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Abstract. The budding yeast cell cycle can be modeled by a set of ordinary differential

equations with 143 rate constant parameters. The quality of the model (and an associated vector of

parameter settings) is measured by comparing simulation results to the experimental data derived

from observing the cell cycles of over 100 selected mutated forms. Unfortunately, determining

whether the simulated phenotype matches experimental data is difficult since the experimental

data tend to be qualitative in nature (i.e., whether the mutation is viable, or which development

phase it died in). Because of this, previous methods for automatically comparing simulation results

to experimental data used a discontinuous penalty function, which limits the range of techniques

available for automated estimation of the differential equation parameters. This paper presents a

system of smooth inequality constraints that will be satisfied if and only if the model matches the

experimental data. Results are presented for evaluating the mutants with the two most frequent

phenotypes. This nonlinear inequality formulation is the first step toward solving a large-scale

feasibility problem to determine the ordinary differential equation model parameters.

Keywords: systems biology, regulatory networks, eukaryote, nonlinear inequalities, feasibility

problem

1. Introduction

Molecular cell biology describes how cells convert genes into behavior. This description includes

how a cell creates proteins from genes, how those proteins interact, and how networks of inter-

acting proteins determine physiological characteristics of the cell. The central biological question

addressed here is how protein interactions regulate the cell cycle of budding yeast (Saccharomyces

cerevisiae).

The budding yeast cell cycle consists of four phases (see Figure 1), with cell division occurring

in the final phase. A newborn cell starts in G1 phase (unreplicated DNA), during which time it

grows to a sufficiently large size to warrant a new round of DNA synthesis (S phase). After DNA

synthesis has completed, the cell passes briefly through G2 phase (replicated DNA) and then enters

M phase (mitosis, where the two copies of each DNA molecule are separated and the cell divides,

creating two new cells that are in G1 phase).

Figure 1. The phases and stages of the cell cycle. The four phases of the cell cycle are

shown above the five stages. The events that delineate the cell cycle are at the bottom.
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The protein interactions that govern these cell cycle events are modeled using differential
equations that describe the rate at which each protein concentration changes. In general, the
concentration of protein A, written as [A], changes according to the differential equation

d[A]

dt
= synthesis − degradation − binding + dissociation − inactivation + activation,

where “synthesis” is the rate at which new protein A molecules are synthesized from amino acids
(which depends on the concentration of active messenger RNA molecules for a particular protein),
“degradation” is the rate at which protein A is broken down into amino acids and polypeptide
fragments (which depends on the activity of specific proteolytic enzymes), “binding” is the rate at
which protein A combines with other molecules to form distinct molecular complexes, “dissociation”
is the rate at which these complexes break apart, “inactivation” is the rate at which certain post-
translational modifications (e.g., phosphorylation) of protein A are made, and “activation” is the
rate at which these modifications are reversed (e.g., dephosphorylation). Each of these rates is
itself a function of the concentrations of the interacting species in the network. For example,

synthesis = k1[transcription factor],

degradation = k2[proteolytic enzyme][A],

binding = k3[A][B],where B is a binding partner,

dissociation = k4[AB],

inactivation =
k5[kinase][A]

J5 + [A]
,

activation =
k6[phosphatase][Ap]

J6 + [Ap]
,where Ap is the phosphorylated form of A.

In these rate laws, the ks are rate constants and the Js are Michaelis constants. Other differ-
ential equations must be used to determine the temporal dynamics of the concentrations of the
“transcription factor,” “proteolytic enzyme,” “kinase,” etc.

A simple example illustrating the spirit of the modelling approach in this paper follows. A
rudimentary reaction network for the frog egg cell cycle [22] results in the three ordinary differential
equations

dM

dt
=
(

v′d(1 − D) + v′′dD
)

(CT − M) −
(

v′w(1 − W ) + v′′wW
)

M,

dD

dt
= vd

(

M(1 − D)

Kmd + (1 − D)
−

ρdD

Kmdr + D

)

,

dW

dt
= vw

(

−
MW

Kmw + W
+

ρw(1 − W )

Kmwr + (1 − W )

)

,

where M , D, and W are normalized protein concentrations, the Ks, ρs, and vs are rate constants,
and the constant CT is total (normalized) cyclin. For CT above some threshold CA, the cell enters
mitosis and cycles. Finding this threshold and the periodic solution defining the cell cycle could
be modelled by the system of constraints

0 < τ < t1,

M(t1) = M(t1 + τ) = M(t1 + 2τ),

dM

dt
(t1) =

dM

dt
(t1 + τ) =

dM

dt
(t1 + 2τ),

CA < CT ,
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where the variables would be a time t1, a period τ , and a threshold CA.

The budding yeast cell cycle model [7] consists of 36 such differential equations for two classes

of variables: regulatory proteins and physiological “flags.” The regulatory proteins are triggers for

specific events of the budding yeast cell cycle: Cln2 triggers budding, Clb5 triggers DNA synthesis,

Clb2 drives cells into mitosis, and Esp1 drives cells out of mitosis and back to G1. The physiological

“flags” are dummy variables that track the strength of these trigger proteins. For example, “BUD”

is an integral of the activity of Cln2; when BUD = 1, a new bud is initiated. “ORI,” an integral of

[Clb5], represents the state of “origins of replication.” When ORI = 1 (this state is called “fired”

origins), DNA synthesis is initiated; at cell division, when [Clb2] + [Clb5] drops below a threshold

level, ORI is reset to zero (called “licensed” origins). Finally, “SPN” represents the alignment of

replicated chromosomes on the mitotic spindle. SPN is driven by Clb2 activity; i.e., SPN is an

integral of [Clb2].

In the budding yeast model there are 143 rate constant parameters (ks, Js, etc.). In some cases,

these parameters can be calculated directly from laboratory experiments (e.g., apparent protein

half-lives), but most parameters are difficult to obtain directly from experimentation. Normally,

modelers determine the remaining parameters by making educated guesses, solving the differential

equations numerically, comparing the simulation results with laboratory data, and then refining

their guesses. (Modelers call this process “parameter twiddling” [2].) For the budding yeast cell

cycle, the laboratory data consists of observed phenotypes of more than 100 mutant yeast strains

constructed by disabling and/or over-expressing the genes that encode the proteins of the regulatory

network.

Although parameter twiddling is extremely tedious, it was used to obtain a parameter vector

(s1, s2, . . . , s143) for which the model’s predictions are consistent with almost all of the budding

yeast mutants being modeled. Obviously, the modelers would prefer a method that allows them

to spend more time improving the equations and less time tuning parameters. In addition, a

person can only keep track of a few parameters at one time, which makes it easy for him or her

to unwittingly miss a portion of the parameter space. For these reasons, modelers would prefer to

use a tool that determines “good” parameters automatically, quickly, and accurately.

The current approach to this parameter estimation (nonlinear regression) problem is to assign

a penalty to every discrepancy between the ordinary differential equation (ODE) model’s predic-

tions and experimental data, using all available mutant data, and then do an unconstrained (or

simple bound constrained) minimization of this penalty function over the ODE parameter space

([6], [8], [18], [21]). Due to the qualitative nature of the experimental data (Section 2), some of

these penalties are discrete and this penalty function is inherently discontinuous, while the ODE

solution is a smooth function of the ODE parameters. Beyond the fact that discontinuous objec-

tive functions are difficult to minimize, either locally or globally, this penalty approach has deeper

flaws. Biologists do not agree on what the penalty should be for a particular discrepancy, or even

on which discrepancies should be penalized.

