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I. INTRODUCTION AND SUMMARY 

In this thesis, methods of designing experiments and the 

interpretation of their results will be investigated in con-

nection with a population genetic model introduced by Moran 

(1958). The deductive theory by approximate methods of such 

models has reached an advanced stage, but very little has 

been done along the line of statistical inference. Moran's 

model is a model of the Markov chain type. A significant 

amount of the work in this thesis deals with a Markov chain 

of the absorbing type. In particular, statistical inference 

for absorbing Markov chains is virtually non-existent. We 

quote Billingsley (1961a) "A systematic investigation of 

inference in such cases would be valuable." Snell (personal 

communication) states, "My own feeliag is that the really 

useful things in this area have yet to be studied. " Thus it 

is evident that more research in this field is needed and 

that a broad vista of investigation is available. In Moran's 

model the most severe assumption is that the number of indi-

viduals in the population at any time is a constant (usually 

denoted by M). Though this restriction may have an un-

appealing tone, Moran's model was selected for investigation 
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because it is the only finite population genetic model for 

which the deductive theory by exact methods is well enough 

established to stimulate an investigation of statistical 

inference. The only reference known where the assumption of 

constant population size, for this model, is dropped is an 

article by Feller (1951) in which the problem is mentioned. 

Feller gives the form of the diffusion equation approximating 

the exact, discrete process but no attempt at solution is 

made. Thus it is hoped that this thesis will be a step 

towards the opening of a virtually uninvestigated field of 

statistical inference in population genetic models and that 

it will serve to illustrate the area of deductive theory 

needed to handle inference problems on such models. 

A model in population genetics is a probability des-

cription of how genes pass from one individual (or generation) 

to the next, and may include such influences as mutation, 

selection, overlapping or non-overlapping generations and 

non-randan mating. A brief description of these concepts 

follows. We shall, in this thesis, be primarily concerned 

with the influence of mutation. 

'l'he genetic factor with which we are concerned is of the 

simplest type. We assume it to be controlled by a single 
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locus on a chromosome., at which either of two alleles "a" or 

A can occur. Clearly an allele is an alternative member of 

a pair of genes. The genotypes (genetic constitution: 

phenotype refers to physical description) will be haploid., 

that is., "a" or A as opposed to diploid individuals., aa., 

Aa., or AA. Haploidy is not an uncamnon occurrence in nature. 

In the honeybee., unfertilized eggs may develop by partheno-

genesis., in which case males (drones) are produced. These 

males are haploid. Haploidy is also found in wasps., ants., 

salamanders., mosses., ferns and molds. 

A mutation is a rare instantaneous transition from one 

gene into its allele., say A or a. Sane of the 

designs in this thesis will involve the use of mutagents., 

that is., mutation producing agents. A mutation rate in one 

direction will be estimated while the reverse mutation rate 

is assumed zero. This is a realistic and practical assump-

tion from the biological point of view. It will also be 

assumed that mutations occur only among the gametes produced 

by an individual., so that its own genotype remains unchanged 

throughout its lifetime. Selection describes non-random in-

duced variation in the average numbers of offspring produced 

by different genotypes. This variation can be caused either 
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directly by varying the number o:[ gametes produced per 

genotype or indirectly by varying the life expectations. 

Generations may be non-overlapping. that is 1 no mating occurs 

between them (for example populations with a seasonal life 

cycle) or generations may be overlapping with births and 

deaths occurring one at a time. Random-mating or panmixia 

means that any individual has equal probability of mating 

with any other individual in the population. Non-random 

mating1 therefore 1 is the possibility of gametes or zygotes 

uniting in non-random proportions to form new zygotes. An 

example of non-random mating is positive assortative mating1 

(likes with likes) a widely used practice in animal breeding. 

The emphasis in this thesis is statistical inference on 

the mutation rates a 1 and a2 of Moran's (1958) model1 a 

population genetic model of the Markov chain type. In 

Chapter II an introduction to Markov chains is given along 

with a review of known theorems for statistical inference in 

Markov processes with special reference to maximum likelihood 

estimation procedures. Chapter III deals with the situation 

where both mutation rates are estimated. Methods of con-

ducting experiments and interpretation of results are 



- 8 -

discussed. Chapter IV deals with the extremely important 

area of absorbing Markov chains. In this chapter one muta-

tion rate a 1 is discussed. Several theorems are postulated 

for the distribution and properties of the maximum likelihood 

estimate of this single mutation rate a1 • Methods of con-

ducting experiments and some illustrative examples are 

presented. Of special interest are results obtained by 

simulation methods on the IBM 650 which are extremely 

important in substantiating several of the theoretical dis-

cussions. Appendix I is a presentation and discussion of 

Hahn polynomials which were the building block.Sfor many of 

the results of the thesis. Appendix II is a listing of 

data obtained from the IBM 650 in the simulation study. 

Appendix III was also used in connection with the simulation 

study. 
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II. GENERAL DISCUSSION ON MARKOV CHAINS 

2.1 A Brief Introduction .:t,Q Markov Chains 

Finite genetic populations, such as those discussed in 

this thesis, can have only a finite number of possible 

genetic states; the number of the various genotypes in the 

population at any time is limited to being a non-negative 

integer, and cannot exceed the total population size. A 

population genetic model can be described by postulating the 

probabilities that a given state will change to another 

state during a birth-death event. If the population states 

are ordered according to some convention, the probabilities 

can be tabulated as a matrix array called a "transition 

matrix" and the successive states form a (first order) 

"Markov chain II because the transition matrix is assumed to 

depend on the immediately preceding state only. Given the 

initial state, one can write down the probabilities that the 

population is in the various states at any subsequent time. 

A discussion of the above terms follows. 

An r-th order Markov chain (x(t)) satisfies the fol-

lowing condition: 
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Pr[ x(t) I x(t-1), x(t-2), ••• , x(t-r), x(t-r-1), ••• ] 

• Pr[x(t) I x(t-1), ••• , x(t-r)] , 

that is, the distribution of x(t) conditional on the whole 

previous history is the same as the distribution given only 

the r previous states. As a special case, a first order 

Markov chain is one for which the distribution is affected 

by the immediately preceding state only, and we write 

Pij • Pr[x(t) • j I x(t-1) • i] • (2.1.1) 

In this thesis, we shall be using only first order Markov 

chains with transition probabilities pij independent of 

time, and shall refer to these as "Markov chains" without 

further qualification. We shall assume that changes of 

state can only occur at integer times t • 2, 3, ••• , and 

the possible states are the integer values, 

1, j • O, l, 2, ••• , M. Although somewhat unconventional 

in stochastic processes we take t = 1 as initial time, and 

the initial state x(l) is assumed fixed and known. 

The conditional probability pij is called the proba-

bility of transition £ran the state i to the state j and 

P • (pij) the matrix of transition probabilities, 
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Poo Pol Po2 • . . 

P10 P11 P12 • • • 
p a: . (2.1.2) . . . . . . . 

PMO 

Clearly P is a square matrix of order M + 1 with non-

negative elements, since pij 0 for all i and j • Row 

sums are unity, i.e., for all i • P is 

simply called the transition matrix.* 

We state here that the convention for noting element 

positions in a square matrix of order M + 1 in this thesis 

is as follows: 

o.,o 

1,0 

• 
M,0 

0,1 

1,1 

M,l 

0,2 

• 

• • 

• • 

O.,M 

l,M 
• (2.1.3) 

*A. A. Markov (1856-1922), Russian mathematician, arrived 
at the notion of Markov chains when he examined the alter-
nation of vowels and consonants in Pushkin's poem "Onegin". 
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2.2 Some General Notation~ Terminology 

(a) Discussion. A state in a Markov chain is an 

absorbing state if it is impossible to leave it. A Markov 

chain is absorbing if (l) it has at least one absorbing 

state, and (2) from every state it is possible to go to an 

absorbing state (not necessarily in one step). For example 

in Chapter IV the model discussed is one in which state O 

is absorbing and the remaining states l, 2, ••• , M are 

non-absorbing (transient). Therefore, 

Poo • 1 
and 

j = l, 2, ••• , M. 

In this thesis Feller's (1957) definition of a transient 

state will be used. Feller defines a transient state as one 

for which the probability that the state is visited at least 

twice is less than one. Broadly speaking this means that it 

is not certain that a transient state be visited infinitely 

often. Note that in an absorbing Markov chain we can speak 

of transient states and non-absorbing states as one and the 

same. However, in general transient does not imply non-

absorbing. 



- 13 -

(b) Theorem 2,2.1. In an absorbing Markov chain the 

probability that the process will be absorbed is one. 

[Kemeny, Mirkil, Snell, Thompson, (1959)) 

(c) A Markov chain is ergodic if the probability dis-

tributions (P. (n) J , [ P. (n) • P ( 1) pi. (n-:-~ always con-
J J i i J 

verge to a limiting distribution (P.) which is independent 
J 

of the initial distribution (P.(l)) • That is, when 
J 

lim 
n-+<X> 

P. (n) = P. (j • 1, 2 ••• ) • 
J J 

By stationary probability for state i we mean the 

probability that the model 1s in state 1 irrespective of 

the initial state k, after many generations have elapsed. 

We shall say the process is positively regular ifE the 

transition matrix to the power t 
t' p , for some finite t ' 

has all positive (non-zero) elements. The process is called 

regular if Pt for sane finite t has at least one raw 

with all non-zero elements. 

(d) Known Results. Extending (2.1.1), we write 

(t) 
Pij • Pr[x{t+-r) • j x(-r) • i] , (2.2.1) 

t • O, l, 2 . 
• • • I T • 1 1 2 . . . 

for the t-step transition probabilities. Then, if P 

(2.1.2) is the matrix of elements the elements of 
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Pt are the t-step transition probabilities., that is 
(t) 

pij • 

Let be the j-th eigenvalue of P and K. -J 

denotes a column vector, K' -J the corresponding row vector) 

the corresponding post-eigenvector. Then 

P,!Sj • A.K. , j • O, 1, ••• , Mi (2.2.2) 
JJ 

that is, PK• KDA where K is a matrix of eigenvectors., 

K • {JSo, 15.1 ., ••• ., ~) and DA is a diagonal matrix whose 

elements are the eigenvalues Aj • 

the post-eigenvectors., the rows of 

eigenvectors and we have 

The columns of K are 

-1 K are the pre-

or more generally 

t • 1., 2., ••• (2.2.3) 

These results are basic and are used widely throughout 

the thesis. 

2.3 Some Markov Chain Theorems 

The following discussion is taken fran Billingsley 

(1961). For convenience., as much as possible of his dis-

cussion will be in the notation and wording of this thesis. 

Moreover., theorems and conditions will be numbered following 

the convention of this thesis where numbers in parentheses 

will be those used by Billingsley. 
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we now establish some notation. Given a set of tran-

sit ion probabilities p ij (a.) , which depend on unknown 

parameters a e .fL where JL is the parameter space and 

a• (a1, a2 , ••• , ar) is a vector of parameters, then the 

likelihood function can be written 

(2.3.1) 

where nij is the number of times the transition from state 

i to state j occurred. The log-likelihood is then 

log L(a) - z nij log Pij (a) • (2.3.2) 

The maximum likelihood equations become 

0 log L(a:) 
\nij dp i j (a) - = I - 0 , oa t-lp (a) oa u ij u 

(2.3.3) 

u • 1, 2, ••• , r. 

For large n (n is the length of the observed chain: a 

real:ization of the chain) we can write the r x r symmetric 

information matrix as 

(2.3.4) 

Condition 2.3.1 (Condition 5.1). The set D of pairs 

(i, j) , for which the transition probabilities pij(a)) O, 
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is by assumption independent of a e ..I). • Each pij (a) has 

continuous partial derivatives of third order throughout .11. • 

Moreover the d x r matrix 

(opi. (a) /da ) 
J u 

(d being the number of elements in D) has rank r through-

out .fl. For each a e .fl there is only one ergodic set and 

there are no tra:i.1s ient states. See section 2. 2a, c for a 

discussion of the terms transient and ergodic. 

This condition implies that 1 (2.3.4) is non-singular. 

It further implies the following two theorems. 

Theorem 2.3.l (Theorem 2.1). Suppose that Condition 

2.3.l holds. Then there exists a sequence (a} of randan 

vectors in .11. , each being a function a• a(x(l), •••• ,x(n)) 

of the observations, such that 

to the true 0 a and such that 

"' a converges in probability 

"' a is a solution of (2.3.3) 

with probability going to one as n a> • Thus there is a 

consistent maximum likelihood estimator of 0 a Moreover 
A a is a local maximum of (2.3.2) with probability going to 

one. Finally, if a is a second consistent solution of 

(2.3.3) then the probability that "' a• a goes to one as 

n CX> • 
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This theorem [as Billingsley notes] does not take into 

account certain difficulties which may arise. The conditions 

imposed on the transition probabilities are local in char-

acter and so hence are the results which follow from them. 

In summary fashion then the theorem states that if Nb is 

a small neighborhood of 0 a and if n is large, there is, 

with high probability, exactly one solution "" a of (2.3.3) 

in and log(a) log(a) for any a e Nb. Now there 

may be other solutions of (2.3.3) far removed from 0 a ; the 

theorem provides no means of choosing the solution which is 

near 0 a Further, the solution "" a need not be an absolute 

maximum of log L(a) • Even so., it is convenient to call "" a 

the maximum likelihood estimator of 0 a and to write 

log L(a) as though it were an absolute maximum. In 

Chapter III where the model to which this theorem applies is 

discussed., it is shown that the above difficuJ.ties can be 

avoided. For the model discussed there the solution of 

(2.3.3) provides the unique maximum of log L(a) under 

some general conditions. 

The next theorem provides us with the tools for statis-

tical inference. If the vector "" a is a consistent solution 
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of the maximwn likelihood equations (2.3.3) 1 let 

l(n) • (l1 (n), ••• 1 lr(n)) be the random vector with com-

ponents 
0 £ (n) - (a - a) , u u u (2.3.5) 

Theorem 2.3.2 (Theorem 2.2). Suppose that Condition 

2.3.1 holds. If the vector a0 is the true value of the 

parameters and is a consistent solution of the maximum 

likelihood equations (2.3.3), then for n cc 

I -1 l(n) N(O, ) • (2.3.6) 

That is, for n oo l(n) is asymptotically multivariate 

normal with mean zero and variance-covariance matrix I -l 

(2.3.4). 

For general interest we might mention the following. 

The above theorems provide us with the means of investigating 

the unknown parameters on which transition probabilities may 

depend. It is possible to make inferences about transition 

probabilities alone. For example, we may wish to test the 

hypothesis that several realizations are fran the same Markov 

chain. Such a test uses a X2 goodness of fit test. 

Billingsley (1961) has a discussion on these goodness of fit 

type tests. Problems of this sort are not investigated in 

this thesis. 
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III. ESTIMATION OF BOTH Mtn'ATION RATES IN MORAN'S MODEL 

3.1 The Model under Conditions of Most Biological Interest 

(a) Model. In this chapter the estimation of both 

mutation rates., and in Moran's (1958) model will be 

discussed. we postulate a 1 ., a 2 ) O and 1 - a 1 - a 2 ) 0 . 

This includes most of the cases of biological interest. The 

biological analogue of this situation is the estimation of 

spontaneous mutation rates in a natural population., that is., 

estimating both forward and backward mutation rates. Condi-

tions other than a1 ., a2 ) 0 and l - a 1 - a2 ) 0 will be 

discussed briefly elsewhere in this chapter. 

In Moran's model we assume a constant population size 

M of haploid individuals "a" or A. Suppose that of the 

M haploid individuals i are of type "a" where 

i = 0., 1., 2., ... , M. The number of A individuals is then 

i and the proportions "a" and -1 and M - of A are 1M 

1 - -1 respectively. Also let there be a probability iM al 

of a gamete "a" mutating to A and of a gamete A 

mutating to "a" whenever such are chosen as sex gametes 

for the production of offspring. We postulate that a new 

individual is formed by the random choice of a parent whose 
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gamete is passed on, with possible mutation, to the offspring. 

Thus the probability that an offspring is of type "a" is 

(3.1.1) 

and of being type A is 

(3.1.2) 

We further asswne that at each instant at which the state of 

the model may change, one of the gametes chosen at random 

dies and is replaced by a new gamete which is 11 a '' or A 

with probabilities pi, qi as given above where i is the 

number of "a"'s prior to the event. Thus the birth-death 

model postulates that at each unit of time, one individual 

is chosen at random to die, and is replaced by a new indi-

vidual whose genotype is determined at random from those 

existing before the death. Hence the number of individuals 

of a given genotype (the state of the population) can take 

any of the values o, 1, ••• , M, and can change by at most 

unity during one birth-death event. The model was further 

discussed by Moran (1958a). 

Moran's model applies to a population in which breeding 

and mortality are occurring all the time, and in which 

generations overlap. Moreover it applies strictly to a 
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haploid population. The transition matrix for the general 

model is defined by the elements 
i i i 

Pii+l • (l - M)[(l - al)M + 0 2<1 - M)] 

(3.1.3) 

i i • -[(l - a)-+ a (1 - )] M l M 2 M 

i i i p • -[a - + (1 - a ) (1 - -) ] ii-1 M l M 2 M 

- 0 if k ) 1 + 1 or k ( i - 1 , 

taking into account the probabilities for birth and death 

gamete types. 

