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I. INTRODUCTION AND SUMMARY

In this thesis, methods of designing experiments and the
interpretation of their results will be investigated in con-
nection with a population genetic model introduced by Moran
(1958) . The deductive theory by approximate methods of such
models has reached an advanced stage, but very little has
been done along the line of statistical inference. Moran's
model is a model of the Markov chain type. A significaat
amount of the work in this thesis deals with a Markov chain
of the absorbing type. In particular, statistical inference
for absorbing Markov chains is virtually non-existent. We
quote Billingsley (196la) "A systematic investigation of
inference in such cases would be valuable." 8Snell (persoanal
communication) states, "My own feeling is that the really
useful things in this area have yet to be studied." Thus it
is evident that more research in this field is needed and
that a broad vista of investigation is available. In Moran's
model the most severe assumption is that the number of indi-
viduals in the population at any time is a constant (usually
denoted by M). Though this restriction may have an un-

appealing tone, Moran's model was selected for investigation



because it is the only finite population genetic model for
which the deductive theory by exact methods is well enough
established to stimulate an investigation of statistical
inference. The only reference known where the assumption of
constant population size, for this model, is dropped is an
article by Feller (1951) in which the problem is mentioned.
Feller gives the form of the diffusion equation approximating
the exact, discrete process but no attempt at solution is
made., Thus it is hoped that this thesis will be a step
towards the opening of a virtually uninvestigated field of
statistical inference in population genetic models and that
it will serve to illustrate the area of deductive theory
needed to handle inference problems on such models.

A model in population genetics is a probability des-
cription of how genes pass from one individual (or generation)
to the next, and may include such influences as mutation,
selection, overlapping or non-overlapping generations and
non-random mating. A brief description of these concepts
follows., We shall, in this thesis, be primarily concerned
with the influence of mutation.

The genetic factor with which we are concerned is of the

simplest type. We assume it to be controlled by a single
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locus on a chromosome, at which either of two alleles "a" or

A can occur. Clearly an allele is an alternative member of

a pair of genes. The genotypes (genetic constitution;
phenotype refers to physical description) will be haploiaq,

that is, "a" or A as opposed to diploid individuals, aa ,
Aa, or AA. Haploidy is not an uncommon occurrence in nature.
In the honeybee, unfertilized eggs may develop by partheno-
genesis, in which case males (drones) are produced. These
males are haploid. Haploidy is also found in wasps, ants,
salamanders, mosses, ferns and molds.

A mutation is a rare instantaneous transition from one
gene into its allele, say a - A or A - a . Same of the
designs in this thesis will involve the use of mutagents,
that is, mutation producing agents. A mutation rate in one
direction will be estimated while the reverse mutation rate
is assumed zero. This 18 a realistic and practical assump-
tion from the biological point of view. It will also be
assumed that mutations occur only among the gametes produced
by an individual, so that its own genotype remains unchanged
throughout its lifetime. Selection describes non-random in-
duced variation in the average numbers of offspring produced

by different genotypes. This variation can be caused either



directly by varying the number of gametes produced per
genotype or iadirectly by varyiang the life expectations.
Generations may be non-overlapping, that is, no mating occurs
between them (for example populations with a seasonal life
cycle) or generations may be overlapping with births and
deaths occurring one at a time. Random-mating or panmixia
means that any individual has equal probability of mating
with any other individual in the population. Non-random
mating, therefore, is the possibility of gametes or zygotes
uniting in non-random proportions to form new zygotes. An
example of non-random mating is positive assortative mating,
(likes with likes) a widely used practice in animal breeding.
The emphasis in this thesis is statistical inference on
the mutation rates a4 and a, of Moran's (1958) model, a
population genetic model of the Markov chain type. 1In
Chapter II an introduction to Markov chains is given along
with a review of known theorems for statistical inference in
Markov processes with special reference to maximum likelihood
estimation procedures. Chapter III deals with the situation

where both mutation rates are estimated. Methods of con-

ducting experiments and interpretation of results are



discussed. Chapter IV deals with the extremely important
area of absorbing Markov chains. In this chapter one muta-
tion rate al is discussed. Several theorems are postulated
for the distribution and properties of the maximum likelihood

estimate of this single mutation rate o Methods of con-

1’
ducting experiments and some illustrative examples are
presented, Of special interest are results obtained by
simulation methods on the IBM 650 which are extremely
important in substantiating several of the theoretical dis-
cussions., Appendix I is a presentation and discussion of
Hahn polynomials which were the building blocksfor many of
the results of the thesis. Appendix II is a listing of

data obtained from the IBM 650 in the simulation study.

Appendix III was also used in connection with the simulation

study.



II. GENERAL DISCUSSION ON MARKOV CHAINS

2.1 A Brief Introduction to Markov Chains

Finite genetic populations, such as those discussed in
this thesis, can have only a finite number of possible
genetic states; the number of the various genotypes in the
population at any time is limited to being a non-negative
integer, and cannot exceed the total population size, A
population genetic model can be described by postulating the
probabilities that a given state will change to another
state during a birth-death event. If the population states
are ordered according to some convention, the probabilities
can be tabulated as a matrix array called a "transition
matrix"” and the successive states form a (first order)
"Markov chain" because the transition matrix is assumed to
depend on the immediately preceding state only. Given the
initial state, one can write down the probabilities that the
population is in the various states at any subsequent time.
A discussion of the above terms follows.

An r-th order Markov chain {x(t)) satisfies the fol=-

lowing condition:
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Prix(t) | x=(t-1), x(t-2), ..., x(t-r), x(t-r-1), ...]

= Prix(t) | x(t-1), ..., x(t-r)] ,

that is, the distribution of x(t) conditional on the whole
previous history is the same as the distribution given only
the r previous states. As a special case, a first order
Markov chain is one for which the distribution is affected
by the immediately preceding state only, and we write

Pyy = Pr(x(t) = j | x(t=-1) = 1] . (2.1.1)

In this thesis, we shall be using only first order Markov
chains with transition probabilities pij independent of
time, and shall refer to these as "Markov chains" without
further qualification. We shall assume that changes of
state can only occur at integer times t = 2, 3, ..., and
the possible states are the integer values,
i, j=0,1, 2, ..., M. Although somewhat unconventional
in stochastic processes we take t = 1 as initial time, and
the initial state x(1) 1is assumed fixed and known.

The conditional probability Pij is called the proba-
bility of transition from the state 1 to the state j and

P = (pij) the matrix of transition probabilities,



P = . . (2.1.2)

Pmo Pum

-
Clearly P is a square matrix of order M + 1 with non-

negative elements, since Py 20 for all i and j . Row

M
sums are unity, i.e., z Py, = 1 for all i . P is
j=0 *

simply called the transition matrix.*
We state here that the convention for noting element

positions in a square matrix of order M + 1 in this thesis

is as follows:

r

1,0 1,1 1,2 . 1,M
. . (2.1.3)

*A. A, Markov (1856-1922), Russian mathematician, arrived
at the notion of Markov chains when he examined the alter-
nation of vowels and consonants in Pushkin's poem "Onegin',



2.2 Some General Notation and Terminoloqy

(a) Discussion. A state in a Markov chain is an
absorbing state if it is impossible to leave it. A Markov
chain is absorbing if (1) it has at least one absorbing
state, and (2) from every state it is possible to go to an
absorbing state (not necessarily in one step). For example
in Chapter IV the model discussed is one in which state 0
is absorbing and the remaining states 1, 2, ..., M are
non-absorbing (transient). Therefore,

Poo =1

and
pOj =0 , J=1, 2, «0ey M.,

In this thesis Feller's (1957) definition of a transient
state will be used. Feller defines a transient state as one
for which the probability that the state is visited at least
twice is less than one. Broadly speaking this means that it
is not certain that a transient state be visited infinitely
often. Note that in an absorbing Markov chain we can speak
of transient states and non-absorbing states as one and the

same., However, in general transient does not imply non-

absorbing.
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(b) Theorem 2.2.1. In an absorbing Markov chain the
probability that the process will be absorbed is one,
[Kemeny, Mirkil, Snell, Thompson, (1959)]

(c) A Markov chain is ergodic if the probability dis-
tributions {P_.(n)} , ([P.(n) = 2 P(1l)p .(néa always con-

J J ii ij
verge to a limiting distribution {Pj} which is independent
of the initial distribution {Pj(l)} . That is, when

lim P (n) =P, (j =1, 2 ...) .
n-co J J

By stationary probability for state i we mean the
probability that the model is in state 1 1irrespective of
the initial state k , after many generations have elapsed.

We shall say the process is positively regular iff the
transition matrix to the power t, Pt, for some finite t,
has all positive (non-zero) elements. The process is called
regular if Pt for same finite t has at least one row
with all non-zero elements.

(d) Known Results. Extending (2.1.1), we write

(t)

Pij = Prix(t+r) = j | x(t) = 1] , (2.2.1)

t=0,1, 2 ... ; =1, 2 ...

for the t-step transition probabilities. Then, if P

(2.1.2) is the matrix of elements pij s the elements of
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Pt are the t-step transition probabilities, that is

(t)
Py .

Let RJ be the j-th eigenvalue of P and ‘gj (gﬁ
denotes a column vector, 53 the corresponding row vector)

the corresponding post-eigenvector. Then

P_lsj = kj'lsj s j = 0, l, se ey M: (2.2.2)

that is, PK = KDA where K 1is a matrix of eigenvectors,
K = (50,'51, ooy KM) and DA is a diagonal matrix whose
elements are the eigenvalues Aj . The columns of K are

the post-eigenvectors, the rows of K-l are the pre-

eigenvectors and we have P = I<D)‘K‘-l or more generally

P = KD K » t = l, 2’ LI . (202.3)

These results are basic and are used widely throughout

the thesis.

2.3 Some Markov Chain Theorems

The following discussion is taken fraom Billingsley
(1961). For convenience, as much as possible of his dis-
cussion will be in the notation and wording of this thesis.
Moreover, theorems and conditions will be numbered following
the convention of this thesis where numbers in parentheses

will be those used by Billingsley.
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We now establish some notation. Given a set of tran-

sition probabilities (o) , which depend on unknown

Py

parameters ¢ g M. where JL 1is the parameter space and

a = (al, a veey ar) is a vector of parameters, then the

2’
likelihood function can be written

n, .
L(a) = | pijiJ(a) , (2.3.1)

where nij is the number of times the transition from state

i to state j occurred. The log-likelihood is then

log L(a) = 3 n log pij(a) . (2.3.2)

ij
The maximum likelihood equations become

Tn dp, .(a)
= 109 L(a) = JoA— il .,

aau pij(a) Bau

, (2.3.3)

u'l, 2, ..', r L]

For large n (n is the length of the observed chain; a
realization of the chain) we can write the r x r symmetric

information matrix as

02 1og L{a
I" - &( 3a  da ) . (2.3.4)
u v

Condition 2.3.1 (Condition 5.1). The set D of pairs

(i, j) , for which the transition probabilities pij(a) > 0,
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is by assumption independent of a g.n . Each pij(a) has
continuous partial derivatives of third order throughout n .

Moreover the 4d x r matrix

(apij(a)/aau) (i: j)eD , u=1, ..., r,

(d being the number of elements in D) has rank r through-
out . . For each a g {1l there is only one ergodic set and
there are no transient states., See section 2.2a,c for a
discussion of the terms transient and ergodic.,

This condition implies that I:(2.3.4) is non-singular.
It further implies the following two theorems.

Theorem 2.3.1 (Theorem 2.1). Suppose that Condition
2.3.1 holds. Then there exists a sequence (&} of random
vectors in {1 , each being a function 3::3(x(1),....,x(n))
of the observations, such that a converges in probability
to the true ol and such that & 4is a solution of (2.3.3)
with probability going to one as n - o . Thus there is a
congistent maximum likelihood estimator of ao + Moreover
@ is a local maximum of (2.3.2) with probability going to
one., Finally, if @ is a second consistent solution of
(2.3.3) then the probability that G = g goes to one as

1 - 0 .



This theorem [as Billingsley notes] does not take into
account certain difficulties which may arise, The conditions
imposed on the transition probabilities are local in char-
acter and so hence are the results which follow from them,

In summary fashion then the theorem states that if Nb is

a small neighborhood of ao and if n 1s large, there is,
with high probability, exactly one solution 4 of (2.3.3)
in Nb and log(&) Z_log(a) for any o € Nb . Now there
may be other solutions of (2.3.3) far removed from ao ; the
theorem provides no means of choosing the solution which is
near ao . Further, the solution & need not be an absolute
maximum of log L(c) . Even so, it is convenient to call a
the maximum likelihood estimator of ao and to write

log L(G) as though it were an absolute maximum. In
Chapter III where the model to which this theorem applies is
discussed, it is shown that the above difficulties can be
avoided. For the model discussed there the solution of
(2.3.3) provides the unique maximum of log L(a) under

some general conditions.

The next theorem provides us with the tools for statis-

tical inference. If the vector & is a consistent solution
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of the maximum likelihood equations (2.3.3), let
£(n) = (El(n), cosy Br(n)) be the random vector with com-
ponents

A 0
;eu(n) = (au -~ au) s u = 1, 2, ceey r . (203.5)

Theorem 2.3.2 (Theorem 2.2). Suppose that Condition
2.3.1 holds. If the vector ao is the true value of the
parameters and & is a consistent solution of the maximum

likelihood equations (2.3.3), then for n - @

£(n) 4 N0, T -1 (2.3.6)
That is, for n - oo £(n) is asymptotically multivariate
normal with mean zero and variance-covariance matrix I:-l
(2.3.4).

For general interest we might mention the following.

The above theorems provide us with the means of investigating
the unknown parameters on which transition probabilities may
depend. It is possible to make inferences about transition
probabilities alone. For example, we may wish to test the
hypothesis that several realizations are from the same Markov
chain. Such a test uses a X2 goodness of fit test.
Billingsley (1961) has a discussion on these goodness of fit
type tests. Problems of this sort are not investigated in

this thesis,
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III. ESTIMATION OF BOTH MUTATION RATES IN MORAN'S MODEL

3.1 e Model under Conditions of Most Biological Interest

(a) The Model. 1In this chapter the estimation of both

mutation rates, al and a2 in Moran's (1958) model will be

discussed. We postulate a, , 9 >0 and 1 - a = a, > 0.

This includes most of the cases of biological interest. The
biological analogue of this situation is the estimation of

spontaneous mutation rates in a natural population, that is,
estimating both forward and backward mutation rates. Condi-

tions other thaa a,, @, >0 and 1 - a, = a, > 0 will be

discussed briefly elsewhere in this chapter.

In Moran's model we assume a constant population size
M of haploia iandividuals "a" or A . Suppose that of the
M haploid individuals i are of type "a" where

i=0,1, 2, ..., M. The number of A individuals is then

M - 1 and the proportions of "a" and A are iMfl and

1l - iMfl respectively. Also let there be a probability al

"

of a gamete a" mutating to A and a of a gamete A

2

a" whenever such are chosen as sex gametes

mutating to
for the production of offspring. We postulate that a new

individual is formed by the random choice of a parent whose
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gamete 1is passed on, with possible mutation, to the offspring.
Thus the probability that an offspring is of type "a" is

1 -1

p, = (1 - al)m + (1 - iM )a2 (3.1.1)
and of being type A is

g, =iM o, + (1 -hH@-a) . (3.1.2)

i 1 2

We further assume that at each instant at which the state of
the model may change, one of the gametes chosen at random
dies and is replaced by a new gamete which is "a“ or A
with probabilities pi ’ qi as given above where i 1is the
number of "a"'s prior to the event. Thus the birth-death
model postulates that at each unit of time, one individual
is chosen at random to die, and is replaced by a new iandi-
vidual whose genotype is determined at random from those
existing before the death. Hence the number of individuals
of a given genotype (the state of the population) can take
any of the values 0, 1, ..., M, and can change by at most
unity during one birth-death event., The model was further
discussed by Moran (1958a).

