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(ABSTRACT)



It has been observed that carbon nanotube (CNT)-polymer nanocomposite material has

observable piezoresistive effect, that is to say that changes in applied strain may induce

measurable changes in resistance. The first focus of the work is on modeling the piezoresis-

tive response of the CNT-polymer nanocomposites by using computational micromechanics

techniques based on finite element analysis. The in-plane, axial, the three dimensional

piezoresistive responses of the CNT-polymer nanocomposites are studied by using 2D, ax-

isymmetric, and 3D electromechanically coupled and multiscale finite element models. The

microscale mechanisms that may have a substantial influence on the overall piezoresistivity

of the nanocomposites, i.e. the electrical tunneling effect and the inherent piezoresistiv-

ity of the CNT, are included in microscale RVEs in order to understand their influence on

macroscale piezoresistive response in terms of both the normalized change in effective resis-

tivity and the corresponding effective gauge factor under applied strain. The computational

results are used to better understand the driving mechanisms for the observed piezoresistive

response of the material. The second focus of the work is on modeling the piezoresistive

response of fuzzy fiber reinforced polymer composites by applying a 3D multiscale microme-

chanics model based on finite element analysis. Through explicitly accounting for the local

piezoresistive response of the anisotropic interphase region, the piezoresistive responses of

the overall fuzzy fiber reinforced polymer composites are obtained. The modeling results not

only provide a possible explanation for the small gauge factors as observed in experiments,

but also give guidance for the manufacture of fuzzy fiber reinforced polymer composites in

order to achieve large, consistent, and predictable gauge factors. The third focus of the

work is on modeling the coupled effect between continuum damage and piezoresistivity in

the CNT-polymer nanocomposites by using computational micromechanics techniques based

on a concurrent multiscale finite element analysis. The results show that there is a good

correlation between continuum damage and piezoresistive response of the nanocomposites,

which gives theoretical and modeling support for the use of CNT-polymer nanocomposites

in structural health monitoring (SHM) applications for damage detections.
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Chapter 1

Introduction

Carbon nanotubes (CNT) are cylindrical fullerenes with closed or open ends. Since their

discovery by Iijima (1991), they have drawn great attention of the scientific and engineering

communities. While single-walled carbon nanotubes (SWCNT) or multi-walled carbon nan-

otubes (MWCNT) have radii on the order of nanometers, they can have their lengths ranging

from less than one micrometer to several millimeters. The CNT’ unique molecular structures

make them yield extraordinary material properties. For example, it has been found that the

SWCNT have Young’s modulus on the average of 1000 GPa (Yu et al., 2000a), which is five

time higher than the one of steel, and in the mean while is only of one fifth to one sixth of the

density. The tensile strengths of MWCNT are observed to be from 11 GPa (Yu et al., 2000b)

to 150 GPa (Demczyk et al., 2002), which are one to two orders higher than the one of steel.

In addition, it is found that a SWCNT has a room-temperature thermal conductivity of 3500

W·m−1 ·K−1 along its axis (Pop et al., 2006), which is one order higher than copper. Due to

the CNT’s multifaceted extraordinary material properties, it is beneficial to add the CNT

as a strengthening phase in the composite materials to improve their overall performances.

The CNT-polymer nanocomposite material is a type of polymer composites added by CNTs

as a strengthening phase. To date, several kinds of CNT-polymer nanocomposites have been

shown to have linear piezoresistive responses with small loadings of SWCNT or MWCNT (Zhang

1
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et al., 2006; Kang et al., 2006b, 2009; Bautista-Quijano et al., 2010; Oliva-Aviles et al., 2011;

Ferreira et al., 2012a,b). For example, Zhang et al. (2006) found in the small strain range of

1% that MWCNT/Polycarbonate (PC) films loaded with 5%wt MWCNT can yield a strain

sensitivity approximately 3.5 times that of a commercial (metallic) strain gauge. Kang et al.

(2006b) found the gauge factor of sensors made of SWNT/PMMA composites to range from

about 1 to 5 when the weight percentage of SWCNT range from 0.5%wt to 10%wt, with

the higher sensitivity being achieved using 3%wt to 10%wt SWCNT. Kang et al. (2009)

reported that for the SWNT/Polyimide composites sensors, the maximum gauge factor is

achieved at a concentration just above the percolation threshold concentration (0.05%wt

SWCNT) with a magnitude of 4.21. Bautista-Quijano et al. (2010) reported the gauge fac-

tors of thin films made of Polysulfone (PSF) and dispersed MWCNT to range from 0.48

to 0.73 when the weight percentage of MWCNT is between 0.2%wt to 1.0%wt. Ferreira

et al. (2012b) reported that the maximum gauge factor ranges up to 6.2 for the hot pressed

SWCNT/PVDF composites when the weight percentage of SWCNT is just below 2%wt. For

aligned MWCNT/PSF films with 0.5%wt MWCNTs aligned by application of AC electric

fields during processing, Oliva-Aviles et al. (2011) reported a gauge factor of 2.78±0.42 for

tensile loading in the MWCNT alignment direction. It has also been observed that at a

concentration just above the CNT electrical percolation threshold, the piezoresistive stress

coefficient of SWCNT/Polyimide nanocomposites exceeds those of metallic materials (alu-

minum) by two orders of magnitude (Kang et al., 2009). Such piezoresistive properties make

CNT-polymer nanocomposites very attractive in the manufacturing of high gauge-factor

light-weight strain gauges.

In addition, researchers have also found that the piezoresistive response of the CNT-polymer

nanocomposites can be an indicator of damage events within the material (Park et al., 2007;

Li and Chou, 2008; Saafi, 2009; Kim et al., 2010; Alexopoulos et al., 2010; Vadlamani et al.,

2012b,a; Cardoso et al., 2012; Heeder et al., 2012). For example, by using double-matrix

composite techniques, the carbon fiber fracture events were inherently sensed by the piezore-

sistive response of CNT-polymer nanocomposites, and it was found that the piezoresistivity
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of the nanocomposites can well capture the fiber fracture events (Park et al., 2007). Saafi

(2009) used wireless cement-CNT sensors for damage detection in concrete structures, and

it was found that the carbon nanotube networks can in-situ detect crack initiation and prop-

agation. Vadlamani et al. (2012b) dispersed 0.3%wt-0.5%wt CNTs into epoxy, and through

measuring the piezoresistivity of the CNT-polymer nanocomposites they studied the in-situ

sensing of nonlinear deformation, damage initiation, and growth within the material. There-

fore, in contrast to the customary surface strain measurements obtained from commercial

strain gauges bonded to the surface of structures, the CNT-polymer nanocomposite strain

gauges have the potential to be directly embedded in structural composites during composite

processing to provide internal and in-situ strain and damage sensing.

While there are ample experimental evidences demonstrating the piezoresistive response of

CNT-polymer nanocomposites, the mechanisms governing piezoresistivity of CNT-polymer

nanocomposites are less clear in terms of relative magnitude and interactions. At present,

several mechanisms are believed to contribute to the piezoresistive response of CNT-polymer

nanocomposites. For example, Fernberg et al. (2009) indicated that the geometric change

of the specimen will have an effect on its macroscale resistance behavior. Kang et al. (2009)

have indicated that the piezoresistive response of macroscale nanocomposite material origi-

nates from the tunneling effect (Simmons, 1963; Fuhrer et al., 2000; Budlum and Lu, 2001;

Li et al., 2007; Xia and Curtin, 2007; Li and Chou, 2008; Li et al., 2008; Theodosiou and

Saravanos, 2010; Hu et al., 2012) between conducting inclusions (CNTs) at the nanoscale

under compression or tension. It has been observed both experimentally and in modeling

that mechanical deformation of CNTs can directly lead to significant changes in their con-

ductance (Peng and Cho, 2000), indicating CNTs are themselves good strain sensors due to

inherent piezoresistivity. In order to aide in the design of piezoresistive nanocomposite strain

gauges with tailored sensitivities, it is necessary to develop an understanding of the under-

lying mechanisms at the micro and nanoscales which govern the macroscale piezoresistive

response.

The fuzzy fiber material (Bower et al., 2000; Thostenson et al., 2002; Zhu et al., 2003; Zhao
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et al., 2005; Ci et al., 2005; Mathur et al., 2008; Garcia et al., 2008; Sager et al., 2009; Ya-

mamoto et al., 2009, 2012; Wood et al., 2012; Sebastian et al., 2014) is an engineering material

that has a carbon, glass, ceramic, or alumina structural fiber core, with dense CNT ”forest”

coated on the fiber surface, as observed in Fig. 1.1. In the fuzzy fiber reinforced polymer

(a) (b)

Figure 1.1: Fuzzy fiber material: a) A single fuzzy fiber with densely-packed and radi-

ally oriented CNTs on the surface (http://muri18.tamu.edu/). b) A single fuzzy fiber with

densely-packed and randomly oriented CNTs on the surface.

composites (FFRPC), the CNTs on the structural fiber surface form a multifunctional inter-

phase region, which can provide enhanced load transfer, damage resistance, higher thermal

and electrical conductivities, and electromechanical coupling in the form of piezoresistivity.

For example, it is found that fuzzy fibers coated with randomly oriented MWCNTs and

aligned MWCNTs can have 71% and 11% increase respectively in interfacial shear strength

over the unsized and untreated fibers (Sager et al., 2009). It is measured that FFRPC with

alumina-fiber cores have a high electrical conductivity of >100 S/m and an enhancement of

thermal conductivity (∼1 W/m K) (Yamamoto et al., 2012). Sebastian et al. (2014) inte-

grated fuzzy fiber sensors into composite structures to explore their internal sensing abilities.

It is found that the fuzzy fiber sensors with a gauge factor of 1.6 - 2.3, which is similar to con-

ventional strain gauges, can provide sensing over large sections and in locations not accessible
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to conventional strain gauging techniques. The multi-functionality of the interphase region

makes FFRPC good candidates for multifunctional applications such as structural health

monitoring (SHM), electromagnetic shielding, fire resisting and deicing (Yamamoto et al.,

2012; Sebastian et al., 2014). In contrast to the customary surface strain measurements,

FFRPC strain gauges have the potential to be directly embedded in structural composites

during composite processing to provide internal strain sensing (Veedu et al., 2006; Boger

et al., 2008; Yamamoto et al., 2012). In order to aid in the design of FFRPC strain gauges

with tailored sensitivities for SHM applications, it is necessary to develop an understanding

of the underlying mechanisms which govern the macroscale piezoresistive response.

To date, researchers have spent significant amount of efforts in modeling different kinds of ma-

terial properties, such as mechanical, thermal, electrical, acoustic, and magnetic properties

among others. Modeling efforts are of importance not only for better understanding of the

underling physics, but also sometimes for analysis, prediction, and optimization purposes.

For the CNT-polymer nanocomposite materials, different modeling techniques and meth-

ods such as molecular dynamics approaches (Frankland et al., 2003; Griebel and Hamaekers,

2004; Adnan et al., 2007; Zhu et al., 2007) and continuum micromechanics approaches (Fisher

and Brinson, 2001; Fisher et al., 2002, 2003; Bradshaw et al., 2003; Buryachenko and Roy,

2005; Liu et al., 2005; Liu and Brinson, 2006; Seidel and Lagoudas, 2006, 2009; Seidel and

Puydupin-Jamin, 2011; Ren and Seidel, 2013a,b; Spanos and Kontsos, 2008; Hadjiev et al.,

2006; Wagner, 2002) have been applied either independently or in a combination manner (Li

and Chou, 2003; Odegard et al., 2003, 2004; Seidel and Lagoudas, 2008). Such models are

substantially multiscale, and are developed not only based on observations and approxima-

tions of engineering physics, but also based on rigorous mathematics such as calculus and

statistics.

In this study, multiscale micromechanics piezoresistive models based on finite element anal-

ysis have been developed to systematically study the piezoresistive mechanisms of CNT-

polymer nanocomposites and FFRPC. The contents of the dissertation are arranged as fol-

lows: Chapter 2 discusses the work on modeling the influence of inherent piezoresistivity of
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the CNT on the overall piezoresistive response of the nanocomposites; Chapter 3 discusses

the work on modeling the coupled effect of electrical tunneling and inherent piezoresistive

effects within the CNT-polymer nanocomposites; Chapter 4 discusses the work on model-

ing the dispersion effect on the piezoresistive response of the CNT-polymer nanocomposites

via using a 3D multiscale computational model; Chapter 5 discusses the work on modeling

the initial electrostatic properties of fuzzy fiber reinforced polymer composites; Chapter 6

discusses the work on computational multiscale modeling and characterization of the piezore-

sistivity within the fuzzy fiber reinforced polymer composites; last but not least Chapter 7

gives modeling work of the coupled effect of damage and piezoresistivity within the CNT-

polymer nanocomposites.



Chapter 2

Computational Micromechanics

Modeling of Inherent Piezoresistivity

in CNT-Polymer Nanocomposites

2.1 Introduction

As introduction in Chapter 1, CNT-polymer nanocomposites have been shown to have linear

piezoresistive responses with small loadings of single-walled carbon nanotubes (SWCNT) or

multi-walled carbon nanotubes (MWCNT) (Zhang et al., 2006; Kang et al., 2006b, 2009;

Bautista-Quijano et al., 2010; Oliva-Aviles et al., 2011; Ferreira et al., 2012a,b). A mecha-

nism is associated with the CNTs themselves which have been shown to have a considerable

inherent effect which should not be neglected. It has been observed both experimentally and

in modeling that mechanical deformation of CNTs can directly lead to significant changes in

their conductance (Peng and Cho, 2000), indicating CNTs are themselves good strain sen-

sors due to inherent piezoresistivity. Efforts to quantify the inherent piezoresistivity of CNTs

have taken the form of both characterization and modeling experiments. For example, Chen

7
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et al. employed molecular dynamics simulations and quantum transport theory to study

the electrical properties of (12,0) zigzag carbon nanotubes under different uniaxial strains,

and found that a 1% strain can result in a 6.4% decrease in resistance (Chen and Weng,

2007). Tight-binding and zone-folding approximations have been used to predict the strain

sensitivity of a carbon nanotube, which is found to be based on its chiral indices (n,m), and

varies widely with the electrical structures (Cullinan and Culpepper, 2010; Anantram et al.,

1999). Experimentally, Tombler et al. (2000) applied strain to a suspended CNT using AFM

tips and observed that the conductance of the CNT could change by as much as two orders

of magnitude under the applied strains. Stampfer et al. (2006) measured the relative differ-

ential resistance sensitivity for a metallic SWNT of up to 27.5% per nanometer of deflection

from which a piezoresistive gauge factor of a SWNT of up to 2900 was extracted. To our

knowledge, there has been no clear discussion and quantification as to what magnitude of in-

herent CNT piezoresistivity is needed to achieve macroscale nanocomposite gauge factors on

the order of 2 to 5 if this mechanism was indeed the driving force behind the nanocomposite

piezoresistive response.

In this study, a computational multiscale micromechanics model based on finite elements

analysis is developed and used to determine the changes in macroscale resistance (i.e. ef-

fective macroscale piezoresistance) due to changes at the microscale associated with CNT

deformation and inherent piezoresistivity. The effects of CNT geometry, local volume frac-

tion, and inherent piezoresistive coefficients on the macroscale piezoresistivity are studied

parametrically. The results are discussed in the context of experimentally observed gauge

factors for nanocomposites and the strength of electromechanical coupling needed to achieve

observed responses.
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2.2 Multiscale Model for the CNT-Polymer Nanocom-

posites

In the CNT-polymer nanocomposites, the strains in the CNTs may have an effect on their

resistivities, therefore the mechanical and electrical properties of the nanocomposites are

one way coupled. In other words, the mechanical properties of the domain may influence

its electrical properties, but not vice versa. Typically, the dispersion and shape of CNTs in

the CNT-polymer nanocomposites may be complicated, e.g. the CNTs can be curved along

their axes, randomly oriented, and bundled with the other CNTs. In order to focus the

present study on the potential impact of inherent piezoresistivity of CNTs on the macroscale

piezoresistive response of nanocomposites, we have selected a multiscale idealization as shown

in Fig. 3.1. In this representation, the CNTs are assumed to be well-dispersed, aligned and

perfectly bonded to the surrounding polymer. The governing differential equations describing

mechanical and electrostatic responses of the nanocomposites are given below:

Figure 2.1: The hierarchical multiscale modeling of nanocomposites in which there are well-

dispersed and aligned CNTs
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Mechanical Governing Differential Equations at the Macroscale

For quasi-static conditions and omitting body forces, conservation of linear momentum at

the macroscale can be written in cartesian coordinate system as

σ̃ij,j = 0 (2.1)

where the overscript ”∼” denotes variables at the macroscale. Note that the summation

convention is used with i, j ranging from 1 to 3 and the comma denotes spatial differentiation.

The infinitesimal strain displacement relations at the macroscale are given by

ε̃ij =
1

2
(ũi,j + ũj,i) (2.2)

The macroscale constitutive relation for the mechanical boundary can be expressed as:

σ̃ij = CEff
ijklε̃kl (2.3)

where CEff
ijkl are the effective macroscale stiffness components which are obtained from the

volume averaged stress-strain response at the microscale as

〈σij〉 = CEff
ijkl〈εkl〉 (2.4)

where the brackets 〈·〉 denote volume averaging over the appropriate microscale representa-

tive volume element (RVE). The mechanical boundary value problem is completed through

the specification of the boundary conditions which can be given by

ũi = ũ0
i onSu (2.5a)

and

t̃i = ñjσ̃ij = t̃0i onSσ (2.5b)

where the complete macroscale boundary is specified as the union of Su and Sσ. It is noted

that the macroscale effective mechanical properties obtained from the microscale bound-

ary value problem are independent of the macroscale boundary conditions, and thus, need
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only be determined once at the initiation of the piezoresistive simulations. The macroscale

effective elastic properties can therefore be obtained by using either computational microme-

chanics method (Hammerand et al., 2007) or by using composite cylinder method (Seidel

and Lagoudas, 2006).

Electrostatic Governing Differential Equations at the Macroscale

The steady-state conservation of charge equation at the macroscale can be denoted in carte-

sian coordinate system as:

J̃i,i = 0 (2.6)

where J̃i is the current density at the macroscale. The macroscale electrical field is obtained

as the negative of the gradient of the macroscale potential as

Ẽi = −Φ̃,i (2.7)

where Ẽi and Φ̃ are the electric field and electric potential respectively at the macroscale.

In an analogous manner as in the macroscale mechanical boundary value problem, the con-

stitutive relation for the macroscale electrical boundary value can be expressed as

Ẽi = ρEff
ij J̃j (2.8a)

or

J̃i = κEff
ij Ẽj (2.8b)

where ρEff
ij and κEff

ij are the effective macroscale resistivity and conductivity components

respectively, which are obtained from the volume averaged current density-electric field re-

sponse at the microscale as

〈Ei〉 = ρEff
ij 〈Jj〉 (2.9a)

or

〈Ji〉 = κEff
ij 〈Ej〉 (2.9b)
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where the brackets again denote volume averaging over the appropriate microscale RVE. The

electrical boundary value problem is completed through the specification of the boundary

conditions which can be given by

Φ̃ = Φ̃0 onSΦ (2.10a)

and

ñiJ̃i = ñiJ̃
0
i onSJ (2.10b)

where the complete macroscale boundary is specified as the union of SΦ and SJ . It is noted

that the macroscale effective electrical properties obtained from the microscale boundary

value problem are independent of the macroscale electrical boundary conditions. However,

due to the piezoresistivity at the microscale, the macroscale effective electrical properties

do depend on the macroscale mechanical boundary conditions. As such, the effective elec-

trical properties must be determined at each mechanical load step. The macroscale effec-

tive electrical properties must therefore be obtained in an incremental manner using either

computational micromechanics method or composite cylinder method for specific material

symmetries of electrical material properties (Seidel and Lagoudas, 2009; Ren and Seidel,

2011).

Mechanical Governing Differential Equations for the Microscale RVE

The 3D microscale RVE for aligned CNT nanocomposites (Fig. 3.1) can be reduced to two 2D

RVEs in order to save computational time. As seen in Fig. 3.2a, due to high aspect ratios

(≥200) of CNTs, the transverse properties of the nanocomposites are typically modeled

using the regular hexagonal array RVE under in-plane strain assumption. The annulus

areas represent the cross-sections of CNTs, and the remaining area is pure polymer matrix.

Correspondingly, a plane strain periodic finite element model is constructed to model the

piezoresistive response of the nanocomposites in the transverse directions. On the other

hand, for cases where the loading is axisymmetric, for example in the uniaxial tension test,

the axial properties of the nanocomposites are modeled by using a 2D axisymmetric RVE
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Figure 2.2: Microscale RVEs for the nanocomposites with well-dispersed and aligned CNTs.

a) is the transverse hexagonal microscale RVE with the volume fraction of the CNTs being

10%. b) is the axisymmetric microscale RVE with the volume fraction of the CNT being

0.5%vol and the aspect ratio of the CNT being 20 (The aspect ratio used here is only for

demonstration purposes as the real aspect ratio used in the computations is much higher

(≥200)). X1 and X2 are in the same plane as Xr and Xθ. W1 is the width of the hexagonal

microscale RVE in X1 direction, and W2 is the width of the hexagonal microscale RVE in

X2 direction. L is the length of the axisymmetric microscale RVE in Xz (or X3) direction,

LCNT is the length of CNT, and R is the half distance between two adjacent CNTs.

that is axisymmetric about the axis (Fig. 3.2b). The highlighted area is CNT, and the

remaining area is pure polymer matrix. Correspondingly, an axisymmetric finite element

model is constructed to model the axial piezoresistive response of the nanocomposites.

For quasi-static conditions omitting body forces, conservation of linear momentum for the

microscale RVE can be written in cartesian coordinate system as

σij,j = 0 (2.11)
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where under the plane strain assumptions of the transverse hexagonal RVE σ13 and σ23 are

zero. For the axisymmetric microscale RVE, it is more convenient to express conservation of

linear momentum in cylindrical coordinates as

∂σrr
∂r

+
∂σrz
∂z

+
σrr − σθθ

r
= 0 (2.12a)

∂σrz
∂r

+
∂σzz
∂z

+
σrz
r

= 0 (2.12b)

where it is noted that terms involving θ shear components or differentiation with respect to θ

have been eliminated from the general cylindrical form. The infinitesimal strain-displacement

relations for the microscale RVE are given in Cartesian coordinates by

εij =
1

2
(ui,j + uj,i) (2.13)

where under the plane strain assumptions for the transverse hexagonal RVE ε13 = 0, ε23 = 0,

and ε33 = 0. For the axisymmetric microscale RVE the strain-displacement relations in

cylindrical coordinates are given as

εrr =
∂ur
∂r

, εθθ =
ur
r
, εzz =

∂uz
∂z

,

εθz = 0, εrz =
1

2
(
∂uz
∂r

+
∂ur
∂z

), εrθ = 0. (2.14)

At the microscale, the CNT annulus and polymer matrix can be assumed to be isotropic

linear elastic materials (Saito et al., 1998) such that their constitutive relationships can be

denoted with the Lame constants as

σij = 2µCεij + λCεkkδij (2.15a)

σij = 2µMεij + λMεkkδij (2.15b)

where the superscripts C and M on the material properties denote CNT and polymer matrix

respectively, and the standard relationships µ = E
2(1+ν)

and λ = Eν
(1+ν)(1−2ν)

hold. The bound-

ary conditions on the microscale RVE can be expressed as either traction or displacement

boundary conditions by

ti = njσ̃ij(X̃k) (2.16a)
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ui = xj ε̃ij(X̃k) (2.16b)

such that in general the macroscale and microscale RVE stresses and strains can be related

to one another through microscale volume averages as

σ̃ij(X̃k) = 〈σij〉 (2.17a)

ε̃ij(X̃k) = 〈εij〉 (2.17b)

where σ̃ij(X̃k) and ε̃ij(X̃k) are the macroscale stress and strain at a macroscale material point

X̃k which the microscale RVE represents. Note that in Eqs. (3.1) - (3.3), i, j, k = 1, 2, 3 in the

Cartesian coordinate system of the transverse hexagonal microscale RVE, while i, j, k = r, θ, z

in the cylindrical coordinate system of the axisymmetric microscale RVE.

Electrostatic Governing Differential Equations for the Microscale RVEs

The steady-state conservation of charge equation for the microscale RVE can be denoted in

Cartesian coordinates as:

Ji,i = 0 (2.18)

where Ji is the current density, and where under in-plane electrostatic assumptions J3,3 = 0.

For the axisymmetric microscale RVE, it is again more convenient to express conservation

of charge in cylindrical coordinates as

∂Jr
∂r

+
∂Jz
∂z

+
1

r
Jr = 0 (2.19)

where it is noted that terms involving θ current density components or differentiation with

respect to θ have been eliminated from the general cylindrical form. The microscale RVE

electric field is obtained as the negative of the gradient of the microscale potential as

Ei = −Φ,i (2.20)

where Ei (i = 1, 2, 3) and Φ are the electric field and electric potential respectively as applied

in Cartesian coordinate system at the microscale and where under in-plane electro-static
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assumptions it is noted that E3 = 0. For the axisymmetric microscale RVE the electric field

is obtained from the potential in cylindrical coordinates as

Er = −∂Φ

∂r
(2.21a)

Ez = −∂Φ

∂z
(2.21b)

where it is noted that terms involving the differentiation with respect to θ have been elimi-

nated from the general cylindrical form. For the microscale RVEs, Ohm’s law can be written

as

Ei = ρC
ijJj (2.22a)

Ei = ρM
ij Jj (2.22b)

where the superscripts C and M on the resistivities denote CNT and polymer matrix, re-

spectively, such that the inverses of Eq. (3.6a) and (3.6b) yield the electrical conductivities

of the CNT and polymer matrix, respectively, as

Ji = κC
ijEj (2.23a)

Ji = κM
ijEj (2.23b)

Note that in Eq. (3.6) and Eq. (2.23), i, j, k = 1, 2, 3 in the Cartesian coordinate system of

the transverse hexagonal microscale RVE, while i, j, k = r, θ, z in the cylindrical coordinate

system of the axisymmetric microscale RVE.

As the pure polymer matrix is not expected to be piezoresistive, the resistivity remains fixed

under the applied strains. However, the CNTs are expected to exhibit inherent piezoresis-

tivity such that the instantaneous resistivity, ρC
ij is a function of the local strain state within

the CNT and can therefore be written as

ρC
ij = ρC0

ij + ∆ρC
ij (2.24)

in which ρC0
ij are the initial zero strain resistivities of the CNT, and ∆ρC

ij are the change in

resistivities induced by inherent piezoresistive effect of the CNT as obtained from

∆ρCij = gC
ijklεkl (2.25)
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The gC
ijkl are the piezoresistive strain coefficient components of the fourth order piezoresistive

coefficient tensor of the CNT which in general has 81 components. However, due to the

symmetry of both the resistivity and strain, i.e.

∆ρCij = ∆ρCji (2.26a)

εkl = εlk (2.26b)

one may write

gC
ijkl = gC

jikl (2.27a)

gC
ijkl = gC

ijlk (2.27b)

The piezoresistive constitutive equation can therefore be denoted in Voigt notation as

∆ρC
1

∆ρC
2

∆ρC
3

∆ρC
4

∆ρC
5

∆ρC
6


=



gC
11 gC

12 gC
13 gC

14 gC
15 gC

16

gC
21 gC

22 gC
23 gC

24 gC
25 gC

26

gC
31 gC

32 gC
33 gC

34 gC
35 gC

36

gC
41 gC

42 gC
43 gC

44 gC
45 gC

46

gC
51 gC

52 gC
53 gC

54 gC
55 gC

56

gC
61 gC

62 gC
63 gC

64 gC
65 gC

66





ε1

ε2

ε3

2ε4

2ε5

2ε6


(2.28)

in which the number of the piezoresistive strain coefficients gC
ij is reduced to 36 with the

Voigt notation correspondence in Cartesian coordinates given by

∆ρC
1 = ∆ρC

11, ∆ρC
2 = ∆ρC

22, ∆ρC
3 = ∆ρC

33

∆ρC
4 = ∆ρC

23, ∆ρC
5 = ∆ρC

13, ∆ρC
6 = ∆ρC

12

ε1 = ε11, ε2 = ε22, ε3 = ε33

ε4 = ε23, ε5 = ε13, ε6 = ε12 (2.29)

Similarly, in Eq. (2.28) the Voigt notation correspondence to cylindrical components is given

by:

∆ρC
1 = ∆ρC

rr, ∆ρC
2 = ∆ρC

θθ, ∆ρC
3 = ∆ρC

zz
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∆ρC
4 = ∆ρC

θz, ∆ρC
5 = ∆ρC

rz, ∆ρC
6 = ∆ρC

rθ

ε1 = εrr, ε2 = εθθ, ε3 = εzz

ε4 = εθz, ε5 = εrz, ε6 = εrθ (2.30)

Based on CNT geometry and composition1, the CNT piezoresistive strain coefficients are at

most of transversely isotropic symmetry, and can therefore be expressed as

∆ρC
1

∆ρC
2

∆ρC
3

∆ρC
4

∆ρC
5

∆ρC
6


=



gC
11 gC

12 gC
13 0 0 0

gC
12 gC

11 gC
13 0 0 0

gC
13 gC

13 gC
33 0 0 0

0 0 0 gC
44 0 0

0 0 0 0 gC
44 0

0 0 0 0 0 gC
66





ε1

ε2

ε3

2ε4

2ε5

2ε6


(2.31)

The number of independent components of the gC
ij matrix is thus reduced to 5 with gC

66 =

gC
11−gC

12

2
. However, gC

ij = gC
ji is based on an assumption which still needs to be further verified

by either laboratory or lower length scale computational experiments as current efforts in

this area have only explored the axial component, gC
33. It is further noted that Eq. (2.31)

can be reduced according to the assumptions regarding zero strain components for both the

plane strain hexagonal and axisymmetric microscale RVEs as indicated above. The electrical

boundary conditions on the microscale RVE can be expressed as either current density or

potential conditions by

niJi = niJ̃i(X̃k) (2.32a)

Φ = xiẼi(X̃k) (2.32b)

such that in general the macroscale and microscale RVE current densities and electric fields

can be related to one another through microscale volume averages as

J̃i(X̃k) = 〈Ji〉 (2.33a)

1Observing that the piezoresitive stress coefficient matrix for Germanium and Silicon displays diagonal

symmetry (Smith, 1954), we assume this to likewise be the case for the piezoresistive strain coefficient matrix

for the CNT.
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Ẽi(X̃k) = 〈Ei〉 (2.33b)

where J̃i(X̃k) and Ẽi(X̃k) are the macroscale current density and electric field at a macroscale

material point X̃k which the microscale RVE represents. Finally, as the local CNT resistivity

according to Eq. (2.31) is now a function of the local strain in the CNT which in turn is in-

fluenced by the specific mechanical boundary conditions being imposed from the macroscale,

the CNT and hence effective nanocomposite conductivities will therefore be functions of the

applied mechanical loads at the macroscale.

2.2.1 Boundary Conditions and Effective Properties

Mechanical Boundary Conditions

The macroscale material’s effective elastic material properties can be obtained by construct-

ing strain energy equivalence between the microscale RVE and the effective homogeneous

representation using homogeneous periodic mechanical boundary conditions (Bensoussan

et al., 1978). In the present work, periodic displacement boundary conditions consistent

with certain desired uniform macroscale strain states are applied to the microscale RVEs

which are known to be good representations for aligned well-dispersed fiber arrangements.

The uniform strain fields chosen here are consistent with those present in macroscale plane-

strain tension tests and uniaxial tension test, which could be used to get effective elastic

properties for the nanocomposites from the volume averaged stress and strain relationships

provided in Eq. (2.4) (Hammerand et al., 2007). Herein the focus is on the piezoresistive

effect, thus the choice of the tests are to demonstrate the magnitude of the impact of different

strain states on the effective piezoresistive response of the nanocomposite material. The de-

tailed periodic mechanical boundary conditions are listed in Table 3.1. It can be noted that

under the in-plane strain assumption, the displacement field components u1 and u2 for the

transverse hexagonal microscale RVE are independent of X3, while under the axisymmetric

assumption, the displacement field components ur and uz for the axisymmetric microscale
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Table 2.1: Boundary conditions for the 2D microscale RVEs as shown in Fig. 3.2a and

Fig. 3.2b.

Type of test B.C.s

Uniaxial tension test for the tr(R, Xz) = tz(R, Xz) = 0

axisymmetric microscale RVE of

Fig. 3.2b ur(Xr,
L
2
)− ur(Xr,−L

2
) = 0

uz(Xr,
L
2
)− uz(Xr,−L

2
) = ε0L

Plane-strain uniaxial tension test for u1(W1

2
, X2)− u1(−W1

2
, X2) = −ν ′21ε0W1

a

transverse hexagonal microscale RVE

of Fig. 3.2a u2(W1

2
, X2)− u2(−W1

2
, X2) = 0

u1(X1,
W2

2
)− u1(X1,−W2

2
) = 0

u2(X1,
W2

2
)− u2(X1,−W2

2
) = ε0W2

Plane-strain biaxial tension test for u1(W1

2
, X2)− u1(−W1

2
, X2) = ε0W1

transverse hexagonal microscale RVE

of Fig. 3.2a u2(W1

2
, X2)− u2(−W1

2
, X2) = 0

u1(X1,
W2

2
)− u1(X1,−W2

2
) = 0

u2(X1,
W2

2
)− u2(X1,−W2

2
) = ε0W2

a ν′21 =
νEff
21 +νEff

31 ν
Eff
23

1−νEff
32 ν

Eff
23

. See Appendix A for detailed derivations.
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RVE are independent of Xθ. The strain ε0 corresponds to the strain on a macroscale material

point under tension, and is quasi-statically increased within the linear elastic range.

In general, the effective elastic properties can be obtained from the strain energy equivalency

between the microstructural representation (i.e. the RVE) and an effective homogeneous

material having the same exterior geometry and boundary conditions. The equivalency can

be expressed as

〈σijεij〉 = 〈WRVE〉 = 〈WEff〉 = 〈σEff
ij ε

Eff
ij 〉 (2.34)

where σEff
ij and εEff

ij denote the stress and strain fields in the homogenous material represen-

tation. Through the application of the Hill-Mandel theorem, the energy equivalency can be

expressed as

〈σij〉〈εij〉 = 〈σEff
ij 〉〈εEff

ij 〉 = 〈CEff
ijklε

Eff
kl 〉〈εEff

ij 〉 = CEff
ijkl〈εEff

kl 〉〈εEff
ij 〉 (2.35)

As both the microstructural RVE and effective homogeneous representation are subjected to

the same displacement boundary conditions 〈εij〉 = 〈εEff
ij 〉, and thus Eq. (2.4) is recovered.

It can be shown that CEff
ijkl obtained in this manner under the assumptions of linear elastic

perfectly bonded phases within the microstructure is independent of the strains associated

with the applied displacements, i.e. of ε0.

Electrostatic Boundary Conditions

In an analogous manner as in the mechanical problem, the macroscale material’s effective

electrostatic material properties can be obtained by constructing electrical energy equivalence

between the microscale RVE and the effective one with homogeneous periodic electrical

boundary conditions applied. In the present work, periodic potential boundary conditions

consistent with certain desired uniform electric field states are applied to the microscale

RVEs, as listed in Table 3.2. Under the in-plane electrostatic assumption, the potential

field Φ for the transverse hexagonal microscale RVE is independent of X3, while under the

axisymmetric assumption, the potential field Φ for the axisymmetric microscale RVE is
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Table 2.2: Electrostatic boundary conditions for obtaining the effective electrical conductiv-

ities.

Type of test B.C.s

For obtaining κEff
zz (κEff

33 ) in the Φ(Xr,
L
2
)− Φ(Xr,−L

2
) = E0L

axisymmetric microscale RVE Jr(R, Xz) = 0

For obtaining κEff
11 in the Φ(X1,

W2

2
)− Φ(X1,−W2

2
) = 0

transverse hexagonal RVE Φ(W1

2
, X2)− Φ(−W1

2
, X2) = E0W1

For obtaining κEff
22 in the Φ(X1,

W2

2
)− Φ(X1,−W2

2
) = E0W2

transverse hexagonal RVE Φ(W1

2
, X2)− Φ(−W1

2
, X2) = 0

For obtaining κEff
12 in the Φ(W1

2
, X2)− Φ(−W1

2
, X2) = E0W1

transverse hexagonal RVE Φ(X1,
W2

2
)− Φ(X1,−W2

2
) = E0W2

independent of Xθ.