The square transition matrix P (2.1.2) of order M + 1 

with elements (3.1.3) has a tri-diagonal form 
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0 l 2 • • i • • M-1 M 

0 1-°'2 a2 O • • . 0 0 

1 
2 0 

• 

p - • (3.1.4) 

Clearly 

Further 

PMM-1 • 

We 

i 

• 
• 

M-1 
M 

pii-1 pii Pii+l 
0 

0 0 • • • 

there are no absorbing states provided al., a2) 

Poo • 1 - a2 I Pol• a2 and p • l MM - al, 

al hold for all M • 

shall denote the numbers of times the transitions 

from state i to i + 1, 1 to 1, and 1 to i - l 

0 • 

are observed by and respectively. This 110-

tation, rather than the more general n1j used in (2.3.1)., 

will be used throughout the thesis. In general 

M 
1.: (a1 + b. + c.) • n - l 

. 0 l. J. J.• 

M 
and 1.: n1 • n where 

1-0 
is 

the total number of times state i 1s observed and n is 

the observed length of the chain. For example., consider 
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the following chain of length n • 12 where M • 4 observed 

at equal time intervals# 

we have 

i to i+l 

2 to 3 

3 to 4 

furthermore~ 

222334332221 

ai 1 to i bi i to i-1 

1 2 to 2 4 2 

1 3 to 3 2 3 

4 

M-4 
Z (a1 +bi+ c 1) • 11 

i-0 

to 1 

to 2 

to 3 

(3.1.5) 

Ci n. 
l. 

nl - 1 

l n2 - 6 

1 n3 - 4 

1 n4 • l 

The probability for this outcome (the "likelihood") could 

be written 
4 2 

P23 P34 P22 P33 P21 P32 P43 

or in general 

The following relationships between the 

also hold: 

a 's 1 

(3.1.6) 

(3.1.7) 

and C 1 S i 
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ai - ci+l if initial state of the chain is at or -
below i I final state is at or below 

i or if initial state is above i , 

final is above i . (3. l. 8) 

ai - ci+l-1 if initial state is above i , final is --
at or below i . 

a. - ci+l+l if initial state is at or below i , -J. 

final is above i . 

(b) Procedure _m Obtaining Maximum Likelihood Estimates. 

In a Markov chain of the type discussed in this chapter, where 

there are no absorbing states, observing a single long chain 

(i.e. , n -+ co) provides us with an "infinite" amount of 

information. Thus, the standard procedure for conducting 

the experiment will be to observe a single long chain and 

apply the standard techniques of maximum likelihood. Clearly, 

replicated experiments, that is, observing many independent 

realizations of different chains is also a valid procedure. 

Replications will be discussed in Section 3.3. 

Using the notation (3.1.7) we write the log-likelihood 

function as 
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l'\~ 
log L(a1a 2) • log L • a1 log Pii+l 

i•O 

M, 
+ L.; bi log Pii + L ci log Pii-1 # (3.1.9) 

i•O i•l 

where the upper index on the first term is M-1 since no 

transition of the type M to M+l is possible. Similarly 

the lower index on the last term is l since a transition 

0 to -1 is not possible. 

Let 

0 
q>2 • oa2 log L # (3.1.10) 

then 

M-J - ia M.. i(M-2i)b 
<P1 - / -------- + i i';'l [ ( l-a1) i+a2 (M-i)] t;'ifi2(1-aJ!+(M-i)[i(a1+a;+(l-a2)(M-i)]] 

M ._-~ ic 
+ > ---------1';;'1 [ ial +(l-a2) (M-i)] 

(3.1.11) 

M-,l ;. (M-i)c1 
- i~ [ ia1 +(l-a2) (M-1)] 



- 26 -

Further 

M~l 12a 
\ 

[ L-[(l ___ a_) i-+a.--(M ___ i_) ]~2-

i•l 1 2 

M___ i 2 (M-21) 2bi 

+ 1f1 [i2 (1-a1)+(M-i)[i(a1+a2)+(1-a2)(M-i)]] 2 

(3.1.12) 

M-1 
i(M-2i) 2 (M-i)b1 

+ (;-'1 [i2 (1-a1)+(M-i)[i(a1+a2)+(l-a2)(M-i)]] 2 

M-j. (M-i) 2 c 
+ i~l [ia1+(l-a2)tM-1)] 2 ] • 
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A procedura fo:i:· simultaneous solution of cp1 == cp2 
= 0 is to 

apply the Nawton-Raphson ite:t·ative method for two equations 

in two ·unJ-:r1ow11s
., 

viz, 
J 

-1

• 

(3.1.13) 

This method requires the inverse of one matrix. Using a 

convenient first guess ( to be discussed below) for 

and this inverse, however, can be calculated once and 

iterations performed on �l and This tactic will 

result in somewhat slower convergence on and a2 .

could be A convenient first guess for and 

obtained by selecting the most frequently occurring transi

tions, estimating the transition probabilities, setting these 

estimat�s equal to the right hand side (RBS) of (3.1.3) and 

solving for and It is known (cf., for example 

Bartlett 1960, p. 229) that the maximum likelihood estimate 

of a transition probability where uo other parameters are 
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involved implicitly is given by the ratio of the number of 

times the transition from state i to state j occurred to 

the total nwnber of times that state 1 was observed. For 

example., in our notation the maximum likelihood estimate of 

is 

(3.l.14) 

Thus (3.1.14) provides the LHS of (3.1.13). Usually it is 

necessary to solve two equations simµltaneously in order to 

obtain first guesses for and However., if the 

chain is such that the transitions M M., M or 

O o., 0 l are observed relatively frequent., then first 

guesses for and respectively can be obtained 

straight away. (cf . ., 3.1.4). 

(c) Uniqueness Theorems. Nothing has been said so far 

about the existence of maximum likelihood solutions of the 

Newton-Raphson system (3.1.13). For this discussion we turn 

to Billingsley's (1961) results presented in Section 2.3. 

In light of Condition.2.3.1., for the Markov chain dis-

cussed in this chapter, the set D exists. The set D of 

integer pairs (1, j) are those of the tri-diagonal matrix 
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0 l 2 • • j • • M 

0 
1 0 

2 

• 
• 
i (i,j) 
• 
• 0 

M 

where the number of elements d of D is 3M+l. Each 

transition probability (3.1.3) has continuous partial 

derivatives of third order. The parameter space .ft is the 

open unit square (0 ( a 1 ( 1, 0 ( a 2 ( 1). ~his square 

contains the useful values of the mutation rates (probabil-

ities) a 1 , a 2 • The d x 2 (r • 2) matrix 

<oa ) has rank 2, 
u 

for consider p00 • 1- a 2 and pMM • 1- a 1 then 

opoo 0Poo 
0 -1 oa1 oa2 - • -1.-,' 0, 

op!m opMM 
-1 0 _oa1 oa2 
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hence at least one of the 2 x 2 determinants of the d x 2 

matrix does not vanish, thus the rank is 2(• r). Further 

there is only one ergodic set (0 1 11 ••• , M} and there are 

no transient states. Recall Feller's (1957) definition of a 

transient state as one for which the probability that the 

state is visited at least twice is less than one. This 

would hold for an absorbing Markov chain, but here we have 

no absorbing states and for an infinitely long chain each 

state can and will be visited infinitely often. Thus there 

are no transient states and Condition 2.3.1 is satisfied. 

Having satisfied Condition 2.3.1 we can make use of 

Theorems 2.3.1 and 2.3.2. 0 0 If (a1 , a 2 ) are true values of 

the parameters (a1, a 2 ) and are the maximwn 

likelihood estimates, then from the above theorems we can 

state that 

(3.1.15) 

0 0 that is (a1 - a 1 1 a 2 - a 2 ) is asymptotically distributed 

(as n oo) as the multivariate normal with mean zero and 

variance-covariance matrix I -1 where 
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dcpl dcpl -e- -e o oa1 a2 
r- • (3.1.16) 

ocp2 ocp2 
-e o -e o al a2 

Recall that Billingsley's results were general and did 

not guarantee that the solution of cp1 • 0# cp2 • 0 (3.1.10) 

would be unique nor that the consistent solution would cor-

respond to the absolute maximum of log L (3.1.9). The fol-

lowing discussion shows that under sane general conditions 

log Lhasa unique maximum# at the solution of the maximum 

likelihood equations cp1# cp2 • O # and therefore an absolute 

maximum of log Lin Jt.. The solution must of necessity be 

the consistent solution. 

We state the following theorem. 

Theorem 3.1.1. Assume that there is at least one solu-

(3.1.17) 

within the danain ..fl.; further for any two different i, other 
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than i = M/2 , at least one a1 , b 1 or ci ) 0 then (i) 

the solution is unique in ..n. and also in the u;.1it square, 

(ii) it maximizes log L(a1, a 2), and (iii) it provides the 

consistent estimate for which the asymptotic ~1ormality 

expressed in (2.3.6) applies. 

Proof: Following Hobson (1926, p. 213) we can write 

the function log L(a1, a 2), defined for all values of 

a 1 , a 2 lying within the domain ..n. as 

(3.1.18) 

where a 1 • o1 + G(a1 - a1 ) , a • a + 8{a - n), 2 2 2 2 

< e < A. A. 0 lgg L 0 1 . If al, 02 is any solution of oa1 -0 , 

c) 129: 
- 0 , then (3.1.18) becomes da2 



o2 log +(a-a)2 da2 2 2 2 

Let us write x for a -1 

q>ll for 
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(3.1.19) 

y for 

I for and 

for • Then we would like to be able 

so that from 

we can write 

From (3.1.10) and (3.1.12) we can write 

~' 

q>ll • -[ l [i2k. + i2(M - 21)2.ti + 12mi]] 
i•O l. 

(3.1.20) 

(3.1.22) 



where 

- 34 -

cp12 • l [i(M- i)k1 + i(M- 21 ) 2 (M- i).ti + i(M- i)m1 ] 
i•O 

(3.1.23) 

M M 

- [ L ki[ix- (M- i)y] 2 + 2_; .t1[ix- (M- i)y] 2 (M- 21) 2 

i-0 i•O 

M 

M 

+ lm1 [ix - (M - i)y] 2 ] 

i•O 

= - i [k + (M - 21) 2 £1 + mi] [ix - (M - i)y] 2 
1';o i 

(3.1.24) 

where for convenience the summation is now taken from O to 

M • 

Now for all (x, y) (O, O), provided that for two 

different i, ki + (M - 2i) 2 £i + m1 ) 0 holds, note that 
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and by the assumptions of the theorem at least one of these 

is ) O, then at least one term in (3.1.24) will be strictly 

negative (even allowing for ix - (M - i)y • O to hold for 

one value of i ) • 

Thus (3.1.22) holds for all a1 , a 2 in ..n.. and any 

solution in .n. • Suppose now that another solution 

say existed in IL , then from (3.1.22) we would have 

and similarly, by interchanging the roles of with 
..,.. V'\ 

log L(a1, a2) ( log L(a1, a2) which yields a 

contradiction. Thus there can be at most one solution of 

~l = ~2 • 0 in .fl.. • This proves (i). (3.1.22) proves (ii). 

The fact that at least one solution of - - 0 1 2 
(in .fl. ) 

must be consistent, by Theorems 2.3.l and 2.3.2 1 ensures 

that (iii) holds. 

We state the following theorem taken from Kaplan (1956 1 

p. 126) in our notation. 

Theorem 3 .1. 2. Let ..n. be a bounded danain of the 

a1 , a2 plane. Let log L(a1 , a2 ) be defined and continuous 

in the closed region E formed of .n.. plus its boundary. 

Then log L(a1, a2 ) has an absolute maximum and an absolute 

minimum in E. 
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all hold for a particular realization, then the conclusions 

of Theorem 3.1.l hold. 

Proof: Note from (3.l.9) that 

M-:-_l 
log L • log L(a1,a2) - ) ai log pii+l L.J 

i-0 
M ___ ~t 

\ > 
log pii-1 • + 6 bi log pii + l., Ci 

1-0 i•l 
(3.1.25) 

From (3.1.3) when al -0 , PMM-1 -0 , 
when a2 -0 , Pol -0 , 
when al -1 , PMM -0 , 

and when a2 -1 , Poo -0 • 

Thus if a0 , b 0 , bM, cM are all positive (3.1.25) becomes 

log L(a1,a2) • - m for all points on the boundary of A , 

namely of the forms (O, a 2), (a1 , O), (1, a 2) or (a1, 1). 

Therefore log L does not have an absolute maximum on the 

boundary of .lL , and Theorem 3.1.2 ensures that the absolute 

maximum occurs within .It • Of necessity, therefore, at 

least one solution of - 0 exists in .rt. • Thus 

a0, b0 , bM' cM ) 0 implies both requirements of Theorem 

3.1.1, and the proof is complete. 
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Corollary 3.1.4. As n (the length of chain7 the 

mnnber of observations) increases the conditioas of Corollary 

3.1.3 will hold with probability increasing to one. Hence 

the co:.:iclusions of Theo1.-ern 3 .1. 1 hold asymptotically with 

probability one. 

We have thus given a theorem and two corollaries whose 

applicability can be verified after an experiment is com-

pleted, and which also can be used to design an experiment 

having desirable asymptotic properties. 

(d) Application .Qf Theorems. In order to determine 

the information matrix 1 (3.1.16) we need to find the expec-

tations of the transition numbers ai1 bi and ci which are 

the random variables contained in the elements (cf. 1 3.1.12) 

of the information matrix. A discussion of these expectations 

follows. 

Suppose we have a chain of length n with initial 

state k, where ni , a ranaam variable, is the total 

number of times state i is observed and ai, bi, c 1 are 

as previously defined (cf., 3.1.5). Let 

if x(t) • i 

if x(t) 'I' i 

then 



n • i 

and 

; 

Li y it 
t•l 
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11._ 

Since the initial state is x(l) • k then 

Pr(x(t) i) (t-1) 
• • pk . .,1. 

(the t-1 step transition proba-

bility., cf., Section 2.2.d)., where Pr(x(l) = 1) • ok,i 

(the Kronecker delta)• p (O) (say). Then 
k,i 

where PO• I ., the identity matrix. 

we can find the e(a1 ) in a similar manner. Let 



y -1 

Y2 -
• 
• 
• 

yj -. 
• 
• 

yn-1• 
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l if (x(l), x(2)) • (1 1 1+1) 1 this has proba-

O otherwise 

1 if (x,2) 1 x(3)) • (i1 i+l) 1 this haEI proba-

bility pki pii+l 

0 otherwise 

1 if (x(j), x(j+l) • (i, i+l), this has prob-

ability p (j-l) 
ki pii+l 

0 otherwise 

{: if (x(n-1) 1 x(n)) • (i.i+l) 1 this has proba-

bility pkfn-2 ) pii+l • 
otherwise 

Then ai • y 1 + y 2 + ••• + yn-l and 

n-1 -~ 
/ (j-1) 
w pki 

j•l 

; (t) 
• pii+l w pki 

t•O 
n-1 -·-...., 

[ (k . ) 1 t f ) Pt (n-1)] • pii+l ,i e emen o '--' - pk 1 
t•O I 
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Similar results hold for e(b1) and 

fashion then we have 
n-1 

e(ni) • (k,i) element of \ 

L..J 
t-0 

e(ci) • In summary 

pt 

n-2 

' t] LJ p 
t•O 

n-2 ·-·.,. 

l Pt] 
t•O 

(3.1.27) 

Since P is the transition matrix, the elements of Pt are 

the t-step transition probabilities discussed in Section 2.2d. 

Before proceeding we introduce the following theorem. 

Theorem 3.1.5. Transforming the transition matrix P 

(3.1.4) with elements (3.1.3) by the matrix R, where R 

has the typical element and -1 
R has the 
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typical element (-1) i+j (i) 
j I i, j • 0 1 1 1 ••• , M, then 

R- 1PR has non-zero terms only in the leading and first 

super diagonals. The i-th row is 

the quantity 

(3.1.29) 

in the diagonal position is the 1-th eigenvalue of P. The 

quantity in the super diagonal is the transition probability 

pii+l. Hannan in an appendix to Moran (1958) has proved 

the theorem for the case where a 1 • a 2 • O. The above 

result is a generalization to the case where both mutation 

rates are present. Karlin and McGregor (1960) and Gani 

{1961) have found the eigenvalues (3.1.29) by another method. 

While this theorem gives an elementary way of finding the 

eigenvalues, the proof is not given as the eigenvalues are 

derived incidentally in Theorem 3.1.6. 

If P can be written P • KD K-l 
}\ (see Section 2.2d) 

where K is a matrix of eigenvectors of p and is the 
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diagonal matrix of eigenvalues ).i, where Ai is given by 

(3.1.29), that is if 

(3.1.30) 

where k is the initial (starting) state of the Markov chain 

and where the element in the first position (O,O cf., 2.1.3) 

of D is 1 + l + ••• + 1 • n, and the other terms are 
1-}.,n 
1-). 

sums of geometric series. 

In order to discuss the result (3.l.30) more fully we 

present the following very important theorem. Fundamental 

to the theorem and its proof is the use of Hahn polynomials 

whose properties are discussed in Appendix I. 

Theorem 3.1.6. For the matrix P (3.1.4) defined by 

elements (3.1.3) 

(i) The eigenvalues are 

. al+a2 j-1 
Aj • 1- J[ M + M2 (1-a1-a2)]; j•O,l, ••• ,M. 

(3.1.31) 

(ii) The post-eigenvectors are the columns of the matrix 

(3.l.32) 

where Q has the Hahn polynomial (9.1.2) 
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in the (i.,j) position., i.,j - 0., 1., . . . 
o0 (o.,a.,b,M+l) o1 (o.,a.,b.,M+l) 

o0 (1., a.,b.,M+l) 01 (1.,a.,b.,M+l) 

Q - • 
• 
• 

oo(M.,a,b.,M+l) 

From (9. 1. 9) we have 

0 -

(iii) 

1 

l 

l 

a • 

l 

01 (1.,a,b,M+l) 

Ma, 
- l , 

• • • 

b • 
Mal 

M • 

••• 

• • • 

1 

• 
• 
• 

- l 1-a -a 1 2 1-a -a 1 2 

QM(O.,a.,b.,M+l) 

QM(l,a.,b,M+l) 

. 
• 
• 

QM(M.,a.,b,M+l) 

(3.1.33) 

• (3.1.34) 

(iv) The pre-eigenvectors are the rows of the matrix 

-1 -1 (3. l. J.5) K • Q • 

Proof: Parts (ii) and (iv) of the theorem are either 

true or false together: the inverse of the post-eigenvector 

matrix gives the pre-vectors. It will therefore be sufficient 

• 
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to prove that (i) and (ii) are correct, [(iii) will enter 

with this proof] and this is done by proving 

PK• KD A 

for the particular definitions used here. Recall that DA 

is the diagonal matrix of eigenvalues. Write and 

for the typical elements of the left- and right-hand sides 

respectively1 then we have to show that gij • hij 

i,j • O, l, ••• , M. 