Moran's model applies to a population in which breeding
and mortality are occurring all the time, and in which

generations overlap. Moreover it applies strictly to a
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haploid population. The transition matrix for the general
model is defined by the elements

i i i
Piggr = (1 -l = ap)y+a -]

= 1 (3.1.3)

Pyi T Piis1 T Pii-a

TP | 4
ML (L= o))y +a (1 =3
+(L-pla g+ (1-a) -]

i i _ i
Pijo1 "M u* (1 -0)Q -]

Piy = 0 if k> 4141 or k<{1i=-1,

taking into account the probabilities for birth and death
gamete types.
The square transition matrix P (2.1.2) of order M + 1

with elements (3.1.3) has a tri-diagonal form
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P = . (30104)
Pij-1Pii Piigl

Clearly there are no absorbing states provided al, a2 > 0.

Further poo =] - q2 » pOl = a2 and pMM =1 - q

PMM-l = al hold for all M.

l 2

We shall denote the numbers of times the transitions
from state i to i +1, 1 to i, and i to i-1

are observed by ai s Db and c¢ respectively. This no-

i i
tation, rather than the more general nij used in (2.3.1),
will be used throughout the thesis. In general
M M
.Z (ai + bi + ci) =n -1 and ‘Z n, =n where ny is
i=0 i=0

the total number of times state i is observed and n is

the observed length of the chain. For example, consider
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the following chain of length n = 12 where M = 4 observed

at equal time intervals,

222334332221 (3.1.5)
we have
i to i+l ai ito i ?;7 i to i-1 CL fﬁ;
nlsl
2 to 3 1 2to2 4 2to 1 1 n2 = 6
3 to 4 1 3to3 2 3 to 2 1 n3 = 4
4 to 3 1 n4 = ]
M=4 4
furthermore, z (ai + bi + ci) = 11 and X n, = 12 .
i=Q i=0

The probability for this outcome (the "likelihood") could

be written
4 2
Pa3 P34 Pap P33 Pyy P3y Pyj (3.1.6)
or in general
ai bi ci
TT P41 Piy Pysop o (3.1.7)

i

The following relationships between the ai‘s and ci's

also hold:
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a, = c, if initial state of the chain is at or
i i+l
below i , £final state is at or below
i or if initial state is above i ,
final is above 1 . (3.1.8)
a, = c,, .-1 if initial state is above 1 , f£final is
i i+l
at or below 1i .
a, = ¢ +1 1if initial state is at or below 1 ,
i i+l
final is above 1 .

(b) Procedure for Obtaining Maximum Likelihood Estimates.
In a Markov chain of the type discussed in this chapter, where
there are no absorbing states, observing a single long chain
(i.e., n - ) provides us with an "infinite" amount of
information. Thus, the standard procedure for conducting
the experiment will be to observe a single long chain and
apply the standard techniques of maximum likelihood. Clearly,
replicated experiments, that is, observing many independent
realizations of different chains is also a valid procedure.
Replications will be discussed in Section 3.3.

Using the notation (3.1.7) we write the log-likelihood

function as



Ml
log L(a ) = log L a‘ZJ log Piisl
i=0
M\ M
+ ZL b, log p,, + Z c, log p., 1 » (3.1.9)
i=0 i=l

where the upper index on the first term is M-l since no
transition of the type M to M+l 1is possible. Similarly
the lower index on the last term is 1 since a transition

0 to -1 is not possible.

Let
"""é"‘l L -"@"‘l L (3.1.10)
(pl bal o9 , (Pz aaz og ’ i
then
M-fl - ia M‘ i(M—Zi)bi
(Pl ’ia:l{ (l-al) :L+a2 (M-1) ] +{fl[12(1'a1) *ﬂbﬂ[i(afaf(l-az)(n-i) 7]
M
i‘ ic
+ (3.1.11)
&y (Lo +(1-a,)) (M-1) ]
M-1
71" (M-i)a, M-l (M-1) (M~21)Db

%2 = L Tt-a))iva, DT - 2 Fa P - DEa Fo ) (o) (=]

Mfl (M-i)c

[ia +(l-a )(M~i)] *
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Further

aml M-l i2a

3 =" | Z;[(l-a )ié (M~i) ]2
1 i=l 1 2

M
= i%(M-21)%p,

4 Z - Z -
& [12(ma) ) +(M=1) [1 (0, +0, ) #(1-0,) (M=1) ]]?

+

M

o i2¢c

+ i = ]
=l [1al+(l-a2)(M-i)]

(3.1.12)

M-1
3@2 - i(M—i)ai

o, = 4 Tamag) iva, (H-1)12

M-l i(M—2i)9(M-i)bi

[12(1-a1)+(m-i)[i(al+a2)+(1-a2)(M—i)]]2

+ ‘/.‘J
i=

1
M=-1
o :I.(M-i)ci

& [ial+(l-a2f?h—i)]2

+

d M-l (M~1)2a.

du, -~ [ i{-}o [0-a,)ito, (M-1)]%

M-1

(M-Zi)z(M-i)zbi

* {ﬁb [ia(l-al)+(M—i)[i(al+a2):(1-a2)(M.i)]]a

M?; (M’i)?f;

féi [ial+(1--a2)(m.-1)]2 1.

+



A procedure for simultansous solution of Py =P, = 0 is to
R &

apply the Newton-Raphson iterative method for two equatioas

in two unkaowas, viz,,

-1
A~ (1) ~ (0) X . _
Q, Q) d¢l/dal d¢l/aa2 N
~ (1) T |a () 7| : .
a, a, d¢2/3al d¢2/da2 ?, . ()
NN
~ (9)
=9
(3.1.13)
This method requires the inverse of one matrix. Using a
convenient first guess (to be discussed below) for al

and a2 this inverse, however, can be calculated once and

iterations performed on ? and ?, - This tactic will

result in somewhat slower convergence on al and az .

A convenient first guess for al and a2 could be
obtained by selecting the most frequently occurring transi-
tions, estimating the transition probabilities, setting these
estimates equal to the right hand side (RHS) of (3.1.3) and
solving for oy and Q. It is known (cf., for example
Bartlett 1960, p. 229).that the maximum likelihood estimate

of a transition probability where no other parameters are
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involved implicitly is given by the ratio of the number of
times the transition from state i to state j occurred to
the total number of times that state 1 was observed. For
example, in our notation the maximum likelihood estimate of

Pijy1 18

" 3

Pijs1 =05 - (3.1.14)
i

Thus (3.1.14) provides the LHS of (3.1.13). Usually it is
necessary to solve two equations simultaneously in order to
obtain first guesses for o and a, - However, if the
chain is such that the transitions M - M, M - M-1 or

0 -0, 0 -1 are observed relatively frequent, then first
guesses for ay and a2 respectively can be obtainead
straight away. (cf., 3.1.4).

(c) Uhiguenéss Theorems. Nothing has been said so far
about the existence of maximum likelihood solutions of the
Newton~Raphson system (3.1.13). For this discussion we turn
to Billingsley's (1961) results presented in Section 2.3.

In light of Condition 2.3.1, for the Markov chain dis-

cussed in this chapter, the set D exists. The set D of

integer pairs (i, j) are those of the tri-diagonal matrix



(1,])

M

where the number of elements d of D is 3M+l . Each
transition probability (3.1.3) has continuous partial
derivatives of third order. The parameter space (L 1is the
open unit square (0 < a {1, 0¢< a, < 1). This square
contains the useful values of the mutation rates (probabil-

ities) o) s O The d x 2 (r = 2) matrix

2‘
op, .
=) u=1, 2

aau has rank 2 ,

for consider p00 = 1l-Q and pMM = ]l- Q then

2 1

%Py Pggo
da doa 0 -1

1 2
A = = -1 %0,
apMM apMM
da da -1 0
A | 2




hence at least one of the 2 x 2 determinants of the d x 2
matrix does not vanish, thus the rank is 2(= r). Further
there is only one ergodic set (0, 1, ..., M} and there are
no transient states. Recall Feller's (1957) definition of a
transient state as one for which the probability that the
state is visited at least twice is less than one. This
would hold for an absorbing Markov chain, but here we have
no absorbing states and for an infinitely long chain each
state can and will be visited infinitely often. Thus there
are no transient states and Condition 2.3.1 is satisfied.
Having satisfied Condition 2.3.1 we can make use of

0

Theorems 2.3.1 and 2.3.2. If (al ) azo) are true values of

A .
1? az are the maximum

likelihood estimates, then from the above theorems we can

the parameters (al, az) and @&

state that

A 0] . -1

0 -~

that is (al -0, O, - azo) is asymptotically distributed

2

(as n » c0) as the multivariate normal with mean zero and

. -1
variance-covariaace matrix I where
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_e.a._!-.. __8_8.__].
% %

I:' 3 3 . (3.1.16)
Ly
Bal aa2

Recall that Billingsley's results were general and did
not guarantee that the solution of ¢ =0, ¢, = 0 (3.1.10)
would be unique nor that the consistent solution would cor-
respond to the absolute maximum of log L (3.1.9). The fol-
lowing discussion shows that under some general conditions
log L has a unique maximum, at the solution of the maximum
likelihood equations P10 ¢2 = 0 , and therefore an absolute
maximum of log L in .. . The solution must of necessity be
the consistent solution.

We state the following theorem.

Theorem 3.1.1l. Assume that there is at least one solu~

tion (81, a of

2)

o)
53: log L(al, 02) = 0
(3.1.17)

)
SE; log L(al, a2) = 0

within the domain JS1; further for any two different i , other
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than 4 = M/2, at least one a,, b, or ¢, > 0 then (i)

i
the solution is unique in n and also in the uait square,
(1i) it maximizes log L(al, az), and (iii) it provides the
consistent estimate for which the asymptotic aormality
expressed in (2.3.6) applies.

Proofs Following Hobson (1926, p. 213) we can write

the function log L(al, az), defined for all values of

s az lying within the domain N as
log L{a., o.) = log L(&., &.) + (a, - §,)2Lea L
09 B%, 95 °g W%y, 9 1 %) e 8., &
1 %1 T2
A~ 9 log L A 129%10oq L
+ (e, - 6 )==22 |, A +%(a-0 )22 _
2 2 6&2 J a, q, 171 Bal a5,
+ 2(a) - @) (o, - 82)%& 3.,
1 2J 1’ 72
tlo, ~a)* Ho=e " la,a | s (3.1.18)
2 1 72
N 6 ‘.A — A -A
where a = al + (al al) s O, =0, + 8(&2 az) R
A A BIQL
0<6<1. I1If &, a, is any solution of =0,
1’ 2 aal

9 log L = 0 , then (3.1.18) becomes
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PN N ~ 921 L
log L{o,, a2) = log L(al, a,) +3s[(a1~a1)a—-5§'iz—Ja

1°%
9%log L
+ 2(a -d.)(a -8 )—:—-—°—°~—-J- -
1 71772 T2 Bal Baz G, ,a,
2 9%loq L
+ (a,-a,)% =52 ja 5 1 (3.1.19)
2 1’72
A A
Let us write x for al -0, Y for a2 - a2 and
9%log L 9%log L
® for == = 5, ¢ for J-—- - and
11 aal J a,,0, 12 aal Baz a,,a,
2
? for Q_LQQEL — = . Then we would like to be able
22 Baz a,,a,

to say that for all (a;, o,) # (al, 82) , i.e., (x, y) ¥ (0, 0),

2 2
x%p,, + 2xye,, + v, <o (3.1.20)

so that from

log L(a,,a,) = log L(a,,a,)
2 2
+ 5(xPq , + 2xyg, ,+ ¥%9,,) (3.1.21)

we can write

log L(al,az) { log L(al, a (3.1.22)

2) *
From (3.1.10) and (3.1.12) we can write

M

2\

= -[ / [i%

2 - 2 2
9, & g Pt - 21)% 4+ 4 m,]]



M
Py, = L LiM-1)k, + 1(M=-2)2(M=- 1)L, + i(M=i)m ]
i=0
M
9,y = -[4510[(34- 1)%k, + (M- 21)2(M- 1)24, + (M- 1)%m,]]
where k, =a;/[(1 - a))i+a(m=-1)]2 20
Zi = bi/[ig(l-»&i)i-(n~ i)[i(&id-55%(1452XM—1)]]220
m, = c,/[18 + (1 - @) (M - 1)]? 2 0. (3.1.23)
Thus x2¢ll + 2xyp , + ya¢22 becomes
1 M
- [ Lki[ix- (M~ 1)y]2 + L £, lix- (M- i)yl2(mM- 21)2
i=0 i=0
M
+ /m [1x - (M = 1)y]2]
i=0
M
X e / - 2 ) - -
iéo[k“ (M - 21)24 +m J[ix - (M - i)y]®  (3.1.24)

where for convenience the summation is now taken from O to
M.

Now for all (x, y) ¥ (0, 0), provided that for two
different i, k, + (M - 21)2£i +m, > 0 holds, note that

ki’ zi, m, are functions of a;s bi and cy respectively



and by the assumptions of the theorem at least one of these
is > 0 , then at least one term in (3.1.24) will be strictly
negative (even allowing for ix - (M - i)y = 0 to hold for
one value of 1 ).

Thus (3.1.22) holds for all a,, a, 1in . and any

1’ 72

solution & a in n. ., Suppose now that another solution

1’ 72

%, @

Qls

say existed in n , then from (3.1.22) we would have
=z ial A A
log L(al, az) <logI.(al, a2)
and similarly, by interchanging the roles of 61, Q. with

2
1,‘65 , log L(al, 32) < log L(El, é;) which yields a

S

Qls

contradiction. Thus there can be at most one solution of
¢ =9, = 0 in n . This proves (i). (3.1.22) proves (ii).
The fact that at least one solution of ¢ =9, = 0 (inn)
must be consistent, by Theorems 2,.,3.1 and 2.3.2, ensures
that (iii) holds.

We state the following theorem taken from Kaplan (1956,
p. 126) in our notation.

Theorem 3.1.2. Let .. be a bounded domain of the

Q

a, plane. Let 1log L(al, a be defined and continuous

1 2)

in the closed region E formed of n plus its boundary.

Then log L(al, a has an absolute maximum and an absolute

2)
minimum in E,
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Corollary 3.1.3. If a0> 0, b, > 0, bM> 0, cM> 0
all hold for a particular realization, then the conclusions
of Theorem 3.1l.1 hold.

Proof: Note from (3.1.9) that

M-1
= 17
log L = log L(al,az) e a, log Piisl
i=0
M M
+ LJbi log Py + dJci log Piyo1 * (3.1.25)
i=Q i=]
From (3.1.3) when a, = o, PyM-1 ™ o,
when a, = o, Ppy = o,
when al =1, Py = o,
and when a2 =1, p00 =0 .
Thus if ays bO’ bM’ cy are all positive (3.1.25) becames

log L(al,az) = - 00 for all points on the boundary of n ,
namely of the forms (O, az), (al, 0), (1, az) or (al, 1).
Therefore log L. does not have an absolute maximum on the
boundary of n. , and Theorem 3.l1l.2 ensures that the absolute
maximum occurs within n . Of necessity, therefore, at
least one solution of P =0 = 0 exists in.n . Thus

ags bgs bys Sy > 0 implies both requirements of Theorem

3.1.1, and the proof is complete.



Corollary 3.1.4. As n (the length of chain; the
aumber of observations) increases the coaditions of Corollary
3.1.3 will hold with probability increasing to one. Heace
the coaclusions of Theorem 3.1.1 hold asymptotically with
probability one.

We have thus given a theorem and two corollaries whose
applicability can be verified after an experiment is com-
pleted, and which also can be used to design an experiment
having desirable asymptotic properties.

(d) Application of the Theorems. In order to determine
the information matrix | (3.1.16) we need to find the expec-

e

19 bi and cy which are

the random variables contained in the elements (cf., 3.1.12)

tations of the transition numbers a

of the information matrix. A discussion of these expectations

follows.
Suppose we have a chain of length n with initial

state k , where n, , a ranaom variable, is the total

number of times state 1 is observed and a bi’ c are

1’ i

as previously defined (cf., 3.1.5). Let
1l if x(t) = 1

= ’

Yy
it 0 if x(t) # 1

then
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a
n, = /vy,
i t=l it
and
n, n
élny) = /ely, ) = /, Prix(t) = 1) .
t=1 t=1

Since the initial state is x(1) = k then

(t-1)

Pr(x(t) = i) = Py 4 (the t-1 step transition proba-
3

bility, cf., Section 2.2.d), where Pr(x(l) = i) = 5k

i
E4
(the Kronecker delta) = Py i(O) (say). Then
Ed
=l n-1
N t T
C(ni) = Py i ) - (k,i) element in / P,
t=0 ’ t=Q

where P0 = I , the identity matrix.