In general, the electrical conductivities can be obtained from the electrical energy equivalency

between the microstructural representation (i.e. the RVE) and an effective homogeneous

material having the same exterior geometry and boundary conditions. The equivalency can

be expressed as

〈JiEi〉 = 〈WRVE〉 = 〈WEff〉 = 〈JEff
i EEff

i 〉 (2.36)

where JEff
i and EEff

i denote the current density and electric field in the homogenous material

representation. Through the application of the electrical analogy to the Hill-Mandel theorem,

the energy equivalency can be expressed as

〈Ji〉〈Ei〉 = 〈JEff
i 〉〈EEff

i 〉 = 〈κEff
ij E

Eff
j 〉〈EEff

i 〉 = κEff
ij 〈EEff

j 〉〈EEff
i 〉 (2.37)

As both the microstructural RVE and effective homogeneous representation are subjected

to the same potential boundary conditions, 〈Ei〉 = 〈EEff
ij 〉, and thus Eq. (2.9b) is recovered.

While it can be shown that κEff
ij obtained in this manner under the assumptions of linear

material behavior and perfectly connected phases within the microstructure is independent

of the electric fields associated with the applied potentials, i.e. of E0, it must be noted
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however, that due to the inherent piezoresistivity of the CNTs, the effective conductivity is

a function of the strains associated with the applied displacements, i.e. κEff
ij = κEff

ij (εkl).

2.2.2 Piezoresistive Algorithm

An incremental algorithm for determining the piezoresistive response of the nanocomposites

is developed within a finite element framework, and is applied to the 2D microscale RVEs as

shown in Fig. 3.2. The Galerkin and Ritz methods are used, respectively, for the formulation

of in-plane and axisymmetric piezoresistive finite element models. The mechanical and elec-

trostatic finite element formulations are coupled together sequentially with the mechanical

formulation used to first obtain the strains in the microscale RVEs which are then used as

inputs for the electrostatic formulation. The detailed piezoresistive algorithm is provided in

Fig. 2.3. In step 1 of the algorithm, the electrostatic potential boundary value problems as

Figure 2.3: The piezoresistive algorithm of the finite element model

identified in Table 3.2 are applied to the initial undeformed microscale RVEs resulting in

potential distributions, and the electrical energy equivalence is used to obtain the conduc-

tivities of the effective microscale RVEs. In step 2, the first mechanical load increments are
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applied to the microscale RVEs according to the boundary conditions identified in Table 3.1,

resulting in the local strain distributions. In step 3, the local strains in the CNT obtained

from step 2 are used in the piezoresistive constitutive relation to determine changes in the

local resistivities of the CNTs. In step 4, the same electrostatic potential boundary value

problems from step 1 are applied again to the microscale RVEs with updated local electrical

properties of the CNT, with the electrical energy equivalency enforced to obtain the effective

conductivities κEff
ij (εkl) of the effective microscale RVEs. Step 2 through step 4 are then

repeated for subsequent loading increments. From this process the effective electrical prop-

erties of the microscale RVEs with inherent piezoresistive effect of the CNT can be obtained

as a function of the applied macroscale homogeneous strain, i.e. the load dependent but

reversible macroscale effective piezoresistive response.

In order to compare with measures more commonly used in experiments, the effective re-

sistivities ρEff
ij (εkl) (inverse of κEff

ij (εkl)) obtained in the plane-strain tension tests and uniax-

ial tension test can be converted into macrsocale nanocomposite gauge factors. As shown

schematically in Fig. 6.2, the gauge factor for a uniaxial tension test can be expressed in

general as

G =
∆R
R

ε
=

ρf Lf

Af
−ρ0 L0

A0

ρ0 L0

A0

ε0

(2.38)

where G is the gauge factor, ε is the applied strain, and R is the resistance measured

between two electrodes. The change in resistance can be expressed in terms of the initial

resistivity, ρ0, the undeformed distance between electrodes, L0, the undeformed electrode

area, A0, and their corresponding measures in the deformed configuration of ρf , Lf , and Af ,

respectively. For the uniaxial tension test, the deformed distance between electrodes and

deformed electrode area can be expressed in terms of the applied strain as Lf = L0(1 + ε0)

and Af = A0(1− ν31ε0)(1− ν32ε0), respectively, so that G in Eq. (2.38) becomes

G =
1

ε0

(
ρf

ρ0

1 + ε0

(1− ν31ε0)(1− ν32ε0)
− 1) (2.39)

For the metal alloy wires commonly used in strain gauges, the initial and final resistivities

are the same, so that the gauge factor is governed by the isotropic Poisson’s ratio, and results
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in an approximately linear relationship between normalized change in resistance and strain

(i.e. with G as the slope of the curve) for small strains.

However, the inherent piezoresistivity of the CNTs means that the initial and final resistiv-

ities of the nanocomposite will differ from one another, introducing additional non-linearity

in the gauge factor. As such, the effective gauge factor for the nanocomposite as obtained

from a uniaxial tension test in the CNT alignment direction (i.e. from the axisymmetric

RVE) would be determined as

GEff =
1

ε0

(
ρEff

33 (ε0)

ρEff
33 (0)

1 + ε0

(1− νEff
31 ε0)2

− 1) (2.40)

where the transverse direction is the isotropic plane such that νEff
31 = νEff

32 = νEff
zr which can

be obtained from the volume averaged strain response from one of the strain increments

(i.e. the first time conducting step 2 of the algorithm), or may be calculated a priori using

established tools such as the Mori-Tanaka method (Mori and Tanaka, 1973; Benveniste, 1987)

for microscale RVEs containing finite aspect ratio CNTs or from the composite cylinders

method (Seidel and Lagoudas, 2006) for infinitely long CNTs (i.e. aspect ratios greater than

2002 (McCullough, 1990)). For the case of plane strain uniaxial tension (i.e. uniaxial tension

in the transverse microscale RVE), the nanocomposite gauge factor can be derived from

Eq. (2.38) and obtained as3

GEff =
1

ε0

(
ρEff

22 (ε0)

ρEff
22 (0)

1 + ε0

1− (νEff
21 +νEff

31 ν
Eff
23 )ε0

1−νEff
32 ν

Eff
23

− 1) (2.41)

2Micromechanics analysis for fiber reinforced composites with aspect ratios of 200 or greater have been

observed to yield effective elastic properties nearly equal to those obtained when using infinitely long (con-

tinuous) fibers, even when the differences in elastic properties are 2 to 3 orders of magnitude between the

fiber and matrix (McCullough, 1990). However, for the effective electrical properties which have differences

in conductivities of more than 14 orders of magnitude, much larger aspect ratios are required to have the

same correspondence between the finite aspect ratio and continuous fiber cases, i.e. to be able to ignore end

effects, as observed in Ref. (Seidel and Lagoudas, 2009; Seidel and Puydupin-Jamin, 2011) and in here in

Fig. 2.8(b) in which the zero strain effective resistivities are plotted as a function of aspect ratio.
3See Appendix B for detailed derivations of the effective gauge factors of the plane-strain tension tests.
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Similarly, for the transverse plane strain symmetric biaxial tension case, Eq. (2.38) becomes

independent of the effective Poisson’s ratios, and is given by

GEff =
1

ε0

(
ρEff

22 (ε0)

ρEff
22 (0)

− 1) (2.42)

(a) (b) (c)

Figure 2.4: Schematic representation of the calculation of macroscale gauge factors for a) a

general uniaxial tension tension test, b) a uniaxial tension test in the alignment direction

of an effectively transversely isotropic nanocomposite, and c) a uniaxial tension test in the

transverse direction of an effectively transversely isotropic nanocomposite.

2.3 Results and Discussion

The polymer matrix used in the model is the epoxy resin EPON 828 which is assumed to

be isotropic linear elastic below its glass transition temperature. The detailed mechanical,

electrical and geometric parameters of the CNT and EPON 828 matrix are listed in Table 2.3:

Experimental efforts have demonstrated that the gauge factor of a single metallic SWCNT

(GC) can be as high as 2900 (Stampfer et al., 2006), which can thus be used to determine

an initial value for the CNT piezoresistive strain coefficient by rearranging Eq. (2.38) as

ρC
zz(εC) = ρC0

zz (GCεC + 1)
(1− νC

zrεC)2

1 + εC

(2.43)
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Table 2.3: Mechanical, electrical and geometric parameters for the CNT and EPON 828

polymer matrix (Hammerand et al., 2007; Seidel and Lagoudas, 2009; Ebbesen et al., 1996;

Schadler et al., 1998; Arris, 2000). The conductivity of the CNT listed here is the initial

conductivity with zero strain.
PPPPPPPPPPPPP
Materials

Properties
Geometry Mechanical Electrical

Single-walled CNT
ROut=0.85nm E = 1100Gpa

κ = 105S/m
RIn=0.51nm υ = 0.14

EPON 828 Vf = 1− VCNT
VRVE

E = 3.07Gpa
κ = 1.49× 10−9S/m

υ = 0.3

where it has been understood that the experimental conditions are most reflective of uniaxial

tension of the CNT along the CNT axis. Applying the piezoresistive constitutive equation

and solving for the axial piezoresistive strain coefficient one obtains

gC
zz(εC) =

1

εC

(ρC0
zz (GCεC + 1)

(1− νC
zrεC)2

1 + εC

− ρC0
zz ) (2.44)

Using the data from Table 2.3 and the gauge factor of 2900 and CNT strain value of

εC = 1.5% obtained from Ref. (Stampfer et al., 2006), a CNT axial piezoresistive strain

coefficient of gC
zz =2.84E-2 Ω ·m is obtained and used along with additional selected values

in a parametric study of the piezoresistive response of CNT-polymer nanocomposites the

outcomes of which are discussed below.

2.3.1 Nanocomposite Piezoresistive Response Under Uniaxial Ten-

sion in the CNT Alignment Direction

The axisymmetric microscale RVE is used to parametrically assess the influence of CNT

gauge factor on the macroscale piezoresistive response of nanocomposites in tension in the

CNT alignment direction. Five CNT gauge factors are considered, with the first case cor-
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responding to the experimentally reported CNT gauge factor. The CNT gauge factors and

their corresponding axial piezoresistive strain coefficients are provided in Table 2.4. It is

noted that in order to focus on the dominant strain component’s impact on piezoresistivity

it is assumed that only the axial piezoresistive strain coefficient is non-zero. The evolution

Table 2.4: The conversions from CNT gauge factor to CNT axial piezoresistive strain coeffi-

cient gC
zz, in which case AU1 is converted at the strain εC = 1.5% as in Ref. (Stampfer et al.,

2006), and cases AU2-AU5 are converted at the strain εC = 1%. For each case it assumed

that all other gC
ij are zero.

Case# GC gC
zz (Ω ·m)

AU1 2900 2.84E-2

AU2 1E6 9.87E0

AU3 1E11 9.87E5

AU4 1E13 9.87E7

AU5 1E17 9.87E11

of local strains and resistivities under applied macroscale strain increments are provided

in Fig. 2.5 for a CNT volume fraction of 0.20 and aspect ratio (AR = LCNT

2rOut
) of 5 and for

a CNT gauge factor corresponding to Case AU1. The contour plots demonstrate the di-

rect correspondence between changes in local strain in the CNT and changes in the local

CNT resistivity while the local matrix resistivity remains unchanged despite changes in local

strains. Further verification of the piezoresistive implementation within the microscale RVE

is obtained by plotting the resistivity as a function of applied boundary strain for an ele-

ment located in the middle of the CNT as provided in Fig. 2.6. It is observed that the axial

resistivity of the CNT element is changing as a linear function of the boundary strain while

the conductivity varies as its inverse, and therefore accurately reflects the linear piezore-

sistive constitutive response of the CNT. Though not present in the axisymmetric uniaxial

tension results provided here, it is worth noting that compressive strains of a sufficiently
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large value for a given CNT piezoresistive strain coefficient can lead to negative values for

the conductivity. As such cases are deemed to be not of physical interest herein, tension-

compression asymmetry is introduced into the piezoresistive response such that at a critical

compressive strain value, the linear piezoresistive response should smoothly transitions to

one which asymptotically approaches zero. For practical simplicity, in the present work a

constant small resistivity value is used at the critical compressive strain value and maintained

throughout further compressive strains in a manner analogous to a perfectly plastic response

in mechanical loading, with the exception being that unloading follows the same path as

loading in the piezoresistive case (as opposed to unloading elastically in the mechanical ana-

log). This behavior will play a role in some of the transverse hexagonal microscale RVE cases

to be discussed in Section 3.2 for large CNT gauge factors. Having demonstrated successful

implementation of the piezorsistive algorithm, the remaining results focus on nanocomposite

effective piezoresistive response for CNT having higher aspect ratios (e.g. 50, 100, 200, 300,

1000, 3000 and infinite), and at CNT volume fractions of 0.005, 0.01, 0.05, and 0.10. It is

noted that common SWCNT aspect ratios range between 300 to 600, and in some cases to

more than 1000. It is also noted that, the vertical separation between the end of the CNT

and the boundary of the axisymmetric RVE is set to be consistent with the maximum allow-

able separation at the CNT aspect ratio of 1 for every given volume fraction. The separation

is then held constant for higher aspect ratios so that in the limit case the radius R becomes

the one of the infinite case of which the transverse hexagonal RVE is a good approximation4.

The influence of the CNT gauge factor on the change in effective axial resistivity component

as a function of applied boundary strain, i.e. ∆ρEff
zz = ρEff

zz (ε0)−ρEff
zz (0), is provided in Fig. 2.7.

In Fig. 2.7(a) the change in effective axial resistivity of the nanocomposite for Case AU1

(CNT gauge factor of 2900) is observed to behave in an approximately linear fashion with

respect to the applied boundary strain up to 1% strain. As such, one could directly determine

an effective piezoresistive strain coefficient for the nanocomposite of gEff
zz = 4.26 Ω ·m from

4See Appendix C for the geometry correspondence between axial and transverse RVEs.
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Figure 2.5: The evolution of local strains and resistivities under applied macroscale strain

increments for a CNT volume fraction of 0.20 and aspect ratio of 5 and for a CNT gauge

factor corresponding to Case AU1. A potential difference of 1V is applied between the

top and bottom edge of the microscale RVE. The results are shown in the form of contour

plots of the axial strain component εzz and axial resistivity component ρzz in response to

the applied homogeneous boundary strain which is linearly increased from 0% to 1%. The

volume fraction of the CNT in the microscale RVE is 0.20, with an aspect ratio of 5, which

are higher and lower, respectively, than typical CNT-polymer nanocomposite values, but are

selected here to better view changes within the CNT.

the slope of the line. However, as the CNT gauge factor is increased, the change in the

effective axial resistivity of the nanocomposite as a function of applied boundary strain

becomes non-linear, as shown in Fig. 2.7(b) for Case AU4 (CNT gauge factor of 1E13). As

this non-linearity is observed at applied strains of less than 1% where the common metallic

materials in strain gauges would demonstrate a linear response due strictly to geometry and

Poisson’s ratio (i.e. ρf/ρ0 = 1), the non-linearity is directly attributed to difference in final
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(a) CNT Element Resistivity ρC
zz(ε0) (b) CNT Element Conductivity κC

zz(ε0)

Figure 2.6: The change of electrical properties within an element of the CNT in response to

the applied boundary strain, ε0. The results correspond to an element near the center of the

CNT shown in Fig. 2.5, and are therefore reflective of a CNT with AR = 5 and gauge factor

of that of Case AU1 at a CNT volume fraction of 0.20.

and initial nanocomposite conductivities. Further, as the CNT piezoresistive constitutive

response remains linear throughout the range of applied boundary strains, the nanocomposite

non-linearity is therefore associated with the evolution of the local strain fields under the

applied load. In Fig. 2.7(c) it is noted, however, that the change in effective nanocomposite

conductivity as function of applied boundary strain can reach a saturation limit. This

is because, under sufficiently large enough applied strains, the CNT resistivity effectively

becomes greater than that of matrix, thereby switching the composite behavior from that

of conductive fillers in a non-conducting matrix to a non-conducting matrix with voids.

Even though the piezoresistivity of the CNT may lead to CNT resistivities which are very

large compared to that of the matrix, as the volume fraction of CNT remains fixed, at the

saturation point the matrix essentially only experiences a negligibly better approximation

of void from the CNT so that the effective nanocomposite resistivity no longer appreciably

increases with increasing applied boundary strain. The larger the CNT gauge factor, the

lower the value of applied boundary strain one can expect to achieve saturation. For the

Case AU5 (CNT gauge factor of 1E17), the saturation point occurs at an applied boundary

strain of approximately 0.05%, after which the percent difference increase of the change of

effective resistivity is no higher than 0.1%. It is worth noting, however, that the use of linear
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(a) Case AU1 (GC = 2900) (b) Case AU4 (GC = 1E13)

(c) Case AU5 (GC = 1E17) (d) All cases

Figure 2.7: Nanocomposite effective axial resistivities ρEff
zz obtained from the axisymmetric

microscale RVE in response to the applied boundary strain ε0 for a CNT volume fraction of

0.005 and CNT aspect ratio of AR=300. a) Change of the effective resistivity component

∆ρEff
zz as a function of the applied boundary strain of the microscale RVE for Case AU1 with

GC = 2900. b) ∆ρEff
zz vs ε0 for Case AU4 with GC = 1E13. c) ∆ρEff

zz vs ε0 for Case AU5

with GC = 1E17. d) ∆ρEff
zz vs ε0 in semi-log plot for the five CNT gauge factor cases listed

in Table 2.4.

elastic field equations to obtain the local strains means that the effective nanocomposite

piezoresistive response, whether linear, non-linear or saturated, is completely reversible upon

unloading. Finally, a comparison of all five axisymmetric uniaxial tension test results is

provided in Fig. 2.7(d) in terms of the semi-log plot of the difference between final and

initial nanocomposite axial resistivity. There it is observed for Cases AU2 and AU3 that the

orders of magnitude increases in CNT gauge factor leads to comparable orders of magnitude
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increases in ∆ρEff
zz , whereas Cases AU4 and AU5 demonstrate the saturation effect associated

with the effective switch from conductive inclusions to voids such that further increases in

CNT gauge factor will have negligible effects on the effective nanocomposite’s piezoresistive

response.

The effects on the piezoresistive response of the nanocomposite of increasing the aspect ratio

of the CNTs at a fixed volume fraction of 0.01 are provided in Fig. 2.8 for CNT aspect ratios

of 50, 100, 200, 300, 1000, 3000 and for the infinitely long (i.e. continuous) CNT case for the

CNT gauge factor of AU3. In Fig. 2.8(a) the difference in the volume averaged resistivity

of the CNT relative to its zero strain value, i.e. ∆ρC
zz, is observed to demonstrate a quickly

converging trend, with percent differences relative to the infinitely long CNT response at

an applied strain of 1% of -64.8%, -46.6%, and -7.41% for aspect ratios of 50, 100, and

1000, respectively. As all of the CNTs regardless of aspect ratio have the same uniform

zero strain resistivity and piezoresistive strain coefficient, the observed differences in ∆ρCzz

are attributed to the differences in the amount of strain transferred to the CNT, where the

infinitely long case directly carries the applied strain while the CNTs with aspect ratios of

50, 100, and 1000 carry volume averaged strains of 35.2%, 53.4%, and 92.6% of the applied

strain, respectively. However, unlike the CNT, the nanocomposite effective resistivities at

zero strain vary significantly with aspect ratio as shown in Fig 12b. In fact, while the

100 and 1000 aspect ratio cases have zero strain effective resistivities which are 16.2% and

79.2% lower than the aspect ratio of the 50 case, due to the large differences between the

zero strain CNT resistivity and that of the matrix, all of the aspect ratios considered here

remain orders of magnitude higher (∼11) than the nanocomposite effective resistivity of

the infinitely long case, indicating that significantly larger aspect ratios are needed in order

to see the same convergence towards the infinitely long behavior for the effective electrical

properties than was observed for the convergence of effective mechanical properties of the

nanocomposite. Thus, even though all of the aspect ratios considered demonstrate CNT

piezoresistive responses (∆ρC
zz) which converge over a range of a few orders of magnitude

(102 to 104), resulting in the change in nanocomposite effective resistivity (∆ρEff
zz (ε0)) also
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varying over a range of a few orders of magnitude (104 to 107), it is perhaps more meaningful

to consider the change in nanocomposite effective resistivity normalized by the given aspect

ratio’s zero strain resistivity, i.e. ∆ρEff
zz (ε0)/ρEff

zz (0) as provided in Fig 2.8(c). From such a

representation one can quickly observe two key points. The first is that the aspect ratio

strongly influences the sensitivity of the piezoresistive response, with higher aspect ratios

demonstrating greater sensitivity, e.g. an aspect ratio of 100 yields a 0.14% increase in

resistivity at 1% strain whereas an aspect ratio of 3000 yields a 22.8% increase in resistivity

at that same strain level. The second key point observed from the normalized change in

resistivity is that sensitivity, like the overall effective resistivity, requires much higher aspect

ratios than considered here in order to converge to the infinitely long CNT case which has a

sensitivity measured in orders of magnitude at 1% strain. Thus, aspect ratio can be viewed

as a tuning parameter for having a desired uniaxial strain sensitivity at a given volume

fraction.

The influence of CNT volume fraction on the effective piezoresistive response of the nanocom-

posite to applied uniaxial strain in the CNT alignment direction is provided in Fig. 2.9 for

a fixed CNT aspect ratio of 300 and for CNT gauge factors corresponding to cases AU3 and

AU4. As the strains within the CNT vary by only a small amount (<1% with lower volume

fractions having larger strains) so that the changes in nanocomposite effective resistivity

(∆ρEff
zz (ε0)) are all of the same order of magnitude, it is again deemed more informative to

observe the zero strain normalized response, i.e. ∆ρEff
zz (ε0)/ρEff

zz (0). As the zero strain re-

sistivities vary by as much as 88%, with resistivities of 3.91E8 Ω ·m, 2.78E8 Ω ·m, 8.58E7

Ω ·m, and 4.64E7 Ω ·m at volume fractions of 0.005, 0.01, 0.05, and 0.1, respectively, large

differences in the sensitivity of the nanocomposite piezoresistive response can be observed,

with the higher volume fractions being more sensitive to the applied strain than the lower

volume fractions. In Fig. 2.9(a) the CNT gauge factor of GC = 1E11 is observed to yield a

linear normalized piezoresistive response at all volume fractions considered, with the volume

fraction of 0.1 demonstrating much higher sensitivity than the volume fraction of 0.005 by

roughly two times. The same trend in terms of higher volume fractions yielding higher sen-
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(a) (b)

(c)

Figure 2.8: The effect of aspect ratio of the CNT on the effective electrical properties of

the nanocomposites for a CNT volume fraction of 0.01 and CNT gauge factor of case AU3

(GC = 1E11). a) Volume averaged ∆ρC
zz(ε0) within the CNT vs ε0 for different aspect ratios

of the CNT. b) The zero strain effective resistivity ρEff
zz (0) of the nanocomposites vs aspect

ratio of the CNT. c) ∆ρEff
zz (ε0)

ρEff
zz (0)

vs ε0 for different aspect ratios of the CNT.

sitivities is again observed in Fig. 2.9(b) for the CNT gauge factor of GC = 1E13, however,

the sensitivities are an order of magnitude higher and demonstrate a non linear response

as observed in Fig. 2.7(b) for the same CNT strains and zero strain resistivities. It is of

interest to note that response for the volume fraction of 0.05 is consistently closer to the 0.1

volume fraction response than it is to the 0.01 volume fraction. While the difference in CNT

strains between the 0.05 volume fraction case and the 0.01 and 0.1 volume fraction cases

are 0.23% and 0.36%, respectively, the difference in zero strain resistivities between these

cases are 224% and 46%, respectively, so that the sensitivity of the 0.05 volume fraction case

behaves more like that of the 0.1 volume fraction. This is perhaps best understood from

observing a comparison between the results obtained from the axisymmetric finite element
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(a) Case AU3 (GC = 1E11) (b) Case AU4 (GC = 1E13)

Figure 2.9: The relative change of the effective axial resistivities of the nanocomposites in

response to the applied boundary strain ε0 with 4 different volume fractions of the CNT,

which are 0.005, 0.01, 0.05, and 0.1. a) ∆ρEff
zz

ρEff
zz (0)

× 100% vs ε0 for Case AU3 with GC = 1E11.

b) ∆ρEff
zz

ρEff
zz (0)

× 100% vs ε0 for Case AU4 with GC = 1E13. The aspect ratio of the CNT is 300.

model for the infinitely long CNT case with results from composite cylinders model where

the CNT resistivity has been modified according to the piezoresistive constitutive equation

based on the applied strain and a CNT gauge factor of GC = 1E11. Such a comparison in

terms of nanocomposite effective axial resistivity versus CNT volume fraction is provided in

Fig. 2.10, and demonstrates excellent agreement between the finite element and composite

cylinder models at all strain levels and volume fractions. The effective axial conductivity

obtained from the composite cylinder model is known to be well-approximated by the rule

of mixtures, so that the effective resistivity varies as its inverse so that, as is observed in

Fig. 2.10, the higher volume fractions have lower overall resistivities, but greater sensitivities

such that the volume fraction of 0.05 results are closer to the 0.1 volume fraction results

than to the 0.01. Thus, through a combination of aspect ratio and volume fraction, the

piezoresistive response in the axial direction under uniaxial tension can be tailored towards

a desired overall resistivity and sensitivity level.

It is observed that with a higher volume fraction of the CNT, the initial effective resistivity

is lower and the curve increases more slowly than the ones with a lower volume fraction of

the CNT, which behaves different than the results of the transverse piezoresistive response.
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Figure 2.10: Comparison between the results obtained from the axisymmetric finite element

model for the infinitely long CNT case with results from composite cylinders model where

the CNT resistivity has been modified according to the piezoresistive constitutive equation

based on the applied strain and a CNT gauge factor of GC = 1E11. It is noted that all cases

converge to the matrix resistivity of 6.71E8 Ω ·m at a volume fraction of 0, but would lead

to different values at a volume fraction of 1 due to the changing resistivity of the CNT with

applied strain.

This is because the initial effective resistivity is directly influenced by the volume fraction

of the CNT, and with a higher volume fraction the effective resistivity can be lower, on the

other hand the slope of the curve is influenced by the strain level within the CNT, and with

a higher volume fraction the strains within the CNT are lower, causing the curves increase

less rapidly.

By applying Eq. (6.6), one can obtain the effective gauge factors of the nanocomposites, GEff,

under uniaxial tension in the CNT alignment direction. Values for the effective nanocom-

posite gauge factors are provided in Table 2.5 at volume fractions of 0.005 and 0.01 for CNTs

having the five CNT gauge factors considered and aspect ratio of 300. For cases AU1 and
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Table 2.5: The effective nanocomposite gauge factors GEff at strain levels of 0.1%, 0.4% 0.7%

and 1.0% for CNT-polymer nanocomposites having CNT volume fractions of 0.005 and 0.01

and CNTs with CNT gauge factors corresponding to cases AU1 through AU5 for a CNT

aspect ratio of 300.

Vf = 0.005 Vf = 0.01

Case ε0 = 0.1% 0.4% 0.7% 1% 0.1% 0.4% 0.7% 1%

AU1 GEff 1.60 1.60 1.60 1.61 1.60 1.60 1.60 1.61

AU2 GEff 1.60 1.60 1.60 1.61 1.60 1.60 1.60 1.61

AU3 GEff 2.44 2.44 2.45 2.45 2.74 2.75 2.76 2.76

AU4 GEff 76.75 58.84 47.94 40.60 107.54 88.28 75.08 65.47

AU5 GEff 719.39 182.05 105.28 74.53 1416.16 357.29 205.97 145.35

AU2 the effective nanocomposite gauge factor is observed to have a constant value of 1.6 up

to 1% strain indicating 1) that the piezoresistive response is linear and 2) that the inherent

piezoresistivity has not had a significant impact on the effective piezoresistive response of

the nanocomposite at these strain levels and volume fractions as 1.6 corresponds to the value

that would be obtained by purely geometric considerations, i.e. when ρEff
33 (ε0) = ρEff

33 (0) in

Eq. (6.6). As case AU1 was derived from the currently available data on inherent CNT

piezoresistivity, these observations imply that the CNTs must have larger gauge factors

if inherent CNT piezoresistivity were to be the driving mechanism behind the observed

nanocomposite piezoresistivity, or that additional mechanisms such as CNT network defor-

mation and electron hopping play a much a larger role than inherent CNT piezoresistivity

in driving nanocomposite piezoresistivity. In terms of assessing larger CNT gauge factors,

it is observed that case AU3, having a CNT gauge factor which is of eight orders larger

than case AU1, yields effective nanocomposite gauge factors which retain an approximately

linear piezoresistive response at values of 2.4 and 2.7 for volume fractions of 0.005 and 0.01,

respectively, which are on the same order as the gauge factor measured in the axial direction
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of a nanocomposite made of 0.5%wt MWCNT that aligned by AC electric field which has

been reported as 2.78±0.42 (Oliva-Aviles et al., 2011). In contrast, cases AU4 and AU5

demonstrate non-linear effective nanocomposite piezoresistive responses which yield effec-

tive nanocomposite gauge factors that are orders of magnitude larger than experimentally

reported values, and therefore can be used to set upper bounds on potential CNT gauge

factors.

2.3.2 Results for the Transverse Piezoresistive Response of the

Nanocomposites

The transverse microscale RVE is used to parametrically assess the influence of CNT inherent

piezoresistivity on the macroscale piezoresistive response of nanocomposites in the transverse

directions with respect to CNT alignment direction. As noted in the introduction, the

majority of data regarding inherent piezoresistivity of CNTs is limited to axial testing. As

such, there is little data available regarding the remaining independent piezoresistive strain

coefficients needed to fully characterize the transversely isotropic piezoresistive response of

the CNT. As such, two reduced sets of CNT piezoresistive strain coefficients in the transverse

direction are considered. In the first set the normal strain response are equally weighted in

terms of piezoresistive strain coefficients, but are decoupled, i.e. gC
11 = gC

22 and gC
12 = 0, while

in the second set, normal strain responses are equally weighted and coupled, i.e. gC
11 = gC

22 =

gC
12. The initial value for the piezoresistive strain coefficients is taken to be the same value as

applied in the axial case, with the parametric study focusing on orders of magnitude increases

from this base value as reported in Table 2.6. Both sets of piezoresistive strain coefficients

are subjected to transverse uniaxial tension and transverse biaxial tension loadings.

The distributions of local strain and resistivity components of the plane-strain uniaxial ten-

sion in the 2-direction test are provided in Fig. 2.11 for a CNT volume fraction of 0.60 and

for CNT piezoresistive strain coefficients corresponding to cases T1 and T6, respectively.

The contour plots demonstrate the direct correspondence between changes in local strains
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Table 2.6: The conversions from CNT gauge factor to CNT piezoresistive strain coefficients,

in which cases T1 and T6 are converted at the strain εC = 1.5% as in Ref. (Stampfer et al.,

2006), and the remaining cases are converted at the strain εC = 1%. For each case, it is

assumed that all other gC
ij are zero.

Case# GC Piezo coefficients (Ω ·m)

T1 2900 gC
11 = gC

22 =2.84E-2

T2 1E8 gC
11 = gC

22 =9.87E2

T3 1E14 gC
11 = gC

22 =9.87E8

T4 1E17 gC
11 = gC

22 =9.87E11

T5 1E20 gC
11 = gC

22 =9.87E14

T6 2900 gC
11 = gC

22 = gC
12 =2.84E-2

T7 1E8 gC
11 = gC

22 = gC
12 =9.87E2

T8 1E14 gC
11 = gC

22 = gC
12 =9.87E8

T9 1E17 gC
11 = gC

22 = gC
12 =9.87E11

T10 1E20 gC
11 = gC

22 = gC
12 =9.87E14

in the CNTs and changes in the local CNT resistivities while the local matrix resistivity

remains unchanged despite changes in local strains. In Fig. 2.11(b) one can observe that ρC
11

and ρC
22 within the CNTs are decoupled and directly correspond to ε11 and ε22 of the CNTs,

respectively, which are provided in Fig. 2.11(a). In contrast, in Fig. 2.11(c) it is observed

that under those same strain distributions, ρC
11 and ρC

22 have identical contours due to the use

of the coupling term gC
12 and its being equal to the values assigned to both gC

11 and gC
22. As

mentioned before, tension-compression asymmetry is introduced in the CNT piezoresistive

response to avoid having compressive CNT strains sufficiently large so as to induce resistivity

components which would be less than zero. The compressive strain cutoff is demonstrated

in Fig. 2.12 using an element in compression in ε11 obtained from the transverse uniaxial

tension loading in the 2-direction for a CNT piezoresistive strain coefficient corresponding to
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(a) ε11 and ε22 at ε0 = 1%

(b) ρ11 and ρ22 of Case T1 at ε0 = 1% (c) ρ11 and ρ22 of Case T6 at ε0 = 1%

Figure 2.11: The distribution of local strains and resistivities of the plane-strain uniaxial

tension in the 2-direction test at ε0 = 1%. a) Distribution of ε11 and ε22 for cases T1 and

T6 at ε0 = 1%. b) Distribution of ρ11 and ρ22 for case T1 at ε0 = 1%. c) Distribution of ρ11

and ρ22 for case T6 at ε0 = 1%. The volume fraction of the CNTs in the microscale RVE

is 0.60, which is higher than typical CNT-polymer nanocomposite volume fraction, but is

selected here to better view changes within the CNTs.

case T1. There it is observed that the resistivity of the CNT initially follows the same linear

piezoresistive response as elements in tension up until the point where the subsequent strain

increment would lead to a negative resistivity. At this point, the previous strain increment’s

resistivity value is instead prescribed and maintained for all subsequent compressive loading

steps. The behavior is analogous to perfectly plastic response, with the exception being that

unloading follows the same path as loading.

Having demonstrated the implementation of the piezoresistive algorithm, the remaining re-

sults focus on nanocomposite effective piezoresistive response for CNT having lower volume
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Figure 2.12: The CNT resistivity component ρC
11 of an element within the CNT in response

to local compressive strain component ε11 for case T1 of the plane-strain uniaxial tension

test as ε0 in the 2-direction increases from 0% to 1% for a transverse RVE with CNT volume

fraction of 0.60.

fractions (e.g. 0.005, 0.01, 0.05, and 0.10). The influence of CNT piezoresistive strain coeffi-

cients on the change in effective resistivity component ρEff
22 as a function of applied boundary

strain (i.e. ∆ρEff
22 = ρEff

22 (ε0)− ρEff
22 (0)) for the plane-strain uniaxial tension in the 2-direction

test is provided in Fig. 2.13. In comparing the response in Fig. 2.13(a) to the piezoresis-

tive response of the nanocomposite to uniaxial tension in the axial direction provided in

Fig. 2.7(a), one can observe that ∆ρEff
22 of the plane-strain uniaxial tension test for cases T1

and T6 are 6 orders smaller than ∆ρEff
zz of the axisymmetric uniaxial tension test for case

AU1 having the same GC = 2900, and display a slightly non-linear response. Similarly, one

can compare the curves in Fig. 2.13(b) for ∆ρEff
22 under the plane-strain uniaxial tension in

the 2-direction test for cases T4 and T9 to the ∆ρEff
zz curve in Fig. 2.7(c) for axisymmetric

case AU5 having the same GC = 1E17 and observe that both T4 and T9 are 2 or more

orders of magnitude smaller than AU5. As a result, the transverse uniaxial tension cases

have yet to have achieved the saturation limit observed in the axisymmetric uniaxial loading

case. Further, in comparing the curves in Fig. 2.13(c) and Fig. 2.13(d) to the curves in

Fig. 2.7(d), one can observe that the saturated ∆ρEff
22 of the plane-strain uniaxial tension
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(a) Cases T1 and T6 (GC = 2900) (b) Cases T4 and T9 (GC = 1E17)

(c) Cases T1-T5 (d) Cases T6-T10

Figure 2.13: Nanocomposite effective transverse resistivity component ∆ρEff
22 obtained from

the transverse hexagonal microscale RVE in response to the applied boundary strain ε0 of

the plane-strain uniaxial tension in the 2-direction test, in which the volume fraction of the

CNT is 0.005. a) Change of the effective resistivity component ∆ρEff
22 as a function of the

applied boundary strain of the microscale RVE for cases T1 and T6 with GC = 2900. b)

∆ρEff
22 vs ε0 for cases T4 and T9 with GC = 1E17. c) ∆ρEff

22 vs ε0 in semi-log plot for cases

T1-T5. d) ∆ρEff
22 vs ε0 in semi-log plot for cases T6-T10.

test for cases T5 and T10 with GC = 1E20 are still 1 to 2 orders smaller than ∆ρEff
zz for

case AU5 with GC = 1E17. This is in part because in the axisymmetric uniaxial tension

test with AR=300, the CNT can take 78.3% of the applied boundary strain ε0 in a volume

averaged sense, while in the plane-strain uniaxial tension test the CNTs can only take 0.16%

and 0.83% respectively for ε11 and ε22, respectively, of the applied boundary strain ε0, and
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therefore have smaller piezoresistive induced changes in the resistivity of the CNTs. It is

also due in part to the well-documented micromechanics observation that the transverse

properties in aligned fiber composites are dominated by the matrix properties. For example,

in the present work, the zero strain axial effective resistivity, ρEff
zz (0), at a volume fraction of

0.005 is 42% below that of the matrix while the zero strain transverse effective resistivity,

ρEff
22 (0), at that same volume fraction is only 1% below that of the matrix, thus indicating

that whatever piezoresistive changes are brought in the transverse directions of the CNTs

will be more difficult detect than in the axial direction.