Multiplying out PK• PO we find 

M 

gij • L Pik 0 j (k) 
k•O 

for 

• pii-1 Qj(i-1)+ pii Qj(i)+ pii+l Oj(i+l) , 

since pik • 0 if li-kj) l. 

Again, multiplying out KDA we get 

M -. 
\ 

• k';;O °it ( i) ~j 

Equating and where is given by (i), we have 
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or 

Recall that 1 - pii • pii+l + Pii-l # thus 

The equality of and follows by noting that 

(3.1.36) is the difference equation (9.1.4). From (9.1.4) 

m. • j(j +a+ b + 1) # and by (iii) of the theorem we 
] 

obtain for m. 
] 

Thus the RHS of (3.1.36) becomes 

- m.Q.(i) 1 J J -a -a 1 2 

• 

(3.1.3'7) 

Also from (9.1.4) B(i) • (M - i)(a + l + i) (recall that 

the Hahn polynomial for this case uses M+ l rather than M) 
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using the definition of "a" from (iii) then 

M2 
B(i) • pii+l 1-a -a 1 2 

D(i) = i(M + 1 + b - i) and in a similar fashion it follows 

that D(i) • Pii-1 l-a -a · 
1 2 

Thus (3.1.36) becomes 

D ( i) Oj ( i-1) - [ B ( i) + D ( i) ] 0 j ( i) + B ( i) 0 j ( i + l) 

• - cojoj (i) 

which is the difference equation (9.L4) and thus gij and 

hij are equal for all relevant i,j • This completes the 

proof of the theorem. 

The theorem is not completely new. It restates the 

eigenvalues found by Karlin and McGregor (1960) and Gani 

(1961). 

We can now write (3.1.30), using the above results, as 

(3. l. 38) 

where k is the initial state aad is given by (3.l.31). 

The inverse of Q can be found by use of the orthogonality 

relation (9.1.S), that is 



or 
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Q'D Q = D 
V 6 

Q-l • D O'D 
. -1 V 
0 

• (3.1.39) 

D _1 is a diagonal matrix of order M + 1 with elements 
0 

l in the (O.,O) position 

(M)r(b+l)r(u+a+l)r(u+a+b+l)(2u+a+b+l) 

(M+l+~+b+u)r(a+l)I'(a+b+l)I'(u+b+l)I'(u+l)(a+b+l) 
(3.1.40) 

in the (u.,u) position., u • 1., 2., M. 

DV is a diagonal matrix of order M + 1 with eleme .. 1ts 

., v • 0., 1., 2., ••• ., M ., 

(3.1.41) 

and O' is the transpose of Q • 

Recall from (3.1.34) that 
Ma~ 

- 1 a.nd a • 1-a -a 
Mo:;L 

1 2 

b • - l Thus (3.1.38) becomes 1-o: -a • 
1 2 

e (ni) • o~ .. i) element in OD D O' D 
l-"An 0-1 V 
1-7' 

~-
- ) Q (k)ff O (i)dii , . ../ s ss s 

s•O 
(3.1.42) 

where 



- 48 -

Q. (i) is the Hahn polynomial defined in (3.1.32) 
J 

dii is the (i, i) elemeilt of DV (3 .1. 41) 

a is the (s,s) element of D D -1 , ss 1-1t 6 
1-}\ 

that is 

n for s • O , 

a- -ss 

1-}\;1 <!>r(b+l)f(s+a+l)f(s+a+b+l)(2s+a+b+l) 

l-}\s (M+l+:+b+s)f(a+l)f(a+b+l)f(s+b+l)f(s+l)(a+b+l) 

s • l, 2, ••• , M • 

(3.1.43) 

As n cf converges to a finite limit for ss 

s • l, 2, ••• , M [( 1 - A 11);(1. - A ) becomes s s l;{l - A ) , s 

cf., 3.1.30], but a-00 diverges. Thus from (3.1.42) 

e(ni) - 0o(k)aoo0o(i)dii 

but from (9.1.9) 

(3.1.44) 

asymptotically as n CD • 

From (2.2.1), Theorem 3.1.6 and (3.1.39) we can write 

lim pk~n) • lim [ (k,i) element of QDA11D _ 1 Q'Dv] • 
n~ n~ 6 

(3.1.45) 
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DA is the M+l diagonal matrix of eigenvalues (3. l. 31) . 

- 1 -
-1 the largest "o • l and "1 (al+a2)M "1 is non-

unit eigenvalue of p . Thus for D n 
A as n oo we need 

n )) M otherwise A n 
1 will not be negligible. This assumes 

that al and a2 are not themselves very small. If 

a • 1 o(.!) 
M , a = 2 

o(.!) 
M then n would need to be much larger 

than M2 for the theory to work. With these conditions in 

mind, DA 
n is the 

lim 1' n = 
s 

diagonal 

Hence (3.1.45) becomes 

lim p (n) • 
ki n-,oo 

matrix with elements A n where s 

s • 0 
(3.1.46) 

s • 1, 2, ... , M. 

M. 

= Oo(k)(1'nd6_1>ooo(i)dii+sf10s(k)(1'ndo_1>0s(i)d11 

(3.l.47) 

by (9.1.9), (3.1.40) and (3.1.46). Thus ct11 is the 

stationary probability for state i, that is, the proba-

bility that the model is in state i, irrespective of the 



- 50 -

initial state 1~ , after many generations have elapsed. 

Thus dii describes the behavior of the model (population) 

after the stationary distribution has been attained and pro-

vides in general a measure of the effect on evolution of the 

environmental influences included in the model. As a further 

general remark on this model it may be of some interest to 

note that the largest non-unit eigenvalue of the transition 

matrix P, is the value which governs the rate that the 

population approaches its stationary distribution. From 

(3.1.31) this is 

Interpreting (3.1.44) we see that the asymptotic values 

of the expectations e(n1 ) are (number of observations) 

times (the stationary probabilities). This is known from 

general theory concerning positively regular Markov chains, 

(cf., Bartlett, 1960). Moreover, the stationary probabilities 

are, from (3.1.34) and (3.1.41) 

1-a -a 1 2 
M- i 

(3.1.48) 
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which was found previously by Moran (1958) using a different 

approach. Moran writes his stationary probability elements 

as Pi using Gamma rather than combinatorial notation. We 

can write Moran's P1 as 

M(a1 +a2 ) Ma2 M(l-a:2) 
(1_a -a - 1) IMI (1 + i-1) I (1 -1-1) I -a -a -a -a l 2 1 2 1 2 

1 

(3.1.49) 

with suitable regrouping (3.1.48) and (3.1.49) are seen to 

be equal. 

It is obvious from general reasoning that ,!'_,; e(ni) • n , 
i•O 

the length oi: the chain, but this may also be verified from 

(3.1.42), 

/_J e(ni) • 1~ Lo (k)a o (i)d1 . 
i-0 1•0 s'-o s ss s l. 

From (9.1.5) note that dii • p(i) , and from (9.1.9) that 
M 

thus 
·-, 

' 
i~ Os (i) dii can be written 

1-t 
~08 (i)00 (i)p(i) • 

i•O 
(3. l. 50) 
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Further,from (9.1.5) for s, 0 (3.1.50) is zero: for s • 0 

it is one, thus 

.li 
l..1 e(ni) • 0o(k)cToo • 000 ' 

i•O 

where from (3.1.43) a00 • n. 

Having found e(n1 ) we can now find e(a1), e(b1 ) and 

e(c.) which we need for the information matrix I (3.1.16). 
l. 

From (3.1.27) and (3.1.47) 

for n <D 

Similarly (3.1.51) 

and 

where dii is the stationary probability given by (3.1.48). 

Hence, from (3.1.3), (3.1.12) and (3.1.51) we can write 

for n <D [ n ) ) M or n )) M2 if 
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d~l i 2 (M-i)d. 1 n ,, -e ( oa ) ~ M2 [ /-1 -[ -( 1---a-) 1.-· +a_...,(M..._ __ i_) __ ] 
1 i•l 1 2 

~- i 2 (M-21) 2 d 
+ {~l[i2 (1-a1)+(M-i)[i(a1+a2)+(1-a2)(M-i)]] 

(3.1.52) 

M~l i 2 (M-i)d 
+ ) ii ] 

l._j [ ia +(1-a ) (M-i)] 1=1 1 2 

Finally for n co [n )) M or n )) M2 if 

a1 .,a2 • O(i)] from (3.1.15) and (3.1.52) we can write 
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normal with mean zero and variance-covariance matrix 

-1 
oq,l oq,l 

-e(oa ) -e(oa ) 

I -1. 
1 2 

• 
oq,2 d<p2 

-e<oa ) -e<a> 
1 02 

(3.1.53) 

Suppose we wish to test 

H0 1 
0 

0:1 -al 

0 a • 2 a2 

against 

Hll " 0 
al al 

0 
a2 a2 • 

The following test statistic can be used 
,. ,. 0 

,.. 0 ,. 0 a -a 
x<2> • (o:1-o:l' 0 2-0 2) r-1< 1 1 > ., a -a 0 

2 2 

(3,1.54) 

I ,. ,. 
where is evaluated using o:1., a 2 • Reject H0 if the 

calculated X2 (3.1.54) is greater than the tabulated X(2) 

at the appropriate significance level. 



- 55 -

3.2 Some Diffusion Theory Results 

Suppose that 

zero in such a way 

and "2 are fixed. 

a_symptotically (as 

1 

M becomes large and 

that -1 
al• t31M , a2 

Then (Moran, 1958) 

M co) equal 

" -1 2 

to 

B(t31,t32) 
X 

t3 -1 1 (1-x) 

al, a2 tend to 

• t, M-1 
2 where "1 

dii (3.1.48) is 

J (3.2.l) 

where x • iM-l and B(t,1,t,2 ) • r(t,1)r(t,2)/r(t,1+t,2 ) • This 

is a density approximating the discrete distribution dii. 

This distribution will be a good approximation as long as 

t,1 ) o, t,2 ) 0 are not too small. If t,1 and t,2 are 

much smaller than unity, the distribution (3.2.1) will be 

U shaped. If they are equal to unity the distribution is 

uniform. When both are greater than w1ity, however, there 

will be a mode in the distribution. This is the interesting 

case. In the integrals to follow we shall require for con-

vergence that t,1 and t,2 both be greater than unity. 

Now from (3.1.52) let us write 



and put 

ignoring 

further, 
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-1 
X • iM I then (3.2.2) becomes 

M .-~ 

n / [...2L. l-3x(l-x)d ] 
Li 1-x l-2x(l-x) ii 1-0 

the al, Ct2 in the coefficients of 
i~-M 

by r•l replacing •, and 
I 

!...J 
i-Mx•O x• 

(3.2.2) 

(3.2.3) 

dii and 

dii by (3.2.1), 

(3.2.3) becomes 

ocp fl t3 t3 -2 e<......l> n l-3x(l-x) 2(l ) 1 d _ - t X -X X -do:1 B(/31,132) J l-2x(l-x) -
0 

and similarly, (3.2.4) 

A I 

where we require 131 ,132 ) 1 for convergence. If these con-

ditions do not hold then in (3.2.3) a more careful approximation 



- 57 -

would be needed, probably obtained by not ignoring the a 1,a2 

in the coefficients of a11 • We further write (3.2.4) as 

If ~l and ~2 are small and integers, the integrals 

can be evaluated without too much difficulty directly1 other-

wise, they can be evaluated numerically using, for example, 

Simpson I s Rule. Consider the following L:1tegral where 

x(l-x) 2 dx Sl 

l-2x(l-x) 
0 

• ½ sl xdx 
0 (x-½)2+\ 

+ f 1 -2x2 dx + \ 1 x 3 dx 1 \ -~ J 2 • lC. - - • 0.1427 . '-'o l-2x+2x- O l-2x+2x 8 4 

(3.2.6) 

For comparison we evaluate this integral using Simpson's 

Rule where the interval (0,1) is partitioned into divisions 

l of length 6 , thus 
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where for our case ~l • 21 ~ 2 • 11 thus by Simpson's Rule 

\l X ( l-x) 2 dx 
J l-2x(l-x) • 0.1427 
0 

(3.2.7) 

Hence the method of Simpson's Rule gives excellent results.* 

Recall that maximum 

likelihood estimates for a 1 and a 2 can be obtained in 

the manner discussed in Section 3.1 (cf. 1 3.1.13). Using 

then 

Q? - l:1 
j•O 

.~ 

* Since 

2j 

-1 [1- 2x(l-x)] 

For 

-~ 
can be written ) [2x(l-x)]j 1 

j~ 

L 2j B(j+l 1 j+l) • -rr/2 which is believed to be a new 
j•O 

identity. 
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these estimates in terms of f31 and (32 we can evaluate the 

elements of the information matrix I/3 (3.2.5), and finally 

we can say that 

n oo) multivariate normal with mean zero and variance-

covariance matrix 

I -1 2 
f3 • M 

-1 

[: :] 
2 r-1 With the factor M, /3 is of the order which 

strengthens the requirement that n )) M2 • This require-

ment was discussed in detail in the last section. 

In the following table we consider a 1-a2-a. For 

M•l and M•2 the variance elements were obtained by using 

(3.1.52). For the last three entries the variance elements 

were obtained by using (3.2.5) where for the first of these 

three 131•'32•2 and population size was M so that 

a1-a.2-a•2/M 1 for the next entry (31•132=4 with population 

size 2M so that a.-2/M and for the last entry f31•f32•8 

with population size 4M so that a•2/M. n was considered 

the same for all population sizes. Column three then is the 

ratio of var(a) for M•l to the other variances in Column two. 
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Column four is a result of the following. For M•l sup-

pose we do an experiment long enough to get Var a• 2a/n = a2 

say. This means, we need n • 2a/a2 observations, which 

will take a time T , say. For the population of size M • l, 

one birth-death event corresponds to one generation. How-

ever, if the generation time is not affected by population 

size, the same number of generations can be observed in time 

T for the larger populations yielding an increase in the 

number of individual birth-death events by a factor M. 

For M :a 2 then we would get on the average n • 2n observa-2 

tions. Hence Var(a) • 2a/n2 • ½a2 for M• 2 . For 

M• 2/a we get on the average nr/ • 2n/a observations with 
2 a 

corresponding variance 0.204a2 In like manner we obtain 

for M• 4/a , 8/a the values O. 30 a2 and o. 37 a2 res-

pectively. The values in Column four are the ratios of a2 

for M • 1 to the other above variances where all observations 

were considered over the same time T. 

For the two mutation rate case thea it appears from 

Column three of the table that many observations on a small 

population M is more efficient than the same number of 

observations on a large population. This implies that it is 
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Table 3.2.1 

Relative Relative Efficiencies A 

Efficiencies (generations M Var(a) 
(n equal) fixed} 

1 2a(l-a) -1£ - 1 l n n 

2a(l+a-2a2 )[2a2 (1-a)+l] 1-a - l-2a - 1 2 -- -2 n 4a2 (1-a)+l l+a 

- 2a{l+a} _ 2a - -n n 

0.817 2.45 a 4.90 2/a n 

2.397 0.83 a 3.32 4/a n 

5.874 0.34 a 2.72 8/a n 
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more important to pass through a few states many times than 

to pass through many states a few times. 

Column four and the above discussion., however., indicates 

that for a fixed time T the larger the population the more 

observations we get., for in a population of size M one 

generation consists of M birth-death events. Column four 

also indicates that between population size M • 2 and 

M• 2/a an optimum size exists. There is., however., a 

great deal of difference between M • .2 and 2/a ., markedly 

so if a- is small. 



- 63 -

3.3 Replicated Experiments 

In Section 3.1 the mutation rates were esti-

mated from data obtained by observing a single long realiza-

tion (n a>) of the Markov chain. Note from (3.1.44) that 

for n a> e(ni) is L1dependent of the initial state k • 

The discussion in this section is on replicated independent 

experiments with finite n. From (3.1.42) we note that 

e(ni) obtained from this Hahn polynomial expression depends 

on the initial state k. 

Suppose that we have R replicated independent reali-

zations of a Markov chain, that is, we have observed R 

realizations of the same type Markov chain. The length of 

each realizatio.i:1 and its initial state can be the same for 

each replication. In order to obtain estimates for and 

a 2 it is not necessary that they be the same. However, in 

discussing e(n1 ) and JR , the information matrix for 

these replicated experiments., it will be more convenient if 

all realizations have the same initial state k and same 

length n. 

In any case estimates for a 1 and a2 can be obtained 

by using the Newton-Raphson scheme (3.1.13). In (3.1.11) 
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It 
and (3.1.12) we replace l ai (r) , 

r•l 
~-. 

/_-' bi (r) 
r•l 

R_ 
and l ci (r) 

r•l 
respectively, where for example 

R_ 

ai(r) is the value of in the r-th replicate and l ai (r) 
r•l 

is the total number of times the transition from state i to 

i + 1 occurred over the R replicates. 

Suppose for the elements of the information matrix I 
(3.1.16) we consider each realization of the same length 

n (n finite) and with the same starting state k. From 

(3.1.42) with finite n, 

·, e ( n . ) • .( Q ( k) a Q ( 1) di . 
i - s ss s i s•O 

which depends on the initial state k. 

(3.3.1) 

In taking the expectations of (3.1.12) to obtain the 

elements of the information matrix IR we proceed as 

follows: 
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(3.3.2) 

where the a., b., c. terms have been replaced with 
J. J. J. 

R R R__ ,·--. -, 
'· 

/-'ai(r) , 0 bi {r) , Ci {r) , (3.3.3) 
r•l r•l r•l 

respectively. Since the initial states are the same for 
R 

each realization el a1 (r) • Re{a1 ) . Similar expressions 
r•l 

hold for the bi and c .• 
J. 

Further note that 

dq> 
and - e{a0

2 ) 
2 

follow in like fashion as (3.3.2). 