This paper takes a quite different approach to parameter estimation. The idea is to describe

the mutant data as a system of smooth nonlinear inequalities derived from the (smooth) ODE

model output and cell biology knowledge. These inequalities should be generally accepted by

cell biologists, even though some of the details may be debatable. An ODE parameter vector

that satisfies all of the inequalities thus defines an acceptable model, and is a feasible solution of

the system of inequalities. The proposed approach to parameter estimation is to solve a feasibility

problem defined by a system of smooth (continuous, piecewise C∞) inequalities. One could surmise
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that what really is desired is the “most interior” point, defined by, e.g., constraint margins. The

situation is not so simple, though, since a cell’s viability is robust with respect to environmental

variations, and therefore it is really the “most robust” feasible point that is sought. Modeling such

biological robustness is another research topic.

The paper is organized as follows. After some definitions, Section 2 provides the necessary

biology background. As a point of reference, Section 3 describes the penalty function model, and

reports parallel computing results obtained on the 2200 processor System X. Section 4 presents the

inequality models for all the mutants, the heart of the paper. Some preliminary numerical results

for the model are given in Section 5, but an attempt to solve the full model (with approximately

11,500 constraints and 4,000 variables) is a major long term project.

2. Observed and Predicted Phenotypes

Experimental biologists have studied many budding yeast mutants to learn about the cell cycle

regulatory system. Of these mutants, 115 were chosen to model (see Appendix A). A model of

budding yeast can be considered acceptable only if it is able to duplicate the behavior of most of

these mutants. (It would be too much to expect a model to account for all the “observations” be-

cause of lingering uncertainties about the reaction network and inevitable mistakes in phenotyping

mutants.) When the model is used to simulate a mutant, the parameter vector can be changed

only in ways that are dictated by the genetic changes in the mutant. Consider the hypothetical

proteins A and B presented in the previous section: if a mutant has a modified form of B that does

not bind to A, then in the parameter vector for that mutant, k3 would be set to zero and all the

other parameters would be kept at the wild type values.

The observed phenotype refers to the phenotype that was recorded in a laboratory experiment.

The predicted phenotype refers to the phenotype that the mathematical model (with its associated

parameters) predicts. The wild type is the normal strain of an organism. The mutant strains have

genetic changes that make them behave differently from the wild type in some way.

When comparing the model to the experimental data, it is important to realize that much of

the data from laboratory experiments is qualitative. Such data is of the form “the cell is viable but

considerably larger than wild type cells” or “the cell arrests in G1 phase and eventually dies.” The

quantitative data that is available (e.g., duration of G1 phase, cell mass at division) is generally

imprecise. With all these uncertainties, there may be many, clustered parameter vectors that allow

the model to reproduce the experimental data sufficiently well. What matters for the model here

is the structure of the cell cycle regulatory pathways, not the details of the biochemistry.

2.1 Rules of Viability

To compare solutions of the differential equations with experimental data, it is necessary to predict

cell cycle properties from a simulation of regulatory protein dynamics. Viability is determined by

four rules:

1. The modeled cell must execute the following events in order, or else the modeled cell is

considered inviable:

(a) DNA licensed for replication (modeled by a drop in [Clb2] + [Clb5] below Kez2, which

resets [ORI] to zero);
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(b) start of DNA synthesis (due to a subsequent rise in [Clb2] + [Clb5], causing [ORI] to

increase above one), signaling the end of G1 phase, before a wild-type cell in the same

medium would divide twice;

(c) alignment of DNA copies (due to a rise in [Clb2], causing [SPN] to increase above one)

while [Esp1] is less than 0.1;

(d) separation of DNA copies (modeled by [Esp1] increasing above 0.1, due to Pds1 proteolysis

at anaphase);

(e) cellular division (modeled by [Clb2] dropping below a threshold Kez), which resets [BUD]

and [SPN] to zero.

2. The cell is inviable if division occurs in an “unbudded cell” (i.e., if [BUD] does not reach the

value 0.8 before event (e) occurs).

3. The cell cycle should be stable, i.e., the squared relative differences of the masses and G1

phase durations in the last two simulated cycles should both be less than 0.05.

4. Lastly, the modeled cell is considered inviable if cell mass at division is greater than four times

or less than one-fourth times the steady-state mass at division of the wild type in the same

medium.

If the observed phenotype for a mutant does not complete one of the checkpoints (e.g., the

mutant cells do not bud), then the predicted phenotype of that mutant must exhibit the same

behavior. It is possible for a cell to complete all of the checkpoints in the first cycle and then

become arrested somewhere in the second cycle. If a cell has this type of observed phenotype, then

a correct model must predict the same number of cycles before arresting in the same manner. If

the observed cell has a viable phenotype, then the model must predict a viable cell with a similar

G1-phase length, and a similar mass at division.

2.2 Initial Conditions

In the experimental data set, many of the mutations are conditional, that is, the mutant cells

when grown under “normal” conditions (say, glucose medium at room temperature) behave like

wild-type cells, but when grown under “restrictive” conditions (say, galactose medium or elevated

temperature) the cells express the genetic mutation and the aberrant phenotype. To model this

situation at sample points in parameter space, start a “wild-type” simulation from arbitrary (but

reasonable) initial conditions and integrate the differential equations for two full cycles, in order

to wash out any effects of the initial conditions. Then record the state of the control system just

after [Clb2] + [Clb5] falls through Kez2 at the beginning of the third cycle. These recorded values

are used as initial conditions for simulating a steady state wild-type cell and for simulating each

of the mutants.
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3. Nonsmooth Penalty Function Formulation

This section describes a typical deviation (model prediction minus observed system response)

based formulation of the parameter identification problem as the unconstrained (or at most simple

bound constrained) minimization of a nonsmooth objective function. Numerical results using 1024

processors are presented for two different applicable optimization algorithms. Since these runs

required many hours on 1024 processors, the need for high performance computing for the smooth

inequality formulation in the next section should be clear.

The objective function takes the observed phenotype and predicted phenotype for all of the

mutants and computes a nonnegative score. Zero indicates a perfect match and larger numbers

indicate increasingly worse matches. The ensuing discussion uses the symbol O for observed phe-

notype values and P for predicted phenotype values.

A budding yeast phenotype for a single mutant is represented by a six-tuple (v, g, m, a, t,

c), where the viability v ∈ {viable, inviable}, the real number g > 0 is the steady state length of

the G1 phase, the real number m > 0 is the steady state mass at division, the stage when arrest

occurred is

a ∈ {unlicensed, licensed, fired, aligned, separated},

the positive integer t is the arrest type, and the nonnegative integer c is the number of successful

cycles completed. The observed and predicted phenotypes are written O = (Ov, Og, Om, Oa, Ot, Oc)

and P = (Pv , Pg, Pm, Pa, Pt, Pc), respectively. Arrest types cannot be compared unless the stage

of arrest is the same for both phenotypes.