In Fig. 2.13(c) and Fig. 2.13(d) one can also observe that ∆ρEff
22 of cases T6-T10 are consis-

tently greater than ∆ρEff
22 of the corresponding cases T1-T5. This is due to the combination

of the selected off-diagonal piezoresistive strain coefficient gC
12 for cases T6-T10 and the de-

pendence of ∆ρEff
22 on both ∆ρC

11 and ∆ρC
22 of the CNT. The latter may be understood by

considering the annular geometry of the CNT as promoting a conductive hoop path which

would be governed by the hoop resistivity, ρC
θθ, and which by standard transformation is a

combination of both ρC
11 and ρC

22. From Fig. 2.11(a) it was observed that under the plane

strain uniaxial tension in the 2-direction, that a significant portion of the CNT was in com-

pression in ε11 and in tension in ε22. This observation is better quantified in Fig. 2.14(a)

which provides the volume averaged strain components, i.e. 〈ε11〉 and 〈ε22〉. As a result,

the resistivity distribution within the CNT under the application of the piezoresistive strain

coefficients gC
11 = gC

22 becomes non-uniform and orthotropic for cases T1-T5, with the com-

pressive 1-direction strains leading to reductions in 1-direction resistivities, i.e. negative

∆ρC
11, and the tensile 2-direction strains leading to increases in 2-direction resistivity, i.e.

positive ∆ρC
22, as can be seen in the volume averaged CNT resistivities provided for case T1

in Fig. 2.14(b). However, the application of an off-diagonal piezoresistive strain coefficient

which is equal to the diagonal coefficients in cases T6-T10 results in a CNT resistivity distri-

bution which is still non-uniform, but is now isotropic, with the much larger tensile strains in

the 2-direction resulting in large net increases in CNT resistivity, i.e. positive ∆ρC
11 = ∆ρC

22.

As can be seen in Fig. 2.14(b), even though the volume averaged change in CNT resistivity
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〈∆ρC
22〉 for case T1 is 24% greater than that of T6 at 1% strain, the volume averaged change

in CNT resistivity 〈∆ρC
11〉 for case T1 is 124% lower than that of T6 so that net effect is a

larger 〈∆ρEff
22 〉 for T6 than T1.

(a) 〈εC
11〉 and 〈εC

22〉 vs ε0 (b) 〈∆ρC
11〉 and 〈∆ρC

22〉 vs ε0

Figure 2.14: a) The volume averaged strain components 〈εC
11〉 and 〈εC

22〉 and b) The volume

averaged change of resistivity components 〈∆ρC
11〉 and 〈∆ρC

22〉 of the CNTs in response to

the applied boundary strain ε0 of the plane-strain uniaxial tension in the 2-direction test for

cases T1 and T6.

The influence of CNT volume fraction on the effective piezoresistive response of the nanocom-

posite to the applied strain in the plane-strain uniaxial tension in the 2-direction test is pro-

vided in Fig. 2.15 for CNT gauge factors corresponding to cases T8 and T9. Similar to what

was observed in the axisymmetric uniaxial tension test, large differences in the sensitivity of

the nanocomposite piezoresistive response can be observed, with the higher volume fractions

being more sensitive to the applied strain than the lower volume fractions. In Fig. 2.15(a),

case T8 is observed to yield a seemingly linear normalized piezoresistive response at all

volume fractions considered, with the volume fraction of 0.10 demonstrating much higher

sensitivity than the volume fraction of 0.005 by roughly 31.7 times. The same trend in terms

of higher volume fractions yielding higher sensitivities is again observed in Fig. 2.15(b) for

case T9, however, the sensitivities are 3 orders of magnitude higher than the T8 case and

demonstrate a slightly non linear response. However, when compared with the sensitivities
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observed in the axial direction, the sensitivities observed in the transverse uniaxial tension

test are orders of magnitude smaller even for CNT gauge factors which are orders of magni-

tude larger and include off-diagonal terms. This is due to the matrix dominance of effective

properties in the transverse direction which leads to reduced influence of changes in the CNT

and to zero strain resisitivities ρEff
22 (0) which are much larger than their axial counterparts. It

is of interest to note that unlike what was observed in the axisymmetric uniaxial tension test,

the difference between the curves for volume fractions of 0.05 and 0.10 is much larger than

the difference between the curves for volume fractions of 0.005 and 0.01. It will be seen that

this observation can be attributed to the manner in which the effective transverse resistivity

increases with increasing effective CNT volume fraction for each strain level starting from a

large negative slope at zero strain and approaching zero slope as the strain increases.

(a) Case T8 (GC = 1E14) (b) Case T9 (GC = 1E17)

Figure 2.15: The relative change of the effective resistivity components ρEff
22 of the nanocom-

posites in response to the applied boundary strain ε0 of plane-strain uniaxial tension test for

CNT volume fractions of 0.005, 0.01, 0.05, and 0.10. a)
∆ρEff

22

ρEff
22 (0)
×100% vs ε0 for case T8 with

GC = 1E14. b)
∆ρEff

22

ρEff
22 (0)
×100% vs ε0 for case T9 with GC = 1E17.

The results of the plane-strain biaxial tension test are shown in Fig. 2.16. By comparing with

the results of plane-strain uniaxial tension test in Fig. 2.13, one can observe that for cases T1

through T10, the changes in effective resistivity component ∆ρEff
22 of the plane-strain biaxial

tension test are higher than the plane-strain uniaxial tension test by at most two orders.

This is because, in contrast to the plane-strain uniaxial tension test, both the ε11 and ε22
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strain components in the CNT are predominantly tensile, resulting in net increases in both

components of CNT resistivity, i.e. both 〈∆ρC
11〉 and 〈∆ρC

22〉 are positive. Again in Fig. 2.16

as was observed in Fig. 2.13, the cases T1-T5 are consistently lower in ∆ρEff
22 than cases

T6-T10. However, this is understood in a more straight forward manner for the symmetric

biaxial tension case as the overall tensile strain components in both the 1- and 2-directions

results in positive contributions to ∆ρC
11 and ∆ρC

22 from the off-diagonal piezoresistive strain

coefficient in cases T6-T10 which are not present in cases T1-T5.

It is noted that for the plane-strain biaxial tension cases the strain field in the CNT is nearly

uniform, so that for both the T1-T5 and the T6-T10 cases the resistivity in the CNT remains

nearly uniform and isotropic. As such, it is possible to use the volume averaged resistivity

of the CNT at the various strain levels in a composite cylinders model and construct a

comparison with the finite element results for the change in resistivity with applied strain

as provided in Fig. 2.17 for case T9. From Fig. 2.17(a) it is observed that as the strain level

increases, the slopes of the resistivity vs volume fraction curves obtained from the composite

cylinder model rapidly increase in a non-linear fashion such that there is greater divergence

between strain levels with increasing volume fraction. Converting this data into the change

in resistivity as function of applied strain and overlaying with the finite element results a very

good correspondence is obtained between the two models indicating that the nonlinearity

observed in the finite element results is consistent within the micromechanics framework,

and therefore applicable to other loading states where tools such as the composite cylinder

model cannot be used due to the nonuniformity and material symmetry distribution within

the CNT, e.g. the plane-strain uniaxial tension or in-plane shear loadings.

By applying Eq.s (3.15) and (2.42), one can obtain the effective gauge factors of the nanocom-

posites, GEff, for the plane-strain uniaxial and biaxial tension tests, respectively, in the

transverse directions with respect to the CNT alignment direction. Values for the effective

nanocomposite gauge factors are provided in Table 2.7 for a CNT volume fraction of 0.005 for

each of the ten CNT gauge factors considered in cases T1-T10. For the plane-strain uniaxial

tension test, the effective gauge factors of cases T1-T3 and T6-T8 are observed to have a
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(a) Cases T1 and T6 (GC = 2900) (b) Cases T4 and T9 (GC = 1E17)

(c) Cases T1-T5 (d) Cases T6-T10

Figure 2.16: Nanocomposite effective transverse resistivity component ∆ρEff
22 obtained from

the transverse hexagonal microscale RVE in response to the applied boundary strain ε0 of

the plane-strain biaxial tension test, in which the volume fraction of the CNT is 0.005. a)

Change of the effective resistivity component ∆ρEff
22 as a function of the applied boundary

strain of the microscale RVE for cases T1 and T6 with GC = 2900. b) ∆ρEff
22 vs ε0 for cases

T4 and T9 with GC = 1E17. c) ∆ρEff
22 vs ε0 in semi-log plot for the cases T1-T5. d) ∆ρEff

22 vs

ε0 in semi-log plot for the cases T6-T10.

constant value of 1.43 up to 1% strain indicating 1) that the piezoresistive response is linear

and 2) that the inherent piezoresistivity has not had a significant impact on the effective

piezoresistive response of the nanocomposite at these strain levels and volume fractions as

1.43 corresponds to the value that would be obtained by purely geometric considerations,

i.e. when ρEff
22 (ε0) = ρEff

22 (0) in Eq. (3.15). The same conclusions can be drawn for cases
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(a) (b)

Figure 2.17: Comparison between the results obtained from finite element model with results

from composite cylinder model for case T9 of the plane-strain biaxial tension test, where in

the CCM model the CNT transverse resistivity has been modified to the volume averaged

resistivity based on applied strains on the CNT. a) The effective resistivity component ρEff
22

obtained from CCM model with change of CNT volume fraction at applied boundary strain

levels of 0.0%, 0.2%, 0.4%, 0.6%, 0.8%, and 1.0% respectively. b) Comparison between

∆ρEff
22 of CCM with ∆ρEff

22 of FEM at CNT volume fractions of 0.005, 0.01, 0.05, and 0.10

respectively.

T1-T3 and T6-T8 of the plane-strain biaxial tension test, with an exception being that the

effective gauge factors are small enough to be considered 0. This is because, as indicated in

Eq. (2.42), the effective gauge factors of the plane-strain biaxial tension test do not rely on

geometric effects, but instead depend purely on how the inherent piezoresistivities of CNTs

govern the ratio of the effective resistivity to the zero strain effective resistivity. Only when

the CNT gauge factor becomes very large as in cases T4-T5 and T9-T10 does the inher-

ent piezoresistivity become a significant influence on the transverse effective nanocomposite

gauge factors, doing so in a nonlinear fashion. As case T1 was related to the currently avail-

able data on inherent CNT piezoresistivity, these observations imply that the CNTs must

have larger gauge factors if inherent CNT piezoresistivity were to be the driving mechanism

behind the transverse nanocomposite piezoresistivity, or that additional mechanisms such

as CNT network deformation and electron hopping play a much larger role than inherent
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CNT piezoresistivity in driving transverse nanocomposite piezoresistivity. Further, these

other mechanisms must have a substantial impact on the change in effective transverse re-

sistivity with applied strain if they are to have a noticeable effect on the transverse effective

nanocomposite gauge factor. Thus, in terms of deformation sensing, it is believed that SHM

applications should focus on tailoring the gauge factor in the alignment direction of aligned

CNT-polymer nanocomposites.

Table 2.7: The effective nanocomposite gauge factors GEff at strain levels of 0.1%, 0.4%, 0.7%,

and 1.0% of the plane-strain uniaxial and biaxial tension tests for CNT-polymer nanocompos-

ites having CNT volume fractions of 0.005 and CNTs with CNT gauge factors corresponding

to cases T1 through T10.

Plane-strain uniaxial tension test Plane-strain biaxial tension test

Case ε0 = 0.1% 0.4% 0.7% 1% 0.1% 0.4% 0.7% 1%

T1 GEff 1.43 1.43 1.43 1.43 1E-14 1E-14 1E-14 1E-14

T2 GEff 1.43 1.43 1.43 1.43 1E-9 1E-9 1E-9 1E-9

T3 GEff 1.43 1.43 1.43 1.43 1E-3 1E-3 1E-3 1E-3

T4 GEff 1.43 1.43 1.44 1.44 0.95 0.83 0.74 0.66

T5 GEff 2.08 1.62 1.54 1.51 19.69 5.00 2.87 2.01

T6 GEff 1.43 1.43 1.43 1.43 2E-14 2E-14 2E-14 2E-14

T7 GEff 1.43 1.43 1.43 1.43 2E-9 2E-9 2E-9 2E-9

T8 GEff 1.43 1.43 1.43 1.43 2E-3 2E-3 2E-3 2E-3

T9 GEff 1.70 1.70 1.68 1.68 1.57 1.56 1.56 1.56

T10 GEff 18.10 5.83 3.98 3.23 19.86 5.01 2.87 2.01
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2.4 Conclusions

Computational micromechanics models are constructed to assess the piezoresistive responses

of aligned CNT-polymer nanocomposites in the axial and transverse directions due to the

inherent piezoresistivities of CNTs, which are assumed to be well dispersed, and perfectly

bonded to the surrounding polymer. A parametric study in terms of CNT gauge factor,

aspect ratio, and volume fraction is undertaken to study the influence of these factors on the

effective nanocomposite piezoresistive response and gauge factors under uniaxial loading in

the axial and transverse directions and symmetric biaxial tension in the transverse direction.

The results of the axisymmetric piezoresistive model show that through a combination of

aspect ratio and volume fraction, the piezoresistive response in the axial direction under uni-

axial tension can be tailored towards a desired overall resistivity and sensitivity level. The

obtained effective axial gauge factors suggest that in order for the macroscale axial piezore-

sistive response of the nanocomposites to be comparable with the experimental results in the

literature, that very large CNT gauge factors are needed (e.g. 1E11 in case AU3), several or-

ders of magnitude larger than the the maximum CNT gauge factors currently reported in the

literature (i.e., ∼2900). In the transverse direction still larger CNT gauge factors are needed

for the inherent piezoresistivity mechanism to have a noticeable effect on the nanocomposite

gauge factors in the transverse directions as the electrostatic interactions in the transverse

direction are strongly governed by the matrix material. Therefore the analysis implies that

either larger CNT gauge factors (in the neighborhood of 1E11 in the axial direction; in

the neighborhood of 1E17 in the transverse directions) would be required if inherent CNT

piezoresistivity were the principal mechanism driving the observed nanocomposite piezore-

sistivity, or that the piezoresistive response of the CNT-polymer nanocomposites is due to

some additional mechanisms, e.g. electrical tunnelling effect or contact resistance between

two adjacent CNTs. Further, these other mechanisms must have a substantial impact on the

change in effective resistivity with applied strain, particularly if they are to have a noticeable

effect on the transverse effective nanocomposite gauge factor. Thus, in terms of deformation
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sensing, it is believed that SHM applications should focus on tailoring the gauge factor in

the alignment direction of aligned CNT-polymer nanocomposites by controlling CNT aspect

ratio, dispersion and volume fraction to maximize the influence of inherent CNT piezoresis-

tivity in conjunction with tunnelling and contact resistance effects.



Chapter 3

Computational Micromechanics

Modeling of Piezoresistivity in

CNT-Polymer Nanocomposites

3.1 Introduction

Currently several mechanisms, which may potentially account for the observed overall piezore-

sistivity of the nanocomposites, have been identified. For example, the electrical tunneling

effect is a phenomena that when the CNTs are close enough to each other, conducting paths

can be formed in the insulating polymer matrix for the electrons to be transported from one

CNT to another (Simmons, 1963; Fuhrer et al., 2000; Budlum and Lu, 2001; Li et al., 2007;

Xia and Curtin, 2007; Li and Chou, 2008; Li et al., 2008; Theodosiou and Saravanos, 2010;

Hu et al., 2012). The electrical tunneling effect has been observed to be highly sensitive to

the distances of adjacent CNTs. When distance between two neighboring CNTs is increased

by several nanometers, the electrical conductivity in the conductive path between the two

CNTs corresponding to electron tunneling is sharply reduced, returning to the insulating

53
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matrix value at the maximum electrical tunneling distance.

In this study, a computational micromechanics model based on finite element analysis is

developed and used to determine the relative changes in macroscale resistance (i.e. effec-

tive macroscale piezoresistivity) due to changes at the microscale and due to changes of

macroscale geometry. Specifically, the microscale mechanisms include the electrical tunnel-

ing effect and the coupled effect of electrical tunneling and inherent piezoresistivity of the

CNT. The FEM based computational micromechanics approach explicitly accounts for ma-

terial deformation while tracking CNT relative displacements for electrical tunneling model.

Such a approach is able to capture not only this but other deformation based mechanisms

affecting the gauge factor such as inherent CNT resistivity and geometry. By varying the

volume fraction of the CNT and the height of barrier of the polymer matrix, their influence

on the overall piezoresistivity of the nanocomposites is systematically studied. Some initial

simulations on the RVE with random aligned CNTs are also conducted and compared with

the ones with well-dispersed and aligned CNTs.

3.2 Model Description

We have selected a multiscale idealization as shown in Fig. 3.1, in which the CNTs are

assumed to be aligned and perfectly bonded to the surrounding polymer in the microscale.

The solution of the macroscale boundary value problem (BVP) is obtained by solving the

microscale BVP with periodic boundary conditions applied to the microscale RVEs, as seen

in Fig. 3.2. Under in-plane strain assumption consistent with high aspect ratio fibers, the

regular hexagonal array RVE as in Fig. 3.2a is used for the case in which there are well-

dispersed and aligned CNTs, and the RVE as in Fig. 3.2b is used for the case in which

there are aligned but randomly distributed CNTs in the transverse plane. The annulus

areas represent the cross-sections of CNTs, and the remaining area is pure polymer matrix.

Correspondingly, a plane strain periodic finite element model is constructed to model the
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piezoresistive response of the nanocomposites in the transverse directions. In order to assess

the CNT end effects on the axial effective electrical conductivity, a finite aspect axisymmetric

RVE (Fig. 2c) is considered. It is noted that the geometry of the axisymmetric RVE is

selected such that as the aspect ratio goes to infinity, that the transverse RVE dimensions

in Fig. 2a are obtained as indicated in Ref. (Ren and Seidel, 2013a).

Figure 3.1: The hierarchical multiscale modeling of nanocomposites in which there are

aligned CNTs

Boundary conditions applied to the microscale RVEs are selected so as to correspond to

uniform strain states in the homogeneous macroscale material BVP as described in Ref. (Ren

and Seidel, 2013a) for both the mechanical and electrostatic loadings. Thus, the focus

is on solving the microscale mechanical and electrostatic boundary value problems in an

appropriately coupled fashion so as to capture the influence of both the electrical tunneling

and inherent CNT piezoresistivity mechanisms acting within the microscale RVE.

3.2.1 Mechanical Governing Differential Equations for the Mi-

croscale RVE

Under the plane strain assumptions for the transverse hexagonal RVE ε13 = 0, ε23 = 0, and

ε33 = 0. At the microscale, the CNT annulus and polymer matrix can be assumed to be
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(a) (b) (c)

Figure 3.2: Microscale RVEs for the nanocomposites with 10% CNTs. a) is the transverse

hexagonal microscale RVE for the well-dispersed and aligned CNTs. b) is the transverse

microscale RVE for the aligned CNTs with random in-plane distribution, in which W2 = H2.

c) is the axisymmetric microscale RVE, in which W′
1 goes to

√
3W1

6
as the aspect ratio of the

CNT A = LCNT

2rCNT
goes to infinity. (

√
3W1

6
is the half distance between two adjacent CNTs in

a)). Note that the aspect ratio used here is 20, which is only for demonstration purposes as

the real aspect ratio used in the computations is much higher.

isotropic linear elastic materials (Saito et al., 1998) such that their constitutive relationships

can be denoted with the Lame constants as

σij = 2µJεij + λJεkkδij (3.1)

where the superscript J takes values of C or M to denote the elastic constants of the CNT

and matrix, respectively, and where the standard relationships µ = E
2(1+ν)

and λ = Eν
(1+ν)(1−2ν)

hold. The boundary conditions on the microscale RVE can be expressed as displacement

boundary conditions by

ui = xj ε̃ij(X̃k) (3.2)

such that in general the macroscale and microscale RVE strains can be related to one another

through microscale volume averages as

ε̃ij(X̃k) = 〈εij〉 (3.3)
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where ε̃ij(X̃k) are the macroscale strain at a macroscale material point X̃k which the mi-

croscale RVE represents. The microscale equations expressed here in cartesian coordinates

for the plane strain transverse RVEs are suitably represented in cylindrical coordinates for

use in the axisymmetric axial RVEs as discussed in Ref. (Ren and Seidel, 2013a).

3.2.2 Electrostatic Governing Differential Equations for the Mi-

croscale RVEs

The steady-state conservation of charge equation for the microscale RVE can be denoted in

Cartesian coordinates as:

Ji,i = 0 (3.4)

where Ji is the current density, and where under in-plane electrostatic assumptions J3,3 = 0.

The microscale RVE electric field is obtained as the negative of the gradient of the microscale

potential as

Ei = −Φ,i (3.5)

where Ei (i = 1, 2, 3) and Φ are the electric field and electric potential respectively as

applied in Cartesian coordinate system at the microscale and where under in-plane electro-

static assumptions it is noted that E3 = 0. For the microscale RVEs, Ohm’s law can be

written as

Ei = ρC
ij(ε

C
ij)Jj (3.6a)

Ei = ρM
ij (d)Jj (3.6b)

where the superscripts C and M on the resistivities denote CNT and polymer matrix re-

spectively. It is noted that the resistivity tensor of the CNT is dependent on the strain field

in the CNT due to the inherent piezoresistive effect, and that the resistivity tensor of the

polymer matrix is related to the distance (d) between adjacent CNTs in accounting for the

electrical tunneling effect. As such, both the CNT and matrix resistivities evolve with the

local microscale deformation under the applied macroscale boundary conditions leading to a
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one-way coupled effective piezoresistive response. The electrical boundary conditions on the

microscale RVEs can be expressed as potential conditions by

Φ = xiẼi(X̃k) (3.7)

such that in general the macroscale and microscale RVE electric fields can be related to one

another through microscale volume averages as

Ẽi(X̃k) = 〈Ei〉 (3.8)

where Ẽi(X̃k) are the macroscale current density and electric field at a macroscale material

point X̃k which the microscale RVE represents. The microscale equations expressed here

in cartesian coordinates for the plane strain transverse RVEs are suitably represented in

cylindrical coordinates for use in the axisymmetric axial RVEs as discussed in Ref. (Ren and

Seidel, 2013a).

Governing Equations for the Electrical Tunneling Effect in the Polymer Matrix

According to (Simmons, 1963; Hu et al., 2012), the tunneling resistance between two adjacent

CNTs can be approximated as

Rtunnel =
∆V

AJ
=

h2d

Ae2
√

2mλ
exp(

4πd

h

√
2mλ) (3.9)

where ∆V is the electrical potential difference, A is the cross-section area of the tunnel, J

is the tunneling current density, h is Planck’s constant, d is the distance between adjacent

CNTs, e is the electric charge, m is the mass of electron, and λ is the height of barrier of the

polymer matrix (e.g. for epoxy, λ = 0.5 − 2.5 eV (Hu et al., 2010, 2012)). The tunneling

resistivity ρtunnel and tunneling resistance can be related through the CNT distance and the

cross-sectional area of the tunnel by

Rtunnel = ρtunnel
d

A
(3.10)
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in which ρtunnel is defined as the tunneling resistivity, so that upon substitution of Eqn. (3.9),

the tunneling resistivity is expressed as

ρtunnel =
h2

e2
√

2mλ
exp(

4πd

h

√
2mλ) (3.11)

The advantage of using the tunneling resistivity instead of the tunneling resistance is that we

do not need to estimate the cross sectional area of the ’tunnel’ when constructing RVEs and

their corresponding finite element meshes, nor is the ’tunnel’ required to be of uniform cross

section. It is further noted that Eq. (7.6) indicates that the electrical tunneling resistivity

strongly depends on two variables: the distance between two adjacent CNTs (d) and the

height of barrier of the polymer matrix (λ). Fig. 3.3(a) provides a map of constant tunneling

resistivities in the two parameter separation distance-barrier height space. It is noted that

as the barrier height decreases the corresponding separation distance grows asymptotically

whereas when the barrier height increases, the corresponding separation distance asymptot-

ically approaches zero. It is further noted that the tunneling resistivity between adjacent

CNTs should not become larger than the original matrix resistivity, in this case, a value of

1E14 as denoted by the dashed line in Fig. 3.3(a). Thus, for a given barrier height and limit

matrix resistivity value, the maximum electrical tunneling distance, i.e the cut off distance

for electrical tunneling, is set. For example, as observed in Fig. 3.3(b), if we choose a barrier

height of λ = 1.5 eV, as the separation distance between adjacent CNTs increases from 0nm

to 2nm, the tunneling resistivity can exponentially increase from the level of a conductor

(10−5 Ω · m) to the level of an insulator (106 Ω · m), and continuing to increase up to a

distance of d = 3.14nm where the matrix resistivity is obtained. For a barrier height of λ =

2.5 eV, the resistivity transitions from conductor to insulating matrix more rapidly with a

corresponding maximum tunneling distance of 2.66nm, while for barrier height λ = 0.5 eV,

the transition proceeds at slower rate corresponding to a maximum tunneling distance of

5.83nm. For a specific polymer and a specific height of barrier λ, the corresponding distance

(d) that recovers the resistivity of the pristine polymer matrix is defined as the maximum

or cut off distance dc for the electrical tunneling effect. It is observed in Fig. 3.3(a) that as

λ increases from 0.01 eV to 0.5 eV, dc decreases in a relatively large scale, which is from
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39.33nm to 5.83nm. However, when λ increases from 0.5 eV to 5 eV, dc decreases in a rela-

tively small scale, which is from 5.83nm to 1.89nm. These cut off distances play a key role in

determining whether or not a given volume fraction, having a specified unstrained separation

distance between CNTs, corresponds to a percolated state, i.e. if d ≤ dc so that electrical

tunneling is occurring. Further, in setting dc, the barrier height sets the increment at which

deformations which bring CNTs closer together or further apart will change the tunneling

resistivity, and hence, has a strong influence on the corresponding macroscale piezoresistive

response.

(a)

(b)

Figure 3.3: a) The map of constant tunneling resistivities ρtunnel in the space of separation

distance d and barrier height λ. b) The semi-log plot of the electrical tunneling resistivity

ρtunnel with increase of separation distance d as λ is kept at 0.5 eV, 1.5 eV, and 2.5 eV

respectively. The inset is the one in non semi-log plot.
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For any point with the matrix material, which for our 2D finite element meshes will cor-

respond to the gauss point(s) of an element, the distances to nearest neighbor CNTs are

used to construct the local measure of separation distance (d) to be applied in Eqn. (3.10)

along with the selected barrier height in determining the matrix element’s local resistivity.

For example, for point 1 in Fig. 3.4(a) which lies between adjacent CNTs C1 and C2, the

connecting path is straight forwardly identified as d1 = d1c1 + d1c2 where d1c1 is the distance

from point 1 to CNT C1 and d1c2 is the distance from point 1 to CNT C2. For point 2,

however, which lies between CNTs C1, C2, and C3, the determination of the local element

resistivity is obtained by choosing the path of least resistance for the tunneling among three

possible paths, i.e. d2 = min(d2c1 + d2c2, d2c1 + d2c3, d2c2 + d2c3). It is further noted that,

in being consistent with notion of the RVE being periodic, that tunneling paths between

neighboring RVEs must be accounted for. This is accomplished through the use of ghost

CNTs in the neighboring RVEs. For example, for point 3 in Fig. 3.4(a), the local resistivity

is obtained from the tunneling distance of d3 = d3c1 + d3c8, where C8 is the location of the

ghost CNT of the neighboring RVE.

Applying this algorithm to all matrix points in the well-dispersed transverse RVE (Fig. 3.4(b))

leads to clearly visible pattern of tunneling paths within the matrix for percolated vol-

ume fractions. The algorithm is likewise applied to a randomly dispersed transverse RVE

(Fig. 3.4(c)) and to axisymmetric axial RVE (Fig. 4d). For the randomly dispersed trans-

verse RVE which is noted to be at the same volume fraction as the well-dispersed transverse

RVE, it is noted that the dispersion is such that not all neighboring CNTs form tunneling

paths, so that there are torturous tunneling paths spanning the RVE and simultaneously

pockets of matrix resistivity where no tunneling is taking place. For the axisymmetric axial

RVE, it is noted that there is a very strong tunneling effect between the ends of the CNT and

ghost CNTs above and below as compared to the transverse tunneling to the surrounding

ghost CNTs.

As a result of the applied periodic boundary conditions on the microscale RVE, the local

distances between CNTs will change. As such, the algorithm for determining the local
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(a) (b)

(c) (d)

Figure 3.4: a) The schematic illustration of the algorithm for obtaining the electrical tun-

neling resistivities in the polymer matrix. b)The contour distribution of isotropic resistivity

in the hexagonal microscale RVE. c) The contour distribution of isotropic resistivity in the

microscale RVE in which there are in-plane random aligned CNTs. d) The contour distri-

bution of isotropic resistivity in the axisymmetric microscale RVE. Note that as the aspect

ratio of the CNT is chosen to be 300, the RVE shown here is the zoomed in region focusing

on the tip of the axisymmetric RVE. In b), c) and d), the volume percentages of the CNT

are chosen to be the same of 10%vol, and the polymer matrixes are also chosen to be the

same, i.e. the original resistivity is 1014Ω ·m and the height of barrier λ =0.75 eV, and the

corresponding cut-off distance dc = 4.78nm.

resistivity due to the tunneling effect must be undertaken at each load step in order to

allow the microstructure to evolve according to Eq. (7.6). In some instances, new or lower
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resistivity tunneling paths will be formed as CNTs come closer together, while as CNTs

move further apart, tunneling paths may become more resistive or be completely disrupted

as the distance exceeds dc. These observations will have a strong influence on the observed

effective piezoresistive response of the nanocomposites.

Governing Equations for the Inherent Piezoresistivity of the CNT

The CNTs are expected to exhibit inherent piezoresistivity such that the instantaneous

resistivity, ρC
ij is a function of the local strain state within the CNT and can therefore be

written as

ρC
ij = ρC0

ij + ∆ρC
ij (3.12)

in which ρC0
ij are the initial zero strain resistivities of the CNT, and ∆ρC

ij are the change in

resistivities induced by inherent piezoresistive effect of the CNT. The change in resistivity

is related to the strain in the CNT through the piezoresistive strain coefficients as

∆ρC
ij = gC

ijklεkl (3.13)

Material symmetry implications and observations allowing the piezoresistive strain coeffi-

cients to be represented in a transversely isotropic form in Voigt notation are provided in

Ref. (Ren and Seidel, 2013a). Here, for simplified demonstration purposes, it is further

assumed that g1111 = g2222 = Gc with all other gijkl being zero.

As a result of the applied periodic boundary conditions on the microscale RVE, the amount

of strain transferred to the CNTs will increase, especially at higher volume fractions. The

corresponding change in CNT resistivity due to inherent piezoresistivity of the CNT will in

turn have influence on the observed effective piezoresistive response of the nanocomposites.

3.2.3 Boundary Conditions and Effective Properties

In the present work, periodic displacement boundary conditions consistent with certain de-

sired uniform macroscale strain states are applied to the microscale RVEs. The uniform
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strain fields chosen here are consistent with those present in the macroscale plane-strain

uniaxial tension test.

(a) (b)

Figure 3.5: Schematic representation of the calculation of macroscale gauge factors for a) a

uniaxial tension test in the transverse directions of the nanocomposite specimen with aligned

CNTs and b) an axial tension test in the alignment direction of an effectively transversely

isotropic nanocomposite.

Herein the focus is on the piezoresistive effect, thus the choice of specific tests are to demon-

strate the magnitude of the impact of the strain state on the effective piezoresistive response

(e.g. gauge factor) of the nanocomposite material in a manner analogous to experimental

characterization efforts (Ren and Seidel, 2013a). The detailed periodic mechanical boundary

conditions are listed in Table 3.1. The strain ε0 corresponds to the strain on a macroscale

material point under tension, and is quasi-statically increased within the linear elastic range.

The effective properties as noted in Table 3.1 can come from CCM (Seidel and Lagoudas,

2006), Mori-Tanaka (Mori and Tanaka, 1973; Benveniste, 1987) or FEM energy equivalen-

cies (Hammerand et al., 2007) and are dependent only on the volume fraction, they do not

evolve with applied strain like the electrical properties do since the mechanical microstructure

is static.

In an analogous manner as in the mechanical problem, the macroscale material’s effective

electrostatic material properties can be obtained by constructing electrical energy equiva-

lence between the microscale RVE and the effective one with homogeneous periodic electrical
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Table 3.1: Boundary conditions for the 2D microscale RVEs as shown in Fig. 3.2a, Fig. 3.2b,

and Fig. 3.2c.

Type of test B.C.s

Transverse plane-strain uniaxial u1(W1

2
, X2)− u1(−W1

2
, X2) = −ν ′21ε0W1

a

tension test u2(W1

2
, X2)− u2(−W1

2
, X2) = 0

u1(X1,
W2

2
)− u1(X1,−W2

2
) = 0

u2(X1,
W2

2
)− u2(X1,−W2

2
) = ε0W2

Axial tension test for the tr(R, Xz) = tz(R, Xz) = 0

axisymmetric microscale RVE of

Fig. 3.2c ur(Xr,
L
2
)− ur(Xr,−L

2
) = 0

uz(Xr,
L
2
)− uz(Xr,−L

2
) = ε0L

a ν′21 =
νeff
21 +νeff

31 ν
eff
23

1−νeff
32 ν

eff
23

.

boundary conditions applied. In the present work, periodic potential boundary conditions

consistent with certain desired uniform electric field states are applied to the microscale

RVEs, as listed in Table 3.2 (Ren and Seidel, 2013a). In general, the electrical resistivities

can be obtained from the electrical energy equivalency between the microstructural repre-

sentation (i.e. the RVE) and an effective homogeneous material having the same exterior

geometry and boundary conditions. The equivalency can be expressed as

〈JiEi〉 = 〈WRVE〉 = 〈W eff〉 = 〈Jeff
i E

eff
i 〉 = 〈ρeff

ij J
eff
i J

eff
j 〉 (3.14)

where Jeff
i and Eeff

i denote the current density and electric field in the homogenous material

representation. While it can be shown that ρeff
ij obtained in this manner under the assump-

tions of linear material behavior and perfectly connected phases within the microstructure

is independent of the electric fields associated with the applied potentials, i.e. of Ẽ0, it must

be noted however, that due to the electrical tunneling effect in the polymer matrix and the
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Table 3.2: Electrostatic boundary conditions for obtaining the effective electrical conductiv-

ities of the 2D microscale RVEs as shown in Fig. 3.2a, Fig. 3.2b, and Fig. 3.2c. Note that

κeff
ij are effective conductivities, which can be inversed to obtain the effective resistivities ρeff

ij .

Type of test B.C.s

For obtaining κeff
11 Φ(X1,

W2

2
)− Φ(X1,−W2

2
) = 0

Φ(W1

2
, X2)− Φ(−W1

2
, X2) = E0W1

For obtaining κeff
22 Φ(X1,

W2

2
)− Φ(X1,−W2

2
) = E0W2

Φ(W1

2
, X2)− Φ(−W1

2
, X2) = 0

For obtaining κeff
12 Φ(W1

2
, X2)− Φ(−W1

2
, X2) = E0W1

Φ(X1,
W2

2
)− Φ(X1,−W2

2
) = E0W2

For obtaining κEff
zz (κEff

33 ) in the Φ(Xr,
L
2
)− Φ(Xr,−L

2
) = E0L

axisymmetric microscale RVE Jr(R, Xz) = 0

inherent piezoresistivity of the CNTs, the electronic microstructure is evolving so that the

effective resistivity is a function of the relative distances of the CNT and the strains in the

CNT, i.e. ρeff
ij = ρeff

ij (d, εC
kl), and therefore, unlike the effective mechanical properties, must

be calculated at each mechanical load increment.

3.2.4 Piezoresistive Algorithm

An incremental algorithm for determining the piezoresistive response of the nanocomposites

is developed within a finite element framework, and is applied to the 2D microscale RVEs

as shown in Fig. 3.2. The Galerkin method is used to formulate the in-plane finite element

models, and the linear triangular elements are used. The mechanical and electrostatic finite

element formulations are coupled together sequentially with the mechanical formulation used

to first obtain the strains in the microscale RVEs which are then used as inputs for the
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electrostatic formulation1. In step 1 of the algorithm, the electrostatic potential boundary

value problems as identified in Table 3.2 are applied to the initial undeformed microscale

RVEs, and the electrical energy equivalence is used to obtain the zero-strain resistivities,

ρeff
ij (0), of the microscale RVEs from which the zero strain resistance Reff(0) is calculated.