Thus for finite n the same for each realization and also 

the same initial state k for all independent realizations 

(3.3.2) is simply 



M-1 ·~ i 2 e(a ) 
[ ' i 

R /__; [(1-a )i+a (M-i)] 2 
i•l 1 2 
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. 
I 

similar expressions hold for the other elements of 

(3.3.4) 

I . R 

Therefore under these conditions, the repliaated experiment 

has information matrix IR• RI, where here I is the 

information matrix 

further write that 

(3.1.16) for a single replicate. We can 
0 0 (a1-a1 , a 2-a2 ) 1s asymptotically as 

R CX> multivariate normal with mean zero and variance-

I -1 covariance matrix ( R) • 

Now as to the method of conducting an experiment the 

following scheme is proposed. If the estimate of say is 

of more interest than then the initial state 0:2 

should be selected (cf., 3.1.4). If is of more interest 

then the itlitial state should be k • 0 • If the two param-

eters are of the same order then in the first case the 

variance of will be less tha:.1 the variance of and 
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" similarly in the second case the variance of a 2 will be 

" less than the variance of al • If both parameters are of 

equal interest then it may be best to select the neighbor-

hood k • M/2 as the initial state in which case the 

variances of and will be approximately equal and 

lying between the two extremes mentioned above provided the 

two parameters are of about the same order. For example, in 

the following table we have a comparison of the variances 

of and under different initial states for 

The figures are entered apart from the replication factor 
-1 asswned that " " and R It was a • a • 0.1 n • 10., l 2 

e(ni) for k - o, 1, 2 was obtained from (3.3.1): 

e(ai), e,(b i) and e(ci) were obtained by the method of 

(3.1.27). The variance elements were obtained by inverting 

the matrix with elements of the form (3.3.4). 
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Table 3. 3.1 

A. A. 
• 0.1 n • 10 M • 2 . al -a2 . 

I I 

initial state ]~ Variance (apart from -1 factor R ) 

A. 
Var(a1 ) a 0.1317 

0 
Var(a2 ) - 0.0125 

Var A. 

al - 0.0283 

l 
A. 

Var a2 - 0.0283 

" Var al - 0.0125 

2 
Var ... 

a2 - 0.1317 
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3.4 Conditions .Q!1 Mutation Rates _Qt Moran's Model 

Recall in Sectioa 3.1 that we postulated a1 .,a2 ) 0 

and 1 - a1 - a 2 ) 0. This includes most of the cases of 

biological interest. Associated with these conditions and 

the transition matrix P was the Hahn polynomial 

Qj(i.,a.,b.,M+l) (3.1.33) where 

Ma2 
a•------ - l l-a1-a2 

and 

The stochastic process discussed in this chapter is 

recognized as the discrete time analogue of an example of a 

classical birth and death process [Karlin and McGregor., 1957] 

with birth rates 

(3.4.1) 

and death rates 

(3.4.2) 

corresponding to a population size i of "a" gametes., 

For the case discussed in this chapter., that is 

a1 ., a 2 ) O and 1 - a 1 - a 2 ) 0 the birth and death rates 

(3.4.1) and (3.4.2) oppose each other., one exhibiting attrac-

tion., the other repulsion toward the same end state. 
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1-a -a (o 1 2 the birth and 

death rates extend their force in the same direction. For 

this case the Hah;:i polynomial is Q. (i.,a.,b.,M+l) 
J 

where 

and b • -

For al.,a2) 0 and al + a • 1 2 
the birth and death 

rates become linear in i rather than quadratic. The poly-

nomial in this case is the Krawtchouk polynomial., another 

member of the family of orthogonal polynomials., [cf.., 

Erdelyi., 1953). For further discussion on these conditions 

see Karlin and McGregor., 1960. 

Another case which we might mention., although there 

obviously is no inference involved., is when a • a • 0 1 2 
that is Moran's model without mutation. Here state M and 

state O are absorbing states. The two absorbing states 

correspond to fixation in homozygous populations of "a" 

or A gametes. Karlin and McGregor (1960) discuss this 

case using Hahn polynomials., while Wattersou (1961) uses 

Tchebichef polynomials. See Appendix I for further discus-

siou of their results. 
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IV. INFERENCE ON AN ABSORBING MARKOV CHAIN 

4.1 Estimating Mutation~ !l:.Qm .s, Single Chain (Theory) 

(a) Model. This chapter will be a discussion of 

one of the mutation rates of Moran's model. At first 

sight this may appear to be a simpler problem than that of 

the two mutation rate case discussed in Chapter III. This, 

however, is not true, in that inferences will be obtained 

from realizations of an absorbing Markov chain whose 

peculiarities provide some unique difficulties. 

In this section we shall discuss inference on the 

mutation rate a1 1 where a2 • 0 1 using results found 

by observing a single long Markov chain. Replicated experi-

ments will be discussed in the next section. We postulate 

a 1 ) 0 and l - a 1 ) 0. The case where the chain length 

n is predetermined, that is fixed, and also the case where 

n is a random variable determined by some sequential stop-

ping rule will be discussed. Although the results will be 

general, emphasis will be placed on an experiment where the 

initial state is k =M I and stopping state will be the 

absorbing state O, so that n I the chain length, is a 

random variable. By Theorem 2.2.1 1 for a long chain the 

absorbing state will be reached with probability one. 
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In most biological experiments (see for example Falconer 

1949) dealing with mutation, a mutagenic agent is introduced 

into the population under study and the effect of the agent 

is measured in terms of mutation rate. Compared to the 

mutagenic rate, the reverse mutation rate is negligible 

and we shall assume it to be zero. Now if in Moran's model 

we put a • 0 2 
and obtain estimates of we are in the 

same type of situation but have a precisely defined model. 

With a • O 2 the transition probabilities (3.1.3) become 

(4. 1. 1) 

- 0 if Ii - kl ) 1 

The square transition matrix P of order M + 1 with 

elements (4.1.1) has a tri-diagonal form, 
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0 1 2 M-1 M 

0 1 0 0 0 0 

l 
2 

p - i f>ii-1 pii pii+l (4. 1. 2) 

M-1 

M 0 0 0 • 0 al 1-a l 

Clearly state i = 0 is absorbing, the other states are 

transie~1t. Further, p • 1-a , MM 1 hold for 

all M. 

(d) Procedure for Maximum Likelihood Solution. Using 

the notation of (3.1.7) we write the log-likelihood function 

as 
M-).. 

log L(a1 ) • log L = -:~a1 log Pii+l 
i-0 

(4.1.3) 

See (3. 1. 5) for a discussion of the ai, b 1 and ci notation. 

Let 

d log L 
q, - da.1 

, (4.1.4) 



then 

and 

' l..1 
i•l 
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(4. l. 5) 

all lower indices are one. For example., for this absorbing 

Markov chain where O is the absorbing state no transition 

from state O to state 1 is possible, an.d hence a • 0 • 0 

The maximum likelihood estimate a1 of can be found 

iteratively by using the Newton-Raphson scneme in the fol-

lowing way, 

("' (0)) a (1) • S (0). -~-a=l __ 
1 l '("(O)) al 

(4.1.6) 
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A coave 1ir~nt first guess for a1 could be obtained by 

estimating the transition probability pMM-l (=a1) . As 

discussea in Chapter III, the maximum likelihood estimate of 

pMM-l where no other parameters are involved implicitly is 

(4.1.7) 

so that a first guess ior a1 is readily available. 

Convergence occurs when ,<a1) • O. A discussion of 

this system follows. 

(c) Uniqueness Theorems. Theorem 4.1.1. There is only 

solution (at most) of ,ca1 )c 0 (4. 1. 5) in (0 < A < 1) • one al 

Proof: From (4.1.5) -,· > 0 in (0,1), and hence ' is monotonic decreasing and the theorem is immediate. 

, must appear as one of the following 

(4, l. 8) 

1 0 0 

no root A one root a1 in (O,l) no root 
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The first and third possibilities correspond to the likeli-

hood being a maximum in (O,l) at a.1 • O,l respectively. 

Note that the theorem does not say that a root exists. It 

does say that if there is a solution in (0,1) then there is 

only one E'olutic.,r. in this interval. 

Theorem 4.1. 2. For a given realization of length n , 

if cM) 0 , and either bM) 0 or one ai ) 0 , then 

there is exactly one root of ~(a1 ) • 0 in (0,1) • 

Proof: From (4.1.5) 

+ 
M.ic 
',~ 

L....JM-1 
i•l 

(4.1.9) 

The first two terms of (4.1.9) are finite while the last 

term is +oo since by the assumptions of the theorem cM) O. 

Similarly, 

/ ai 
lim ( ) .... f-_..ia) __ 

al = - 0 

M.., ic 
/ ..J. 

w M i•l 

(4.1.10) 

The first term is -oo if at least one a1 ) 0; the last 

term is finite. The middle term is finite or -co if bM ) 0. 
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Thus under the conditions of the theorem ~(O) • +oo, 

~(1) • -co and there is exactly one root of ~(a1 ) • 0 

in (0,1). 

Corollary 4. 1. 3. If the initial state is k • M and 

a sequential stopping rule is employed such that O (the 

absorbing state) is the stopping state and bM ) O or at 

least one ai) 0, then there is exactly one root of 

~(a1 ) • 0 in (0,1) with probability one. 

Proof I The sequential rule implies cM ) 0 • The 

result follows from the proof of Theorem 4.1.2, noting that 

with probability 1 (cf., Theorem 2.2.1) none of the 

transition numbers ai, bi, or ci in (4.1.9) or (4.1.10) 

become +oo • 

The following table shows the number of experiments out 

of 500 realizations obtained by simulation methods on the 

IBM 650 for each of the populations M • 2, 4, 6, 10, 20, 

a 1 • 0.1, which did not satisfy the conditions of Theorem 

4.1.2. That is, bM and all a. were zero. 
l. 
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Table 4.1.1 

M no. of experiments out of 500 ll~ 

satisfying Theorem 4.1.2 

2 16 
4 2 

6 2 

10 0 

20 0 

Clearly the theorem applies in an overwhelming proportion of 

realizations. For example the 16 experiments for M • 2 

were of the type 2.1 ... 1.0 that is, the initial state 

was k • M = 2, then the next transition was.to state 1 

followed by a finite number of transitions 1 to 1, and 

then to the absorbing state O. For this situation the , 

function is l/{l+a1) + l/a1 which never crosses the a1 

axis. For a further extensive discussion of this simulation 

study see the latter part of this chapter. 

Before discussing expectations of the transition num-

bers ai, b1 and ci which we shall need in taking the 

expectation of t' (4.1.S), we present the following theorem. 

{d) Application -2!. the Theorems. Theorem 4.1.4. 

Transforming the transition matrix P with elements 

(4.1.1) by the matrix R, where R has the 
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-1 
R has the typical element 

(-l)i+j(}), i,j • o, l, ••• , M, then R-1PR has non-zero 

terms only i:n the leading and first super diagonals. The 

i-th row is 

(o, ... ,o 
0 1 i-1. i i 

1-i[~ M2 (1-a1 )], (1-M) (l-a1) (M) ,o, ... ,O) , 
(4.1.11) 

the quantity 

in the diagonal position is the i-th eigenvalue of P. 

The quantity in the super diagonal is the transition 

probability pii+l. For further discussion on this theorem 

see Theorem 3.1.6. 

Sirice P is the transition matrix, the elements of Pt 

are the t-step transition probabilities discussed in Section 

If P can be written -1 Pa KDAK , where K is the 

matrix of eigenvectors and DA is the matrix of eigenvalues 

(4.1.12), that is, if then 

n~__l 

e(ni) • (k.t i) element in K( 1~ DA t) K-l 
t•O 

• (k,i) element in K , (4.1.13) 
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(cf • ., 3.1.27., 3.1.30)., where the (0.,0) element of D is 
1-?>n 
1-A 

l + l + ••• + l • n., and the other terms are sums of 

geometric series. 

In order to discuss the result (4. l. 13) more fully we 

present the following theorem. Fundamental to the theorem 

and its proof is the use of Hahn polynomials which are 

discussed in Appendix I. 

Theorem 4.1.5. For the matrix P defined by elements 

(4.1.1) 

(i) The eigenvalues are 

(4.1.14) 

(ii) The post-eigenvectors are the columns of the matrix 

K • (J5o, Kl., ... ., ~) • CQ (4. 1. 15) 

where 

1 

1 1 0 

C • 1 1 1 (4.1.16) . 
• . 

1 1 1 • . 1 
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and Q has the Hahn polynanial (cf • ., Appendix I) 

0_1 (-1.,0., b.,Jlf 00 (-1,0.,b,M) 01 (-1,0.,b,M) • • • QM_1 {-l,O.,b.,M) 

o_1 { O, O, b,M) o0 {o,O,b.,M) o1 (o,O.,b,M) . . . ~-l~o,o,b,M) 

Q - • • . • . • . ••• . . • • 
o _1 (M-1.,0.,b.,M) o0(M-l,O,b.,M) o1(M--l.,O.,b,M) . . . ~-l (M--1.,0 .,b.,M) 

From (9.1. 8) and (9.1.9) we have 

1 0 0 0 • . • 0 

0 l 1 1 l 

0 1 o1 (l.,O,b.,M) 02 (1.,0,b,M) .. ~-l (l.,O.,b.,M) 

Q - 0 1 o1 (2,0.,b.,M) 02 (2.,0.,b,M) • °x-l (2.,0.,b,M) • 
. . . . • 

• . . • • 
• • . . 

0 1 o1 (M-1.,0.,b,M) OiCM-J,O.,b,Jf • • • OM--l (M-1,0.,b.,M) 

(4.1.17) 

(iii) b • 
Ma1 

note that for this case a • O • 1-a. ., 
1 (4.1.18) 

(iv) The pre-eigenvectors are the rows of the matrix 

-1 K -1 -1 • 0 C ., (4.1.19) 
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where Q-l is the inverse of Q and 

1 

-1 1 

-1 1 0 

-1 
C • -1 1 (4.1.20) 

• • 
0 . 

-1 1 

Proof: Parts (ii) and (iv) of the theorem are either 

true or false together: the inverse of the post-eigenvector 

matrix gives the pre-vectors. It will therefore be sufficient 

to prove that (i) and (ii) are correct [(iii) will also 

enter with this proof] and this is done by proving 

PK• KD 
I\ 

for the particular definitions used here. Recall that 

is the matrix of eigenvalues. Write and for the 

typical elements of the left- and right-hand sides respec-

tively: then we have to show that gij • hij 

i., j • 0., 1., ••• ., M • 

Multiplying out PK• PCQ we find 

11, 
\ 

giJ" - [ 0 ·-1 ( £-1) 
.£-=O J 

.M; .. 

::.-.J piu] u•.e 

for 
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and with the substitution for the transition probabilities 

Piu from (4.1.1) we obtain 

i-:-J 
·, i[ i ] / Q. 1 (1-1)+(1--M l-M::-(l-a1 ) )Q. 1 (i-l) 

.-J J- J-.e-o 

1 , j • 0 , [cf., (9.1.8)] • 

Again, multiplying out KDA • CODA we get 

:t 
hij = Aj 1....1 Q j-l ( ,t-1) 

.t•O 

- 1 j - 0 • 
(4.1.21) 

The equality of gij 

By the corollary, 

and h .. follows from Corollary 9.1.4. 
l.J 

J... 
;';' Q . 1 ( ,t-1) -·--' J-

.£-0 

(l-a1)(M-i)(i)[Qj-l (i-1)-0:J::l(i)] +Mia1 o1_1 (i-1) , 
j[(j-l)(l-a1)+Ma1] j)O 

1., j•O. 
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Hence 

{
~ i . i 
.:!1.(1--(1-a )]Q (i-1)-(1-a )l:.(1--)Q. (i), j) 0 
M M 1 j-1 1 M M J-1 

Q 1 j •QI (4.1.22) 

then from (4.1.21) and (4.1.22) 

:t 

and finally 

Thus 

h .. • l,J 

\ i[ i ] ,',Q. 1 (,t-1)- Ml-M(l-a1 ) Q. 1 (1-1) - J- J-,t=O 

+ (1-a ).!(1-.!)Q (i) J')O 1 M M j-1 , 

1 , j - 0 , 

1 I j - 0 • 

and are equal for all relevant i, j • This 

completes the proof of the theorem. 

We can now write (4.1.13), using the above results, as 
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(4.1.23} 

where k is the initial state and A. is given by (4.1.14). 
J 

The inverse of Q can be found by use of the orthogonality 

relation (9.1.5), that is 

Q'D Q • D 
V 6 

or 

0-l a D Q'D 
-1 V 0 

(4.1.24} 

D is a diagonal matrix of order M+ 1 with elements 
6-1 

1 in the (O,O) position 

(4.1.25) 

in the (u,u) position, u•l,2, ... ,M. 

DV is a diagonal matrix of order M + 1 with elements 

d • vv 

l in the (O,O) position 

(4.1.26) 

, in the (v,v) position, v=l,2, ••• ,M. 

Q' is simply the transpose of Q and recall from (4.1.18) 
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Thus from (4.1.24) we can write (4.1.23) as 

e(n.) • (k,i) element in 
l. 

COD D l Q'D C-l 
1-Jt 6- V 
1-A (4.1.27) 

The (k,i) element of (4.1.27) is 

where 

(4.1.28) 

is an element of (4.1.16) the C matrix, 

recall that c • O for w) k, kW 

Q. 1 (i-l) is a.a element of (4.1.17), the Hahn poly-
J-

er ss 

= 

nomial matrix Q 1 

-1 is an element of (4.1.20), the C matrix1 

also note that 

-1 v • i + l 

1 

0 otherwise, 

is an element of 

(4.l.29) 

, 
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that is 

a -as 

n 
n 1-A s 

for s • O (4.1.30) 

<!:i)(2s+b+l)/(M+==~-l)(b+l) , s•l,2, .•• ,M, 

d is an element of DV defined in (4.1.26). vv 
From (4.1.29) 

M.._ 

(i Q l ( v-1 ) d c ' . -' s- vv vi v-0 

Hence (4. L 28) becomes 

--
--

k, 11, 

(4.1.31) 

- 6(i) 0 ( /:~ Qs-l (w-l)a86 [diiQs-l (i-1)]} , i,'M 
w-0 s•O 

k (4.1.32) 

dMM /..J [ Q 1 (w-l)a Q 1 (M-l)] , i• M 
W-0 s-0 s- ss s-

recalling that the C kw are 1 for w < }{ . Thus given the 

initial state le we have the expression for e(ni) , where 

again ni is the total number of times state i is 

observed in a realization of the Markov chain. Note that in 
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the final summation step of e(n1 ) Corollary 9.1.4 can be 

used, i.e • ., 

[(M-k)k[Q 1 (k-l)-O 1 (k)]+bk~ 1 (k-l)] 
/. Q (w-1) • S- s- S-

L._, s-1 s (s-l+b) 
w=O 

M. 
It is obvious from general reasoning that / e(n1) • n, 

i~ 
the length of the chain, but this may also be verified from 

(4.1.32)., 

l-l 
.'1 e(n.) 

i~ l. 

