of a 
professional formative usability study of a visualization.  
 Analytic evaluations include inspections of user interfaces by experts, such as with 
heuristics [29]. Examples of specific metrics for visualizations include expressiveness 
and effectiveness criteria [85], data density and data/ink [61], criteria for representation 
and interaction [86], high-level design guidelines [87], principles based on pre-attentive 
processing and perceptual independence [88], and rules for effectiveness of various visual 
properties [89]. Cognitive models, such as CAEVA [90], can be used to simulate 
visualization usage and thereby examine the low-level effects of various visualization 
techniques. 
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 A longitudinal study of information visualization adoption by data analysts [91] 
suggests advantages when visualizations are used as complementary products rather than 
stand alone products. Rieman [92] examines users’ long-term exploratory learning of new 
user interfaces, with ‘eureka reports’ to record learning events. An insight-based study to 
evaluate microarray data visualization using more realistic exploratory data analysis is 
reported in [93]. Three case studies, and a user survey to evaluate effectiveness of 
Hierarchical Clustering Explorer (HCE), a visualization tool, are reported in [94]. The 
authors also compare both the evaluation methods used to measure tool effectiveness 
based on results they provided about the tool usage. 

4.2.2 User Studies in Bioinformatics 
Biologists use microarray experiments to answer complex biological research questions. 
As these experiments result in very large datasets, biologists need computational methods 
to derive domain-relevant insights. A detailed description of the microarray data analysis 
process is in [95] and [96]. Since this process is very complicated, considerable research 
is currently being conducted to search for new and improved methods [97]. Extensive 
evaluations for raw data normalization and statistical algorithms for data analysis have 
been conducted. For example, different normalization methods based on data variance 
and bias are compared in [98] lists a review of statistical methods to discover 
differentially expressed genes. Case studies describing data analysis procedures using 
clustering algorithms and suggestions for new and improved methods have been 
published [99]. A comprehensive list of publications for this area can be obtained from 
[15].  
 A large number of information visualization tools targeting this domain have been 
developed [14, 15], and a number of user studies have also been conducted. A case study 
using GeneSifter [100] to analyze microarray data is reported in [101]. A survey of 
biologists’ tasks for a general query system is reported in [27]. [102] reports observations 
from user studies with molecular biologists to identify information needs unmet by the 
current tools. End user participatory design process is used in [103] to create prototype 
electronic laboratory notebooks. A combination of end-user interviews, heuristic 
evaluations and surveys was used to elicit the end user requirements for pathway 
visualization software [12].  
 Thus, though there has been significant emphasis placed on improving data analysis 
techniques for bioinformatics, very few studies have actually been conducted to 
investigate the analytic process and the use of visualization tools from the end-user’s 
perspective. 

4.2.3 Visual Analytics 
Visual analytics deals with the capabilities of visualization tools that help users make 
judgments about the data. It is important to create visualization tools that maximize 
human capabilities to perceive and understand complex and dynamic data. The research 
agenda in [104] provides a comprehensive list of key aspects that influence visual 
analytics, the process by which users gain insight into complex data. For discussion here, 
the most relevant aspects are: science of analytical reasoning, and visual representations 
and interaction techniques. A detailed description about each aspect of visual analytics, 
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along with an extensive literature survey, and suggestions for future research work is 
presented in [104].  

4.3 Pilot Study 
The main challenge we faced was precisely defining insight and how to measure it. The 
word ‘insight’ in ordinary usage is vague and can mean different things to different 
people. However, for the purpose of our study we needed this term to be quantifiable and 
reproducible. To examine this, we undertook an initial pilot study to observe how users 
recognized and categorized information obtained from microarray data using 
visualization tools with limited training. We used both GeneSpring® [56] and Spotfire® 
[78] to ascertain that these commercial tools were not too difficult to learn and could be 
used by novice as well as expert users. 
 As the pilot experiment was exploratory in nature, we presented no strict protocol as 
to how users ought to proceed. We recruited five subjects at our institute to participate. 
As our recruits had no prior experience using these particular tools, we reduced their 
initial learning time by offering a brief introduction to the tool they would use along with 
a summary of the different visualization techniques provided by the tool. Users were 
encouraged to think aloud and report any findings they had about the dataset. Pilot 
participants were supplied two datasets to work with, a table containing fake data that 
contained information about just ten genes, and the Lupus dataset used in the final 
experiment. We selected the smaller dataset to help users become familiar with the 
visualization techniques. Once comfortable with using the visualization tool, users were 
instructed to move onto the Lupus data.  
 Due to the volume and rapidity of observations reported, we concluded that we 
needed to record any future sessions on videotape. We also discovered that the users 
grew weary analyzing the practice dataset, despite being told that it was just a learning 
aid. They tended to spend too much time on it and, by the time they began looking at 
actual data, they were already fatigued. We found that our test subjects could learn a 
visualization technique just as quickly from real data, hence, we decided to use only the 
real data for final experiments. From the users’ comments we recognized various 
quantifiable characteristics of ‘insight’. 

4.3.1 Insight Characteristics 
To measure insights gained from visualization, a rigorous definition and coding scheme is 
required. We recognized in the pilot that we could capture and characterize specific 
individual insights as they occurred in participants’ open-ended data analysis process.  
This provided more detailed information about the insight capabilities of the tools than 
subjective measures from post-experiment surveys.   
 We define an insight as an individual observation about the data by the participant, a 
unit of discovery.  It is straightforward to recognize insight occurrences in a think-aloud 
protocol as any data observation that the user mentions. The following quantifiable 
characteristics of each insight can then be encoded for analysis.  We applied this scheme 
in the main experiment. Although we present them here in the context of biological and 
microarray data, we believe that this can be applied to other data domains as well.  The 
characteristics of each insight are: 
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Observation: The actual finding about the data. We counted distinct data observations 
by each participant. 
Time: The amount of time taken to reach the insight. Initial training time is not included. 
Domain Value: The value, importance, or significance of the insight.  Simple 
observations such as “Gene A is high in experiment B” are fairly trivial; whereas, more 
global observations of a biological pattern such as “deletion of the viral NS1 gene causes 
a major change in genes relating to cytokine expression” are more valuable.  The domain 
value is coded on a scale of 1 to 5 by a biology expert familiar with the results of the 
data. In general, trivial observations earn 1-2 points, insights about a particular process 
earn an intermediate value of 3, and insights that confirm, deny, or create a hypothesis 
earn 4 or 5 points. 
Hypotheses: Some insights lead users to identify a new biologically-relevant hypothesis 
and direction of research. These are most critical because they suggest an in-depth data 
understanding, relationship to biology, and inference. They lead biologists toward 
‘continuing the feedback loop’ of the experimental process, in which data analysis feeds 
back into design of the next experimental iteration [36]. 
Directed vs. Unexpected: Directed insights answer specific questions that users want to 
answer. Unexpected insights are additional exploratory or serendipitous discoveries that 
were not specifically being searched for.  This distinction is recognized by asking 
participants to identify specific questions they want to explore about the dataset at the 
beginning of the trial. 
Correctness: Some insights are incorrect observations that result from misinterpreting 
the visualization.  This is coded by an expert biologist and visualization expert together. 
Breadth vs. Depth: Breadth insights present an overview of biological processes, but not 
much detail; e.g., “there is a general trend of increasing variation in the gene expression 
patterns”. Depth insights are more focused and detailed; e.g., “gene A mirrors the up-
down pattern of gene B, but is shifted in time”.  This also is coded by a domain expert. 
Category: Insights are grouped into four main categories: overview (overall distributions 
of gene expression), patterns (identification or comparison across data attributes), groups 
(identification or comparison of groups of genes), and details (focused information about 
specific genes).  These common categories were identified from the pilot experiment 
results after insights were collected. 

4.4 Experiment Design 
The aim of the main study was to evaluate five popular bioinformatics visualization tools 
in terms of the insight that they provide to the users. A 3x5 between-subjects design 
examined these two independent variables: 

1. Microarray datasets, 3 treatments: 
• Timeseries dataset – 5 time-points 
• Virus dataset (Categorical) – 3 viral strains 
• Lupus dataset (Multi-categorical) - 42 healthy, 48 patients 

2. Microarray visualization tool, 5 treatments: 
• Clusterview 
• TimeSearcher 
• HCE 
• Spotfire® 
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• GeneSpring® 

4.4.1 Microarray Datasets 
To examine a range of data scenarios, we used data from three common types of 
microarray experiments. The datasets are all quantitative, multi-dimensional data. Values 
represent a gene’s measured activity level (or gene expression) with respect to a control 
condition. Hence, higher (lower) values indicate an increased (decreased) gene activity 
level. Since our study is focused on the interactive visualization portion of data analysis, 
the datasets were preprocessed, normalized, pre-filtered, and converted to the required 
formats (as discussed in [6, 8]) in advance. In general, the biologists’ goal is to identify 
and understand the complex interactions among the genes and conditions, essentially to 
reverse engineer the genetic code. The following three datasets were used. 
 
Time-series Dataset: Users were given an unpublished dataset from Karen Duca’s lab 
[105]. HEK293 cells, a human embryonic kidney cell line, were infected with the 
A/WSN/33 strain of influenza virus in vitro at an MOI of 5. At defined time points across 
the entire viral replication cycle in vitro, mRNA was extracted from infected and mock-
infected cultures. The values in the columns were the log2 of the normalized ratios of 
experimental signal to control signal. The dataset used for analysis had 1060 rows (genes) 
over 5 time points. Two additional columns represent the gene name and standard ID. 
 
GeneName GenBank 1.5 Hr 4 hr 6 Hr 8 Hr 12 Hr 
aquaporin 4 AA00100 1.54 -0.21 1.49 -0.12 0.96 
… … … … … … … 

 
Table 4.1 Time-series dataset used in the experiment. 

 
Viral Dataset: Part of a published dataset from Michael Katze’s lab [106] was given to 
users. A549 cells, a human lung epithelial cell line, were infected with one of three 
influenza viruses in vitro (wild type A/PR/8/34, recombinant strain of PR8 with the NS1 
partially deleted, called NS1 (1-126), recombinant strain derived from PR8 with the NS1 
gene completely deleted, called delNS). Other than in the NS1 gene, all three viruses are 
identical. At 8 hours post infection, mRNA was extracted from infected and mock-
infected cultures. The dataset used for analysis had 3 columns (representing the 3 viral 
conditions) and 861 rows (genes). Two additional columns represent the gene name and 
standard ID. 

 
Name Description wt PR8 NS1 (1-126) delNS1 
ADCY9 adenylate-cyclase- 0.54 0.91 5.8 
… … … … … 

Table 4.2 Viral dataset used in the experiment. 
 
Lupus dataset: Participants were presented a subset of published data from Timothy 
Behren’s lab [107]. In this study, after blood draw, peripheral blood mononuclear cells 
(PBMCs), comprising monocytes/macrophages, B and T lymphocytes, and NK cells, 
were isolated from control and Systemic Lupus Erythematosus (SLE) samples. mRNA 
was harvested for expression profiling using Affymetrix technology [108]. The column 
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values represented expression values (average difference or AD) for each gene. Scaling 
was performed to allow comparison between chips. The dataset had 90 columns 
(consisting of gene expression from 48 SLE samples and 42 healthy control samples) and 
170 rows (genes). Two additional columns represent the gene name and standard ID. 

 
Accession # Gene Ctrl 1 … Ctrl 42 SLE 1 … SLE 48 
AB008775 Aquaporin 9 -63.7 … 100.1 4418.1 … 3433.2 

… … … … … … … … 

Table 4.3 Lupus dataset used in the experiment. 

4.4.2 Visualization Tools 
For practical reasons, we limited this study to five microarray visualization tools. We 
chose the tools based on their popularity and availability. We attempted to select a set of 
tools that would span a broad range of analytical and visual capabilities and techniques. 
Cluster/Treeview (Clusterview) [99], TimeSearcher [109], and Hierarchical Clustering 
Explorer (HCE) [110] are free tools, while Spotfire®  and GeneSpring® are commercial. 
Table 4 summarizes the visualization and interaction techniques supported by each tool. 
 Clusterview (Figure 4.1) uses a heat-map visualization for both data overview and 
details. A compressed heat-map provides an overview of all values in the dataset, in row-
column format. Users can select a part of the overview to study in more detail. It is 
standard practice in bioinformatics to visually encode increased gene-expression values 
with a red brightness scale, decreased gene-expression values with a green brightness 
scale, and no-change as black. As a slight variation, some tools use a continuous red-
yellow-green scale with yellow in the no-change region. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1 Clusterview [99] visualization of the Lupus dataset. 
 
 TimeSearcher (Figure 4.2) introduces a new concept of time-boxes to query a set of 
entities with temporal attributes. The visualization used for data overview is a time series 
display of all the data attributes. Line graphs and detailed information are also provided 
for each individual data entity. The views are tightly coupled using the concept of 
interactive ‘brushing and linking’; selecting a gene in one view highlights it in all views.  
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Figure 4.2 TimeSearcher [109] visualization of Time-series dataset. 
 
 HCE (Figure 4.3) provides several different visualizations: scatter plots, histograms, 
heat maps, and parallel-coordinates. HCE’s primary display uses dendrogram 
visualizations to present hierarchical clustering results. This clusters similar data items 
near each other in the tree display. HCE also provides histograms and scatter plots for 
data analysis. In a multidimensional dataset, the number of scatterplots possible is large. 
HCE introduces a new concept of ‘rank by feature’ [111] to allow users to quickly find 
interesting histograms and scatterplots, although this feature was not available for this 
study. The visualizations are tightly coupled for interactive brushing users can manipulate 
various properties of the visualizations and also zoom into areas of interest. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3 HCE [110] visualization of the Viral dataset. 
 

Spotfire® (Figure 4.4) offers a wide range of visualizations: scatter plots, bar graphs, 
histograms, line charts, pie charts, parallel coordinates, heat maps, and spreadsheet views. 
Spotfire® presents clustering results in multiple views, placing each cluster in a separate 
parallel coordinate view. The visualizations are linked for brushing. Selecting data items 
in any view, shows feedback in a common detail window. Users can zoom, pan, define 
data ranges, and customize visualizations. The fundamental interaction technique in 
Spotfire® is the dynamic query sliders, which interactively filter data in all views. 
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Figure 4.4 Spotfire® [78] visualization of the Viral dataset. 
 
 GeneSpring® (Figure 4.5) provides the largest variety of visualizations for 
microarray data analysis: parallel coordinates, heat-maps, scatter plots, histograms, bar 
charts, block views, physical position on genomes, array layouts, pathways, ontologies, 
spreadsheet views, and gene-to-gene comparison. As we did not have information such as 
position of genes on chromosome, and organization of gene clones on microarray chip for 
all the experiments, we could not use some of the visualizations, such as physical position 
and array layout views provided by GeneSpring®. The visualizations are linked for 
brushing. Users can manipulate the visualizations in several ways e.g., zooming, 
customizing visualizations by changing the color, range, etc. GeneSpring® also includes 
data clustering capabilities. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.5 GeneSpring® [56] visualization. 

 

 

Tool Visual Representations Interactions 
Cluster/ 
Treeview 

Heat-map, Clustered heat-map O+D 

Time-Searcher Parallel coordinates, line graph Brushing, 
O+D, DQ 

HCE Cluster dendrogram, parallel coordinates, heat-map, scatterplot, 
histogram 

Brushing, 
Zooming, O+D, DQ
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Table 4.4 Summarizes the visualization and interaction techniques supported by each visualization tool. 
O+D = overview+details; DQ= dynamic queries. 

4.4.3 Participants 
Thirty test subjects volunteered from the university community. We allotted six users per 
tool, with two per dataset per tool. We required all users to have earned at least a 
Bachelor’s degree in a biological field and be familiar with microarray concepts. To 
prevent undue advantage and to measure learning time, we assigned users to a tool that 
they had never used before. Users were randomized within this constraint.  Based on their 
profiles, the users fit into one of three categories summarized in Table 4.5. 
 

Category Participant Background N 
Domain 
Expert 

Senior researchers with extensive experience in microarray experiments and 
microarray data analysis.  Possess a Ph.D. in a biological field. 

10 

Domain 
Novice 

Lab technicians or graduate student research assistants, having an M.S. or 
B.S. in a biological field.  Some experience with microarray data analysis. 

11 

Software 
Developers 

Professionals who implement microarray software tools. Have an M.S. in a 
biological field and also M.S. in computer science. 

9 

Table 4.5 Summarizes the number of participants (N) and their backgrounds. 

4.4.4 Protocol and Measures 
To evaluate the visualization tools in terms of their ability to generate insight, a new 
protocol and set of measures is used that combines elements of the controlled experiment 
and usability testing methodologies. This approach seeks to identify individual insight 
occurrences as well as overall amount of learning while participants analyze data in an 
open-ended think-aloud format.  No benchmark tasks were assigned.  Also, we decided to 
focus on new users of the tools with only minimal tool training.  We have found that 
success in the initial usage period of a tool is critical for tool adoption by biologists. 
 Each user was assigned one dataset and one tool. Before starting their analysis, users 
were given a background description about the dataset. To reduce initial learning time, 
the users were given a brief 15-minute tutorial about the primary visualization and 
interaction techniques of the tool. Users then listed some analysis questions they would 
typically ask about such a dataset. Then, they were instructed to continue to examine the 
data with the tool until they felt that they would not gain any additional insight. The 
entire session was videotaped for later analysis. Users were allowed to ask the 
administrator about using the tool if they could not understand a feature.  The training in 
this protocol was intended to simulate how biologists often learn to use new tools from 
their colleagues.  
 While they were working, users were asked to comment on their observations, 
inferences and conclusions. Approximately every 10-15 minutes, users were asked to 
estimate how much of the total potential insight they felt they had obtained so far about 
the data, on a scale of 0–100%. When they felt they were finished, users were asked to 

Spotfire® 7.2 
Functional 
Genomics 

Parallel coordinates, heat-map, scatterplots (2D/3D), histogram, 
bar/pie chart, tree view, spreadsheet view, Clustered parallel 
coordinates 

Brushing, Zooming, 
O+D, DQ 

GeneSpring® 
5.0 
 

Parallel coordinate, heat-map, scatterplots (2D/3D), histogram, bar 
chart, block view, physical position view, array layout view, 
pathway view, spreadsheet view, compare gene to gene, 
Clusterested parallel coordinates 

Brushing, 
Zooming 
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assess their overall experience with the tool, including any difficulties or benefits. Later, 
we analyzed the videotapes to identify and codify all individual occurrences of insights.  
Table 4.6 summarizes the dependent variables. 
 

1 User’s initial questions about the dataset 
2 Total time spent with the tool 
3 Amount learned (as a percentage), periodic and final  
4 List of insights and characteristics 
5 Visualization techniques used  
6 Usability issues  
7 Participant demographics 

Table 4.6 Dependent variables for the study. 

4.5 Results 
Results are presented in terms of users’ data questions, insights, visualization usage, and 
user background. 

4.5.1 Initial Questions 
At the start of each session, users were requested to formulate questions about the data 
that they expected the visualization tool to answer (Table 4.7). Almost all the users 
wanted to know how the gene expression changed and its statistical significance with 
each experimental condition, different expression patterns, and obtain pathway 
information and known literature for the genes of interest. More biologically specific 
questions focused on location of genes of interest on chromosomes and pathways. They 
said that it would be valuable to know what pathways show correlations. 
 There were collectively 31 distinct questions for all the datasets. It was not possible to 
answer some of the questions during the experiment, due to insufficient data. e.g. the 
Lupus dataset did not have information about disease severity or patient demographics as 
would be required for questions 23 and 26 in Table 4.7. Nor did the datasets include 
pathway information for questions 4, 7, 15, 18, and 30 listed in Table 4.7. However, 
GeneSpring® (31/31) and Spotfire® (27/31) can potentially address most of the 
questions posed by the participants, if adequate data were provided. Clusterview (11/31), 
TimeSearcher (14/31), and HCE (15/31) can answer more specific subsets of the 
questions. 
 
 Information participants wanted from the data Num. 
Questions for Time series dataset 
1 Change in overall expression with time 10/10 
2 Different patterns of expression 10/10 
3 Genes that responded early to a treatment and were later followed by other genes 5/10 
4 Functional details of genes showing high change  2/10 
5 Genes showing similar expression pattern to a specific gene of interest 1/10 
6 Relate change in gene expressions to physiological changes in the cells 1/10 
7 Pathway information for genes having similar expression patterns  2/10 
8 Relate gene expression to chromosome position 1/10 
9 Retrieve known information for selected genes 10/10 
Questions for Viral dataset 
10 Difference in overall expression for three viruses 10/10 
11 Genes that show similar/different behavior to the experimental hypothesis 3/10 
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12 Expression patterns different from the hypothesis 3/10 
13 Genes with high or low expression for each virus 10/10 
14 Different patterns of gene expression 10/10 
15 Pathway information for genes of interest 3/10 
16 Correlations between different pathways 3/10 
17 Chromosom location of genes with similar change 3/10 
18 Functional information of selected genes 1/10 
19 Statistical significance in changes between different viral strains 1/10 
Questions for Lupus dataset 
20 Difference in expression between 2 groups 10/10 
21 Statistical significance of difference between groups 3/10 
22 Different patterns of gene expression 10/10 
23 Relate expressions to severity of disease 1/10 
24 The range of gene expression for each group 1/10 
25 Statistical significance of variability of expression for genes in each group 4/10 
26 In case of variability, if this is based on patients’ age, sex, race, etc. 1/10 
27 Analyses such as genes that show more than 50% increase from control to lupus 

patients 
1/10 

28 A list of housekeeping genes to evaluate experiment results 1/10 
29 Patient characteristics such as those who used some drug vs. those who did not 

use any drug, males vs. females etc. 
1/10 

30 Behavior of Immune pathway genes  2/10 
31 Calculate average expression for each group 6/10 

Table 4.7 List of data questions asked by the participants. 

4.5.2 Insight Characteristics 
Listed here are the measured results for each insight characteristic described earlier, 
aggregated by visualization tool. Since this evaluation method is more qualitative and 
subjective than quantitative, and the number of participants is limited, general 
comparison of tendencies in the results is most appropriate (Figure 4.6 and Table 4.8). 
However, we include some statistical analysis that provides useful indicators.  
 Appendix B lists overall (count of insights, domain value, time to first insight, final 
amount learned, and total time spent with the tool) for each participant along with the 
type of dataset they worked with. The characteristics hypothesis, directed vs. unexpected, 
incorrect and breadth vs. depth were determined based on analysis of each insight by the 
domain expert. 
Insights: We counted the total number of insights, i.e. distinct observations about the 
data by each participant. Participants who analyzed the same dataset with a particular tool 
reported very similar insights about the data. Thus, the reported insights were repetitive 
across participants. As shown in Figure 6, the count of insights was highest for Spotfire® 
and lowest for HCE.  
Total Domain Value:  The sum of the domain value of all the insight occurrences. 
Insight value was highest for Spotfire®. Participants using Spotfire® gained significantly 
more insight value than with GeneSpring® [F(1, 10) = 6.92, p<0.05].  Though, numeric 
value was lowest for HCE, there were no significant differences between Spotfire® or 
other tools and HCE due to high variance in the performance of HCE users on different 
datasets as explained in 4.5.4. 
Time: The following two temporal characteristics (average time to first insight and 
average total time) summarize the time to acquire insights: 
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Average Time to First Insight: The average time into the session, in minutes, of the first 
insight occurrence of each participant. Lower times suggest that users are able to get 
immersed in the data more quickly, and thus may indicate a faster tool learning time. The 
participants using Clusterview took a very short time to reach first insight. TimeSearcher 
and Spotfire® were also fairly quick to first insight, while HCE and GeneSpring® took 
twice as long on average.  Clusterview users took significantly less time [F(4, 25) = 4.87, 
p<0.01) to reach the first insight than the other users, while GeneSpring® took the 
longest. 
Average Total Time: The average total time users spent using the tool until they felt 
they could gain no more insight.  Lower times indicate a more efficient tool, or possibly 
that users gave up on the tool due to lack of further insight. In general, Clusterview users 
finished quickly while GeneSpring® users took twice as long. The participants using 
Cluterview took significantly less time as compared to the other users [F(4 , 25) = 9.3, p 
<0.01]. 
Average Final Amount Learned: The average of users’ final stated estimate of their 
amount learned. The amount learned is a percentage of total potential insight, as 
perceived by users. In contrast to other insight characteristics reported, this metric gauges 
users’ belief about insight gained, and about how much the tool is or is not enabling them 
to discover. Spotfire® users were most confident in their perceived insight.  The 
similarity between this metric and total domain value might indicate that users are fairly 
accurate in their assessment. 
Hypotheses:  Only a few insights led users to new biological hypotheses (Table 4.8). 
These insights are most vital because they suggest future areas of research and result in 
real scientific contributions. For example, one user commented that parts of the time 
series data showed a regular cyclic behavior. He searched for genes that showed similar 
behavior at earlier time points, but could not find any. He offered several alternative 
explanations for this behavior related to immune system regulation, and said that it would 
compel him to perform follow-up experiments to attempt to isolate this interesting 
periodicity in the data. For the viral dataset, two users commented that there were two 
patterns of gene expression that showed negative correlation. They inquired whether this 
means that the transcription factors of these genes have inhibitory or stimulatory effects 
on each other. They said that they wanted more information about the functions and 
pathways to which these genes belong, to better relate the data to biological meaning. 
Spotfire® resulted in one hypothesis for each dataset, thus a total of three. Clusterview 
also led users to a hypothesis for the Viral and Lupus datasets. 
Directed vs. Unexpected Insights: The participants using HCE with the Viral dataset 
noticed several facts about the data that were completely unrelated to their initial list of 
questions. Clusterview provided a few unexpected insights from the Lupus dataset, and 
TimeSearcher provided unexpected insights about the time series data. Spotfire® had one 
each for time series and Lupus. 
Incorrect Insights (Correctness): HCE proved helpful to users working with the viral 
dataset. However, users working with the time series or Lupus datasets did not gain much 
insight from the data. When prompted to report their data findings, they stated some 
observations about the data that were incorrect. The two users that reported incorrect 
insights were in the domain expert and software developer categories. The errors may 
have been due to inferring the color scale backwards, or due to misinterpreting the way 
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that HCE reorders the rows and columns of the heat map by hierarchical clustering.  
None of the other tools resulted in incorrect findings. 
Breadth vs. Depth: Though we had initially thought this to be an interesting criterion, on 
data analysis we found that most user comments were of the type ‘breadth’. For this 
experiment, all the users worked with a visualization tool they were not familiar with. It 
will be difficult for the first time users to learn all the features of both Spotfire® and 
GeneSpring® within the time span of the experiment. Also, many users were not familiar 
with the specific genes in the datasets used for the study. We discovered that to get 
deeper insights into the data, the participants need to be more familiar with the data 
background. Hence, for the purpose of this study, we did not pursue this characteristic in 
detail. 
 

