INFERENCE ON A GENETIC MODEL by

John J. Bartko, B.A., M.S.

Thesis submitted to the Graduate Faculty of the Virginia Polytechnic Institute in candidacy for the degree of DOCTOR OF PHILOSOPHY in Statistics

May, 1962

Blacksburg, Virginia

To my parents

Pre mojich rociičov

TABLE OF CONTENTS

Chapter page
I. INTRODUCTION AND SUMMARY 4
II. GENERAL DISCUSSION ON MARKOV CHAINS 9
2.1 A Brief Introduction to Markov Chains 9
2.2 Some General Notation and Terminology 12
2.3 Some Markov Chain Theorems 14
III. ESTIMATION OF BOTH MUTATION RATES IN MORAN'S
MODEL 19
3.1 The Model uncer Conaitions of Most Biological Interest 19
3.2 Some Diffusion Theory Results 55
3.3 Replicated Experiments 63
3.4 Conditions on the Mutation Rates of Moran's Mociel 69
IV. INFERENCE ON THE ABSORBING MARKOV CHAIN 71
4.1 Estimating Mutation Rate from a Single Chain (Theory) 71
4.2 Estimating Mutation Rate from a Single Chain (Simulation Stucy) 99
Chapter Page
4.2.1 Background 99
4.2.2 Conclusions from the Simulation Study 107
4.2.3 Comments on the Design of the Experiment 108
4.3 Replicated Experiments 111
4.3.1 Geometric Stopping Rule 111
4.3.2 Fixed chain length 116
4.3.3 Chain length a random variable 118
4.4 Sample Calculations on the Absorbing Chain 119
V. SUGGESTIONS FOR FURTHER RESEARCH 125
VI. ACKNOWLEDGMENTS 127
VII. REFERENCES 128
VIII. VITA 133
IX. APPENDICES 134
APPENDIX I Hahn Polynomials 134
APPENDIX II Table of $\hat{\alpha}_{1}$ from the Absorb- ing Chain 145
APPENDIX III $\left(I-P_{\Delta}\right)^{-1}$ for $M=2,4,6$, 10, 20 163

I. INTRODUCTION AND SUMMARY

In this thesis, methods of desigining experiments and the interpretation of their results will be investigated in connection with a population genetic model introduced by Moran (1958). The deductive theory by approximate methods of such models has reached an advanced stage, but very little has been done along the line of statistical inference. Moran's model is a model of the Markov chain type. A significant amount of the work in this thesis deals with a Markov chain of the absorbing type. In particular, statistical inference for absorbing Markov chains is virtually non-existent. We quote Billingsley (1961a) "A systematic investigation of inference in such cases would be valuable." Snell (personal communication) states, "My own feeling is that the really useful things in this area have yet to be studied." Thus it is evident that more research in this field is needed and that a broad vista of investigation is available. In Moran's model the most severe assumption is that the number of individuals in the population at any time is a constant (usually denoted by M). Though this restriction may have an unappealing tone, Moran's model was selected for investigation
because it is the only finite population genetic model for which the deductive theory by exact methods is well enough established to stimulate an investigation of statistical inference. The only reference known where the assumption of constant population size, for this model, is dropped is an article by Feller (1951) in which the problem is mentioned. Feller gives the form of the diffusion equation approximating the exact, discrete process but no attempt at solution is made. Thus it is hoped that this thesis will be a step towards the opening of a virtually uninvestigated field of statistical inference in population genetic models and that it will serve to illustrate the area of deductive theory needed to handle inference problems on such models.

A model in population genetics is a probability description of how genes pass from one individual (or generation) to the next, and may include such influences as mutation, selection, overlapping or non-overlapping generations and non-random mating. A brief description of these concepts follows. We shall, in this thesis, be primarily concerned with the influence of mutation.

The genetic factor with which we are concerned is of the simplest type. We assume it to be controlled by a single
locus on a chromosome, at which either of two alleles "a" or A can occur. Clearly an allele is an alternative member of a pair of genes. The genotypes (genetic constitution; phenotype refers to physical description) will be haploia, that is, "a" or A as opposed to diploia ināividuals, aa, Aa, or AA. Haploidy is not an uncommon occurrence in nature. In the honeybee, unfertilized eggs may develop by parthenogenesis, in which case males (drones) are produced. These males are haploid. Haploidy is also found in wasps, ants, salamanders, mosses, ferns and molds.

A mutation is a rare instantaneous transition from one gene into its allele, say $a \rightarrow A$ or $A \rightarrow a$. Some of the designs in this thesis will involve the use of mutagents, that is, mutation producing agents. A mutation rate in one direction will be estimated while the reverse mutation rate is assumed zero. This is a realistic ana practical assumption from the biological point of view. It will also be assumed that mutations occur only among the gametes produced by an individual, so that its own genotype remains unchanged throughout its lifetime. Selection describes non-random inciuced variation in the average numbers of offspring produced by different genotypes. This variation can be caused either
directly by varying the number of gametes produced per genotype or inairectly by varying the life expectations. Generations may be non-overlapping, that is, no mating occurs between them (for example populations with a seasonal life cycle) or generations may be overlapping with births and deaths occurring one at a time. Random-mating or panmixia means that any individual has equal probability of mating with any other individual in the population. Non-random mating, therefore, is the possibility of gametes or zygotes uniting in non-random proportions to form new zygotes. An example of non-random mating is positive assortative mating, (likes with likes) a widely used practice in animal breeding. The emphasis in this thesis is statistical inference on the mutation rates α_{1} and α_{2} of Moran's (1958) model, a population genetic model of the Markov chain type. In Chapter II an introduction to Markov chains is given along with a review of known theorems for statistical inference in Markov processes with special reference to maximum likelihood estimation procedures. Chapter III deals with the situation where both mutation rates are estimated. Methods of conducting experiments and interpretation of results are
discussed. Chapter IV deals with the extremely important area of absorbing Markov chains. In this chapter one mutation rate α_{1} is discussed. Several theorems are postulated for the distribution and properties of the maximum likelinood estimate of this single mutation rate α_{1}. Methods of conducting experiments and some illustrative examples are presented. Of special interest are results obtained by simulation methods on the IBM 650 which are extremely important in substantiating several of the theoretical discussions. Appendix I is a presentation and discussion of Hahn polynomials which were the building blocksfor many of the results of the thesis. Appendix II is a listing of data obtained from the IBM 650 in the simulation study. Appendix III was also used in connection with the simulation study.

II. GENERAL DISCUSSION ON MARKOV CHAINS

2.1 A Brief Introduction to Markov Chains

Finite genetic populations, such as those discussed in this thesis, can have only a finite number of possible genetic states; the number of the various genotypes in the population at any time is limited to being a non-negative integer, and cannot exceed the total population size. A population genetic model can be described by postulating the probabilities that a given state will change to another state during a birth-death event. If the population states are ordered according to some convention, the probabilities can be tabulated as a matrix array called a "transition matrix" and the successive states form a (first order) "Markov chain" because the transition matrix is assumed to depend on the immediately preceding state only. Given the initial state, one can write down the probabilities that the population is in the various states at any subsequent time. A discussion of the above terms follows.

An r-th order Markov chain $\{x(t)\}$ satisfies the following condition:

$$
\begin{aligned}
\operatorname{Pr}[x(t) \mid & x(t-1), x(t-2), \ldots, x(t-r), x(t-r-1), \ldots] \\
& =\operatorname{Pr}[x(t) \mid x(t-1), \ldots, x(t-r)],
\end{aligned}
$$

that is, the distribution of $x(t)$ conditional on the whole previous history is the same as the distribution given only the r previous states. As a special case, a first order Markov chain is one for which the distribution is affected by the immediately preceding state only, and we write

$$
\begin{equation*}
p_{i j}=\operatorname{Pr}[x(t)=j \mid x(t-1)=1] . \tag{2.1.1}
\end{equation*}
$$

In this thesis, we shall be using only first order Markov chains with transition probabilities $p_{i j}$ independent of time, and shall refer to these as "Markov chains" without further qualification. We shall assume that changes of state can only occur at integer times $t=2,3, \ldots$, and the possible states are the integer values, i, $j=0,1,2, \ldots, M$. Although somewhat unconventional in stochastic processes we take $t=1$ as initial time, and the initial state $x(1)$ is assumed fixed and known. The conditional probability $p_{i j}$ is called the probability of transition from the state 1 to the state j and $P=\left(p_{i j}\right)$ the matrix of transition probabilities,

$$
P=\left[\begin{array}{ccccccc}
p_{00} & p_{01} & p_{02} & \cdot & \cdot & \cdot & p_{0 M} \\
p_{10} & p_{11} & p_{12} & \cdot & \cdot & \cdot & p_{1 M} \\
\cdot & & & & & & \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \\
\cdot & & & & & & \\
p_{M 0} & & & & & & p_{M M}
\end{array}\right] \cdot(2.1 .2)
$$

Clearly P is a square matrix of order $M+1$ with nonnegative elements, since $p_{i j} \geqslant 0$ for all i and j. Row sums are unity, i.e., $\sum_{j=0}^{M} p_{i j}=1$ for all i. P is simply called the transition matrix.*

We state here that the convention for noting element positions in a square matrix of order $M+1$ in this thesis is as follows:

$$
\left[\begin{array}{ccccccc}
0,0 & 0,1 & 0,2 & \cdot & \cdot & \cdot & 0, M \\
1,0 & 1,1 & 1,2 & \cdot & \cdot & \cdot & 1, M \\
\cdot & & & & & & \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \\
M, 0 & M, 1 & M, 2 & \cdot & \cdot & \cdot & M, M
\end{array}\right] \cdot(2.1 .3)
$$

*A. A. Markov (1856-1922), Russian mathematician, arrived at the notion of Markov chains when he examined the alternation of vowels and consonants in Pushkin's poem "Onegin".

2.2 Some General Notation and Terminology

(a) Discussion. A state in a Markov chain is an absorbing state if it is impossible to leave it. A Markov chain is absorbing if (1) it has at least one absorbing state, and (2) from every state it is possible to go to an absorbing state (not necessarily in one step). For example in Chapter IV the model discussed is one in which state 0 is absorbing and the remaining states $1,2, \ldots, M$ are non-absorbing (transient). Therefore,

$$
p_{00}=1
$$

and

$$
p_{0 j}=0, \quad j=1,2, \ldots, M
$$

In this thesis Feller's (1957) definition of a transient state will be used. Feller defines a transient state as one for which the probability that the state is visited at least twice is less than one. Broadly speaking this means that it is not certain that a transient state be visited infinitely often. Note that in an absorbing Markov chain we can speak of transient states and non-absorbing states as one and the same. However, in general transient does not imply nonabsorbing.
(b) Theorem 2.2.1. In an absorbing Markov chain the probability that the process will be absorbed is one. [Kemeny, Mirkil, Sne11, Thompson, (1959)]
(c) A Markov chain is ergodic if the probability distributions $\left\{P_{j}(n)\right\},\left[P_{j}(n)=\sum_{i} P_{i}(1) p_{i j}(n-l)\right]$ always converge to a limiting aistribution $\left\{P_{j}\right\}$ which is independent of the initial distribution $\left\{P_{j}(1)\right\}$. That is, when $\lim _{n \rightarrow \infty} P_{j}(n)=P_{j}(j=1,2 \ldots)$.

By stationary probability for state i we mean the probability that the model is in state i irrespective of the initial state k, after many generations have elapsed.

We shall say the process is positively regular iff the transition matrix to the power t, P^{t}, for some finite t, has all positive (non-zero) elements. The process is called regular if P^{t} for some finite t has at least one row with all non-zero elements.
(d) Known Results. Extending (2.1.1), we write

$$
\begin{array}{r}
p_{i j}^{(t)}=\operatorname{Pr}[x(t+\tau)=j \mid x(\tau)=1], \tag{2.2.1}\\
t=0,1,2 \ldots ; \tau=1,2 \ldots
\end{array}
$$

for the t-step transition probabilities. Then, if P (2.1.2) is the matrix of elements $p_{i j}$, the elements of
P^{t} are the t-step transition probabilities, that is (t)
$p_{i j} \quad$.
Let λ_{j} be the j-th eigenvalue of P and $\underline{K}_{j} \quad \underline{K}_{j}$ denotes a column vector, $\underline{K}_{j}^{\prime}$ the corresponding row vector) the corresponding post-eigenvector. Then

$$
\mathrm{PK}_{j}=\lambda_{j} \underline{K}_{j}, \quad j=0,1, \ldots, M_{;}(2.2 .2)
$$

that is, $P K=K D_{\lambda}$ where K is a matrix of eigenvectors, $K=\left(\underline{K}_{0}, \underline{K}_{1}, \ldots, \underline{K}_{M}\right)$ and D_{λ} is a diagonal matrix whose elements are the eigenvalues λ_{j}. The columns of K are the post-eigenvectors, the rows of K^{-1} are the preeigenvectors and we have $P=K D_{\lambda} K^{-1}$ or more generally

$$
P^{t}=\mathrm{KD}_{\lambda}{ }^{t_{K}^{-1}}, \quad t=1,2, \ldots, \quad(2.2 .3)
$$

These results are basic and are used widely throughout the thesis.

2.3 Some Markov Chain Theorems

The following discussion is taken from Billingsley (1961). For convenience, as much as possible of his discussion will be in the notation and wording of this thesis. Moreover, theorems and conditions will be numbered following the convention of this thesis where numbers in parentheses will be those used by Billingsley.

We now establish some notation. Given a set of transition probabilities $p_{i j}(\alpha)$, which depend on unknown parameters $\alpha \varepsilon \Omega$ where Ω is the parameter space and $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$ is a vector of parameters, then the likelihood function can be written

$$
\begin{equation*}
L(\alpha)=\prod_{p_{i j}}^{n_{i j}}(\alpha) \tag{2.3.1}
\end{equation*}
$$

where ${ }^{n}{ }_{i j}$ is the number of times the transition from state i to state j occurred. The log-likelihood is then

$$
\begin{equation*}
\log L(\alpha)=\Sigma n_{i j} \log p_{i j}(\alpha) \tag{2.3.2}
\end{equation*}
$$

The maximum likelihood equations become

$$
\begin{array}{r}
\frac{\partial}{\partial \alpha_{u}} \log L(\alpha)=\sum_{\sum_{i j}}^{n_{i j}} \frac{\partial p_{i j}(\alpha)}{\partial \alpha_{u}}=0, \tag{2.3.3}\\
u=1,2, \ldots, r
\end{array}
$$

For large n (n is the length of the observed chain; a realization of the chain) we can write the $r \times r$ symmetric information matrix as

$$
\begin{equation*}
I=-\varepsilon\left(\frac{\partial^{2} \log _{L} L(\alpha)}{\partial \alpha_{u}} \partial \alpha_{v}\right) \tag{2.3.4}
\end{equation*}
$$

Condition 2.3.1 (Condition 5.1). The set D of pairs (i, j), for which the transition probabilities $p_{i j}(\alpha)>0$,
is by assumption independent of $\alpha \varepsilon \Omega$. Each $p_{i j}(\alpha)$ has continuous partial derivatives of third order throughout Ω. Moreover the $d x$ matrix

$$
\left(\partial p_{i j}(\alpha) / \partial \alpha_{u}\right) \quad(i, j) \varepsilon D, \quad u=1, \ldots, r,
$$

(d being the number of elements in D) has rank r throughout Ω. For each $\alpha \varepsilon \Omega$ there is only one ergodic set and there are no transient states. See section 2.2a, c for a discussion of the terms transient and ergodic.

This condition implies that $I(2.3 .4)$ is non-singular. It further implies the following two theorems.

Theorem 2.3.1 (Theorem 2.1). Suppose that Condition 2.3.1 holds. Then there exists a sequence $\{\hat{\alpha}\}$ of random vectors in Ω, each being a function $\hat{\alpha}=\hat{\alpha}(x(1), \ldots, x(n))$ of the observations, such that $\hat{\alpha}$ converges in probability to the true α^{0} and such that $\hat{\alpha}$ is a solution of (2.3.3) with probability going to one as $n \rightarrow \infty$. Thus there is a consistent maximum likelihood estimator of α^{0}. Moreover $\hat{\alpha}$ is a local maximum of (2.3.2) with probability going to one. Finally, if $\bar{\alpha}$ is a second consistent solution of (2.3.3) then the probability that $\hat{\alpha}=\bar{\alpha}$ goes to one as $n \rightarrow \infty$.

This theorem [as Billingsley notes] does not take into account certain difficulties which may arise. The conditions imposed on the transition probabilities are local in character and so hence are the results which follow from them. In summary fashion then the theorem states that if N_{b} is a small neighborhood of α^{0} and if n is large, there is, with high probability, exactly one solution $\hat{\alpha}$ of (2.3.3) in N_{b} and $\log (\hat{\alpha}) \geq \log (\alpha)$ for any $\alpha \varepsilon N_{b}$. Now there may be other solutions of (2.3.3) far removed from α^{0}; the theorem provides no means of choosing the solution which is near α^{0}. Further, the solution $\hat{\alpha}$ need not be an absolute maximum of $\log L(\alpha)$. Even so, it is convenient to call $\hat{\alpha}$ the maximum likelihood estimator of α^{0} and to write $\log L(\hat{\alpha})$ as though it were an absolute maximum. In Chapter III where the model to which this theorem applies is discussed, it is shown that the above difficulties can be avoided. For the model discussed there the solution of (2.3.3) provides the unique maximum of $\log L(\alpha)$ under some general conditions.

The next theorem provides us with the tools for statistical inference. If the vector $\hat{\alpha}$ is a consistent solution
of the maximum likelihood equations (2.3.3), let $\ell(n)=\left(\ell_{1}(n), \ldots, \ell_{r}(n)\right)$ be the random vector with components

$$
\begin{equation*}
\ell_{u}(n)=\left(\hat{\alpha}_{u}-\alpha_{u}^{0}\right), \quad u=1,2, \ldots, r . \tag{2.3.5}
\end{equation*}
$$

Theorem 2.3.2 (Theorem 2.2). Suppose that Condition 2.3.1 holds. If the vector α^{0} is the true value of the parameters and $\hat{\alpha}$ is a consistent solution of the maximum likelihood equations (2.3.3), then for $n \rightarrow \infty$

$$
\begin{equation*}
\ell(n) \div N\left(0, I^{-1}\right) \tag{2,3,6}
\end{equation*}
$$

That is, for $n \rightarrow \infty \quad \ell(n)$ is asymptotically multivariate normal with mean zero and variance-covariance matrix I^{-1} (2.3.4).

For general interest we might mention the following. The above theorems provide us with the means of investigating the unknown parameters on which transition probabilities may depend. It is possible to make inferences about transition probabilities alone. For example, we may wish to test the hypothesis that several realizations are from the same Markov chain. Such a test uses a X^{2} goodness of fit test. Billingsley (1961) has a discussion on these goodness of fit type tests. Problems of this sort are not investigated in this thesis.
III. ESTIMATION OF BOTH MUTATION RATES IN MORAN'S MODEL

3.1 The Model under Conditions of Most Biological Interest

(a) The Model. In this chapter the estimation of both mutation rates, α_{1} and α_{2} in Moran's (1958) model will be aiscussed. We postulate $\alpha_{1}, \alpha_{2}>0$ and $1-\alpha_{1}-\alpha_{2}>0$. This includes most of the cases of biological interest. The biological analogue of this situation is the estimation of spontaneous mutation rates in a natural population, that is, estimating both forward and backward mutation rates. Conditions other thai $\alpha_{1}, \alpha_{2}>0$ and $1-\alpha_{1}-\alpha_{2}>0$ will be discussed briefly elsewhere in this chapter.

In Moran's model we assume a constant population size M of haploia inaiviauals "a" or A. Suppose that of the M haploia individuals i are of type "a" where $i=0,1,2, \ldots, M$. The number of A individuals is then $M-1$ and the proportions of "a" and A are $i M^{-1}$ and 1 - $i M^{-1}$ respectively. Also let there be a probability α_{1} of a gamete " a " mutating to A and α_{2} of a gamete A mutating to "a" whenever such are chosen as sex gametes for the production of offspring. We postulate that a new individual is formed by the random choice of a parent whose
gamete is passed on, with possible mutation, to the offspring. Thus the probability that an offspring is of type "a" is

$$
\begin{equation*}
p_{1}=\left(1-\alpha_{1}\right) i M^{-1}+\left(1-i M^{-1}\right) \alpha_{2} \tag{3.1.1}
\end{equation*}
$$

and of being type A is

$$
\begin{equation*}
q_{i}=i M^{-1} \alpha_{1}+\left(1-i M^{-1}\right)\left(1-\alpha_{2}\right) \tag{3.1.2}
\end{equation*}
$$

We further assume that at each instant at which the state of the model may change, one of the gametes chosen at random dies and is replaced by a new gamete which is "a" or A with probabilities p_{i}, q_{i} as given above where i is the number of "a"'s prior to the event. Thus the birth-death model postulates that at each unit of time, one individual is chosen at random to die, and is replaced by a new individual whose genotype is determined at random from those existing before the death. Hence the number of individuals of a given genotype (the state of the population) can take any of the values $0,1, \ldots, M$, and can change by at most unity during one birth-death event. The model was further discussed by Moran (1958a).

Moran's model applies to a population in which breeding and mortality are occurring all the time, and in which generations overlap. Moreover it applies strictly to a
haploid population. The transition matrix for the general model is defined by the elements

$$
\begin{align*}
p_{i i+1}= & \left(1-\frac{i}{M}\right)\left[\left(1-\alpha_{1}\right) \frac{i}{M}+\alpha_{2}\left(1-\frac{i}{M}\right)\right] \\
p_{i i}= & 1-p_{i i+1}-p_{i i-1} \tag{3.1.3}\\
= & \frac{i}{M}\left[\left(1-\alpha_{1}\right) \frac{i}{M}+\alpha_{2}\left(1-\frac{i}{M}\right)\right] \\
& +\left(1-\frac{i}{M}\right)\left[\alpha_{1} \frac{i}{M}+\left(1-\alpha_{2}\right)\left(1-\frac{i}{M}\right)\right] \\
p_{i i-1}= & \frac{i}{M}\left[\alpha_{1} \frac{i}{M}+\left(1-\alpha_{2}\right)\left(1-\frac{i}{M}\right)\right] \\
p_{i k}= & 0 \quad \text { if } k\rangle i+1 \text { or } k<1-1,
\end{align*}
$$

taking into account the probabilities for birth and death gamete types.

The square transition matrix $P(2.1 .2)$ of order $M+1$ with elements (3.1.3) has a tri-diagonal form

Clearly there are no absorbing states provided $\alpha_{1}, \alpha_{2}>0$. Further $p_{00}=1-\alpha_{2}, p_{01}=\alpha_{2}$ and $p_{M M}=1-\alpha_{1}$, $p_{M M-1}=\alpha_{1}$ hold for all M.

We shall denote the numbers of times the transitions from state i to $i+1$, i to i, and i to $i-1$ are observed by a_{i}, b_{i} and c_{i} respectively. This notation, rather than the more general $n_{i j}$ used in (2.3.1), will be used throughout the thesis. In general $\sum_{i=0}^{M}\left(a_{i}+b_{i}+c_{i}\right)=n-1$ and $\sum_{i=0}^{M} n_{i}=n$ where n_{i} is the total number of times state i is observed and n is the observed length of the chain. For example, consider
the following chain of length $n=12$ where $M=4$ observed at equal time intervals,

$$
\begin{equation*}
222334332221 \tag{3.1.5}
\end{equation*}
$$

we have

furthermore, $\quad \sum_{i=0}^{M=4}\left(a_{i}+b_{i}+c_{i}\right)=11$ and $\sum_{i=0}^{4} n_{i}=12$. The probability for this outcome (the "likelihood") could be written

$$
p_{23} p_{34} p_{22}^{4} p_{33}^{2} p_{21} p_{32} p_{43}
$$

or in general

$$
\prod_{i} p_{i i+1}^{a_{i}}{\stackrel{p}{b_{i}}}_{p_{i i}}^{p_{i}}{ }_{i-1}
$$

The following relationships between the $a_{i}{ }^{\prime} s$ and $c_{i}{ }^{\prime} s$ also hold:
$a_{i} \equiv c_{i+1} \quad$ if initial state of the chain is at or
below i, final state is at or below
i or if initial state is above i,
final is above i.
(3.1.8)
$a_{i} \equiv c_{i+1}^{-1}$ if initial state is above i, final is
at or below i.
$a_{i} \equiv c_{i+1}+1$ if initial state is at or below i,
final is above i.
(b) Procedure for Obtaining Maximum Likelihood Estimates. In a Markov chain of the type discussed in this chapter, where there are no absorbing states, observing a single long chain (i.e., $n \rightarrow \infty$) provides us with an "infinite" amount of information. Thus, the standard procedure for conducting the experiment will be to observe a single long chain and apply the standard techniques of maximum likelihood. Clearly, replicated experiments, that is, observing many independent realizations of different chains is also a valid procedure. Replications will be discussed in Section 3.3.

Using the notation (3.1.7) we write the log-likelihood function as

$$
\begin{align*}
& \log L\left(\alpha_{1} \alpha_{2}\right)=\log L=\sum_{i=0}^{M-1} a_{i} \log p_{i i+1} \\
& +\sum_{i=0}^{M} b_{i} \log p_{i i}+\sum_{i=1}^{M} c_{i} \log p_{i i-1}, \tag{3.1.9}
\end{align*}
$$

where the upper index on the first term is $M-1$ since no transition of the type M to $M+1$ is possible. Similarly the lower index on the last term is 1 since a transition 0 to -1 is not possible.

Let

$$
\begin{equation*}
\varphi_{1}=\frac{\partial}{\partial \alpha_{1}} \log L, \quad \varphi_{2}=\frac{\partial}{\partial \alpha_{2}} \log L, \tag{3.1.10}
\end{equation*}
$$

then

$$
\begin{align*}
& \varphi_{1}=\sum_{i=1}^{M-1} \frac{-i a_{i}}{\left[\left(1-\alpha_{1}\right) i+\alpha_{2}(M-i)\right]}+\sum_{i=1}^{M} \frac{i(M-2 i) b_{i}}{\left[i^{2}\left(1-\alpha_{1}\right)+(M-1)\left[1\left(\alpha_{1}+\alpha_{2}\right)+\left(1-\alpha_{2}\right)(M-i)\right]\right]} \\
& +\sum_{i=1}^{M} \frac{1 c_{i}}{\left[1 \alpha_{1}+\left(1-\alpha_{2}\right)(M-i)\right]} \tag{3.1.11}\\
& \varphi_{2}=\sum_{i=0}^{M-1} \frac{(M-i) a_{1}}{\left[\left(1-\alpha_{1}\right) i+\alpha_{2}(M-i)\right]}-\sum_{i=0}^{M-1} \frac{(M-i)(M-2 i) b_{1}}{\left[i^{2}\left(1-\alpha_{1}\right)+(M-i)\left[i\left(\alpha_{1}+\alpha_{2}\right)+\left(1-\alpha_{2}\right)(M-i)\right]\right]} \\
& -\sum_{i=1}^{M-1} \frac{(M-i) c_{1}}{\left[i \alpha_{1}+\left(1-\alpha_{2}\right)(M-i)\right]}
\end{align*}
$$

Further

$$
\begin{align*}
& \frac{\partial \varphi_{1}}{\partial \alpha_{1}}=-\left[\sum_{i=1}^{M-1} \frac{i^{2} a_{i}}{\left[\left(1-\alpha_{1}\right) i+\alpha_{2}(M-i)\right]^{2}}\right. \\
&+\sum_{i=1}^{M} \frac{i^{2}(M-2 i)^{2} b_{i}}{\left[i^{2}\left(1-\alpha_{1}\right)+(M-i)\left[i\left(\alpha_{1}+\alpha_{2}\right)+\left(1-\alpha_{2}\right)(M-i)\right]\right]^{2}} \\
&+\sum_{i=1}^{M} \frac{i^{2} c_{i}}{\partial \alpha_{1}}=\frac{\partial \varphi_{2}}{\partial \alpha_{1}}= \tag{3.1.12}\\
& \sum_{i=1}^{M-1} \frac{1(M-i) a_{i}}{\left.\left.\left.\left[\left(1-\alpha_{1}\right) i+\alpha_{2}(M-i)\right]_{2}^{2}\right)(M-i)\right]^{2}\right]} \\
&+\sum_{i=1}^{M-1} \frac{i(M-2 i)^{2}(M-i) b_{i}}{\left[i^{2}\left(1-\alpha_{1}\right)+(M-i)\left[i\left(\alpha_{1}+\alpha_{2}\right)+\left(1-\alpha_{2}\right)(M-i)\right]\right]^{2}} \\
&+\sum_{i=1}^{M-1} \frac{1(M-i) c_{i}}{\left[1 \alpha_{1}+\left(1-\alpha_{2}\right)(M-i)\right]^{2}}
\end{align*}
$$

$$
\begin{aligned}
& \frac{\partial \varphi_{2}}{\partial a_{2}}=-\left[\sum_{i=0}^{M-1} \frac{(M-i)^{2} a_{i}}{\left[\left(1-\alpha_{1}\right) i+\alpha_{2}(M-i)\right]^{2}}\right. \\
&+\sum_{i=0}^{M-1} \frac{(M-2 i)^{2}(M-i)^{2} b_{1}}{\left[i^{2}\left(1-\alpha_{1}\right)+(M-i)\left[i\left(\alpha_{1}+\alpha_{2}\right)+\left(1-\alpha_{2}\right)(M-i)\right]\right]^{2}}
\end{aligned}
$$

$$
\left.+\sum_{i=1}^{M-1} \frac{(M-i)^{2} c_{1}}{\left[i \alpha_{1}+\left(1-\alpha_{2}\right)(M-i)\right]^{2}}\right]
$$

A procedura for: simultaneous solution of $\varphi_{1}=\varphi_{2}=0$ is to apply the Newton-Raphson iterative method for two equations in two unknowns, viz.,

$$
\left[\begin{array}{l}
\hat{\alpha}_{1}^{(1)} \\
\hat{\alpha}_{2}^{(1)}
\end{array}\right]=\left[\begin{array}{l}
\hat{\alpha}_{1}^{(0)} \tag{3.1.13}\\
\hat{\alpha}_{2}^{(0)}
\end{array}\right]-\left[\begin{array}{ll}
\partial \varphi_{1} / \partial \alpha_{1} & \partial \varphi_{1} / \partial \alpha_{2} \\
\partial \varphi_{2} / \partial \alpha_{1} & \partial \varphi_{2} / \partial \alpha_{2}
\end{array}\right]^{-1}\left[\begin{array}{l}
\varphi_{1} \\
\varphi_{2}
\end{array}\right] . \begin{aligned}
& \alpha_{1}=\hat{\alpha}_{3}(0) \\
& \alpha_{2}=\hat{\alpha}_{2}^{(0)}
\end{aligned}
$$

This method requires the inverse of one matrix. Using a convenient first guess (to be discussed below) for α_{1} and α_{2} this inverse, however, can be calculated once and iterations performed on φ_{1} and φ_{2}. This tactic will result in somewhat slower convergence on α_{1} and α_{2}.