K lt. 
+ 1~ [ 1~ o 1 (w-l)a a00o 1 (-1)] 

w•O s~O s- ss s-

(4.1.33) 

+ /_, [ Lo 1 cw-1> er aMMo 1 (M-1) J 
W-0 s-0 s- ss s-

where the first two terms are the result of 

M:-_1 

2,e(n.) 
i-0 l. 

, 

[that is, / , 6 f ( x) = f ( b+ 1) - f ( a) ] and the last term is 
:-,.,J 

a 

the expression for e(nM) • Thus 
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otherwise 1 thus 
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0 (-1) • 1 s-1 for s • O and zero 

• Il I [ Cf • 1 ( 4 • 1 • 3 0) I ( 4 • 1. 2 6) ] • ( 4 .1.3 5) 

Having found an expression for e(n1) we now discuss 

the expectatious of and ~• (4.1.5). Recall from 

(3.1.27) that 

e(ai) • pii+l[e(ni) (n-1)] 
- pki 

e(b1 ) • pii [ e(ni) (n-1)] 
- pki (4.1.36) 

e(ci) • pii-l[e(ni) (n-1)] 
- pki 

We write 

and 
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-
~i2[e(ni)-pkfn-l)](l-2iM-1)2pii ~i2[e(ni)-pkfn-l)]pii-l 

+f~[ (M-i)-(1-o,1 ) (i) (l-2Ur-l) ] 2 +i~l [M-i(l-a1) ]2 

• I . (4.1.37) 

Exactly what this T means is a question. 
A, 

By the Cramer-

Rao inequality (Kendall and Stuart, Vol. II, p. 8 et.seq.) 

but there seems little hope of finding either the bias term 

or an exact expression for the variance of 

by theoretical methods. Some encouraging results, however, 

were obtained from a simulation study on the IBM 650 which 

is discussed later in this chapter. 

Up to this point we have dealt with the case where n 

is fixed, [cf., for example (4.1.13~ (4.1.30)]. we now 
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discuss the situation where n <D • In this case several 

of the above quantities have slightly different values. 

We note that from (4.1.32), for i,. M 

\ 

e(n1) • -A(i) ./ ( /·, Q 1 (w-l)a [a11o 1 (1-1)]} 
•• ...J ,,_..., s- ss s-

w-0 S•O 

t., 

• -A< i) /-J o_1 (w-1) croo [ dii o_1 C 1-1> J 
W-0 

K M, 

-A(i) ,;_,.; l 0s-1 (w-l)ass[dii0s-l (i-l)] 
w-0 S•l 

and provided i,. O 

~- a 
• O -A ( 1) c ./ /~ 0s-1 (w-l) 0 ss ( dii 0s-1 ( i-l)] ' 

w-0 s•l 
(4. 1. 38) 

by the conventions (9.1.8). 

Similarly, when 1 • M we have 

k .ltl. 
e(nM) • dMM /.J /..1 0 1 (w-l)a O 1 (M-1) • (4.1. 39) 

waO s'•l s- ss s-

From (4.1.30), 

lim ass • 1-\ <!:i> (2s+b-1)/(M+~~~-l) (b+l) , s ,', O 
n-tCO s 
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and so 

.K 
lim e(n1 ) • -~i ,~ '..1 09 _ 1 (w-1) 
n-100 w-0 s•l 

0 ( i ( M 

(4.1.40) 
Y;, 

Note that Corollary 9 .1. 4 can be used in sununing /~ Q8 _ 1 (w-1) • 
W-0 

Of course, as n oo, e(n0) oo, but this does not enter 

into the formula for I (4.1.37), nor are a0 , b0 involved 

in the function cp and cp' (4.1.5) used in obtaining 

For n CD we can now write (4.1.37) as 

(4.l.41) 

noting that (n-1) 
pki 11 i • 0 • we now 

discuss the asymptotic behavior of the estimate and manner 

of conducting the experiment. 
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Keeping M., k f ixe<l but with n CD it is clear fran 

general considerations that once absorption has occurred., 

nothing of value is obtained by prolonging the experiment. 

With probability one., only a finite number of useful obser-

vations will be obtained., and no asymptotic theory of 

consistency or normality of the estimate will hold. 

For this situation we postulate the following theorems whose 

validity are very strongly felt but proofs of which have not 

been found. An outline of the anticipated proofs is presented. 

It will be noted that the gaps are a result of inadequacies 

which exist in the inference theory of positively regular 

Markov chains. Before presenting the theorems it could be 

mentioned that the current difficulties in making inferences 

from observations on a single absorbing Markov chain can be 

handled by performing independent replicated experiments. 

Such experiments are discussed in the next section. The 

following theorems are stated for the particular situation 

studied in this chapter. It is felt., however., that more 

general theorems hold. 

(e) Postulated Theorems. Postulated Theorem 

4.1.6. For the transition matrix P., (4.1.2)., with 

one absorbing state., 0., and no other 
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closed sets 1 suppose that a realization is connnenced at state 

k • M and that n • M observations are taken. Then1 pro-

vided " al is the maximum likelihood estimate of the 

distribution of is asymptotically normal with mean a1 1 

and variance 

ai 
L •likelihood• TT pii+l 

i 

as M oo I where 

Proof outline: By the assumption that n • k •M I and 

since only unit transitions are possible in P I the absorbing 

state 1 0 1 cannot be reached in the M - 1 steps after the 

initial observation x1 • M. Thus it is immaterial how the 

elements in p 

transition matrix 

0 

1 

. 

. 
P* • i 

. 
• 

M-1 

M 

are defined. 

0 

0 

0 

1 

0 

0 

. . 
0 

0 

Consider 1 therefore 1 a 

• 

0 

M-1 

0 

M 

1 

1-a 1 
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where from state O an instantaneous return to state M 

occurs. While P was regular but absorbing, P* is 

positively regular and satisfies Billingsley's conditions 

(Section 2.3). 

Consider now two experiments, one of which is performed 

with P as model, the other with P* as model, and for each 

the initial state is k • M. Denote the maximum likeli-

hood estimates by and a * 1 respectively. Then for 

the positively regular chain, we have asymptotic normality 

according to Theorem 2.3.2 1 that is, 

where 

and 

with 

from 

lim Pr(/n (a1•- a 1 ) y} • 
n-iOO 

(4.1.42) 

M fixed 

t is the standard normal distribution function, 

(12 = limn I .-1 
I 

n-iOO 

I* - - e(d2 loq L*> 
da 2 I 

1 

L* being the likelihood of n observations drawn 

P* • 

Suppose now that the convergence (4.1.42) is uniform 

over M I aad that cr , with O ( cr ( CD, as M a:> • 
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Then from (4.1.42)., 

lim 
M•n-lCX> 

Pr r In(~ *-a: ) ( y} 
· 1 l - • lim lim Pr ( /n(of-a:1) ( y J 

M-ICX> n-lCX> 

• (4.1.43) • 5(y/a) 

But on the left of (4.1.43)., we have drawn £ran a 

chain with k • M • n., which has identically the distri-

" al bution of made under the same conditions on the 

matrix. Thus, if (4.1.43) is valid., we have 

lim Pr~fu(o1-a:1 ) y} • 5(y/a) . 
M•n--iCX> 

Further, if the similar interchange of double limits 

lim 
M•n--iCX> 

lim n(!*)-1 • lim • a2 
11-ICX> M-<o M 

holds., we have (because for k • M • n., I * • I ) 
lim n I -l • lim n( I *)-l • a2 • 

M•n--iCX> M•~-KJO 

p 

(4.1.44) 

(4.1.45) 

(4.l.46) 

From (4.l.44) we have that is asymptotically normal 

with mean and variance (from (4.1.46)) equal 

I -1 --
Note that the difficulties in the theorem are due to 

unresolved questions about limiting operations {4.1.43) and 

(4.1.46) in the positively regular theory. 
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Postulated Theorem 4.1.7. For the transition matrix 

P 1 (4.1.2) 1 with one absorbing state 1 0 1 and no other 

closed sets 1 suppose that a realization is commenced at 

k • M and continued until the absorbing state is first 

reached. 'l'hen1 provided is the maximum likelihood 

"' estimate of the distribution of a:1 is asymptotically 

normal with mean a1 and variance lim I - 1 as M a:> 1 
n--tCD 

where r (4.1.37) is the fixed sample size (n) information. 

Proof outline. As in Theorem 4.1.61 it makes no dif-

ference how the elements are defined since by defini-

tion of the experimental procedure 1 the realization is 

terminated as soon as state O is reached. Thus the esti-

"' "' mate a 1 has the same distribution properties as a1 • made 

on the P* process under the same conditions. 

We postulate the following result for the positively 

regular chain estimate 
,., 
al•: 

lim Pr((~1• - a1 )a(M) ( y} • ~(y/a) (4.1.47) 

where a(M) is some standardizing factor 1 perhaps 1 but not 

necessarily1 1M I and 

a2 • lim ([a(M)] 2 (! *)-1 } 1 with O ( a2 ( CD • 

M-a> 
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Here I• is the information for the sequential stopping 

rule on chain P*, and is identical to the same quantity 

for the P matrix,namely 

I * - lim I (4.1.48) 
n-,co 

It follows from (4.1.47), if true, that the sequential stopping 

rule applied to the P chain estimate yields 

where 

lim Pr((a1 - a 1 )a{M) ( y} • l(y/a) , 
,M-Q) 

I -1} a2 • lim ([a{M) ] 2 lim 

This proves the theorem. 

(4.1.49) 

Again, we see that the difficulties inherent in (4.1.47) 

relate to the positively regular case. 

Corollary 4.1.8. If, in Theorem 4.1.7, a{M) ex> 

as M ex> , then a1 is a consistent estimate of a1 • 

Proof. The proof is immediate from the fact that 

is asymptotically unbiased and has variance of order 

as M a:> by Theorem 4.1.7 itself. It is felt, however, 

that the corollary holds regardless of the validity of the 

postulated Theorem 4.1.7. That is, it may be possible to 

find a proof of the corollary without relying on Theorem 

4.1.7 specifically. 
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4.2 Estimating Mutation~ ,i£2m A Single Chain {Simula-

Study) 

4. 2. 1 Backgrom1d 

In connection with the postulated Theorem 4.1.7 and 

its Corollary 4.1.8., a simulation study on the IBM 650 was 

performed., the swnmary results of which appear in the fol-

lowing figures and tables., the more extensive results being 

in Appendices II., III. Five values of M were studied., 

M • 2., 4., 6., 10., and 20. The program was written with 

a 1 • 0.1. For each value of M., 500 independent reali-

zations were generated in the following manner. In all 

cases., the initial state was k • M and the chain was con-

tinued until the absorbing state zero occurred. The 500 

maximum likelihood estimates of a 1 • 0.1 solved from the 

data of these realizations appear in Appendix II listed in 

increasing· order. Note that M • 4 and 6 have 502 values, 

the last two values being 1.0. The corresponding 

experiments did not satisfy the conditions of Theorem 4.1.2 

(that is, bM and all a1 were zero for these experiments) 

resulting in a maximum of the likelihood at a 1 • 1., not., 

however., at a turning point. Two further realizations were 
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made to give in all 500 replicates of a form yielding 
,.. 
al 

values satisfying the likelihood equations. However, for 

M • 2 there were 16 such extreme realizations, and these 

were not replaced. For M • 10 and 20, all realizations 

provided admissible likelihood equation estimates. 

In Table 4.1.2 is the mean of the 500 estimates of 

is their sample variance. The numbers which 

appear in parentheses for M = 4, 6 are based on the 502 

estimates. These values are included for general interest. 

The figures show the observed distribution of all 

estimates obtained. Note that there are gaps in what one 

might expect to be virtually continuous distributions. 

These are especially pronounced in Fig. 1 where M • 2. 

The extreme right bar is for the 16 values of one coming 

from realizations of the form 2 1 •••• 1 0 with state 2 

occurring once only. The second bar from the right is for 

26 values of 
,.. 
a 1 • 0.577350 which arose from experiments of 

the type 2 2 1 •••• 1 0. The third tall bar from the 

right is for 29 values of 
,.. 
a 1 = 0.390388 which arose from 

experiments of the type 2 2 2 1 •••• 1 O. Thus M = 2 

has many peculiar characteristics due to the comparatively 

limited number of possible realizations. These peculiarities 

become less pronounced as M increases. 



-" M al 

(al• 0.1) 

2 0.212050 

4 I 0.168281 

(0.171595) 

6 I 0.153653 

(0.157025) 

10 0.131192 

20 0.114452 

I 

Estimated 
Bias 

"' al - al 

0.112050 

0.068281 

0.053657 

0.031192 

0.014452 

I 

Table 4.1.2 

Estimated 
Variance 

s~ 
al 

0.038427 

0.014846 

(0.017537) 

0.010560 

(0.013366) 

0.003421 

0.001481 

I 
I 
I 

Postulated 
Asymptotic 
Variance 
lim I -1 
n-tCX> 

0.004905 

0.003036 

0.002479 

0.002025 

0.001496 

I 

% Error 
-1 

s~ - lim I 
al n-tCX> ) • 100 ( s! 

al 

87.2355 

79.5500 

76.5246 

40.8068 

(-1.0128) 

I 
.... 
0 .... 
I 
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4.2.2 Conclusions fran the simulation study 

From the figures we note that skewness decreases as M 

' "' increases and the empirical distributions of the a1 appear 

to have a mode close to the true value a1 • 0.1. Moreover, 

from the figures and Table 4.1.2 it is apparent that the bias 

and variance of the estimates decreases rapidly as M 

increases. This gives very strong evidence that Corollary 

4.1.8 is correct, and that the estimate is consistent as M 

increases. 

For the considerably sharper Theorem 4.1.7, we find 

that the observed variances s~ and the postulated asymptotic 

lim I -1 
al 

variance (4.1.41) are in extraordinarily good 
n-iOO 

agreement for M• 20, but less so for smaller population 

sizes. This is to be expected if the Theorem 4.1.7 is cor-

rect, but we do not claim that the realizations generated to 

"' date are sufficiently convincing that in fact var(a1) and 

lim r-l are asymptotically equal. Higher values of M 
n-.a> 
need be investigated before such a conclusion could be 

established beyond doubt. Similarly, the asymptotic nor-

mality property is not yet established, although the decrease 

in skewness is suggestive. A X2 goodness of fit test on 
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M • 20 data still indicates a significant departure from 

normality. Finally, the postulated standardizing factor 

a(M) of Theorem 4.1.7 could be established by plotting 

lim r-l or s~ as a function of M and observing the a n~ l 
rate of approach to zero. However, here again values larger 

than M • 20 would be needed. It was not possible to 

examine larger populations on the IBM 65) because of the 

prohibitive amount of time required. 

4.2.3 Conunents on the design of the experiment 

In discussing the non-absorbing, two mutation case 

(Section 3.2) it was found that, per observation, the most 

efficient experiment was one carried out on the smallest 

possible population (M • 1), but per generation, the same 

conclusion did not hold. In the present situation with ulti-

mate absorption being a certainty, the expected number of 

birth-death events required for the transition from state M 

to state O can be calculated either by finding the limit 

K. 
lim 1~e(ni) 
n~ i•l 

(4.1.50) 

using the Hahn polynomial expression (4.1.32), or by a 
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method proposed by Kemeny and Snell (1960). The latter con-

sists of evaluating the inverse (I - P6 )-l where I is the 

M x M identity matrix and P6 is the M x M matrix obtained 

by deleting the O column and row of P (4.1.2), thus leaving 

the transient state probabilities only. The elements in the 

(M, i) position of are the required lim t(n.) , 
l. n~ 

and summing along the last row of (I - P )-l yields the 
6 

expected number of transitions. The expected nwnber of obser-

vations t(N) is, of course, one more than this quantity 

allowing for the transition from state 1 to state O. For 

our triple diagonal matrix P, in fact all elements below 

the diagonals in (I - P6 )-l are equal to the diagonal 

elements themselves, and so we present in Appendix III, only 

the upper triangular portions of (I - P )-l for M • 2, 4, 
6 

6, 10 and 20. The individual values have been used to cal-

culate lim r-l (4.1.41) as tabulated in Table 4.1.2. 
n~ 

The expected length of chain to absorption, t(N) , is 

given in Table 4.1.3, together with the bias and variance 

estimates calculated on a per generation basis. It is clear 

that not only are the larger populations more efficient, in 

total, if carried to absorption (see Table 4.1.2) but also 



Table 4.1.3 

e,(N) 

M Expected Length of 
Chain to Absorption 

2 21.818181 + 1 

(23) 

4 49.868406 + 1 

(51) 

6 82.618032 + 1 

(84) 

10 158.753792 + l 

(160) 

20 391.368270 + l 

(392) 

Bias 
e,(N)/M 

0.009821 

0.005369 

0.003850 

0.001953 

0.000737 

s~ 
al 

e.(N)/M 

0.003368 

0.001674 

0.000758 

0.000214 

0.000075 

I-' 
I-' 
0 

l 



- 111 -

on a per observation and a per generation basis. It is con-

ceded that there is a slight increase in the ratio 

e(N)/M • e(generationsto absorption) as M increases and 

if the number of geDerations were kept fixed at a level where 

small populations reach absorption on average but larger ones 

do not., the estimated bias and variance for the latter would 

be somewhat underestimating the true values. However, the 

effect is thought to be sufficiently small not to nullify 

the conclusion. Again further calculations would be 

interesting. 

4.3 Replicated Experiments 

One method of overcoming the difficulties encow1tered 

in attempting to make inferences from a single long reali-

zation of an absorbing Markov chain is to perform independent 

replicated ehrperiments. Such experiments are discussed in 

this section. 