 Clusterview TimeSearcher HCE Spotfire® GeneSpring® 

Hypotheses 2 1 1 3 0 
Unexpected Insights 3 3 5 2 0 

Incorrect Insights 0 0 2 0 0 

Table 4.8 Summarizes total number of hypotheses generated, unexpected insights, and incorrect insights for 
each tool. 

 
 Together, higher total value and count indicate a more effective tool for providing 
useful insight. Lower time to first insight indicates a faster learning curve for a tool. 
Ideally a visualization tool should provide maximum amount of information in shortest 
possible time. 
 Overall, Spotfire® resulted in the best general performance, with higher insight levels 
and rapid insight pace. Clusterview and TimeSearcher appear to specialize in rapid 
insight generation, but to a limit. With GeneSpring®, users could infer the overall 
behavior of the data and the patterns of gene expressions. However because the users 
found the tool complicated to use, most of them were overly consumed with learning the 
tool rather than analyzing the data.  They had difficulty getting beyond simple insights. 
HCE’s strengths will become clear in the next two sections. 

4.5.3 Insight per Dataset 
This section compares the tools within each dataset. 
Time series data:  In general, Spotfire® and TimeSearcher performed the best of the 5 
tools in this dataset.  Participants using Spotfire® and TimeSearcher had insights with 
more domain value [F(4, 5) = 8.38, p<0.05] from time series data than the other tools.  
However, participants using Spotfire® felt they learned more from the data (73%) 
compared to TimeSearcher (53%). Both Spotfire® and TimeSearcher had nearly 
equivalent performance in terms of value and number of insights. Time to first insight 
was slightly lower for TimeSearcher (4 min) as compared to Spotfire® (6 min). At the 
bottom, participants using HCE took significantly longer [F(4, 5) =  12.13, p<0.01] to 
reach the first insight than the other tools. Participants using GeneSpring® took 
significantly longer ( F(2, 3) = 15.44, p<0.05) than TimeSearcher and Clusterview.  
Virus data:  HCE proved to be the best tool for this dataset. Participants using HCE had 
better performance in terms of insight value as compared to other users. However, there 
were no significant differences between the other users. HCE provided 5 unexpected 
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insights that were different than the initial information users were searching for in this 
dataset. 
Lupus data: Participants using Clusterview and Spotfire® had more insight value, 
whereas participants using HCE [F(4, 5) =  7.26, p<0.05] had the least value as compared 
to the other tools.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 4.6 Count of insights, total insight domain value, average time to first insight, average total time, 
and average final amount learned for each tool. / indicates significantly better/worse performance 

differences. Y-axis arrows indicate direction of better performance. 
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4.5.4 Tools vs. Datasets 
This section examines individual tools across the three datasets.  TimeSearcher and HCE 
had interesting differences among the datasets (Figure 4.7), while the other tools were 
well rounded. 
TimeSearcher: Participants using TimeSearcher performed comparatively best with the 
time series data as compared to the other two datasets. With time series data, they had 
over double the value and number of insights than with the Viral and Lupus datasets. 
HCE: In contrast, participants using HCE did best on the Viral dataset.  On Viral dataset, 
they had a significant better performance advantage on insight value [F(2, 3) = 24.8, 
p<0.01], number of insights [F(2, 3) = 21.5, p<0.05] and time to first insight [F(2, 3) = 
30.65, p<0.05] as compared to the other datasets. They also felt they learned much more 
from the data. Participants using Lupus data spent less overall time with the tool [F(2, 3) 
= 9.5, p ~ 0.05] as they felt they could not learn much from the data using HCE. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 4.7 TimeSearcher and HCE specialize in the Time-series and Viral data, respectively. 

4.5.5 Insight Categories 
Though a wide variety of insights were made, most could be categorized into a few basic 
groups.  
Overview: These described and compared overall expression distributions for a 
particular experimental condition. For example, a user analyzing time series data reported 
that “at time points 4 and 8 a lot of genes are up regulated, but at time point 6 a lot are 
down regulated”. Several users analyzing the virus dataset commented that more genes 
showed a higher expression level for delNS1 virus as compared to wt virus, and the gene 
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expression seems to be increasing with the deletion. Most users working with the Lupus 
dataset reported that gene expression for SLE patients appeared higher than the control 
group.  
Expression Patterns: Most users considered the ability to search for patterns of gene 
expressions very valuable. Most started by using different clustering algorithms (e.g., K-
Means, SOMS, Hierarchical Clustering) provided by the tools to extract the primary 
patterns of expression. They compared genes showing different patterns.  For example, 
some users noted that while most genes showed higher expression value for Lupus group 
as compared to Control group, there were other genes that were less expressed for the 
Lupus group. They thought it would be interesting to obtain more information about these 
genes in terms of their functions and the pathways they belong to. 
Groups:  Some users, mainly those working with Spotfire® and GeneSpring®, grouped 
genes based on some criteria.  For example, a user working with Spotfire® wanted to 
know all genes expressed similarly to the gene HSP70. Users working with GeneSpring® 
used gene ontology categories to group genes. GeneSpring® provides several ways in 
which users can group their data. They found this functionality very helpful. Also most of 
the users were very pleased to learn that they could link the biological information, such 
as gene functions, with the groups. 
Detail Information: A few users wanted detailed information about particular genes that 
were familiar to them. For Time series data, a user noticed about 5% of genes high at 1.5 
hr were also high at 12 hr and followed a regular cycle. He looked up the annotations for 
a few of these genes and tried to obtain more information about them to see if they could 
be responsible for the cyclic nature of the data. 
 
Category Clusterview TimeSearcher HCE Spotfire® Gene-Spring® 
Overview 9 10 6 13 5 
Patterns 10 8 5 10 8 
Groups 0 0 0 1 4 
Details 2 3 1 1 1 

Table 4.9 summarizes the number of each type of insight by tool. 

4.5.6 Insight Curves 
This approach to measuring insight also enables the examination of how insight 
accumulates over time.  This section shows the insight curves for actual insight counts as 
well as users’ perceived insight amount. These graphs show the rate of insight generation 
for the tools. Figure 4.8 (A) represents the average accumulation of insight occurrences 
over time for each tool and dataset.  Figure 4.8 (B) shows the users’ average estimated 
percentage of total insight acquired over time.  During the course of the experiment, users 
were asked every 10-15 minutes to report how much they felt they had learned about the 
data as a percentage of total potential insight. 
 Some of the tools stand out on certain datasets as providing faster or slower rate of 
insight, and strengthen finding reported earlier. TimeSearcher and Clusterview provide an 
early jump in insight on time series and Lupus datasets respectively. While Spotfire® 
eventually catches up, other tools plateau sooner.  HCE rises above other tools in the viral 
dataset in actual insight count.  However, in the other datasets, HCE shows a step-like 
curve perhaps indicating an initial period of learning the tool, followed by a small 
number of insights, followed by a plateau and termination by the users. 
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 There is some similarity between Figures 4.8 (A) and (B) for the time series and lupus 
datasets, in terms of the general shape of curves and order of the tools. This could 
indicate some relative accuracy of participants’ insight estimates. An interesting 
difference is that, for Spotfire® and GeneSpring®, the users’ estimated insight curves 
continue to rise even after their corresponding curves in actual insight counts plateau.  
That is, even after they make no new insights, they still felt they were gaining more 
insight. This may be due to the fact that, after continuing to explore the data in the many 
different visual representations within these tools, participants became more confident in 
their findings and felt that they had not missed much after all. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (A)       (B) 
Figure 4.8 (A):  Average number of Insights, over time, for each dataset and tool, (B): Average percentage 

of total insight gained as periodically estimated by participants, over time, for each dataset and tool. 
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4.5.7 Visual Representations and Interaction  
Spotfire® users preferred the heat-map visual representation, whereas GeneSpring® 
users preferred the parallel coordinate view. This is despite the fact that both of these 
tools offer both representations.  Most of these users performed the same analyses, but 
using different views.  
 Though there were no particular preferences of visualizations for particular the 
datasets, we noticed that for the Lupus dataset Spotfire® and Clusterview users preferred 
the heat-map visualization. The heat-map allowed them to group Control and Lupus data 
neatly into two distinct groups and they could easily infer patterns within and across both 
groups. Participants using these tools showed a higher performance on these datasets 
using these visualizations. This finding is strengthened by the fact that both 
TimeSearcher and GeneSpring® users showed average performance on this dataset. 
Users of these tools used parallel coordinate visualizations to analyze the datasets. 
 We noticed that even though tools like Spotfire® and GeneSpring® provide a wide 
range of visualizations to users, only a few of these were used significantly during the 
study. Most users preferred visualizations showing outputs of clustering algorithms, such 
as provided by Clusterview, Spotfire®, and GeneSpring®. These enabled the users to 
easily see different patterns in the data. However, many said that it would be more 
helpful to them if the interaction capabilities of this representation were increased, e.g. to 
better enable comparison of the groups, subdividing, etc. 
 HCE’s primary overview presents the data in a dendogram heat-map that is re-
ordered based on the results of hierarchical clustering algorithms. Columns and samples 
with the most similar expression values are placed near each other. Thus, for both the 
time series and Lupus datasets, where a particular column arrangement is useful to 
recognize changes across the experimental conditions, HCE showed poorer performance. 
Users were not aware of the fact that they could turn off that feature (such customization 
capabilities of views were not demonstrated in the initial short training session). Also, 
none of the four users who would have benefited the most from turning off this feature 
considered the possibility of turning it off, and they did not inquire about it.  This turned 
out to be a critical feature that should be made more prominent in the tool, or in hindsight 
should be included in the training. 

4.5.8 Participants Comments about the Visualization Tools 
At the end of each experiment, users were requested to comment on their experience with 
the tool they used. The following sections summarize users’ comments. 
Clusterview: Users felt that the tool was extremely simple to use. Some users (3/6) 
required a brief explanation of the heat-map view of the data.  The users felt that the 
information provided by Clusterview is very basic, and they will need to perform 
additional analysis with other methods to get further information from the data. The users 
who worked with time series data commented that the heat map was not a very efficient 
way to represent data and they preferred visualizations similar to parallel-coordinates. 
TimeSearcher: Feedback on TimeSearcher varied for different datasets. The users found 
the parallel-coordinate overview provided by TimeSearcher was easy to understand. 
Users working with the time series data found the tool very helpful. They were able to 
easily identify trends and patterns in the data. Users working with Lupus dataset said that 
it was very difficult for them to see all the 90 data points clearly.  Some participants 
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found a few features of TimeSearcher such as ‘Angular Queries’ and ‘Variable Time-
Boxes’ difficult to interpret. As TimeSearcher does not provide any clustering 
capabilities, users have to manually search for every pattern in the data using ‘time 
boxes’, which can prove tedious in a large dataset. 
HCE: Most users were impressed with HCE. The tool provides a wide variety of features 
for data analysis. HCE was more helpful to participants working with the viral dataset. 
Users working with the Lupus dataset gave up data analysis within 20 minutes, 
complaining that it was very difficult for them to analyze data using HCE.  
Spotfire®: Users working with Spotfire® were impressed with it. They did not require 
any special assistance to understand the tool. They said that most of the visualizations 
were easy to understand. Most users preferred the heat-map visualization of the Spotfire® 
over its parallel coordinate or Profile chart display (Figure 4.9). Though the user found 
the visualization displaying different clusters in the data helpful, they said that it should 
be easier to interact with. They found it annoying that they could not select and focus on 
a particular cluster of interest. 
GeneSpring®: Users felt that they would have to spend a long time learning 
GeneSpring®. A few users (2/6), spent an initial 45 minutes just trying to get famil iar 
with GeneSpring®, after which they gave up the data analysis saying that it will take 
them too long to comprehend what the tool does. A few users commented that it will be 
great to have some sort of automation that would show them which visualization to begin 
the data analysis and how to change the visualization properties. One user said that the 
basic things should be easy, and visualizing an already normalized dataset should not be 
so difficult. None of the users could change different properties of visualization such as 
color, scale, or amount of data to be visualized without help. Users were pleased to know 
that GeneSpring® provided features to make lists of genes based on different criteria. 
The users commented that such features could prove to be very helpful. Also, features 
that allow users to add pathway information to gene lists were considered very useful. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.9 The heat map and parallel coordinate views in Spotfire®. 

4.5.9 Participants’ Background 
One might conjecture that users with more domain experience or software development 
experience would gain more insight from the data visualizations. Yet, we found that the 
insight domain value and total number of insights did not appear to depend on participant 
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background. Averages were similar, and no significant difference between user categories 
was detected.  Due to limited number of subjects, full factorial analysis within tool or 
dataset groups is not feasible. Trends within user categories followed the same general 
trends for tools and datasets identified previously.  We did not find any differences in the 
number of insights, value of insight, and hypothesis generation based on participants’ 
background. Rather, we found that these factors were more dependent on the user 
motivation. 
 Software developers on average felt that they learned less from the data as compared 
to others, whereas domain novices felt they learned more from the data. Novices also 
spent comparatively more time in the study as compared to others. A noticeable 
difference was in the users’ behavior during the experiment. Novice users needed more 
prompting to make comments about the datasets. They were less confident to report their 
findings. Software developers almost always made the first insight faster than the novice 
users.  

4.6 Discussion 
Commercial vs. Free: Both Spotfire® and Clusterview users resulted in equivalent 
insight from the Lupus dataset. However, participants using Spotfire® felt they learned 
much more from the data as compared to Clusterview. Analyzing data in multiple visual 
representations gave Spotfire® users more confidence that they did not miss any 
information. Whereas, Clusterview users were more skeptical about their progress, 
believing that they must be missing something.  A simple visualization tool used on an 
appropriate dataset can have performance comparable to more comprehensive software 
containing many different visualizations and features.  
 Free research software like TimeSearcher and HCE tend to address a smaller set of 
closely related tasks.  Hence, they provide excellent insight on certain datasets.  Also, 
since they are focused on specific tasks, they have simpler user interfaces that emphasize 
a certain interaction model.  This reduces the learning time and enables users to generate 
insights quickly.  Spotfire®, despite having a large feature set, has a learning time almost 
equivalent to the simple tools, which is commendable.  This is likely due to Spotfire®’s 
unified interaction model.  The brushing and dynamic query concepts were quickly 
learned by users, and resulted in early rapid insight generation.  
Domain Relevance: A serious shortcoming of the tools is that they did do not adequately 
link the data to biological meaning.  The fact that domain experts performed on par with 
domain novices, and the small numbers of hypotheses generated, indicates that the tools 
did not leverage the domain expertise well. Before we conducted the study, we believed 
that users with more expertise in biology would gain more from visualizations than a 
novice. We were also curious about whether software development experience would 
lead to better usage of the tools. However, these background differences did not reveal 
themselves in the actual insights generated. The difference was only in the users’ 
believed insight, in which novices were overconfident and developers were skeptical. 
 If the tools could provide a more information-rich environment, such as linking data 
directly to public gene databases or literature sources, expert biologists could better 
exploit their domain knowledge to construct higher level, biologically relevant 
hypotheses. In this experiment, the tools helped users identify patterns in the data, but did 
not enable them to connect these numerical patterns to the underlying biological 
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phenomena.  A critical need is for highly integrated visualization environments that excel 
at domain relevance and inference.  In this case, understanding gene expression patterns 
must lead to inference of underlying pathways that model the interactions of the genes 
(Figure 4.10).  Visualization must support this level of inference. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.10 Visualizations must support domain-relevant inference, from microarray dataset to pathway 
models describing interactions within a cell [3]. 

  
Interaction Design: The design of interaction mechanisms in visualization is critically 
important.  Usability of interactions can outweigh the choice of visual representation. 
Spotfire® users mainly focused on the heat-map representation, while GeneSpring® 
users focused on the parallel coordinates, even though both tools support both 
representations.  The primary reason for this, based on comments from users, was that 
users preferred parallel coordinates but Spotfire®’s parallel coordinates view employs a 
poorly designed selection mechanism.  Selecting lines in its parallel coordinates view 
results in unusual and occluding visual highlight feedback that made it very difficult for 
users to determine which genes were selected and what other genes were nearby (Figure 
4.9).  
 The ability to select and group genes was the most common interaction that users 
performed. The grouping of genes into semantic groups is a fundamental need in 
bioinformatics visualization. GeneSpring® provided useful grouping features that 
enabled more insights in the ‘groups’ category.  More tools need better support for 
grouping items, based on interactive selections as well as computational clustering, and 
managing groups. GeneSpring® is the most feature-rich tool of the five, and therefore 
perhaps the most difficult to learn.  However, even though users tended to focus on a 
small number of basic visualization features, usability issues (such as the large quantity 
of clicks required to accomplish tasks) reduced their overall insight performance. 
Clustering: Certain visualizations, such as the clustering visualizations for both 
Spotfire® and GeneSpring®, were the most popular in the study. Users commented that 
it would be very helpful if the interaction techniques for these clustered views were 
improved, so that they were better integrated into the overall interaction model. 
 Clustering (Figure 4.11) was a very useful feature throughout, but care should be 
taken to provide non-clustered overviews first.  As in HCE, clustering can potentially 
bias users into a particular line of thought too quickly.  In comparing Spotfire® and 
Clusterview, users were also more confident when they could confirm their findings 
between clustered and non-clustered views of Spotfire®. 

Insight 
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User Motivation: We noticed that an important factor in gaining insight is user 
motivation. Clearly, participants in our study did not analyze the data with as much care 
as they would if the data were from their own experiments.  They mainly focused on 
discovering the overall effects in the data, but were not sufficiently motivated for detailed 
analysis. Most of the insights generated were classified as breadth rather than depth.  
However, the visualizations were able to provide a sizeable number of breadth insights in 
spite of low motivation levels. 

4.7 Conclusions 
Empirical research methods that use exploratory protocols are prevalent in the fields of 
HCI and CSCW. Some examples include the critical incident theory [112], Design 
experiments [22], Breakdown analysis [24], Situated analysis [23], Interaction analysis 
[21], etc.  Most of these methods provide a general protocol to collect data. The data 
analysis is more contextual. For e.g. the critical incident method defines an incident as 
“Any observable human activity that is sufficiently complete in itself to permit inferences 
and predictions to be made about the person performing the act”. However, it is left to 
experimenters’ discretion as to which incidents should be collected for the systems of 
interest and how these are analyzed. These methods have much broader range of 
application and are defined to be used in variety of situations. Most of these methods 
need to be specialized to be applied to visualization evaluation. 
 The insight-based method provides an alternative method to the traditional task-based 
method. The method uses different characteristics of an ‘insight’ to rank visualization 
tools. Though the insight-based method may not be novel in its experimental protocol, 
the identified insight characteristics are unique to the method. The main contribution of 
the method is in the field of bioinformatics as though a large variety of visualization tools 
have been developed not many evaluation studies have been performed. The insight 
characteristics provide a way for the biologists’ to select the most appropriate tool for 
their analysis. 
 
 
 



 

    

5 Task-Based vs. Insight-Based Method on Pathway + 
Microarray Data Visualization  

This chapter presents a study conducted to evaluate pathway + microarray data 
visualization alternatives using the new insight-based evaluation method identified in 
Chapter 4. Besides the insight-based method, the study also used the task-based method. 
This was to allow comparisons between the two methods and to investigate their 
advantages vs. disadvantages over each other for evaluating visualization tools. 

5.1 Introduction 
Chapter 3 describes the design space to identify all the solutions for pathway + 
microarray data visualization alternatives. The design space is divided into two main 
dimensions: the method to overlay data on pathway diagrams and the number of 
visualization alternatives used. The three possible alternatives to overlay data on pathway 
diagrams include: (a) Overlaying data on graph vertices for one timepoint at a time by 
manipulating a visual property (e.g. color) of the node, and using sliders or similar 
interaction to animate the graph to other timepoints; (b) Data from all the timepoints can 
be overlaid simultaneously by using complex node glyphs; Or, (c) small multiples can be 
used to simultaneously display a miniature graph for each timepoint. All of these 
alternatives can be used either by themselves or linked to other visualization alternatives 
using the concept of brushing and linking. 
  An initial study to evaluate some of the visualization alternatives along both the 
dimensions was conducted in Chapter 3. The main result from the study was that the 
method to overlay data on pathway nodes has non-trivial effect on accuracy of 
participants’ responses, whereas the use of single vs. multiple view visualization 
alternatives has non-trivial effect on the performance times. Since we rated accuracy 
more important over the performance time, we decided to focus on dimension 1 i.e. 
method to overlay data on pathway diagrams for the second study presented here. 
 One of the main limitations of the study reported in Chapter 3 was that it failed to 
address the real world data analysis scenarios of the biologists. Though, the task-based 
evaluation method provides controlled means to evaluate visualization tools it has several 
limitations identified in Chapter 3. To address these, an insight-based evaluation method 
was reported in Chapter 4. The insight-based method identified several quantifiable 
characteristics of an insight that can be used to uniformly evaluate visualization 
alternatives. Thus, to evaluate pathway + microarray data on more realistic scenarios, a 
study was conducted using the insight-based method. 
 Also, though the insight-based method appeared useful, there are open questions 
about how the method compares to the traditional benchmark task method and whether 
the method can be used instead of the benchmark task method to provide meaningful 
statistical analyses between visualization tools. Thus, secondary goal of the study 
reported here was to compare both methods: the task-based and insight-based methods. 
Such studies to compare empirical research methods are more common to the field of 
usability engineering, but less frequent in the information visualization domain.  
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5.2 Literature survey for experiments to compare evaluation methods 
The literature for visualization of pathways and graphs with multidimensional data is 
summarized in Chapters 2 and 3.  While the study in Chapter 3 examined the use of 
multiple views including parallel-coordinates plots, this paper focuses on the primary 
graph representation itself. 

5.2.1 Comparison of Studies for Information Visualization 
Different types of studies have been used to evaluate visualization tools, as summarized 
in [113], [13]. The shortcomings of these studies and the need to develop new evaluation 
methods for visualization tools that better represent real world data analysis scenarios and 
also provide better feedback about the usability of the data representation method have 
been suggested [113], [74].  
 The literature for comparisons of empirical research methods used to evaluate 
information visualization tools is sparse, and mostly anecdotal. General guidelines for 
better tasks and methods to evaluate visualizations can be found in [114]. 
Recommendations for more consistent and comparable user studies based on a meta 
analysis is presented in [80]. Authors’ comments about the user studies for information 
visualization, and the lessons learned from these studies and how these were used to 
design more effective visualization tools and evaluation studies is presented in [115]. A 
panel discussion summarizing research for visualization evaluation using human subjects, 
and suggestions and guidelines for conducting such studies by several visualization 
experts based on their experiences is presented in [116]. Expert reviews as an alternative 
in certain contexts where designing and conducting user studies can be difficult is 
suggested in [117].  