A convenient first guess for α_{1} and α_{2} could be obtained by selecting the most frequently occurring transitions, estimating the transition probabilities, setting these estimates equal to the right hand side (RHS) of (3.1.3) and solving for α_{1} and α_{2}. It is known (cf., for example Bartlett 1960, p. 229) that the maximum likelihood estimate of a transition probability where no other parameters are
involved implicitly is given by the ratio of the number of times the transition from state i to state j occurred to the total number of times that state i was observea. For example, in our notation the maximum likelihood estimate of $p_{i i+1}$ is

$$
\begin{equation*}
\hat{p}_{i i+1}=\frac{a_{i}}{n_{i}} \tag{3.1.14}
\end{equation*}
$$

Thus (3.1.14) provides the LHS of (3.1.13). Usually it is necessary to solve two equations simultaneously in order to obtain first guesses for α_{1} and α_{2}. However, if the chain is such that the transitions $M \rightarrow M, M \rightarrow M-1$ or $0 \rightarrow 0,0 \rightarrow 1$ are observed relatively frequent, then first guesses for α_{1} and α_{2} respectively can be obtained straight away. (cf., 3.1.4).
(c) Uniqueness Theorems. Nothing has been said so far about the existence of maximum likelihood solutions of the Newton-Raphson system (3.1.13). For this discussion we turn to Billingsley's (1961) results presented in Section 2.3. In light of Condition 2.3.1, for the Markov chain aiscussed in this chapter, the set D exists. The set D of integer pairs ($1, j$) are those of the tri-diagonal matrix

where the number of elements d of D is $3 M+1$. Each transition probability (3.1.3) has continuous partial derivatives of third order. The parameter space Ω is the open unit square $\left(0<\alpha_{1}<1,0<\alpha_{2}<1\right)$. This square contains the useful values of the mutation rates (probabilities) α_{1}, α_{2}. The $\alpha_{x} 2(x=2)$ matrix

$$
\left(\frac{\partial p_{1, i}}{\partial \alpha_{u}}\right) \quad u=1,2 \quad \text { has rank } 2,
$$

for consider $p_{00}=1-\alpha_{2}$ and $p_{M M}=1-\alpha_{1}$ then

$$
\left|\begin{array}{ll}
\frac{\partial p_{00}}{\partial \alpha_{1}} & \frac{\partial p_{00}}{\partial \alpha_{2}} \\
\frac{\partial p_{M M}}{\partial \alpha_{1}} & \frac{\partial p_{M M}}{\partial \alpha_{2}}
\end{array}\right|=\left|\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right|=-1 \neq 0,
$$

hence at least one of the 2×2 determinants of the $d \times 2$ matrix does not vanish, thus the rank is $2(x)$. Further there is only one ergodic set $\{0,1, \ldots, M\}$ and there are no transient states. Recall Feller's (1957) definition of a transient state as one for which the probability that the state is visited at least twice is less than one. This would hold for an absorbing Markov chain, but here we have no absorbing states and for an infinitely long chain each state can and will be visited infinitely often. Thus there are no transient states and Condition 2.3 .1 is satisfied. Having satisfied Condition 2.3 .1 we can make use of Theorems 2.3.1 and 2.3.2. If $\left(\alpha_{1}{ }^{0}, \alpha_{2}{ }^{0}\right)$ are true values of the parameters $\left(\alpha_{1}, \alpha_{2}\right)$ and $\hat{\alpha}_{1}, \hat{\alpha}_{2}$ are the maximum likelihood estimates, then from the above theorems we can state that

$$
\begin{equation*}
\left(\hat{\alpha}_{1}-\alpha_{1}^{0}, \hat{\alpha}_{2}-\alpha_{2}^{0}\right) \dot{\sim} N\left(0, I^{-1}\right) \tag{3.1.15}
\end{equation*}
$$

that is $\left(\hat{\alpha}_{1}-\alpha_{1}^{0}, \hat{\alpha}_{2}-\alpha_{2}^{0}\right)$ is asymptotically distributed (as $n \rightarrow \infty$) as the multivariate normal with mean zero and variance-covariance matrix I^{-1} where

$$
I=\left[\begin{array}{cc}
-\varepsilon \frac{\partial \varphi_{1}}{\partial \alpha_{1}} & -\varepsilon \frac{\partial \varphi_{1}}{\partial \alpha_{2}} \tag{3.1.16}\\
-\varepsilon \frac{\partial \varphi_{2}}{\partial \alpha_{1}} & -\varepsilon \frac{\partial \varphi_{2}}{\partial \alpha_{2}}
\end{array}\right]
$$

Recall that Billingsley's results were general and did not guarantee that the solution of $\varphi_{1}=0, \varphi_{2}=0(3.1 .10)$ would be unique nor that the consistent solution would correspond to the absolute maximum of $\log \mathrm{L}(3.1 .9)$. The following discussion shows that under some general conditions $\log L$ has a unique maximum, at the solution of the maximum likelihood equations $\varphi_{1}, \varphi_{2}=0$, and therefore an absolute maximum of $\log L$ in Ω. The solution must of necessity be the consistent solution.

We state the following theorem.
Theorem 3.1.1. Assume that there is at least one solution $\left(\hat{\alpha}_{1}, \hat{\alpha}_{2}\right)$ of

$$
\begin{align*}
& \frac{\partial}{\partial \alpha_{1}} \log L\left(\alpha_{1}, \alpha_{2}\right)=0 \\
& \frac{\partial}{\partial \alpha_{2}} \log L\left(\alpha_{1}, \alpha_{2}\right)=0 \tag{3.1.17}
\end{align*}
$$

within the domain Ω; further for any two ふifferent i, other
than $i=M / 2$, at least one a_{i}, b_{i} or $c_{i}>0$ then (i) the solution is unique in Ω and also in the unit square, (ii) it maximizes $\log L\left(\alpha_{1}, \alpha_{2}\right)$, and (iii) it provides the consistent estimate for which the asymptotic normality expressed in (2.3.6) applies.

Proof: Following Hobson (1926, p. 213) we can write the function $\log L\left(\alpha_{1}, \alpha_{2}\right)$, defined for all values of α_{1}, α_{2} lying within the domain Ω as

$$
\begin{align*}
& \left.\log L\left(\alpha_{1}, \alpha_{2}\right)=\log L\left(\hat{\alpha}_{1}, \hat{\alpha}_{2}\right)+\left(\alpha_{1}-\hat{\alpha}_{1}\right) \frac{\partial \log L}{\partial \alpha_{1}} \right\rvert\, \hat{\alpha}_{1}, \hat{\alpha}_{2} \\
& \left.\quad+\left(\alpha_{2}-\hat{\alpha}_{2}\right) \frac{\partial \log L}{\partial \alpha_{2}} \right\rvert\, \hat{\alpha}_{1}, \hat{\alpha}_{2}^{+\frac{1}{2}\left[\left.\left(\alpha_{1}-\hat{\alpha}_{1}\right) \frac{\partial^{2} \log L}{\partial \alpha_{1}^{2}} \right\rvert\, \bar{\alpha}_{1}, \bar{\alpha}_{2}\right.} \\
& \left.\quad+2\left(\alpha_{1}-\hat{\alpha}_{1}\right)\left(\alpha_{2}-\hat{\alpha}_{2}\right) \frac{\partial^{2} \log L}{\partial \alpha_{1}} \frac{\partial \alpha_{2}}{} \right\rvert\, \bar{\alpha}_{1}, \bar{\alpha}_{2} \\
& \left.\left.\quad+\left(\alpha_{2}-\hat{\alpha}_{2}\right)^{2} \frac{\partial^{2} \log L}{\partial \alpha_{2}^{2}} \right\rvert\, \bar{\alpha}_{1}, \bar{\alpha}_{2}\right], \tag{3.1.18}
\end{align*}
$$

where $\bar{\alpha}_{1}=\hat{\alpha}_{1}+\theta\left(\alpha_{1}-\hat{\alpha}_{1}\right), \quad \bar{\alpha}_{2}=\hat{\alpha}_{2}+\theta\left(\alpha_{2}-\hat{\alpha}_{2}\right)$,
$0<\theta<1$. If $\hat{\alpha}_{1}, \hat{\alpha}_{2}$ is any solution of $\frac{\partial \log _{1} L}{\partial \alpha_{1}}=0$, $\frac{\partial \log L}{\partial \alpha_{2}}=0$, then (3.1.18) becomes

$$
\begin{align*}
& \log L\left(\alpha_{1}, \alpha_{2}\right)=\log L\left(\hat{\alpha}_{1}, \hat{\alpha}_{2}\right)+\frac{\beta_{2}}{}\left[\left(\alpha_{1}-\hat{\alpha}_{1}\right)^{2} \frac{\partial^{2} \log L}{\partial \alpha_{1}^{2}}\right] \bar{\alpha}_{1}, \bar{\alpha}_{2} \\
& \left.\quad+2\left(\alpha_{1}-\hat{\alpha}_{1}\right)\left(\alpha_{2}-\hat{\alpha}_{2}\right) \frac{\partial^{2} \log L}{\partial \alpha_{1}} \frac{\partial \alpha_{2}}{} \right\rvert\, \bar{\alpha}_{1}, \bar{\alpha}_{2} \\
& \left.\quad+\left.\left(\alpha_{2}-\hat{\alpha}_{2}\right)^{2} \frac{\partial^{2} \log L}{\partial \alpha_{2}^{2}}\right|_{\bar{\alpha}_{1}}, \bar{\alpha}_{2}\right] \tag{3.1.19}
\end{align*}
$$

Let us write x for $\alpha_{1}-\hat{\alpha}_{1}, y$ for $\alpha_{2}-\hat{\alpha}_{2}$ and φ_{11} for $\left.\frac{\partial^{2} \log L}{\partial \alpha_{1}{ }^{2}}\right\rfloor \bar{\alpha}_{1}, \bar{\alpha}_{2}, \varphi_{12}$ for $\left.\frac{\partial^{2} \log L}{\partial \alpha_{1} \partial \alpha_{2}}\right\rfloor \bar{\alpha}_{1}, \bar{\alpha}_{2} \quad$ and φ_{22} for $\frac{\partial^{2} \log L}{\partial \alpha_{2}^{2}} \int \bar{\alpha}_{1}, \bar{\alpha}_{2}$. Then we would like to be able to say that for all $\left(\alpha_{1}, \alpha_{2}\right) \neq\left(\hat{\alpha}_{1}, \hat{\alpha}_{2}\right)$, i.e., $(x, y) \neq(0,0)$,

$$
\begin{equation*}
x^{2} \varphi_{11}+2 x y \varphi_{12}+y^{2} \varphi_{22}<0 \tag{3.1.20}
\end{equation*}
$$

so that from

$$
\begin{align*}
\log L\left(\alpha_{1}, \alpha_{2}\right)= & \log L\left(\hat{\alpha}_{1}, \hat{\alpha}_{2}\right) \\
& +\frac{1}{2}\left(x^{2} \varphi_{11}+2 x y \varphi_{12}+y^{2} \varphi_{22}\right) \tag{3.1.21}
\end{align*}
$$

we can write

$$
\begin{equation*}
\log L\left(\alpha_{1}, \alpha_{2}\right)<\log L\left(\hat{\alpha}_{1}, \hat{\alpha}_{2}\right) \tag{3.1.22}
\end{equation*}
$$

From (3.1.10) and (3.1.12) we can write

$$
\varphi_{l l}=-\left[\sum_{i=0}^{M}\left[i^{2} k_{i}+i^{2}(M-2 i)^{2} \ell_{i}+i^{2} m_{i}\right]\right]
$$

$$
\varphi_{12}=\sum_{i=0}^{M}\left[i(M-i) k_{i}+i\left(M-2_{i}\right)^{2}(M-i) \ell_{i}+i(M-i) m_{i}\right]
$$

$$
\varphi_{22}=-\left[\sum_{i=0}^{M}\left[(M-1)^{2}{k_{i}}_{i}+(M-2 i)^{2}(M-i)^{2} \ell_{i}+(M-i)^{2} m_{i}\right]\right]
$$

where

$$
\begin{align*}
& k_{i}=a_{i} /\left[\left(1-\bar{\alpha}_{1}\right) i+\bar{\alpha}_{2}(M-i)\right]^{2} \geq 0 \\
& \ell_{i}=b_{i} /\left[i^{2}\left(1-\bar{\alpha}_{1}\right)+(M-i)\left[i\left(\bar{\alpha}_{1}+\bar{\alpha}_{2}\right)+\left(1-\bar{\alpha}_{2}\right)(M-i)\right]\right]^{2} \geq 0 \\
& m_{i}=c_{i} /\left[i \bar{\alpha}_{1}+\left(1-\bar{\alpha}_{2}\right)(M-i)\right]^{2} \geq 0 . \quad(3.1 .23) \tag{3.1.23}
\end{align*}
$$

Thus

$$
x^{2} \varphi_{11}+2 x y \varphi_{12}+y^{2} \varphi_{22} \quad \text { becomes }
$$

$$
-\left[\sum_{i=0}^{M} k_{i}[i x-(M-i) y]^{2}+\sum_{i=0}^{M} b_{i}[i x-(M-i) y]^{2}(M-2 i)^{2}\right.
$$

$$
\left.+\sum_{i=0}^{M} m_{i}[i x-(M-i) y]^{2}\right]
$$

M

$$
\begin{equation*}
=-\sum_{i=0}\left[k_{i}+(M-21)^{2} b_{i}+m_{i}\right][i x-(M-i) y]^{2} \tag{3.1.24}
\end{equation*}
$$

where for convenience the summation is now taken from 0 to M .

Now for all $(x, y) \neq(0,0)$, provided that for two different $i, k_{i}+(M-2 i)^{2} l_{i}+m_{i}>0$ holds, note that k_{i}, ℓ_{i}, m_{i} are functions of a_{i}, b_{i} and c_{i} respectively
and by the assumptions of the theorem at least one of these is >0, then at least one term in (3.1.24) will be strictly negative (even allowing for $i x-(M-i) y=0$ to hold for one value of i).

Thus (3.1.22) holds for all α_{1}, α_{2} in Ω and any solution $\hat{\alpha}_{1}, \hat{\alpha}_{2}$ in Ω. Suppose now that another solution $\overline{\bar{\alpha}}_{1}, \bar{\varkappa}_{2}$ say existed in Ω, then from (3.1.22) we would have $\log L\left(\tilde{\bar{\alpha}}_{1}, \tilde{\bar{\alpha}}_{2}\right)<\log L\left(\hat{\alpha}_{1}, \hat{\alpha}_{2}\right)$
and similarly, by interchanging the roles of $\hat{\alpha}_{1}, \hat{\alpha}_{2}$ with $\bar{\varkappa}_{1}, \bar{\varkappa}_{2}, \log L\left(\hat{\alpha}_{1}, \hat{\alpha}_{2}\right)<\log L\left(\tilde{\bar{\alpha}}_{1}, \overline{\bar{\alpha}}_{2}\right)$ which yields a contradiction. Thus there can be at most one solution of $\varphi_{1}=\varphi_{2}=0$ in Ω. This proves (i). (3.1.22) proves (ii). The fact that at least one solution of $\varphi_{1}=\varphi_{2}=0$ (in Ω) must be consistent, by Theorems 2.3.1 and 2.3.2, ensures that (iii) holds.

We state the following theorem taken from Kaplan (1956, p. 126) in our notation.

Theorem 3.1.2. Let Ω be a bounded domain of the α_{1}, α_{2} plane. Let $\log L\left(\alpha_{1}, \alpha_{2}\right)$ be defined and continuous in the closed region E formed of Ω plus its boundary. Then $\log L\left(\alpha_{1}, \alpha_{2}\right)$ has an absolute maximum and an absolute minimum in E.

Corollary 3.1.3. If $a_{0}>0, \quad b_{0}>0, \quad b_{M}>0, \quad c_{M}>0$ all hold for a particular realization, then the conclusions of Theorem 3.1.1 hold.

Proof: Note from (3.1.9) that

$$
\begin{gather*}
\log L=\log L\left(\alpha_{1}, \alpha_{2}\right)=\sum_{i=0}^{M-1} a_{i} \log p_{i i+1} \\
+\sum_{i=0}^{M} b_{i} \log p_{i i}+\sum_{i=1}^{M} c_{i} \log p_{i i-1}
\end{gather*}
$$

From (3.1.3) when $\alpha_{1}=0, p_{M M-1}=0$, when $\alpha_{2}=0, p_{01}=0$, when $\alpha_{1}=1, p_{M M}=0$, and when $\alpha_{2}=1, p_{00}=0$.

Thus if $a_{0}, b_{0}, b_{M}, c_{M}$ are all positive (3.1.25) becomes $\log L\left(\alpha_{1}, \alpha_{2}\right)=-\infty$ for all points on the boundary of Ω, namely of the forms $\left(0, \alpha_{2}\right),\left(\alpha_{1}, 0\right),\left(1, \alpha_{2}\right)$ or ($\alpha_{1}, 1$). Therefore $\log L$ does not have an absolute maximum on the boundary of Ω, and Theorem 3.1.2 ensures that the absolute maximum occurs within Ω. Of necessity, therefore, at least one solution of $\varphi_{1}=\varphi_{2}=0$ exists in Ω. Thus $a_{0}, b_{0}, b_{M}, c_{M}>0$ implies both requirements of Theorem 3.1.1, and the proof is complete.

Corollary 3.1.4. As n (the length of chain; the number of observations) increases the conditions of Corollary 3.1.3 will hold with probability increasing to one. Hence the conclusions of Theorem 3.1.1 hold asymptotically with probability one.

We have thus given a theorem and two corollaries whose applicability can be verifiec after an experiment is completed, and which also can be used to design an experiment having desirable asymptotic properties.
(d) Application of the Theorems. In order to determine the information matrix $I(3.1 .16)$ we need to find the expectations of the transition numbers a_{i}, b_{i} and c_{i} which are the random variables contained in the elements (cf., 3.1.12) of the information matrix. A discussion of these expectations follows.

Suppose we have a chain of length n with initial

 state k, where n_{i}, a ranaom variable, is the total number of times state i is observed and a_{1}, b_{i}, c_{i} are as previously defined (cf., 3.1.5). Let$$
y_{1 t}=\left\{\begin{array}{lll}
1 & \text { if } & x(t)=1 \\
0 & \text { if } & x(t) \neq i
\end{array},\right.
$$

then

$$
n_{i}=\sum_{t=1}^{n} y_{i t}
$$

and

$$
\varepsilon\left(n_{i}\right)=\sum_{t=1}^{n} \varepsilon\left(y_{i t}\right)=\sum_{t=1}^{n} \operatorname{pr}(x(t)=i)
$$

Since the initial state is $x(1)=k$ then
$\operatorname{Pr}(x(t)=1)=p_{k, i}(t-1) \quad$ (the $t-1$ step transition probebility, cf., Section 2.2.d), where $\operatorname{Pr}(x(1)=i)=\delta_{k, i}$ (the Kronecker delta) $=\mathrm{p}_{\mathrm{k}, \mathrm{i}}$ (0) (say). Then

$$
\mathcal{E}\left(n_{i}\right)=\sum_{t=0}^{n-1} p_{k, i}(t)=(k, i) \text { element in } \sum_{t=0}^{n-1} p^{t},
$$

where $P^{0}=I$, the identity matrix.

We can find the $\mathcal{E}\left(a_{i}\right)$ in a similar manner. Let

$$
\begin{aligned}
& y_{1}=\left\{\begin{array}{lll}
1 \text { if }(x(1), x(2))=(i, i+1), & \text { this has probe- } \\
& \text { ability } \delta_{k, i} p_{i i+1} \\
0 \text { otherwise } &
\end{array}\right. \\
& y_{2}= \begin{cases}1 & \text { if }(x i 2), x(3))=(i, i+1), \text { this has probe- } \\
& \text { ability } p_{k i} p_{i i+1} \\
0 \text { otherwise } & \end{cases} \\
& \text { - } \quad 1 \text { if }(x(j), x(j+1)=(i, i+1) \text {, this has prob- } \\
& y_{j}= \begin{cases} & \text { ability } p_{k i}^{(j-1)} p_{i i+1}\end{cases} \\
& \text { - } 0 \text { otherwise } \\
& y_{n-1}=\left\{\begin{array}{lll}
1 & \text { if }(x(n-1), x(n))= & (i, i+1), \text { this has probe- } \\
0 \text { otherwise } & \text { ability } p_{k i}^{(n-2)} p_{i i+1}
\end{array}\right.
\end{aligned}
$$

Then

$$
\begin{aligned}
a_{i} & =y_{1}+y_{2}+\ldots+y_{n-1} \text { and } \\
\varepsilon\left(a_{i}\right) & =p_{i i+1} \sum_{j=1}^{n-1} p_{k i}^{(j-1)} \\
& =p_{i i+1} \sum_{t=0}^{n-2} p_{k i}(t) \\
& =p_{i i+1}\left[(k, i) e l e m e n t \text { of } \sum_{t=0}^{n-1} p^{t}-p_{k, i}(n-1)\right] \\
& =p_{i i+1}\left[\varepsilon\left(n_{i}\right)-p_{k, i}(n-1)\right]
\end{aligned}
$$

Similar results hold for $\varepsilon\left(b_{i}\right)$ and $\varepsilon\left(c_{i}\right)$. In summary fashion then we have

$$
\begin{aligned}
\varepsilon\left(n_{i}\right) & =(k, 1) \text { element of } \sum_{t=0}^{n-1} p^{t} \\
\varepsilon\left(a_{i}\right) & =p_{i i+1}\left[(k, i) \text { element of } \sum_{t=0}^{n-2} p^{t}\right] \\
& =p_{i i+1}\left[\varepsilon\left(n_{i}\right)-p_{k i}^{(n-1)}\right] \\
\varepsilon\left(b_{i}\right) & =p_{i i}\left[(k, i) \text { element of } \sum_{t=0}^{n-2} p^{t}\right] \\
& =p_{i i}\left[\varepsilon\left(n_{i}\right)-p_{k i}^{(n-1)}\right] \\
\varepsilon\left(c_{i}\right) & =p_{i i-1}\left[(k, i) \text { element of } \sum_{t=0}^{i-2} p^{t}\right] \\
& =p_{i i-1}\left[\varepsilon\left(n_{i}\right)-p_{k i}^{(n-1)]} .\right.
\end{aligned}
$$

Since P is the transition matrix, the elements of P^{t} are the t-step transition probabilities discussed in Section 2.2d.

Before proceeding we introduce the following theorem. Theorem 3.1.5. Transforming the transition matrix P (3.1.4) with elements (3.1.3) by the matrix R, where R has the typical element $R_{i j}=\binom{i}{j}$ and R^{-1} has the
typical element $(-1)^{i+j}\left(\frac{i}{j}\right), i, j=0,1, \ldots, M$, then $R^{-1} P R$ has non-zero terms only in the leading and first super diagonals. The i-th row is

$$
\begin{align*}
& \left(0,0, \ldots, 0,1-i\left[\frac{\alpha_{1}+\alpha_{2}}{M}+\frac{i-1}{M^{2}}\left(1-\alpha_{1}-\alpha_{2}\right)\right],\right. \\
& \left.\left(1-\frac{i}{M}\right)\left[\left(1-\alpha_{1}\right) \frac{i}{M}+\alpha_{2}\left(1-\frac{i}{M}\right)\right], 0, \ldots, 0\right), \tag{3.1.28}
\end{align*}
$$

the quantity

$$
\begin{equation*}
\lambda_{i}=1-i\left[\frac{\alpha_{1}+\alpha_{2}}{M}+\frac{i-1}{M^{2}}\left(1-\alpha_{1}-\alpha_{2}\right)\right] \tag{3.1.29}
\end{equation*}
$$

in the diagonal position is the i-th eigenvalue of P. The quantity in the super diagonal is the transition probability $\mathrm{p}_{1 i+1}$. Hannan in an appendix to Moran (1958) has proved the theorem for the case where $\alpha_{1}=\alpha_{2}=0$. The above result is a generalization to the case where both mutation rates are present. Karlin and McGregor (1960) and Gani (1961) have found the eigenvalues (3.1.29) by another method. While this theorem gives an elementary way of finding the eigenvalues, the proof is not given as the eigenvalues are derived incidentally in Theorem 3.1.6. If P can be written $P=K D_{\lambda} K^{-1}$ (see Section 2.2d) where K is a matrix of eigenvectors of P and D_{λ} is the
diagonal matrix of eigenvalues λ_{i}, where λ_{i} is given by (3.1.29), that is if $P^{t}=K_{\lambda}{ }^{t} K^{-1}$ then

$$
\begin{equation*}
\varepsilon\left(n_{i}\right)=(k, i) \text { element in } K D \sum_{\frac{1-\lambda^{n}}{1-\lambda}} K^{-1} \tag{3.1.30}
\end{equation*}
$$

where k is the initial (starting) state of the Markov chain and where the element in the first position (0,0 cf., 2.1.3) of $D_{\frac{1-\lambda^{n}}{1-\lambda}}$ is $1+1+\ldots+1=n$, and the other terms are sums of geometric series.

In order to discuss the result (3.1.30) more fully we present the following very important theorem. Fundamental to the theorem and its proof is the use of Hahn polynomials whose properties are discussed in Appendix I.

Theorem 3.1.6. For the matrix P (3.1.4) defined by elements (3.1.3)
(i) The eigenvalues are

$$
\begin{equation*}
\lambda_{j}=1-j\left[\frac{\alpha_{1}+\alpha_{2}}{M}+\frac{1-1}{M^{2}}\left(1-\alpha_{1}-\alpha_{2}\right)\right] ; j=0,1, \ldots, M \tag{3.1.31}
\end{equation*}
$$

(ii) The post-eigenvectors are the columns of the matrix

$$
\begin{equation*}
K=\left(\underline{K}_{0}, \underline{K}_{1}, \ldots, \underline{K}_{M}\right)=Q, \tag{3.1.32}
\end{equation*}
$$

where Q has the Hahn polynomial (9.1.2) $Q_{j}(i, a, b, M+1)$
in the (i,j) position, $i, j=0,1, \ldots, M$.

From (9.1.9) we have

$$
Q=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \tag{3.1.33}\\
1 & Q_{1}(1, a, b, M+1) & & Q_{M}(1, a, b, M+1) \\
\cdot & & & \cdot \\
\cdot & & & \cdot \\
1 & Q_{1}(M, a, b, M+1) & & Q_{M}(M, a, b, M+1)
\end{array}\right]
$$

(iii) $\quad a=\frac{M \alpha_{2}}{1-\alpha_{1}-\alpha_{2}}-1, \quad b=\frac{M \alpha_{1}}{1-\alpha_{1}-\alpha_{2}}-1$.
(iv) The pre-eigenvectors are the rows of the matrix

$$
\begin{equation*}
K^{-1}=Q^{-1} \tag{3.1,35}
\end{equation*}
$$

Proof: Parts (ii) and (iv) of the theorem are either true or false together; the inverse of the post-eigenvector matrix gives the pre-vectors. It will therefore be sufficient
to prove that (i) and (ii) are correct, [(iii) will enter with this proof] and this is done by proving

$$
\mathrm{PK}=\mathrm{KD}_{\lambda}
$$

for the particular definitions used here. Recall that D_{λ} is the diagonal matrix of eigenvalues. Write $g_{i j}$ and $h_{i j}$ for the typical elements of the left- and right-hand sides respectively; then we have to show that $g_{i j}=h_{i j}$ for $i, j=0,1, \ldots, M$.

