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An Aggregate Measure of Bicycle Commuting and its Relationship with Heart Disease 

Prevalence in the United States 

Emma C. Todoroff 

ABSTRACT 

 

United States bicycle commuting rates are low compared to similarly developed countries 

like the Netherlands and Denmark. However, bicycle commuting shows promise for positive 

health outcomes, especially those related to chronic diseases like obesity, diabetes, and heart 

disease. Little research has been conducted in the U.S. to study the association between bicycle 

commuting and heart disease. Furthermore, U.S. cities need guidance on how to increase bicycle 

commuting rates.  

The purpose of this study was to evaluate the association between U.S. bicycle 

commuting rates and heart disease prevalence and to identify infrastructure and policy factors 

most significantly associated with bicycle commuting rates in large U.S. cities. This research 

quantitatively defined infrastructure and policy factors and analyzed ecologic associations across 

the 50 most populous U.S. cities.  

The results of this study are based on an ecologic analysis that evaluated associations at 

the census tract and city levels. Secondary data from nine sources as used to conduct the 

analysis. Data sources include the League of American Bicyclists Benchmarking Report, 

PeopleForBikes bicycle network analysis, the Centers for Disease Control and Prevention 

Behavioral Risk Factor Surveillance System, the U.S. Census Bureau American Community 

Survey, and more. A principal components analysis was conducted to identify relevant 

infrastructure factors for research question one; ordinary least squares regression models were 

derived to compare associations between infrastructure and policy factors for research question 

two, and latent class cluster analysis was conducted to calculate the prevalence odds ratios of the 

association between bicycle commuting rate and heart disease for research question three.  

 Three factors accounted for 70% of the variation in bicycle commuting rates. Those three 

factors include the average number of cyclist fatalities, the number of city employees working on 

bicycle projects, and bicycle network connections to public transit. The results also show that the 

association between bicycle commuting rate and heart disease prevalence was only statistically 

significant in census tract populations with predominantly high socioeconomic status, low health 

risk factors, and white race. The ecologic study design likely masked any positive health 

outcomes in populations with low socioeconomic status. The findings of this study provide 

valuable insights for transportation and public health practitioners, and the conclusions set the 

stage for future research on cycling and chronic disease outcomes in the United States.  
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An Aggregate Measure of Bicycle Commuting and its Relationship with Heart Disease 

Prevalence in the United States 

Emma C. Todoroff 

GENERAL AUDIENCE ABSTRACT 

 

In the U.S., about 1% of the population bicycle commutes to work. Bicycle commuting is 

uncommon in the U.S. because many people feel it is not a safe or practical form of 

transportation. However, several U.S. organizations are working to make roadways safer for 

cyclists. Some of these organizations include The League of American Bicyclists (LAB), 

PeopleForBikes (PFB), and Smart Growth America (SGA). The LAB has awarded nearly 500 

towns and cities with a bicycle-friendly community award, while PFB has created tools to help 

urban planners examine bicycle networks in their communities. SGA also helps create bicycle-

friendly cities by working with elected officials to advocate for policies that will make roadways 

safer for cyclists. LAB, PFB, and SGA all collect data as part of their work to learn what U.S. 

communities are doing to support cycling.  

I used LAB, PFB, and SGA data to determine the most important factors for bicycle-

friendliness in the 50 largest U.S. cities. I evaluated the impact of 14 factors, including, but not 

limited to, protected bike lanes, network connectedness, and bicycle-friendly policy. I found that 

three factors had the strongest association with bicycle commuting rates in large U.S. cities: 

network connections to public transit, the number of city employees working on bicycle projects, 

and the number of deaths from cyclist fatalities. Cities looking to increase bicycle commuting 

should use these results to focus their efforts on improving public transit networks, increasing the 

number of work hours spent on bicycle projects, and identifying strategies to reduce cyclist 

fatalities. 

U.S. cities should work towards improving bicycle-friendliness because of the population 

health benefits. In the past 20 years, the percentage of Americans with obesity has increased by 

40%, and the percentage of Americans with Type 2 diabetes has doubled. Multiple factors 

contribute to obesity and diabetes, including bicycle commuting, which has been associated with 

decreases in both obesity and diabetes. Bicycle commuting may also be associated with heart 

disease, which is the leading cause of death in the U.S., but more research is needed. In the 

second part of this study, I evaluated the relationship between bicycle commuting rate and the 

percentage of Americans living with heart disease. 

I used data from the Centers for Disease Control and Prevention (CDC) and the U.S. 

Census Bureau to understand the association between bicycle commuting and heart disease in 50 

U.S. cities. I analyzed the data by census tract to understand health outcomes at a population 

level. I found that the association between bicycle commuting and heart disease was only 

significant in census tracts that were predominately high-income. I also found that bicycle 

commuting rates in high-income populations were three times greater than in low-income 

populations. In other words, health benefits were not visible in low-income populations because 

of low bicycle commuting rates. Low-income populations have higher rates of obesity and 

diabetes and would benefit the most from bicycle commuting, yet these populations confront 

several barriers to cycling. Cities interested in improving bicycle-friendliness should work to 

engage low-income populations in their work.  
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To the girls who need a little more wind beneath their sails. 

 

You are strong.  

 

You are smart.  
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CHAPTER ONE: INTRODUCTION 

This dissertation reports on an ecologic study of bicycle commuting and heart disease. 

The study was based upon secondary data from the 50 most populous cities in the United States. 

The first chapter of the dissertation presents the motivation of the study, specifies the problems 

addressed by the study, articulates the research questions, and clarifies the scope of the study.  

Motivation 

Heart disease is the leading cause of death in the U.S. 

Heart disease has been the leading cause of death in the United States for the past 50 

years (Murphy et al., 2021). In 2017, heart disease was responsible for approximately one-

quarter of all deaths in the U.S., whereas cancer accounted for one-fifth (Heron, 2019). In the 

most recent report from the CDC National Vital Statistics System, heart disease remained the 

leading cause at approximately 180 deaths per 100,000 population (Murphy et al., 2021). Heart 

disease’s long-standing rank as the number one killer of the U.S. population presents a need for 

innovative interventions that significantly reduce heart disease mortality. 

Public health organizations have worked to reduce heart disease mortality for decades. 

Individual and organizational approaches to public health interventions have successfully 

reduced mortality to a certain degree (Castro et al., 2001; Marcus et al., 2000). More specifically, 

in 1958, heart disease mortality accounted for 500 deaths per 100,000 population, whereas heart 

disease mortality accounts for about 180 deaths per 100,000 population today (Murphy et al., 

2021). The reduction in deaths has likely resulted from public health interventions combined 

with improvements to emergency medicine, but existing approaches have not been enough to 

eliminate heart disease as the leading cause of death. On the other hand, policy, environmental, 

and systems changes can be powerful because of their ability to affect large portions of the 
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population over the long-term (B. Simons-Morton et al., 2012a). Long-term, lifestyle change is 

particularly vital for the reduction of heart disease because the disease develops over the life 

course of several decades.  

Physical activity is commonly understood by researchers as a lifestyle risk factor for 

heart disease because 150 minutes of physical activity per week can reduce an individual’s risk 

of contracting heart disease by up to 35% (Olson et al., 2018). Any activity that burns at least 3.5 

kcal per minute qualifies as physical activity, but only 50% of the U.S. population accomplishes 

the recommended 150 minutes per week (Olson et al., 2018). Inadequate physical activity in the 

U.S. has been associated with about 117 billion dollars in annual health care costs (Olson et al., 

2018). Policy, environment, and system changes must be explored for their potential to increase 

physical activity, decrease healthcare costs, and ultimately reduce heart disease mortality.  

Bicycle commuting is a solution to physical inactivity and heart disease risk 

Physical activity can be recreational or utilitarian in nature. The U.S. population 

commonly thinks of recreational or gym-based physical activity as “exercise.” However 

utilitarian activities, like actively commuting to work, also contribute towards meeting weekly 

physical activity recommendations (Garrard et al., 2012). Only 15% of those who bike in the 

U.S. engage in the activity for commuting purposes, whereas 60% bike for recreation (Pucher & 

Buehler, 2012). In Europe, the trend is reversed with more individuals biking for commuting 

purposes than for recreation. Studies of European countries show that bicycle commuters are 

more likely to achieve 150 minutes of weekly physical activity than those who do not bike 

(Raser et al., 2018). A geographic study across U.S. states also found that increasing percentages 

of bicycle commuters were associated with meeting physical activity recommendations (Pucher, 

Buehler, et al., 2010a).  
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Bicycle commuting’s association with heart disease and heart disease risk is less clear 

than the association with physical activity, especially in the U.S. The majority of studies 

examining the association between bicycle commuting and heart disease have been conducted in 

European countries. For example, a meta-analysis across eight European studies found that 

active commuting was associated with an 11% reduction in heart disease risk (Hamer & Chida, 

2008). A more recent meta-analysis also found that active commuting reduced heart disease risk 

(Dinu et al., 2019). One of the most recent European studies on bicycle commuting and heart 

disease was conducted in the United Kingdom and found that bicycle commuting was associated 

with a reduction in heart disease mortality (Celis-Morales et al., 2017). Based on the positive 

cardiovascular outcomes of bicycle commuting, as evidenced primarily by European studies, 

there is a need to evaluate the association between bicycle commuting and heart disease risk in 

the U.S. To my knowledge, geographic studies evaluating the association between bicycle 

commuting and heart disease have not been conducted in the United States. 

There may be several reasons the association between bicycle commuting and heart 

disease has not been evaluated in the United States. One reason being the siloed surveillance of 

public health and transportation data. In the U.S., surveillance of public health outcomes is 

primarily managed by the Centers for Disease Control and Prevention (CDC) while surveillance 

of transportation mode is primarily managed by the Department of Transportation (USDOT). For 

example, the CDC collects data on heart disease and disease risk factors using several 

surveillance instruments, one being the Behavioral Risk Factor Surveillance System (Centers for 

Disease Control and Prevention, 2014). While the USDOT collects data on transportation habits 

using instruments like the National Household Travel Survey (USDOT Federal Highway 

Administration, 2018). In contrast, some European countries, like Finland, have combined their 
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governmental efforts and recognize transportation habits as a vital aspect of health outcomes. For 

example, FINRISK was a Finnish population survey that collected information on chronic 

disease risk factors, including transportation habits, every five years from 1972-2012 (Barengo et 

al., 2004; The National FINRISK Study, 2017). Siloed surveillance of transportation habits and 

health outcomes have resulted in minimal evaluation of the association between bicycle 

commuting and heart disease in the U.S. However, it is clear that bicycle commuting can help 

reduce heart disease risk related to physical inactivity, obesity, and diabetes (Huy et al., 2008; 

Lusk et al., 2010; Ming Wen & Rissel, 2008; Pucher, Buehler, et al., 2010a). The total cost of 

heart disease is expected to exceed one trillion dollars by 2035, so transportation-based solutions 

are needed now more than ever (Benjamin et al., 2019). Environmental, policy, and systems 

changes to the cycling landscape could be an innovative approach to combat heart disease risk in 

the U.S.   

U.S. cycling infrastructure and policy are far behind 

Despite the health benefits of cycling, bicycle infrastructure in the U.S. is far behind 

European countries who have prioritized cycling in their transportation systems. Bicycle 

facilities or bicycle infrastructure are elements of the transportation system that make roadways 

safer for cyclists. The primary types of bicycle infrastructure in the U.S. include bicycle lanes 

and multi-use paths, but can also include roadway markings, roadway signs, and parking hubs. 

The social, environmental, economic, and health benefits of bicycle infrastructure are multi-

faceted because they can help increase cycling rates and improve cyclist safety (Sallis et al., 

2015). For example, marked bicycle lanes can reduce vehicle-bicycle collisions by as much as 

50% (Pollack et al., 2012). Furthermore, the benefit-cost ratio of healthcare savings to bicycle 
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facility investment has been estimated at 3.8 to 1 (Gotschi, 2011). However, the U.S. has not 

fully invested in reaping the benefits of bicycle infrastructure. 

Bicycle commuting rates in U.S. cities do not compare to European cities like 

Copenhagen and Amsterdam where rates are 40% and 28%, respectively (Buehler & Pucher, 

2012). On average, cycling accounts for 1% of all trips taken in the U.S while bicycle 

commuting accounts for approximately 0.6% (Buehler et al., 2020; Buehler & Pucher, 2012). 

Even in some of the most bicycle-friendly, large cities in the U.S., like Portland, OR, bicycle 

commuting rates are less than 10%. Several explanations have been speculated for minimal 

cycling rates in the U.S; one of the most compelling being perceived safety risks due to a lack of 

bicycle facilities, or infrastructure (Coughenour et al., 2016). Providing adequate bicycle 

infrastructure is key to improve perceptions of safety and subsequently increase bicycle 

commuting rates (Adam et al., 2020; Rérat, 2019) 

Constructing bicycle infrastructure is a complex issue in the U.S. because the majority of 

federal transportation funding has been dedicated to motor vehicle service. From 2000 to 2018, 

cumulative federal government spending on bicycle infrastructure amounted to less than 2% of 

federal roadway expenditures (Buehler et al., 2020). In other words, funding for bicycle 

infrastructure projects is highly limited in the U.S. and must be strategically allocated to increase 

cycling rates. To that end, bicycle infrastructure guidelines are not well established in the U.S. 

which makes it challenging for municipalities to determine how to strategically allocate their 

limited funds. The Federal Highway Administration (FHWA) released a memorandum in 2013 

to support bicycle infrastructure guidelines established by the American Association of State 

Highway and Transportation Officials (AASHTO) and the National Association of City 

Transportation Officials (NACTO), yet the FHWA has not appended these guidelines to their 
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official Manual of Uniform Traffic Control Devices (Federal Highway Administration, 2013). 

Municipalities desiring to increase cycling rates must overcome multiple barriers to improve 

bicycle infrastructure because of the limited federal funds and the unofficial design guidelines 

(Handy et al., 2014).  

Research Purpose & Objectives 

The purpose of this dissertation was based on the three primary motivations of this study:  

1) heart disease is the leading cause of death in the United States, 2) bicycle commuting is a 

solution to physical inactivity and heart disease risk, and 3) the United States cycling landscape 

is far behind comparable developed countries, especially European countries. The purpose of this 

dissertation was: To evaluate the association between U.S. bicycle commuting rates and heart 

disease prevalence, and to identify infrastructure and policy factors most significantly associated 

with U.S. bicycle commuting rates. This research quantitatively defined infrastructure and policy 

factors and analyzed ecologic associations across the 50 most populous U.S. cities.  

The aim of this dissertation was to understand the infrastructure and policy factors 

associated with increased bicycle commuting in U.S. cities and to evaluate bicycle commuting as 

a risk factor of heart disease prevalence. Secondary data from the CDC, U.S. Census Bureau, 

League of American Bicyclists, and PeopleForBikes was used to analyze the relationships 

between infrastructure, bicycle commuting, and heart disease. The main objectives of the study 

were to: 

1. Identify quantitative measures of bicycle infrastructure and policy, 

2. Determine the significance of these quantitative measures for U.S. bicycle commuting 

rates, 
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3. Evaluate the ecologic association between bicycle commuting rates and heart disease 

prevalence in U.S. cities. 

Research Questions 

The research questions for this dissertation were derived from the problem statement and reflect 

the study objectives.   

Research Question 1: What variables should be used to quantitatively measure bicycle 

infrastructure when evaluating the association with U.S. bicycle commuting rates? 

Research Question 2: How much of the variation in U.S. bicycle commuting rates can be 

explained by bicycle infrastructure and policy measures?  

Sub-Q2: What is the relative significance of bicycle infrastructure versus policy 

measures when evaluating their association with U.S. bicycle commuting rates? 

Research Question 3: What is the significance of association between U.S. bicycle commuting 

rates and heart disease prevalence, at the census tract level, when accounting for heart disease 

risk factors?  

Sub- Q3: How much do obesity, diabetes, and hypertension modify the association? 

Research Scope 

This dissertation presents the results of an ecologic study. Publicly available, federal data 

on heart disease and bicycle commuting dictated the ecologic design of the study. Individual data 

was not available for analysis in this study because, as discussed in the Motivation section, 

United States government organizations like the CDC and USDOT silo federal surveillance of 

public health data from transportation data. In other words, public health records for individuals 

who bicycle commute are not federally or publicly available in the United States. However, 

secondary data provided by the CDC and U.S. Census Bureau do include geographic identifiers. 
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These geographic identifiers allowed me to conduct an ecologic analysis where bicycle 

commuting rates were matched with heart disease prevalence by census tract. For this reason, the 

results of my study were only applied to population health outcomes, not individual health 

outcomes.  

Secondary data availability also dictated the study sample and measures of bicycle 

commuting and heart disease. The CDC provides heart disease data at the census tract level for 

500 of the largest U.S. cities, but the League of American Bicyclists only provides bicycle 

infrastructure data for 50 large U.S. cities. Therefore, the study sample was limited to the 50 

most populous U.S. cities. For the purposes of this study, bicycle commuting rate was defined as 

the number of commuters per 10,000 population who use cycling as their primary mode of 

transportation to work; heart disease prevalence was defined as the percent of population in a 

census tract who have been told by a doctor or health professional that they have angina or 

coronary artery disease. 

Dissertation Structure 

This dissertation is organized into five chapters. The first chapter described the 

motivation of the study, specified the problems addressed by the study, articulated the research 

questions, and clarified the scope. Chapter Two establishes a theoretical basis for the study by 

describing the socioecological model of behavior change. An overview of the literature on 

cycling, infrastructure, policy, and heart disease is also provided in Chapter Two with special 

attention to existing knowledge on cycling measures and associations between cycling and heart 

disease. Chapter Three describes the secondary data sources used in the study, the variables used 

to measure infrastructure, policy, cycling, and heart disease, and the statistical methods used to 

analyze the data. Chapter Four presents the results for each research question and provides a 
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discussion of the findings. Finally, Chapter Five presents conclusions and implications for each 

research question and provides recommendations for future research.  

CHAPTER TWO: LITERATURE REVIEW 

The Socioecological Model of Behavior Change 

Attempts to increase levels of physical activity have focused on changing behavior at the 

individual level for decades with public health officials often relying on interventions like health 

education programs and media campaigns (Walsh et al., 2017). These types of interventions have 

been successfully implemented over the years, but the outcomes are normally short-lived (Castro 

et al., 2001; Marcus et al., 2000). For example, a health education program called Heart Smart 

for Women was implemented in Illinois to increase physical activity and reduce CAD risk 

amongst women living in rural counties. The twelve-week educational program resulted in 

significant behavior change from baseline to post-intervention, but the changes were no longer 

significant when post-intervention outcomes were assessed 12 months later. Insignificant 

behavior change at follow-up suggests that Heart Smart for Women did not provide participants 

with the skills needed to maintain heightened levels of physical activity post-intervention (Khare 

et al., 2014). Other types of health interventions like health policy and environmental change 

may have greater potential for long-term behavior change.  

The socioecological model offers a solution for long-term behavior change by placing 

individual behavior within the larger context of policy, environment, and culture 

(Bronfenbrenner, 1992). The socioecological model suggests that changes to the social, 

ecological, and political environment can change health behaviors, at a population level, for the 

long-term (B. Simons-Morton et al., 2012a). Early views of health behavior theory asserted that 

personal choices were under the primary control of the individual (B. Simons-Morton et al., 
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2012a). But Bronfenbrenner, a developmental psychologist, theorized that human behavior 

occurs within the context of multiple systems ranging from microsystems of the individual to 

macrosystems of community and culture (Bronfenbrenner, 1981). Bronfenbrenner’s theory 

resulted in the socioecological model of behavior change which addresses five societal levels: 

individual, interpersonal, organizational, community, and government or public policy (McLeroy 

et al., 1988; D. G. Simons-Morton et al., 1988). Since origination of the model, levels 

representing the physical environment and culture have also been added (B. Simons-Morton et 

al., 2012a). A visual representation of the socioecological model is provided in Figure 2.1.  

 

Figure 2.1: Socioecological model of health behavior  

(Simons-Morton et al., 2012a) 

The societal levels of the socioecological model are embedded in a nesting framework 

where individuals’ knowledge, attitudes, and behaviors are constantly affected and being 

affected by the larger system in a phenomenon called reciprocal determinism (B. Simons-Morton 

et al., 2012a). In other words, all levels interact as part of a larger system, but each level also 

uniquely contributes to behavior change. The intrapersonal level, or individual level, posits that 

an individual’s knowledge, values, and beliefs effect their behavior. It recognizes the relationship 
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between cognition and behavior, but also acknowledges cognitive dissonance as a common 

barrier to behavior change. Cognitive dissonance refers to inconsistencies between what an 

individual knows or believes they should do, and the behaviors they actually exhibit (B. Simons-

Morton et al., 2012b). Value-expectancy theories are also commonly applied to individual 

behavior which suggest that behavior change is more likely when the perceived advantages of a 

particular action outweigh the costs (B. Simons-Morton et al., 2012b). Health education 

programs are a common intervention for influencing behavior change at the individual level 

(Khare et al., 2014; Walsh et al., 2017).  

The influence of relationships on behavior change is reflected in the interpersonal level of 

the socioecological model. Family, friends, acquaintances, neighbors, co-workers, and doctors 

are just a few examples of relationships that may influence an individual’s behavior. Social 

network theories claim that the strength and structure of relationships are meaningful for 

behavior change (B. Simons-Morton et al., 2012c). The more direct a relationship, the more 

influential it will be to the individual (B. Simons-Morton et al., 2012c).  For example, an 

individual may be more influenced by a sibling or parent whom they interact with every day than 

a doctor they may interact with once or twice a year. Social norms also play a role through 

relational influence which occurs indirectly through an individual’s perception of what is 

allowed or expected (B. Simons-Morton et al., 2012c). Interventions at the interpersonal level 

often facilitate social support through the creation of community programs (Khare et al., 2014; 

Walsh et al., 2017). Organizational partnerships are often sought after to implement community 

programs. Community organizations like schools, churches, and workplaces are key partners for 

health behavior change. Interventions at the organizational level often include fostering the 

adoption of healthful programs and practices. (B. Simons-Morton et al., 2012a) 
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Individuals, interpersonal relationships, and organizations all exist within a larger 

community. Communities contain multiple organizations and are considered the fourth level of 

the socioecological model. In the past, community-based health programs have viewed 

community as the setting where health promotion occurs (McLeroy et al., 2003), but community 

efforts to address cardiovascular disease have achieved limited success under this narrow-

minded perspective (Shea & Basch, 1990). Community based participatory research (CBPR) has 

more recently emerged as an approach to health promotion at the community level (Community 

Based Participatory Research for Health, 2003). Under this approach, communities are viewed 

as equal partners with universities and funding agencies in the development of interventions for 

healthy behavior (B. Simons-Morton et al., 2012a). Initiatives of CBPR are often effective 

because they account for social conditions within individual communities like unemployment, 

poverty, and education (B. Simons-Morton et al., 2012a).  

The outermost levels of the socioecological model are public policy, physical 

environment, and culture. All three levels offer the potential to change the environmental context 

within which health behavior occurs (B. Simons-Morton et al., 2012a). However, changes to 

policy and the physical environment do take time because they require community support and 

consensus amongst policymakers. Cultural change is even more challenging because culture 

itself is engrained in the identity of a community as a shared system of learned norms, beliefs, 

values, and behaviors that may differ by region, nationality, ethnicity, or religion (Hruschka & 

Hadley, 2008). The challenge with implementing policies or intervening in the physical 

environment is that the bureaucratic systems governing these levels of society must recognize 

and embrace a need before change can occur (B. Simons-Morton et al., 2012a).  
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The physical environment, or built environment, and public policy can enable health 

behavior change with appropriate attention from policymakers, health professionals, and urban 

planners. For example, in 2006 California was the only state with more than five local/regional 

Complete Streets policies and today all but 10 states have at least five local/regional Complete 

Streets policies (Policy Inventory, 2019) which aim to increase walking and biking behavior. 

Cultural change is also possible, but it normally requires long periods of time. For example, sixty 

years ago cigarette smoking was viewed as a positive, sexually appealing behavior within U.S. 

culture. Over several decades, strategic health-based interventions at the organizational, 

community, and policy levels were implemented to change smoking behavior. Now, the majority 

of the U.S. population views cigarette smoking as a deviant behavior and one that is practiced 

only by individuals who lack the willpower to quit (B. Simons-Morton et al., 2012a). Cultural 

change required decades, but it eventually emerged through the power of organizational, 

community, built environment, and policy interventions.  

My dissertation focuses on built environment and public policy as they relate to bicycle 

commuting behavior. The remainder of my literature review will be divided into two sections. 

First, I will provide a landscape of the policy and built environment factors that have been 

studied in prior research on bicycle commuting. Second, I will introduce the literature on heart 

disease and its associated risk factors, and I will provide an overview of existing research on the 

associations between bicycle commuting and heart disease. These literature sections will lead to 

my research questions which seek to 1) identify the policy and built environment factors that 

impact bicycle commuting in U.S. cities and 2) evaluate the association between bicycle 

commuting and heart disease in U.S. census tracts.  
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Cycling, Policy, and the Built Environment 

The built environment encompasses buildings, planned outdoor spaces, transportation 

infrastructure, and all other human-made components of the physical environment (Saelens & 

Handy, 2008). The Active Living Research (ALR) group recognized the influence of the built 

environment on physical activity nearly two decades ago, and as a national program of the 

Robert Wood Johnson Foundation, their mission was to “build evidence about how to create 

communities that are great for physical activity”(About Us, 2019). In a recent effort to 

summarize the large body of evidence on built environment and physical activity, ALR released 

a review on the co-benefits of activity-friendly environments (Sallis et al., 2015). In their review, 

ALR categorized the built environment into five groups: urban design/land use, 

workplaces/buildings, schools, open spaces/parks/trails, and transportation systems. ALR found 

that physical activity and its associated health outcomes have been extensively explored in all 

categories of the built environment except for transportation systems. Understanding the impact 

of transportation systems on physical activity was identified as a significant gap in knowledge 

(Sallis et al., 2015). 

Physical activity facilitated by transportation systems is frequently called “active 

transportation.” Active transportation is defined as any self-propelled, human-powered mode of 

transport and includes both walking and biking (Saelens & Handy, 2008). The built 

environment’s influence on walking has been widely applied in practice (Saelens & Handy, 

2008; Stewart et al., 2016). For example, urban planners commonly apply the walkability index 

when designing cities conducive to walking. The walkability index includes four elements of the 

built environment: residential density, intersection density, land use mix, and retail floor to area 

ratio (Frank et al., 2009). Other built environment features that have been correlated with 
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walkability are proximity to parks, access to transit, and density or proximity to points of interest 

(Clifton & Dill, 2005; Gauvin et al., 2005; Handy, S & Transportation Research Board, 2005; 

Hoehner et al., 2005; Lee & Moudon, 2006). Contrastingly, a “bike-ability” index has not been 

well-established (Buehler & Dill, 2016). 

Infrastructure Influences on Cycling  

Built environment influences on cycling levels have been examined by several 

researchers (Buehler & Dill, 2016; Pucher et al., 2010). Bike lanes and bike paths have been 

most widely investigated in the literature. Bike lanes are most commonly indicated by a striped 

line on U.S. roads while bike paths are separate from roads and often allow pedestrian traffic. 

Most studies have found a positive association between bike lanes or bike paths and cycling 

levels, but it is unclear whether one has a more significant impact (Buehler & Dill, 2016). A 

study that predicted aggregate cycling levels for 90 large U.S. cities concluded that both bike 

paths and bike lanes have statistically similar positive associations with cycling levels (Buehler 

& Pucher, 2012). Other studies have revealed a preference for bike lanes or bike paths relative to 

demographic characteristics. For example, women and inexperienced cyclists tend to prefer bike 

paths while experienced bike commuters prefer bike lanes (Garrard et al., 2008; Stinson & Bhat, 

2003; Tilahun et al., 2007).  

The interplay between bike paths and bike lanes could be better understood, but 

regardless, researchers must consider the availability of bike paths and bike lanes when 

evaluating cycling levels (Buehler & Dill, 2016). Studies have shown that both cyclists and non-

cyclists feel safer on roadways where bicycles travel separate from motor vehicles (Akar & 

Clifton, 2009; Fishman et al., 2015; Sanders & Cooper, 2013). For example, cycle tracks 

separate bicycle traffic from motor traffic with a curb or sidewalk and act like multi-use paths 



16 

along major roadways. Cycle tracks are heavily implemented in Denmark but are rare within the 

United States (Buehler & Dill, 2016; Pucher et al., 2010). Experimental cycle tracks in 

Copenhagen and Washington, D.C. have significantly increased cycling levels (Goodno et al., 

2013; Snizek et al., 2013).  

Buffered bike lanes also separate bicycle traffic from motor traffic, and they are more 

common in the U.S. than cycle tracks. Studies have shown that buffered lanes increase 

perceptions of safety for both cyclists and non-cyclists (Coughenour et al., 2016; Waygood et al., 

2019), an important factor considering that perceived safety often dictates cyclists’ route choices.  

For example, a study in Portland, OR found that roadways separating bicycle traffic from motor 

traffic accounted for 50% of cyclists’ chosen routes, even though only 8% of the roadway 

network provided separate space for the two transportation modes (Broach et al., 2012; Dill, 

2009). In other words, roads with infrastructure separating bicycle traffic from motor traffic were 

disproportionately chosen by cyclists.  