We can find the s(ai) in a similar manner. Let



if (x(1), x(2)) = (i,i+l), this has proba-

bility Oy i Pij41

otherwise

if (x{2), x(3)) = (i,i+l), this has’ proba-

bility py; Pyyg

otherwise

if (x(j), x(j+l) = (i, i+l), this has prob-

(j-1)

ability p, Piisl

otherwise

if (x(n-1), x(n)) = (i,i+l), this has proba-

(n-2)
i Pii+1

bility pk
otherwise

y2 + ... + yn—l and

n-l

(ij-1)
p- l / p
ii+ jzi ki
n-2

5 (t)
/
Ly Pyy

= Piiq1 &

n-1
t (n—l)]

. )
[(k,i)element of / P pk,i

=P
ii+l £=0

(n'l)]

=Pyyqlelng) - py g



Similar results hold for E(bi) and e(ci) . In summary

fashion then we have

e(ni) = (k,1i) element of , P

[(k,i) element of [/, Pt]

e(a,) =
i t=0

Pii+1

‘n-l)]

[E(ni) - Py

= Piiv1

n=2 (3.1.27)

[(k,1) element of ,, P
t=0

6(bi) Piy

(n-1)
= Pii[E(ni) = Py ]

n=2

t

&(ci) = pii-l[(k’i) element of t&b P ]

(n-l)]

[S(ni) = Py,

Pii~1

Since P is the transition matrix, the elements of Pt are

the t-step transition probabilities discussed in Section 2,2d.
Before proceeding we introduce the following theorem.
Theorem 3.1.5. Transforming the transition matrix P

(3.1.4) with elements (3.1.3) by the matrix R , where R

, = (i) and R.l has the

has the typical element RiJ j



typical element (-l)i+j :

J
R-lPR has non-zero terms only in the leading and first

), i, _]'30, l, OOO,M, then

super diagonals. The i-th row is
(0,0,...,0, 1-1[————2+ 52 (1-a; -0 )],

(1- S[(l-a )~+a (1- )],0,...,0) s (3.1.28)

the quantity

A, =1 - i[—= l 2 é"‘:'3_',"(1-—05

in the diagonal position is the i-th eigenvalue of P . The
quantity in the super diagonal is the transition probability
Piis1 ° Hannan in an appendix to Moran (1958) has proved
the theorem for the case where a =a, = 0 . The above
result is a generalization to the case where both mutation
rates are present. Karlin and McGregor (1960) and Gani
(1961) have found the eigenvalues (3.1.29) by another method.
While this theorem gives an elementary way of finding the
eigenvalues, the proof is not given as the eigenvalues are
derived incidentally in Theorem 3.1l.6.

If P can be written P = KD)\K"'l (see Section 2,.24d)

where K is a matrix of eigenvectors of P and DX is the



diagonal matrix of eigenvalues Ai s Where *1 is given by
t t -1
(3.1.29), that is if P = KDA K then
&(n,) = (k,i) element in KD Kt (3.1.30)
=M
1-A

where Xk 1is the initial (starting) state of the Markov chain
and where the element in the first position (0,0 cf., 2.1.3)

of D n is 1 +1+ ... +1=n, and the other terms are

1=A
1-A

sums of geometric series,

In order to discuss the result (3.1.30) more fully we
present the following very important theorem. Fundamental
to the theorem and its proof is the use of Hahn polynomials
whose properties are discussed in Appendix I.

Theorem 3.1.6., For the matrix P (3.1.4) defined by
elements (3.1.3)

(i) The eigenvalues are

Q. +a
- 1o i[—E =1, g1,
Aj 1 J[“ir2+ M2(1 Qy az)], j=0,1,...,M .
(3.1.31)

(ii) The post-eigenvectors are the columns of the matrix

K= (Kj) Ky oo K) =0, (3.1.32)

where @ has the Hahn polynomial (9.1.2) Qj(i, a, b, M+l)



in the (i,j) position, 1i,j =0, 1, ..., M.
(Bo(o,a,b,M+l) Ql(O,a,b,M+l) cee QM(o,a,b,M+1)
Qo(l,a,b,M+l) Ql(l,a,b,M+l) cee QM(l,a,b,M+l)

Q = . .

. L]

QO(M,a,b,M+1) QM(M,a,b,M+1) R

L
—

From (9.1.9) we have

l l L ] L] L] l —1
1 Ql(l,a,b,M+l) QM(l,a,b,M+l)
Q= |, .
1 Ql(M,a,b,M+l) QM(M,a,b,M+l) .
(3.1.33)
Ma Ma
(1ii) am—=L— ], b=—=i—_ 1 ., (3.1.34)
l-al-az l-al-a2

(iv) The pre-eigenvectors are the rows of the matrix

k! =gt . (3.1.35)

Proof: Parts (ii) and (iv) of the theorem are either
true or false together; the inverse of the post-eigenvector

matrix gives the pre-vectors. It will therefore be sufficient
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to prove that (i) and (ii) are correct, [(iii) will enter
with this proof] and this is done by proving

PK KD
=\

for the particular definitions used here. Recall that DA

is the diagonal matrix of eigenvalues. Wfite gij and hij

for the typical elements of the left- and right-hand sides

respectively; then we have to show that gij = hij for

i’j ‘O’ l’ .0., M L]
Multiplying out PK = PQ we find

M

— .

g,. = / p.. Q.(k)
ij E;b ik 7j

since 0 4if |i-k| > 1.

Pix ©
Again, multiplying out KD we get

A
M
hyy = kéaok(i)kkj
= Qj(i))\j .

Equating gij and hij where Aj is given by (i), we have
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Pyy-19;(i-1) + Py;Qy(1) + Py 1419y (i+L)

al+a2 i1
= Qj(i)[l - J( vEi Jﬁz(l-al-az))]
oxr
Py3-19;U=1) = @ () (1=p, ;) + Py, 50, (i41)

Q. +Q
- 1 2 =1,
Qj(i)[J( ramdh M2 (1= “2’” .

Recall that 1 =~ thus

Pyj ®Pyi41 Y Py 0

Qj(i-l) - Qj(i)(p Qj(i+l)

Pij-1 ii-1F Pigs1) T Py

(3.1.36)

a.+a
- - oL 2 . j=1,.
Qj(i)[J( n Ma(l oy az))] .

The equality of gij and hij follows by noting that

(3.1.36) is the difference equation (9.1.4). From (9.1.4)
@, = j{(j+a+Db+ 1), and by (iii) of the theorem we
obtain for mj

.+ . 2
w, = jl lM 2 +'1-L(l-a -a,) ] ——o

Thus the RHS of (3.1.36) becomes

MZ

l-al-a2

- ijj(i) . (3.1.37)

Also from (9.1.4) B(i) = (M- i)(a + 1 + i) (recall that

the Hahn polynomial for this case uses M+ 1 rather than M)
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using the definition of "a" from (iii) then

M2
= Pii4l 1-a.-a
1792

B(i)

D(i) = i(M + 1 + b - i) and in a similar fashion it follows

M2

= D, . —_—
ii-1 1 al a2

that D(i)

Thus (3.1.36) becomes
D(1) @ (1-1) ~[B(1) + D(1)]Q (1) + B(1)Q,(i+1)

= - wJQJ(i)

which is the difference equation (9.14) and thus gij and
hij are equal for all relevant i,j . This completes the
proof of the theorem.

The theorem is not completely new. It restates the
eigenvalues found by Karlin and McGregor (1960) and Gani
(1961).

We can now write (3.1.30), using the above results, as

€(n;) = (k,i) element in QD ot (3.1.38)

=N

1-A
where k 1is the initial state aad Aj is given by (3.1.31).
The iaverse of Q can be found by use of the orthogoaality

relation (9.1.5), that is



Q DVQ = D‘5
or
ot=p .o'b. . (3.1.39)
=1 \Y
6)
D is a diagonal matrix of order M+ 1l with elements

5-1

1 in the (0,0) position

(ﬁ)r(b+l)P(u+a+l)P(u+a+b+l)(2u+a+b+1)

(3.1.40)

(M+l+g+b+u)r(a+1)r(a+b+1)r(u+b+1)P(u+l)(a+b+l)

in the (u,u) position, u=1, 2, ..., M.

DV is a diagonal matrix of order M+ 1l with elemeats

(a:v)(M;f;v)

w7 (3.1.41)

and Q' is the transpose of Q ,

Ma

Recall from (3.1.34) that a = T—=%— - 1 aad
1 2
Ma
b =m—%&— - 1. Thus (3.1.38) becomes
1 2
8(ni) = (k,1) element in in_ n D@"l Q Dv
1-A
M
= /0T 0 (1)d,, (3.1.42)
s=0

where
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Qj(i) is the Haha polynomial defined in (3.1.32)

44 is the (i,i) element of DV (3.1.41)
a is the (s,s) element of D D R
ss 1- n 5 1
1-A
that is

n for s = 0 ,

l-%;l (g)P(b+l)P(s+a+l)P(s+a+b+l)(2s+a+b+l)

M+l+a+b+s

a
88 -2 < )(a+1) ['(a+b+1) I(s+b+1l) I'(s+1) (a+b+1)

8 = l’ 2’ o ooy M .
(301043)
As n - o, a;s converges to a finite limit for
s =1,2 ..., M [(1-2"4- M) becomes 1AL - A,

cf., 3.1.30], but d,, diverges. Thus from (3.1.42)

eln) ~ 9 ()T Q, (1),

but from (9.1.9) Qo(k) = Qo(i) = 1 , and hence

6(ni) ~nd (3.1.44)

ii
asymptotically as n -» o .
From (2.2.1), Theorem 3.1.6 and (3.1.39) we can write

(n) n ,
lim p, ;" = lim [(k,i) element of QDA D_,Q DV] .

n—-00 n-00 6
(3.1.45)
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DA is the M+l diagonal matrix of eigenvalues (3.1.31).

. -1 .
ko = 1 and %l = ] - (a1+a2)m . %l is the largest non
unit eigenvalue of P . Thus for Dxn as n - 0 Wwe need
n D> M otherwise A," will not be negligible. This assumes

1

that al and az are not themselves very small. If

a, = o(i) s Oy = O(i) then a would need to be much larger

than M2 for the theory to work. With these conditions in

mind, D ST the diagonal matrix with elements Asn where

A
n 1 s =0
lim AS = (3.1.4¢)
n—00 0 s=1, 2, ..., M.,
Hence (3.1.45) becomes
M
(n) 5 n ,
lm p M o= /0 () a 1) 0 (1)d
n—00 s8=0 o}
M
a . ) ," n. s ¥
= Qo(k)(k a -l)OQO(i)d11+ LJQs(k)(K a -l)Qs(l)dii
) s=] o)
n;
=(\d _1),8, +0
6
=d;, (3.1.47)

by (9.1.9), (3.1.40) and (3.1.46). Thus dii is the

stationary probability for state 1 , that is, the proba-

bility that the model is in state i , 1irrespective of the
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initial state k , after many generations have elapsed.

Thus dii describes the behavior of the model (population)
after the stationary distribution has been attained and pro-
vides in general a measure of the effect on evolution of the
environmental influences included in the model. As a further
general remark on this model it may be of some iaterest to
note that the largest noa-unit eigenvalue of the transition
matrix P , 1is the value which governs the rate that the
population approaches its stationary distributioa. From
(3.1.31) this is A, =1 - (almz)m'l .

Interpreting (3.1.44) we see that the asymptotic values
of the expectations E(ni) are (number of observations)
times (the stationary probabilities). This is knowa from
general theory concerning positively regular Markov chains,

(cf., Bartlett, 1960). Moreover, the stationary probabilities

are, from (3.1.34) and (3.1.41)

Ma Ma
Z:Ef%a- -1+ i/l M +'z:a—%a— -1 -1
1 72 1 "2
9 - = ’
—M__
le=a. -0

i=0,1,...,M , (3.1.48)
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which was found previously by Moran (1958) using a different
approach. Moran writes his stationary probability elements
as Pi using Gamma rather than combinatorial notation. We

can write Moran's P as

(M(al+a2) Ma M(1l-c.))

~e

(3.1.49)

with suitable regrouping (3.1.48) and (3.1.49) are seen to

be equal.
4 M
It is obvious from general reasoning that ;J&(ni) =n ,
i=0
the length oi the chain, but this may also be verified from
(3.1.42),
M M M
/en) = /7 a (k)& _q (1)4,,
:L:O i 1'-26 s:o s 88 8 ii
M M
= o (x)@&_ /o (i)a.. .
gm0 s ss 1;6 s ii
From (9.1.5) note that dii = p(i) , and from (9.1.9) that
M
Qo(i) =1, thus LJQs(l)dii can be written
i=0
M
L/Qs(i)oo(i)p(l) . (3.1.50)

i=0
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Further, from (9.1.5) for s ¥ 0 (3.1.50) is zero; for s =0

it is one, thus

M
i&be(ni) = QK5 = 9y -

where from (3.1.43) 660 =n ,
Having found 8(ni) we can now find 8(ai), e(bi) and
8(ci) which we need for the information matrix [ (3.1.16).

From (3.1.27) and (3.1.47)

- (n-1)

6(ai) pii+l[8(ni) PLy ]
for n - @

€a;) ~ap %y -
Similarly (3.1.51)

(n-1)

€(b;) =p,, [&lny) = p g ] ~np,.dyy
and

glc.) =p,. [en,) =p ) cnp, . a

i 1i-1 i i 1i-1%3i °

where dii is the stationary probability given by (3.1.48).

Hence, from (3.1.3), (3.1.12) and (3.1.51) we can write

for n-> [n)>> M or n > M2 if al,azao(-:'?)]
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M-1 2 (Mo )
o) . i< (M l)dii

1 n \
(b~ 250 ) .
Bal M2 i;l{(1~al)1+a2(M-i)]

M, 12 (M-21)24

+ iéi[iZ(l-al)+(M-i){i(al+a2)+(1-q2)(M,i)]]

%‘ i’a

2 ]
ial[ial+(l-a2)(M.-~i)]

+

M:l o 2
-&(iﬁ') =-e<?-?=’“-‘) - U G
6&2 Ja M i;iﬂl-al)i+a2(n—i)]
(3.1.52)
M-1
. ) i(Mr2i)2(Mri)di£

(B (T )+ (M-1) [1(a, +a,) +(1-a)) (4=1) ]

M"'__\l 2 . -
- i=(M l)aii

(& Tlo +(ima) (D)7 ]

+

M-1

aq,z N (m-i)’dii
“8(352) ~ M?Litb[(l~al)i+a2(uri)]
M-1
o (M-21)3(M~1)23a
+ / il

(T (o) +(M-1) [ 1 +a,) +(1-a) (1)1

M-1 _iy2
: i(M-1i) dii

)= ol
1;1[1a1+(l-a2)(nr1)]

+

Finally for n s o [n)>> M or n »>> M2 |if

al,a2 = OC%)] from (3.1.15) and (3.1.52) we can write
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(al-alo, az-azo) is asymptotically multivariate

normal with mean zero and variance-covariance matrix

— ) -_ =1
) 3
ed) ek
oa oa
-1 1 2
I = . (3.10 53)
d9 9@
2 2
-8( -8(302)

el —

Suppose we wish to test

0

be al = al
a. = Q 0

2 2

against

0

Hl: al # o

0

-
X2y = &y 0’10’ ay-a 20) A Al ) »  (3.1.54)

where ] is evaluated using 81, a Reject H_ if the

2’ 0

calculated X2 (3.1.54) is greater than the tabulated X(z)

at the appropriate significance level.