Multiplying out $P K=P Q$ we find

$$
\begin{aligned}
g_{i j} & =\sum_{k=0}^{M} p_{i k} Q_{j}(k) \\
& =p_{i i-1} Q_{j}(i-1)+p_{i i} Q_{j}(i)+p_{i i+1} Q_{j}(i+1),
\end{aligned}
$$

since $p_{i k}=0$ if $|i-k|>1$.
Again, multiplying out KD_{λ} we get

$$
\begin{aligned}
h_{i j} & =\sum_{k=0}^{M} Q_{k}(i) \lambda_{k j} \\
& =Q_{j}(i) \lambda_{j} .
\end{aligned}
$$

Equating $g_{i j}$ and $h_{i j}$ where λ_{j} is given by (i), we have

$$
\begin{aligned}
& p_{i i-1} Q_{j}(i-1)+p_{i i} Q_{j}(i)+p_{i i+1} Q_{j}(i+1) \\
& \quad=Q_{j}(i)\left[1-j\left(\frac{\alpha_{1}+\alpha_{2}}{M}+\frac{j-1}{M^{2}}\left(1-\alpha_{1}-\alpha_{2}\right)\right)\right]
\end{aligned}
$$

or

$$
\begin{gathered}
p_{i i-1} Q_{j}(i-1)-Q_{j}(i)\left(1-p_{i i}\right)+p_{i i+1} Q_{j}(i+1) \\
=-Q_{j}(i)\left[j\left(\frac{\alpha_{1}+\alpha_{2}}{M}+\frac{j-1}{M^{2}}\left(1-\alpha_{1}-\alpha_{2}\right)\right)\right]
\end{gathered}
$$

Recall that $1-p_{1 i}=p_{i i+1}+p_{i i-1}$, thus

$$
\begin{aligned}
& p_{i i-1} Q_{j}(i-1)-Q_{j}(i)\left(p_{i i-1}+p_{i i+1}\right)+p_{i i+1} Q_{j}(i+1) \\
& =-Q_{j}(i)\left[j\left(\frac{\alpha_{1}+\alpha_{2}}{M}+\frac{j-1}{M^{2}}\left(1-\alpha_{1}-\alpha_{2}\right)\right)\right] \cdot(3.1 .36)
\end{aligned}
$$

The equality of $g_{i j}$ and $h_{i j}$ follows by noting that (3.1.36) is the difference equation (9.1.4). From (9.1.4) $\omega_{j}=j(j+a+b+1)$, and by (iii) of the theorem we obtain for ${ }^{()_{j}}$

$$
\omega_{j}=j\left[\frac{\alpha_{1}+\alpha_{2}}{M}+\frac{j-1}{M^{2}}\left(1-\alpha_{1}-\alpha_{2}\right)\right] \frac{M^{2}}{1-\alpha_{1}-\alpha_{2}}
$$

Thus the RHS of (3.1.36) becomes

$$
\begin{equation*}
-\omega_{j} Q_{j}(i) \frac{M^{2}}{1-\alpha_{1}-\alpha_{2}} \tag{3.1.37}
\end{equation*}
$$

Also from (9.1.4) $B(i)=(M-i)(a+1+i) \quad$ (recall that the Hahn polynomial for this case uses $M+1$ rather than
using the definition of "a" from (iii) then

$$
B(i)=p_{i i+1} \frac{M^{2}}{1-\alpha_{1}-\alpha_{2}}
$$

$D(i)=i(M+1+b-i)$ and in a similar fashion it follows
that

$$
D(i)=p_{i i-1} \frac{M^{2}}{1-\alpha_{1}-\alpha_{2}}
$$

Thus (3.1.36) becomes

$$
\begin{aligned}
D(i) Q_{j}(i-1)-[B(i) & +D(i)] Q_{j}(i)+B(i) Q_{j}(i+1) \\
& =-\omega_{j} Q_{j}(i)
\end{aligned}
$$

which is the difference equation (9.14) and thus $g_{i j}$ and $h_{i j}$ are equal for all relevant i, j. This completes the proof of the theorem.

The theorem is not completely new. It restates the eigenvalues found by Karlin and McGregor (1960) and Gani (1961).

We can now write (3.1.30), using the above results, as

$$
\begin{equation*}
\varepsilon\left(n_{i}\right)=(k, i) \text { element in } Q D{ }_{\frac{1-\lambda^{n}}{1-\lambda}} Q^{-1}, \tag{3.1.38}
\end{equation*}
$$

where k is the initial state and λ_{j} is given by (3.1.31). The inverse of Q can be found by use of the orthogonality relation (9.1.5), that is

$$
Q^{\prime} D_{V} Q=D_{\delta}
$$

or

$$
\begin{equation*}
Q^{-1}=D_{\delta^{-1}} Q^{\prime} D_{V} \tag{3.1.39}
\end{equation*}
$$

$D_{\delta^{-1}}$ is a diagonal matrix of order $M+1$ with elements

$$
\left\{\begin{array}{c}
1 \text { in the }(0,0) \text { position } \\
\frac{\left({ }_{u}^{M}\right) \Gamma(b+1) \Gamma(u+a+1) \Gamma(u+a+b+1)(2 u+a+b+1)}{\binom{M+1+a+b+u}{u} \Gamma(a+1) \Gamma(a+b+1) \Gamma(u+b+1) \Gamma(u+1)(a+b+1)} \\
\text { in the }(u, u) \text { position, } u=1,2, \ldots)
\end{array}\right.
$$

D_{V} is a diagonal matrix of order $M+1$ with elements

$$
\begin{equation*}
\frac{\binom{a+v}{v}\binom{M+b-v}{M-v}}{\binom{M+a+b+1}{M}}, v=0,1,2, \ldots, M, \tag{3.1.41}
\end{equation*}
$$

and Q^{\prime} is the transpose of Q.
Recall from (3.1.34) that $a=\frac{M \alpha_{2}}{1-\alpha_{1}-\alpha_{2}}-1$ and $b=\frac{M \alpha_{1}}{1-\alpha_{1}-\alpha_{2}}-1$. Thus (3.1.38) becomes

$$
\varepsilon\left(n_{i}\right)=(k, i) \text { element in } Q D D_{\frac{1-\lambda^{n}}{1-\lambda}}^{D} \delta^{-1} Q^{\prime} D_{V}
$$

M

$$
\begin{equation*}
=Q_{s=0} Q_{s}(k) d_{s s} Q_{s}(i) d_{i i} \tag{3.1.42}
\end{equation*}
$$

where
$Q_{j}(i)$ is the Hahn polynomial defined in (3.1.32)
$d_{i i}$ is the (i,i) element of D_{V} (3.1.4I) $\bar{a}_{s s}$ is the (s, s) element of $\frac{1-\lambda^{n}}{1-\lambda} \delta_{\delta^{-1}}$,
that is

$$
\bar{a}_{s s}=\left\{\begin{array}{r}
\begin{array}{r}
n \\
\text { for } s=0, \\
\frac{1-\lambda_{s}^{n}}{1-\lambda_{s}} \frac{\binom{M}{s} \Gamma(b+1) \Gamma(s+a+1) \Gamma(s+a+b+1)(2 s+a+b+1)}{\binom{M+1+a+b+s}{s} \Gamma(a+1) \Gamma(a+b+1) \Gamma(s+b+1) \Gamma(s+1)(a+b+1)} \\
\\
s=1,2, \ldots, M .
\end{array} \tag{3.1.43}
\end{array}\right.
$$

As $n \rightarrow \infty$, d ss converges to a finite limit for $s=1,2, \ldots, M\left[\left(1-\lambda_{s}^{n}\right) / 1-\lambda_{s}\right)$ becomes $\left.1 \Lambda 1-\lambda_{s}\right)$, cf., 3.1.30], but \bar{a}_{00} diverges. Thus from (3.1.42)

$$
\varepsilon\left(n_{i}\right) \sim Q_{0}(k) \bar{d}_{00} Q_{0}(i) d_{i i}
$$

but from (9.1.9) $\quad Q_{0}(k)=Q_{0}(i)=1$, and hence

$$
\begin{equation*}
\varepsilon\left(n_{i}\right) \sim n d_{i i} \tag{3.1.44}
\end{equation*}
$$

asymptotically as $n \rightarrow \infty$.
From (2.2.1), Theorem 3.1.6 and (3.1.39) we can write

$$
\begin{equation*}
\lim _{n \rightarrow \infty} p_{k i}^{(n)}=\lim _{n \rightarrow \infty}\left[(k, i) \text { element of } Q D_{\lambda}^{n} D_{\delta^{-1}} Q^{\prime} D_{V}\right] \tag{3.1.45}
\end{equation*}
$$

D_{λ} is the $M+1$ diagonal matrix of eigenvalues (3.1.31). $\lambda_{0}=1$ and $\lambda_{1}=1-\left(\alpha_{1}+\alpha_{2}\right) M^{-1} . \lambda_{1}$ is the largest nonunit eigenvalue of P. Thus for $D_{\lambda}{ }^{n}$ as $n \rightarrow \infty$ we need $n \gg M$ otherwise $\lambda_{1}{ }^{n}$ will not be negligible. This assumes that α_{1} and α_{2} are not themselves very small. If $\alpha_{1}=O\left(\frac{1}{M}\right), \alpha_{2}=O\left(\frac{1}{M}\right)$ then n would need to be much larger than M^{2} for the theory to work. With these conditions in mind, $D_{\lambda}{ }^{n}$ is the diagonal matrix with elements $\lambda_{s}{ }^{n}$ where

$$
\lim _{n \rightarrow \infty} \lambda_{s}^{n}= \begin{cases}1 & s=0 \tag{3.1.46}\\ 0 & s=1,2, \ldots, M\end{cases}
$$

Hence (3.1.45) becomes

$$
\begin{align*}
\lim _{n \rightarrow \infty} p_{k i}^{(n)} & =\sum_{s=0}^{M} Q_{s}(k)\left(\lambda_{\alpha}^{n}-1\right)_{s} Q_{s}(i) d_{i i} \\
& =Q_{0}(k)\left(\lambda^{n} \alpha_{\delta}-1\right) Q_{0}(i) a_{i i}+\sum_{s=1}^{M} Q_{s}(k)\left(\lambda^{n}{ }_{\delta}-1\right) Q_{s}(i) d_{i i} \\
& =\left(\lambda^{n} d_{\delta}-1\right)_{0} \alpha_{i 1}+0 \\
& =\alpha_{i i},
\end{align*}
$$

by (9.1.9), (3.1.40) and (3.1.46). Thus $d_{i i}$ is the stationary probability for state i, that is, the probability that the model is in state i, irrespective of the
initial state k, after many generations have elapsed. Thus $d_{i i}$ describes the behavior of the model (population) after the stationary distribution has been attained and provides in general a measure of the effect on evolution of the environmental influences included in the model. As a further general remark on this model it may be of some interest to note that the largest non-unit eigenvalue of the transition matrix P, is the value which governs the rate that the population approaches its stationary distribution. From (3.1.31) this is $\lambda_{1}=1-\left(\alpha_{1}+\alpha_{2}\right) M^{-1}$.

Interpreting (3.1.44) we see that the asymptotic values of the expectations $\mathcal{E}\left(n_{i}\right)$ are (number of observations) times (the stationary probabilities). This is known from general theory concerning positively regular Markov chains, (cf., Bartlett, 1960). Moreover, the stationary probabilities are, from (3.1.34) and (3.1.41)

$$
\begin{equation*}
i=0,1, \ldots, M, \tag{3.1.48}
\end{equation*}
$$

which was found previously by Moran (1958) using a different approach. Moran writes his stationary probability elements as P_{i} using Gamma rather than combinatorial notation. We can write Moran's \mathcal{P}_{i} as

$$
\begin{equation*}
\frac{\left.\frac{M\left(\alpha_{1}+\alpha_{2}\right)}{1-\alpha_{1}-\alpha_{2}}-1\right)|M|\left(\frac{M \alpha_{2}}{1-\alpha_{1}-\alpha_{2}}+i-1\right)\left|\left(\frac{M\left(1-\alpha_{2}\right)}{1-\alpha_{1}-\alpha_{2}}-i-1\right)\right|}{\left.\left(\frac{M}{1-\alpha_{1}-\alpha_{2}}-1\right)!\left(\frac{M \alpha_{1}}{1-\alpha_{1}-\alpha_{2}}\right)|i|(M-i) \right\rvert\,\left(\frac{M \alpha_{2}}{1-\alpha_{1}-\alpha_{2}}-1\right)!} ; \tag{3.1.49}
\end{equation*}
$$

with suitable regrouping (3.1.48) and (3.1.49) are seen to be equal.

M

It is obvious from general reasoning that $\underset{i=0}{ } \mathcal{Z}\left(n_{i}\right)=n$, the length of the chain, but this may also be verified from (3.1.42),

$$
\begin{aligned}
\sum_{i=0}^{M} E\left(n_{i}\right) & =\sum_{i=0}^{M} \sum_{s=0}^{M} Q_{s}(k) d_{s s} Q_{s}(i) d_{i i} \\
& =\sum_{s=0}^{M} Q_{s}(k) d_{s s} \sum_{i=0}^{M} Q_{s}(i) d_{i i} .
\end{aligned}
$$

From (9.1.5) note that $d_{i i}=\rho(i)$, and from (9.1.9) that M
$Q_{0}(i)=1$, thus

$$
\sum_{i=0} Q_{s}(i) d_{i i} \text { can be written }
$$

M

$$
\begin{equation*}
Q_{i=0} Q_{S}(i) Q_{0}(i) p(i) \tag{3.1.50}
\end{equation*}
$$

Further, from (9.1.5) for $s \neq 0(3.1 .50)$ is zero; for $s=0$ it is one, thus

$$
\sum_{i=0}^{M} e\left(n_{i}\right)=Q_{0}(k) a_{00}=a_{00}
$$

where from (3.1.43) $\mathrm{a}_{00}=n$.
Having found $\varepsilon\left(n_{i}\right)$ we can now find $\varepsilon\left(a_{i}\right), \varepsilon\left(b_{i}\right)$ and $\mathcal{E}\left(c_{i}\right)$ which we need for the information matrix I (3.1.16). From (3.1.27) and (3.1.47)

$$
\mathcal{E}\left(a_{i}\right)=p_{i i+1}\left[\varepsilon \in\left(n_{i}\right)-p_{k i}^{(n-1)}\right]
$$

for $n \rightarrow \infty$

$$
\varepsilon\left(a_{i}\right) \sim n p_{i i+1} d_{i i}
$$

Similarly

$$
\begin{equation*}
\varepsilon\left(b_{i}\right)=p_{i i}\left[\varepsilon\left(n_{i}\right)-p_{k i}^{(n-1)}\right] \sim n p_{i i} d_{i i} \tag{3.1.51}
\end{equation*}
$$

and

$$
\varepsilon\left(c_{i}\right)=p_{i i-1}\left[\varepsilon\left(n_{i}\right)-p_{k i}^{(n-1)}\right] \sim n p_{i i-1} d_{i i},
$$

where $d_{i i}$ is the stationary probability given by (3.1.48). Hence, from (3.1.3), (3.1.12) and (3.1.51) we can write for $n \rightarrow \infty\left[n \gg M\right.$ or $n>M^{2}$ if $\left.\alpha_{1}, \alpha_{2}=O\left(\frac{1}{M}\right)\right]$

$$
-\varepsilon\left(\frac{\partial \varphi_{2}}{\partial \alpha_{2}}\right) \sim \frac{n}{M^{2}}\left[\sum_{i=0}^{M-1} \frac{(M-i)^{3} \alpha_{i j}}{\left[\left(1-\alpha_{1}\right) i+\alpha_{2}(M-i)\right]}\right.
$$

$$
+\sum_{i=0}^{M-1} \frac{(M-2 i)^{2}(M-i)^{2} a_{i i}}{\left[i^{2}\left(1-\alpha_{1}\right)+(M-i)\left[1\left(\alpha_{1}+\alpha_{2}\right)+\left(1-\alpha_{2}\right)(M-i)\right]\right]}
$$

$$
\left.+\sum_{i=1}^{M-1} \frac{i(M-i)^{2} d_{i 1}}{\left[i \alpha_{1}+\left(1-\alpha_{2}\right)(M-i)\right]}\right]
$$

Finally for $n \rightarrow \infty[n\rangle M$ or $n>M^{2}$ if

$$
\left.\alpha_{1}, \alpha_{2}=O\left(\frac{1}{M}\right)\right] \text { from }(3.1 .15) \text { and }(3.1 .52) \text { we can write }
$$

$$
\begin{aligned}
& -\mathcal{E}\left(\frac{\partial \varphi_{1}}{\partial \alpha_{1}}\right) \sim \frac{n}{M^{2}}\left[\sum_{i=1}^{M-1} \frac{i^{2}(M-i) \dot{a}_{i j}}{\left[\left(1-\alpha_{1}\right) i+\alpha_{2}(M-i)\right]}\right. \\
& +\sum_{i=1}^{M} \frac{i^{2}(M-2 i)^{2} a_{1 i}}{\left[i^{2}\left(1-\alpha_{1}\right)+(M-i)\left[i\left(\alpha_{1}+\alpha_{2}\right)+\left(1-\alpha_{2}\right)(M-i)\right]\right]} \\
& \left.+\sum_{i=1}^{M} \frac{i^{3} d_{i 1}}{\left[i \alpha_{1}+\left(1-\alpha_{2}\right)(M-i)\right]}\right] \\
& -\varepsilon\left(\frac{\partial \varphi_{1}}{\partial \alpha_{2}}\right)=-\varepsilon\left(\frac{\partial \varphi_{2}}{\partial \alpha_{1}}\right) \sim-\frac{n}{M^{2}}\left[\sum_{i=1}^{M-1} \frac{i(M-i)^{2} d_{i j}}{\left[\left(1-\alpha_{1}\right) i+\alpha_{2}(M-i)\right]}\right. \\
& +\sum_{i=1}^{M-1} \frac{i(M-2 i)^{2}(M-i) d_{i i}}{\left[i^{2}\left(1-\alpha_{1}\right)+(M-i)\left[i\left(\alpha_{1}+\alpha_{2}\right)+\left(1-\alpha_{2}\right)(M-i)\right]\right]} \\
& \left.+\sum_{i=1}^{M-1} \frac{i^{2}(M-i) \alpha_{i j}}{\left[i \alpha_{1}+\left(1-\alpha_{2}\right)(M-i)\right]}\right]
\end{aligned}
$$

$$
\left(\hat{\alpha}_{1}-\alpha_{1}{ }^{0}, \hat{\alpha}_{2}-\alpha_{2}^{0}\right) \text { is asymptotically multivariate }
$$

normal with mean zero and variance-covariance matrix

$$
I^{-1}=\left[\begin{array}{cc}
-\varepsilon\left(\frac{\partial \varphi_{1}}{\partial \alpha_{1}}\right) & -\varepsilon\left(\frac{\partial \varphi_{1}}{\partial \alpha_{2}}\right) \tag{3.1.53}\\
-\varepsilon\left(\frac{\partial \varphi_{2}}{\partial \alpha_{1}}\right) & -\varepsilon\left(\frac{\partial \varphi_{2}}{\partial \alpha_{2}}\right)
\end{array}\right]^{-1} \text {. }
$$

Suppose we wish to test

$$
\begin{aligned}
H_{0}: \quad \alpha_{1} & =\alpha_{1}^{0} \\
\alpha_{2} & =\alpha_{2}^{0}
\end{aligned}
$$

against

$$
\begin{aligned}
H_{1}: \quad & \alpha_{1} \neq \alpha_{1}^{0} \\
& \alpha_{2} \neq \alpha_{2}^{0} .
\end{aligned}
$$

The following test statistic can be used

$$
\begin{equation*}
x_{(2)}^{2}=\left(\hat{\alpha}_{1}-\alpha_{1}^{0}, \hat{\alpha}_{2}-\alpha_{2}^{0}\right) I^{-1}\binom{\hat{\alpha}_{1}-\hat{\alpha}_{1}^{0}}{\hat{\alpha}_{2}-\hat{\alpha}_{2}^{0}}, \tag{3.1.54}
\end{equation*}
$$

where I is evaluated using $\hat{\alpha}_{1}, \hat{\alpha}_{2}$. Reject H_{0} if the calculated $X^{2}(3.1 .54)$ is greater than the tabulated $X_{(2)}^{2}$ at the appropriate significance level.

3.2 Some Diffusion Theory Results

Suppose that M becomes large and α_{1}, α_{2} tend to zero in such a way that $\alpha_{1}=\beta_{1} M^{-1}, \alpha_{2}=\beta_{2} M^{-1}$ where β_{1} and β_{2} are fixed. Then (Moran, 1958) $d_{i i}(3.1 .48)$ is asymptotically (as $M \rightarrow \infty$) equal to

$$
\begin{equation*}
\frac{1}{B\left(\beta_{1}, \beta_{2}\right)} x^{\beta_{2}^{-1}}(1-x)^{\beta_{1}^{-1}} \tag{3.2.1}
\end{equation*}
$$

where $x=i M^{-1}$ and $B\left(\beta_{1}, \beta_{2}\right)=\Gamma\left(\beta_{1}\right) \Gamma\left(\beta_{2}\right) / \Gamma\left(\beta_{1}+\beta_{2}\right)$. This is a density approximating the discrete distribution d_{ii}. This distribution will be a good approximation as long as $\beta_{1}>0, \beta_{2}>0$ are not too small. If β_{1} and β_{2} are much smaller than unity, the distribution (3.2.1) will be U shaped. If they are equal to unity the distribution is uniform. When both are greater than unity, however, there will be a mode in the distribution. This is the interesting case. In the integrals to follow we shall require for convergence that β_{1} and β_{2} both be greater than unity. Now from (3.1.52) let us write

$$
\begin{align*}
& -\varepsilon\left(\frac{\partial \varphi_{1}}{\partial \alpha_{1}}\right)=\frac{n}{M^{2}} \sum_{i=0}^{M}\left[\frac{i^{2}(M-i)}{\left[\left(1-\alpha_{1}\right) i+\alpha_{2}(M-i)\right]}\right. \\
& +\frac{i^{2}(M-2 i)^{2}}{\left[i^{2}\left(1-\alpha_{1}\right)+(M-i)\left[i\left(\alpha_{1}+\alpha_{2}\right)+\left(1-\alpha_{2}\right)(M-i)\right]\right]} \\
& \left.+\frac{i^{3}}{\left[i \alpha_{1}+\left(1-\alpha_{2}\right)(M-i)\right]}\right] \alpha_{i i} \tag{3.2.2}
\end{align*}
$$

and put $x=i M^{-1}$, then (3.2.2) becomes
M

$$
\begin{equation*}
n \sum_{i=0}\left[\frac{x}{1-x} \frac{1-3 x(1-x)}{1-2 x(1-x)} d_{i i}\right] \tag{3.2.3}
\end{equation*}
$$

ignoring the α_{1}, α_{2} in the coefficients of $d_{i i}$ and further, replacing $\int_{i=M x=0}^{i=M x m M}$ by $\int_{x=0}^{x=1}$ and $d_{i i}$ by (3.2.1), (3.2.3) becomes

$$
-\varepsilon\left(\frac{\partial \varphi_{1}}{\partial \alpha_{1}}\right) \sim \frac{n}{B\left(\beta_{1}, \beta_{2}\right)} \int_{0}^{1} \frac{1-3 x(1-x)}{1-2 x(1-x)} x^{\beta_{2}}(1-x) \beta_{1}^{-2} d x \equiv A,
$$

and similarly,

$$
\begin{align*}
&-\varepsilon\left(\frac{\partial \varphi_{1}}{\partial \alpha_{2}}\right)=-\varepsilon\left(\frac{\partial \varphi_{2}}{\partial \alpha_{1}}\right) \sim-\frac{n}{B\left(\beta_{1}, \beta_{2}\right)} \int_{0}^{1} \frac{1-3 x(1-x)}{1-2 x(1-x)} x^{\beta_{2}^{-1}}(1-x)^{\beta_{1}^{-1}} a x \equiv B, \tag{3.2.4}\\
&-\varepsilon\left(\frac{\partial \varphi_{2}}{\partial \alpha_{2}}\right) \sim \frac{n}{B\left(\beta_{1}, \beta_{2}\right)} \int_{0}^{1} \frac{1-3 x(1-x)}{1-2 x(1-x)} x^{\beta_{2}^{-2}}(1-x)^{\beta_{1}} d x \equiv C,
\end{align*}
$$

where we require $\beta_{1}, \beta_{2}>1$ for convergence. If these conditions do not hold then in (3.2.3) a more careful approximation
would be needed, probably obtained by not ignoring the α_{1}, α_{2} in the coefficients of $d_{i i}$. We further write (3.2.4) as

$$
\begin{aligned}
& A \sim \frac{n}{B\left(\beta_{1}, \beta_{2}\right)}\left[B\left(\beta_{1}-1, \beta_{2}+1\right)-\int_{0}^{1} \frac{1}{1-2 x(1-x)} x^{\beta_{2}+1}(1-x)^{\beta_{1}-1} d x\right] \\
& B \sim \frac{-n}{B\left(\beta_{1}, \beta_{2}\right)}\left[B\left(\beta_{1}, \beta_{2}\right)-\int_{0}^{1} \frac{1}{1-2 x(1-x)} x^{\left.\beta_{2}(1-x)^{\beta_{1}} d x\right]}\right. \\
& C \sim \frac{n}{B\left(\beta_{1}, \beta_{2}\right)}\left[B\left(\beta_{1}+1, B_{2}-1\right)-\int_{0}^{1} \frac{1}{1-2 x(1-x)} x^{\beta_{2}-1}(1-x)^{\beta_{1}+1} d x\right] .
\end{aligned}
$$

If β_{1} and β_{2} are small and integers, the integrals can be evaluated without too much difficulty directly; otherwise, they can be evaluated numerically using, for example, Simpson's Rule. Consider the following integral where

$$
\begin{align*}
& \beta_{1}=2, \beta_{2}=1, \\
& \int_{0}^{1} \frac{x(1-x)^{2} d x}{1-2 x(1-x)}=\frac{1}{2} \int_{0}^{1} \frac{x d x}{\left(x-\frac{1}{2}\right)^{2}+\frac{1}{4}} \\
& \quad+\int_{0}^{1} \frac{-2 x^{2} d x}{1-2 x+2 x^{2}}+\int_{0}^{1} \frac{x^{3} d x}{1-2 x+2 x^{2}}=\frac{\pi}{8}-\frac{1}{4}=0.1427 \tag{3.2.6}
\end{align*}
$$

For comparison we evaluate this integral using Simpson's Rule where the interval $(0,1)$ is partitioned into divisions of length $\frac{1}{6}$, thus

$$
\begin{aligned}
& \int_{0}^{1} \frac{x^{\beta_{2}}(1-x)^{\beta_{1}} d x}{1-2 x(1-x)}=\frac{1}{18}\left\{\left(\frac{36}{10}\left[\left(\frac{2}{6}\right)^{\beta_{2}}\left(\frac{4}{6}\right)^{\beta_{1}}+\left(\frac{4}{6}\right)^{\beta_{2}}\left(\frac{2}{6}\right)^{\beta_{1}}\right]\right.\right. \\
& \left.\quad+4\left[\frac{36}{26}\left(\frac{1}{6}\right)^{\beta_{2}}\left(\frac{5}{6}\right)^{\beta_{1}}+2\left(\frac{1}{2}\right)^{\beta_{1}+\beta_{2}}+\frac{36}{26}\left(\frac{5}{6}\right)^{\beta_{2}}\left(\frac{1}{6}\right)^{\beta_{1}}\right]\right\}
\end{aligned}
$$

where for our case $\beta_{1}=2, \beta_{2}=1$, thus by Simpson's Rule

$$
\begin{equation*}
\int_{0}^{1} \frac{x(1-x)^{2} d x}{1-2 x(1-x)}=0.1427 \tag{3.2.7}
\end{equation*}
$$

Hence the method of Simpson's Rule gives excellent results.*
Recall that $\alpha_{1}=\beta_{1} M^{-1}, \alpha_{2}=\beta_{2} M^{-1}$; maximum likelihood estimates for α_{1} and α_{2} can be obtained in the manner discussed in Section 3.1 (cf., 3.1.13). Using

these estimates in terms of β_{1} and β_{2} we can evaluate the elements of the information matrix $I_{\beta}(3.2 .5)$, and finally we can say that

$$
\left(\hat{\beta}_{1}-\beta_{1}^{0}, \hat{\beta}_{2}-\beta_{2}^{0}\right) \text { is asymptotically }(\text { as }
$$

$n \rightarrow \infty$) multivariate normal with mean zero and variancecovariance matrix

$$
I_{B}^{-1}=M^{2}\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]^{-1}
$$

With the factor $\left.M^{2},\right]_{\beta}^{-1}$ is of the order M^{2} / n which strengthens the requirement that $n \gg M^{2}$. This requirement was discussed in detail in the last section. In the following table we consider $\alpha_{1}=\alpha_{2}$. For $M=1$ and $M=2$ the variance elements were obtained by using (3.1.52). For the last three entries the variance elements were obtained by using (3.2.5) where for the first of these three $\beta_{1}=\beta_{2}=2$ and population size was M so that $\alpha_{1}=\alpha_{2}=\alpha=2 / M$; for the next entry $\beta_{1}=\beta_{2}=4$ with population size $2 M$ so that $\alpha=2 / M$ and for the last entry $\beta_{1}=\beta_{2}=8$ with population size $4 M$ so that $\alpha=2 / M$. in was considered the same for all population sizes. Column three then is the ratio of $\operatorname{var}(\hat{\alpha})$ for $M=1$ to the other variances in Column two.