Bikeshare stations and bike parking have also been correlated with cycling levels 

(Buehler & Dill, 2016; Pucher et al., 2010). There is strong evidence that the proximity of bike 

parking to metro and transit stops is correlated with cycling levels (Brunsing, 1997; Hegger, 

2007; Martens, 2007; Pucher & Buehler, 2009; Rietveld, 2000). The availability of bikeshare 

and bike parking has been cited in fewer studies (Hunt & Abraham, 2007; Wardman et al., 

2007). In addition to infrastructure elements like bike lanes, bike paths, and bike parking, land 

use attributes like street density, street connectivity, bike network density, and bike network 

directness have been correlated with cycling levels (Beenackers et al., 2012; Cervero et al., 2009; 

Dill et al., 2014; Dill & Voros, 2007; Schoner & Levinson, 2014).  
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Bike networks are challenging to define in the U.S. because 50 to 90% of the roadways 

used by cyclists do not contain infrastructure separating bike traffic from motor traffic (Buehler 

& Dill, 2016). In fact, the majority of U.S. cyclists ride on roadways without separate facilities 

for at least a portion of their route. Prior researchers have used measures of density, directness, 

fragmentation, and connectivity to evaluate bike networks (Schoner & Levinson, 2014). Bike 

network density has been most significantly associated with cycling levels when density 

accounted for roadways that contain infrastructure separating bike traffic from motor traffic (i.e. 

bike lanes and bike paths). A change in bike network density by one standard deviation 

corresponded to a 77% increase in bicycle commuting rates (Schoner & Levinson, 2014).  

Policy Influences on Cycling 

Public policy in the U.S. has heavily influenced a car-centric transportation system, and 

bike networks are arguably less developed in the U.S. than in countries where cycling rates are 

high. In 1991, the U.S. Congress passed the Intermodal Surface Transportation Efficiency Act 

(ISTEA), to encourage alternatives to motor vehicles (Dill et al., 2017). The Act required states 

to include biking and walking in their transportation plans, opened new funding sources for bike 

and pedestrian facilities, and required each state DOT to have a bike and pedestrian coordinator 

(Pucher et al., 1999). The ISTEA successfully increased federal spending on bicycle and 

pedestrian projects (Cradock et al., 2009). However, in 1995, a follow-up study found that bike 

and pedestrian transportation plans were being created by localities but were not being 

effectively implemented (Moe et al. 1997).  

Decades have passed since ISTEA was passed, yet the U.S. has not updated legislative 

policy regarding active transportation since 1991. In 2010, the USDOT attempted to update 

national policy with a policy statement on Bicycle and Pedestrian Accommodation Regulations. 
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The policy statement asserts, “every transportation agency, including the DOT, has the 

responsibility to improve conditions and opportunities for walking and biking” (USDOT, 2010). 

However, the statement does not articulate requirements for taking action. The USDOT 

statement includes some recommended actions, but none are required. As the two existing 

national policies that address active transportation, the ISTEA and the USDOT policy statement 

were the basis for defining policy variables in my dissertation.  

Municipalities have identified funding as one of the largest barriers to implementation of 

cycling projects (Assunçao-Denis & Tomalty, 2019; Dill et al., 2017). From 2000 to 2018, 

cumulative U.S. federal government spending on bicycle projects amounted to less than 2% of 

federal roadway expenditures (Buehler et al., 2020).  In 1991, the ISTEA encouraged regional 

spending on bicycle and pedestrian projects (S. L. Handy et al., 2009), yet, 30 years later, the 

percent of transportation budget allocated to cycling projects remains minimal (Arellana et al., 

2020; Buehler et al., 2020).  

In addition to funding, the implementation of cycling projects relies on successful 

partnerships between government agencies and community groups (Marsden & Stead, 2011). 

Collaboration between city transportation staff and cycling advocacy organizations has 

facilitated the creation of bike and pedestrian plans as well as the adoption of Complete Streets 

policies (Aytur et al., 2013; Moreland-Russell et al., 2013). More specifically, the efforts of DOT 

bike and pedestrian coordinators combined with the political pressure created by cycling interest 

groups have been two of the strongest motivating factors for states and localities to adopt stricter 

bicycle policies (Dill et al., 2017).   

Cycling interest groups have played a key role in U.S. cities with high bicycle commuting 

rates like Portland, Minneapolis, Chicago, and San Francisco (Pucher et al., 2011). These 
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advocacy organizations disseminate information about the benefits of cycling to generate public 

and political support, and they lobby for funding (Pucher et al., 2011). The strength of these 

organizations can be measured by the number of full-time equivalent city staff working on 

cycling projects. For example, San Francisco has the strongest bike advocacy in the U.S. with the 

most funding, and they have six times the number of full-time staff as New York City (Pucher et 

al. 2011). The quality and sustainability of cycling initiatives is limited when cities do not 

prioritize staff for cycling projects (Zieff et al., 2013).  

City staff are instrumental in passing local transportation policy like Complete Streets 

policy. Many states, MPOs, and localities have passed Complete Streets policies to 

institutionalize the USDOT policy statement (Biton et al., 2014). A study across 48 U.S. cities 

found that the existence of Compete Streets policy has been associated with an increase in 

cycling levels (Suminski et al., 2014). Complete Streets policies assert that streets should be 

designed for all potential users, not just motor vehicles, but their scope varies by locality 

(Moreland-Russell et al., 2013). Smart Growth America, a non-profit organization working with 

policymakers to improve public policy, derived a scale to rate the quality of Complete Streets 

policies (Policy Inventory, 2019). The scale contains ten ranking categories that quantitatively 

compare policies between states, MPOs, and localities. The categories of the ranking scale 

include: vision and intent, diverse users, commitment, design, land use and context sensitivity, 

project selection criteria, jurisdiction, exceptions, performance measures, and implementation 

steps (Riveron, 2019). One of the main benefits of the Complete Streets policy rating is that it 

weighs implementation steps most heavily. Rating implementation steps most heavily may hold 

localities accountable for taking actionable steps towards built environment change. Case studies 

in the literature have referenced the importance of policy in promoting cycling since 2010, but 
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Complete Streets policy has not been quantitatively evaluated in a model of cycling levels 

(Buehler & Dill, 2016; Pucher et al., 2010).  

To summarize, several single-case, disaggregated studies have provided evidence of an 

association between the built environment, public policy, and cycling levels. Single case studies 

are valuable because they often provide time-series evidence on cycling levels pre and post built 

environment or policy interventions. However, single case studies rarely evaluate the interplay 

between built environment and policy factors (Buehler & Pucher, 2012). There are far fewer 

studies that evaluate cycling levels with an aggregate measure. The following section 

summarizes four cross case studies that have evaluated the impact of built environment on U.S. 

cycling levels with an aggregate measure. The comparison between the four studies highlights 

the built environment and policy measures evaluated by prior researchers. 

Measuring Socioecological Influences on Cycling 

Over the past two decades, a series of regression models has evaluated aggregate bicycle 

commuting rates across U.S. cities. These models have included variables measuring bicycle 

infrastructure, bicycle networks, and covariates like urban sprawl, vehicle ownership, amount of 

rainfall, and college student population. A complete account of variables considered in prior 

models, and their statistical significance are listed in Table 2.1. The table codes statistically 

significant variables with a “✓”, non-significant variables with a “”, and variables not included 

in prior studies with a “-.” It should be noted that several infrastructure variables (e.g., miles of 

bicycle lanes, miles of bicycle paths, bicycle network density, and bicycle network directness) 

were statistically significant, while evaluation of policy-related variables has been neglected.  
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Table 2.1: Socioecological variables that have been evaluated in bicycle commuting regressions1 

Independent Variable 

1
9

9
7
 

2
0

0
3
 

2
0

1
1
 

2
0

1
4
 

Miles of bicycle lanes - ✓ ✓ - 

Miles of bicycle paths ✓  ✓ - 

Bicycle network size factor - - -  

Bicycle network density factor - - - ✓ 

Bicycle network connectivity factor - - -  

Bicycle network fragmentation factor - - -  

Bicycle network directness factor - - - ✓ 

Percent of college students in the population ✓  ✓ ✓ 

Percent of workers by industry category -  - - 

Number of workers -  -  

Average number of vehicles per household - ✓ -  

Percent of households with zero vehicles -  ✓ - 

Percent of households with kids -  -  

Gasoline price -   - 

Transit vehicle revenue miles per mi. service area -  - - 

Annual vehicle miles of transit supply  - -  - 

Percent of housing units built before 1950  -  - - 

Sprawl index - - ✓ - 

Population density -  -  

Average household income -  - - 

Median household income -  -  

Percent of people older than 18 in poverty -  - - 

Average number of days of rainfall per year ✓ ✓ - - 

Average annual inches of rainfall -   - 

Number of hot and cold weather days - -  - 

Mean high temperature  - - - 

Average bicyclist fatalities per 10,000 commuters - - ✓ - 

Average annual per capita state spending  

on bike or pedestrian improvements 

- ✓ - - 

1 The regressions summarized in this table are from Buehler and Pucher 2012, Dill and Carr 2003, Nelson 

and Allen 1997, and Schoner and Levinson 2014. 

Nelson and Allen pioneered bicycle commuting regression models in 1997 by evaluating 

four variables across 18 U.S. cities. They found bike path supply, percent of college student 

population, and average number of annual rainfall days were significantly associated with 

bicycle commuting rates (Nelson & Allen, 1997). Dill and Carr (2003) contributed to bicycle 

commute regressions in 2003 when they evaluated bike lane supply in their 35-city model. They 
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considered a total of 18 variables, those that Nelson and Allen (1997) found significant along 

with an additional 15 variables. However, findings from Dill and Carr’s (2003) model were 

inconsistent with Nelson and Allen (1997). The average number of annual rainfall days was the 

only variable they found was similarly significant (Dill & Carr, 2003). In contrast to Nelson and 

Allen’s (1997) model, bike path supply and percent of college student population were not 

statistically significant. Three of the variables evaluated by Dill and Carr (2003) were 

statistically significant: bike lane supply, average number of vehicles per household, and average 

annual per capita state spending on bike/pedestrian improvements. Dill and Carr’s (2003) model 

of bicycle commuting rates evaluated several new variables, but the R2 value (0.304) was 

significantly lower than Nelson and Allen’s (1997) model (0.825). The lower R2 value could be 

related to doubling the number of cities analyzed.  

In 2011, Buehler and Pucher tripled the number of cities analyzed to derive a regression 

model across 90 cities (Buehler & Pucher, 2012). However, they did not evaluate three of the 

variables that were statistically significant in Nelson and Allen (1997) and Dill and Carr’s (2003) 

previous models (see Table 2.1). The average number of annual rainfall days was not included, 

even though it was a significant variable in both prior models. Buehler and Pucher (2011) 

considered ten variables and found that six had statistically significant associations with the 

number of bike commuters per 10,000 population. Similar to Nelson and Allen’s (1997) model, 

but dissimilar to Dill and Carr’s (2003) model, bike path supply and percent of college student 

population were significant. Similar to Dill and Carr’s (2003) model, bike lane supply and 

vehicle availability were significant. However, Buehler and Pucher (2011) measured vehicle 

availability by the percent of households with zero vehicles instead of the average number of 

vehicles per household. Sprawl index and average bicyclist fatalities per 1,000 commuters were 
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also significantly associated with bicycle commuting in Buehler and Pucher’s model and had not 

been evaluated in prior models. The R2 value of their model was higher than Dill and Carr (2003) 

at a value of 0.65 which is likely attributable to a greater number of statistically significant 

variables.  

The most recent regression model of U.S. bicycle commuting rates, published in 2014, 

was significantly different from the previous three models because bicycle network measures 

were the focus. Five measures of the bicycle network were calculated from 74 city’s bicycle path 

and bicycle lane data (Schoner & Levinson, 2014). Network density and network directness were 

the only two network measures significantly associated with the number of bike commuters. In 

total, Schoner and Levinson (2014) included eleven variables in their model, but the two network 

measures along with the percent of college student population were the only three statistically 

significant variables. Perhaps due to the rigor involved with calculating bicycle network 

measures, Schoner and Levinson (2014) failed to include five of the statistically significant 

variables from the prior models (see Table 2.1). The knowledge Schoner and Levinson 

contributed for network measures is valuable. However, future models should include network 

directness and density in addition to those variables that were statistically significant in prior 

models. Regardless of the limitations, the R2 value of Schoner and Levinson’s (2014) model was 

impressive (R2 = 0.804), considering they found only three statistically significant variables 

across a large number of cities. The strength of their model alludes to the power of network 

density and network directness for predicting the number of bicycle commuters.  

Cycling and Heart Disease 

The built environment has a significant impact on physical activity. A study in Montreal 

Canada found that street connectivity and residential density were better predictors of physical 

activity than participation in organized sports or fitness (Ross & Hermann, 2019). In the 
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Canadian study, populations living in areas with high street connectivity and residential density 

participated in active transportation which allowed them to meet or exceed weekly 

recommendations for 150 minutes of physical activity (Ross & Hermann, 2019). This study is 

one of many where the built environment was positively associated with physical activity (Ding 

& Gebel, 2012; Durand et al., 2011; Hankey et al., 2012; Salvo et al., 2018).  

Bicycle commuting is a form of habitual physical activity that can help prevent chronic 

conditions like obesity, hypertension, and diabetes (Berger et al., 2018; Hu et al., 2002; Huy et 

al., 2008; Laverty et al., 2013; Pucher, Buehler, et al., 2010; von Huth Smith et al., 2007). In the 

United States, published studies predominately evaluate bicycle commuting as a means of 

obesity prevention. Lusk et al. (2010) found that bicycling reduced weight gain over time, 

especially among those who were overweight or obese. Wojan and Hamrick (2015) found that 

bicycle commuting was associated with lower body mass index (BMI); and Suminski et al. 

(2014) found that U.S. cities with higher rates of bicycle commuting had lower rates of obesity. 

Health outcomes associated with bicycle commuting, such as obesity reduction, likely translate 

to the prevention of atherosclerotic heart disease, also known as coronary artery disease (CAD).  

Heart Disease and its Risk Factors 

There are multiple types of cardiovascular disease, or heart disease, including congenital 

heart disease, syphilitic cardiovascular disease, pulmonary heart disease, rheumatic heart disease, 

bacterial endocarditis, and coronary artery disease (Duchosal et al., 1958). The World Health 

Organization (WHO) states that coronary artery disease (CAD) is responsible for the majority of 

cardiovascular deaths (Duchosal et al., 1958). WHO released a statement on the urgency of CAD 

research when cardiovascular deaths were at their peak in 1960, and heart disease was 

responsible for more than 350 deaths per 100,000 amongst the U.S. population (Dalen et al., 

2014). Death rates from heart disease have declined since 1960 (200/100K) based on a reduction 
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in deaths from acute myocardial infarction (heart attack) and sudden death (Dalen et al., 2014). 

However, heart disease remains responsible for the greatest percentage of deaths in the United 

States and CAD is responsible for the majority of those cases. As the long-standing number one 

killer in the U.S., coronary artery disease requires continued attention in epidemiologic research.  

The principle manifestations of CAD include: 1) angina pectoris, 2) myocardial 

infarction, 3) sudden death, and 4) congestive heart failure (Duchosal et al., 1958). 

Manifestations of CAD are notably different between the sexes because CAD in females 

manifests primarily as angina pectoris (70%) and primarily as myocardial infarction or sudden 

death in males (Kannel et al., 1961). These results were based on the Framingham Study, one of 

the most trusted cohort studies ever conducted on cardiovascular disease in the U.S. (Friedman, 

1994; Jekel et al., 1996). During the Framingham Study, researchers conducted biennial 

comprehensive examinations for 20 years on over 5000 subjects. Researchers collected data from 

physical examinations, laboratory tests, and medical histories. Results of the Framingham Study 

have been presented in a series of reports since 1951 with the major findings being a set of risk 

factors for CAD. The risk factors include: male sex, advancing age, high blood pressure, diabetes 

or glucose intolerance, obesity, cigarette smoking, high serum lipid concentrations, enhanced 

blood clotting factors, and electrocardiographic abnormalities (Friedman, 1994). Furthermore, 

results of the Framingham study suggest that risk factors interact synergistically creating an 

inflation effect. For example, an individual with risk factors of smoking, glucose intolerance, 

hypertension, high cholesterol, and hypertrophy of the left ventricle would have a 78% risk of 

developing CAD in 8 years while an individual with none of these risk factors would have a 

2.2% risk. The likelihood of disease development would have only been 30% if the risk factor 
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percentages were simply added, yet the observed risk of 78% was more than 2.5 times the 

expected risk, demonstrating an inflation effect on CAD risk (Jekel et al., 1996). 

Other studies have examined the genetic, psychosocial, and eco-social factors associated 

with CAD, although the mechanisms that cause these associations are unknown and often 

intertwined (Krieger, 2001; Lovallo & Gerin, 2003; Schwartz et al., 2003). Genetic 

predisposition can have varied effects on CAD risk based on the environment in which the genes 

are expressed (Schwartz et al., 2003). For example, a study was conducted on a group of nuns 

living in secluded quarters (Timio et al., 1997). At baseline, the age, blood pressure, body mass 

index, and family history of hypertension did not differ between the nuns and a group of women 

living in the same area. Over a 30 year follow up period, none of the nuns developed diastolic 

blood pressure greater than 90 mm Hg even though 19% of the nuns did have a family history of 

hypertension. Contrastingly, blood pressure increased with age amongst the control group. Blood 

pressure differences between the nuns and control group could not be explained by physical 

activity, diet, childbearing, or BMI (Timio et al., 1997). Results of the study demonstrate the 

power of psychosocial factors, like chronic stress, on CAD risk. Job strain, marital stress, and 

low socioeconomic status are sources of chronic stress that have been associated with CAD risk 

(Kaplan & Keil, 1993; Karasek et al., 1988; Orth-Gomér et al., 2000).  

Eco-social factors like social class also have complex interactions with CAD risk. A 

cross-sectional study conducted in Evans County, Georgia found that social class, measured in 

terms of occupation, education, and income, was associated with CAD prevalence (Cassel, 1971; 

Hames, 1971). The age-adjusted CAD prevalence rates per 1000 population were 97, 40, and 21 

for high social class whites, low social class whites, and blacks, respectively (McDonough et al., 

1965). CAD prevalence differences between social classes could not be explained by blood 
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pressure, cholesterol levels, body weight, smoking, or diet. However, the researchers estimated 

habitual physical activity by occupation type and found an inverse association with CAD 

prevalence (McDonough et al., 1965). In other words, Evans County populations with jobs 

requiring high levels of physical activity, like manual labor, had a lower risk of CAD prevalence. 

Studies in the UK have found opposing results where those working highly physical jobs were 

more likely to die of CAD than those working decision-heavy, administrative positions (Marmot 

& Theorell, 1988). Occupational effects on CAD prevalence and death rates could be related to 

influences on blood pressure, smoking, or obesity or it could be related by more direct stress 

mechanisms (Marmot & Theorell, 1988). The associations between social class and CAD 

prevalence are mixed, but it is clear that a significant influence exists in some capacity. Measures 

of social class can be challenging to define, but ethnicity, occupation, education, and 

socioeconomic status are typically used to measure socioeconomic factors in epidemiological 

studies (Kaplan & Keil, 1993; MacMahon & Trichopoulos, 1996).  

 Interactions between genetic, socioeconomic, and eco-social factors increase the risk of 

CAD incidence. These interactions are showcased in Figure 2.2 in a web of causation for 

myocardial infarction, more commonly known as heart attack, a common manifestation of CAD 

incidence (Friedman, 1994). At the top of the web are genetic adaptation, social pressure, and 

industrial society. Social pressure and industrial society are analogous to the physical 

environment and cultural levels of the socioecological model. More specifically, industrial 

society might reflect a city’s infrastructure or food environment. Most factors on the second level 

of the web would be classified as lifestyle risk factors (i.e. lack of exercise, dietary excess, 

cigarette smoking, and chronic stress). In the third level of the web, genetic factors, in 

combination with lifestyle risk factors, have subsequent effects on obesity, hypertension, 
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diabetes, and other medical conditions. With the exception of coronary artery distribution, the 

medical conditions leading to CAD incidence are directly linked to lifestyle factors of diet, 

stress, smoking, and physical activity. 

 

Figure 2.2: Web of causation for myocardial infarction  

(Friedman, 1994) 

Associations Between Cycling and Heart Disease 

Physical activity, and more specifically active transportation, has been associated with 

CAD risk factors like obesity, diabetes, and hypertension (Bassett et al., 2008; Dons et al., 2018; 

Hu et al., 2002, 2003; Huy et al., 2008; Pucher, Buehler, et al., 2010b). The majority of studies 

evaluating the associations between active transportation and CAD have been conducted in 

European countries (Barengo et al., 2004; Celis-Morales et al., 2017; Hu et al., 2007; Wennberg 

et al., 2006). In countries like Sweden, England, and Finland, bicycle commuting has been 

associated with a lower risk of CAD incidence and reduced CAD mortality (Barengo et al., 2004; 
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Celis-Morales et al., 2017; Wennberg et al., 2006). These European associations could translate 

to similar associations in the United States (Hamer & Chida, 2008). However, CAD risk factors 

do vary by country. A study conducted in England found that manual occupation was a risk 

factor of CAD (Marmot & Theorell, 1988) while studies conducted in Sweden, Finland, and the 

U.S. found the opposite (Barengo et al., 2004; McDonough et al., 1965; Wennberg et al., 2006).  

Fewer studies have evaluated the association between bicycle commuting and CAD in the 

United States. One U.S. study found statistically significant associations between active 

transportation, obesity, and diabetes at the state and city level (Pucher et al., 2010). Another U.S. 

study found statistically significant associations between bicycle commuting and obesity 

amongst a population of women, but the study did not consider diabetes or hypertension (Lusk et 

al., 2010). Table 2.2 summarizes existing literature on the association between active 

transportation, bicycle commuting, and CAD risk. The table lists six studies that have evaluated 

associations between active transportation, CAD, and CAD risk factors; and six studies that have 

evaluated associations between bicycle commuting, CAD, and CAD risk factors.  

Table 2.2: Research studies evaluating the association between active transportation, bicycle 

commuting, and CAD risk factors 

CAD/ CAD risk factors Active transportation Bicycle commuting 

Obesity U.S.- Pucher et al. 2010 
1Bassett et al. 2008 

China- Hu et al. 2002 

 

2Dons et al. 2018 

U.S.- Lusk et al. 2010  

Australia- Ming Wen & Rissel 2008  

Germany- Huy et al. 2008 

Diabetes U.S.- Pucher et al. 2010 

Finland- Hu et al. 2003 

Germany- Huy et al. 2008  

Hypertension China- Hu et al. 2002 Germany- Huy et al. 2008  

Heart disease incidence  Finland- Hu et al. 2007  

Heart disease mortality Finland- Barengo et al. 2004  U.K.- Celis-Morales et al. 2017 

Myocardial infarction   Sweden- Wennberg et al. 2004 
1Associations across 12 countries: U.S., Australia, Canada, Ireland, France, Denmark, Finland, Germany, Sweden, 

Spain, Netherlands, Switzerland 
2Associations across 7 European cities: Antwerp, Barcelona, London, Oerebro, Rome, Vienna, Zurich 
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Variables that are risk factors of CAD and also associated with bicycle commuting would 

be considered confounders in an epidemiologic analysis. There are three criteria for confounders: 

1) they are associated with the independent variable; 2) they are associated with the dependent 

variable; and 3) they are not an intermediate step in the causal pathway (Friis & Sellers, 2015).  I 

conducted a review of potential confounders of the association between bicycle commuting and 

CAD prevalence. The results of the review are cited in Table 2.3. The first column lists risk 

factors of CAD; the second column indicates whether the risk factor has been associated with 

bicycle commuting and the direction of association. The “+” means the risk factor was positively 

associated with bicycle commuting, the “–” means the risk factor was inversely associated with 

bicycle commuting, and “0” means there was no statistically significant association between the 

risk factor and bicycle commuting. A symbol of association is provided for each study that is 

cited in the third column of the table. Probable confounders include male sex, age, smoking, 

race, household income, and college education.  
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Table 2.3: Potential confounders of the association between bicycle commuting rate and CAD 

prevalence1 

CAD risk factors 
Association with 

bicycle commuting2 
Citations 

Male sex (%) ++ + + + + + + + + Buehler et al., 2020; Cole-Hunter et al., 2015; 

Donaire-Gonzalez et al., 2015; Goldsmith, 1992; 

Parkin et al., 2008; Reis et al., 2013; Sallis et al., 

2013; Stinson & Bhat, 2003; Wardman et al., 

2007; Williams & Larson, 1996) 

Age (mean) – – – – – – + 0 0 Buehler et al., 2020; Cole-Hunter et al., 2015; 

Donaire-Gonzalez et al., 2015; Goldsmith, 1992; 

Plaut, 2005; Reis et al., 2013; Sallis et al., 2013; 

Stinson & Bhat, 2003; Tribby & Tharp, 2019; 

Wardman et al., 2007) 

Smoking (%) – – Donaire-Gonzalez et al., 2015; Kaczynski, 2008 

 

Chronic Stress proxies: 

 

    Manual labor occupation (%) 

     

    Married (%) 

 

 

 

0 

 

– 0 0 

 

 

 

Dill & Carr, 2003 

 

Donaire-Gonzalez et al., 2015; Reis et al., 2013; 

Sallis et al., 2013 

Socioeconomic Status proxies: 

 

    White (%) 

     

    Income (mean) 

 

 

     

    No college education (%) 

 

 

+ + + 

 

– – – – – + 0 0 

 

 

 

– – – – – – 

 

 

Parkin et al., 2008; Plaut, 2005; Sallis et al., 2013  

 

Cole-Hunter et al., 2015; Goldsmith, 1992; Parkin 

et al., 2008; Plaut, 2005; Shafizadeh & Niemeier, 

1997; Stinson & Bhat, 2003; Tribby & Tharp, 

2019; Wardman et al., 2007)  

 

Buehler et al., 2020; Cole-Hunter et al., 2015; 

Donaire-Gonzalez et al., 2015; Plaut, 2005; Reis 

et al., 2013; Sallis et al., 2013)  
1 The format of this table was adapted from (S. L. Handy & Xing, 2011) 
2 The symbols indicate direction of association, + is positive association, – is inverse association, and 0 is 

no significant association. A symbol is provided for each study that is cited in the third column. 
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CHAPTER THREE: METHODOLOGY 

 

Data Sources 

Table 3.1 provides a summary of the data sources that I used to answer the research 

questions in this dissertation. The table lists the data sources by research question with some 

sources being used for more than one question. All data sources are secondary and were 

collected by a variety of organizations and governmental agencies. I curated the data sets and 

combined them to answer my research questions. I provide details about each data source in the 

following subsections. The details I provide include how each organization or agency collected 

the data, the frequency with which the data was collected, and how I accessed the data. 

Table 3.1: Summary of data sources by research question 

Data Source RQ1 RQ2 RQ3 

League of American Bicyclists Benchmarking Report (K. McLeod et 

al., 2019) 
✓ ✓  

PeopleForBikes Bicycle Network Analysis (Bicycle Network Analysis 

[Data], 2020) 
✓ ✓  

Smart Growth America’s Best Complete Streets Initiatives (Atherton et 

al., 2018)  
✓ 

 

League of American Bicyclists Lifting the Veil on Bicycle and 

Pedestrian Spending (K. McLeod, 2017)  
✓ 

 

USDOT Fatality Analysis Reporting System (Fatality Analysis 

Reporting System [CSV Data File], 2017) 

 ✓  

Sprawl Indices (Ewing & Hamidi, 2013)  ✓  

NOAA U.S. Climate Normals (NOAA National Centers for 

Environmental Information, 2010) 

 ✓  
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U.S. Census Bureau American Community Survey (American 

Community Survey 5-Year Estimates [CSV Data File], 2017) 

 ✓ ✓ 

Centers for Disease Control and Prevention PLACES (500 Cities 

Project Data [CSV Data File], 2018) 

  ✓ 

 

Research Question 1 

I used two data sets to answer research question one. The data sets include the League of 

American Bicyclists Community Survey (K. McLeod et al., 2019) and PeopleForBikes Bicycle 

Network Analysis (Bicycle Network Analysis [Data], 2020). A description of each dataset is 

provided below.  

Community Survey, League of American Bicyclists 

The League of American Bicyclists (LAB) distributes a biennial Community Survey to 

the 50 most populous U.S. cities to gather data on bicycle demographics, infrastructure, policies, 

and programs (K. McLeod et al., 2019). The LAB Community Survey is a self-reported data 

source collected from city representatives applying for the Bicycle Friendly Community award. 

The LAB distributed the 2017 Community Survey to all cities that had responded to the 

Community Survey in prior years and to city contacts who had submitted Bicycle Friendly 

Community applications within the previous year. The LAB publishes a Benchmarking Report 

biennially to share the results of the Community Survey.  The 50 most populous cities with data 

published in the 2019 report are mapped in Figure 3.1. 
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Figure 3.1: The fifty most populous cities in the U.S. based on 2016 ACS estimates  

(K. McLeod et al., 2019) 

 

The most recent Benchmarking Report was published by the LAB in 2019 and includes 

data collected as recently as 2017. When compiling data for the 2019 Benchmarking Report, the 

LAB chose to include as much data as possible even if a community did not provide a response 

to the 2017 Community Survey. For this reason, the data collection year for data published in the 

2019 Benchmarking Report varies by city and may precede 2017. A complete record of data 

collection year is provided in Table 3.2. 

