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Change History
• Version 1.1: First publicly-available version.

• Version 1.2: Added solutions for new problems (see Problems, Version 1.2 for list).
Corrected solution to 3.13-1.

• Version 1.3: Replaced hand-drawn figures with proper graphics.
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Chapter 2

Electric and Magnetic Fields
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[m0002] [1]

2.2-1

From the problem statement, V = 1.5 V and d = 30 µm, so

|E| ≈ V

d
= 50 kV/m
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[m0011] [1]

2.4-1

From the problem statement, V = 12 V, ǫr = 6, and d = 90 µm, so the electric field
intensity is

|E| ≈ V

d
∼= 133 kV/m

Subsequently, the electric flux density is

|D| = ǫrǫ0 |E| = 7.08 µC/m2
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Chapter 3

Transmission Lines
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[m0027] [1]

3.6-1

(a) The expression for the voltage Ṽ (z) traveling in the +z direction contains the factor
e−γz. The propagation constant γ = α + jβ, where α and β are real-valued constants.
Therefore, the ratio of the voltage at a distance l from some other point on the transmission
line is:

Ṽ (z + l)

Ṽ (z)
=
e−γ(z+l)

e−γz
= e−γl = e−αle−jβl

The magnitude of this difference is just the first factor; i.e., e−αl. We also know that

γ =
√

(R′ + jωL′) (G′ + jωC ′)

At 100 MHz, we find γ = 0.00850 + j3.14468 m−1. Therefore, α = 0.00850 m−1, and the
voltage after 1 m is

(1 V) exp
[
−
(
0.00850 m−1

)
(1 m)

]
= 0.9915 V

(b) From part (a) we know the phase of this difference is just the phase of the factor e−jβl.
Since β = 3.14468 rad/m, the phase of e−jβl is 179.8◦ for l = 1 m.

(c) For a radio wave in free space, there should be essentially no attenuation over 1 m, as
long as this 1 m span is located far from the transmitter. This is because free space propa-
gation contains no loss mechanisms analogous to R′ or G′ in the transmission line model. At
f = 100 MHz, the wavelength of the radio wave is λ = c/f ∼= 3 m. That means the phase
rotates by 360◦ in 3 m, which is 120◦ in 1 m. Note that the wavelength of the radio wave
is significantly longer than the wavelength of the signal in the transmission line.
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[m0027] [2]

3.6-2

The question is whether
Ṽ (z) = V +

0 e
−γz + V −

0 e
+γz

is a solution to the TEM transmission line wave equation

∂2

∂z2
Ṽ (z)− γ2Ṽ (z) = 0

where V +
0 , V −

0 , and γ are complex-valued constants. To determine this, we substitute the
candidate solution into the equation and determine if equality holds. Taking the first deriva-
tive of the candidate solution:

∂

∂z
Ṽ (z) = −γV +

0 e
−γz + γV −

0 e
+γz

Repeating to get the second derivative:

∂2

∂z2
Ṽ (z) = +γ2V +

0 e
−γz + γ2V −

0 e
+γz

Now making the substitutions into the left side of the wave equation:

[
+γ2V +

0 e
−γz + γ2V −

0 e
+γz
]
− γ2

[
V +
0 e

−γz + V −

0 e
+γz
]

= +γ2V +
0 e

−γz + γ2V −

0 e
+γz − γ2V +

0 e
−γz − γ2V −

0 e
+γz

= 0

which is the the right hand side of the wave equation, as expected.
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[m0052] [1]

3.7-1

It is true that the real part of the characteristic impedance must be positive.

Here’s a mathematical argument: Recall:

Z0 =

√
R′ + jωL′

G′ + jωC ′

Also note that R′, L′, G′ and C ′ must all be positive or zero. Therefore, the numerator
and denominator of the above expression, before taking the square root, must both have
phase in the range 0 to +π/2. This means the numerator divided by the denominator, again
before taking the square root, must have have phase in the range −π/2 to +π/2. Taking
the principal square root reduces the phase by a factor of two, the phase of Z0 must be in
the range −π/4 to +π/4. Subsequently, the real part of Z0 must be positive.

Here’s a physical argument: A positive-valued real-valued component of an impedance rep-
resents the dissipation of power (e.g., resistance) or transfer of power out of a system (e.g.,
to a load). Conversely, a negative-valued real-valued component of an impedance represents
the creation of power or the introduction of power into a system; in other words, an active
device. Since the concept of characteristic impedance applies to transmission lines, and since
transmission lines are passive devices, the real component of the characteristic impedance
must be positive.
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[m0080] [1]

3.8-1

The physical current:

i(z, t) = (2 A) sin((3 rad/s)t+ (4 rad/m)z + 5 rad)

= (2 A) cos((3 rad/s)t+ (4 rad/m)z + 5 rad− π/2)
so

Ĩ(z) =
[
(2 A) ej((5−π/2) rad)

]
ej(4 rad/m)z
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[m0080] [2]

3.8-2

Converting to time-domain representation:

v(x, t) = Re
{
Ṽ (x)ejωt

}
= Re

{
V0e

+jβxejωt
}

The problems statement implies V0 is complex-valued. To accomodate this, we define the
magnitude and phase of V0 as follows:

V0 , |V0| ejπ/3

Then:
v(x, t) = Re

{
|V0| ejπ/3e+jβxejωt

}
= |V0|Re

{
ej(ωt+βx+π/3)

}

Finally, using the identity ejθ = cos θ + j sin θ, we obtain

v(x, t) = |V0| cos (ωt+ βx+ π/3)

This wave is traveling in the −x direction.
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[m0080] [3]

3.8-3

The form given in the problem statement is a phasor, describing a wave traving in the
+φ direction. To obtain the time domain form:

v(φ, t) = Re
{
V0e

−jβφejωt
}
= |V0| cos (ωt− βφ+ ψ)

where ψ, the phase of V0, is not given. Note

β =
2π

λ
∼= 62.832 rad/m

Furthermore, we are told that v(φ = λ/4, t = 0) is a maximum, so:

|V0| cos
(
−βλ

4
+ ψ

)
= |V0| cos

(
−π
2
+ ψ

)

is a maximum, which means ψ = +π/2. Therefore:

v(φ, t) = |V0| cos
(
ωt− [62.832 rad/m]φ+

π

2

)

The problem statement does not provide sufficient information to determine |V0| or ω.
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[m0080] [4]

3.8-4

Since one end of the transmission line lies at infinity, we expect a wave traveling in the +z
direction only. (Note for future reference: The same effect can be achieved for a finite-length
line by perfectly matching the transmission line at the end opposite the voltage source).

The general form for the physical (real-valued) voltage wave is

v+(z, t) =
∣∣V +

0

∣∣ e−αz cos (ωt− βz + ψ) (3.1)

Examining the problem statement, we determine:∣∣V +
0

∣∣ = 2 mV

v+(z = 0, t = 0) = −2 mV∣∣V +
0

∣∣ e−α·(10 m) = 1 mV
f = 15 MHz (frequency of the source)
Wavelength in the line λ = 0.4λ0 where λ0 is wavelength in free space.

Quantities remaining to be determined in Equation 3.1 are: attenuation constant α, angular
frequency ω, phase propagation constant β, and wave phase reference ψ.

The attenuation constant may be determined as follows:
∣∣V +

0

∣∣ e−α·(10 m)

∣∣V +
0

∣∣ e−α·(0 m)
=
e−α·(10 m)

1
=

1 mV

2 mV
=

1

2
(3.2)

Therefore

e−α·(10 m) =
1

2

Solving for α, we obtain α ∼= 0.0693 m−1 .

The angular frequency is simply 2πf ∼= 94.2 Mrad/s ∼= ω .

The phase propagation constant is determined as follows:

β =
2π

λ
=

2π

0.4λ0
=

2π

0.4c
f ∼= 0.785 rad/m ∼= β (3.3)

The wave phase reference ψ is determined as follows:

v+(z = 0, t = 0) =
∣∣V +

0

∣∣ · 1 · cos (0− 0 + ψ) = −2 mV (3.4)

Solving for ψ, we find ψ = π .

The boxed quantities above comprise the complete solution to part (a).
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The solution to part (b) – the phasor representation – is simply:

Ṽ +(z) =
∣∣V +

0

∣∣ e−αze−jβze+jψ (3.5)

In this case, we obtain:

Ṽ +(z) = −
∣∣V +

0

∣∣ e−αze−jβz (3.6)

since ejπ = −1.
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[m0083] [1]

3.9-1

From the problem statement, Z0 = 72 Ω, L′ = 0.5 µH/m, f = 80 MHz, and the low-loss
approximations apply. Using the low-loss approximation Z0 ≈

√
L′/C ′:

C ′ ≈ L′

Z2
0

∼= 96.4 pF/m

Subsequently, the phase velocity is

vp ≈
1√
L′C ′

∼= 1.44× 108 m/s

and the phase propagation constant is

β ≈ ω
√
L′C ′ = 2πf

√
L′C ′ ∼= 3.49 rad/m
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[m0143] [1]

3.10-1

The characteristic impedance Z0 of coaxial cable, assuming the low-loss assumptions ap-
ply, is

Z0 ≈
60 Ω√
ǫr

ln
b

a

where ǫr is the relative permittivity of the spacer material, and a and b are the radii of the
inner and outer conductors, respectively. Air has ǫr ≈ 1 and is lossless to a very good ap-
proximation. We are also told the resistance of the inner and outer conductors is negligible.
Therefore, the low-loss assumptions apply, and we are justified in using the above expression.

One way to reduce Z0 from 90 Ω to 62 Ω is to replace the air spacer with a material spacer
having

ǫr =

(
90 Ω

62 Ω

)2

∼= 2.11

Thus, one solution is to replace air with a low-loss material having ǫr ∼= 2.11. Another way
is to reduce b/a. For the 90 Ω cable, we determine that

b

a
≈ exp

(
90 Ω

(60 Ω) /
√
1

)
∼= 4.48

To reduce Z0 to 62 Ω, we require

b

a
≈ exp

(
62 Ω

(60 Ω)
√
1

)
∼= 2.81

Thus, a second solution is to keep air as the spacer material but reduce b/a to 2.81.
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[m0143] [2]

3.10-2

Under low-loss conditions, the characteristic impedance Z0 of a coaxial cable is given by

Z0 ≈
60 Ω√
ǫr

ln
b

a
(3.7)

where ǫr is the relative permittivity of the spacer material, b is the radius of the outer
conductor, and a is the radius of the inner conductor. Since geometry may not be changed,
ln (b/a) may not change. The only free parameter remaining is ǫr. Z0 is maximized by
minimizing ǫr. Since the minimum practical value of ǫr is ≈ 1 (i.e., air, or a vaccuum), the
optimal new value of ǫr is 1. This increases Z0 as follows:

(75 Ω)

√
2.25√
1

= 112.5 Ω (3.8)
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[m0084] [1]

3.12-1

The voltage reflection coefficient is

Γ =
ZL − Z0

ZL + Z0

=
500 Ω− 75 Ω

500 Ω + 75 Ω
∼= +0.739

Therefore, the peak voltage of the reflected wave at the antenna input is

(0.739) (30 V) ∼= 22.2 V

The line is lossless, so there is no attenuation of the reflected wave along the return trip from
antenna to transmitter. Therefore, the peak voltage of the reflected wave at the output of
the transmitter is 22.2 V.
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[m0084] [2]

3.12-2

From the problem statement, Ṽ +
0 has magnitude 7 mV and phase 180◦, so Ṽ +

0 = −7 mV.
Also from the problem statement Z0 = 60 Ω and ZL = 20 Ω. Therefore,

Γ =
ZL − Z0

ZL + Z0

= −0.5

Subsequently, Ṽ −

0 = ΓṼ +
0 = +3.5 mV. Thus, the magnitude of the reflected wave is 3.5 mV,

and the phase is 0◦.
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[m0084] [3]

3.12-3

The voltage reflection coefficient is

Γ =
ZL − Z0

ZL + Z0

=
33 Ω− 140 Ω

33 Ω + 140 Ω
∼= −0.6185

Therefore, the magnitude of the reflected voltage wave is

|Γ (3 V)| ∼= 1.86 V

and the phase of the reflected voltage wave is

170◦ + 180◦ → −10◦
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[m0084] [4]

3.12-4

In general, the voltage reflection coefficient Γ for a load impedance ZL connected to a trans-
mission line having characteristic impedance Z0 is

Γ =
ZL − Z0

ZL + Z0

Solving for ZL, we obtain

ZL = Z0
1 + Γ

1− Γ

For Γ = 0, the formula gives Z0, as expected.
For Γ = +1, the formula →∞, as expected.
For Γ = −1, the formula gives 0, as expected.
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[m0086] [1]

3.13-1

(a) The current at a voltage maximum is zero. (b) The voltage at the short circuit ter-
mination is zero. The distance between voltage extrema is λ/4, so λ/4 = 8 cm. The distance
between voltage maxima is λ/2 = 16 cm. Therefore, the distance between the short circuit
and the second voltage maximum is 8 + 16 = 24 cm.
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[m0081] [1]

3.14-1

First note

|Γ| = SWR− 1

SWR+ 1

So in this case

|Γ| ≤ 1.2− 1

1.2 + 1
∼= 0.091

Also note:

Γ =
ZL − Z0

ZL + Z0

where in this case Z0 = 50 Ω and ZL is the input impedance of the amplifier. Solving for ZL
we find:

ZL = Z0
1 + Γ

1− Γ

Since the imaginary component of Z0 is zero, and since the imaginary component of ZL is
negligible, Γ must be real-valued. Therefore, −0.091 ≤ Γ ≤ +0.091 and

41.7 Ω ≤ ZL ≤ 60.0 Ω

.
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[m0081] [2]

3.14-2

From the problem statement, Z0 = 72 Ω and ZL = 60 Ω. Therefore, the voltage reflec-
tion coefficient is

Γ =
ZL − Z0

ZL + Z0

∼= −0.091

and the standing wave ratio is

SWR =
1 + |Γ|
1− |Γ| = 1.2
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[m0081] [3]

3.14-3

From the problem statement, Z0 = 50 Ω and ZL = 20 − j35 Ω. Therefore, the voltage
reflection coefficient is

Γ =
ZL − Z0

ZL + Z0

∼= −0.143− j0.571

and the standing wave ratio is

SWR =
1 + |Γ|
1− |Γ|

∼= 3.87

26



[m0087] [1]

3.15-1

The input impedance of a lossless line is periodic in length, with period λ/2. Therefore,
the line is exactly 3 periods long, which means the input impedance is equal to the load
impedance 72 + j42 Ω.
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[m0087] [2]

3.15-2

From the problem statement: Z0 = 50 Ω, ZL = RDUT = 10 Ω, and l = 10 cm. Also,
the wavelength in the transmission line λ = 0.6λ0, where λ0 is the free-space wavelength. As
always, β = 2π/λ and λ0 = c/f where c is the speed of light in free space.