In what follows, the ωs and σs are constants defined in Table 1. The rating function, R,

compares the observed and predicted phenotypes for a mutant. This rating function is a modified

version of the one developed by N. Allen et al. [3]; the only difference is that if Ov or Pv is missing,

then R(O,P ) = ωv. The rating function is split into four cases depending on the viability of

the observed and predicted phenotypes. If Ov = inviable, Pv = viable, and Oc is missing, then

R(O,P ) = ωv, the same as if Oc = 0. Otherwise, if a needed classifier is missing, the term is simply

dropped and does not contribute to the objective function. In the case that classifiers are missing,

this allows the objective function value to be at or near zero when viability is in agreement between

the phenotypes, and forces larger objective function values when viability is not in agreement.

The rating function R(O,P ) when all classifiers are present is given by

ωg ×

(

Og − Pg

σg

)2

+ ωm ×

(

ln Om

Pm

σm

)2

,

if Ov = viable and Pv = viable, by

ωv ×
1

1 + Pc

,

if Ov = viable and Pv = inviable, by

δO,P + ωc ×

(

Oc − Pc

σc

)2

,
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if Ov = inviable and Pv = inviable, and by

ωv ×
1

1 + Oc

,

if Ov = inviable and Pv = viable, where δ is a real valued discrete function, used to assess a penalty

for the arrest stage and type, given by

δO,P =

{

ωa, if Oa 6= Pa,
ωt, if Oa = Pa and Ot 6= Pt,
0, if Oa = Pa and Ot = Pt.

The rating function is tuned by parameters to allow the modeler to adjust the relative im-

portance of classifiers. The parameters given by Table 1 were set so that a rating of around ten

indicates a critical error in the model’s prediction of a phenotype.

Symbol Definition Value
ωg G1 length weight 1.0

σg G1 length scale 10.0

ωm Mass at division weight 1.0

σm Mass at division scale ln 2

ωa Arrest stage weight 10.0

ωt Arrest type weight 5.0

ωc Cycle count weight 10.0

σc Cycle count scale 1.0

ωv Viability weight 40.0

Table 1. Constants used in objective function.

Denote the real numbers by R, the nonnegative integers {0, 1, 2, . . .} by Z+, and the integers

by Z. Let
P = (v, g,m, a, t, c)

= {viable, inviable} × (0,∞)2

× {unlicensed, licensed,fired, aligned, separated}

× {1, . . . , 10} × Z+

be the space of all budding yeast phenotypes and let the domain of the objective function be the

box
Ω = {x ∈ R143 : si/ui ≤ xi ≤ si × ui,

i = 1, . . . , 143},

where u ∈ R143 are positive scale factors reflecting modelers’ knowledge about the rate constants,

and s ∈ R143 is the modeler’s best guess point. Let Tj : Ω → P simulate the jth mutant with the

parameters x1, . . . , x143 and compute the phenotype. Then the objective function f : Ω → [0,∞)

is defined by

f(x) =

Nm
∑

j=1

µjR(Oj , Tj(x)),
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where Nm is the number of mutant experiments, and µi ∈ {1, 4} is a weight that indicates whether

the ith mutant is of normal or high importance. The objective function value at the biologists’

best previously known point [7] is 433.

Two algorithms that show promise for optimizing the discontinuous objective function are

briefly described next. Consider the problem of minimizing f : B → R, where B = [l, u] ⊂ Rn is

a box.

3.1 DIRECT

The DIRECT (Dividing Rectangles) global minimization algorithm [14] requires the objective

function to be Lipschitz continuous to guarantee convergence. Even though the objective func-

tion used here is discontinuous, the DIRECT algorithm seems to be an efficient and reasonable

deterministic sampling strategy worth trying.

The DIRECT algorithm is one of a class of deterministic direct search algorithms that does

not require gradients. It works by iteratively dividing the search domain into boxes that have

exactly one function value at the box’s center. In each iteration, the algorithm determines which

boxes are most likely to contain a better point than the current minimum point—these boxes

are called “potentially optimal”. It then subdivides the potentially optimal boxes along their

longest dimensions. Intuitively, a box is considered potentially optimal if it has the potentially

best function value for a given Lipschitz constant.

For an illustration of how the DIRECT algorithm searches the domain on an example problem,

see [20]. Both serial [10] and parallel ([11]–[13]) versions of DIRECT have been described in the

literature.

3.2 MADS

A MADS (Mesh Adaptive Direct Search) algorithm, as defined by Audet and Dennis [5],

minimizes a nonsmooth function f : Rn → R ∪ {+∞} under general constraints x ∈ Ω ⊆ Rn,

Ω 6= ∅. If Ω 6= Rn, the algorithm works with fΩ, which is equal to f on Ω and +∞ outside Ω.

Using fΩ in lieu of f is called a “barrier” approach to handling arbitrary constraints x ∈ Ω.

In each iteration, a MADS algorithm evaluates the objective function fΩ at a finite number

of trial points. Central to these algorithms is the concept of a mesh, which is a discrete set of

points in Rn. Every previous trial point must lie on the current mesh, and in each iteration the

algorithm may only generate new trial points on the current mesh. This is not as restrictive as

it might sound because the algorithm changes the mesh after each iteration (with the restriction

that at iteration k all previously evaluated points Sk remain in the new mesh).

Each iteration of a MADS algorithm consists of two steps: the search step and the poll

step. The search step may evaluate fΩ at any finite number of mesh points. At which mesh

points fΩ is evaluated depends on the precise MADS algorithm in use. If the search step fails to

find a mesh point at which fΩ is less than minx∈Sk
fΩ(x), then the algorithm performs the poll

step by generating and evaluating fΩ at new trial points around the current incumbent solution

xk, where fΩ(xk) = minx∈Sk
fΩ(x). The poll size parameter ∆p

k limits the distance between xk

and the new trial points. The set of new trial points is called a frame, and xk is called the frame

center. The algorithm evaluates fΩ at points in the frame Pk until it encounters an improved point

x∗ (fΩ(x∗) < fΩ(xk)) or it has evaluated fΩ at all of the points in Pk.
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DIRECT

Figure 2. The objective function value at the best point found versus the number of

evaluations for MADS and DIRECT.

After the algorithm has executed the search step and (conditionally) the poll step, it sets

the mesh size and poll size parameters, ∆m
k+1 and ∆p

k+1, for the next iteration. Exactly how ∆m
k+1

and ∆p
k+1 are generated is determined by the individual algorithm in use. More precise descriptions

of the MADS class of algorithms with examples can be found in [5] or [18].

3.3 Parallel Optimization Results

All computation took place on System X, a cluster of 1100 dual-processor Mac G5 nodes.

NOMAD is a C++ implementation of the MADS class of algorithms. To take advantage of

System X, NOMAD’s implementation of the poll step was parallelized using a master/worker

paradigm. The master ran the MADS algorithm as presented and sent requests to the workers

whenever objective function values were needed. NOMAD, started from the modeler’s best point s,

evaluated the objective function 135,000 times over 813 iterations using 128 processors, converging

at a point for which the objective function value was 299 (this point correctly models all but ten

of the mutants).

pVTDirect [11] is a parallel implementation of DIRECT written in Fortran 95. While the

DIRECT algorithm does not have a traditional “starting point”, the first sample in each subdomain

is always taken at the center of the subdomain bounding box. For this problem, the bounding box

was designed so that the modeler’s best point would be at the center and therefore would be

evaluated before any other points. pVTDirect (with only one subdomain) ran for 473 iterations

using 1024 processors and evaluated the objective function 1.5 million times, finding a point at

which the objective function value was 212 (this point correctly models all but eight of the mutants).