Table 3.2: Year of bicycle infrastructure data included in the 2018 LAB Benchmarking Report 

Year City 

Count 

City Names 

2017 26 Atlanta GA, Boston MA, Denver CO, Fort Worth TX, Houston TX, Jacksonville 

FL, Kansas City MO, Las Vegas NV, Long Beach CA, Louisville KY, Mesa 

AZ, Oakland CA, Omaha NA, Oklahoma City OK, Philadelphia PA, Phoenix 

AZ, Portland OR, Raleigh NC, Sacramento CA, San Antonio TX, San Francisco 

CA, San Diego CA, Tucson AZ, Tulsa OK, Washington DC, Wichita KS 
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2016 6 Albuquerque NM, Charlotte NC, Cleveland OH, Colorado Springs CO, Los 

Angeles CA, Miami FL 

2015 13 Arlington TX, Austin TX, Columbus OH, Dallas TX, El Paso TX, Fresno CA, 

Indianapolis IN, Milwaukee WI, Minneapolis MN, New York NY, San Jose CA, 

Seattle WA, Virginia Beach VA 

2014 4 Baltimore MD, Chicago IL, Memphis TN, Nashville TN, 

2013 1 Detroit MI 

I downloaded the following data from the 2018 LAB Community Survey: the number of miles of 

paved public paths, number of miles of protected & buffered bike lanes, and number of miles of 

“other” bike lanes (i.e., non-protected, striped, etc.).  

Bicycle Network Analysis, PeopleForBikes 

PeopleForBikes created a bicycle network tool called the Bike Network Analysis (BNA) 

that measures the quality of bike networks and their connectivity to community amenities. The 

BNA was derived from data provided by the U.S. Census and OpenStreetMap (PeopleForBikes, 

2019). The unit of analysis for the BNA was census blocks, as delineated by the U.S. Census 

Bureau’s 2010 Decennial Census.  In addition to U.S. Census block-level data, PeopleForBikes 

used spatial data from OpenStreetMaps (OSM) to map bicycle facilities and community 

amenities and, ultimately, derived bicycle network scores by city. The BNA bike network score 

accounts for bike network connectivity to six amenity types: people (access to other people based 

on population distribution), opportunity (access to jobs and educational institutions), core 

services (access to critical services like health care and grocery stores), recreation (access to 

public recreation like parks and trails), retail (access to shopping), and transit (access to major 

transit hubs). OSM is a crowdsourced data set that is constantly updated by the public. The BNA 

downloaded the most recent OSM data for the area within a city’s boundary to calculate bike 
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network scores. I downloaded the BNA bike network scores, BNA transit score, and the number 

of low-stress miles from bna.peopleforbikes.org in January 2020.  

Research Question 2 

I used ten data sets to answer research question two. The data sets include the League of 

American Bicyclists Community Survey, PeopleForBikes Bicycle Network Analysis, and eight 

additional datasets. A description of each dataset is provided below.  

Community Survey, League of American Bicyclists 

The League of American Bicyclists (LAB) distributes a biennial Community Survey to 

the 50 most populous U.S. cities to gather data on bicycle demographics, infrastructure, policies, 

and programs (K. McLeod et al., 2019). A detailed description of the LAB Community Survey is 

provided under the Research Question 1 section above. I downloaded the following bicycle 

infrastructure data from the LAB Community Survey for research question two: the number of 

miles of paved public paths, number of miles of protected & buffered bike lanes, number of 

miles of “other” bike lanes (i.e., non-protected, striped, etc.), the number of full-time city 

employees working on bike or pedestrian issues per 100,000 population, and the number of 

League of American Bicyclist member organizations per 100,000 population.  

Bicycle Network Analysis, PeopleForBikes 

PeopleForBikes created a bicycle network tool called the Bike Network Analysis (BNA) 

that measures the quality of bike networks and their connectivity to community amenities. A 

detailed description of BNA data sources is provided under the Research Question 1 section 

above. I downloaded the BNA bike network scores, BNA transit score, and the number of low-

stress miles from bna.peopleforbikes.org in January 2020.  
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American Community Survey, U.S. Census 

The American Community Survey (ACS) is a national survey that collects social, 

economic, housing, and demographic data across the United States (Guidance for Data Users, 

2020).  The U.S. Census Bureau distributes the ACS monthly via mail and collects a sample size 

of about 3.5 million households per year. ACS 1-year estimates are data that have been collected 

over a 12 month period while ACS 5-year estimates are data that have been collected over a 60 

month period.  

The U.S. Census Bureau provides aggregate ACS data to the general public for analysis 

purposes. Aggregate data is estimated for a range of geographic areas including states, counties, 

metropolitan statistical areas, cities and small-area estimates for census tracts and block groups. 

Census tracts are small subdivisions of counties with 2500 to 8000 residents and are designed to 

follow the boundaries of neighborhoods, encompassing areas that are homogenous with regard to 

population characteristics, economic status, and living conditions (U.S. Census Bureau, 2020).  

I downloaded ACS data from factfinder.census.gov in January 2020.  The ACS data I 

downloaded for research question two includes city estimates of bicycle commuting rates, 

vehicle ownership, and college student population. The ACS city estimates of bicycle 

commuting rates, vehicle ownership, and college student population have commonly been used 

when deriving aggregate models of bicycle commuting (Buehler & Pucher, 2012; Dill & Carr, 

2003; Nelson & Allen, 1997; Schoner & Levinson, 2014).  

Best Complete Streets, Smart Growth America 

The National Complete Streets Coalition, a program of Smart Growth America, evaluates 

Complete Streets policies annually. The National Complete Streets Coalition began evaluating 

policies in 2006 and publishes ranked scores for hundreds of cities as they pass Complete Streets 
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legislation. Smart Growth America publishes the Complete Streets policy scores in annual 

reports. I used the scores published in two reports: The Best Complete Streets Policies of 2016 

and The Best Complete Streets Policies of 2018 (Atherton et al., 2018). The scores were 

provided in a pdf table in the reports, but I requested a spreadsheet directly from Smart Growth 

America’s Program Manager in August 2019.  

As of August 2019, Smart Growth America had scored policies for 48 of the 50 most 

populous cities in my analysis. The scores for Baltimore and Milwaukee were retrieved from the 

2018 report while the scores for the remaining cities were retrieved from the 2016 report. The 

policy rubric was updated in 2018 with stricter requirements for equity and implementation. 

Therefore, the scores for Baltimore and Milwaukee were rated on a different scale than the other 

cities in my analysis. According to Smart Growth America’s Program Manager, the organization 

evaluates policies annually, as the legislation is passed, so the organization does not plan to re-

grade old policies using the new rubric.  

Lifting the Veil, League of American Bicyclists 

The League of American Bicyclists (LAB) analyzed Statewide Transportation 

Improvement Programs (STIP) in 2015 to report on the distribution of transportation budgets for 

bicycle and pedestrian projects (K. McLeod, 2017). The LAB analyzed transportation budgets by 

state and provided a breakdown of the budget allocated to bicycle and pedestrian projects with 

various project types. The Appendix of the LAB report provides a detailed list of the STIP data 

source used for each state. The report reveals that STIP data was publicly accessible on the DOT 

website for some states while STIP data for other states was provided by a DOT staff member. 

The LAB reported the results of their STIP analysis in the form of a pdf scorecard for each state, 

but I requested a spreadsheet directly from the League of American Bicyclists Policy Director. 
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The spreadsheet included data on the total cost of bicycle projects, the percentage of total cost, 

and the average project cost.  

U.S. Climate Normals, NOAA 

The National Centers for Environmental Information has generated U.S. Climate 

Normals since 1950 to meet requirements of the World Meteorological Organization and the 

National Weather Service. The U.S. Climate Normals dataset provides information about climate 

conditions for thousands of locations across the United States. The official normals are 

calculated every 30 years and consist of annual, monthly, daily, and hourly averages of 

temperature, precipitation, and other climatological variables from 15,000 weather stations. The 

1991-2020 U.S. Climate Normals are the most up-to-date normals available for the U.S. The 

U.S. Climate Normal data is accessible at ncei.noaa.gov/products/us-climate-normals. I 

downloaded annual precipitation data from airport weather stations for the 50 most populous 

cities in January 2020. Buehler and Pucher (2012) also used U.S. Climate Normals in their model 

of bicycle commuting rates. 

Sprawl Indices, Ewing & Hamidi 

Reid Ewing at the University of Utah developed a sprawl index in 2002 that combines 22 

variables of urban form, land use mix, network density, and network connectivity (Ewing & 

Hamidi, 2013). The sprawl index was approximated by metropolitan statistical area, but the 

measure is also useful for comparing land-use characteristics of central cities because it 

considers several measures of downtown strength and overall urban compactness (Buehler & 

Pucher, 2012). The most updated sprawl indices were calculated using population estimates from 

the U.S. Census Bureau’s 2010 Decennial Census. A full account of the methodology used to 

generate the sprawl index is provided at https://gis.cancer.gov/tools/urban-sprawl/sprawl-report-



40 

short.pdf. I downloaded the 2010 MSA sprawl index dataset in January 2020 from 

gis.cancer.gov/tools/urban-sprawl. Buehler and Pucher (2012) also used Ewing’s sprawl index in 

their model of bicycle commuting rates.  

Fatality Analysis Reporting System, USDOT 

The Fatality Analysis Reporting System (FARS) is a national census that provides the 

National Highway Traffic Safety Administration with annual data on fatal injuries resulting from 

motor vehicle crashes (USDOT Federal Highway Administration, 2018). FARS reports on the 

annual number of fatal injuries involving bicyclists and pedestrians per state. Data is publicly 

available from 1975 to 2019 at nhtsa.gov/research-data/fatality-analysis-reporting-system-fars. I 

downloaded the FARS datasets from 2015, 2016, and 2017 in January 2020 (Fatality Analysis 

Reporting System [CSV Data File], 2017). Buehler and Pucher (2012) also used FARS data to 

measure cyclist fatalities in their model of bicycle commuting rates. 

Research Question 3 

I used two data sets to answer research question three. The data sets include the American 

Community Survey and the Behavioral Risk Factor Surveillance System, compiled via the 

PLACES data project. A description of each dataset and the PLACES project is provided below.  

American Community Survey, U.S. Census 

The American Community Survey (ACS) is a national survey that collects social, 

economic, housing, and demographic data across the United States (Guidance for Data Users, 

2020).  A detailed description of the ACS is provided under the Research Question 2 section 

above. The ACS data I downloaded for research question 3 includes socioeconomic and 

demographic data on sex, age, race, ethnicity, occupation type, education, and marital status. I 

downloaded the ACS data from factfinder.census.gov in March 2020. 
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Behavioral Risk Factor Surveillance System, CDC 

The Behavioral Risk Factor Surveillance System (BRFSS) is a self-reported, national 

household survey administered biennially by the CDC via telephone (Centers for Disease 

Control and Prevention, 2014). The BRFSS collects data from over 400,000 adults on health-

related risk behaviors, chronic health conditions, and use of preventative services. The dataset 

has been weighted by the CDC to be nationally representative. I compiled health measures from 

the PLACES dataset which the CDC derived from BRFSS data (500 Cities Project Data [CSV 

Data File], 2018). A description of the PLACES dataset is provided in the following paragraph.  

PLACES (500 Cities), CDC 

PLACES, formerly known as 500 Cities, is a collaboration between the CDC and Robert 

Wood Johnson Foundation that uses data from the CDC Behavioral Risk Factor Surveillance 

System (BRFSS) to derive census tract estimates of health outcomes. PLACES provides a 

model-based population level analysis by linking geocoded, county-level BRFSS data with 

block-level U.S. Census data to generate health outcome estimates at the census tract-level 

(Centers for Disease Control and Prevention, 2018). The CDC has conducted studies to validate 

the methodology used to generate PLACES data (Y. Wang, 2017; Zhang et al., 2014), and the 

PLACES dataset has been applied in a variety of studies that assess the association between built 

environment factors and health outcomes (Mullenbach, 2018). I accessed the archive of PLACES 

(500 Cities) data in March 2020 and downloaded the “500 Cities: Census Tract-level Data, 2018 

release” from https://chronicdata.cdc.gov/browse?category=500+Cities+%26+Places. 

Variables 

A complete summary of the variables I used in my dissertation are provided in Table 3.3. 

The table lists the data source corresponding with each variable and provides a checklist to 

indicate which variables were used for each research question. The remainder of the section 
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describes, in detail, the unit measures of each variable. The variable descriptions were organized 

based on their use as independent or dependent variables. 

Table 3.3: Summary of variables by research question 

Variable Name RQ1 RQ2 RQ3 Source 

Bike lane supply ✓ ✓  League of American Bicyclists (LAB) 

Benchmarking Report (K. McLeod et al., 2019) 

Bike path supply ✓ ✓  

Bike lane quality ✓ ✓  

Bike path quality ✓   

City employees working on 

bicycle projects 
 ✓   

Cycling interest groups  ✓   

Bike network supply ✓   Bicycle Network Analysis (Bicycle Network 

Analysis [Data], 2020) 

Bike network density ✓ ✓  

Bike network quality ✓   

Access to public transit ✓ ✓  

Complete streets policy score 
 

✓ 
 

Smart Growth America’s Best Complete Streets 

Initiatives (Atherton et al., 2018) 

Bicycle infrastructure budget 
 

✓ 
 

LAB Lifting the Veil on Bicycle and Pedestrian 

Spending (K. McLeod, 2017) 

Cyclist safety  ✓  USDOT Fatality Analysis Reporting System 

2015-2017, averages (Fatality Analysis 

Reporting System [CSV Data File], 2017) 
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Sprawl index  ✓  Sprawl Indices (Ewing & Hamidi, 2013) 

Annual precipitation  ✓  NOAA 1981-2010 U.S. Climate Normals 

(NOAA National Centers for Environmental 

Information, 2010) 

Bicycle commuting rate  ✓ ✓ ACS 2013-2017, averages (American 

Community Survey 5-Year Estimates [CSV 

Data File], 2017) 
Vehicle ownership  ✓  

College student population  ✓  

Sex (Male)   ✓ 

Age (>45)   ✓ 

Household Income   ✓ 

Race (White)   ✓ 

Ethnicity (Hispanic)   ✓ 

Education  

(No College Education) 

  ✓ 

Occupation (Manual Labor)   ✓ 

Marital Status (Married)   ✓ 

Coronary Artery Disease 

Prevalence 

  ✓ CDC PLACES, 2017 (500 Cities Project Data 

[CSV Data File], 2018) 

  Access to Healthy Food   ✓ 

Smoking Prevalence   ✓ 

Obesity Prevalence   ✓ 
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Hypertension Prevalence   ✓ 

Diabetes Prevalence   ✓ 

 

Research Question 1 

This section defines eight infrastructure variables that were evaluated for research 

question one.  

Independent variables: Infrastructure 

I explored eight infrastructure variables: bike lane supply, bike path supply, bike lane 

quality, bike path quality, bike network supply, bike network quality, bike network accessibility 

to transit, and bike network density. I gathered the data for these variables from the League of 

American Bicyclists Benchmarking Report (2019) and the PeopleForBikes (PfB) bicycle 

network analysis. I selected the eight infrastructure variables based on previous U.S. studies of 

bicycle commuting which found that, in large cities, both infrastructure supply and infrastructure 

networks were significantly associated with bicycle commuting rates (Buehler & Pucher, 2012; 

Dill & Carr, 2003; Schoner & Levinson, 2014). 

I also used recommendations from these studies to explore measures of bike lane quality, 

bike path quality, and bike network accessibility to public transit. The methods I used when 

selecting these variables were similar to other cycling mode share studies that select previously 

tested variables in combination with new variables to improve the descriptive quality of the 

model (Arellana et al., 2020; Buehler & Pucher, 2012; Schoner & Levinson, 2014). A summary 

of the eight infrastructure variables I considered for model development are provided in Table 

3.4.  The following paragraphs will describe, in detail, how each variable was measured. 
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Table 3.4: Summary of infrastructure variables 

Variable Name Units Source 

Bike lane supply Miles of bike lanes in city per 100,000 

population 

League of American 

Bicyclists (LAB) 

Benchmarking Report 

(K. McLeod et al., 2019) Bike path supply Miles of paved multi-use paths in city per 

100,000 population 

Bike lane quality Percent of bike lanes that are buffered or 

protected 

Bike path quality Percent of paved multi-use paths out of the 

total supply of bike lanes and paths 

Bike network supply Miles of low stress roadway for cyclists per 

100,000 population 

Bicycle Network 

Analysis (Bicycle 

Network Analysis 

[Data], 2020) Bike network density Miles of low stress roadway for cyclists per 

city area 

Bike network quality Score of the bike network based on 

connectivity, directness, and fragmentation 

Access to public transit Score of major transit hubs accessible on 

the low stress bike network 

The LAB Benchmarking Report provides the following data on bicycle infrastructure: the 

number of miles of paved public paths, number of miles of protected & buffered bike lanes, and 

number of miles of “other” bike lanes (i.e., non-protected, striped, etc.). I used data from the 

2017 LAB Community Survey to measure the following infrastructure variables: bike lane 

supply, bike path supply, bike lane quality, and bike path quality. 
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Bike Lane Supply 

Bike lane supply was defined as the miles of bike lanes per 100,000 population. Buehler 

and Pucher (2012) defined bike lane supply in the same manner. I calculated bike lane supply by 

summing the LAB data for miles of protected & buffered lanes with miles of “other” lanes and 

dividing by population size within city government jurisdiction. 

Bike Path Supply 

Bike path supply was defined as the miles of paved multi-use paths per 100,000 

population. Buehler and Pucher (2012) defined bike lane supply in the same manner. I calculated 

bike path supply by dividing the LAB data for miles of paved public paths by population size 

within city government jurisdiction. 

Bike Lane Quality 

Bike lane quality was defined as the percentage of buffered and protected bike lane miles. 

I calculated bike lane quality by dividing the LAB data for miles of protected & buffered lanes 

with the total miles of bike lanes accounted for in the LAB report. I included a measure of 

bicycle lane quality based on recommendations from Buehler and Pucher (2012) and Buehler 

and Dill (2016). 

Bike Path Quality 

Bike path quality was defined as the percentage of paved multi-use path miles. I 

calculated bike path quality by dividing the LAB data for miles of paved public paths with the 

total miles of bike lanes and paths accounted for in the LAB report. I included a measure of 

bicycle path quality based on recommendations from Buehler and Pucher (2012) and Buehler 

and Dill (2016). 

I used measures from the PfB bicycle network analysis to define the remaining 

infrastructure variables of: bike network supply, bike network quality, bike network accessibility 
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to transit, and bike network density. PeopleForBikes conducted their bicycle network analysis 

through a procedural traffic stress analysis and destination analysis. The purpose of the traffic 

stress analysis was to categorize street segments and intersections as “low stress” or “high stress” 

for cyclists while the purpose of the destination analysis was to determine the variation of 

destinations accessible via a “low stress” bicycle network (PeopleForBikes, 2019). 

PeopleForBikes used the results from their traffic stress analysis and destination analysis to 

calculate city-level bicycle network scores. 

PeopleForBikes’ traffic stress analysis categorized roadway miles as “low stress” or 

“high stress” based on methodology from the Mineta Transportation Institute (MTI). MTI’s 

categorization scheme considers the speed limit and number of lanes within any given street 

segment. As the number of lanes and speed limit increases, cyclists’ stress also increases 

(Mekuria & Nixon, 2012). However, PfB expanded upon MTI’s categorization scheme in their 

traffic stress analysis by including bike lane type and presence of on-street parking within their 

categorization scheme. For example, within PfB’s analysis, a buffered bike lane on a street with 

a speed limit greater than 35 mph would be considered “high stress” for cyclists. Whereas a 

shared residential roadway with a speed limit of 20 mph or less would be considered “low stress” 

for cyclists. 

After categorizing low and high stress miles with the traffic stress analysis, PfB 

conducted a destination analysis to evaluate, by census block, the number of surrounding census 

blocks that would be accessible by bike on the “low stress” bicycle network. PfB defined a 

bikeable distance as the distance that an average bicyclist could cover in ten minutes at ten miles 

per hour, approximately 1.67 miles, measured along streets and paths. Destinations were only 

assumed to be accessible by bike on the “low stress” network if the route did not require a cyclist 
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to go out of their way by more than 25% in comparison to a car trip. PeopleForBikes calculated 

city-level bicycle network scores based on the number and types of destinations accessible on the 

“low stress” bicycle network. PeopleForBikes has calculated bicycle network scores and 

destination scores for hundreds of U.S. cities. 

Bike Network Supply  

I used PfB’s categorization of “low stress” bicycle network miles to measure bike 

network supply. I calculated bike network supply as the number of “low stress” miles per 

100,000 population. 

Bike Network Density 

I also used PfB’s categorization of “low stress” bicycle network miles to measure bike 

network density. I calculated bike network density as the number of “low stress” miles per city 

area. 

Bike Network Quality 

I used PfB’s overall bicycle network score to measure bike network quality. 

Bike Network Accessibility to Transit 

I used PfB’s transit destination score as a measure of bike network accessibility to transit. 

The PfB bicycle network score that I used to define bike network quality represents a city’s 

bicycle network ranking based on PfB’s traffic stress and destination analyses. The PfB measure 

that I used to define bike network accessibility to transit represents a transit accessibility ranking 

based on the number of major transit stops that would be accessible on the “low stress” bicycle 

network. 
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Research Question 2 

This section defines the dependent variable, independent variables, and covariates that 

were used to answer research question two. The eight infrastructure variables, defined under 

research question one, were also used for research question two, in addition to policy-relevant 

variables and covariates. The dependent variable for research question two was bicycle 

commuting rate. 

Dependent variable: Bicycle commuting rate 

Bicycle commuting rate was the dependent variable in my model. I compiled the data for 

bicycle commuting rate from the American Community Survey (ACS), the only publicly 

available U.S. dataset that provides annual, cross-regional data on cycling to work (Buehler et 

al., 2020; Buehler & Pucher, 2012). The ACS asks the following question to collect data on 

bicycle commuting, “How did you usually get to work last week?” Therefore, the dependent 

variable represents the number of commuters cycling as their primary mode of transportation to 

work. I averaged bicycle commuting rates over a five-year period such that the dependent 

variable was defined as the average number of bicycle commuters per 10,000 population from 

2013 to 2017. 

Independent variables: Infrastructure 

The same infrastructure variables described under research question one were used to 

model bicycle commuting rates for research question two.  

Independent variables: Policy 

I included four policy-relevant variables when modeling bicycle commuting rates. I also 

considered the eight infrastructure variables defined under RQ1 (see Table 3.4). In this section, I 

will provide details about the policy-relevant variables. A summary of the policy-relevant 
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variables is provided in Table 3.5. The following paragraphs will describe, in detail, how each 

variable was measured. 

Table 3.5: Summary of policy-relevant variables 

Variable Name Units Source 

Complete streets 

policy score 

Score of complete streets policy based on ten 

ranking categories: vision and intent, diverse 

users, commitment, design, land use and 

context sensitivity, project selection criteria, 

jurisdiction, exceptions, performance 

measures, and implementation steps 

Smart Growth 

America’s Best 

Complete Streets 

Initiatives (Atherton et 

al., 2018) 

  

Bicycle infrastructure 

budget 

State data: percent of transportation spending 

budgeted for bicycle-only projects 

(FFY 2013-2016) 

LAB Lifting the Veil on 

Bicycle and Pedestrian 

Spending (K. McLeod, 

2017) 

City employees 

working on bicycle 

projects 

Number of full-time city employees working 

on bike or pedestrian issues per 100,000 

population 

LAB Benchmarking 

Report (K. McLeod et 

al., 2019) 

Cycling interest 

groups 

Number of League of American Bicyclist 

member organizations per 100,000 population 

  

Complete Streets Policy Score 

The variable for complete streets policy score was provided by Smart Growth America 

who have scored complete streets policies for hundreds of U.S. cities using a ten-category 

ranking scheme (Riveron, 2019). The ten categories include: vision and intent, diverse users, 

commitment, design, land use and context sensitivity, project selection criteria, jurisdiction, 

exceptions, performance measures, and implementation steps. Their score was available for 48 of 

the 50 cities in my analysis. The main benefits of SGA’s score for the purpose of modeling 

bicycle commuting rates were: 1) the implementation category was weighted most heavily, and 

2) the score was reduced by four-points if a policy does not address cycling within their vision 
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and intent statement. A measure of Complete Streets policy has not been evaluated in prior 

models of bicycle commuting even though Complete Streets is one of the most prevalent bicycle-

related policies in the United States (Marleau Donais et al., 2019).  

Bicycle Infrastructure Budget 

Bicycle infrastructure budget was defined as the annual percent of state transportation 

budget allocated to bicycle projects. A LAB report on the intermodal distribution of state 

transportation budgets provided the data for this measure (K. McLeod, 2017). The LAB 

compiled the data provided in the report by analyzing the budgets provided by Statewide 

Transportation Improvement Programs. Dill and Carr (2003) found a statistically significant 

association between bicycle commuting rates and state spending on bicycle and pedestrian 

projects. Bicycle infrastructure budget in my study accounts for state spending on bicycle 

projects, not including pedestrian projects.  

City Employees Working on Bicycle Projects 

City employees working on bicycle projects was defined as the number of full-time 

equivalent (FTE) city employees working on bicycle or pedestrian issues per 100,000 population. 

The LAB Benchmarking Report provided the data for this measure (K. McLeod et al., 2019). 

When collecting this data, the LAB defined FTE employees as employees spending at least one 

tenth of their time on bicycle or pedestrian issues. In recent years, bicycle and pedestrian 

coordinators have cited the number of employees working on bicycle projects as a top barrier for 

implementation of bicycle projects (Dill et al., 2017).  

Cycling Interest Groups 

Cycling interest groups were defined as the number of LAB member organizations per 

100,000 population. The LAB Benchmarking Report provided the data for this measure (K. 
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McLeod et al., 2019). The efforts of cycling interest groups can influence the adoption of bicycle 

policies (Aytur et al., 2013; Dill et al., 2017; Moreland-Russell et al., 2013). 

Covariates: Safety, sprawl, precipitation, vehicle ownership & college population 

I included five covariates when modeling bicycle commuting rates. The covariate 

measures were selected based on statistically significant determinants of bicycle commuting 

from four U.S studies (Buehler & Pucher, 2012; Dill & Carr, 2003; Nelson & Allen, 1997; 

Schoner & Levinson, 2014). Refer to the Literature Review section for a complete review of 

covariates. A summary of the covariates is provided in Table 3.6. The covariate measures were 

downloaded directly from the sources listed in Table 3.6 (no additional calculations were 

performed). 

Table 3.6: Summary of covariates for research question two 

Variable Name Units Source 

Cyclist safety State data: three-year average number of 

bicyclist fatalities per 10,000 bicycle 

commuters 

USDOT Fatality 

Analysis Reporting 

System 2015-2017, 

averages (Fatality 

Analysis Reporting 

System [CSV Data 

File], 2017) 

Sprawl index MSA data: index combining 22 variables 

measuring residential density, mix of land 

uses, strength of downtowns, and connectivity 

of street network (Note: higher scores=less 

sprawl) 

Sprawl Indices (Ewing 

& Hamidi, 2013) 

Annual precipitation 30-year average annual number of rainfall 

days with 0.01 inches or more 

NOAA 1981-2010 U.S. 

Climate Normals 

(NOAA National 

Centers for 

Environmental 

Information, 2010) 
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Vehicle ownership Percent of households without a motorized 

vehicle 

ACS 2013-2017, 

averages (American 

Community Survey 5-

Year Estimates [CSV 

Data File], 2017) 
College student 

population 

Percent of total population enrolled in college 

or university 

 

Research Question 3 

This section defines the dependent variable, independent variables, and covariates that 

were used to answer research question three. 

Dependent variable: Coronary artery disease prevalence 

The dependent variable was coronary artery disease (CAD) prevalence. I used the CDC 

500 Cities Project, census tract estimates from 2017 BRFSS data to measure CAD 

prevalence(500 Cities Project Data [CSV Data File], 2018). BRFSS measures CAD prevalence 

based on responses to the following question, “Has a doctor, nurse, or other health professional 

ever told you that you had angina or coronary artery disease?” Therefore, CAD prevalence was 

defined in my study as the percentage of respondents age 18 years or older who reported ever 

having angina or CAD. 

Independent variable: Bicycle commuting rate 

The independent variable was bicycle commuting rate. The data for bicycle commuting 

was compiled from the American Community Survey and was the same data that was used to 

measure bicycle commuting rates for research question two (American Community Survey 5-

Year Estimates [CSV Data File], 2017). The ACS asks the following question to collect data on 

bicycle commuting, “How did you usually get to work last week?” Therefore, the variable 

represents the number of commuters who cycle as their primary mode of transportation to work. 
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I averaged bicycle commuting rates for each census tract over a five-year period to determine the 

average number of bicycle commuters per 10,000 population from 2013 to 2017. 

Covariates: Socioeconomic, demographic characteristics & health risk factors 

I considered 13 covariates when evaluating the association between bicycle commuting 

and CAD prevalence. The covariates represent demographic, socioeconomic, and health risk 

factors with potential influence on the association between bicycle commuting and CAD 

prevalence (Celis-Morales et al., 2017; Hu et al., 2007; Wennberg et al., 2006). A summary of 

the covariates is provided in Table 3.7. The covariate measures were downloaded directly from 

the sources listed in Table 3.7 (no additional calculations were performed). 