In step 2, the first mechanical load increment is applied to the microscale RVEs according

to the boundary conditions identified in Table 3.1, resulting in the change relative distances

of the CNT and the local strain distributions in the CNT. In step 3, the relative distances

of the CNT and the local strains in the CNT obtained from step 2 are used to update

local resistivities of the polymer matrix and the CNT. In step 4, the same electrostatic

potential boundary value problems from step 1 are applied again to the microscale RVEs with

updated local electrical properties of the polymer matrix and the CNT, with the electrical

energy equivalency enforced to obtain the effective conductivities ρeff
ij (d, εC

kl) of the effective

microscale RVEs. Step 2 through step 4 are then repeated for subsequent mechanical loading

increments. From this process the effective electrical properties of the microscale RVEs with

electrical tunneling effect and inherent piezoresistive effect of the CNT can be obtained as a

function of the applied macroscale homogeneous strain, i.e. the load dependent but reversible

macroscale effective piezoresistive response.

In order to compare with measures more commonly used in experiments, the effective resis-

tivities ρeff
ij (d, εC

kl) obtained in the transverse plane-strain uniaxial tension and axial tension

tests can be converted into their representative nanocomposite gauge factors. For the trans-

verse plane-strain uniaxial tension test, the nanocomposite gauge factor can be obtained

as (Ren and Seidel, 2013a)

Geff
22 =

∆Reff(ε0)

Reff(0)

ε0

=
1

ε0

(
ρeff

22(ε0)

ρeff
22(0)

1 + ε0

1− (νeff
21 +νeff

31 ν
eff
23 )ε0

1−νeff
32 ν

eff
23

− 1) (3.15)

For the axial tension test, the corresponding gauge factor is

Geff
z =

1

ε0

(
ρeff

33(ε0)

ρeff
33(0)

1 + ε0

(1− νeff
31ε0)2

− 1) (3.16)

1See verification of the modeling work in Appendix D.
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It is worth noticing that for the metal alloy wires commonly used in strain gauges, the initial

and final resistivities are the same, so that the gauge factor is governed by the isotropic

Poisson’s ratio in the transverse plain-strain uniaxial tension test, and results in an approx-

imately linear relationship between normalized change in resistance and strain (i.e. with G

as the slope of the curve) for small strains. Similarly, for the axial gauge factor with equal

initial and final resistivities, Eqn. (6.6) leads to a νeff
31 dependence. For the nanocomposites

discussed herein, the initial and final resistivities are not equal, and depend on the param-

eters associated with electrical tunneling (d, λ) and inherent CNT piezoresistivity (gC
ijkl).

Here we discuss the relative influence of both mechanism and of their combined effects on

the macroscale effective gauge factors.

3.3 Results and Discussion

For the single-walled CNTs considered herein, the outer radius is chosen to be 0.85nm,

with the thickness of the annular region chosen to be 0.34nm (Schadler et al., 1998). The

CNT annulus and matrix are taken to be isotropic linear elastic with Young’s modulus and

Poisson’s ratios of 1100 GPa and 0.14 and 2.46 GPa and 0.3, respectively (Saito et al., 1998;

Zhou et al., 2008). The initial isotropic resistivity within the CNT annulus is chosen to be

10−5 Ω · m (Ebbesen et al., 1996; Seidel and Lagoudas, 2009), and the polymer matrix is

chosen to be Epoxy which is likewise isotropic with resistivity of 1014 Ω ·m in the absence

of electrical tunneling which is within the typical range of values commonly reported for

insulating polymers in experiments. Barrier heights for Epoxy have been reported to be

on the order of λ = 0.5 - 2.5 eV (Hu et al., 2012), the range of which will be considered

here parametrically. Finally, the inherent piezoresistive gauge factor of 2900 reported in

Ref. (Stampfer et al., 2006) will be converted into diagonal isotropic piezoresistive coefficients

gC
ijkl as discussed in Ref. (Ren and Seidel, 2013a) and applied herein.
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3.3.1 Plane-strain uniaxial tension test on the well-dispersed trans-

verse hexagonal RVE

The plane-strain uniaxial tension test as identified in Table 3.1 is applied to the transverse

hexagonal RVEs to obtain the effective transverse piezoresistive properties, ρeff
22(ε̃0) and Geff

2 ,

for strains up to 1%. The influence of the electrical tunneling barrier height is studied

over a range of volume fractions up to 60%vol, both independently and in conjunction with

inherent CNT piezoresistivity.2 The inclusion of both mechanisms leads to evolution in

electrical microstructure associated with increasing tensile strain on the RVE as shown in

Fig. 3.6.

As seen in Fig. 3.6(a) and Fig. 3.6(b), for the RVEs corresponding to 10%vol and 60%vol

CNTs, at zero boundary strain, the shortest CNT-CNT distance are 3.15 nm and 0.39 nm

respectively, which are within the cut-off distances of Epoxy at λ = 0.5 eV. Therefore the

electrical tunneling effect takes place, i.e. the volume fractions are above the percolation

volume fraction, and the resistivities are significantly reduced in the polymer matrix. While

no portion of the matrix retains the original matrix resistivity at these volume fractions, the

most direct paths between neighboring CNTs have much lower resistivities, and therefore

form clearly visible tunneling paths. Upon application of strain ε0 = 1.0%, the ’tunnels’ in

X2 direction are observed to be thinner as compared to the ones at ε0 = 0.0% due to the

RVEs being stretched in X2 direction and the corresponding greater separation of CNTs in

the X2 direction. It is also observed that the resistivities of the CNTs are also changed with

the applied boundary strain due to the inherent piezoresistive effect. The change can be

more easily observed in the 60%vol RVE, as there is greater strain transfer to the CNTs at

higher volume fractions.

2While global volume fractions of 10%vol and higher are considered quite large by experimental standards

due to processing issues associated with viscosity increases and dispersion of CNTs within the liquid polymer,

such volume fractions are considered here as 1) they more capably demonstrate the combined effects of

electrical tunneling and inherent CNT piezoresistivity and 2) they are reflective of locally high volume

fractions within CNT bundles.
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(a) 10%vol of the CNT (b) 60%vol of the CNT

Figure 3.6: Distribution of the resistivity component ρ22 in the transverse hexagonal RVEs

under plane-strain uniaxial tension test, in which λ = 0.5 eV, and Gc = 2900. Note that

the scale bars are different for the two sets of contours. a) Distribution of ρ22 in the 10%vol

RVE with the applied boundary strain at ε0 = 0.0% and ε0 = 1.0%. b) Distribution of ρ22

in the 60%vol RVE with the applied boundary strain at ε0 = 0.0% and ε0 = 1.0%.

The corresponding effective relative change in resistance, i.e. ∆Reff/Reff, as a function of

the applied boundary strain for these two volume fractions are provided in Fig. 3.7 for

both electrical tunneling and combined tunneling and inherent CNT piezoresistivity cases.

For the 10%vol well-dispersed transverse RVE (Fig. 3.7(a)), five cases are considered: 1)

only inherent CNT piezoresistivity of Gc = 2900, 2) only inherent CNT piezoresistivity of

Gc = 1023, 3) only electrical tunneling with λ = 1.4 eV, 4) both electrical tunneling λ =

1.4 eV and inherent CNT piezoresistivity Gc = 2900, and 5) both electrical tunneling λ =

1.4 eV and inherent CNT piezoresistivity Gc = 1023. As observed in Ref. (Ren and Seidel,

2013a), including only the inherent CNT piezoresistivity mechanism does not lead to large

gauge factors in the transverse direction. In fact, for the inherent CNT piezoresistive gauge

factor of Gc = 2900, at a volume fraction of 10%vol the influence of the CNT piezoresistivity

is negligible as ρeff
22(ε0) ≈ ρeff

22(0) so that the effective gauge factor is simply that of the
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(a) 10%vol of the CNT

(b) 60%vol of the CNT

Figure 3.7: The relative change of effective resistance of the microscale RVE with the change

of boundary strain ε0 under plane-strain uniaxial tension test. a) ∆Reff

Reff of the microscale

RVE as ε0 = 0.0%− 1.0%, in which there are 10%vol CNTs. b) ∆Reff

Reff of the microscale RVE

as ε0 = 0.0%− 1.0%, in which there are 60%vol CNTs.

nominal geometric effect, 1.42. Even with a very large hypothetical CNT gauge factor of

Gc = 1023, the effective transverse gauge factor of the nanocomposite only increases by 73%

to Geff
2 = 2.45 at 10%vol. However, if contrast the electrical tunneling effect is independently

considered, for a mid range value of Epoxy barrier height of λ = 1.4 eV, a large relative

change of effective resistance of the microscale RVE is observed, an order of magnitude larger

at ε0 than when inherent CNT piezoresistivity is independently considered, yielding a gauge

factor of 21.2 at 10%vol. This is because with the applied boundary strain increased from

0%-1%, the CNT-CNT distances are all within the critical tunneling distance of 3.53 nm at

λ = 1.4 eV. Therefore the electrical tunneling effect takes place in the polymer matrix, which

is very sensitive to the change of relative locations of the CNT and induces large changes in

resistance even with the small boundary strains strains of up to only 1% are applied.
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For the cases in which the coupled effect of the electrical tunneling at λ = 1.4 eV and the

inherent piezoresistivity of the CNT are considered, at 10%vol CNT negligible differences in

the relative resistance changes are observed between the coupled cases and the independent

electrical tunneling results. Even when the large hypothetical Gc = 1023 is coupled with

electrical tunneling effect, the transverse effective gauge factor at 10%vol only increases by

seven tenths to 21.9 at ε0 = 1%. This is because in order for the CNT to influence the overall

piezoresistive response, the change of resistivity of the CNT has to be comparable to electrical

tunneling induced resistivity and resistivity changes within the matrix which at 10%vol CNTs

is driving the overall nanocomposite effective transverse resistivity. For example, as seen in

Table 3.3, with Gc = 2900 the volume averaged resistivity of the CNT is increased from

1.00× 10−5Ω ·m to 1.17× 10−5Ω ·m, which is negligible compared to the effective resistivity

of the RVE, which is on the order of 1013Ω·m. When the inherent piezoresistivity of the CNT

is increased to 1023, the average resistivity of the CNT increases from 1.00 × 10−5Ω · m to

6.13× 1013Ω ·m, leading to a very modest increase in the nanocomposite transverse effective

resistivity of three hundredths over the effective resistivity of the nanocomposite when only

electrical tunneling is considered. Thus, at 10%vol CNT and barrier height of λ = 1.4 eV, the

transverse piezoresistive response of the nanocomposite is governed entirely by the electrical

tunneling mechanism.

In order to see a larger influence of the inherent piezoresistivity of the CNT on the overall

piezoresistive response, one can either increase the volume fraction of the CNT or decrease

the height of barrier of the polymer matrix. Through increasing the volume fraction of the

CNT, the CNT-CNT distance is decreased, resulting in a lower overall resistivity of the

nanocomposites at zero strain (assuming already percolated), and depending on the barrier

height can be in a region of the ρtunnel vs d response which is very sensitive to small changes in

d with applied strain. While these observations would seem to make the electrical tunneling

effect even more influential than inherent CNT piezoresistivity effect, in actuality, they

bring the matrix resistivity to a value closer to that of the CNT such that changes in CNT

resistivity (especially with the higher CNT volume fraction) become increasingly significant
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Table 3.3: The volume averaged resistivity component ρavg
CNT(22) of the CNT and the effective

resistivity component ρeff
RVE(22) of the 10%vol transverse hexagonal microscale RVE at the

applied boundary strains of ε0 = 0.0% and ε0 = 1.0% respectively of the plane-strain uniaxial

tension test.

ε0 = 0.0% ρavg
CNT(22)(Ω ·m) ρeff

RVE(22)(Ω ·m)

10%vol & λ = 1.4 eV 1.00× 10−5 4.80× 1013

10%vol & λ = 1.4 eV & Gc = 2900 1.00× 10−5 4.80× 1013

10%vol & λ = 1.4 eV & Gc = 1023 1.00× 10−5 4.80× 1013

ε0 = 1.0% ρavg
CNT(22)(Ω ·m) ρeff

RVE(22)(Ω ·m)

10%vol & λ = 1.4 eV 1.00× 10−5 5.74× 1013

10%vol & λ = 1.4 eV & Gc = 2900 1.17× 10−5 5.74× 1013

10%vol & λ = 1.4 eV & Gc = 1023 6.13× 1013 5.77× 1013

*The volume averaged resistivity component ρavg
CNT(22)

corresponds to the CNT annulus and does not

include the hollow region of the CNT.

to the overall effective nanocomposite response. In addition, the strains transferred to the

CNTs are higher at larger volume fractions, which can induce larger inherent piezoresistive

effects of the CNT. As an alternative to increasing the volume fraction, in decreasing the

height of the tunneling barrier of the polymer matrix, the electrical tunneling resistivities in

the polymer matrix are again decreased, which can also result in a lowered overall resistivity

that is more sensitive to the inherent piezoresistivity of the CNT. As seen in Table 3.4, when

the volume fraction of the CNT is increased to 60%, the difference between the resistivity of

the CNT and effective resistivity of the microscale RVE is reduced to within 1 to 2 orders

of magnitude for barrier heights of λ = 0.5 eV and λ = 1.4 eV, respectively. As such, the

inherent piezoresistivity of the CNT can more effectively influence the overall piezoresistivity

of the microscale RVE. The influence of increasing the volume fraction and lowering the

barrier height on the relative change in effective resistance can be seen in Fig. 3.7(b). For
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the microscale RVE with 60%vol CNT, although the electrical tunneling effect is still the

main driving force, the inherent piezoresistivity of the CNT with Gc = 2900 is observed to

be a contributing factor to the overall piezoresistive response. For the case of λ = 1.4 eV,

the effective gauge factor of the microscale RVE is increased by 0.41 at ε0 = 1.0%, and for

the case of λ = 0.5 eV, the effective gauge factor of the microscale RVE is increased by 1.8

relative to the independent electrical tunneling gauge factors at 60%vol CNT.

Table 3.4: The volume averaged resistivity component ρavg
CNT(22) of the CNT and the effective

resistivity component ρeff
RVE(22) of the 60%vol transverse hexagonal microscale RVE at the

applied boundary strains of ε0 = 0.0% and ε0 = 1.0% respectively of the plane-strain uniaxial

tension test.

ε0 = 0.0% ρavg
CNT(22)(Ω ·m) ρeff

RVE(22)(Ω ·m)

60%vol & λ = 1.4 eV 1.00× 10−5 1.45× 10−3

60%vol & λ = 1.4 eV & Gc = 2900 1.00× 10−5 1.45× 10−3

60%vol & λ = 0.5 eV 1.00× 10−5 3.15× 10−4

60%vol & λ = 0.5 eV & Gc = 2900 1.00× 10−5 3.15× 10−4

ε0 = 1.0% ρavg
CNT(22)(Ω ·m) ρeff

RVE(22)(Ω ·m)

60%vol & λ = 1.4 eV 1.00× 10−5 1.69× 10−3

60%vol & λ = 1.4 eV & Gc = 2900 1.43× 10−5 1.70× 10−3

60%vol & λ = 0.5 eV 1.00× 10−5 3.43× 10−4

60%vol & λ = 0.5 eV & Gc = 2900 1.43× 10−5 3.49× 10−4

*The volume averaged resistivity component ρavg
CNT(22)

corresponds to the CNT annulus and does not

include the hollow region of the CNT.

The change of the effective resistivity component ρeff
22 and the effective gauge factor Geff

2 of

the microscale RVE with the change of volume fraction of the CNT are shown in Fig. 3.8. As

observed in Fig. 3.9(a), at low volume fractions for a given barrier height (i.e. 0%-4.62%vol
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Figure 3.8: The change of effective resistivities and gauge factors of the transverse hexagonal

microscale RVEs at ε0 = 1% with the change of volume fraction of the CNT. a) The effective

resistivity component ρeff
22 at ε0 = 1% vs. the change of volume fraction of the CNT from 1%

to 60%. b) The effective gauge factor Geff
2 at ε0 = 1% vs. the change of volume fraction of

the CNT from 1% to 60%.

(a)

(b)

at λ = 0.5 eV, 0%-9.59%vol at λ = 1.4 eV, and 0%-13.8%vol at λ = 2.5 eV), the effective

transverse resistivity is approximately equal to that of the nominal value of the Epoxy matrix

as the distances between neighboring CNTs are greater than the respective dc so that no

electrical tunneling is taking place. Over this range of volume fractions, as observed in

Fig. 3.9(b), the effective transverse gauge factors are entirely driven by the geometric effect,

yielding an average value of around 1.425. With the increase of volume fraction of the CNT,

the CNTs become close enough to engage the electrical tunneling effect, i.e. to form an
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electrical tunneling induced percolated network. As observed in Fig. 3.9(a), the percolation

volume fraction is manifest in the form of a sudden, order of magnitude change in effective

transverse resistivity corresponding to a deviation from the nominal volume fraction response

of the nanocomposite in the absence of the tunneling effect. As the volume fraction increases

beyond the percolation concentration, the separation distance dependence of the tunneling

effect leads to continued orders of magnitude deviation of the effective transverse resistivity

from the no tunneling effect behavior. It is noted that the lower barrier height results in a

lower volume fraction percolation and more rapid decrease in the resistivity. The percolation

effect is likewise visible in Fig. 3.9(b) where the effective transverse gauge factors are observed

to experience a sharp increase near the percolation concentration from the geometric value

to values of 25.9, 33.9, and 41.0 for barrier heights of λ = 0.5 eV, λ = 1.4 eV, and λ

= 2.5 eV, respectively. It is worth noting that the effective gauge factors attain a peak

value before gradually decreasing with increasing volume fractions above the percolation

concentration, and that these peak values increase with increasing barrier height. These

observations can be explained in terms of the trade off between larger percolation volume

fractions and where the volume fraction places the zero-strain effective resistivity on the

ρtunnel vs d curve (Fig. 3.3(b)) as shown in Table 3.5. At the start of percolation, though at

Table 3.5: The effective resistivity component ρeff
22 and the effective gauge factor Geff

2 at the

percolating volume fraction and at 20%vol.

(Unit: Ω ·m) λ 0.5 eV 1.4 eV 2.5 eV

per%vol

ρeff
22(ε0 = 0%) 2.79× 1013 4.80× 1013 1.25× 1013

ρeff
22(ε0 = 1%) 3.44× 1013 5.74× 1013 1.73× 1013

Geff
2 (ε0 = 1%) 25.3 21.2 40.5

20%vol

ρeff
22(ε0 = 0%) 6.42× 101 5.86× 105 1.28× 109

ρeff
22(ε0 = 1%) 7.43× 101 7.53× 105 1.78× 109

Geff
2 (ε0 = 1%) 17.4 30.2 41.0
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different volume fractions all three barrier heights have nearly the same order of magnitude

effective resistivity at 1% strain, but very different zero-strain resistivities associated with the

barrier height’s dc and associated rate of resistivity change as demonstrated in Fig. 3.3(b).

This rate of change of resistivity for the given barrier height then governs the subsequent

reduction in effective gauge factor from the peak value leading to the differences observed at

a common volume fraction, e.g. 20%vol in Table 3.5. Having a peak gauge factor near the

percolation concentration has likewise been reported in experimental characterization efforts

for nanocomposites (Kang et al., 2006b, 2009; Bautista-Quijano et al., 2010; Oliva-Aviles

et al., 2011; Ferreira et al., 2012b), and is likely also a consequence of this trade off in the

electrical tunneling response.

Finally, recalling from Fig. 7 that the inherent CNT piezoresistivity can have an influence

on the effective transverse gauge factor at high volume fractions, the combined mechanism

effective gauge factors are provided in Fig. 8b for volume fractions between 40%vol and

60%vol for a CNT gauge factor of Gc = 2900. It is found that the largest influence the

inherent piezoresistivity happens at 60%vol of CNTs and at the lowest barrier height λ =

0.5 eV, where the effective gauge factor increases by 17% from 10.5 to 12.3. The influence of

the inherent CNT piezoresistivity decreases with decreasing volume fraction due to reduced

strain transfer to the CNT, and decreases with increasing barrier height as the tunneling

resistivity becomes much larger than the CNT resistivity. For example, at 40%vol of the

CNT and barrier height of λ = 0.5 eV, the effective gauge factor is only increased by 0.03

with the inclusion of inherent CNT piezoresistivity, while at 60%vol the gauge factors are

increased by 0.41 and 0.10 for λ = 1.4 eV and λ = 2.5 eV, respectively. Therefore we can

conclude that in the transverse directions, the influence of inherent piezoresistivity of the

CNT on the overall piezoresistive response of the nanocomposites is limited, unless 1) it is

coupled with the electrical tunneling effect 2) the volume fraction of the CNT is high, e.g.

60%vol 3) the height of barrier of the polymer matrix is low, e.g. 0.5 eV and 4) gauge factors

for the CNT are at least of the order of 2900.
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3.3.2 Plane-strain uniaxial tension test on the randomly dispersed

transverse RVE

The plane-strain uniaxial tension test is applied to the transverse RVEs in order to ob-

serve dispersion effects on the nanocomposite effective piezoresistive response. It has been

demonstrated that a RVE with 30 cylindrical inclusions is adequate to represent the effec-

tive macroscopic mechanical material properties in aligned fiber composites (Gonzalez and

Llorca, 2007), therefore in an analogous manner we have constructed RVEs with 30 CNTs

at a volume fraction of 10%vol CNT. The locations of the CNTs are randomly generated

under the constraint of no overlapping CNTs, and with CNTs on the boundary periodically

reflected on opposing sides of the RVE. For demonstration purposes, two different randomly

dispersed RVEs are constructed. Figures 3.9(c) and 3.9(d) provide contour plots of local

resistivity for the two RVEs at with and without strain for the barrier height of λ = 1.4eV.

At zero strain one is able to identify a few tunneling paths which span the vertical dimension

of the RVE (denoted by dashed lines) are formed. Under the application of a strain of 1%,

tunneling paths in the X2 direction generally increase in resistivity and narrow in width. In

RVE 2, very narrow tunneling paths visible at zero strain have been completely disrupted

when the strain is applied. In comparison to the well dispersed hexagonal RVE which is ex-

pected to yield at most an orthotropic piezoresistive response, the randomly dispersed RVEs

will yield an anisotropic piezoresistive response which will be highly sensitive to the specific

dispersion of CNTs. In contrast, with a barrier height of λ = 0.5eV, the local resistivity

contour distribution of the two RVEs appear more like a statistically isotropic material. This

is because with λ = 1.4 eV, the cut-off distance of the electrical tunneling effect is 3.53nm,

whereas the cut-off distance is 5.83nm with λ = 0.5 eV. With a longer cut-off distance, the

CNTs are able to form a well-dispersed percolated network at the volume fraction of 10%vol

CNTs where the average distance between the CNTs is 2.09 nm and 2.45 nm in RVEs 1 and

2, respectively, and 3.42 nm in well-dispersed hexagonal. While disruptions in conductive

paths on applied strain were relatively easy to observe in Fig. 3.9, for the same strain but
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lower barrier height of λ = 0.5eV in Fig. 3.10 it is much harder to observe the same phe-

nomenon as most of the tunnels are well within the cut-off distance. Careful inspection of

Fig. 3.10(a) reveals increases in width and decreases in resistivity (strengthening) of tunnels

at points A and B due to Poisson’s contraction in X1 direction, and the weakening of the

tunnel at point C where the tunnel is more aligned with the X2 direction.

(c) Random RVE 1 (d) Random RVE 2

Figure 3.9: The contour distribution of isotropic resistivity in the chosen two random trans-

verse RVEs, in both of which the volume fraction of the CNT is 10%. Note that the scale

bars are different for the contours. a) The contour distribution of resistivity at the applied

boundary strain of 0.0% and 1.0% respectively of the first random microscale RVE with λ =

1.4 eV and for the transverse hexagonal RVE with λ = 1.4 eV. b) The contour distribution

of resistivity at the applied boundary strain of 0.0% and 1.0% respectively of the second

random microscale RVE with λ = 1.4 eV. The dashed box regions denote areas in which

there are stronger electrical tunneling paths due to the nonuniformity of the distribution of

the CNTs.

In order to observe how the randomness of the CNTs influence the overall performance of the

material, the relative change of resistance with the applied boundary strain of the microscale
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(a) Random RVE 1 (b) Random RVE 2

Figure 3.10: The contour distribution of isotropic resistivity in the chosen two random

transverse RVEs, in both of which the volume fraction of the CNT is 10%. Note that the

scale bars are different for the contours. a) The contour distribution of resistivity at the

applied boundary strain of 0.0% and 1.0% respectively of the first random microscale RVE

with λ = 0.5 eV and for the transverse hexagonal RVE with λ = 0.5 eV. b) The contour

distribution of resistivity at the applied boundary strain of 0.0% and 1.0% respectively of

the second random microscale RVE with λ = 0.5 eV.

RVEs are obtained, and are compared with the ones based on the 10%vol transverse hexag-

onal RVE, as seen in Fig. 3.11(a) and Fig. 3.11(b). As would be expected from the clearly

visible changes in tunneling paths in Fig. 3.9, for the barrier height of λ = 1.4eV there are

large differences in the effective relative resistance, with RVE 1 having an effective relative

resistance which is more than double that of the well-dispersed hexagonal RVE at 1% strain

while RVE 2 yields a value half that of the hexagonal RVE at the same strain. Such large

differences in piezoresistive behavior can be attributed not only to the large barrier height,

which dictates sensitivity to changes in the tunneling distance (Fig. 3.3(b)), but also to the

number of RVE-spanning tunneling paths and the average tunneling distance between the
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Table 3.6: The effective resistivity component ρeff
22, the average distance davg of the CNTs

in the stronger tunneling path, and the average tunneling resistivity ρavg
tunnel in the stronger

tunneling path of the three transverse microscale RVEs at the barrier heights of λ = 1.4 eV

and λ = 0.5 eV respectively. Note that the units in the table are Ω ·m for resistivities and

nm for lengths.

λ=1.4 eV RVE 1 Hexagonal RVE RVE 2

ρeff
22(ε0 = 0%) 2.48× 1010 4.80× 1013 2.14× 1013

ρeff
22(ε0 = 1%) 3.68× 1010 5.74× 1013 2.30× 1013

davg(ε0 = 0%) 2.09 3.42 2.45

davg(ε0 = 1%) 2.11 3.47 2.49

ρavg
tunnel(ε0 = 0%) 2.60× 106 2.70× 1013 2.13× 108

ρavg
tunnel(ε0 = 1%) 3.53× 106 5.03× 1013 3.54× 108

λ=0.5 eV RVE 1 Hexagonal RVE RVE 2

ρeff
22(ε0 = 0%) 4.51× 104 5.01× 106 3.63× 106

ρeff
22(ε0 = 1%) 5.58× 104 6.11× 106 4.38× 106

davg(ε0 = 0%) 2.09 3.42 2.45

davg(ε0 = 1%) 2.11 3.47 2.49

ρavg
tunnel(ε0 = 0%) 1.65× 102 2.57× 106 2.30× 103

ρavg
tunnel(ε0 = 1%) 1.98× 102 3.73× 106 3.11× 103

CNTs forming the paths. For example, for the unstrained RVE 1, the principal X2 direc-

tion tunneling path (within the dashed line of Fig. 3.9(c)) has an average CNT separation

distance of 2.08nm, which is significantly shorter than the separation distance of 3.41nm

in the analogous path of the well-dispersed hexagonal RVE. From these values, the average

resistivity of the tunneling paths can be estimated as 2.6 × 106Ω · m in the RVE 1 path

which is seven orders of magnitude lower than the value of 2.7 × 1013Ω · m established in
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the hexagonal RVE. As RVE-spanning conductive paths can be expected to follow a rule of

mixtures approach towards estimating effective resistivity, it is not surprising that the single

low resistivity tunneling path of RVE 1 leads to a zero-strain effective transverse resistivity

of 2.48×1010Ω ·m which is two orders of magnitude lower than the effective resistivity of the

hexagonal RVE under the influence of its greater number of high resistivity tunneling paths.

From a similar analysis of the data provided in Table 3.6, one can likewise explain the lower

effective relative resistivity of RVE 2 as compared to the hexagonal RVE in Fig. 3.11(a), as

well as the much closer behavior of all three RVEs when the barrier height is reduced to λ

= 0.5eV as shown in Fig. 3.11(b). These results exemplify the importance of understanding

and possibly controlling the microstructural dispersion of CNTs when seeking to obtain ideal

nanocomposite gauge factors for specific sensing applications, and can perhaps explain wide

range of gauge factors observed from experiments reported in the literature.

3.3.3 Axial tension test on the axisymmetric RVE

In addition to the plane-strain uniaxial tension tests applied to the transverse RVEs, axial

tension tests are applied to the axisymmetric RVEs to obtain the effective axial piezoresistive

properties. The axial axisymmetric RVEs are chosen to match those used in Ref. (Ren and

Seidel, 2013a), and are constructed in such a way that the gap between the tip of the CNT and

the top and bottom boundaries of the RVE is only related to the aspect ratio of the CNT, and

therefore does not change with the volume fraction of the CNT. Instead, as the aspect ratio

of the CNT approaches infinity, the gap approaches zero, and the lateral width approaches

that of the transverse hexagonal RVEs so that the finite aspect ratio RVE is consistent with

the axial and transverse infinite aspect ratio RVEs. For CNTs with a finite aspect ratio of

300 as chosen here, the tip to tip distance in the axial direction is 0.567 nm, which is within

the critical tunneling distance for barrier height of λ = 1.4eV, therefore electrical tunneling

path is formed in the axial direction. As shown in Fig. 3.12, in both the 1%vol and 20%vol

CNT RVEs with finite CNT aspect ratio of 300, at zero strains there is electrical tunneling
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(a) λ = 1.4 eV

(b) λ = 0.5 eV

Figure 3.11: Comparison of the relative change of effective resistance of the hexagonal mi-

croscale RVE and the random microscale RVEs with the change of boundary strain ε0 under

plane-strain uniaxial tension test. a) Comparison of ∆Reff

Reff of the hexagonal microscale RVE

and the random microscale RVEs as ε0 = 0.0% − 1.0%, in all of which there are 10%vol

CNTs and λ = 1.4 eV. b) Comparison of ∆Reff

Reff of the hexagonal microscale RVE and the

random microscale RVEs as ε0 = 0.0% − 1.0%, in all of which there are 10%vol CNTs and

λ = 0.5 eV.

to the ghost CNTs in the RVEs above and below the RVE. The tunneling tip to tip is on

the order of 10−2Ω ·m. In the lateral (transverse) direction of the 1%vol RVE, the CNTs are

separated by a distance greater than the critical tunneling distance, and therefore there is no

lateral electrical tunneling effect, i.e. the resistivity remains at 1014Ω ·m which is the value

of the polymer matrix. In the 20% RVE, however, the CNTs are close enough in the lateral

directions to have lateral electrical tunneling effects such that the resistivity is decreased

from the nominal matrix value to a tunneling value of 106Ω · m in the lateral directions.

With the application of an axial boundary strain of 0.1%, the separation between the CNT

and the ghost CNTs in the axial direction increases, increasing the tunneling resistance at
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the tip. In contrast, the tunneling resistivity in the lateral directions decreases as CNTs

come closer together in the lateral direction due to Poisson’s contraction. As can also be

observed in Fig. 3.12, with the inherent piezoresistivity of the CNT turned on, the resistivity

of the CNT significantly increases due to the large amount of strain transfer to the CNTs

on application of applied boundary strain within the axial RVEs.

(a) (b)

Figure 3.12: Distribution of the resistivity component ρzz in the axisymmetric RVEs under

axial tension test, in which the aspect ratio of the CNT is 300, λ = 1.4 eV, and Gc = 2900

(Gc is converted to gzz = 2.84× 102Ω ·m as inputs for our model (Ren and Seidel, 2013a)).

Note that the scale bars are different for the two sets of contours. a) Distribution of ρzz in the

1%vol RVE with the boundary strain applied at ε0 = 0.0% and ε0 = 0.1%. b) Distribution

of ρzz in the 20%vol RVE with the boundary strain applied at ε0 = 0.0% and ε0 = 0.1%.

The influence of both barrier height and volume fraction on the piezoresistive response of the

axial RVE under uniaxial tensile loads is provided in Figs 3.13 and 3.14. It has been shown

in (Ren and Seidel, 2013a) that the inherent piezoresistivity of the CNT itself can not drive

the overall piezoresistive response of the nanocomposites in the axial direction, therefore the

focus is on the axial electrical tunneling effect and the coupled effect of electrical tunneling
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Figure 3.13: The relative change of effective resistance of the 5%vol and 20%vol axisymmetric

microscale RVEs with the change of boundary strain ε0 from 0%-0.1% under axial tension

test. The top two curves consider both of the electrical tunneling effect at λ = 1.4 eV and

the inherent piezoresistivity of the CNT with Gc = 2900. The bottom two curves consider

only the electrical tunneling effect at λ = 1.4 eV. The aspect ratio of the CNT is 300.

and the inherent piezoresistivity of the CNT.

As observed in Fig. 3.13, for both of the 5%vol and the 20%vol axisymmetric RVEs, with

the electrical tunneling effect at λ = 1.4 eV, large piezoresistive response can be observed.

At the volume fraction of 1%, the effective axial gauge factor is Geff
z = 530 at ε0 = 0.1%, and

at the volume fraction of 20%, the effective gauge factor is 1105 at ε0 = 0.1%. By coupling

the inherent piezoresistivity of the CNT with the electrical tunneling effect, the combined

piezoresistive response of the axial microscale RVE is much larger than was observed in the

transverse RVEs. For example, at the volume fraction of 1%, the effective gauge factor is

increased from 530 to 1033 at ε0 = 0.1% when a CNT gauge factor of Gc = 2900 is applied.

Similarly, at a volume fraction of 20%vol, the gauge factor is increased from 1105 to 1575.

The observed large piezoresistive responses in the axisymmetric RVEs demonstrate that as

long as there is electrical tunneling path in the axial direction, the overall piezoresistive

response is sensitive to not only the electrical tunneling effect, but also to the inherent

piezoresistivity of the CNT.

The effective piezoresistive response under independent electrical tunneling and combined
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tunneling and inherent CNT piezoresistivity is provided in Fig. 3.14 for a range of volume

fractions up to 60%vol CNT and strains up to 0.1%. As observed in Fig. 3.14(a), at zero

strain, when the volume fraction of the CNT increases from 5%vol to 60%, the effective axial

resistivity decreases from 1.58× 10−3Ω ·m to 1.28× 10−4Ω ·m, a much smaller change with

volume fraction than was observed in Fig. 3.9(a) for the post percolation behavior of the

transverse hexagonal RVE of ten orders of magnitude. Also unlike Fig. 3.9(a), there is no

identifiable percolation concentration. This is due to the fixed finite aspect ratio gap size at

all volume fractions in the axial RVEs, and because the aforementioned gap size is within the

tunneling distance, and therefore is percolated in the axial direction by the same amount at

all volume fractions. Further, as noted, the axial tunneling resistivity is orders of magnitude

larger than the lateral tunneling resistivity at all volume fractions considered such that the

lateral percolation is dwarfed by the axial tunneling. As such, the axial RVEs can be viewed

as following the rule of mixtures for effective axial resistivity of the nanocomposite based on

an effective wire model consisting of the CNT and the tunneling resistivities at the tips. On

application of even very small strains, the effective axial piezoresistive response is governed

by the tip to tip tunneling and, when the inherent CNT piezoresistivity is considered, the

excellent axial strain transfer of the axial RVEs. The result is very large effective axial gauge

factors which, as observed in Fig 13b, also do not demonstrate a noticeable impact of the

lateral percolation of the axial RVE. It can therefore be deduced that the axial piezoresistive

response as modeled herein will be strongly sensitive to the barrier height and to the aspect

ratio of the CNT.

3.4 Conclusions

The macroscale piezoresistive response of carbon nanotube (CNT)-polymer nanocomposites

has been explored in terms of a combination of the nanoscale mechanisms of electrical tunnel-

ing and CNT inherent piezoresistivity within a computational micromechanics finite element

approach using both axial and transverse RVEs for aligned randomly and well-dispersed CNT
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(a)

(b)

Figure 3.14: The change of effective resistivities and gauge factors of the axisymmetric

microscale RVEs with the change of volume fraction of the CNT and the applied boundary

strain ε0. The electrical tunneling effect is considered at λ = 1.4 eV. a) The change of

effective resistivity component ρeff
zz of the microscale RVE with the change of volume fraction

of the CNT from 5% to 60% and with the change of applied boundary strain from 0.0% to

0.1%. b) The change of effective gauge factor Geff
z of the microscale RVE with the change of

volume fraction of the CNT from 1% to 60%, when the applied boundary strain is at 0.1%.

distributions over a range of volume fractions.