Figure 2 shows the progress that each program was able to make in minimizing the objective

function. While NOMAD was able to quickly find a better point than the modeler’s best point,
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Figure 3. The performance of NOMAD when started from the best point at pVTDirect’s

54th, 157th, and 239th iterations. The plots are shown as if the NOMAD runs started as

soon as the respective pVTDirect iterations completed.

pVTDirect was eventually able to find an even lower point. This is expected behavior because

NOMAD is designed for local optimization and pVTDirect is designed for global optimization,

so NOMAD quickly found a nearby local minimum and stopped, but pVTDirect explored the

parameter space and eventually found a better minimum. In a later run, NOMAD was started

from pVTDirect’s lowest point, but NOMAD was unable to make any further progress. After

looking at Figure 2, it is tempting to believe that pVTDirect could have been stopped earlier (for

instance, after 200,000 evaluations), and NOMAD started at pVTDirect’s last best point could

have found a point at which the objective function value was 212 or less. To test this, NOMAD

was started at the best point at the 54th, 157th, and 239th iterations of pVTDirect. These points

correspond to the beginning, middle, and end of the second-lowest plateau in Figure 2. As shown

in Figure 3, NOMAD started from the middle point converged to a point at which the objective

function value was 210. However, the NOMAD runs started at the beginning and end plateau

points converge to worse points than pVTDirect’s best point. These four extra NOMAD runs

(including the one starting from pVTDirect’s best point) show that an algorithm for improving

intermediate results from pVTDirect is not so clear.

Finally, recall that f(x) > 0 means some mutant experimental data is not being matched,

i.e., the parameters found by DIRECT and MADS do not fully explain all the data. These results

motivated the smooth inequality formulation given next.

4. Formulation of Conditions as a Nonlinear System of Inequalities

For each phenotype, this section presents a system of constraints that will be satisfied if and only if

the simulation predicts the same phenotype. The constraints are written using as much biological
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notation as possible, so [Esp1](t6) refers to the concentration of the protein Esp1 at the time t6.

The constraints include time variables ti where i is a positive integer; although these variables are

not part of the model, they must still be found by the parameter estimator. In the constraints,

there are several constants which are set as follows: ǫ = 0.05, δG1
= 20, and δM = 1.4.

4.1 Viable Phenotype Constraints

The constraints for a viable cell to go through one cycle are listed below, with annotations denoted

by angle brackets.

t1 < t2 < t3 < t4 < t5 < t6 < t8, 〈1〉

t3 − t1 < tw, 〈2〉

t2 < t7 < t8, 〈3〉

G1 − δG1
< t3 − t0 < G1 + δG1

, 〈4〉

min
t1≤t≤t2

([Clb2](t) + [Clb5](t)) > Kez2 > [Clb2](t2 + ǫ) + [Clb5](t2 + ǫ), 〈5〉

max
t2+ǫ≤t≤t3

[ORI](t) < 1 < [ORI](t3 + ǫ), 〈6〉

max
t1≤t≤t4

[SPN](t) < 1 < [SPN](t5), 〈7〉

max
t4≤t≤t5

[Esp1](t) < 0.1 < [Esp1](t6), 〈8〉

[BUD](t7) > 0.8, 〈9〉

[Clb2](t8 − ǫ) > Kez > [Clb2](t8), 〈10〉

max
t1≤t≤t8−ǫ

[mass](t) < 4mw, 〈11〉

M − δM < [mass](t8 − ǫ) < M + δM . 〈12〉

〈1〉 These strict inequalities ensure the correct temporal ordering of the events defined by the times

ti. 〈2〉 [ORI] must rise above one before a wild type cell would divide twice in the same medium

(e.g., glucose or galactose); tw is set to the amount of time a simulated wild type cell takes to

divide twice with the same biological parameters. 〈3〉 t7 (which marks [BUD] rising above one)

simply has to occur any time between t2 and t8. 〈4〉 G1 is the length of the G1-phase, as observed

in experiments. This ensures that the simulated cell is within a predefined distance δG1
of the

observed value. 〈5〉 [Clb2] + [Clb5] drops, satisfying viability rule 1(a). 〈6〉 [ORI] rises, satisfying

rule 1(b). 〈7〉 [SPN] rises, satisfying rule 1(c). 〈8〉 [Esp1] rises, satisfying rule 1(d). 〈9〉 [BUD]

rises, satisfying rule 2. 〈10〉 [Clb2] drops, satisfying rule 1(e). 〈11〉 Mass is always less than four

times the mass of the wild type in the same medium; mw is the mass of a simulated wild type cell

with the same biological parameters. 〈12〉 M is the observed mass at division.

A cell that meets the above constraints is viable for one cycle. For the first cycle, remember that

the starting conditions are just after [Clb2] + [Clb5] dropped through Kez2, so the fifth constraint

must be omitted. For the rest of the cycles, repeat the constraints with variables t1+7(n−1),

t2+7(n−1), . . ., t8+7(n−1) for cycle n. Note that the last time of the previous cycle is the first

time in the current cycle. To enforce the stability requirements, add the constraints

(

[mass](t8+7(N−2)) − [mass](t8+7(N−1))

[mass](t8+7(N−2))

)2

< 0.05
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and
(

(t3+7(N−2) − t1+7(N−2)) − (t3+7(N−1) − t1+7(N−1))

(t3+7(N−2) − t1+7(N−2))

)2

< 0.05,

where N is the total number of cycles.

4.2 Phenotypes for pds1∆ Mutants

The pds1∆ mutants are incapable of synthesizing Esp1, but some of these mutants still manage to
separate the DNA copies. It is suspected that these mutants use a different mechanism to separate
the DNA, but that mechanism is not included in this model. So for the purposes of this model,
pds1∆ mutants are not required to meet viability rule 1(d), and the corresponding constraints
should be omitted when evaluating mutants 61, 62, 66, 67, 71, and 113 in Appendix A.

4.3 Inviable Phenotype Constraints

A cell that fulfills the above constraints is considered viable. Some of the mutants have an observed
phenotype of inviable, so their constraints will be different. The constraints for an inviable mutant
are determined by when and how the cell arrests. There are four major types of arrest stages: G1
arrest, metaphase arrest, G2 arrest, and telophase arrest. The following subsections present the
inequality constraints for each of these arrest types.

4.4 G1 Arrest

In terms of the model, a G1 arrest means that none of [ORI], [SPN], or [BUD] should rise to one
before the cell cycle is considered arrested. Whether or not [Clb2]+ [Clb5] drops below Kez has no
effect on whether the cell is G1 arrested, so it is not mentioned in the constraints. A cell arrests in
G1 either because its mass has become greater than 4mw (see viability rule 4) or because tw time
has passed (see checkpoint 1(b)). Constraints for a G1 arrested mutant are thus

max{t1 − tw, max
0≤t≤t1

[mass](t) − 4mw} > 0,

max
0≤t≤t1

[ORI](t) < 1,

max
0≤t≤t1

[SPN](t) < 1,

max
0≤t≤t1

[BUD](t) < 1.