Table 3.7: Summary of covariates for research question three 

Variable Name Variable Units Source 

Sex (Male) Percent of the population that is male 
ACS 2013-2017, 

averages (American 

Community Survey 5-

Year Estimates [CSV 

Data File], 2017) 

Age (>45) Percent of the population that is greater 

than 45 years of age 

Household Income Median value of household income ($) 

Race (White) Percent of the population that is white 

alone 

Ethnicity (Hispanic) Percent of the population that is of 

Hispanic origin 

Education (No College 

Education) 

Percent of the population that has not 

completed a college degree 
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Occupation (Manual 

Labor) 

Percent of the population with manual 

labor occupations (including Census 

categories of production, materials 

moving, natural resources, construction, 

and grounds/ building cleaning or 

maintenance) 

Marital Status (Married) Percent of the population that is married 

Access to Healthy Food Percent of the population living more 

than ½ mile from the nearest 

supermarket, supercenter, or large 

grocery store 

(500 Cities Project Data 

[CSV Data File], 2018) 

Smoking Prevalence Percent of respondents aged 18 years or 

older who reported smoking at least 100 

cigarettes in their lifetime 

Obesity Prevalence Percent of respondents aged 18 years or 

older who are obese (BMI>30) 

Hypertension 

Prevalence 

Percent of respondents aged 18 years or 

older who reported ever having high 

blood pressure 

Diabetes Prevalence Percent of respondents aged 18 years or 

older who reported having diabetes 

 

Statistical Analysis 

Various statistical analyses were conducted to answer the research questions. The 

analysis methodologies for each research question are described in this section. Bivariate 

correlations and principle component analysis were used for research question one; ordinary least 

squares regression models and k-fold cross validation were used for research question two; latent 

class cluster analysis and prevalence odds ratios were calculated for research question three.  
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Research Question 1 

Bivariate correlations and principal component analysis were conducted to identify 

infrastructure variables that would be representative of bicycle commuting rates. Spearman’s 

correlation coefficient was computed to evaluate bivariate correlations. The bivariate correlations 

were used to determine the relative strength of association between bicycle commuting and 

infrastructure variables. Infrastructure variables with correlation coefficients of at least 0.3 were 

assumed to be representative of bicycle commuting rates. Several studies of bicycle commuting 

rates have computed bivariate correlations in combination with a regression analysis, to bolster 

conclusions about the significance of independent variables (Braun et al., 2019; Buehler & 

Pucher, 2012). Previous studies found correlation coefficients as high as 0.5. 

Infrastructure network variables, like bike network density, and infrastructure supply 

variables, like bike lane supply, have historically been evaluated in separate models of bicycle 

commuting rates (Buehler & Pucher, 2012; Dill & Carr, 2003; Schoner & Levinson, 2014). 

These models found that network and supply variables were significantly associated with bicycle 

commuting rates. However, the relative significance of network and supply variables has been 

inconclusive because their association with bicycle commuting has historically been evaluated in 

separate models. To evaluate the effects of network and supply variables in a combined model, I 

performed a principal components analysis (PCA) with varimax rotation. PCA was utilized to 

condense infrastructure variables for bicycle network and urban sprawl models in prior studies 

(Ewing & Hamidi, 2013; Schoner & Levinson, 2014). The PCA procedure ensured that all 

predictive factors were independent by calculating orthogonal single unit vectors, eigenvectors, 

for each dimension of the analysis (Shlens, 2014). The results of the PCA in combination with 
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the bivariate correlations informed a reduction in the infrastructure variables used to represent 

bicycle commuting rates.  

Research Question 2 

Ordinary Least Squares (OLS) regression models were derived to model bicycle 

commuting rates. I performed a log transform on the dependent and independent variables in 

order to meet OLS assumptions. There are three assumptions of OLS regression models: 1) 

residuals are normally distributed, 2) residuals have constant variance, and 3) residuals are 

independent (Field et al., 2012). In addition to meeting assumptions for normally distributed 

residuals, a log transform of both the dependent and independent variables allowed for 

interpretation of the beta coefficients as percent changes in bicycle commuting rates. Similarly, 

Buehler and Pucher (2012) used a log-transformed OLS regression model when they evaluated 

the association between bike lanes and bicycle commuting rates.   

Before deriving the regression models, I conducted a multiple imputation to generate data 

for missing points (Braun et al., 2016; Fitch et al., 2019; Moudon et al., 2005). I conducted 

multiple imputation using the predictive mean matching method and the MICE function in R 

version 3.6.3 (van Buuren, 2020). Bike lane and bike path data was missing from the LAB 

Community Survey for the cities of Detroit and Philadelphia. I attempted to request data directly 

from the municipalities, but I did not receive a response. In turn, multiple imputation accounted 

for 1% of the data used in the regression models, 10 data points in total. Appendix A contains a 

figure showing the value of each estimated data point over five imputations. The x-axis ranges 

from 0 to 5 representing data generated for each imputation, and the y-axis is the natural log of 

each variable. The figure in Appendix A demonstrates that all imputed data points (black) fall 

within the distribution of existing data (grey). 
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To evaluate the relative significance of infrastructure and policy variables, I derived six 

regression models using a stepwise procedure. The stepwise regression models were organized 

by the following variable groupings: 1) infrastructure variables alone, 2) policy variables alone, 

3) infrastructure and policy variables, 4) infrastructure variables and covariates, 5) policy 

variables and covariates, and 6) a backward elimination regression where all variables were 

initially input to the model. I derived all regression models in R version 3.6.3 using the lm() 

function. Schoner and Levinson (2014) and Buehler and Pucher (2012) also used a stepwise 

regression procedure when modeling bicycle commuting rates.  

I evaluated the generalizability of the backward elimination regression model using a k-

fold cross-validation procedure (Uyanık et al., 2020). A theoretical overview of the k-fold cross 

validation procedure can be found in Burman (1989). I conducted the k-fold cross validation (k = 

4) in R version 3.6.3 using the build_model function from the regclass package (Petrie, 2016a). 

The first step of the k-fold cross validation was randomly dividing the data sample into training 

and holdout sets with an 80-20 split (Ton et al., 2020). The second step was deriving a series of 

regression models from the training set, where the number of regression models was equivalent 

to 2k and where k was equal to the number of independent variables. A generalization error was 

computed with each regression model. The final step of the k-fold cross validation was 

computing an actual generalization error from the holdout sample and comparing it with the 

predicted generalization error of the seventh regression model. The seventh regression model 

met two criteria: 1) it had the smallest generalization error and 2) it had the fewest number of 

independent variables (Petrie, 2016a). The k-fold cross validation procedure is sometimes called 

a predictive modeling procedure because the resulting regression can be used to make 

predictions on new datasets (Petrie, 2016b). K-fold cross validation has been used in 
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transportation studies to validate the determinants of bicycle crashes, bicycle commuting rates, 

walkability, and ride-share demand (Chen et al., 2020; Sabouri et al., 2020; Ton et al., 2020; 

Yencha, 2019).  

Research Question 3 

I conducted an ecologic study to evaluate the association between bicycle commuting 

rates and CAD prevalence. Ecologic studies have been used in the public health field to 

understand how geographic and environmental context affects population health (Susser, 1994).  

In the past, researchers have conducted ecologic studies to evaluate CAD prevalence in relation 

to groundwater quality, economics, and health resource distribution (Ferreira-Pinto et al., 2012; 

McLeod et al., 2018). In an ecologic study, the units of analysis are populations rather than 

individuals, and the exposure is a property of the population (Aschengrau & Seage, 2014c). In 

my study, bicycle commuting rate was the exposure and census tracts were the unit of analysis.   

I considered 12,322 census tracts within the 50 most populous U.S. cities for my study 

sample. Approximately 60 census tracts were missing data on bicycle commuting or CAD 

prevalence. First, I imputed the missing data using the predictive mean matching method and the 

MICE function in R version 3.6.3 (van Buuren, 2020). Then, I compared the imputed sample 

(n=12,322) with the sample where missing data had been removed (n=12,261). I compared the 

statistical association between CAD prevalence and bicycle commuting for both samples by 

computing two sets of regression models. The beta coefficients for the association between CAD 

prevalence and bicycle commuting were equivalent across both models (β= -0.214), so I used the 

imputed data set for analysis. Appendix A contains the aforementioned regression models. 

During sample selection, I also determined that CAD prevalence had a statistically normal 

distribution after removing two outlier census tracts. The outlier census tracts were located in 
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New York City and contained populations where 90% of the residents were 45 years or older. 

Appendix A shows scatterplots of the distribution when outliers were included versus when 

outliers were removed. After removing the outlier tracts from the sample (n=12,320), the beta 

coefficient (β= -0.213) was still equivalent to the beta coefficient of the imputed sample (β= -

0.214). Appendix A contains the regression model after outliers were removed. The associations 

between CAD prevalence and bicycle commuting were equivalent for both the imputed sample 

and the outlier sample, so I did not include the outlier census tracts in the analysis. Overall, the 

sample I used for analysis contained imputed data for approximately 60 census tracts and 

excluded two outlier census tracts (n=12,320).  

The first steps of my statistical analyses were a descriptive and stratified analysis. I 

conducted a stratified analysis to evaluate the presence of effect modifiers and confounders. 

Within clinical practice, effect modification is assessed to identify whether the effect of an 

exposure significantly varies between populations with different characteristics (Corraini et al., 

2017). In other words, effect modification is a change in the strength of association between an 

exposure and a disease according to the level of a third variable (Aschengrau & Seage, 2014b). 

Effect modification is sometimes called statistical interaction. In contrast, a confounder is 

sometimes called a control variable or covariate. A confounder must meet three criteria: 1) it 

must be associated with the exposure, 2) it must be an independent cause or predictor of the 

disease, and 3) it cannot be an intermediate step in the causal pathway between the exposure and 

disease (Aschengrau & Seage, 2014a). A decision tree for evaluating effect modification and 

confounding with stratified analyses can be found in Aschengrau and Seage (2014) on p. 359.  

In accordance with the stratified analysis decision tree, I conducted a crude analysis of 

the association between CAD and bicycle commuting (Aschengrau & Seage, 2014b). Then, I 
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conducted a stratified analysis that separated the crude data by level of potential effect 

modifier/confounder. To conduct the stratified analysis, I dichotomized the prevalence data for 

each potential effect modifier/confounder by splitting data at the median values of each variable. 

Effect modification was present if the percent difference between stratum-specific estimates was 

greater than 10%. (Aschengrau & Seage, 2014b). If the stratum-specific estimates were less than 

10% different, I evaluated confounding by statistically comparing the pooled estimate with the 

crude estimate using the Mantel-Haenszel Test (Aschengrau & Seage, 2014a). After identifying 

effect modifiers, I input the dichotomized variables into a latent class cluster analysis (LCA) to 

group census tracts with similar characteristics. Similar methods of dichotomization and LCA 

have been used in a study that evaluated the effect of the food environment, food security, 

income, and education on food acquisition and healthy shopping habits (Ma et al., 2018). 

The purpose of the LCA was to group census tracts by CAD health risk. This approach 

applies the precedent established by Wilson et al. (1998) who developed the Framingham risk 

score (FRS) to approximate CAD health risk. The FRS has been used by the National 

Cholesterol Education Program of the National Institute of Health as an “office-based approach 

to estimate and stratify an individual’s absolute short term risk of a CAD event,”  (National 

Institute of Health, 2001). The FRS has also been applied in Finnish studies that evaluate the 

association between bicycle commuting and CAD (Hu et al., 2007).  

The FRS has traditionally been calculated by accounting for smoking, diabetes, 

hypertension, and cholesterol levels (Wilson et al., 1998). My approach accounts for smoking, 

diabetes, obesity, and access to healthy food. As a population study, I did not have access to 

biomarker data on cholesterol levels or blood pressure measurements. I used obesity, in terms of 

body mass index (BMI > 30), as a proxy for these variables because greater obesity has been 
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associated with high LDL-C, low HDL-C, and high blood pressure (Hu et al., 2007). I also used 

USDA’s access to healthy food measurement as an indicator of hypertension. Proximity to 

supermarkets has been shown to increase healthy intake of fruits and vegetables and has  been 

associated with less obesity and hypertension (Morland et al., 2002, 2006). Access to healthy 

food has been especially important for the health of low-income communities where motor 

vehicle access and transportation options are limited (Mackett & Thoreau, 2015; Wang et al., 

2007). 

The FRS does not account for socioeconomic status (SES) or racial identity, which has 

been tied to SES in U.S. active transportation studies (Antonakos et al., 2020; Braun et al., 

2019). The Framingham study sample, which informed the calculation of the FRS, was taken 

from a Boston suburb where the majority of participants were white (Hu et al., 2007). However, 

my sample incorporates 12,320 census tracts across 50 U.S. cities, so the population represented 

by my sample was more diverse than the Framingham sample. For this reason, I considered 

variables of SES and racial identity, in addition to the health indicators traditionally used, when 

categorizing census tracts by CAD health risk. A study conducted in Evans County, Georgia 

found that racial identity, education, income, and occupation were associated with CAD 

prevalence (McDonough et al., 1965). I incorporated racial identity, education, income, and 

occupation as indicators of SES in my analysis. 

After using LCA to group census tracts with similar health risks and SES, I computed 

measures of association for each LCA cluster. Researchers evaluating CAD incidence typically 

derive logistic regressions to calculate prevalence odds ratios of the outcome to exposure risk 

(Celis-Morales et al., 2017; Riiser et al., 2018; Wilson et al., 1987). However, the data available 

for my study was CAD prevalence, not incidence. To calculate prevalence odds ratios, I 
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dichotomized CAD prevalence based on the median value (med=5.5). This approach was similar 

to a median regression, which was used to analyze health outcomes that would otherwise be 

highly skewed due to non-normal distributions (McGreevy et al., 2009).  

I derived logistic regressions of median CAD prevalence for each LCA cluster using the 

glm function in R version 3.6.3. Then, I computed prevalence odds ratios based on the beta 

coefficient of the regression model. Bicycle commuting rate was input to the model as a 

continuous variable. The prevalence odds ratios presented in the results represent the odds that a 

census tract will have CAD prevalence greater than 5.5 percent when bicycle commuting is 

present.  
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CHAPTER FOUR: RESULTS & DISCUSSION 

 

Research Question 1 

Five variables should be used to represent bicycle infrastructure when evaluating the 

association with bicycle commuting rates: access to public transit, bike lane supply, bike lane 

quality, bike network density, and bike path supply. Results of the bivariate correlations and 

principal components analysis are discussed in the following section.  

Bivariate Correlations  

To identify measures of bicycle infrastructure that were representative of bicycle 

commuting rates, I calculated bivariate correlations between bicycle commuting rates and eight 

infrastructure variables. Table 4.1 presents the bivariate correlations. 

Table 4.1: Descriptive statistics by infrastructure variable and their bivariate correlations with 

bicycle commuting rate 

  Variable Name Mean Median SD Min Max ρ 

  Bike lane supply  15.3 10.9 12.7 0.4 48.5  0.26 

  Bike path supply  10.0 8.4 6.8 0.0 29.6 -0.10 

  Bike lane quality  13.1 6.7 19.1 0.0 100  0.15 

  Bike path quality  43.5 39.6 25.3 0.0 96.4 -0.31 

  Bike network supply  392.9 402.3 260.7 13.1 986.6 -0.23 

  Bike network density  17.6 19.3 9.7 0.6 34.0  0.41 

  Bike network quality  23.2 22.9 11.5 3.5 57.9  0.51* 

  Access to public transit  13.1 8.3 13.2 0.0 57.8  0.67* 
                      *Note: p <0.001 

The bivariate correlations demonstrated statistically significant, positive correlations (p < 

0.001) between bicycle commuting rates and the following infrastructure variables: bike network 

quality, and access to public transit. The correlations between bicycle commuting rates, bike 

lane supply (0.3), and bike path supply were statistically consistent with Buehler and Pucher 

(2012) who found that bike lane supply was more strongly correlated with bicycle commuting 
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rates than bike path supply. However, the correlation between bike path supply and bicycle 

commuting rate was not statistically significant.  

This study is not the first to find a statistically insignificant relationship between bike 

paths and bicycle commuting, yet findings are mixed. Nelson and Allen (1997) and Buehler and 

Pucher (2012) found a statistically significant association while Dill and Carr (2003) found an 

insignificant association. There are a few reasons bike path supply may not be significantly 

correlated with bicycle commuting rates. The first being, bike path variables, in this study and in 

prior studies, have been defined as the number of miles of multi-use paths. Multi-use paths are 

created for multiple uses, not exclusively for bicycle commuters. They are often useful for 

increasing recreational activity and, in many cases, help support multi-modal transportation but 

they may not be the most efficient means for increasing bicycle commuting. In fact, some U.S. 

studies have demonstrated that bicycle commuters are more likely to use on-street facilities than 

off-street paths (Broach, Dill, and Gliebe 2012; Sener, Eluru, and Bhat 2009).  

However, paths reserved exclusively for bicyclists, also known as cycle tracks, are 

prevalent in European cities and are widely used by bicycle commuters as an efficient means of 

transport (Pucher, Dill, and Handy 2010; Pucher, Buehler, and Seinen 2011). The mileage of 

cycle tracks in the U.S. is too small to evaluate their efficacy across multiple cities, but the 

number of bicycle commuters using cycle tracks likely differs from the number of bicycle 

commuters using multi-use paths. Unless cycle tracks become more prevalent in the U.S., 

measures of bike lane supply may be more representative of bicycle commuting rates than 

measures of bike path supply. 

Similar to bike path supply, The correlation between bicycle commuting, bike path 

quality and bike lane quality were not statistically significant. The non-significant results may be 
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related to the measure of bicycle commuting used in this study which only accounts for existing 

bicycle commuters, not persons who may be interested in adopting the behavior. Pre-existing 

bicycle commuters may not be as concerned about bike lane quality as those interested in 

adopting the behavior (Garrard, Rose, and Lo 2008; Pucher and Buehler 2017; Rossetti et al. 

2018; Branion-Calles et al. 2019). Measuring a change in bicycle commuting rates over time 

may be more reflective of bike lane quality than the cross-sectional measure of bicycle 

commuting that was used in this study.  

Overall, the statistical significance between bicycle commuting and bike network 

variables was stronger than the statistical significance with bike path and bike lane variables. In 

fact, bike network quality and access to public transit had the strongest correlation with bicycle 

commuting rates (0.51, 0.67) followed by bike network density (0.41). Connected bike networks 

are more likely to increase bicycle commuting rates than the addition of disconnected bike paths 

or bike lanes (Buehler & Dill, 2016). The measures I used for the bike network variables in this 

study were equivalent to the bike network score and the transit score provided by 

PeopleForBikes BNA. The strong correlation between bicycle commuting rates, bike network 

quality, and access to public transit suggests that the BNA is a valuable measure of bicycle 

networks. The BNA scores' statistically significant correlation with commuting rates shows 

promise for practitioners looking for a tool to measure the strength of bicycle networks. 

I also used data from the BNA to measure bike network density and bike network supply, 

albeit these variables were calculated in conjunction with geographic and population data, not 

taken directly from the BNA. I found that the bivariate correlation between bicycle commuting 

rates and bike network density was strong, but not statistically significant. My results are 

consistent with Schoner and Levinson (2014) who found that the correlation between network 
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density and bicycle commuting rates was statistically significant while network size was not. My 

results, in conjunction with the results of Schoner and Levinson (2014), suggest that a variable 

measuring the density of the bike network per city area was more representative of bicycle 

commuting rates than a variable measuring the mileage of the bicycle network per population.  

Principal Components Analysis 

Bicycle network and supply variables have historically been evaluated in separate models 

of bicycle commuting rates (Buehler & Pucher, 2012; Dill & Carr, 2003; Schoner & Levinson, 

2014). These models have found that network and supply variables are both significantly 

associated with bicycle commuting rates. However, the relative significance is unclear because 

network and supply variables have historically been evaluated in separate models. In order to 

evaluate the effects of network and supply variables in a combined model, I performed a 

principal components analysis (PCA). I used PCA to assess multicollinearity between eight 

infrastructure variables. The factor results of the PCA helped determine which variables should 

be used to represent bicycle infrastructure. 

Table 4.2 presents the factor results from a PCA of all eight infrastructure variables. 

Three of the bicycle network variables exhibited multicollinearity– bike network supply, bike 

network density, and bike network quality. These three network variables also accounted for the 

greatest proportion of variance (0.28) in bicycle commuting rates. However, one of these 

network variables, bike network quality, factored onto multiple components, indicating 

additional multicollinearity with access to public transit. The multicollinearity between bike lane 

and bike path variables varied. Bike path supply and bike path quality exhibited multicollinearity 

while bike lane supply and bike lane quality were independent.  

Table 4.2: PCA of eight bicycle infrastructure variables1 
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  Variables F1 F2 F3 F4 F5 F6 

  Bike network supply 0.96      

  Bike network density 0.91      

  Bike network quality 0.70  0.50   0.50 

  Bike path supply  0.97     

  Bike path quality  0.79     

  Access to public transit   0.97    

  Bike lane supply    1.00   

  Bike lane quality     0.98  

  Proportion Variance 0.28 0.20 0.16 0.15 0.13 0.03 

            1 Loadings smaller than 0.5 are suppressed.  

Table 4.3 presents results from a PCA where bike network quality was excluded from the 

analysis. I excluded bike network quality from the PCA for two reasons: 1) it factored onto the 

first and third principal component, and 2) it had the weakest correlation among the variables in 

both the first and third principal component.  

Table 4.3: PCA of seven bicycle infrastructure variables1 

  Variables F1 F2 F3 F4 F5 

  Bike network supply 0.96     

  Bike network density 0.91     

  Bike path supply  0.96    

  Bike path quality  0.82    

  Bike lane supply   0.99   

 Access to public transit    0.98  

  Bike lane quality     0.98 

  Proportion Variance 0.25 0.23 0.17 0.16 0.15 
1 Loadings smaller than 0.5 are suppressed. 

After excluding bike network quality, the first principal component still accounted for the largest 

proportion of variance (0.25). Additionally, access to public transit factored independently and 

accounted for 16% of the variance. The three remaining network variables (bike network supply, 

bike network density, and access to public transit) accounted for a total of 41% variance in 

bicycle commuting rates, compared to 44% when bike network quality was included. However, 

multicollinearity still existed between some network variables and bike path variables. Bike 
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network supply and bike network density exhibited multicollinearity within the first principal 

component; bike path supply and bike path quality exhibited multicollinearity in the second 

component. 

Bike network supply and bike network density explained 25% of the variance, but 

multicollinearity prohibited simultaneous inclusion  in a regression model. Bike network density 

and bike network supply were both calculated using the measure of low-stress miles provided by 

PeopleForBikes, which led to multicollinearity. When bike network density was evaluated 

independently from bike network supply in the bivariate correlations, the correlation between 

bicycle commuting rates and bike network density was statistically significant (see Table 4.1), 

while the correlation between bicycle commuting rates and bike network supply was not. The 

statistical significance of bike network density may make it a more representative measure of 

bicycle networks. 

The variables in the second component, bike path supply and bike path quality, were both 

calculated from the mileage of bike paths provided by League of American Bicyclists, so they 

were highly dependent. The bike path variables explained a smaller proportion of variance than 

the bike network variables, and their correlations with bicycle commuting rates were not 

statistically significant (see Table 4.2). Although the correlation was not statistically significant 

in this study, bike path supply has historically been included in models of bicycle commuting 

rates (Buehler & Pucher, 2012; Dill & Carr, 2003; Nelson & Allen, 1997). The correlation 

between bike path supply and bicycle commuting rates was not statistically significant in this 

study, but the correlation was in the expected positive direction (see Table 4.1). Based on 

historical use and the positive correlation in this study, bike path supply may be a more 

representative measure of bike path infrastructure than bike path quality. 
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Overall, PCA revealed five independent principal components where each component 

accounted for at least 10% of the variance in bicycle commuting rates. Three variables were 

independent measures of bicycle infrastructure: access to public transit, bike lane supply, and 

bike lane quality; while four variables exhibited multicollinearity: bike network supply, bike 

network density, bike path supply, and bike path quality. Access to public transit, bike lane 

supply, and bike lane quality were independent measures because they factored onto their own 

components. Bike network variables (supply and density) and bike path variables were 

multicollinear because they factored onto the same component. To determine which of the 

multicollinear variables might best represent bicycle infrastructure in a model of bicycle 

commuting, I revisited the variables’ bivariate correlation. The bivariate correlations suggested 

that bike network density and bike path supply may be more representative of bicycle commuting 

than bike network supply or bike path quality .  

In summary, five infrastructure variables can be used as independent measures of bicycle 

infrastructure when evaluating bicycle commuting rates in U.S. cities: access to public transit, 

bike lane supply, bike lane quality, bike network density, and bike path supply. Access to public 

transit is a score provided by PeopleForBikes that indicates the number of major transit hubs 

accessible on the low stress network; bike lane supply is the number of miles of bike lanes per 

100,000 population; bike lane quality is the percent of buffered or protected lanes; bike network 

density is the miles of low stress roadway for cyclists per city area; and bike path supply is the 

number of miles of multi-use paths per 100,000 population. These five variables factor 

independently from one another, but the network variables, in particular, accounted for 41% of 

the variance in bicycle commuting rates. Furthermore, the network variables: access to public 

transit (ρ= 0.67), bike network quality (ρ= 0.51), and bike network density (ρ= 0.41) had the 
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strongest bivariate correlations with bicycle commuting rates. Evidence from the PCA in 

combination with the bivariate correlations suggest that network measures should be prioritized 

when using infrastructure variables to evaluate bicycle commuting rates.  

Research Question 2 

Three variables explained 70% of the variation in bicycle commuting rates. The three 

variables included cyclist safety, city employees working on bicycle projects, and access to 

public transit. When considering the relative significance of infrastructure and policy-related 

variables, neither stood out as more statistically significant. On the contrary, the results suggest 

that a combination of infrastructure and policy factors contribute to bicycle commuting rates. A 

detailed account of the results and a discussion of each variables’ association with bicycle 

commuting rates is provided in the following section.  

Stepwise Regression Models  

The regression model results are presented in Table 4.4. The average variance inflation 

factor (VIF) for all models was less than 2 which is much lower than the recommended VIF of 5 

(Sabouri et al. 2020). The low VIF of these models suggests that the procedure used to select 

infrastructure variables in research question one successfully reduced issues of multicollinearity. 

The remainder of this section will describe the detailed results of each model. 

Table 4.4: Multiple regression models of bicycle commuting rate 

 OLS regression of ln (bike commuters per 10,000 population) 

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

ln (bike lane supply)  0.29**   0.07  0.16    

ln (bike path supply) -0.11  -0.27 -0.24  -0.36**  

ln (bike network density)  0.06   0.10 -0.23  -0.16  

ln (access to public transit)  0.51**   0.33**  0.32**   0.21** 0.28** 

ln (bike lane quality)  0.10   0.03  0.08     

ln (complete streets policy)  -0.20 -0.17   -0.16 -0.24  

ln (city employees )   1.03**  0.82**    0.87**  0.74** 0.66** 
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ln (cycling interest groups)   1.10*  0.85    0.10    

ln (infrastructure budget)   0.47  0.09    0.27    

ln (sprawl index)     0.08  0.34    

ln (annual precipitation)     0.23  0.06    

ln (vehicle ownership)    -0.01  0.46    

ln (college student pop.)     1.01  0.78    

ln (cyclist safety)    -1.02** -0.78** -1.04** -0.80** 

Constant 1.69 3.32 2.87 2.48 0.99 7.33 4.44 

Observations 50 50 50 50 50 50 40 

F-statistic 7.79** 7.54** 7.06** 9.17** 11.96** 25.56** 29.27** 

Average VIF 1.2 1.1 1.6 1.9 1.5 1.6 - 

Adjusted R2 0.41 0.35 0.53 0.63 0.67 0.75 0.69 

Note: * or **; coefficient significance at the p<0.05 or p<0.01 

Model 1 evaluated the association between bicycle infrastructure variables and bicycle 

commuting rates. Bike lane supply and access to public transit had statistically significant 

associations with bicycle commuting in this model. As the mileage of bike lanes increased and 

accessibility to public transit improved, bicycle commuting increased. The association of bicycle 

commuting with bike path supply, bike network density, and bike lane quality were not 

statistically significant. Model 1 explained 41% of the variability in bicycle commuting rates 

(Adj R2= 0.41).  

Model 2 evaluated the association between policy-related variables and bicycle 

commuting rates. City employees working on bicycle projects and cycling interest groups had 

statistically significant associations with bicycle commuting. As the number of full-time city 

employees working on cycling issues increased and the number of LAB member organizations 

increased, bicycle commuting also increased. The association of bicycle commuting with 

complete streets policy score and bicycle infrastructure budget were not statistically significant. 

Model 2 explained 35% of the variability in bicycle commuting rates (Adj R2= 0.35).  

Model 3 was a stepwise regression that evaluated the association of bicycle commuting 

rates with both infrastructure and policy-related variables. Access to public transit and city 
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employees working on bicycle projects remained statistically significant in this model. As access 

to public transit improved and the number of city employees working on bicycle projects 

increased, bicycle commuting also increased. The association of bicycle commuting with bike 

path supply, bike lane supply, bike network density, bike lane quality, cycling interest groups, 

complete streets policy score, and bicycle infrastructure budget were not statistically significant. 

Model 3 explained 53% of the variability in bicycle commuting (Adj R2= 0.53).  