Here’s the result (see end of this solution for source code):

The answers to parts (b) and (c) depend on one’s interpretation of “significance.” Two
reasonable interpretations are (1) a qualitative judgment based on when the curves seem to
clearly diverge from the nominal (DC, or equivalently l = 0) value and (2) a quantitative
judgment based on when the real part is in error by more than 5% (or some other percentage)
and the imaginary part is in error by more than 5% of the real part. Here are the results
using both criteria:

Nominal (l = 0) “Qualitative” > 5% error
Real{Z} 10 Ω ∼ 100 MHz ∼= 6.4 MHz
Imag{Z} 0 Ω ∼ 10 MHz ∼= 3.0 MHz

In both cases it is clear that error in the imaginary part is significantly degraded at
a lower frequency than the error in the real part, and that both are exhibiting
large errors at frequencies greater than ∼ 10 MHz.

Here’s source code in Octave (should also work in MATLAB):
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clear all;

close all;

ZL = 10.0; % [ohm] R_DUT

Z0 = 50.0; % [ohm] characteristic impedance

l = 0.1; % [m] length of line

n=0; % counting points

for logf=6:.001:10, % incrementing frequency in log scale from 10^6 to 10^10 Hz

n=n+1;

f(n) = 10.^logf; % [Hz] frequency

lambda0 = (3.0e+8)/f(n); % [m] free space wavelength

lambda = 0.6*lambda0; % [m] wavelength in line

b = 2*pi/lambda; % [rad/m] beta = phase propagation constant in cable

Z(n) = Z0*(ZL+j*Z0*tan(b*l))/(Z0+j*ZL*tan(b*l));

end

semilogx(f,real(Z),’b-’); hold on;

semilogx(f,imag(Z),’r-’); hold off;

legend(’Re(Z)’,’Im(Z)’);

grid on;

xlabel(’Freq [Hz]’);

ylabel(’Z [ohm]’);

[f’ real(Z)’ imag(Z)’ (real(Z)’-10)/10 imag(Z)’/10] % used to answer parts (b) and (c)
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[m0087] [3]

3.15-3

From the problem statement: Z0 = 50 Ω and ZL = 25 + j25 Ω.

(a) Voltage reflection coefficient:

Γ =
ZL + Z0

ZL − Z0

= −0.2 + j0.4 (3.9)

(b) The input impedance may be calculated using

Zin = Z0
1 + Γe−j2βl

1− Γe−j2βl
(3.10)

where βl = (2π/λ) l = 2π (l/λ). The requested plot is shown below. In this figure, “◦”
indicates l = 0 and “×” indicates l = 0.45λ. (See end of this solution for source code.)
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(c) Here are the lengths for which the input impedance is completely real-valued:

l ∼= 0.162λ → ∼= 130.9 Ω

l ∼= 0.412λ → ∼= 19.1 Ω

Here’s source code in Octave (should also work in MATLAB):

clear all;

close all;

ZL = 25.0+j*25.0; % [ohm]

Z0 = 50.0; % [ohm] characteristic impedance

Gamma = (ZL-Z0)./(ZL+Z0) % voltage reflection coefficient

n=0; % counting points

for l=0:.001:0.45, % [lambda] incrementing length from 0 to almost lambda/2

n=n+1;

bl = 2*pi*l; % [rad] electrical length

Z(n) = Z0*(1+Gamma*exp(-j*2*bl))/(1-Gamma*exp(-j*2*bl));

end

h1 = plot(real(Z),imag(Z));

axis("equal");

grid on;

xlabel(’Re[Z] [ohm]’);

ylabel(’Im[Z] [ohm]’);

l=0.00; % [lambda]

bl = 2*pi*l; % [rad] electrical length

Zp = Z0*(1+Gamma*exp(-j*2*bl))/(1-Gamma*exp(-j*2*bl));

hold on; h2 = plot(real(Zp),imag(Zp),’ro’); hold off;

l=0.45; % [lambda]

bl = 2*pi*l; % [rad] electrical length

Zp = Z0*(1+Gamma*exp(-j*2*bl))/(1-Gamma*exp(-j*2*bl));

hold on; h3 = plot(real(Zp),imag(Zp),’rx’); hold off;
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[m0088] [1]

3.16-1

In this case, the input impedance is

Zstub = −jZ0 cot βl

where Z0 = 75 Ω, l = 13 cm, and

β =
ω

vp
=

2πf

0.55c

where f = 900 MHz. Therefore, β ∼= 34.3 rad/m, βl ∼= 4.45 rad, and Zstub ∼= −j19.7 Ω .
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[m0088] [2]

3.16-2

From the problem statement: Z0 = 75 Ω, f = 1.5 GHz, Zin = +j300 Ω is desired, and
vp = 0.6c. Note that for a short circuit, in this case:

Zin = +jZ0 tan βl = +j300 Ω

so
βl ∼= 1.3258 rad

Note

β =
ω

vp
=

2πf

0.6c
∼= 52.36 rad/m

so l ∼= 2.53 cm
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[m0088] [3]

3.16-3

From the problem statement: f = 5.8 GHz, Z0 = 50 Ω, vp = 0.7c, and the capacitor to
be replaced has value C = 83 pF. Therefore the desired impedance is

ZC = − j

2πfC
∼= −j0.3306 Ω

We choose an open-circuited line, as this yields the negative reactance for the shortest
possible lengths. The input impedance of an open-circuited line is

Zin = −jZ0 cot βl

Setting this equal to ZC and solving for βl:

βl ∼= cot−1 −j0.3306 Ω

−j50 Ω
∼= 1.5642 rad

Note

β =
ω

vp
=

2πf

0.7c
∼= 173.54 rad/m

so l ∼= 9.01 mm .
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[m0145] [1]

3.17-1

(a) For a bandpass response centered at 200 MHz, you want the input impedance into
the stub, which is attached in parallel to the line, to be an open circuit at 200 MHz. This is
accomplished using a short-circuited stub which is one quarter wavelength long at 200 MHz.
A wavelength in the transmission line is

λ =
0.67 (3× 108 m/s)

200 MHz
= 1.005 m (3.11)

so the stub length is 25.12 cm .

(b) See below:

Figure 3.1: Construction of a simple bandpass filter. (Image Credit : Offaperry (S. Lally),
CC BY-SA 4.0. https://commons.wikimedia.org/wiki/File:RG58_Stub_Filter_Solution.svg.)
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[m0145] [2]

3.17-2

The smallest length for which the imaginary component of the impedance of an open-
circuited stub is positive is slightly greater than λ/4. The imaginary part of the impedance
remains positive until the length is slightly less than λ/2. In this transmission line,

β =
ω

vp
=

2πf

0.7c
= 89.8 rad/m

where f = 3 GHz. Therefore,

λ =
2π

β
= 7 cm

and so the smallest contiguous range of transmission line length l is

1.75 cm < l < 3.5 cm
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[m0145] [3]

3.17-3

For zero response centered at fc = 1.3 GHz you want the input impedance into the stub,
which is attached in parallel to the line, to be a short circuit at f = fc. This is accomplished
using an open-circuited stub that is one quarter wavelength long at f = fc. A wavelength
in the transmission line is

λ =
0.6 (3× 108 m/s)

1.3 GHz
= 13.84 cm (3.12)

so the stub length is 3.46 cm . The characteristic impedance is irrelevant.
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[m0091] [1]

3.19-1

From the problem statement, we see that the design will consist of a quarter-wave matching
section followed by a line having a characteristic impedance Z02 = 300 Ω – i.e., equal to the
load impedance – and the total length will be l = 5 cm. The characteristic impedance of
the quarter-wave section must be Z01 =

√
ZSZ02, where ZS is the source output impedance;

thus, we have Z01 = 122.5 Ω. The length l1 of the quarter-wave section is λ/4, where λ is
the wavelength in the transmission line. For FR4, we have

λ =
λ0√
ǫr,eff

=
c/f√

1
2
(ǫr + 1)

=
(3× 108 m/s) / (1.5 GHz)√

1
2
(4.5 + 1)

= 12.06 cm

so l1 = 3.01 cm and l2 = l − l1 = 1.99 cm.

What’s left to figure out is the width w of the microstrip lines, which determines the charac-
teristic impedance since h = 1.6 mm and ǫr = 4.5 are already set. We know that h/w = 1/2
gives a characteristic impedance of 50Ω for FR4, so the width of a 50Ω line is 2h = 3.2 mm.
To get the higher characteristic impedance Z01 = 122.5Ω, w1 will have be smaller than
3.2 mm. An approximate but reasonable solution is simply to assume the characteristic
impedance scales with w in the same way (i.e., linearly) as it does in the “wide” (h/w ≪ 1)
case, so

w1 ≈ (3.2 mm)
50 Ω

122.5 Ω
= 1.3 mm

and

w2 ≈ (3.2 mm)
50 Ω

300 Ω
= 0.5 mm

You could also use the Wheeler (1977) formula or some other equation or reference; how-
ever, the increased accuracy is typically irrelevant in practice due to issues such as the large
variation in ǫr due to manufacturing issues. So, while it’s not wrong to take that approach,
it’s usually not worth the effort if you are able to instead “scale” from a known design as we
have done above.

So, your sketch should show the source, followed by 3.01 cm of line which is 1.3 mm wide,
followed by 1.09 cm of line which is 0.5 mm wide, followed by the load, as shown in the figure.
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Figure 3.2: Quarter-wave microstrip impedance match design. (Image Credit : Offaperry
(S. Lally), CC BY-SA 4.0.
https://commons.wikimedia.org/wiki/File:Microstrip_Width_Transition_Solution.svg.)
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3.19-2

From the problem statement: ZL = 200 Ω, l = λ/4, and Z0 = 100 Ω. Since this is a
quarter-wave line,

Zin =
Z2

0

ZL
= 50 Ω

.
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3.19-3

The problem statement implies that each of the stubs is short-circuited at the end opposite
the main line. For this to be a bandpass filter, the magnitude of the input impedance looking
into each stub must be very high – nominally infinite – since then the filter structure would
be in effect the main line by itself, with no stubs, and would therefore be well-matched at the
filter input and output. At any higher or lower frequency the magnitude of the stubs’ input
impedance can only be less; therefore, the input impedance of the filter would be increasingly
mismatched. This results in bandpass response.

The shortest length for which the magnitude of the input impedance of a short-circuited
transmission line is infinite is λ/4. Therefore, λ/4 = 3.38 mm and subsequently λ =
13.52 mm in the stub. Therefore, the center frequency is

f =
vp
λ

=
0.6c

λ
= 13.3 GHz
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3.19-4

(a) At 2.4 GHz, the free space wavelength λ0 = c/f ∼= 12.5 cm. Therefore the wave-
length in the line λ = 0.67λ0 ∼= 8.375 cm, and subsequently the length of each section is
λ/4 ∼= 2.094 cm. The impedance looking into each stub is nominally infinite at 2.4 GHz;
therefore the stubs should be terminated into short circuit loads. Then, each stub will trans-
form its “load impedance” of 0 into an input impedance of 1/0 → ∞ at the frequency at
which it is a quarter-wavelength long. The resulting design is shown below:

Figure 3.3: Scheme for a bandpass filter consisting of 2 quarter-wave stubs. (Image Credit :
Offaperry (S. Lally), CC BY-SA 4.0.
https://commons.wikimedia.org/wiki/File:Dual_Quarter_Wave_Stub_Filter_Solution.svg.)

(b) First, note that the input impedance of a short-circuited stub is Zs , +jZ0 tan βl where
Z0 is the characteristic impedance (50 Ω in this case), l is the physical length of the stub
(2.094 cm in this case), and β = 2π/λ ( = 2πf/0.67c in this case). Consulting Figure 3.4, we
determine that the response at a specified frequency f may be calculated using the following
steps:

β ← 2πf

0.67c
(3.13)

Z1 ← ZL ‖ Zs (3.14)

Z2 ← Z0
1 + Γe−j2βl

1− Γe−j2βl
where Γ ,

Z1 − Z0

Z1 + Z0

(3.15)

Zin ← Z2 ‖ Zs (3.16)

PL
Pin
← 1− |Γ|2 where Γ is now ,

Zin − Z0

Zin + Z0

(3.17)

In the last step, PL/Pin is response as defined in the problem statement. This expression
works under the assumption of no loss within the filter; i.e., all power delivered to the input
is subsequently delivered to the load, and none is dissipated by the filter.
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Figure 3.4: Schematic representation of the filter with a matched output termination.
(Image Credit : Offaperry (S. Lally), CC BY-SA 4.0.
https://commons.wikimedia.org/wiki/File:Dual_Stub_Filter_Schematic.svg.)
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(c) MATLAB script follows.

clear all;

close all;

ZL = 50.0; % [ohm] impedance attached to output

Z0 = 50.0; % [ohm] characteristic impedance

l = 0.02094; % [m] section length

c = 3.0e+8; % [m/s]

f_list = [1:0.01:3.8]*(1e+9); % [Hz]

n=0; % counting points

for f=f_list,

n=n+1;

beta = 2.0*pi*f/(0.67*c);

Zs = +j*Z0*tan(beta*l);

Z1 = (ZL*Zs)/(ZL+Zs);

Gamma = (Z1-Z0)/(Z1+Z0);

Z2 = Z0*(1+Gamma*exp(-j*2*beta*l))/(1-Gamma*exp(-j*2*beta*l));

Zin = (Z2*Zs)/(Z2+Zs);

Gamma = (Zin-Z0)/(Zin+Z0);

P(n) = 1-abs(Gamma)^2;

end % for f

plot(f_list/(1.0e+9),10.0*log10(P),’b-’);

grid on;

xlabel(’Freq [GHz]’);

ylabel(’Frequency Response [Mag, dB]’);

axis([1 3.8 -6 +1]);
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3.20-1

Summarizing the problem statement: P+
av = 5 W and PL = 4.6 W. Therefore, PL/P

+
av = 0.92.

From this, we may find the magnitude of the reflection coefficient, |Γ|, using

PL
P+
av

= 1− |Γ|2

We find |Γ| ∼= 0.283 and

SWR =
1 + |Γ|
1− |Γ|

∼= 1.79
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3.20-2

From the problem statement, Γ = 0.3 + j0.4 and P+
av = 3 W. Therefore,

PL =
(
1− |Γ|2

)
P+
av = 2.25 W
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3.23-1

From the problem statement, we have f = 220 MHz, antenna impedance ZA = 73 + j42 Ω,
and characteristic impedance Z0 = 50 Ω for both the transmission line and the stub. The
input impedance looking into a length d1 of transmission line terminated in impedance ZA
is

Z1(βd1) = Z0
1 + Γe−j2βd1

1− Γe−j2βd1
(3.18)

where

Γ =
ZA − Z0

ZA + Z0

= 0.2719 + j0.2486 (3.19)

The first task is to find the smallest βd1 such that the real part of Y1(βd1) = Z−1
1 (βd1) equals

Y0 = Z−1
0 = 0.02 Ω−1. After a few minutes of trial and error one finds:

Y1(βd1 = 1.345 rad) = 0.0200 + j0.0159 Ω−1 (3.20)

(You could also do this with a Smith chart if you are so inclined.) The match is accomplished
by attaching a stub having input admittance Y2 = −j0.0159 Ω−1 in parallel with Y1, since
then the combined admittance will be Y1 + Y2 = Y0 = Z−1

0 . For a short-circuited stub of
length d2 we would want:

Y2 = −jY0 cot βd2 = −j0.0159 Ω−1 ⇒ βd2 = 0.900 rad (3.21)

For an open-circuited stub of length d2 we would want:

Y2 = +jY0 tan βd2 = −j0.0159 Ω−1 ⇒ βd2 = 2.471 rad (3.22)

The short-circuited stub is shorter, so that’s the preferred solution. All that remains is to
figure out the physical lengths from the electrical lengths. For this, we need to know β. The
phase velocity is vp = 0.67c, so

β =
2π

λ
=

2π

0.67c/f
= 6.8771 rad/m (3.23)

Finally we have the solution:

d1 =
βd1
β

=
1.345 rad

6.877 rad/m
= 19.6 cm distance from antenna terminals to stub (3.24)

d2 =
βd2
β

=
0.900 rad

6.877 rad/m
= 13.1 cm stub length (3.25)

and the stub is short-circuited .
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3.23-2

In terms of the variables used in the book, the problems statement is indicating that
Y1 = 0.0128− j0.0040 Ω−1 and that Zin is real-valued. Therefore, Yin = 1/Zin is real-valued,

and must be equal to the real part of Y1; i.e., Yin = 0.0128 Ω−1. Therefore, Zin ∼= 78.1 Ω ,
which is the answer to part (a).