3.2 Some Diffusion Theory Results

1? a2 tend to

= BZM_l where 8

Suppose that M becomes large and «

zero in such a way that o, = ﬁlM-l, a,

and B2 are fixed. Then (Moran, 1958) d

1

ii (3.1.48) is
asymptotically (as M - @) equal to

B -1 B.-1
1 2 e
ETEI:E;T x (1-x) , (3.2.1)

where x = M~ and B(B,,B,) = ['(B)T(B,)/I(B +8,) . This
is a density approximating the discrete distribution dii .
This distribution will be a good approximation as long as
Bl'> 0, Bz > 0 are not too small. If Bl and 62 are
much smaller than unity, the distribution (3.2.1) will be

U shaped., If théy are equal to unity the distribution is
uniform. When both are greater than unity, however, there
will be a mode in the distribution. This is the interesting
case, In the integrals to follow we shall require for con-
vergence that Bl and BZ both be greater than unity.

Now from (3.1.52) let us write



- 56 =

M\
i2(M-i)

9
Y
- eEg) [[(l-a ) ita, (1))

l

i2(M-21)2
[fﬁha)ﬂ%&“iw ?+H%ﬁ”%¢”]

.3
L
+ [0 +(1-a,) (#=1)] la (3.2.2)
and put x = iMfl , then (3.2.2) becomes
M
n ,> [ X l=3x{(l-x ] (3.2.3)

l=x 1=2x%(1l=-x) 4ii

i =0
ignoring the al, a, in the coefficients of d11 and
i-Mxﬂﬁ =]
further, replacing } by §x and dii by (3.2.1),
inMx=0  x=

(3.2.3) becomes

o9 1 B B, -2
Copely __—n (T 1e-3x(i-x) P2, 1 :
8(aa ) B(ﬁlaﬁz) o l-2x(l-x)x (1-x) dx = A,
0
and similarly, (3.2.4)
o9 i 1 B~ Bl
- (=) = - =2 en (7 1=3x(x) y )
3 1 -
AFTN R I = (l-x)Bl<h< =c,

B(B,B,) J, L-2x(1-x)"

where we require Bl’BZ > 1 for convergence. 1If these con-

ditions do not hold then in (3.2.3) a more careful approximation



would@ be needed, probably obtained by not ignoring the al,az
in the coefficients of dii . We further write (3.2.4) as
(l 52+l Bf&
A W[B(B =1,p,+1) - ‘)o l~2x(l—x) (1-x) dx]
(302.5)
1 B B
1 2 1
B ~ B(B yLBLBLE,) -SO T X mx) T ax]
Cl E&-l Bl+l
C ~ BTa Ay B L ) Ty U ax]
If &l and 62 are small and integers, the integrals

can be evaluated without too much difficulty directly; other-
wise, they can be evaluated numerically using, for example,
Simpson's Rule. Consider the following integral where

5182, Bzﬂl,

51 x(1-x)2dx _ . j’l x dx
o 1-2x(1-x) oy (x=%) 24

1 1 3
-2x2dx (' x~dx r 1
"3; 1-2x+2x2 T “0 L-2x42x2 — 8 ~ 4 = 01427 .
(3.2.6)
For comparison we evaluate this integral using Simpson's
Rule where the interval (0,1) is partitioned into divisions

of length']g s thus
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B B
(e l0m0 e 136 2%, 4,%22)7

Jy  I-2x(1-x) 18liotle) G+ ) ) ]

) "+ 2(d) +222) D 1y,

) 6

36,1
+ 4[5

where for our case B

1= 2, 52 = 1, thus by Simpson's Rule

1 2
2l-x)dx _ 407

'./O 1“2}{(1"‘}() :

(3.2.7)

Hence the method of Simpson's Rule gives excellent results.*

-1
Recall that al = BlM

likelihood estimates for al and a2 can be obtained in

the manner discussed in Section 3.1 (c£., 3.1.13). Using

-1
R a2 = 62M ;  maximum

®©
* Since [1 - 2x(1- x)]"l can be written Z/[Zx(lux)]J s
j=0
1 B B R ,LB 4] B+
then S'[l—2x(l-x)]-lx 2(l--x) ldx = 2;23 J X 2 (1-x) 1 dx
0 j=0 0

@

Y o0J . ,
P 2° B(P,+j+1,p,+j+l) . For P, =p, =0,

(o)

=
7

27 B(j+1,j+1) = m/2 which is believed to be a new

Jj=0

identity.
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these estimates in terms of B and 62 we can evaluate the

1
elements of the information matrix 'Iﬁ (3.2.5), and finally
we can say that
(g -B 0 B -B o) is asymptotically ( as
1 "1 "2 "2

n —» oo) multivariate normal with mean zero and variance-

covariance matrix

With the factor M2, ]:;l is of the order M2/n which
strengthens the requirement that n >> M2 . This require-
ment was discussed in detail in the last section.

In the following table we coasider alaazna . For
M=1 and M=2 the variance elements were obtained by using
(3.1.52). For the last three entries the variance elements
were obtained by using (3.2.5) where for the first of these

three B =2 and population size was M so that

o
1 "2
alsaznaa2/u 3 for the next entry Bl=52a4 with population
size 2M so that oa=2/M and for the last entry Bl~32=8
with population size 4M so that a=2/M . 1n was considered

the same for all population sizes. Column three then is the

ratio of var(&) for M=l to the other variances in Column two.
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Column four is a result of the following. For M=l sup-
pose we do an experiment long enough to get Var a= 2a/n = g2
say. This means, we need n=2a/0° observations, which
will take a time T , say. For the population of size M=],
one birth-death event corresponds to one generation. How-
ever, if the generation time is not affected by population
size, the same number of generations can be observed in time
T for the larger populations yielding an increase in the
number of individual birth-death events by a factor M .

For M=2 then we woulda get on the average n2=2n observa-
tions. Hence Var(d) = 20./1’12 = %02 for M=2 ., For

M= 2/0 we get on the average nz/a = 2n/a observations with
corresponding variance 0.20402 . 1In like manner we obtain
for M=4/ac , 8/a the values 0.300%2 and 0.37 02 res-
pectively. The values in Column four are the ratios of o2
for M=1 to the other above variances where all observations
were considered over the same time T .

For the two mutation rate case thean it appears from
Column three of the table that many observations oan a small

population M is more efficient than the same number of

observations on a large population. This implies that it is
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Table 3.2.1
Relative
Relative
M Var(a) Efficiencies Efficiencigs
(n equal) (generations
fixed)
2@‘1-&! - _2_C_t_
! a ~ n 1 1
20(140-202) 202 (1=a) 4L, | 1=G o , . .
’ n [4aa(l-a)+1] 1+a ~ 1-20 = 1 2
~ 20(14+a) .. 2a
8/a 5.874 034 o -
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more important to pass through a few states many times than
to pass through maany states a few times.

Column four and the above discussion, however, indicates
that for a fixed time T the larger the population the more
observations we get, for in a population of size M one
generation consists of M Dbirth-death events. Column four
also indicates that between population size M=2 and
M= 2/a an optimum size exists. There is, however, a
great deal of difference between M=2 and 2/a , markedly

so if a is small.
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3.3 Replicated Experiments

1? a2 were esti-

mated from data obtained by observing a single loang realiza-

In Section 3.1 the mutation rates «

tion (n -» ) of the Markov chain. Note from (3.1.44) that
for n -» 6(ni) is iandependent of the initial state k .
The discussion in this section is on replicated independent
experiments with finite n . From (3.1.42) we note that
8(ni) obtained from this Hahn polynomial expression depends
on the initial state k .

Suppose that we have R replicated independent reali-
zations of a Markov chain, that is, we have observed R
realizations of the same type Markov chain. The length of
each realization and its initial state can be the same for
each replication. In order to obtain estimates for « and

1

a2 it is not necessary that they be the same. However, in
discussing C(ni) and I&z s the information matrix for
these replicated experiments, it will be more convenient if
all realizations have the same initial state k and same
length a .

In any case estimates for al and a2 can be obtained
by using the Newton-Raphson scheme (3.1.13). In (3.1.11)
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R

-

and (3.1.12) we replace a,, bi and ¢y with Zﬁai(r) R
=

R R,

ilbi(r) and é/ci(r) respectively, where for example
r=1 r=l R

ai(r) is the value of ay in the r-th replicate and Zjai(r)
r=1

is the total aumber of times the transition from state i to
i + 1 occurred over the R replicates.

Suppose for the elements of the information matrix |
(3.1.16) we consider each realization of the same length
n (n finite) and with the same starting state %k . From

(3.1.42) with finite n ,

M
8(ni) = géb Qs(k)a;sos(i)dii (3.3.1)

which depends on the initial state k .
In taking the expectations of (3.1.12) to obtain the
elements of the information matrix I:R we proceed as

follows:



R
M-1 i2 . a (r)
do o L 24
et ~ r=
- e al) [ [(l-a j)—i%a (M-i)]2
RN
M\ i2(M-2i)2 b (r)
+ ral
[12(1-06 )+(M-i)[i(a 2)+(1-a2)(n-i)]]2
Rﬂ
n‘ i / c ()
+ el =, (3.3.2)

~J[ia +(l -a )(M—i)

where the a;s bi’ < terms have been replaced with

_& R, R
r-l r=1 r=]1

respectively. Since the initial states are the same for

R

each realization 8‘L/ai(r) = Rs(a ) . Similar expressions
r=]1

5q>l
hold for the bi and cy e Further anote that - S(Sa‘) R

99, 99,

- 80——-) and = e(sa-) follow in like fashion as (3. 3.2).
l 2

Thus for finite n the same for each realization and also
the same initial state k for all independent realizations

(3.3.2) is simply
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"L ize(a))

R /., [(1 -a )i+a (M-1) ]2

‘? 1% (-21) 2€(D )
+ [12(1-a Y+ (M-1) [1(c +oc2)+(1-oc2)(M—i)]]2
M« iae(c )
+ (3.3.4)

LT - 1
i-l[lal+(l az)(M.-i)]2

similar expressions hold for the other elements of I.R
Therefore under these conditions, the replisated experiment
has information matrix | . R] , where here ]| is the
information matrix (3.1.16) for a single replicate. We can

further write that (a is asymptotically as

-q 0 a.-c o)
1 71 72 72
R - o0 multivariate normal with mean zero and variance-

covariance matrix (IR)“1 .

Now as to the method of conducting an experiment the

following scheme is proposed. If the estimate of al say is

of more interest than a2 then the initial state k = M

should be selected (cf., 3.1.4). If o, is of more interest

than the initial state should be k = 0 . If the two param-

eters are of the same order then in the first case the

variance of al will be less thaan the variance of 32 and



similarly in the second case the variance of az will be

less than the variance of al . If both parameters are of

equal interest thea it may be best to select the neighbor-
hood %k = M/2 as the initial state in which case the
variances of 31 and 82 will be approximately equal and
lying between the two extremes mentioned above provided the
two parameters are of about the same order. For example, in
the following table we have a comparison of the variances
of al and az under different initial states for M = 2 ,
The figures are entered apart from the replication factor
R™Y . It was assumed that al = 62 = 0.1 and a = 10,
e(ni) for k = 0, 1, 2 was obtained from (3.3.1);

6(ai), 8(bi) and 8(c1) were obtained by the method of
(3.1.27). The variance elements were obtained by inverting

the matrix with elements of the form (3.3.4).
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Table 3.3.1
M= 2 q, = 62 = 0,1 ; n =10
initial state k Variance (apart from factor R-l)

Var(&l) = 0.1317

Var(az)

Q>

Var

Q>

Var

Q>

Var

Q)

Var

0.0125

0.0283

0.0283

0.0125

0.1317
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R T A ————— S ————— S S ————————  S————

Recall in Sectioa 3.1 that we postulated a,,a, > 0
and 1 - a - a, > 0 . This includes most of the cases of
biological interest. Assocliated with these coanditions and

the transition matrix P was the Hahn polynomial

Qj(i,a,b,M+l) (3.1.33) where
Maz Mal
St Taa, Tt o PEigoocl
1l 2 1 2

The stochastic process discussed in this chapter is
recoginized as the discrete time analogue of an example of a
classical birth and death process [Karlin and McGregor, 1957]

with birth rates

i1 i
vy = v(1l - M)[M(l al) + (1 M)az] (3.4.1)
and cdeath rates
i.1i i
by = DM[Mal + (1 M) (1 az)] R (3.4.2)

corresponding to a population size 1 of “a" gametes,
0 il M.
For the case discussed in this chapter, that is

a;,a, >0 and 1l - a, - a, > 0 the birth and death rates

1
(3.4.1) and (3.4.2) oppose each other, one exhibiting attrac-

tion, the other repulsion toward the same end state.
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For a,,a, >0 and 1 - a, = a, { 0 the birth and

1

death rates extend their force in the same direction. For

this case the Hahn polynomial is Qj(i,a,b,M+l) where

Ma2 Mal
am= (—*——=4+4+1) and b= - (M + 1) .
cxl-!-az 1 al+a2 1

For a,,a, > 0 and a, + 0, = 1 the birth and death
rates become linear in i rather than quadratic. The poly-
nomial in this case is the Krawtchouk polynomial, another
member of the family of orthogonal polynomials, [cf.,
Erdelyi, 1953]. For further discussion oa these conditions
see Karlin and McGregor, 1960.

Another case which we might mention, although there
obviously is no inference involved, is when a; = a, = 0
that is Moran's model without mutation. Here state M and
state O are absorbing states. The two absorbing states
correspond to fixation in homozygous populations of “a“
or A gametes. Karlin and McGregor (1960) discuss this
case using Hahn polynomials, while Wattersoa (1961) uses

Tchebichef polynomials. See Appendix I for further discus-

sion of their results.



IV. INFERENCE ON AN ABSORBING MARKOV CHAIN

4.1 Estimating Mutation Rate from a Single Chain (Theory)

(a) The Model. This chapter will be a discussion of
one of the mutation rates al of Moran's model. At first
sight this may appear to be a simpler problem than that of
the two mutation rate case discussed in Chapter III. This,
however, 1is not true, in that inferences will be obtained
from realizations of an absorbing Markov chain whose
peculiarities provide some unique difficulties.

In this section we shall discuss inference on the
mutation rate %y oo where a2 = 0 , using results found
by observing a single long Markov chain. Replicated experi-
ments will be discussed in the next section. We postulate
al >0 and 1 =- al > 0 . The case where the chain length
n 1is predetermined, that is fixed, and also the case where
n 1s a random variable determined by some sequential stop-
ping rule will be discussed. Although the results will be
general, emphasis will be placed on an experiment where the
initial state is kX = M , and stopping state will be the
absorbing state O , so that n , the chaian length, is a

random variable. By Theorem 2.2.1, for a long chain the

absorbing state will be reached with probability one.
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In most biological experiments (see for example Falconer
1949) dealing with mutation, a mutagenic agent 1s introduced
into the population under study and the effect of the agent
is measured in terms of mutation rate. Compared to the
mutagenic rate, the reverse mutation rate is negligible
and we shall assume it to be zero. Now if in Moran's model
we put a2 = 0 and obtain estimates of al we are in the

same type of situation but have a precisely defined model.

With o, = 0 the transition probabilities (3.1.3) become

2
Py = (1= 3G (o))
i, _i,._ _ 21
by, == -t-a) -2
. (4.1.1)
i i
Pyjp = Mt = (=)l
Py =0 if li-%x]>1 .

The square transition matrix P of order M+ 1 with

elements (4.1.1) has a tri-diagonal form,
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o 1 2 M-1 M
1 0 o A 0 o

1 \\\\\

2 \\\\\ \\\\\\\

Pii-1 Pis Pysa (4.1.2)

Clearly state 1 = 0 1is absorbing, the other states are

a hold for

transieat. Further, Pyme1 = %1

all M.

(d) Procedure for Maximum Likelihood Solution. Using
the notation of (3.1.7) we write the log~likelihood function

as
M-1
log L(al) log L i:bai log Piis1

M M

+ .4Jbi log Pyy + 4%y log Pij-1 (4.1.3)
i=0 i=]

See (3.1.5) for a discussion of the a, bi and o notation.