5.2.2 Comparison of Studies in Usability Engineering 
Several studies have been conducted to analyze and compare methods typically used for 
evaluating user interfaces. A comparison of usage based evaluation techniques and 
inspection method for groupware systems is provided in [118]. A study to compare the 
effectiveness of local vs. remote usability studies is reported in [119]. Two methods for 
children’s computer games are compared in [120]. Usability testing methods with 
multiple participants is compared to heuristic evaluation in [121]. A list of criteria that 
can be used to compare usability evaluation methods is presented in [122]. Detailed case 
study of 6 usability methods that evaluates each method’s usability error predictive power 
to actual user tests is reported in [123]. A comparison of different usability testing 
methods for information retrieval tasks is provided in [124]. 
 Though studies have been conducted to evaluate usability methods that analyze user 
interfaces with respect to each other, studies to evaluate empirical research methods for 
evaluating visualization tools are rare. Most of the usability methods are compared based 
on the number of usability errors found, severity of these errors and participants’ and 
facilitators’ experience in the study. Since the dependent variables for the usability 
methods are usually the same (usability errors) such direct comparisons between the 
evaluation methods are possible. However, the dependent variables for the benchmark 
task-based method (performance time, accuracy), and the insight-based method (data 
insights) are different. Also, the evaluation for visualization tools investigates a wider 
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range of options (e.g., data representation method, interaction mechanisms used, etc) as 
compared to the user interface evaluation. Hence higher level measures such as the 
conclusions about the visualization tools, time spent by the participants in the study, 
effort spent to analyze the resulting empirical data, etc. need to be used for meaningful 
comparisons between these two evaluation methods. 

5.3 Experiment Design 
The aim of this study is to analyze and compare two empirical evaluation methods, using 
three different visualization alternatives that support analysis of timeseries data in context 
of graphs. A 2X3 between subjects design examines the following two independent 
variables: 

1. Two empirical evaluation methods: benchmark tasks method, and the insight-
based method. 

2. Three graph visualization alternatives. 

5.3.1 Data 
The biologists we were collaborating with conducted a gene expression microarray 
experiment to analyze impacts of tobacco smoking on flu infection immune response. 
The actual data was 45,001 rows (genes) X 72 columns (timepoints and conditions). The 
biological significance of the data and the actual analysis process for this data by 
bioinformaticians are presented in [125].  
 A directed graph, having 46 vertices (or genes) and 36 edges (representing gene 
interactions) representing an actual immune response pathway, was linked to a timeseries 
dataset representing gene expression for 12 timepoints (Table 5.1). Thus, the participants 
in the experiment were working with a small subset of the actual data. However, the 
graph size was based on the typical size of the biological pathways used by the biologists, 
and corroborated in general by STKE [40]. 
 

Data Type Description 
Graph A directed graph having 46 vertices and 36 edges. Each node had an out degree of 0 to 3. 
Timeseries data Gene expression values for 12 timepoints for each node. Of these, 6 timepoints 

measured expression values for flu infection for non-smokers, and the remaining 6 
timepoints corresponded to flu infection for smokers. 

Table 5.1 Data used for the study. 

5.3.2 Visualization Alternatives 
Three graph visualization alternatives were used in the study. The visual encoding of the 
data was based on the general color scheme used in bioinformatics, i.e. the color scale 
from yellow to green was used to display negative data values, and yellow to red was 
used to display positive data values. These alternatives represent dimension 1 (method to 
overlay microarray data on pathways) from the design space identified in Chapter 3.  
 The results from the study in chapter 3 indicated that the method to overlay data on 
pathways affect accuracy of participants’ response whereas, the number of visualization 
alternatives affect their performance time. As we ranked accuracy more important as 
compared to performance time we decided to evaluate methods to overlay data on 
pathway diagrams more rigorously for the second study. 
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Single Timepoint (1 Tpt): This visualization overlays values for one timepoint on a 
node at a time (Figure 5.2). A slider lets users iterate over all the timepoints in the data. 
Mousing over nodes displays the numerical value corresponding to the color.  
Multiple Timepoint (M Tpts): This visualization overlays data from all the timepoints 
on a node using a heat map (Figure 5.3). Mousing over the heatmap cells displays the 
corresponding numerical value and the timepoint.  
Multiple Graphs (M Graphs):  This visualization displays a miniature graph for all the 
timepoints in the data (Figure 5.4). Mousing over a node displays its numerical value, the 
name of the node (because nodes are too small to clearly show name labels), and also the 
time point corresponding to it 
 
 
 
 
 
 
 
 
 
 

  
 
 
 

Figure 5.1 Overlay a single timepoint on graph vertices. A slider is used to navigate between different 
timepoints. 

 
 
 
 
 
 
 
 
 
 
 
 

  
 

Figure 5.2 Overlay all the timepoints on graph vertices. 
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         1    2    3     4     5    6 (Tpts.) 
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Figure 5.3 Multiple small graphs to display all data timepoints. 

5.3.3 Participants 
60 participants, 10 for each visualization alternative for each evaluation method, 
participated in the study. Since the data had a biological background, all the participants 
in the study were sophomore or junior biology students. Hence, the participants were all 
familiar with the basic concepts of the data, although were not familiar with this specific 
dataset. 

5.3.4 Experiment Protocol 
Before beginning, the participants were given a brief introduction to the visualization 
alternative that they were assigned and the data background used in the study.  Then, the 
protocols were different depending on the assigned evaluation method. 
 
Task-Based Method Protocol: Participants were required to perform 7 tasks listed in 
Table 5.2. All the tasks were multiple choice questions, with five possible choices. The 
tasks were based on the observed analysis tasks of the bioinformaticians who designed 
the biology experiment and analyzed the actual data [125]. Time and correctness were 
measured for each task (Table 5.2). 
 

No. Task 
1 Which of the following nodes shows a positive value for all Flu timepoints but negative value for all 

Smoking+Flu timepoints? 
2 What is the overall expression pattern for Flu timepoints vs. Smoking+Flu timepoints? 
3 Which of the following nodes is negative for all 12 timepoints? 
4 Which of the following timepoints has the maximum number of positive nodes? 
5 Which of the following timepoints has the maximum number of negative nodes? 
6 At which of the following timepoints, for both conditions, do most nodes change their expression 

values from previous timepoints? 
7 How many nodes are between Map3k12 and Rela? 

Table 5.2 Lists tasks for the Task-based method. 
 

Dependent variables • Time to answer each question 
• Number of correct answers 
• Overall time spent in the study 

             1            2            3              4              5            6 (Tpts) 

Non-Smokers 

Smokers 
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• Feedback about the visualization alternative 
Table 5.3 Lists dependent variables for the task-based method. 

 
Insight-Based Method Protocol: 
We requested the participants to analyze the data in a think aloud fashion, until they felt 
that they had learned all they could from the data. The experimenter sat next to the 
participants during the study, silently observing the participants’ data analysis process 
and also recording (on a laptop) the data insights and the times at which these were made 
since beginning the study (Table 5.4). 
 

Dependent variables • Data insights 
• Time at which each insight was reported 
• Overall time spent in the study 
• Feedback about the visualization alternative 

Table 5.4 Lists dependent variables for the Insight-based method 

5.4 Experiment Hypothesis 

5.4.1 Task-Based Method 
The tasks were selected to balance out the performance across the visualization 
alternatives. We expected none of the visualization alternative to show overall better 
performance than any other alternative either in terms of accuracy or performance time. 
Since the graph visualization and data were not very complicated (values for 12 
timepoints for 46 nodes) we had no hypothesis related to participants’ accuracy of 
responses. 
 
Task Hypothesis 
T1 Since task 1 requires analysis for a single node over all the timepoints, we believed that the 

participants using Multiple Timepoint visualization would perform faster than the participants using 
other methods.  
Also since Multiple Graph visualization method focuses on the overall changes in the graph 
expression, we believed that the participants using this visualization may be slower than the 
participants using other visualization alternatives.  

T2 Task 2 requires analysis for overall gene expression Hence, participants using Multiple Graph 
visualization should perform faster than the participants using other methods.  

T3 Task 3 required analysis for a single node over all the timepoints. Since Multiple timepoint 
visualization facilitates such analysis we assumed that participants using this alternative would 
perform faster. 

T4 Since task 4 requires analysis for a particular timepoint, we believed that the participants using 
multiple timepoint may take longer to perform this task. 

T5 -same hypothesis as task 4- 
T6 - same hypothesis as task 4- 
T7 This task was to test if there were differences in performances related to a topological task using the 

visualization alternatives. 
Table 5.5 Lists hypothesis for each task for the task-based protocol. 

5.4.2 Insight-Based Method 
The insight-based method evaluates the visualization alternatives based on the insights 
participants report. Since the method uses an unguided and an exploratory protocol, it 
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will be difficult to predict data analysis before hand. However, initial hypothesis for each 
visualization alternative is listed in Table 5.6 
 
Visualization 
Alternative 

Hypothesis 

1 Timepoint 
Visualization 

Since the 1 timepoint visualization displays graph behavior for a single timepoint, 
we expected the participants to report mostly analysis related to a particular 
timepoint. 

Multiple Timepoint 
Visualization 

The multiple timepoint visualization displays values for all timepoints on a node 
simultaneously, hence we expected the participants to report insights related to 
behavior of a particular node.  

Multiple Graph 
Visualization 

Here, the participants should report insights related to the overall changes in the 
graph with respect to timepoints and between conditions. 
Table 5.6 Lists hypothesis for each visualization alternative. 

5.5 Results – Task-based Method 

5.5.1 Overall Analysis 
On performing ANOVA analysis, we found that there were no significant differences 
between the participants on the total time spent in the study or overall differences on the 
accuracy for the tasks, for all the three visualization alternatives. However, the 
participants using single timepoint visualization were somewhat [F(1, 117) = 1.52, 
(p=0.06)] more accurate than multi timepoint visualization.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 5.4 Displays the average time (in mins) that participants spent in the study and the average number 
of correct responses (out of 7 tasks) for the three visualization types for the task-based protocol. 
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5.5.2 Individual Task Analysis 
Significant results from paired ANOVA analysis on tasks between the three visualization 
alternatives for time and accuracy are summarized in Table 5.7. There were no 
differences in participants’ performance, in terms of accuracy and task completion time, 
for tasks 2 and 3. Though tasks 4 and 5 were equivalent, task 5 required more careful 
analysis as compared to task 4, as the timepoint at which most nodes were positive was 
more obvious as compared to the timepoint at which there were most negative nodes. 
 

Tasks 1 Tpt M Tpts M Graphs 
T1  Faster [F(2, 27) = 3.68, p=0.038]  
T2 - - - 
T3 - - - 
T4  

 
Less accurate [F(2, 27) = 3.85, 
p=0.033] 

Faster [F(1, 18) = 8.47, 
p=0.01] than M Tpts 

T5 Somewhat more accurate 
than M Tpts  [F(1, 18) = 
3.42, p=0.08] 

Slower  [F(2, 27) = 3.49, p=0.044] - 

T6 - Somewhat slower than 1 Tpt [F(1, 
18) = 3.03, p=0.098] 

Somewhat more accurate 
than M Tpts [F(1, 18) = 
3.42, p=0. 08] 

T7 - - Faster than M Tpts. [F(1, 
18) = 4.98, p=0.038] 

Table 5.7 Summary of Anova analysis for the task-based protocol 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.5 Displays average time in minutes, and total count of correct responses (out of 10 participants) 
for each task, for the three visualization alternatives. * on a task indicates significant performance 

differences. 
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5.5.3 Hypothesis vs. Results 
The comparisons between the hypothesis and the actual results for the tasks are listed in 
Table 5.8 
 
Task Hypothesis Results 
T1 Participants using Multiple Timepoint 

visualization alternative should display 
the fastest performance. We had also 
assumed that the participants using 
Multiple Graph visualization alternative 
would have the slowest performance 

The results confirmed the hypothesis 

T2 We had assumed that the participants 
using the Multiple Graph visualization 
would display the fastest performance. 

We did not observe any differences between 
participants’ performance either on task 
completion time or accuracy. 

T3 We had assumed that the participants 
using Multiple Timepoint visualization 
would display the fastest performance. 

We did not observe any differences between 
participants’ performance either on task 
completion time or accuracy. 

T4 Since the task required analysis of graph 
at a Single Timepoint, we assumed that 
the participants using Multiple Timepoint 
visualization would be slower than the 
participants using other visualization 
alternatives 

Participants using Multiple Graph 
visualization were faster than the participants 
using Multiple Timepoint visualization. Also, 
the participants using Multiple Timepoint 
visualization were less accurate than the 
other visualization alternative. 

T5 - same as task 4-  Participants using Multiple Timepoint 
visualization were slower than the 
participants using other visualization 
alternatives. Also, the participants using 
Single Timepoint were more accurate than 
the participants using Multiple Timepoint 
visualization. 

T6 - same as task 4- Participants using Multiple Timepoint were 
slower than the participants using other 
visualization type. Also, the participants 
using Multiple Graphs were more accurate 
than the participants using Single Timepoint 
visualization. 

T7  - none - We found that the participants using Multiple 
Timepoint visualization were faster than the 
participants using other visualization 
alternatives. 

Table 5.8 Lists comparison for hypothesis vs. results for the task-based protocol. 
 
As shown in the table, the visualization alternatives had most influence on the 
performance time. Though for tasks T4, T5 and T6 it was observed that the participants 
using Multiple Timepoint visualization were somewhat less accurate as compared to the 
other visualization types. 

5.5.4 Conclusions 
The analysis for the individual task performance times and accuracy leads to the 
conclusions about the visualization alternatives summarized in Table 5.9. We found that 
the single timepoint visualization had more controlled performance as compared to the 
other visualization alternatives. Both multiple timepoints and multiple graph visualization 
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showed different performances depending on the tasks. The multiple timepoint 
visualization showed best performances for analyses related to a single node expression, 
whereas multiple graphs showed best performance for analysis related to overall gene 
expression. The multiple graphs provided a good data overview that allowed users to 
easily select the timepoints they wanted to focus on. 
 
1 Tpt M Tpts M Graphs 
+ More consistent 

performance for all the 
tasks. 

 

+ Faster performance for single 
node analysis. 

− Slower and less accurate for 
overall graph expression at a 
particular timepoint. 

+ Faster performance for overall 
expression. 

+ More accurate and faster for finding 
interesting timepoints. 

+ Faster than M Tpts for graph topology 
tasks. 

Table 5.9 Summarizes conclusions about visualization alternatives from the task-based study. 
 
Most conclusions about the single and multiple timepoint visualization alternatives in the 
second study are similar to the first study reported in Chapter 3. As in the first study, the 
participants using multiple timepoint visualization were less accurate and slower for tasks 
involving analysis of the graph at a single timepoint. For the tasks that required searching 
for timepoints of interest we found that similar to study 1 the participants using single 
timepoint visualization showed better performance in terms of accuracy and time as 
compared to the participants using multiple timepoint visualization. However, the 
participants using multiple graph visualization showed the fastest performance.  
 In the previous study it was also found that the multiple timepoints were faster and 
more accurate for tasks that required searching for outlier nodes, i.e. nodes that display 
different behavior than most other nodes. Since we did not have a task to represent this 
information, it was not possible to make such conclusions from the second study. 

5.6 Results - Insight-Based Method 

5.6.1 Overall Performance Analysis 
On performing ANOVA analysis we found that the participants using single timepoint 
visualization spent significantly more amount of time in the study as compared to other 
participants [F(2, 27) = 4.33, p = 0.02]. The participants using single timepoint 
visualization had more number of distinct data insights [F(2, 27) = 3.02, p = 0.065] than 
both the multiple timepoint [F(1, 18) = 3.63, p = 0.07] and the participants using multiple 
graphs [F(1, 18) = 4.79, p = 0.04]. Note that the data insights are distinct for a participant. 
However, the data insights may be repeated across participants when more than one 
participant reported the same data insights. 
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Figure 5.6 Average time in minutes participants spent in the study for each visualization type, * indicates 
significantly performance differences. Participants using single timepoint visualization spent significantly 

more time (p=0.02) in the study. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.7 Average Count of Insights for each visualization type, * indicates somewhat better performance. 

Participants using single timepoint visualization had significantly more number of distinct insights as 
compared to multiple graph visualization (p=0.04) and somewhat more number of insights as compared to 

the multiple timepoint visualization (p=0.07). 

5.6.2 Performance based on Insight Categories 
On analyzing the participants’ data insights, we found that all of these could be grouped 
into 7 distinct categories.  A data insight belongs to only one of the seven categories. 
Gene Expression: Most frequent data insights reported expression pattern for just one 
gene. E.g.: “Gene Gzmb displays positive values for all the flu timepoints except the first 
timepoint, but is negative for all the smoking timepoints”. “Gene Irf3 displays similar 
expression patterns for flu infection for both the non-smokers and smokers”.  
Topology: Some of the insights reported used only the graph topology. This did not 
include any information about the associated timeseries data. E.g.: “The map3k12, casp6, 
and the bcl2ll genes seem to be major focal points in the graphs as they have a lot of 
arrows pointing towards them”. “There are a few breaks in the graphs e.g., a few nodes 
that are not connected to anything”. None of the participants using M. Graphs reported 
such insights. 
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Topology + Expression:  Some of the insights reported by the participants investigated 
gene expression based on graph topology or effects of genes on each other connected 
directly or indirectly through other genes. E.g. “All the genes towards outside, i.e. Trnf2, 
birc3, etc. are positive for almost all the timepoints as compared to the inside ones that 
they are supposed to affect”. “The genes on right side of the graph have more regular 
pattern i.e. either they become more or less expressed with timepoints, whereas genes on 
the left side have a more random pattern”. 
Timepoint analysis: Some participants reported insights that investigated overall graph 
expression at a particular timepoint. E.g.:  “A lot of genes are negatively expression at 
timepoint 5 for smokers as compared to all other timepoints”. “Almost all the genes get 
more positive for non-smokers between timepoints 3 and 4 except Cyt1 and Trnsf21”. 
None of the participants using Multiple Timepoints reported such insights.  
Experiment Conditions: All the participants in the study tried to evaluate the differences 
in the gene expression between non-smokers and smokers. E.g.: “Overall non-smokers 
have more positively expressed genes as compared to smokers”. “Genes for non-smokers 
seem to get more negative with time, whereas for smokers an opposite effect is seen”. 
Outliers: Some participants identified a few genes that displayed different expression 
values than other genes in the graph. E.g.: “Stat1 gene is different than most other genes 
as it gets more positive with time for non-smokers, whereas most other genes get more 
negative”. “Trp53bp2 is unique as it is more expressed in smokers vs. non-smokers”.  
Summary: Some participants tried to summarize their findings about the data or 
suggested future research based on their data analysis. These insights are most similar to 
the insight characteristic hypothesis that was ranked very high in the study reported in 
[Saraiya1 et al., 2005]. E.g.: “There is no correlation between expression values for genes 
that have direct influence on each other, this suggests that the information presented here 
is incomplete, or there may be several other biological factors influencing the genes and 
is not shown by the graph visualization”. “Smokers don’t have that many highly 
expressed genes, seems like a lot of them may reduce the gene expression of the 
subsequent genes. This may eventually lead to less expression for the overall immune 
system against the flu for smokers”. 
 The results from ANOVA analysis between participants, on number of distinct 
insights for each category reported by each participant using a particular visualization 
alternative are listed. As shown in table 5.10, there were no differences on the number of 
insights for the “Experiment Condition” category across the visualization alternatives. 
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Figure 5.8 Displays the total number of insights, and the number of participants who reported these for each 
insight category.  * indicates significant performance differences. 

 
Category 1 Tpt M Tpts M Graphs 
Gene  
Expression 

  Less than 1 Tpt [F(1, 18) = 3.73, p=0.069] 

Topology   Significantly less than the other two 
visualization alternatives [F(2, 27) = 3.604, 
p=0.04)] 

Topology + 
Expression 

  Somewhat less  [F(2, 27) =2.525, p=0.09] 
Significantly less than M Tpts [F(1, 18) = 
4.7, p=0.04] 
Somewhat less than  1 Tpt [F(1, 18) = 4.22, 
p=0.054] 

Timepoint Analysis  Significantly less  than others  
[F(2, 27) =16.2, p=2.38E-05] 
 

Significantly less than 1 Tpt [F(1, 18) = 5.4, 
p=0.03] 
 

Condition - - - 
Outliers  Somewhat more than others  [F(2, 

27) =3.08, p=0.06] 
Significantly less than M Tpts [F(1, 18) = 
10.28, p=0.004] 

Summary   Significantly less than 1 Tpt   [F(1, 18) = 
7.22, p=0.015] 

Table 5.10 Summarizes the results for insight categories. 

5.6.3 Hypothesis vs. Results 
Table 5.11 lists the differences between the hypotheses for each visualization alternative 
and the results from the insight-based study. Since for the insight-based method the 
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participants perform data analysis in an unguided and exploratory fashion, it will be 
difficult to predefine all the insight categories without performing the experiments. 
However, we had hypothesized the general influence of the visualization alternatives. 
There were some unanticipated results about the visualization alternatives after analyzing 
the reported insights. 
 
Visualization Alternative Hypothesis Results 
1 Timepoint Visualization Since the 1 timepoint visualization 

displays graph behavior for a single 
timepoint at a time, we expected that 
the participants using this alternative 
will report most analysis related to a 
particular timepoint. 

The participants using this 
visualization alternative displayed 
most controlled performance for 
all the insight categories. 
The participants using this 
visualization alternative reported 
most insights belonging to the 
category ‘summary’. 

Multiple Timepoint 
Visualization 

The multiple timepoint visualization 
displays values for all timepoints on a 
node, we expected the participants to 
report most insights related to 
behavior of a particular node.  

Participants using this 
visualization alternative missed 
analysis of the graph for a 
particular timepoint. 
However, participants using this 
visualization alternative reported 
most insights for the category 
‘outliers’. 

Multiple Graph Visualization Here, the participants should report 
insights related to the overall changes 
in the graph with respect to 
timepoints and between conditions. 

The participants using this 
visualization alternative reported 
fewer insights than the other 
visualization alternatives for most 
insight categories. This was most 
noticeable for the categories: 
topology, topology + expression, 
and outliers. 
The participants using this 
visualization had fewer insights 
than the Single Timepoint 
visualization for the categories: 
Summary and Timepoint 
analysis. 

Table 5.11 Comparison between the hypothesis and results for different visualization alternatives from the 
insight-based study. 

5.6.4 Conclusions  
Participants’ performance on the insight categories lead to the conclusions about the 
visualization alternatives listed in table 5.12.  
 

1 Tpt M Tpts M Graphs 
+ Somewhat better at summarizing 

findings. 
+ Best for single timepoint 

analysis. 
+ More consistent performance for 

all insight categories. 

+ Best for identifying outlier nodes.
− Difficult to analyze a single 

timepoint. 

− Difficult to focus on expression 
values for a single node. 

− Difficult to analyze graph 
topology. 

Table 5.12 Conclusions about the visualization alternatives from the insight-based method. 
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5.7 Comparisons between Methods 

5.7.1 Total Time Spent 
On performing ANOVA analysis, overall participants in the insight-based method spent 
significantly more total time in the study as compared to the task-based method [F(1,58) 
= 21.27, p<0.01]. Participants using Single Timepoint [F(1,18) = 28.35, p<0.01] and 
Multiple Timepoint  [F(1, 18) = 9.006, p<0.01] visualizations spent significantly  more 
time in the insight-based method as compared to the task-based method.  
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.9 Average time participants spent in the study for each visualization method, for task-based and 

Insight-based methods. * indicates significant performance differences. 

5.7.2 Comparisons on Pre-selected Tasks 
Number of participants who reported equivalent insights: Some participants in the 
insight-based method reported insights exactly similar to the tasks that were used in the 
task-based method. E.g.: Similar to task 4 in the task method, the participants in the 
insight-based method reported that timepoint 4 for non-smokers has maximum number of 
positively expressed genes.  Figure 5.11 summarizes the number of participants that made 
insights comparable to a particular task. Since task 7 was very specific, we omitted it 
from the analysis. As displayed in Figure 5.11, none of the participants using Multiple 
Timepoints visualization reported insights requiring data analysis for a single timepoint 
(tasks 4, 5, and 6). The participants using Multiple Timepoints visualization were 
significantly slower or less accurate on these tasks in the task-based method. The effect 
was confirmed and found even more significant in the insight-based method when 
analyzing the insight category: timepoint analysis.  
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Figure 5.10 Number of participants for each visualization who reported insights equivalent to the tasks in 
the task-based method. 