It is found that in the transverse directions: 1) The electrical tunneling effect is the main

driving force for the overall piezoresistive response of the nanocomposites. 2) The influence

of inherent piezoresistivity of the CNT on the overall piezoresistive response of the nanocom-

posites is limited, unless a) it is coupled with the electrical tunneling effect b) the volume

fraction of the CNT is very high, e.g. 60%vol c) the height of the tunneling barrier of the

polymer matrix is low, e.g. 0.5 eV and d) CNT gauge factors of 2900 or higher are used. 3)
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There is a percolation concentration where both zero-strain effective transverse resistivity

and gauge factors demonstrate large sudden shifts in behavior, and that this percolation con-

centration is tied to the barrier height such that lower barrier height leads to lower volume

fraction percolation. 4) A peak gauge factor near the percolation concentration is observed

as is commonly reported in experimental observations in the literature.

It is found that in the axial directions: 1) The tip to tip electrical tunneling effect is the main

driving force for the axial piezoresistive response of the nanocomposites. 2) Due to good

strain transfer in the axial RVEs, the inherent piezoresistivity of the CNT is an important

contributing factor to the axial piezoresistive response. 2) The axial piezoresistive response

can be orders of magnitude larger than the transverse response, and can be very sensitive to

changes in CNT aspect ratio.

Finally, it is noted that the current modeling efforts yield percolation volume fractions and

gauge factors which are larger than are typically observed in experiments (i.e. percolation

concentrations of 0.074%wt of the CNT (Kim et al., 2003) and gauge factors on average of 4-

5). This is largely because of the assumption of well-aligned CNTs within the matrix and the

subsequent use of simplified 2D RVEs. Given the strong sensitivities observed between the

well-dispersed and randomly dispersed transverse RVEs, one can anticipate that the full 3D

dispersion and misorientation of CNTs within as produced nanocomposite samples tested

in laboratory experiments will have a tremendous impact on the observed piezoresistive

response, leading to a combination of some of the aspects observed from both the axial

and transverse cases studied herein, .e.g a lower volume fraction percolation associated with

even slight misorientation and slightly less than perfect distribution (to establish fewer but

stronger conducting percolated paths than in well-dispersed cases). Thus, it is believed

that the results provided herein have some practical application towards understanding and

tailoring nanocomposite piezoresistive strain sensor design, for example, as in fuzzy fiber

strain sensors (Yamamoto et al., 2009, 2012; Chatzigeorgiou et al., 2012; Ren and Seidel,

2011) which can take advantage of both the axial and transverse piezoresistive responses

from the radially oriented CNT network nanocomposite surrounding a glass fiber, e.g. having
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high gauge factor CNT alignment direction in the direction of expected smallest strain and

percolated concentration of CNTs in the transverse direction of highest strain.



Chapter 4

Modeling of Dispersion Effect on the

Piezoresistivity of Carbon

Nanotube-Polymer Nanocomposites

via 3D Computational Multiscale

Micromechanics Methods

4.1 Introduction

It has been found in the literature that the gauge factor of the nanocomposites, which is

used to measure the strength of mechanical-electrostatic coupling within the material, can

vary in a relatively large range, as seen in Fig. 4.1. The maximum gauge factors are achieved

at a concentration just above or a few times larger than the percolation threshold concen-

tration (Kang et al., 2006b, 2009; Bautista-Quijano et al., 2010; Oliva-Aviles et al., 2011;

Ferreira et al., 2012b; Ku-Herrera et al., 2013), which makes CNT polymer nanocomposites

90
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very attractive in the manufacturing of high gauge-factor light-weight strain gauges (Watkins

et al., 2004; Loh et al., 2005; Veedu et al., 2006; Kang et al., 2006a,b; Zhang et al., 2006;

Boger et al., 2008; Kang et al., 2009; Wichmann et al., 2009; Song et al., 2009; Gao et al.,

2009a; Thostenson et al., 2009; Yamamoto et al., 2012).

Figure 4.1: Gauge factors of the CNT polymer nanocomposites under tension and compres-

sion as found in the literature (Kang et al., 2006b; Zhang et al., 2006; Wichmann et al.,

2009; Kang et al., 2009; Bautista-Quijano et al., 2010; Oliva-Aviles et al., 2011; Ferreira

et al., 2012b; Ku-Herrera et al., 2013).

Currently, several nanoscale mechanisms have been identified to contribute to the overall

piezoresistive response of the CNT polymer nanocomposites, including the electrical tunnel-

ing effect (electron hopping) (Simmons, 1963; Fuhrer et al., 2000; Budlum and Lu, 2001;

Li et al., 2007; Xia and Curtin, 2007; Li and Chou, 2008; Li et al., 2008; Theodosiou and

Saravanos, 2010; Hu et al., 2012), the inherent piezoresistive effect of the CNT (Rochefort

et al., 1999; Peng and Cho, 2000; Tombler et al., 2000; Cao et al., 2003; Dharap et al., 2004;

Stampfer et al., 2006; Megalini et al., 2009; Theodosiou and Saravanos, 2010), and the net-

work effect of the CNTs. Due to Van der Waals forces, the CNTs tend to form bundles of

large aspect ratios, and depending on the processing techniques, the CNT bundles tend to

form networks with specific patterns, e.g. randomly dispersed or aligned. The network of the

CNTs not only results in the nanocomposites being electrically percolated at extremely low

weight percentages of the CNT, but also plays a key role in determining the overall piezore-
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sistivity of the nanocomposites when coupled with local electrical tunneling and inherent

CNT piezoresistive effects.

Efforts to model the piezoresistive response of nanocomposites have included resistor net-

work models (Li and Chou, 2008; Theodosiou and Saravanos, 2010; Hu et al., 2012) and

micromechanics models (Ren and Seidel, 2013a,b) based on finite element analysis (FEA).

The advantage of the resistor network model is that it can capture the randomness of the

CNTs in a more direct sense by modeling the CNTs as rectangles or cylinders that are ran-

domly dispersed in the 2D or 3D unit cell. The disadvantage of the model is that it does

not precisely obtain the local kinematics and electrostatics of the CNT and the polymer

matrix within the network which are crucial for modeling the piezoresistive response of the

nanocomposites. On the other hand, although the micromechanics models based on FEA

can more precisely obtain the kinematics and electrostatics of the local nanocomposite rep-

resentative volume elements (RVE), due to computational challenges in terms of meshing

and large degrees of freedom, these models have only been focused on the local transverse

and axial tip-to-tip piezoresistive responses of the CNT bundles (Ren and Seidel, 2013a,b).

Without the 3D network effect, the micromechanics models have not explained why the elec-

trical percolation and the piezoresistive responses of the nanocomposites can occur at such

low CNT weight percentages and why the measured gauge factors can vary significantly in

experiments.

In this study, to model the piezoresistive response of the macroscale nanocomposite specimen

and to tackle the multiscale nature of the problem, a 3D computational multiscale piezore-

sistive model is developed. In this model, a 3D cubic mesoscale RVE and a 3D hexagonal

nanoscale RVE are used respectively to represent the macro and nano scale materials, and

the electrical tunneling effect and the inherent piezoresistivity of the CNT are considered

within the nanoscale RVE. In order to account for the network effect of the CNTs, the

nanoscale RVEs are intentionally dispersed within the mesoscale RVE to study the disper-

sion and network effects on the overall piezoresistive response of the nanocomposites. The

computations for the multiscale model employ a bottom-up/top-down/bottom-up approach,
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and the discussion of the results are focused on the piezoresistive gauge factor sensitivity to

CNT distributions.

4.2 Model Description

4.2.1 Schematics of the 3D computational multiscale model

Figure 4.2: Schematics of the 3D computational multiscale micromechanics model for the

nanocomposite specimen under uniaxial tension or compression test. a) The macroscale

nanocomposite specimen under uniaxial tension or compression test. b) The mesoscale RVE

(1 mm3) for the nanocomposite material within the specimen. Note that in real computations

the number of elements used is 8000, i.e. 64000 subelements. c) One single hexahedron

element within the mesoscale RVE. d) Illustration of the CNT bundle within the subelement.

e) The nanoscale RVE representing the CNT bundle. Note that˜on the coordinate system

denotes the macroscale whereas theˆdenotes the nanoscale, with the mesoscale denoted with

an unmodified Xi coordinate system.

The macroscale boundary value problem selected for the present work consists of a nanocom-

posite dogbone specimen with electrodes for monitoring the macroscale piezoresistive re-
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sponse (Fig. 6.5a). As such a configuration corresponds to a uniform state of strain and

electric field at the macroscale, a representative cube of nanocomposite material of dimen-

sion 1 mm is taken to construct the mesoscale RVE, as seen in Fig. 6.5b. The mesoscale

RVE is meshed by eight-node linear hexahedron elements. For each element, there are eight

subelements surrounding the eight gaussian integration points, as seen in Fig. 6.5c. Within

each subelement, it is assumed that the material is either pure polymer matrix or polymer

nanocomposites reinforced by CNT bundles, which can be aligned in any orientation, as

seen in Fig. 6.5d. To simplify the problem, it is further assumed that the individual CNTs

within the bundle are arranged in a hexagonal packing, locally aligned, and have infinite

aspect ratios, for which the hexagonal nanoscale RVE (Hammerand et al., 2007) as shown

in Fig. 6.5e is used. Although the CNT orientation and weight (or volume) percentage

of the local nanoscale RVE are not necessarily the same for the subelements, the global

weight percentage of the CNT in the mesoscale RVE is fixed while different dispersions are

considered.

In order to show the possible CNT dispersion scenarios, a diagram of CNT dispersions

for the 3D multiscale model is shown in Fig. 4.3. The diagram is constructed based on

1-2-3 coordinates, which are the three dispersion factors considered: 1. the CNT subcell

dispersions, 2. the local CNT orientations, and 3. the local CNT volume fraction variations.

It can be seen that in +1 direction, the dispersion of the subcells is transited from the

extreme of statistically well dispersed, to the intermediate of partially columned, and further

to another extreme of fully agglomerated. In +2 direction, the local orientation of the CNTs

within the subcell are transited from the extreme of vertically aligned to the intermediate of

randomly aligned, and further to another extreme of transversely aligned. In +3 direction,

the distribution of local subcell volume fractions of the CNT is transited from the extreme

of all equal to each other but not equal to the global volume fraction, to the intermediate of

not all equal to each other and some may equal to the global volume fraction, and further to

another extreme of all equal to each other and also equal to the global volume fraction. The

diagram is intended to show a whole spectrum of the CNT dispersion possibilities for the
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3D multiscale model. However, it is not wise and impossible to analyze all the dispersion

scenarios, as such, we pick up a few of them to discuss the CNT dispersion effects on the

overall piezoresistive response of the CNT-polymer nanocomposites, as is to be introduced

in section 7.3.

Figure 4.3: The diagram of CNT dispersions for the 3D multiscale model. Note that the

subcells correspond to the subelements of the mesoscale RVE. Also note that the scenarios

of a) to g) illustrated here are in 1-3 plane.
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4.2.2 Computational procedures for the 3D multiscale model

The computations are conducted by using an in-house multiscale finite element code, which

are summarized here. By assuming the mechanical properties of the CNT and the polymer

matrix to be linear elastic under small strain assumptions, the nanoscale effective stiffness

tensor Ĉ
eff

of the local nanocomposites reinforced by CNT bundles is first obtained from

the computational micromechanics method by solving several periodic boundary value prob-

lems on the hexagonal nanoscale RVE (Hammerand et al., 2007). The nanoscale effective

stiffness is then substituted into the integration points of the mesoscale RVE by coordinate

transformation (Ren et al., 2014). By applying the computational micromechanics method

again, i.e. solving the same periodic boundary conditions but at the microscale, the effective

mechanical stiffness tensor Ceff of the mesoscale RVE is obtained.

Once the mechanical properties of the multiscale model are obtained following the bottom-up

algorithm, load increments are applied following a top-down algorithm. The homogeneous

macroscale strain field ε̃ of the specimen is applied to the mesoscale RVE as periodic bound-

ary conditions, under which the mesoscale strain tensor ε at every integration point of the

mesoscale RVE is obtained. These mesoscale strains are then applied to the nanoscale RVEs

as periodic boundary conditions by coordinate transformation, such that the local kinematics

of the nanoscale RVEs at all the locations within the mesoscale RVE can be obtained. The

electrical tunneling algorithm within the finite element domain has been discussed in detail

in our previous work in (Ren and Seidel, 2013b). Applying this algorithm to all matrix points

in the well-dispersed hexagonal nanoscale RVEs leads to clearly visible pattern of tunneling

paths within the matrix for percolated weight percentages (Ren and Seidel, 2013b; Ren et al.,

2014). The shape and conductivity/resistivity of these tunneling paths are dependent on the

relative locations of the CNTs within the hexagonal nanoscale RVE and therefore are evolv-

ing in accordance with the local mesoscale strain applied at the boundary of the nanoscale

RVE. The second mechanism within the nanoscale RVEs is the inherent piezoresistivity of

the CNT, which depends on the strains within the CNT. The CNTs are expected to exhibit
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inherent piezoresistivity such that the change in resistivity is related to the strain in the

CNT through the piezoresistive strain coefficients as (Ren and Seidel, 2013a)

∆ρ̂C
ij = ĝC

ijklε̂kl (4.1)

Here, for simplified demonstration purposes, it is further assumed that ĝ1111 = ĝ2222 = ĝ3333

with all other ĝijkl being zero.

Once the distribution of resistivities within the nanoscale RVEs is obtained, the effective

electrical properties are obtained following again a bottom-up algorithm. The electrical en-

ergy equivalence method (Ren and Seidel, 2013a) is used to obtain the effective electrostatic

properties ρ̂eff
ij of the nanoscale RVE, which are then substituted into the integration points

of the mesoscale RVE by coordinate transformation to represent the effective electrostatic

properties of the mesoscale elements. The electrical energy equivalence method is then used

again to obtain the effective electrostatic properties ρeff
ij of the mesoscale, which, given the

uniform macroscale electric field, are taken to be representative of the macroscale effective

properties of the nanocomposite. Therefore under the applied macroscale strain field, cor-

relation between the mechanical and electrostatic properties (i.e. piezoresistivity) of the

macroscale nanocomposite specimen can be obtained, with the macroscale effective gauge

factor obtained from the equation below (Ren and Seidel, 2013a):

Geff
33 =

1

ε̃33

(
ρeff

33(ε̃33)

ρeff
33(0)

1 + ε̃33

(1− νeff
31 ε̃33)(1− νeff

32 ε̃33)
− 1) (4.2)

in which ρeff
33(ε̃33)/ρeff

33(0) is driven from the nanoscale piezoresistive mechanisms of the mate-

rial, such as the electrical tunneling effect and inherent piezoresistivity of the CNT. If there

is only geometric effect, i.e. if the material itself is not piezoresistive, Eq. 6.6 is reduced to

Geff
33 =

1

ε̃33

(
1 + ε̃33

(1− νeff
31 ε̃33)(1− νeff

32 ε̃33)
− 1) (4.3)
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4.3 Results and Discussion

The modeling work is focused on the piezoresistive response of macroscale nanocomposite

specimen under small uniaxial tension and compression tests (| ε̃ |< 1.0%). To be consistent

with experiments, the study is focused on the MWCNT/Epoxy vinyl ester (VE) nanocom-

posites with 1.0%wt (CNT weight/VE weight) of the CNT (Ku-Herrera et al., 2013), with

the weight percentages converted to volume percentages based on the densities of the CNT

and the polymer (the densities of the CNT and VE are 1.4g/cm3 and 1.17g/cm3 respectively).

According to (Aviles et al., 2012), the outer and inner diameters of MWCNTs are chosen

to be 13 nm and 4 nm respectively. The Young’s modulus and Poisson’s ratio of the CNT

are taken to be 1100 GPa and 0.14 (Saito et al., 1998). The Young’s modulus of VE is 3.60

GPa (Ashland Performance Materials), and the Poisson’s ratios of VE is chosen to be 0.3.

The initial isotropic resistivity within the CNT annulus is chosen to be 10−5 Ω ·m (Ebbesen

et al., 1996; Seidel and Lagoudas, 2009), and VE is likewise isotropic with resistivity of 1015

Ω ·m in the absence of electrical tunneling, which is within the typical range of values com-

monly reported for insulating polymers in experiments. For the electrical tunneling effect

within the polymer matrix, an average barrier height of λ = 1.5 eV (Hu et al., 2012) is con-

sidered for VE. In the studies of (Chen and Weng, 2007; Theodosiou and Saravanos, 2010)

the reported CNT inherent piezoresistive gauge factors are ≤7 under small strains, while in

contrast, in (Stampfer et al., 2006) the reported CNT inherent piezoresistive gauge factor

can be as large as 2900. In this study a CNT inherent gauge factor of 10 will be converted

into diagonal isotropic piezoresistive coefficients ĝC
ijkl (Ren and Seidel, 2013a) to study its

influence on the overall piezoresistive response of the CNT-polymer nanocomposites.

4.3.1 The first CNT dispersion scenario

This scenario corresponds to scenario g) of the diagram as shown in Fig. 4.3, such that

the CNT subcells are statistically well dispersed and for every subcell the CNT local volume
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(a) Mesoscale RVE (b) Nanoscale RVE

Figure 4.4: The 3D multiscale model for scenario 1. a) Illustration of the mesoscale RVE

with well-dispersed, randomly oriented, and 1.0%wt nanoscale RVEs. b) Illustration of the

1.0%wt nanoscale RVE under the transformed mesoscale strain field of ε′ = RεR−1, in which

R can be found in Ref. (Ren et al., 2014) (Displacement magnification factor: 37).

fraction is equal to the global volume fraction of the nanocomposites. As such, the mesoscale

and nanoscale RVEs for this scenario are illustrated in Fig. 4.4(a) and Fig. 4.4(b) respectively.

For every subelement of the mesoscale RVE, there is a nanoscale RVE to represent the local

nanoscale responses. As the local nanoscale weight percentage of the hexagonally packed

CNTs equals to the global weight percentage, which is chosen to be 1.0%wt, the CNT

separation distances at the nanoscale (110.8 nm) are far greater than the maximum hopping

range (Ren and Seidel, 2013b) (3.59 nm) for the hopping barrier considered herein (1.5 eV).

As such, only the inherent CNT piezoresistivity mechanism is active in these cases. Following

the bottom-up algorithm, the mesoscale RVE’s effective mechanical properties are obtained

first and summarized in Table 4.1. The mechanical properties of the pure polymer matrix are

also listed in Table 4.1 for comparison purposes. It can be seen that in agreement with the

CNT dispersion symmetries, the nanocomposites with ’vertical’ and ’transverse’ CNTs both

yield transversely isotropic effective mechanical properties, with the axis of symmetries in

X3 direction. In contrast, the nanocomposites with ’random’ CNTs yield isotropic effective

mechanical properties. In addition, due to adding of CNTs, the mechanical properties are

greatly strengthened, especially in the directions in agreement with the CNT orientations.

For example, compared to the pure polymer matrix, the nanocomposites with ’vertical’
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CNTs have a 228% increase in the effective Young’s modulus of Eeff
33. The nanocomposites

with ’transverse’ CNTs have increases of 57% and 71% respectively in the effective in-plane

properties of κeff
12 and µeff

12. In contrast, for the nanocomposites with randomly oriented

CNTs, although the effective Young’s modulus is only improved by 36%, in exchange the

improvement can be in any spatial direction.

Table 4.1: The effective mechanical properties of the mesoscale RVE for scenario 1 (Unit:

GPa). Note that ’vertical’ represents that the CNTs align in X3 direction, ’transverse’

represents that the CNTs are randomly dispersed in X1−X2 plane, and ’random’ represents

that the CNTs are randomly dispersed in the 3D space.

Orientation κeff
12 µeff

12 µeff
13 Eeff

33 νeff
31

Vertical 3.501 1.403 1.408 11.82 0.298

Transverse 5.440 2.371 1.405 4.098 0.192

Orientation Eeff νeff — — —

Random 4.910 0.289 — — —

Pure Polymer 3.600 0.300 — — —

Having solved the mechanical problem by using the bottom-up algorithm, the macroscale

strain field (ε̃33 = 0% to ±1%, ε̃11 = −νeff
31 ε̃33, ε̃22 = −νeff

32 ε̃33) is applied to the cubic

mesoscale RVE by using the top-down algorithm through 10 equally increased load steps.

As an illustration, the strain distribution of the mesoscale RVE with randomly oriented

CNTs and under the macroscale field of (ε̃33 = 1%, ε̃11 = −νeff
31 ε̃33, ε̃22 = −νeff

32 ε̃33) is shown

in Fig. 4.5. The mesoscale strain field at every integration point of the mesoscale RVE is

then rotated to the local nanoscale coordinates and applied to the nanoscale RVE, such

that the strains in the CNTs and the distances between them are obtained and used to

update the electrical resistivities within the nanoscale RVE. The resistivity distribution of

the nanoscale RVE at an integration point of the mesoscale RVE and under the macroscale
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strain field of (ε̃33 = 1%, ε̃11 = −νeff
31 ε̃33, ε̃22 = −νeff

32 ε̃33) is shown in Fig. 4.4(b). It can

be seen that the change of resistivities is only limited within the CNTs. This is because

as mentioned before, for this CNT dispersion scenario the CNTs are far away from each

other, therefore the inherent piezoresistivity of the CNT is the only active piezoresistive

mechanism. Following the bottom-up algorithm again, the effective resistivities ρ̂eff of the

nanoscale RVE are obtained by using the energy equivalence method, and are rotated back

into the mesoscale coordinate system to represent the integration point of the mesoscale RVE,

such that ρ = ρ̂eff. As an illustration, the distribution of resistivities of the mesoscale RVE

with randomly oriented CNTs and under the macroscale field of (ε̃33 = 1%, ε̃11 = −νeff
31 ε̃33,

ε̃22 = −νeff
32 ε̃33) is shown in Fig. 4.4(a). Finally, the energy equivalence method is used again

to obtain the effective resistivities ρeff of the mesoscale RVE, which are used to represent

the macroscale, such that ρ̃eff = ρeff. Therefore the correlation (piezoresistivity) between

the applied macroscale strain field ε̃ and the macroscale effective resistivities ρ̃eff of CNT-

polymer nanocomposites is obtained, and the gauge factor can be further obtained following

Eqn. 6.6.

Figure 4.5: Strain distribution of the mesoscale RVE under the macroscale strain field of

(ε̃33 = 1%, ε̃11 = −νeff
31 ε̃33, ε̃22 = −νeff

32 ε̃33). Within the mesoscale RVE there are hexagonally

packed and randomly oriented 1.0%wt CNTs in each subelement.

The relative change of effective resistivity ρeff
33 of the mesoscale RVE with the change of

macroscale strain ε̃33 is shown in Fig. 4.6, and the zero-strain effective resistivities ρeff
33(0) and
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Figure 4.6: The relative change of effective resistivity ∆ρeff
33/ρ

eff
33(0) of the mesoscale RVE when

the macroscale strain ε̃33 is from 0% to ±1%. Note that for every subelement the nanoscale

RVE is randomly oriented with the CNT gauge factor of 10.

tensile and compressive effective gauge factors (G
eff(T)
33 and G

eff(C)
33 ) of the mesoscale RVE for

different CNT orientation cases are summarized in Table 4.2. From Table 4.2 it can be seen

that the nanocomposites with ’vertical’ CNTs have the lowest zero-strain effective resistivity

of 1.33×10−3 Ω·m and the largest tension/compression gauge factors of 10, and subsequently

are the ’random’ and ’transverse’ nanocomposites. This is because as the nanocomposites

with ’vertical’ CNTs have all of the CNTs align in X3 direction, the material is most easily

electrically percolated by the CNTs, and the zero-strain effective resistivity satisfies the rule

of mixtures by the CNT and the polymer matrix. The inherent piezoresistivity of the CNT

is therefore most easily be transferred to the upper scales to induce the strongest macroscale

piezoresistive response (Fig. 4.6). To the contrary, as the nanocomposites with ’transverse’

CNTs have all of the CNTs disperse in X1 − X2 plane, the material can not be electrically

percolated by the CNTs in X3 direction, but is rather nearly the same electrically insulating

as the pure polymer matrix. In this case the inherent piezoresistivity of the CNT can not

be transferred to the upper scales and the tension/compression gauge factors are entirely

from the geometric effect. For the nanocomposites with random CNTs, the material is

electrically percolated by the random oriented CNTs, and its performances lie between the
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two extreme orientation cases. From Fig. 4.6 and Table 4.2 it can also be seen that the

relative change of effective resistivity ρeff
33 and gauge factors of the mesoscale RVE show good

tension/compression symmetries for all the CNT orientation cases. This is because 1) the

inherent piezoresistivity of the CNT is linear and symmetric with the applied strains on the

CNT (Ren and Seidel, 2013a), 2) under small macroscale tension and compression, the strains

on the CNTs within the mesoscale RVE are also linear and symmetric, and 3) under small

macroscale strains the mesoscale RVE’s geometric effect itself has good tension/compression

symmetry. From the results, it can be seen that as long as the material can be electrically

percolated by the CNTs themselves, the inherent piezoresistivity of the CNT can have an

important influence on the macroscale piezoresistivity of the CNT-polymer nanocomposites.

Table 4.2: The zero-strain resistivities ρeff
33(0) (Unit: Ω ·m), tensile gauge factors G

eff(T)
33 , and

compressive gauge factors G
eff(C)
33 of the mesoscale RVE for scenario 1. Note that the gauge

factors are computed at ε̃33 = 1%.

Orientation ρeff
33(0) G

eff(T)
33 G

eff(C)
33

Vertical 1.33× 10−3 10 10

Transverse 9.84× 1014 1.4 1.4

Random 4.39× 10−3 5.4 5.4

Pure Polymer 1.00× 1015 1.6 1.6

4.3.2 The second and third CNT dispersion scenarios

In most CNT-polymer nanocomposites as produced in laboratories, due to Van der Waals

forces, it is perceivable that the CNTs are more likely to be locally agglomerated instead

of well dispersion. To capture the CNT agglomeration effect, the second and third CNT
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dispersion scenarios are studied, which correspond to scenario e) and d) respectively of the

diagram in Fig. 4.3. For the second scenario, the CNT subcells are statistically well dispersed

and for every subcell the CNT local weight percentage is much higher than the global weight

percentage of the nanocomposites. For the third scenario, the CNT subcells are partially

well-dispersed and partially columned, and again for every subcell the CNT local weight

percentage is much higher than the global weight percentage. The columns are intended to

model the mesoscale conductive paths formed by the CNTs.

The nanoscale RVE for scenario 2 is chosen to have 62.5%vol of the CNT (CNT weight/VE

weight = 200%wt), as shown in Fig. 4.7(a). As the CNT separation distances (2.66 nm)

within the nanoscale RVE are within the electron hopping range (3.59 nm) for the height

of barrier considered herein (1.5 eV), the electrical tunneling effect is turned on along with

the inherent piezoresistivity of the CNT. Clear tunneling paths (Fig. 4.7(a)) are formed

among the CNTs, and are evolving with the applied strain field along with the inherent

piezoresistivity of the CNT. The mesoscale RVE for scenario 2 is illustrated in Fig. 4.7(b),

in which there are 849 randomly chosen subelements containing the 62.5%vol nanoscale

RVE. The nanoscale RVE for scenario 3 is chosen to be the same as in scenario 2, and the

mesoscale RVE for scenario 3 is illustrated in Fig. 4.7(c). It can be seen that for the total 849

subelements containing the nanoscale RVE, 800 subelements are stacked into 20 columns,

with the remaining 49 subelements randomly dispersed into the remaining region.

Following the bottom-up algorithm, the effective mechanical properties of the mesoscale

RVE for scenarios 2 and 3 are first obtained. For demonstration purposes, the effective me-

chanical properties with random oriented nanoscale RVE are summarized in Table 4.3. The

mechanical properties of the pure polymer matrix are also listed in Table 4.3 for comparison

purposes. It is of interest to notice that for scenarios 2 and 3, in which the local CNTs are

agglomerated, the effective mechanical properties are very close to the pure polymer matrix.

For example, the effective Young’s modulus Eeff
33 is only improved by 6.9%, 7.8%, and 10%

respectively for the cases of S2, S3 (10 columns), and S3 (20 columns). This is because the

effective mechanical properties are the volume averaged values in terms of energy homoge-
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(a) Nanoscale RVE (b) Mesoscale RVE (c) Mesoscale RVE

Figure 4.7: The 3D multiscale model for scenarios 2 and 3. a) Illustration of the 62.5%vol

nanoscale RVE under the transformed mesoscale strain of ε′ = RεR−1, in which R can be

found in Ref. [36] (Displacement magnification factor: 68). b) Illustration of the 1%wt

mesoscale RVE with well-dispersed, randomly oriented, and 62.5%vol nanoscale RVEs for

scenario 2. c) Illustration of the 1%wt mesoscale RVE with partially dispersed and partially

columned, randomly oriented, and 62.5%vol nanoscale RVEs for scenario 3.

nization. Even though the local mechanical properties can be greatly improved due to CNT

agglomeration, their influence on the overall effective mechanical properties is limited by the

volume averaging process. What can also be noticed in Table 4.3 is that compared to the

cases of S3 (10 columns) and S3 (20 columns), the S2 case has better performances in κeff
12,

µeff
12, µeff

13, while a poorer performance in Eeff
33. This is because although well dispersion can

help improve the overall mechanical properties in any directions, stacking of CNTs can help

better improve the mechanical properties in the particular stacking direction of the CNTs.

Having solved the mechanical problem by using the bottom-up algorithm, similar as in sce-

nario 1, the macroscale strain field (ε̃33 = 0% to ±1%, ε̃11 = −νeff
31 ε̃33, ε̃22 = −νeff

32 ε̃33) is

applied to the cubic mesoscale RVE by using the top-down algorithm through 10 equally

increased load steps. For scenario 2, as seen in Fig. 4.8, it is found that with the change of

macroscale strain ε̃33, there is no relative change of effective resistivity ρeff
33 of the mesoscale
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Table 4.3: The effective mechanical properties of the mesoscale RVE for scenarios 2 and 3

(Unit: GPa). Note that the nanoscale RVE is randomly oriented for all of the 849 subele-

ments.

Scenarios κeff
12 µeff

12 µeff
13 Eeff

33 νeff
31

S2 3.644 1.478 1.479 3.848 0.295

S3 (10 Columns) 3.619 1.467 1.475 3.879 0.296

S3 (20 Columns) 3.596 1.452 1.466 3.965 0.297

Scenarios Eeff νeff — — —

Pure Polymer 3.600 0.300 — — —

RVE for any orientations of the nanoscale RVE1. This is because for this dispersion sce-

nario, as there is no percolating conductive paths formed with the mesoscale RVE, the local

piezoresistive response of the CNTs can not be transferred to the upper scales. The zero-

strain effective resistivities ρeff
33(0) and tensile and compressive effective gauge factors (G

eff(T)
33

and G
eff(C)
33 ) of the mesoscale RVE for scenario 2 are summarized in Table 4.4. It can be seen

that as there is no percolating conductive paths, the zero-strain effective resistivities ρeff
33(0)

for vertical and transverse orientations are both 6.19 × 1014 Ω · m, which are close to the

insulating polymer matrix. The tensile and compressive gauge factors are all 1.6, which are

entirely from the geometric effect of the nanocomposites.

For scenario 3, the relative changes of effective resistivity ρeff
33 of the mesoscale RVE with the

change of macroscale strain ε̃33 are shown in Fig. 4.8, and the zero-strain effective resistivities

ρeff
33(0) and tensile and compressive effective gauge factors (G

eff(T)
33 and G

eff(C)
33 ) of the mesoscale

RVE for different cases are summarized in Table 4.5. It is found that as long as there is

percolating conductive paths within the mesoscale RVE, the local nanoscale orientations of

the CNT can have a big influence on the macroscale effective gauge factors. For example,

1The relative change of ρeff
33 is in the fifth decimal point after zero, therefore is small enough to be

considered as zero.
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Table 4.4: The zero-strain resistivities ρeff
33(0) (Unit: Ω ·m), tensile gauge factors G

eff(T)
33 , and

compressive gauge factors G
eff(C)
33 of the mesoscale RVE for scenario 2. Note that the gauge

factors are computed at ε̃33 = 1%.

Orientation ρeff
33(0) G

eff(T)
33 G

eff(C)
33

Vertical 6.19× 1014 1.6 1.6

Transverse 6.19× 1014 1.6 1.6

Pure Polymer 1.0× 1015 1.6 1.6

when the nanoscale RVEs are randomly oriented in the transverse X1 - X2 plane, as illus-

trated in Fig. 4.9a, the nanoscale CNT tunneling paths become important constituent of the

mesoscale percolating conductive paths. Therefore the local nanoscale electrical tunneling

effect can be greatly transferred to the upper scales to yield large magnitude gauge factors

of ∼160 and ∼80 respectively for tensions and compressions. As a comparison, when the

nanoscale RVEs are vertically oriented in X3 direction, as illustrated in Fig. 4.9c, the material

is electrically saturated by the inherent resistivity (and piezoresistivity) of the CNT, there-

fore the macroscale piezoresistivity is entirely from the inherent piezoresistivity of the CNT,

which is much smaller than the electrical tunneling effect, and are of 10 in both tensions and

compressions. For the other orientation cases, as illustrated in Fig. 4.9c, the piezoresistive

response of the mesoscale RVE is originated from a combination of the electrical tunneling

effect and the inherent piezoresistivity of the CNT, and the effective gauge factors can vary

in a large range depending on the local nanoscale orientations.

It is also of interest to see that for both of the transverse and vertical cases, while the effective

resistivity ρeff
33 of the mesoscale RVE with 10 columns is approximately twice of the mesoscale

RVE with 20 columns (Table 4.5), which satisfies the rule of mixtures, their relative changes

of resistivity ρeff
33 are nearly the same, as observed in Fig. 4.8. For the vertical orientation, the

mesoscale RVE with 10 columns and 20 columns both yield effective tension and compression
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(a) S2 and S3 (10 columns) (b) S2 and S3 (20 columns)

Figure 4.8: The relative change of effective resistivity ∆ρeff
33/ρ

eff
33(0) of the mesoscale RVE when

the macroscale strain ε̃33 is from 0% to ±1% for scenarios 2 and 3.

Figure 4.9: Illustration of the different combination of orientations of the nanoscale RVE

within the columns of the mesoscale RVE. a) Random orientation in the transverse X1 - X2

plane. b) Random orientation in the 3D space. c) Vertical orientation in X3 direction.

gauge factors of 10, and for the transverse orientation, they both yield effective tension and

compression gauge factors of ∼160 and ∼80 respectively. The results imply that although the

number of percolating conductive paths can influence the magnitude of effective resistivity of

the CNT-polymer nanocomposites, the piezoresistive response of the material is more from

the multiscale architecture of the conductive paths, instead of the number of conductive

paths.
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Table 4.5: The zero-strain resistivities ρeff
33(0) (Unit: Ω ·m), tensile gauge factors G

eff(T)
33 , and

compressive gauge factors G
eff(C)
33 of the mesoscale RVE for scenario 3. Note that the gauge

factors are computed at ε̃33 = 1%.

Orientation ρeff
33(0) G

eff(T)
33 G

eff(C)
33

10 Columns+Vertical 2.82× 10−3 10 10

20 Columns+Vertical 1.42× 10−3 10 10

10 Columns+Transverse 1.37× 1012 158 81

20 Columns+Transverse 6.93× 1011 156 80

Pure Polymer 1.00× 1015 1.6 1.6

Besides, what can also be observed from Fig. 4.8 is that when the nanoscale RVEs are trans-

versely oriented, the piezoresistive response of the mesoscale RVE shows tension/compression

asymmetry, with the tensile piezoresistive response larger than the compressive piezoresistive

response. As seen in Table 4.5, the tensile gauge factors G̃
eff(T )

33 at ε̃33 = 1% are approxi-

mated twice of the compressive gauge factors G̃
eff(C)

33 at ε̃33 = −1%. This is because when

the nanoscale RVEs are transversely oriented, the electrical tunneling effect becomes the

dominant mechanism. The governing equation of the electrical tunneling effect (Ren and

Seidel, 2013b) is found to have strong tension/compression asymmetry, such that the mag-

nitude of relative change of resistivity at tension can be much larger than the magnitude of

relative change of resistivity at compression. Therefore, the overall piezoresistive response

of the CNT-polymer nanocomposites is reflective of the nanoscale electrical tunneling effect

and shows tension/compression asymmetry.
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4.4 Conclusions

By using a 3D multiscale piezoresistive model, the CNT dispersion effect on the macroscale

piezoresistive response of the CNT-polymer nanocomposites is studied. It is found that well

dispersion and no local agglomeration of the CNTs can greatly improve the macroscale ef-

fective mechanical properties of the CNT-polymer nanocomposites. However, as the CNT

distances are larger than the critical tunneling distance for electrons to hop from one CNT

to another, the electrical tunneling effect is not active. In order for the macroscale nanocom-

posites to have a piezoresistive response different from pure geometric effect, it needs two

conditions: 1) there is inherent piezoresistivity of the CNT and 2) the material is electrically

percolated by the CNT network. On the other hand, although it is found that local agglom-

eration of the CNTs can be of limited help in improving the macroscale effective mechanical

properties, as the CNTs are within the critical tunneling distance, the electrical tunneling

effect can be active. Through the electrical tunneling effect, the gauge factors of the CNT-

polymer nanocomposites can be large and varying in a wide range from 100 to 102. Besides,

the piezoresistive response of the CNT-polymer nanocomposites shows tension/compression

asymmetry, with the tensile gauge factors much larger than compressive gauge factors.