Column four is a result of the following. For M=l suppose we do an experiment long enough to get $\operatorname{Var} \hat{\alpha}=2 \alpha / n=\sigma^{2}$ say. This means, we need $n=2 \alpha / \sigma^{2}$ observations, which will take a time T, say. For the population of size $M=1$, one birth-death event corresponds to one generation. However, if the generation time is not affected by population size, the same number of generations can be observed in time T for the larger populations yielding an increase in the number of individual birth-death events by a factor M. For $M=2$ then we would get on the average $n_{2}=2 n$ observations. Hence $\operatorname{Var}(\hat{\alpha})=2 \alpha / n_{2}=\frac{1}{2} \sigma^{2}$ for $M=2$. For $M=2 / \alpha$ we get on the average $n_{2 / \alpha}=2 n / \alpha$ observations with corresponaiing variance $0.204 \sigma^{2}$. In like manner we obtain for $M=4 / \alpha, 8 / \alpha$ the values $0.30 \sigma^{2}$ and $0.37 \sigma^{2}$ respectively. The values in Column four are the ratios of σ^{2} for $M=1$ to the other above variances where all observations were considered over the same time T.

For the two mutation rate case then it appears from Column three of the table that many observations on a small population M is more efficient than the same number of observations on a large population. This implies that it is

Table 3.2.1

M	$\operatorname{Var}(\hat{\alpha})$	Relative Efficiencies (n equal)	Relative Efficiencies (generations fixed)
1	$\frac{2 \alpha(1-\alpha)}{n} \approx \frac{2 \alpha}{n}$	1	1
2	$\frac{2 \alpha\left(1+\alpha-2 \alpha^{2}\right)}{n}\left[\frac{2 \alpha^{2}(1-\alpha)+1}{4 \alpha^{2}(1-\alpha)+1}\right]$	$\frac{1-\alpha}{1+\alpha} \approx 1-2 \alpha \approx 1$	2
	$\approx \frac{2 \alpha(1+\alpha)}{n} \approx \frac{2 \alpha}{n}$		
$2 / \alpha$	$\frac{0.817}{n}$	2.45α	4.90
4/ α	$\frac{2.397}{n}$	0.83α	3.32
$8 / a$	$\frac{5.874}{n}$	0.34α	2.72

more important to pass through a few states many times than to pass through many states a few times.

Column four and the above discussion, however, indicates that for a fixed time T the larger the population the more observations we get, for in a population of size M one generation consists of M birth-death events. Column four also indicates that between population size $M=2$ and $M=2 / \alpha \quad$ an optimum size exists. There is, however, a great deal of difference between $M=2$ and $2 / \alpha$, markedly so if α is small.

3.3 Replicated Experiments

In Section 3.1 the mutation rates α_{1}, α_{2} were estimated from data obtained by observing a single long realization $(n \rightarrow \infty)$ of the Markov chain. Note from (3.1.44) that for $n \rightarrow \infty \quad \varepsilon\left(n_{i}\right)$ is independent of the initial state k. The discussion in this section is on replicated independent experiments with finite n. From (3.1.42) we note that $\mathcal{E}\left(n_{i}\right)$ obtained from this Hahn polynomial expression depends on the initial state k.

Suppose that we have R replicated independent realizations of a Markov chain, that is, we have observed R realizations of the same type Markov chain. The length of each realization and its initial state can be the same for each replication. In order to obtain estimates for α_{1} and α_{2} it is not necessary that they be the same. However, in discussing $\mathcal{E}\left(n_{i}\right)$ and I_{R}, the information matrix for these replicated experiments, it will be more convenient if all realizations have the same initial state k and same length a.

In any case estimates for α_{1} and α_{2} can be obtained by using the Newton-Raphson scheme (3.1.13). In (3.1.11)
and (3.1.12) we replace a_{i}, b_{i} and c_{i} with $\sum_{r=1}^{R} a_{i}(r)$,

R
$\sum_{r=1} b_{i}(r) \quad$ and
R
$a_{i}(r)$ is the value of a_{i} in the $r-t h$ replicate and $\sum_{r=1} a_{i}(r)$
is the total number of times the transition from state i to
$i+1$ occurred over the R replicates.
Suppose for the elements of the information matrix I
(3.1.16) we consider each realization of the same length n (n finite) and with the same starting state k. From (3.1.42) with finite n,

$$
\begin{equation*}
\varepsilon\left(n_{i}\right)=\sum_{s=0}^{M} Q_{s}(k) \alpha_{s s} Q_{s}(i) \alpha_{i i} \tag{3.3.1}
\end{equation*}
$$

which depends on the initial state k.
In taking the expectations of (3.1.12) to obtain the elements of the information matrix \int_{R} we proceed as follows:

$$
\begin{align*}
& -\varepsilon\left(\frac{\partial \varphi_{1}}{\partial \alpha_{1}}\right)=\varepsilon\left[\sum_{i=1}^{M-1}\left[\left(1-\alpha_{1}\right) i+\alpha_{2}(M-i)\right]^{2}\right. \\
& \\
& +\sum_{i=1}^{M} \frac{i_{i}^{2}(M-2 i)^{2} i_{i=1}^{2} b_{i}(r)}{\left.\left[1-\alpha_{1}\right)+(M-i)\left[i\left(\alpha_{1}+\alpha_{2}\right)+\left(1-\alpha_{2}\right)(M-i)\right]\right]^{2}} \\
& \quad+\sum_{i=1}^{M} \frac{i_{1}^{2} \sum_{r=1}^{R} C_{i}(r)}{\left.\left[i \alpha_{1}+\left(1-\alpha_{2}\right)(M-i)\right]^{2}\right]} \tag{3.3.2}
\end{align*}
$$

where the a_{i}, b_{i}, c_{i} terms have been replaced with

$$
\begin{equation*}
\sum_{r=1}^{R} a_{i}(r), \quad \sum_{r=1}^{R} b_{i}(r), \quad \sum_{r=1}^{R} c_{i}(r) \tag{3.3.3}
\end{equation*}
$$

respectively. Since the initial states are the same for R
each realization $\mathcal{E} \sum_{r=1} a_{i}(r)=R \mathcal{E}\left(a_{i}\right)$, Similar expressions hold for the b_{i} and c_{i}. Further note that $-\mathcal{E}\left(\frac{\partial \varphi_{1}}{\partial \alpha_{2}}\right)$, $-\varepsilon\left(\frac{\partial \varphi_{2}}{\partial \alpha_{1}}\right)$ and $-\varepsilon\left(\frac{\partial \varphi_{2}}{\partial \alpha_{2}}\right)$ follow in like fashion as (3.3.2). Thus for finite n the same for each realization and also the same initial state k for all independent realizations (3.3.2) is simply

$$
\begin{align*}
R\left[\sum_{i=1}^{M-1}\right. & \frac{i^{2} \varepsilon\left(a_{i}\right)}{\left[\left(1-\alpha_{1}\right) i+\alpha_{2}(M-i)\right]^{2}} \\
& +\sum_{i=1}^{M} \frac{i^{2}(M-2 i)^{2} \varepsilon\left(b_{i}\right)}{\left[i^{2}\left(1-\alpha_{1}\right)+(M-i)\left[i\left(\alpha_{1}+\alpha_{2}\right)+\left(1-\alpha_{2}\right)(M-i)\right]\right]^{2}} \\
& \left.+\sum_{i=1}^{M} \frac{i^{2} \varepsilon\left(c_{i}\right)}{\left[i \alpha_{1}+\left(1-\alpha_{2}\right)(M-i)\right]^{2}}\right] \tag{3.3.4}
\end{align*}
$$

similar expressions hold for the other elements of \mathcal{I}_{R}. Therefore under these conditions, the repliaated experiment has information matrix $I_{R}=R I$, where here I is the information matrix (3.1.16) for a single replicate. we can further write that $\left(\hat{\alpha}_{1}-\alpha_{1}{ }^{0}, \hat{\alpha}_{2}-\alpha_{2}{ }^{0}\right)$ is asymptotically as $R \rightarrow \infty$ multivariate normal with mean zero and variancecovariance matrix $\left(I_{R}\right)^{-1}$.

Now as to the method of conducting an experiment the following scheme is proposed. If the estimate of α_{1} say is of more interest than α_{2} then the initial state $k=M$ should be selected (cf., 3.1.4). If α_{2} is of more interest then the initial state should be $k=0$. If the two paramoeters are of the same order then in the first case the variance of $\hat{\alpha}_{1}$ will be less than the variance of $\hat{\alpha}_{2}$ and
similarly in the second case the variance of \hat{a}_{2} will be less than the variance of $\hat{\alpha}_{1}$. If both parameters are of equal interest then it may be best to select the neighborhood $k=M / 2$ as the initial state in which case the variances of $\hat{\alpha}_{1}$ and $\hat{\alpha}_{2}$ will be approximately equal and lying between the two extremes mentioned above provided the two parameters are of about the same order. For example, in the following table we have a comparison of the variances of $\hat{\alpha}_{1}$ and $\hat{\alpha}_{2}$ under different initial states for $M=2$. The figures are entered apart from the replication factor R^{-1}. It was assumed that $\hat{\alpha}_{1}=\hat{\alpha}_{2}=0.1$ and $n=10$, $\varepsilon\left(n_{i}\right)$ for $k=0,1,2$ was obtained from (3.3.1): $\varepsilon\left(a_{i}\right), \mathcal{E}\left(b_{i}\right)$ and $\mathcal{E}\left(c_{i}\right)$ were obtained by the method of (3.1.27). The variance elements were obtained by inverting the matrix with elements of the form (3.3.4).

Table 3.3.1

3.4 Conditions on the Mutation Rates of Moran's Model

Recall in Section 3.1 that we postulated $\alpha_{1}, \alpha_{2}>0$ and $1-\alpha_{1}-\alpha_{2}>0$. This includes most of the cases of biological interest. Associated with these conditions and the transition matrix P was the Hahn polynomial $Q_{j}(i, a, b, M+1)(3.1 .33)$ where

$$
a=\frac{M \alpha_{2}}{1-\alpha_{1}-\alpha_{2}}-1 \quad \text { and } \quad b=\frac{M \alpha_{1}}{1-\alpha_{1}-\alpha_{2}}-1
$$

The stochastic process discussed in this chapter is recognized as the discrete time analogue of an example of a classical birth and death process [Karlin and McGregor, 1957] with birth rates

$$
\begin{equation*}
v_{i}=v\left(1-\frac{1}{M}\right)\left[\frac{i}{M}\left(1-\alpha_{1}\right)+\left(1-\frac{1}{M}\right) \alpha_{2}\right] \tag{3.4.1}
\end{equation*}
$$

and death rates

$$
\begin{equation*}
\mu_{i}=v \frac{i}{M}\left[\frac{i}{M} \alpha_{1}+\left(1-\frac{1}{M}\right)\left(1-\alpha_{2}\right)\right] \tag{3.4.2}
\end{equation*}
$$

corresponding to a population size i of "a" gametes, $0 \leq i \leq M$.

For the case discussed in this chapter, that is $\alpha_{1}, \alpha_{2}>0$ and $1-\alpha_{1}-\alpha_{2}>0$ the birth and death rates (3.4.1) and (3.4.2) oppose each other, one exhibiting attraction, the other repulsion toward the same end state.

For $\alpha_{1}, \alpha_{2}>0$ and $1-\alpha_{1}-\alpha_{2}<0$ the birth and death rates extend their force in the same direction. For this case the Hahi polynomial is $Q_{j}(i, a, b, M+1)$ where

$$
a=-\left(\frac{M \alpha_{2}}{\alpha_{1}+\alpha_{2}-1}+1\right) \quad \text { and } \quad b=-\left(\frac{M \alpha_{1}}{\alpha_{1}+\alpha_{2}-1}+1\right) .
$$

For $\alpha_{1}, \alpha_{2}>0$ and $\alpha_{1}+\alpha_{2}=1$ the birth and death rates become linear in i rather than quadratic. The polynomial in this case is the Krawtchouk polynomial, another member of the family of orthogonal polynomials, [cf., Erdélyi, 1953]. For further discussion on these conditions see Karlin and McGregor, 1960.

Another case which we might mention, although there obviously is no inference involved, is when $\alpha_{1}=\alpha_{2}=0$ that is Moran's model without mutation. Here state M and state 0 are absorbing states. The two absorbing states correspond to fixation in homozygous populations of "a" or A gametes. Karlin and McGregor (1960) discuss this case using Hahn polynomials, while Watterson (1961) uses Tchebichef polynomials. See Appendix I for further discussion of their results.

IV. INFERENCE ON AN ABSORBING MARKOV CHAIN

4.1 Estimating Mutation Rate from a Single Chain (Theory)

(a) The Model. This chapter will be a discussion of one of the mutation rates α_{1} of Moran's model. At first sight this may appear to be a simpler problem than that of the two mutation rate case discussed in Chapter III. This, however, is not true, in that inferences will be obtained from realizations of an absorbing Markov chain whose peculiarities provide some unique difficulties. In this section we shall discuss inference on the mutation rate α_{1}, where $\alpha_{2}=0$, using results found by observing a single long Markov chain. Replicated experiments will be discussed in the next section. We postulate $\alpha_{1}>0$ and $1-\alpha_{1}>0$. The case where the chain length n is predetermined, that is fixed, and also the case where n is a random variable determined by some sequential stopping rule will be aiscussed. Although the results will be general, emphasis will be placed on an experiment where the initial state is $k=M$, and stopping state will be the absorbing state 0 , so that n, the chain length, is a random variable. By Theorem 2.2.1, for a long chain the absorbing state will be reached with probability one.

In most biological experiments (see for example Falconer 1949) dealing with mutation, a mutagenic agent is introduced into the population under study and the effect of the agent is measurea in terms of mutation rate. Compared to the mutagenic rate, the reverse mutation rate is negligible and we shall assume it to be zero. Now if in Moran's model we put $\alpha_{2}=0$ and obtain estimates of α_{1} we are in the same type of situation but have a precisely definea model. With $\alpha_{2}=0$ the transition probabilities (3.1.3) become

$$
\begin{align*}
& p_{i i+1}=\left(1-\frac{i}{M}\right)\left(\frac{i}{M}\right)\left(1-\alpha_{1}\right) \\
& p_{i i}=\left(1-\frac{i}{M}\right)-\frac{i}{M}\left(1-\alpha_{1}\right)\left(1-\frac{2 i}{M}\right) \\
& p_{i i-1}=\frac{i}{M}\left[1-\left(1-\alpha_{1}\right) \frac{i}{M}\right] \tag{4.1.1}\\
& p_{i k}=0 \quad \text { if }|i-k|>1
\end{align*}
$$

The square transition matrix P of order $M+1$ with elements (4.1.1) has a tri-diagonal form,

Clearly state $i=0$ is absorbing, the other states are transieat. Further, $P_{M M}=1-\alpha_{1}, p_{M M-1}=\alpha_{1}$ hola for all M.
(d) Procedure for Maximum Likelihood Solution. Using the notation of (3.1.7) we write the log-likelihood function as

$$
\begin{align*}
& \log L\left(\alpha_{1}\right)=\log L=\sum_{i=0}^{M-1} a_{i} \log p_{i i+1} \\
& \\
& +\sum_{i=0}^{M} b_{i} \log p_{i i}+\sum_{i=1}^{M} c_{i} \log p_{i 1-1} . \tag{4.1.3}
\end{align*}
$$

See (3.1.5) for a discussion of the a_{1}, b_{i} and c_{i} notation. Let

$$
\begin{equation*}
\varphi=\frac{d \log L}{d \alpha_{1}} \tag{4.1.4}
\end{equation*}
$$

then

$$
\begin{aligned}
\varphi & =\sum_{i=1}^{M-1} \frac{a_{i}}{p_{i i+1}} \frac{(M-i)(-i)}{M^{2}}+\sum_{i=1}^{M} \frac{b_{i}}{p_{i i}} \frac{i(M-2 i)}{M^{2}}+\sum_{i=1}^{M} \frac{c_{i}}{p_{i i-1}} \frac{i^{2}}{M^{2}} \\
& =\sum_{i=1}^{M-1} \frac{-a_{i}}{\left(1-\alpha_{1}\right)}+\sum_{i=1}^{M} \frac{i b_{i}\left(1-2 i M^{-1}\right)}{\left[M-i-\left(1-\alpha_{1}\right)(i)\left(1-2 i M^{-1}\right)\right]} \\
& +\sum_{i=1}^{M} \frac{i c_{i}}{\left[M-i\left(1-\alpha_{1}\right)\right]},
\end{aligned}
$$

and

$$
\begin{align*}
\varphi^{\prime}= & -\left[\sum_{i=1}^{M-1} \frac{a_{i}}{\left(1-\alpha_{1}\right)^{2}}+\sum_{i=1}^{M} \frac{i^{2} b_{i}\left(1-2 i M^{-1}\right)^{2}}{\left[(M-i)-\left(1-\alpha_{1}\right)(i)\left(1-2 i M^{-1}\right)\right]^{2}}\right. \tag{4.1.5}\\
& \left.+\sum_{i=1}^{M} \frac{i^{2} c_{i}}{\left[M-i\left(1-\alpha_{1}\right)\right]^{2}}\right],
\end{align*}
$$

all lower indices are one. For example, for this absorbing Markov chain where 0 is the absorbing state no transition from state 0 to state 1 is possible, and hence $a_{0}=0$. The maximum likelihood estimate $\hat{\alpha}_{1}$ of α_{1}, can be found iteratively by using the Newton-Raphson scneme in the following way,

$$
\begin{equation*}
\hat{\alpha}_{1}^{(1)}=\hat{\alpha}_{1}^{(0)}-\frac{\varphi\left(\hat{\alpha}_{1}^{(0)}\right)}{\varphi^{\prime}\left(\hat{a}_{1}^{(0)}\right)} \tag{4.1.6}
\end{equation*}
$$

A convenient first guess for α_{1} could be obtainea by estimating the transition probability $p_{M M-1}\left(=\alpha_{1}\right)$. As discussea in Chapter III, the maximum likelihood estimate of $P_{\text {MM-1 }}$ where no other parameters are involved implicitly is

$$
\begin{equation*}
\hat{p}_{M M-1}=\frac{c_{M}}{n_{M}} \tag{4.1.7}
\end{equation*}
$$

so that a first guess for α_{1} is readily available.
Convergence occurs when $\varphi\left(\hat{a}_{1}\right)=0$. A discussion of this system follows.
(c) Uniqueness Theorems. Theorem 4.1.1. There is only one solution (at most) of $\varphi\left(\hat{\alpha}_{1}\right)=0(4.1 .5)$ in $\left(0<\hat{\alpha}_{1}<1\right)$.

Proof: From (4.1.5) $-\varphi^{\prime} \geq 0$ in $(0,1)$, and hence φ is monotonic decreasing and the theorem is immediate. φ must appear as one of the following

no root

one root $\hat{\alpha}_{1}$ in $(0,1)$

no root

The first and third possibilities correspond to the likelihood being a maximum in $(0,1)$ at $\alpha_{1}=0,1$ respectively. Note that the theorem does not say that a root exists. It does say that if there is a solution in $(0,1)$ then there is only one solution in this interval.

Theorem 4.1.2. For a given realization of length n, if $c_{M}>0$, and either $b_{M}>0$ or one $a_{i}>0$, then there is exactly one root of $\varphi\left(\hat{\alpha}_{1}\right)=0$ in $(0,1)$. Proof: From (4.1.5)

$$
\begin{align*}
\lim _{\alpha_{1} \rightarrow 0} \varphi\left(\alpha_{1}\right)= & \sum_{i=1}^{M-1}-a_{i}+\sum_{i=1}^{M} \frac{i b_{i}\left(1-2 i M^{-1}\right)}{\left[M-i-i\left(1-2 i M^{-1}\right)\right]} \\
& +\sum_{i=1}^{M-i} \frac{i c_{i}}{M-1} . \tag{4.1.9}
\end{align*}
$$

The first two terms of (4.1.9) are finite while the last term is $+\infty$ since by the assumptions of the theorem $c_{M}>0$. Similarly, $\quad \mathrm{M}-1$

$$
\lim _{a_{1} \rightarrow 1} \varphi\left(\alpha_{1}\right)=-\frac{i_{i=1}^{a_{i}}}{0}+\sum_{i=1}^{M} \frac{i b_{i}\left(1-2 i M^{-1}\right)}{M-i}+\sum_{i=1}^{M} \frac{i c_{i}}{M}
$$

(4.1.10)

The first term is $-\infty$ if at least one $a_{i}>0$; the last term is finite. The middle term is finite or $-\infty$ if $b_{M}>0$.

Thus under the conditions of the theorem $\varphi(0)=+\infty$, $\varphi(1)=-\infty$ and there is exactly one root of $\varphi\left(\hat{\alpha}_{1}\right)=0$ in (0,1).

Corollary 4.1.3. If the initial state is $k=M$ and a sequential stopping rule is employed such that 0 (the absorbing state) is the stopping state and $b_{M}>0$ or at least one $a_{i}>0$, then there is exactly one root of $\varphi\left(\hat{\alpha}_{1}\right)=0$ in $(0,1)$ with probability one.

Proof: The sequential rule implies $C_{M}>0$. The result follows from the proof of Theorem 4.1.2, noting that with probability 1 (cf., Theorem 2.2.1) none of the transition numbers a_{i}, b_{i}, or c_{i} in (4.1.9) or (4.1.10) become $+\infty$.

The following table shows the number of experiments out of 500 realizations obtained by simulation methods on the IBM 650 for each of the populations $M=2,4,6,10,20$, $\alpha_{1}=0.1$, which did not satisfy the conditions of Theorem 4.1.2. That is, b_{M} and all a_{i} were zero.

Table 4.1.1

M	no. of experiments out of 500 not satisfying Theorem 4.1.2
2	16
4	2
6	2
10	0
20	0

Clearly the theorem applies in an overwhelming proportion of realizations. For example the 16 experiments for $M=2$ were of the type $2.1 \ldots 1.0$ that is, the initial state was $k=M=2$, then the next transition was to state 1 followed by a finite number of transitions 1 to 1 , and then to the absorbing state 0 . For this situation the φ function is $1 /\left(1+\alpha_{1}\right)+1 / \alpha_{1}$ which never crosses the α_{1} axis. For a further extensive discussion of this simulation study see the latter part of this chapter.

Before discussing expectations of the transition numbers a_{i}, b_{i} and c_{i} which we shall need in taking the expectation of $\varphi^{\prime}(4.1 .5)$, we present the following theorem.
(d) Application of the Theorems. Theorem 4.1.4. Transforming the transition matrix P with elements (4.1.1) by the matrix R, where R has the
typical element $R_{i j}=\binom{i}{j}$ and R^{-1} has the typical element $(-1)^{i+j}\left(\frac{1}{j}\right), 1, j=0,1, \ldots, M$, then $R^{-1} P R$ has non-zero terms only in the leading and first super diagonals. The i-th row is

$$
\begin{equation*}
\left(0, \ldots, 01-1\left[\frac{\alpha_{1}}{M}+\frac{i-1}{M^{2}}\left(1-\alpha_{1}\right)\right],\left(1-\frac{i}{M}\right)\left(1-\alpha_{1}\right)\left(\frac{i}{M}\right), 0, \ldots, 0\right), \tag{4.1.11}
\end{equation*}
$$

the quantity

$$
\begin{equation*}
\lambda_{i}=1-1\left[\frac{\alpha_{1}}{M}+\frac{i-1}{M^{2}}\left(1-\alpha_{1}\right)\right] \tag{4.1.12}
\end{equation*}
$$

in the diagonal position is the i-th eigenvalue of P. The quantity in the super diagonal is the transition probability $p_{i i+1}$. For further discussion on this theorem see Theorem 3.1.6.

Since P is the transition matrix, the elements of p^{t} are the t-step transition probabilities discussed in Section 2.2. If P can be written $P=K D_{\lambda} K^{-1}$, where K is the matrix of eigenvectors and D_{λ} is the matrix of eigenvalues λ_{i} (4.1.12), that is, if $p^{t}=K_{\lambda}^{t} K^{-1}$, then

$$
\begin{aligned}
\mathcal{E}\left(n_{i}\right) & =(k, i) \text { element in } K\left(\sum_{t=0}^{n-1} D_{\lambda}^{t}\right) K^{-1} \\
& =(k, i) \text { element in } K D D_{\frac{1-\lambda^{n}}{1-\lambda}} K^{-1},(4.1 .13)
\end{aligned}
$$

(Cf., 3.1.27, 3.1.30), where the $(0,0)$ element of D
$1+1+\ldots+1=n$, and the other terms are sums of geometric series.

In order to discuss the result (4.1.13) more fully we present the following theorem. Fundamental to the theorem and its proof is the use of Hahn polynomials which are discussed in Appendix I.

Theorem 4.1.5. For the matrix P defined by elements (4.1.1)
(i) The eigenvalues are

$$
\begin{equation*}
\lambda_{j}=1-j\left[\frac{\alpha_{1}}{M}+\frac{j-1}{M^{2}}\left(1-\alpha_{1}\right)\right], j=0,1, \ldots, M \tag{4.1.14}
\end{equation*}
$$

(ii) The post-eigenvectors are the columns of the matrix

$$
\begin{equation*}
K=\left(\underline{K}_{0}, \underline{K}_{1}, \ldots, \underline{K}_{M}\right)=C Q \tag{4.1.15}
\end{equation*}
$$

where

$$
C=\left[\begin{array}{ccccccc}
1 & & & & & \tag{4.1.16}\\
1 & 1 & & & 0 & & \\
1 & 1 & 1 & & & & \\
\cdot & & & \cdot & & & \\
\cdot & & & & \cdot & \cdot \\
\cdot & 1 & 1 & \cdot & \cdot & \cdot & 1
\end{array}\right],
$$

and Q has the Hahn polynomial (cf., Appendix I) $Q_{j-1}(i-1,0, b, M)$ in the (i, j) position, $i, j=0,1, \ldots, M$.

From (9.1.8) and (9.1.9) we have

(4.1.17)
(iii) $b=\frac{M \alpha_{1}}{1-\alpha_{1}}$, note that for this case $a=0$. (4.1.18)
(iv) The pre-eigenvectors are the rows of the matrix

$$
\begin{equation*}
K^{-1}=Q^{-1} C^{-1}, \tag{4.1.19}
\end{equation*}
$$

where Q^{-1} is the inverse of Q and

$$
C^{-1}=\left[\begin{array}{rrrrrrr}
1 & & & & & & \tag{4.1.20}\\
-1 & 1 & & & & & \\
& -1 & 1 & & & 0 & \\
& & -1 & 1 & & & \\
& & & \cdot & \cdot & & \\
& 0 & & & \cdot & \cdot & \\
& & & & & & \\
& & & & & -1 & 1
\end{array}\right]
$$

Proof: Parts (ii) and (iv) of the theorem are either true or false together; the inverse of the post-eigenvector matrix gives the pre-vectors. It will therefore be sufficient to prove that (i) and (ii) are correct [(iii) will also enter with this proof] and this is done by proving

$$
\mathrm{PK}=K D_{\lambda}
$$

for the particular definitions used here. Recall that D_{λ} is the matrix of eigenvalues. Write $g_{i j}$ and $h_{i j}$ for the typical elements of the left- and right-hand sides respectively; then we have to show that $g_{i j}=h_{i j}$ for $i, j=0,1, \ldots, M$.