 
Tasks vs. insight categories: Table 5.13, lists the tasks and the corresponding insight 
categories. Conclusions about the visualization alternatives based on the method type are 
also listed. For most tasks the differences found in task-based method were made more 
significant in the insight-based method. tasks 1 and 3 required the participants to analyze 
expression values for a single node. From the task-based method it was found that M. 
Tpts were significantly faster at one of these tasks. However, there were no differences 
between M Tpts and 1 Tpt visualization alternatives for the insight-based method. The 
participants using M Graphs had the least number of such insights. There were no 
performance differences in either method for task 2. The most interesting results are for 
tasks T4 – T7. These tasks required analysis of the graphs at a single timepoint. In the 
task-based method it was found that M Timepoint visualization were either slower or less 
accurate for these tasks. However, none of the participants using M Timepoint 
visualization in the insight-based method reported any insights relative to these tasks. For 
task 7 we found that though the participants using M Graphs performed this task faster, 
however in the insight-based method none of the participants reported any data insight 
belonging to this category. Thus, providing a set of predefined tasks may have forced the 
participants to perform this analysis that the visualization would otherwise not encourage. 
 Furthermore, the insight-based method found additional categories that we had found 
difficult to create tasks for using the task-based method. These were primarily the 
Topology + Expression and Outlier Categories. Hence, the insight-based method revealed 
further advantages of some of the visualization alternatives for those categories. 
 

Tasks Insight  
Category 

Task-based study Insight-based study 

T1 Gene expression M Tpts significantly faster. M Graphs least number of such  insights  
T2 Condition No differences No differences 
T3 Gene expression No differences M Graphs least number of such insights 
T4 Timepoint analysis M Tpts least accurate. 

M Graphs faster. 
1 Tpt most.  
M Tpts least. 

T5 Timepoint analysis M Tpts slower. 
1 Tpt more accurate than M Tpts. 

1 Tpt most. 
M Tpts least. 

T6 Timepoint analysis M Tpts slower. 1 Tpt most. 
M Tpts least. 
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*T7 Topology M Graphs faster than M Tpts. M Graphs least. 
Table 5.13  Compares participants’ performance on the selected tasks for both the methods. * in the table 

indicates different conclusions about the visualizations between both methods. 

5.7.3 Empirical Data Analysis 
The data analysis process for the task-based method was more straightforward as 
compared to the insight-based method. It required the use of standard statistical analysis 
methods like ANOVA and paired t-tests. It took about 6-7 hours to finish the entire 
process, as the investigators had previous experience analyzing such data.  
 The data analysis process for the insight-based method is more complex. The amount 
of empirical data collected for the insight-based method can support more rich analysis 
options. The participants’ insights were analyzed first to find suitable categories to group 
the insights. The choice of categories can be dependent on the investigators’ preferences 
and data understanding. A discussion was required between the investigators to finally 
agree to a list. With meetings involved it took about 3-4 days to finish the data analysis. 
Thus in contrast to the task-based method, data analysis for insight-based method is more 
complicated and subjective. It is possible that other data analysts may have grouped the 
insights differently. For future work, a more generalized insight categorization as in the 
task categorization in [126] can be tried. 

5.7.4 Feedback about the Visualization Interface 
Usability errors: Though both methods were conducted to evaluate visualization 
alternatives, the insight-based method required more interaction with the participants. 
The experiment protocol for the insight-based method required a closer observation of the 
participants’ data analysis procedure and more one-to-one interaction. This made it easier 
to notice if the participants were having any difficulties with the user interface. Also 
while performing data analysis participants commented about the visualization interfaces 
such as “the choice of color is weird”, “the timepoint labels are difficult to understand”, 
etc. Such information is easier to miss in the task-based method. We also noticed in the 
insight-based method that participants using Single Timepoint visualization enjoyed the 
study because the visualization was more interactive in comparison to the other 
visualization alternatives. This may have prompted these participants to spend more time 
in the study as compared to the other participants. 
Data representation: Participants in the insight-based method provided more feedback 
about the visual representation used to visualize the graph. While analyzing the data, the 
participants would comment on the difficulties and suggest other data representation 
methods that they thought would support some of their data analysis tasks in a better way. 
E.g., the participants using Multiple Graph visualization commented that it was difficult 
for them to focus on a single gene only. The participants using Multiple Timepoints 
visualization commented that they were having trouble focusing on a single timepoint. 
They said that somehow the visualization was prompting them to focus on the overall 
node expressions, and that interactions could be used to drill down. 
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5.7.5 Time Analysis 
The task-based method allows comparison of the visualization alternatives based on the 
time participants take to complete specific tasks. Usually, the visualization tool that 
allows participants to complete a task faster is considered better for that particular task. 
 For the insight-based method, the data insights and the time at which they were made 
are recorded. This allows the analysts to investigate what types of insights were reported 
by the participants earlier in the study, and as the participants spent more time in the 
study how these initial insights were modified or how were new insights added to the 
previous insights. This may allow an extraction of the participants’ data analysis patterns 
across the visualization tools.   

5.7.6 Effect of Individual Differences  
The task-based method provides all the participants with an equivalent set of tasks. The 
list of tasks provides very specific direction to the participants throughout the study. This 
prevents the participants from getting confused about what to do next. Also, it makes the 
experience similar for most of the participants. 
 The insight-based method is completely unguided. It is important for the study that 
the participants think aloud. It is possible that some participants are more communicative 
than others, and may report more insights as compared to other participants who may 
have actually had similar data insights but choose not to verbalize them. Sometimes 
participants, depending on the type of visualization alternative they were using, felt that 
some insights were so noticeable that they may be too trivial and not worth reporting. 
Thus, findings from the insight-based study are more likely to be affected by the 
individual differences between the participants.  
 The participants in the insight-based method were suspicious of our intentions, and 
some asked if the data insights they were reporting made sense, or if they can be provided 
with more idea as to what they should be reporting so that they can be more helpful. 
When the participants in the insight-based method became confused, sometimes they 
needed to be encouraged to report insights. We would just say “yes, that makes sense”. 
Some users required more prompting than the others. It may be helpful in the future to 
decide if the participants should be provided with such encouragement to make the study 
more uniform. A few participants reported that the entire study felt as if there was some 
catch involved to it. They thought there was either something that they were supposed to 
definitely notice, or that we wanted them to completely miss. At the end of the study, 
when participants were ready to leave, they wanted to know if they behaved as we 
expected them to or what was the point of the entire study. 

5.7.7 Participant Motivation for Data Analysis 
All the participants in the study were undergraduate biology students. To encourage 
participation in the study, they received some course credit. It is possible that some 
participants came just for the credit and were not motivated to perform data analysis. For 
the task-based method, it could be either lack of motivation or difficultly in 
understanding the visual representation that can affect participants’ performance. For the 
insight-based method it was easier to notice such unmotivated participants because there 
was more communication with the investigator. The participants would often comment 
that they were tired or say “I just came from class, my mind is blank, please give me a 
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minute to rest”. We also noticed that participants who came during the weekend were 
more relaxed and interactive in the study, whereas the participants who came during the 
weekdays were less inclined to spend as much time in the study.   Potentially, in the 
future, since such unmotivated subjects can be recognized in the insight-based method, 
they could be filtered from the study so as to focus on a more realistic scenario. 

5.8 Conclusions about the Visualization Alternatives  
Table 5.14 summarizes conclusions for the visualization alternatives using both methods. 
Since the dependent variables for both methods are different they provide different 
conclusions about the visualizations. The task-based method provides feedback in terms 
of accuracy and performance time. The insight-based method provides feedback based on 
the types of data insights the visualization generated.  Since the tasks are pre-selected, 
they provide a more reliable feedback for the visualization in terms of the tasks. This 
allows designers to judge accurately if a visualization design supports a particular task or 
not. An unguided method provides feedback at a higher abstraction level, suggesting 
what kinds of data analysis a particular visualization method motivates. The fact that 
users may not perform certain tasks with it may not mean that the task is not supported, 
but that the visualization encourages the users to focus on other data analysis aspects.  
 

Vis. Task-based method Insight-based method 
1 Tpts + More consistent performance for all the 

tasks. 
+ Somewhat better for insight category 

Summary. 
+ Best for single timepoint analysis. 
+ Most consistent performance for all insight 

categories. 
M Tpts + Faster performance for single node 

analysis. 
− Slower and less accurate for timepoint 

analysis. 

− Didn’t result in any insights related to a 
single timepoint 

+ Best for identifying outlier nodes. 

M Graphs + Faster performance for overall 
expression. 

+ More accurate and faster for finding 
interesting timepoints. 

+ Faster than M Tpts for graph topology 
tasks. 

− Few insights related to expression values for 
a single node. 

− Didn’t result in insights involving graph 
topology. 

Table 5.14 Comparison of the conclusions about the visualization alternatives from both methods. 

5.9 Conclusions about the Experiment Protocols 
The study reported here was conducted to compare two empirical research methods for 
evaluating visualization alternatives. Since the dependent variables for both the methods 
are different, the studies were compared on higher level criteria most relevant to 
evaluating visualization tools. A difference between the insight method and the task-
based method is that the task-based method is more uniform across the participants both 
in terms of the user experience and the data collected from the experiment. The insight 
method, on the other hand, is somewhat subjective. It is possible that given a dataset two 
participants may analyze it in different ways and report different insights. Hence, a higher 
level analysis such as grouping them in categories or assigning domain value is needed, 
making the data analysis partly subjective. Thus, though the insight-based method 
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provides a way to capture a real world data analysis scenario and a wider range of 
comparison factors for the visualization, two experimenters may analyze the data 
differently and present slightly different conclusions about the visualization tools. 
 There are several key findings between the methods in the comparison of the 
visualization alternatives.  In general, many of the findings in the task method were 
confirmed, or even exaggerated, in the insight method.  This may provide some 
validation of the insight method to detect effects found by the task method.  However, 
some findings were counter, indicating that users behave differently when not in the 
forced direction of a task-based method.  Overall, the task method tended to favor the 
Multi Graphs visualization, while the insight method emphasizes advantages of the 
Single Timepoints visualization. 
 Though the task-based method is more uniform, it provides feedback only on the 
tasks selected. Designing proper tasks is non trivial [117]. This can be even more difficult 
for complicated and deeper datasets. Also, selecting pre-defined tasks requires better 
understanding as to how a particular dataset may be analyzed by an actual data analyst. 
Such information is not always available. The insight study found that Multiple 
Timepoints visualization performed well for finding the outlier nodes. We did not get this 
information from the task-based method because we did not have benchmark tasks to 
reflect that evaluation. However, because of its unguided protocol, the insight method 
may allow participants to miss certain type of insights. None of the participants using 
Multiple Graph visualization made insights about the graph topology, even though they 
performed this task with a fast performance time in the task-based method. Thus, the fact 
that the participants did not perform a task does not mean that the task is not supported by 
the visualization tool, but indicates that the visualization prompts the participants to focus 
on other tasks.  
 Due to the amount of interaction required for the insight-based method between 
participants and the experimenter, a closer observation about how the data representation 
and interaction mechanisms are used by the participants is possible. This may allow 
visual designers to conclude if the data representations and user interaction features were 
used as planned or not. Also, different participants may perceive a representation or use 
the interaction mechanism in different ways, suggesting to visualization designers a wide 
range of possible combinations in which the visualization may be used. Table 5.15 
summarizes the comparisons between the two experiment protocols for evaluating 
visualizations. 
 

Comparison Factor Task-based Method Insight-based Method 
Data & Visualization Tools • Best with simple data. 

• Better with simple visualization. 
• Better with complex data. 
• Better with richer visualization 

tools. 
Participants • Can be applied with any users. • Best with expert users. 
Limitations • Feedback only on selected tasks. 

Difficult for deeper data analysis 
tasks. 

• Motivating participants without 
biasing them for data analysis.  

Empirical Data Analysis • More uniform. 
• Faster. 

• Richer analysis options but 
higher variance, and more 
subjective. 

• Longer analysis. 
Primary Outputs • Indicates whether tasks are • Indicates what tasks a 
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supported by a visualization. visualization motivates.  
Table 5.15 Summarizing comparisons between the task-based and the insight-based methods. 

5.10 Discussion 
The insight-based method presented in Chapter 4 recognized several characteristics of an 
insight such as hypothesis generation, breadth vs. depth, directed vs. undirected, and 
domain value. For the data analysis discussed here, we decided to focus just on the 
category of data insights. Grouping insights by categories provided us with sufficient 
basis to evaluate the visualization tools for the present discussion.   
 Most of the participants in this study were undergraduate biology students. For the 
insight-based method, at the end of the data analysis some participants were confident 
about the data analysis and could summarize the data or make hypothesis about the 
biological phenomenon suggested by the data. Such comments were ranked very high in 
the earlier insight-based study reported in Chapter 4. However, though the participants 
had biological background, they did not have enough familiarity with the specific 
immunity phenomena examined by this dataset. Any such hypotheses were just 
speculations. They would not be able to judge the actual value of such findings. The data 
insights from the visualization tools ranked and evaluated by the actual data analysts will 
be different than those by the actual user. Also, the data and tools used in both the studies 
(Chapters 3 and 5) were more simplistic to reduce the learning time and allow users to 
complete the analysis in limited time.  
 For real world data analysis scenarios, a data analyst spends much more time 
analyzing the data. Also, the type of visualization tools and the data analysis procedures 
of an actual data analyst will be different compared to the participants in the short term 
study. Chapter 6 presents a longitudinal study of visualization tools that investigates long 
term visualization usage by actual data analysts. 
 
   
 



 

   

6 Insight-Based Longitudinal Study 
The insight-based studies conducted to evaluate visualization tools in the earlier chapters 
were short term. We performed a longitudinal study to analyze if the insight-based 
method can be used for long term studies. This chapter describes a longitudinal study of a 
bioinformatics dataset analysis. The main focus of this work was to capture the entire 
analysis process that an analyst goes through from a raw dataset to the insights sought 
from the data. The study provided interesting observations about the use of visual 
representations and interaction mechanisms provided by the tools, and also about the 
process of insight generation in general.  

6.1 Introduction 
An initial attempt to capture the real world exploratory data analysis scenario in a short-
term controlled study using an insight-based methodology is reported in Chapters 4 and 
5. Though the studies provided interesting observations about the visualization tools, they 
had limitations. The studies measured the insight process for short term data analysis by 
the participants, and thus failed at capturing the long term insight gained by users who 
spend more time analyzing the data. The amount, time and type of insight generated may 
change as one becomes more familiar with the visualization tool as compared to using it 
for the first time. 
 Most importantly, the participants in the insight-based studies reported earlier were 
unfamiliar with the experimental context of the data used in the study. Hence, the data 
did not mean as much to them because, simply put, it was not their data. Since the 
participants were not self-motivated to perform data analysis, they had to be prompted 
during the study to report insights. Thus, the study failed to address the most important 
factor i.e. motivation that drives a data analyst to spend days and often months analyzing 
a particular dataset. Also the study did not capture the ability of a data analyst to judge 
the significance of reported insights, which is usually based on users’ domain knowledge 
and also familiarity with the data background and the experimental context. 
 To address these issues we performed a longitudinal study by working closely with 
bioinformaticians who were ready to start analyzing data from a microarray experiment 
using visualization tools. We wanted to analyze if the short term studies reported in 
earlier chapters are representative of the real-world data analysis process. Other goal of 
the study was to gain basic understanding into the visual analytics process. The primary 
research questions addressed by the longitudinal study were: How are different 
visualization tools used to gain insight into the data? How much effort and time are 
required to derive the most interesting insights (e.g. hypothesis generation Chapter 4)? 
What process is followed by users to get needed insights? How is insight synthesized 
over time? Is it by constantly discovering the unexpected trends in the data or is it a 
gradual process that builds newer and deeper insights in the context of previously 
generated ones?  
 A primary use of the visualization tool is to gain insight into the data [76], [77]. For 
this, a visualization tool not only provides data representations but also supports 
interaction mechanisms. We were also interested to learn: Which visualization techniques 
and interaction mechanism combinations were most effective in providing insights? And 
more importantly, how do users overcome the shortcomings of a visualization tool?  
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6.2 Experiment Design 
In this longitudinal study, we observed bioinformaticians over a long period of time as 
they analyzed their data from a microarray experiment. 

6.2.1 User Background 
Two bioinformaticians worked closely together to analyze the data and interpret the 
results. A post-doc was mainly in charge of performing the bioinformatics data analysis 
using software visualization tools. A bioinformatics faculty member supervised the 
overall analysis. Though not new to microarray technology, the bioinformaticians had 
little previous experience with the specific software tools used for this data analysis.  
Later in their analysis, they collaborated with a larger group of biologists to examine 
broader impacts. 

6.2.2 Visualization Tools 
The following visualization tools were chosen by the bioinformaticians for data analysis 
and reporting. Microsoft Excel was also used extensively for data formatting. 

• Spotfire® [78]  (Figure 6.1) 
• PathwayAssist® 3.0 [5]  (Figure 6.2) 
• GenMapp [4]  (Figure 6.3) 
• Q-Value Software [127] (Figure 6.4) 
• KaleidaGraph [128] (Figure 6.5) 

  
 The bioinformaticians started with Spotfire and PathwayAssist 3.0 because software 
licenses for them were already purchased by their lab. They also tried to use other tools 
like Affymetrix GCOS [108], and R [129], and different versions of PathwayAssist (2.0, 
3.0, and 4.0). They found that they preferred PathwayAssist 3.0. However, they did not 
search for other software tools rigorously, as on performing some data analysis they felt 
that both Spotfire and PathwayAssist supported their tasks very well. GenMapp was used 
because the bioinformaticians liked the mouse signaling pathways provided by that tool. 
They also used a Q Value software package to minimize false discoveries, and finally, 
KaleidaGraph to create readable static graphs to present their results.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.1 Spotfire®. 
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Figure 6.2 PathwayAssist®. PathwayAssist is now known as Pathway Studio. 
 
 
 
 
 
 
 
 
 
 
 
 

  
Figure 6.3 GenMapp. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.4 Q-Value analysis. 
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Figure 6.5 KaleidaGraph. 

6.2.3 Dataset 
The dataset measured mRNA expression levels from mouse lung tissue under 4 different 
conditions (control group, flu infected, tobacco smoke exposed, both flu infected and 
tobacco smoke exposed). The measurements were taken for 6 timepoints (6, 20, 30, 48, 
72, and 96 hrs) with three replicates for each timepoint, resulting in: 4 conditions X 6 
Timepoints X 3 Replicates = 72 data conditions for 45001 probe sets (genes). Thus, the 
dataset was 45,001 rows X 72 columns.   
 In general, these bioinformaticians’ scientific goal is to understand the pathogenesis 
of flu infection and the impact of tobacco smoking on that process. Their analysis is 
exploratory, and is not limited to simply verifying a specific hypothesis. 

6.2.4 Protocol 
To keep the experiment as close to real world data analysis as possible, we did not 
require the bioinformaticians to follow an unusual protocol. They were requested to keep 
a diary of the process they undertook, the insights gained from the data, the visualization 
and interaction techniques that led to the insights, and the successes and frustrations they 
experienced with the software tools. We also met regularly, once every 2-3 weeks over a 
3 month period, to discuss the data insights and their experience with the tools. The 
bioinformaticians did not perform data analysis every day, but rather based on how it fit 
with their normal job activities. However, when analyzing the data they usually spent 
about 3-4 hours at a time. To judge the significance of insights, at the end of data 
analysis, we requested the bioinformaticians to rank the data insights on a scale of 1-5, 
with 5 being the most significant. 
 An important requirement of the study was that we did not impact their normal data 
analysis process in any way, except for the diary keeping and debriefing meetings. We 
did not provide any help with the software tools or guide their data analysis in any way. 
The analytic process, the selection of tools, and the data were all determined by their own 
normal procedures that they had planned regardless of our observation. 

6.3 Data Analysis Procedure and Insights 
The bioinformaticians started from a raw Affymetrix microarray dataset. They used 
Microsoft Excel to convert the data into the format they needed for further analysis. 
Description about different file formats used by Affymetrix and their meaning and 
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significance can be obtained from [108]. This process was non-trivial and required about 
15 hours of extensive data manipulation.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 6.6 The entire dataset (45,001 rows X 72 columns) visualized using Profile chart in 
Spotfire. 

 
 Once the data was in the required format, they loaded it into Spotfire to get an initial 
overview. Figure 6.6 displays the visualization of the entire dataset (45,001 X 72) using 
the profile chart (similar to parallel coordinate visualization) provided by Spotfire. To 
make data analysis more manageable, they decided to filter some genes. They first 
removed the genes that had absent or null values in the data, by using sorting and column 
reordering features of Excel. For further filtering, they decided to remove genes that did 
not show much change from one condition to another, using dynamic queries provided by 
Spotfire. The final dataset had 30,000 rows. 
 They began the data analysis by using the scatterplot visualization in Spotfire to plot 
expression (data values) for each control timepoint with respect to timepoints of the other 
conditions (Figure 6.7). Each point in Figure 7 corresponds to a probe value (or a row) in 
the dataset. This was an extremely time consuming process due to combinatorial 
explosion. They initially wanted to use the profile chart to get an overview, however due 
to the sheer volume of data they found it confusing due to visual clutter (Figure 6.8 
shows the profile chart for Control vs. Flu timepoints). Thus, they had to manually check 
individual time points to make data size manageable.  
 One of their data analysis aims was to search for probes, from the entire dataset, that 
displayed different expression values for selected conditions. Hence, they used scatter 
plots, since that view made it easier for them to identify outliers that displayed distinct 
behavior for the selected time points. They also tried to increase the dimensions 
visualized by coloring the plot using a third dimension. E.g., in Figure 7, though the plot 
visualizes Control 6 Hrs. vs. Flu 6 Hrs, the color for each dot is based on its expression 
values for Smoke Exposed at 6 Hrs. However, they found this confusing and focused 
more on the layout without taking color into account. 
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Figure 6.7 Visualization of Control 6 Hrs vs. Flu 6 Hrs using the scatter plot in Spotfire. Each dot in the 
figure corresponds to a probe (or a row) in the dataset. The color of each dot corresponds to expression 

value in Smoke Exposed 6 Hrs. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.8 Visualization of all the 6 timepoints for Control and Flu conditions in profile chart in Spotfire 

for 30,000 probes. 
  
 They tried to use 3-D scatterplot visualizations (Figure 6.9) to have an overview of 
more timepoints simultaneously and save some data analysis time. However, they 
immediately gave up the idea as they had difficulty interpreting the visualization and 
found it actually took longer for them to think through the meaning this way.  
 They also tried K-means and SOMS clustering algorithms, and treatment comparison 
feature provided by Spotfire to get an overview of the common gene expression trends in 
the data. Figure 6.10 shows the visualization resulting from grouping the data by 3X3 
SOMS clustering. They also checked the clusters to verify if various familiar genes 
displayed the behavior they expected, and if biologically functionally related genes were 
appropriately grouped together. Table 6.1 lists the insights they obtained using these 
views.  
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Figure 6.9 Visualization of Control 6 Hrs vs. Flu 6 Hrs vs. Smoke Exposed 6 Hrs using the 3-D scatter plot 
in Spotfire. The dots are colored based on the expression value in Smoke Exposed + Flu 6 hrs. 

 
 
 
 
 
 
 
 
 
 
 

  
Figure 6.10 A visualization of 3X3 SOMS clustering of the data. 

 
 
Date Visualization Insight Value 

8/12 Scatter  
Plots 

• Noticed very up-regulated genes in flu 96 vs. ctrl 96 on scatter plot. 
Same effect is seen in the time series.   

1 

8/12 
 
 

SOMS  
Clustering 

• Self-organizing-maps at 3x3 grid show some interesting profiles e.g., 
one where genes are only up-regulated in flu 20 hr and others only up 
regulated at smoke exposed+flu 30 hr.  If these are same genes, then 
smoking delays flu induction. 

• Certain matrix metalloproteases are up regulated along with interferon 
activated genes.   

4 

8/12 K-Means  
Clustering 

• K mean clustering appear to be much better than SOM in sorting out 
different dynamics of gene regulation, especially on IFN genes.  

3 

8/12 Treatment 
comparisons 

• An important proteolytic enzyme of relevance to the group appears to 
be down regulated in flu, smoke exposed, and smoke exposed +flu.   

• Several immune system activating genes are all up regulated by 
smoke exposure 

3 

Table 6.1 Lists insights gained at the start of data analysis. 
 
 The clustering algorithms group genes based on the similarity in their expression 
profiles. The bioinformaticians were worried to discover that genes with distinct time 
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profiles were also grouped together. Also, the algorithms do not take into account the 
biological functionality of the genes. However, they liked the dynamic query interaction 
method provided by Spotfire as a way to quickly explore many criteria. Hence, they 
decided to focus on the profile chart and scatter plot visualizations for more detailed 
analysis. E.g., Figure 6.11 displays a profile chart visualization for all genes that are up 
regulated for Flu as compared to Control condition. Table 6.2 lists the insights obtained 
by this process. The bioinformaticians also made a list of interesting genes from the 
queries and saved them for further investigation. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.11 Visualizes Control vs. Flu for all 6 time points for one replicate. The display is manipulated to 

show genes that were up-regulated for flu as compared to control condition. 
 