4.3.1 Geometric Stopping Rule 

Suppose we consider the following. Let the initial 

state be k • M (i.e., consisting of all "a" 1 s corresponding 
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to a genetic pure line) and observe the population at equal 

time intervals until the M - l state occurs for the first 

time, then stop. The number of times that the chain remains 

in state M, bM, has the geometric distribution 

(4.3.1.1) 

where bM • o, 1, 2, •••• For R independent replicate 

populations we can write the joint probability function 

(likelihood function), where for convenience we shall write 

bM(r) for the value of bM in the r-th replicate, 

The log-likelihood is 

ll. 
log L • ,:~ bM(r) log(l-a1 ) + R log a 1 

r•l 

and 

R . 
d log L .'..1 bM(r) + ..B... -- I da1 r•l al 

1-a l 

(4.3.1.2) 

(4.3.1.3) 

(4.3.1.4) 
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thus the maximum likelihood estimate of a1 is 

,. R 
al • R. 

,.'-1 bM(r) + R 
r•l 

(4.3.1.5) 

This estimate, however, is a biased one. Let us then look 

at an estimate which is unbiasea and whose distribution 

lt 
theory is known. bM{r) is distributed as the negative 

r•l 

binomial 
R. 

R. 
f ( ,~ bM(r)) 

r•l 
(4.3.1.6) 

because the convolution of independent negative binomial 

(and in particular, geometric) variables is again a negative 

binomial. The unbiased estimate for 

(Haldane,. 1943) is in our notation 

R ... 1 
al• lt 

) b (r)+R-1 r;;"i M 

in this case 

• (4.3.1.7) 

Finney (1949) found an unbiased estimate of the variance of 

a1 • In our notation it is 



- 114 -

a1 c1 - a1> 
lt 
) b (r)+R-2 w M r•l 

• (4.3.1.8) 

A normal approximation is a satisfactory indicator of the 

error of estimation of only when R is large. For 

small R a method of (1949) for reading exact 

confidence limits on directly from Biometrika Table 41 

is shown below. 

It may not have been generally realized that methods 

and tables for determining exact confidence limits for 

binomial sampling may be aciapted very easily to inverse 

binomial sampling, i.e., the negative binomial distribution. 

The proof of the following rule may be found in Finney (1949). 

A more explicit proof may be found in Bartko (1960). The 

rule may be stated: 

(i) The upper limit on a1 is found by entering 

.... 

Biometrika Table 41 with C • R - 1, n • L, bM(r)+R-1 • 
r•l 

(11) The lower confidence limit on is found by 

R., 

entering the table with C • R, n • l bM(r) +R , where n 
r•l 

is the notation used in Table 41. 
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Consider the following example which illustrates the 

principles of the above discussion. A chain with 11 states, 

i.e., M • 10 (actually for this geometric stopping rule 

the size of M, aside from its being constant, is imma-

terial) was considered. a 1 was arbitrarily set at 0.1. 

The initial state was k • M • 10 as stated above and when 

state M - l • 9 was first observed the chain was terminated. 

By use of random number tables where p10 9 • 0.1 and 
' 

PlO,lO • 0.9, R • 30 such independent chains were con-

structed. The results were 

R~30 

30 times in state 9 

294 times in state 10 

264 times the transition from state 

10 to 10 occurred. 

Thus ) bM(r) • 264 
L..J 

r•l 
and from (4.3.1.7) 

a 1 = 0.0989 

and from (4.3.1.8) 

s • o. 01747 

(4.3.1.9) 

(4.3.1.10) 

Using a normal approximation, 95% confidence limits on a1 

are 
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which for our case is 

0.065 ( a1 ( 0.133 • (4.3.1.11) 

Although it would appear in this case that R is suf-

ficiently large for the approximation to hold, the rules 

stated above for Biometrika Table 41 will be used in this 

example for purposes of illustration. For the upper limit 

enter the table with C • 29, n • 293 and find approximately 

the value 0.14. For the lower bound enter the table with 

c • 30, n • 294, to which corresponds the value of about 

0.07. Consequently, an exact two sided 95% confidence inter-

val for is 

0.07 ( a1 ( 0.14 • (4.3.1.12) 

4.3.2 Fixed chain length 

Let us here consider making inferences on a1 from 

data obtained by observing R independent replicate chains 

each of the same finite length n. For an absorbing chain 

a finite, useful, n can be accanplished by setting n ( k 

so that absorption does not occur. 
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We estimate a 1 by using the Newton-Raphson scheme 

(4.1.6). The procedure is to replace ai, bi and ci in 

f and~• (4.1.5) with 

R ___ 

/-1 a1 (r) , 
r•l 

where for example 

ll 
L bi (r) 

r•l 

·, 
and 6 ci (r) 

r•l 

is the value of 

respectively, 

in the r-th 

replicate. In obtaining the estimate of a 1 it is imma-

terial whether all replications have the same initial state 

k or not. However, in computing I (4.1.37) we need to 

find e(ni) which fran (4.1.32) we see depends on k. 

Suppose that the initial state is the same for all replica-

tions. Recall from (4.1.36) for example that 

(4.3.2.1) 

Thus for our case where all initial states are the same, 

It 
e !..1 a i ( r) • Re ( a i) • 

r==l 
(4.3.2.2) 

Similar expressions hold for bi and c 1 • Thus from I 
(4.1.37) and (4.3.2.2) the variance element for the repli-

I -1 cated experiments ( R) is 

(4.3.2.3) 
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where I now refers to the information (4.1.37) obtained 

from a single replicate, and we write for the replicated 

experiments with finite n and same initial state k that 

will be asymptotically normal with mean zero and variance 

(I R) -1 ( ) 4.3.2.3 . These results hold as R co by the 

usual theory for maximum likelihood estimates from indepen-

dent experiments. 

4.3.3 Chain length a random variable 

Suppose that the chain length n for each replication 

is a random variable determined by some sequential stopping 

rule. Let us consider the absorbing state O as the stop-

ping state. That is, we observe the chain until it is 

absorbed. And further, let us choose k the same for each 

replication and large enough (implies M large) so that we 

can regard n as very large and use e(n1 ) as given by 

(4.1.40). 
R. 

in (4.1.41) with e 0 ni(r) and 
r•l 

since k is the same for all replications 
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It 
e, l~ .. n 1 (r) = Re,(n1 ) 

r•l 
Thus (4.1.41) becomes for the repli-

cated experiments 

(4.3.3.1) 

Thus we can write A 
(a1 - a1 ) will be asymptotically 

1 1th d · <I R)-l as R the norma w mean zero an variance 

number of independent oo. 

4.4 Sample Calculations ,2.ll the Absorbing Chain 

Using (4.1.1) p for M• 2 is 

0 1 2 

0 1 0 0 

p - 1 \(l+al) ½ \(l-a1 ) (4.4.1) 

2 0 al 1-a 1 

From (4.1.14) i.e., 

(4.4.2) 



From (4.1.17) 

1 

Q - 0 

0 

1 

0 

1 
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0 1 -1-b 

(1) (2) (-b) column sums , 

(4.4.3) 

where (-1-b) in the (2,2) position• 01 (11 O, b, 2) 
(4.4.4) 

The figures at the bottom of the columns of Q are the 

column sums, that is from corollary 9.1.5 

i_ 

For example, - 2(-1) ·b - b • /~ o1 ( x-1) • • 
x-0 21 

(4.4.5) 

Note: Recall from (2.1.3) that the convention in this thesis 

is to call the first element position of a matrix the (0 1 0) 

position. Also recall from (4.1.17) that the Hahn poly-

nomial Qj_1 (i-l) occupies the (i,j) position, 

i,j • 0 1 1, ••• , M of the matrix Q. Thus in finding 

(4.4.5) which by our convention is the sum of column 2 in 



- 121 -

~-

(4.4.3) we used / Q (x-1) since o1 (x-1) denotes the __ ..; 1 
x-0 

second column of 0 . 

Fran (4.1.24) 

-1 • D O'Dv. For M• 2 0 
6-1 

1 0 0 1 0 0 1 0 0 

-1 0 1 0 1 1 0 l+b 
Q - 0 2+b 0 

0 0 {b+lf1 0 1 -1-b 0 0 -L 
2+b 

1 0 0 

- 0 .lie -L (4.4.6) 2+b 2+b • 

0 ...l... :.L 
2+b 2+b 

As a sample calculation on e{ni) for M • 2, n 

fixed and initial state k • M • 2, we have £ran (4.1.27) 

t(n1 ) • (2,i) element in COD D _1 O'D C-l and 
1-l)n 6 V 
1-A 

£ran (4.1.32) for i • 2 • M 
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2_, 2 

e(n2 ) • ct22 ··.1· [ .· 0 1 (w-l)ct Q 1 (1)] ·- -' s- BS s-W-0 S-0 

2_ 

• d 22 >~ [ o_1 (w-1) a00o_1 (1) + o0 (w-1) cr11 o0 (1) 
w=O 

+ o1 (w-l)a22o1 (1)] , (4.4. 7) 

by (4.4.3) and (9.1.9) we write (4.4.7) 

2_, 

022 [ OO {w-l) all - Ql (w-l) 022 {l+b)] ' 
w-0 

where from (4.4.3) we note that 01 (1) • -(l+b) , 

2 2 

• d22 (ctll ~Oo{w-1) - a22(l+b) ~Ol(w-1)} 

2~ 

where from (4. 4. 5) '-~ o1 (w-1) • -b • 
w-0 

From (4. 1. 26) 

a11 • (l+b)/{2+b) 

a22 • l/(2+b) ; 

(4.4.8) 

(4.4.9) 
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from (4. 1. 30) 

aoo - n 

and (4. 1. 18) 

Thus from (4.4.9) and the above 

From (4.1.32) we have for e(n1 ) 

e(nl) • .~, [ -~ Qs-1 (w-l)ass(-6[dll0s-1 (0) ]) ] 
w-0 s-0 

i ~' 
• /, [ ,>, Q l(w-l)a (-d220 1(1)+0 l(O)d,,)] 

~ 4 s- SB s- S-
w-0 s-0 

I (4.4.11) 

and finally 

• n -
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Further, if we consider n then we use 

e(n1) • (2,i) element in COD....!_ (CO)-l 
1-°A 

Then from (4.1.40) 

note that 

this is the same as (4.4.9) except that now 

Thus 

In like fashion 

and 

000 - n 

ctll • 2/al 

a22 - 2(1-al)/(l+al)2 • 

(4.4.13) 

(4.4.14) 

(4.4.15) 

Note that e(n1 ), e(n2) remain finite as n <D 1 recall 

also that e(n0) does not enter into any of our major com-

expectations are also appropriate for the sequential stopping 

rule. 
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V. SUGGESTIONS FOR FUTURE RESEARCH 

It is anticipated that an extensive simulation program 

on an electronic computor will be undertaken at a later date 

as a continuation of the study already begun in this thesis. 

This is a pressing and exciting area of research. Such a 

study would be an invaluable factor in further ascertaining 

the validity of the postulated Theorems 4.1.6 and 4.1.7 and 

the properties of the maximum likelihood estimates 

For the present study (M • 2, 4, 6, 10, 20) we have shown 

consistency and that skewness is less pronounced as M 

increases. From the figures (1, 2, 3, 4, 5) it appears that 

the empirical distributions of the have a mode close to 

the true value a 1 • 0.1. However, normality has not been 

d.emOi1Strated. With the larger study (it is anticipated to 

investigate up to M •SO) it is hoped that a great many of 

these questions such as normality and the postulated 

standardizing factor a(M) of Theorem 4.1.7 will be 

answered and clarified. 

In connection with this study or apart from it, it 

would be valuable to investigate the unresolved questions 

about the limiting operations (4.1.43), (4.1.46), and 

(4.1.47) in the positively regular theory of Markov processes. 
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With the successful proof of these postulated theorems 

then more general theorems relating to absorbing Markov 

chains could be investigated, for example, transition 

probabilities which depend on several unknown parameters. 

It may also be valuable to investigate the situation where 

transitions occur in steps greater than unity, and chains 

with more than one absorbing state. 

It might be valuable to investigate other integral 

approximations for the elements (3.1. 52) of the matrix 1 
for the two mutation rate case and for the quantity I 
(4.1.37) for the absorbing chain. 

Finally for research not following directly from the 

problems of this thesis, the question of investigating 

population genetic models where the population is not 

assumed constant remains open for future research. 
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IX. APPENDICES 

APPENDIX I 

9.1 Properties .Qf. .!:!s!w, Polynomials 

The Hahn polynomials form a family of orthogonal poly-

nomials. They were introduced by Hahn (1949), discussed by 

Weber and Erdelyi (1952) and further discussed by Karlin and 

McGregor (1961). In the following presentation results which 

are believed to be new are so labelled. Results taken from 

other works will be given in the notation of this thesis. 

The Hahn polynomials may be defined in terms of the 

generalized hypergeometric series 

where (a) 0 • 1, (a)t • a(a+l) ••• (a+l-1) • r(a+l)/r(a) for 

J, > 1 • The series terminates if one of the is zero or 

a negative integer. For real a) -1, b) -1 and for 

positive integral M, the Hahn polynomials 

Q (x) • Q (x1 a,b,M) , m • o, 1, 2, ••• , M-1 are defined by m m 
(9.1.l) 
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Explicit formula (Erdelyi and Weber, 1952) 

Q (x) • Q (xr a.,b.,M) rn rn 
(9.1.2) 

Recurrence relation (Erdelyi and Weber, 1952) 

-xom (x) • drnQrn-l (x) - (brn +drn) Orn (x) + bmOrn+l (x) ., 

(9.1.3) 

where 

b rn 

d 
m 

-
-

(rn+a+b+l)(m+a+l)(M-1-m) 
(2rn+a+b+1)(2rn+a+b+2) 

rn(m+b) (m+a+b+M) 
(2m+a+b) ( 2rn+a+b+l) 

and (9.1.3) is valid for all complex values of x if 

rn • 0., 1., 2., 

X • 0., 1., 2., 

• • • I 

. . . , 
M-2 

M-1 

but is valia only for 

when rn • M-1 • 

Difference equation (Karlin and McGregor., 1961) 

-<0 Q (x) • D(x) Q (x-1)-[ B(x) +D(x)] Q (x) +B(x) Q (x+l) ., rn m rn rn m 

where 

B(x) • (M-1-x)(a+l+x} 

D(x) • x(M+b-x) 

ID • rn(m+a+b+l} ., rn 

(9.l.4) 

and (9.1.4) is valid for m • o., 1., ••• ., M-1 and all complex 

values of x. 
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Orthog-onality relation (Karlin and McGregor, 1961) 

M-_l 

.1 Qm(x) Qn(x) p (x: a,b,M) • 6 t b ) (9.1.5) 
x-0 m,n tm,M a, ,M 

where 

6 = {01 m,n 
m • n 

t-¾r(b+l)I'(m+a+l)I'(m+a+b+l)(2m+a+b+l) . m 
y, (a,b,M) • ---------------------

m,M m,M r+a~af-l)I'(a+b+l)I'(m+b+l)I'(m+JJ(a+b+l) 
m 

In particular t 0 ,M(a,b,M) = 1. 

6 

It is also true that 

1 
m,n p(O,a,b,M)y, M(a,b,M) m, 

(9.1.6) 

where p(x) and t are defined above. The equivalence m,M 
of (9.1.5) and (9.1.6) is established by noting that 

(a+l) (1-M) 
X X 

xi (l-M-b) p(0,a,b,M) • p(x: a,b,M) 
X 

(9.1.7) 

I 
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Conventions (New) 

{ 01 
if x • o, 1, ••• , M-1 

o_1 (::q a,b,M) • 
if X s -1 

Q (-1; a,b,M) • 0, m • O, 1, ••• , M-1 m 

Special Values 

o0 (x; a,b,M) • 1 X) 0 

m = o, 1, . . . ' 

Q (M-1• ab M) = (-l)m(m+b)/(m+a) I I , m m rn 

Q (x; a,b,M) __ m ______ _ 

Q (M-1: a,b,M) m 

M-1 

(9.1.8) 

(9.1.9) 

Theorem 9.1.1 (New). For the Hahn polynomials where 

that is Q (x; O,b,M) rn 

Q (x) 
•. .J m 

x-x l 

For m • -1 

:..1 Qm (x) 
x-x 1 

the~1 for m ,' -1 , 

X ) -1 l 

X • -1 1 

(9.1.10) 
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Proof: From (9.1.4) with a• O 

B(x) • (M-1-x)(l+x) 1 

D(x) - X (M+b-x) 
• bx + B(x-1) 

D(x+l) • (x+l)(M+b-x-1) 
• b(x+l) + B(x) 

(J) • m(m+b+l) 
m 

B(-1) = 0 

The difference equation (9.1.4), 

-m Q (x) • D(x)Q (x-1)-[B(x)+D(x)]O (x)+B(x)Q (x+l) mm m m m 

after substitution with the above identities becomes 

-m Q (x) • [bx+B(x-1)]0 (x-1)-[B(x)+bx+B(x-l)]O (x)+B(x)O (x+l) mm m m 

• B(x-1) [O (x-1)-0 (x) ]-B(x) [O (x)-0 (x+l)] m m m m 

+ bx[Q (x-1)-0 (x)] m m 

Note that 

bx[Q (x-1)-0 (x)] • bxQ (x-1)-b(x+l)O (x)+bQ (x) m m m m m 

and therefore 

-(J) Q (x) • -6(B(x-l) [O (x-1)-0 (x)]) -6 [bxQ (x-1) ]+bQ (x) . mm m m m m 

Hence 

((J) +b)Q (x) • 6(B(x-l)[Q (x-1)-0 (x)]+bxQ (x-l)) , m m m m m 
(9.1.11) 
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and 

(cum+b) .L Qm(x) • B(x2) [Qm(x2)-Qm(x2+1) ]+b(x2+l)Qm(x2) 
x=-...cl 

noting that for finite differences 

Finally 

b 

~f(x) • f(b+l) - f(a) 

Q (x) 
m 

since cu +b • (m+l)(m+b) • m 

For m • -1 the proof is immediate from (9.1.8). 