Let

w--d—-l'—?-g-g (4.1.4)

3
dal
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then
M-1 M b M c
o= i Mei)(-d) 0 i d(M-2d + ) i i®
{./ 2 / 2 y, 2
i=1 Pijq1 M i=1 P33 M i=1 Pyj-1 M
Mlola) M ib, (1-24M"")
P _
& @yt [M—i—(l—a ) (1) (1-24m71) ]
M
> i
L -
=1 [M=1i(1 al)]
al’ld (4.105)
M -
el a = i%p (1-21m71)2
o' =~[ /) T+ / — oim=1)12
& @ap® b L TN -(1-a)) (1) (12 1) ]
M i2¢c
VA - - 2 f ]
i) [(M=i(1l-0,)]

all lower indices are one, For example, for this absorbing
Markov chain where 0 is the absorbing state no transition

from state O to state 1 1s possible, and hence ao =0 .,

The maximum likelihood estimate al of « can be found

l’
iteratively by using the Newton-Raphson scneme in the fol-

lowing way,

A (0)
q>(a )
5 (1) _ 5 (0) _

1 1 o (& «»)

(4.1.6)



- 75 =

A coaveaient first guess for « could be obtainea by

1

estimating the transition probability p 1 (=al) . As

discussed in Chapter III, the maximum likelihood estimate of

o) 1 where no other parameters are involved implicitly is
c
a M
pMM-l = nM E (4.1.7)

so that a first guess for al is readily available.
Convergence occurs when ¢(al) = 0 . A discussion of

this system follows.

(c) Uniqueness Theorems. Theorem 4.1.1. There is only
one solution (at most) of @(61)=‘O (4.1.5) in (0 < al {1).

Proof: From (4.1.5) ~-¢'» O in (0,1), and hence ¢
is monotonic decreasinyg and the theorem is immediate.

¢ must appear as one of the followiag

(4.1.8)
? ? P
' \
0\ 1 oy 0 \ 1 al 0 1 al
no root one root a, in (0,1) no root

1
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The first and third possibilities correspond to the likeli-

hood being a maximum in (0,1) at a, = 0,1 respectively.

1
Note that the theorem does not say that a root exists. It
does say that if there is a solution in (0,1) then there is
only one sgolution in this interval.

Theorem 4,.,1.2. For a given realization of length n ,
if ¢y > 0, and either bM‘> 0 or one a, > 0, then

there is exactly one root of @(al) =0 in (0,1) .

Proof: From (4.1.5)

;«1 Mo iy (1—2m‘1)
lim (p(a ) = . -a, + ) T
a0 ! [Mii(l 2iM-I)]
p_‘l‘ici
+ /.') —— . (4.1.9)
oMt

The first two terms of (4.1.9) are finite while the last

term is +00 since by the assumptions of the theorem c_ > O.

M
Similarly, M:;
_ “ b, (1-24M Mic
i gty - - A, 2D ey
alal i=]1 i=]
(4.1.10)

The first term is -co if at least one a, > 0 ; the last

term is finite. The middle term is finite or -m if bM‘> 0.
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Thus uander the conditions of the theorem ¢(0) = +o0 ,
p(1) = -0 and there is exactly one root of @(al) = 0
in (0,1).

Corollary 4.1.3. If the initial state is kX = M and
a sequential stopping rule is employed such that 0 (the
absorbing state) is the stopping state and ij> 0 or at
least one a, > 0, then there is exactly one root of
m(&l) = 0 in (0,1) with probability one.

Proof: The sequential rule implies CM‘> 0 . The
result follows from the proof of Theorem 4.1.2, anoting that
with probability 1 (cf., Theorem 2.2.1) none of the
transition aumbers a;, bi’ or c, in (4.1.92) or (4.1.10)
become <400 .

The following table shows the number of experiments out
of 500 realizations obtained by simulation methods on the
IBM 650 for each of the populations M = 2, 4, 6, 10, 20,

a, = 0.1, which did not satisfy the conditions of Theorem

1

4.1.2. That is, bM and all a, were zero.
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Table 4.1.1
M no. of experiments out of 500 not
satisfying Theorem 4.1.2
16
2
2
10 0
20 0

Clearly the theorem applies in an overwhelming proportion of
realizations. For example the 16 experiments for M = 2
were of the type 2.1 ... 1.0 that is, the initial state
was k = M =2 , then the next transition was to state 1
followed by a finite number of transitions 1 to 1 , and
then to the absorbing state O . For this situation the ¢
function is l/(l+al) + l/a1 which never crosses the o
axis. For a further extensive discussion of this simulation
study see the latter part of this chapter.

Before discussing expectations of the transition num-
bers ajs b, and c which we shall need in taking the

i i
expectation of ¢' (4.1.5), we present the following theorem.

(d) Application of the Theorems. Theorem 4.1.4.
Transforming the transition matrix P with elements

(4.1.1) by the matrix R , where R has the
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typical element R, 6 = (?) and R-l has the typical element

ij

i+J(i), i,j=0, 1, ..., M, then R.lPR has non~-zero

(-1)

terms only ia the leading and first super diagonals. The

i-th row is

a

j- i i
(0,...,0 1-1[-% =l o)1, (1=39) (1-0,) (5),0,...,0)
(4.1.11)
the quantity
% i1
A, = 1= dlg + SE-e))] (4.1.12)

in the diagonal position 1is the i-th eigenvalue of P .
The quantity in the super diagonal is the transition
probability pii+l . For further discussion on this theorem
see Theorem 3.1.6.

Since P 1s the transition matrix, the elements of Pt

are the t-step transition probabilities discussed in Section

2,2, If P can be written P = KD K-l s Wwhere K 1is the

A
matrix of eigeanvectors aad DX is the matrix of eigenvalues
t t 1 ,
n=1
) t,. ~1
€(n,)= (k,1i) element in K( ,/ D, )K
i ~ TN
t=0
= (k,i) element in K D n K-l , (4.1.13)
=N

1-A
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(cf., 3.1.27, 3.1.30), where the (0,0) element of D is
=M
1-2A

l1+1+ ... +1=mn, and the other terms are sums of
geometric series.

In order to discuss the result (4.1.13) more fully we
present the following theorem. Fundamental to the theorem
and its proof is the use of Hahn polynomials which are
discussed in Appendix I.

Theorem 4.1.5. For the matrix P defined by elements
(4.1.1)

(i) The eigenvalues are

%j = ]~ J[—~+1—*(l - )J, j=0,1,...,M . (4.1.14)

(ii) The post-eigenvectors are the columns of the matrix

K= (K, K, «.op K) =00 (4.1.15)

where

1 , (4.1.16)
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and Q has the Hahn polynomial (cf., Appendix I)

Qj_l(i-l,o,b,M) in the (i,j) position, 1i,j = 0,1,...,M .

5_1(—1,0,1:,:49 Q(-1,0,b,M) @ (-1,0,b,M) ... Q, ,(-1,0,b,M)

Q,(0,0,b,M) 0,(0,0,b,M) 0 (0,0,b,M) ... Q ,(0,0,b,M)

Q = . . . .

L] L] . LI ) .

L] . . L]

0_,(+-1,0b,) O (4-1,0,b,M) Q,(M-1,0,b,M) ... Q, ,(M-1,0,b,M)
- —

From (9.1.8) and (9.1.9) we have

1 0 0 0 o o e 0
0 1 1 1 1l
0 1 0(L,0,b,M) 0,(1,0,b,M) . Q1 (1:0,0,M)
@=]0 1 02,0bM 0(20bM . 9 (2,0DbM
_O 1 Q,(M-1,0,b,M Q,(M-L0,b,M¥ « .. QM_lm-l,O,b,ML
(4.1.17)
Ma
(iii) b = 1o ° note that for this case a =0 .

1 (4.1.18)

(iv) The pre-eigenvectors are the rows of the matrix

K =0 C ’ (4.1.19)
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where Q-l is the inverse of Q and

C = -l l . (401.20)

Proof: Parts (ii) and (iv) of the theorem are either
true or false together; the inverse of the post-eigenvector
matrix gives the pre-vectors. It will therefore be sufficient
to prove that (i) and (ii) are correct [(iii) will also

enter with this proof] and this is done by proving

K

PK = KDx

for the particular definitions used here. Recall that DA
is the matrix of eigenvalues. Write gij and hij for the

typical elements of the left- and right-hand sides respec-
tively; then we have to show that gij = hij for
i,j ' 0, l, ...’ M L]

Multiplying out PK = PCQ we £find

M M
) j

u=y
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and with the substitution for the transition probabilities

piu from (4.1.1) we obtain

i:;

Q;_ l(z—l)+1l--11--11 @ ey, (4-1)
4=0

ERE o
95 = +-y) () (=ap) e, (5), ] >0

1, j=0, [cf., (9.1.8)] .

Again, multiplying out KD A6 = CQDA we get

A
i
hy; =2y 226 oj_l(z-l)
al .1\
= (1 - izt + B2} e, (1)
£=0 %5~
..i.\ 14,
(4- 1)-J£-—-+l—-(1-a )], (4-1), j> 0

450 %1 M =0 %-1 ’

= (4.1.21)

1 j=0.

The equality of gij and hij follows from Corollary 9.1.4.

By the corollary,
1 (o )M-D(E)[Q,_, (1-1-0, ,(1)] +Mia)
j[(J 1)(1-a )+Ma ]

(1-1)
1751 > Do

QD) =
1, j=0.
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Hence
i
% -1 A
i+ Ma(l-al)]zﬁjo Qj_l(z-l) =

iry _d- -1)=(l-c. )2(1-%
Milmytlmogdleg ) (1-1)-(1-cy)p1l- 0, (1) , j> 0
o, =0, (4.1.22)

then from (4.1.21) and (4.1.22)

i
> LY -
0 (D= i ytiey ) ey, (4-1)
h, | = i, 4
ij + (Lmog)yi-110, (), i>o

and finally

i-1
i i -
jz:ooj_lu-l)ﬂl—m[l mil-op)le, ; (1-1)

h,, = i)y 1o

ij +(1-P G A-apo, 1 4) , 550

1, j=0.

Thus gij and hij are equal for all relevant 1i,j . This

completes the proof of the theorem.

We can now write (4.1.13), using the above results, as
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e(ni) = (k,i) element in CQD Q-l»:!”l (4.1.23)

-2
1=-A

where X is the initial state and KJ is given by (4.1.14).
The inverse of Q can be fouand by use of the orthogonality
relation (2.1.5), that is

Q DVQ = D

)
or
-1 .
Q = D Q'D . (4.1.24)
-1 \'4
5
D 1 is a diagonal matrix of order M+ 1l with elements
5
1 in the (0,0) position

(4.1.25)
(1) (2usp-1)

M+b+u-~-1
(R (b

s in the (u,u) position, u=l,2,...,M.

DV is a diagonal matrix of order M+ 1l with elements

1 in the (0,0) position
a = M+b=v (4.1.26)
( )
““f%ﬁ?" , in the (v,v) position, v=1,2,...,M .
(yo1)

Q' 1is simply the transpose of Q and recall from (4.1.18)

that b = Mal/(l—al) .
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Thus from (4.1.24) we can write (4.1.23) as

S(ni) = (k,i) element in CQD N D -1 Q DVC .
1=-A o
1-A (4.1.27)
The (k,1i) element of (4.1l.27) is
i, M &
» "'l
RN (w-1) / 4 (v- l)d c. ), (4.1.28)
vwé kw s O s -1 v;b ss s -1 vi
where
Crw is an element of (4.1.16) the C matrix,
recall that ¢ = 0 for w) k ,
Kw
J l(i -1l) 1is aa elemeat of (4.1.17), the Hahn poly-
nomial matrix Q ,
c;i is an element of (4.1.20), the c-l matrix;
also note that
-1 v e i+l
c-l = 1 v = i (4.1.29)
vi
0 otherwise ,
a;s is an element of D 2 D s
l-‘ ?\.l. 6 -1
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that is
n for s =0 (4.1.30)
1\ " o
Is = s ¢ )(28+b+l)/(M+b+s Ly (be1) , s=1,2,...,M ,

da is an elemeat of D defined in (4.1.26).
vv v

From (4.1.,29)

M
2 Qgoy (VT dgCyy = = Qe (1844 ¥0 (1),
v=0
== 849449, -], 1M
=Qs_l(M-l)d , i=M ., (4.1.31)
Hence (4.1.28) becomes
(/0 (w-1)a [a (i-1)1} , i¥M
(:I.)w‘“0 oo 0 s -1 ii s-1
e(ni) = X M (4.1.32)
dmwé,o [s':o gy (Ww-1)T_0  (M-1)] , i=M

recalling that the ckw are 1 for w‘g.k . Thus given the

initial state %k we have the expression for 8(ni) s Where

again ni is the total number of times state 1 is

observed in a realization of the Markov chain. Note that in
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the final summation step of S(ni) Corollary 9.1.4 can be
used, 1i.e.,

k

b [v-%)x[Q__ (k 1)-0__; (k) ]+bkQ_ l(k -1) ]
(w-1) =
‘lmd -
wap S -1 s(s l+b)
M
It is obvious from general reasoning that ; 6(ni) = n
i

the length of the chain, but this may also be verified from

(4.1.32),
1 kK !L
Lem) =- - [0 ,(wl)d a0 ,(M1)]
i=0 w=0 s-O
k. M
+ /0 /0 w1d a a  (-1)]
w=0 s=0
k M (4.1.33)
+ O 0o jw-1)T da 0o (M-1)] ,
wsb s=0 ss MM's-1
M-1
where the first two term8 are the result of ije(n,)
i=0 *
b
[that is, ,/ Af(x) = f(b+l) - £(a)] and the last term is
a
the expression for 8(nM) . Thus
M k. QL
C/e(ni) = [ /0 (whl)a' dOO . l( -1)] . (4.1.34)

i=0 we0 s=0 °
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Note from (9.1.8) that Qs_l(—l) =1 for s =0 and zero

otherwise, thus

M 5,
a60d00

= n ¥l [Cf., (4.1.30)’ (401026)} 0(4.1035)
Having found an expression for 6(ni) we now discuss
the expectations of ¢ and ¢' (4.1.5). Recall from

(3.1.27) that

(n=-1)
€la;) = py; €)= py ]
S(bi) Pyy [E(ni) Py ] (4.1.36)

(n-1)
e(c,) =p,, ,l&n) -p 4 I .

We write

glp) = e(g~%§3—9) =0
1

and

-d%1
e(-p') = e(=2250
1
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(n-1)
[8( ) Py 1pii+l

1:1 (1"“ 1)
M (n=1) (n-1)
+ ia[e(n )-p, J(1-2iM )2p££ Y [S(n )- Py ]pil—l
[(M—i) - (1-¢) (1) (1-2aw-1) ]2 ifl [ M- 1(1 ~a,)1?
Mf;[é(ni)-Pkin_l)]i(Mri) —letny)- kin-l)]ia(M-Zi)a
'y = — * _, T (e _ o1 M—
o= M2 (1-c)) M [(M 1)=(1-c ) i(1-2imM-1)]
% letn)-p, "1 143
t o W Ini(1-a)) ]
=1 M 1
=7 . (4.1.37)

Exactly what this | means is a question. By the Crimer-

Rao inequality (Kendall and Stuart, Vol. II, p. 8 et.seq.)

~ d A 2
Var(al) Z-[EEI 8(al)] /T s
but there seems little hope of fianding either the bias term

8(&1) - Q or an exact expression for the variance of a

1 1

by theoretical methods. Some encouraging results, however,
were obtained from a simulation study on the IBM 650 which
is discussed later in this chapter.

Up to this point we have dealt with the case where n

is fixed, [cf., for example (4.1.13), (4.1.30)]. We now

3
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discuss the situation where n - ® . In this case several
of the above quantities have slightly different values.

We note that from (4.1.32), for 1 # M

X M
eln) = =A (/0 (w1)d [d 0  (1-1)]]
1 (1) o0 s=0 %e-1 %-1
k|
= =A Q .(w-1)d [d .Q .(i-1)]
(1) -1 00" "ii =1
EOM
Aoy LS (w-1)@__[a, 0 ,(i-1)]
(1) =5 &1 9%-1 s-1
and provided i # O
K EL
=0 -A w-1)d Ta, .0 o (1-1)],
(1) 25 s-l ii~s~-1
(4.1.38)
by the conventions (9.1.8).
Similarly, whean 1 = M we have
koM
s(nM) = dMM Ty Q__ (w 1)6 5% (M—l) . (4.1, 39)
w=0 s=]1
From (4.1.30),
1 M+b+s 1
lim ass -'——-—1_7\ (s l)(28+b°l)/( J(b+l) , s¥ O

n->Co
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and so

k. M
lim €(n,) = -4, P (w-1)

n—00 wéb ssi S -1

[ 1 ( 12Q+h_1)/(M*b+s -1

-

oy )(b+1)1la, 0 (1-1)] ,

0<id M

: 1 bts-1
- dmw;6 % l(w-l)[-———-(’:ixzm-ly(m XpH)lQ (4D,

i=M.