Multiplying out $P K=P C Q$ we find

$$
g_{i j}=\sum_{\ell=0}^{M}\left[Q_{j-1}(\ell-1) \sum_{u=\ell}^{M} p_{i u}\right]
$$

and with the substitution for the transition probabilities $p_{i u}$ from (4.1.1) we obtain

Again, multiplying out $K D_{\lambda}=C Q D_{\lambda}$ we get

$$
\begin{aligned}
h_{i j} & =\lambda_{j} \sum_{\ell=0}^{i} Q_{j-1}(\ell-1) \\
& =\left\{1-j\left[\frac{\alpha_{1}}{M}+\frac{j-1}{M^{2}}\left(1-\alpha_{1}\right)\right]\right\} \sum_{\ell=0}^{i} Q_{j-1}(\ell-1) \\
& =\left\{\begin{array}{l}
i \\
\sum_{\ell=0}^{i} Q_{j-1}(\ell-1)-j\left[\frac{\alpha_{1}}{M}+\frac{j-1}{M^{2}}\left(1-\alpha_{1}\right)\right] \sum_{\ell=0}^{1} Q_{j-1}(\ell-1), j>0 \\
1 \quad j=0 .
\end{array}\right.
\end{aligned}
$$

The equality of $g_{i j}$ and $h_{i j}$ follows from Corollary 9.1.4. By the corollary,

$$
\sum_{\ell=0}^{i} Q_{j-1}(\ell-1)=\left\{\begin{array}{l}
\frac{\left(1-\alpha_{1}\right)(M-1)(i)\left[Q_{j-1}(i-1)-Q_{j-1}(i)\right]+M i \alpha_{1} Q_{j-1}(i-1)}{j\left[(j-1)\left(1-\alpha_{1}\right)+M \alpha_{1}\right]}, j>0 \\
1, \quad j=0 .
\end{array}\right.
$$

Hence

$$
\begin{aligned}
& j\left[\frac{\alpha_{1}}{M}+\frac{j-1}{M^{2}}\left(1-\alpha_{1}\right)\right] \sum_{\ell=0}^{i} Q_{j-1}(\ell-1)= \\
& \left\{\begin{array}{l}
\frac{i}{M}\left[1-\frac{1}{M}\left(1-\alpha_{1}\right)\right] Q_{j-1}(1-1)-\left(1-\alpha_{1}\right) \frac{i}{M}\left(1-\frac{i}{M}\right) Q_{j-1}(i), j>0 \\
0, \quad j=0,
\end{array}\right.
\end{aligned}
$$

then from (4.1.21) and (4.1.22)

$$
h_{i j}=\left\{\begin{array}{l}
\sum_{\ell=0}^{i} Q_{j-1}(\ell-1)-\frac{i}{M}\left[1-\frac{i}{M}\left(1-\alpha_{1}\right)\right] Q_{j-1}(i-1) \\
\\
\quad+\left(1-\alpha_{1}\right) \frac{i}{M}\left(1-\frac{i}{M}\right) Q_{j-1}(i), j>0 \\
1, \quad j=0,
\end{array}\right.
$$

and finally

$$
h_{i j}=\left\{\begin{array}{l}
i-1 \\
\ell=0 Q_{j-1}(\ell-1)+\left(1-\frac{i}{M}\left[1-\frac{i}{M}\left(1-\alpha_{1}\right)\right]\right) Q_{j-1}(i-1) \\
\quad+\left(1-\frac{1}{M}\right)\left(\frac{1}{M}\right)\left(1-\alpha_{1}\right) Q_{j-1}(i), j>0 \\
1, \quad j=0 .
\end{array}\right.
$$

Thus $g_{i j}$ and $h_{i j}$ are equal for all relevant i, j. This completes the proof of the theorem.

We can now write (4.1.13), using the above results, as

$$
\begin{equation*}
\varepsilon\left(n_{i}\right)=(k, i) \text { element in } \operatorname{CQD} \frac{1-\lambda^{n}}{1-\lambda} Q^{-1} C^{-1} \tag{4.1.23}
\end{equation*}
$$

where k is the initial state and λ_{j} is given by (4.1.14). The inverse of Q can be found by use of the orthogonality relation (9.1.5), that is

$$
Q^{\prime} D_{v} Q=D_{\delta}
$$

or

$$
\begin{equation*}
Q^{-1}=D_{\delta^{-1}} Q \cdot D_{V} . \tag{4.1.24}
\end{equation*}
$$

$D_{\delta^{-1}}$ is a diagonal matrix of order $M+1$ with elements

$$
\left\{\begin{array}{l}
1 \quad \text { in the }(0,0) \text { position } \\
\frac{(4.1 .25)}{\left(\begin{array}{c}
M-1 \\
\sum^{M-1}+b+u-1 \\
u-1
\end{array}\right)(2 u+b-1)}
\end{array}\right.
$$

D_{V} is a diagonal matrix of order $M+1$ with elements

$$
d_{v v}= \begin{cases}1 & \text { in the }(0,0) \text { position } \\ (4.1 .26) \\ \frac{\binom{M+b-v}{M-v}}{\binom{M+b}{M-1}}, \text { in the }(v, v) \text { position, } v=1,2, \ldots, M .\end{cases}
$$

Q' is simply the transpose of Q and recall from (4.1.18) that $b=M \alpha_{1} /\left(1-\alpha_{1}\right)$.

Thus from (4.1.24) we can write (4.1.23) as

$$
\begin{array}{r}
\varepsilon\left(n_{i}\right)=(k, i) \text { element in } C Q D_{\frac{1-\lambda^{n}}{1-\lambda}} D_{\delta^{-1}} Q^{\prime} D_{V} C^{-1} . \\
(4.1 .27)
\end{array}
$$

The (ki) element of (4.1.27) is
where

$$
\begin{aligned}
& c_{k W} \quad \text { is an element of }(4.1 .16) \text { the } C \text { matrix, } \\
& \text { recall that } c_{j w}=0 \text { for } w>k \text {, } \\
& Q_{j-1}(i-1) \text { is an element of (4.1.17), the Hahn poly- } \\
& \text { nominal matrix } Q \text {, } \\
& C_{V i}^{-1} \quad \text { is an element of (4.1.20), the } c^{-1} \text { matrix; } \\
& \text { also note that } \\
& c_{v i}^{-1}=\left\{\begin{array}{rl}
-1 & v=i+1 \\
1 & v=i \\
0 & \text { otherwise },
\end{array}\right. \\
& \bar{d}_{\text {ss }} \quad \text { is an element of } \frac{1-\lambda^{n}}{1-\lambda} \delta^{-1}
\end{aligned}
$$

that is

$$
\sigma_{s s}=\left\{\begin{array}{c}
n \quad \text { for } s=0 \\
\frac{1-\lambda_{s}^{n}}{1-\lambda_{s}}\binom{M-1}{s-1}(2 s+b+1) /\binom{M+b+s-1}{s-1}(b+1), s=1,2, \ldots, M,
\end{array}\right.
$$

$$
d_{V V} \text { is an element of } D_{V} \text { defined in }(4.1 .26)
$$

From (4.1.29)
M

$$
\begin{align*}
\sum_{v=0} Q_{s-1}(v-1) d_{v v} c_{v i} & =-Q_{s-1}(i) d_{i+1 i+1}+Q_{s-1}(i-1) d_{i i} \\
& =-\Delta_{(i)}\left[d_{i i} Q_{s-1}(i-1)\right], \quad 1 \neq M \\
& =Q_{S-1}(M-1) d_{M M}, \quad i=M . \tag{4.1.31}
\end{align*}
$$

Hence (4.1.28) becomes

$$
\mathcal{E}\left(n_{i}\right)=\left\{\begin{array}{c}
-\Delta(i) \sum_{w=0}^{k}\left[\sum_{s=0}^{M} Q_{s-1}(w-1) d_{s s}\left[d_{i i} Q_{s-1}(i-1)\right]\right\}, i \neq M \\
\sum_{M M}^{K} \sum_{w=0}^{K}\left[\sum_{s=0}^{M} Q_{s-1}(w-1) d_{s s} Q_{s-1}(M-1)\right], i=M
\end{array}\right.
$$

recalling that the $c_{j k w}$ are 1 for $w \leq k$. Thus given the initial state k we have the expression for $\varepsilon\left(n_{i}\right)$, where again n_{i} is the total number of times state i is observed in a realization of the Markov chain. Note that in
the final summation step of $\mathcal{E}\left(n_{i}\right)$ Corollary 9.1 .4 can be used, i.e.,

$$
\begin{aligned}
& \sum_{w=0}^{k} Q_{s-1}(w-1)=\frac{\left[(M-k) k\left[Q_{s-1}(k-1)-Q_{s-1}(k)\right]+b k Q_{S-1}(k-1)\right]}{s(s-1+b)} . \\
& \text { It is obvious from general reasoning that } \sum_{i=0}^{M} \varepsilon\left(n_{i}\right)=n,
\end{aligned}
$$ the length of the chain, but this may also be verified from (4.1.32),

$$
\sum_{i=0}^{M} \varepsilon\left(n_{i}\right)=-\sum_{w=0}^{k}\left[\sum_{s=0}^{M} Q_{s-1}(w-1) d_{S s} d_{M M}^{Q} Q_{s-1}(M-1)\right]
$$

$$
\mathrm{k} \quad \mathrm{M}
$$

$$
+\sum_{w=0}\left[\sum_{s=0} Q_{s-1}(w-1) d_{s s} d_{00} Q_{s-1}(-1)\right]
$$

$$
\begin{equation*}
+\sum_{w=0}^{k}\left[\sum_{s=0}^{M} Q_{s-1}(w-1) d_{s s} d_{M M} Q_{s-1}(M-1)\right] \tag{4.1.33}
\end{equation*}
$$

M-1
where the first two terms are the result of $\sum_{i=0} \varepsilon\left(n_{i}\right)$ b
[that is, $\left.\frac{\hat{a}}{} \Delta E(x)=f(b+1)-f(a)\right]$ and the last term is the expression for $\mathcal{E}\left(\mathrm{n}_{\mathrm{M}}\right)$. Thus

$$
\begin{equation*}
\sum_{i=0}^{M} \varepsilon\left(n_{i}\right)=\sum_{w=0}^{k}\left[\sum_{s=0}^{M} Q_{s-1}(w-1) d_{s s} d_{00} Q_{s-1}(-1)\right] . \tag{4.1.34}
\end{equation*}
$$

Note from (9.1.8) that $Q_{s-1}(-1)=1$ for $s=0$ and zero otherwise, thus

$$
\begin{aligned}
\sum_{i=0}^{M} \varepsilon\left(n_{i}\right) & =\sum_{w=0}^{k} Q_{-1}(w-1) d_{00} d_{00} \\
& =d_{00} d_{00} \\
& =n,[c f .,(4.1 .30),(4.1 .26)] .(4.1 .35)
\end{aligned}
$$

Having found an expression for $\varepsilon\left(n_{i}\right)$ we now discuss the expectations of φ and φ^{\prime} (4.1.5). Recall from (3.1.27) that

$$
\begin{align*}
& \varepsilon\left(a_{i}\right)=p_{i i+1}\left[\varepsilon\left(n_{i}\right)-p_{j i i}^{(n-1)}\right] \\
& \varepsilon\left(b_{i}\right)=p_{1 i}\left[\varepsilon\left(n_{i}\right)-p_{k i}^{(n-1)}\right] \tag{4.1.36}\\
& \varepsilon\left(c_{i}\right)=p_{i i-1}\left[\varepsilon\left(n_{i}\right)-p_{k i}^{(n-1)}\right]
\end{align*}
$$

We write

$$
\varepsilon(\varphi)=\varepsilon\left(\frac{d \log L_{1}}{d \alpha_{1}}=0\right.
$$

and

$$
\varepsilon\left(-\varphi^{\prime}\right)=\varepsilon\left(\frac{-d^{2} \log L}{d \alpha_{1}^{2}}\right)
$$

$$
\begin{align*}
& =\sum_{i=1}^{M-I} \frac{\left[\varepsilon\left(n_{i}\right)-p_{k i}^{(n-1)}\right] p_{i i+1}}{\left(1-\alpha_{1}\right)^{2}} \\
& +\sum_{i=1}^{M} \frac{i^{2}\left[\varepsilon\left(n_{i}\right)-p_{k i}^{(n-1)}\right]\left(1-2 i M^{-1}\right)^{2} p_{i 1}}{\left[(M-i)-\left(1-\alpha_{1}\right)(i)\left(1-2 i M^{-1}\right)\right]^{2}}+\sum_{i=1}^{M} \frac{i^{2}\left[\varepsilon\left(n_{i}\right)-p_{k i}^{(n-1)}\right] p_{i i-1}}{\left[M-i\left(1-\alpha_{i}\right)\right]^{2}}, \\
& =\sum_{i=1}^{M-1} \frac{\left[\varepsilon\left(n_{i}\right)-p_{k i}^{(n-1)}\right] i(M-i)}{M^{2}\left(1-C_{1}\right)}+\sum_{i=1}^{M} \frac{\left[\varepsilon\left(n_{i}\right)-p_{k i}^{(n-1)}\right] i^{2}(M-2 i)^{2}}{M^{3}\left[(M-i)-\left(1-a_{1}\right) i(1-2 i M-1)\right]} \\
& +\sum_{i=1}^{M} \frac{\left[\varepsilon\left(n_{i}\right)-p_{k i}(n-1)\right] i^{3}}{M^{2}\left[M-i\left(1-\alpha_{1}\right)\right]} \\
& =I \text {. } \tag{4.1.37}
\end{align*}
$$

Exactly what this I means is a question. By the CramerRao inequality (Kendall and Stuart, Vol. II, p. 8 et.seq.)

$$
\operatorname{var}\left(\hat{\alpha}_{1}\right) \geq\left[\frac{d}{d \alpha_{1}} \varepsilon\left(\hat{\alpha}_{1}\right)\right]^{2} / I
$$

but there seems little hope of finding either the bias term $\varepsilon\left(\hat{\alpha}_{1}\right)-\alpha_{1}$ or an exact expression for the variance of $\hat{\alpha}_{1}$ by theoretical methods. Some encouraging results, however, were obtained from a simulation study on the IBM 650 which is discussed later in this chapter.

Up to this point we have dealt with the case where n is fixed, [cf., for example (4.1.13), (4.1.30)]. We now
discuss the situation where $n \rightarrow \infty$. In this case several of the above quantities have slightly different values. We note that from (4.1.32), for $1 \neq M$

$$
\begin{aligned}
& \text { F. M } \\
& \mathcal{E}\left(n_{i}\right)=-\Delta(i) \underset{w=0}{ }\left\{\sum_{s=0}^{Q_{s-1}}(w-1) d_{s s}\left[d_{i i} Q_{s-1}(i-1)\right]\right\} \\
& \text { k } \\
& =-\Delta(i){ }_{w=0}^{Q} Q^{2}(w-1) d_{00}\left[d_{i i^{Q}-1}(i-1)\right] \\
& -\Delta(i) \sum_{w=0}^{\sum} Q_{s=1}^{M}(w-1) \sigma_{s s}\left[d_{i 1} Q_{s-1}(i-1)\right]
\end{aligned}
$$

and provided i $\neq 0$

$$
=0-\Delta_{(i)}^{k} \sum_{w=0}^{M} Q_{s=1}^{M}(w-1) d_{s S}\left\lceil d_{i i^{\prime}} Q_{s-1}(i-1)\right],
$$

by the conventions (9.1.8).
Similarly, when $i=M$ we have

$$
\varepsilon\left(n_{M}\right)=d_{M M} \sum_{w=0}^{k} Q_{s=1}^{M} Q_{s-1}(w-1) d_{S s} Q_{s-1}(M-1)
$$

From (4.1.30),

$$
\lim _{n \rightarrow \infty} a_{s s}=\frac{1}{1-\lambda_{s}}\binom{M-1}{s-1}(2 s+b-1) /\binom{M+b+s-1}{s-1}(b+1), s \neq 0
$$

and so

$$
\begin{aligned}
& \text { K M } \\
& \lim _{n \rightarrow \infty} \varepsilon\left(n_{i}\right)=-\Delta_{i} \sum_{w=0} Q_{s-1}(w-1) \\
& {\left[\frac{1}{i-\lambda_{s}}\left(\frac{M-1}{s-1}\right)(2 a+b-1) /\left(M_{s-1}^{M+b+s-1}\right)(b+1)\right]\left[d_{i Q_{s-1}}(i-1)\right],} \\
& 0<i<M \\
& \text { K M } \\
& =d_{M M} \sum_{w=0} Q_{s-1}(w-1)\left[\frac{1}{1-\lambda_{s}} \sum_{s-1}^{M-1} \times(2 s+b-1) Y\left(_{s-1}^{M+b+s-1}\right)(b+1)\right] Q_{s-1}(M-1)_{1} \\
& i=M . \\
& \text { (4.1.40) } \\
& \text { k }
\end{aligned}
$$

Note that Corollary 9.1 .4 can be used in summing

$$
\sum_{w=0}^{Q_{s-1}(w-1)}
$$ Of course, as $n \rightarrow \infty, \varepsilon\left(n_{0}\right) \rightarrow \infty$, but this does not enter into the formula for $I(4.1 .37)$, nor are a_{0}, b_{0} involved in the function φ and $\varphi^{\prime}(4.1 .5)$ used in obtaining $\hat{\alpha}_{1}$. For $n \rightarrow \infty$ we can now write (4.1.37) as

$$
\begin{gather*}
\lim _{n \rightarrow \infty} I=\lim _{n \rightarrow \infty}\left[\sum_{i=1}^{M-1} \frac{\varepsilon\left(n_{i}\right) i(M-i)}{M^{2}\left(1-\alpha_{1}\right)}+\sum_{i=1}^{M} \frac{\varepsilon\left(n_{i}\right) i^{2}(M-2 i)^{2}}{M^{3}\left[(M-i)-\left(1-\alpha_{1}\right) i\left(1-2 i M^{-1}\right)\right]}\right. \\
 \tag{4.1.41}\\
\left.\quad+\sum_{i=1}^{M} \frac{\varepsilon\left(n_{i}\right) i^{3}}{M^{2}\left[M-i\left(1-\alpha_{1}\right)\right]}\right],
\end{gather*}
$$

noting that $p_{k i}^{(n-1)} \rightarrow 0, i \neq 0, p_{k i}^{(n-1)} \rightarrow 1, i=0$. We now discuss the asymptotic behavior of the estimate and manner of conducting the experiment.

Keeping M, k fixed but with $n \rightarrow \infty$ it is clear from general considerations that once absorption has occurred, nothing of value is obtained by prolonging the experiment. With probability one, only a finite number of useful observations will be obtained, and no asymptotic theory of consistency or normality of the estimate $\hat{\alpha}_{1}$, will hold. For this situation we postulate the following theorems whose validity are very strongly felt but proofs of which have not been found. An outline of the anticipated proofs is presented. It will be noted that the gaps are a result of inadequacies which exist in the inference theory of positively regular Markov chains. Before presenting the theorems it could be mentioned that the current difficulties in making inferences from observations on a single absorbing Markov chain can be handled by performing independent replicated experiments. Such experiments are discussed in the next section. The following theorems are stated for the particular situation studied in this chapter. It is felt, however, that more general theorems hold.
(e) Some Postulated Theorems. Postulated Theorem 4.1.6. For the transition matrix P, (4.1.2), with one absorbing state, 0 , and no other
closed sets, suppose that a realization is commenced at state $k=M$ and that $n=M$ observations are taken. Then, provided $\hat{\alpha}_{1}$ is the maximum likelihood estimate of α_{1}, the distribution of $\hat{\alpha}_{1}$ is asymptotically normal with mean α_{1}, and variance $-\left[\varepsilon\left(\frac{d^{2} \log L}{d \alpha_{1}{ }^{2}}\right)\right]^{-1}=I^{-1}$ as $M \rightarrow \infty$, where $L=$ likelihood $=\prod_{i} p_{i i+1}{ }^{a_{i}} p_{i i}{ }^{b_{i}} p_{i i-1}{ }^{c_{i}}$.

Proof outline: By the assumption that $n=k=M$, and since only unit transitions are possible in P, the absorbing state, 0 , cannot be reached in the $M-1$ steps after the initial observation $x_{1}=M$. Thus it is immaterial how the elements $p_{0 j}$ in P are defined. Consider, therefore, a transition matrix

where from state 0 an instantaneous return to state M occurs. While P was regular but absorbing, $P *$ is positively regular and satisfies Billingsley's conditions (Section 2.3).

Consider now two experiments, one of which is performed with P as model, the other with $P *$ as model, and for each the initial state is $k=M$. Denote the maximum likelyhood estimates by $\hat{\alpha}_{1}$ and $\hat{\alpha}_{1}$ * respectively. Then for the positively regular chain, we have asymptotic normality according to Theorem 2.3.2, that is,

$$
\lim _{\mathrm{n} \rightarrow \infty} \operatorname{Pr}\left\{\sqrt{\mathrm{n}}\left(\hat{a}_{1} *-\alpha_{1}\right) \leq y\right\}=\Phi\left(y / \sigma_{M}\right)
$$

where Φ is the standard normal distribution function,

$$
\sigma^{2}=\lim _{n \rightarrow \infty} n I *^{-1},
$$

and

$$
I *=-\varepsilon\left(\frac{d^{2} \log L^{*}}{d \alpha_{1}^{2}}\right),
$$

with L^{*} being the likelihood of n observations drawn from P^{*}.

Suppose now that the convergence (4.1.42) is uniform over M, and that $\sigma_{M}^{2} \rightarrow \sigma$, with $0<\sigma<\infty$, as $M \rightarrow \infty$.

Then from (4.1.42),

$$
\begin{align*}
\left.\lim _{M=n \rightarrow \infty} \operatorname{Pr} r \sqrt{n}\left(\hat{\alpha}_{1}^{*-\alpha_{1}}\right) \leq y\right\} & =\lim _{M \rightarrow \infty} \lim _{n \rightarrow \infty} \operatorname{Pr}\left\{\sqrt{n}\left(\hat{\alpha}_{1}^{*-\alpha_{1}}\right) \leq y\right\} \\
& =\Phi(y / \sigma) \tag{4.1.43}
\end{align*}
$$

But on the left of (4.1.43), we have $\hat{\alpha}_{1}$ * drawn from a chain with $k=M=n$, which has identically the distribution of $\hat{\alpha}_{1}$ made under the same conditions on the p matrix. Thus, if (4.1.43) is valid, we have

$$
\begin{equation*}
\left.\lim _{M=n \rightarrow \infty} \operatorname{Pr}_{r}!\sqrt{n}\left(\hat{\alpha}_{1}-\alpha_{1}\right) \leq y\right\}=\Phi(y / \sigma) \tag{4.1.44}
\end{equation*}
$$

Further, if the similar interchange of double limits

$$
\begin{equation*}
\lim _{M=n \rightarrow \infty} n(I *)^{-1}=\lim _{M \rightarrow \infty} \lim _{n \rightarrow \infty} n(I *)^{-1}=\lim _{M \rightarrow \infty} \sigma_{M}^{2}=\sigma^{2} \tag{4.1.45}
\end{equation*}
$$

holds, we have (because for $k=M=n, \quad I * I$)

$$
\begin{equation*}
\lim _{M=n \rightarrow \infty} n I^{-1}=\lim _{M=1 \rightarrow \infty} n(I *)^{-1}=\sigma^{2} \tag{4.1.46}
\end{equation*}
$$

From (4.1.44) we have that $\hat{\alpha}_{1}$ is asymptotically normal with mean α_{1}, and variance (from (4.1.46)) equal

$$
I^{-1}=-\left[\varepsilon\left(\frac{\bar{a}^{2} \log L}{d \alpha_{1}^{2}}\right)\right]^{-1}
$$

Note that the difficulties in the theorem are due to unresolved questions about limiting operations (4.1.43) and (4.1.46) in the positively regular theory.

Postulated Theorem 4.1.7. For the transition matrix P, (4.1.2), with one absorbing state, 0 , and no other closed sets, suppose that a realization is commenced at $k=M$ and continued until the absorbing state is first reached. Then, provided $\hat{\alpha}_{1}$ is the maximum likelihood estimate of α_{1}, the distribution of $\hat{\alpha}_{1}$ is asymptotically normal with mean α_{1} and variance $\lim _{n \rightarrow \infty} I^{-1}$ as $M \rightarrow \infty$, where I (4.1.37) is the fixed sample size (n) information. Proof outline. As in Theorem 4.1.6, it makes no ditference how the elements $p_{0 j}$ are defined since by definition of the experimental procedure, the realization is terminated as soon as state 0 is reached. Thus the estmate $\hat{\alpha}_{1}$ has the same distribution properties as $\hat{\alpha}_{1}$ * made on the P^{*} process under the same conditions.

We postulate the following result for the positively regular chain estimate $\hat{\alpha}_{1} *$:

$$
\begin{equation*}
\lim _{M \rightarrow \infty} \operatorname{Pr}\left\{\left(\hat{\alpha}_{1} *-\alpha_{1}\right) a(M) \leq y\right\}=\Phi(y / \sigma) \tag{4.1.47}
\end{equation*}
$$

where $a(M)$ is some standardizing factor, perhaps, but not necessarily, \sqrt{M}, and

$$
\sigma^{2}=\lim _{M \rightarrow \infty}\left\{[a(M)]^{2}\left([*)^{-1}\right\}, \text { with } 0<\sigma^{2}<\infty\right.
$$

Here I * is the information for the sequential stopping rule on chain P^{*}, and is identical to the same quantity for the P matrix, namely

$$
\begin{equation*}
I *=\lim _{n \rightarrow \infty} I \tag{4.1.48}
\end{equation*}
$$

It follows from (4.1.47), if true, that the sequential stopping rule applied to the P chain estimate yields

$$
\begin{equation*}
\lim _{M \rightarrow \infty} \operatorname{Pr}\left\{\left(\hat{\alpha}_{1}-\alpha_{1}\right) a(M) \leq y\right\}=\Phi(y / \sigma), \tag{4.1.49}
\end{equation*}
$$

where $\quad \sigma^{2}=\lim _{M \rightarrow \infty}\left\{[a(M)]^{2} \lim _{n \rightarrow \infty} I^{-1}\right\}$.
This proves the theorem.
Again, we see that the difficulties inherent in (4.1.47) relate to the positively regular case.

Corollary 4.1.8. If, in Theorem 4.1.7, $a(M) \rightarrow \infty$ as $M \rightarrow \infty$, then $\hat{\alpha}_{1}$ is a consistent estimate of α_{1}. Proof. The proof is immediate from the fact that $\hat{\alpha}_{1}$ is asymptotically unbiased and has variance of order $O\left(\frac{1}{a(M)^{2}}\right)$ as $M \rightarrow \infty$ by Theorem 4.1.7 itself. It is felt, however, that the corollary holds regardless of the validity of the postulated Theorem 4.1.7. That is, it may be possible to find a proof of the corollary without relying on Theorem 4.1.7 specifically.

4.2 Estimating Mutation Rate from a Single Chain Simulation Study)

4.2.1 Background

In connection with the postulated Theorem 4.1.7 and its Corollary 4.1.8, a simulation study on the IBM 650 was performed, the summary results of which appear in the following figures and tables, the more extensive results being in Appendices II, III. Five values of M were studied, $M=2,4,6,10$, and 20. The program was written with $\alpha_{1}=0.1$. For each value of $M, 500$ independent realizations were generated in the following manner. In all cases, the initial state was $k=M$ and the chain was continued until the absorbing state zero occurred. The 500 maximum likelihood estimates of $\alpha_{1}=0.1$ solved from the data of these realizations appear in Appendix II listed in increasing order. Note that $M=4$ and 6 have 502 values, the last two values being $\hat{a}_{1}=1.0$. The corresponding experiments did not satisfy the conditions of Theorem 4.1.2 (that is, b_{M} and all a_{i} were zero for these experiments) resulting in a maximum of the likelihood at $\alpha_{1}=1$, not, however, at a turning point. Two further realizations were
made to give in all 500 replicates of a form yielding $\hat{\alpha}_{1}$ values satisfying the likelihood equations. However, for $M=2$ there were 16 such extreme realizations, and these were not replaced. For $M=10$ and 20 , all realizations provided admissible likelihood equation estimates.

In Table 4.1.2 $\overline{\hat{\alpha}}_{1}$ is the mean of the 500 estimates of $\hat{\alpha}_{1}$ and $s \hat{\hat{\alpha}}_{1}^{2}$ is their sample variance. The numbers which appear in parentheses for $M=4,6$ are based on the 502 estimates. These values are included for general interest. The figures show the observed distribution of all estimates obtained. Note that there are gaps in what one might expect to be virtually continuous distributions. These are especially pronounced in Fig. 1 where $M=2$. The extreme right bar is for the 16 values of one coming from realizations of the form 21 10 with state 2 occurring once only. The second bar from the right is for 26 values of $\hat{\alpha}_{1}=0.577350$ which arose from experiments of the type $221 \ldots 10$.... The third tall bar from the right is for 29 values of $\hat{\alpha}_{1}=0.390388$ which arose from experiments of the type $2221 \ldots 10$.... Thus $M=2$ has many peculiar characteristics due to the comparatively limited number of possible realizations. These peculiarities become less pronounced as M increases.