It is know that the real CNTs are of finite length, therefore in the CNT-polymer nanocom-

posites it is hard for the CNTs to directly connected and perfectly bounded to each other

from tip to tip to form a percolating conductive paths. Therefore, from the modeling work,

it is believed that the CNT-polymer nanocomposites’ macroscale piezoresistive response is

more likely from a combination of the electrical tunneling effect and the inherent piezore-

sistivity of the CNT, with the former being the dominant mechanism. The modeling work

further shows that the complication and variation of CNT dispersions is one important rea-

son for the piezoresistive gauge factors of the CNT-polymer nanocomposites varying in such

a big range as found in the literature. Therefore, it is necessary to control the micro and

nano dispersions of the CNTs for obtaining large and consistent macroscale gauge factors

and further for the CNT-polymer nanocomposites’ better use in structural health monitoring
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applications.



Chapter 5

Modeling of Electrostatic Properties

of Fuzzy Fiber Reinforced Polymer

Composites via Hierarchical

Composite Cylinders Method

5.1 Introduction

Since the introduction by Hashin and Rosen (1964), analytic composite cylinders methods

(CCM) have been widely used to obtain the effective elastic, thermoelastic, and electrostatic

properties of materials with cylindrical inclusions (e.g. structural fibers) (Hashin and Rosen,

1964; Christensen and Lo, 1979; Hashin, 1990; Seidel and Lagoudas, 2006, 2009; Tsukrov

and Drach, 2010; Chatzigeorgiou et al., 2012). In the CCM models, aligned fiber reinforced

polymer composites can be idealized into concentric cylindrical layers, with each layer ac-

counting for different phases of the composites. The hierarchical CCM model introduced

here is based on the traditional CCM, which, however, has been modified to take into ac-

112
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count the radial symmetry of the fuzzy fiber interphase region by introducing a nanoscale

electrostatic CCM model. The results are compared with the ones obtained from a similar

hierarchical finite element model, and good agreement is found between the two models.

The obtained effective electrostatic properties are used as initial analytic solutions for the

fuzzy fiber reinforced polymer composites without the electrical tunneling (electron hopping)

effect (Simmons, 1963; Li et al., 2007; Ren and Seidel, 2013b) within the polymer matrix.

5.2 Hierarchical CCM Modeling for Electrostatic Prop-

erties of Fuzzy Fiber Reinforced Polymer Compos-

ites

A fuzzy fiber reinforced polymer composite material system is a fiber composite (Fig. 5.1a),

in which some or all of the structural fibers (glass fibers) are coated with radially aligned mi-

crofibers (multi-walled carbon nanotubes (MWCNTs)) (Fig. 5.1b). For modeling purposes

we assume (Chatzigeorgiou et al. (2012)) that the representative volume element (RVE)

of the fuzzy fiber contains three layers: the first layer is the cylindrical glass fiber. The

second is a reinforced nanocomposite interphase (intermediate cylindrical layer) which con-

sists of cylindrical MWCNTs and matrix. The third layer is the area of the pure matrix

(Fig. 5.1b). The coated glass fibers are arranged to correspond to a unidirectional lamina

layer (Fig. 5.1a), in which the fibers are aligned in the z direction and are well dispersed

(randomly distributed) in the x− y plane. The fibers and the matrix are either isotropic, or

transversely isotropic linearly elastic materials with the axis of symmetry parallel to the axis

of the fibers. The MWCNTs in the reinforced nanocomposite interphase are assumed to be

transversely isotropic with the axis of symmetry parallel with the MWCNT axis (r-direction

in Fig. 5.1b). The idealized RVE of the reinforced interphase is shown in Fig. 5.1c.

Based on the observations that (a) the diameter of the glass fiber is very large compared to the
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diameter of the MWCNTs and (b) the MWCNTs are normally densely packed along the glass

fiber surface (small ∆θ in Fig. 5.1c), we can assume that the reinforced interphase behaves as

a classical unidirectional composite (Fig. 5.1d), and effectively it is a transversely isotropic

medium with the axis of symmetry parallel to the axis of MWCNTs (i.e. in the radial

direction of the glass fiber). Hence, we can use micromechanics methods for composites with

aligned microfibers in determining the transversely isotropic interphase properties (Seidel

and Lagoudas (2006)).

The effective electrostatic properties of the aligned fuzzy fiber reinforced polymer composites

can be obtained by using CCM model in which the second layer is the interphase region. In

order to simplify the problem, let us likewise assume the CNTs in the interphase region are

of the same length, homogeneously distributed, straight and radially oriented, with perfect

bounding to the glass fiber and matrix, as illustrated in Fig. 5.1. As an initial study, we will

disregard the effects of electron hopping. The electrostatic properties of the structural fibers

and the polymer matrix can be considered as homogeneous and isotropic, but what makes a

difference is the interphase region, whose electrostatic properties are of anisotropic symmetry

if denoted in rectangle Cartesian coordinate system, such that the analytic solutions are hard

to find. However, by observing the CNTs are radially oriented, it is convenient to denote

the effective electrical conductivities of the interphase region as cylindrically orthotropic in

Cylindrical coordinate system, whose three components are κ
(2)
rr , κ

(2)
θθ , and κ

(2)
zz

1, in which (2)

denotes the conductivities in the second layer. Further, if we introduce a nanoscale RVE

to represent a small area of the interphase region (Fig. 5.1c), we can consider the densely

packed CNTs on the glass fiber to have periodic hexagonal pattern in every local nanoscale

area (Fig. 5.1d), which implies that the interphase region in the nanoscale can be regarded as

transversely isotropic, with the axial direction in the radial direction relative to the glass fiber.

1In the fuzzy fiber interphase region, due to the curvature of the glass fiber surface, the volume fraction

of the CNT is actually radially dependent, with the volume fraction higher close to the glass fiber and lower

farther away from it. However, considering the CNTs are densely-packed, the dependency is very weak,

which is therefore omitted and the volume fraction of the CNT is kept as the one in the middle of the

interphase.
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Figure 5.1: Schematic of (a) a cross-ply laminate with mixture of non-fuzzy and fuzzy glass

fibers, (b) individual fuzzy fiber corresponding to the composite cylinder model (represen-

tative of an aligned all fuzzy fiber laminate plies), with the first (innermost) layer being the

structural glass fiber, the second layer being the nanocomposite interphase where there are

densely packed and radially oriented CNTs, and the third layer being the pure polymer ma-

trix, (c) ∆θ, ∆r, and ∆z segment of the nanocomposite interphase region, (d) well-dispersed,

densely packed CNTs within the interphase corresponding to a hexagonal packing originat-

ing at the glass fiber-nanocomposite interface (the hat denotes local MWCNT scale), (e)

nanocomposite composite cylinders model.

Therefore we can use the nanoscale CCM model to get the effective electrical conductivities

of the nanoscale first (Fig. 5.1e), and then relate the nanoscale effective properties with those

of the microscale, such that

κ(2)
rr = κ̂(2)eff

zz and κ
(2)
θθ = κ(2)

zz = κ̂(2)eff
rr = κ̂

(2)eff
θθ (5.1)

in whichˆdenotes materials properties in the nanoscale.
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Once the electrostatic properties of the second layer are obtained, the electrostatic properties

for the three layers as identified in Fig. 5.1b are all known. Therefore the electrostatic

properties of the microscale can be obtained by using the microscale CCM model, which

can be used to represent the electrostatic properties of the fuzzy fiber reinforced composites.

Section 5.2.1 introduces the governing equations for a general electrostatic CCM model,

which can be applied either in the nanoscale or microscale.

5.2.1 The governing equations for the electrostatic CCM model

For each layer of the multi-layer cylinder, the steady state conservation of charge equation

can be denoted in Cylindrical coordinate system as:

∂J
(k)
r

∂r
+

1

r

∂J
(k)
θ

∂θ
+
∂J

(k)
z

∂z
+

1

r
J (k)

r = 0 (5.2)

where J
(k)
i (i=r,θ,z) is the current density component with (k) denoting the index of the layer

(e.g. k=1 denotes the innermost layer, and so on). Similarly, for the homogenized effective

material, the (k) in (5.2) can be replaced with the superscript ’eff’, where Jeff
i (i=r,θ,z) is

the current density component of the effective material. For each layer of the multi-layer

cylinder, the electric field component E
(k)
i can therefore be denoted with

E(k)
r = −∂Φ(k)

∂r
, E

(k)
θ = −1

r

∂Φ(k)

∂θ
, E(k)

z = −∂Φ(k)

∂z
(5.3)

where Φ(k) is the electric potential for each layer of the multi-layer cylinder, and where the

(k) can again be suitably replaced for the effective material equations. The current density

is related to electric field by Ohm’s law which for the multi-layer cylinder can be written as
J

(k)
r

J
(k)
θ

J
(k)
z

 =


κ

(k)
rr 0 0

0 κ
(k)
θθ 0

0 0 κ
(k)
zz




E
(k)
r

E
(k)
θ

E
(k)
z

 (5.4)

where κ
(k)
ij denote components of the second order electrical conductivity tensors for each

layer of the multi-layer cylinder, where the layers are generally considered as cylindrically
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orthotropic such that κ
(k)
rr , κ

(k)
θθ , and κ

(k)
zz are not necessarily equal. Similarly, for the effec-

tive material, Ohm’s law can be written as Jeff
i = κeff

ij E
eff
j where κeff

ij denotes the effective

conductivities for the effective material, which are obtained by solving electrostatic bound-

ary value problems (BVPs) and constructing electrostatic energy equivalence between the

multi-layer cylinder and the effective material. It is noted that, given the cylindrical geom-

etry and cylindrically orthotropic layer conductivities, the effective conductivity should at

most maintain the cylindrically orthotropic material symmetry. However, by assuming the

fibers are infinitely long and by observing the well-dispersed and aligned fibers have hexag-

onal symmetry in the transverse plane, the effective electrostatic material properties can be

considered as transversely isotropic (Hashin and Rosen (1964)). Therefore, κeff
rr = κeff

θθ , and

as such, only two BVPs are then needed (one axial and one transverse) to obtain the two

unknown effective electrostatic properties, which are introduced as below.

The in-plane electrostatic BVP

The electric potential for each layer of the multi-layer cylinder is:

Φ(k) = (A(k)r

√
κ

(k)
θθ

κ
(k)
rr +B(k)r

−

√
κ

(k)
θθ

κ
(k)
rr )cos(θ) (5.5)

where κk
rr and κk

θθ are known conductivities of each layer, and A(k) and B(k) are unknown

constants to be solved by using boundary conditions and matching conditions. It is worth

noticing that for a layer with in plane isotropic electrostatic properties, i.e. κ
(k)
rr = κ

(k)
θθ , the

power terms in (5.5) are reduced to one. This is the case not only for the isotropic glass

fiber and matrix materials of the composite cylinder assemblage, but also for the effective

homogeneous cylinder which is transversely isotropic with r-θ isotropy plane. However, for

the interphase region of the fuzzy fiber which is cylindrically orthotropic such that κ
(2)
rr 6= κ

(2)
θθ ,

the power terms are not equal to one. As the adjacent layers of the multi-layer cylinder are

assumed to be perfectly bounded, the matching conditions between adjacent layers are:

Φ(k)(r = rk) = Φ(k+1)(r = rk), k = 1 to N − 1 (5.6a)

J (k)(r = rk) = J (k+1)(r = rk), k = 1 to N − 1 (5.6b)
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in which N denotes the total number of layers. The boundary conditions for the multi-layer

cylinder are:

Φ(N) = E0rcos(θ) |r=rN ,0≤z≤L (5.7a)

Φ(1) = 0 |r=r0=0,0≤z≤L or J (1) = 0 |r=r0 6=0,0≤z≤L (5.7b)

in which E0 is a constant electric field component associated with a uniform homogeneous

electric field at the macroscale (i.e. here the laminate layer scale), L is the length of the CCM

model in z-direction, and r0 and rN are the innermost and outermost radius, respectively,

of the multi-layer cylinder. Specifically, if r0 = 0, the innermost layer is solid and the first

condition of (5.7b) is applied such that B(1) = 0 so that the potential solution remains

bounded. In contrast, if r0 6= 0, there is a hollow region in the innermost layer, and the

second condition in (5.7b) is applied. Similarly, the boundary conditions for the effective

homogeneous solid cylinder material are giving (5.7a) and the first of (5.7b) with superscripts

(N) and (1) replaced by ’eff’.

The axial electrostatic BVP

The electric potential for each layer of the multi-layer cylinder is:

Φ(k) = A(k)z +B(k) (5.8)

where A(k) and B(k) are unknown constants to be solved by using boundary conditions. The

boundary conditions of the multi-layer cylinder are provided as

Φ(k)|z=0 = Φ0 (k = 1 to N) (5.9a)

Φ(k)|z=L = Φ1 (k = 1 to N) (5.9b)

in which Φ0 and Φ1 are constant potentials as applied at z = 0 and z = L respectively. It is

noted that, as there is no r- or θ-dependence in the electric potential, then there is no need
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to enforce matching conditions between the layers. The effective homogeneous solid cylinder

is subject to the same form of the potential and boundary conditions as in (5.8) and (5.9).

Electrostatic energy equivalence

For each BVP, volume averaged electrostatic energy equivalence is constructed between the

multi-layer cylinder and the effective material, such that WRVE = W eff where

WRVE =
1

V

N∑
k=1

∫ L

0

∫ 2π

0

∫ rk

rk−1

1

2
E

(k)
i J

(k)
i rdrdθdz (5.10a)

W eff =
1

V

∫ L

0

∫ 2π

0

∫ rN

0

1

2
Eeff
i J

eff
i rdrdθdz (5.10b)

in which V is the whole volume of the model and V = πr2
NL. For the in-plane BVP,

W eff = 1
2
E2

0κ
eff
rr = 1

2
E2

0κ
eff
θθ and for the axial BVP, W eff = 1

2
E2

0κ
eff
zz . However, it is noted that

the effective properties resulting for the equating (5.10a) and (5.10b) are independent of the

magnitude of the applied electric field as solution of the BVPs reveal that A(k) and B(k)

depend linearly on E0.

5.3 Examples

In the following examples we consider E glass fibers with radius 5 µm coated with radially

aligned hollow carbon nanotubes. The CNTs we study here are considered to be structured

with 5 walls of 0.34nm thickness each. The CNTs have internal radius 0.518 nm and external

radius 2.218 nm. The fuzzy fibers are embedded in EPIKOTE 862 resin. The properties of

the CNT walls are assumed the same as the properties of the graphene. The electrostatic

properties of the glass fibers, the resin and the graphene are shown in Table 5.3. It is noted

that when the thicknesses of the nanocomposite interphase are 1 µm and 2 µm respectively,

the percolation concentrations of fuzzy fiber are 0.69 and 0.51, which are used as upper limits

for the volume fraction of glass fiber in the microscale CCM model.
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Table 5.1: The electrostatic properties of fuzzy fiber components (Hartman et al.

(2006);Ebbesen et al. (1996);Resolution Performance Products (2001)).

E glass fiber 2.49E-13 S/m

EPIKOTE 862 resin 6.7E-7 S/m

Graphene 1.0E5 S/m

The nanoscale CCM model is first used to obtain the effective electrostatic properties of the

well-dispersed and aligned CNTs in the polymer matrix, as shown in Table 5.2. It is observed

that with the increase of volume fraction of CNTs in the interphase region, the conductivities

κ
(2)
rr , κ

(2)
θθ , and κ

(2)
zz are all enhanced. It is also noticeable that the radial conductivity κ

(2)
rr is

10 orders higher than the values of the other two directions due to the radial alignment of

the CNTs in the interphase region.

Table 5.2: The effective conductivities of the fuzzy fiber interphase region as obtained from

the nanoscale CCM model, i.e. κ
(2)
rr = κ̂

(2)eff
zz and κ

(2)
θθ = κ

(2)
zz = κ̂

(2)eff
rr = κ̂

(2)eff
θθ (Unit: S/m).

Cases
1 µm & 1 µm & 1 µm & 2 µm & 2 µm & 2 µm &

45.45% 59.09% 72.73% 41.67% 54.17% 66.67%

κ
(2)
rr 4.297E4 5.587E4 6.876E4 3.940E4 5.122E4 6.303E4

κ
(2)
θθ = κ

(2)
zz 1.778E-6 2.593E-6 4.223E-6 1.619E-6 2.243E-6 3.334E-6

By applying the microscale CCM model, the effective conductivities of the aligned fuzzy

fiber reinforced polymer composites can be obtained. When the interphase thickness is 1

µm, the change of effective axial conductivity κeff
zz of the composites with the change of volume

fraction of glass fiber is shown in Fig. 5.2(a). It can be observed that with the increase of

volume fraction of glass fiber, the effective axial conductivity of the pure glass fiber reinforced

polymer composites become lower due to the glass fiber’s low conductivity relative to the

matrix. However, with the interphase region added to the surface of glass fiber, the trend
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is reversed as the axial interphase conductivity begins to exceed that of the matrix with

increase in MWCNT concentration. For example, with the volume fraction of glass fiber of

0.51, when the average volume fraction of MWCNTs in the interphase region is increased

from 45.45% to 72.73%, the effective axial conductivities of the fuzzy fiber reinforced polymer

composites are increased by 76.3%, 132%, and 244%, respectively, compared to the pure

glass fiber case. Similar increases can be found in the 2 µm thickness interphase cases where,

at the volume fraction of glass fiber of 0.51, the effective axial conductivities of the fuzzy

fiber reinforced polymer composites are increased by 143%, 237%, and 400% for interphase

average MWCNT volume fractions of increasing from 41.67% to 66.67%, respectively. These

observations are consistent with the three phase rule of mixtures which results from the

axial CCM electrostatic BVP. With the thickness of the nanocomposite interphase fixed, as

the glass fiber volume fraction increases, so too does the nanocomposite interphase volume

fraction, thereby rapidly decreasing the matrix volume fraction. With the axial conductivity

of the interphase being an order of magnitude larger than the matrix, the displacement of

additional matrix material in moving to the larger interphase thickness leads to substantially

larger increases in the effective axial conductivity of the composite.

The change of effective transverse conductivity κeff
rr of the aligned fuzzy fiber reinforced poly-

mer composites with the change of volume fraction of glass fiber is shown in Fig. 5.2b and

demonstrates similar trends to those observed in the effective axial conductivity, i.e. increas-

ing conductivity with increasing MWCNT concentration in the nanocomposite interphase.

However, despite the transverse conductivity of the nanocomposite interphase, κ
(2)
rr , being

eight orders of magnitude larger than the axial interphase conductivity, κeff
zz (which is equal to

theta transverse conductivity, κeff
θθ), the increases in fuzzy fiber reinforced polymer composite

effective transverse conductivity are much smaller than those observed for the composite

axial conductivity.

In confirming these observations, a comparison of the hierarchical electrostatic CCM model

with a finite element model (FEM) based on the 2D microscale hexagonal representative

volume elements (RVE) (Hammerand et al. (2007)) is constructed. For the fuzzy fiber’s
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(a) (b)

Figure 5.2: The axial effective conductivity κeff
zz and (b) comparison of the transverse effective

conductivity κeff
rr as obtained from CCM and FEM for aligned fuzzy fiber reinforced polymer

composites with the change of volume fraction of glass fiber when the interphase thickness

is 1 µm.

Figure 5.3: The change of effective conductivities of the composites with the change of

volume fraction of glass fiber/glass fiber core by using the Mori-Tanaka method.

interphase region, the nanoscale electrostatic properties are taken from the nanoscale CCM

model and transformed from the Cylindrical coordinate system in the nanoscale to the Carte-

sian coordinate system in the microscale resulting in θ-dependent interphase conductivities

as shown in Fig. 5.4(a). Three electrostatic periodic boundary conditions (PBCs) are in-

dependently applied to the microscale RVE, with the energy equivalence method used to
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obtain the effective electrostatic properties κeff
11, κeff

22, and κeff
12 (Ren and Seidel (2013a)). It is

found that κeff
11 and κeff

22 are equal to each other, and κeff
12 is zero, which confirms the accuracy

of the transversely isotropic assumption as in the CCM model. As an illustration, the po-

tential, electric field, and current density contours for obtaining κeff
22 are shown in Fig. 5.4(b).

The transverse effective electrostatic properties as obtained from the FEM model compare

well with the CCM model as seen in Fig. 5.2(b), which again confirms the accuracy of the

material symmetry assumptions in the hierarchical CCM model.

In contrast to the three-phase rule of mixtures behavior of the axial conductivity, the trans-

verse properties obtained from the CCM and FEM are instead matrix dominated. Yet it

is worth noting that relative to the observed changes in the mechanical properties (Seidel

et al., 2014), the increases in both the axial and transverse effective fuzzy fiber electrical

conductivity are of sufficient significance to be of practical application in making electrically

conductive polymers.

For composites with randomly dispersed glass or fuzzy fibers, the Mori-Tanaka method is

used to obtain the effective electrostatic properties. As seen in Fig. 5.3, for the compos-

ites with randomly dispersed fuzzy fibers, the effective conductivity κeff of the composites

is isotropic, and lies between the axial conductivity κeff
zz and the transverse conductivity κeff

rr

of the composites with aligned fibers. For the composites with random dispersion of fiber

orientations, the effective properties are obtained by averaging the fiber response over all the

orientations such that the net isotropic symmetry lies between the contributing bounding

values of the local orientation axial and transverse conductivities. Also of note in Fig. 5.3

is that, due dominance of the polymer matrix in the transverse direction, the effective con-

ductivities of the composites with randomly dispersed glass or fuzzy fibers are closer to the

effective transverse conductivities as opposed to the effective axial conductivities, thereby

indicating the potential importance of controlled placement and alignment of fuzzy fibers in

applications.

For the composites with a mixture of aligned glass and fuzzy fibers, as seen in Fig. 5.5(a), even
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(a)

(b)

Figure 5.4: (a) Distribution of electrical conductivities and (b) distribution of electric po-

tential Φ, electric field E2, and current density J2 in the 2D microscale hexagonal RVE when

a periodic potential difference of ∆Φ = Ê0 ·W2 is applied in Y direction (vertical), in which

E0 is a constant macroscale electric field and W2 is the width of the 2D microscale RVE in

the Y direction. The 2D microscale RVE represents the nanocomposites in which there are

30% glass fibers with a 2 µm thickness interphase, and the average volume fraction of CNTs

within the interphase is 54.17%.

with a small fraction of the glass fibers being fuzzy fibers, the axial effective conductivity

κeff
zz of the composite can be significantly increased. However, as seen in Fig. 5.5(b), the

transverse effective conductivity κeff
rr of the composites is only marginally influenced by the

replacement of pure glass fibers with fuzzy fibers. This indicates not only the importance

of controlling alignment of fibers within a composite, but also the level of control over ply

properties offered by specifying glass/fuzzy fiber mixture ratios.
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(a)

(b)

Figure 5.5: (a) The change of effective axial conductivity κeff
zz and (b) the change of effective

transverse conductivity κeff
rr of composites with volume fraction of glass fiber/glass fiber

core. Note: In the mixture of glass and fuzzy fiber cases, the volume fraction reported for

fuzzy fiber is the one of the glass fiber core which is kept constant at 10%, 20% and 30%,

respectively, while the volume fraction of the pure glass fibers increases from 0-0.6.

5.4 Conclusions

By taking advantage of the cylindrical orthotropic symmetry, analytic hierarchical elec-

trostatic CCM models are developed to obtain the effective electrostatic properties of the
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nanocomposites with well dispersed and aligned fuzzy fibers. As a comparison, a FEM model

for the electrostatic case is developed, which explicitly account for the anisotropic material

properties of the fuzzy fiber interphase region to obtain the material response. It is found

that the effective electrostatic properties as obtained from the CCM model and the numer-

ical method are in good agreement, which verifies the accuracy of the hierarchical CCM

model. In addition, the Mori-Tanaka model is used to obtain the electrostatic properties of

the composites with randomly dispersed fuzzy fibers or with mixtures of aligned fuzzy fibers

and structural fibers. From these cases the importance of controlling alignment is observed

in the sensitivity of the aligned direction properties to the presence and properties of the

nanocomposite interphase in terms of effective electrical conductivity. The analytic hierar-

chical CCM model therefore shows promise as relatively inexpensive preliminary design tools

for fuzzy fiber enriched composite laminates.



Chapter 6

Computational Multiscale Modeling

and Characterization of

Piezoresistivity in Fuzzy Fiber

Reinforced Polymer Composites

6.1 Introduction

The fuzzy fiber material (Bower et al., 2000; Thostenson et al., 2002; Zhu et al., 2003;

Zhao et al., 2005; Ci et al., 2005; Mathur et al., 2008; Garcia et al., 2008; Sager et al.,

2009; Yamamoto et al., 2009, 2012; Wood et al., 2012; Sebastian et al., 2014) is an engi-

neering material that has a carbon, glass, ceramic, or alumina structural fiber core, with

dense CNT ”forest” coated on the fiber surface, as observed in Fig. 1.1. In the fuzzy fiber

reinforced polymer composites (FFRPC), the CNTs on the structural fiber surface form a

multifunctional interphase region, which can provide enhanced load transfer, damage resis-

tance, higher thermal and electrical conductivities, and electromechanical coupling in the

127
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form of piezoresistivity.

In this study we are focused on modeling and characterization of the piezoresistive response of

FFRPC, which is believed to be governed by the piezoresistive response of the nanocomposite

interphase. Currently several mechanisms, which may potentially account for the observed

overall piezoresistivity of the nanocomposites, have been identified, for example, the electrical

tunneling effect (electron hopping) and the inherent piezoresistive effect of the CNT. In both

of the mechanisms, the mechanical and electrostatic properties are one-way coupled, i.e. the

mechanical properties can greatly influence the electrostatic properties, but not vice versa.

In order to obtain the overall piezoresistive response of the nanocomposites, and in turn the

FFRPCs, it is crucial to account for the local piezoresistive response in light of multiple

mechanisms, especially given the dependence on dispersion.

To date, modeling efforts in the literature have been focused on obtaining the effective

mechanical and electrostatic properties of FFRPC (Kundalwal and Ray, 2011, 2012; Chatzi-

georgiou et al., 2012; Seidel et al., 2014). For example, Chatzigeorgiou et al. (2012) applied

a hierarchical analytic composite cylinders method (CCM) to obtain the overall effective

mechanical properties of the composites reinforced by radially aligned fuzzy fibers. The

impact of the CNT length and volume fraction on the overall composite properties is stud-

ied. In contrast, Kundalwal and Ray (2011, 2012) used the Mechanics of Materials (MOM)

approach and the Mori-Tanaka (MT) method respectively for obtaining the effective me-

chanical properties of the fuzzy fiber reinforced composites. In (Chatzigeorgiou et al., 2012;

Kundalwal and Ray, 2011, 2012), it was found that due to the radial growing of CNTs, the

transverse effective properties of this composite are significantly improved. In a similar man-

ner as in (Chatzigeorgiou et al., 2012), Seidel et al. (2014) studied the effective electrostatic

properties of FFRPC by using a hierarchial electrostatic CCM model and a finite element

model (FEM) respectively. However, to our knowledge, no efforts have been found in the

literature for modeling the piezoresistive, i.e. the mechanical-electrostatic coupled response

of FFRPC.
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In this study, single tow piezoresistive fragmentation testing is conducted for characteriza-

tion of the piezoresistive response of FFRPC. Correspondingly, a 3D computational mul-

tiscale mechanical-electrostatic coupled model is constructed to model the same process.

The detailed experimental and modeling work are introduced in section 6.2 and section 6.3

respectively.

6.2 Single Tow Piezoresistive Fragmentation Testing

The fuzzy fiber tows being tested were manufactured in the University of Dayton Research

Institute, with glass fiber as the structural fiber core, as seen in Fig. 6.1. Within one fuzzy

fiber tow, it is estimated that there are roughly 600 single fuzzy fibers. By measuring multiple

places of different fuzzy fiber structural cores in SEM, as shown in Fig. 6.1(c), the diameter

of the fuzzy fiber structural core is approximately 6 µm. On the fuzzy fiber structural cores,

densely packed and randomly oriented MWCNTs are observed (Fig. 6.1(b), 6.1(d), 6.1(e)).

It is also noticeable in Fig. 6.1(c) that in some regions of the fuzzy fiber surfaces, the CNTs

are completely peeled off or sparse which may be due to shipping and handling issues. The

thickness of the CNT forest on the fuzzy fibers is hard to determine as it varies along

the fiber length and from one fiber to another up to several micrometers. The fuzzy fiber

tow is embedded into the dogbone-shaped epoxy specimen for piezoresistive testing. The

fabrication process of the specimens is introduced in section 6.2.1.

6.2.1 Specimen Fabrication

Dogbone molds with a gauge section length of 26 mm were created out of Mold Max 60 high

heat resistance silicon rubber (Smooth-On), as illustrated in Fig. 6.2. A master specimen

was made using a 3D printer and was then covered in the degassed silicon mix. The molds

were then allowed to cure overnight at room temperature. When the rubber molds were

ready for specimen preparation, a light coating of PTFE Mold Release (Miller-Stephenson)
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(a) (b)

(c) (d) (e)

Figure 6.1: a) Optical image of a single fuzzy fiber tow spread apart by tweezers (Scale bar:

2 cm). b) Field emission SEM (FESEM) image of single fuzzy fibers within the fuzzy fiber

tow (Scale bar: 100 µm). c) SEM image of single fuzzy fibers within the fuzzy fiber tow, on

which the CNTs are peeled off (Scale bar: 20 µm). Note that the diameter of the structural

fiber core is measured as 6 µm. d) FSEM image of a section of a single fuzzy fiber (Scale

bar: 2 µm). e) FESEM image of the CNTs on the fuzzy fibers (Scale bar: 1 µm).

Figure 6.2: Illustration of placing the fuzzy fiber tow into the dogbone mold.
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was applied. One end of a fuzzy fiber tow was covered in a conductive silver epoxy (MG

Chemicals) and then attached to a braided copper wire. The fuzzy fiber tow was placed

inside of a notch created in the molds (Fig. 6.2), and was then cured for 15 minutes inside

a 65◦C oven. The notch was then filled with a 5-minute epoxy, and the point where the

fuzzy fiber is connected to the copper wire was immersed into the 5-minute epoxy. The

epoxy was cured for 5 minutes at room temperature. The same procedure was followed for

the other side of the mold. When laying the other end of the fuzzy fiber tow connection

it was held taught by hand while the 5-minute epoxy was curing to ensure the fuzzy fiber

would remain in a tight axial position throughout the dogbone specimen. The resin used for

the composites was Epon 862 resin (Miller-Stephenson) with EPIKURE Curing Agent W

(Miller-Stephenson). Epon 862 is a low viscosity Bisphenol F liquid epoxy. The resin was

mixed with the curing agent at a ratio of 100:26.4 by weight on a 80◦C stirring plate at 120

rpm for one hour. Once the fuzzy fibers tow inside the silicon molds were ready, the epoxy

was poured into the molds and then degassed for 10 minutes. The specimens were placed into

the oven to cure at 121◦C for four hours. After specimens were cool enough to work with,

they were sanded down to an even 1.7 mm thickness, as seen in Fig. 6.3(a) and Fig. 6.3(b).

One specimen was broken by tension and was viewed at the fracture surface perpendicular

to the tow stretch/axial direction, as seen in Fig. 6.3(c) and 6.3(d). The images show that

the polymer matrix not only infuses well into the spacings among the single fuzzy fibers, but

also spread apart their relative distances. It is further estimated from Fig. 6.3(c) that the

volume fraction of fuzzy fibers within the tow is 3%.

6.2.2 Test Procedure

After the specimens were prepared they were secured into a benchtop tensile test machine

fabricated in house, as seen in Fig. 6.4. The tensile machine is equipped with a 500 lbs.

capacity load cell (Load Cell Central), powered by a NEMA 17 stepper motor (Lin Engi-

neering). Specimens were tested in accordance with the ASTM 3038 composite-fiber testing
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(a) (b) (c) (d)

Figure 6.3: a) Optical image of the dogbone specimen, within which the fuzzy fiber tow is

embedded. b) Close up of the connection between the fuzzy fiber tow and the copper wire

through the conductive silver epoxy. c) SEM image of the single fuzzy fibers infused by the

polymer matrix within the fuzzy fiber tow region of the dogbone specimen (Scale bar: 50

µm). d) Close up of the fuzzy fibers infused by polymer matrix (Scale bar: 20 µm).

standard, pulling the specimen at a rate of 2 mm/min. Resistance measurements were

obtained at the same time by using an Agilent E4980A precision LCR meter with a two

terminal measurement contact.

(a) (b)

Figure 6.4: a) In-house fabricated tensile machine with the dogbone specimen being tested.

b) Close up of the dogbone specimen gripped on the tensile machine.
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6.3 3D Computational Multiscale Model

A 3D computational multiscale mechanical-electrostatic coupled model is constructed to

model the piezoresistive response of FFRPC, such that for every integration point of the

microscale fuzzy fiber interphase region, there is a corresponding nanoscale representative

volume element (RVE) to model the local composite piezoresistive response. The nanoscale

effective electrostatic properties are homogenized by energy equivalence method and sub-

stituted back into the microscale. Both of the electrical tunneling effect and the inherent

piezoresistivity of the CNT are considered in the nanoscale RVEs. The detailed schematics of

the 3D computational multiscale model is introduced in section 6.3.1, and the computational

procedures are introduced in section 6.3.2 respectively.

6.3.1 Schematics of the 3D Computational Multiscale Model

To represent the macroscale specimen as introduced in section 6.2, a dogbone-shaped finite

element model is constructed, as seen in Fig. 6.5a. The dimensions of the finite element

model are kept the same as the one of the macroscale specimen. The homogeneous cylin-

drical inclusion in the model is used to represent the effective fuzzy fiber tow infused by

polymer matrix, and the remaining areas are used to represent the neat polymer matrix. As

mentioned before, the fuzzy fiber tow contains approximately Nf = 600 single fuzzy fibers,

the average diameter of the single fuzzy fiber core is df = 6 µm, and the volume fraction

of single fuzzy fibers within the fuzzy fiber tow is estimated to be Vf = 3%, therefore the

diameter of the homogeneous cylindrical inclusion is calculated as
√

Nfd
2
f /Vf = 0.849 mm.

As observed in Fig. 6.3(c), the single fuzzy fibers within the fuzzy fiber tow are assumed to be

well dispersed, aligned, and have homogeneous material properties in their axial directions,

therefore the effective mechanical and electrostatic properties of the fuzzy fiber tow can be as-

sumed to be statistically transversely isotropic, for which the 3D hexagonal-array microscale

RVE (Hammerand et al., 2007) with a small thickness is used, as shown in Fig. 6.5b. The
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Figure 6.5: Schematics of the computational multiscale model for the dogbone specimen

under the single tow fragmentation test. a) The macroscale FEM for the dogbone specimen

under the single tow fragmentation test. b) The microscale hexagonal RVE (FEM) for

the fuzzy fiber tow infused by polymer matrix. c) A single fuzzy fiber infused by polymer

matrix. d) The CNT-polymer nanocomposite interphase of the fuzzy fiber. e) The nanoscale

hexagonal RVE for the CNT-polymer nanocomposite interphase of fuzzy fiber (The axis of

the CNT is in Ŷ1 direction). Note that˜on the coordinate system denotes the macroscale

whereas the ˆ denotes the nanoscale, with the microscale denoted with an unmodified Xi

coordinate system.

single fuzzy fibers as identified in the microscale RVE (as shown in Fig. 6.5c) can be idealized

to contain two concentric layers: the first is the cylindrical structural fiber, and the second

is the effective nanocomposite interphase (intermediate cylindrical layer) which consists of

densely packed CNTs and polymer matrix, as shown in Fig. 6.5d. Based on the observations

that (a) the diameter of the structural fiber is very large compared to the diameter of the

CNTs and (b) the CNTs are normally densely packed along the structural fiber surface, we

assume that locally the CNTs are well-dispersed and aligned. Hence, we can use a nanoscale

hexagonal-array RVE as seen in Fig. 6.5e to determine the local piezoresistive response.

The relationship between the microscale coordinate system and the nanoscale coordinate
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system is shown in Fig. 6.6. By using 3-1-2 set of Euler angles1, the coordinate transformation

between the micro and nanoscales can be described by the rotation matrix denoted as

R =


cos(θ′)cos(ϕ′) cos(ϕ′)sin(θ′) −sin(ϕ′)

−sin(θ′) cos(θ′) 0

cos(θ′)sin(ϕ′) sin(θ′)sin(ϕ′) cos(ϕ′)

 (6.1)

Conversely, the rotation matrix from the nanoscale to the microscale is taken as Q = R−1.