(4.1.40)
k

Note that Corollary 9.1.4 can be used in summiag (w-1l) .

w-O s =~

Of course, as n - 0 , e(no) - oo, but this does not enter

into the formula for | (4.1.37), nor are a_, b, involved

0’ o
in the fuaction ¢ and ¢' (4.1.5) used in obtaining al .
For n -» @ we can now write (4.1.37) as

"le(n,)itn-1) %* e(n ) 1% (M~21)2

lim [ = lim [ — £ /) — r
100" nooo is‘i M2 (1-a,) T, M [(M—i) (1-a)i(1-2101)]
%‘ E(n )i
+ BT ho1(1e 1, (4.1.41)
1-1“ [m 1(1 a,)]
(ﬂ‘l) (n l)
noting that P,y -0, 1 # 0, Pyy 51, 1 =0 . We now

discuss the asymptotic behavior of the estimate and manner

of conducting the experiment.
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Keeping M, k fixed but with n -» @ it is clear from
general considerations that once absorption has occurred,
nothing of value is obtained by prolonging the experiment.
With probability one, only a finite number of useful obser-
vations will be obtained, and no asymptotic theory of
consistency or normality of the estimate 81 s Wwill hold.
For this situation we postulate the following theorems whose
validity are very strongly felt but proofs of which have not
been found. An outline of the anticipated proofs is presented.
It will be noted that the gaps are a result of inadequacies
which exist in the inference theory of positively xregqular
Markov chains. Before presenting the theorems it could be
mentioned that the current difficulties in making inferences
from observations on a single absorbing Markov chain can be
handled by performing independent replicated experiments.
Such experiments are discussed in the next section. The
following theorems are stated for the particular situation
studied in this chapter. It is felt, however, that more

general theorems hold.

(e) Some Postulated Theorems. Postulated Theorem
4.1.6. For the transition matrix P, (4.1.2), with

one absorbing state, O , and no other
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closed sets, suppose that a realization is commenced at state
k =M and that n = M observations are taken. Then, pro-

vided d. is the maximum likelihood estimate of o the

1 1°

distribution of Q is asymptotically normal with mean «

1 1

- - -
and variance -[s(ggégg—é)] 1 = Ij 1 as M - oo , where

a bi c,
L = likelihood = TI Piis1 Pyi Pyio1 -

Proof outline: By the assumption that n =k = M , and
since only unit transitions are possible in P , the absorbiang
state, 0 , cannot be reached in the M - 1 steps after the
initial observation X, = M . Thus it is immaterial how the

elements poj in P are defined. Consider, therefore, a

transition matrix

e O l [ ] * L] (] M.l M p—
0 0 o . . 0 1
1
P* = _
Pji-1 Pii Piiq
M-1
M O 0 o0 0 a. Il-q
- 1 1]
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where from state 0 an instantaneous return to state M
occurs. While P was reqular but absorbing, P* is

positively reqular and satisfies Billingsley's conditions

(Section 2.3).

Consider now two experiments, one of which is performed
with P as model, the other with P* as model, and for each
the initial state is kX = M . Denote the maximum likeli-
hood estimates by &1 and &l* respectively. Then for
the positively regular chaian, we have asymptotic normality
according to Theorem 2.3.2, that is,

1_’1120 Pr{/a (a,*- o)) { ¥} = ely/oy) (4.1.42)
n

M fixed

where ¢ 1s the standard normal distribution fuaction,

cazlmnl*-l ,
n-00

and

2

d2log L*
1

with L* being the likelihood of 1n observations drawn
from P* .
Suppose now that the convergence (4.1.42) is uniform

over M, aad that cﬁ—»o, with 0{ o<{ ®, as M- ®.
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Then from (4.1.42),

1im Prfv/n(a,*-a )<y} = lim 1im Pr({/n(a*-a )< y]
1l 17 = 1l 1"
M=n-00 M-00 n-x0

= &(y/0) . (4.1.43)
But on the left of (4.1.43), we have al* drawn from a
chain with k = M = n , which has identically the distri-
bution of &l made under the same conditions on the P
matrix, Thus, if (4.1.43) is valid, we have

lim Pr(/n(d -a,) { y) = &ly/0) . (4.1.44)
M=n-00

Further, if the similar interchange of double limits

lim n(I*)"l = lim lim n(J %71 = 1im 02 = o2

_ M
M=n=0 500 100 Moo (4.1.45)
holds, we have (because for k = M = n, ]:* = I )
-1 , -1
Lim n ] ~ = lim a([*) = = o2 , (4.1.46)

M=n-00 Ma=i500

From (4.1.44) we have that a is asymptotically normal

1

with mean o and variance (from (4.1.46)) equal

Note that the difficulties in the theorem are due to
unresolved questions about limiting operations (4.1.43) and

(4.1.46) in the positively regular theory.
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Postulated Theorem 4.1l.7, For the transition matrix
P, (4.1.2), with one absorbing state, 0 , and no other
closed sets, suppose that a realization is commenced at
k = M and continued until the absorbing state is first
reached. Then, provided &, is the maximum likelihood

1

the distribution of @& is asymptotically

estimate of al » 1

normal with mean « and variance 1lim I"l as M- ® ,
1 n-Q0

where I' (4.1.37) is the fixed sample size (n) information.
Proof outline. As in Theorem 4.1.6, it makes no dif-

ference how the elemeats are defined since by defini-

POj
tion of the experimental procedure, the realization is
terminated as soon as state 0 1s reached. Thus the esti-
mate al has the same distribution properties as &l* made
o the P* process under the same conditions,

We postulate the following result for the positively

regular chain estimate 81* :

lim Pr{(a,* - o))alm) { v} = &ly/0) , (4.1.47)
M-

where a(M) is some standardizing factor, perhaps, but not
necessarily, /M , and

0 = lim ([am]2(] "™1), with 0<¢ < @ .
M-s00
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Here I * 1is the information for the sequential stopping
rule on chain P¥* , and is identical to the same quantity
for the P matrix,namely

IT*=21im T . (4.1.48)
n-00

It follows from (4.1.47), if true, that the sequential stopping
rule applied to the P chain estimate yields

lim pr((al - a,)a(M) { y} = &ly/o) , (4.1.49)
M- -

where 0% = lim ([a(M)]% 1im T "1} .
M-c0 n—o0

This proves the theorem.

Again, we see that the difficulties inherent in (4.1.47)
relate to the positively regulaxr case.

Corollary 4.1.8. 1If, in Theorem 4.1.7, a(M) - oo
as M- o , then G, is a consistent estimate of a. .

1 1
Proof. The proof is immediate from the fact that a

1

is asymptotically unbiased and has variance of order O(;Tﬁyg)
as M - o by Theorem 4.1.7 itself. It is felt, however,

that the corollary holds regardless of the validity of the
postulated Theorem 4.1.7. That is, it may be possible to
find a proof of the corollary without relying on Theorem

4.1.7 specifically.
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4,2 Estimating Mutation Rate from a Single Chain (Simula-

tion Study)

4.2.1 Backgrouad

In connection with the postulated Theorem 4.1.7 and
its Corollary 4.1.8, a simulation study on the IBM 650 was
performed, the summary results of which appear in the fol-
lowing figures and tables, the more extensive results being
in Appendices II, III. Five values of M were studied,
M=2, 4, 6, 10, and 20. The program was written with
o, = 0.1l. For each value of M , 500 independent reali-
zations were generated in the following manner. In all
cases, the initial state was kX = M and the chain was con-
tinued until the absorbing state zero occurred. The 500
maximum likelihood estimates of o, = 0.1 solved from the
data of these realizations appear in Appendix II listed in
increasing order. Note that M = 4 and 6 have 502 values,
the last two values being al = 1,0 . The corresponding
experiments did not satisfy the conditions of Theorem 4.1.2

(that 1is, bM and all a, were zero for these experiments)

i

resulting in a maximum of the likelihood at al =1 , not,

however, at a turning point. Two further realizations were
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made to give in all 500 replicates of a form yielding al
values satisfying the likelihood equations. However, for

M = 2 there were 16 such extreme realizations, and these
were not replaced. For M = 10 and 20, all realizations
provided admissible likelihood equation estimates.

In Table 4.1.2 ‘51 is the mean of the 500 estimates of
al and sél is their sample variance. The numbers which
appear in parentheses for M = 4, 6 are based on the 502
estimates., These values are included for general interest.

The figures show the observed distribution of all
estimates obtained. Note that there are gaps in what one
might expect to be virtually continuous distributions.

These are especially pronounced in Fig. 1 where M = 2 ,

The extreme right bar is for the 16 values of one coming
from realizations of the form 2 1 .... 1 0 with state 2
occurring once only. The second bar from the right is for
26 values of al m 0,577350 which arose from experiments of
the type 2 21 .... 1 0 . The third tall bar from the
right is for 29 values of al = 0.390388 which arose fram
experiments of the type 2 2 21 ,.,... 1 0. Thus M= 2

has many peculiar characteristics due to the comparatively

limited number of possible realizations. These peculiarities

become less pronounced as M increases.,



Table 4.1.2

Postulated % Error
~ Estimated Estimated Asymptotic 2 -1
M al Bias Variance Variance sa i__jfgo I
~ _ 2 -1 (—= ) « 100
(al = 0.1) a - a sz lim [ 83
1 n—00 1
2 0.212050 0.112050 0.038427 0.004905 87.2355
4 0.168281 0.068281 0.014846 0.003036 79.5500
(0.171595) (0.017537)
6 0.153653 0.053657 0.010560 0.002479 76,5246
(0.157025) (0.013366)
10 0.131192 0.031192 0.003421 0.002025 40.8068
20 0.114452 0.014452 0.001481 0.001496 (-1.0128)
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4.2.2 Conclusions from the simulation study

From the figures we note that skewness decreases as M
increases and the empirical distributions of the ’&l appear

to have a mode close to the true value o, = 0.1l. Moreover,
from the figures and Table 4.1.2 it is apparent that the bias
and variance of the estimates decreases rapidly as M
increases, This gives very strong evidence that Corollary
4.1.8 is correct, and that the estimate is consistent as M
increases,

For the considerably sharper Theorem 4.1.7, we find
that the observed variances sg and the postulated asymptotic

1

variance 1lim I'-l (4.1.41) are in extraordinarily good
N-00

agreement for M = 20 , but less so for smaller population
sizes. This is to be expected if the Theorem 4.1.7 is cor-
rect, but we do aot claim that the realizations generated to
date are sufficiently convincing that in fact var(&l) and
lim I"l are asymptotically equal. Higher values of M

n—

need be investigated before such a conclusion could be
established beyond doubt. Similarly, the asymptotic nor=-
mality property is not yet established, although the decrease

in skewness is suggestive. A X2 goodness of fit test on
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M = 20 data still indicates a significant departure fraom
normality. Finally, the postulated standardizing factor
a(M) of Theorem 4.1.7 could be established by plotting

lim ]:‘l or sg as a function of M and observing the
N-00 1

rate of approach to zero. However, here again values larger
than M = 20 would be needed. It was not possible to
examine larger populations on the IBM 65) because of the

prohibitivé amount of time required.

4.2.3 Comments on the design of the experiment

In discussing the non-absorbing, two mutation case
(Section 3.2) it was found that, per observation, the most
efficient experiment was one carried out on the smallest
possible population (M = 1), but per generation, the same
conclusion did not hold. In the present situation with ulti-
mate absorption being a certainty, the expected number of
birth-death events required for the transition from state M

to state 0 can be calculated either by finding the limit

M
lim / &(n,) (4.1.50)
n- i=1

using the Hahn polynomial expression (4.1.32), or by a
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method proposed by Kemeny and Snell (1960). The latter con-
sists of evaluating the inverse (I - PA)-l where I 1is the
M x M identity matrix and PA is the M x M matrix obtained
by deleting the 0 column and row of P (4.1.2), thus leaving
the transient state probabilities only. The elements in the
(M,i) position of (I - PA)_l are the required 1lim E(ni) R

n-x0o0

and summing along the last row of (I =~ PA)-l yields the

expected number of transitions. The expected number of obser-
vations E&(N) is, of course, one more than this quantity
allowing for the transition from state 1 to state 0 . For
our triple diagonal matrix P , in fact all elements below
the diagonals in (I - PA)-l are equal to the diagonal
elements themselves, and so we present in Appendix III, only
the upper triangular portions of (I - PA)”l for M = 2, 4,
6, 10 and 20. The individual values have been used to cal-

culate 1lim I-l (4.1.41) as tabulated in Table 4.1.2.
n—-00

The expected length of chain to absorption, &(N) , is
given in Table 4.1.3, together with the bias and variance
estimates calculated on a per generation basis. It is clear
that not only are the larger populations more efficient, in

total, if carried to absorption (see Table 4.1l.2) but also



Table 4.1.3

€(N) s2
M Expected Length of Bias |
Chain to Absorption e(N)/M e(N) /M
2 21.818181 + 1 0.009821 0.003368
(23)
4 49.868406 + 1 0.005369 0.001674
(51)
6 82.618032 + 1 0.003850 0.000758
(84)
10 158.753792 + 1 0.001953 0.000214
(160)
20 391.368270 + 1 0.000737 0.000075

(392)

- 01T -
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on a per observation and a per generation basis, It is con-
ceded that there is a slight increase in the ratio

g(N)/M = &(generationsto absorption) as M increases and

if the number of generations were kept fixed at a level where
- small populations reach absorption on average but larger ones
do not, the estimated bias and variance for the latter would
be somewhat underestimating the true values. However, the
effect is thought to be sufficiently small not to nullify

the conclusion. Again further calculations would be

interesting.

4.3 Replicated Experiments

One method of overcoming the difficulties encountered
in attempting to make inferences from a single long reali-
zation of an absorbing Markov chain is to perform independent
replicated experiments. Such experiments are discussed in

this section.

4.3.1 Geometric Stopping Rule

Suppose we consider the following. Let the initial

state be k=M (i.e., consisting of all "a"'s corresponding
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to a genetic pure line) and observe the population at equal
time intervals until the M -~ 1 state occurs for the first
time, then stop. The number of times that the chain remains

in state M, b has the geometric distribution

M L
b
. M
£(by) = Py Pry-1

b (4.3.1.1)

M

where bM =0, 1, 2, ... . For R independent replicate
populations we can write the joint probability function
(likelihood function), where for conveanience we shall write

bM(r) for the value of bM in the r-th replicate,

R,
b .(r) R
L= (1 yT=L ' (4.3.1.2)
al al . L] [ ] L]
The log-likelihood is
R
log L = ,ilbn(r)log(l~al) + R log a, (4.3.1.3)
r=1
and
R
dlog L _ _ iy +R (4.3.1.4)
da — a
1 r=1 1

l-al
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thus the maximum likelihood estimate of al is

A R
C(.l = R . (4.3.105)

;/bM(r) + R
r=]1

This estimate, however, is a biased one. Let us then look

at an estimate which is unbiasea and whose distribution

R
theory is known., ile(r) is distributed as the negative
r=1
binomial
R, R
R - )
N f:ibM(r)+R 1 féibm(r) R
£( [, bylr)) = ( R-1 ) (1-a,) N
r=1
(4.3.1.6)

because the convolution of independent negative binomial
(and in particular, geometric) variables is again a negative
binomial. The unbiased estimate for al in this case
(Haldane, 1943) is in our notation

R = 1

a, =

1 R

3
£ bM(r)-l-R-l
r=1

. (4.3.1.7)

Finney (1949) found an unbiased estimate of the variance of

E& . In our notation it is
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alu -a)
var(@,) & = —t——— | (4.3.1.8)

A normal approximation is a satisfactory indicator of the

error of estimation of al only when R 1is large. For

small R a method of Finney's (1949) for reading exact

confidence limits on o, directly from Biometrika Table 41

is shown below.