The first inequality ensures that t1 is a time after the cell has arrested. Specifically, the quantity
t1 − tw will be greater than zero if a wild type cell could divide twice before t1. Similarly, the
quantity max0≤t≤t1 [mass](t)−4mw will be greater than zero if the cell has grown to a mass greater
than 4mw before t1. The maximum of these quantities is used because violating any of the viability
rules causes a cell to be arrested.

4.5 G2 Arrest

For a cell to be arrested in G2, it must execute the first two checkpoints of a viable cell, but [SPN]
must stay low.

t1 < t2 < t3 < t4,

t3 − t1 < tw,

min
t1≤t≤t2

([Clb2](t) + [Clb5](t)) > Kez2 > [Clb2](t2 + ǫ) + [Clb5](t2 + ǫ),

max
t2+ǫ≤t≤t3

[ORI](t) < 1 < [ORI](t3 + ǫ),

max
0≤t≤t4

[SPN](t) < 1,

max
0≤t≤t4

[mass](t) > 4mw.
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4.6 Metaphase Arrest

If a cell is arrested in metaphase, its chromosomes are aligned on its spindles (i.e., the [SPN]
checkpoint must be reached) but the chromosomes have not separated (i.e., Esp1 has not activated).
Metaphase arrested cells may be budded or unbudded. This means that the following constraints
must be met.

t1 < t2 < t3 < t4 < t5 < t6,

t3 − t1 < tw,

min
t1≤t≤t2

([Clb2](t) + [Clb5](t)) > Kez2 > [Clb2](t2 + ǫ) + [Clb5](t2 + ǫ),

max
t2+ǫ≤t≤t3

[ORI](t) < 1 < [ORI](t3 + ǫ),

max
t1≤t≤t4

[SPN](t) < 1 < [SPN](t5),

max
t4≤t≤t5

[Esp1](t) < 0.1,

max
0≤t≤t6

[mass](t) > 4mw.

4.7 Telophase Arrest

While the G1 phase is the earliest a cell can be arrested, telophase is the latest a cell can become
arrested. A telophase arrested cell must complete all of the checkpoints except that [Clb2] can
not drop below Kez before the cell arrests. The first eight constraints for such a cell would be the
same as the constraints for a viable cell. The ninth constraint would be removed, and the tenth
constraint would be changed to

max
t2+ǫ≤t≤t7

[Clb2](t) < Kez < min
t7+ǫ≤t≤t8

[Clb2](t),

with the additional constraints

t1 < t7 < t8,

[mass](t8) > 4mw.

4.8 Evaluating All of the Mutants

As described earlier, a parameter vector must satisfy all of the constraints for all of the mutants
before it can be considered feasible. Each mutant requires a separate simulation and will have its
own set of time variables derived from its concentrations’ trajectories. The mutants are numbered
as in Appendix A, so the time for the ith mutant will be t{i}. Also, because each mutant modifies
the parameter vector slightly, the concentration of a substance at a specific time will vary among
the mutants. Rather than explicitly specify which parameter vector is being used, the superscript
of the time will indicate the parameter vector being used. For instance, mutant 13 is a G1 arrested
mutant, so its constraints would be

max{t
{13}
1 − tw, max

0≤t{13}≤t
{13}
1

[mass](t{13}) − 4mw} > 0,

max
0≤t{13}≤t

{13}
1

[ORI](t{13}) < 1,

max
0≤t{13}≤t

{13}
1

[SPN](t{13}) < 1,

max
0≤t{13}≤t

{13}
1

[BUD](t{13}) < 1.
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Table 2. The numbering of the viable constraints for Tables 4, 5, 6, and 7.

Index Constraint

1 t1 < t2
2 t2 < t3
3 t3 < t4
4 t4 < t5
5 t5 < t6
6 t1 < t7
7 t7 < t8
8 t6 < t8
9 t3 − t1 < tw
10 |t3 − t0 − G1| < δG1

11 G1 stability constraint

12 mint1≤t≤t2([Clb2](t) + [Clb5](t)) > Kez2

13 Kez2 > [Clb2](t2 + ǫ) + [Clb5](t2 + ǫ)

14 maxt2+ǫ≤t≤t3 [ORI](t) < 1

15 1 < [ORI](t3 + ǫ)

16 maxt1≤t≤t4 [SPN](t) < 1

17 1 < [SPN](t5)

18 maxt4≤t≤t5 [Esp1](t) < 0.1

19 0.1 < [Esp1](t6)

20 [BUD](t7) > 1

21 [Clb2](t8 − ǫ) > Kez

22 Kez > [Clb2](t8)

23 maxt1≤t≤t8−ǫ [mass](t) < 4mw

24
∣

∣[mass](t8 − ǫ)/mw − M
∣

∣ < δm

25 Mass stability constraint

5. Biological Results

To test this formulation, the constraints for the telophase arrest and viable phenotypes were

evaluated at two parameter vectors. The pds1∆ mutants were excluded from this test, leaving

61 mutants with an observed phenotype of viable and 15 mutants with an observed phenotype

of telophase arrested. The first parameter vector used the best manually obtained biological

parameters [7], and the second vector used the best biological parameters found using optimization

algorithms on a penalty function formulation of the problem [18].

For both vectors, the time parameters were found using an algorithm that examines the ODE

model simulation time series output and picks sensible values. In one pass through the simulation

time series output, this algorithm attempts to pick the time variables so that they are in the

proper order, and if possible, the constraints are satisfied. During the simulation, the algorithm

keeps track of the maximum and minimum values for the model variables in the constraints (e.g.,

[BUD], [SPN]). When an event (cf. Section 2.1) occurs, the algorithm sets the respective time

variables and then checks to see if all of the earlier time variables have been set. If there are earlier

time variables that have not been set, the algorithm attempts to set each of them to a time that

maintains the ordering of the variables and minimizes the violation of the constraints. A more
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Table 3. The numbering of the telophase arrest constraints for Tables 4, 5, 6, and 7.