Table 4.1.2

M	$\begin{gathered} \overline{\hat{\alpha}}_{1} \\ \left(\alpha_{1}=0.1\right) \end{gathered}$	$\begin{aligned} & \text { Estimated } \\ & \text { Bias } \\ & \overline{\hat{\alpha}}_{1}-\alpha_{1} \end{aligned}$	Estimated Variance $s_{\hat{\alpha}_{1}}^{2}$	Postulated Asymptotic Variance $\lim I^{-1}$	
2	0.212050	0.112050	0.038427	0.004905	87.2355
4	0.168281	0.068281	0.014846	0.003036	79.5500
	(0.171595)		(0.017537)		
6	0.153653	0.053657	0.010560	0.002479	76.5246
	(0.157025)		(0.013366)		
10	0.131192	0.031192	0.003421	0.002025	40.8068
20	0.114452	0.014452	0.001481	0.001496	(-1.0128)

Fig. 4

4.2.2 Conclusions from the simulation study

From the figures we note that skewness decreases as M increases and the empirical distributions of the $\hat{\alpha}_{1}$ appear to have a mode close to the true value $\alpha_{1}=0.1$. Moreover, from the figures and Table 4.1 .2 it is apparent that the bias and variance of the estimates decreases rapidly as M increases. This gives very strong evidence that Corollary 4.1.3 is correct, and that the estimate is consistent as M increases.

For the considerably sharper Theorem 4.1.7, we find that the observed variances $s_{\hat{\alpha}_{1}}^{2}$ and the postulated asymptotic variance $\lim _{n \rightarrow \infty} I^{-1}(4.1 .41)$ are in extraordinarily good agreement for $M=20$, but less so for smaller population sizes. This is to be expected if the Theorem 4.1 .7 is correct, but we do not claim that the realizations generated to date are sufficiently convincing that in fact $\operatorname{var}\left(\hat{\alpha}_{1}\right)$ and $\lim I^{-1}$ are asymptotically equal. Higher values of M $n \rightarrow \infty$
need be investigated before such a conclusion could be established beyond doubt. Similarly, the asymptotic normality property is not yet established, although the decrease in skewness is suggestive. A X^{2} goodness of fit test on
$M=20$ data still indicates a significant departure from normality. Finally, the postulated standardizing factor a(M) of Theorem 4.1.7 could be established by plotting $\lim _{n \rightarrow \infty} I^{-1}$ or $s_{\hat{\alpha}_{1}}^{2}$ as a function of M and observing the rate of approach to zero. However, here again values larger than $M=20$ would be needed. It was not possible to examine larger populations on the IBM 653 because of the prohibitive amount of time required.
4.2.3 Comments on the design of the experiment

In discussing the non-absorbing, two mutation case (Section 3.2) it was found that, per observation, the most efficient experiment was one carried out on the smallest possible population $(M=1)$, but per generation, the same conclusion did not hold. In the present situation with ultimate absorption being a certainty, the expected number of birth-death events required for the transition from state M to state 0 can be calculated either by finding the limit

$$
\lim _{n \rightarrow \infty} \mathcal{M} E\left(n_{i}\right)
$$

using the Hahn polynomial expression (4.1.32), or by a
method proposed by Kemeny and Snell (1960). The latter consists of evaluating the inverse $\left(I-P_{\Delta}\right)^{-1}$ where I is the $M \times M$ identity matrix and P_{Δ} is the $M X M$ matrix obtained by deleting the 0 column anci row of P (4.1.2), thus leaving the transient state probabilities only. The elements in the (M,i) position of $\left(I-P_{\Delta}\right)^{-1}$ are the required $\lim _{n \rightarrow \infty} \mathcal{E}\left(n_{i}\right)$, and summing along the last row of $\left(I-P_{\Delta}\right)^{-1}$ yielas the expected number of transitions. The expectea number of observations $\mathcal{E}(N)$ is, of course, one more than this quantity allowing for the transition from state 1 to state 0 . For our triple diagonal matrix P, in fact all elements below the diagonals in $\left(I-P_{\Delta}\right)^{-1}$ are equal to the diagonal elements themselves, and so we present in Appendix III, only the upper triangular portions of $\left(I-P_{\Delta}\right)^{-1}$ for $M=2,4$, 6, 10 and 20. The individual values have been used to calculate $\lim _{n \rightarrow \infty} I^{-1}(4.1 .41)$ as tabulated in Table 4.1.2. The expected length of chain to absorption, $\mathcal{E}(N)$, is given in Table 4.1.3, together with the bias and variance estimates calculated on a per generation basis. It is clear that not only are the larger populations more efficient, in total, if carried to absorption (see Table 4.1.2) but also

Table 4.1.3

M	$\varepsilon(N)$ Expected Length of Chain to Absorption	$\frac{\text { Bias }}{\varepsilon(N) / M}$	$\frac{s_{\hat{\alpha}_{1}^{2}}^{2}}{\varepsilon(\mathrm{~N}) / M}$
2	$21.818181+1$ (23)	0.009821	0.003368
4	$49.868406+1$ (51)	0.005369	0.001674
6	$82.618032+1$ (84)	0.003850	0.000758
10	$\begin{gathered} 158.753792+1 \\ (160) \end{gathered}$	0.001953	0.000214
20	$\begin{gathered} 391.368270+1 \\ (392) \end{gathered}$	0.000737	0.000075

on a per observation and a per generation basis. It is conceded that there is a slight increase in the ratio $\mathcal{E}(\mathrm{N}) / \mathrm{M}=\mathcal{E}$ (generationsto absorption) as M increases and 1f the number of generations were kept fixed at a level where small populations reach absorption on average but larger ones do not, the estimated bias and variance for the latter would be somewhat underestimating the true values. However, the effect is thought to be sufficiently small not to nullify the conclusion. Again further calculations would be interesting.

4.3 Replicated Experiments

One method of overcoming the difficulties encountered in attempting to make inferences from a single long realization of an absorbing Markov chain is to perform independent replicated experiments. Such experiments are discussed in this section.
4.3.1 Geometric Stopping Rule

Suppose we consider the following. Let the initial state be $k=M$ (i.e., consisting of all "a"'s corresponding
to a genetic pure line) and observe the population at equal time intervals until the $M-1$ state occurs for the first time, then stop. The number of times that the chain remains in state M, b_{M}, has the geometric distribution

$$
f\left(b_{M}\right)=p_{M M}^{b_{M}} p_{M M-1}
$$

$$
\begin{equation*}
=\left(1-a_{1}\right)^{b_{M}} \alpha_{1} \tag{4.3.1.1}
\end{equation*}
$$

whexe $b_{M}=0,1,2, \ldots$ For R independent replicate populations we can write the joint probability function (likelihood function), where for convenience we shall write $b_{M}(r)$ for the value of b_{M} in the r-th replicate, R.

$$
\begin{equation*}
L=\left(1-\alpha_{1}\right)^{r=1} \alpha_{1} \tag{4.3.1.2}
\end{equation*}
$$

The log-likelihood is

$$
\log L=\sum_{r=1}^{R} b_{M}(r) \log \left(1-\alpha_{1}\right)+R \log \alpha_{1}
$$

and

$$
\frac{d \log L}{d \alpha_{1}}=-\int_{r=1}^{R_{M}} \frac{b_{M}(r)}{1-\alpha_{1}}+\frac{R}{\alpha_{1}}
$$

thus the maximum likelihood estimate of α_{1} is

$$
\hat{\alpha}_{1}=\frac{R}{\sum_{r=1} b_{M}(r)+R}
$$

This estimate, however, is a biased one. Let us then look at an estimate which is unbiased and whose distribution R
theory is known. $X_{\mathrm{r}=1} \mathrm{~b}_{\mathrm{M}}(\mathrm{r})$ is distributed as the negative binomial

$$
\begin{equation*}
f\left(\sum_{r=1}^{R} b_{M}(r)\right)=\left(^{\sum_{R=1}^{R} b_{M}(r)+R-1}{ }_{R-1}\right)\left(1-\alpha_{1}\right)^{\sum_{r=1}^{R} b_{M}(r)} \alpha_{1}^{R} \tag{4.3.1.6}
\end{equation*}
$$

because the convolution of independent negative binomial (and in particular, geometric) variables is again a negative binomial. The unbiased estimate for α_{1} in this case (Haldane, 1943) is in our notation

$$
\bar{a}_{1}=\frac{R-1}{\sum_{r=1}^{R} b_{M}(r)+R-1}
$$

Finney (1949) found an unbiased estimate of the variance of $\bar{\alpha}_{1}$. In our notation it is

$$
\begin{equation*}
\operatorname{var}\left(\bar{\alpha}_{1}\right) \doteq s^{2}=\frac{\bar{\alpha}_{1}\left(1-\bar{\alpha}_{1}\right)}{\sum_{r=1}^{R} b_{M}(r)+R-2} \tag{4.3.1.8}
\end{equation*}
$$

A normal approximation is a satisfactory indicator of the error of estimation of α_{1} only when R is large. For small R a method of Finney's (1949) for reading exact confidence limits on α_{1} airectly from Biometrika Table 41 is shown below.

It may not have been generally realized that methods and tables for determining exact confidence limits for binomial sampling may be acapted very easily to inverse binomial sampling, i.e., the negative binomial distribution. The proof of the following rule may be found in Finney (1949). A more explicit proof may be found in Bartko (1960). The rule may be stated:
(i) The upper limit on α_{1} is found by entering

Biometrika Table 41 with $C=R-1, \quad n=\sum_{r=1}^{R} b_{M}(r)+R-1$. (ii) The lower confidence limit on α_{1} is found by R
entering the table with $C=R, \quad n=\sum_{r=1} b_{M}(r)+R$, where n is the notation used in Table 41.

Consider the following example which illustrates the principles of the above discussion. A chain with 11 states, i.e., $M=10$ (actually for this geometric stopping rule the size of M, aside from its being constant, is immaterial) was considered. α_{1} was arbitrarily set at 0.1. The initial state was $k=M=10$ as stated above and when state $M-1=9$ was first observed the chain was terminated. By use of random number tables where $\mathrm{p}_{10,9}=0.1$ and $\mathrm{p}_{10,10}=0.9, \quad \mathrm{R}=30$ such independent chains were constructed. The results were

30 times in state 9
294 times in state 10
264 times the transition from state

10 to 10 occurred.

Thus $\sum_{r=1}^{R=30} b_{M}(r)=264$ and from (4.3.1.7)

$$
\begin{equation*}
\bar{\alpha}_{1}=0.0989 \tag{4.3.1.9}
\end{equation*}
$$

and from (4.3.1.8)

$$
\begin{equation*}
s=0.01747 \tag{4.3.1.10}
\end{equation*}
$$

Using a normal approximation, 95% confidence limits on α_{1} are

$$
\bar{\alpha}_{1}-(1.96) s<\alpha_{1}<\bar{\alpha}_{1}+(1.96) s,
$$

which for our case is

$$
\begin{equation*}
0.065<\alpha_{1}<0.133 \tag{4.3.1.11}
\end{equation*}
$$

Although it would appear in this case that R is sufficiently large for the approximation to hold, the rules stated above for Biometrika Table 41 will be used in this example for purposes of illustration. For the upper limit enter the table with $C=29, n=293$ and find approximately the value 0.14. For the lower bound enter the table with $C=30, n=294$, to which corresponds the value of about 0.07. Consequently, an exact two sided 95% confiaence interval for α_{1} is

$$
\begin{equation*}
0.07<\alpha_{1}<0.14 \tag{4.3.1.12}
\end{equation*}
$$

4.3.2 Fixeā chain length

Let us here consider making inferences on α_{1} from ciata obtained by observing R independent replicate chains each of the same finite length n. For an absorbing chain a finite, useful, n can be accomplished by setting $n \leq k$ so that absorption does not occur.

We estimate α_{1} by using the Newton-Raphson scheme (4.1.6). The procedure is to replace a_{i}, b_{i} and c_{i} in φ and φ^{\prime} (4.1.5) with

$$
\sum_{r=1}^{R} a_{i}(x), \quad \sum_{r=1}^{R} b_{i}(x) \quad \text { and } \sum_{r=1}^{R} c_{i}(x) \quad \text { respectively }
$$

where for example $a_{i}(r)$ is the value of a_{i} in the $r-t h$ replicate. In obtaining the estimate of α_{1} it is immaterial whether all replications have the same initial state k or not. However, in computing $I(4.1 .37)$ we need to find $E\left(n_{i}\right)$ which from (4.1.32) we see depends on k. Suppose that the initial state is the same for all replications. Recall from (4.1.36) for example that

$$
\begin{equation*}
\varepsilon\left(a_{i}\right)=p_{i i+1}\left[\varepsilon\left(n_{i}\right)-p_{k i}^{(n-1)}\right] \tag{4.3.2.1}
\end{equation*}
$$

Thus for our case where all initial states are the same,

$$
\sum_{r=1}^{R} a_{i}(r)=R \mathcal{E}\left(a_{i}\right)
$$

Similar expressions hold for b_{i} and c_{i}. Thus from I (4.1.37) and (4.3.2.2) the variance element for the replicate experiments $\left(I_{R}\right)^{-1}$ is

$$
\begin{equation*}
\left(I_{R}\right)^{-1}=(R I)^{-1} \tag{4.3.2.3}
\end{equation*}
$$

where I now refers to the information (4.1.37) obtained from a single replicate, and we write for the replicated experiments with finite n and same initial state k that $\left(\hat{\alpha}_{1}-\alpha_{1}\right)\left(\hat{\alpha}_{1}\right.$ the maximum likelihood estimate of $\left.\alpha_{1}\right)$ will be asymptotically normal with mean zero and variance $\left(I_{R}\right)^{-1}(4.3 .2 .3)$. These results hold as $R \rightarrow \infty$ by the usual theory for maximum likelihood estimates from independent experiments.
4.3.3 Chain length a rancom variable

Suppose that the chain length n for each replication is a random variable determined by some sequential stopping rule. Let us consider the absorbing state 0 as the stopping state. That is, we observe the chain until it is absorbed. And further, let us choose k the same for each replication and large enough (implies M large) so that we can regard n as very large and use $\ell\left(n_{i}\right)$ as given by (4.1.40).

$$
\text { We replace } \varepsilon\left(n_{1}\right) \text { in }(4.1 .41) \text { with } \varepsilon \sum_{r=1} n_{i}(r) \text { and }
$$

since k is the same for all replications
$\varepsilon \sum_{r=1} n_{i}(r)=\operatorname{RE}\left(n_{i}\right)$. Thus (4.1.41) becomes for the replysated experiments

$$
\begin{equation*}
I_{R}=R I \tag{4.3.3.1}
\end{equation*}
$$

Thus we can write $\left(\hat{\alpha}_{1}-\alpha_{1}\right)$ will be asymptotically normal with mean zero and variance $\left(I_{R_{R}}\right)^{-1}$ as R the number of independent replicates $\rightarrow \infty$.
4.4 Sample Calculations on the Absorbing Chain

$$
\begin{align*}
& \text { Using (4.1.1) } P \text { for } M=2 \text { is } \\
& P=1\left[\begin{array}{ccc}
0 & 1 & 2 \\
1 & 0 & 0 \\
2\left[\frac{1}{4}\left(1+\alpha_{1}\right)\right. & \frac{3}{2} & \frac{1}{4}\left(1-\alpha_{1}\right) \\
0 & \alpha_{1} & 1-\alpha_{1}
\end{array}\right] . \tag{4.4.1}\\
& \text { From (4.1.14) ide., } \\
& \lambda_{j}=1-j\left[\frac{1_{2}}{2}{ }_{1}+\frac{1}{4}(j-1)\left(1-\alpha_{1}\right)\right] \\
& \lambda_{0}=1 \\
& \lambda_{1}=\left(2-\alpha_{1}\right) / 2 \tag{4.4.2}\\
& \lambda_{2}=\left(1-\alpha_{1}\right) / 2 \quad .
\end{align*}
$$

From (4.1.17)

$$
\begin{align*}
Q= & {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & -1-b
\end{array}\right] } \tag{4.4.3}\\
& (1) \quad(2)(-b) \text { column sums , }
\end{align*}
$$

where $(-1-b)$ in the $(2,2)$ position $=Q_{1}(1 ; 0, b, 2)$

$$
\begin{equation*}
=\sum_{\ell=0}^{1} \frac{(-1)_{\ell}{ }_{\ell}^{(-1)_{\ell}^{(2+b)}} \ell_{\ell}^{(-1)_{\ell} \ell!}}{} . \tag{4.4.4}
\end{equation*}
$$

The figures at the bottom of the columns of Q are the column sums, that is from Corollary 9.1.5

$$
\sum_{x=0}^{M} Q_{m-1}(x-1)=\frac{M(-1)^{m-1}(b)_{m-1}}{m l} \quad, \quad m \neq 0
$$

For example, $-b=\sum_{x=0}^{2} Q_{1}(x-1)=\frac{2(-1) \cdot b}{2!}$.
Note: Recall from (2.1.3) that the convention in this thesis is to call the first element position of a matrix the $(0,0)$ position. Also recall from (4.1.17) that the Hahn polynomial $Q_{j-1}(i-1)$ occupies the (i, j) position, $i, j=0,1, \ldots, M$ of the matrix Q. Thus in finding (4.4.5) which by our convention is the sum of column 2 in

2
(4.4.3) we used $Q_{1}(x-1)$ since $Q_{1}(x-1)$ denotes the second column of Q.

From (4.1.24)

$$
\begin{align*}
Q^{-1} & =D_{\delta^{-1}} Q^{\prime} D_{V} \text {. For } M=2 \\
Q^{-1} & =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & (b+1)^{-1}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & -1-b
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1+b}{2+b} & 0 \\
0 & 0 & \frac{1}{2+b}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1+b}{2+b} & \frac{1}{2+b} \\
0 & \frac{1}{2+b} & \frac{-1}{2+b}
\end{array}\right] \tag{4.4.6}
\end{align*}
$$

As a sample calculation on $\mathcal{E}\left(n_{i}\right)$ for $M=2, n$ fixed and initial state $k=M=2$, we have from (4.1.27)

$$
\varepsilon\left(n_{i}\right)=(2, i) \text { element in } C Q D{ }_{\frac{1-\lambda^{\prime}}{1-\lambda}} D_{\delta^{-1}} Q^{\prime} D_{v} C^{-1} \text { and }
$$

from (4.1.32) for $i=2=M$

$$
\begin{align*}
e\left(n_{2}\right)= & d_{22} \sum_{w=0}^{2}\left[Q_{s=0}(w-1) d_{s s} Q_{s-1}(1)\right] \\
= & a_{22} \sum_{w=0}^{2}\left[Q_{-1}(w-1) a_{00} Q_{-1}(1)+Q_{0}(w-1) a_{11} Q_{0}(1)\right. \\
& \left.+Q_{1}(w-1) a_{22} Q_{1}(1)\right]
\end{align*}
$$

by (4.4.3) and (9.1.9) we write (4.4.7)

$$
a_{22} \sum_{w=0}^{2}\left[o_{0}(w-1) a_{11}-o_{1}(w-1) a_{22}(1+b)\right],
$$

where from (4.4.3) we note that $Q_{1}(1)=-(1+b)$,

$$
\begin{aligned}
& \quad=a_{22}\left\{a_{11} \sum_{w=0}^{2} Q_{0}(w-1)-a_{22}(1+b)\right. \\
& \quad=a_{22}\left[2 a_{11}-a_{22}(1+b)(-b)\right], \\
& \text { where from } \left.(4.4 .5) \quad Q_{1}(w-1)\right\}
\end{aligned}
$$

From (4.1.26)

$$
\begin{aligned}
& d_{00}=1 \\
& \dot{a}_{11}=(1+b) /(2+b) \\
& a_{22}=1 /(2+b) ;
\end{aligned}
$$

from (4.1.30)

$$
\begin{aligned}
& \bar{a}_{00}=n \\
& a_{11}=2 / \alpha_{1}\left[1-\left(\frac{1}{2}\right)^{n}\left(2-\alpha_{1}\right)^{n}\right] \\
& a_{22}=2 /\left(1+\alpha_{1}\right)^{2}\left[1-\left(\frac{z_{2}}{}\right)^{n}\left(1-\alpha_{1}\right)^{n}\right]\left(1-\alpha_{1}\right)
\end{aligned}
$$

$$
\text { and }(4.1 .18) \quad b=2 \alpha_{1} /\left(1-\alpha_{1}\right)
$$

Thus from (4.4.9) and the above

$$
\varepsilon\left(n_{2}\right)=\frac{2\left(1-\alpha_{1}\right)}{\alpha_{1}}\left[1-\left(\frac{2-\alpha_{1}}{2}\right)^{n}\right]+\frac{2 \alpha_{1}}{1+\alpha_{1}}\left[1-\left(\frac{1-\alpha_{1}}{2}\right)^{n}\right] \cdot(4.4 .10)
$$

From (4.1.32) we have for $\varepsilon\left(n_{1}\right)$
22

$$
\varepsilon\left(n_{1}\right)=\sum_{w=0}\left[Q_{s=0} Q_{s-1}(w-1) \bar{a}_{s s}\left(-\Delta\left[a_{11} Q_{s-1}(0)\right]\right)\right]
$$

2. 2

$$
\begin{aligned}
& =\sum_{w=0}\left[Q_{s=0}^{Q} Q_{s-1}(w-1) d_{s s}\left(-\alpha_{22} Q_{s-1}(1)+Q_{s-1}(0) d_{11}\right)\right] \\
& =2 d_{11}\left(d_{11}-a_{22}\right)-b d_{22}\left[d_{11}+(1+b) d_{22}\right] \\
& =4\left[1-\left(\frac{2-\alpha_{1}}{2}\right)^{n}\right]-\frac{4 \alpha_{1}}{1+\alpha_{1}}\left[1-\left(\frac{1-\alpha_{1}}{2}\right)^{n}\right], \quad(4.4 .11)
\end{aligned}
$$

and finally

$$
\begin{align*}
\mathcal{E}\left(n_{0}\right) & =\bar{a}_{00}-2 \bar{a}_{11} a_{11}+\bar{a}_{22} \alpha_{11} b \\
& =n-\frac{2\left(1+\alpha_{1}\right)}{\alpha_{1}}\left[1-\left(\frac{2-\alpha_{1}}{2}\right)^{n}\right]+\frac{2 \alpha_{1}}{1+\alpha_{1}}\left[1-\left(\frac{1-\alpha_{1}}{2}\right)^{n}\right] . \tag{4.4.12}
\end{align*}
$$

Note that $\varepsilon\left(n_{0}\right)+\varepsilon\left(n_{1}\right)+\varepsilon\left(n_{2}\right)=n$.
Further, if we consider $n \rightarrow \infty$, then we use

$$
e\left(n_{i}\right)=(2,1) \text { element in } \frac{C Q D}{1-\lambda}(C Q)^{-1}
$$

Then from (4.1.40)

$$
\varepsilon\left(n_{2}\right)=a_{22}\left[2 \bar{a}_{11}-\bar{a}_{22}(1+b)(-b)\right] \text {, note that }
$$

this is the same as (4.4.9) except that now

$$
\begin{aligned}
& \bar{a}_{00}=n \\
& \bar{a}_{11}=2 / \alpha_{1} \\
& \bar{a}_{22}=2\left(1-\alpha_{1}\right) /\left(1+\alpha_{1}\right)^{2}
\end{aligned}
$$

Thus

$$
\begin{equation*}
\varepsilon\left(n_{2}\right)=2 / \alpha_{1}\left(1+\alpha_{1}\right) \tag{4.4.13}
\end{equation*}
$$

In like fashion

$$
\begin{equation*}
\varepsilon\left(n_{1}\right)=4 /\left(1+\alpha_{1}\right) \tag{4.4.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon\left(n_{0}\right)=n-\frac{2\left(1+2 \alpha_{1}\right)}{\alpha_{1}\left(1+\alpha_{1}\right)} \tag{4.4.15}
\end{equation*}
$$

Note that $\varepsilon\left(n_{1}\right), \varepsilon\left(n_{2}\right)$ remain finite as $n \rightarrow \infty$; recall also that $e\left(n_{0}\right)$ does not enter into any of our major computing formulas. $\mathcal{E}\left(n_{0}\right)+\varepsilon\left(n_{1}\right)+\varepsilon\left(n_{2}\right)=n$, thus these expectations are also appropriate for the sequential stopping rule.

V. SUGGESTIONS FOR FUTURE RESEARCH

It is anticipated that an extensive simulation program on an electronic computor will be undertaken at a later date as a continuation of the stuay already begun in this thesis. This is a pressing and exciting area of research. Such a study would be an invaluable factor in further ascertaining the validity of the postulated Theorems 4.1 .6 and 4.1 .7 and the properties of the maximum likelinood estimates $\hat{\alpha}_{1}$. For the present stuay $(M=2,4,6,10,20)$ we have shown consistency aind that skewness is less pronounced as M increases. From the figures (1, 2, 3, 4, 5) it appears that the empirical aistributions of the $\hat{\alpha}_{1}$ have a mode close to the true value $\alpha_{1}=0.1$. However, normality has not been demonstrated. With the larger study (it is anticipatea to investigate up to $M=50$) it is hoped that a great many of these questions such as normality and the postulated standardizing factor $a(M)$ of Theorem 4.1.7 will be answered and clarified.

In connection with this study or apart from it, it would be valuable to investigate the unresolved questions about the limiting operations (4.1.43), (4.1.46), and (4.1.47) in the positively regular theory of Markov processes.

With the successful proof of these postulated theorems then more general theorems relating to absorbing Markov chains could be investigated, for example, transition probabilities which depend on several unknown parameters. It may also be valuable to investigate the situation where transitions occur in steps greater than unity, and chains with more than one absorbing state.

It might be valuable to investigate other integral approximations for the elements (3.1.52) of the matrix I for the two mutation rate case and for the quantity I (4.1.37) for the absorbing chain.

Finally for research not following directly from the problems of this thesis, the question of investigating population genetic models where the population is not assumed constant remains open for future research.

VI. ACKNOWLEDGMENTS

The author wishes to express his appreciation to the following:

Dr. G. A. Watterson for suggesting the problem, for his invaluable guidance and for his contributions.

Dr. Boyd Harshbarger for his advice and encouragement to the graduate student.

Members of the Department of Statistics, particularly Dr. R. J. Freund for his assistance with the computer programs.

Mrs. Lela Barnhisel for her careful typing of the manuscript.

This study was supported in part by a research grant from the National Institutes of Health, under contract numbers 2G, 3G, and 4G.
VII. REFERENCES

Anderson, T.W. and Goodman, L.A., "Statistical Inference about Markov Chains," Ann. Math. Stat., 28 (1957), pp. 89-110.

Bartko, J.J., "The Negative Binomial Distribution," Master's Thesis, Virginia Polytechnic Institute, 1960.

Bartko, J.J., "The Negative Binomial Distribution: A Review of Properties and Applications," Va. Jour. Science, 12 (1961), pp. 18-37.

Bartlett, M.S., An Introduction to Stochastic Processes. Cambridge University Press, New York, (1960).

Bhat, B.R., "Maximum Likelihood Estimation for Positive Regular Markov Chains," Sankhyá, 22 (1960), pp. 394-344.

Bhat, B.R., "Some Properties of Regular Markov Chains," Ann. Math. Stat., 32 (1961), pp. 59-71.

Bhat, B.R. and Gani, J., 'A Note on Sufficiency in Regular Markov Chains," Biometrika, 47 (1960), pp. 452-457.

Billingsley, P., Statistical Inference for Markov Processes. Statistical Research Monographs Vol. II, University of Chicago Press, (1961).

Billingsley, P., "Statistical Methods in Markov Chains," Ann. Math. Stat., 32 (1961), pp. 12-40.

Chung, K.L., "Contributions to the Theory of Markov Chains. II," Trans. Amer. Math. Soc., 76 (1954), pp. 397-419.

Crámer, H., Mathematical Methods of Statistics. Princeton University Press, (1946).

Crow, J.F., "The Estimation of Spontaneous and RadiationInduced Mutation Rates in Man," Euqen. Quart. 3 (1956), pp. 201-208.

Erdelyi, A., (Ea) Higher Trancendental Functions, Vol. II. McGraw-Hill, New York, (1953).

Falconer, D.S., "The Estimation of Mutation Rates from Incompletely Tested Gametes, and the Detection of Mutations in Mammals," Jour. Genetics, 49 (1948-49), pp. 226-236.

Falconer, D.S. Introduction to Quantitative Genetics. Ronald Press, New York, (1960).

Feller, W., "Diffusion Processes in Genetics,: Proceedings of the Second Berkeley Symposium on Mathematical Statistics anđ Probability, University of California Press, (1951), pp. 227-246.

Feller, W., An Introduction to Probability Theory and Its Applications. Wiley, New York, (1957).

Finney, D. J., "On a Methoci of Estimating Frequencies," Biometrika, 36 (1949), pp. 233-235.

Gani, J., "Some Theorems and Sufficiency Conditions for the Maximum-Likelihood Estimator of an Unknown Parameter in a Simple Markov Chain," Biometrika, 42 (1955), pp. 342-359.

Gani, J., (corrigenda) "Some Theorems and Sufficiency Conditions for the Maximum-Likelihood Estimator of an Unknown Parameter in a Simple Markov Chain," Biometrika, 43 (1956), pp. 497-498.