Date Visualization Insight Value 

8/15 Scatter plots • Heat shock proteins, Retnla, cathepsins, serum amyloid A3, 
interferon induced proteins, certain matrix based proteins are 
up-regulated in flu infected mice.  Also slower in up-
regulated items include MHC molecules by 10 hours (in 
smoking). 

3 

8/29 Profile Chart • Noticed that some heat shock proteins are up-regulated only 
at 30 hours in control mice. 

• Cathepsins are upregulated by flu.   

4 

Table 6.2 Lists insights by using scatter plot and profile chart visualizations along with dynamic queries. 
 
 Now that the bioinformaticians were more familiar with the data, they needed 
different visualizations to get more biologically relevant insights. They decided to use 
PathwayAssist for further data analysis involving biological pathways. Pathways are 
network-based models of complex biological processes [12]. They had already made lists 
of genes they needed to investigate further. They wanted to build pathways involving 
these genes, using search capabilities provided by PathwayAssist. This would show other 
genes that have a direct influence on these genes of interest. PathwayAssist uses NLP 
algorithms to extract information about relationships between genes from various search 
engines such as PubMed. Figure 6.12 shows an initial pathway created for genes they 
selected. Since the visualization had more information than they could handle, they 
abandoned the idea of depending on pathways created automatically. Also, they cannot 
completely trust the automatic pathways created by the tool. They would have to 
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manually curate the pathways, because the NLP algorithms usually provide some level of 
information that is irrelevant to their data analysis or is incorrect. 
 
 
 
 
 
 
 
 
 
 
 
 

  
Figure 6.12 Automatic pathway created by PathwayAssist for a selected list of genes. 

 
 The bioinformaticians decided to focus on the apoptosis signaling pathway because 
their research group is most interested in that topic. They knew that GenMapp provides 
pre-built pathways. Although they preferred the pathway provided by GenMapp, they had 
problems overlaying the expression data onto it. The expression data manager in 
GenMapp (Figure 6.13) required them to define color scales for each individual column. 
Since they had 72 columns, they thought this would be time consuming. They decided to 
transport the GenMapp pathway to PathwayAssist and then link it to the microarray data. 
This involved importing genes and reconstructing the pathway. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.13 Expression Dataset Manager in GenMapp. 
 
 They utilized the heatmap visualization provided by PathwayAssist to investigate 
time-dependent regulation of the pathway. They found it easier to click on the column 
name to display data related to a particular condition on pathways in PathwayAssist 
(Figure 16.4). Using this, they found genes that were suppressed by smoke exposure but 
up regulated in flu. Table 6.3 lists insights resulting from pathway visualization. 
 
 
 



Saraiya: Insight-Based Studies for Pathway and Microarray Visualization Tools 

6 Insight-Based Longitudinal Study 106

 
 
 
 
 
 
 
 
 
 
 
 

 Figure 6.14 Data from Flu 20 Hrs is overlaid on cell apoptosis pathway and linked to heatmap 
visualization in PathwayAssist. The color is used to denote expression value, red denotes up-regulated 

genes whereas green implies down regulation. 
 

Date Visualization Insight Value 
9/01 Heatmap • A list of pathway genes that are suppressed by smoking but 

up-regulated by flu. 
4 

9/12 
 
9/13 
 
9/21 

Pathway  
visualization 
 
 
  

• The up-regulation of Mx by flu is suppressed by smoking 
even though smoking itself did not have an effect on basal 
Mx activity. 

• Genes involved in apoptosis are regulated, particularly 
DAXX which is up-regulated in flu infections. 

• Flipping through time points on PA, noticed that CHUK 
and IRAK1  of the NFKB signaling is only up-regulated in 
flu vs. control. 

3 

Table 6.3 Lists insights resulting from using the heatmap and pathway visualization 
 
 Along with the data analysis, the bioinformaticians also became more familiar with 
additional features and functionalities of the visualization tools by reading the help 
documentation and calling technical support. They used profile search (Figure 6.15) for 
genes that display expression similar to a specified pattern, and statistical analysis 
methods such as t-tests and Anovas. Table 6.4 lists insights from this process. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.15 Profile search feature in Spotfire. 
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Date Visualization Insight Value 
9/28 Profile  

Search 
• Used profile search to find genes that are regulated (over all 

conditions) similar to Mx.   
• Smoke exposure REALLY suppresses some heat shock accessory 

proteins.  The NKB system is responding similarly. Maybe 
through Tol receptors? 

3 

9/28 Data-Pattern-
Distinction 

• Few distinctive genes that may be indicative of smoking. There 
are several candidates.  

• Influenza infection is typified by the up-regulation of certain 
genes that are activated very early by interferon. 

• Retnla has a very interesting profile, up-regulated in flu and 
EARLY in smoking recovery!  VERY interesting. 

5 

9/30 Anovas,  
t-tests 

• T-test/ANOVA shows that three genes are the optimal indicators 
of smoking, including flu infected individuals. 

4 

Table 6.4 Lists insights obtained from profile search and statistical analysis. 
 
 Table 6.5 lists the process towards the end of their data analysis. The 
bioinformaticians were trying new methods to get more insights from the data to ensure 
that they do not unintentionally neglect any unexpected results. The complexity of the 
procedure indicates more familiarity with detailed features of the tools. They were also 
refining their findings to ensure the most accurate insights. 
 Towards the end of the study, the bioinformaticians were evaluating the best 
statistical tests to apply to the data. In addition to using t-tests and p-values to minimize 
the number of false-positive tests, they were also using q-value analysis to minimize the 
number of false discoveries [130]. The q-value offers a less conservative approach to 
measuring the statistical significance of genomic data than the traditional Bonferonii-
corrected p-value. Although Microsoft Excel supports this analysis, they felt that the Q-
value software was more suited for bioinformatics data analysis. 
 

Date Visualization Data Analysis Procedure 
10/31 
 

Data  
formatting + Pattern  
Distinction + 
Biology  
Database  search 

• Removed absent call data points and used the discovered binary sorting to 
count replicate present calls.  Using distinction factor (correlated to t-test) 
to find flu indicators in Spotfire and then export to Pathway Assist to find 
biological significance.   

11/01 Profile search • Examining profile search and treatment distinctions in Spotfire.  Trying to 
find the best way to differentiate different time profiles of expression. 
Particularly, should absent calls be considered 0 or null? 

Table 6.5 Lists the later data analysis procedures. 

6.4 Insight Presentation 
The bioinformaticians work in close collaboration with another large international 
biological research group. They recently presented their data analysis results to the other 
group. Most of their presentation was related to immune system genes and used 
Microsoft PowerPoint slides. Since the international group is less conversant with 
microarray data analysis, the bioinformaticians shared their time-series data analysis 
experiences including data filtering and normalization methods.  
 The international group is primarily interested in chronic respiratory diseases, not flu 
infections per se. Hence, they have a different set of genes of interest than the 
bioinformaticians. However, the bioinformaticians were able to easily provide 
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information about the other genes during their presentation and later meetings, by using 
the data filtering capabilities of Spotfire. Spotfire allowed them to easily narrow down the 
genes of interest using text filters. For a given text string, Spotfire can list all the genes 
containing that text. Many genes having similar functionalities have similar names like 
Casp1, Casp2, etc. The search capabilities worked well to find such groups. Spotfire also 
let them analyze the time profiles for selected genes (Figure 6.16). The audience found 
the dynamic query mechanism provided by Spotfire to be helpful because it allowed them 
to search for genes based on the expression values. They also performed t-testing on the 
fly to check significance of the results. 
 Based on this interactive collaboration, they discovered that smoking suppresses 
expression of Slfn genes. This finding was considered very exciting, since not much data 
is currently available for genes belonging to that family. They also concluded that 
smoking suppresses expression of genes involved in DNA repair and those that facilitate 
cell cycle (insight value = 5).  
 
 
 
 
 
 
 
 
 
 
 

  
Figure 6.16  Time profiles for a group of selected genes. The profile indicates suppressed values for 

Smoking + Flu condition as compared to the Flu condition. 
 

 The biologists are currently working towards publishing their data analysis results. 
Their main conclusions are that smoke exposure suppresses overall gene expression 
under conditions of flu infection. They will also report a list of genes that were found to 
be significantly affected, the biological functions of these genes and the overall 
significance of these effects on biological processes.  There was one major new insight 
involving the DNA repair mechanisms that will be explored in future collaborative work. 
It should be emphasized that, despite use of software tools, a significant amount of 
manual exploration and the input of several biological domain experts was necessary to 
derive useful biological understanding from the experiment data.  
 They will use KaleidaGraph to graph the results and gene expression time profiles. 
Though other software tools allow them to easily transfer screenshots to Microsoft Word, 
they are accustomed to KaleidaGraph and find it better suited for simple static data 
presentation. They also prefer the quality of images in terms of print resolution. 
KaleidaGraph also provides better capabilities to manipulate graph display details, such 
as labeling, for presenting information. An example of a graph presenting expression 
profiles for a selected gene using KaleidaGraph is shown in Figure 6.17. The profiles are 
color coded based on the four main conditions in the experimental paradigm. 
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Figure 6.17  Time profiles for a selected gene in KaleidaGraph. The profile is divided into four different 
colored lines to represent the 4 conditions in the data. 

6.5 Discussion 

6.5.1 Data Analysis Procedure 
Microarray experiments result in very large datasets that require extensive preprocessing 
before they can be analyzed for insight. The bioinformaticians spent about 15 hours 
formatting the data in Microsoft Excel. Excel was used because it provides an extensive 
and efficient functionality for data manipulation. Another reason for selecting Excel was 
the bioinformaticians’ familiarity with it. They commented that even though a 
visualization tool may provide ways to manipulate data, they preferred Excel to save time 
learning new software. 
 Once they had formatted data they needed help to load the data into Spotfire. They 
had separate files for information relate to the genes and their expression values. They 
called Spotfire technical support to figure out a way to efficiently combine both the 
datasets into one so that they could proceed with data analysis. Although Spotfire allowed 
them to combine more than one column by taking averages, they did not find a 
mechanism for row arithmetic. To get around this limitation, the bioinformaticians had to 
format the data in Excel and re-import it to Spotfire. 
 The first step in data analysis described here was getting familiar with the data. The 
bioinformaticians used multiple visualization representations in Spotfire for this. They 
started initially by using scatter plots, profile charts, and cluster visualizations provided 
by Spotfire, and eventually used features such as statistical algorithms and data pattern 
distinction for more complex analysis. They seemed to follow the general HCI approach 
of "overview, zoom, and filter" in their process. For biologically relevant insights they 
found Spotfire alone inadequate and needed to rely on other tools, as well as domain 
experts. They used the list of genes selected in Spotfire to examine their biological 
functionalities and relationships with other genes in PathwayAssist. Towards the end of 
their process, they were trying different statistical analysis methods to ensure more 
accurate and statistically sound results. Moreover, they needed to ascertain that their 
results were robust to various choices that are commonly made in the community. There 
is no single accepted method as yet for microarray data analysis and their process 
reflected their professional judgment. 
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 Once, the data analysis is completed, it is equally important to have an efficient 
mechanism to present information. Though the bioinformaticians worked with Spotfire 
and PathwayAssist for analyzing the data, they needed to use yet another tool, 
KaleidaGraph for creating readable graphs to present their results. They found both 
Spotfire and Microsoft Excel inadequate to create all data representations needed for 
publication, although they will use exported plots from both SpotFire and Pathway Assist 
in their published research report. 
 Thus, the bioinformaticians used a combination of different software tools during the 
course of their data analysis process. They picked out key features from different tools 
for different purposes. The use of multiple visualization tools required the 
bioinformaticians to export and import information, several times, from one tool to 
another. This required additional data formatting that was time consuming. Hence, it is 
important to provide better interfaces for the software tools to facilitate data exchange 
between them. 

6.5.2 Effect of Interaction Mechanism 
The bioinformaticians used multiple visual representations in Spotfire to get an initial 
overview of the data. One of the main reasons that they spent time exploring the data in 
Spotfire, using scatter plots and profile charts, is the dynamic queries provided by the 
tool. They said that this might have even motivated them to spend more time with the 
visualization then they wanted initially. Dynamic queries provided an efficient way for 
them to manage a large amount of data. Rather than worrying about 45,001 probe-set 
values they could easily focus on the genes of their interest.  
 For pathway analysis, the bioinformaticians preferred PathwayAssist because the tool 
allowed them to easily overlay data values for a selected condition on the pathway of 
interest using color coding. The tool also automatically filtered out all the genes that did 
not belong to the pathways. Though seemingly trivial, this was one of the main reasons 
that encouraged the analysts to continue working with these tools. Filtering is critical for 
making the dataset tractable for human exploration, yet they worried that they may have 
been missing important information in this process. They did not rigorously search for 
other software visualization tools, as they felt both these tools supported their tasks well. 
 Spotfire served well for providing dynamic queries. Even during their short term 
presentations to the international collaborators, the tool provided them with an efficient 
way to highlight genes of interest for other researchers. Using text search mechanisms the 
bioinformaticians could easily create lists of genes of interest to the other researchers and 
also display their time profiles.  
 It is important to maintain a history of user actions, and provide replication capability. 
The bioinformaticians spent a lot of time rearranging the data columns in Spotfire to 
visualize timepoints of interest next to each other. However, each time they restarted 
Spotfire, these rearrangements were lost and they had to redo them again. They had the 
same experience with zooming on areas of interest within visualizations. For example, 
when they changed the data columns in scatter plots, the zoom position was lost. Thus, 
these seemingly minor usability problems that developers might not have considered 
important had a major effect on these bioinformaticians when they had to repeat arduous 
operations 72 times.  
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 Thus, methods to efficiently interact with and selectively filter the data to focus on 
points of interest were considered equally or even more important than the visual 
representations. In fact, they tended to prefer the more simple visual representations.  The 
bioinformaticians had no trouble restarting data analysis with the selected tools even after 
a gap of a few days. An efficient interaction method can make the entire experience with 
the visualization tool, and thus the insight generation process, more rich and enjoyable. 

6.5.3 The Process of Insight Generation 
In the reported scenario, the subjects started the data analysis process by searching for 
potential insights. They did not have a prior list of specific hypotheses to validate, 
although they used the past 20 years of interferon research as a benchmark for validating 
their experimental results. They wanted to find as many interesting facts as possible in 
the data for more detailed later exploration. Though they wanted to use profile charts, 
they found the scatterplot visualization more informative due to the data size (Figures 6.7 
and 6.8). However, gaining an overview of the data by examining only 2 columns at a 
time was time consuming.   
 They used clustering algorithms and treatment comparison features to get an initial 
idea about various patterns in the data. Most of these visualization features were not 
considered difficult to learn. But there were many steps to execute and many 
combinations to explore. It is also important to interpret results from each combination in 
terms of biological domain knowledge to ensure that the results make sense. In fact, the 
most novel insights were not revealed directly by tools, but by experienced investigators 
who connected the patterns of changes in two particular pathways to their prior 
knowledge about the underlying biological processes. 
 An important process is not just analyzing data using different combinations, but also 
interpreting which combination is best suited to analyze a particular dataset. For instance, 
Spotfire provides several different clustering algorithms including SOMS, k-means, and 
hierarchical clustering. Interpreting how each method groups the genes, and resolving 
conflicting results from these methods can take time. Similarly, different normalization 
methods yield different results from the data. Hence, selecting the appropriate method 
depends on understanding how each method affects the data in terms of experimental 
context. This clearly suggests the influence of domain knowledge on data analysis. 
 The bioinformaticians decided not to rely on clustering algorithms for data analysis 
because the algorithms grouped genes with non-distinct time profiles in similar groups, 
and the algorithms did not take biological functions of the genes into account. Later, the 
bioinformaticians used profile chart visualizations to explore the data in more details. The 
visual representation along with the dynamic query interaction mechanism provided a 
valuable combination to explore the data. They found they could easily combine many 
different queries to filter data, resulting in a high user satisfaction. They used this 
technique to find a list of interesting genes specific to a particular biological function to 
focus on. They were especially interested in finding genes that were differentially 
expressed in smoke exposure + flu condition as compared to the flu condition. This 
would indicate infection-related genes that were affected by smoking. They spent about 
1-2 weeks exploring the data in profile charts. They needed the experience of exploring 
many possible combinations to simply observe all facets of the data.  This gave them 
confidence in their coverage, and resulted in some serendipitous findings as well. 
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 For domain specific information, they needed more biologically relevant 
visualizations. Though Spotfire ontology gave them some clues about patterns of 
expression for functionally related genes, it was not sufficient. The bioinformaticians 
needed to see the interactions of the genes that they selected with respect to other genes 
that have a direct influence on them. They decided to use pathway visualizations in 
PathwayAssist for this. They initially decided to use the gene list to create pathways 
automatically. However, since the queries resulted in too much information that was 
difficult to comprehend and interact with in the visualization (Figure 6.12), they decided 
to manually curate pathways. The process of pathway analysis was more complex and 
required about 2-3 weeks of data analysis and interaction with the tools.  In general, it 
seemed a constant struggle for the bioinformaticians to continually reduce the complexity 
of the data to a comprehendible amount.  Even with the use of visualization tools, they 
were forced to focus on smaller pieces so that they could wrap their minds around the 
observed biological behaviors. 
 The bioinformaticians found the most exciting insights after almost 1.5 months of 
data analysis and several months of "learning" time with the software. However, from the 
values of insights reported earlier, it is clear that later analysis is influenced by findings 
from the earlier analysis. Also, the bioinformaticians used more complex queries and 
features in the tools to reach them. This suggests more familiarity and confidence with 
the tools. Moreover, they feel that despite a state-of-the-art analysis, there is much 
untapped information waiting for mining by different domain experts. 
 Once they were done with pathway analysis, they then used other visualizations in 
Spotfire to ensure that they did not unintentionally miss any unexpected insight from the 
data. The later data analysis process dealt with analyzing their insights and to ensure 
correct statistical interpretation. They also tried another data formatting method to check 
if this resulted in any other insights or conflicts with earlier observations. Their most 
recent data analysis involves capabilities of more than one visualization tool 
simultaneously, requiring a lot of back-and-forth processing. 
 From the discussion it is clear that the choice of visualization methods used to 
analyze the data is based on the subjects’ domain knowledge. Discovering an appropriate 
visual representation and procedure to interpret the data could be considered procedural 
insight. This is usually a non-trivial task, and requires trial-and-error attempts with many 
combinations. The subjects reported that in the future they will be able to analyze a 
similar dataset in a relatively shorter time. Such use of learned domain knowledge is very 
difficult to reproduce in short-term experiments.  

6.6 Short Term vs. Long Term Insight-Based Studies 
Three user-studies (Chapters 4 – 6) were performed using the insight-based method. Two 
studies investigated the use of visualization tools in a controlled laboratory-type setting, 
whereas one study investigated the actual real world long time visualization usage. The 
short term insight studies had the following three limitations 

1. The study measured insight from short term usage. In real world scenarios, 
biologists spend days, weeks and even months analyzing data. Long-term insight 
may be very different than short term insight.  Long term insight can provide 
broader understanding that guides biologists through multiple cycles of 
microarray experiments.  
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2. The participants in the study were unfamiliar with the data, and not personally 
invested in its creation. The only background knowledge they had was what we 
provided during the course of study. It was very difficult to appreciate the 
biological relevance of the microarray data they were analyzing. Hence, the 
hypotheses they reported were more speculative. Yet, the insights were not trivial, 
which suggests that the visualizations are provoking users to think deeply about 
the data and to apply the insight in their domain.  

3. Each participant was unfamiliar with the visualization tool that they used.  
Gaining expertise with a visualization tool may change the method in which it is 
used and the insight it provides. 

 To address these issues we performed a longitudinal study to analyze how 
visualizations are used to get insight into the data. For this we worked with 
bioinformaticians who were beginning data analysis. Since they had an undeniable 
motivation in performing the data analysis, it was possible for us to observe the process 
for an extended period of time. It would have been impossible to perform this study if the 
subjects were not intrinsically interested in the data. Also, they were able to provide us 
with more meaningful feedback about insights and their utility. 
 To keep the data analysis as natural as possible, we worked primarily through a 
research diary maintained by the subjects. This saved us from having to continuously 
observe the user.  It also indicates the viability of a self-reporting approach to 
longitudinal insight studies. The bioinformaticians did not have to do anything difficult 
beyond maintaining the research diary, in which they noted insights and captured screen 
shots. Most of these notes are things they would want to capture anyway.  The data 
analysis process proceeded according to their normal job activity. Thus, the longitudinal 
study requirements were very light in extra effort for subjects and straightforwardly 
manageable for the evaluators. Moreover, the HCI investigators have a long term 
relationship with the bioinformaticians and have observed many aspects of their process 
in other contexts over approximately three years. 
 As the study was over an extended period of time, it was possible for us to study the 
long term insight generation process. We were also able to observe the use of different 
visual representations and interaction techniques over a long period of time. Due to their 
familiarity, the subjects could provide more relevant feedback about their insights and 
about the visualization tools and their limitations, including long-term usability problems. 
Thus, the longitudinal study enabled observations that would not have been possible in a 
short term study. Table 6.7 lists general comparisons between the short term vs. long 
term insight-based studies.  
 
Comparison Factor Short term study Longitudinal study 
No of Users Can be large. The study reported in 

Chapters 4 and 5 used 30 participants 
each. 

Limited. The study reported here used 
about 2 participants. It is much more 
difficult to find participants willing to 
commit for longer period of time for the 
study. 

Experiment Protocol The experiment protocol can be 
controlled as the experiment uses lab 
type of setting. The investigator is 
responsible to identify data insights. 
This can make insight collection 

The participants for the study are 
responsible for keeping track of data 
insights. This increases work load for the 
participants.  Since, the insights are 
discussed once in a week or two weeks, 
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process more uniform. most of the participants’ comments are 
in retrospection.  

Visualization Tools It is possible to evaluate more 
number of tools with this type of 
study. 

The number of tools used will be limited 
and also based on participants 
preferences. 

Datasets Visualization tools can be evaluated 
on different types of datasets.  This 
allows the evaluators to check if the 
visualization tool is biased towards a 
particular dataset. 

The number of datasets that will be 
evaluated using this approach is limited. 
Most often the participants have just one 
dataset to work with. Also, the 
comparisons of the tools and insights 
will be over different datasets since all 
the participants are working with their 
own data. 

Statistical Analysis It is possible to perform statistical 
analysis across the insight categories. 

Since the number of participants is 
limited, it is difficult to perform any 
statistical analysis. 

User Motivation Participants work with pre-selected 
datasets. Also since most often the 
data selected is not theirs, they have 
limited motivation for the 
experimental study. 

Most often the participants will be 
working with their own datasets that they 
want to analyze. This increases their 
motivation to work with the visualization 
tools. 

Insight Value Since the participants are not 
working with their datasets, it will be 
difficult for them to judge the value 
of their reported insights. The 
insights need to be coded by an 
independent domain expert. 

The participants mostly work with their 
own datasets, hence they can determine 
the value of their insights. 

Table 6.6 Comparison of the short term insight study to the longitudinal insight study. 
 