Corollary 9.1.2 (New) 

.t 
B(i)[Q (i)-Q (i+l)]+b(i+l)Q (i) m m m 

(m+l) (m+b) m ,' 1 
,,o (x) • 

x~ m Q I m • -1 • (9.l.12) 

Proof: The proof for both identities follows immediately 

from Theorem 9.1.1 where for the first identity we note that 

B(-1) • 0. (cf., 9.1.4) 
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Corollary 9.1.3 (New) 

M-). (m+l) I 
/ Q (x) • :_; m 

x-0 
0 I 

where (b) • b(b+l) ••• {b+m-1) • m 

I 

m • -1 , 

Proof: From Corollary 9.1.2 we have 

0 (x) 
m 

b M O {M-1) • __ ..,.m ___ _ 
{m+l) {m+b) I 

m ,' -1 

noting that B{M-1) • O. Further, from {9.1.9) 

thus 

and finally 
M-_;L 

0 (x) 
m 

b M {-l)m(m+b) • _______ m.._ 
{m+l)(m+b) 

M{-l)m{b) 
0m{x) • (m+l)I m 

I 

(9.1.13) 

(9.1.14) 

For m = -1 the proof is immediate from Corollary 9.1.2. 

Corollary 9.1.4 (New) 

i 

/ Q {x-1) = ·-' m-1 x-0 

[(M-i)i[O 1 (1-1)-0 1 {i)]+b1Q 1 (1-1)] m- m- m-
m(m+b-1) ' m,'O 

(9.1.15) 
1 I m • 0 
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Proofs The proof follows by noting that from (9.1.11) 

+ b(x-1)0 1 (x-2)] , m-

', / Af(x) • f (b+l) - f(a) , .. -1 and that (co 1 + b) • m(m+b-1) • m-a 

For m • O the proof is immediate from (9.1.8). 

Corollary 9.1.S (New) 

/ 0 (x-1) • 
L..J m-1 x-0 

ml 

1 

Proofs From Corollary 9.1.4 

M~ 

/..1 0 1 (x-1) 
x-0 m- -bM om-l (M-1) 

m(m+b-1) 

m ,t,. 0 

m • 0 • 

For m • 0 the proof is immediate from (9.1.15). 

Corollary 9.1.6 (New) 

(9.1.16) 
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(l-a1)(M-.iji(cti_1( i-l)"4n-1(i)]+Ma1 iCk-l (i-1) 
m[(m-l)(1-a1 )+Ma1 ] 1 m,'O 

' Q 1 (x-l) • 
,.-1 m-

x-0 
l , m • 0 

Proof: The proof is immediate from Corollary 9.1.4. 

9.2 Relation Between 1!!b.u .s.ll.f.! Tchebichef Polynomials (New) 

Erdelyi (1953, Vol. II, p. 224), defines the Hahn poly-

nomials in the following way: 

( f3)m ('Y) m 
pm(x: f3,'Y,6) • ml 3F2 (-m,-x,t3+,Y-6+m1 f3,Y: 1) • 

(9.2.1) 

To put (9.2.1) into the Q (x: a,b,M) m form useo. in this 

thesis, we make the following substitutions [cf., (9.1.2)] 

Then 

t3+'Y-6+m • m+a+b+l 

f3 • a+l 

'Y • -M+l 

6 • 1-M-b 

pm(xr f3,'Y,6) 
Qm(x: a,b,M) • (f3)m ('Y)m 

ml 
p (x: a+l, -M+l, 1-M-b) m ------------(a+l) (1-M) m m 

ml 

(9.2.2) 
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For a • b • O 

• 

However, Erdelyi also gives 

p (x: l, 1-M, 1-M) • t (x) m m I 

where t (x) is a Tchebichef polynomial defined by 
m 

(9.2.3) 

(9.2.4) 

t {x) • ml Am[ {x) (x-M)] 0 l l m u m m • m • • • ·••• M- • 

The orthogonal property for the Tchebichef polynomials is 

M-1 
'-, 

m,n • 0 1 1 1 ••• , M-1 

Hence from (9.2.4) and (9.2.3) 

thus from (9.2.6) 

M"':'.). 

/-1 om (x) on (x) 
x=O 

I 

M-J t {x) t (x) 
m n - ' 1 • ..1 ( 1-M) ( 1-M) x-0 m n 

M 
(2m+l) m•n 

-
0 , m 1' n 

(9.2.5) 

(9.2.6) 

(9.2.7) 
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From (9.1.5) where p(x; a.,b.,M) 

defined, we can write (9.2.7) as 

and t M(a.,b.,M) m., 

M~J 
· Q (x)Q (x) _..) m n 

x-0 
- 0 1 mn t M(O.,O.,M)p(O.,O,O,M) m., 

•6 M 
mn t M(O,O.,M) m., 

., 

are 

(9.2.8) 

where in Qm (x; a.,b.,M) a • b • 0 • This verifies again 

the equivalence of (9.1.5) and (9.1.6) in this special case. 

The connection (9.2.6) between Hahn polynomials 

O (x,O.,O.,M) and Tchebichef polynomials explains the apparently m 

different results obtained by Karlin and McGregor (1960) 

using the former and Watterson (1961) using the latter., for 

Moran's model without mutation. 
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APPENDIX II 

,.. 
Table of llQ!!l Absorbing Chain 

The following table is a listing of 500 maximum likeli-

hood estimates listed in increasing order (502 for M • 4 1 6) 

of the mutation rate a 1 (=0.1). These estimates were 

obtained from data of experiments generated by simulation 

methods on the IBM 650. Five population sizes were studied, 

M • 2 1 4 1 6 1 10 and 20. The experiments were generated by 

setting k = M as the initial state where the number of 

transitions until absorption (state 0) occurred were punched 

along with other information by the machine. 

For M = 2 16 of the estimates were 1.0. These 

estimates were obtained from experiments of the type 

2 1 •••. 1 0, that is, from state 2 we inunediately went 

to state 1 1 remained in state l for a finite number of 

times I it does not matter how many where the estimate of a 1 

is concerned, and then passed directly on to absorption. 

For this case the conditions of Theorem 4.1.2 were not met, 

i.e., and were zero. The cp function (4.1.5) is 

l/(l+a1 ) + l/a1 which never crosses the a1 axis. 
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However~ the value one was included in these estimates since 

1 is the maximum value of the likelihood of these experi-

ments. They were also included because of their frequency 

and also because they are an integral part of the peculiari-

ties of the case M • 2. 

The second group consisting of 26 estimates was 

0.577350 which were the result of experiments of the 

type 2 2 1 .••• 1 0. 

For M • 4 and 6 the last two estimates 1.0 are a 

result of experiments which did not satisfy the conditions 

of Theorem 4.1.2. They were included for general interest 

for a total of 502 estimates. The solutions A 

al of the 

likelihood equations in these cases were greater than one 

but in the parameter space the maximum of the likelihood 

is at a1 • 1. 

The estimates are listed as six decimal place nwnbers~ 

with five place accuracy. 



1,IDLIBOOD - _:u_n __ al (-0. l~) _________ _ 
l'ROJI RBPLICATBS OP POPULATI8N8 OP IIZB JI • (6 DBCIMAL PLACB8) 

M-2 M-& Jla6 X-10 X-20 
. o_.o s 2 35_7 __ _O • 0 5 O 2 Q-7__ _ 0, 0 4 6 9 1-2---- _ __ __o_._o_ _4_5-3 _ _7_z_ o.o 4 4 6 '1 2 

5 2 3 5 7 50261 47870 48369 54405 
5 2 3 5 7 51440 50944 49136 54462_ 
5235'1 53617 5 :l 2 'l 6 snso'.Z 5 6 :l 3 6 · 
52357 54037 51850 5 0 7 6 3 57033 
5 2 3 5 7 54318 52700 5 0 8 6 3 5 7 2 6' 7 
52494 __ 54479 52'Z37 5 2 2 Q_'J__________ 5 7 6 5 9 
52494 54667 53152 5 2 9 4 5 57931 
52540 54784 54960 5 3 9 1 4 58400 
53262 55050 55360 5 4 :l 2 ':2 5 B 9 2 ::l 
53262 55737 55947 54147 5 8 9 9 9 ... .. 
53474 56305 56076 5 4 6 5 5 59432 

__5__4 4 4 3 56324 ' 56352 55334 52458 
55234 57682 56467 57421 5 9 5 3 5 
55448 57911 56630 5 7 9 5 7 59963 
56267 572~Q 5629~ 5 B Q 8 6 6Q50Q 
58444 57986 57083 58293 60709 
58444 58609 57102 59183 60761 
58444 58232 57172 60225 61:340 
58444 59067 57343 6 0 9 1 2 61872 
58444 59854 57828 61571 63529 
58444 Q06~5 57662 61727 63532 
59444 61436 58178 6 19 0 2 6 3 6 :] 2 
59601 61464 58211 6 19 7 3 63752 
6 0 39 8 62211 58359 62206 64301 I 6 0 39 8 62431 59299 62310 6 4 3 9 2 
6 0 39 8 62512 59327 6 2 4 0 8 64400 
6 0 39 8 64429 59492 6 2 6 5 3 6 4 4 8 4 • 



M-.2 M-4 Ma6 M-10 M-20 
--- ---- -- -· ··- --·-·--- - ----- ·-

0.062047 0.064658 0.059519 o.o 6 3 3 4 5 0.06459 6 
62047 64788 59853 6 4 0 2 4 6 4' 9 3 9 
620~7 65569 60007 64228 65102 
62272 65798 60639 6 4 5 5 5 66450 
62272 65842 61101 6 4 9 81 66717 
6 __ 2_3_4 8_ 66609 61751 -- ___ 6 5 1 2 8 66829 
63668 66888 61807 65518 66838 
63668 67405 62821 6 5 7 0 9 67020 
64266 67902 63479 65819 67207 
6 4 39 0 68273 63891 66093 67542 
6 4 39 0 68286 63923 66158 675G5 
66120 68588 64112 66175 67567 -----------· 
66120 68609 65236 66229 67592 
66120 68861 65332 66368 67737 
66120 69463 65342 66421 67878 
66120 69754 67075 6 6 6 9 8 68067 t 66120 69754 67253 6 6 9 6 8 68078 
6 6 39 1 69884 67322 67132 6f3979 I 
66482 70856 67924 67294 69062 
68083 ? 1 6 4 6 67954 6 7 9 2 3 6 9 O 9 1 
6 8 6 61 72401 68236 6 8 9 1 7 69320 
68661 72902 682S6 69281 69948 
69557 73033 68948 70400 70078 toi 
69557 73096 69026 70661 7·0 2 :J 0 
7 0 7 61 73292 69323 70843 70381 .... 
70761 73452 69758 71019 70459 CD 

7 0 7 61 73614 70370 71164 70669 .... 
7 0 7 61 73688 70372 71459 70920 -7 0 7 61 73904 71298 71641 7 0 9 9 9 n 

0 
7 0 7 61 73962 71315 72279 7117 5 ::, 
7 0 7 61 74282 71341 7 2 6 5 5 7 2 19 4 rt .. 
71092 74335 71851 72737 7 2 2 9 9 i 72929 74525 72009 7 2 9 7 8 72357 -



M-2 Ma4 ·Ma6 M•lO M•20 
- -· 

0.072929 o. 0 7 4 6 9 4 0.072161 0.073162 o. 0 7 2 4 9 2 
73699 75192 72311 73311 7 2 5 2 3 
7.3699 76038 726jj 7 3 2 4 1 72232 
74740 76660 72?03 7 4 6 5 5 73220 
74740 76946 73122 7 4 9 2 2 7 3 3 4 3 
7 6 0 9 5_ . --·--_.'_l_.f0)_']_Q _ -- - _ _ '1_3 1 2 9 _7 1_2 _ _6__2__ 73459 
76095 77081 73383 75115 73522 
7 6 0 9 5 77264 73690 7517? 74155 
76Q95 778 24 74653 7 5 6 Q J 74816 
76095 77998 75101 7 5 6 6 7 74910 
76095 78376 75161 7 5 6 8 B 74960 
'.Z6Q25 78523 75638 _']_5 9 3 9 74978 
76095 78648 75664 76438 75051 
76095 78652 75709 76533 75411 ' '.Z 6 5 0 5 '"l 8 :Z 8 5 '.Z 5 8 2 4 767~5 7512~ ... 
76505 78913 76294 7 6 7 61 75701 .. 
78646 7 9 19 6 76347 77244 75774 \0 

__7__2 5 3 1 7 2 Z 6 3 7657.6 7_ 7 3 Q 7 75826 I 

7 9 5 31 7 9 31 5 76779 77492 75876 
79531 79590 77432 77722 76031 
7. 2 5 31 '"{9652 77742 78129 76141 
7 9 7 6 4 79753 77862 78132 7 6 4 4 6 tool 79764 79829 78018 78221 76712 g. 
8 O 7 5 5 79986 78196 78239 76905 ... 
8 1 3 tl 3 80369 78604 78309 76933 CD 
8 138 3 80679 78952 78328 77327 .... 
8 2 22 1 sQ2os 79743 7 8 3 6 4 77373 -82291 81826 79771 78428 77756 8 82291 8 18 9 0 79810 78520 77943 
82221 82123 799':J7 7 8 7 5 7 76030 .. 
82291 82330 80327 7 8 9 91 78772 i 82291 82534 80349 7 9 4 6 4 7 9 14 7 
8 2_ 2__9_1__ 82604 80514 7 9 8 5 6 7 9 3 3 9 0-



Ma2 M-4 Ma6 M•lO M-.20 
- - ·-·--- .. ------------

0.082291 o. 0 8 2 7 4 4 o.o 8 0 5 7 9 o.o 8 0 2 8 9 o.o 7 9 8 8 5 
82806 82924 81017 80336 8 0 0 9 8 
82806 83171 81334 8 0 6 4 4 80469 
82806 83187 8 1 4 B 8 82320 80470 
82806 84693 81670 8 2 6 0 5 8 0 7 9 6 
8 2 8_0_6 85081 81924 _ --~ 2 7 2 4 8 0 9 9 4 
82980 85519 81975 8 2 7 9 0 8109 4 
83068 85544 82070 8 2 8 4 9 81164 
83156 85624 82166 8 3 3 0 5 81511 
8 5 3 31 85624 82261 8 3 4 8 3 8184 8 
8 5 3 31 8 5 8 9 4 82589 8 3 9 1 5 81862 
8 5 3 31 86211 83009 84198 81968 

--

86360 86379 83962 8 4 4 4 6 8 2 6 4 8 
86360 86404 83975 84743 82862 
86360 86253 84072 8 4 8 0 0 83216 
8 6 6 5 6 87428 84777 8 4 9 9 9 83404 .... 

Ut 
87818 87647 85088 85104 83665 0 
89570 87692 85131 85247 8 4 19 1 I 
89570 88053 85296 85283 84211 
89570 88087 85424 8 5 4 4 9 84550 
89570 88226 85650 8 6 0 8 1 84567 
89570 88261 86288 86265 84714 
89570 8 8 319 86497 8 6 3 5 8 84867 fol 
89570 88884 86668 86500 85459 I 89570 8 9 0 5 5 86716 86512 85532 .... 
89570 89237 87017 86522 85663 " 
89570 8 9 2 8 3 87116 8 7 4 8 5 85701 .... 
89570 8 9 3 7 0 87304 8 7 5 6 9 8 6 17 3 -8 9 5 7 0 89450 87429 88132 86200 n 

0 
89570 89774 88080 88199 86481 ::, 

rl' 
89570 90005 88486 88410 86559 [ 89570 90247 88738 8 8 6 4 9 86589 
89570 90910 88881 88794 87103 A -



M•2 M-4 M=-6 M•lO X-20 
----- --- -- ··- -- ···- --- ·------- - .. -- -- -· ------ ---- ---· ·---------- ---- ------- -------- - -·----·· o.o 8 9 5 7 0 o.o 9 0 9 8 0 o.o 8 9 ·o 4 6 0.088927 o.o 87170 

90454 91320 89529 8 9 0 9 5 8 7 3 2 5 
90713 9:l ~12'.Z 8 2 5 '.Z 8 B 2 5 4 2 87445 
91777 91670 89633 8 9 5 5 6 8 7 5 9 9 
93253 92906 89779 8 9 8 2 1 87728 

·---··--· .. 9.4 .. 4 .. _6._2._ ___ . 93026 90460 9 0 :l 8 8 as 2 4 o 
94462 93508 90587 90333 88373 
94462 93713 90772 90490 88522 
24462 94128 2084'.Z 2 O 6 5 3 88641 
94847 94254 90971 91192 8 8 6 5 5 
97141 95566 91297 91267 ·89060 
9 '.Z :l 4 :l 95730 21620 2 :l 5 2 5 a 2 o a 1 
97141 95853 91805 9 15 2 5 8 9 14 6 
98073 95967 92782 91705 8 9 14 7 ' 28073 2624:Z 22226 2 2 Q Q 8 821Z8 pa 98242 97411 92997 92219 8 9 8 9 7 UI 
98242 97806 93094 92292 8 9 9 4 5 .... 
98242 28257 94511 9 G 5 4 2 90167 I 
9 8 2 4 2 9 8 3 3 9 94674 93142 90309 
98242 98453 94849 93152 90312 
28242 28484 26QQ8 23459 9Q~27 
98242 98528 96093 9 3 7 8 0 90365 
9 8 2 4 2 98543 96542 9 39 4 2 90379 ... 
28242 28642 27086 941Q3 9 0 3 9 4 ;. 
98242 98845 97308 94195 90419 .... 