The stub is being used to cancel the imaginary part of Y1, so Ystub = +j0.0040 Ω−1 and
subsequently Zstub = −j250 Ω , which is the answer to part (b).
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3.23-3

In terms of the variables used in the book, the problem statement indicates ZL = 35−j10 Ω,
Zin = 50 Ω, and Z0 = 100 Ω throughout. The voltage reflection coefficient at the interface
between ZL and the primary line is

Γ =
ZL − Z0

ZL + Z0

∼= −0.473− j0.109 (3.26)

Let Y1 be the admittance looking into the primary line:

Y1 = Y0
1− Γe−j2βl1

1 + Γe−j2βl1
(3.27)

where

Y0 ,
1

Z0

= 0.01 mho (3.28)

and βl1 is the electrical length of the primary line. To match the real part of the admittances,
we require Re {Y1} = Re {Yin} where

Yin =
1

Zin
= 0.02 mho (3.29)

is the input admittance corresponding to Zin. Therefore the desired value of βl1 is the
solution to

Re

{
1− Γe−j2βl1

1 + Γe−j2βl1

}
= 2 (3.30)

Using a numerical trial-and-error search, one finds βl1 ∼= 0.362 rad. Now using Equation 3.36:

Y1 (βl1 = 0.362 rad) ∼= 0.0200− j0.0121 mho (3.31)

The necessary shunt susceptance (i.e., the imaginary part of admittance) is −Im {Y1} ∼=
+0.0121 mho, since this will cancel the susceptance of the primary line when placed in
parallel with the primary line. Now we seek the shortest stub that has this susceptance. For
an open-circuited stub we would need

+ Y0 tan βl2 = +0.0121 mho (3.32)

where βl2 is the electrical length of the stub. This yields βl2 ∼= 0.8814 rad. For a short-
circuited stub we would need

− Y0 cot βl2 = +0.0121 mho (3.33)

This yields βl2 ∼= −0.6893 rad. β is positive and length can’t be negative, so we need the
next greater value of βl2 that solves the above equation. Since cot(·) has period π radians,
the desired value is 2.4522 rad. This is much longer than the result for the open-circuited
stub, so we choose the open circuit result.
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(a) Note

βl =
2π

λ
· l = 2π · l

λ

Therefore to express electrical length in wavelengths, we simply divide by 2π. Thus, the
solution to the problem is:
Primary line length l1 ∼= 0.058λ
Stub length l2 ∼= 0.140λ
Stub is open-circuited.

(b) Note

β =
ω

vp
=

2πf

0.65c
∼= 48.332 rad/m

since f = 1.5 GHz and the velocity factor is 65%. Therefore

l1 =
βl1
β
∼= 7.5 mm

l2 =
βl2
β
∼= 18.2 mm

(c) Let’s define Γin as the voltage reflection coefficient at the input of the matching structure.
(Note that this is different from Γ defined in previous parts, which is the voltage reflection
coefficient at the output of the matching structure.) Therefore the fraction of power delivered
(PL) to power incident (P+

av) is:
PL
P+
av

= 1− |Γin|2 (3.34)

where

Γin =
Zin − 50 Ω

Zin + 50 Ω
(3.35)

and where

Zin = (−jZ0 cot βl2) ‖
(
Z0

1 + Γe−j2βl1

1− Γe−j2βl1

)
(3.36)

Be careful: The sweep in frequency appears as a sweep in the value of β in the above equa-
tion. A plot of the result follows.
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Chapter 5

Electrostatics
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5.1-1

The electric field due to a point charge q is

E(R) = R̂
q

4πǫR2

where R is the position-free vector pointing from the charge to the field point. From the
problem statement, q = −24 nC, ǫr = 2, and

R = x̂+ ŷ2 + ẑ3 m

Thus
R , |R| =

√
12 + 22 + 32 ∼= 3.74 m

R̂ ,
R

R
∼= x̂0.267 + ŷ0.534 + ẑ0.802

ǫ = ǫrǫ0 = 2 · 8.854× 10−12 F/m

Thus
E(R) ∼= −x̂2.06− ŷ4.12− ẑ6.18 V/m
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5.2-1

From the problem statement,
q1 = +3 nC at r1 = −ẑd and
q2 = +3 nC at r2 = +ẑd where d = 0.5 m;
the field point of interest is r = +x̂x where x = +1.5 m, and
ǫ = ǫ0 ∼= 8.854× 10−12 F/m.

The electric field intensity due to two point charges is

E(r) =
1

4πǫ

[
r− r1

|r− r1|3
q1 +

r− r2

|r− r2|3
q2

]

In this problem:
r− r1 = +x̂x− (−ẑd) = +x̂x+ ẑd

|r− r1| =
√
x2 + d2

r− r2 = +x̂x− (+ẑd) = +x̂x− ẑd

|r− r2| =
√
x2 + d2

Substituting:

E(+x̂x) =
1

4πǫ0

[
+x̂x+ ẑd

(x2 + d2)3/2
q +

+x̂x− ẑd

(x2 + d2)3/2
q

]

where we have made the definition q , q1 = q2. Note that the ẑ-directed components
cancel, as expected from the symmetry of the problem. Eliminating these components and
simplifying:

E(+x̂x) = x̂
q

2πǫ0

x

(x2 + d2)3/2

Now take a moment to confirm that the solution is dimensionally-correct and makes physical
sense. Finally, substituting values, we obtain:

E(+x̂1.5 m) ∼= +x̂ (20.5 V/m)

For a single charge q0 at the origin to create this field, we require

x̂
q0

4πǫ0x2
= +x̂ (20.5 V/m)

which yields q0 ∼= +5.12 nC .
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5.3-1

From the problem statement, ρv = Kr−2 where K = 2 C/m. From dimensional analysis,
it is clear that this is a volume charge density. We seek the total charge Q in a volumetric
region V bounded by the constant-coordinate surfaces r = a and r = b where a = 1 m and
b = 2 m. In general,

Q =

∫

V

ρvdv

In this case, using spherical coordinates:

Q =

∫ b

r=a

∫ π

θ=0

∫ 2π

φ=0

(
K

r2

)(
r2 sin θ dr dθ dφ

)

Factoring into separate integrals:

Q = K

[∫ b

r=a

dr

] [∫ π

θ=0

sin θ dθ

] [∫ 2π

φ=0

dφ

]

Evaluating the integrals:

Q = K [b− a] [2] [2π] = 4πK (b− a)

This a good point at which to check for dimensional consistency (i.e., correct units).

Using the given values of K, a, and b we obtain Q ∼= 25.1 C .
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5.3-2

From the problem statement, the volume charge density is

ρv =
ρv0

r2 sin θ
(5.1)

for r1 < r < r2, where r1 = 1 m and r2 = 2 m; and θ1 < θ < θ2, where θ1 = π/4 (rad) and
θ2 = 3π/4. Also ρv0 = 1.3 C/m inside these limits, and ρv0 = 0 outside these limits. Let V
be the region of space where ρv0 6= 0. Then the total charge Q is

Q =

∫

V

ρvdv (5.2)

=

∫ r2

r1

∫ θ2

θ1

∫ 2π

φ=0

( ρv0
r2 sin θ

) (
r2 sin θ dr dθ dφ

)
(5.3)

= ρv0

∫ r2

r1

∫ θ2

θ1

∫ 2π

φ=0

dr dθ dφ (5.4)

= ρv0

(∫ r2

r1

dr

)(∫ θ2

θ1

dθ

)(∫ 2π

φ=0

dφ

)
(5.5)

= ρv0 (r2 − r1) (θ2 − θ1) (2π) (5.6)

Note this result is dimensionally correct. Substituting the values established above, we ob-
tain Q = 12.83 C .
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5.4-1

Interpreting the problem statement:
ρs,1 , +4 nC/m2 for sheet in the x = 0 plane. Let the field from this sheet be E1.
ρs,2 , +16 nC/m2 for sheet in the y = 0 plane. Let the field from this sheet be E2.
ρs,3 , +64 nC/m2 for sheet in the z = 0 plane. Let the field from this sheet be E3.
Also, ǫ = 2ǫ0.

The electric field intensity due to a single sheet of charge having charge density ρs in the
z = 0 plane is worked out in the book. It is:

+ẑ
ρs
2ǫ
sgnz

This corresponds to the third sheet of charge above. Since the region of interest is z > 0:

E3 = +ẑ
ρs,3
4ǫ0

Similarly,

E1 = +x̂
ρs,1
4ǫ0

E2 = +ŷ
ρs,2
4ǫ0

The total field is the sum of these three fields. Thus:

E = x̂
ρs,1
4ǫ0

+ ŷ
ρs,2
4ǫ0

+ ẑ
ρs,3
4ǫ0

Substituting values, we obtain:

E ∼= x̂ (113 V/m) + ŷ (452 V/m) + ẑ (1807 V/m)
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5.4-2

From the problem statement, we have electric field intensity Eline due to line charge density
ρl = +8 mC/m along the z-axis. Thus,

Eline = ρ̂
ρl

2πǫρ
(5.7)

Also, we have electric field intensity Esheet due to surface charge density ρs = +12 mC/m2

in the z = 0 plane. Thus,

Esheet = ẑ
ρs
2ǫ

for z > 0 (5.8)

The total electric field is determined by superposition:

E = Eline + Esheet = ρ̂
ρl

2πǫρ
+ ẑ

ρs
2ǫ

for z > 0 (5.9)

Note that this is dimensionally correct. Also from the problem statement we have ǫ = ǫrǫ0
where ǫ0 = 8.854× 10−12 F/m and ǫr = 2. Finally:

E = ρ̂
71.9 MV

ρ
+ ẑ

(
338.8

MV

m

)
for z > 0 (5.10)
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5.5-1

Note F12 = Q2E1 where E1 is the electric field intensity associated with Q1. Thus:

E1 =
F12

Q2

= R̂12
Q1

4πǫR2
12

We can write this in terms of the electric flux density, assuming a isotropic and homogenous
medium:

D1 = ǫE1 = R̂12
Q1

4πR2
12

Now let’s put Q1 at the origin, and let S be a sphere of radius a centered at the origin.
Then, the left hand side of Gauss’ Law is:

∮

S

D · ds =
∫ π

θ=0

∫ 2π

φ=0

[
r̂
Q1

4πa2

]
·
[
r̂a2 sin θ dθ dφ

]
=
Q1

4π

∫ π

θ=0

∫ 2π

φ=0

sin θ dθ dφ = Q1

Because we put Q1 at the origin and defined S to surround it, Qencl = Q1, which is what we
expect from Gauss’ Law. Therefore, Coulomb’s Law is a solution to – a special case really
– of Gauss’ Law.

You might be inclined to object on the grounds that Gauss’ Law doesn’t say anything about
force or electric field intensity. This is true! However, electric field intensity is defined by
force; i.e., E1 = F12/Q2 is a definition for E1, and not derived from something else. Similarly,
D1 = ǫE1 is a definition for D1, and not derived from something else. So, Gauss’ Law is as
fundamental as it gets.
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5.5-2

By symmetry, there can be no variation in the z or φ dimensions. Therefore, our answer
can depend only on ρ. The three regions to consider are inside the inner surface of the shell
(ρ < 1 m), inside the shell itself (1 ≤ ρ < 3 m), and outside the outer surface of the shell
(ρ > 3 m).

The integral form of Gauss’ Law is:

∫

S

D · ds = Qencl (5.11)

where S is any closed surface. Since we are asked for electric field intensity, we can use
D = ǫE to obtain: ∫

S

E · ds = 1

ǫ
Qencl . (5.12)

Note that we use ǫ as opposed to ǫ0, since the latter infers free space conditions, and we
haven’t been told that.

For ρ < 1 m, Qencl = 0; i.e., there is no surface that we can define that encloses charge.
Combined with the symmetry argument, we have that E = 0 in this region.

For 1 ≤ ρ < 3 m, Qencl depends on ρ. Combined with the symmetry argument, we have
E(ρ) = ρ̂E(ρ). Thus, a good choice for S is a cylinder centered on the z axis. This gives us:

∫ 2π

φ=0

∫ +L/2

z=−L/2

ρ̂E(ρ) · ρ̂ ρ dφ dz + 0 =
1

ǫ

∫ ρ

ρ=1

∫ 2π

φ=0

∫ +L/2

z=−L/2

ρv dρ ρdφ dz (5.13)

where “+0” on the left hand side is the contribution from the constant-z surfaces (the “end
caps”) of the cylinder – zero because the normal to those surfaces (ẑ) is perpendicular to E.
Now evaluating:

E(ρ) 2πρL =
1

ǫ
ρvπL(ρ

2 − 1 m2) . (5.14)

Finally:

E(ρ) = ρ̂
ρv
2ǫ

(
ρ− 1 m2

ρ

)
in this region. (5.15)

Assuming ρv is in C/m3 and ǫ is in F/m, E(ρ) will be in V/m. However, if you say simply
“1” as opposed to “1 m2” in the above expression, then you must indicate the units of ρ
(being meters) as well. In electromagnetics, a powerful (but unappreciated) technique for
checking your work is to make sure your solution has the right units. This is called dimen-

sional analysis. You should be able to substitute units for each of the quantities in the above
solution and find that the result has units of V/m – can you do this?
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For ρ > 3 m, Qencl is constant at the maximum value (since all the charge has been enclosed),
but E(ρ) is still a variable function of ρ. Thus, the left hand side of Equation 5.14 remains
the same, but the right hand side is evaluated at ρ = 3 m. This yields:

E(ρ) 2πρL =
1

ǫ
ρvπL · 8 m2 . (5.16)

Thus:

E(ρ) = ρ̂
ρv
ǫ

4 m2

ρ
in this region. (5.17)

Suggestion: Try dimensional analysis on this solution. Can you see why it is important to
say “4 m2” as opposed to just “4”?

61



[m0014] [2]

5.5-3

By symmetry, there can be no variation in the θ or φ dimensions. Therefore, our answer
can depend only on r. The three regions to consider are inside the inner surface of the shell
(r < 2 m), inside the shell itself (2 ≤ r < 4 m), and outside the outer surface of the shell
(r > 4 m).

The integral form of Gauss’ Law is:

∫

S

D · ds = Qenclosed (5.18)

where S is any closed surface. Since we are asked for electric field intensity, we can use
D = ǫE to obtain: ∫

S

E · ds = 1

ǫ
Qenclosed . (5.19)

Note that we use ǫ as opposed to ǫ0, since the latter infers free space conditions, and we
haven’t been told that.