 
 



 

  

7 Conclusions & Future Work 
7.1 Insight-Based Approach 
The main purpose of a visualization tool is to provide insight. This can be difficult to 
measure quantifiably. Although the definition and the quantifiable characteristics of an 
‘insight’ identified in Chapter 4 are not comprehensive, they provide an approximation of 
users’ learning from the data using visualization tools. This, in turn, enabled us as 
evaluators to gain insight into the effectiveness of the visualization tools. The technique 
evaluates users’ findings from the data. More, valuable, faster, and deeper data findings 
correspond to more effective visualizations as it suggests users can gain more insight into 
the data with the tool. 
 Unlike the task-based method, the insight-based method uses an unguided data 
analysis protocol. The visualization evaluators record open-ended insight generation by 
not restricting users to a set of preplanned benchmark tasks. The recorded insights 
provide a way to analyze the kinds of data insights are motivated by the visualization 
tool. The insight-based method cannot indicate what kinds of insights are not supported 
by visualization tools. If the participants fail to report certain kinds of insights that would 
usually mean that the participants failed to notice such insights on their own. Providing 
tasks in such instances can force the participants to perform the corresponding data 
analyses with the tools that they may miss on their own. The insight method thus, 
addresses the research question: “What kind of insights does a visualization tool 
motivate?” Whereas the task-based method allows determining for a particular type of 
task(s), the visualization tool that lets participants complete task(s) most accurately. The 
accuracy may be more reliable means of determining which kind of tasks that the 
visualization tools supports vs. does not support. 
 The task-based method requires pre-selection of the tasks to evaluate the visualization 
tool. It is possible that the evaluators may select the tasks that are most interesting to 
them or select tasks to bias results towards a particular visualization tool. Also, though 
the task-based method provides feedback for the visualization tools on pre-selected tasks 
fails to report reliably for unselected tasks. Due to unguided protocol, it is possible that 
given a dataset two participants may analyze the dataset in different ways and report 
different insights. With sufficiently large number of participants this can cover several 
different types of possible insights for the visualization tools. Thus, the study may often 
provide feedback for the kinds of analysis that the evaluators may have not thought about 
earlier. Although, since the participants report just the insights for the insight-based 
method a higher level analysis of the reported insights such as grouping them into 
different categories or assigning domain value is needed. It is possible that two different 
evaluators may analyze the reported insights differently resulting in different conclusions 
about the visualization tools. Therein lies the strength and the weakness of the insight 
method. The subjective group makes the insight method less uniform, however different 
insights specified by different participants suggest different possible insights and the tool 
usage by the visualization tool. Also, it helps to determine if participants’ with different 
backgrounds may use the visualization tool in different ways. 
 Besides the short term study, a longitudinal study was also performed with the insight 
method. The long term insight-based method provides a more detailed feedback as to 
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how different data representations along with the interaction mechanisms and features 
provided by a visualization tool were used by an actual end user for data analysis. It 
provides feedback on different kinds of insights that were found using the tools and the 
value of these insights. Though, it will be difficult to make statistical comparisons about 
the tools with the long term study, such a detailed report can be used by developers and 
tool designers to prioritize end user data analysis tasks and requirements based on the 
kinds of insights that are needed. The diary recordings display viability of self-reporting 
insights. 

7.2 Pathway + Microarray Data Visualization 
The design space presented in Chapter 3 was divided in two dimensions. Dimension 1 
was based on the methods to overlay data on pathway nodes. Dimension 2 was based on 
the number of visualization alternatives used besides the pathway diagrams. There are six 
possible alternatives based on Dimension 1 and Dimension 2. Two studies (Chapters 3 
and 5) were performed to evaluate the visualization alternatives.  

7.2.1 Data Overlay Method 
The design space in Chapter 3 presented 3 visualization options for the data overlay 
method for pathway + microarray data visualization tools.  
 
Single Attribute Visualization: The single attribute visualization displayed the 
multidimensional data one attribute at a time on the pathway nodes. The participants were 
provided with sliders to iterate through the graph to analyze data for other timepoints. For 
both the experiments, participants using single attribute visualization provided more 
controlled performance as compared to the participants using other visualization types. 
The participants using this visualization tool were neither slower nor less accurate for any 
of the selected tasks. The participants using this alternative had better performance for 
tasks involving single timepoint analysis for both the experiments. Our hypothesis prior 
to conducting the experiment was that the participants using single attribute visualization 
method may perform slower for tasks involving overall graph analysis as they needed to 
iterate through all the data attributes one at a time. However, from the results we found 
that there were no differences in the performance time between the participants using 
single attribute and other types of visualization alternatives.  
 Both the studies described in this dissertation were conducted with pathway 
visualization alternatives with only about 50 nodes. However, with new visualization 
methods the number of nodes that the biologists work with is increasing. Also, often the 
number of data attributes is larger than 10-15 used for the studies here. For instance, in 
the longitudinal study (Chapter 6), the participants worked with data having 72 attributes. 
With large number of pathway nodes and data attributes, tools using single attribute 
visualization may be simpler to understand as the other visualization alternatives may 
become too complicated to understand and more difficult to scale. 
 
Multiple Attribute Visualization: The multiple attribute visualization alternatives 
displayed all the multidimensional data attributes on the pathway nodes using nodes-as-
glyphs method. The mouse over displayed both the numerical values and the 
corresponding timepoint for the nodes. This allowed faster comparisons between node 
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values for different data attributes. The multiple attribute visualization method provided 
faster analyses for identifying outlier nodes i.e. nodes that display different behavior than 
the other nodes in the graph. However, displaying all the attributes simultaneously on the 
graph nodes made it difficult for the participants to focus on the overall graph expression 
at a single data attribute. Also, the participants had difficultly identifying most interesting 
attributes on the data to focus on. 
 
Multiple Graph Visualization: Multiple graph visualization alternative displayed all the 
attributes of the visualization using graph-as-glyph approach. The mouse over and the 
visualization displayed the timepoint corresponding to the attribute and the numerical 
value of the node. This allowed faster searching for the interesting timepoints. This also 
made analysis of the overall graph expression easier. Though, it made easier for 
participants to select the attribute of interest we found that participants had difficulty 
focusing on the graph layout and performing analysis for expression values of a single 
node. 

7.2.2 Single View vs. Multiple Views 
The study described in Chapter 3 evaluated single vs. multiple views for pathway 
diagrams.  The multiple views used other visualization methods besides the pathway 
diagrams. We found that participants could perform single attribute analysis using just 
the single pathway diagram view. This allowed them to not only analyze the expression 
values for the graph nodes but also check this in relation to the other nodes. The multiple 
views were found to be helpful for analyzing exact values of the nodes for different data 
attributes. Overall, the participant in the study didn’t make much use of the additional 
visualization alternative. We found that this may be as the data analysis was simplistic. 
 The use of multiple views was more visible for the longitudinal study. The 
participants used the non-pathway diagrams to perform overall data analysis with a larger 
set of the nodes. They used the other views to find more interesting timepoints and genes 
in the data. These were then short listed to analyze in the pathway diagrams to see their 
influence on the other nodes that are directly related to them. Thus, though the 
participants worked with more number of visualization alternatives in the longitudinal 
study this was more contextual based. The non-pathway visualization alternatives such as 
heatmap and parallel-co-ordinate were to get familiarity with the data, whereas the 
pathway diagrams were for more biologically relevant analysis. 

7.3 Future Work 

7.3.1 Evaluation Research  
Recently a new field ‘visual analytics’ has been defined. Visual analytics focuses on 
different factors of the visualization tools that make these tools effective for the end user 
data analysis [104]. The field also calls for a better understanding of the data 
representation methods and interaction mechanisms. Such an understanding is critical to 
create insightful visualization tools that best supports users’ data analysis tasks. Clearly, 
the insight-based method reported here is just a start. Though, we identified several 
characteristics of an insight, this definition is by no means comprehensive. The protocol 
identified here, provides an alternate mean to traditional task-based approach for 
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evaluating visualization tools. More methods that rely on real world data analysis 
scenarios are needed that provide better feedback about the characteristics of 
visualization tools that lead to better insights. This also requires a more in-depth 
understanding of the end user needs for visualization usage, better definition for the term 
‘insight’ and the process of insight generation. Along with the short term studies, the 
longitudinal study reported in Chapter 6th stresses the need for long term visualization 
evaluation. Such long term studies allow detailed observations about the visualization 
tools that are not possible in the short term studies. They are also better representative of 
the actual real world visualization usage. More studies need to be conducted to 
investigate how reliable are the short term study results for long term real world 
visualization usage.  
 Besides evaluating visualization alternatives, the study in Chapter 5 also compared 
two different protocols for short-term visualization usage. Such comparison between the 
experimental protocols is not frequent for the field of Information Visualization. With the 
development of new protocols it will be important to decide factors to consider for 
comparing different evaluation protocols. 

7.3.2 Visualization for Biological Pathways 
The research agenda presented in Chapter 2 identified several requirements for pathway 
visualization tools. A research space was identified for overlaying microarray data on 
pathway diagrams. Evaluation studies were then conducted on different alternatives. 
Several visualization problems still need to be addressed to create more biologically 
relevant pathway visualization tools. The studies here just provide a start, with better 
computation methods available analysts now work with larger visualization and more 
data attributes. This requires more sophisticated means to overview and analyze inter-
connectivity between pathway diagrams. 
 In addition to the microarray data, other biologically relevant information to be 
overlaid on the pathway diagrams to make them more meaningful to the biologists. 
Besides the nodes, the links too in the pathway diagrams have large amount of 
information associated with them. With all these information, better means of pathway 
visualization methods may be needed. Most of the studies have taken spatial properties of 
the pathways in nature. Besides spatial, the pathway components have temporal 
properties associated to them. Depicting temporal states of the pathway components is 
complicated and challenging research problem. 
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Appendix A: Data Analysis for Chapter 3 
A.1 Overall Performance 

A.1.1 ANOVA: Task Completion Time versus Views, Node Attributes, Task, 
Participants  
Factor                               Type    Levels 
Participants(Views Node Attributes)  random      10 
Views                                fixed        2 
Node Attributes                      fixed        2 
Task                                 fixed       11 
 
Factor                               Values 
Participants(Views Node Attributes)  p1, p10, p2, p3, p4, p5, p6, p7, p8, p9 
Views                                Multiple View, Single View 
Node Attributes                      Multiple Attribute, Single Attribute 
Task                               T1, T10, T11, T2, T3, T4, T5, T6, T7, T8, T9 
 
Analysis of Variance for Performance 
 
Source                                DF        SS       MS     F      P 
Participants(Views Node Attributes)   36  116505.8   3236.3  3.35  0.000 
Views                                  1   22982.7  22982.7  7.10  0.011 
Node Attributes                        1    1776.0   1776.0  0.55  0.464 
Views*Node Attributes                  1       0.4      0.4  0.00  0.991 
Task                                  10   81325.9   8132.6  8.42  0.000 
Node Attributes*Task                  10   31085.0   3108.5  3.22  0.001 
Views*Task                            10   36188.9   3618.9  3.75  0.000 
Views*Node Attributes*Task            10   10935.3   1093.5  1.13  0.337 
Error                                360  347695.6    965.8 
Total                                439  648495.6 
 
S = 31.0777   R-Sq = 46.38%   R-Sq(adj) = 34.62% 

 
Figure A.1 ANOVA analysis for task completion time between views, node attributes on 11 tasks. 

A.1.2 ANOVA: Accuracy versus Views, Node Attributes, Task, Participants  
Factor                               Type    Levels 
Participants(Views Node Attributes)  random      10 
Views                                fixed        2 
Node Attributes                      fixed        2 
Task                                 fixed       11 
 
Factor                               Values 
Participants(Views Node Attributes)  p1, p10, p2, p3, p4, p5, p6, p7, p8, p9 
Views                                Multiple View, Single View 
Node Attributes                      Multiple Attribute, Single Attribute 
Task                                 T1, T10, T11, T2, T3, T4, T5, T6, T7, T8, 
T9 
 
Analysis of Variance for Accuracy 
 
Source                                DF        SS      MS      F      P 
Participants(Views Node Attributes)   36   12.2000  0.3389   1.94  0.001 
Views                                  1    0.0364  0.0364   0.11  0.745 
Node Attributes                        1    4.4000  4.4000  12.98  0.001 
Views*Node Attributes                  1    0.0818  0.0818   0.24  0.626 
Task  10    9.9682 1.9968   11.45  0.000



Saraiya: Insight-Based Studies for Pathway and Microarray Visualization Tools 

Appendix A: Data analysis for Chapter 3 128

Node Attributes*Task                  10    2.1500  0.2150   1.23  0.269 
Views*Task                            10    1.6136  0.1614   0.93  0.510 
Views*Node Attributes*Task            10    3.4682  0.3468   1.99  0.034 
Error                                360   62.8000  0.1744 
Total                                439  106.7182 
 
S = 0.417665   R-Sq = 41.15%   R-Sq(adj) = 28.24% 
 

Figure A.2 ANOVA analysis for accuracy between views, node attributes on 11 tasks. 

A.2 1-way ANOVA analysis between visualization options 

A.2.1 Anova analysis on accuracy 
Single Attribute + Single View vs. Single Attribute + Multiple views 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
SS 110 75 0.681818 0.218932   
SM 110 76 0.690909 0.215513   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.004545 1 0.004545 0.020925 0.885116 3.884469 
Within Groups 47.35455 218 0.217223    
       
Total 47.35909 219         

Table A.1 Results from 1 – way anova between single attribute visualization on accuracy. 
 
Multiple Attributes + Single View vs. Multiple Attributes + Multiple views 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
MS 110 56 0.509091 0.25221   
MM 110 51 0.463636 0.250959   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.113636 1 0.113636 0.451682 0.502249 3.884469 
Within Groups 54.84545 218 0.251585    
       
Total 54.95909 219         

Table A.2 Results from 1 – way anova between multiple attribute visualization on accuracy. 
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Single Attribute + Single View vs. Multiple Attribute + Single view 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
SS 110 75 0.681818 0.218932   
MS 110 56 0.509091 0.25221   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 1.640909 1 1.640909 6.965658 0.008909 3.884469 
Within Groups 51.35455 218 0.235571    
       
Total 52.99545 219         

Table A.3 Results from 1 – way anova between single view visualization on accuracy. 
 
Single Attribute + Multiple Views vs. Multiple Attribute + Multiple Views 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
SM 110 76 0.690909 0.215513   
MM 110 51 0.463636 0.250959   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 2.840909 1 2.840909 12.1804 0.000584 3.884469 
Within Groups 50.84545 218 0.233236    
       
Total 53.68636 219         

Table A.4 Results from 1 – way anova between multiple view visualization on accuracy. 

A.2.2 ANOVA analysis on performance times  
Single Attribute + Single View vs. Single Attribute + Multiple Views 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
SS 110 5670 51.54545 758.452   
SM 110 7267 66.06364 2239.877   
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ANOVA       
Source of 
Variation SS df MS F P-value F crit 

Between Groups 11592.77 1 11592.77 7.73282 0.005897 3.884469 
Within Groups 326817.8 218 1499.164    
       
Total 338410.6 219         

Table A.5 Results from 1 – way anova between single attribute visualization on performance time. 
 
Multiple Attributes + Single View vs. Multiple Attributes + Multiple Views 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
MS 110 5235 47.59091 871.932   
MM 110 6818 61.98182 1852.091   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 11390.4 1 11390.4 8.362927 0.004217 3.884469 
Within Groups 296918.6 218 1362.012    
       
Total 308309 219         

Table A.6 Results from 1 – way anova between multiple attribute visualization on performance time. 
 
Single Attribute + Single View vs. Multiple Attribute + Single Views 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
SS 110 5670 51.54545 758.452   
MS 110 5235 47.59091 871.932   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 860.1136 1 860.1136 1.055106 0.305473 3.884469 
Within Groups 177711.9 218 815.192    
       
Total 178572 219         

Table A.7 Results from 1 – way anova between single view visualization on performance time. 
 
Single Attribute + Multiple Views vs. Multiple Attribute + Multiple Views 
Anova: Single Factor      
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SUMMARY      

Groups Count Sum Average Variance   
SM 110 7267 66.06364 2239.877   
MM 110 6818 61.98182 1852.091   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 916.3682 1 916.3682 0.447886 0.504049 3.884469 
Within Groups 446024.5 218 2045.984    
       
Total 446940.9 219         

Table A.8 Results from 1 – way anova between multiple view visualization on performance time. 

A.3 Analysis for tasks involving 1 Timepoint  

A.3.1 ANOVA analysis on Accuracy 
Overall Analysis for task1 – task3 
Anova: Two-Factor With Replication    
       

SUMMARY 
Single 
Views 

Multiple 
View Total    

Single Attribute          
Count 30 30 60    
Sum 22 18 40    
Average 0.733333 0.6 0.666667    
Variance 0.202299 0.248276 0.225989    
       
Multiple Attributes          
Count 30 30 60    
Sum 14 16 30    
Average 0.466667 0.533333 0.5    
Variance 0.257471 0.257471 0.254237    
       

Total          
Count 60 60     
Sum 36 34     
Average 0.6 0.566667     
Variance 0.244068 0.249718     
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 
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Sample 0.833333 1 0.833333 3.452381 0.065696 3.922879
Columns 0.033333 1 0.033333 0.138095 0.71086 3.922879
Interaction 0.3 1 0.3 1.242857 0.267226 3.922879
Within 28 116 0.241379    
       
Total 29.16667 119         

Table A.9 Anova analysis for tasks 1- 3 for accuracy. 
 
Analysis for task 1 
Anova: Two-Factor With Replication    
       

SUMMARY 
Single 
View 

Multiple 
View Total    

Single Attribute          
Count 10 10 20    
Sum 10 8 18    
Average 1 0.8 0.9    
Variance 0 0.177778 0.094737    
       

Multiple Attribute          
Count 10 10 20    
Sum 7 8 15    
Average 0.7 0.8 0.75    
Variance 0.233333 0.177778 0.197368    
       

Total          
Count 20 20     
Sum 17 16     
Average 0.85 0.8     
Variance 0.134211 0.168421     
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Sample 0.225 1 0.225 1.528302 0.224373 4.113165 
Columns 0.025 1 0.025 0.169811 0.682723 4.113165 
Interaction 0.225 1 0.225 1.528302 0.224373 4.113165 
Within 5.3 36 0.147222    
       
Total 5.775 39         

Table A.10 Anova analysis for task 1 for accuracy. 
 
Analysis for task 2 
Anova: Two-Factor With Replication    
       
SUMMARY Single Multiple Total    
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View View 
Single Attribute          

Count 10 10 20    
Sum 7 6 13    
Average 0.7 0.6 0.65    
Variance 0.233333 0.266667 0.239474    
       

Multiple Attribute          
Count 10 10 20    
Sum 4 0 4    
Average 0.4 0 0.2    
Variance 0.266667 0 0.168421    
       

Total          
Count 20 20     
Sum 11 6     
Average 0.55 0.3     
Variance 0.260526 0.221053     
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Sample 2.025 1 2.025 10.56522 0.002502 4.113165 
Columns 0.625 1 0.625 3.26087 0.079319 4.113165 
Interaction 0.225 1 0.225 1.173913 0.285802 4.113165 
Within 6.9 36 0.191667    
       
Total 9.775 39         

Table A.11 Anova analysis for task 2 for accuracy. 
 
Analysis for task 3 
Anova: Two-Factor With Replication    
       

SUMMARY 
Single 
View 

Multiple 
View Total    

Single Attribute          
Count 10 10 20    
Sum 5 4 9    
Average 0.5 0.4 0.45    
Variance 0.277778 0.266667 0.260526    
       

Multiple Attribute          
Count 10 10 20    
Sum 3 8 11    
Average 0.3 0.8 0.55    
Variance 0.233333 0.177778 0.260526    
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Total          

Count 20 20     
Sum 8 12     
Average 0.4 0.6     
Variance 0.252632 0.252632     
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Sample 0.1 1 0.1 0.418605 0.521738 4.113165 
Columns 0.4 1 0.4 1.674419 0.203908 4.113165 
Interaction 0.9 1 0.9 3.767442 0.06012 4.113165 
Within 8.6 36 0.238889    
       
Total 10 39         

Table A.12 Anova analysis for task 3 for accuracy. 

A.3.2 Analysis for Performance Time 
Overall Analysis task1 – task3 
Anova: Two-Factor With Replication    
       

SUMMARY 
Single 
View 

Multiple 
View Total    

Single Attribute          
Count 30 30 60    
Sum 1342 2421 3763    
Average 44.73333 80.7 62.71667    
Variance 626.754 486.2862 551.2234    
       

Multiple Attribute          
Count 30 30 60    
Sum 1275 2041 3315    
Average 42.53333 68.86667 55.6    
Variance 1149.085 1290.395 1226.214    
       

Total          
Count 60 60     
Sum 2617 4062     
Average 43.63333 80.78333     
Variance 908.2701 1047.359     
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 
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Sample 10811.01 1 10811.01 12.17277 0.006862 3.922879
Columns 297.675 1 297.675 0.33517 0.563753 3.922879
Interaction 1548.008 1 1548.008 1.742997 0.189359 3.922879
Within 103023.1 116 888.1302    
       
Total 115679.8 119         

Table A.13 Anova analysis for Tasks 1-3 for performance time. 
 
Analysis for Task 1 
Anova: Two-Factor With Replication    
       

SUMMARY 
Single 
View 

Multiple 
View Total    

Single Attribute          
Count 10 10 20    
Sum 431 623 1054    
Average 43.1 62.3 57.7    
Variance 367.6556 358.6778 356.2211    
       

Multiple Attribute          
Count 10 10 20    
Sum 428 596 1024    
Average 42.8 59.6 51.2    
Variance 587.2889 1070.489 815.9579    
       

Total          
Count 20 20     
Sum 919 959     
Average 42.95 61.95     
Variance 460.8921 819.8395     
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Sample 2102.5 1 2102.5 3.52752 0.068476 4.113165
Columns 40 1 40 0.067111 0.797066 4.113165
Interaction 774.4 1 774.4 1.299268 0.261874 4.113165
Within 21457 36 596.0278    
       
Total 24373.9 39         

Table A.14 Anova analysis for task 1 for performance time. 
 
Analysis for task 2 
Anova: Two-Factor With Replication    
       
SUMMARY Single Multiple Total    
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View View 
Single Attribute          

Count 10 10 20    
Sum 530 887 1417    
Average 53 88.7 71.35    
Variance 814.2222 879.1222 802.2395    
       

Multiple Attribute          
Count 10 10 20    
Sum 537 770 1307    
Average 53.7 77 65.35    
Variance 967.3444 1631.778 1255.924    
       

Total          
Count 20 20     
Sum 1067 1657     
Average 53.35 82.35     
Variance 897.7132 1332.239     
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Sample 3534.4 1 3534.4 3.293584 0.07789 4.113165
Columns 270.4 1 270.4 0.251976 0.618743 4.113165
Interaction 202.5 1 202.5 0.188703 0.666591 4.113165
Within 38632.2 36 1073.117    
       
Total 42639.5 39         

Table A.15 Anova analysis for task 2 for performance time. 
 
Analysis for task 3 
Anova: Two-Factor With Replication    
       

SUMMARY 
Single 
View 

Multiple 
View Total    

Single Attribute          
Count 10 10 20    
Sum 381 831 1212    
Average 38.1 83.1 60.5    
Variance 709.8778 37.65556 363.5684    
       

Multiple Attribute          
Count 10 10 20    
Sum 325 640 965    
Average 32.5 64 48.25    
Variance 1942.5 1273.778 1552.513    
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Total          

Count 20 20     
Sum 916 961     
Average 30.3 73.55     
Variance 1318.8 888.9974     
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Sample 5593.225 1 5593.225 5.64429 0.022956 4.113165
Columns 50.625 1 50.625 0.051087 0.822461 4.113165
Interaction 680.625 1 680.625 0.686839 0.412703 4.113165
Within 35674.3 36 990.9528    
       
Total 41998.78 39         

Table A.16 Anova analysis for task 3 for performance time. 

A.4 Analysis for Tasks involving 2 Timepoints  

A.4.1 ANOVA analysis for Accuracy 
Overall accuracy for task4-task5 
Anova: Two-Factor With Replication    
       

SUMMARY 
Single 
View MultipleView Total    

Single A          
Count 20 20 40    
Sum 17 18 35    
Average 0.85 0.9 0.875    
Variance 0.197368 0.094737 0.148077    
       

Multiple A          
Count 20 20 40    
Sum 12 10 22    
Average 0.6 0.5 0.55    
Variance 0.221053 0.263158 0.246154    
       

Total          
Count 40 40     
Sum 29 28     
Average 0.725 0.7     
Variance 0.204487 0.215385     
       
       
ANOVA       
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Source of 
Variation SS df MS F P-value F crit 

Sample 1.0125 1 1.0125 5.216949 0.025161 3.96676
Columns 0.0125 1 0.0125 0.064407 0.800347 3.96676
Interaction 0.6125 1 0.6125 3.155932 0.079653 3.96676
Within 14.75 76 0.194079    
       
Total 16.3875 79         

Table A.17 Anova analysis for tasks 4-5 for accuracy. 
 
Analysis for task 4 
Anova: Two-Factor With Replication    
       

SUMMARY 
Single 
View 

Multiple 
View Total    

Single Attribute          
Count 10 10 20    
Sum 9 8 17    
Average 0.9 0.8 0.85    
Variance 0.1 0.177778 0.134211    
       

Multiple Attribute          
Count 10 10 20    
Sum 5 7 12    
Average 0.5 0.7 0.6    
Variance 0.277778 0.233333 0.252632    
       

Total          
Count 20 20     
Sum 14 15     
Average 0.7 0.75     
Variance 0.221053 0.197368     
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Sample 0.625 1 0.625 3.169014 0.08349 4.113165
Columns 0.025 1 0.025 0.126761 0.723893 4.113165
Interaction 0.225 1 0.225 1.140845 0.292584 4.113165
Within 7.1 36 0.197222    
       
Total 7.975 39         

Table A.18 Anova analysis for task4 for accuracy. 
 