Index Constraint

1 t1 < t2
2 t2 < t3
3 t3 < t4
4 t4 < t5
5 t5 < t6
6 t1 < t7
7 t7 < t8
8 maxt2+ǫ≤t≤t3 [ORI](t) < 1

9 1 < [ORI](t3 + ǫ)

10 maxt1≤t≤t4 [SPN](t) < 1

11 1 < [SPN](t5)

12 maxt4≤t≤t5 [Esp1](t) < 0.1

13 0.1 < [Esp1](t6)

14 maxt1+ǫ≤t≤t7 [Clb2](t) < Kez

15 Kez < mint7+ǫ≤t≤t8 [Clb2](t)

16 [mass](t8) > 4mw

formal description of this algorithm (for the viable phenotype) is given below (ǫ comes from the

beginning of Section 3). There is a similar algorithm for the telophase arrested phenotype.

check *: flags for checking earlier events

o: offset into the time parameters

nc: number of cycles completed

reset cycle: flag for resetting best times

s: maximum time that a previous event can be set to

t: current time

tf : end of the simulation time

tb: best time for [BUD] rising

tc: best time for [Clb2] + [Clb5] dropping

te: best time for [Esp1] rising

tr: best time for [ORI] rising

ts: best time for [SPN] rising

t := 0; nc := 0; o := 1; s := 0; tc := 0; tr := 0; ts := 0; te := 0; tb := 0

while (t < tf ) do

check Clb2 Clb5 := false; check ORI := false; check ORI := false; check SPN := false

check Esp1 := false; check BUD := false; reset cycle := false

if (nc > 1) then

o := 8 + (nc − 1) × 7

else

o := 1

end if

Advance t to the next time in the ODE simulation time series output.

if ([Clb2] + [Clb5] dropped through Kez2) then

to+1 := t − ǫ/2; tr := −1; ts := −1; te := −1
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elseif ([ORI] rose through one) then

to+2 := t − ǫ/2; s := to+2 − ǫ; ts := −1; te := −1; check Clb2 Clb5 := true

elseif ([SPN] rose through one) then

to+3 := t − ǫ; to+4 := t + ǫ; s := to+3 − ǫ; te := −1; check ORI := true

elseif ([Esp1] rose through 0.1) then

to+5 := t + ǫ; s := to+5 − ǫ; check SPN := true

elseif ([BUD] rose through one) then

to+6 := t + ǫ

elseif ([Clb2] rose through Kez) then

to+7 := t − ǫ/2; nc := nc + 1; s := to+7 − ǫ

check Esp1 := true; check BUD := true; reset cycle := true

end if

if (check BUD = true and to+6 has not been set) then

if ([BUD](s) < [BUD](tb)) then

to+6 := tb
else

to+6 := s

end if

end if

if (check Esp1 = true and to+5 has not been set) then

if ([Esp1](s) < [Esp1](te)) then

to+5 := te
else

to+5 := s

end if

check SPN := true

end if

s := to+5 − ǫ

if (check SPN = true and to+4 has not been set) then

if ([SPN](s) < [SPN](ts)) then

to+3 := ts − ǫ; to+4 := ts + ǫ

else

to+3 := s − ǫ; to+4 := s + ǫ

end if

check ORI := true

end if

s := to+3 − ǫ

if (check ORI = true and to+2 has not been set) then

if ([ORI](s) < [ORI](tr)) then

to+2 := tr
else

to+2 := s

end if

check Clb2 Clb5 := true

s := to+2 − ǫ

if (check Clb2 Clb5 = true and to+1 has not been set) then
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if ([Clb2](s) + [Clb5](s) > [Clb2](tc) + [Clb5](tc)) then

to+1 := tc
else

to+1 := s

end if

end if

if (reset cycle = true) then

tc := −1; tr := −1; ts := −1; te := −1; tb := −1

end if

if ([Clb2](t) + [Clb5](t) < [Clb2](tc) + [Clb5](tc) or tc < 0) then

tc := t

end if

if ([ORI](t) > [ORI](tr) or tc < 0) then

tr := t

end if

if ([SPN](t) > [SPN](ts) or tc < 0) then

ts := t

end if

if ([Esp1](t) > [Esp1](te) or tc < 0) then

te := t

end if

if ([BUD](t) > [BUD](tb) or tc < 0) then

tb := t

end if

end while

For conciseness, the violated constraints for viable mutants are listed as “Cx-Ny”, where x

indicates the cycle in which the violation occurred, and y is an index into Table 2 that indicates

which constraint was violated. The violated constraints for telophase-arrested mutants are listed

as “Ny”, where y is an index into Table 3. The results of evaluating the viable constraints on all of

the mutants with an observed phenotype are shown in Tables 4, 5, 6, and 7. Tables 4 and 5 show

the mutants that satisfied and did not satisfy the constraints, respectively, when the manually

obtained biological parameters were used. Tables 6 and 7 show the same for the mathematically

optimized biological parameters.

Table 4. Mutants that had no violated constraints, manually obtained parameters.

Wild type in glucose

Wild type in galactose

cln1∆ cln2∆

GAL-CLN2 cln1∆ cln2∆

cln1∆ cln2∆ sic1∆

cln1∆ cln2∆ cdh1∆

cln3∆

bck2∆

Multi-copy BCK2

cln3∆ bck2∆ GAL-CLN2 cln1∆ cln2∆
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cln1∆ cln2∆ cln3∆ GAL-CLN2

cln1∆ cln2∆ cln3∆ GAL-CLN3

cln1∆ cln2∆ cln3∆ sic1∆

cln1∆ cln2∆ cln3∆ cdh1∆

cln1∆ cln2∆ cln3∆ multi-copy CLB5

cln1∆ cln2∆ cln3∆ GAL-CLB5

cln1∆ cln2∆ cln3∆ multi-copy BCK2

sic1∆

GAL-SIC1

GAL-SIC1 GAL-CLN2 cln1∆ cln2∆

GAL-SIC1 GAL-CLN2 cln1∆ cln2∆ cdh1∆

sic1∆ cdh1∆ GALL-CDC20

cdh1∆

cdc6∆2-49

sic1∆ cdc6∆2-49

GAL-CLB2

Multicopy GAL-CLB2

CLB2-db∆

CLB2-db∆ in galactose

CLB2-db∆ multicopy SIC1

CLB2-db∆ GAL-SIC1

CLB2-db∆ clb5∆

CLB2-db∆ clb5∆ in galactose

clb5∆ clb6∆

GAL-CLB5

GAL-CLB5 cdh1∆

CLB5-db∆

tem1∆

GAL-TEM1

tem1-ts GAL-CDC15

tem1∆ net1-ts

tem1-ts multicopy CDC14

cdc15∆

Multicopy CDC15

cdc15∆ net1-ts

cdc15-tsmulticopy CDC14

net1-ts

GAL-NET1

cdc14-ts

GAL-NET1 GAL-CDC14

TAB6-1 cdc15∆

mad2∆

bub2∆

mad2∆ bub2∆

APC-A

APC-A cdh1∆
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APC-A cdh1∆ GAL-SIC1

APC-A cdh1∆ GAL-CDC6

APC-A cdh1∆ multicopy CDC20

swi5∆

sic1∆ cdc6∆2-49 cdh1∆ GALL-CDC20

APC-A sic1∆

APC-A GAL-CLB2

Table 5. Mutants that had violated constraints, manually obtained parameters.