For r < 2 m, Qenclosed = 0; i.e., there is no surface that we can define that encloses charge.
Therefore, E = 0 in this region.

For 2 ≤ ρ < 4 m, Qenclosed depends on r. Combined with the symmetry argument, we have
E(r) = r̂E(r). Thus, a good choice for S is a sphere centered at the origin. This gives us:

∫ π

θ=0

∫ 2π

φ=0

r̂E(r) · r̂ r2 sin θ dθ dφ =
1

ǫ

∫ r

r=2

∫ π

θ=0

∫ 2π

φ=0

ρv r
2 sin θ dr dθ dφ (5.20)

Now evaluating:

4πr2 E(r) =
ρv
ǫ

4π

3

(
r3 −

[
8 m3

])
. (5.21)

Finally:

E(r) = r̂
ρv
3ǫ

(
r − 8 m3

r2

)
in this region. (5.22)

Assuming ρv is in units of C/m3 and ǫ is in F/m, E(ρ) will be in V/m. However, if you
say simply “8” as opposed to “8 m3” in the above expression, then you must indicate the
units of r (being meters) as well! In electromagnetics, a powerful (but sadly, unappreci-
ated) technique for checking your work is to make sure your solution has the right units.
This is called dimensional analysis. You should be able to substitute units for each of the
quantities in the above solution and find that the result has units of V/m – can you do this?

Also note that you have a second way to check your solution – it must be equal to the
solution for the first region for r = 2 m. Note that it is.
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For r > 4 m, Qenclosed is constant at the maximum value (since all the charge has been
enclosed), but E(r) is still a variable function of r. Thus, the left hand side of Equation 5.21
remains the same, but the right hand side is evaluated at r = 4 m. This yields:

4πr2 E(r) =
ρv
ǫ

4π

3

(
56 m3

)
. (5.23)

Thus:

E(r) = r̂
ρv
3ǫ

56 m3

r2
in this region. (5.24)

Suggestion: Try dimensional analysis on this solution. Can you see why it is important
to say “56 m3” as opposed to just “56”? Also, confirm that your answer agrees with the
Region 2 answer for r = 4 m.
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5.5-4

(a) A, B, and C have units of V/m4, V/m3, and V/m2 , respectively.

(b) According to the integral form of Gauss’ Law:

Qencl =

∮

S

D · ds = ǫ0

∮

S

E · ds

Here, S is the surface of the box-shaped region, and ds is the normal to each of the six sides.
This integral is easiest to handle as the sum of integrals over each side, since then ds will be
constant over each of these integrals. Here we go:

∫

−x side
E · (−x̂ dy dz) = −

∫ y=+1

y=0

∫ z=0

z=−1

A (−1) z2 dy dz = +
1

3
A

∫

+x side
E · (+x̂ dy dz) =

∫ y=+1

y=0

∫ z=0

z=−1

A (+1) z2 dy dz = +
1

3
A

∫

−y side
E · (−ŷ dx dz) = −

∫ x=+1

x=−1

∫ z=0

z=−1

(−B (0) z) dx dz = 0

∫

+y side
E · (+ŷ dx dz) =

∫ x=+1

x=−1

∫ z=0

z=−1

(−B (+1) z) dx dz = +B

∫

−z side
E · (−ẑ dx dy) = −

∫ x=+1

x=−1

∫ y=+1

y=0

Cx dx dy = 0

∫

+z side
E · (+ẑ dx dy) =

∫ x=+1

x=−1

∫ y=+1

y=0

Cx dx dy = 0

So we find:

Qencl = ǫ0

(
1

3
A +

1

3
A + 0 +B + 0 + 0

)
= ǫ0

(
2

3
A+ B

)

having units of Coulombs if ǫ0 is in F/m and the dimensions are all in meters. The chances for
units-related confusion is reduced if consider what has actually happened in the integration
and say specifically:

Qencl = ǫ0

[(
2

3
m5

)
A+ (1 m4)B

]
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5.5-5

The problem is easily solved using Gauss’ law in integral form:

Qencl =

∮

S

D · ds (5.25)

where S is any surface which completely surrounds the charge, D is the electric flux density,
and ds is the differential surface element. The easiest surface in this case is a sphere of radius
r0, centered on the origin, with

r0 >

√
12 + 12 + 12

2
=

√
3

2
(5.26)

Note that it is not important for the radius of the sphere to be close to this number; it is
merely necessary that the radius be greater than this number. In fact, we shall see below
that the radius doesn’t matter at all, as long as it is at least this big.

From the problem statement:

E = r̂
3 V ·m
r2

(5.27)

The problem indicates the medium is free space, so the permittivity ǫ = ǫ0 = 8.854 ×
10−12 F/m. Therefore:

D = ǫ0E = r̂ǫ0
3 V ·m
r2

(5.28)

Now putting this all together:

Qencl =

∫ π

θ=0

∫ 2π

φ=0

(
r̂ǫ0

3 V ·m
r20

)
·
(
r̂ r20 sin θ dθ dφ

)
(5.29)

= ǫ0 (3 V ·m)

∫ π

θ=0

∫ 2π

φ=0

sin θ dθ dφ (5.30)

= ǫ0 (3 V ·m)

(∫ π

θ=0

sin θ dθ

)(∫ 2π

φ=0

dφ

)
(5.31)

= ǫ0 (3 V ·m) (2) (2π) (5.32)

Note this result is dimensionally correct. Substituting the values established above, we ob-
tain Qencl = 333.8 pC .
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5.6-1

This is essentially the same problem shown as an example in the book, for which the electric
field intensity was found to be

E = ρ̂
ρl

2πǫρ

where here ρl = −2.1 mC/m and ρ is the distance from the z-axis. The electric flux density
is D = ǫE, so the permittivity doesn’t matter. The result is:

D = ρ̂
ρl
2πρ
∼= −ρ̂ 334 µC/m

ρ
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5.7-1

From Gauss’ Law, ρv = ∇ ·D = ∇ · (ǫ0ǫrE) = ǫ0ǫr∇ · E. Calculating the divergence:

∇ · E =
∂

∂x

(
(6 V/m2)x

)
+

∂

∂y

(
(2 V/m3)yz

)
+

∂

∂z

(
(1 V/m3)xy

)

= (6 V/m2)(1) + (2 V/m3)(z) + (1 V/m3)(0)

= (6 V/m2) + (2 V/m3)z

ǫ0 ∼= 8.854× 10−12 F/m and ǫr = 4.5, so

ρv = 239.1 pC/m3 + (79.7 pC/m4)z
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5.7-2

(a) ρv = ∇ ·D = ǫ0∇ · E. Here it’s easiest to use Cartesian coordinates, for which

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

so we have

ρv = ǫ0

[
x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

]
· [x̂ (2 V/m) sin x cos y − ŷ (2 V/m) cos x sin y]

= ǫ0
[(
2 V/m2) cos x cos y −

(
2 V/m2) cos x cos y

]
= 0

This is an example of a divergence-free field. It seems that there can be an electric field even
when there is no charge. This means simply that the source charge must lie entirely outside
the region begin considered.

(b) In this case we have

ρv = ǫ0

[
x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

]
· [x̂ (3 V/m) cos xy + ŷ (3 V/m) sin xy]

=
(
3 V/m3) ǫ0 [−y sin xy + x cos xy]

which has the expected units of C/m3.
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5.7-3

(a) A, B, and C have units of V/m4, V/m3, and V/m2 , respectively.

(c) According to the differential form of Gauss’ Law, we have for this problem:

ρv = ǫ0∇ · E = ǫ0

[
∂

∂x
(Axz2) +

∂

∂y
(−Byz) + ∂

∂z
(Cx)

]
= ǫ0

[
Az2 − Bz + 0

]
.

This is charge density as a function of position. The enclosed charge is obtained by integrat-
ing over the region of interest:

Qencl =

∫

V

ρv dv =

∫ x=+1

x=−1

∫ y=+1

y=0

∫ z=0

z=−1

ǫ0
(
Az2 −Bz

)
dx dy dz

The integrations over x and y factor out and are equal to 2 and 1 respectively. What’s left
is:

Qencl = (2)(1)ǫ0

∫ z=+1

z=−1

(
Az2 −Bz

)
dz = Qencl = ǫ0

[(
2

3
m5

)
A+ (1 m4)B

]

Note that this result agrees with the result obtained using the more direct approach of us-
ing the integral form of Gauss’ Law. You should note that the reason the results are the
same is not really related to electromagnetics, but rather due to the Divergence Theorem
(of mathematics), which relates the behavior of a vector field in a volume to the behavior of
that same vector field over the enclosing surface.
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5.8-1

The change in the energy of the system resulting from moving the particle a small distance
l̂∆l is:

∆W ≈ −qE · l̂∆l
Power P is energy per time, so the power required to do this is:

P ≈ ∆W

∆t
≈ −qE · l̂∆l

∆t

where ∆t is the time required for the particle to traverse the distance. Note that in the
limit as ∆t → 0, l̂∆l/∆t is the velocity v of the particle. Taking the limit and making the
substitution,

P = −qE · v
This is the “instantaneous power” required at time t and, through t, the position r(t).

Interpreting the problem statement: q = −4 mC;
E = E0ẑ, where E0 = 3 V/m; and
r(t) = x̂a cosωt+ ŷb sinωt+ ẑct, where a = b = 2 m, ω = π rad/s, and c = 4 m/s.
Note

v ,
d

dt
r(t) = −x̂aω sinωt+ ŷbω cosωt+ ẑc

Therefore,

P = −qE · v = −qE0c = − (−4 mC) (3 V/m) (4 m/s) = 48 mW
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5.12-1

Let us arbitrarily assume the charge is aligned along the z axis. Then the electric field
intensity is given by

E(ρ) = ρ̂
ρl

2πǫρ
. (5.33)

The potential difference is:

V21 = −
∫ point 2

point 1
E · d̂l = −

∫ ρ2

ρ1

ρ̂
ρl

2πǫρ
· ρ̂dρ = ρl

2πǫ
ln
ρ1
ρ2

. (5.34)
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5.12-2

The electric field intensity resulting from a single line of uniform charge density is given
by

E(R) = R̂
ρl

2πǫR
. (5.35)

where R is the distance between the point of interest and closest point on the line, R̂ points
from that point on the line to the point of interest, and R = R̂R.

If we have two such lines of charge, then by superposition we could write:

E(R) = R̂1
ρl

2πǫR1

+ R̂2
ρl

2πǫR2

. (5.36)

where the subscripts “1” and “2” refer to the geometry relative to the first and second lines
of charge, respectively. In this problem, the lines of charge and the point of interest all lie
in the x− y (z = 0) plane. Since this is the case we may write simply:

E(x, y) = x̂
ρl

2πǫx
+ ŷ

ρl
2πǫy

for z = 0. (5.37)

The potential difference is:

V21 = −
∫ point 2

point 1
E · dl . (5.38)

Remember that the answer should be the same for any path between the points, so you
might as well choose one that makes the problem simple. Here’s the result using one of two
equally-easy paths:

V21 = −
∫ x2

x=x1

[
x̂

ρl
2πǫx

+ ŷ
ρl

2πǫy2

]
· x̂dx−

∫ y2

y=y1

[
x̂

ρl
2πǫx1

+ ŷ
ρl

2πǫy

]
· ŷdy (5.39)

That is, first move from (2, 4) m to (1, 4) m along the y = y2 = 4 m line, and then move
from (1, 4) m to (1, 1) m along the x = x1 = 1 m line. Evaluating:

V21 = −
ρl
2πǫ

[
ln

(
x2
x1

)
+ ln

(
y2
y1

)]
= +

ρl
2πǫ

[
ln

(
x1
x2

)
+ ln

(
y1
y2

)]
= 0.331

ρl
ǫ

. (5.40)

Here, you can check your results using dimensional analysis (C/m divided by F/m gives C/F
= V). You can also check that the sign is correct: Point 2 is closer to both lines of charge
than point 1, so when the charge is positive, work is being done and the potential difference
is positive. Said differently, the potential at point 2 is higher than the potential at point 1.
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5.12-3

The point charge q1 = +3 µC at the origin creates a potential field

V (r) =
q1

4πǫr
(5.41)

where r is the distance from the origin. Since the permittivity of the medium is specified to
be twice that of free space, ǫ = ǫrǫ0 = 2ǫ0. Thus:

V (r) =
q1

8πǫ0r
(5.42)

The potential difference V21 at r2 relative to r1 is independent of the path taken between the
points; it depends only on the endpoints. Thus:

V21 = V (r2)− V (r1) =
q1

8πǫ0r2
− q1

8πǫ0r1
=

q1
8πǫ0

(
1

r2
− 1

r1

)
(5.43)

where r1 =
√
32 + (−4)2 = 5 m and r2 = 1 m. Therefore V21 ∼= +10.8 kV .

Note that the result does not depend on the value of the charge (q2 = +2 µC) being moved
from r1 to r2. This is the whole point in defining a scalar electric potential: It describes
energy in the field independently of the charge that experiences it. If necessary, one may
subsequently calculate the energy associated with this potential difference as q2V12.
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5.14-1

To begin, it will be convenient to first convert r0 from Cartesian to spherical coordinates.
Here we go:

r0 =
√
x20 + y20 + z20

∼= 5.38 cm

θ0 = arccos (z0/r0) ∼= 42.0◦

φ0 = arctan (y0/x0) ∼= 56.3◦

(a)

V (r0) = V0r
2
0 cos θ0

∼= 10.8 mV

(b)

E = −∇V = −
(
r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ 0

)
V

The third term in the gradient is zero because V in this problem does not vary with φ.
Continuing:

E = −r̂∂V
∂r
− θ̂1

r

∂V

∂θ
= −r̂2V0r cos θ + θ̂V0r sin θ

So:

E(r0) ∼= −r̂400 + θ̂180 mV/m

(c)

ρv = ∇ ·D = ǫ0∇ · E = ǫ0

[
1

r2
∂

∂r

(
r2Er

)
+

1

r sin θ

∂

∂θ
(Eθ sin θ) + 0

]

where Er and Eθ are the r̂- and θ̂-directed components of E. The third term in the divergence
is zero because E in this problem does not vary with φ. Note:

1

r2
∂

∂r

(
r2Er

)
=

1

r2
∂

∂r

(
r2 (−2V0r cos θ)

)
=

1

r2
∂

∂r

(
−2V0r3 cos θ

)
=

1

r2
(
−6V0r2 cos θ

)
= −6V0 cos θ

and

1

r sin θ

∂

∂θ
(Eθ sin θ) =

1

r sin θ

∂

∂θ
((V0r sin θ) sin θ) =

1

r sin θ

∂

∂θ

(
V0r sin

2 θ
)
=

1

r sin θ
(2V0r sin θ cos θ)

= 2V0 cos θ

Continuing:
ρv = ǫ0 [−6V0 cos θ + 2V0 cos θ] = −4V0ǫ0 cos θ

(Good time for a units check...) At the point of interest:

ρv(r0) ∼= −131 pC/m3
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5.14-2

From the problem statement,
V (r) = V0r

−1/2

where V0 , 4 V ·m1/2. So:
E(r) = −∇V (r)

= −r̂ ∂
∂r
V0r

−1/2 + terms that go to zero because ∂
∂θ

= ∂
∂φ

= 0

= −r̂V0
(
−1

2
r−3/2

)