Analysis for task 5 
Anova: Two-Factor With Replication    
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SUMMARY 
Single 
View 

Multiple 
View Total    

Single Attribute          
Count 10 10 20    
Sum 2 3 5    
Average 0.2 0.3 0.25    
Variance 0.177778 0.233333 0.197368    
       

Multiple Attribute          
Count 10 10 20    
Sum 2 2 4    
Average 0.2 0.2 0.2    
Variance 0.177778 0.177778 0.168421    
       

Total          
Count 20 20     
Sum 4 5     
Average 0.2 0.25     
Variance 0.168421 0.197368     
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Sample 0.025 1 0.025 0.130435 0.720093 4.113165
Columns 0.025 1 0.025 0.130435 0.720093 4.113165
Interaction 0.025 1 0.025 0.130435 0.720093 4.113165
Within 6.9 36 0.191667    
       
Total 6.975 39         

Table A.19 Anova analysis for task5 for accuracy. 

A.4.2 Analysis for Performance Time 
Overall Analysis task4-task5 
Anova: Two-Factor With Replication    
       

SUMMARY Single V 
Multiple 
V Total    

Single A          
Count 20 20 40    
Sum 1292 1380 2672    
Average 56.6 64 60.3    
Variance 673.4105 1431.368 1030.369    
       

Multiple A          
Count 20 20 40    
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Sum 991 1237 2228    
Average 45.11 50.12 47.5    
Variance 884.6816 295.3974 613.7026    
       

Total          
Count 40 40     
Sum 2283 2617     
Average 57.075 65.425     
Variance 817.1481 854.3532     
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Sample 2464.2 1 2464.2 4.000678 0.0087286 3.96676 
Columns 1394.45 1 1394.45 1.698034 0.19648 3.96676 
Interaction 312.05 1 312.05 0.379986 0.539453 3.96676 
Within 62412.3 76 821.2145    
       
Total 66583 79         

Table A. 20 Anova analysis for tasks 4-5 for performance time. 
 
Analysis for task 4 
Anova: Two-Factor With Replication    
       

SUMMARY 
Single 
View 

Multiple 
View Total    

Single Attribute          
Count 10 10 20    
Sum 619 567 1186    
Average 61.9 56.7 59.3    
Variance 930.7667 1312.678 1069.8    
       

Multiple Attribute          
Count 10 10 20    
Sum 450 558 1008    
Average 45 55.8 50.4    
Variance 629.7778 391.2889 514.3579    
       

Total          
Count 20 20     
Sum 1069 1125     
Average 53.45 56.25     
Variance 814.3658 807.3553     
       
       
ANOVA       
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Source of 
Variation SS df MS F P-value F crit 

Sample 792.1 1 792.1 0.970559 0.331116 4.113165
Columns 78.4 1 78.4 0.096063 0.758393 4.113165
Interaction 640 1 640 0.784191 0.38174 4.113165
Within 29380.6 36 816.1278    
       
Total 30891.1 39         

Table A.21 Anova analysis for task 4 for performance time. 
 
Analysis for task 5 
Anova: Two-Factor With Replication    
       

SUMMARY 
Single 
View 

Multiple 
View Total    

Single Attribute          
Count 10 10 20    
Sum 673 813 1486    
Average 67.3 81.3 74.3    
Variance 474.6778 1372.9 926.7474    
       

Multiple Attribute          
Count 10 10 20    
Sum 541 679 1220    
Average 54.1 67.9 61    
Variance 1191.878 150.9889 686.2105    
       

Total          
Count 20 20     
Sum 1214 1492     
Average 60.7 74.6     
Variance 835.2737 769.0947     
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Sample 1768.9 1 1768.9 2.217747 0.145141 4.113165
Columns 1932.1 1 1932.1 2.422358 0.128363 4.113165
Interaction 0.1 1 0.1 0.000125 0.991128 4.113165
Within 28714 36 797.6111    
       
Total 32415.1 39         

Table A.22 Anova analysis for tasks 5 for performance time. 
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A.5 Analysis for Tasks involving all 10 Timepoints  

A.5.1 ANOVA analysis for Accuracy 
Overall Performance for tasks 6 – task 10 
Anova: Two-Factor With Replication    
       

SUMMARY 
Single 
View 

Multiple 
View Total    

Single A          
Count 60 60 120    
Sum 38 40 78    
Average 0.633333 0.666667 0.65    
Variance 0.236158 0.225989 0.229412    
       

Multiple A          
Count 60 60 120    
Sum 28 25 53    
Average 0.466667 0.416667 0.441667    
Variance 0.253107 0.247175 0.248669    
       

Total          
Count 120 120     
Sum 66 65     
Average 0.55 0.541667     
Variance 0.24958 0.25035     
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Sample 2.604167 1 2.604167 10.8233 0.001156 3.881163 
Columns 0.004167 1 0.004167 0.017317 0.895417 3.881163 
Interaction 0.104167 1 0.104167 0.432932 0.511195 3.881163 
Within 56.78333 236 0.240607    
       
Total 59.49583 239         

Table A.23 Anova analysis for tasks 6-10 for accuracy. 
 
Analysis for task6 
Anova: Two-Factor With Replication    
       

SUMMARY 
Single 
View 

Multiple 
View Total    

Single Attribute          
Count 10 10 20    
Sum 80 100 18    
Average 0.8 1 0.9    
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Variance 0 0.177778 0.094737    
       

Multiple Attribute          
Count 10 10 20    
Sum 8 7 15    
Average 0.8 0.7 0.75    
Variance 0.233333 0.177778 0.197368    
       

Total          
Count 20 20     
Sum 16 17     
Average 0.8 0.85     
Variance 0.134211 0.168421     
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Sample 0.225 1 0.225 1.528302 0.224373 4.113165
Columns 0.025 1 0.025 0.169811 0.682723 4.113165
Interaction 0.225 1 0.225 1.528302 0.224373 4.113165
Within 5.3 36 0.147222    
       
Total 5.775 39         

Table A.24 Anova analysis for task 6 for accuracy. 
 
Analysis for task7 
Anova: Two-Factor With Replication    
       

SUMMARY 
Single 
View 

Multiple 
View Total    

Single Attribute          
Count 10 10 20    
Sum 9 8 17    
Average 0.9 0.8 0.85    
Variance 0.266667 0.233333 0.239474    
       

Multiple Attribute          
Count 10 10 20    
Sum 5 6 11    
Average 0.5 0.6 0.05    
Variance 0.1 0 0.05    
       

Total          
Count 20 20     
Sum 14 14     
Average 0.7 0.7     
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Variance 0.197368 0.134211     
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Sample 0.9 1 0.9 4.891 0.031303 4.113165
Columns 0.1 1 0.1 0.666667 0.419587 4.113165
Interaction -4.4E-15 1 -4.4E-15 -3E-14 #NUM! 4.113165
Within 5.4 36 0.15    
       
Total 6.4 39         

Table A. 25 Anova analysis for task 7 for accuracy. 
 
Analysis for task8 
Anova: Two-Factor With Replication    

SUMMARY 
Single 
View 

Multiple 
View Total    

Single Attribute          
Count 10 10 20    
Sum 4 4 8    
Average 0.4 0.4 0.8    
Variance 0.233333 0.266667 0.239474    
       

Multiple Attribute          
Count 10 10 20    
Sum 7 7 14    
Average 0.7 0.7 0.7    
Variance 0.266667 0 0.168421    
       

Total          
Count 20 20     
Sum 11 11     
Average 0.55 0.55     
Variance 0.260526 0.221053     
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Sample 2.025 1 2.025 5.56522 0.039502 4.113165
Columns 0.625 1 0.625 3.26087 0.079319 4.113165
Interaction 0.225 1 0.225 1.173913 0.285802 4.113165
Within 6.9 36 0.191667    
       
Total 9.775 39         

Table A.26 Anova analysis for task 8 for accuracy. 
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Analysis for task9 
Anova: Two-Factor With Replication    
       

SUMMARY 
Single 
View 

Multiple 
View Total    

Single Attribute          
Count 10 10 20    
Sum 7 9 16    
Average 0.7 0.9 0.8    
Variance 0.233333 0.1 0.168421    
       

Multiple Attribute          
Count 10 10 20    
Sum 5 5 10    
Average 0.5 0.5 0.5    
Variance 0.277778 0.277778 0.263158    
       

Total          
Count 20 20     
Sum 12 14     
Average 0.6 0.7     
Variance 0.252632 0.221053     
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Sample 0.9 1 0.9 4.35 0.041699 4.113165 
Columns 0.1 1 0.1 0.45 0.506616 4.113165 
Interaction 0.1 1 0.1 0.45 0.506616 4.113165 
Within 8 36 0.222222    
       
Total 9.1 39         

Table A.27 Anova analysis for task 9 for accuracy. 
 
Analysis for task10 
Anova: Two-Factor With Replication    
       

SUMMARY 
Single 
View 

Multiple 
View Total    

Single Attribute          
Count 10 10 20    
Sum 8 8 16    
Average 0.8 0.8 0.8    
Variance 0.233333 0.1 0.168421    
       

Multiple Attribute          
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Count 10 10 20    
Sum 4 5 9    
Average 0.4 0.5 0.45    
Variance 0.177778 0.266667 0.252632    
       

Total          
Count 20 20     
Sum 12 13     
Average 0.6 0.65     
Variance 0.197368 0.239474     
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Sample 0.4 1 0.4 2.057143 0.160124 4.113165
Columns 0.1 1 0.1 0.514286 0.477917 4.113165
Interaction 0.9 1 0.9 4.628571 0.038228 4.113165
Within 7 36 0.194444    
       
Total 8.4 39         

Table A.28 Anova analysis for task 10 for accuracy. 
 
Analysis for task11 
Anova: Two-Factor With Replication    
       

SUMMARY 
Single 
View 

Multiple 
View Total    

Single Attribute          
Count 10 10 20    
Sum 3 4 7    
Average 0.3 0.4 0.35    
Variance 0.277778 0.266667 0.260526    
       

Multiple Attribute          
Count 10 10 20    
Sum 6 6 12    
Average 0.6 0.6 0.6    
Variance 0.233333 0.177778 0.260526    
       

Total          
Count 20 20     
Sum 9 10     
Average 0.45 0.5     
Variance 0.252632 0.252632     
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ANOVA       
Source of 
Variation SS df MS F P-value F crit 

Sample 0.1 1 0.1 4.018605 0.071738 4.113165
Columns 0.4 1 0.4 1.674419 0.203908 4.113165
Interaction 0.9 1 0.9 3.767442 0.660122 4.113165
Within 8.6 36 0.238889    
       
Total 10 39         

Table A.29 Anova analysis for task 11 for accuracy. 

A.5.2 Analysis for Performance Time 
Overall Performance for tasks 6 – task 10 
Anova: Two-Factor With Replication    
       

SUMMARY 
Single 
View 

Multiple 
View Total    

Single A          
Count 60 60 120    
Sum 3036 4666 7702    
Average 50.6 77.76667 64.18333    
Variance 794.0068 2968.792 2051.647    
       

Multiple A          
Count 60 60 120    
Sum 2548 3575 6123    
Average 42.46667 59.58333 51.025    
Variance 692.4904 2674.281 1743.1    
       

Total          
Count 120 120     
Sum 5584 8241     
Average 46.53333 68.675     
Variance 753.6796 2881.179     
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Sample 10388.5 1 10388.5 3.228404 0.096532 3.881163
Columns 29415.2 1 29415.2 3.503210 0.072342 3.881163
Interaction 1515.038 1 1515.038 0.850002 0.357493 3.881163
Within 420644.7 236 1782.393    
       
Total 461963.4 239         

Table A.30 Anova analysis for tasks 6 – 10 for performance time. 
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Analysis for task 6 
Anova: Two-Factor With Replication    
       

SUMMARY 
Single 
View 

Multiple 
View Total    

Single Attribute          
Count 10 10 20    
Sum 430 360 790    
Average 43 36 39.5    
Variance 258.2667 1177.789 784.45    
       

Multiple Attribute          
Count 10 10 20    
Sum 591 482 1073    
Average 59.1 48.2 53.65    
Variance 63.06667 8217.333 4248.358    
       

Total          
Count 20 20     
Sum 1021 1173     
Average 51.1 42.1     
Variance 181.7789 4456.134     
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Sample 87.025 1 87.025 0.035826 0.850939 4.113165
Columns 7590.025 1 7590.025 3.124606 0.085594 4.113165
Interaction 585.225 1 585.225 0.240921 0.62652 4.113165
Within 87448.1 36 2429.114    
       
Total 95710.38 39         

Table A.31 Anova analysis for task 6 for performance time. 
 
Analysis for task 7 
Anova: Two-Factor With Replication    
       

SUMMARY 
Single 
View 

Multiple 
View Total    

Single Attribute          
Count 10 10 20    
Sum 473 657 1130    
Average 47.3 65.7 56.5    
Variance 126.0111 853.7889 553.2105    
       

Multiple Attribute          
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Count 10 10 20    
Sum 385 465 850    
Average 38.5 46.5 42.5    
Variance 585.8333 1019.833 777.4211    
       

Total          
Count 20 20     
Sum 858 1122     
Average 42.9 56.1     
Variance 357.5684 984.5158     
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Sample 1960 1 1960 3.032335 0.090161 4.113165
Columns 1742.4 1 1742.4 2.695684 0.109329 4.113165
Interaction 270.4 1 270.4 0.418338 0.52187 4.113165
Within 23269.2 36 646.3667    
       
Total 27242 39         

Table A.32 Anova analysis for task 7 for performance time. 
 
Analysis for task8 
Anova: Two-Factor With Replication    
       

SUMMARY 
Single 
View 

Multiple 
View Total    

Single Attribute          
Count 10 10 20    
Sum 666 810 1476    
Average 66.6 81 53.8    
Variance 737.1556 1264 1191.116    
       

Multiple Attribute          
Count 10 10 20    
Sum 540 671 1211    
Average 54 67.1 60.55    
Variance 252.3222 219.2111 232.8316    
       

Total          
Count 20 20     
Sum 1206 1481     
Average 60.3 74.05     
Variance 477.25 940.9974     
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ANOVA       
Source of 
Variation SS df MS F P-value F crit 

Sample 3204.1 1 3204.1 4.983183 0.035853 4.113165
Columns 3312.4 1 3312.4 5.358377 0.026438 4.113165
Interaction 1488.4 1 1488.4 2.407743 0.129484 4.113165
Within 22254.2 36 618.1722    
       
Total 30259.1 39         

Table A.33 Anova analysis for task 8 for performance time. 
 
Analysis for task9 
Anova: Two-Factor With Replication    
       

SUMMARY 
Single 
View 

Multiple 
View Total    

Single Attribute          
Count 10 10 20    
Sum 381 543 924    
Average 70 90 46.2    
Variance 176.5444 1509.344 867.6421    
       

Multiple Attribute          
Count 10 10 20    
Sum 458 612 1070    
Average 60 40 53.5    
Variance 442.6222 706.1778 606.5789    
       

Total          
Count 20 20     
Sum 839 1155     
Average 41.95 57.75     
Variance 308.8921 1061.987     
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Sample 532.9 1 532.9 0.75197 0.391597 4.113165
Columns 2496.4 1 2496.4 3.522644 0.068659 4.113165
Interaction 1.6 1 1.6 0.002258 0.962365 4.113165
Within 25512.2 36 708.6722    
       
Total 28543.1 39         

Table A.34 Anova analysis for task 9 for performance time. 
 
Analysis for task10 
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Anova: Two-Factor With Replication    
       

SUMMARY 
Single 
View 

Multiple 
View Total    

Single Attribute          
Count 10 10 20    
Sum 380 320 700    
Average 38 32 35    
Variance 1884.622 504.7111 1162.484    
       

Multiple Attribute          
Count 10 10 20    
Sum 640 530 1170    
Average 64 53 58.5    
Variance 1330.322 320.9333 782.7658    
       

Total          
Count 20 20     
Sum 1321 850     
Average 51.1 42.5     
Variance 1797.418 530.3053     
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Sample 7645.225 1 7645.225 3.568426 0.192393 4.113165
Columns 378.225 1 378.225 0.374426 0.544447 4.113165
Interaction 216.225 1 216.225 0.214053 0.646394 4.113165
Within 36365.3 36 1010.147    
       
Total 44604.98 39         

Table A.35 Anova analysis for task 10 for performance time. 
 
Analysis for task11 
Anova: Two-Factor With Replication    
       

SUMMARY 
Single 
View 

Multiple 
View Total    

Single Attribute          
Count 10 10 20    
Sum 470 650 1120    
Average 47 65 56    
Variance 270.6667 7132.544 5586.576    
       

Multiple Attribute          
Count 10 10 20    
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Sum 379 461 840    
Average 37.9 46.1 42    
Variance 1006.544 4422.944 2984.537    
       

Total          
Count 20 20     
Sum 849 1111     
Average 42.45 55.55     
Variance 605.2079 6090.116     
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Sample 5640.625 1 5640.625 1.958204 0.113201 4.113165
Columns 41280.63 1 41280.63 1.267321 0.398346 4.113165
Interaction 6076.225 1 6076.225 1.893982 0.177254 4.113165
Within 115494.3 36 3208.175    
       
Total 168491.8 39         

Table A. 36 Anova analysis for task 11 for performance time. 
 



 

 

Appendix B: Data Analysis for Chapter 4 
B.1 Data for Insight Characteristics  

B.1.1 Clusterview 

Tool Data Type 
Domain 
Values 

Count of 
Insights Final Amt. 

Time To First 
Insight (mins) 

Total Time 
(mins) 

C/T Timeseries 5 3 30 5 30
C/T Timeseries 6 3 35 5 25
C/T Virus 5 2 30 5 25
C/T Virus 9 3 50 10 30
C/T Lupus 10 3 50 2 23
C/T Lupus 13 4 50 3 35

Table B.1 Insight data for Clusterview for different insight characteristics. 

B.1.2 Timesearcher 

Vis. 
Tool Data Type 

Domain 
Values 

Count of 
Insights Final Amt 

Time To 
First Insight 
(min) Total Time 

TS Timeseries 10 5 15 5 45
TS Timeseries 16 7 90 2 45
TS Virus 9 3 70 10 30
TS Virus 5 2 45 10 45
TS Lupus 7 3 30 5 35
TS Lupus 4 1 40 10 25

Table B.2 Insight data for Timesearcher for different insight characteristics. 

B.1.3 HCE 
Vis. 
Tool Data Type 

Domain 
Values 

Count of 
Insights Final Amt 

Time To First 
Insight Total Time 

HCE Timeseries 2 1 25 20 40
HCE Timeseries 4 2 30 20 45
HCE Virus 15 5 60 5 45
HCE Virus 11 4 55 3 35

HCE Lupus 1 1 30 20 20

HCE Lupus 1 1 50 15 25
Table B.3 Insight data for HCE for different insight characteristics. 

B.1.4 Spotfire 
Vis. 
Tool Data Type 

Domain 
Values 

Count of 
Insights Final Amt 

Time To First 
Insight Total Time 

SP Timeseries 14 8 50 10 25
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SP Timeseries 13 5 95 2 55
SP Virus 10 3 60 10 45
SP Virus 5 3 75 10 35
SP Lupus 14 4 70 10 45
SP Lupus 10 3 50 3 45

Table B.4 Insight data for Spotfire for different insight characteristics. 

B.1.5 GeneSpring 
Vis. 
Tool Data Type 

Domain 
Values 

Count of 
Insights 

Final 
Amt Time To First Insight Total Time 

GS Timeseries 9 5 80 10 50
GS Timeseries 6 3 20 10 45
GS Virus 7 3 65 20 55
GS Virus 7 3 60 15 55
GS Lupus 3 2 25 25 60
GS Lupus 8 4 60 15 50

Table B.5 Data for GeneSpring for different insight characteristics. 

B.2 Analysis on Insight Characteristics 

B.2.1 Count of Insights 
Anova: Single Factor      

       

SUMMARY      

Groups Count Sum Average Variance   

Clusterview 6 18 3 0.4   

Timesearcher 6 21 3.5 4.7   

HCE 6 14 2.333333 3.066667   
Spotfire 6 25 4.166667 4.566667   
GeneSpring 6 20 3.333333 1.066667   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 10.86667 4 2.716667 0.9843 0.434039 2.75871 

Within Groups 69 25 2.76    

       

Total 79.86667 29         
Table B.6  Analysis for count of insights between visualization tools. 



Saraiya: Insight-Based Studies for Pathway and Microarray Visualization Tools 
 

Appendix B: Data analysis for Chapter 4  155

B.2.2 Domain Value 
Overall Analysis 
Anova: Single Factor      

       

SUMMARY      

Groups Count Sum Average Variance   

Clusterview 6 48 8 10.4   

Timesearcher 6 51 8.5 18.7   

HCE 6 34 5.666667 35.06667   
Spotfire 6 66 11 12   
GeneSpring 6 40 6.666667 4.266667   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 98.8 4 24.7 1.535433 0.222432 2.75871 
Within Groups 402.1667 25 16.08667    
       
Total 500.9667 29         

Table B.7 Analysis for domain value between visualization tools. 
 
Spotfire vs. GeneSpring 
Anova: Single Factor      

       

SUMMARY       

Groups Count Sum Average Variance   

Spotfire 6 66 11 12   

GeneSpring 6 40 6.666667 4.266667   

       

       

ANOVA       
Source of 
Variation SS df MS F P-value F crit 

Between Groups 56.33333 1 56.33333 6.92623 0.025086 4.964591 

Within Groups 81.33333 10 8.133333    

       

Total 137.6667 11         
Table B.8 Analysis for domain value between Spotfire and GeneSpring. 

B.2.3 Time to First Insight 
Overall 
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Anova: Single Factor      

       

SUMMARY      

Groups Count Sum Average Variance   

Clusterview 6 28 4.666667 4.266667   

Timesearcher 6 42 7 12   

HCE 6 93 15.5 103.5   
Spotfire 6 45 7.5 15.1   
GeneSpring 6 95 15.83333 34.16667   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 647.5333 4 161.8833 4.788503 0.005246 2.75871 
Within Groups 845.1667 25 33.80667    
       
Total 1492.7 29         

Table B.9 Analysis for Time to first insight for the visualization tools. 

B.2.4 Total Time 
Anova: Single Factor      

       

SUMMARY      

Groups Count Sum Average Variance   

Clusterview 6 168 28 20   

Timesearcher 6 225 37.5 77.5   

HCE 6 210 35 110   
Spotfire 6 265 44.16667 44.1666667   
GeneSpring 6 315 52.5 27.5   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 2083.533 4 520.8833 9.32925373
9.34E-

05 2.75871 
Within Groups 1395.833 25 55.83333    
       
Total 3479.367 29         

Table B.10 Analysis for Total time for the visualization tools. 

B.2.5 Final Amount Learned 
Anova: Single Factor      
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SUMMARY      

Groups Count Sum Average Variance   

Clusterview 6 245 40.83333 104.1667   

Timesearcher 6 290 48.33333 746.6667   

HCE 6 250 41.66667 226.6667   
Spotfire 6 400 66.66667 296.6667   
GeneSpring 6 310 51.66667 566.6667   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 2620 4 655 1.687419 0.184365 2.75871 

Within Groups 9704.167 25 388.1667    

       

Total 12324.17 29         
Table B.11 Analysis for final amount learnt for the visualization tools. 

B.3 Timeseries Data Analysis 

B.3.1 Domain Value 
Anova: Single Factor      

       

SUMMARY      
Groups Count Sum Average Variance   

Clusterview 2 11 5.5 0.5   
Timesearcher 2 26 13 18   
HCE 2 6 3 2   
Spotfire 2 27 13.5 0.5   
GeneSpring 2 15 7.5 4.5   

       

       

ANOVA       
Source of 
Variation SS df MS F P-value F crit 

Between Groups 171 4 42.75 8.382353 0.019265 5.192168 

Within Groups 25.5 5 5.1    

       

Total 196.5 9         
Table B. 12 Analysis for domain value for the visualization tools. 
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B.3.2 Time to First Insight 
Overall 
Anova: Single Factor      

       

SUMMARY      

Groups Count Sum Average Variance   
Clusterview 2 10 5 0   
Timesearcher 2 7 3.5 4.5   

HCE 2 40 20 0   

Spotfire 2 12 6 32   
GeneSpring 2 20 10 0   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 354.4 4 88.6 12.13699 0.008703 5.192168 

Within Groups 36.5 5 7.3    
       
Total 390.9 9         

Table B.13 Analysis for Time to first insight for the visualization tools. 
 