It may not have been generally realized that methods
and tables for determining exact confidence limits for
binomial sampling may be acapted very easily to inverse
binomial sampling, i.e., the negative binaomial distribution.
The proof of the following rule may be found in Finney (1949).
A more explicit proof may be found in Bartko (1960). The
rule may be stated:

(i) The upper limit on «a is found by entering

1
_*R‘—\

Biometrika Table 41 with C = R -1, n = / b (z)+R-1 .
r=1

(ii) The lower confidence limit on @, 1is found by

R,

entering the table with C =R, n = ZJbM(r)+R , Wwhere n
r=1

is the notation used in Table 4l.
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Consider the following example which illustrates the
principles of the above discussion. A chain with 11 states,
i.e., M =10 (actually for this geometric stopping rule
the size of M, aside from its being constant, is imma-
terial) was considered. al was arbitrarily set at 0.1.
The initial state was kX = M = 10 as stated above and when
state M - 1 =9 was first observed the chain was terminated,
By use of random number tables where plO,9 = 0,1 and
plO,lO = 0.9, R = 30 such independent chains were con=-
structed. The results were

30 times in state 9
294 times in state 10

264 times the transition from state

10 to 10 occurred .

R=30
Thus v b.(r) = 264 and from (4.3.1.7)
e M
r=]1
El = 00,0989 (4.3.1.9)

and from (4.3.1.8)
s = 0.01747 . (4.3.1.10)

Using a normal approximation, 95% confidence limits on al

are
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a, - (1.96)s < a, < a + (L.96)s |,
which for our case is

0.065 < @ < 0.133 . (4.3.1.11)

Although it would appear in this case that R is suf-
ficiently large for the approximation to hold, the rules
stated above for Biometrika Table 41 will be used in this
example for purposes of illustration. For the upper limit
enter the table with C = 29, n = 293 and find approximately
the value 0.14. For the lower bound enter the table with
C = 30, n = 294, to which corresponds the value of about
0.07. Consequently, an exact two sided 95% confidence inter-
val for o is

1
0.07 £ a {0.14 . (4.3.1.12)

4.3.2 Fixed chain length

Let us here consider making inferences on al from
cdata obtained by observing R independent replicate chains
each of the same finite length n . For an absorbing chain

a finite, useful, n can be accomplished by setting n < k

so that absorption does not occur,
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We estimate al by using the Newton-Raphson scheme

(4.1.6). The procedure is to replace as bi and g in

¢ and @' (4.1.5) with

R R, R
:Jai(r) , ; b (r) and i:ci(r) respectively,
r=] r=1 r=1

where for example ai(r) is the value of ai in the r-~th

replicate. In obtaining the estimate of al it is imma-
terial whether all replications have the same initial state
k or not. However, in computing | (4.1.37) we need to
findg e(ni) which from (4.1.32) we sz2e depends on Xk .

Suppose that the initial state is the same for all replica-

tions. Recall from (4.1.36) for example that

ela,) =p,,, [eln) - pkin-l)] . (4.3.2.1)

Thus for our case where all initial states are the same,

R

e /,a (r) =Rre(ay) . (4.3.2.2)
r=1

Similar expressions hold for b, and c, . Thus from J
(4.1.37) and (4.3.2.2) the variance element for the repli-

cated experiments (IR)-l is

(T R)"l =7t , (4.3.2.3)
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where I now refers to the information (4.1.37) obtained
from a single replicate, and we write for the replicated
experiments with finite n and same initial state k that

- a.) (a the maximum likelihood estimate of <«

(o = o 1 !

will be asymptotically normal with mean zero and variance
(I R)‘l (4.3.2.3). These results hold as R - @ by the
usual theory for maximum likelihood estimates from indepen-

dent experiments.

4.3.3 Chain length a random variable

Suppose that the chain length n for each replication
is a random variable determined by some sequential stopping
rule. Let us consider the absorbing state 0 as the stop-
ping state. That is, we observe the chain until it is
absorbed. And further, let us choose k the same for each
replication and large enough (implies M 1large) so that we

can regard n as very large and use 6(ni) as given by

(4.1.40).
R
We replace e(ni) in (4.1.41) with ¢ ‘é/ni(r) and
r=]

since k is the same for all replications
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R,

e i{ni(r) = R&(ni) . Thus (4.1.41) becomes for the repli-
r=1

cated experiments

Ig=rI . (4.3.3.1)

-

Thus we can write (&, - al) will be asymptotically

1

normal with mean zero and variance (I R)—l as R the

number of independent replicates - .

4.4 Sample Calculations on the Absorbing Chain

Using (4.1.1) P for M = 2 |is

_ 0 1 2
-
0 0 0
P= 1 k(l+al) 3 %(l—al) . (4.4.1)
2 B 0 al l—al _

From (4.1.14) i.e.,

Ay =1 - jlo; + %(3-1) (1-a)]

A, =1
(4.4.2)

>
i

1 (Z-Gl)/Z

>
"

(l-al)/Z .
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From (4.1.17)

— o

1 0 0

0 1 -1-b
L w—

(1) (2) (~b) column sums ,

where (-1-b) 41in the (2,2) position = Ql(l; 0, b, 2)

(4.4.4)
1 _
_ /'( l)& ( l)&7(2+b)£. .
250 (l)z (--l)/Z A

The figures at the bottom of the columns of Q are the

column sums, that is from Corollary 9.1.5

M -1
M(-1)""" (B,
%/Qm-l(x.l) = - —= , m#¥O0 .
x=0
2
For example, = b = L/Ql(x-l) - 2 ;} b . (4.4.5)
x=0

Note: Recall from (2.1.3) that the convention in this thesis
is to call the first element position o:f a matrix the (0,0)

position. Also recall from (4.1.17) that the Hahn poly-

j=1
i,j =0, 1, ..., M of the matrix Q . Thus in finding

nomial Q. .(i-1) occupies the (i,j) position,

(4.4.5) which by our convention is the sum of column 2 in



- 121 -

2

(4.4.3) we used ile(x-l) since Ql(x-l) denotes the

x=(

second column of ¢Q .

From (4.1.24)

Q"l = D Q'D._ . For M = 2
-1 v :
6
1 o o 1 o o 1 o o]
-1 1+b
0O = o 1 o o 1 1 0 53 ©
0 O (b+1)'l 0o 1 -1-b||lo o =+
1+4b 1
2+b 2+4b * (4.4.6)
1 =1_
24b  2+4b |

fixed and initial state

from (4.1.32) for

As a sample calculation on e(ni)

i=2=M

for M=2, n

k =M =2, we have from (4.1.27)

E(ni) = (2,1) element in CQD n D Q‘D.C and

1-A o
1-A
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2 2
e(ny) =d,, wao L0y (D) 0, , ()]
2
= dy, wé,O[Q_l(w-l)aooQ-l(l) + Q(w-1)a,;0,(1)
+ Ql(w-l)d’zle(l)] s (4.4.7)
by (4.4.3) and (9.1.9) we write (4.4.7)
2,
U, wéo[oo(w—l)all - @ (w-1)&,,(140)] , (4.4.8)

where from (4.4.3) we note that Ql(l) = ~-(1+b) ,

2 2
= d22 {all w;;'/ooo(w-l) - 61'22(1+b) v;;;fogl(w-l)}
2
where from (4.4.5) . Q (w-1) = -b .
w=zQ
From (4.1.26)
doo = 1

dll = (14b)/(2+b)

d22 = 1/(2+b) ;



- 123 -

from (4.1.30)

-

%00

n n
a, =2/001 - ™2 - o))"

n n
a, = 2/(l+a1)2{l = () (1= a)) 1(1-a))

and (4.1,18) b = 2&1/(l-al)

Thus from (4.4.9) and the above

ela.) a—-—-&-—;-—[l- —L) 1+ —L1- =" . (4.4.10)

From (4.1.32) we have for e(nl)

N
jN

elay) = [ 0, (w-1)a (-aldy,0,  (0)])]
2\

2

LU e tw-0)a (-d,0 (1)+ _,(0)d)]

w=0 g=0

ZEI (a )-b&zz[dll-i- (1+b)d__]

11 22 22

all - (=2 ) - 2 - )

and finally

€ng) = Tyg = 23 ,d)) + Ty

2(14a.) 2-q 2a 1-a
=0 - (1 () "1 TR

1 1

- L™ (4412
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Note that 6(n0) + E(nl) + 8(n2) =n ,
Further, if we consider n - oo , then we use

e(n;) = (2,1) element in COD ca)”t .

1-A
Then from (4.1.40)

&(n,)) = [2@

92214%1
this is the same as (4.4.9) except that now

- 522(l+b)(-b)] , note that

~

“oo < ¢

a =

Qll 2/OLl

= = _ 2

a5, 2(1 al)/(1+al) .
Thus

5(“2) - 2/a1(1+al) . (4.4.13)
In like fashion

c(nl) = 4/(1+al) (4.4.14)
and

2(1+2a.)
- N e ——
e(no) n a1(1+a1) . (4.4.15)

Note that e(nl), e(nz) remain finite as n - a; recall
also that e(no) does not enter into any of our major com-
puting formulas. C(no) + e(nl) + C(nz) =n, thus these
expectations are also appropriate for the sequential stopping

rule,
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V. SUGGESTIONS FOR FUTURE RESEARCH

It is anticipated that an extensive simulation program
on an electronic computor will be undertaken at a later date
as a continuation of the study already begun in this thesis.
This is a pressing and exciting area of research. Such a
study would be an invaluable factor in further ascertaining
the validity of the postulated Theorems 4.1.6 and 4.1.7 and
the properties of the maximum likelihood estimates al .

For the present study (M = 2, 4, 6, 10, 20) we have shown
coasistency and that skewness is less pronounced as M

increases. From the figures (1, 2, 3, 4, 5) it appears that
the empirical aistributions of the a have a mode close to

1

the true value o = 0.1 . However, anormality has not been
demonstrated. With the larger study (it is anticipated to
investigate up to M =50) it is hoped that a great many of
these questions such as normality and the postulated
standardizing factor a(M) of Theorem 4.1.7 will be
answered and clarified.

In connectioa with this study or apart from it, it
would be valuable to investigate the unresolved questions

about the limiting operations (4.1.43), (4.1.46), and

(4.1.47) in the positively regular theory of Markov processes.
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with the successful proof of these postulated theorems
then more general theorems relating to absorbing Markov
chains could be investigated, for example, transition
probabilities which depend on several unknown parameters.
It may also be valuable to investigate the situation where
transitions occur in steps greater than unity, ana chains
with more than one absorbing state.

It might be valuable to investigate other integral
approximations for the elements (3.1.52) of the matrix I
for the two mutation rate case and for the quantity I
(4.1.37) for the absorbing chain.

Finally for research not following directly from the
problems of this thesis, the question of investigating
population genetic models where the population is not

assumed constant remains open for future research.
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IX. APPENDICES

APPENDIX I

9.1 Properties of Hahn Polynomials

The Hahn polynomials form a family of orthogonal poly-
nomials, They were introduced by Hahn (1949), discussed by
Weber and Erdélyi (1952) and further discussed by Karlin and
McGregor (1961). In the following presentation results which
are believed to be new are so labelled. Results taken from
other works will be given in the notation of this thesis.

The Hahn polynomials may be defined in terms of the

generalized hypergeometric series

@ (o) (a)) (3] 2
sF (3,8 ,a,5 b, z) = /,
1°72°73" T1°72 z['o (bl)z (bz)z £1

where (a)o =1, (a)z = a(a+l)...(a+f-1) = Ir'(a+L)/I'(a) for

£ > 1 . The series terminates if one of the a, is zero or

a negative integer. For real a » -1, b > =1 and for
positive integral M , the Hahn polynomials
Qm(x) = Qm(x: a,bM) , m=0, 1, 2, ..., M1 are defined by

Qm(x) = (-m, -x, m+a+b+l; a+l, -M+l; 1) . (9.1.1)

3 2



- 135 -

Explicit formula (Erdélyi and Weber, 1952)

Q (x) =@ (x; a,b,M)

m (9.1.2)
L - - l
) / {(-m)  ( x)& (m+a+b+ )& .
420 (a+l)z (-M+l)z 21

Recurrence relation (Erdélyi and Weber, 1952)

-me(X) = dmom_l(X)- (bm+dm) Qm(X)-l- mem+1(X) s
(9.1.3)

where

b = (m+a+b+l) (m+a+l) (M=1-m)
m (2m+a+b+1) (2m+a+b+2)

. m(m+b) (m+a+b+M)

“m ¥ @m+atb) (2m+atb+l) O’
and (9.1.3) is valid for all complex values of x if
m = 6, 1, 2, ..., M-2 but is valid only for
x=0,1, 2, ..., M1 when m = M-1 .
Difference equation (Karlin and McGregor, 1961)
qgmqm(X)'=D(X)Qm(x-l)~[B(X)+D(X)]Qm(x)+B(X)Qm(X+l) ’
(9.1.4)
where
B(x) = (M-1-x) (a+l+x)
D(x) = x(M+b-x)
wh = m(m+a+b+l) ,
and (9.1.4) is valid for m =0, 1, ..., M-1 and all complex

values of x .,
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Orthogonality relation (Karlin and McGregor, 1961)

M-1
1
- : a b M = 6 90105
. - Qm(‘&) Qn(x)p(x 2P, M) m,n Wm,M(a’b’M) ( )

where
1 m = n
S =
m, 0 0 m#¥n

plx; a,b,M) = p(x) =

(a+x)(M+b-l-x
X M-l-x
M+a+b
oy )

)

% ;])F(b-a-l) ['(m+a+1) I'(m+a+b+1) (2m+a+b+1)

v_ (a,b,M)=y =
m,M" "’ m,M #anrb‘mmal)p(amnruwbmr‘(m+1)(a+b+l)

In particular wo M(a,b,M) =1 , It is also true that
L

M=1 (a+l) (1-M)
o (x)Q (1) i 5 L ,
<=0 ™ n'xl (l--M--b)X m,n p(O,a,b,M)wm,M(a,b,M)
(9.1.6)
where p(x) and Wm M are defined above. The equivalence
3

of (9.1.5) and (9.1.6) is established by noting that

(a+l)x(1-M)x
%1 (1-M-b) p(0,a,b,M) = p(x; a,b,M) . (9.1.7)
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Conventions (New)

0 if x =0, 1, ..., M=-1
Q .(x; a,b,M) =

-1 1 if x = -1
(9.1.8)
Qm(—l: a,byM) =0, m=0, 1, ..., M-1 .
Special Values
Qo(x; a,b,M) =1 x>0
Qm(o; a,b,M) = l m = 0’ l’ seey M"'l
(2.1.9)

m,m+b m+a

Q,(#-1; a,5,M) = (-1)"(" ") /(77

m

Qm(X: a,b,M)
= Q (M-1; a,b,M)

Qm(Mrl~x; a,b, M)

Theorem 9.1.1 (New). For the Hahn polynomials where
a =0, that is Qm(x: 0,b,M) thea for m ¥ -1 ,
%2

o Q (x)
1

) B(X;)[Qm (xz)-qn(xz-t-l)] +b(x3+l)qn(xz- {B(ﬁ-D{q“(x;-l)-qn(ﬁ_)]*blem (xl-l) }

(m+1) (r+b)

(9.1.10)

For m = -1
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Proof: From (9.1.4) with a =0
B(x) = (M-1-x) (1+x) B(-1) =0

D(x) = (M+b-x)
= bx + B(x~-1)

D(x+l) = (x+1) (M+b-x-1)
= b(x+l) + B(x)

w = m(m+b+l)
m

The difference equation (9.1.4),

~» Q (x) = D(x)Q_(x-1)-[B(x)+D(x)]Q (x)+B(x)Q (x+1) ,

after substitution with the above identities becomes

-thm(x)ar[bx+B(x—l)]Qm(x~l)-[B(x)+bx+B(x-l)]Qm(x)+B(x)Qm(x+l]
= B(x=-1) [Qm(x-l)-Qm(X) ]=B(x) [Qm(X)-Qm(xﬂ) ]
+ bx{Qm(x-l)-'Qm(X)]

Note that
bx| Qm(x-l)-Qm(x)] = bem(x—l)-b(x-!-l) Qm(x)+b0m(x) s
and therefore
-0 Q (x) = -A(B(x-l)[Qm(x-l)-Qm(X)])-A [bxom(x-l)]+bom(X) .