= +r̂
V0
2
r−3/2

= +r̂
(
2 V ·m1/2

)
r−3/2

Note that the answer is dimensionally correct (and unambiguously so).
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5.15-1

Poisson’s Equation is

∇2V = −ρv
ǫ

. (5.44)

The geometry of the problem suggests cartesian coordinates, and symmetry such that ∂V/∂y =
∂V/∂z = 0 is implied. Thus, the above equation becomes:

d2

dx2
V (x) = −ρv(x)

ǫ
. (5.45)

Integrating both sides with respect to x we have

d

dx
V (x) = −1

ǫ

∫ x

−∞

ρv(x) dx . (5.46)

Integrating both sides again with respect to x we have

V (x) = −1

ǫ

∫ x

−∞

[∫ x

−∞

ρv(x) dx

]
dx . (5.47)

The first chore is to take care of that sequence of integrations. We begin with mathematical
restatement of the given volume charge density:

ρv(x) =





0 , −∞ ≤ x < −b
−a , − b ≤ x < 0
+a , 0 ≤ x ≤ +b
0 , + b < x ≤ −∞

(5.48)

Integrating once:

∫ x

−∞

ρv(x)dx =





0 , −∞ ≤ x < −b
−a(x+ b) , − b ≤ x ≤ 0
+ax− ab , 0 < x ≤ +b
0 , + b < x ≤ −∞

(5.49)

If you have a hard time seeing this, consider sketching ρv(x) and then doing the integration
graphically. Integrating the second time:

∫ x

−∞

[∫ x

−∞

ρv(x)dx

]
dx =





0 , −∞ ≤ x < −b
−(a/2)x2 − abx− ab2/2 , − b ≤ x ≤ 0
+(a/2)x2 − abx− ab2/2 , 0 < x ≤ +b
−ab2 , + b < x ≤ −∞

(5.50)

Substituting this into Equation 5.47 we obtain:

V (x) =
1

ǫ





0 , −∞ ≤ x < −b
+(a/2)x2 + abx+ ab2/2 , − b ≤ x ≤ 0
−(a/2)x2 + abx+ ab2/2 , 0 < x ≤ +b
ab2 , + b < x ≤ −∞

(5.51)
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Now check your answer. First, as always, check that is is dimensionally correct. Second,
note that V (x) should be a continuous function of x, since integration over any function
(specifically excluding the impulse or “delta” function) results in a continuous function.

To find the volume charge density a in terms of V, we simply evaluate:

Vd = V (x = +b)− V (x = −b) =
ab2

ǫ
− 0 =

ab2

ǫ
. (5.52)

and solve for a:

a =
ǫVd
b2

. (5.53)

Given the relative permittivity of silicon ǫr ≈ 12, b = 100 µm, and Vd = 0.4 V, we find

a = 4.25 mC/m3 .
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5.15-2

The symmetry of this problem suggests a solution in spherical coordinates. Laplace’s Equa-
tion in spherical coordinates is:

∇2V =
1

r2
∂

∂r

(
r2
∂V

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+

1

r2 sin2 θ

∂2V

∂φ2
= 0 (5.54)

The symmetry of the problem also requires that the potential V not vary with respect to θ
or φ; in other words:

∂V

∂θ
=
∂V

∂φ
= 0 . (5.55)

Thus, V is a function of r only, and Laplace’s Equation simplifies to:

1

r2
∂

∂r

(
r2
∂

∂r
V (r)

)
= 0 (5.56)

Multiplying through by r2 and then integrating with respect to r, we obtain:

r2
∂

∂r
V (r) = C , (5.57)

where C is an arbitrary constant. Now dividing through by r2 and integrating with respect
to r again, we obtain:

V (r) = −C1

r
+ C2 , (5.58)

where C1 and C2 are constants that can be determined by boundary conditions. Applying
the boundary conditions, we obtain:

V (r = 1 m) = − C1

1 m
+ C2 = 100 V , and (5.59)

V (r = 3 m) = − C1

3 m
+ C2 = 20 V . (5.60)

A simple way to solve for C1 and C2 here is simply to subtract the second equation from
the first equation, which eliminates C2, then solve for C1 and use that result to solve for C2.
One finds C1 = −120 V·m and C2 = −20 V. Thus:

V (r) = +
120 V ·m

r
− 20 V , 1 m ≤ r ≤ 3 m. (5.61)

Note that an answer like “V (r) = 120/r− 20” is dangerously ambiguous, unless you specify
as part of the answer that r must be in meters and V will be in volts.
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5.15-3

The symmetry of this problem suggests a solution in spherical coordinates. Laplace’s Equa-
tion in spherical coordinates is:

∇2V =
1

r2
∂

∂r

(
r2
∂V

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+

1

r2 sin2 θ

∂2V

∂φ2
= 0 (5.62)

The symmetry of the problem also requires that the potential V not vary with respect to θ
or φ; in other words:

∂V

∂θ
=
∂V

∂φ
= 0 . (5.63)

Thus, V is a function of r only, and Laplace’s Equation simplifies to:

1

r2
∂

∂r

(
r2
∂

∂r
V (r)

)
= 0 (5.64)

Multiplying through by r2 and then integrating with respect to r, we obtain:

r2
∂

∂r
V (r) = C , (5.65)

where C is an arbitrary constant. Now dividing through by r2 and integrating with respect
to r again, we obtain:

V (r) = −C1

r
+ C2 , (5.66)

where C1 and C2 are constants that can be determined by boundary conditions. One bound-
ary condition is obtained from the surface of the sphere:

V (r = 2 m) = − C1

2 m
+ C2 = 20 V (5.67)

The other boundary condition is obtained by noting that V (r) must go to zero as r → ∞.
Thus:

V (r →∞) = 0 + C2 = 0 (5.68)

so C2 = 0 and C1 = −40 V·m.

V (r) = +
40 V ·m

r
r > 2 m (5.69)

Note that an answer like “V (r) = 40/r V” is dangerously ambiguous, since the units of the
constant “40” are not clear. (It is OK – albeit tedious – to say “V (r) = 40/r V” if you also

specify that r is in meters.)
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5.16-1

The symmetry of this problem suggests a solution in cylindrical coordinates. Laplace’s
Equation in cylindrical coordinates is:

∇2V =
1

ρ

∂

∂ρ

(
ρ
∂V

∂ρ

)
+

1

ρ2
∂2V

∂φ2
+
∂2V

∂z2
= 0 (5.70)

The symmetry of the problem also requires that the potential V not vary with respect to φ
or z; in other words:

∂V

∂φ
=
∂V

∂z
= 0 . (5.71)

Thus, V is a function of ρ only, and Laplace’s Equation simplifies to:

∂

∂ρ

(
ρ
∂V

∂ρ

)
= 0 (5.72)

Integrating both sides with respect to ρ, we obtain:

ρ
∂

∂ρ
V (ρ) = C1 , (5.73)

where C is an arbitrary constant. Now dividing through by ρ and integrating with respect
to ρ again, we obtain:

V (ρ) = C1 ln ρ+ C2 , (5.74)

where C1 and C2 are constants that can be determined by boundary conditions. Applying
the boundary conditions, we obtain:

V (ρ = 0.001 m) = C1 ln (0.001 m) + C2 = 50 mV , and (5.75)

V (ρ = 0.002 m) = C1 ln (0.002 m) + C2 = 20 mV . (5.76)

A simple way to solve for C1 and C2 here is simply to subtract the second equation from
the first equation, which eliminates C2; then solve for C1 and use that result to solve for C2.
One finds C1 = −43.3 mV and C2 = −249.0 mV. Thus:

V (ρ) = − (43.3 mV) ln
( ρ

1 m

)
− 249.0 mV , 1 mm ≤ ρ ≤ 2 mm. (5.77)

Note that an answer that does not include “1 m” in the denominator of the argument of the
“ln” function is dangerously ambiguous unless you also specify that ρ must be in meters.
Here is another correct solution, this time with the argument in units of millimeters:

V (ρ) = − (43.3 mV) ln
( ρ

1 mm

)
+ 50.0 mV , 1 mm ≤ ρ ≤ 2 mm. (5.78)

Note that C2 depends on the units of ρ in the argument of the logarithm function.
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[m0021] [1]

5.18-1

A good way to get the charge density is to first find the electric field, and then to apply
the boundary condition that relates electric field to surface charge density on a conducting
surface. The electric field intensity is, in general:

E = −∇V = −ρ̂∂V
∂ρ
− φ̂1

ρ

∂V

∂φ
− ẑ

∂V

∂z
. (5.79)

The last two terms are zero because the the answer cannot vary with respect to φ or z. So
we have:

E = −ρ̂∂V
∂ρ

= −ρ̂ ∂
∂ρ

[
− (43.3 mV) ln

( ρ

1 m

)
− 249.0 mV

]
= ρ̂

43.3 mV

ρ
. (5.80)

The relevant boundary condition on the inner conductor is that the normal component of the
electric flux density D equals the surface charge density. The normal to the inner conductor
is +ρ̂, so we have:

ρs = (+ρ̂) ·D|ρ=1 mm = ρ̂ · ǫE|ρ=1 mm = ǫrǫ0 (43.3 V/m) . (5.81)

Since ǫ0 = 8.854 × 10−12 F/m and ǫr = 2.1, we have that the surface charge density on the

inner conductor is +804 pC/m2 .
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[m0021] [2]

5.18-2

(a) Summarizing the problem statement, we have a sphere of radius a = 2 m containing
uniformly-distributed charge with volume density ρv = 3 pC/m3, and the media is a dielec-
tric with ǫr = 4.5 everywhere. Poisson’s Equation is

∇2V = −ρv
ǫ

(5.82)

Note that you could also do this problem by integrating over the charge distribution, and
that’s a great check. However, the problem statement requires you to use Poisson’s Equation.
The symmetry of the problem suggests the use of spherical coordinates. Noting that ∂V/∂θ
and ∂V/∂φ should be zero due to symmetry, we find

1

r2
∂

∂r

(
r2
∂V

∂r

)
= −ρv

ǫ
(5.83)

It’s straightforward to solve for V in this case. Here we go:

∂

∂r

(
r2
∂V

∂r

)
= −ρv

ǫ
r2 (5.84)

r2
∂V

∂r
= −ρv

3ǫ
r3 + C1 (5.85)

where C1 is an arbitrary constant. Continuing:

∂V

∂r
= −ρv

3ǫ
r +

C1

r2
(5.86)

V (r) = −ρv
6ǫ
r2 +

C2

r
+ C3 (5.87)

where C2 and C3 are arbitrary constants. At this point you should confirm this result by
making sure it’s a solution to the original equation, and also by checking units.

Outside the sphere, ρv = 0. Thus:

V (r) =
Bo

r
+ Ao r > a (5.88)

Here we have replaced the constants C2 and C3 with Bo and Ao respectively. This is to remind
us that the constants may be different should we consider the region inside the sphere (as
we shall soon do). We can determine the value of the constant Ao by noting that V (r)→ 0
as r → ∞, since the total charge is finite and contained within a finite region. Therefore,
Ao must be zero, leading to

V (r) =
Bo

r
r > a (5.89)

To determine the value of the constant Bo we’re going to have to make some kind of con-
nection with V (r) inside the sphere. Inside the sphere:

V (r) = −ρv
6ǫ
r2 +

Bi

r
+ Ai r ≤ a (5.90)
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Here we have replaced the constants C2 and C3 with Bi and Ai respectively. We can deter-
mine the value of the constant Bi by noting that V (r) must be finite as r → 0, since the
charge density is finite at r = 0. Therefore, Bi must be zero, leading to

V (r) = −ρv
6ǫ
r2 + Ai r ≤ a (5.91)

Now we apply the boundary condition at the surface of the sphere. Note that there is no
requirement for potential to be continuous (and it wouldn’t do us any good even if there
were, since we’d be stuck with one equation and two unknowns). The relevant boundary
condition at r = a is that the normal component of the electric field should be continuous:
Specifically,

[Do(r = a)−Di(r = a)] · r̂ = ρs (5.92)

where Do and Di are the electric flux densities outside and inside the sphere respectively,
and ρs is the surface charge density. The surface charge density ρs is zero, since all the charge
is taken into account as the volume charge density ρv. Also, D = ǫE; therefore, we have

[Eo(r = a)− Ei(r = a)] · r̂ = 0 (5.93)

Next we note E everywhere should be oriented in the r̂ direction due to symmetry. Thus,
we find:

Eo(r = a) = Ei(r = a) (5.94)

We can find the electric flux density by taking the gradient of the potential:

E = −∇V = −r̂ ∂
∂r

[
−ρv
6ǫ
r2 + Ai

]
= r̂

ρv
3ǫ
r r ≤ a (5.95)

E = −∇V = −r̂ ∂
∂r

[
Bo

r

]
= r̂

Bo

r2
r > a (5.96)

Now applying the boundary condition (Equation 5.94):

ρv
3ǫ
a =

Bo

a2
(5.97)

Solving for Bo and substituting the result back into Equation 5.89, we obtain:

V (r) =
ρva

3

3ǫr
=

ρva
3

3ǫrǫ0r
r > a (5.98)

(Good time for a units check!) Finally, the answer:

V (r) =
0.201 V·m

r
r > a (5.99)

(b) From the previous equation, V (3 m) = 66.9 mV.
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[m0021] [3]

5.18-3

A good way to get the charge density is to first find the electric field, and then to apply
the boundary condition that relates electric field to surface charge density on a conducting
surface. The electric field intensity is:

E = −∇V = −r̂∂V
∂r
− θ̂1

r

∂V

∂θ
− φ̂ 1

r sin θ

∂V

∂φ
. (5.100)

The last two terms are zero because the the answer cannot vary with respect to θ or φ. So
we have:

E = −r̂∂V
∂r

= −r̂ ∂
∂r

[
120 V ·m

r
− 20 V

]
= +r̂

120 V ·m
r2

. (5.101)

The relevant boundary condition on the inner conductor is that the normal component of the
electric flux density D equals the surface charge density. The normal to the inner conductor
is +r̂, so we have:

ρs = (+r̂) ·D|r=1 m = r̂ · ǫ0E|r=1 m = ǫ0 (120 V/m) . (5.102)

Since ǫ0 = 8.854× 10−12 F/m in free space, we have that the surface charge density on the

inner conductor is 1.06 nC/m2 .
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[m0112] [1]

5.22-1

The net charge in the capacitor is zero because the charges on the two plates is equal
and opposite. The charge on the positively-charged plate is

Q+ = CV = (20 pF) (3 V) = +60 pC
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[m0070] [1]

5.23-1

(a) The equivalent circuit is just a resistor R in parallel with a capacitor to which we’ll

assign the variable Cx. The impedance of the capacitor is −j/ωCx. Thus, the magnitude
of the capacitor’s impedance decreases with increasing frequency. The total impedance is
the parallel combination of R = 200 Ω and Cx. The effective resistance will decrease with
increasing frequency.