GAL-CLN2 cln1∆ cln2∆ cdh1∆ C3-N20, C4-N19, C4-N20, C5-N15, C5-N17,

C5-N20, C6-N15, C6-N17, C6-N20, C7-N15,

C7-N17, C7-N20, C8-N15, C8-N17, C8-N20

GAL-CLN3 C6-N1, C8-N11, C5-N19, C6-N13, C6-N17,

C7-N15, C7-N17, C8-N15, C8-N17

cln1∆ cln2∆ bck2∆ C8-N24

cdh1∆ cdc6∆2-49 C8-N10

GAL-CLB2 sic1∆ N12, N16

GAL-CLB2-db∆ N12

GAL-ESP1 cdc20-ts N5, N12

cdc14-ts GAL-SIC1 C1-N20, C2-N13, C2-N18, C2-N22, C3-N13,

C3-N18, C3-N22, C4-N13, C4-N18, C4-N22,

C5-N13, C5-N18, C5-N22, C6-N13, C6-N18,

C6-N22, C7-N13, C7-N18, C7-N22, C8-N13,

C8-N18, C8-N22

TAB6-1 C1-N8

TAB6-1 CLB1 clb2∆ C1-N17, C2-N15, C2-N17, C3-N15, C3-N17,

C4-N15, C4-N17, C5-N15, C5-N17, C6-N15,

C6-N17, C7-N15, C7-N17, C8-N15, C8-N17

APC-A cdh1∆ in galactose C1-N20, C2-N13, C2-N18, C2-N20, C2-N22,

C3-N13, C3-N18, C3-N20, C3-N22, C4-N13,

C4-N18, C4-N20, C4-N22, C5-N13, C5-N18,

C5-N20, C5-N22, C6-N13, C6-N18, C6-N20,

C6-N22, C7-N13, C7-N18, C7-N20, C7-N22,

C8-N13, C8-N18, C8-N20, C8-N22

APC-A cdh1∆ multicopy SIC1 C1-N17, C2-N15, C2-N17

APC-A cdh1∆ multicopy CDC6 C8-N11, C7-N22, C8-N13, C8-N18, C8-N22

Table 6. Mutants that had no violated constraints, optimized parameters.

Wild type in glucose

Wild type in galactose

cln1∆ cln2∆

GAL-CLN2 cln1∆ cln2∆

cln1∆ cln2∆ sic1∆
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cln1∆ cln2∆ cdh1∆

GAL-CLN2 cln1∆ cln2∆ cdh1∆

cln3∆

GAL-CLN3

bck2∆

Multi-copy BCK2

cln1∆ cln2∆ bck2∆

cln3∆ bck2∆ GAL-CLN2 cln1∆ cln2∆

cln1∆ cln2∆ cln3∆ GAL-CLN2

cln1∆ cln2∆ cln3∆ GAL-CLN3

cln1∆ cln2∆ cln3∆ sic1∆

cln1∆ cln2∆ cln3∆ cdh1∆

cln1∆ cln2∆ cln3∆ multi-copy CLB5

cln1∆ cln2∆ cln3∆ GAL-CLB5

cln1∆ cln2∆ cln3∆ multi-copy BCK2

sic1∆

GAL-SIC1

GAL-SIC1 GAL-CLN2 cln1∆ cln2∆

GAL-SIC1 GAL-CLN2 cln1∆ cln2∆ cdh1∆

sic1∆ cdh1∆ GALL-CDC20

cdh1∆

cdc6∆2-49

sic1∆ cdc6∆2-49

GAL-CLB2

Multicopy GAL-CLB2

CLB2-db∆

CLB2-db∆ GAL-SIC1

CLB2-db∆ clb5∆

CLB2-db∆ clb5∆ in galactose

clb5∆ clb6∆

GAL-CLB5

GAL-CLB5 cdh1∆

CLB5-db∆

tem1∆

GAL-TEM1

tem1-ts GAL-CDC15

tem1∆ net1-ts

tem1-ts multicopy CDC14

cdc15∆

Multicopy CDC15

cdc15∆ net1-ts

cdc15-tsmulticopy CDC14

GAL-NET1

cdc14-ts

GAL-NET1 GAL-CDC14

TAB6-1
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TAB6-1 cdc15∆

TAB6-1 CLB1 clb2∆

mad2∆

bub2∆

APC-A

APC-A cdh1∆

APC-A cdh1∆ in galactose

APC-A cdh1∆ multicopy SIC1

APC-A cdh1∆ GAL-SIC1

APC-A cdh1∆ multicopy CDC6

APC-A cdh1∆ GAL-CDC6

APC-A cdh1∆ multicopy CDC20

swi5∆

APC-A sic1∆

APC-A GAL-CLB2

Table 7. The mutants that had violated constraints, optimized parameters.

cdh1∆ cdc6∆2-49 C8-N10

GAL-CLB2 sic1∆ N12, N16

CLB2-db∆ in galactose N16

CLB2-db∆ multicopy SIC1 C8-N22, C8-N25

GAL-CLB2-db∆ N12

GAL-ESP1 cdc20-ts N5, N12

net1-ts C1-N8

cdc14-ts GAL-SIC1 C1-N20, C2-N13, C2-N18, C2-N22, C3-N13,

C3-N18, C3-N22, C4-N13, C4-N18, C4-N22,

C5-N13, C5-N18, C5-N22, C6-N13, C6-N18,

C6-N22, C7-N13, C7-N18, C7-N22, C8-N13,

C8-N18, C8-N22

mad2∆ bub2∆ C1-N16

sic1∆ cdc6∆2-49 cdh1∆ GALL-CDC20 C1-N16, C1-N18

A parallel direct search algorithm [18] applied to the penalty function formulation used over

10,000 CPU hours on 400 processors of a 2200 processor supercomputer (1100 Apple G5 Xserve

nodes, Infiniband network). The full inequality formulation for all mutants would have approxi-

mately 11,500 constraints (sum of constraints per phenotype accounting for multiple cycles) and

4000 variables (almost all of them times t
{i}
j ). One ODE solution and the transforms necessary to

match the ODE solution to experimental data take about 17 seconds on a 2.3 GHz G5 processor,

so the need for parallel supercomputing is clear. While the nonlinear inequality formulation is

definitely large scale, it is well within the range of problems being solved in industry. This work

demonstrates the reasonableness of the inequality approach to parameter estimation for cell cycle

modeling. Mechanically assembling all 11,500 constraints and then solving the feasibility problem

will be a major undertaking requiring several man-years of effort and parallel supercomputing to

evaluate the constraints, but is surely doable.
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6. Conclusions

A long-range goal of system biology is to develop efficient tools for fitting quantitative models to

available types of experimental data. The cell cycle control system in budding yeast is a represen-

tative example of this general problem. The model consists of 36 variable protein levels (described

by ordinary differential equations) and 143 kinetic parameters that need to be estimated from the

data. The data consists of a hodge-podge of qualitative observations and quantitative measure-

ments on wild-type and mutant cells. The challenge is to determine if there exists a feasible set

of kinetic parameters for which the ODEs are consistent with the qualitative phenotypes of the

collection of mutants.

This problem is formulated as a system of nonlinear inequalities that is satisfied if and only

if the model matches all experimental data. The results in Tables 4–7 show that this formulation

can accurately compare the simulation results with the experimental data. Using the smooth

constraints instead of the discontinuous objective function will make it possible to use mathematical

programming algorithms that assume smooth functions.

Note that no 143-dimensional parameter vector is known that will satisfy all the constraints

because some experimental data may be wrong, the ODE model may be incomplete, and/or the

biologically correct parameter vector may not yet have been found. Regardless of the source of

the discrepancy, this inequality formulation provides a qualitatively different approach from the

discontinuous penalty function for biologists to use in their quest for a validated cell cycle model.
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8. Appendix A: Mutants

Mutants marked by an asterisk (*) have a phenotype that does not correspond to any of the

constraint sets given in Section 3.