Ideally, the CNTs in the interphase region can be assumed to be radially oriented, corre-

sponding to fuzzy fibers like those of Fig. 1.1(a). In this ideal case the interphase can be

considered as cylindrically orthotropic symmetry (Tsukrov and Drach, 2010; Chatzigeor-

giou et al., 2012) with θ′ = θ and ϕ′ = 0, in which θ ∈ [0, 2π) is the angle formed by the

in-plane direction of the nanoscale RVE to the axis of the corresponding structural fiber,

as seen in Fig. 6.5b. Conversely, the CNTs can be assumed to be randomly oriented in

the interphase region corresponding to fuzzy fibers like those shown in Fig. 1.1(b). In this

case, to represent the statistically randomly distributed CNTs, we choose θ′ = 2πy1 and

φ′ = arcsin(y2), in which y1 and y2 are generated from random number generators and

y1 ∈ [0, 1) and y2 ∈ [−1, 1) (El-Rahman, 2009).

6.3.2 Computational Procedures for the 3D Multiscale Model

An in-house multiscale finite element code is developed to model the three scales: the

macroscale X̃, the microscale X, and the nanoscale Ŷ. The effective piezoresistive prop-

erties of the effective fuzzy fiber tow within the macroscale FEM is represented by the one

of the microscale hexagonal RVE, and for every integration point of the interphase region

of the microscale hexagonal RVE, there is a corresponding nanoscale RVE to represent the

well-dispersed, aligned CNTs leading to the piezoresistive response at the nanoscale. While

the macroscale dogbone model is meshed by 4-node linear tetrahedron elements, the mi-

1The 3-1-2 set of Euler angles corresponds to θ′-ω′-ϕ′. The Euler angle of ω′ by axis 1 is chosen to be 0

by considering the transversely isotropic symmetry of the nanoscale RVE.
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Figure 6.6: Schematic representation of the Euler angles between the microscale and

nanoscale coordinate systems.

croscale and nanoscale hexagonal microscale RVEs are meshed by 8-node linear hexahedron

elements with 8 integration points. The reason for using the linear tetrahedron elements for

the macroscale is that it is easier to use them to mesh the macroscale FEM with a cylin-

drical inclusion, and the reason for using the linear hexahedron elements for the microscale

and nanoscale is that it is easier to use them for applying the periodic boundary conditions

(P.B.C.s) on the parallelepiped RVEs.

For the mechanical properties of the multiscale model, as the strains applied in the single

tow fragmentation tests are small, the material constituents within the multiscale model

are assumed to be linear elastic and are assumed to be perfectly bonded with each other.

The effective stiffness tensor of the nanoscale hexagonal RVE Ĉ
eff

is first obtained from the

computational micromechanics method by solving several periodic boundary value problems

as introduced in (Hammerand et al., 2007), and is then applied at the integration points

of the interphase region of the microscale RVE using the rotation matrix obtained from

Eq. (6.1) according to:

Cint,eff
ijkl (θ′, ϕ′) = Qim(θ′, ϕ′)Qjn(θ′, ϕ′)Ĉ

eff

mnpqQ−1
pk (θ′, ϕ′)Q−1

ql (θ′, ϕ′) (6.2)

in which ’int’ denotes ’interphase’ and ’eff’ denotes ’effective’. By applying the computational
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micromechanics method again, this time for the microscale RVE as opposed to the nanoscale,

the effective mechanical stiffness tensor of the microscale hexagonal RVE Ceff is obtained and

as is noted to have transversely isotropic symmetry corresponding to the effective fuzzy fiber

tow region with statistically well-dispersed and aligned single fuzzy fibers, i.e. C̃
eff

= Ceff.

Having obtained the stiffness of the multiscale model, boundary conditions corresponding

to those applied in the experiment are introduced to the macroscale FEM, as shown in

Fig. 6.7(a). As the 3D macroscale strain tensor ε̃ within the effective fuzzy fiber tow region

is nearly uniform, the average macroscale strain tensor ε̃avg is obtained by volume averaging

the strain field components within the fuzzy fiber tow region, and is then applied as a set

of periodic boundary conditions to the microscale hexagonal RVE, as shown in Fig. 6.7(b),

according to

ui(S+Xj
)− ui(S−Xj

) = d(S+Xj
,S−Xj

)
∂ũi

∂X̃j

(6.3)

in which S±Xj
are the opposite surfaces on the microscale RVE and d(S+Xj

,S−Xj
) is the

corresponding distance of the opposite surfaces. Under the macroscale average strain field

applied as P.B.C.s, the microscale strain tensor at every integration point of the interphase

region of the microscale RVE is further obtained and applied to the nanoscale hexagonal

RVE as a set of periodic boundary conditions by matrix rotation, i.e.

ε′ij(θ
′, ϕ′) = Rik(θ′, ϕ′)εklR

−1
lj (θ′, ϕ′) (6.4)

in which R depends on the orientation of the nanoscale RVE relative to the microscale

coordinate system, as illustrated in Fig. 6.6. The distribution of von Mises strain2 of the

nanoscale RVE under the applied microscale strain field can be observed in Fig. 6.7(c), in

which the relative locations of the CNTs are changed and the CNTs are strained.

Having obtained the local mechanical response in the nanoscale RVE associated with the

macroscale applied mechanical loads via the top down approach, two piezoresistive mecha-

nisms are considered within the nanoscale RVE: 1) the electrical tunneling effect and 2) the

2The von Mises strain is obtained as ε̂v =
√

1
2 [(ε̂11 − ε̂22)2 + (ε̂22 − ε̂33)2 + (ε̂11 − ε̂33)2 + 6(ε̂2

23 + ε̂2
31 + ε̂2

12)].
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(a) Macroscale finite element

model

(b) Microscale RVE (c) Nanoscale RVE

Figure 6.7: The computational multiscale model for the mechanical problem. a) Distribution

of von Mises strain ε̃v within the dogbone specimen under tensile tension test. b) Distribution

of von Mises strain εv within the 3%vol microscale RVE under the macroscale strain field

of ε̃avg. c) Distribution of von Mises strain ε̂v within the 60%vol nanoscale RVE under the

microscale strain field of ε′ = RεR−1. Note that in this showing case the CNTs are assumed

to be cylindrically orthotropic within the fuzzy fiber interphase region.

inherent CNT piezoresistivity. The electrical tunneling algorithm applied herein within the

finite element model has been discussed in detail in our previous work in (Ren and Seidel,

2013b). Applying this algorithm to all matrix points in the well-dispersed nanoscale RVE

leads to a clearly visible pattern of tunneling paths within the matrix (Fig. 6.8(a)) for perco-

lated local nanoscale RVE volume fractions, e.g. greater than 50% depending on tunneling

parameters, radius of the CNT, and resistivity of the neat polymer matrix without electrical

tunneling effect. As a result of the applied periodic boundary conditions on the nanoscale

RVE, the local distances between CNTs will change, as such, the local resistivities of the

conducting paths are evolved.

The second mechanism is the inherent piezoresistivity of the CNT, which depends on the

strains within the CNT. The CNTs are expected to exhibit inherent piezoresistivity such
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(a) Nanoscale RVE (b) Microscale RVE

Figure 6.8: The computational multiscale model for the electrostatic problem. a) Distribu-

tion of resistivities in the 60%vol nanoscale RVE as the applied microscale boundary strain

is from 0 to ε′ = RεR−1. Note that the conducting paths or the CNTs can become more or

less conductive depending on the loading conditions on the nanoscale RVE. b) Distribution

of resistivities in the 3%vol microscale RVE as the applied macroscale boundary strain is

from 0 to ε̃avg
ij . Note that in this showing case the CNTs are assumed to be cylindrically

orthotropic within the fuzzy fiber interphase region.

that the change in resistivity is related to the strain in the CNT through the piezoresistive

strain coefficients as (Ren and Seidel, 2013a)

∆ρ̂C
ij = ĝC

ijklε̂kl (6.5)

Here, for simplified demonstration purposes, it is further assumed that ĝ1111 = ĝ2222 = ĝ3333

with all other ĝijkl being zero. As a result of the applied P.B.C.s on the nanoscale RVE and

by assuming perfect bonding, the amount of strain transferred to the CNTs will increase

with increase in applied load, especially at higher volume fractions (Ren and Seidel, 2013a).

The corresponding change in CNT resistivity due to inherent piezoresistivity of the CNT

(as observed in Fig. 6.8(a)) will in turn have influence on the piezoresistive response of the

nanoscale RVE.

Once the distribution of resistivities within the nanoscale RVE is obtained, the electrical

energy equivalence method (Ren and Seidel, 2013a) is used to obtain the effective electrostatic
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properties of the nanoscale RVE, which are then substituted into the integration points of the

microscale RVE. The electrical energy equivalence method is then used again to obtain the

effective electrostatic properties ρeff
ij of the microscale RVE, which are used to represent the

electrostatic properties of effective fuzzy fiber tow within the macroscale FEM, i.e. ρ̃eff
ij = ρeff

ij .

Having completed the top-down mechanical and bottom-up electrical multiscale portions of

the multiscale algorithm, the process is repeated on subsequent mechanical load increments to

obtain the macroscale piezoresistive response over the complete loading path corresponding

to the fuzzy tow experiments. The macroscale effective gauge factor of the fuzzy fiber tow

at each load increment can therefore be denoted as (Ren and Seidel, 2013a):

G̃
eff

33 =
1

ε̃avg
33

(
ρeff

33(ε̃avg
33 )

ρeff
33(0)

1 + ε̃avg
33

(1 + ε̃avg
11 )(1 + ε̃avg

22 )
− 1) (6.6)

It is worth mentioning that parallel computation techniques are applied to the nanoscale

RVEs by using 40 processors in a cluster system running CentOs Linux 5, such that the

total running time of the model is significantly reduced. For example, in our model the

macroscale FEM contains ∼54,000 tetrahedron elements, and the microscale RVEs with

different thicknesses of the interphase contain 16,000 - 21,000 hexahedron elements. Cor-

respondingly, there are 2,500 - 14,000 integration points within the microscale interphase

region, with each integration point relates to a nanoscale RVE of 3,100 - 6,200 hexahedron

elements. For such a big 3D multiscale problem, the running time of each time step is in the

range of 11 minutes to 126 minutes depending on the RVEs used and the fineness of mesh,

which is satisfactorily fast.

6.4 Experimental Results and Discussion

During the fabrication process, the resistances of three different specimens are recorded at

each processing step, as seen in Fig. 6.9. From step 1 to step 2, a change of resistance is

recorded for each specimen after the conductive epoxy lead is fused with the fuzzy fiber tow.

The resistances are still on the same order as the original fuzzy fiber tow, which implies
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that the conductive epoxy leads and the fuzzy fiber tows are well connected. From step

2 to step 3 every specimen shows an appreciable increase in resistance as the liquid epoxy

permeates the fuzzy fiber. This is believed to be from a decrease in local nanocomposite

volume fraction as the epoxy separates the CNTs. From step 3 to step 4 there is again

appreciable change between uncured and cured epoxy, which implies that the curing caused

contraction of the polymer matrix and therefore an increase in local nanocomposite volume

fractions. From 4 to 5 the measurable increase in resistance in all specimens implies that

there is a thermal expansion effect on the resistance of the specimen. At the last step, upon

removal of the specimen from the mold and final sanding to uniform thickness, the resistance

is again measured and is taken as the zero strain resistance value, R̃0, in determining the

experimentally measured gauge factors. It can be noted that for the three different specimens,

the zero strain resistances have a noticeable degree of scatter, which is believed to be due to

differences in the fuzzy tow nano and micro structures. As a result, the preferred measure

of piezoresistive electromechanical coupling is the gauge factor which is obtained from the

relative change in resistance of a given specimen under applied load.

Figure 6.9: The record of resistance at successive steps of the fabrication process for the three

fuzzy fiber specimens: 1) fuzzy fiber tow in air, 2) fuzzy fiber tow in air with conductive

epoxy leads, 3) fuzzy fiber tow infused in epoxy pre cure within the mold, 4) post cure (hot)

of the specimen within the mold, 5) post cure (cool) of the specimen within the mold, and

6) post sanding of the specimen out of the mold.
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Once the fuzzy fiber specimens are manufactured, they are placed into the tensile machine,

with simultaneous resistance and load measured to obtain the piezoresistive responses, as

seen in Fig. 6.10. It is found that there is a good correlation between the measured resistance

and the applied load, as seen in Fig.s 6.10(a), 6.10(b), and 6.10(c). Fig. 6.10(a) shows

good correlation between load and resistance up to the point of brittle failure, Fig. 6.10(b)

demonstrates that in low frequency cyclic loadings, there is very little lag in the resistance,

and Fig. 6.10(c) demonstrates that there is very little drift in the signal on pause. The

correlation between resistance and load implies that there is good piezoresistivity of FFRPC

within the fuzzy fiber tow region of the dogbone specimen. Further, in order to obtain the

gauge factors of FFRPC, correlation between the measured relative change of resistance and

the applied boundary displacement is obtained, as shown in Fig. 6.10(d). Note that the axial

strain ε̃avg
33 is from interpretation of the average strain on the effective tow with randomly

oriented CNTs by using FEM. It is found that for the three different fuzzy fiber dogbone

specimens, the gauge factors G̃33 (G̃33 = ∆R̃/R̃0

ε̃avg
33

) are 0.20, 0.13, and 0.09 respectively at

ε̃avg
33 = 6%.

A total of 19 fuzzy fiber dogbone specimens were fabricated and tested, with their corre-

sponding gauge factors as a function of applied strain during the loading process obtained

and averaged as provided in Fig. 6.11. The key observation is that the obtained gauge factors

for the specimens are not sensitive to the applied strain level, which implies that the ran-

domly oriented CNTs within the fuzzy fiber interphase region may be in direct contact with

one another such that the nanocomposites is electrically saturated with ρeff
33(ε̃avg

33 ) = ρeff
33(0)

as in Eq. (6.6). The piezoresistive response of the specimen is therefore entirely from its

geometric effect, which is not sensitive to the level of applied strain.
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(a) (b)

(c) (d)

Figure 6.10: The piezoresistive response of the fuzzy fiber dogbone specimen with applied

external loadings. a) Correlation between measured resistance and linear loading, b) Cor-

relation between measured resistance and cyclic loading, c) Correlation between measured

resistance and paused loading, d) Correlation between measured relative change of resistance

and applied boundary displacement.

6.5 Modeling Results and Discussion

6.5.1 Modeling of FFRPC with Cylindrical Orthotropic or Ran-

domly Oriented CNTs

The macroscale FEM, and the microscale and nanoscale RVEs are constructed based on mor-

phological data obtained from the characterization of the physical specimens. As mentioned

before, the thickness of the interphase on the single fuzzy fibers is hard to determine as it

varies along the fiber length and from one fiber to another. As such, a parametric study is
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Figure 6.11: The average gauge factor of the dogbone specimen at each applied macroscale

strain level, for which 19 specimens are used and the error bars correspond to the standard

deviations of the data. Note that the axial strain ε̃avg
33 is again from interpretation of the

average strain on the effective tow with randomly oriented CNTs by using FEM.

conducted wherein the thickness of the nanocomposite interphase of the fuzzy fiber is varied

from 1 to 2 to 3 µm. Such thicknesses are consistent with lengths of MWCNTs observed in

Fig. 6.1(e) which were observed to be 1 µm and longer. In order to simplify the problem, the

outer and inner diameters of the CNT are chosen to be 13 nm and 4 nm, respectively, as was

reported in (Aviles et al., 2012). Under small strain assumptions, the CNT annulus, epoxy,

and glass fiber are taken to be isotropic linear elastic, with the Young’s modulus and Pois-

son’s ratio of 1100 GPa and 0.14, 3.0 GPa and 0.3, and 78 GPa and 0.22, respectively (Saito

et al., 1998; Hartman et al., 2006). The initial isotropic resistivity within the CNT annulus

is chosen to be 10−5 Ω ·m (Ebbesen et al., 1996; Seidel and Lagoudas, 2009), the isotropic

resistivity of the glass fiber is 4.02× 1012 Ω ·m (Hartman et al., 2006), and epoxy is likewise

isotropic with a measured resistivity of 1015 Ω · m in the absence of electrical tunneling.

Barrier heights for epoxy have been reported to be on the order of λ = 0.5 - 2.5 eV (Hu

et al., 2012), therefore an average value of λ = 1.5 eV is used here. In the studies of (Chen

and Weng, 2007; Theodosiou and Saravanos, 2010) the reported CNT inherent piezoresistive

gauge factors are ≤7 under small strains, while in contrast, in (Stampfer et al., 2006) the

reported CNT inherent piezoresistive gauge factor can be as large as 2900. In this study

a CNT inherent gauge factor of 10 will be converted into diagonal isotropic piezoresistive
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coefficients ĝC
ijkl (Ren and Seidel, 2013a) to study its influence on the overall piezoresistive

response of FFRPC.

(a) κeff
12 (b) µeff

12

(c) µeff
23 (d) Eeff

33 (e) νeff
31

Figure 6.12: The effective mechanical properties of the microscale RVE as obtained from

the FEM and CCM methods respectively, in which the volume fraction of the fuzzy fibers

is kept at 3%vol and the thickness of the interphase is kept at 2µm for increasing CNT

volume fractions in the nanocomposite interphase. Note that ’CO’ represents ’cylindrically

orthotropic’ symmetry of the interphase region, and ’RA’ represents ’random’ distribution of

CNTs within the interphase region. a) The microscale effective in-plain bulk modulus κeff
12. b)

The microscale effective axial shear modulus µeff
12. c) The microscale effective in-plain shear

modulus µeff
23. d) The microscale effective Young’s modulus Eeff

33. e) The microscale effective

axial Poisson’s ratio νeff
31 . Note that for the microscale effective in-plane shear modulus µeff

12,

converged solutions of CCM method for some of the nanoscale volume fractions are not

available, therefore are omitted showing here.

By solving five periodic boundary value problems (Hammerand et al., 2007), the mechanical

properties of the nanoscale RVEs are obtained first, and are substituted into their corre-
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sponding integration points within the interphase region of the microscale RVE. Five peri-

odic boundary value problems are solved again such that the effective mechanical properties

of the microscale RVE are obtained. For example, the effective mechanical properties of

the microscale RVE with the interphase thickness of 2 µm and with the volume fraction of

the CNT at the nanoscale varying from 50% - 90% are shown in Fig. 6.12. For the FFRPC

with cylindrically orthotropic (CO) fuzzy fiber interphases, analytic solutions from the CCM

method (Chatzigeorgiou et al., 2012; Seidel et al., 2014) are available and are compared with

the FEM method, as seen in Figs. 6.12(a), 6.12(c), 6.12(d), and 6.12(e). It can be seen that

for the microscale RVEs with 3%vol fuzzy fibers and an interphase thickness of 2 µm, the

effective properties κeff
12, µeff

23, and νeff
31 of the two methods match very well up to 90%vol, with

the relative differences of -0.15%, -0.55%, and -0.65% respectively compared to the FEM

method. However, for the effective Young’s modulus Eeff
33, the relative difference is -32.4%

compared to the FEM method. This big difference is believed to be from the misrepresen-

tation of the geometry at such large volume fractions of the CCM method which continues

to represent the matrix as an encompassing concentric cylinder phase.

In contrast, for the microscale RVEs in which there are randomly (RA) oriented CNTs in the

interphase region, the mechanical properties are obtained by assigning random orientation of

the nanoscale RVEs to the integration points of the interphase region, and then solving five

periodic boundary value problems at the microscale. To allow for different sets of random

orientations of the CNTs in the interphase region, the code is run 10 times, and it is found

that very close effective material properties are obtained for each set of random orientations,

with the standard deviation three to six orders smaller. Therefore the RA results presented

in Fig. 6.12 are believed to be statistically reasonable. It can be seen that the effective

properties κeff
12, µeff

12, µeff
23, and νeff

31 of the microscale RVEs with RA interphases are very close

to the ones with CO interphases, with the relative differences smaller than 0.1%, 1.3%, 4.0%,

and 4.4% respectively compared to the FEM CO results. The key difference is again focused

on Eeff
33, which is increased by 58.1%, 68.2%, 76.4%, 78.0%, and 49.5% respectively compared

to the FEM CO results when the volume fraction of the CNT is from 50% to 90% at the
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interphase region. This difference arises because by randomly aligning the CNTs within the

interphase region, the axial Young’s modulus of FFRPC is greatly enhanced due to some of

the CNT alignments occurring in the axial direction of the fuzzy fiber tow (as opposed to

the radial). By comparing the effective mechanical properties of FFRPC with RA and CO

interphases, it can be concluded that the RA orientation of the CNT within the interphase

is superior for improving the overall mechanical properties of FFRPC.

Once the mechanical properties of the microscale RVEs are obtained, they are substituted

into the effective fuzzy fiber tow region of the macroscale FEM, and the load steps are

applied through displacement boundary conditions corresponding to those applied in the

experiment. From each applied load increment at the macroscale, the volume averaged

strain tensor ε̃avg
ij of the fuzzy fiber tow region is obtained, and is applied as P.B.C.s to

the microscale RVEs to obtain their piezoresistive responses according to the multiscale

piezoresistive algorithm. The piezoresistive responses of FFRPC with CO interphases are

shown in Fig. 6.13, from which the key observations are: 1) with the same nanoscale volume

fraction of the CNT (above the nanoscale percolation concentration), as the thickness of the

interphase increases, the overall effective axial resistivity ρeff
33 decreases. This is because as

the thickness of the interphase increases, it replaces the equivalent amount of non-conducting

matrix material, therefore the fuzzy fiber tow can have a larger microscale volume fraction

of conducting interphase region such that the axial resistivity is reduced. 2) as the nanoscale

volume fraction of the CNT increases, the overall effective axial resistivity decreases by

orders of magnitude due to increases in electrical conductivity at the nanoscale associated

with increased electron hopping. 3) FFRPC with CO interphases yield very large axial gauge

factors, which are ranging from 32.8 to 126.6 at ε̃avg
33 = 4%. 4) For FFRPC with cylindrically

orthotropic interphase, the inherent piezoresistivity of the CNT has negligible effect on the

overall piezoresistive response at 60%vol - 80%vol of the CNT. Only when the volume fraction

of the CNT increases to 90%, there is a limited influence, as observed in Fig. 6.13(d). This

is because although there is inherent piezoresistive effect at 60%vol - 80%vol of the CNT, at

the strain levels considered here the inherent piezoresistivity of the CNT only increases the
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CNT resistivity by at most 4% which remains 16 to 4 orders of magnitude lower than the

matrix resistivity such that changes in matrix resistivity due to electron hopping remain the

dominant driver of nanoscale piezoresistive response, particularly in the transverse direction

as was observed in (Ren and Seidel, 2013b). In contrast, at 90%vol of the CNT, there is

greater strain transfer, therefore a greater inherent piezoresistive effect. More importantly

the resistivity of the CNT remains on the same order as the electron hopping induced matrix

resistivity, therefore at 90%vol the inherent piezoresistivity of the CNT can have an influence

on the overall piezoresistive response of FFRPC. It can be seen that at 90%vol, when the

thickness of the interphase increases from 1µm to 3µm, the overall gauge factor is increased

from 35.5 to 36.4, from 34.1 to 35.0, and from 32.8 to 33.7 respectively.

It is of interest to note that at 60%vol CNT within the interphase region, as observed in

Fig. 6.13(a), the gauge factor increases with the increase of thickness of the interphase region,

however at the other volume fractions of the CNT, the piezoresistive effect decreases with

the increase of interphase thickness. It is also observable that from 60%vol to 90%vol of

the CNT, the overall gauge factors reach the highest at 70%vol of the CNT, and gradually

decrease from 70%vol to 90%vol of the CNT. These results imply that there is a combination

of the CNT volume fraction and the fuzzy fiber interphase thickness that can yield the largest

gauge factor of FFRPC, and moreover that the gauge factor of FFRPC can be purposely

tuned over a large range.

The piezoresistive responses of FFRPC with randomly aligned CNTs in the interphase region

(2µm thickness) are shown in Fig. 6.14. It is found that when considering only the electrical

tunneling effect, for nanoscale CNT volume fractions up to to 80%, the overall resistivity

at each volume fraction is nearly unchanged with the applied macroscale strain, i.e. there

is almost no observable piezoresistive response beyond that of the geometric piezoresistive

response when ρeff(ε̃avg
33 ) = ρeff(0). This is because the nanoscale RVE uses the high aspect

ratio argument such that CNTs span the local axial direction (thickness) of the nanoscale

RVE. This means that the transverse electron hopping governed resistivity of the radial

oriented cases has to directly compete with the CNT themselves (and their inherent piezore-
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(a) 60%vol CNTs (b) 70%vol CNTs

(c) 80%vol CNTs (d) 90%vol CNTs

Figure 6.13: The piezoresistive response of FFRPC with CO interphases, in which the volume

fraction of the CNT within the nanoscale RVE is varied from 60% - 90%, and the thickness

of the interphase is varied from 1 µm to 3 µm. a) ρeff
33 vs. ε̃avg

33 at 60%vol of the CNT, b) ρeff
33

vs. ε̃avg
33 at 70%vol of the CNT, c) ρeff

33 vs. ε̃avg
33 at 80%vol of the CNT, and d) ρeff

33 vs. ε̃avg
33 at

90%vol of the CNT (Unit: Ω·m). Note that in a), b) and c) as the inherent piezoresistivity

of the CNT has negligible effect, the curves are the ones corresponding to the electrical

tunneling effect only.

sistivity) for nanoscale RVEs aligned in the fuzzy fiber axial direction. As a result, the CNT

conductivity formes saturated conductive paths of at least 4 orders larger than that of the

transverse paths. Even with strain the transverse paths are not able to change to comparable

level of the CNTs. In fact, only when the nanoscale volume fraction of CNT is 90% can

a noticeable non-geometric piezoresistive response be observed, as seen in Fig. 6.14. This

is because at this extremely high nanoscale volume fraction, the electrical tunneling effect

is strong enough to be comparable with the conductivity of CNT and thus, can have an
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influence on the overall piezoresistivity. The effective gauge factors corresponding to these

electron hopping only cases are 1.475, 1.467, 1.434, and 14.9, respectively, for volume frac-

tions from 60% to 90%. The decrease in effective gauge factor from 1.475 to 1.434 when the

volume fraction of the CNT is from 60% to 80% is due to the fuzzy fiber tow becoming stiffer

when the volume fraction of CNT is higher. In contrast, the gauge factor of FFRPC with

90%vol CNT is an order of magnitude larger as it consists of both of the geometric effect

and the electrical tunneling effect.

Figure 6.14: The piezoresistive response of FFRPC with interphases of randomly aligned

CNTs. Note that the volume fraction of the CNT within the nanoscale RVE is varied from

60% - 90%, and the thickness of the interphase is kept at 2 µm.

When the inherent piezoresistivity of the CNT is considered along with the electrical tun-

neling effect, there is a clearly discernible piezoresistive response in the observed effective

resistivity of the FFRPC for all nanoscale CNT volume fractions as seen in Fig. 6.14. This

can again be attributed to the implementation of the high aspect ratio of the CNTs within the

nanoscale RVE and the conductive paths which nanoscale RVEs form within the interphase.

For the value of inherent CNT piezoresistive gauge factor applied here (10), the rotated

average microscale strain lead to local axial strains on the CNTs which induce measurable

changes in the axial CNT conductivity, thereby directly affecting the axial conductive paths

formed within the randomly oriented interphase. Correspondingly, the overall piezoresistive

effects of FFRPC with 60%vol - 90%vol CNTs are larger compared to the ones without

inherent piezoresistivity of the CNT, with the gauge factors of ∼5.5 for 60%vol - 80%vol
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CNTs, and 18.2 for 90%vol CNTs.

6.5.2 Modeling of FFRPC with Sparse Regions of the CNT

So far, we have modeled the FFRPC with CO and RA interphases. By considering only the

electrical tunneling effect, which is the main mechanism, it is found that the FFRPC with CO

interphases can yield large gauge factors ranging from ∼30 to ∼120. In contrast, although

the mechanical properties are improved due to random orientation of the CNT, the FFRPC

with RA interphases yield smaller gauge factors of ∼1.5 to ∼18. However, it is found that

the gauge factors of FFRPC with RA interphases which better represent the observations in

Fig. 6.1(d) and Fig. 6.1(e) are still one order larger than the experimental values obtained

here (0.14 on average). The reason for the over prediction of gauge factors may attribute

to several FFRPC characteristics that the model has not captured, for example, the sparse

regions of CNTs along fuzzy fiber length (Fig. 6.1(c)), the curvature and distribution of

different CNT types (Fig. 6.1(e)), the random dispersion of fuzzy fibers within the matrix

infused tow (Fig. 6.3(c)), and the asymmetric distribution of CNTs around glass fibers within

the matrix infused tow (Fig. 6.3(d)), etc. Among all of these factors, what is believed can

have the most significant influence on the overall piezoresistive response of FFRPC is the

sparse regions of CNTs along the fuzzy fiber length.

Due to processing or handling defects, the CNTs on the fuzzy fibers may be peeled off or

form sparse regions, which disrupt the axial conductive paths and cause the material to

be nonhomogeneous in the axial direction. As such, to obtain G̃
eff

33 for the axially nonho-

mogeneous FFRPC, it not only requires the CNT distribution information along the entire

tow, but also requires computations of the corresponding resistivity and strain distributions,

which are very computationally challenging. In order to obtain an estimate of the influence

of sparse regions on the gauge factor of the fuzzy fiber tow, a simplified approximation of
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the gauge factor for the axially nonhomogeneous FFRPC can be denoted as:

G̃
eff

33 =
∆R̃

eff

3 /R̃
eff

3(0)

ε̃avg
33

=
(R̃

eff

3 − R̃
eff

3(0))/R̃
eff

3(0)

ε̃avg
33

=
R̃

eff

3 /R̃
eff

3(0) − 1

ε̃avg
33

(6.7a)

with

R̃
eff

3(0) =

∫ L̃0

0

ρ̃eff
33(X̃3, 0)

Ã0(X̃3)
dX̃3 (6.7b)

R̃
eff

3 =

∫ L̃0

0

ρ̃eff
33(X̃3, ε̃ij(X̃3))

Ã0(X̃3)

1 + ε̃33(X̃3)

(1 + ε̃11(X̃3))(1 + ε̃22(X̃3))
dX̃3 (6.7c)

in which L̃0 and Ã0 are the original length and cross-section area of the fuzzy fiber tow,

ε̃avg
ij are the volume averaged strain components within the fuzzy fiber tow region, and the

axial resistivity ρ̃eff
33 is taken to depend on both the axial location X̃3 and the macroscale

strain field at X̃3. In order to show the sensitivity of the overall piezoresistivity of FFRPC

to the presence of the sparse regions, a model with simplified assumptions is used. As

seen in Fig. 6.15(a), it is assumed that on 99.5% of the fuzzy fiber tow, the CNTs are

randomly dispersed and statistically homogeneous, with the macroscale average strain field

ε̃avg
ij of the entire fuzzy fiber tow region applied as homogeneous boundary conditions. The

remaining 0.5% is considered as sparse regions and is assumed to be concentrated at one axial

location within the tow. The geometry of the 0.5% sparse fuzzy fiber tow region is further

assumed to be unchanged with strain, and its resistivity is assumed to be unchanged at 7

Ω · m, which corresponds to 0.5%vol randomly oriented CNTs at the nanoscale. Therefore

Eq. (6.7) can be simplified into two sub integrations and the overall piezoresistive responses

of FFRPC are obtained, as seen in Fig. 6.15(b). It is found that compared to the FFRPC

with randomly oriented CNTs and without sparse regions, with only 0.5% sparse regions the

overall resistance is increased by 1 to 2 orders and the overall gauge factor is decreased by 1

to 2 orders, which is comparable to the gauge factors from experiments as shown in Fig. 6.11.

Thus it can be seen that the sparse regions are indeed likely to have a big influence on the

overall piezoresistive response of FFRPC.
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(a) (b)

Figure 6.15: The piezoresistive response of FFRPC with CNT sparse regions within the

fuzzy fiber interphase region. a) Illustration of the fuzzy fiber tow region of the dogbone

specimen, in which there is a CNT sparse region. b)R̃
eff

3 vs. ε̃eff
33 of FFRPC with 0.5% CNT

sparse regions. Within 99.5% region of the effective fuzzy fiber tow, the nanoscale volume

fraction of the CNTs varies from 60% to 90%. Note that the electrical tunneling effect is the

sole nanoscale piezoresistive mechanism for the results shown here.

6.6 Conclusions

The piezoresistive response of FFRPC is characterized by using the single tow piezoresistive

fragmentation tests, and at the same time is modeled by using a 3D multiscale piezoresistive

model. The experimental work shows that the CNTs on the fuzzy fibers are densely packed

and randomly dispersed. Approximately linear piezoresistive effect is observed within the

fuzzy fiber tow region, and the gauge factors from the tests are on the average of 0.14. The

3D multiscale piezoresistive modeling work shows that the FFRPC with homogeneous cylin-

drically orthotropic interphase can theoretically yield very large gauge factors varying from

∼30 to ∼120, and that inherent piezoresistivity of the CNT can have very little influence

on the overall piezoresistivity for such a microstructure. On the other hand, although it is

found that the mechanical properties are improved due to random orientation of the CNT,

the FFRPC with statistically homogeneous random interphase yield smaller gauge factors

of ∼1.5 to ∼18. This is because the random oriented CNTs in the interphase can form

conducting paths directly, which saturates the conductivity and thereby undermines the



Xiang Ren Chapter 6 154

FFRPC piezoresistive response induced by electrical tunneling. However such a dispersion

of CNTs within the nanocomposite interphase is very sensitive to the inherent piezoresis-

tivity of the CNT. It is found that both of the FFRPC with cylindrically orthotropic and

randomly oriented interphases yield gauge factors much larger than the ones as obtained

from our experiments (0.14 on average). By considering other factors that may influence

the piezoresistive response of FFRPC, it is found that the sparse regions of the CNT along

the fuzzy fiber length can have strong effects on the macroscale gauge factor of FFRPC. In

summary, based on the modeling work, it is believed that the reason for the observed small

gauge factors not only originates from random dispersion of the CNTs within the fuzzy fiber

interphase, but also from some other factors such as the CNT sparse regions along the fuzzy

fiber length. Based on these results, we have a better understanding of how to tailor the

gauge factors of FFRPC based on nano and microscale architectures such that large, consis-

tent, and predictable gauge factors can be purposely obtained for potential structural health

monitoring applications.



Chapter 7

Concurrent Multiscale Modeling of

Coupling between Continuum

Damage and Piezoresistivity in

CNT-Polymer Nanocomposites

7.1 Introduction

Researchers have found that the piezoresistive response of the CNT-polymer nanocomposites

can be an indicator of damage events within the material (Park et al., 2007; Li and Chou,

2008; Saafi, 2009; Gao et al., 2009a,b; Kim et al., 2010; Alexopoulos et al., 2010; Vadlamani

et al., 2012b,a; Cardoso et al., 2012; Heeder et al., 2012). For example, by using double-

matrix composite techniques, the carbon fiber fracture events were inherently sensed by

the piezoresistive response of CNT-polymer nanocomposites, and it was found that the

piezoresistivity of the nanocomposites can well capture the fiber fracture events (Park et al.,

2007). Saafi (2009) used wireless cement-CNT sensors for damage detection in concrete

155
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structures, and it was found that the carbon nanotube networks can in-situ detect crack

initiation and propagation. Vadlamani et al. (2012b) dispersed 0.3%wt-0.5%wt CNTs into

epoxy, and through measuring the piezoresistivity of the CNT-polymer nanocomposites they

studied the in-situ sensing of nonlinear deformation, damage initiation, and growth within

the material. It is therefore very attractive for the CNT-polymer nanocomposites to be

directly embedded into vehicle structures to provide internal and in-situ strain and damage

sensing, e.g. fuzzy fiber reinforced polymer composites (Sebastian et al., 2014; Ren et al.,

2014).

The electrical tunneling (electron hopping) effect is found to be the main driving force for

the macroscale piezoresistive response of the nanocomposites. It is a phenomenon that

when the CNTs are close enough to the order of nanometers, electrical tunneling paths can

form in the polymer matrix among the adjacent CNTs (Li et al., 2007; Ren and Seidel,

2013b). The electrical tunneling effect is not only highly sensitive to the relative distances

of the CNTs, but also guarantees the polymer nanocomposites to be electrically percolated

at an extremely low loading of the CNT. As damage develops in the polymer matrix, the

local electrical tunneling effect can be potentially influenced by the evolution of microcracks

and the change of relative distances of the CNT, and it is expected that the macroscale

piezoresistive response of the CNT-polymer nanocomposites can capture the lower scale

damage events.