(b) This structure looks a lot like a parallel plate capacitor. Neglecting fringing fields,
capacitance is estimated as

Cx =
ǫHW

L
=
ǫ0ǫrHW

L
=

(8.854× 10−12 F/m) · 37 · (0.3 mm) (0.3 mm)

0.6 mm
= 49.1 fF

(c) The impedance is R ‖ (−j/ωCx). At f = 10 GHz, we have 144.8 − j89.4 Ω, so the

effective resistance is 144.8 Ω .
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5.23-2

From the problem statement: C < 3 pF, d = 2 mm, and ǫr = 3.0. Note:

C ≈ ǫA

d
=
ǫrǫ0A

d

where A is the area in common. So:

A <
(3 pF) d

ǫrǫ0

Therefore, the common area must be < 2.26× 10−4 m2.
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[m0070] [3]

5.23-3

(a) Given ǫ(z) = ǫ0 (az + b) is permittivity, the units of a must be 1/m and b must be

unitless .

(b) This problem is really quite similar to the derivation presented in the book. As in that
derivation, electric flux density between the plates is

D ≈ −ẑρs,+ (5.103)

where ρs,+ is the charge density on the positively-charged plate at z = d. The electric flux
density is unchanged in this problem because electric flux does not depend on the material
in which it exists (unlike the electric field intensity, E). When it comes time to compute the
potential across the plates, we find:

V = −
∫

C

E · dl (5.104)

= −
∫ d

z=0

(
D

ǫ(z)

)
· (ẑdz) (5.105)

= −
∫ d

z=0

(
−ẑ ρs,+

ǫ0 |az + b|

)
· (ẑdz) (5.106)

=
ρs,+
ǫ0

∫ d

z=0

dz

az + b
(5.107)

You can solve the integral, or just look it up in a table of integrals. Continuing:

V =
ρs,+
ǫ0

(
1

a
ln |az + b|

∣∣∣∣
d

0

)
(5.108)

=
ρs,+
ǫ0

1

a
(ln |ad+ b| − ln |b|) (5.109)

=
ρs,+
ǫ0

1

a
ln

(
ad+ b

b

)
(5.110)

=
ρs,+
ǫ0

1

a
ln

(
ad

b
+ 1

)
(5.111)

We can dispense with the absolute value operator above since the argument is always non-
negative. Finally:

C ,
Q+

V
≈ ρs,+A

(ρs,+/ǫ0) (1/a) ln (ad/b+ 1)
(5.112)

which simplifies to:

C ≈ ǫ0A
a

ln (ad/b+ 1)
(5.113)
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(c) Units check: ǫ0 has units of F/m, A has units of m2, and a has units of 1/m. The “ln”
factor in the denominator is unitless. Thus we find that C has units of F, as expected.

(d) Recall that ǫ(z) = ǫ0 (az + b). If the permittivity is uniform, then a must be zero.
Subsequently b must be the relative permittivity, ǫr. Equation 5.113 becomes:

C ≈ ǫ0A lim
a→0

a

ln (ad/ǫr + 1)
(5.114)

Note we have to be careful because both numerator and denominator are going to zero.
Applying L’Hopital’s Rule, we take the derivative with respect to a of the numerator and
denominator:

lim
a→0

a

ln (ad/ǫr + 1)
= lim

a→0

1

(d/ǫr) / (ad/ǫr + 1)
=
ǫr
d

(5.115)

Substituting this result into Equation 5.114, we obtain:

C ≈ ǫ0A
ǫr
d

=
ǫA

d
(5.116)

which is the expected result (i.e., the one we had already derived for uniform permittivity).

(e) In terms of the variables established, A = 400 µm2, d = 0.5 mm, b = 2, and a =
(10− 2)/d = 16000 m−1. (You should check that this choice of a and b gives you ǫ = 2ǫ0 at
z = 0 and ǫ = 10ǫ0 at z = d.) Equation 5.113 becomes:

C ≈ ǫ0A
a

ln (5)
∼= 35.2 pF (5.117)
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[m0113] [1]

5.24-1

From the problem statement, C ′ = 30 pF/m and ǫr = 2.25 for polyethylene. The capacitance
of the original coaxial cable is

C ′ =
2πǫs

ln (b/a)

where ǫs = ǫrǫ0 for the spacer material and b/a is the ratio of the radius of the outer
conductor to that of the inner conductor. The capacitance of a coaxial cable that is identical
except polyethylene is replaced with air (ǫs = ǫ0) is:

C ′

new =
2πǫ0

ln (b/a)

Comparing the two equations, we observe:

C ′

new =
C ′

ǫr
∼= 13.3 pF/m
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[m0113] [2]

5.24-2

From the problem statement, a = 1 mm, b = 3 mm, ǫs = ǫ0, and V = +1.5 kV mea-
sured at the outer conductor relative to the inner conductor. The capacitance of this cable
is

C ′ =
2πǫ0

ln (b/a)
∼= 50.6 pF/m

The outer conductor is positively-charged, and the line charge density on this conductor is

ρl = C ′V ∼= +76.0 nC/m

The circumference of the outer conductor is 2πb, so the surface charge density is

ρs =
ρl
2πb

= +4.03 µC/m2
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[m0114] [1]

5.25-1

From the problem statement, C = 4.7 mF and V = 16 V. The energy stored is

We =
1

2
CV 2 ∼= 602 mJ
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5.25-2

From the problem statement, C = 3.5 pF, d = 0.1 mm, ǫr = 10, and V = 3 V. For an
ideal parallel plate capacitor,

C =
ǫA

d

where ǫ = ǫrǫ0 is the spacer permittivity and A is the plate area. In the present problem,
we find:

A =
Cd

ǫ0ǫr
∼= 3.95× 10−6 m2

The volume of the capacitor is

Ad ∼= 3.95× 10−10 m3

The energy in the capacitor is

We =
1

2
CV 2 = 15.75 pJ

Therefore, the energy density is

We

Ad
∼= 39.8 mJ/m3
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Chapter 6

Steady Current and Conductivity
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[m0071] [1]

6.4-1

(a) Resistance Rsteel per unit length l of the steel-only wire:

R′

steel =
Rsteel

l
=

1

σsteel · πa2
=

1

(1.00× 106 S/m) · π (0.1 mm)2
= 31.8 Ω/m

(b) Resistance per unit length of gold clad having outer radius b:

R′

gold =
1

σgold · π (b2 − a2)

The total resistance per unit length R′
total = 10 Ω/m is the parallel combination:

1

R′
total

=
1

R′
steel

+
1

R′
gold

=
1

R′
steel

+ σgold · π
(
b2 − a2

)

Solving for b:

b =

√[
1

R′
total

− 1

R′
steel

+ σgold · πa2
]

1

σgold · π
= 0.10263 mm

So the required thickness of gold is b− a, which is 2.63 µm .
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[m0071] [2]

6.4-2

In the transmission line equivalent circuit (R′,G′,C ′,L′) model, R′ is a series resistance. Also,
any current applied to either conductor must return on the other conductor. Therefore, we
have

R′ = R′

ic +R′

oc (6.1)

where R′
ic is the resistance per length of the inner conductor and R′

oc is the resistance per
length of the outer conductor. Note

R′

ic =
1

σicAic
(6.2)

where σic is the inner conductor conductivity and Aic is the cross-sectional area of the inner
conductor. Thus, R′

ic = 0.164 Ω/m. Also

R′

oc =
1

σocAoc
(6.3)

where σoc = σic (from the problem statement) and Aoc is the cross-sectional area of the outer
conductor, through which the current flows. Note:

Aoc = πb22 − πb21 (6.4)

where b1 and b2 are the radii of the inner and outer surfaces, respectively, of the outer
conductor. From the problem statement we have

b1 =

(
1− 0.05

2

)
b ∼= 0.1809 cm (6.5)

b2 =

(
1 +

0.05

2

)
b ∼= 0.1901 cm (6.6)

(Check: the mean of b1 and b2 is (b1 + b2) /2 = b, as expected.) So Aoc ∼= 1.081 × 10−6 m2,
and subsequently, R′

oc
∼=0.0406 Ω/m. Finally, we obtain R′ = R′

ic +R′
oc
∼= 0.205 Ω/m.
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[m0071] [3]

6.4-3

If the voltage drop is to be reduced by a factor of 2, then the resistance must be decreased
by a factor of 2. The DC resistance of a wire is l/σA where l is length, σ is conductivity,
and A is cross-sectional area. The use of the term “diameter” implies the wire has circular
cross section, so the original wire has A = π (D0/2)

2 and

R =
l

σπ (D0/2)
2

For this to be reduced by a factor of two, the new diameter must be
√
2 ·D0 .
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[m0071] [4]

6.4-4

The DC resistance of such a resistor is R = l/σA where A is cross-sectional area. In this
case, we may write

R =
l

σA
=

l

σπ (D/2)2
=

4l

σπD2

where D is diameter. Note that D should increase by a factor of
√
2 in order to reduce R

by a factor of two. Thus, D becomes ∼= 1.41 mm.
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[m0105] [1]

6.5-1

The conductance per unit length is

G′ =
2πσs

ln (b/a)

where σs is the spacer conductivity, and a and b are the radii of the inner and outer
conductors, respectively. From the book, RG-59 has σs ∼= 5.9 × 10−5 S/m and exhibits
G′ ∼= 200 µS/m normally. From the appendix “Conductivity of Some Common Materials,”
σs ≈ 5 S/m. The worst case is that spacer assumes the much higher conductivity of seawater,
in which case:

G′ → (200 µS/m)
5 S/m

5.9× 10−5 S/m
∼= 17.0 S/m
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[m0105] [2]

6.5-2

Let the ground plane be at z = 0, and let the trace be at z = h. From the problem
statement, the current I is positive when flowing into the trace and from the ground plane.

(a) Under the condition that W ≫ h we assume that most of the current in the transmission
line flows directly from the trace to ground plane in the −ẑ direction, and that the fraction
of current that does not satisfy this condition (i.e., the current close to the edges of the
trace) is negligible. Thus, we are justified in assuming the current density is approximately
uniform throughout the region directly underneath the trace. Therefore the magnitude of
the current density is approximately total current I divided by trace area Wl, where l is the
length of the trace. Under this same approximation, the magnitude of the current density
is assumed to be zero beyond the trace. Summarizing:

J ≈
{
−ẑI/Wl, directly underneath trace; and

0, otherwise.
(6.7)

where l is the length of the trace.

(b) The electric field intensity is given by Ohm’s law:

E =
J

σs
≈
{
−ẑI/Wlσs, directly underneath trace; and

0, otherwise.
(6.8)

Subsequently:

V = −
∫

C

E · dl (6.9)

≈ −
∫ h

z=0

(
−ẑ I

Wlσs

)
· (ẑdz) (6.10)

Note the start point is z = 0, since this is the negative terminal with respect to a current
source driving the transmission line. Similarly the end point is z = h, since this is the
positive terminal with respect to a current source driving the transmission line. Continuing:

V ≈ I

Wlσs

∫ h

z=0

dz (6.11)

The integral is equal to h. Thus:

V ≈ Ih

Wlσs
(6.12)

This is the potential measured at the trace relative to the potential at the ground plane.
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(c) Conductance G is determined as follows:

G ,
I

V
≈ Wlσs

h
(6.13)

Conductance per unit length is G′ , G/l, so

G′ ≈ Wσs
h

(6.14)

(d) Since the trace and ground plane are specified to be perfectly conducting, R′ = 0 and the
only physical mechanisms to consider are G′, L′, and C ′. At DC, There is no contribution
from L′ since it is in series with the trace, and there is no contribution from C ′ since it
connects trace to ground plane. Therefore Z , V/I = 1/G. From Equation 6.13 we obtain:

Z ≈ h

Wlσs
(6.15)
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[m0106] [1]

6.6-1

From the problem statement:
Length l = 1.2 cm,
radius a = 1.6 mm,
J is uniform (constant) in the resistor,
E = ẑE0/

√
ρ where E0 , 3 V ·m−1/2, and

P = 5 W.
Let σ be the conductivity of the material comprising the resistor. Then

P =

∫

V

σ |E|2 dv

where V is the volume representing the resistor.

We cannot assume the material comprising the resistor is homogeneous. So, what do we
know about σ? Recall Ohm’s Law, J = σE. Since E is proportional to 1/

√
ρ and J is inde-

pendent of ρ, σ must have the form σ = σ0
√
ρ where σ0 is a constant having units of S·m−3/2.

Continuing,

P =

∫

V

(σ0
√
ρ)

(
E0√
ρ

)2

dv = σ0E
2
0

∫

V

ρ−1/2dv

Let us assume the ends of the resistor are at z = 0 and z = l. Then:

P = σ0E
2
0

∫ a

ρ=0

∫ 2π

φ=0

∫ l

z=0

ρ−1/2 [dρ (ρdφ) dz]

= σ0E
2
0

(∫ a

ρ=0

ρ+1/2dρ

)(∫ 2π

φ=0

dφ

)(∫ l

z=0

dz

)

= σ0E
2
0

(
2

3
a3/2

)
(2π) (l)

Solving for σ0:

σ0 =
3P

4πa3/2lE2
0

∼= 173 kS ·m−3/2

and subsequently,

σ ∼=
(
173 kS ·m−3/2

)√
ρ
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Chapter 7

Magnetostatics
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[m0115] [1]

7.1-1

Divergence of the electric field:
∇ ·D = ρv , so

∇ · ǫE = ρv

where ǫ has units of F/m and ρv has units of C/m
3.