Model 4 was a stepwise regression that evaluated the association of bicycle commuting 

rates with covariates and infrastructure variables, while Model 5 was a stepwise regression that 

evaluated the association with covariates and policy-related variables. Access to public transit 

and city employees working on bicycle projects remained statistically significant in models 4 and 

5.  The adjusted R2 of both models increased after adding covariates to the models (Adj R2= 

0.63, Adj R2= 0.67). However, cyclist safety was the only covariate that had a statistically 

significant association with bicycle commuting rates. Sprawl index, annual precipitation, vehicle 

ownership, and college student population were not statistically significant in model 4 or 5.  

Model 6 was a backward elimination regression where all the variables listed in Table 4.5 

were input to the model. Table 4.5 provides descriptive statistics of each variable input to model 

6 and the corresponding correlation coefficients with bicycle commuting rates.  

Table 4.5: Descriptive statistics of 50 U.S. cities and their bivariate correlations with bicycle 

commuting rate 

  Variable Name Mean SD Min Max r 

  Bike lane supply  15.3 12.7 0.4 48.5    0.30* 

  Bike path supply  10.0 6.8 0.0 29.6  0.04 

  Bike lane quality  13.1 19.1 0.0 100  0.12 

  Bike network density  17.6 9.7 0.6 34.0    0.38* 

  Access to public transit  13.1 13.2 0.0 57.8    0.54* 

  Complete streets policy score 58.4 21.4 15.2 92.8 -0.22 

  Bicycle infrastructure budget  0.46 0.57 0.0 3.5  0.25 
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  City employees  1.2 1.7 0.0 10.4   0.59* 

  Cycling interest groups  0.3 0.3 0.0 0.9   0.37* 

  Cyclist safety  11.6 6.4 0.8 23.4  -0.58* 

  Sprawl index  101.7 30.2 41.0 203.4   0.33* 

  Annual precipitation  56.2 22.1 11.2 91.0  0.15 

  Vehicle ownership  7.8 4.0 4.2 29.9  0.23 

  College student population  7.6 1.1 5.6 9.4  0.13 
                      *Note:  p<0.05 

Six variables emerged from the backward elimination (see Table 4.4): cyclist safety, city 

employees working on bicycle projects, bike path supply, complete streets policy, access to 

public transit, and bike network density. The statistically significant variables included: access to 

public transit, bike path supply, city employees, and cyclist safety. Access to public transit, city 

employees, and cyclist safety had the strongest bivariate correlations with bicycle commuting 

(see Table 4.1) and were statistically significant in models 1-5. Although bike path supply was 

statistically significant in model 6, its bivariate correlation with bicycle commuting was 

equivalent to zero and it was not statistically significant in models 1-5. Model 6 explained 75% 

of the variability in bicycle commuting (Adj R2= 0.75). 

Regression Model Validation  

I evaluated the robustness of model 6 by excluding outlier cities in a re-estimation of the 

model. I used Cook’s distance (D) statistic to identify El Paso and Tucson as outlier cities 

(Stevens 1984). When El Paso and Tucson were excluded from the sample (n=48), city 

employees working on bicycle projects and cyclist safety remained statistically significant, but 

access to public transit was no longer statistically significant. The mixed significance of access 

to public transit after removing outlier cities raised questions of generalizability. A k-fold cross 

validation procedure was performed to assess generalizability. 

Model 7 was derived using a repeated k-fold cross validation procedure. The k-fold 

procedure evaluated the generalization error of over 16,000 potential regressions. Figure 4.1 
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summarizes the k-fold cross validation results. In figure 4.1, the estimated generalization error 

(RMSE) is plotted against the number of regression variables. Figure 4.1 depicts the estimated 

generalization error for the model with the lowest generalization error at each number of 

regression variables. The dashed horizontal line distinguishes models within one standard 

deviation of the lowest generalization error. The “X” marks the model with the lowest 

generalization error, and the “O” marks the model with the least number of variables and a 

generalization error that is within one standard deviation of the lowest error. A five variable 

model had the lowest generalization error (marked by ‘X’); a three-variable model had a 

generalization error within one standard deviation of the five-variable model (marked by ‘O’ in 

Figure 4.1). Table 4.4 lists the beta coefficients for the three-variable model (model 7).  I tested 

the predictive power of model 7 by comparing the estimated generalization error (RMSEestimate) 

with the actual generalization error (RMSEactual). The percent difference between RMSEactual 

(0.615) and RMSEestimate(0.572) was less than 10 percent.  

  
Number of Variables in the Model 

Figure 4.1: Estimated generalization error of k-fold cross validation regression models  
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The three variables retained in model 7 were: access to public transit, city employees 

working on bicycle projects, and cyclist safety. These three variables were consistent with the 

statistically significant variables in models 1-6 and had the strongest bivariate correlations with 

bicycle commuting (see Table 4.1). The results of model 7 were interpreted as follows: 1) a 10% 

higher access to transit score was associated with a 2.8% greater number of bike commuters per 

10,000 population; 2) a 10% greater number of employees working on cyclist issues per 100,000 

population was associated with a 6.6% greater number of bike commuters per 10,000 population, 

and 3) a 10% higher cyclist fatality rate per 10,000 commuter cyclists was associated with 8% 

fewer bike commuters per 100,000 population. 

Model 7  explained 70% of the variance in bicycle commuting rates while model 6, the 

backward elimination regression, explained 75% of the variance. The minor decrease in adjusted 

R2 values from model 6 to model 7 (0.75, 0.69) suggests that the three additional variables 

included in model 6 (bicycle path supply, complete streets policy, and bike network density) 

were minimally significant to the overall model of bicycle commuting rates. Scatterplots of the 

correlations between bicycle commuting and model 6 variables are shown in Figure 4.2. 
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Figure 4.2: Scatterplots of the correlation between bicycle commuting rates and model 6 variables  

 
Cyclist Fatalities City Employees working on Bicycle Projects 

Access to Public Transit Bike Path Supply 

Bike Network Density Complete Streets Policy 

The scatterplots demonstrate the strength of association between bicycle commuting and 

the three variables that were retained in model 7 (access to public transit, cyclist safety, and city 

employees working on bicycle projects). In contrast, the associations between bicycle 

commuting and three of the variables included in model 6 (bicycle path supply, complete streets 
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policy, and bike network density) were weak. The beta coefficient for bike path supply in model 

6 was statistically significant. However, in a scatterplot of bike path supply, it was apparent that 

the association had been calculated from a skewed sample. Bike path supply for all but three of 

the cities in the study sample was greater than 3 miles per 100,000 population. Cities with bike 

path supply less than 3 miles would need to be included in the study sample in order to determine 

a reliable estimate of the association between bike path supply and bicycle commuting rate. 

Overall, the scatterplots demonstrated weak associations between bicycle commuting and the 

variables that were excluded from model 7 which reinforces the validity of the variables that 

were retained in model 7.  In summary, three variables best predicted bicycle commuting rates in 

this study of the 50 largest U.S. cities: cyclist safety, city employees working on bicycle projects, 

and access to public transit.  

The covariate, cyclist safety, had the strongest association with bicycle commuting (ꞵ= -

0.80). Several transport models have cited safety as a primary barrier to the uptake of bicycle 

commuting (Aziz et al. 2018; Adam, Jones, and te Brömmelstroet 2020; Arellana et al. 2020). 

Policies that reduce roadway fatalities and support safe streets for cyclists, like Vision Zero and 

speed limit reductions, will help increase bicycle commuting rates (Prati et al. 2018).   

The policy-related variable, city employees working on bicycle projects, had the second 

strongest association with bicycle commuting (ꞵ= 0.66). In 1999, the ISTEA required each state 

DOT to have a bicycle and pedestrian coordinator, but it did not require a cyclist workforce 

(Pucher, Komanoff, and Schimek 1999). In recent years, bicycle and pedestrian coordinators 

have cited the number of employees working on bicycle projects as a top barrier for 

implementation of bicycle projects (Dill, Smith, and Howe 2017).  Support for bicycle projects is 
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needed from more than just one enthusiastic champion to increase bicycle commuting rates 

(Weber 2017; Assunçao-Denis and Tomalty 2019).  

The infrastructure variable, access to public transit, had the third strongest association 

with bicycle commuting (ꞵ= 0.28). A study conducted in the mid-Atlantic region of the U.S. 

supports the significance of access to public transit. The study found that public transit users 

reported less infrastructure barriers to bicycle commuting than non-transit users (Bopp, Gayah, 

and Campbell 2015). Transportation officials in large cities should focus on building robust bike 

networks with multi-modal transit connections.  

Cyclist safety, city employees working on bicycle projects, and access to public transit 

accounted for 70% of the variance in bicycle commuting rates. When considering the relative 

significance of infrastructure and policy-related variables, neither stood out as more statistically 

significant than another. On the contrary, the results suggest that a combination of infrastructure 

and policy factors contribute to bicycle commuting rates in large U.S. cities.  

Research Question 3 

The odds of living in a census tract with above average CAD prevalence (>5.5%) 

decreased by 60% (OR= 0.40) when the bicycle commuting rate was greater than zero. After 

controlling for socioeconomic status, race/ethnicity, and health risk factors within a latent class 

cluster analysis, the association between bicycle commuting and CAD prevalence was only 

statistically significant in census tracts with high socioeconomic status, predominately white 

race, and above average health. In census tracts with high SES and above average health, the 

odds of living in a census tract with above average CAD prevalence (>5.5%) decreased by 20% 

(AOR=0.80) when the bicycle commuting rate was greater than zero. Obesity and diabetes 

prevalence were the strongest effect modifiers of the association between bicycle commuting and 
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CAD prevalence. The percent difference between the stratified prevalence odds ratios with 

obesity and diabetes were 58% and 42%, respectively.  

Descriptive Analysis 

Bivariate correlations with coronary artery disease 

I investigated the association between bicycle commuting and coronary artery disease 

(CAD) alongside thirteen CAD risk factors. The thirteen CAD risk factors represented 

demographic, socioeconomic, and health risk factors. Table 4.6 lists descriptive characteristics of 

the census tract sample (n= 12,322) for each risk factor. The descriptive characteristics include 

the mean, median, standard deviation, and Pearson’s r correlation coefficient. The correlation 

coefficient was calculated from the association with CAD prevalence. 

Table 4.6: Descriptive characteristics by CAD risk factor and their bivariate correlations with CAD 

prevalence 

Potential Risk Factor Mean Med  SD  r1 

Bicycle Commuting (%) 1.2 0 2.2 −0.23 

Sex (% Male) 48.9 48.8 5.0 −0.14 

Age (% > 45) 36.6 36.3 10.5   0.44 

Married (%) 6.6 5.9 4.0   0.09 

White (%) 54.4 60.7 28.7 −0.28 

Black (%) 24.1 9.4 29.8   0.37 

Latinx (%) 26.8 16.3 26.2   0.03 

Household Income ($1K) 77.9 66.3 45.7 −0.49 

No College Education (%) 42.1 42.3 18.5   0.56 

Manual Labor Job (%) 8.9 8.1 5.5   0.25 

Healthy Food Access (%) 41.6 36.2 38.2   0.09 

Smoking (%) 18.1 17.2 6.3   0.58 

Obesity (%) 30.2 29.3 8.6   0.60 

Diabetes (%) 11.1 10.5 4.5   0.85 

Hypertension (%) 30.5 29.1 8.6   0.86 

1All Pearson r correlation coefficients significant at p<0.0001 
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The average bicycle commuting rate across the 12,322 census tract sample was 1.2% 

with a standard deviation of 2.2%. The median bicycle commuting rate was zero percent. There 

was a negative correlation between bicycle commuting rate and CAD prevalence; as bicycle 

commuting rate increased, CAD prevalence decreased (r=-0.23). The Pearson’s r correlation 

between CAD prevalence and bicycle commuting was greater than the Pearson’s r correlation 

between CAD prevalence and male sex, marital status, Latinx ethnicity, or food access. 

The demographic factors, age (% older than 45 years) and race (% white, % black), had 

greater Pearson’s r correlation with CAD prevalence than bicycle commuting. There was a 

positive correlation between age, Black race, and CAD prevalence. In other words, as the percent 

of census tract population older than 45 years increased and the percent of Black population 

increased, CAD prevalence also increased (r = 0.44, r = 0.37). In contrast, CAD prevalence 

decreased as the percent of White population increased (r = -0.28).  

The socioeconomic factors, household income, education, and occupation type, also had 

greater Pearson’s r correlation with CAD prevalence than bicycle commuting. There was a 

negative correlation between household income and CAD prevalence; as household income 

increased, CAD prevalence decreased (r =-0.49). There was a positive correlation between the 

percent of population with no college education, the percent with manual labor occupations, and 

CAD prevalence. As the percent of the population without a college education increased and the 

percent of the population with manual labor occupations increased, CAD prevalence also 

increased (r = 0.56, r = 0.25). 

The health risk factors, smoking, obesity, diabetes, and hypertension, had the strongest 

Pearson’s r correlation with CAD prevalence. As smoking prevalence, obesity, diabetes, and 

hypertension prevalence increased, CAD prevalence also increased (r = 0.58, r = 0.60, r = 0.85, r 
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= 0.86). The scatterplots in Figure 4.3 show the bivariate correlations between CAD prevalence 

and each risk factor. The Pearson’s r correlation coefficient is provided in the top left corner of 

each scatterplot and the scatterplots are ordered left to right from strongest correlation to weakest 

correlation.  

Figure 4.3: Scatterplots of the bivariate correlations between CAD prevalence and demographic, 

socioeconomic, and health risk factors 
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Hypertension, diabetes, obesity, and smoking had the highest Pearson’s r correlation 

coefficients with CAD prevalence, and they are well known risk factors of CAD from the 

Framingham Study (Friedman, 1994). Age and male sex were also identified as risk factors of 

CAD during the Framingham study (Jekel et al., 1996). However, the bivariate correlation 

between age and CAD prevalence in my study was lower than the correlation with education, 

income, or chronic disease. Additionally, the correlation between male sex and CAD prevalence 

was low in my study. Measuring male sex at a population level likely led to a low correlation 

since there was little variation in the percent of males at a population level. Indicators of social 

class like education, income, occupation, and race have also been associated with CAD and were 

associated with CAD prevalence in my study (Cassel, 1971; Marmot & Theorell, 1988; 

McDonough et al., 1965). Male sex, food access, marital status, and ethnicity were not correlated 

with CAD prevalence at a population level.  

 Bivariate correlations with obesity, diabetes, and hypertension 

The bivariate correlations graphed in Figure 4.4 explore obesity, diabetes, and 

hypertension as modifiers of the association between bicycle commuting and CAD prevalence. 

The first column of Figure 4.4 shows scatterplots of the bivariate correlations between bicycle 

commuting, obesity, diabetes, and hypertension prevalence. Bicycle commuting was negatively 

correlated with the three factors. The bivariate correlations between bicycle commuting and 

obesity (r = -0.23), bicycle commuting and diabetes (r= -0.25), and bicycle commuting and 

hypertension prevalence (r= -0.28) were similar to the correlation between bicycle commuting 

and CAD prevalence (r = -0.23). The remainder of the scatterplots in Figure 4.4 show the 

interactions between obesity and diabetes (r= 0.80), obesity and hypertension (r= 0.79), and 

diabetes and hypertension (r= 0.90). The strong correlations between obesity, diabetes, and 
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hypertension indicated high multicollinearity. The correlation coefficients depicted in Figure 4.4 

suggest that obesity, diabetes, and hypertension may modify the relationship between bicycle 

commuting and CAD prevalence.  

Figure 4.4: Scatterplots of the bivariate correlations between bicycle commuting rate, diabetes, 

hypertension, and obesity prevalence 

 

To further explore obesity, diabetes, and hypertension as mediating factors, I derived a 

regression model of CAD prevalence with bicycle commuting, obesity, diabetes, hypertension, 

and their interaction effects as the independent variables. The regression model output has been 

provided in Appendix B. The interaction effects between bicycle commuting, obesity, diabetes, 

and hypertension were statistically significant in the regression model, suggesting that there is a 

mediating relationship between bicycle commuting and the three variables. The following 
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section compares the mediating effects of obesity, diabetes, and hypertension with other CAD 

risk factors. 

Stratified Analysis 

I conducted a stratified analysis to evaluate the effects of modifiers and confounders on the 

association between bicycle commuting and CAD prevalence. The results were calculated with 

bicycle commuting considered as a protective factor against above average CAD prevalence. 

Results of the crude analysis are provided in Table 4.7. According to the crude analysis, the odds 

of living in a census tract with above average CAD prevalence decreased by 60% (OR= 0.40) 

when bicycle commuting was present. The thirteen CAD risk factors included in my study were 

evaluated as effect modifiers and confounders in Tables 4.8- 4.20.  

Table 4.7: Census tract CAD prevalence by bicycle commuting rate 

Exposure 
CAD < 

5.5% 

CAD > 

5.5% 
Total 

No bike commuting 2438 4071 6509 

Bike Commuting 3468 2345 5813 

Total 5906 6416 12322 

Prevalence odds ratio   0.40 

 

Results from analyzing male sex as a potential modifier or confounder are provided in 

Table 4.8. Male sex was neither an effect modifier nor a confounder because the prevalence odds 

ratios differed by less than 10% and the Mantel-Haenszel p-value was not statistically 

significant. Male sex is a risk factor of CAD and is commonly associated with bicycle 

commuting, so in a cohort or case-control study it would likely be an effect modifier (Donaire-

Gonzalez et al., 2015; Reis et al., 2013; Sallis et al., 2013). However, in an ecological study, such 

as this one, male sex was aggregated at a population level and was not an effect modifier. 
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Table 4.8: Census tract CAD prevalence by sex and bicycle commuting rate 

Percent male < 49% Percent male > 49% 

 CAD < 

5.5% 

CAD > 

5.5% 

Total  CAD < 

5.5% 

CAD > 

5.5% 

Total 

No bike 

commuting 

1194 2397 3591 No bike 

commuting 

1244 1674 2918 

Bike 

commuting 

1437 1157 2594 Bike 

commuting 

2031 1188 3219 

Total 2631 3554 6185 Total 3275 2862 6137 

Prevalence odds ratio    0.40 Prevalence odds ratio    0.43 8% difference 

 

Results from analyzing age as a potential modifier or confounder are provided in Table 

4.9. Age, and more specifically, the percent of the population older than 45 years of age, was an 

effect modifier because the stratified prevalence odds ratios differed by more than ten percent (Δ 

= 22%). The odds of living in a census tract with above average CAD prevalence decreased by 

53% (AOR=0.47) in census tracts where the majority of the population was older than 45 years 

and bicycle commuting was present. Age is a risk factor for CAD and is often associated with 

bicycle commuting rates (Donaire-Gonzalez et al., 2015; Reis et al., 2013; Sallis et al., 2013). 

Table 4.9: Census tract CAD prevalence by age and bicycle commuting rate 

Percent with age 45+ < 36% Percent with age 45+ > 36% 

 CAD < 

5.5% 

CAD > 

5.5% 

Total  CAD < 

5.5% 

CAD > 

5.5% 

Total 

No bike 

commuting 

1366 1610 2976 No bike 

commuting 

1072 2461 3533 

Bike 

commuting 

2220 989 3209 Bike 

commuting 

1248 1356 2604 

Total 3586 2599 6185 Total 2320 3817 6137 

Prevalence odds ratio    0.38 Prevalence odds ratio    0.47 22% difference 

 

Results from analyzing marital status as a potential modifier or confounder are provided 

in Table 4.10. Marital status was an effect modifier because the stratified prevalence odds ratios 

differed by more than ten percent (Δ = 35%). The odds of living in a census tract with above 



87 

average CAD prevalence decreased by 53% (AOR=0.47) in census tracts where a below average 

percentage of the population was married vs. 67% (AOR=0.33) in census tracts where an above 

average percentage of the population was married. Marriage can be an indicator of 

socioeconomic status and, in this case, appears to amplify the odds of CAD prevention from 

bicycle commuting (Donaire-Gonzalez et al., 2015; Kaplan & Keil, 1993; Orth-Gomér et al., 

2000). 

Table 4.10: Census tract CAD prevalence by marital status and bicycle commuting rate 

Percent married < 6% Percent married > 6% 

 CAD < 

5.5% 

CAD > 

5.5% 

Total  CAD < 

5.5% 

CAD > 

5.5% 

Total 

No bike 

commuting 

1438 1910 3348 No bike 

commuting 

1000 2161 3161 

Bike 

commuting 

1716 1082 2798 Bike 

commuting 

1752 1263 3015 

Total 3154 2992 6146 Total 2752 3424 6176 

Prevalence odds ratio    0.47 Prevalence odds ratio    0.33 35% difference 

 

Results from analyzing education as a potential modifier or confounder are provided in 

Table 4.11. Education, and more specifically, the percent of the population without a college 

education, was an effect modifier because the stratified prevalence odds ratios differed by more 

than ten percent (Δ = 36%). The odds of living in a census tract with above average CAD 

prevalence decreased by 38% (AOR=0.62) in census tracts where an above average percentage 

of the population was not college educated and bicycle commuting was present. Education is an 

indicator of socioeconomic status and college education has been positively associated with 

bicycle commuting(Stinson & Bhat, 2003; Tribby & Tharp, 2019; Wardman et al., 2007) (Cole-

Hunter et al., 2015b; Donaire-Gonzalez et al., 2015; Reis et al., 2013; Sallis et al., 2013). 

 



88 

Table 4.11: Census tract CAD prevalence by education and bicycle commuting rate 

Percent with no college education < 42% Percent with no college education > 42% 

 CAD < 

5.5% 

CAD > 

5.5% 

Total 

 

 CAD < 

5.5% 

CAD > 

5.5% 

Total 

No bike 

commuting 

1534 1067 2601 No bike 

commuting 

904 3004 3908 

Bike 

commuting 

2731 823 3554 Bike 

commuting 

737 1522 2259 

Total 4265 1890 6155 Total 1641 4526 6167 

Prevalence odds ratio    0.43 Prevalence odds ratio    0.62 36% difference 

 

Results from analyzing income as a potential modifier or confounder are provided in 

Table 4.12. Median household income was an effect modifier because the stratified prevalence 

odds ratios differed by more than ten percent (Δ = 20%). The odds of living in a census tract with 

above average CAD prevalence decreased by 50% (AOR=0.50) in census tracts where the 

median household income was less than $66,000 and bicycle commuting was present. Income is 

an indicator of socioeconomic status and has been associated with bicycle commuting rates 

(Kaplan & Keil, 1993; Stinson & Bhat, 2003; Tribby & Tharp, 2019; Wardman et al., 2007). 

Table 4.12: Census tract CAD prevalence by household income and bicycle commuting rate 

Median household income < 66.3K Median household income > 66.3K 

 CAD < 

5.5% 

CAD > 

5.5% 

Total  CAD < 

5.5% 

CAD > 

5.5% 

Total 

No bike 

commuting 

795 2911 3706 No bike 

commuting 

1643 1160 2803 

Bike 

commuting 

865 1590 2455 Bike 

commuting 

2603 755 3358 

Total 1660 4501 6161 Total 4246 1915 6161 

Prevalence odds ratio    0.50 Prevalence odds ratio    0.41 20% difference 

 

 Results from analyzing occupation as a potential modifier or confounder are provided in 

Table 4.13. Occupation, and more specifically, the percent of the population working a manual 

labor occupation, was an effect modifier because the stratified prevalence odds ratios differed by 
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more than ten percent (Δ = 61%). The odds of living in a census tract with above average CAD 

prevalence decreased by 68% (AOR=0.32) in census tracts where a below average percentage of 

the population works manual jobs vs. 40% (AOR=0.60) in census tracts where an above average 

percentage of the population works manual jobs. Manual labor can be an indicator of chronic 

stress and, in this case, appears to dampen the odds of prevention from bicycle commuting 

(Kaplan & Keil, 1993; Karasek et al., 1988; Marmot & Theorell, 1988; Timio et al., 1997). 

Table 4.13: Census tract CAD prevalence by occupation and bicycle commuting rate 

Percent with manual labor occupation < 8% Percent with manual labor occupation > 8% 

 CAD < 

5.5% 

CAD > 

5.5% 

Total  CAD < 

5.5% 

CAD > 

5.5% 

Total 

No bike 

commuting 

1268 1575 2843 No bike 

commuting 

1170 2496 3666 

Bike 

commuting 

2359 931 3290 Bike 

commuting 

1109 1414 2523 

Total 3627 2506 6133 Total 2279 3910 6189 

Prevalence odds ratio    0.32 Prevalence odds ratio    0.60 61% difference 

 

Results from analyzing ethnicity as a potential modifier or confounder are provided in 

Table 4.14. Ethnicity, and more specifically, the percent of the population with Latinx ethnicity, 

was an effect modifier because the stratified prevalence odds ratios differed by more than ten 

percent (Δ = 73%). The odds of living in a census tract with above average CAD prevalence 

decreased by 73% (AOR=0.27) in census tracts where a below average percentage of the 

population was Latinx vs. 41% (AOR=0.59) in census tracts where an above average percentage 

of the population was Latinx. Ethnicity can be an indicator of socioeconomic status and, in this 

case, appears to dampen the odds of prevention from bicycle commuting (Braun et al., 2019; 

MacMahon & Trichopoulos, 1996; Sallis et al., 2013). 
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Table 4.14: Census tract CAD prevalence by ethnicity and bicycle commuting rate 

Percent Latinx < 16% Percent Latinx > 16% 

 CAD < 

5.5% 

CAD > 

5.5% 

Total  CAD < 

5.5% 

CAD > 

5.5% 

Total 

No bike 

commuting 

1108 2153 3261 No bike 

commuting 

1330 1918 3248 

Bike 

commuting 

1890 1005 2895 Bike 

commuting 

1578 1340 2918 

Total 2998 3158 6156 Total 2908 3258 6166 

Prevalence odds ratio    0.27 Prevalence odds ratio    0.59 73% difference 

 

Results from analyzing race as a potential modifier or confounder are provided in Table 

4.15. Race, and more specifically, the percent of the population who are white, was an effect 

modifier because the stratified prevalence odds ratios differed by more than ten percent (Δ = 

13%). The odds of living in a census tract with above average CAD prevalence decreased by 

55% (AOR=0.45) in census tracts where a below average percentage of the population was white 

and bicycle commuting was present. Race can be an indicator of socioeconomic status and, in 

this case, appears to dampen the odds of prevention from bicycle commuting (Braun, 2021, p. 

202; McDonough et al., 1965; Sallis et al., 2013). 

Table 4.15: Census tract CAD prevalence by race and bicycle commuting rate 

Percent white < 61% Percent white > 61% 

 CAD < 

5.5% 

CAD > 

5.5% 

Total  CAD < 

5.5% 

CAD > 

5.5% 

Total 

No bike 

commuting 

1149 2400 3549 No bike 

commuting 

1289 1671 2960 

Bike 

commuting 

1348 1261 2609 Bike 

commuting 

2120 1084 3204 

Total 2497 3661 6158 Total 3409 2755 6164 

Prevalence odds ratio    0.45 Prevalence odds ratio    0.39 13% difference 

 

Results from analyzing food access as a potential modifier or confounder are provided in 

Table 4.16. Food access, and more specifically, the percent of the population with access to 
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healthy food, was an effect modifier because the stratified prevalence odds ratios differed by 

more than ten percent (Δ = 63%). The odds of living in a census tract with above average CAD 

prevalence decreased by 43% (AOR=0.57) in census tracts where the percentage of the 

population with healthy food access was below average vs. 71% (AOR=0.29) in census tracts 

where the percentage of the population with healthy food access was above average. Access to 

healthy food can be an indicator of obesity and appears to amplify the odds of prevention from 

bicycle commuting (Mackett & Thoreau, 2015; Morland et al., 2002, 2006; M. C. Wang et al., 

2007). 

Table 4.16. Census tract CAD prevalence by food access and bicycle commuting rate 

Percent with access to healthy food < 36% Percent with access to healthy food > 36% 

 CAD < 

5.5% 

CAD > 

5.5% 

Total  CAD < 

5.5% 

CAD > 

5.5% 

Total 

No bike 

commuting 

1529 2294 3823 No bike 

commuting 

909 1777 2686 

Bike 

commuting 

1266 1076 2342 Bike 

commuting 

2202 1269 3471 

Total 2795 3370 6165 Total 3111 3046 6157 

Prevalence odds ratio    0.57 Prevalence odds ratio    0.29 63% difference 

 

Results from analyzing smoking as a potential modifier or confounder are provided in 

Table 4.17. Smoking prevalence was an effect modifier because the stratified prevalence odds 

ratios differed by more than ten percent (Δ = 45%). The odds of living in a census tract with 

above average CAD prevalence decreased by 34% (AOR=0.66) in census tracts where smoking 

prevalence was above average and bicycle commuting was present. Smoking is a risk factor of 

CAD and dampens the odds of prevention from bicycle commuting (Donaire-Gonzalez et al., 

2015; Kaczynski, 2008; Wilson et al., 1998). 
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Table 4.17: Census tract CAD prevalence by smoking and bicycle commuting rate 

Smoking prevalence < 17% Smoking prevalence > 17% 

 CAD < 

5.5% 

CAD > 

5.5% 

Total  CAD < 

5.5% 

CAD > 

5.5% 

Total 

No bike 

commuting 

1712 1297 3009 No bike 

commuting 

726 2774 3500 

Bike 

commuting 

2904 923 3827 Bike 

commuting 

564 1422 1986 

Total 4616 2220 6836 Total 1290 4196 5486 

Prevalence odds ratio    0.42 Prevalence odds ratio     0.66 45% difference 

 

Results from analyzing obesity as a potential modifier or confounder are provided in 

Table 4.18. Obesity prevalence was an effect modifier because the stratified prevalence odds 

ratios differed by more than ten percent (Δ = 58%). The odds of living in a census tract with 

above average CAD prevalence decreased by 21% (AOR=0.79) in census tracts where obesity 

prevalence was above average and bicycle commuting was present. Obesity is a risk factor of 

CAD and dampens the odds of prevention from bicycle commuting (Friedman, 1994; Huy et al., 

2008; Lusk et al., 2010; Ming Wen & Rissel, 2008). 