Gani, J., "On the Stochastic Matrix in a Genetic Model of Moran," Biometrika, 48 (1961), pp. 203-206.

Goodman, L.A., "On Some Statistical Tests for mth Order Markov Chains," Ann. Math. Stat., 30 (1959), pp. 154-164.

Grenander, U., "Stochastic Processes and Statistical Inference," Arkiv. för Mathematic, Band 1 (1950), pp. 195-277.

Hahn, W., "Über Orthogonalpolynome, die q-Differenzengleichungen genügen," Math. Nach. 2 (1949), pp. 4-34.

Haldane, J.B.S., "On a Method of Estimating Frequencies," Biometrika, 33 (1943), pp. 222-225.

Hobson, E.W., The Theory of Functions of a Real Variable, Vol. II. Dover, New York, (1926).

Huzurbazar, V.S., "The Likelihood Equation, Consistency and The Maximum-Likelihood Function," Ann. Eug., 14 (1948), pp. 185-200.

Kaplan, W., Advanced Calculus. Addison-Wesley Publishing Company, Reading, Mass., (1956).

Karlin, S., and McGregor, J., "The Classification of Birth-and-Death Processes," Trans. Amer. Math. Soc., 86 (1957), pp. 366-400.

Karlin, S. and McGregor, J., On a Genetics Model of Moran, Technical Report No. 3, November 1960. Applied Mathematics and Statistics Laboratories, Stanford University, California.

Karlin, S. and McGregor, J., "The Hahn Polynomials, Formulas and an Application," Scripta Math, 26 (1961), pp. 33-46.

Kemeny, J.G., Snell, J.L., Mirkil, and Thompson, Finite Mathematical Structures. D. Van Nostrand, Princeton, (1959) .

Kemeny, J.G. and Snell, J.L., Finite Markov Chains. D. Van Nostrand, Princeton, (1960).

Kendall, M.G. and Stuart, A., The Advanced Theory of Statistics, Vol. I. Hafner, New York, (1958).

Kendall, M.G. and Stuart, A., The Advanced Theory of Statistics, Vol. II. Hafner, New York, (1961).

Kimura, M., "Some Problems of Stochastic Processes in Genetics," Ann. Math. Stat., 28 (1957), pp. 882-901.

Li, C.C. Population Genetics. University of Chicago Press, (1955).

Lush, J.L., The Genetics of Populations. Mimeographed notes, Iowa State University, (1948).

Moran, P.A.P., "Random Processes in Genetics," Proc. Camb. Phil. Soc., 54 (1958), pp. 60-71.

Moran, P.A.P., "The Rate of Approach to Homozygosity," Ann. Human Genetics, 23 (1958a), pp. 1-5.

Pearson, E.S. and Hartley, H.O., (Ed). Biometrika Tables for Statisticians, Vol. I. Cambridge University Press, (1956) .

Rao, C.R., Advanced Statistical Methods in Biometric Research. Wiley, New York, (1952).

Rao, C.R., "Maximum Likelihood Estimation for the Multinomial Distribution," Sankhyá, 18 (1957), pp. 139-148.

Richardson, C.H., An Introduction to the Calculus of Finite Differences. D. Van Nostrand, Princeton, (1954).

Silvey, L.D., "A Note on Maximum-Likelihood in the Case of Dependent Random Variables," Jour. Roy. Stat. Soc., 23 (1961), pp. 444-452.

Sinnott, E.W., Dunn, L.C., and Dobzhansky, TH., Principles of Genetics, Fourth Edition. McGraw-Hill, New York, (1950).

Snell, J.L., Personal Communication
Takács, L., Stochastic Processes. Wiley, New York, (1960).
Watterson, G.A., Probability Theory Applied to Genetic Populations. Ph.D. Thesis, Australian National University, (1960).

Watterson, G.A., "Markov Chains with Absorbing States: A Genetic Example," Ann. Math. Stat., 32 (1961), pp. 716729.

Weber, M. and Erdélyi, A., "On the Finite Difference Analogue of Rodrigues' Formula," Amer. Math. Monthly, 59 (1952), pp. 163-168.

Whiting, P.W., "The Evolution of Male Haploidy," Quart. Rev. Biology, 20 (1945), pp. 231-260.

Whittle, P., "Some Distribution and Moment Formulae for the Markov Chain, " Jour. Roy. Stat. Soc., 17 (1955), pp. 235-242.

The vita has been removed from the scanned document

IX. APPENDICES

APPENDIX I

9.1 Properties of Hahn Polynomials

The Hahn polynomials form a family of orthogonal polynomials. They were introduced by Hahn (1949), discussed by Weber and Ercélyi (1952) and further discussed by Karlin and McGregor (1961). In the following presentation results which are believed to be new are so labelled. Results taken from other works will be given in the notation of this thesis. The Hahn polynomials may be defined in terms of the generalized hypergeometric series

$$
{ }_{3} F_{2}\left(a_{1}, a_{2}, a_{3} ; b_{1}, b_{2} ; z\right)=\sum_{\ell=0} \frac{1, \ell}{\left(b_{1}\right)_{\ell}\left(b_{2}\right)_{\ell} \ell l}
$$

where $(a)_{0}=1,(a)_{\ell}=a(a+1) \ldots(a+\ell-1)=\Gamma(a+\ell) / \Gamma(a)$ for $\ell \geq 1$. The series terminates if one of the a_{i} is zero or a negative integer. For real $a>-1, b>-1$ and for positive integral M, the Hahn polynomials

$$
\begin{aligned}
& Q_{m}(x)=Q_{m}(x ; a, b, M), m=0,1,2, \ldots, M-1 \text { are defined by } \\
& Q_{m}(x)={ }_{3} F_{2}(-m,-x, m+a+b+1 ; a+1,-M+1 ; 1) \quad \text { (9.1.1) }
\end{aligned}
$$

Explicit formula (Erdélyi and Weber, 1952)

$$
\begin{align*}
Q_{m}(x) & =Q_{m}(x ; a, b, M) \\
& =\frac{1}{\ell=0}_{m_{\ell}}^{(-m)_{\ell}(-x)_{\ell}(m+a+b+1)_{\ell}^{(-M+1)_{\ell} \ell!}} \tag{9.1.2}
\end{align*}
$$

Recurrence relation (Erdélyi and weber, 1952)

$$
\begin{equation*}
-x Q_{m}(x)=d_{m} Q_{m-1}(x)-\left(b_{m}+a_{m}\right) Q_{m}(x)+b_{m} Q_{m+1}(x) \tag{9.1.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& b_{m}=\frac{(m+a+b+1)(m+a+1)(M-1-m)}{(2 m+a+b+1)(2 m+a+b+2)} \\
& a_{m}=\frac{m(m+b)(m+a+b+M)}{(2 m+a+b)(2 m+a+b+1)}
\end{aligned}
$$

and (9.1.3) is valid for all complex values of x if $m=0,1,2, \ldots, M-2$ but is valici only for $x=0,1,2, \ldots, M-1$ when $m=M-1$.

Difference equation (Karlin and McGregor, 1961)
$-\omega_{m} Q_{m}(x)=D(x) Q_{m}(x-1)-[B(x)+D(x)] Q_{m}(x)+B(x) Q_{m}(x+1)$,
where

$$
\begin{aligned}
& B(x)=(M-1-x)(a+1+x) \\
& D(x)=x(M+b-x) \\
& \omega_{m}=m(m+a+b+1)
\end{aligned}
$$

and (9.1.4) is valid for $m=0,1, \ldots, M-1$ and all complex values of x.

Orthogonality relation (Karlin and McGregor, 1961)

$$
\sum_{x=0}^{M-1} Q_{m}(x) Q_{n}(x) \rho(x ; \quad a, b, M)=\delta_{m, n} \frac{1}{\psi_{m, M}(a, b, M)}
$$

where

$$
\begin{aligned}
& \delta_{m, n}= \begin{cases}1 & m=n \\
0 & m \neq n\end{cases} \\
& \rho(x ; a, b, M)=\rho(x)=\frac{\binom{a+x}{x}\binom{M+b-1-x}{M-1-x}}{\left(\begin{array}{l}
M+a+b \\
M-1
\end{array}\right.} \\
& \psi_{m, M}(a, b, M)=\psi_{m, M}=\frac{\sum_{m}^{M-1} \Gamma(b+1) \Gamma(m+a+1) \Gamma(m+a+b+1)(2 m+a+b+1)}{(a+m(a+1) \Gamma(a+b+1) \Gamma(m+b+1) \Gamma(m+1)(a+b+1)}
\end{aligned}
$$

In particular $\psi_{0, M}(a, b, M)=1$. It is also true that

$$
\begin{equation*}
Q_{x=0}^{M-1} Q_{m}(x) Q_{n}(x) \frac{(a+1)_{x}(1-M)_{x}}{x \mid(1-M-b)_{X}}=\delta_{m, n} \frac{1}{\rho(0, a, b, M) \psi_{m, M}(a, b, M)}, \tag{9.1.6}
\end{equation*}
$$

where $\rho(x)$ and $\psi_{m, M}$ are defined above. The equivalence of (9.1.5) and (9.1.6) is established by noting that

$$
\begin{equation*}
\frac{(a+1)_{x}(1-M)_{x}}{x!(1-M-b)_{X}} \rho(0, a, b, M)=\rho(x ; a, b, M) \tag{9.1.7}
\end{equation*}
$$

Conventions (New)

$$
\begin{align*}
& Q_{-1}(x ; a, b, M)= \begin{cases}0 & \text { if } x=0,1, \ldots, M-1 \\
1 & \text { if } x=-1\end{cases} \\
& Q_{m}(-1 ; a, b, M)=0, \quad m=0,1, \ldots, M-1 \quad . \tag{9.1.8}
\end{align*}
$$

Special Values

$$
\begin{align*}
& Q_{0}(x ; a, b, M)=1 \quad x \geq 0 \\
& Q_{m}(0 ; a, b, M)=1 \quad m=0,1, \ldots, M-1 \\
& Q_{m}(M-1 ; a, b, M)=(-1)^{m}\binom{m+b}{m} /\binom{m+a}{m} \tag{9.1.9}\\
& Q_{m}(M-1-x ; a, b, M)=\frac{Q_{m}(x ; a, b, M)}{Q_{m}(M-1 ; a, b, M)}
\end{align*}
$$

Theorem 9.1.1 (New). For the Hahn polynomials where $a=0$, that is $Q_{m}(x ; 0, b, M)$ then for $m \neq-1$,

$$
\sum_{x=x_{1}}^{x_{2}} Q_{m}(x)
$$

$=\frac{B\left(x_{2}\right)\left[Q_{m}\left(x_{2}\right)-Q_{m}\left(x_{2}+1\right)\right]+b\left(x_{2}+1\right) Q_{m}\left(x_{2}\right)-\left\{B\left(x_{1}-1\right)\left[Q_{m}\left(x_{1}-1\right)-Q_{m}\left(x_{1}\right)\right]+b x_{1} Q_{m}\left(x_{1}-1\right)\right\}}{(m+1)(m+b)}$
(9.1.10)

For $m=-1$

$$
{\underset{x=x_{1}}{x_{2}} Q_{m}(x)=\left\{\begin{array}{ll}
0 & x_{1}>-1 \\
1 & x_{1}=-1
\end{array} . . . ~\right.}_{\text {. }}
$$

Proof: From (9.1.4) with $a=0$

$$
\begin{aligned}
B(x) & =(M-1-x)(1+x) ; B(-1)=0 \\
D(x) & =x(M+b-x) \\
& =b x+B(x-1) \\
D(x+1) & =(x+1)(M+b-x-1) \\
& =b(x+1)+B(x) \\
& =m(m+b+1)
\end{aligned}
$$

The difference equation (9.1.4),

$$
-\omega_{m} Q_{m}(x)=D(x) Q_{m}(x-1)-[B(x)+D(x)] Q_{m}(x)+B(x) Q_{m}(x+1),
$$

after substitution with the above identities becomes

$$
\begin{aligned}
-\alpha_{m} Q_{m}(x)= & {[b x+B(x-1)] Q_{m}(x-1)-[B(x)+b x+B(x-1)] Q_{m}(x)+B(x) Q_{m}(x+1) } \\
= & B(x-1)\left[Q_{m}(x-1)-Q_{m}(x)\right]-B(x)\left[Q_{m}(x)-Q_{m}(x+1)\right] \\
& +b x\left[Q_{m}(x-1)-Q_{m}(x)\right] .
\end{aligned}
$$

Note that

$$
b x\left[Q_{m}(x-1)-Q_{m}(x)\right]=b x Q_{m}(x-1)-b(x+1) Q_{m}(x)+b Q_{m}(x)
$$

and therefore

$$
-\omega_{m} Q_{m}(x)=-\Delta\left(B(x-1)\left[Q_{m}(x-1)-Q_{m}(x)\right]\right)-\Delta\left[b x Q_{m}(x-1)\right]+b Q_{m}(x) .
$$

Hence

$$
\begin{equation*}
\left(\omega_{m}+b\right) Q_{m}(x)=\Delta\left(B(x-1)\left[Q_{m}(x-1)-Q_{m}(x)\right]+b x Q_{m}(x-1)\right) \tag{9.1.11}
\end{equation*}
$$

and

$$
\begin{aligned}
\left(\omega_{m}+b\right) \sum_{x=x_{1}}^{x_{2}} Q_{m}(x)= & B\left(x_{2}\right)\left[Q_{m}\left(x_{2}\right)-Q_{m}\left(x_{2}+1\right)\right]+b\left(x_{2}+1\right) Q_{m}\left(x_{2}\right) \\
& -\left(B\left(x_{1}-1\right)\left[Q_{m}\left(x_{1}-1\right)-Q_{m}\left(x_{1}\right)\right]+b x_{1} Q_{m}\left(x_{1}-1\right)\right),
\end{aligned}
$$

noting that for finite differences

$$
\sum_{x=a}^{b} \Delta f(x)=f(b+1)-f(a)
$$

Finally

$$
\underbrace{x_{2}}_{x=x_{1}} Q_{m}(x)
$$

$=\frac{B\left(x_{2}\right)\left[Q_{m}\left(x_{2}\right)-Q_{m}\left(x_{2}+1\right)\right]+b\left(x_{2}+1\right) Q_{m}\left(x_{2}\right)-\left(B\left(x_{1}-1\right)\left[Q_{m}\left(x_{1}-1\right)-Q_{m}\left(x_{1}\right)\right]+b x_{1} Q_{m}\left(x_{1}-1\right)\right)}{(m+1)(m+b)}$
since $\omega_{m}+b=(m+1)(m+b)$.
For $m=-1$ the proof is immediate from (9.1.8).
Corollary 9.1.2 (New)
$\underset{x=0}{1 .}, \begin{array}{ll}\frac{B(i)\left[Q_{m}(i)-Q_{m}(i+1)\right]+b(i+1) Q_{m}(i)}{(m+1)(m+b)}, & m \neq 1 \\ 0, & \text { (9.1.12) }\end{array}$
Proof: The proof for both identities follows immediately from Theorem 9.1.1 where for the first ldentity we note that $B(-1)=0 . \quad(c f ., 9.1 .4)$

Corollary 9.1.3 (New)

$$
\sum_{x=0}^{M-1} Q_{m}(x)= \begin{cases}\frac{M(-1)^{m}(b)_{m}}{(m+1)!}, & m \neq-1 \tag{9.1.13}\\ 0, m=-1,\end{cases}
$$

where $\quad(b)_{m}=b(b+1) \ldots(b+m-1)$.

Proof: From Corollary 9.1 .2 we have

$$
\sum_{x=0}^{M-1} Q_{m}(x)=\frac{b M Q_{m}(M-1)}{(m+1)(m+b)}
$$

noting that $B(M-1)=0$. Further, from (9.1.9)

$$
Q_{m}(M-1 ; 0, b, M)=(-1)^{m}\binom{m+b}{m}
$$

thus $\quad \sum_{x=0}^{M-1} Q_{m}(x)=\frac{b M(-1)^{m\binom{m+b}{m}}}{(m+1)(m+b)}$,
and finally

$$
\sum_{x=0}^{M-1} Q_{m}(x)=\frac{M(-1)^{m}(b)_{m}}{(m+1)!}
$$

For $m=-1$ the proof is immediate from Corollary 9.1.2.
Corollary 9.1.4 (New)
$\sum_{x=0}^{i} Q_{m-1}(x-1)=\left\{\begin{array}{l}\frac{\left[(M-i) i\left[Q_{m-1}(i-1)-Q_{m-1}(i)\right]+b i Q_{m-1}(i-1)\right]}{m(m+b-1)}, m \neq 0 \\ 1, \quad m=0 .\end{array}\right.$

Proof: The proof follows by noting that from (9.1.11)

$$
\begin{aligned}
\left(\omega_{m-1}+b\right) Q_{m-1}(x-1)= & \Delta\left[B(x-2)\left[Q_{m-1}(x-2)-Q_{m-1}(x-1)\right]\right. \\
& \left.+b(x-1) Q_{m-1}(x-2)\right],
\end{aligned}
$$

b
$\Delta f(x)=f(b+1)-f(a)$ and that $\left(\omega_{m-1}+b\right)=m(m+b-1)$.
For $m=0$ the proof is immediate from (9.1.8).

Corollary 9.1.5 (New)

$$
\sum_{x=0}^{M} Q_{m-1}(x-1)=\left\{\begin{array}{c}
\frac{M(-1)^{m-1}(b)_{m-1}}{m l}, \quad m \neq 0 \tag{9.1.16}\\
1, \quad m=0
\end{array}\right.
$$

Proof: From Corollary 9.1.4

$$
\sum_{x=0}^{M} Q_{m-1}(x-1)=\frac{b M Q_{m-1}(M-1)}{m(m+b-1)}
$$

where $Q_{m-1}(M-1)=(-1)^{m-1}\binom{m+b-1}{m-1}$ from (9.1.9). Therefore

$$
\sum_{x=0}^{M} Q_{m-1}(x-1)=\frac{M(-1)^{m-1}(b)_{m-1}}{m!}
$$

For $m=0$ the proof is immeãiate from (9.1.15).

$$
\begin{aligned}
& \text { Corollary 9.1.6 (New) } \\
& \qquad \text { Let } b=M \alpha_{1} / 1-\alpha_{1} \text {, then }
\end{aligned}
$$

$\sum_{x=0} Q_{m-1}(x-1)=\left\{\begin{array}{c}\frac{\left(1-\alpha_{1}\right)(M-1) i\left[Q_{m-1}(i-1)-Q_{m-1}(i)\right]+M \alpha_{1} i Q_{m-1}(i-1)}{m\left[(m-1)\left(1-\alpha_{1}\right)+M \alpha_{1}\right]}, m \neq 0 \\ 1, m=0 .\end{array}\right.$

Proof: The proof is immeaiate from Corollary 9.1.4.
9.2 A Relation Between Hahn and Tchebichef Polynomials (New)

Erciélyi (1953, Vol. II, p. 224), defines the Hahn polynomials in the following way:

$$
\begin{equation*}
p_{m}(x ; \beta, \gamma, \delta)=\frac{(\beta)_{m}^{(\gamma)} m}{m!} 3 F_{2}(-m,-x, \beta+\gamma-\delta+m ; \beta, \gamma ; 1) \tag{9.2.1}
\end{equation*}
$$

To put (9.2.1) into the $Q_{m}(x ; a, b, M)$ form used in this thesis, we make the following substitutions [cf., (9.1.2)]

$$
\begin{aligned}
\beta+\gamma-\delta+m & =m+a+b+1 \\
\beta & =a+1 \\
\gamma & =-M+1 \\
\delta & =1-M-b
\end{aligned}
$$

Then

$$
\begin{equation*}
Q_{m}(x ; a, b, M)=\frac{p_{m}(x ; \beta, \gamma, \delta)}{\frac{(\beta)_{m}(\gamma)_{m}}{m l}} \tag{9.2.2}
\end{equation*}
$$

$$
=\frac{p_{m}(x ; a+1,-M+1,1-M-b)}{\frac{(a+1)_{m}(1-M)_{m}}{m l}}
$$

For $a=b=0$

$$
\begin{equation*}
Q_{m}(x ; 0,0, M)=\frac{p_{m}(x ; 1,1-M, 1-M)}{(1-M)_{m}} \tag{9.2.3}
\end{equation*}
$$

However, Erdélyi also gives

$$
\begin{equation*}
P_{m}(x ; 1,1-M, 1-M)=t_{m}(x) \tag{9.2.4}
\end{equation*}
$$

where $t_{m}(x)$ is a Tchebichef polynomial define a by

$$
t_{m}(x)=m \left\lvert\, \Delta^{m}\left[\binom{x}{m}\binom{x-M}{m}\right]\right., \quad m=0,1, \ldots, M-1
$$

The orthogonal property for the Tchebichef polynomials is

$$
\begin{array}{r}
\sum_{x=0}^{M-1} t_{m}(x) t_{n}(x)=(2 m+1)^{-1} M\left(M^{2}-1^{2}\right)\left(M^{2}-2^{2}\right) \ldots\left(M^{2}-m^{2}\right) \delta_{m n} \\
m, n=0,1, \ldots, M-1 \quad . \quad 19.2
\end{array}
$$

Hence from (9.2.4) and (9.2.3)

$$
\begin{equation*}
Q_{m}(x ; 0,0, M)=\frac{t_{m}(x)}{(1-M)_{m}}, \tag{9.2.6}
\end{equation*}
$$

thus from (9.2.6)

$$
\begin{align*}
& \sum_{x=0}^{M-1} Q_{m}(x) Q_{n}(x)=\sum_{x=0}^{M-1} \frac{t_{m}(x) t_{n}(x)}{(1-M)_{m}(1-M)_{n}} \\
&=\frac{(2 m+1)^{-1} M\left(M^{2}-1^{2}\right) \ldots\left(M^{2}-m^{2}\right) \delta_{m n}}{(1-M)_{m}(1-M)_{n}} \\
&=\left\{\begin{array}{l}
\frac{M}{(2 m+1)} \frac{\left(\begin{array}{c}
M+m \\
m
\end{array}\right.}{(M-1} m_{m},
\end{array} \quad m=n\right. \tag{9.2.7}\\
& 0, n \neq n .
\end{align*}
$$

From (9.1.5) where $\rho(x ; a, b, M)$ and $\psi_{m, M}(a, b, M)$ are Gefined, we can write (9.2.7) as

$$
\begin{align*}
\sum_{x=0}^{M-1} Q_{m}(x) Q_{n}(x) & =\delta_{m n} \frac{1}{\psi_{m, M}(0,0, M) \rho(0,0,0, M)} \\
& =\delta_{m n} \frac{M}{\psi_{m, M}(0,0, M)},
\end{align*}
$$

where in $Q_{m}(x ; a, b, M) \quad a=b=0$. This verifies again the equivalence of (9.1.5) and (9.1.6) in this special case. The connection (9.2.6) between Hahn polynomials $Q_{m}(x, 0,0, M)$ and Tchebichef polynomials explains the apparently different results obtained by Karlin and McGregor (1960) using the former and watterson (1961) using the latter, for Moran's model without mutation.

APPENDIX II

Table of $\hat{\alpha}_{1}$ from the Absorbing Chain

The following table is a listing of 500 maximum likelihood estimates listed in increasing order (502 for $M=4,6$) of the mutation rate $\alpha_{1}(m 0.1)$. These estimates were obtained from data of experiments generated by simulation methods on the IBM 650. Five population sizes were studied, $M=2,4,6,10$ and 20. The experiments were generated by setting $k=M$ as the initial state where the number of transitions until absorption (state 0) occurred were punched along with other information by the machine.

For $M=216$ of the estimates were 1.0. These estimates were obtained from experiments of the type 21 10 , that is, from state 2 we immediately went to state 1 , remained in state 1 for a finite number of times, it does not matter how many where the estimate of α_{1} is concerned, and then passed directly on to absorption. For this case the conditions of Theorem 4.1 .2 were not met, i.e., b_{M} and a_{i} were zero. The φ function (4.1.5) is $1 /\left(1+\alpha_{1}\right)+1 / \alpha_{1}$ which never crosses the α_{1} axis.

However, the value one was included in these estimates since 1 is the maximum value of the likelihood of these experiments. They were also incluaded because of their frequency and also because they are an integral part of the peculiarities of the case $M=2$.

The second group coinsisting of 26 estimates was $\hat{\alpha}_{1}=0.577350$ which were the result of experiments of the type $221 \ldots 10$.

For $M=4$ and 6 the last two estimates 1.0 are a result of experiments which dia not satisfy the conditions of Theorem 4.1.2. They were included for general interest for a total of 502 estimates. The solutions $\hat{\alpha}_{1}$ of the likelihood equations in these cases were greater than one but in the parameter space the maximum of the likelihood is at $\alpha_{1}=1$.

The estimates are listea as six decimal place numbers, with five place accuracy.