Hence

(wm+b)Qm(X) = A(B(x-l)[Qm(x-l)-Qm(X)}+bXQm(X~l)) s
(9.1.11)
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and

X

2
(@ +b) 7, Q (x) = B(x,)[Q (x,)-0 (x,#1) 1+b(x,+1)Q_(x,)

Xg}{l

- (B(xl-l)[Qm(xl-l)-Qm(xl)]+blem(xl-l)),

noting that for finite differences

b,
Af(x) = £(b+l) - £(a) .

-
x=a

Finally

X

2

K= 1

) B‘xz’["m(xz"%_(_’f_g*l”*uxg*”gﬂ“s(x;‘”[%_"‘;”"’r_éﬁ]"'bxlﬁ &,-1))

(m+1) (m+b)

since wh+b = (m+l) (m+b) .

For m = -1 the proof is immediate from (9.1.8).
Corollary 9.1.2 (New)

B(1) [Qm(i)-om(i-t-l) ]+b(i+l)om(i)
(m+1) (m+b) s

i

x=0 o , m= -1 |, (9.1.12)

m g 1

Proof: The proof for both identities follows immediately
from Theorem 9.1.1 where for the first identity we note that

B(-1) =0 . (cf., 9.1.4)
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Corollary 9.1.3 (New)

M(-1)"(b) _
M:;l mr-“ R m # -1
Q (x) =
(9.1.13)
X‘O o , m= -1,

where (b)m = b(b+l) ... (b+m-1) .

Proof: From Corollary 9.1.2 we have

M-1 _
, bM Qm(M 1)

ng Qm(x) = (m+1)?h+b) J

noting that B(M-1) = 0 . Further, from (9.1.9)

Q (4-1; 0,b,M) = (-1)"(™P)

M-1 m , m+b

b M (-1)" (™)
thus x:o Qm(x) (m+l) (m+b))__— ’

(9.1.14)

and finally

¥l M(-1)"(b)
L9 (%) =W .
X =0

For m = -1 the proof is immediate fram Corollary 9.1.2.
Corollary 9.1.4 (New)

[(w-1)ilg _,(-1)-q _ (1)]+biQ ) (i-1)]

i
m(m+b-l) » 0
{/ (X—l) =
x;’o -1 (9.1.15)

1, m=0 .,
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Proof: The proof follows by noting that from (9.1.11)
(wh-1+b)9m-l(x-l) = A[B(x—2)[Qm_l(x-Z)-Qm_l(x.l)]
+ b(x-1)Q _,(x-2)] ,

b

/ Af(x) = £(b+l) - f(a) and that (o

'éj m_li-b) = m(m+b-1) .

For m = 0 the proof is immediate from (9.1.8).

Corollary 9.1.5 (New)

M(-1)"" (n) __

m-1
M y » m#O0
L9 (x-1) = (9.1.16)
X=0
1 , m=0 .

Proof: From Corollary 9.1l.4

M. bMQ . (M-1)
LG Gl = e
x=0 m m
where Q (M=1) = (-l)m-l (nﬂtwl) from (9.1.9). Therefore
m-1 m=-1
" M(-1)"" ()
/_// Qm—l(x.l) = mi Ln;]:' *
x=0

For m = 0 the proof is immediate from (9.1.15).
- Corollary 9.1.6 (New)

Iet b = Mal/l-a then

l b4
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(1-a;) (M"”i[%:;_( i-1)=Q n_x-immali%—l(i'l) %
i m[ (m-1) (l-al)-t-Mal] s M

1, m=0 .

Proof: The proof is immediate from Corollary 9.1.4.

9.2 A Relation Between Hahn and Tchebichef Polynomials (New)

Erdélyi (1953, Vol. II, p. 224), defines the Hahn poly-

nomials in the following way:

(8)_(v)

m
p (%1 B,7,8) =‘——;n"r—'m JF, (=M, =x, B+y=0+m; B,v: 1) .

(9.2.1)
To put (9.2.1) into the Qm(x; a,b,M) form used in this
thesis, we make the following substitutions [cf., (9.1.2)]
B+Y=6+4m = m+a+b+l
B = a+l
Y = -M+1
6 = 1-M=-b .
Then
p (x: B,7,0)
RS B I 7

m
ml (9.2.2)
p,(x; a+l, -M+l, 1-M-b)
(a-l-l)m (1--1‘1)m

ml
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For a =b =20

I
Q (x; 0,0,M) = = . (9.2.3)
m
However, Erdélyi also gives
pm(x; 1, 1-M, 1-M) = tm(x) R (9.2.4)

where tm(x) is a Tchebichef polynomial defined by
m, X,  Xx=-M
£_(x) amlA[%ﬁﬁh)], m=0, 1, ..., M=1 .,

The orthogonal property for the Tchebichef polynomials is

M-1

; - =L (M2_12) (M2 o2 2__ 2
thm(x)tn(x) (2m+l) "M(M<-1°¢) (M%-2°¢)...(M-m )émn
x=0

myn =0, 1, ..., M=1 . (9.2.5)

Hence from (9.2.4) and (9.2.3)

t (%)

O lx 0.0M =10

(9.2.6)

thus from (2.2.6)

M-l " (%)t (%)
/e x)e (x) = "(f.%m (;.l-M)
x=0 " x=0 e n

-1 _12 2_. 2
(2m+1) “M(M2-12)...(M2-m )6EQ
(l-M)m (1~M)n

(M+m (9.2.7)

M m )
(2m+1) (M-l ’
m

m =n

)

o , m¥n .
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From (9.1.5) where p(x; a,b,M) and wm M(a,b,M) are
L

cefined, we can write (9.2.7) as

M-1
o (x)Q (x) =6 =
gap M n mn Wm,M(O:O:M)P(O,OJO’M)

M
3
mn Wm’M(O,O,M)

= § (9.2.8)

where in Qm(x; a,b,M) a =b =0 . This verifies again

the equivalence of (9.1.5) and (9.1.6) in this special case.
The connection (9.2.6) between Hahn polynomials

Qm(x,0,0,M) and Tchebichef polynomials explains the appareatly

different results obtained by Karlin and McGregor (1960)

using the former and Watterson (1961) using the latter, for

Moran's model without mutation.
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APPENDIX II

Table of §.L from the Absorbing Chain

The following table is a listing of 500 maximum likeli-
hood estimates listed in increasing order (502 for M = 4,6)
of the mutation rate al (=0.1)., These estimates were
obtained from data of experiments generated by simulation
methods on the IBM 650. Five population sizes were studied,
M=2, 4, 6, 10 and 20. The experiments were generated by
setting k = M as the initial state where the number of
transitions until absorption (state 0) occurred were puanched
along with other information by the machine.

For M =2 16 of the estimates were 1,0. These
estimates were obtained from experiments of the type
21 .... 10, that is, from state 2 we immediately went
to state 1 , remained in state 1 <for a finite number of
times, it does not matter how many where the estimate of oy
is concerned, and then passed directly on to absorption.
For this case the conditions of Theorem 4.1.2 were not met,
i.e., b, and a, were zero. The ¢ function (4.1.5) is

M i

l/(l+al) + l/cxl which never crosses the al axis,
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However, the value one was iancluded in these estimates since
1 1is the maximum value of the likelihood of these experi-
ments. They were also included because of their frequency
and also because they are an integral part of the peculiari-
ties of the case M = 2 |,

The second group consisting of 26 estimates was
&l = 0,577350 which were the result of experiments of the
type 221 .... 10 .

For M = 4 and 6 the last two estimates 1.0 are a
result of experiments which did not satisfy the conditions
of Theorem 4.1.2. They were included for general interest
for a total of 502 estimates. The solutions &l of the
likelihood equations in these cases were greater than one
but in the parameter space the maximum of the likelihood
is at o, = 1.

The estimates are listed as six decimal place numbers,

with five place accuracy.
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FROM REPLICATES OF POPULATIONS OF S8IZE M .

MAXIMUM LIKELIHOOD ESTIMATES OF THE MUTATION RATE a., (=0.1)
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APPENDIX III

(I - 1>A)"l For M =2, 4, 6, 10, 20

The following matrices of order M x M are the inverses
of (I - PA) where I 1is the identity matrix and PA is
the matrix P (4.1.2) where the first row and first column
of P are deleted. All values below the main diagonal are
the same as the diagonal element, hence the triangular
presentation. Given an initial state k these matrices
provide us with the expected value of the total number of
times state 1 1is entered E(ni) before absorption occurs.
For example, for the case where the initial state is k =M
and M = 2 then

E(nz) = 18.181818

and

e(nl) = 3,636364 ,

which are the diagonal elements of the matrix array. The
total length of chain to absorption is about 18+ 3.6+ 1 = 23.
The value one allows for the transition from state 1 to

state O .
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The matrix (I - PA)-'l can be used to find e(ni)
only when the chain is considered until absorption. For
finite, not a random variable, then the method of Hahn
polynomials (4.1.32) must be utilized. For a further dis-

cussion on (I - PA)"'l see Kemeny and Snell (1960).

n
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MATRICES (I - pA)’l

column 1 2
3.636364 8.181818

18.181818

column 1 2 3 4
5.161290 3.167155 2,923528 4.933453
6.803518 6.280171 10.597788

10.382735 17.520864

27.520863



column 1 2

8.067227
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3

7.058823 3.781513 2.750191

5.867073

9.503436

4

2.320471

4.950338

8.018516

11.768511

5

2.227656

4.752332

7.697787

11.297789

16.097796

6
2.784569
5.940414
9.622233

14.122235
20.122244

30.122242
-
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M= 10
column 1 2 3 4 5
~10.989009 5.427498 3.568765 2.634753 2,069479
11.525060 7.578121 5.594785 4.394449
12.144331 8.965931 7.042332
12.872181 10.110514
13.746877
6 7 8 9 10
-
1.687075 1.406981 1.187140 0.999697 0.809755
3.582431 2,987665 2.520842 2.122814 1.719479
5.741031 4,787887 4.039780 3.401920 2.755555
8.242266 6.873859 5.799818  4.884058 3.956086
11.206693 9.346122 7.885790 6.640666 5.378939
. 14.829881 12,367777 10.435311 8.787630 7.117980
16.228781 13.693033 11.530975 9 340089
18.157318 15.290373 12.385202
21.138326 17.122043

27.122042

—




column 1

20.942404

6

2.461093

5.210038

8.298356

11.790375

15.767397

20.333607

2

9.838325

20.827343

7

1.940132

4.107183

6.541769

9.294603

12.429772

16.029413

20.200423
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M = 20

3

6.141844

13.002043

20.709171

8

1.551726

3.284945

5.232138

7.433867

9.941391

12.820040

16.156395

20.062644

4

4,.297418

9.097465

14.490105

20.587669

9

1.251813

2.650039

4.220885

5.997069

8.019946

10.342508

13.033731

16.184991

19.919819

5

3.193952

6.761471

10.769422

15.301287

20.462578

10

1.013969

2.146532

3.418917

4.857627

6.496157

8.377433

10.557322
13.109844
16.135055

19.771419



column 11

0.821397

1.738865

2.769599

3.935071

5.262413

6.786399

8.552286

10.620035

13.070701

16.016451

19.616810

12

0.662921

1.403377

2.235248

3.175859

4.247110

5.477067

6.902253

8.571061

10.548908

12.926321

15.832047

19.455235
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M = 20

13

0.530828

1.123742

1.789855

2.543042

3.400838

4.385714

5.526920

6.863204

8.446949

10.350641

12.677377

15.578614

19.285752

14

0.419641

0.888364

1.414953

2.010378

2.688499

3.467085

4.369254

5.425641

6.677655

8.182601

10.021979

12.315525

15.246168

19.107170

15

0.325383

0.688824

1.097133

1.558816

2.084621

2.688324

3.387853

4.206959

5.177751

6.344664

7.770889

9.549269

11.821645

14.815407

18.917972



- 170 -

M = 20
column 16 17 18 19 20
0.245127 0.176712 0.118583 0.006973 0.00298]._.1
0.518924 0.374093 0.251036 0.147615 0.006311
0.826523 0.595841 0.399841 0.235115 0.100512
1.174331 0.846577 0.568098 0.334054 0.142808
1.570446 1.132136 0.759723 0.446734 0.190979
2.025244 1.460001 0.979737 0.576107 0.246286
2.552233 1.839907 1.234675 0.726016 0.310372
3.169305 2.284755 1.533191 0.901548 0.385413
3.900649 2.811982 1.886988 1.109590 0.474349
4.779741 3.445720 2.,312259 1.359659 0.581254
5.854185 4.220289 2.832036 1.665299 0.711915
7.193924 5.186108 3.480152 2.046405 0.874838
8.905814 6.420212 4.308299 2.533375 1.083018
11.161160 8.046093 5.399351 3.174937 1.357285
14.251819 10.274152 6.894497 4.054115 1.733134
18.716105 13.492462 9.054151 5.324038 2.276026
18.498718 12.413614 7.299476 3.120526
18.261566 10.738200 4.590580
17.997728 7.694029
17.694029

-



ABSTRACT

This Dissertation deals with statistical inference on

the mutation rates al and a2 of a population genetic model

PP. 60-71]. The deductive theory by approximate methods of
such models has reacheda an advanced stage but little has
been done along the line of statistical inference. Moran's
model is a model of the Markov chain type. It was selected
for investigation because it is the only finite population
genetic model for which the deductive theory by exact methods
is well enough established to stimulate an investigation of
statistical inference.

The first broad area of discussion of this dissertation
deals with the simultaneous consideration of the mutation
rates o, and o, . Maximum likelihood estimates for o«. and

1 2 1

az are obtained iteratively from the Newton-Raphson scheme

for simultaneous solution of two equations in two unknowns.
Several theorems are given which ensure that the log likeli-

hood function involving a., ana a, has a unique maximum in

1

the parameter space of useful values.



The transition matrix consists of conditional probability
elements involving the unknowa parameters al and a2 . These
elements are the probablility of a transition from one state
to another in at most unit steps. The eigenvalue expression
along with the corresponding pre- and post-eigenvector
matrices are given. The post-eigenvector matrix has elements
consisting of Hahn polynomials. The pre-eigenvector matrix
is obtained by inverting the post-eigenvector matrix for
which an expression is given. The Hahn polynomials form a
family of orthogonal polynomials. They were introduced by
Hahn [Math. Nach. 2 (1949), pp. 4-34], and further discussed
by Karlin and McGregor [Scripta Math, 26 (1961), pp. 33-46].
These polynomials form the foundation and are basic to many
of the results of the dissertation. The expression for the
expected value of the number of transitions from one state
to another is given and this expression is also in terms of
Hahn polynomials.

Finally for this positively regular transition matrix
involving both of the mutation rates a. aand

1 2°
multivariate normality of the maximum likelihood estimates

asymptotic

&l, 82 is discussed along with hypothesis testing. Also



aiscussed are large sample approximations, methods of design-
ing and conducting experiments aand replicated experiments.

The second broad area of this dissertation deals with
an absorbing Markov chain. That is, a, is set equal to

zexro and investigation on « only is carried out. For

1
this case the above transition matrix becomes an absorbing
one (regular) and inferences are obtained from realizations
on this absorbing chain whose peculiarities provide some
unique difficulties. The eigenvalue expression with the
corresponding post-eigenvector matrix whose elements are also
Hahn polynomials and the expression (in terms of Hahn poly-
nomials) for the expected number of transitions from one
state to another are all given.

Of particular interest are several postulated theorems
on the maximum likelihood estimate & of the mutation rate

1

al of the absorbing Markov chain in which an attempt is

made at establishing the properties and normality of &l .
The estimate is again obtained iteratively. An outline of
the proofs of the postulated theorems is presented. Gaps in

the proof are a result of unresolvea questions in positive

regular Markov chain theory.



In connection with the above theory and postulated
theorems a simulation study on the IBM 650 was undertaken,
This study substantiated many of the assumptions of the
postulated theorems. The study, however, was not extensive
enough to be conclusive. A further study is proposed.

Replicated experiments are also discussed. Of particular
interest here is a geometric type stopping rule in which the
negative binomial is employed. Methods of conducting and
designing experiments are discussead.

An appendix discusses the Hahn polynomial system along

with many of its important properties,
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