II 
98242 98853 97411 9 4 3 5 2 90432 .... 
28242 2 9 Z g l 9753~ 94482 90438 
98242 99671 98297 9 4 9 0 7 9 0 5 9 3 r-
9 8 2 4 2 100481 98337 95223 91042 ! 99106 100514 98527 95255 91066 
9 9 10 6 100567 98572 9 5 7 8 8 91333 .. 
99106 100815 98826 9 6 0 0 7 91367 i 2_9 106 101112 98846 96132 92040 Q, -



,, 

M-2 M=-4 M=6 M•lO Jla:20 
-·- --- . - --- . -- ··-. ---·-----·- ·-- -- ---- --·-- -- -- -· --

0.099106 0.101 7 1 4 o.o 9 9 2 2 9 o.o 9 6 6 0 3 o.o 9 2-4 4 6 
99106 101719 99483 9 6 6 5 6 92454 
291Q6 101745 99905 97239 92555 
9 9 5 4 9 101820 100302 97282 9 2 6 9 9 

104228 101876 100557 97336 92769 
__ 1 O_ 4 2_2_ 8 ___________ 101993 100795 ____ 5l 7 3 6 3 9 3 18 3 
104228 102303 100856 97744 93991 
104228 102390 100878 9 7 7 5 2 94214 
104228 102700 100880 9 8 6 6 9 9 4 8 7 2 
104228 102772 100893 98731 95047 
104741 103283 100988 9 8 9 5 9 9 5 2 8 1 
104741 103333 101283 99136 95423 
106412 103413 101563 99283 9 5 6 8 0 
106412 103413 101755 99413 95797 
106412 103474 101928 99512 96004 
106412 103537 102124 99573 96201 ... 

"' 107544 103685 102377 99598 96321 N 
107544 104197 102383 100277 9 6 3 5 1- I 
108741 104299 102542 100888 9 7 0 4 8 
108741 104331 102687 100290 97110 
108741 104442 103188 100325 97165 
108741 104514 103412 100331 97200 
108741 105204 103415 101154 9 7 2 8 6 
108741 105319 103435 101402 97339 
108741 105723 103470 101483 97415 
108741 105793 103513 101638 97725 CD 

108741 106077 103574 101973 97814 .... 
108741 106152 104017 102283 98132 -u 108741 10<5832 104184 102613 9 8 5 7 6 ! 108741 106894 104192 102793 98636 
108741 106931 104360 103490 98738 .. 
108741 107023 104365 103563 9 8 9 9 1 g 
1087_41 

--
_1_0 J_O 6 7 104715 103805 99026 A -



.Ma2 M-4 Ma6 M•lO M•20 
- ----- -- - -··---... .. - - -

0.108741 0.107225 0.104774 0,103827 0 .o 9 9 0 8 7 
108741 107274 105672 1039 88 9 9 3 7 4 
:10874:1 :10'.Z:Z:34 :l 05836 :104409 2 2 8 :l 6 
108741 107804 106115 104594 99818 
108741 107847 106380 105647 99861 
108741 .. -1....0 8 1 6_4 __________ l_O 6 4 8 4 _______ l.0._5_7A_5_ 92862 
109294 108249 107022 106454 99911 
109902 109031 107170 106630 9 9 91 8 
102202 1Q9 071 107185 107232 99966 
109902 109290 107232 1079 91 100031 
109902 109469 107591 108204 100413 
1Q2202 1Q~481 1 0 7 7 2 :Z 108642 100419 
110299 109594 108126 108800 100513 
110299 109598 108431 1089 72 100531 
113623 109635 1 Q B B '.Z 3 109014 100793 t 

114480 109849 109311 109038 100878 .... 
UI 114480 110310 109508 109201 100888 w 

... LL-6223 110707 109630 109394 100990 I 
116223 110737 109833 109545 101092 
116223 111126 110546 109914 101174 
11622~ 111331 110861 1099 67 10117 8 
116223 111406 110906 110346 101437 
116927 111415 110915 110497 101594 til3 
11622'.Z 111452 110920 110561 101706 & 
118988 112337 111322 110685 101749 .... 
118988 113701 111430 111230 102001 

t1) 

121622 11~258 111554 111485 102452 ... 
121699 114198 111832 111493 102712 ,... 

Cl 121699 114488 111961 111835 102813 0 
121699 114666 112102 112247 103019 ::, 

tt 
121699 115723 112220 112292 103488 
121699 116688 112289 112316 103560 i 121699 116E328 112578 112541 103561 P· -



M-2 M-4 M-6 M•lO M•20 
. --- -- -----~·--------

0.121699 o. 11.7 31 6 o. 11 2 .6 2 0 o. 11·26 0 4 0.103604 
123308 117490 112668 112863 103894 
1233Q8 117522 113010 112914 103983 
123 308 118220 113240 113189 104040 
123308 118262 113562 113332 104070 
1.2 3_ 3Q I3. _L18663 113691 1._J.3410 104073 
123308 118791 114014 113598 104076 
123862 119067 1141H9 113637 104344 
128094 119083 114195 114157 104493 
131301 119427 114284 114362 104710 
131301 120234 114737 115528 105141 
131301 120615 115184 115897 105325 
131301 121134 115650 iT 5 9 s 9 .. 105479 
134906 121399 115957 116543 105679 
134906 121947 116367 116674 105711 ... 138071 122066 116507 116808 105881 Ul 
138071 123048 116678 116940 105988 .. 
138071 123174 116783 117684 106037 I 

138071 123191 117010 117727 106301 
138071 123696 117178 118161 106307 
138071 123868 117535 118292 106478 
138071 124243 119505 118728 106664 
138071 124543 119590 119102 106717 1-1 
138071 124645 120212 119258 106771 t, 
138071 125270 120860 119523 106861 ... 

(D 

138071 126426 120872 119535 106874 ... 
138071 126923 1 2 2 5 ti 3 119840 106875 
1 3 8 0 7 1 127070 122564 119995 107227 n 
140388 127690 122751 120314 107423 g 
140388 127800 123397 120404 107626 rt 
140388 127912 123637 121004 . 107815 ... 

i 140388 128196 124023 121064 107933 
140388 128285 124565 121545 107988 0, 



M•2 Ma4 M-6 M•lO M•20 
-

o. 1 4 119 3 0.129 072 o. 1 4 5 6 7 0.121578 o. 1 0 8 0 0 4 
141193 129369 1~4732 121681 108119 
148090 :1 22 376 :124266 :1 2 2 :1 0 5 :108325 
150325 129543 124985 122169 108579 
150806 129916 12-51 0 7 122190 108701 
150806 ... L3___Q_j_ __ 8_2 _ ... J._2_5__2~f:L6_ ________ 12_2_9_ 9 8 1Q8877 
150806 132214 126048 123195 109013 
150806 132576 126087 124163 109233 
1508Q6 132621 126361 124651 109486 
150806 132810 1267:>6 124688 109738 
150806 133934 126799 124693 110034 
1508Q6 134082 127275 124820 110098 
150806 134239 1~7525 125357 • 110103 
150806 155143 127869 125703 110289 I 
15Q8Q6 137043 128024 126465 110312 ... 
152298 137323 128323 126577 110458 UI 
155687 137401 1283:52 127228 110621 UI 

____ LS 9 3 6 5 137626 128613 127291 110673 I 
159365 137660 128771 129112 110708 
159365 139943 129376 129183 110749 
152365 J~QQ27 122563 122611 11Q921 
159365 140199 129846 129631 111458 

to! 159365 140413 129893 130189 111578 
:1 52365 14052'.Z 13Q85Q 1.30192 111689 ... 
159365 140610 131063 130193 111935 (II 

159365 140918 131124 130258 112410 ... 
159365 1 4 1 4 6 1~1163 13Q788 112620 _.... 
159365 141520 131215 130843 112687 n 
159365 141549 131309 131498 112763 g 
159869 142522 1 3 1 3 l 7 131778 113381 ,.. .... 162865 142671 131899 132121 113405 ::s 
162865 142671 132064 132483 113482 ti 
162865 143878 1 3 2 1 :5 2 132533 113498 °' -
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164096 145950 133010 133021 114193 
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164725 147370 133261 133255 114938 
165107 147424 133263 133717 115003 

_ _:I._ 7 1__7 2_5 147672 133319 ... _____ J __ :5 ') __ 7 5 2 115217 
176980 148019 133601 133903 115488 
176980 148888 134199 134003 115493 
176980 148947 134772 134254 115661 
176980 149238 134965 134384 115703 
176980 149919 135291 134525 115709 
176980 150126 135405 134643 116010 ·-- -------
176980 150593 135586 134685 116300 
176980 150766 135848 134973 116482 • ;J,,76980 150964 136556 135049 116860 .... 187652 152052 136788 135111 117184 UI 
187652 152188 138475 135119 117629 °' 188089 152419 138536 135127 117939 ' 188089 153055 138708 135144 117974 
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195728 166754 149853 138328 122196 
197397 167057 150049 139205 122505 
2021:12 :167364 150806 132283 122545 
209119 167577 151830 139405 122847 
213850 168273 151993 139418 123246 I 
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::s 
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2___2_8 71 4 176020 162626 147335 130560 !L -. 
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2-j e s 16 1 7 9 5 6 4 1 6 7 3 2 8 I-s-11 8 6 1 3 2 5 7 6 
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262785 182839 170739 155698 134781 
269381 182839 171309 155885 135389 l 
269381 185544 173319 156117 135765 
269381 187086 173410 156147 136149 m 
269381 187091 174722 156326 136489 
269381 187307 1748~5 156554 137599 
269381 187864 178677 157572 137620 
287185 188402 179176 157981 137995 
287185 188562 179749 158887 138105 
289898 189240 180387 159156 138343 
289898 190702 181304 160363 138377 i 
289898 195839 182348 160757 139100 @ 
289898 196664 183441 161594 139188 
289898 197731 183932 161966 139532 
289898 199182 184340 162837 139745 0 
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309017 241250 227900 181159 154290 g. .... 309017 244245 229237 182709 154524 
309017 244605 231973 184208 154811 .... 
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390388 266799 238973 188821 157396 16 
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APPENDIX III 

(I - P )-l For M • 2, 4 1 6 1 10, 20 
A 

The following matrices of order M x M are the inverses 

of (I - P6 ) where I is the identity matrix and P6 is 

the matrix P (4.1.2) where the first row and first colmnn 

of P are deleted. All values below the main diagonal are 

the same as the diagonal element, hence the triangular 

presentation. Given an initial state k these matrices 

provide us with the expected value of the total number of 

times state i is entered e(ni) before absorption occurs. 

For example, for the case where the initial state is k = M 

and M • 2 then 

and 

which are the diagonal elements of the matrix array. The 

total length of chain to absorption is about 18+ 3.6+ 1 ::: 23. 

The value one allows for the transition from state 1 to 

state 0. 
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The matrix (I - P6 )-l can be used to find e(n1) 

only when the chain is considered until absorption. For n 

finite, not a random variable, then the method of Hahn 

polynomials (4.1.32) must be utilized. For a further dis-

cussion on (I - P )-l see Kemeny and Snell (1960). 
6 
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MATRICES 

colum.ri 1 

[3.636364 

column 1 2 

5.161290 3.167155 

6.803518 

2 

8.181818] 

18.181818 

3 

2.923528 

4 

4.933453 

6.280171 10.597788 

10.382735 17.520864 

27.520863 
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column 1 2 3 4 5 6 

7.058823 3.781513 2. 750191 2.320471 2.227656 2.784569 

8.067227 5.867073 4.950338 4.752332 5.940414 

9.503436 8.018516 7.697787 9.622233 

11.768511 11.297789 14.122235 

16.097796 20.122244 

30.122242 
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M • 10 

column 1 2 3 4 5 

10.989009 5.427498 3.568765 2.634753 2.069479 

11.525060 7.578121 5.594785 4.394449 

12.144331 8.965931 7.042332 

12.872181 10.110514 

13.746877 

6 7 8 9 10 

1.687075 1.406981 1.187140 0.999697 0.809755 

3.582431 2.987665 2.520842 2.122814 1.719479 

5.741031 4.787887 4.039780 3.401920 2.755555 

8.242266 6.873859 5. 799818 4.884058 3.956086 

11.206693 9.346122 7.885790 6.640666 5.378939 

14.829881 12.367777 10.435311 8.787630 7.117980 

16.228781 13.693033 11.530975 9 340089 

18.157318 15.290373 12.385202 

21.138326 17.122043 

27.122042 



- 168 -

M • 20 

column 1 2 3 4 5 

20.942404 9.838325 6.141844 4.297418 3.193952 

20.827343 13.002043 9.097465 6.761471 

20. 709171 14.490105 10.769422 

20.587669 15.301287 

20.462578 

6 7 8 9 10 

2.461093 1.940132 1.551726 1.251813 1.013969 

5.210038 4.107183 3.284945 2.650039 2.146532 

8.298356 6.541769 5.232138 4.220885 3.418917 

11.790375 9.294603 7.433867 5.997069 4.857627 

15.767397 12.429772 9.941391 8.019946 6.496157 

20.333607 16.029413 12.820040 10.342508 8.377433 

20.200423 16.156395 13.033731 10.557322 

20.062644 16.184991 13.109844 

19.919819 16.135055 

19.771419 
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M • 20 

column 11 12 13 14 15 

0,821397 0.662921 0.530828 0.419641 0.325383 

1,738865 1.403377 1.123742 0.888364 0.688824 

2.769599 2.235248 L 789855 1.414953 1.097133 

3.935071 3.175859 2.543042 2.010378 1.558816 

5.262413 4.247110 3.400838 2.688499 2.084621 

6.786399 5.477067 4.385714 3.467085 2.688324 

8.552286 6.902253 5.526920 4.369254 3.387853 

10.620035 8.571061 6.863204 5.425641 4.206959 

13.070701 10.548908 8.446949 6.677655 5.177751 

16.016451 12.926321 10.350641 8.182601 6.344664 

19.616810 15.832047 12.677377 10.021979 7.770889 

19.455235 15.578614 12.315525 9.549269 

19.285752 15.246168 11.821645 

19.107170 14.815407 

18.917972 
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M = 20 

column 16 17 18 19 20 

0.245127 0.176712 0.118583 0.006973 0.002981 

0.518924 0.374093 0.251036 0.147615 0.006311 

0.826523 0.595841 0.399841 0.235115 0.100512 

1. 174331 0.846577 0.568098 0.334054 0.142808 

1.570446 1.132136 0.759723 0.446734 0.190979 

2.025244 1.460001 0.979737 0.576107 0.246286 

2.552233 1.839907 1.234675 0.726016 0.310372 

3.169305 2.284755 l. 533191 0.901548 0.385413 

3.900649 2.811982 1.886988 1.109590 0.474349 

4.779741 3.445720 2.312259 1.359659 0.581254 

5.854185 4.220289 2.832036 1.665299 0.711915 

7.193924 5.186108 3.480152 2.046405 0.874838 

8.905814 6.420212 4.308299 2.533375 1.083018 

11.161160 8.046093 5.399351 3.174937 1.357285 

14.251819 10.274152 6.894497 4.054115 1.733134 

18.716105 13.492462 9.054151 5.324038 2.276026 

18.498718 12.413614 7.299476 3.120526 

18.261566 10.738200 4.590580 

17.997728 7.694029 

17.694029 



ABSTRACT 

This Dissertation deals with statistical inference on 

the mutation rates a1 and a 2 of a population genetic model 

introduced by Moran [Proc. Camb. Phil. !2£.. 54 (1958), 

pp. 60-71]. The deductive theory by approximate methods of 

such models has reached an advanced stage but little has 

been done along the line of statistical inference. Moran's 

model is a model of the Markov chain type. It was selected 

for investigation because it is the only finite population 

genetic model for which the cteductive theory by exact methods 

is well enough established to stimulate an investigation of 

statistical inference. 

The first broad area of discussion of this dissertation 

deals with the simultaneous consideration of the mutation 

rates a1 and a2 • Maximum likelihood estimates for a1 and 

a2 are obtained iteratively from the Newton-Raphson scheme 

for simultaneous solution of two equations in two unknowns. 

Several theorems are given which ensure that the log likeli-

hood function involving a1 and a~ has a unique maximum in 

the parameter space of useful values. 



The transition matrix consists of conditional probability 

elements involving the unknown parameters a 1 and a 2 • These 

elements are the probability of a transition fran one state 

to another in at most unit steps. The eigenvalue expression 

along with the corresponding pre- and post-eigenvector 

matrices are given. The post-eigenvector matrix has elements 

consisting of Hahn polynomials. The pre-eigenvector matrix 

is obtained by inverting the post-eigenvector matrix for 

which an expression is given. The Hahn polynomials form a 

family of orthogonal polynanials. They were introduced by 

Hahn [Math. Nach. l, (1949), pp. 4-34], and further discussed 

by Karlin and McGregor [Scripta Math,~ (1961), pp. 33-46]. 

These polynomials form the foundation and are basic to many 

of the results of the dissertation. The expression for the 

expected value of the number of transitions from one state 

to another is given and this expression is also in terms of 

Hahn polynomials. 

Finally for this positively regular transition matrix 

involving both of the mutation rates a 1 and a 2 , asymptotic 

multivariate normality of the maximum likelihood estimates 
Ao Ao a 1 , a 2 is discussed along with hypothesis testing. Also 



aiscussed are large sample approximations., methods of design-

ing and co:i:1ducting experiments and replicated experiments. 

The second broad area of this dissertation deals with 

an absorbing Markov chain. That is., a 2 is set equal to 

zero and investigation on a1 only is carried out. For 

this case the above transition matrix becomes an absorbing 

one (regular) and inferences are obtained from realizations 

on this absorbing chain whose peculiarities provide some 

unique difficulties. The eigenvalue expression with the 

corresponding post-eigenvector matrix whose elements are also 

Hahn polynomials and the expression (in terms of Hahn poly-

nomials) for the expected number of transitions from one 

state to another are all given. 

Of particular interest are several postulated theorems 

on the maxuaum likelihood estimate of the mutation rate 

a1 of the absorbing Markov chain in which an attempt is 

made at establishing the properties and normality of 

The estimate is again obtained iteratively. An outline of 

the proofs of the postulated theorems is presented. Gaps in 

the proof are a result of unresolveu questions in positive 

regular Markov chain theory. 



In connection with the above theory and postulated 

theorems a simulation study on the IBM 650 was undertaken. 

This study substantiated many of the assumptions of the 

postulated theorems. The study1 however 1 was not extensive 

enough to be conclusive. A further study is proposed. 

Replicated experiments are also discussed. Of particular 

interest here is a geometric type stopping rule in which the 

negative binomial is employed. Methods of conducting and 

designing experiments are discussed. 

An appendix discusses the Hahn polynomial system along 

with many of its important properties. 
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