Table 4.18: Census tract CAD prevalence obesity and bicycle commuting rate 

Obesity prevalence < 29% Obesity prevalence > 29% 

 CAD < 

5.5% 

CAD > 

5.5% 

Total  CAD < 

5.5% 

CAD > 

5.5% 

Total 

No bike 

commuting 

1390 1010 2400 No bike 

commuting 

1048 3061 4109 

Bike 

commuting 

2836 892 3728 Bike 

commuting 

632 1453 2085 

Total 4226 1902 6128 Total 1680 4514 6194 

Prevalence odds ratio    0.43 Prevalence odds ratio    0.79 58% difference 

 

Results from analyzing diabetes as a potential modifier or confounder are provided in 

Table 4.19. Diabetes prevalence was an effect modifier because the stratified prevalence odds 

ratios differed by more than ten percent (Δ = 42%). The odds of living in a census tract with 
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above average CAD prevalence decreased by 27% (AOR=0.73) in census tracts where diabetes 

prevalence was above average and bicycle commuting was present. Diabetes is a risk factor of 

CAD and dampens the odds of prevention from bicycle commuting (Friedman, 1994; Huy et al., 

2008; Pucher, Buehler, et al., 2010a; Wilson et al., 1998). 

Table 4.19: Census tract CAD prevalence by diabetes and bicycle commuting rate 

Diabetes prevalence < 11% Diabetes prevalence > 11% 

 CAD < 

5.5% 

CAD > 

5.5% 

Total  CAD < 

5.5% 

CAD > 

5.5% 

Total 

No bike 

commuting 

1717 779 2496 No bike 

commuting 

721 3292 4013 

Bike 

commuting 

2958 639 3597 Bike 

commuting 

510 1706 2216 

Total 4675 1418 6093 Total 1231 4998 6229 

Prevalence odds ratio    0.48 Prevalence odds ratio    0.73 42% difference 

 

Results from analyzing hypertension as a potential modifier or confounder are provided 

in Table 4.20. Hypertension prevalence was an effect modifier because the stratified prevalence 

odds ratios differed by more than ten percent (Δ = 17%). The odds of living in a census tract with 

above average CAD prevalence decreased by 56% (AOR=0.44) in census tracts where 

hypertension prevalence was above average and bicycle commuting was present. Hypertension is 

a risk factor of CAD and dampens the odds of prevention from bicycle commuting (Friedman, 

1994; Hu et al., 2002; Huy et al., 2008; Wilson et al., 1998). 

Table 4.20: Census tract CAD prevalence by hypertension and bicycle commuting rate 

Hypertension prevalence < 29% Hypertension prevalence > 29% 

 CAD < 

5.5% 

CAD > 

5.5% 

Total  CAD < 

5.5% 

CAD > 

5.5% 

Total 

No bike 

commuting 

673 558 1231 No bike 

commuting 

1765 3513 5278 

Bike 

commuting 

1185 362 1547 Bike 

commuting 

2283 1983 4266 

Total 1858 920 2778 Total 4048 5496 9544 
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Prevalence odds ratio    0.37 Prevalence odds ratio    0.44 17% difference 

 

Table 4.21 orders the stratified prevalence odds ratios from largest effect modifier to 

smallest effect modifier. The table also lists whether the effect modifier exhibits synergy or 

antagonism with bicycle commuting. Effect modifiers that exhibit synergy work together with 

bicycle commuting to decrease the odds of CAD prevalence, while effect modifiers that exhibit 

antagonism work against bicycle commuting to increase the odds of CAD prevalence 

(Aschengrau & Seage, 2014b).  

Table 4.21: Effect modifiers of the association between census tract CAD prevalence and bicycle 

commuting rate 

Effect Modifier 

Adjusted Prevalence 

odds ratios 
Classification 

Below 

median 

Above 

median 

Obesity Prevalence (%) 0.43 0.79 antagonism 

Diabetes Prevalence (%) 0.48 0.73 antagonism 

Smoking Prevalence (%) 0.42 0.66 antagonism 

Manual Labor Job (%) 0.32 0.60 antagonism 

Latinx (%) 0.27 0.59 antagonism 

Healthy Food Access (%) 0.57 0.29 synergy 

No College Education (%) 0.43 0.62 antagonism 

Median Income ($1K) 0.50 0.41 synergy 

Older than 45 (%) 0.38 0.47 antagonism 

Married (%) 0.47 0.33 synergy 

White (%) 0.45 0.39 synergy 

Hypertension Prevalence (%) 0.37 0.44 antagonism 

 

Obesity, diabetes, and smoking prevalence were the greatest effect modifiers of the 

association between bicycle commuting and CAD prevalence. In general, the chronic disease 

effect modifiers (obesity, diabetes, smoking, and hypertension) exhibited antagonism which 

means they worked against bicycle commuting to increase the odds of CAD prevalence. 
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Likewise, the effect modifiers that were indicators of low socioeconomic status (manual labor 

occupation, Latinx, and no college education) exhibited antagonism. In contrast, the effect 

modifiers that were indicators of high socioeconomic status (income, married, and white) 

exhibited synergism which means they worked together with bicycle commuting to lower the 

odds of disease prevalence. 

Latent Class Cluster Analysis 

The stratified analysis revealed 12 effect modifiers: age, education, marital status, 

income, occupation type, race, ethnicity, food access, smoking prevalence, obesity prevalence, 

diabetes prevalence, and hypertension prevalence. When I performed a latent class cluster 

analysis from the 12 effect modifiers, the census tracts were split into five clusters. Appendix B 

provides a multi-dimensional scaling plot that demonstrates the distance between the clusters. 

Table 4.22 lists the average characteristics of each cluster.   

Table 4.22: Average census tract demographics, socioeconomics, and health risk factors by LCA 

cluster 

 

Census Tract 

Characteristics 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

 (n=4146) (n=2736) (n=2015) (n=1735) (n=1690) 

Bicycle Commuting (%) 1.8 0.7 0.6 1.0 1.2 

Sex (% Male) 49.2 49.8 46.3 49.8 48.8 

Age (% > 45) 38.8 32.2 37.4 35.2 38.8 

Married (%) 5.5 6.6 8.0 5.5 8.6 

White (%) 74.4 55.5 14.2 69.9 35.5 

Black (%) 6.9 18.3 74.9 15.0 23.9 

Latinx (%) 14.0 54.7 10.1 25.8 34.2 

Median Income ($1K) 89.4 36.1 30.8 55.5 57.1 

No College Education (%) 23.7 61.1 55.4 40.2 42.8 

Manual Labor Job (%) 4.6 15.1 8.3 9.5 9.6 

Healthy Food Access (%) 40.8 45.2 42.7 62.0 15.2 

Smoking Prevalence (%) 12.3 22.5 25.9 18.2 15.7 

Obesity Prevalence (%) 22.5 36.2 41.7 30.3 25.6 
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Diabetes Prevalence (%) 7.2 13.7 16.9 9.5 11.5 

Hypertension  Prevalence(%) 24.2 32.9 42.7 28.9 29.1 

 

Figure 4.5 provides a visualization of cluster characteristics. In Figure 4.5, there is a 

sliding bar for each effect modifier. The position of the marker on the sliding bars represents the 

percentage of census tracts (0-100%), within each cluster, that has above median prevalence of 

the corresponding characteristic. Appendix B provides a table with the percentages represented 

in Figure 4.5. Effect modifiers are organized in Figure 4.5 by indicators of socioeconomic status, 

race/ethnicity, and CAD health status. 

 

Figure 4.5: Percent of census tracts with above median effect modifier prevalence by LCA cluster 

On average, the census tracts in cluster 1 (n=4146) had populations that were college 

educated (x̅ = 76%), white (x̅ = 74%), and high income (Med = $89,000); the average prevalence 

of smoking (x̅ = 12%), obesity (x̅ = 22%), and diabetes (x̅ = 7%) were lower than other clusters. 
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Overall, cluster 1 includes census tracts with high SES, above average white race, and the best 

health indicators.  

On average, the census tracts in cluster 2 (n=2736) had populations that were not college 

educated (x̅ = 61%), Latinx (x̅ = 55%), and low-income (Med = $36,000) with an above average 

percentage of manual labor jobs (x̅ = 15%); the prevalence of smoking (x̅ = 23%), obesity (x̅ = 

36%), and diabetes (x̅ = 14%) were higher than average.  Overall, cluster 2 includes census tracts 

with low SES, above average Latinx ethnicity, and below average health indicators.  

On average, the census tracts in cluster 3 (n=2015) had populations that were not college 

educated (x̅ = 55%), black (x̅ = 75%), and low-income (Med = $31,000); the average prevalence 

of smoking (x̅ = 26%), obesity (x̅ = 42%), and diabetes (x̅ = 17%) were the highest compared to 

other clusters. Overall, cluster 3 includes census tracts with low SES, above average black race, 

and the worst health indicators.  

The average characteristics of cluster 4 were less extreme than clusters 1, 2, or 3. On 

average, the census tracts in cluster 4 (n=1735) had populations that were less college educated 

(x̅ = 60%), less white (x̅ = 70%), and lower income (Med= $55,000) than cluster 1; but more 

educated, more white, and higher income than clusters 2 and 3. The prevalence of obesity (x̅ = 

30%), smoking (x̅ = 18%), and diabetes (x̅ = 10%) were higher than cluster 1, but lower than 

clusters 2 and 3. Overall, cluster 4 includes census tracts with middle SES, above average white 

race, and average health indicators.  

Like cluster 4, the average characteristics of cluster 5 (n=1690) were less extreme than 

those in clusters 1, 2, or 3. On average, the census tracts in cluster 5 had populations that were 

less college educated (x̅ = 57%), less white (x̅ = 36%), lower income (Med= $57,000) and more 

Latinx (x̅ = 34%) than cluster 1, but less Latinx than cluster 2. The prevalence of obesity (x̅ = 
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26%) and smoking (x̅ = 16%) were higher than cluster 1, but lower than clusters 2, 3, and 4. The 

prevalence of diabetes (x̅ = 12%) was higher than cluster 1, but lower than clusters 2 and 3. 

Overall, cluster 5 includes census tracts with middle SES and average health indicators.  

Age was an effect modifier in addition to those presented in Figure 4.5. However, age did 

not correlate with the other effect modifiers in the LCA. For this reason, the five clusters were 

divided into two subgroups based on age. The five clusters were split into two subgroups by: 

census tracts where the percent of population older than 45 years was above the median, and 

census tracts where the percent of population older than 45 years was below the median. The age 

groups were split at 45 years in accordance with American College of Sports Medicine CAD risk 

factor thresholds where individuals older than 45 are at higher risk of developing CAD (ACSM, 

2014). The five clusters and two subgroups within each cluster resulted in ten census tract 

groups. Appendix B provides a table with the average characteristics of each census tract group. 

Measures of Association 

Prevalence odds ratios measuring the association between bicycle commuting and CAD 

prevalence are provided in Table 4.23 by cluster and age group. The prevalence odds ratio (OR) 

represents the odds that a census tract will have CAD prevalence greater than 5.5% when bicycle 

commuting is not present.   
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Table 4.23:  Prevalence odds ratios representing the odds that a census tract will have CAD 

prevalence greater than 5.5% when bicycle commuting rate is zero 

ID Majority Characteristics 
Sample 

Size 

Odds  

Ratio 

# 
Socioeconomic 

Status 

Race/  

Ethnicity 

Health 

Status 

Age  

Group 
(n) (95% CI) 

1 High  

(Income, M=89K) 

White  

(x̅ =74%) 

above 

average 

>45 2497 1.24 

(1.17, 1.31) 

    <45 1649 1.23 

(1.07, 1.47) 

2 Low 

(Income, M=36K)  

Latinx  

(x̅ =55%) 

below 

average 

>45 749 0.96 

(0.71, 1.18) 

    <45 1987 1.04 

(0.97, 1.11) 

3 Low  

(Income, M=31K) 

Black  

(x̅ =75%) 

below 

average 

>45 1064 1.01 

(0.81, 1.17) 

    <45 951 1.00 

(0.90, 1.11)  

4 Middle 

(Income, M=56K)  

White  

(x̅ =70%) 

average >45 804 1.02 

(0.95, 1.10) 

    <45 931 1.02 

(0.95, 1.11) 

5 Middle  

(Income, M=57K)   

White, x̅ =36% 

Latinx, x̅ =34% 

Black, x̅ =24% 

average >45 1023 0.98 

(0.90, 1.06) 

    <45 667 1.08 

(1.00, 1.18)  

  

Cluster 1 was the only cluster where the prevalence odds ratio was statistically 

significant. Cluster 1 includes census tracts with high SES, an above average percentage of white 

population, and above average health status. These results support the results from the stratified 

analysis. White race and high-income worked synergistically with bicycle commuting to reduce 

the odds of CAD prevalence while poor health worked antagonistically to increase the odds of 

CAD prevalence.  

The strength of association between bicycle commuting rate and CAD prevalence varied 

by SES and health status. The association was only statistically significant in census tracts 
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where: 1) SES was high, and 2) health indicators (e.g., obesity, smoking, diabetes) were above 

average. The census tracts with high SES and above average health indicators also had an above 

average white population. In other words, the census tract populations with statistically 

significant associations between bicycle commuting and CAD were generally affluent, healthy, 

and predominately white. 

These results are consistent with European studies. In the United Kingdom (UK), bicycle 

commuting was associated with a lower risk of CAD (Celis-Morales et al., 2017), and the 

majority of bicycle commuters in the study sample were white (96%) with higher income, lower 

obesity, and lower diabetes than other commuter types (Celis-Morales et al., 2017). More 

specifically, bicycle commuters had lower prevalence of obesity and diabetes when compared to 

walking commuters and non-active commuters (Celis-Morales et al., 2017). Bicycle commuters 

also had the lowest risk of CAD mortality and CAD incidence (Celis-Morales et al., 2017). The 

results of Celis-Morales et al. (2017) are similar to my study because of the associations between 

bicycle commuting, income, health risk, and race. However, Celis-Morales et al. (2017) 

conducted a cohort study of individuals rather than an ecologic study of populations. Therefore, 

Celis-Morales et al. (2017) study provided evidence of causality, whereas the design of my study 

does not. A Swedish case-control study also provided evidence of causality because bicycle 

commuters had a lower risk of heart attack than non-active commuters (Wennberg et al., 2006). 

My study did not assess heart attack because it is a measure of CAD incidence not CAD 

prevalence, but it is important to note that European studies have found associations between 

bicycle commuting and both incidence and prevalence.  

Another study, conducted in Norway, examined the association between bicycle 

commuting and CAD risk factors within a multi-ethnic, low SES population (Riiser et al., 2018). 
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This cross-sectional study differed from Celis-Morales et al. (2017) and Wennberg et al. (2006) 

because a low SES, multi-ethnic population was intentionally selected for the study sample. The 

Norwegian study found that bicycle commuters in the low SES population had lower odds of 

diabetes and lower risk factors for CAD than those who did not actively commute (Riiser et al., 

2018). I selected my sample based on the most populous U.S. cities, not based on SES or 

ethnicity, so our results did not indicate a statistically significant association within low SES 

populations. If I had designed the study to evaluate associations within low SES populations, I 

may have seen different results. 

In my study, the average percentage of bicycle commuters within the low SES cluster (x̅ 

=0.6%) was half the average of the overall sample (x̅ =1.2%), and one-third the average of the 

high SES cluster (x̅ =1.8%). In other words, there was a significantly lower number of bicycle 

commuters in the low SES populations than in the high SES population. A study conducted 

across 22 U.S. cities also found that the bicycle commuting rate was low within “disadvantaged” 

census tracts (Braun, 2021). Because high income and white race were synergistic effect 

modifiers in my study, evaluating the association between bicycle commuting and CAD 

prevalence at a population level likely masked any positive associations within the low SES 

census tracts.  

In my study, bicycle commuting rates were lower among low SES populations than 

among high SES populations. Furthermore, obesity and diabetes prevalence were above average 

in the low SES populations. Future research would benefit from examining the association 

between U.S. bicycle commuting rates and CAD, specifically in low SES populations. Likewise, 

future researchers should study the factors associated with bicycle commuting in low SES 

populations. A recent study suggested that bicycle infrastructure was not as strongly associated 
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with bicycle commuting in “disadvantaged” census tracts as it was within “advantaged” census 

tracts (Braun, 2021). Non-infrastructure factors like equity goals in planning, planning 

representation, advocacy representation, public involvement and social norms may have a 

significant effect on bicycle commuting in low SES populations and should be evaluated in 

future research (Braun et al., 2019).  
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CHAPTER FIVE: CONCLUSIONS, IMPLICATIONS & CONTRIBUTIONS 

 

Conclusions  

This research aimed to understand the infrastructure and policy factors associated with 

bicycle commuting rates in U.S. cities and evaluated the association between bicycle commuting 

rates and heart disease prevalence by census tract. I would recommend five actions based on the 

results of this study: 1) decrease cyclist fatalities, 2) increase bike network density, 3) improve 

bike access to public transit, 4) investigate barriers to bike commuting in low-income 

communities, and 5) build partnerships and capacity for active transportation in low-income 

communities. Appendix C provides an infographic that summarizes these five actions. I 

recommend these actions based on a culmination of results from research question 1, 2, and 3.  

In the remainder of this section, I have summarized the results of each research question and 

explain how the results from each question support the five recommended actions.  

Research Question 1 

The first research question asked, “What variables should be used to quantitatively 

measure bicycle infrastructure when evaluating the association with U.S. bicycle commuting 

rates?” Based on the findings of this study, five variables can be used as independent measures 

of bicycle infrastructure: access to public transit, bike lane supply, bike lane quality, bike 

network density, and bike path supply. Table 5.1 summarizes the units of each variable and the 

corresponding data sources. More importantly, network measures should be prioritized when 

using infrastructure to evaluate bicycle commuting rates. Three network measures had the 

strongest correlations with bicycle commuting rates: access to public transit, bike network 
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quality, and bike network density. Two of the recommended actions are supported by these 

findings- increase bike network density and improve bike access to public transit.  

Table 5.1: Five variables used to quantitatively measure bicycle infrastructure when evaluating the 

association with U.S. bicycle commuting rates 

Variable Name Units Source 

Bike lane supply Miles of bike lanes in city per 100,000 

population 

League of American 

Bicyclists (LAB) 

Benchmarking Report 

(K. McLeod et al., 2019) 
Bike path supply Miles of paved multi-use paths in city per 

100,000 population 

Bike lane quality Percent of bike lanes that are buffered or 

protected 

Bike network density Miles of low stress roadway for cyclists per 

city area 

Bicycle Network 

Analysis (Bicycle 

Network Analysis 

[Data], 2020) 
Access to public transit Score of major transit hubs accessible on 

the low stress bike network 

 

Research Question 2 

The second research question asked, “How much of the variation in U.S. bicycle 

commuting rates can be explained by bicycle infrastructure and policy measures?” Research 

question two also included a sub-question asking, “What is the relative significance of bicycle 

infrastructure versus policy measures when evaluating their association with U.S. bicycle 

commuting rates?” Through a series of stepwise regression models and a k-fold cross validation 

procedure, I found that three variables explained 70% of the variation in bicycle commuting 

rates. The three variables included: cyclist safety, city employees working on bicycle projects, 
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and access to public transit. Table 5.2 summarizes the units of the three variables and their 

corresponding data sources. 

When considering the relative significance of infrastructure and policy-related variables, 

neither stood out as more statistically significant. On the contrary, the results suggest that a 

combination of infrastructure and policy factors contribute to U.S. bicycle commuting rates. For 

example, of the three variables explaining 70% of the variation in bicycle commuting rate, city 

employees working on bicycle projects was considered a policy-relevant variable, access to 

public transit was considered an infrastructure variable, and cyclist safety was considered a 

covariate. Cyclist safety had the strongest association with bicycle commuting rate (ꞵ= -0.80), 

followed by city employees working on bicycle projects (ꞵ= 0.66), and finally access to public 

transit (ꞵ= 0.28). Three of the recommended actions are supported by these findings- decrease 

cyclist fatalities, increase bike access to public transit, and build partnerships.  

Table 5.2: Three variables explained 70% of the variation in U.S. bicycle commuting rates 

Variable Name Units Source 

Cyclist safety State data: three-year average number 

of bicyclist fatalities per 10,000 

bicycle commuters 

USDOT Fatality Analysis 

Reporting System 2015-2017, 

averages (Fatality Analysis 

Reporting System [CSV Data 

File], 2017) 

City employees working on 

bicycle projects 

Number of full-time city employees 

working on bike or pedestrian issues 

per 100,000 population 

LAB Benchmarking Report     

(K. McLeod et al., 2019) 

Access to public transit Score of major transit hubs accessible 

on the low stress bike network 

Bicycle Network Analysis 

(Bicycle Network Analysis 

[Data], 2020) 
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Research Question 3 

The third research question asked, “What is the significance of association between U.S. 

bicycle commuting rates and heart disease prevalence, at the census tract level, when accounting 

for heart disease risk factors?” Research question three also included a sub-question asking, 

“How much do obesity, diabetes, and hypertension modify the association?” I calculated the 

crude prevalence odds ratio and adjusted prevalence odds ratios of the association between 

bicycle commuting rate and CAD prevalence to answer these questions. Prevalence odds ratios 

were calculated for census tracts where CAD prevalence was greater than 5.5% versus census 

tracts where CAD prevalence was less than 5.5%. The benchmark of 5.5% was chosen because 

the median CAD prevalence across all census tracts (n= 12,322) was 5.5%. Bicycle commuting 

rate was considered the risk factor of interest where census tracts with a bicycle commuting rate 

of zero percent were compared to census tracts with a bicycle commuting rate greater than zero 

percent. In other words, the prevalence odds ratios calculated in this study represent the odds that 

a census tract will have CAD prevalence greater than 5.5% when the bicycle commuting rate is 

zero percent.  

There were 12 effect modifiers of the association between bicycle commuting and CAD 

prevalence. Obesity and diabetes prevalence were the strongest effect modifiers of the 

association. The percent difference between the stratified prevalence odds ratios for obesity and 

diabetes prevalence were 58% and 42%, respectively. In census tracts with above average 

obesity prevalence (> 29%), the odds of living in a census tract with above average CAD 

prevalence (> 5.5%) will decrease by 21% (OR= 0.79) when the bicycle commuting rate is 

greater than zero. In census tracts with above average diabetes prevalence (> 11%), the odds of 
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living in a census tract with above average CAD prevalence (> 5.5%) will decrease by 27% 

(OR= 0.73) when the bicycle commuting rate is greater than zero. In other words, both obesity 

and diabetes work against bicycle commuting as effect modifiers and ultimately increase a 

census tract’s odds of CAD prevalence. Overall, the statistical significance of the association 

between bicycle commuting rates and CAD prevalence (OR= 0.40) is reduced in census tracts 

with high prevalence of obesity (OR= 0.79) and diabetes (OR= 0.73).  

In this study, the crude prevalence odds ratio was calculated as 0.40. The crude 

prevalence odds ratio can be interpreted as, the odds of living in a census tract with above 

average CAD prevalence (> 5.5%) will decrease by 60% (OR= 0.40) when the bicycle 

commuting rate is greater than zero. The adjusted prevalence odds ratio accounted for heart 

disease risk factors like socioeconomic status, race, and health status. In this study, the adjusted 

prevalence odds ratio was calculated as 0.80 within predominately affluent, healthy, and white 

census tracts. The adjusted prevalence odds ratio can be interpreted as, the odds of living in a 

census tract with above average CAD prevalence (> 5.5%) will decrease by 20% (AOR=0.80) 

when the bicycle commuting rate is greater than zero. The adjusted prevalence odds ratio was 

only statistically significant in census tracts with high socioeconomic status, above average 

health, and predominately white population.  Furthermore, census tracts with high 

socioeconomic status had three times the number of bike commuters as census tracts with low 

socioeconomic status. Two recommended actions are supported by these findings- investigate 

barriers to bike commuting in low-income communities and build partnerships and capacity for 

active transportation in low-income communities. 
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Implications for Practitioners  

Before discussing contributions to research and future research recommendations, it is 

important to summarize the broader implications of this research. I summarize implications with 

an emphasis on how practitioners might be able to use the results of this study in their work. 

Practitioners in this circumstance refer to transportation professionals like urban planners, 

transportation engineers, and bicycle and pedestrian coordinators, or public health professionals 

like health educators, program coordinators, or social epidemiologists. 

Research Question 1 

The first research question asked how to measure bicycle infrastructure when evaluating 

U.S. bicycle commuting rates. The findings and conclusions imply that bike network scores 

provided by PeopleForBikes are valuable measures of bicycle infrastructure.  The correlation 

coefficients between PeopleForBikes bike network scores and bicycle commuting rates were 

greater than 0.40. In other words, practitioners looking to improve bicycle infrastructure in their 

municipality or town would benefit from referencing the bicycle network maps and bicycle 

network analysis tool provided PeopleForBikes. The tool can be accessed at 

https://bna.peopleforbikes.org/#/places/.  

PeopleForBikes Bicycle Network Analysis tool provides bike network measures for 

hundreds of U.S. cities. Practitioners can use the tool to examine the bicycle networks in their 

town or in towns similar to their own. According to the findings of this study, the BNA score and 

transit score were the best infrastructure measures provided by PeopleForBikes. In other words, 

the correlations between BNA score, transit score, and bicycle commuting rate were more 

statistically significant than other infrastructure variables evaluated in this study. Practitioners 

interested in improving bicycle infrastructure in their municipality can use the tool to compare 
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their municipality’s BNA score and transit score with scores in similar cities or towns. The BNA 

tool also provides a map of bicycle routes which practitioners could use to strategize locations 

for network improvements. Strategizing locations to improve bike network access to public 

transit are especially important. 

Research Question 2 

The second research question asked how much of the variation in U.S. bicycle 

commuting rates could be explained by infrastructure or policy measures. The research question 

also evaluated the relative significance of infrastructure and policy measures. The findings and 

conclusions imply that three measures attributed to more than half of the variation in U.S. 

bicycle commuting rates. The three measures represent: 1) bicycle network connections to public 

transit, 2) the average number of cyclist fatalities, and 3) the number of FTE city employees 

spending at least one-tenth of their work hours on bicycle projects. In other words, as bicycle 

commuting rates increased, connections to public transit increased, the number of city employees 

working on bicycle projects increased, and the number of cyclist fatalities decreased. 

Practitioners aiming to improve bicycle-friendliness would benefit from tracking public transit 

connections, cyclist safety, and employee hours spent on bicycle projects.  

There are a few ways practitioners may be able to incorporate these measures into their 

work. Strategies might include prioritizing projects that enhance cyclist safety. For example, to 

enhance cyclist safety, municipalities might assess the locations of cyclist crashes and prioritize 

roadway improvement projects at those locations. A recently introduced bill called the SAFE 

Streets Act (H.R. 508) would support these actions. The SAFE Streets Act was introduced in the 

U.S. House of Representatives in January of 2021 (SAFE Streets Act, 2021). The bill would 

require municipalities to conduct “vulnerable road user” safety assessments that evaluate 
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locations and corridors where serious cyclist injuries and fatalities occur. The bill would also 

require municipalities to propose strategies reducing safety risks in those corridors. The 

implications of the H.R. 508 bill support the findings of my study which concluded that, out of 

14 potential variables, cyclist safety had the most significant association with bicycle commuting 

rates.  

Additionally, a practitioner looking to improve bicycle-friendliness should prioritize 

transportation projects that improve connections between public transit and bicycle networks. 

For example, the bicycle commuting rate within a municipality will likely benefit more from 

proposing a bicycle lane connection at a public transit corridor than a bicycle lane for the sole 

purpose of increasing bicycle lane mileage. In other words, strategic decision-making is crucial 

when planning projects to increase bicycle commuting rates. Practitioners can help advocate for 

these strategic decisions by prioritizing projects that improve multi-modal transit connections.  

The Transportation Alternatives Enhancement Act (H.R. 463) was introduced in the U.S. 

House of Representatives in January of 2021 and would provide local practitioners with more 

decision-making power over local transportation priorities, like bicycle infrastructure 

(Transportation Alternatives Enhancements Act, 2021). The bill supports local decision making 

by preventing states from transferring Transportation Alternatives (TA) funds without a 

competitive application process, it also requires states to demonstrate there were no suitable 

applications before transferring funds. The TA bill would bolster employee hours spent on 

bicycle projects because it would require states to use a portion of TA funds to provide technical 

and engineering assistance to local municipalities. The implications of the H.R. 463 bill support 

the findings of my study because it would strengthen practitioners’ decision-making power at a 

local level and would potentially bolster the number of employee hours spent on bicycle projects. 
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Overall, bicycle commuting rates in large U.S. cities will benefit most if TA funds are prioritized 

for: 1) projects that improve cyclists’ safety and access to public transit, and for 2) increasing the 

number of hours spent working on bicycle projects at the local level. 