Curl of the electric field:
∇× E = 0

Divergence of the magnetic field:
∇ ·B = 0 , so

∇ ·H = 0

Curl of the magnetic field:
∇×H = J

Noting J = σE:
∇×H = σE

where σ has units of S/m.
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[m0047] [1]

7.3-1

The differential form of Gauss’ Law for magnetism requires

∇ ·B = 0

According the reported measurement:

∇ ·B =

(
x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
· x̂B0x

2 = 2B0x

Therefore, the measurement is plausible only if B0 is zero.
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[m0119] [1]

7.5-1

The magnetic flux density (not the same as magnetic flux!) in this case is given by

B(ρ) = φ̂
µ0I

2πρ
. (7.1)

The magnetic flux is simply B integrated over the area of the loop (i.e., flux divided by area,
times area, is flux):

Φ =

∫

S

B · ds =
∫ 23 cm

ρ=3 cm

∫ 30 cm

z=0

φ̂
µ0I

2πρ
· φ̂ dρ dz (7.2)

Where S is the area enclosed by the loop, and the absolute values of z don’t matter due to
symmetry, so you can pick any z’s you want as long as you cover 30 cm in the z direction.
Evaluating:

Φ =
µ0I

2π

[∫ 23 cm

ρ=3 cm

dρ

ρ

] [∫ 30 cm

z=0

dz

]
=
µ0I

2π

[
ln

23

3

]
(30 cm) = 3 µT·m2 (7.3)

Solving for I we have

I =
(
3 µT·m2

)( 2π

4π × 10−7 H/m

)[
ln

23

3

]−1

(0.3 m)−1 = 24.5
T·m2

H
(7.4)

To get to units of A, the traditional units of current, recall that inductance (H) is defined
as magnetic flux (T·m2) divided by current (A), so we’re already there! Thus, we have

I= 24.5 A .
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[m0119] [2]

7.5-2

The magnetic flux density (not the same as magnetic flux!) is given by

B(ρ) = φ̂
µ0I

2πρ
. (7.5)

The magnetic flux is simply B integrated over the area of the loop (i.e., flux divided by area,
times area, is flux):

Φ =

∫

S

B · ds =
∫ 0.02 m

ρ=0.01 m

∫ 0.10 m

z=0

φ̂
µ0I

2πρ
· φ̂ dρ dz (7.6)

Evaluating:

Φ =
µ0I

2π

[∫ 0.02 m

ρ=0.01 m

dρ

ρ

] [∫ 0.10 m

z=0

dz

]
(7.7)

=
(4π × 10−7 H/m)(3 A)

2π

[
ln

0.02

0.01

]
(0.10 m) = 41.6 nT·m2 (7.8)

Note that this may also be written as 41.6 nWb , since 1 Wb = 1 T/m2.
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7.5-3

Ampere’s Law is ∫

C

H · dl = Iencl (7.9)

where C is any path which encloses the current. A convenient path is just a constant-z circle
with radius a: ∫ 2π

φ=0

H · φ̂ a dφ = I (7.10)

Also, H = B/µ0, so ∫ 2π

φ=0

φ̂J0a · φ̂ a dφ = I (7.11)

Thus:
I = 2πa2J0 = 20.0 mA . (7.12)
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7.5-4

Apply the right hand rule. When the thumb of the right hand points in the −ŷ direc-
tion, the curled fingers of the right hand point in the +ẑ direction at (+1,+1, 0) m.
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7.5-5

The measurements are explained by a wire aligned along the y-axis, with current flowing
in the −ŷ direction. This can be confirmed using the right-hand rule – point the thumb of
your right hand in the direction of the current, and the curled fingers of your right hand
point in the direction of the magnetic field.
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7.6-1

From the problem statement, we have that Coil 1 has N1 = 100 and I1 = 2 A. Coil 2
has N1 = 300 and I2 = 4 A, and is wound in the opposite direction. Both coils have
l = 10 cm and µ = µ0. For Coil 1 we have

B1 = b̂1µ0
N1I1
l

where b̂1 points in the direction of B1 inside the coil. For Coil 2 we have

B2 = −b̂1µ0
N2I2
l

The total field B = B1 +B2, so:

∣∣∣b̂1 · (B1 +B2)
∣∣∣ =

∣∣∣∣µ0
N1I1
l
− µ0

N2I2
l

∣∣∣∣ =
µ0

l
|N1I1 −N2I2| ∼= 12.6 mT
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7.7-1

The magnetic field in either a straight coil or a toroidal coil is proportional to current.
Current is proportional to the conductivity of the wire forming the coil. Therefore, doubling
the conductivity will double the magnetic field strength.
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7.8-1

(a) Positive V corresponds to current flowing in the +ẑ direction along the trace. The
direction of the associated magnetic field can be determined using the following “right hand
rule:” Orient the thumb of your right hand in the reference direction of current flow in the
trace, and observe the direction in which the curled fingers of your right hand point. We see
that deep inside the transmission line, the direction is +x̂ .

(b) The integral form of Ampere’s law is:

∮

C

H · dl = Iencl (7.13)

The only “hard” requirement on C is that it enclose some of the relevant current. The most
convenient choice for C is shown below (blue curve with arrows):

Figure 7.1: (Image Credit : Offaperry (S. Lally), CC BY-SA 4.0.
https://commons.wikimedia.org/wiki/File:Microstrip_Filter_Cross-Section_Contour_Integration.svg.)

Here are the considerations leading to this choice:

• The indicated direction of C is consistent with the expected direction of the magnetic
field, as determined in part (a).

• We choose a path that lies in plane of constant z, since this minimizes the number
of varying parameters required to describe the path. The precise choice of z is not
important as long as it is as far from either end of the transmission line, where we
would expect fringing fields to become potentially important.
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• Segment A is a line of constant y which lies entirely within the transmission line (i.e.,
between y = 0 and y = h), and is required since we need some portion of C to be
coincident with the location where we wish to determine the field.

• Segment C is chosen to lie along a line of constant y at∞. This is convenient because we
expect the magnetic field go to zero as the distance from this finite structure increases
to infinity.

• Segments B and D are chosen to lie along lines of constant x so as to connect Segments A
and C using paths that can be described in the minimum number of varying parameters:
For these segments, the only variation is along y. We choose x = −W/2 and x = +W/2
since this closes path C with the shortest total path length that encloses all of the
current of interest. Choosing a path wider than the trace would result in integration
over a region where more field lines are significantly curved.

(c) Continuing with the left side of Equation 7.13 using the path determined in part (b):

∮

C

H · dl =
∫

A

H · dl+
∫

B

H · dl+
∫

C

H · dl+
∫

D

H · dl

≈
∫

A

H · dl+ 0 + 0 + 0 (7.14)

The integral over Segment C is exactly zero because H = 0 along this segment, as explained
in part (b). The integral over Segments B and D is approximately zero because H · dl ≈ 0
along these segments. Along Segment A, we have H = +x̂H(x, y). Also, Iencl = V/R. Thus
Equation 7.13 reduces to:

∫

A

[+x̂H(x, y)] · [+x̂dx] ≈ V

R
(7.15)

H(x, y) ·W ≈ V

R
(7.16)

Equation 7.16 indicates that the magnetic field along Segment A does not depend on x or
y; at least given the assumptions made to this point. Therefore H(x, y) is considered a
constant. Thus we find that

H ≈ x̂
V

WR
deep inside the transmission line (7.17)

(d) The magnetic flux density B = µH. Since the spacer material is non-magnetic, µ ≈ µ0.
Thus:

B ≈ x̂
µ0V

WR
deep inside the transmission line (7.18)

(e) The differential form of Gauss’ law for magnetism is ∇ ·B = 0. Divergence is essentially
the first derivative with respect to position. From Equation 7.18, we see thatB is constant (at
least approximately) with position. Therefore Equation 7.18 is consistent with the differential
form of Gauss’ law for magnetism. The differential form of Ampere’s law is ∇ × H = J.
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In the dielectric spacer, J = 0. Curl is also essentially the first derivative with respect to
position. Thus, Equation 7.18 is consistent with the differential form of Ampere’s law.
(f) Using Equation 7.18:

B ≈ x̂
(4π × 10−7 H/m) (+5 mV)

(6 mm) (50 Ω)
∼= x̂20.9 nT (7.19)
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7.12-1

The inductance of a linear inductor depends only on geometry and materials; therefore,
the inductance remains 1 H .
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7.13-1

If the loops are close together, then presumably the magnetic flux Φ through each wind-
ing is equal. Thus,

L ,
NΦ

I

where N is number of linkages, which is this case is the number of windings. Thus,

Φ =
LI

N
=

LI

2
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7.13-2

From the problem statement:
length l = 5 cm,
radius a = 5/2 = 2.5 mm,
number of windings N = 300, and
relative permeability µr = 200.

Since l ≫ a and the winding density N/l is large, we may us the “long straight coil”
expression

L ≈ µN2A

l

In the present problem:

L ≈ (µrµ0)N
2 (πa2)

l
∼= 8.88 mH

where µ0 = 4π × 10−7 H/m.
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7.15-1

Since

We =
1

2
LI2

We have

I =

√
2We

L
=

√
2 · 2 mJ

47 mH
∼= 292 mA
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7.15-2

The energy initially stored in the inductor is

Wm =
1

2
LI2 = 6 nJ

The energy stored in the capacitor after the transfer is

We =
1

2
CV 2 = 6 nJ

so V = 1.73 V .
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Chapter 8

Time-Varying Fields
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8.3-1

Faraday’s Law says that the potential (or “emf”) induced in the coil is

Vemf = −N
d

dt
Φ(t)

where

Φ(t) =

∫

S

B · ds

and where B(t) is the magnetic flux density and S is the surface defined by the cross-section

of the coil. When the magnetic flux is not varying with time, the potential is zero , so this

is the answer to parts (a) and (c).

While the magnetic field is being reduced, a non-zero potential is possible. Since the magnetic
field is spatially-uniform and parallel to the axis of the coil, the above integral simplies to

Φ(t) = B(t) · A

where B(t) is the scalar magnetic flux density and A is the cross-sectional area of the coil.
We do not know precisely how B varies with time (i.e., linearly with time? exponential
decay? etc.), so we cannot take a formal derivative. We can however estimate the derivative:

d

dt
Φ(t) ≈ ∆Φ

∆t
=
B(t0 + 200 ms) · A−B(t0) · A

200 ms

where t0 is the time at which the magnitude of the magnetic field begins to decrease. We
also note

B(t0) = µrµ0H(t0) =
(
2× 105

)
·
(
4π × 10−7 H/m

)
· (20.0 mA/m) = 5.03 mT

and B(t0 + 200 ms) = 1.01 mT. Since A = 200 cm2 = 0.020 m2, we may now calculate

|Vemf | ≈ N

∣∣∣∣
∆Φ

∆t

∣∣∣∣ = 20.1 mV

This is the answer to part (b). In some sense, this is the average emf generated in the coil
over the 200 ms period of interest; however, more precisely, this is merely the best estimate
of the instantaneous emf generated during that time, given the limited information about
the time dependence of the magnetic field over that time.
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8.3-2

Faraday’s Law says that the emf induced in a this loop is

Vemf = −
d

dt
Φ(t)

(since a loop has N = 1 turn) where

Φ =

∫

S

B · ds

Let us define Vemf to be across the resistor, with the “+” terminal on the right side and the
“−” terminal on the left side.1 Then:

Φ =

∫ +L/2

x=−L/2

∫ y0+w

y=y0

[ẑ B0 e
ay] · [+ẑ dx dy]

where y0 is the location of the left side of the loop. Then:2

Φ = B0

[∫ +L/2

x=−L/2

dx

] [∫ y0+w

y=y0

eaydy

]
=
B0L

a
eay0 [eaw − 1]

Next we’re going to want to take the time derivative of Φ. However, to do that properly
we need to make sure we identify everything in the above expression for Φ that has a time
dependence. Only y0 depends on time. To make this clear, let us write y0 = ut + b, which
places the left side of the loop at y = b at time t = 0. Now we may write:

Φ(t) =
B0L

a
eauteab [eaw − 1]

so:3

Vemf (t) = −
d

dt
Φ(t) = B0Lue

auteab [1− eaw]

The problem statement asks us to assess the situation when the left side of the loop is at
y = 0.5 m, so we choose t = 0 and b = 0.5 m (since we said earlier y0 = ut + b). Also from
the problem statement, u = −250 m/s. Thus:

Vemf (t = 0) = − d

dt
Φ(t = 0) = B0Lue

ab [1− eaw] = −7.60 A

Finally, the current is simply this divided by R, which is −3.04 A. Because we chose the “+”
terminal to be on the right, the reference direction for current must be counter-clockwise
(i.e., this is the necessary direction for positive current to dissipate positive power in the

1Not the only way to do it! This choice is arbitrary. Choosing the opposite reference polarity should give
you the exact same answer as long as you follow through correctly.

2Once you complete this integration, it’s a good time for a units check!
3Once you complete this differentiation, it’s a good time for a units check!
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resistor, or alternatively you may think of this as being the necessary reference direction for
the loop to behave as a power source). We have found that the current is negative with

respect to this reference direction; therefore, the induced current is 3.04 A, clockwise .

You can check to make sure you got the correct current direction by using Lenz’s Law. If
the current is flowing clockwise, then the induced magnetic field in the loop is in the −ẑ
direction. The impressed magnetic flux is increasing, since the loop area is constant and
the magnetic field in the loop increases in the +ẑ direction as the loop slides to the left.
Therefore, the induced current is acting to oppose the change in the impressed magnetic
flux, as is required by Lenz’s Law.
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8.3-3

(a) Let’s stick with the SI system of units. Since “1” in the expression for B appears

to be unitless, B0 must have units of T (or Wb/m2, if you prefer) . Since t is in s and “1”

appears to be unitless, k must have units of 1/s . Since a has units of m and equals vt, v

must have units of m/s .

(b) Here’s Faraday’s Law:

Vg(t) = −N
d

dt
Φ (8.1)

where N = 1 since it is a loop (not a coil), and the magnetic flux is

Φ =

∫

S

B · ds =
∫

S

[ẑB0 (1 + kt)] · [−ẑds] = −B0 (1 + kt)

∫

S

ds (8.2)

Note that ds is in the −ẑ direction. This is from the right-hand rule (of calculus), in which
your thump is along the loop (not the gap) pointing along the direction from the “−” terminal
to the “+” terminal. Since S represents the surface defined by the loop (actually any surface
defined by the loop, but we’ll keep it simple...), we have

Φ = −B0 (1 + kt)
(
πa2
)

(8.3)

Substituting a = vt and expanding into two terms we get

Φ = −B0πv
2t2 −B0kπv

2t3 (8.4)

So Faraday’s Law says:
Vg(t) = 2B0πv

2t+ 3B0kπv
2t2 (8.5)

which is more compactly written as:

Vg(t) = B0πv
2
(
2t+ 3kt2

)
(8.6)

Good time for a units check: Can you confirm that the result is dimensionally correct?

(c) The first problem is to determine the motional and transformer emf, so we should be
clear on what we mean by these terms. Motional emf is the contribution to the total emf
which is associated with changes in the size, shape, or orientation of the surface through
which the magnetic field lines are linked. Transformer emf is the contribution to the total
emf which is associated with changes in the magnetic field.

With that in mind, let’s consider an incorrect solution: You can’t set v = 0 and call the
result (in this case, zero) the transformer emf. This is wrong because if v were equal to zero
for some radius a > 0, then the calculated emf would be potentially non-zero because the
magnetic field is still time-varying.

However, it is true that setting k = 0 yields the motional emf (you can verify this for
yourself after reading through this solution), although this is pretty hard to justify, especially
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since we just saw that arbitrarily setting constants to zero is dangerous. So, if you go that
approach you must be able to explain why this is reasonable.

With all this in mind, here are three reasonable ways to get a solution:

1. You could calculate the motional emf and transformer emf using Faraday’s Law, but in
two separate steps; that is, work out the emf for a static loop (to get the transformer
emf) and then for a static field (to get the motional emf).

2. You could calculate motional emf from magnetostatics (i.e., assume a static magnetic
field), then subtract this result from your answer for part (b) to get the transformer
emf.

3. The approach followed below, which is probably best since it deals directly with the
concepts of time-varying loop size vs. time-varying magnetic field.

Here we go:

Vg(t) = −
d

dt
Φ = − d

dt

∫

S

B · ds = − d

dt

∫

S

[ẑB(t)] · [−ẑds] (8.7)

where B(t) ≡ B0(1 + kt); i.e., the scalar component of the magnetic field. Continuing:

Vg(t) = +
d

dt

[
B(t)

∫

S

ds

]
= +

d

dt
[B(t)A(t)] (8.8)

where A(t) ≡ πa2(t); i.e., the area of the loop. The value in setting the problem up this
way is that we now have the magnetic field and the loop area set up as distinct, identifiable
factors in the solution. Now we differentiate using the chain rule:

Vg(t) =

[
d

dt
B(t)

]
A(t) + B(t)

[
d

dt
A(t)

]
(8.9)

Now we see clearly that the first term is the transformer emf and the second term is the
motional emf. Let’s label these V tr

g (t) and V m
g respectively. Now:

V tr
g (t) =

[
d

dt
B(t)

]
A(t) = B0k · πa2 (8.10)

V m
g (t) = B(t)

[
d

dt
A(t)

]
= B(t) · 2πa · v (8.11)

Note that now we get the “expected” result when we set k = 0 and then v = 0. Also note
that transformer emf depends on loop area, and motional emf depends on loop perimeter –
you might have suspected this based on other problems you have encountered.