MAXIMUM LIKELIHOOD EETIMATES OF THE MUTATION RATE $\alpha_{1}(=0.1)$ FROM REPLICATES OF POPULATIENS OF 8IZE M . (6 DECIMAL PLACR8)

$M=2$	$\mathrm{M}=4$	M $=6$	$\mathrm{M}=10$	$\boldsymbol{y}=20$	
0.052357	0.050207	0.046912	0.045372	0.044672	
52357	50261	47870	48369	54405	
52357	51440	50944	49136	54462	
52357	53617	51276	50507	56136	
52357	54037	51850	50763	57033	
52357	54318	52700	50363	57267	
52494	54479	52737	52207	57659	
52494	54667	53152	52945	57931	
52540	54784	54960	53914	58400	1
53262	55050	55360	54123	58991	
53262	55737	55947	54147	58999	-
53474	56305	56076	54655	59432	
54443	56324	56352	55334	59458	
55234	57682	56467	57421	59535	
55448	57911	56630	57957	59963	
56967	57940	56993	58086	60500	
58444	57986	57083	58293	60709	
58444	58609	57102	59183	60761	
58444	58932	57179	60225	61340	
58444	59067	57343	60912	61872	
58444	59854	57828	61571	63529	
58444	60635	57869	61727	63532	
59444	61436	58178	61902	63632	
59601	61464	58211	61973	63752	
60398	62211	58359	62206	64301	
60398	62431	59299	62310	64392	
60398	62512	59327	62408	64400	
60398	64429	59492	62653	64484	

M-2	M=4	$M=6$	$M=10$	$\mathrm{M}=20$	
0.062047	0.064658	0.059519	0.063345	0.064596	
62047	64788	59853	64024	64939	
62047	65569	60007	64228	65102	
62272	65798	60639	64555	66450	
62272	65842	61101	64981	66717	
62348	66609	61751	65128	66829	
63668	66888	61807	65518	66838	
63668	67405	62821	65709	67020	
64266	67902	63479	65819	67207	
64390	68273	63891	66093	67542	
64390	68286	63923	66158	67565	
66120	68588	64112	66175	67567	
66120	68609	65236	66229	67592	
66120	68861	65332	66368	67737	1
66120	69463	65342	66421	67878	
66120	69754	67075	66698	68067	1
66120	69754	67253	66968	68078	0
66391	69884	67322	67132	68979	1
66482	70856	67924	67294	69062	
68083	71646	67954	67923	69091	
68661	72401	68236	68917	69320	
68661	72902	68256	69281	69948	
69557	73033	68948	70400	70078	13
69557	73096	69026	70561	7.0290	\%
70761	73292	69323	70843	70381	$\stackrel{\sim}{\square}$
70761	73452	69758	71019	70459	0
70761	73614	70370	71164	70669	\ldots
70761	73688	70372	71459	70920	\cdots
70761	73904	71298	71641	70999	8
70761	73962	71315	72279	71175	O
70761	74282	71341	72655	72194	$\stackrel{+}{5}$
71092	74335	71851	72737	72299	E
72929	74525	72009	72978	72357	$\underset{\sim}{\infty}$

M $=2$	$\boldsymbol{M}=4$	$\boldsymbol{M}=6$	$\mathbf{M}=10$	M $=20$	
0.072929	0.074694	0.072161	0.073162	0.072492	
0.072969	+ 75192	72311	73311	72583	
73699	76038	72535	73941	72932	
74740	76660	72703	74655	73220	
74740	76946	73122	74922	73343	
76095	76970	73129	74962	73459	
76095	77081	73383	75115	73522	
76095	77264	73690	75177	74155	
76095	77894	74653	75603	74816	
76095	77998	75101	75667	74910	
76095	78376	75161	75688	74960	
76095	78523	75638	75939	74978	
76095	78648	75664	76438	75051	
76095	78652	75709	76533	75411	1
76505	78785	75824	76735	75423	
76505	78913	76294	76761	75701	A
78646	79196	76347	77244	75774	
79531	79263	76576	77307	75826	1
79531	79315	76779	77492	75876	
79531	79590	77432	77722	76031	
79531	79652	77742	78129	76141	
79764	79753	77862	78132	76446	
79764	79829	78018	78221	76712	\%
80755	79986	78196	78239	76905	$\stackrel{5}{5}$
81383	80369	78604	78309	76933	0
81383	80679	78952	78328	77327	\cdots
82291	80904	79743	78364	77373	
82291	81826	79771	78428	77756	8
82291	81890	79810	78520	77943	\%
82291	82123	79937	78757	78030	${ }_{+}^{+}$
82291	82330	80327	78991	78772	\%
82291	82534	80349	79464	79147	\%
82291	82604	80514	79856	79339	$\underline{\square}$

$M=2$	M $=4$	$y=6$	$M=10$	M $=20$	
0.082291	0.082744	0.080579	0.080289	0.079885	
82806	82924	81017	80336	80098	
82806	83171	81334	80644	80469	
82806	83187	81488	82320	80470	
82806	84693	81670	82605	80796	
82806	85081	81924	82724	80994	
82980	85519	81975	82790	81094	
83068	85544	82070	82849	81164	
83156	85624	82166	83305	81511	
85331	85624	82261	83483	81848	
85331	85894	82589	83915	81862	
85331	86211	83009	84198	81968	
86360	86379	83962	84446	82648	
86360	86404	83975	84743	82862	1
86360	86953	84072	84900	83216	1
86656	87428	84777	84999	83404	$\stackrel{\square}{4}$
87818	87647	85088	85104	83655	0
89570	87692	85131	85247	84191	1
89570	88053	85296	85283	84211	
89570	88087	85424	85449	84550	
89570	88226	85650	86081	84567	
89570	88261	86288	86265	84714	
89570	88319	86497	86358	84867	H
89570	88884	86668	86500	85459	O
89570	89055	86716	86512	85582	$\stackrel{\square}{0}$
89570	89237	87017	86522	85663	10
89570	89283	87116	87485	85701	H
89570	89370	87304	87569	86173	0
89570	89450	87429	88132	86200	\bigcirc
89570	89774	88080	88199	86481	\%
89570	90005	88486	88410	86559	$\stackrel{5}{5}$
89570	90247	88738	88649	86589	足
89570	90910	88881	88794	87103	\bigcirc

$M=2$	$M=4$	M=6	$M=10$	M $=20$	
0.089570	0.090980	0.089046	0.088927	0.087170	
90454	91320	89529	89095	87325	
90713	91327	89578	89542	87445	
91777	91670	89633	89556	87599	
93253	92906	89779	89821	87728	
94462	93026	90460	90188	88240	
94462	93508	90587	90333	88373	
94462	93713	90772	90490	88522	
94462	94128	90847	90653	88644	
94847	94254	90971	91192	88655	
97141	95566	91297	91267	89060	
97141	95730	91690	91525	89084	
97141	95853	91805	91525	89146	
98073	95967	92782	91705	89147	1
98073	96247	92926	92008	89428	
98242	97411	92997	92219	89897	\cdots
98242	97806	93094	92292	89945	-
98242	98257	94511	92542	90167	1
98242	98339	94674	93142	90309	
98242	98453	94849	93152	90312	
98242	98484	96008	93459	90327	
98242	98528	96093	93780	90365	
98242	98543	96542	93942	90379	-180
98242	98649	97086	94103	90394	*
98242	98845	97308	94195	90419	\%
98242	98853	97411	94352	90432	-
98242	99261	97533	94482	90438	\cdots
98242	99671	98297	94907	90593	8
98242	100481	98337	95223	91042	8
99106	100514	98527	95255	91066	+
99106	100567	98572	95788	91333	
99106	100815	98826	96007	91367	\%
99106	101112	98846	96132	92040	م

$\mathrm{M}=2$	M $=4$	$M=6$	$\mathrm{M}=10$	$\mathrm{M}=20$	
0.099106	0.101714	0.099229	0.096603	0.092 .446	
0.099106	101719	0.099483	0.096656	0.092454	
99106	101745	99905	97239	92555	
99549	101820	100302	97282	92699	
104228	101876	100557	97336	92769	
104228	101993	100795	97363	93183	
104228	102303	100856	97744	93991	
104228	102390	100878	97752	94214	
104228	102700	100880	98669	94872	
104228	102772	100893	98731	95047	
104741	103283	100988	98959	95281	
104741	103333	101283	99136	95423	
106412	103413	101563	99283	95680	
106412	103413	101755	99413	95797	
106412	103474	101928	99512	96004	1
106412	103537	102124	99573	96201	$\stackrel{\sim}{0}$
107544	103685	102377	99598	96321	N
107544	104197	102383	100277	96351	1
108741	104299	102542	100388	97048	
108741	104331	102687	100290	97110	
108741	104442	103188	100325	97165	
108741	104514	103412	100331	97200	
108741	105204	103415	101154	97286	$\stackrel{9}{9}$
108741	105319	103435	101402	97339	\%
108741	105723	103470	101483	97415	$\stackrel{\sim}{0}$
108741	105793	103513	101638	97725	
108741	106077	103574	101973	97814	\cdots
108741	106152	104017	102283	98132	$\stackrel{\square}{1}$
108741	106832	104184	102513	98576	8
108741	106894	104192	102793	98636	$\stackrel{+}{+}$
108741	106931	104360	103490	98738	
108741	107023	104365	103563	98991	唇
108741	107067	104715	103805	99026	$\stackrel{0}{0}$

$\mathrm{M}=2$	M=4	M=6	$M=10$	M $=20$	
0.108741	0.107225	0.104774	0.103827	0.099087	
108741	107274	105672	103988	99374	
108741	107734	105836	104409	99816	
108741	107804	106115	1.04594	99818	
108741	107847	106380	105547	99861	
108741	108164	106484	105745	99862	
109294	108249	107022	106454	99911	
109902	109031	107170	106630	99918	
109902	109071	107185	107232	99956	
109902	109290	107232	107991	100031	
109902	109469	107591	108204	100413	
109902	109481	107727	108642	100419	
110299	109594	108126	108800	100513	
110299	109598	108431	108972	100531	
113623	109635	108873	109014	100793	1
114480	109849	109311	109038	100878	$\stackrel{\sim}{6}$
114480	110310	109508	109201	100888	$\underset{\sim}{*}$
116223	110707	109630	109394	100990	1
116223	110737	109833	109548	101092	
116223	111126	110546	109914	101174	
116223	111331	110861	109967	101178	
116223	111406	110906	110346	101437	
116927	111415	110915	110497	101594	-
116927	111452	110920	110561	101706	\%
118988	112337	111322	110685	101749	\%
118988	113701	111430	111230	102001	0
121699	113958	111554	111485	102452	-
121699	114198	111832	111493	102712	\bigcirc
121699	114488	111961	111835	102813	9
121699	114666	112102	112247	103019	
121699	115723	112220	112292	103488	5
121699	116688	112289	112316	103560	\%
121699	116828	112578	112541	103561	$\stackrel{\text { ® }}{0}$

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
.121699
123308 123308
123308
123308
123308
123308
123862
128094
131301
131301
131301
134906
134906
138071
138071
138071
138071
138071
138071
138071
138071
$\begin{array}{llll}138071 \\ 1 & 38 & 0 & 71\end{array}$
138071
138071
140388
140388
140388
140388
0.11 .7316 117490 117522
118220
118262
113562
113691
$118663 \quad 113691$
0. 112620

112668
113010
$\begin{array}{llll}113 & 3 & 40 \\ 1 & 13562\end{array}$
$M=10$

114014
$\begin{array}{lll}119067 & 114189 \\ 119083 & 114195\end{array}$
119083
119427
$120234 \quad 114737$
$120615 \quad 115184$
121134115650

121399
121947

122066 123048

$\begin{array}{lllll}123 & 048 \\ 1 & 2 & 3 & 174\end{array}$
123174
123191
123696
12386
$123696 \quad 117178$
115957
116367
116507

116507	11
116678	11

116783
117684

11
11

11
0.

112604
112863 112914
0. 103604 103894 103983 104040 $113332 \quad 104070$

| 113410 | 104073 |
| :--- | :--- | :--- |
| 113598 | 104076 |

124243

124543
124645

125270

126426

126923	1
127	

1270701

| 127690 | 1 |
| :--- | :--- | :--- |
| 12 | |
| 127800 | 1 |

$\begin{array}{ll}127800 & 1 \\ 127912 & 1\end{array}$
128196
128285

37
57
10

04344
04493
0471

144367
$\begin{array}{lllll}1 & 0 & 471 & 0 \\ 10 & 5 & 14 & 1\end{array}$
28
97
59
105325
$115959 \quad 105479$
$\begin{array}{lll}116543 & 105679 \\ 116674 & 105711\end{array}$

9
1

105881
105988
$117727 \quad 106301$ \qquad
 106501
06307
$\begin{array}{lllll}11 & 75 & 3 & 5 \\ 1 & 1 & 9 & 5 & 5\end{array}$
118261
11892
106478
106664
11

292
728
102
10

0666
0671
0677
0686

7 1

Table 1 (continued)

$M=2$

0. 162865 164096 164096 164725 165107 171725 176980 176980 176980 176980
176980 176980
176980 176980
176980 176980
187652 187652
188089 188089 188089 188089
188089 188089 188089 1888089
188089 188089
188089 188089 188089 188089
188089
188089
1. 144341 145950 146408 147370 147424 133263 $\begin{array}{ll}147672 & 133319 \\ 148019 & 133601\end{array}$ 148019
148888 148947
149238
2. 132986 133010 133037 $\begin{array}{lllll}1 & 3 & 3601 \\ 1 & 3 & 419 & 9\end{array}$
$M=10$ 149919 $\begin{array}{lllll}1 & 5 & 0 & 1 & 2 \\ 1 & 5 & 0 & 5 & 9\end{array}$ 150766
150964
0.132900 133021 133060
133255 133255 $\begin{array}{ll}13 & 3717\end{array}$ 133752 133903
134003 134254

$M=2$

0.188089 188089 188089 188089 188089 193713 193713 193713 193713 195728
197397 209119 209119 213850 213850 213850 213850 213850 224440 224440 228714 228714 22871 228714 228714 22871 $\begin{array}{ll}228714 & 1 \\ 228714 & 1\end{array}$ 228714 22871 228714 228714 228714
0. 159887 160508 160906 160906 161689 161932 162289 163822
164670 164670 167057 167364
0. 145558 145722 146202 146669 146712 146732 $146816 \quad 137448$ 148662
149071 149071
149853
150049 151830 $\begin{array}{ll}168273 & 151993 \\ 168753 & 152858\end{array}$ $\begin{array}{ll}168753 & 152858 \\ 169062 & 153875\end{array}$ $\begin{array}{llll}169 & 062 & 153875 \\ 169512 & 153915 \\ 169810 & 155123\end{array}$ $\begin{array}{ll}169810 & 155123 \\ 170150 & 155244\end{array}$ $170166 \quad 155457$ $\begin{array}{rr}170173 & 156995 \\ 170830 & 158052\end{array}$ $\begin{array}{lll}171112 & 158571 \\ 171322 & 158768\end{array}$ $\begin{array}{ll}172532 & 158783 \\ 172542 & 159207\end{array}$ $\begin{array}{ll}172542 & 15 \\ 172642 & 15\end{array}$ 172642160085 $173421 \quad 160130$ $174031 \quad 160546$ $174928 \quad 160686$ $\begin{array}{ll}175715 & 161854 \\ 176020 & 162626\end{array}$
0.136101 136130 136218 136230 136554 137330
137448 137486
138245 138328 139205 139283
139405 $39418 \quad 122847$

| 139418 | 123246 |
| :--- | :--- | :--- |
| 139660 | 123267 |

0. 120660 120674 120986 121506 121681 121812 121839 121912 122190 122196 122505 122545
122847

39660	123267
39807	123499

139807	123499
140643	123584

$140865 \quad 124393$
141563125309
142093125640
$142234 \quad 125797$
1
$142552 \quad 126534$

4 6

Table 1 (continued.

$\mathrm{M}=2$	$\mathrm{M}=4$	$\mathbf{M}=6$	$y=10$	M-20	
0.238516	0.176220	0.162723	0.147672	0.131056	
- 238516	-177081	163584	-148031	0.131499	
238516	177499	163895	149068	131538	
238516	178795	163984	149099	131671	
238516	178941	164963	149807	132086	
238516	179334	166850	150229	132173	
238516	179564	167328	151186	132576	
242133	179581	168908	152252	132952	
242133	180497	169199	152614	133147	
244017	182011	169459	154295	133243	
244017	182292	170154	154473	133981	
244017	182641	170277	154625	134217	
259536	182839	170510	154853	134606	
262785	182839	170739	155698	134781	1
269381	182839	171309	155885	135389	1
269381	185544	173319	156117	135765	\square
269381	187086	173410	156147	136149	∞
269381	187091	174722	156326	136489	1
269381	187307	174855	156554	137599	
269381	187864	178577	15757 ?	137620	
287185	188402	179176	157981	137995	
287185	188562	179749	158887	138105	
289898	189240	180387	159156	138343	H
289898	190702	181304	160363	138377	\%
289898	195839	182348	160757	139100	$\stackrel{\square}{0}$
289898	196664	183441	161594	139188	0
289898	197731	183932	161966	139532	\cdots
289898	199182	184340	162837	139745	\bigcirc
289898	199443	184356	162983	140903	0
289898	200193	186988	163011	141556	$\stackrel{+}{4}$
289898	201165	187698	163404	143023	
289898	201390	188438	163446	143351	\%
289898	204028	189234	164298	143449	${ }_{0}^{0}$

$M=2$
0.289898 $289898 \quad 232288$ 309017 309017 309017 309017
309017 316431 322829 361590 361590 390388 390388 390388
0. 206825 210223 211274 212718 213349 213872
216102 216102
217673 218852
0.192535 192636 192681 193483 194247 198733
201919 203026 2019196
203898
2072197 . 207219 207277
20787
2083 209385 212039 214471
217023 217023
217368 218403 220275
221799 222368 223824 224538 227900
229237
231973

244245 244605

 246090 246665 255497 261491 263252 266799 267008234139
236718
237347
237539
238657
238973
$\begin{array}{r}238973 \\ 239336 \\ \hline\end{array}$
$M=10$

$y=20$

0.164800
$\begin{array}{rrr}164800 & 0.143554 \\ 165297 & 144174 \\ 165668 & 14628 & 0\end{array}$
$166308 \quad 146335$
$166799 \quad 146364$
$167578 \quad 146598$
169445146792
$169581 \quad 147176$

| 169911 | 147415 |
| :--- | :--- | :--- |

| 170693 | 148144 |
| :--- | :--- | :--- |
| 171044 | 148969 |

$172725 \quad 148981$

172725	148981
1730	150432

$173341 \quad 150519$
$234139 \quad 184208 \quad 154811$

$M=2$
0. 390388 390388 390388
390388 390388 390388 390388
390388 390388 390388 390388 390388 390388 390388 390388 390388 390388
390388 390388 390388 39038
390 390388 390388
390388

$$
390388
$$

$$
434259
$$

$$
434259
$$

$$
434259
$$

$$
434259
$$

$$
434259
$$

$$
\begin{array}{ll}
434259 & 356672 \\
463325 & 359280
\end{array}
$$

$$
540312
$$

0. 270962 272875 277043
1. 241433 241617
24235 242356 243834
249161 249161
249396
249860
250275 250275
251620 $\begin{array}{llll}253163 \\ 2 & 5 & 3 & 2\end{array}$ 255044

$M=4$

 28464 $\begin{array}{lllll}2818 \\ 28 & 3 & 545\end{array}$ 286617 287148 288336289625 295692 297935 301183

$$
\begin{array}{lllll}
2590 & 27 \\
261091
\end{array}
$$ 305368

305474

$$
\begin{array}{r}
201 \\
261936 \\
\hline 266753
\end{array}
$$

$$
266753
$$

$$
\begin{aligned}
& 266753 \\
& 267961
\end{aligned}
$$

$$
\begin{array}{ll}
312224 & 270172 \\
313393 & 271314
\end{array}
$$

$$
\begin{array}{llllll}
3 & 3 & 3 & 9 & 2 & 1 \\
3 & 1 & 6 & 3 & 1 & 7 \\
3 & 1 & 3 & 2 & 5 & 2 \\
5 & 5 & 5 & 6
\end{array}
$$ 321325 322140

322730 329768
331479 336605 $\begin{array}{ll}336605 & 292880 \\ 345704 & 294010\end{array}$ 346114 348483 $348523 \quad 300451$ 359280 75356
87360 28
28203
29 290273
290846 295496 305597 $\begin{array}{lllll}30 & 0 & 5 & 940 \\ 3 & 09 & 315\end{array}$ 311609

0 189230
190780 190780 1912135 192696
193935
199401 194061
197396 199937
199959 200351 161979
$200402 \quad 162177$
$201231 \quad 162779$
$201547 \quad 163664$
$201611 \quad 165028$
0. 158269 158501 158618
158678 158696 159584
160054
160976

6

\qquad
0
9
9
4
8
1
7

| 205585 | 166277 |
| :--- | :--- | :--- |
| 205702 | 167074 |
| 2057830 | 168507 |

$205830 \quad 168507$
$206163 \quad 168866$
$207159 \quad 169299$

| 207190 | 169503 |
| :--- | :--- | :--- |
| 207429 | 169774 |

$$
74
$$

207611	170578
208598	171109

209279	171938
209790	172130

$$
\begin{array}{r}
4 \\
8 \\
9 \\
8 \\
30
\end{array}
$$

Ta
Table
209790

212822	172962
212888	173273

$M=2$

0.54031 577350
577350 577350 577350 577350 577350 577350 577350
577350 577350 577350 577350
577350 577350
577350 577350 577350 577350
577350
577350
577350
577350
577350
577350
100000
$\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
1000000
1000000
1000000
$\begin{array}{lll}577350 & 466858 & 359231 \\ 577350 & 468782 & 359258 \\ 577350 & 479258 & 360919 \\ 577350 & 479403 & 362860\end{array}$
$M=4$
0. 361863 363936 365763 367441 379724

383265 | 3 | 9 | 74 | 4 | |
| :--- | :--- | :--- | :--- | :--- |
| 4 | 0 | 1 | 3 | 4 | 401341

414213 414213 415222
418280 419453
421402
425056
425056
451391
461981
466858
$\begin{array}{ll}479258 & 360919 \\ 479403 & 362860\end{array}$
0.315188

316770
317115
317822
331537 333354 344464
344756 362860
368644 $482251 \quad 368644$ $\begin{array}{ll}491995 & 390298 \\ 493000 & 397664 \\ 497482 & 401062\end{array}$ $\begin{array}{ll}497482 & 401062 \\ 498389 & 403583\end{array}$ $499618 \quad 412111$ $523588 \quad 430728$ $\begin{array}{ll}523588 & 436075 \\ 533884 & 457572\end{array}$ $\begin{array}{ll}536051 & 459809 \\ 536051 & 474712\end{array}$
536051
$M=10$
0. 220163 220893 222045
226432
237083
239271
239354
239414
2
0. 176535 177678 177862
178201 178289 179159
179444 179824
239936
245224 180459 $247437 \quad 181075$
$248117 \quad 181363$
$248246 \quad 183695$
$250351 \quad 184530$

250389	185683
254460	185867

0

2575
$257506 \quad 185972$
$\begin{array}{lll}262737 & 189615\end{array}$
266273191558
$269881 \quad 191813$
$\begin{array}{lll}270863 & 192897 \\ 270923 & 193121\end{array}$
$273538 \quad 193150$

Tabla 1 (continued

M $=$?	$\mathrm{M}=4$	$\mathrm{M}=6$	$M=10$	$\mathbf{M}=20$	
1.000000	0.536051	0. 507698	0.295183	0.208450	
1000000	538237	522755	296851	208913	
1000000	572276	536729	299478	210172	
1000000	582749	553373	301580	212858	
1000000	608981	557106	302950	213675	
1000000	622739	567056	305047	213751	
100000	631759	575397	307691	214758	
1000000	694521	626273	318542	215323	
1000000	701818	627231	323784	225436	
1000000	720920	647186	355405	296158	
	1000000	1000000			
	1000000	1000000			

APPENDIX III

$$
\left(I-P_{\Delta}\right)^{-1} \text { For } M=2,4,6,10,20
$$

The following matrices of order $M \times M$ are the inverses of ($I-P_{\Delta}$) where I is the identity matrix and P_{Δ} is the matrix $P(4.1 .2)$ where the first row and first column of P are deleted. All values below the main diagonal are the same as the diagonal element, hence the triangular presentation. Given an initial state k these matrices provide us with the expected value of the total number of times state i is entered $\mathcal{E}\left(n_{i}\right)$ before absorption occurs. For example, for the case where the initial state is $k=M$ and $M=2$ then

$$
\varepsilon\left(n_{2}\right)=18.181818
$$

and

$$
\varepsilon\left(n_{1}\right)=3.636364,
$$

which are the diagonal elements of the matrix array. The total length of chain to absorption is about $18+3.6+1 \approx 23$. The value one allows for the transition from state 1 to state 0 .

The matrix $\left(I-P_{\Delta}\right)^{-1}$ can be used to find $\mathcal{E}\left(n_{i}\right)$ only when the chain is considered until absorption. For n finite, not a random variable, then the method of Hahn polynomials (4.1.32) must be utilized. For a further discussion on $\left(I-P_{\Delta}\right)^{-1}$ see Kemeny and Snell (1960).

$$
\text { MATRICES }\left(I-P_{\Delta}\right)^{-1}
$$

$$
\begin{gathered}
M=2 \\
\text { column } 1 \\
{\left[\begin{array}{cc}
3.636364 & 2 \\
& 18.181818 \\
&
\end{array}\right]}
\end{gathered}
$$

$M=4$
columir 1
2
$3.167155 \quad 2.923528$
$6.803518 \quad 6.280171 \quad 10.597788$
$10.382735 \quad 17.520864$
27.520863

$$
M=6
$$

column 1	2	3	4	5	6
Γ					
7.058823	3.781513	2.750191	2.320471	2.227656	2.784569
	8.067227	5.867073	4.950338	4.752332	5.940414
		9.503436	8.018516	7.697787	9.622233
			11.768511	11.297789	14.122235
				16.097796	20.122244
					30.122242

$$
M=10
$$

column 1	2	3	4	5
[
10.989009	5.427498	3.568765	2.634753	2.069479
	11.525060	7.578121	5.594785	4.394449
		12.144331	8.965931	7.042332
			12.872181	10.110514
				13.746877

$\left.\begin{array}{ccccc}6 & 7 & 8 & 9 & 10 \\ 1.687075 & 1.406981 & 1.187140 & 0.999697 & 0.809755 \\ 3.582431 & 2.987665 & 2.520842 & 2.122814 & 1.719479 \\ 5.741031 & 4.787887 & 4.039780 & 3.401920 & 2.755555 \\ 8.242266 & 6.873859 & 5.799818 & 4.884058 & 3.956086 \\ 11.206693 & 9.346122 & 7.885790 & 6.640666 & 5.378939 \\ 14.829881 & 12.367777 & 10.435311 & 8.787630 & 7.117980 \\ & 16.228781 & 13.693033 & 11.530975 & 9.340089 \\ & & 18.157318 & 15.290373 & 12.385202 \\ & & & 21.138326 & 17.122043 \\ & & & & 27.122042\end{array}\right]$

$$
M=20
$$

column 1
$\left[\begin{array}{l}\text { [} 20.942404\end{array}\right.$

2
3
4
5

9.838325	6.141844	4.297418	3.193952
20.827343	13.002043	9.097465	6.761471
	20.709171	14.490105	10.769422
		20.587669	15.301287
			20.462578

6	7	8	9	10
2.461093	1.940132	1.551726	1.251813	1.013969
5.210038	4.107183	3.284945	2.650039	2.146532
8.298356	6.541769	5.232138	4.220885	3.418917
11.790375	9.294603	7.433867	5.997069	4.857627
15.767397	12.429772	9.941391	8.019946	6.496157
20.333607	16.029413	12.820040	10.342508	8.377433
	20.200423	16.156395	13.033731	10.557322
		20.062644	16.184991	13.109844

	M Column 11		120	13
0.821397	0.662921	0.530828	0.419641	0.325383
1.738865	1.403377	1.123742	0.888364	0.688824
2.769599	2.235248	1.789855	1.414953	1.097133
3.935071	3.175859	2.543042	2.010378	1.558816
5.262413	4.247110	3.400838	2.688499	2.084621
6.786399	5.477067	4.385714	3.467085	2.688324
8.552286	6.902253	5.526920	4.369254	3.387853
10.620035	8.571061	6.863204	5.425641	4.206959
13.070701	10.548908	8.446949	6.677655	5.177751
16.016451	12.926321	10.350641	8.182601	6.344664
19.616810	15.832047	12.677377	10.021979	7.770889

$M=20$
colum

0.245127	0.176712	0.118583	0.006973	0.002981
0.518924	0.374093	0.251036	0.147615	0.006311
0.826523	0.595841	0.399841	0.235115	0.100512
1.174331	0.846577	0.568098	0.334054	0.142808
1.570446	1.132136	0.759723	0.446734	0.190979
2.025244	1.460001	0.979737	0.576107	0.246286
2.552233	1.839907	1.234675	0.726016	0.310372
3.169305	2.284755	1.533191	0.901548	0.385413
3.900649	2.811982	1.886988	1.109590	0.474349
4.779741	3.445720	2.312259	1.359659	0.581254
5.854185	4.220289	2.832036	1.665299	0.711915
7.193924	5.186108	3.480152	2.046405	0.874838
8.905814	6.420212	4.308299	2.533375	1.083018
11.161160	8.046093	5.399351	3.174937	1.357285
14.251819	10.274152	6.894497	4.054115	1.733134
18.716105	13.492462	9.054151	5.324038	2.276026
	18.498718	12.413614	7.299476	3.120526
		18.261566	10.738200	4.590580
			17.997728	7.694029
				17.694029

ABSTRACT

This Dissertation deals with statistical inference on the mutation rates α_{1} and α_{2} of a population genetic model introducea by Moran [Proc. Camb. Phil. Soc. 54 (1958), pp. 60-71]. The deductive theory by approximate methods of such models has reachec an advanced stage but little has been done along the line of statistical inference. Moran's model is a model of the Markov chain type. It was selected for investigation because it is the only finite population genetic model for which the deductive theory by exact methods is well enough established to stimulate an investigation of statistical inference.

The first broad area of discussion of this dissertation deals with the simultaneous consideration of the mutation rates α_{1} and α_{2}. Maximum likelihood estimates for α_{1} and α_{2} are obtained iteratively from the Newton-Raphson scheme for simultaneous solution of two equations in two unknowns. Several theorems are given which ensure that the log likelihood function involving α_{1} and α_{2} has a unique maximum in the parameter space of useful values.

The transition matrix consists of conditional probability elements involving the unknown parameters α_{1} and α_{2}. These elements are the probability of a transition from one state to another in at most unit steps. The eigenvalue expression along with the corresponding pre- and post-eigenvector matrices are given. The post-eigenvector matrix has elements consisting of Hahn polynomials. The pre-eigenvector matrix is obtained by inverting the post-eigenvector matrix for which an expression is given. The Hahn polynomials form a family of orthogonal polynomials. They were introduced by Hahn [Math. Nach. 2 (1949), pp. 4-34], and further discussed by Karlin and McGregor [Scripta Math, 26 (1961), pp. 33-46]. These polynomials form the foundation and are basic to many of the results of the dissertation. The expression for the expected value of the number of transitions from one state to another is given and this expression is also in terms of Hahn polynomials.
Finally for this positively regular transition matrix
involving both of the mutation rates α_{1} and α_{2}, asymptotic multivariate normality of the maximum likelihooa estimates $\hat{\alpha}_{1}, \hat{\alpha}_{2}$ is discussed along with hypothesis testing. Also
aiscussed are large sample approximations, methods of designing and conaucting experiments and replicated experiments. The second broad area of this dissertation deals with an absorbing Markov chain. That is, α_{2} is set equal to zero and investigation on α_{1} only is carried out. For this case the above transition matrix becomes an absorbing one (regular) and inferences are obtained from realizations on this absorbing chain whose peculiarities provide some unique difficulties. The eigenvalue expression with the corresponding post-eigenvector matrix whose elements are also Hahn polynomials and the expression (in terms of Hahn polynomials) for the expected number of transitions from one state to another are all given. Of particular interest are several postulated theorems on the maxinum likelihood estimate $\hat{\alpha}_{1}$ of the mutation rate α_{1} of the absorbing Markov chain in which an attempt is made at establishing the properties and normality of $\hat{\alpha}_{1}$. The estimate is again obtained iteratively. An outline of the proofs of the postulated theorems is presented. Gaps in the proof are a result of unresolvea questions in positive regular Markov chain theory.
In connection with the above theory and postulated theorems a simulation study on the IBM 650 was undertaken. This study substantiated many of the assumptions of the postulated theorems. The study, however, was not extensive enough to be conclusive. A further study is proposeā.
Replicateă experiments are also aiscussed. Of particular interest here is a geometric type stopping rule in which the negative binomial is employed. Methoas of conducting and designing experiments are discussed.
An appendix discusses the Hahn polynomial system along with many of its important properties.