Research Question 3 

The third research question assessed the association between bicycle commuting rates 

and heart disease prevalence at the census tract level. The findings imply that bicycle commuting 

was significantly associated with heart disease in census tracts where the population was 

affluent, healthy, and predominately white. Obesity prevalence and diabetes prevalence were 

particularly relevant when assessing the health of these populations. I also found that bicycle 

commuting rates in high SES census tracts were three times greater than in low SES census 

tracts. Low bicycle commuting rates likely contributed to insignificant associations between 

bicycle commuting and heart disease prevalence in tracts with low socioeconomic status. 

Practitioners focused on the social determinants of health should focus more of their efforts on 

active transportation in low SES populations.  

In particular, practitioners can make a difference by working to increase cycling in low 

SES populations. Barriers to cycling in low SES populations are likely different from the barriers 

in high SES populations. A first step would be working to understand those barriers. Some of 

those barriers may be related to access to resources, financial cost of a bike, and 

underrepresentation during planning decisions. Practitioners engaged in community-based 

programming are needed to help investigate these barriers, rather than external researchers, 

because they have already developed trusting relationships within their communities. A few 

ways practitioners may be able to help decrease barriers to cycling in low SES populations 

include: partnering with local bicycle organizations to improve service to low SES communities, 
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organizing outreach within low SES communities to better understand their transportation assets 

and needs, and advocating for the public health benefits of cycling within low SES communities.  

On the other hand, it is difficult to advocate for the health benefits of cycling within low 

SES populations without access to data on cyclists in these populations. The rarity of cyclists 

within low SES communities poses a challenge for practitioners looking to demonstrate positive 

health outcomes. From this perspective, community-based practitioners would benefit from 

federal government support. The CDC and USDA manage national chronic disease programs 

like the Diabetes Prevention Program and the Supplemental Nutrition Assistance Program 

(SNAP). These programs have protocols that are mandated at a federal level, yet they are 

implemented at a local level.  For example, all Diabetes Prevention Programs are required to 

report the weight of their participants while SNAP-Ed programs require data collection on 

program participants. Mandating the collection of transportation mode through federal health 

programs reporting mechanisms may be one way to build a dataset on the association between 

cycling and health outcomes in low SES communities.  

Contributions to Research 

This study resulted in a number of distinct research contributions including: 

1) An assessment of eight, publicly accessible, bicycle infrastructure measures and their 

association with U.S. bicycle commuting rates, 

2) A relative comparison of fourteen variables effect on bicycle commuting rates in 50 U.S. 

cities,  

3) An evaluation of the ecologic association between U.S. bicycle commuting rate and heart 

disease prevalence by socioeconomic status and population health risk. 
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These contributions have filled gaps in knowledge on the infrastructure and policy factors 

quantitatively associated with U.S. bicycle commuting rates and have created knowledge on the 

ecologic association between bicycle commuting rate and heart disease risk factors.  

To my knowledge this study was the first to assess the association between 

PeopleForBikes network measures and bicycle commuting rates. The PeopleForBikes network 

measures were more advanced than prior measures of bike networks because the measures 

accounted for accessibility to destinations like jobs and transit. This study was also the first to 

include measures of bike lane quality, complete streets policy, city employees working on bicycle 

projects, and access to public transit within an aggregate model of U.S. bicycle commuting rates. 

The use of methods like principal components analysis made it possible for multiple 

infrastructure measures to be included in a single model. An assessment of infrastructure 

measures, through my study, fills gaps in the knowledge base on aggregate models of U.S. 

bicycle commuting rates. 

Furthermore, the ecologic association between bicycle commuting rate and heart disease 

prevalence had not been evaluated across more than 12,000 census tracts prior to this study. 

Geographic population studies, while imperfect due to ecological fallacy, are valuable for 

hypothesis generation. The ecologic analysis I conducted was a first step towards exploring the 

association between U.S. bicycle commuting rates and heart disease at a national scale. The 

ecologic analysis sets a precedent for future longitudinal studies and clarifies a need to explore 

the association between bicycle commuting and heart disease within low-income communities.  

Limitations and Research Recommendations  

The quantitative, ecologic analysis presented through this study was limited by data 

availability. Data availability limited the sample size, the study design, and the measures used for 
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each variable. The sample size was restricted to 50 cities based on data availability from the 

League of American Bicyclists; data availability dictated an ecologic study design because 

bicycle commuting and heart disease data were merged from two separate sources; and data 

availability influenced the measures used for infrastructure, policy, bicycle commuting, and heart 

disease variables. Curation of data from nine secondary sources was a limitation of this study, 

but it was also a strength because the results of this study provide a baseline for future 

researchers looking to examine the relationship between cycling and chronic disease outcomes.  

Future researchers could help improve data availability by collecting bicycle 

infrastructure data beyond the 50 cities assessed in this study. Integrated bike maps containing 

network measures, cyclist fatalities, bicycle partners (i.e. bike shops, nonprofits etc.), health 

outcomes, and socioeconomic status are needed, all in one spot, to improve data accessibility and 

promote community involvement in bicycle advocacy. Additionally, cross-sectional or cohort 

data on transportation mode and health outcomes would allow for more advanced study designs 

in the future. A particularly salient outcome of this study is the need to research barriers to 

cycling in low SES populations and corresponding health outcomes. The ecologic design of this 

study likely masked any positive associations between cycling and heart disease in low SES 

populations, so future researchers should design studies intended for low SES communities. 

Researchers should aim to partner with community-based practitioners to complete this work. 

The results of this study are purely correlational, but conducting community-based research 

would present an opportunity to examine causal relationships over a longer period of time.  

 

 

 



115 

REFERENCES 

500 Cities Project Data [CSV Data file]. (2018). Centers for Disease Control and Prevention. 

https://www.cityhealthdashboard.com 

About Us. (2019). Active Living Research. https://www.activelivingresearch.org/aboutus 

Adam, L., Jones, T., & te Brömmelstroet, M. (2020). Planning for cycling in the dispersed city: 

Establishing a hierarchy of effectiveness of municipal cycling policies. Transportation, 

47(2), 503–527. https://doi.org/10.1007/s11116-018-9878-3 

Akar, G., & Clifton, K. J. (2009). Influence of Individual Perceptions and Bicycle Infrastructure 

on Decision to Bike. Transportation Research Record, 2140(1), 165–172. 

https://doi.org/10.3141/2140-18 

American Community Survey 5-Year Estimates [CSV Data file]. (2017). U.S. Census Bureau. 

https://factfinder.census.gov 

Arellana, J., Saltarín, M., Larrañaga, A. M., González, V. I., & Henao, C. A. (2020). Developing 

an urban bikeability index for different types of cyclists as a tool to prioritise bicycle 

infrastructure investments. Transportation Research Part A: Policy and Practice, 139, 

310–334. https://doi.org/10.1016/j.tra.2020.07.010 

Aschengrau, A., & Seage, G. (2014a). Confounding. In Epidemiology in Public Health (3rd ed., 

pp. 293–311). Jones & Bartlett Learning, LLC. 

Aschengrau, A., & Seage, G. (2014b). Effect Measure Modification. In Epidemiology in Public 

Health (3rd ed., pp. 349–360). Jones & Bartlett Learning, LLC. 

Aschengrau, A., & Seage, G. (2014c). Overview of Epidemiologic Study Designs. In 

Epidemiology in Public Health (3rd ed., pp. 143–171). Jones & Bartlett Learning, LLC. 



116 

Assunçao-Denis, M.-È., & Tomalty, R. (2019). Increasing cycling for transportation in Canadian 

communities: Understanding what works. Transportation Research Part A: Policy and 

Practice, 123, 288–304. https://doi.org/10.1016/j.tra.2018.11.010 

Atherton, A., Azeez, N., Lee Davia, S., Doyle, S., Hanzlik, M., Rosenberg, G., & Zaccaro, H. 

(2018). The Best Complete Streets Initiatives of 2017. Smart Growth America. 

Aytur, S., Rodriguez, D., Kerr, Z., Ji, K., & Evenson, K. (2013). Spatial and Temporal Patterns 

of North Carolina Pedestrian and Bicycle Plans. Journal of Public Health Management 

and Practice, 19, S83–S88. https://doi.org/10.1097/PHH.0b013e31828404a0 

Barengo, N. C., Hu, G., Lakka, T. A., Pekkarinen, H., Nissinen, A., & Tuomilehto, J. (2004). 

Low physical activity as a predictor for total and cardiovascular disease mortality in 

middle-aged men and women in Finland. European Heart Journal, 25(24), 2204–2211. 

https://doi.org/10.1016/j.ehj.2004.10.009 

Bassett, D. R., Pucher, J., Buehler, R., Thompson, D. L., & Crouter, S. E. (2008). Walking, 

Cycling, and Obesity Rates in Europe, North America, and Australia. Journal of Physical 

Activity and Health, 5(6), 795–814. https://doi.org/10.1123/jpah.5.6.795 

Beenackers, M. A., Foster, S., Kamphuis, C. B. M., Titze, S., Divitini, M., Knuiman, M., van 

Lenthe, F. J., & Giles-Corti, B. (2012). Taking up cycling after residential relocation: 

Built environment factors. American Journal of Preventive Medicine, 42(6), 610–615. 

https://doi.org/10.1016/j.amepre.2012.02.021 

Benjamin, E., Muntner Paul, Alonso Alvaro, Bittencourt Marcio S., Callaway Clifton W., Carson 

April P., Chamberlain Alanna M., Chang Alexander R., Cheng Susan, Das Sandeep R., 

Delling Francesca N., Djousse Luc, Elkind Mitchell S.V., Ferguson Jane F., Fornage 

Myriam, Jordan Lori Chaffin, Khan Sadiya S., Kissela Brett M., Knutson Kristen L., … 



117 

null null. (2019). Heart Disease and Stroke Statistics—2019 Update: A Report From the 

American Heart Association. Circulation, 139(10), e56–e528. 

https://doi.org/10.1161/CIR.0000000000000659 

Bicycle Network Analysis [data]. (2020). PeopleForBikes. 

https://bna.peopleforbikes.org/#/places/ 

Biton, A., Daddio, D., & Andrew, J. (2014). Statewide Pedestrian and Bicycle Planning 

Handbook (p. 94). FHWA. 

Braun, L. M. (2021). Disparities in Bicycle Commuting: Could Bike Lane Investment Widen the 

Gap? Journal of Planning Education and Research, 0739456X21993905. 

https://doi.org/10.1177/0739456X21993905 

Braun, L. M., Rodriguez, D. A., Cole-Hunter, T., Ambros, A., Donaire-Gonzalez, D., Jerrett, M., 

Mendez, M. A., Nieuwenhuijsen, M. J., & de Nazelle, A. (2016). Short-term planning 

and policy interventions to promote cycling in urban centers: Findings from a commute 

mode choice analysis in Barcelona, Spain. Transportation Research Part A: Policy and 

Practice, 89, 164–183. https://doi.org/10.1016/j.tra.2016.05.007 

Braun, L. M., Rodriguez, D. A., & Gordon-Larsen, P. (2019). Social (in)equity in access to 

cycling infrastructure: Cross-sectional associations between bike lanes and area-level 

sociodemographic characteristics in 22 large U.S. cities. Journal of Transport 

Geography, 80. https://doi.org/10.1016/j.jtrangeo.2019.102544 

Broach, J., Dill, J., & Gliebe, J. (2012). Where do cyclists ride? A route choice model developed 

with revealed preference GPS data. Transportation Research Part A: Policy and 

Practice, 46(10), 1730–1740. https://doi.org/10.1016/j.tra.2012.07.005 

Bronfenbrenner, U. (1981). The Ecology of Human Development. 



118 

Bronfenbrenner, U. (1992). Ecological systems theory. In Six theories of child development: 

Revised formulations and current issues (pp. 187–249). Jessica Kingsley Publishers. 

Brunsing, J. (1997). Public transport and cycling: Experience of modal integration in Germany. 

Wiley (John) and Sons, Limited. https://trid.trb.org/view/501897 

Buehler, R., & Dill, J. (2016). Bikeway Networks: A Review of Effects on Cycling. Transport 

Reviews, 36(1), 9–27. https://doi.org/10.1080/01441647.2015.1069908 

Buehler, R., & Pucher, J. (2012). Cycling to Work in 90 Large American Cities: New Evidence 

on the Role of Bike Paths and Lanes. Transportation, 39(2), 409–432. 

Buehler, R., Pucher, J., & Bauman, A. (2020). Physical activity from walking and cycling for 

daily travel in the United States, 2001–2017: Demographic, socioeconomic, and 

geographic variation. Journal of Transport & Health, 16. 

https://doi.org/10.1016/j.jth.2019.100811 

Cassel, J. C. (1971). Summary of Major Findings of the Evans County Cardiovascular Studies. 

Archives of Internal Medicine, 128(6), 887–889. 

https://doi.org/10.1001/archinte.1971.00310240041003 

Castro, C. M., King, A. C., & Brassington, G. S. (2001). Telephone versus mail interventions for 

maintenance of physical activity in older adults. Health Psychology: Official Journal of 

the Division of Health Psychology, American Psychological Association, 20(6), 438–444. 

Celis-Morales, C. A., Lyall, D. M., Welsh, P., Anderson, J., Steell, L., Guo, Y., Maldonado, R., 

Mackay, D. F., Pell, J. P., Sattar, N., & Gill, J. M. R. (2017). Association between active 

commuting and incident cardiovascular disease, cancer, and mortality: Prospective cohort 

study. BMJ, 357. https://doi.org/10.1136/bmj.j1456 



119 

Centers for Disease Control and Prevention. (2014). Behavioral risk factor surveillance system 

overview: BRFSS 2013. 

http://www.cdc.gov/brfss/annual_data/2013/pdf/overview_2013.pdf 

Centers for Disease Control and Prevention. (2018). About the project. 

https://www.cdc.gov/500cities/about.htm 

Cervero, R., Sarmiento, O. L., Jacoby, E., Gomez, L. F., & Neiman, A. (2009). Influences of 

Built Environments on Walking and Cycling: Lessons from Bogotá. International 

Journal of Sustainable Transportation, 3(4), 203–226. 

https://doi.org/10.1080/15568310802178314 

Chen, C., Wang, H., Roll, J., Nordback, K., & Wang, Y. (2020). Using bicycle app data to 

develop Safety Performance Functions (SPFs) for bicyclists at intersections: A generic 

framework. Transportation Research Part A: Policy and Practice, 132, 1034–1052. 

https://doi.org/10.1016/j.tra.2019.12.034 

Clifton, K. J., & Dill, J. (2005). Women’s Travel Behavior and Land Use: Will New Styles of 

Neighborhoods Lead to More Women Walking? Transportation Research Board 

Conference Proceedings. Conference on Research on Women’s Issues in Transportation. 

https://trid.trb.org/view/773072 

Cole-Hunter, T., Donaire-Gonzalez, D., Curto, A., Ambros, A., Valentin, A., Garcia-Aymerich, 

J., Martínez, D., Braun, L. M., Mendez, M., Jerrett, M., Rodriguez, D., de Nazelle, A., & 

Nieuwenhuijsen, M. (2015a). Objective correlates and determinants of bicycle 

commuting propensity in an urban environment. Transportation Research Part D: 

Transport and Environment, 40, 132–143. https://doi.org/10.1016/j.trd.2015.07.004 



120 

Cole-Hunter, T., Donaire-Gonzalez, D., Curto, A., Ambros, A., Valentin, A., Garcia-Aymerich, 

J., Martínez, D., Braun, L. M., Mendez, M., Jerrett, M., Rodriguez, D., de Nazelle, A., & 

Nieuwenhuijsen, M. (2015b). Objective correlates and determinants of bicycle 

commuting propensity in an urban environment. Transportation Research Part D: 

Transport and Environment, 40, 132–143. https://doi.org/10.1016/j.trd.2015.07.004 

Complete Streets policies nationwide. (2019). Smart Growth America. 

https://smartgrowthamerica.org/program/national-complete-streets-

coalition/publications/policy-development/policy-atlas/ 

Corraini, P., Olsen, M., Pedersen, L., Dekkers, O. M., & Vandenbroucke, J. P. (2017). Effect 

modification, interaction and mediation: An overview of theoretical insights for clinical 

investigators. Clinical Epidemiology, 9, 331–338. https://doi.org/10.2147/CLEP.S129728 

Coughenour, C., Paz, A., de la Fuente-Mella, H., & Singh, A. (2016). Multinomial logistic 

regression to estimate and predict perceptions of bicycle and transportation infrastructure 

in a sprawling metropolitan area. Journal of Public Health, 38(4), e401–e408. 

https://doi.org/10.1093/pubmed/fdv179 

Cradock, A. L., Troped, P. J., Fields, B., Melly, S. J., Simms, S. V., Gimmler, F., & Fowler, M. 

(2009). Factors associated with federal transportation funding for local pedestrian and 

bicycle programming and facilities. Journal of Public Health Policy, 30 Suppl 1, S38-72. 

https://doi.org/10.1057/jphp.2008.60 

Dalen, J. E., Alpert, J. S., Goldberg, R. J., & Weinstein, R. S. (2014). The Epidemic of the 20th 

Century: Coronary Heart Disease. The American Journal of Medicine, 127(9), 807–812. 

https://doi.org/10.1016/j.amjmed.2014.04.015 



121 

Dill, J. (2009). Bicycling for transportation and health: The role of infrastructure. Journal of 

Public Health Policy, 30 Suppl 1, S95-110. https://doi.org/10.1057/jphp.2008.56 

Dill, J., & Carr, T. (2003). Bicycle Commuting and Facilities in Major U.S. Cities. 

Transportation Research Board Annual Meeting, 9. 

Dill, J., Mohr, C., & Ma, L. (2014). How Can Psychological Theory Help Cities Increase 

Walking and Bicycling? Journal of the American Planning Association, 80(1), 36–51. 

https://doi.org/10.1080/01944363.2014.934651 

Dill, J., Smith, O., & Howe, D. (2017). Promotion of active transportation among state 

departments of transportation in the U.S. Journal of Transport & Health, 5, 163–171. 

https://doi.org/10.1016/j.jth.2016.10.003 

Dill, J., & Voros, K. (2007). Factors Affecting Bicycling Demand: Initial Survey Findings from 

the Portland, Oregon, Region. Transportation Research Record, 2031(1), 9–17. 

https://doi.org/10.3141/2031-02 

Ding, D., & Gebel, K. (2012). Built environment, physical activity, and obesity: What have we 

learned from reviewing the literature? Health & Place, 18(1), 100–105. 

https://doi.org/10.1016/j.healthplace.2011.08.021 

Dinu, M., Pagliai, G., Macchi, C., & Sofi, F. (2019). Active Commuting and Multiple Health 

Outcomes: A Systematic Review and Meta-Analysis. Sports Medicine, 49(3), 437–452. 

https://doi.org/10.1007/s40279-018-1023-0 

Donaire-Gonzalez, D., de Nazelle, A., Cole-Hunter, T., Curto, A., Rodriguez, D. A., Mendez, M. 

A., Garcia-Aymerich, J., Basagaña, X., Ambros, A., Jerrett, M., & Nieuwenhuijsen, M. J. 

(2015). The Added Benefit of Bicycle Commuting on the Regular Amount of Physical 



122 

Activity Performed. American Journal of Preventive Medicine, 49(6), 842–849. 

https://doi.org/10.1016/j.amepre.2015.03.036 

Dons, E., Rojas-Rueda, D., Anaya-Boig, E., Avila-Palencia, I., Brand, C., Cole-Hunter, T., de 

Nazelle, A., Eriksson, U., Gaupp-Berghausen, M., Gerike, R., Kahlmeier, S., Laeremans, 

M., Mueller, N., Nawrot, T., Nieuwenhuijsen, M. J., Orjuela, J. P., Racioppi, F., Raser, 

E., Standaert, A., … Götschi, T. (2018). Transport mode choice and body mass index: 

Cross-sectional and longitudinal evidence from a European-wide study. Environment 

International, 119, 109–116. https://doi.org/10.1016/j.envint.2018.06.023 

Duchosal, D., Groen, J., Hilleboe, H., Morris, J., Rojas Villegas, F., Rutstein, D., Speransky, J., 

& Torgersen, O. (1958). Hypertension and Coronary Heart Disease: Classification and 

Criteria for Epidemiological Studies (No. 168; Technical Report). World Health 

Organization. 

Durand, C. P., Andalib, M., Dunton, G. F., Wolch, J., & Pentz, M. A. (2011). A systematic 

review of built environment factors related to physical activity and obesity risk: 

Implications for smart growth urban planning: Smart growth urban planning and obesity 

risk. Obesity Reviews, 12(5), e173–e182. https://doi.org/10.1111/j.1467-

789X.2010.00826.x 

Ewing, R., & Hamidi, S. (2013). Measuring Urban Sprawl and Validating Sprawl Measures. 

Metropolitan Research Center. https://gis.cancer.gov/tools/urban-sprawl/ 

Fatality Analysis Reporting System [CSV data file]. (2017). USDOT National Highway Traffic 

Safety Administration. https://www.nhtsa.gov/node/97996/251 

Federal Highway Administration. (2013). Memorandum: Bicycle and Pedestrian Facility Design 

Flexibility. USDOT Federal Highway Administration. 



123 

https://www.fhwa.dot.gov/environment/bicycle_pedestrian/guidance/design_flexibility.cf

m 

Ferreira-Pinto, L. M., Rocha-Gonçalves, F., & Teixeira-Pinto, A. (2012). An ecological study on 

the geographic patterns of ischaemic heart disease in Portugal and its association with 

demography, economic factors and health resources distribution. BMJ Open, 2(4), 

e000595. https://doi.org/10.1136/bmjopen-2011-000595 

Field, A., Miles, J., & Field, Z. (2012). Regression. In Discovering Statistics using R (pp. 245–

311). SAGE Publications. 

Fishman, E., Washington, S., Haworth, N., & Watson, A. (2015). Factors influencing bike share 

membership: An analysis of Melbourne and Brisbane. Transportation Research Part A: 

Policy and Practice, 71, 17–30. https://doi.org/10.1016/j.tra.2014.10.021 

Fitch, D. T., Rhemtulla, M., & Handy, S. L. (2019). The relation of the road environment and 

bicycling attitudes to usual travel mode to school in teenagers. Transportation Research 

Part A: Policy and Practice, 123, 35–53. https://doi.org/10.1016/j.tra.2018.06.013 

Frank, L. D., Saelens, B. E., Leary, L., Cain, K., Conway, T. L., Hess, P. M., & Sallis, J. F. 

(2009). The Development of a Walkability Index: Application to the Neighborhood 

Quality of Life Study. British Journal of Sports Medicine. 

Friedman, G. (1994). Primer of Epidemiology (4th ed.). McGraw-Hill Inc. 

Garrard, J., Rissel, C., & Bauman, A. (2012). Health Benefits of Cycling. In City Cycling (pp. 

31–55). Massachusetts Institute of Technology. 

Garrard, J., Rose, G., & Lo, S. K. (2008). Promoting transportation cycling for women: The role 

of bicycle infrastructure. Preventive Medicine, 46(1), 55–59. 

https://doi.org/10.1016/j.ypmed.2007.07.010 



124 

Gauvin, L., Richard, L., Craig, C. L., Spivock, M., Riva, M., Forster, M., Laforest, S., Laberge, 

S., Fournel, M.-C., Gagnon, H., Gagné, S., & Potvin, L. (2005). From walkability to 

active living potential: An “ecometric” validation study. American Journal of Preventive 

Medicine, 28(2, Supplement 2), 126–133. https://doi.org/10.1016/j.amepre.2004.10.029 

Goldsmith, S. (1992). National bicycling and walking study, case study no. 1: Reasons why 

bicycling and walking are not being used more extensively as travel modes (FHWA-PD-

92-041). FHWA, U.S. Department of Transportation. 

https://safety.fhwa.dot.gov/ped_bike/docs/case1.pdf 

Goodno, M., McNeil, N., Parks, J., & Dock, S. (2013). Evaluation of Innovative Bicycle 

Facilities in Washington, D.C.: Pennsylvania Avenue Median Lanes and 15th Street 

Cycle Track. Transportation Research Record, 2387(1), 139–148. 

https://doi.org/10.3141/2387-16 

Gotschi, T. (2011). Costs and benefits of bicycling investments in Portland, Oregon. Journal of 

Physical Activity & Health, 8 Suppl 1, S49-58. https://doi.org/10.1123/jpah.8.s1.s49 

Guidance for Data Users. (2020, May 4). United States Census Bureau. 

https://www.census.gov/programs-surveys/acs/guidance.html 

Hamer, M., & Chida, Y. (2008). Active commuting and cardiovascular risk: A meta-analytic 

review. Preventive Medicine, 46(1), 9–13. https://doi.org/10.1016/j.ypmed.2007.03.006 

Hames, C. G. (1971). Evans County cardiovascular and cerebrovascular epidemiologic study. 

Introduction. Archives of Internal Medicine, 128(6), 883–886. 

https://doi.org/10.1001/archinte.128.6.883 



125 

Handy, S. L., McCann, B., Bailey, L., Ernst, M., McRee, L., Meharg, E., Ewing, R., & Wright, 

K. (2009). The Regional Response to Federal Funding for Bicycle and Pedestrian 

Projects. https://escholarship.org/uc/item/26j7x815 

Handy, S. L., & Xing, Y. (2011). Factors Correlated with Bicycle Commuting: A Study in Six 

Small U.S. Cities. International Journal of Sustainable Transportation, 5(2), 91–110. 

https://doi.org/10.1080/15568310903514789 

Handy, S, & Transportation Research Board. (2005). Does the Built Environment Influence 

Physical Activity?: Examining the Evidence—Special Report 282. Transportation 

Research Board. https://doi.org/10.17226/11203 

Handy, S., van Wee, B., & Kroesen, M. (2014). Promoting Cycling for Transport: Research 

Needs and Challenges. Transport Reviews, 34(1), 4–24. 

https://doi.org/10.1080/01441647.2013.860204 

Hankey, S., Marshall, J. D., & Brauer, M. (2012). Health Impacts of the Built Environment: 

Within-Urban Variability in Physical Inactivity, Air Pollution, and Ischemic Heart 

Disease Mortality. Environmental Health Perspectives, 120(2), 247–253. JSTOR. 

Hegger, R. (2007). Public Transport and Cycling: Living Apart or Together? Public Transport 

International, 56(2). https://trid.trb.org/view/808957 

Heron, M. (2019). Deaths: Leading Causes for 2017 (p. 77) [National Vital Statistics]. U.S. 

Department of Health and Human Services. 

Hoehner, C. M., Brennan Ramirez, L. K., Elliott, M. B., Handy, S. L., & Brownson, R. C. 

(2005). Perceived and objective environmental measures and physical activity among 

urban adults. American Journal of Preventive Medicine, 28(2 Suppl 2), 105–116. 

https://doi.org/10.1016/j.amepre.2004.10.023 



126 

Hruschka, D. J., & Hadley, C. (2008). A glossary of culture in epidemiology. Journal of 

Epidemiology and Community Health, 62(11), 947–951. 

https://doi.org/10.1136/jech.2008.076729 

Hu, G., Pekkarinen, H., Hanninen, O., Yu, Z., Guo, Z., & Tian, H. (2002). Commuting, leisure-

time physical activity, and cardiovascular risk factors in China: Medicine and Science in 

Sports and Exercise, 34(2), 234–238. https://doi.org/10.1097/00005768-200202000-

00009 

Hu, G., Qiao, Q., Silventoinen, K., Eriksson, J. G., Jousilahti, P., Lindström, J., Valle, T. T., 

Nissinen, A., & Tuomilehto, J. (2003). Occupational, commuting, and leisure-time 

physical activity in relation to risk for Type 2 diabetes in middle-aged Finnish men and 

women. Diabetologia, 46(3), 322–329. https://doi.org/10.1007/s00125-003-1031-x 

Hu, Tuomilehto, J., Borodulin, K., & Jousilahti, P. (2007). The joint associations of 

occupational, commuting, and leisure-time physical activity, and the Framingham risk 

score on the 10-year risk of coronary heart disease. European Heart Journal, 28(4), 492–

498. https://doi.org/10.1093/eurheartj/ehl475 

Hunt, J. D., & Abraham, J. E. (2007). Influences on bicycle use. Transportation, 34(4), 453–470. 

https://doi.org/10.1007/s11116-006-9109-1 

Huy, C., Becker, S., Gomolinsky, U., Klein, T., & Thiel, A. (2008). Health, medical risk factors, 

and bicycle use in everyday life in the over-50 population. Journal of Aging and Physical 

Activity, 16(4), 454–464. https://doi.org/10.1123/japa.16.4.454 

Jekel, J., Elmore, J., & Katz, D. (1996). Methods of Tertiary Prevention. In Epidemiology, 

Biostatistics, and Preventative Medicine (1st ed., pp. 225–232). W.B. Saunders 

Company. 



127 

Kaczynski, A. (2008). Smoking and Physical Activity: A Systematic Review. American Journal 

of Health Behavior, 32(1). https://doi.org/10.5993/AJHB.32.1.9 

Kannel, W., Kagan, A., & Stokes, J. (1961). Factors of Risk in the Development of Coronary 

Heart Disease- Six Year Follow-up Experience. Annals of Internal Medicine, 55(1). 

http://www.medicine.mcgill.ca/epidemiology/courses/EPIB591/Fall%202010/Class%208

%20-%2024%20Sept/FraminghamSixYear.pdf 

Kaplan, G. A., & Keil, J. E. (1993). Socioeconomic factors and cardiovascular disease: A review 

of the literature. Circulation, 88(4 Pt 1), 1973–1998. 

https://doi.org/10.1161/01.cir.88.4.1973 

Karasek, R. A., Theorell, T., Schwartz, J. E., Schnall, P. L., Pieper, C. F., & Michela, J. L. 