Among all the different damage phenomena, continuum damage is known to be an irre-

versible process, brought about by the nucleation, growth, extension, and coalescence of

microcavities or microcracks, which can result in deterioration or full failure of mechanical

properties (Murakami, 2012). For fiber reinforced laminates, continuum damage in the poly-

mer matrix can become important as it is usually the precedence of other damage events,

such as fiber-matrix debonding and fiber breakage (Barbero and Cortes, 2010). In continuum

damage mechanics, modeling the microscale damage is usually through prediction of stiff-

ness reduction, and based on the damage initiation criteria, the continuum damage modeling

work in the literature can be categorized into two classes. One is that the damage initiation
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is related to the strengthes of the material, such as the Christensen’s or Hashin’s failure cri-

teria (Christensen, 1997, 2007; Hashin and Rotem, 1973; Hashin, 1980; Davila et al., 2005;

Maimi et al., 2006; Lapczyk and Hurtado, 2007); another is that the damage initiation is

related to the internal state variables, such as Talreja et al.’s work (Asp et al., 1996). After

damage is initiated, the damage evolution is usually formed by phenomenological laws that

are proposed to be related to fracture toughness or internal state variables based on the

dissipation rate of energy (Bazant and Oh, 1983).

To better understand the damage and piezoresistivity coupled mechanisms within the CNT-

polymer nanocomposites for SHM applications, a multiscale coupled continuum damage and

piezoresistive modeling work is developed. The Christensen’s failure criteria are applied

to determine the initiation of damage within the polymer matrix, and a phenomenological

law is used for damage evolution. Further by introducing the damage variables into the

governing equation of the electrical tunneling effect, the one-way coupled continuum dam-

age and piezoresistive response of the CNT-polymer nanocomposites is constructed. The

macroscale finite element model and the microscale finite element model based on microscale

representative volume elements (RVE) are interacted concurrently to obtain the multiscale

piezoresistive response. The detailed modeling work is introduced in section 7.2.
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7.2 Model description

7.2.1 Modeling of Continuum Damage and Piezoresistive Effects

in the CNT-Polymer Nanocomposites

It is assumed that the continuum damage within the polymer matrix is isotropic. For the

microscale, we introduce a scalar damage parameter α such that1

Cα(x, t) = C0(x, t)(1− α(x, t)) (7.1)

in which C0(x, t) is the original undamaged isotropic stiffness matrix, Cα(x, t) is the damaged

stiffness matrix induced by continuum damage, x is the location within the microscale space

domain, and t is time. The damage parameter α(x, t) can vary across the domain and it is

assumed that α(x, t) ∈ [0, 1]. The Christensen’s failure criteria are used for the initiation of

continuum damage, which are summarized as below:

For 0 ≤ σT

σC
≤ 1

(
1

σT

− 1

σC

)(σ1 + σ2 + σ3) +
1

2σTσC

[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2] ≥ 1 (7.2a)

For 0 ≤ σT

σC
≤ 1

2

σ1 ≥ σT or σ2 ≥ σT or σ3 ≥ σT (7.2b)

in which σT and σC are the tensile and compressive strengths of the polymer matrix, and

σi (i=1 to 3) are the principle stresses. If the Christensen’s failure criteria are not satisfied, in

other words, if there is no damage in the material, we assign

α(x, t) = 0 and α̇(x, t) = 0 (7.3)

Or if the Christensen’s failure criteria are satisfied, not to lose generality, the governing law

for the evolution of continuum damage in the polymer matrix is formulated as the functional

1As the stiffness matrix is assumed to be isotropic, Eq. (7.1) can also be stated as Eα(x, t) = E0(x, t)(1−

α(x, t)), in which E denotes Young’s modulus.
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form below:

α̇(x, t) = f(α(x, t), εe(x, t)) (7.4a)

with

α̇(x, t) = 0 if (α(x, t) = 1 or ε̇e(x, t) ≤ 0 or εe(x, t) ≤ 0) (7.4b)

Eq. (7.4a) indicates that the rate of post-failure damage at a specific location depends on

the damage that has already been induced and the equivalent strain εe(x, t). Eq. (7.4b)

indicates that 1) if the damage has already been fully developed, i.e. if α(x, t) = 1, there

would be no further damage; or 2) if the rate of equivalent strain ε̇e(x, t) goes non-positive,

which represents the material is less deformed, there would be no further damage; or 3)

if the equivalent strain εe(x, t) goes non-positive, which represents the material is under

compression, there would also be no further damage. In this study we assume the evolution

of damage is volumetric such that εe(x, t) = εii, in which Einstein’s summation convention

is used. Following the work of (Yoon and Allen, 1999; Seidel et al., 2005), the specific

continuum damage evolution law in this study is assumed to be asymptotic and takes the

form as below:

α̇(x, t) = c(1− α(x, t))aεe(x, t)
b (7.5)

in which a, b, and c are material constants.

For the piezoresistive effect of the CNT-polymer nanocomposites, the dominant electrical

tunneling effect among the CNTs is considered within the microscale. The electrical tunnel-

ing algorithm within the finite element domain has been discussed in detail in our previous

work in (Ren and Seidel, 2013b). The tunneling resistivity within the critical tunneling

distance is expressed as:

ρtunnel =
h2

e2
√

2mλ(α)
exp(

4πd

h

√
2mλ(α)) (7.6)

in which h is Planck’s constant, d is the distance between adjacent CNTs, e is the electric

charge, m is the mass of electron, and λ(α) is the height of barrier of the polymer matrix. It
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is proposed that the height of barrier of the polymer matrix is linearly interpolated by the

continuum damage parameter α, such that

λ(α) = λo(1− α) + λvoidα (7.7)

in which λo is the original height of barrier of the polymer matrix without damage, and

λvoid is the height of barrier of the fully damaged void. The height of barrier of the polymer

matrix is linearly transited from the one of the original polymer matrix to the one of the

void. When α = 0, there is no damage in the polymer matrix therefore λ(0) = λo, and when

α = 1, the polymer matrix is considered to be fully damaged voids such that λ(1) = λvoid.

As observed in Fig. 7.1, when damage is developed from α = 0.0 to α = 0.5 to α = 1.0,

the electrical tunneling resistivity is shifted up by orders of magnitude from the original

non-damaged polymer matrix to the completely damaged voids. Applying this algorithm to

all polymer matrix elements can lead to clearly visible pattern of tunneling paths within the

matrix for percolated volume percentages, and the tunneling paths are evolving not only with

the change of relative distances of the CNTs, but also with damage. The continuum damage

and piezoresistivity is one-way coupled, and the piezoresistive response of the material can

become an indicator of the accumulation of continuum damage within the polymer matrix.

Figure 7.1: The semi-log plot of the electrical tunneling resistivity ρtunnel with increase of

the CNT separation distance d, as the height of barrier λ is kept at 1.0 eV (α = 0.0), 2.0 eV

(α = 0.5), and 3.0 eV (α = 1.0) respectively.
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7.2.2 The Multiscale Continuum Damage and Piezoresistivity Cou-

pled Finite Element Model

Limited by CPU memory and speed, a single scale finite element analysis for problems with

large degrees of freedom or large number of time steps is usually computational expensive

and sometimes infeasible. In particular, for materials with numerous nonnegligible microscale

inclusions, significantly varying material properties or governing fields, a multiscale analysis

can be a wise choice. However, in the multiscale analysis different scales have to be able

to effectively communicate with each other, in other words, the influence of one scale on

another has to be taken into well account. In our model, the multiscale finite element

analysis is conducted in two scales, and an in-house finite element code is developed. For the

macroscale finite element analysis, the microscale information is concurrently taken through

the course of the analysis, in a way such that at every element2 of the macroscale mesh, the

macroscale effective properties are obtained through homogenizations on the corresponding

microscale RVEs; on the other hand, for the microscale finite element analysis, the macroscale

information is applied concurrently to the corresponding microscale RVEs3. The detailed

multiscale computational algorithm is illustrated in Fig. 7.2.

As seen in Fig. 7.2, for the multiscale continuum damage algorithm, firstly it is assumed

that at a time step τ , for each macroscale element, the stiffness tensor for every element

of the microscale RVE is known, which is denoted as Cτ
n1,n2

. Microscale homogenization

techniques (Hammerand et al., 2007) can then be applied to the microscale RVEs to obtain

their effective properties, which are denoted as Ceff,τ
n1

, and are used to represent the ones of the

macroscale elements, i.e. C̃
τ

n1
= Ceff,τ

n1
. Once the macroscale mechanical material properties

are obtained from the microscale, the macroscale mechanical boundary value problem is

solved based on the macroscale mesh, such that the strain tensor ε̃τn1
for every macroscale

2It is assumed that there is only one integration point per macroscale element, therefore only one mi-

croscale RVE is used to represent each macroscale element.
3We use the terminology ’microscale’ to denote the lower length scale compared to the macroscale,

although it is worth mentioning that in this study the RVE is small enough to be called ’nanoscale’.
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Figure 7.2: The computational algorithm for implementing the multiscale finite element anal-

ysis. Note that the variables in ’∼’ are macroscale variables, otherwise they are microscale

variables. The macroscale element index n1 ∈ [1, nM], in which nM is the total number of

macroscale elements, the microscale element index n2 ∈ [1, nm], in which nm is the total

number of microscale elements, and the time step τ ∈ [0, τT], in which τT is the total number

of time steps.

element is obtained. The macroscale strain tensor ε̃τn1
is then applied back to the microscale

RVE for each macroscale element as boundary conditions to get the local microscale material

responses (for example, the strain tensor ετn1,n2
at every element of the microscale RVE can

be obtained). Further, by applying Eq. (7.4), the current rate of damage parameter α̇τn1,n2

and the predicted damage parameter ατ+1
n1,n2

at time step τ + 1 for every microscale element

of each macroscale element can be obtained. Having known the damage parameter ατ+1
n1,n2

at time step τ + 1, by applying Eq. (7.1), the damaged microscale stiffness matrix Cτ+1
n1,n2

for every microscale element of each macroscale element at time step τ + 1 can therefore be

obtained, and then the computations can go on to be conducted at the next time step.
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For the multiscale piezoresistive algorithm, as seen in Fig. 7.2, with the macroscale strain

tensor ε̃τn1
applied as boundary conditions for each corresponding microscale RVE, the resis-

tivities ρτn1,n2
of the microscale elements may not only be changed by the change of relative

distances of the CNT, but also be changed by continuum damage. Homogenization tech-

niques (Ren and Seidel, 2013a) are then applied to the microscale RVEs to obtain their effec-

tive resistivities ρeff,τ
n1

, which are used to represent the effective resistivities of the macroscale

elements, i.e. ρ̃τn1
. At last, with the resistivities ρ̃τn1

of each macroscale element known,

homogenization techniques are applied again at the macroscale to obtain the effective re-

sistivities ρ̃eff,τ of the macroscale material as a whole at time step τ . It can be seen that

the advantage of the multiscale model is that it gathers microscale information currently

at different macroscale mesh locations, and the mechanical-electrostatic inter-influence of

different macroscale locations of the material can be well taken into account.

As seen in Eq. (7.4), the accumulated damage can have an influence on the rate of current

damage parameter, therefore the material damage properties are history dependent. In

order to keep ’memories’ of the damage development, the Newmark method is used for both

of the macroscale and the microscale finite element analysis. The Newmark method is an

explicit time integration scheme mainly for solving dynamic problems, which is also highly

accurate for solving quasi-static problems, and what is most important to us is that it has

the advantage of keeping ”memories”.

7.3 Results and Discussion

For the single-walled CNTs considered herein, the outer radius is chosen to be 0.85nm, with

the thickness of the annular region chosen to be 0.34nm (Schadler et al., 1998). Under small

strain assumptions, the CNT annulus and Epoxy are taken to be isotropic linear elastic,

with the Young’s modulus and Poisson’s ratio of 1100 GPa and 0.14, and 2.46 GPa and 0.3

respectively (Saito et al., 1998; Zhou et al., 2008). The tensile and compressive strengthes
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for Epoxy can vary in a large range (Prospector Materials Database), as such, the tensile

and compressive strengthes of Epoxy are chosen to be 20 MPa and 60 MPa respectively,

which are within its typical range. The material constants a, b, and c in Eq. 7.5 for the

continuum damage evolution are chosen to be 0.6, 0.4, and 1.0 respectively. The initial

isotropic resistivity within the CNT annulus is chosen to be 10−5 Ω ·m (Ebbesen et al., 1996;

Seidel and Lagoudas, 2009), and Epoxy is likewise isotropic with resistivity of 1014 Ω · m

in the absence of electrical tunneling, which is within the typical range of values commonly

reported for insulating polymers in experiments. Barrier height for Epoxy without damage

is chosen to be λo = 1.0 eV, which is within the typical range for Epoxy (0.5 eV - 2.5 eV) (Hu

et al., 2012). It has been found that the height of barrier of void between several different

metallics is between 3.0 - 4.0 eV (Ferrante and Smith, 1985), therefore in a similar manner

we choose the height of barrier of void λvoid between CNTs to be 3.0 eV.

To simplify the problem, the focus is on the transverse performances of the CNT-polymer

nanocomposites, such that the mechanical problems are formulated based on 2D plane-strain

assumptions. For the macroscale and microscale problems, the linear triangular elements are

used, therefore there is only one integration point per element and the strains and stresses

are constantly distributed in the elements. In order to show how the multiscale model works,

two numerical examples are demonstrated, with the first focused on the single microscale

responses, as introduced in section 7.3.1, and the second focused on the macroscale and

microscale coupled responses of the nanocomposites, as introduced in section 7.3.2.

7.3.1 The Microscale Continuum Damage and Piezoresistivity Cou-

pled Response of the Nanocomposites

Consider a CNT-polymer nanocomposites in which there are 10%vol well-dispersed and

aligned CNTs. To represent the material with such micro structure, we use the ideal mi-

croscale hexagonal RVE with 4 CNTs as seen in Fig. 7.3a, and in contrast the random

microscale RVEs with 30 CNTs as seen in Fig. 7.3b and 7.3c. The three RVEs are intended
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to compare with each other in terms of the coupled damage-piezoresistive effect to see the

influence of CNT distributions and different damage evolution patterns on the piezoresistive

response of the material. At zero strain, as there is no damage within the polymer matrix,

the barrier height of the polymer matrix is constant at λo = 1.0 eV, and due to different CNT

distributions, the conductive paths are formed in different patterns for the three RVEs. For

the hexagonal microscale RVE as seen in Fig. 7.3a, as the CNTs are hexagonally arranged

to represent the well-dispersed and aligned CNTs, the conductive paths are correspondingly

hexagonally well dispersed to electrically tunnel the adjacent CNTs. In contrast, for the

random microscale RVEs as seen in Fig. 7.3b and 7.3c, as the CNTs are randomly dispersed

in the transverse X1 - X2 plane, the conductive paths tend to become random. Stronger

tunneling paths are formed among closer CNTs, and weaker tunneling paths are formed

among farther away CNTs.

Figure 7.3: The zero-strain resistivity distributions of the three microscale RVEs for the

polymer nanocomposites with 10%vol well-dispersed and aligned CNTs (Unit: Ω · m). a)

The 10%vol microscale hexagonal RVE, b) The 10%vol microscale random RVE 1, c) The

10%vol microscale random RVE 2. Note that the barrier height of the polymer matrix

without damage is chosen to be λo = 1.0 eV.

The plane-strain uniaxial tension tests under the macroscale strain field of (ε̃22 = ε̃0 =
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Figure 7.4: The Young’s modulus (E) contours of the three 10%vol microscale RVEs at

applied macroscale strain of ε̃0 = 0.50% and ε̃0 = 0.85% respectively (Unit: Pa). a1) The

10%vol hexagonal RVE at ε̃0 = 0.50%, a2) The 10%vol hexagonal RVE at ε̃0 = 0.85%, b1)

The 10%vol random RVE 1 at ε̃0 = 0.50%, b2) The 10%vol random RVE 1 at ε̃0 = 0.85%,

c1) The 10%vol random RVE 2 at ε̃0 = 0.50%, c2) The 10%vol random RVE 2 at ε̃0 = 0.85%.

0% − 0.85%, and ε̃11 = −ν ′21ε̃0) are applied to the three microscale RVEs4. The tests

are intended to cause progressive continuum damage within the polymer matrix, and the

coupled damage and piezoresistive effect is to be studied. The Young’s modulus contours of

the three RVEs at applied macroscale strain of ε̃0 = 0.50% are shown in Fig. 7.4a1, 7.4b1,

and 7.4c1 respectively. It can be observed that damage has accumulated in multiple places

within the RVEs by satisfying the Christensen’s failure criterion. For the hexagonal RVE,

as the CNTs are ideally hexagonally dispersed, the continuum damage is the same for all of

4As in Ref. (Ren and Seidel, 2013a), ν′21 is the effective Poisson’s ratio under plane-strain uniaxial tension

test, and is obtained at zero strain without damage.
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the CNTs, and for the two random RVEs, as the CNTs are randomly dispersed within the

plane, the continuum damage can be coalesced between adjacent CNTs. Correspondingly,

the resistivity contours of the three RVEs at applied macroscale strain of ε̃0 = 0.50% are

shown in Fig. 7.5a1, 7.5b1, and 7.5c1 respectively. It is observed in the RVEs that the

resistivities are higher at the damaged places, which affect but has not blocked the conductive

paths. The macroscale strains of the three RVEs are continued to be loaded at ε̃0 = 0.85%,

with the Young’s modulus contours shown in Fig. 7.4a2, 7.4b2, and 7.4c2 respectively. It is

observed that compared to the contours at ε̃0 = 0.50%, the damage has further developed

and coalesced with each other in most of the places within the RVEs. As a consequence, as

observed in Fig. 7.5a2, 7.5b2, and 7.5c2, most of the conductive paths are influenced and

some of them are entirely blocked.

To further study the correlation between damage and piezoresistivity within the nanocom-

posites, the responses of the volume averaged stress σavg
22 and the effective resistivity ρeff

22

of the three RVEs with the applied boundary strain ε̃0 from 0.0% to 0.85% are shown in

Fig. 7.6. It is of interest to see that damages within the RVEs are not reflective on the

stress curves until the applied boundary strain is at ε̃0 = 0.50%. In contrast, the effective

resistivity curves are very sensitive to damage. Once there is damage within the polymer

matrix, the effective resistivity curves can be immediately deviated from the ones without

damage and upswing by orders of magnitude when there is more damage developed. This is

because the average stress is the material’s average response therefore it can not reflect local

damage behaviors until the local damages have accumulated enough to influence the overall

average response. In contrast, the piezoresistive response is reflective of the disturbance of

conductive paths that electrically percolate the material, therefore once there is change in

the conductive paths, it can be immediately reflected in the change of effective resistivity of

the material.

It is also of interest to notice that the stress curves of the three RVEs are nearly the same. At

ε̃0 = 0.85%, the average stress are 1.43×107 Pa, 1.48×107 Pa, and 1.46×107 Pa respectively

for the three RVEs. In contrast, the resistivity curves of the three RVEs can have a large
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Figure 7.5: The resistivity (ρ) contours of the three 10%vol microscale RVEs at applied

macroscale strain of ε̃0 = 0.50% and ε̃0 = 0.85% respectively (Unit: Pa). a1) The 10%vol

hexagonal RVE at ε̃0 = 0.50%, a2) The 10%vol hexagonal RVE at ε̃0 = 0.85%, b1) The

10%vol random RVE 1 at ε̃0 = 0.50%, b2) The 10%vol random RVE 1 at ε̃0 = 0.85%, c1)

The 10%vol random RVE 2 at ε̃0 = 0.50%, c2) The 10%vol random RVE 2 at ε̃0 = 0.85%.

difference in magnitudes. From ε̃0 = 0.0% to ε̃0 = 0.85%, the effective resistivity of the

hexagonal RVE is increased from 1.24× 1011 Ω ·m to 1.55× 1016 Ω ·m, and by comparison

the effective resistivities of the two random RVEs are increased from 1.53 × 108 Ω · m to

1.02 × 1013 Ω · m and from 8.71 × 1010 Ω · m to 2.87 × 1017 Ω · m respectively. This is

because unlike the mechanical response which is linear elastic, the piezoresistive response

is governed by the exponential governing laws as in Eq. (7.6), such that dispersion of the

CNTs can matter more in terms of piezoresistive response. For example, as seen in Fig. 7.5b1

and 7.5c1, by comparing the two random RVEs at ε̃0 = 0.0%, it can be seen that due to

nonhomogeneous dispersion of the CNTs, the conductive paths are generally stronger in RVE
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1 than in RVE 2 in X2 direction, causing its effective resistivity to be 2 orders lower than

RVE 2. With the macroscale strains applied at ε̃0 = 0.85%, as seen in Fig. 7.5b2 and 7.5c2,

although due to damage the conductive paths in RVE 1 are severely disturbed, compared

to RVE 2, they are still able to electrically percolate the material, therefore the effective

resistivity of RVE 1 at ε̃0 = 0.85% is 4 orders lower than the one of RVE 2. Therefore it

can be seen that the distribution of CNTs is an important factor as it can influence both

of the local damage and the electrical tunneling paths, and the coupled effect of which are

important for the overall piezoresistivity of the material.

So far, we have studied the coupled continuum damage and piezoresistive response in the mi-

croscale, and good correlation is found between them. The microscale piezoresistive response

of the CNT-polymer nanocomposites is found to be able to capture the local damage behav-

ior and immediately reflect the damage events on the piezoresistive curves. In section 7.3.2,

by using the concurrent multiscale model, we will study how the microscale damage and

piezoresistive events have an inter influence on the macroscale material behaviors.

7.3.2 The Multiscale Continuum Damage and Piezoresistivity Cou-

pled Response of the Nanocomposites

Consider a macroscale square specimen (1 cm×1 cm) has a thick depth in X̃3 direction, and

has a hole (r̃ = 0.5 cm) at the center, as seen in Fig. 7.7. The specimen is made of polymer

nanocomposites with 10%vol well-dispersed and aligned CNTs in X̃3 direction. Plane-strain

uniaxial tension test is applied to the specimen with a macroscale boundary strain ε̃B
22 of

0.0% to 0.5%, and our goal is to obtain its coupled damage and piezoresistive response. Due

to a seven orders difference of the dimensions of the macroscale specimen and the CNT, it

would be tremendously expensive in terms of computation and unrealistic by using a single

scale simulation. As such, a concurrent multiscale simulation as proposed in section 7.2.2 is

used. The macroscale specimen is meshed by 707 elements, and for every integration point

of the specimen, there is a corresponding 10%vol microscale RVE as shown in Fig. 7.3a used
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(a) Hexagonal RVE

(b) Random RVE 1 (c) Random RVE 2

Figure 7.6: The coupled damage-piezoresistive response of the three 10%vol microscale RVEs

as the applied macroscale strain ε̃0 is from 0% to 0.85% (Stress unit: Pa; Resistivity unit:

Ω · m). a) The change of average stress σavg
22 and effective resistivity ρeff

22 for the 10%vol

hexagonal RVE, b) The change of average stress σavg
22 and effective resistivity ρeff

22 for the

10%vol RVE 1, c) The change of average stress σavg
22 and effective resistivity ρeff

22 for the

10%vol RVE 2. Note that the resistivity curves are in semi-log scale.

to represent the well-dispersed and aligned CNTs in the microscale.

Under the macroscale plane-strain uniaxial tension test, the multiscale coupled damage and

piezoresistive responses of the specimen are obtained and we chose to use the elements 130,

132, and 460 as shown in Fig. 7.7 to demonstrate the microscale responses at these three

distinct macroscale locations. As seen in Fig. 7.8a1 and 7.8a2, for element 460 at εB
22 = 0.5%,

as there is no continuum damage within the polymer matrix, the conductive paths are intact

by damage. In contrast, as seen in Fig. 7.8b1 and 7.8b2, for element 130 at εB
22 = 0.5%,
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Figure 7.7: Illustration of the macroscale finite element model under plane-strain uniaxial

tension test of ε̃B
22 = 0.0%− 0.5%. Note that 707 elements are used for the mesh. Note that

the origin of the macroscale coordinate system is at the center of the hole.

as the blue regions are the damaged polymer matrix regions, the conductive paths of these

regions are blocked. However, the material can still be electrically percolated in both X1

and X2 directions. Further for element 132 as seen in Fig. 7.8c1 and 7.8c2, as the polymer

matrix is mostly damaged, the conductive paths are entirely blocked.

The effective stiffness tensor component Ceff
22 and the effective resistivity ρeff

22 of all the elements

can be obtained through energy equivalence methods and are substituted into the macroscale

such that C̃22 = Ceff
22 and ρ̃22 = ρeff

22. For εB
22 = 0.0% − 0.5%, the change of C̃22 and ρ̃22 for

elements 130, 132, and 460 are shown in Fig. 7.9(a) and 7.9(b). It can be observed that the

more damaged elements have a lower C̃22, and at the same time a higher ρ̃22 due to different

degrees of disturbance of the conductive paths.

Through concurrent macroscale and the microscale computations, the contours of the effec-

tive stiffness tensor component C̃22 of the macroscale specimen at ε̃B
22 = 0.25% and ε̃B

22 = 0.5%

are shown in Fig. 7.10a1 and Fig. 7.10a2 respectively. It can be observed that at ε̃B
22 = 0.25%,

there is initial damage accumulated at coordinates (0.5,0) and (-0.5,0) on the hole, causing

the stiffness C̃22 to be reduced. Further at ε̃B
22 = 0.50%, the damage is developed to more
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Figure 7.8: The piezoresistive responses of the microscale RVEs at elements 130, 132, and

460 respectively of the specimen at εB
22 = 0.5%. a1) Contour of Young’s modulus of element

460 at εB
22 = 0.5%. b1) Contour of Young’s modulus of element 130 at εB

22 = 0.5%. c1)

Contour of Young’s modulus of element 132 at εB
22 = 0.5%. a2) Contour of resistivity of

element 460 at εB
22 = 0.5%. b2) Contour of resistivity of element 130 at εB

22 = 0.5%. c2)

Contour of resistivity of element 132 at εB
22 = 0.5%.

regions within the specimen, with the less damaged regions look like a ’sandglass’. Similar

contours can be observed in the von Mises strain distributions within the specimen, as shown

in Fig. 7.10b1 and Fig. 7.10b2. This is because the more damaged regions have lower stiffness

such that the strains are more easily concentrated at these regions. The contours of effective

conductivity component κ̃22 (ρ̃−1
22 ) of the specimen at ε̃B

22 = 0.25% and ε̃B
22 = 0.5% are shown

in Fig. 7.10c1 and Fig. 7.10c2 respectively. By comparing to the contours at Fig. 7.10a1 and

Fig. 7.10a2, it can be clearly observed that the conductivity contours can reflect the damage

regions very well, i.e. the more damaged regions have lower conductivities. Therefore, it can
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(a) C̃22 vs. ε̃B
22 (b) ρ̃22 vs. ε̃B

22

Figure 7.9: The material responses of the macroscale specimen at elements 130, 132, and

460 respectively. a) The change of macroscale stiffness tensor component C̃22 with the

change of macroscale boundary strain ε̃B
22 for elements 130, 132, and 460 respectively of

the specimen. b) The change of macroscale resistivity component ρ̃22 with the change of

macroscale boundary strain ε̃B
22 for elements 130, 132, and 460 respectively of the specimen.

be seen from the contours that there is a good correlation between the continuum damage

and piezoresistivity in the macroscale specimen made of CNT-polymer nanocomposites.

The volume averaged stress component σ̃avg
22 and the effective resistivity component ρ̃eff

22 for

the macroscale specimen under uniaxial tensile tension test are plotted in Fig. 7.11. It is

again found that the stress response at the macroscale is not sensitive to the microscale

damages until they are accumulated enough (at ε̃B
22 =∼0.32%) to influence the overall stress

response. On the other hand, the piezoresistive response of the macroscale specimen is

very sensitive to the underling microscale damage, and can reflect damages immediately by

upswinging the resistivity curve compared to the one without damage. However, compared

to the microscale piezoresistive responses that can increase by orders of magnitude, the

macroscale resistivity is increased within the same order from 1.87×1011 Ω ·m to 4.45×1011

Ω · m. This is because for the macroscale specimen, although the more damaged regions

can have orders of magnitude higher resistivity, the macroscale electrical flux can be still be

electrically conducted by the less damaged regions such that the conducting paths are not

entirely blocked in X̃2 direction. Therefore we can say that the overall piezoresistive response
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Figure 7.10: The contours of the stiffness tensor component C̃22, the von Mises strain ε̃v, and

the conductivity κ̃22 of the macroscale specimen at applied boundary strain ε̃B
22 of 0.25% and

0.50% respectively. a1) Contour of C̃22 at ε̃B
22 = 0.25%, b1) Contour of ε̃v at ε̃B

22 = 0.25%,

c1) Contour of κ̃22 at ε̃B
22 = 0.25%, a2) Contour of C̃22 at ε̃B

22 = 0.50%, b2) Contour of ε̃v

at ε̃B
22 = 0.50%, c2) Contour of κ̃22 at ε̃B

22 = 0.50%. Note that the conductivity κ̃22 is the

inverse of resistivity ρ̃22.

of the specimen is alleviated by the less damaged regions.

7.4 Conclusions

A computational concurrent multiscale piezoresistive modeling work is developed to study

the coupled continuum damage and piezoresistive effect of CNT-polymer nanocomposites.

It is found that the piezoresistive response of the nanocomposites is very sensitive to damage

events at both of the microscale and the macroscale, and can detect small damage events

before large scale damage events happen. This coupled damage-piezoresistive response of the



Xiang Ren Chapter 7 175

Figure 7.11: The coupled damage-piezoresistive response of the macroscale specimen as the

applied macroscale boundary strain ε̃B
22 is from 0% to 0.50% (Stress unit: Pa; Resistivity

unit: Ω ·m).

CNT-polymer nanocomposites is also found in various experimental testings in the literature,

for example in the work of (Gao et al., 2009a,b; Saafi, 2009; Kim et al., 2010; Cardoso et al.,

2012; Heeder et al., 2012). By studying the mechanism of the coupling between continuum

damage and piezoresistivity, this work gives theoretical and modeling support for the CNT-

polymer nanocomposites to be used in SHM applications.
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Appendix A

Periodic boundary conditions for the

plane-strain uniaxial tension test

For the macroscale effective homogeneous material, the constitutive relationship can be de-

noted as
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(A.1)

in which under in-plane strain assumption, ε̃33 = ε̃23 = ε̃13 = 0. For the plane-strain uniaxial

tension test with ε0 applied in 2 direction,

ε̃22 = ε0 (A.2a)

σ̃11 = 0 (A.2b)
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Therefore,
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Substitute (A.3b) and (A.3c) into (A.3a),

ε̃11 = −ν
Eff
21 + νEff

31 ν
Eff
23

1− νEff
32 ν

Eff
23

ε0 = −ν ′21ε0 (A.4)

The non-zero strain components ε̃11 and ε̃22 can then be applied as periodic boundary con-

ditions to the hexagonal nanoscale RVE of Fig. 3.2a, in which the effective Poisson’s ratios

can be obtained by using either computational micromechanics method (Hammerand et al.,

2007) or by using composite cylinder method (Seidel and Lagoudas, 2006).



Appendix B

Derivations of the effective gauge

factors for the plane-strain tension

tests

To obtain the effective gauge factors for the plane-strain tension tests, Eq. (2.38) is used. As

derived in A, for the macroscale plane-strain uniaxial tension test,

ε̃11 = −ν
Eff
21 + νEff

31 ν
Eff
23

1− νEff
32 ν

Eff
23

ε0 (B.1a)

ε̃22 = ε0 (B.1b)

ε̃33 = 0 (B.1c)
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Therefore,

Lf = L0(1 + ε̃22)

= L0(1 + ε0) (B.2a)

Af = A0(1 + ε̃11)(1 + ε̃33)

= A0(1− νEff
21 + νEff
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ρ0 = ρEff
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ρf = ρEff
22 (ε0) (B.2d)

Substitute Eq.s (B.2a) to (B.2d) into Eq. (2.38),
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Similarly, for the macroscale plane-strain biaxial tension test,

ε̃11 = ε0 (B.4a)

ε̃22 = ε0 (B.4b)

ε̃33 = 0 (B.4c)

Therefore,

Lf = L0(1 + ε̃22)

= L0(1 + ε0) (B.5a)

Af = A0(1 + ε̃11)(1 + ε̃33)

= A0(1 + ε0) (B.5b)

ρ0 = ρEff
22 (0) (B.5c)

ρf = ρEff
22 (ε0) (B.5d)

Substitute Eq.s (B.5a) to (B.5d) into Eq. (2.38),
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− 1) (B.6)



Appendix C

Geometry correspondence between

axial and transverse RVEs

For the axisymmetric nanoscale RVE as seen in Fig. 3.2b, the volume fraction of CNT is

Vf =
LCNTR2

outπ

L · R2π
(C.1)

in which,

LCNT = AR(2Rout) (C.2a)

L = LCNT + 2Ls (C.2b)

Ls is the separation distance between the ends of the CNT to the boundaries of the axisym-

metric RVE. Substitute Eq.s (C.2a) and (C.2b) into Eq. (C.1),

Vf =
AR · R3

out

(AR · Rout + Ls)R
2 (C.3)

As

Ls ≥ 0 and R ≥ Rout (C.4)

substitute R = Rout into Eq. (C.3), one can obtain

0 ≤ Ls ≤ AR · Rout(
1

Vf

− 1) (C.5)
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Choose Ls = Ls(AR = 1) as a constant parameter for the RVEs with higher aspect ratio

CNTs, and it can be seen that as AR→∞,

LCNT

L
=

AR · RCNT

AR · RCNT + Ls(AR = 1)
→ 1 (C.6a)

and

R → Rout√
Vf

(C.6b)

which is the limit case for which the transverse hexagonal RVE is a good approximation.



Appendix D

Verification on the finite element

piezoresistive modeling work

The linear elastic and electrostatic (without electron hopping) modeling works are first ver-

ified by comparing with the ones obtained from ABAQUS. For the linear elastic problem,

a plane-strain biaxial tension test (ε0 = 1%) is applied to the nanoscale hexagonal RVE

with 10%vol CNTs. The contours of ε11 and σ11 as obtained from my modeling work and

ABAQUS are shown side by side in Fig. D.1. It can be seen that the contours match very

well. By comparing ε11, ε22, ε12, σ11, σ22, and σ12 between my modeling results and the ones

from ABAQUS at the integration points, it is found that the maximum relative differences

are 0.013%, 0.023%, 0.0098%, 0.013%, 0.0024%, 0.040% respectively for all the elements

(NE=1 to 25012).

For the electrostatic problem without electron hopping effect and for the same nanoscale

RVE, a relative potential difference of ∆Φ = 10.239V is applied between the top edge and

the bottom edge. The contours of Ei and EPGi as obtained from my modeling work and

from ABAQUS are shown side by side in Fig. D.2. Note that the contours are inverse as

Ei = − ∂Φ
∂xi

, and EPGi = ∂Φ
∂xi

. By comparing the electric fields Ei between my modeling results

and the ones from ABAQUS at the integration points, it is found that the maximum relative
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(a) (b)

(c) (d)

Figure D.1: Comparison of my modeling work and the ones as obtained from ABAQUS for

the linear elastic problem. a) Contour of ε11 from my modeling work, b) Contour of ε11 from

ABAQUS, c) Contour of σ11 from my modeling work, d) Contour of σ11 from ABAQUS.

Note that the mesh contains 12803 nodes and 25012 elements.

differences are 1.0% and 0.026% respectively for all the elements (NE=1 to 25012). Therefore

by comparing with ABAQUS, it is verified that my linear elastic and electrostatic (without

hopping) modeling works are correct.
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(a) (b)

(c) (d)

Figure D.2: Comparison of my modeling work and the ones as obtained from ABAQUS for

the electrostatic problem without electron hopping. a) Contour of E1 from my modeling

work, b) Contour of EPG1 from ABAQUS, c) Contour of E2 from my modeling work, d)

Contour of EPG2 from ABAQUS. Note that Ei = − ∂Φ
∂xi

and EPGi = ∂Φ
∂xi

.
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For the piezoresistive modeling work, i.e. in which the mechanical and electrostatic responses

are coupled, the distribution of resistivity component ρ22 of the hexagonal nanoscale RVE

with 10%vol CNTs under plane-strain biaxial tension test of ε0 = 1.0% is shown in Fig. D.3.

It is checked that the resistivities of all the polymer matrix elements exactly follow the

governing equation curve of λ = 0.5 eV in Fig. 3.3, and the resistivities of the CNTs exactly

follow the piezoresistive constitutive Eq. 2.31. Therefore it is verified that the piezoresistive

modeling work is correct.

Figure D.3: The contour of resistivity component ρ22 of the hexagonal nanoscale RVE with

10%vol CNTs under plane-strain biaxial tension test of ε0 = 1.0% (λ = 0.5 eV).


