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5.0  Surface Parameterization and Mesh Movement

A key aspect in any design optimization procedure is how  the design surface and

computational mesh are to be represented. This selection will ultimately determine (i) the

type and number of design variables used, (ii) the grid adaptation or regeneration method,

and (iii) the means through which grid sensitivities are calculated. In the following

sections, the techniques used in the present work for (i), (ii), and (iii) will be discussed.

5.1  Bezier-Bernstein Curves

The method adopted to represent the design surface should have a physical

interpretation, illustrate fairness between the design variables, not create spurious or

uncontrollable oscillations between the design variables, and possess geometric flexibility

in as few design variables as possible. One approach which has these desired attributes,

and which has been used with much success for both structural [160] and aerodynamic

[9,19,49,155,161,162] shape optimization problems, is referred to as a Bezier-Bernstein

surface parameterization. A brief review of Bezier-Bernstein curves follows; a more

detailed discussion may be found in reference 163.

Any point on a Bezier curve segment may be expressed by the following parametric

function

c(u) = bi
i=0

N

∑ Bi,N (u) u ∈ 0,1[ ] (5.1)
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where bi  represent the N+1 vertices referred to as Bezier control points, and the blended

functions Bi,N (u)  are given by the N th-degree Bernstein polynomials

Bi,N (u) =
N! ui (1 − u)N− i

i! (N − i)!
(5.2)

where u is the normalized computational arclength along the curve. The Bernstein

polynomials were chosen because they satisfy the properties that (i) the curve must pass

through the first and last control points and (ii) the tangent to the curve at each point may be

controlled or specified if desired.

As can be deduced, the Bezier control points are a logical choice for shape design

variables. An example of a curve parameterized with Bezier-Bernstein polynomials is

depicted in Fig. 5.1. Once the design variables have been selected and the surface

parameterization complete, a means of adapting the computational mesh, X βk( ) , due to

changes in the design variable, βk , must be employed. The mesh movement strategy used

in the current work will be discussed in section 5.3.

5.2  Wing Planform Representation

The wing planform parameterization used in the current work is illustrated in Fig. 5.2.

The design variables consist of local chord multipliers and setback distances at the cranks

and tip. Throughout the design, the semi-span length, root chord, and distances between

cranks are fixed. Similar parameterizations have been used and are discussed in Refs. 162

and 164 for design optimization studies utilizing structured grid approaches. An extremely

sophisticated wing parameterization method capable of modeling wing-section (airfoil)

definitions, taper distribution, sweep, span and spanwise bending, global angle-of-attack,

and twist schedule is developed in Ref. 162 and discussed at length in Ref. 9.
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5.3  Mesh Movement Strategy

For a structured grid, it is possible to augment the surface parameterization technique

with an algebraic grid generation method [9] and, thus, derive explicit relationships

between the mesh and the design variables. An explicit, differentiable dependence between

the mesh and the design variables has the advantages of being CPU efficient and it allows

for the analytical determination of grid sensitivities, ∂X ∂βk . Unstructured grids, on the

other hand, due to an inability to define distinct families of grid lines, may not be adapted

by these simple algebraic relations.

An alternative approach, previously developed by Batina [165] and duplicated in Refs.

166 and 167, considers the unstructured mesh as a system of interconnecting springs. This

system is constructed by representing each edge of each triangle by a tension spring. The

stiffness of this spring is assumed inversely proportional to the length of its edge and may

be written as

k ji = 1.0 xi − x j( )2
+ yi − y j( )2

+ z i − z j( )2 
 

 
 

p/ 2

(5.3)

where p is a parameter used to control the stiffness of the spring. Then, for each mesh

point, the external forces due to the connecting boundary springs are summed and resolved

into Cartesian components. The resulting set of linear systems may be solved for the

displacements of each node using several Jacobi iterations

∆Xj
n+1 =

k ji ∆Xi
n∑

k ji∑ (5.4)

where i is summed over all edges connected to node j. The positions of the interior nodes

are then updated using the determined displacements.

This iterative method has the advantage of not requiring an excessive amount of memory,

but does require an initial guess for the displacements. In the present work, the initial
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guess, at the start of the grid adaptation process for a current design, is the final

displacements of the adapted mesh from the previous design. In practice, using this

unstructured grid adaptation method, an acceptable mesh is usually achieved in 4 to 6

iterations.

Even though it is not used in the present study, there is yet another means through which

the computational mesh about a new design may be obtained. This requires the

incorporation of an existing grid generation package into the design optimization procedure

[139,164,168]. Then, for each new design, the grid is simply regenerated. In order to

remain consistent within the optimization process, however, a strict one-to-one

correspondence between the computational meshes at different designs should be

maintained (i.e., the size of the computational mesh should not change during the design

process). A potential difficulty of this approach, as well as for the above spring analogy

method, is the determination of grid sensitivities. The manner in which this problem is

circumvented, in the present work, is discussed in the following section.

5.4  Grid Sensitivity

Efficient and accurate evaluation of grid sensitivities is an extremely important and vital

aspect in any design optimization procedure (which uses discrete sensitivity analysis). The

technique used to obtain the grid sensitivities from the unstructured grid adaptation

procedure results from the direct application of ADIFOR [136]. Here, the subroutines

which parameterize the design surface with the variables βk , and the subroutines which

perform the unstructured grid adaptation to produce the mesh X βk( ) , are differentiated

using ADIFOR. The result is an additional set of subroutines which, upon compilation and

execution, will return the grid sensitivities, ∂X ∂βk .
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To verify that these sensitivities were indeed correct for each of the design cases, one of

the design variables was perturbed, the grid adapted, and the grid sensitivities calculated via

ADIFOR generated subroutines. These sensitivities were then compared with those

obtained using a central finite-difference. ADIFOR generated grid sensitivities matched

finite-difference to approximately 8 significant digits for both the two- and three-

dimensional cases. Qualitative results of these comparisons will be shown in the results.