(1988). Job characteristics in relation to the prevalence of myocardial infarction in the US 

Health Examination Survey (HES) and the Health and Nutrition Examination Survey 

(HANES). American Journal of Public Health, 78(8), 910–918. 

https://doi.org/10.2105/ajph.78.8.910 

Khare, M. M., Koch, A., Zimmermann, K., Moehring, P. A., & Geller, S. E. (2014). Heart Smart 

for Women: A Community-Based Lifestyle Change Intervention to Reduce 

Cardiovascular Risk in Rural Women. The Journal of Rural Health, 30(4), 359–368. 

https://doi.org/10.1111/jrh.12066 

Krieger, N. (2001). Theories for social epidemiology in the 21st century: An ecosocial 

perspective. International Journal of Epidemiology, 30(4), 668–677. 

https://doi.org/10.1093/ije/30.4.668 



128 

Lee, C., & Moudon, A. V. (2006). Correlates of Walking for Transportation or Recreation 

Purposes. Journal of Physical Activity & Health, 3(s1), S77–S98. 

https://doi.org/10.1123/jpah.3.s1.s77 

Lovallo, W. R., & Gerin, W. (2003). Psychophysiological Reactivity: Mechanisms and Pathways 

to Cardiovascular Disease: Psychosomatic Medicine, 65(1), 36–45. 

https://doi.org/10.1097/01.PSY.0000033128.44101.C1 

Lusk, A. C., Mekary, R. A., Feskanich, D., & Willett, W. C. (2010). Bicycle Riding, Walking, 

and Weight Gain in Premenopausal Women. Archives of Internal Medicine, 170(12), 

1050–1056. https://doi.org/10.1001/archinternmed.2010.171 

Ma, X., Sharpe, P. A., Bell, B. A., Liu, J., White, K., & Liese, A. D. (2018). Food Acquisition 

and Shopping Patterns among Residents of Low-Income and Low-Access Communities 

in South Carolina. Journal of the Academy of Nutrition and Dietetics, 118(10), 1844–

1854. https://doi.org/10.1016/j.jand.2018.04.017 

Mackett, R. L., & Thoreau, R. (2015). Transport, social exclusion and health. Journal of 

Transport & Health, 2(4), 610–617. https://doi.org/10.1016/j.jth.2015.07.006 

MacMahon, B., & Trichopoulos, D. (1996). Epidemiology Principles and Methods (2nd ed.). 

LWW. 

Marcus, B. H., Dubbert, P. M., Forsyth, L. H., McKenzie, T. L., Stone, E. J., Dunn, A. L., & 

Blair, S. N. (2000). Physical activity behavior change: Issues in adoption and 

maintenance. Health Psychology: Official Journal of the Division of Health Psychology, 

American Psychological Association, 19(1S), 32–41. 

Marleau Donais, F., Abi-Zeid, I., Waygood, E. O. D., & Lavoie, R. (2019). Assessing and 

ranking the potential of a street to be redesigned as a Complete Street: A multi-criteria 



129 

decision aiding approach. Transportation Research Part A: Policy and Practice, 124, 1–

19. https://doi.org/10.1016/j.tra.2019.02.006 

Marmot, M., & Theorell, T. (1988). Social class and cardiovascular disease: The contribution of 

work. International Journal of Health Services, 18(4), 659–674. 

https://doi.org/10.2190/KTC1-N5LK-J1PM-9GRQ 

Marsden, G., & Stead, D. (2011). Policy transfer and learning in the field of transport: A review 

of concepts and evidence. Transport Policy, 18(3), 492–500. 

https://doi.org/10.1016/j.tranpol.2010.10.007 

Martens, K. (2007). Promoting bike-and-ride: The Dutch experience. Transportation Research 

Part A: Policy and Practice, 41(4), 326–338. https://doi.org/10.1016/j.tra.2006.09.010 

McDonough, J. R., Hames, C. G., Stulb, S. C., & Garrison, G. E. (1965). Coronary heart disease 

among Negroes and Whites in Evans County, Georgia. Journal of Chronic Diseases, 

18(5), 443–468. https://doi.org/10.1016/0021-9681(65)90027-5 

McLeod, K. (2017). Lifting the Veil on Bicycle & Pedestrian Spending. Alliance for Biking & 

Walking, The League of American Bicyclists. 

https://bikeleague.org/sites/default/files/LiftingTheVeil_ReportScoreCards.pdf 

McLeod, K., Herpolsheimer, S., & Clarke, K. (2019). Bicycling and Walking in the United 

States: 2018 Benchmarking Report. League of American Bicyclists. 

McLeod, L., Bharadwaj, L., Epp, T. Y., & Waldner, C. L. (2018). Ecological analysis of 

associations between groundwater quality and hypertension and cardiovascular disease in 

rural Saskatchewan, Canada using Bayesian hierarchical models and administrative 

health data. Environmental Research, 167, 329–340. 

https://doi.org/10.1016/j.envres.2018.07.038 



130 

McLeroy, K. R., Bibeau, D., Steckler, A., & Glanz, K. (1988). An ecological perspective on 

health promotion programs. Health Education Quarterly, 15(4), 351–377. 

McLeroy, K. R., Norton, B. L., Kegler, M. C., Burdine, J. N., & Sumaya, C. V. (2003). 

Community-based interventions. American Journal of Public Health, 93(4), 529–533. 

https://doi.org/10.2105/ajph.93.4.529 

Mekuria, M. C., & Nixon, H. (2012). Low-Stress Bicycling and Network Connectivity (p. 2). 

Mineta Transportation Institute. 

Ming Wen, L., & Rissel, C. (2008). Inverse associations between cycling to work, public 

transport, and overweight and obesity: Findings from a population based study in 

Australia. Preventive Medicine, 46(1), 29–32. 

https://doi.org/10.1016/j.ypmed.2007.08.009 

Minkler, M., & Wallerstein, N. (Eds.). (2003). Community based participatory research for 

health. Jossey-Bass. 

Moreland-Russell, S., Eyler, A., Barbero, C., Hipp, J., & Walsh, H. (2013). Diffusion of 

Complete Streets Policies Across US Communities. Journal of Public Health 

Management and Practice, 19. https://doi.org/10.1097/PHH.0b013e3182849ec2 

Morland, K., Diez Roux, A. V., & Wing, S. (2006). Supermarkets, other food stores, and obesity: 

The atherosclerosis risk in communities study. American Journal of Preventive Medicine, 

30(4), 333–339. https://doi.org/10.1016/j.amepre.2005.11.003 

Morland, K., Wing, S., & Roux, A. D. (2002). The Contextual Effect of the Local Food 

Environment on Residents’ Diets: The Atherosclerosis Risk in Communities Study. 

American Journal of Public Health, 92(11), 1761–1768. 

https://doi.org/10.2105/ajph.92.11.1761 



131 

Moudon, A. V., Lee, C., Cheadle, A. D., Collier, C. W., Johnson, D., Schmid, T. L., & Weather, 

R. D. (2005). Cycling and the built environment, a US perspective. Transportation 

Research Part D: Transport and Environment, 10(3), 245–261. 

https://doi.org/10.1016/j.trd.2005.04.001 

Mullenbach, L. E. (2018). Assessing the Relationship Between a Composite Score of Urban Park 

Quality and Health. Preventing Chronic Disease, 15. 

https://doi.org/10.5888/pcd15.180033 

Murphy, S., Xu, J., Kochanek, K., Arias, E., & Tejada-Vera, B. (2021). Deaths: Final Data for 

2018. National Vital Statistics Reports, 69(13). 

Nelson, A. C., & Allen, D. (1997). If You Build Them, Commuters Will Use Them: Association 

Between Bicycle Facilities and Bicycle Commuting: Transportation Research Record. 

https://doi.org/10.3141/1578-10 

NOAA National Centers for Environmental Information. (2010). 1981-2010 U.S. Climate 

Normals [TXT data file]. https://www1.ncdc.noaa.gov/pub/data/normals/1981-2010/ 

Olson, R., Piercy, K., Troiano, R., Ballard, R., Fulton, J., Galuska, D., & Pfohl, S. (2018). 

Physical Activity Guidelines for Americans, 2nd edition (p. 118). U.S Dept. HHS. 

Orth-Gomér, K., Wamala, S. P., Horsten, M., Schenck-Gustafsson, K., Schneiderman, N., & 

Mittleman, M. A. (2000). Marital stress worsens prognosis in women with coronary heart 

disease: The Stockholm Female Coronary Risk Study. JAMA, 284(23), 3008–3014. 

https://doi.org/10.1001/jama.284.23.3008 

Parkin, J., Wardman, M., & Page, M. (2008). Estimation of the determinants of bicycle mode 

share for the journey to work using census data. Transportation, 35(1), 93–109. 

https://doi.org/10.1007/s11116-007-9137-5 



132 

PeopleForBikes. (2019). Bicycle Network Analysis Methodology. People for Bikes. 

https://bna.peopleforbikes.org/#/methodology 

Petrie, A. (2016a). Building a Descriptive Model. In Introduction to Regression and Modeling 

with R (1st ed., pp. 253–268). Cognella, Inc. 

Petrie, A. (2016b). Predictive Modeling with Regression. In Introduction to Regression and 

Modeling with R (1st ed., pp. 271–289). Cognella, Inc. 

Plaut, P. (2005). Non-motorized commuting in the United States. Transportation Research Part 

D: Transport and Environment, 10(5), 347–356. 

Pollack, K. M., Kercher, C., Frattaroli, S., Peek-Asa, C., Sleet, D., & Rivara, F. P. (2012). 

Toward environments and policies that promote injury-free active living—It wouldn’t 

hurt. Health & Place, 18(1), 106–114. https://doi.org/10.1016/j.healthplace.2011.07.010 

Pucher, J., & Buehler, R. (2009). Integrating Bicycling and Public Transport in North America. 

Journal of Public Transportation, 12. https://doi.org/10.5038/2375-0901.12.3.5 

Pucher, J., & Buehler, R. (2012). International Overview: Cycling Trends in Western Europe, 

North America, and Australia. In City Cycling (pp. 9–29). Massachusetts Institute of 

Technology. 

Pucher, J., Buehler, R., Bassett, D. R., & Dannenberg, A. L. (2010a). Walking and cycling to 

health: A comparative analysis of city, state, and international data. American Journal of 

Public Health, 100(10), 1986–1992. https://doi.org/10.2105/AJPH.2009.189324 

Pucher, J., Buehler, R., Bassett, D. R., & Dannenberg, A. L. (2010b). Walking and Cycling to 

Health: A Comparative Analysis of City, State, and International Data. American Journal 

of Public Health, 100(10), 1986. https://doi.org/10.2105/AJPH.2009.189324 



133 

Pucher, J., Buehler, R., & Seinen, M. (2011). Bicycling renaissance in North America? An 

update and re-appraisal of cycling trends and policies. Transportation Research Part A: 

Policy and Practice, 45(6), 451–475. https://doi.org/10.1016/j.tra.2011.03.001 

Pucher, J., Dill, J., & Handy, S. (2010). Infrastructure, programs, and policies to increase 

bicycling: An international review. Preventive Medicine, 50, S106–S125. 

https://doi.org/10.1016/j.ypmed.2009.07.028 

Pucher, J., Komanoff, C., & Schimek, P. (1999). Bicycling renaissance in North America? 

Recent trends and alternative policies to promote bicycling. Transportation Research 

Part A: Policy and Practice, 33, 625–654. 

Raser, E., Gaupp-Berghausen, M., Dons, E., Anaya-Boig, E., Avila-Palencia, I., Brand, C., 

Castro, A., Clark, A., Eriksson, U., Götschi, T., Int Panis, L., Kahlmeier, S., Laeremans, 

M., Mueller, N., Nieuwenhuijsen, M., Orjuela, J. P., Rojas-Rueda, D., Standaert, A., 

Stigell, E., & Gerike, R. (2018). European cyclists’ travel behavior: Differences and 

similarities between seven European (PASTA) cities. Journal of Transport & Health, 9, 

244–252. https://doi.org/10.1016/j.jth.2018.02.006 

Reis, R. S., Hino, A. A. F., Parra, D. C., Hallal, P. C., & Brownson, R. C. (2013). Bicycling and 

Walking for Transportation in Three Brazilian Cities. American Journal of Preventive 

Medicine, 44(2), e9–e17. https://doi.org/10.1016/j.amepre.2012.10.014 

Rérat, P. (2019). Cycling to work: Meanings and experiences of a sustainable practice. 

Transportation Research Part A: Policy and Practice, 123, 91–104. 

https://doi.org/10.1016/j.tra.2018.10.017 



134 

Rietveld, P. (2000). The accessibility of railway stations: The role of the bicycle in The 

Netherlands. Transportation Research Part D: Transport and Environment, 5(1), 71–75. 

https://doi.org/10.1016/S1361-9209(99)00019-X 

Riiser, A., Solbraa, A., Jenum, A. K., Birkeland, K. I., & Andersen, L. B. (2018). Cycling and 

walking for transport and their associations with diabetes and risk factors for 

cardiovascular disease. Journal of Transport & Health, 11, 193–201. 

https://doi.org/10.1016/j.jth.2018.09.002 

Riveron, N. (2019). The Best Complete Streets Policies of 2018. Smart Growth America, 

National Complete Streets Coalition. 

Ross, N., & Hermann, T. (2019). Meeting Moderate-to-Vigorous Physical Activity 

‘Automatically’ in Supportive Active Living Environments. Active Living Conference, 

Charleston. 

Sabouri, S., Park, K., Smith, A., Tian, G., & Ewing, R. (2020). Exploring the influence of built 

environment on Uber demand. Transportation Research Part D: Transport and 

Environment, 81. https://doi.org/10.1016/j.trd.2020.102296 

Saelens, B. E., & Handy, S. L. (2008). Built Environment Correlates of Walking: A Review. 

Medicine & Science in Sports & Exercise, 40(7). 

https://doi.org/10.1249/MSS.0b013e31817c67a4 

SAFE Streets Act, Pub. L. No. H.R. 508 (2021). https://www.congress.gov/bill/117th-

congress/house-bill/508?s=1&r=6 

Sallis, J. F., Conway, T. L., Dillon, L. I., Frank, L. D., Adams, M. A., Cain, K. L., & Saelens, B. 

E. (2013). Environmental and demographic correlates of bicycling. Preventive Medicine, 

57(5), 456–460. https://doi.org/10.1016/j.ypmed.2013.06.014 



135 

Sallis, J. F., Spoon, C., Cavill, N., Engelberg, J. K., Gebel, K., Parker, M., Thornton, C. M., Lou, 

D., Wilson, A. L., Cutter, C. L., & Ding, D. (2015). Co-benefits of designing 

communities for active living: An exploration of literature. International Journal of 

Behavioral Nutrition and Physical Activity, 12(1), 30. https://doi.org/10.1186/s12966-

015-0188-2 

Salvo, G., Lashewicz, B., Doyle-Baker, P., & McCormack, G. (2018). Neighbourhood Built 

Environment Influences on Physical Activity among Adults: A Systematized Review of 

Qualitative Evidence. International Journal of Environmental Research and Public 

Health, 15(5), 897. https://doi.org/10.3390/ijerph15050897 

Sanders, R. L., & Cooper, J. F. (2013). Do All Roadway Users Want the Same Things?: Results 

from Roadway Design Survey of San Francisco Bay area Pedestrians, Drivers, Bicyclists, 

and Transit Users. Transportation Research Record, 2393(1), 155–163. 

https://doi.org/10.3141/2393-18 

Schoner, J. E., & Levinson, D. M. (2014). The missing link: Bicycle infrastructure networks and 

ridership in 74 US cities. Transportation, 41(6), 1187–1204. 

https://doi.org/10.1007/s11116-014-9538-1 

Schwartz, A. R., Gerin, W., Davidson, K. W., Pickering, T. G., Brosschot, J. F., Thayer, J. F., 

Christenfeld, N., & Linden, W. (2003). Toward a Causal Model of Cardiovascular 

Responses to Stress and the Development of Cardiovascular Disease: Psychosomatic 

Medicine, 65(1), 22–35. https://doi.org/10.1097/01.PSY.0000046075.79922.61 

Shafizadeh, K., & Niemeier, D. (1997). Bicycle Journey-to-Work: Travel Behavior 

Characteristics and Spatial Attributes. Transportation Research Record, 1578(1), 84–90. 

https://doi.org/10.3141/1578-11 



136 

Shea, S., & Basch, C. E. (1990). A review of five major community-based cardiovascular disease 

prevention programs. Part II: Intervention strategies, evaluation methods, and results. 

American Journal of Health Promotion: AJHP, 4(4), 279–287. 

https://doi.org/10.4278/0890-1171-4.4.279 

Shlens, J. (2014). A Tutorial on Principal Component Analysis. arXiv. 

http://arxiv.org/abs/1404.1100 

Simons-Morton, B., McLeroy, K., & Wendel, M. (2012a). A Social Ecological Perspective. In 

Behavior Theory in Health Promotion Practice and Research (pp. 41–68). Hones & 

Bartlett Learning, LLC. 

Simons-Morton, B., McLeroy, K., & Wendel, M. (2012b). Expectancy Value Models. In 

Behavior Theory in Health Promotion Practice and Research (pp. 97–126). Hones & 

Bartlett Learning, LLC. 

Simons-Morton, B., McLeroy, K., & Wendel, M. (2012c). Social Influence Theory. In Behavior 

Theory in Health Promotion Practice and Research (pp. 155–179). Hones & Bartlett 

Learning, LLC. 

Simons-Morton, D. G., Simons-Morton, B. G., Parcel, G. S., & Bunker, J. F. (1988). Influencing 

personal and environmental conditions for community health: A multilevel intervention 

model. Family & Community Health, 11(2), 25–35. 

Snizek, B., Sick Nielsen, T. A., & Skov-Petersen, H. (2013). Mapping bicyclists’ experiences in 

Copenhagen. Journal of Transport Geography, 30, 227–233. 

https://doi.org/10.1016/j.jtrangeo.2013.02.001 

Stewart, O. T., Vernez Moudon, A., Saelens, B. E., Lee, C., Kang, B., & Doescher, M. P. (2016). 

Comparing Associations Between the Built Environment and Walking in Rural Small 



137 

Towns and a Large Metropolitan Area. Environment and Behavior, 48(1), 13–36. 

https://doi.org/10.1177/0013916515612253 

Stinson, M. A., & Bhat, C. R. (2003). Commuter Bicyclist Route Choice: Analysis Using a 

Stated Preference Survey. Transportation Research Record, 1828(1), 107–115. 

https://doi.org/10.3141/1828-13 

Suminski, R. R., Wasserman, J. A., Mayfield, C. A., Freeman, E., & Brandl, R. (2014). 

Bicycling Policy Indirectly Associated with Overweight/Obesity. American Journal of 

Preventive Medicine, 47(6), 715–721. https://doi.org/10.1016/j.amepre.2014.07.048 

Susser, M. (1994). The logic in ecological: I. The logic of analysis. American Journal of Public 

Health, 84(5), 825–829. 

The National FINRISK Study. (2017). Finnish Institute for Health and Welfare. 

https://thl.fi/en/web/thlfi-en/research-and-expertwork/population-studies/the-national-

finrisk-study 

Tilahun, N. Y., Levinson, D. M., & Krizek, K. J. (2007). Trails, lanes, or traffic: Valuing bicycle 

facilities with an adaptive stated preference survey. Transportation Research Part A: 

Policy and Practice, 41(4), 287–301. https://doi.org/10.1016/j.tra.2006.09.007 

Timio, M., Lippi, G., Venanzi, S., Gentili, S., Quintaliani, G., Verdura, C., Monarca, C., Saronio, 

P., & Timio, F. (1997). Blood pressure trend and cardiovascular events in nuns in a 

secluded order: A 30-year follow-up study. Blood Pressure, 6(2), 81–87. 

Ton, D., Bekhor, S., Cats, O., Duives, D. C., Hoogendoorn-Lanser, S., & Hoogendoorn, S. P. 

(2020). The experienced mode choice set and its determinants: Commuting trips in the 

Netherlands. Transportation Research Part A: Policy and Practice, 132, 744–758. 

https://doi.org/10.1016/j.tra.2019.12.027 



138 

Transportation Alternatives Enhancements Act, Pub. L. No. H.R. 463 (2021). 

https://www.congress.gov/bill/117th-congress/house-bill/463 

Tribby, C. P., & Tharp, D. S. (2019). Examining urban and rural bicycling in the United States: 

Early findings from the 2017 National Household Travel Survey. Journal of Transport & 

Health, 13, 143–149. https://doi.org/10.1016/j.jth.2019.03.015 

U.S. Census Bureau. (2020). Understanding and using American Community Survey data: What 

all data users need to know. U.S. Government Publishing Office. 

https://www.census.gov/content/dam/Census/library/publications/2020/acs/acs_general_h

andbook_2020.pdf 

USDOT. (2010). Policy Statement on Bicycle and Pedestrian Accommodation Regulations and 

Recommendations. FHWA. 

https://www.fhwa.dot.gov/environment/bicycle_pedestrian/guidance/policy_accom.cfm 

USDOT Federal Highway Administration. (2018). NHTS Data User Guide. 

https://nhts.ornl.gov/assets/NHTS2017_UsersGuide_04232019_1.pdf 

Uyanık, T., Karatuğ, Ç., & Arslanoğlu, Y. (2020). Machine learning approach to ship fuel 

consumption: A case of container vessel. Transportation Research Part D: Transport and 

Environment, 84. https://doi.org/10.1016/j.trd.2020.102389 

van Buuren, S. (2020). Package “mice.” https://cran.r-project.org/web/packages/mice/mice.pdf 

Walsh, S. M., Umstattd Meyer, M. R., Gamble, A., Patterson, M. S., & Moore, J. B. (2017). A 

Systematic Review of Rural, Theory-based Physical Activity Interventions. American 

Journal of Health Behavior, 41(3), 248–258. https://doi.org/10.5993/AJHB.41.3.4 

Wang, M. C., Kim, S., Gonzalez, A. A., MacLeod, K. E., & Winkleby, M. A. (2007). 

Socioeconomic and food-related physical characteristics of the neighbourhood 



139 

environment are associated with body mass index. Journal of Epidemiology and 

Community Health, 61(6), 491–498. https://doi.org/10.1136/jech.2006.051680 

Wang, Y. (2017). Comparison of methods for estimating prevalence of chronic diseases and 

health behaviors for small geographic areas: Boston validation study, 2013. Preventing 

Chronic Disease, 14. https://doi.org/10.5888/pcd14.170281 

Wardman, M., Tight, M., & Page, M. (2007). Factors influencing the propensity to cycle to 

work. Transportation Research Part A: Policy and Practice, 41(4), 339–350. 

https://doi.org/10.1016/j.tra.2006.09.011 

Waygood, E., Benard, M., Ishimo, Y., Michaud-Champagne, E., & Weinbuch, J. (2019). 

Perceptions of Bicycle Safety in a Small City. Active Living Conference, Charleston. 

Wennberg, P., Lindahl, B., Hallmans, G., Messner, T., Weinehall, L., Johansson, L., Boman, K., 

& Jansson, J.-H. (2006). The effects of commuting activity and occupational and leisure 

time physical activity on risk of myocardial infarction. European Journal of 

Cardiovascular Prevention and Rehabilitation: Official Journal of the European Society 

of Cardiology, Working Groups on Epidemiology & Prevention and Cardiac 

Rehabilitation and Exercise Physiology, 13(6), 924–930. 

https://doi.org/10.1097/01.hjr.0000239470.49003.c3 

Williams, J., & Larson, J. (1996). Promoting bicycle commuting: Understanding the customer. 

Transportation Quarterly, 50(3), 67–78. 

Wilson, P. W., D’Agostino, R. B., Levy, D., Belanger, A. M., Silbershatz, H., & Kannel, W. B. 

(1998). Prediction of coronary heart disease using risk factor categories. Circulation, 

97(18), 1837–1847. https://doi.org/10.1161/01.cir.97.18.1837 



140 

Yencha, C. (2019). Valuing walkability: New evidence from computer vision methods. 

Transportation Research Part A: Policy and Practice, 130, 689–709. 

https://doi.org/10.1016/j.tra.2019.09.053 

Zhang, X., Holt, J. B., Lu, H., Wheaton, A. G., Ford, E. S., Greenlund, K. J., & Croft, J. B. 

(2014). Multilevel Regression and Poststratification for Small-Area Estimation of 

Population Health Outcomes: A Case Study of Chronic Obstructive Pulmonary Disease 

Prevalence Using the Behavioral Risk Factor Surveillance System. American Journal of 

Epidemiology, 179(8), 1025–1033. https://doi.org/10.1093/aje/kwu018 

Zieff, S. G., Hipp, A., Eyler, A. A., & Kim, M.-S. (2013). Ciclovía initiatives: Engaging 

communities, partners and policymakers along the route to success. Journal of Public 

Health Management and Practice : JPHMP, 19(3 0 1), S74–S82. 

https://doi.org/10.1097/PHH.0b013e3182841982 

 

 

 

 

 

 

 

 

 

 

 



141 

APPENDIX A: SAMPLE SELECTION AND MULTIPLE IMPUTATION 

 

Bicycle Lane Supply 

 

Bicycle Path Supply 

 

Sprawl Index 

 
Complete Streets Policy 

Score 

 

Bicycle Infrastructure 

Budget 

 

 

 

Key: 

 imputed data point 

 

1All variables were transformed before imputation so that the regression models would meet 

assumptions of normally distributed residuals. 

Figure A1: Strip plots of imputed data points over five imputations1 

 

Model A1: The association between CAD prevalence and bicycle commuting rate when 

missing data is removed from the sample 

 

 

 

 

 

 

 

 

 existing data point 
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Model A2: The association between CAD prevalence and bicycle commuting rate when 

missing data is imputed 

 

Model A3: The association between CAD prevalence and bicycle commuting rate when 

missing data is imputed and two outlier census tracts are excluded from the sample 

 

 

Figure A2:  Distribution of CAD prevalence across 12,322 census tracts 
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Figure A3: Distribution of CAD prevalence across 12,320 census tracts 
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APPENDIX B: SUPPORTING ANALYSES 

 

Model B1: Exploratory regression model of obesity, diabetes, and hypertension as effect 

modifiers of bicycle commuting and CAD prevalence 

 

 

 

 

 

Figure B1: Multi-dimensional scaling plot of the distance between census tract clusters 
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Table B1: Percentage of census tracts with above median prevalence by effect modifier characteristic and cluster number 

 # 
No College 

Education 

White 

Race 

Latinx 

Ethnicity 

Median 

Income 

Manual 

Occupation 

Food 

Access 

Smoking 

Prevalence 

Obesity 

Prevalence 

Diabetes 

Prevalence 

1 2 89 29 95 9 51 1 3 3 

2 98 59 87 3 98 42 88 95 89 

3 88 2 26 5 50 52 98 99 98 

4 40 83 52 58 62 24 46 60 27 

5 53 19 72 64 61 83 14 24 69 

 

 

Table B2: Average census tract demographics, socioeconomics, and health risk factors by cluster number 

Census Tract 

Characteristics 
Cluster 1  Cluster 2 Cluster 3 Cluster 4 Cluster 5 

<45 >45 <45 >45 <45 >45 <45 >45 <45 >45 

Bicycle Commuting (%) 2.7 1.2 0.8 0.7 0.7 0.6 1.1 0.8 1.7 0.8 

Sex (% Male) 49.8 48.5 49.7 49.2 46.1 46.1 50.5 49.1 49.9 48.1 

Age (% > 45) 29.4 45.0 29.2 40.4 31.3 42.4 27.6 44.0 30.4 44.3 

Married (%) 6.3 5.0 6.6 6.7 7.5 8.3 5.9 5.2 8.8 8.5 

White (%) 73.9 80.6 54.4 69.2 11.0 6.4 65.9 74.5 38.7 33.4 

Black (%) 5.5 2.9 12.0 10.4 75.1 88.3 17.1 12.6 18.1 27.8 

Latinx (%) 12.1 9.5 63.6 33.7 6.1 2.4 28.6 22.6 45.4 26.9 

Median Income ($1K) 76.6 87.6 35.6 36.3 28.1 30.0 53.4 58.0 52.0 60.0 

 No College Education (%) 19.4 26.2 62.3 57.2 56.8 54.5 39.6 40.9 45.2 41.2 

Manual Labor Job (%)   4.1 4.4 15.3 13.1 7.6 8.0 9.6 9.3 11.1 8.7 

Healthy Food Access 9.0 46.8 38.6 53.1 27.3 42.4 60.6 63.6 14.6 15.6 

Smoking Prevalence (%) 12.7 11.8 21.8 21.3 26.3 25.1 18.7 17.6 16.3 15.3 

Obesity Prevalence (%) 22.1 22.7 36 35.3 41.4 43.3 30.4 30.2 26.4 25.1 

Diabetes Prevalence (%) 5.7 8.1 13 14 15 18.1 8.6 10.7 10.5 12.1 

Hypertension  Prevalence(%) 20.2 26.6 31 35.7 39.3 46.4 26.1 32.2 26.0 31.0 
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APPENDIX C: RECOMMENDED ACTIONS INFOGRAPHIC 

 