OK, now we’re ready to wrap up. To find out when the contributions of the transformer
emf and motional emf are equal, we set the above expressions equal and solve for time t = teq.
Here we go:

B0k · πa2 = B(teq) · 2πa · v (8.12)

Noting that a = vt and B(t) = B0 (1 + kt):

B0k · πv2t2eq = B0 (1 + kteq) · 2πv2teq (8.13)
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Solving the above expression we find that teq = −2/k (good time for a units check, by the
way). Negative times don’t really make sense in the problem (how can the loop have zero
radius and before that negative radius?), so the transformer emf and motional emf are never
equal for k > 0 (i.e., magnetic field magnitude increasing). However, teq = +2/ |k| when
k < 0. So, the answer to the problem is:

at t = −2/k, and only if the magnitude of the magnetic field is decreasing.
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8.4-1

The measured voltage is the “transformer emf” induced by the magnetic flux through the
loop. According to Faraday’s Law, we have in general that:

Vemf = −N
d

dt
Φ = −N d

dt

∫

S

B · ds

Here, the number of turns, N , is 1; ds is perpendicular to the loop in the direction determined
by the Stoke’s Law convention (i.e., according to the reference polarity chosen for Vemf),
and B can be written as

B = b̂B(t) = b̂B0 sin(2πft+ α)

where b̂ is simply a unit vector indicating the direction of B. We know b̂ is a constant with
respect to position because B was specified to be a uniform magnetic field. Thus, we have
for any particular orientation of the loop ds:

Vemf = −B0

[
d

dt
sin(2πft+ α)

] [
b̂ ·
∫

S

ds

]
.

∣∣Vemf
∣∣ is maximized when b and ds point either in the same direction, or in exactly opposite

directions. In this case, the magnitude of the quantity in the rightmost square brackets is
simply the area of the loop, A, which here is 0.0314 m2 according to the problem statement.
For this orientation, we have:

∣∣Vemf
∣∣ = B0 [2πf cos(2πft+ α)]A .

The above quantity is maximized when cos(2πft + α) = 1, which corresponds to the peak

magnitude of Vemf, which is one-half of the peak-to-peak magnitude. Thus:

B02πfA = 0.5× 20 mVpp , thus:

B0 =
0.5× 0.02 Vpp

2π(100× 103 Hz)(0.0314 m2)
= 507 nT .
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8.4-2

The induced potential is

V = −N ∂

∂t
Φ (8.14)

where Φ is the magnetic flux through the loop. Since the magnetic field is spatially uniform
and the loop (in each case) is fixed, we may express the flux in the following simple form:

Φ = AB0 cos (ωt+ ψ) (8.15)

where A is the area of the loop, B0 is a constant having units of Wb/m2 (resulting from
the dot product of the magnetic flux density and the normal to the loop), and ω and ψ
are the angular frequency and phase, respectively, of the sinusoidally-varying flux. It is not
necessary to know B0, ω, or ψ, as we shall see in a moment. Returning to the Equation 8.14,
we see

V = +NAB0ω sin (ωt+ ψ) (8.16)

Therefore the peak potential is simply NAB0ω. So here’s the situation:

V
(2)
pk

V
(1)
pk

=
N (2)A(2)B0ω

N (1)A(1)B0ω
(8.17)

where the superscripts indicate before (i.e., one turn circular loop) vs. after (i.e., two-turn

square loop). Thus, V
(1)
pk = 15 V and we seek V

(2)
pk Since neither B0 nor ω change between

the two scenarios, we have:

V
(2)
pk

15 V
=
N (2)A(2)

N (1)A(1)
(8.18)

Solving for V
(2)
pk , we find:

V
(2)
pk = 15 V

2 · (0.2 m)2

1 · π (0.1 m)2
∼= 38.2 V (8.19)
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8.5-1

In the original scenario:
V2
V1

= p
N2

N1

where p = ±1 depending on the relative orientation of the windings (p = −1 for the example
shown in the book). Let V ′

2 be the new potential on the secondary coil. From Faraday’s
Law:

V ′

2 = N2
∂

∂t
Φ′

2

where Φ′
2 is the magnetic flux through the secondary coil after the modification. Note

Φ′

2 =
Φ2

2

since the secondary coil now intersects only half the flux it did previously. Subsequently,

Φ′

2 = p
Φ1

2

Now:

V ′

2 = p
1

2
N2

∂

∂t
Φ1 = p

1

2

N2

N1

(
N1

∂

∂t
Φ1

)
= p

1

2

N2

N1

V1

From the problem statement, N1 = 200 and N2 = 300. Also p = −1 for the example shown
in the book. Therefore,

V ′

2 = −3

4
V1

with the sign depending on the relative orientations of the coil windings.
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8.5-2

The transformer is an application of Faraday’s law, which is intrinsic to the Maxwell-Faraday
Equation:

∇× E = − ∂

∂t
B
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8.7-1

From the problem statement:
B0 = 2 T,
A = π (2 m2) = 4π m2,
the peak value of VT is 5 V, and
VT (t = 0) = 0 and increasing.

Since the loop is rotating in a static uniform magnetic field, VT must be sinusoidally-varying.
A general form for this variation is

VT (t) = AB0ω cos (ωt+ ψ)

where ω = 2πf is the angular frequency of rotation and ψ is an as-yet unknown phase offset.
However, it is known that

VT (t = 0) = AB0ω cos(ψ) = 0

so ψ must be either π/2 or 3π/2. Since VT is increasing at t = 0, ψ must be 3π/2.

Furthermore, we know the peak value of VT . In the context of the general form, we find:

VT = AB0ω = 5 V at maximum

and therefore, ω ∼= 0.199 rad/s.

Putting this all together:

VT (t) ∼= (5 V) cos

(
[0.199 rad/s] t+

3π

2

)

132



[m0030] [2]

8.7-2

Assigning symbols to quantities identified in the problem statement: B0 = 2 T, A = 4 m2,
and VT,pk = 5 V. Recall:

VT = 2πf0AB0b̂ · ρ̂(t) (8.20)

where f0 is the frequency of rotation, b̂ is the direction of the magnetic field, and ρ̂(t) is a
unit vector that lies in the x− y plane and in the plane of the loop, rotating with the loop.
Note the maximum magnitude of b̂ · ρ̂(t) is simply 1. Thus:

VT,pk = 2πf0AB0 = 5 V (8.21)

Solving for f0:

f0 =
5 V

2π · (4 m2) · (2 T)
∼= 99.5 mHz (8.22)
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8.9-1

From the problem statement, the electric field intensity is

E = ŷ
(
3 V m−1 s−2

)
t2

(The fact that this is electric field intensity can be confirmed using dimensional analysis.)
The displacement current density in free space is

∂D

∂t
= ǫ0

∂E

∂t
= ŷǫ0

(
6 V m−1 s−2

)
t ∼= ŷ

(
53.1 pC m−2 s−2

)
t = ŷ

(
53.1

pA

m2 s

)
t
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Chapter 9

Plane Wave Propagation in Lossless

Media
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9.1-1

The general, time-domain, differential form of Ampere’s Law is:

∇×H = J+
∂D

∂t

The relationship between these quantities and the phasor representation of the same quan-
tities is:

H = Re
{
H̃ejωt

}
,

J = Re
{
J̃ejωt

}
, and

D = Re
{
D̃ejωt

}
;

Now substituting these quantities into Ampere’s Law we have:

∇×
[
Re
{
H̃ejωt

}]
= Re

{
J̃ejωt

}
+
∂

∂t

[
Re
{
D̃ejωt

}]

The order of the “Re” operator and any linear real-valued operator can be exchanged (see
the textbook section on phasors for a proof of this). Taking advantage of this in the first
and last terms, we obtain:

Re
{
∇×

[
H̃ejωt

]}
= Re

{
J̃ejωt

}
+ Re

{
∂

∂t

[
D̃ejωt

]}

Note that the curl (“∇×”) operator operates only on position, and not on time. Thus, we
may rewrite the first term as shown below:

Re
{[
∇× H̃

]
ejωt
}
= Re

{
J̃ejωt

}
+ Re

{
∂

∂t

[
D̃ejωt

]}

Note also that partial derivative in the last term operates only on time, whereas D̃, being a
phasor, is independent of time. Therefore, the partial derivative operates only on the factor
ejωt, and we have:

Re
{[
∇× H̃

]
ejωt
}
= Re

{
J̃ejωt

}
+ Re

{
D̃ · jωejωt

}
.

Comparing terms above, we find that the phasor expression of Ampere’s Law that we seek
is:

∇× H̃ = J̃+ jωD̃ .
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9.1-2

The expression worked out in the book is

∇× Ẽ = −jωB̃

B is a flux density, so we use B = µH to obtain:

∇× Ẽ = −jωµH̃

137



[m0036] [1]

9.2-1

Here are Maxwell’s Equations for source-free regions in terms of Ẽ and H̃ (only) in dif-
ferential form:

∇ · Ẽ = 0 (9.1)

∇× Ẽ = −jωµH̃ (9.2)

∇ · H̃ = 0 (9.3)

∇× H̃ = +jωǫẼ (9.4)

The equation we seek must yield solutions for H̃ which satisfy at least the last three of the
above four equations. We begin by taking the curl of Equation 9.4:

∇×
(
∇× H̃

)
= ∇×

(
+jωǫẼ

)
= +jωǫ

(
∇× Ẽ

)
(9.5)

On the right, we can substitute for ∇× Ẽ using Equation 9.2:

+ jωǫ
(
∇× Ẽ

)
= +jωǫ

(
−jωµH̃

)
= +ω2µǫH̃ (9.6)

On the left, we invoke the vector identity

∇×∇×A = ∇ (∇ ·A)−∇2A (9.7)

to obtain
∇×∇× H̃ = ∇

(
∇ · H̃

)
−∇2H̃ = −∇2H̃ (9.8)

where we have used Equation 9.3 to eliminate the ∇ · H̃ term. Substituting back into
Equation 9.5 and rearranging terms we have

∇2H̃+ ω2µǫH̃ = 0 (9.9)

Now substituting β = ω
√
µǫ:

∇2H̃+ β2H̃ = 0 (9.10)

This is the homogeneous wave equation for H̃.
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9.2-2

The wave equation for Ẽ is
∇2Ẽ+ β2Ẽ = 0

Also, we know that

β =
90◦

1 m
=
π/2 rad

1 m
=
π

2
rad/m

which may also be expressed simply as π/2 m−1. So

∇2Ẽ+
(
2.467 m−2

)
Ẽ ∼= 0
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9.4-1

(a) The wave equation for Ẽ is ∇2Ẽ + β2Ẽ = 0. In cylindrical coordinates, Ẽ = ρ̂Ẽρ +

φ̂Ẽφ + ẑẼz. The Laplacian operator in cylindrical coordinates is:

∇2 =
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2
∂2

∂φ2
+

∂2

∂z2

Thus, we have for the three components of Ẽ:

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ
Ẽρ

)
+

1

ρ2
∂2

∂φ2
Ẽρ +

∂2

∂z2
Ẽρ + β2Ẽρ = 0

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ
Ẽφ

)
+

1

ρ2
∂2

∂φ2
Ẽφ +

∂2

∂z2
Ẽφ + β2Ẽφ = 0

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ
Ẽz

)
+

1

ρ2
∂2

∂φ2
Ẽz +

∂2

∂z2
Ẽz + β2Ẽz = 0

(b) If Ẽ has no component in the ρ or φ direction, then Ẽρ = Ẽφ = 0 and we are down to
one equation:

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ
Ẽz

)
+

1

ρ2
∂2

∂φ2
Ẽz +

∂2

∂z2
Ẽz + β2Ẽz = 0

If E is uniform in φ and z, then ∂Ẽz/∂φ = ∂Ẽz/∂z = 0, so the second and third terms in
the above equation are zero. This leaves us with:

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ
Ẽz

)
+ β2Ẽz = 0
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9.4-2

First note that x̂ cosφ+ ŷ sinφ is a unit vector; i.e.,

|x̂ cosφ+ ŷ sinφ| =
√
cos2 φ+ sin2 φ = 1 (9.11)

Next, recall that E × H is in the direction of propagation, which in this problem is +ẑ.
Therefore the direction of H is ẑ × E. (If this is not clear, think of E, H, and direction of
propagation forming a cartesian coordinate system with Ê analogous to x̂, Ĥ analogous to
ŷ, and direction of propagation analogous to ẑ.) Thus the direction of H is

ẑ× (x̂ cosφ+ ŷ sinφ) = −x̂ sinφ+ ŷ cosφ (9.12)

and this is a unit vector since x̂ cosφ+ ŷ sinφ is a unit vector which is perpendicular to ẑ.

The magnitude of H is |E| /η, where η in this case is
√
µ0/ǫ0 ∼= 377 Ω. Therefore the mag-

nitude of H is (2 µV/m) /η0 ∼= 5.31 nA/m.

Putting this all together, the magnitude and direction of the associated magnetic field is:

(−x̂ sinφ+ ŷ cosφ) 5.31 nA/m (9.13)
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9.5-1

(a) There are several ways to figure this out. One way is to start in phasor represenation,
in which the field is:

êE0e
j(ax+by+cz)

where a = 1 rad/m, b = 2 rad/m, and c = 3 rad/m. Note:

êE0e
j(ax+by+cz) = êE0e

+jaxe+jbye+jcz

To see what’s going on here, consider a simpler version of the above equation, where the last
two terms are omitted:

êE0e
+jax

In this case, the answer we are looking for would be k̂ = −x̂, and in fact we also see that
the wavenumber β = a; i.e., 1 rad/m. Similarly, if we had just

êE0e
+jby

then the answer would be k̂ = −ŷ, with β = b = 2 rad/m. From this we can infer that a
vector (not necessarily a unit vector) that points in the direction of propagation in this case
is:

k = −ax̂− bŷ − cẑ
Thus, the corresponding unit vector is

k̂ =
k

|k| =
−ax̂− bŷ − cẑ√

(−a)2 + (−b)2 + (−c)2

Giving:
k̂ = −0.267x̂− 0.534ŷ − 0.802ẑ

(b) In the above analysis, we find |k| = 3.74 rad/m. Following the reasoning above, this is
simply the wavenumber β. Thus, the wavelength is:

λ =
2π

β
= 1.68 m .

(c) Since this is free space, and since we know the phase velocity in free space is c =

3.0× 108 m/s, we also know the frequency, which is c/λ= 179 MHz .
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9.5-2

From the problem statement, the direction of propagation k̂ = −x̂ and H points in the
+ŷ direction. From the plane wave relationships:

E = −ηk̂×H

Therefore, E points in the − (−x̂)× ŷ = +ẑ direction.
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9.5-3

From the problem statement, |E| = 3 V/m and ǫr = 2. Since plastics are non-magnetic:

η =

√
µ0

ǫrǫ0
=

η0√
ǫr

where η0 ∼= 376.7 Ω. Therefore,

|H| = |E|
η

=
|E|
η0

√
ǫr ∼= 11.3 mA/m
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9.7-1

The spatial power density is

Save =
3 W

1 mm2
=

3 W

10−6 m2
= 3 MW/m2

Since Save = |E|2 /2η, and since η = η0 ∼= 376.7 Ω in free space:

|E| =
√
2η0Save ∼= 47.5 kV/m
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