GeneSpring, Timesearcher and Clusterview 
Anova: Single 
Factor       
       
SUMMARY       

Groups Count Sum Average Variance   
Clusterview 2 10 5 0   
Timesearcher 2 7 3.5 4.5   
GeneSpring 2 20 10 0   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 46.33333333 2 23.16666667 15.44444444 0.026339 9.552094
Within Groups 4.5 3 1.5    
       
Total 50.83333333 5         

Table B.14 Analysis for Time to first insight for Clusterview, Timesearcher, and GeneSpring. 
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B.4 Lupus Data Analysis 

B.4.1 Domain Value 
Anova: Single Factor      
       

SUMMARY      

Groups Count Sum Average Variance   

Clusterview 2 23 11.5 4.5   

Timesearcher 2 11 5.5 4.5   
HCE 2 2 1 0   

Spotfire 2 24 12 8   

GeneSpring 2 11 5.5 12.5   

       

       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 171.4 4 42.85 7.262712 0.025885 5.192168 
Within Groups 29.5 5 5.9    
       

Total 200.9 9         
Table B.15 Analysis for domain value for visualization tools on Lupus data. 

B.5 Tools vs. Datasets 

B.5.1 HCE vs Datasets 
Domain Value 
Anova: Single Factor      

       

SUMMARY      

Groups Count Sum Average Variance   

Timeseries 2 6 3 2   

Virus 2 26 13 8   
Lupus 2 2 1 0   
       

       

ANOVA       
Source of 
Variation SS df MS F P-value F crit 

Between Groups 165.3333 2 82.66667 24.8 0.013621 9.552094 
Within Groups 10 3 3.333333    
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Total 175.3333 5         
Table B.16 Analysis for domain value for HCE by datasets. 

 
Number of Insights 
Anova: Single Factor     
       

SUMMARY      

Groups Count Sum Average Variance   
Timeseries 2 3 1.5 0.5   
Virus 2 9 4.5 0.5   
Lupus 2 2 1 0   

       

       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 14.33333 2 7.166667 21.5 0.016655 9.552094 

Within Groups 1 3 0.333333    

       
Total 15.33333 5         

Table B.17 Analysis for number of insights for HCE by datasets. 
 

Time to First Insight 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
Timeseries 2 40 20 0   
Virus 2 8 4 2   
Lupus 2 35 17.5 12.5   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 296.3333 2 148.1667 30.65517 0.010075 9.552094 
Within Groups 14.5 3 4.833333    
       
Total 310.8333 5         

Table B.18 Analysis for time to first insight for HCE by datasets. 
 
Total Time 
Anova: Single Factor      
       
SUMMARY      
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Groups Count Sum Average Variance   
Timeseries 2 85 42.5 12.5   
Virus 2 80 40 50   
Lupus 2 45 22.5 12.5   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 475 2 237.5 9.5 0.050356 9.552094 
Within Groups 75 3 25    
       
Total 550 5         

Table B.19 Analysis for total time participants spent with HCE in the study by datasets. 
 



 

 

Appendix C: Data analysis for Chapter 5  
C.1 Task-based Analysis 

C.1.1 Overall Analysis  
ANOVA for Accuracy  
Factor         Type    Levels  Values 
Visualization  fixed        3  1 Timepoint, M Graphs, M Timepoints 
Participants   random      10  p1, p10, p2, p3, p4, p5, p6, p7, p8, p9 
Tasks          fixed        7  T1, T2, T3, T4, T5, T6, T7 
Analysis of Variance for Accuracy 
Source          DF       SS      MS     F      P 
Visualization    2   0.7524  0.3762  1.80  0.168 
Participants     9   2.6143  0.2905  1.39  0.194 
Tasks            6   3.5619  0.5937  2.84  0.011 
Error          192  40.0667  0.2087 
Total          209  46.9952 
 
S = 0.456816   R-Sq = 14.74%   R-Sq(adj) = 7.19% 

Figure C.1 ANOVA analysis for accuracy between the visualization types for the 10 participants on the 
pre-selected 7 tasks. 

 
ANOVA for Performance Time  
Factor         Type    Levels  Values 
Visualization  fixed        3  1 Timepoint, M Graphs, M Timepoints 
Participants   random      10  p1, p10, p2, p3, p4, p5, p6, p7, p8, p9 
Tasks          fixed        7  T1, T2, T3, T4, T5, T6, T7 
Analysis of Variance for performance time 
Source          DF      SS     MS      F      P 
Visualization    2    1761    880   0.53  0.588 
Participants     9   37540   4171   2.52  0.009 
Tasks            6  249131  41522  25.10  0.000 
Error          192  317606   1654 
Total          209  606038 
 
S = 40.6718   R-Sq = 47.59%   R-Sq(adj) = 42.95% 

Figure C.2 ANOVA analysis for performance time between the visualization types for the 10 participants 
on the pre-selected 7 tasks. 

 

ANOVA for accuracy between 1 Timepoint vs. M Timepoints visualization  
Factor         Type    Levels  Values 
Participats    random      10  p1, p10, p2, p3, p4, p5, p6, p7, p8, p9 
Visualization  fixed        2  1 Timepoint, M Timepoints 
Tasks          fixed        7  T1, T2, T3, T4, T5, T6, T7 
Analysis of Variance for Accuracy 
Source                DF       SS      MS     F      P 
Participats            9   2.7429  0.3048  1.52  0.149 
Visualization          1   0.7143  0.7143  3.56  0.062 
Tasks                  6   3.2857  0.5476  2.73  0.016 
Visualization*Tasks    6   0.6857  0.1143  0.57  0.753 
Error                117  23.4571  0.2005 
Total                139  30.8857 
 
S = 0.447759   R-Sq = 24.05%   R-Sq(adj) = 9.77% 
Figure C.3 ANOVA analysis for Accuracy between 1 Tpt and M Tpts visualization for the 10 participants 

on the pre-selected 7 tasks.
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C.1.2 Individual Task Analysis for Accuracy 
Analysis for task 1 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint 10 8 0.8 0.177778   
M Timepoints 10 7 0.7 0.233333   
M Graphs 10 5 0.5 0.277778   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.466667 2 0.233333 1.016129 0.375422 3.354131 
Within Groups 6.2 27 0.22963    
       
Total 6.666667 29         

Table C.1Anova analysis for task 1 on accuracy. 
 
Analysis for task 2 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint 10 8 0.8 0.177778   
M Timepoints 10 4 0.4 0.266667   
M Graphs 10 4 0.4 0.266667   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 1.066667 2 0.533333 2.25 0.124801 3.354131 
Within Groups 6.4 27 0.237037    
       
Total 7.466667 29         

Table C.2 Anova analysis for task 2 on accuracy. 
 
Analysis for task 3 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint 10 8 0.8 0.177778   
M Timepoints 10 8 0.8 0.177778   
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M Graphs 10 6 0.6 0.266667   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.266667 2 0.133333 0.642857 0.533647 3.354131 
Within Groups 5.6 27 0.207407    
       
Total 5.866667 29         

Table C.3 Anova analysis for task 3 on accuracy. 
 
Analysis for task 4 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint 10 10 1 0   
M Timepoints 10 7 0.7 0.233333   
M Graphs 10 10 1 0   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.6 2 0.3 3.857143 0.033616 3.354131 
Within Groups 2.1 27 0.077778    
       
Total 2.7 29         

Table C.4 Anova analysis for task 4 on accuracy. 
 

Analysis for task 5 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint 10 7 0.7 0.233333   
M Timepoints 10 3 0.3 0.233333   
M Graphs 10 6 0.6 0.266667   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.866667 2 0.433333 1.772727 0.189074 3.354131 
Within Groups 6.6 27 0.244444    
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Total 7.466667 29         
Table C.5Anova analysis for task 5 on accuracy. 

 
1 Timepoint vs. M Timepoint – task 5 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint 10 7 0.7 0.233333   
M Timepoints 10 3 0.3 0.233333   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.8 1 0.8 3.428571 0.080554 4.413873 
Within Groups 4.2 18 0.233333    
       
Total 5 19         

Table C. 6 Anova analysis for task 5 between. 
 
Analysis for task 6 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint 10 4 0.4 0.266667   
M Timepoints 10 3 0.3 0.233333   
M Graphs 10 7 0.7 0.233333   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.866667 2 0.433333 1.772727 0.189074 3.354131 
Within Groups 6.6 27 0.244444    
       
Total 7.466667 29         

Table C.7 Anova analysis for task 6 on accuracy. 
 
M Timepoints vs. M Graphs – task 6 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
M Timepoints 10 3 0.3 0.233333   
M Graphs 10 7 0.7 0.233333   
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ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.8 1 0.8 3.428571 0.080554 4.413873 
Within Groups 4.2 18 0.233333    
       
Total 5 19         

Table C.8 Anova analysis between M Timepoints and M Graphs for accuracy on task 6. 
 
Analysis for task 7 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint 10 7 0.7 0.233333   
M Timepoints 10 7 0.7 0.233333   
M Graphs 10 7 0.7 0.233333   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 
-2.7E-

15 2 -1.3E-15 -5.7E-15 #NUM! 3.354131 
Within Groups 6.3 27 0.233333    
       
Total 6.3 29         

Table C.9 Anova analysis for task 7 on accuracy. 

C.1.3 Individual Task Analysis for Performance Time 
Analysis for task 1 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint 10 1243 124.3 1046.011   
M Timepoints 10 1057 105.7 2149.344   
M Graphs 10 1646 164.6 4184.711   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 18130.87 2 9065.433 3.685102 0.038455 3.354131
Within Groups 66420.6 27 2460.022    
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Total 84551.47 29         
Table C.10 Anova analysis for task 1 on performance time. 

 
Analysis for task 2 
 
 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint 10 1043 104.3 3414.233   
M Timepoints 10 1373 137.3 9381.122   
M Graphs 10 1008 100.8 3127.289   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 8111.667 2 4055.833 0.764163 0.475533 3.354131
Within Groups 143303.8 27 5307.548    
       
Total 151415.5 29         

Table C.11 Anova analysis for task 2 on performance time. 
 
Analysis for task 3 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint 10 906 90.6 2223.6   
M Timepoints 10 670 67 1145.333   
M Graphs 10 909 90.9 2278.989   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 3760.867 2 1880.433 0.998827 0.381515 3.354131 
Within Groups 50831.3 27 1882.641    
       
Total 54592.17 29         

Table C.12 Anova analysis for task 3 on performance time. 
 
Analysis for task 4 
Anova: Single Factor      



Saraiya: Insight-Based Studies for Pathway and Microarray Visualization Tools 
 

Appendix C: Data analysis for Chapter 5 168

       
SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint 10 235 23.5 92.94444   
M Timepoints 10 469 46.9 1018.767   
M Graphs 10 258 25.8 317.9556   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 3326.867 2 1663.433 3.490534 0.044845 3.354131 
Within Groups 12867 27 476.5556    
       
Total 16193.87 29         

Table C.13Anova analysis for task 4 on performance time. 
 
M timepoints vs. M Graphs – task 4 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
M Timepoints 10 788 78.8 265.9556   
M Graphs 10 538 53.8 471.2889   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 3125 1 3125 8.477514 0.009309 4.413873 
Within Groups 6635.2 18 368.6222    
       
Total 9760.2 19         

Table C. 14 Anova analysis on performance time between M Timepoints vs. M Graphs on task 4. 
 
Analysis for task 5 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint 10 235 23.5 92.94444   
M Timepoints 10 469 46.9 1018.767   
M Graphs 10 258 25.8 317.9556   
       
       
ANOVA       

Source of SS df MS F P-value F crit 
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Variation 
Between Groups 3326.867 2 1663.433 3.490534 0.044845 3.354131 
Within Groups 12867 27 476.5556    
       
Total 16193.87 29         

Table C.15 Anova analysis for task 5 on performance time. 
 
Analysis for task 6 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint 10 601 60.1 245.6556   
M Timepoints 10 740 74 1694   
M Graphs 10 488 48.8 396.6222   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 3186.467 2 1593.233 2.045861 0.148835 3.354131 
Within Groups 21026.5 27 778.7593    
       
Total 24212.97 29         

Table C.16 Anova analysis for task 6 on performance time. 
 
1 Timepoint vs. M Timepoints – task 6 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
Multiple 
Condition 10 740 74 1694   
Small Multiples 10 488 48.8 396.6222   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 3175.2 1 3175.2 3.037565 0.098415 4.413873 
Within Groups 18815.6 18 1045.311    
       
Total 21990.8 19         

Table C.17 Anova analysis on performance time between 1 Timepoint and M Timepoints on task 6. 
 
Analysis for task 7 
Anova: Single Factor      
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SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint 10 360 36 340.6667   
M Timepoints 10 448 44.8 314.4   
M Graphs 10 313 31.3 51.12222   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 939.2667 2 469.6333 1.995075 0.155558 3.354131 
Within Groups 6355.7 27 235.3963    
       
Total 7294.967 29         

Table C.18 Anova analysis for task 7 on performance time. 
 
M Timepoints vs. M Graphs – task 7 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
Multiple 
Condition 10 448 44.8 314.4   
Small Multiples 10 313 31.3 51.12222   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 911.25 1 911.25 4.986017 0.03849 4.413873 
Within Groups 3289.7 18 182.7611    
       
Total 4200.95 19         

Table C.19 Anova analysis between M Timepoints and M Graphs on performance time for task 7. 

C.2 Insight-Based Analysis 

C.2.1 Overall Performance 
Time spent in the study 
Participants 1 Timepoint M Timepoints M Graphs 
p1 29 12 10 
p2 16 18 26 
p3 21 35 23 
p4 35 18 6 
p5 17 8 5 
p6 15 20 5 
p7 20 16 6 
p8 22 21 5 
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Table C.20 Average time participants spent in the study for all three visualization alternatives. 
 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint 10 205 20.5 47.38889   
M Timepoints 10 169 16.9 60.32222   
M Graphs 10 108 10.8 58.84444   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 480.8667 2 240.4333 4.330687 0.023374 3.354131 
Within Groups 1499 27 55.51852    
       
Total 1979.867 29         

Table C.21: Anova analysis for total time participants spent in the study for all three visualization 
alternatives. 

 
Count of Insights 
Participants 1 Timepoint M Timepoints M Graphs 
p1 26 13 10 
p2 18 16 26 
p3 18 24 23 
p4 33 8 6 
p5 22 4 5 
p6 14 15 5 
p7 15 12 6 
p8 20 18 5 
p9 11 8 12 
p10 6 6 10 
Avg. Count 18.3 12.4 10.8 

Table C.22 Count of Insights for all three visualization alternatives for the participants. 
 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint 10 183 18.3 58.45556   
M Timepoints 10 124 12.4 37.37778   
M Graphs 10 108 10.8 58.84444   
       

p9 18 11 12 
p10 12 10 10 
Avg Time 20.5 16.9 10.8 



Saraiya: Insight-Based Studies for Pathway and Microarray Visualization Tools 
 

Appendix C: Data analysis for Chapter 5 172

       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 312.0667 2 156.0333 3.026291 0.065184 3.354131 
Within Groups 1392.1 27 51.55926    
       
Total 1704.167 29         

Table C.23 Anova analysis for differences between the three visualization alternatives 
 on count of insights. 

 
1 Timepoint vs. M Timepoints – Count of Insights 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint 10 183 18.3 58.45556   
M Timepoints 10 124 12.4 37.37778   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 174.05 1 174.05 3.632348 0.072764 4.413873 
Within Groups 862.5 18 47.91667    
       
Total 1036.55 19         

Table C.24 Anova analysis for differences in count of insights between 1 tpt and MTpts. visualization 
alternatives. 

 
1 Timepoint vs. M Graphs – Count of Insights 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint 10 183 18.3 58.45556   
M Graphs 10 108 10.8 58.84444   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 281.25 1 281.25 4.795396 0.041949 4.413873 
Within Groups 1055.7 18 58.65    
       
Total 1336.95 19         

Table C.25Anova analysis for differences in count of insights between 1 tpt and M graph visualization 
alternatives. 
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C.2.2 Performance based on Insight Categories 
Total count of insights for each category 

Participants 
Gene 
expression  Topology

Topology 
+ 
expression

Timepoint 
analysis Condition Summary Outliers 

p1 10 3 6 5 1 1 0
p2 1 2 6 3 5 1 0
p3 3 0 5 4 3 0 3
p4 16 0 0 7 7 2 1
p5 8 3 0 7 3 1 0
p6 4 3 2 0 4 0 1
p7 2 1 3 3 4 1 1
p8 9 1 4 2 3 1 0
p9 0 0 1 3 5 2 0
p10 0 0 0 2 3 1 0
Total 53 13 27 36 38 10 6
Table C.26 Number of insights, grouped by participants for the selected insight categories for 1timepoint 

visualization alternative. 
 

Participants 
Gene 
expression  Topology

Topology 
+ 
expression

Timepoint 
analysis Condition Summary Outliers

p1 4 3 2 0 1 1 2
p2 5 1 3 0 5 2 0
p3 10 0 8 0 4 1 1
p4 1 1 3 0 1 1 1
p5 2 0 0 0 2 0 0
p6 4 4 1 0 4 0 2
p7 5 0 3 0 3 0 1
p8 8 4 2 0 3 0 1
p9 1 0 2 0 4 0 1
p10 0 0 2 0 2 1 1
Total 40 13 26 0 29 6 10

Table C.27 Number of insights, grouped by participants for the selected insight categories for M timepoints 
visualization alternative. 

 

Participants 
Gene 
expression  Topology

Topology 
+ 
expression

Timepoint  
analysis Condition Summary Outliers

p1 1 0 3 1 2 0 0
p2 4 0 1 1 4 1 0
p3 8 0 2 2 3 0 1
p4 0 0 0 0 4 0 0
p5 0 0 0 2 2 0 0
p6 0 0 0 3 2 0 0
p7 0 0 0 3 3 0 0
p8 0 0 0 3 1 1 0
p9 3 0 3 2 4 0 1
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p10 1 0 0 1 3 1 0
Total 17 0 9 18 28 3 2

Table C.28 Number of insights, grouped by participants for the selected insight categories for multiple 
graphs (M Graphs) visualization alternative. 

 
Insight Category: Gene Expression 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint 10 53 5.3 27.78889   
M Graphs 10 17 1.7 6.9   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 64.8 1 64.8 3.736067 0.069139 4.413873 
Within Groups 312.2 18 17.34444    
       
Total 377 19         
Table C. 29 Anova analysis for insight category: gene expression between 1 tpt and M graph visualization 

alternative. 
 
Insight category: Topology 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint 10 13 1.3 1.788889   
M Timepoints 10 13 1.3 2.9   
M Graphs 10 0 0 0   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 11.26667 2 5.633333 3.604265 0.040982 3.354131 
Within Groups 42.2 27 1.562963    
       
Total 53.46667 29         
Table C.30 Anova analysis for insight category: Topology between all the three visualization alternatives. 

 
Insight Category: Topology + Expression 
Anova: Single Factor      
       
SUMMARY      
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Groups Count Sum Average Variance   
1 Timepoint 10 27 2.7 6.011111   
M Timepoints 10 26 2.6 4.488889   
M Graphs 10 9 0.9 1.655556   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 20.46667 2 10.23333 2.525594 0.098745 3.354131 
Within Groups 109.4 27 4.051852    
       
Total 129.8667 29         

Table C.31 Anova analysis for insight category: Topology + Expression between all three visualization 
alternatives. 

 
M Timepoints vs. M Graphs – Topology + Expression  

 

Table C.32 Anova analysis for insight category: Topology + Expression between M Tpt and M Graph 
visualization alternatives. 

 
1 Timepoint vs. M Graphs – Topology + Expression 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint 10 27 2.7 6.011111   
M Graphs 10 9 0.9 1.655556   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
M Timepoints 10 26 2.6 4.488889   
M Graphs 10 9 0.9 1.655556   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 14.45 1 14.45 4.703436 0.043744 4.413873 
Within Groups 55.3 18 3.072222    
       
Total 69.75 19         
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Between Groups 16.2 1 16.2 4.226087 0.054608 4.413873 
Within Groups 69 18 3.833333    
       
Total 85.2 19         

Table C. 33 Anova analysis for insight category: Topology + Expression between 1 Tpt and M Graph 
visualization alternatives. 

 
Insight Category: Timepoint Analysis 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint 10 36 3.6 4.933333   
M Timepoints 10 0 0 0   
M Graphs 10 18 1.8 1.066667   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 64.8 2 32.4 16.2
2.38393E-

05 3.354131 
Within Groups 54 27 2    
       
Total 118.8 29         

Table C.34 Anova analysis for insight category: Timepoint analysis between all three visualization 
alternatives. 

 
1 Timepoint vs. M Timepoints – Timepoint Analysis 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint 10 36 3.6 4.933333   
M Timepoints 10 0 0 0   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 64.8 1 64.8 26.27027
7.08216E-

05 4.413873 
Within Groups 44.4 18 2.466667    
       
Total 109.2 19         

Table C.35 Anova analysis for insight category: Timepoint analysis between 1 Tpt and M Tpt visualization 
alternatives. 
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M Timepoints vs. M Graphs – Timepoint Analysis 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
M Timepoints 10 0 0 0   
M Graphs 10 18 1.8 1.066667   
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 16.2 1 16.2 30.375
3.11232E-

05 4.413873 
Within Groups 9.6 18 0.533333    
       
Total 25.8 19         

Table C.36 Anova analysis for insight category: Timepoint analysis between M Tpt and M Graph 
visualization alternatives. 

 
1 Timepoint vs. M Graphs – Timepoint Analysis 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint 10 36 3.6 4.933333   
M Graphs 10 18 1.8 1.066667   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 16.2 1 16.2 5.4 0.032044676 4.413873 
Within Groups 54 18 3    
       
Total 70.2 19         

Table C.37 Anova analysis for insight category: Timepoint + Expression between 1 Tpt and M Graph 
visualization alternatives 

 
Insight Category: Condition 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint 10 38 3.8 2.622222   
M Timepoints 10 29 2.9 1.877778   
M Graphs 10 28 2.8 1.066667   
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ANOVA       
Source of 
Variation SS df MS F P-value F crit 

Between Groups 6.066667 2 3.033333 1.634731 0.213721 3.354131 
Within Groups 50.1 27 1.855556    
       
Total 56.16667 29         

Table C.38 Anova analysis for insight category: condition between all three visualization alternatives. 
 
Insight Category: Outliers 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint 10 6 0.6 0.933333   
M Timepoints 10 10 1 0.444444   
M Graphs 10 2 0.2 0.177778   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 3.2 2 1.6 3.085714 0.0621 3.354131 
Within Groups 14 27 0.518519    
       
Total 17.2 29         

Table C.39 Anova analysis for insight category: outliers between all three visualization alternatives. 
 
M Timepoint vs. M Graphs – Outliers  
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
M Timepoint 10 10 1 0.444444   
M Graphs 10 2 0.2 0.177778   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 3.2 1 3.2 10.28571 0.004885 4.413873 
Within Groups 5.6 18 0.311111    
       
Total 8.8 19         

Table C.40 Anova analysis for insight category: outliers between M Tpt and M graph visualization 
alternatives. 
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Insight Category: Summary 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint 9 9 1 0.5   
M Timepoints 9 5 0.555556 0.527778   
M Graphs 9 3 0.333333 0.25   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 2.074074 2 1.037037 2.434783 0.108956 3.402826 
Within Groups 10.22222 24 0.425926    
       
Total 12.2963 26         

Table C.41 Anova analysis for insight category: summary between all three visualization alternatives. 
 
1 Timepoint vs. M Graphs – Summary  
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint 10 10 1 0.444444   
M Graphs 10 3 0.3 0.233333   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 2.45 1 2.45 7.229508 0.015005 4.413873 
Within Groups 6.1 18 0.338889    
       
Total 8.55 19         

Table C.42 Anova analysis for insight category: summary between 1 Tpt and M graph visualization 
alternatives. 

C.3 Comparison between Methods 

C.3.1 Total Time Spent 
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
Task-based 30 265 8.833333 5.522989   
Insight-based 30 482 16.06667 68.27126   
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ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 784.8167 1 784.8167 21.2704
2.25E-

05 4.006873 
Within Groups 2140.033 58 36.89713    
       
Total 2924.85 59         
Table C.43 Anova analysis for total time participants spent in the study for Task-based vs. Insight-based 

methods. 
 
1 Timepoint Visualization – Time  
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
1 Timepoint - TB 10 85 8.5 3.388889   
1 Timepoint - 
Insight 10 205 20.5 47.38889   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 720 1 720 28.35886
4.62E-

05 4.413873 
Within Groups 457 18 25.38889    
       
Total 1177 19         
Table C.44 Anova analysis for total time participants spent in the study for 1 timepoint visualization for 

Task-based vs. Insight-based methods. 
 
M Timepoints Visualization – Time  
Anova: Single Factor      
       
SUMMARY      

Groups Count Sum Average Variance   
M Timepoints- 
TB 10 92 9.2 5.511111   
M Timepoints- 
Insight 10 169 16.9 60.32222   
       
       
ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 296.45 1 296.45 9.006076 0.007669 4.413873 
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Within Groups 592.5 18 32.91667    
       
Total 888.95 19         
Table C.45 Anova analysis for total time participants spent in the study for M timepoints visualization for 

Task-based vs. Insight-based method. 
 

 
 
 

 
 
 
 