Index Mutant name Observed Phenotype

1. Wild type in glucose Viable, G1 = 35.2

2. Wild type in galactose Viable, G1 = 109

3. cln1∆ cln2∆ Viable, M = 2wm

4. GAL-CLN2 cln1∆ cln2∆ Viable, M = 0.5wm

5. cln1∆ cln2∆ sic1∆ Viable

6. cln1∆ cln2∆ cdh1∆ Viable

7. GAL-CLN2 cln1∆ cln2∆ cdh1∆ Viable, M = 1.7wm

8. cln3∆ Viable, M = 1.7wm

9. GAL-CLN3 Viable, M = 0.44wm

10. bck2∆ Viable, M = 1.4wm

11. Multi-copy BCK2 Viable, M = 0.8wm

12. cln1∆ cln2∆ bck2∆ Viable, M = 1.7wm

13. cln3∆ bck2∆ G1 arrest

14. cln3∆ bck2∆ GAL-CLN2 cln1∆ cln2∆ Viable

15. cln3∆ bck2∆ multi-copy CLN2 G1 arrest

16. cln3∆ bck2∆ GAL-CLB5 Inviable

17. cln3∆ bck2∆ sic1∆ Inviable

18. cln1∆ cln2∆ cln3∆ G1 arrest

19. cln1∆ cln2∆ cln3∆ GAL-CLN2 Viable

20. cln1∆ cln2∆ cln3∆ GAL-CLN3 Viable

21. cln1∆ cln2∆ cln3∆ sic1∆ Viable, G1 = 10, M = 3.5wm

22. cln1∆ cln2∆ cln3∆ cdh1∆ Telophase arrest

23. cln1∆ cln2∆ cln3∆ multi-copy CLB5 Viable

24. cln1∆ cln2∆ cln3∆ GAL-CLB5 Viable

25. cln1∆ cln2∆ cln3∆ multi-copy BCK2 Viable

26. cln1∆ cln2∆ cln3∆ GAL-CLB2 G1 arrest

27. cln1∆ cln2∆ cln3∆ apc-ts Metaphase arrest

28. sic1∆ Viable, G1 = 15, M = wm

29. GAL-SIC1 Viable, G1 = 135, M = 2wm

30. GAL-SIC1-db∆ G1 arrest

31. GAL-SIC1 cln1∆ cln2∆ G1 arrest

32. GAL-SIC1 cln1∆ cln2∆ cdh1∆ G1 arrest

33. GAL-SIC1 GAL-CLN2 cln1∆ cln2∆ Viable

34. GAL-SIC1 GAL-CLN2 cln1∆ cln2∆ cdh1∆ Viable

35. sic1∆ cdh1∆ Reductive mitosis in second cycle*

36. sic1∆ cdh1∆ GALL-CDC20 Viable

37. cdh1∆ Viable, M = 0.6wm

38. Cdh1 constitutively active G2 arrest

39. cdc6∆2-49 Viable

40. sic1∆ cdc6∆2-49 Viable

41. cdh1∆ cdc6∆2-49 Viable, G1 = 20, M = 2wm
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42. clb1∆ clb2∆ G2 arrest

43. GAL-CLB2 Viable

44. Multicopy GAL-CLB2 Telophase arrest

45. GAL-CLB2 sic1∆ Telophase arrest

46. GAL-CLB2 cdh1∆ Inviable

47. CLB2-db∆ Telophase arrest

48. CLB2-db∆ in galactose Telophase arrest

49. CLB2-db∆ multicopy SIC1 Viable

50. CLB2-db∆ GAL-SIC1 Viable

51. CLB2-db∆ clb5∆ Telophase arrest

52. CLB2-db∆ clb5∆ in galactose Viable

53. GAL-CLB2-db∆ Telophase arrest

54. clb5∆ clb6∆ Viable, G1 = 65

55. cln1∆ cln2∆ clb5∆ clb6∆ G1 arrest

56. GAL-CLB5 Viable

57. GAL-CLB5 sic1∆ Inviable

58. GAL-CLB5 cdh1∆ Inviable after many divisions*

59. CLB5-db∆ Viable

60. CLB5-db∆ sic1∆ Semi-lethal*

61. CLB5-db∆ pds1∆ Viable

62. CLB5-db∆ pds1∆ cdc20∆ Telophase arrest

63. GAL-CLB5-db∆ Inviable

64. cdc20-ts Metaphase arrest

65. cdc20∆ clb5∆ Metaphase arrest

66. cdc20∆ pds1∆ Telophase arrest

67. cdc20∆ pds1∆ clb5∆ Viable

68. GAL-CDC20 Premature chromosome separation*

69. cdc20-ts mad2∆ Metaphase arrest

70. cdc20-ts bub2∆ Metaphase arrest

71. pds1∆ Viable

72. esp1-ts Chromosome separation failure*

73. PDS1-db∆ Chromosome separation failure*

74. GAL-PDS1-db∆ Chromosome separation failure*

75. GAL-PDS1-db∆ esp1-ts Chromosome separation failure*

76. GAL-ESP1 cdc20-ts Telophase arrest

77. tem1∆ Telophase arrest

78. GAL-TEM1 Viable

79. tem1-ts GAL-CDC15 Viable

80. tem1∆ net1-ts Viable

81. tem1-ts multicopy CDC14 Viable

82. cdc15∆ Telophase arrest

83. Multicopy CDC15 Viable

84. cdc15-ts multicopy TEM1 Inviable

85. cdc15∆ net1-ts Viable

86. cdc15-ts multicopy CDC14 Viable

87. net1-ts Viable, G1 = 50
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88. GAL-NET1 Telophase arrest

89. cdc14-ts Telophase arrest

90. GAL-CDC14 G1 arrest

91. GAL-NET1 GAL-CDC14 Viable

92. net1∆ cdc20-ts Reductive mitosis*

93. cdc14-ts GAL-SIC1 Weakly viable*

94. TAB6-1 Viable

95. TAB6-1 cdc15∆ Viable

96. TAB6-1 clb5∆ clb6∆ G1 arrest

97. TAB6-1 CLB1 clb2∆ Viable

98. mad2∆ Viable, G1 = 35, M = wm

99. bub2∆ Viable, G1 = 35, M = wm

100. mad2∆ bub2∆ Viable

101. APC-A Viable, G1 = 20, M = 1.5wm

102. APC-A cdh1∆ Telophase arrest

103. APC-A cdh1∆ in galactose Viable

104. APC-A cdh1∆ multicopy SIC1 Viable

105. APC-A cdh1∆ GAL-SIC1 Viable

106. APC-A cdh1∆ multicopy CDC6 Viable

107. APC-A cdh1∆ GAL-CDC6 Viable

108. APC-A cdh1∆ multicopy CDC20 Viable

109. swi5∆ Viable, G1 = 20

110. sic1∆ cdc6∆2-49 cdh1∆ G2 arrest in second cycle

111. sic1∆ cdc6∆2-49 cdh1∆ GALL-CDC20 Viable

112. APC-A cdh1∆ clb5∆ Inviable

113. APC-A cdh1∆ pds1∆ Inviable

114. APC-A sic1∆ Viable

115. APC-A GAL-CLB2 Telophase arrest
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