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Alfred K. Mayalu, Jr.

(ABSTRACT)

Finding lost persons, collecting information in disturbed communities, efficiently traversing

urban areas after a blast or similar catastrophic events have motivated researchers to develop

intelligent sensor frameworks to aid law enforcement, first responders, and military personnel

with situational awareness. This dissertation consists of a two-part framework for provid-

ing situational awareness using both acoustic ground sensors and aerial sensing modalities.

Ground sensors in the field of data-driven detection and classification approaches typically

rely on computationally expensive inputs such as image or video-based methods [6, 91].

However, the information given by an acoustic signal offers several advantages, such as low

computational needs and possible classification of occluded events including gunshots or

explosions. Once an event is identified, responding to real-time events in urban areas is

difficult using an Unmanned Aerial Vehicle (UAV) especially when GPS is unreliable due

to coverage blackouts and/or GPS degradation [10]. Furthermore, if it is possible to deploy

multiple in-situ static intelligent acoustic autonomous sensors that can identify anomalous

sounds given context, then the sensors can communicate with an autonomous UAV that can

navigate in a GPS-denied urban environment for investigation of the event; this could offer

several advantages for time-critical and precise, localized response information necessary for

life-saving decision-making.

Thus, in order to implement a complete intelligent sensor framework, the need for both



an intelligent static ground acoustic autonomous unattended sensors (AAUS) and improve-

ments to GPS-degraded localization has become apparent for applications such as anomaly

detection, public safety, as well as intelligence surveillance and reconnaissance (ISR) oper-

ations. Distributed AAUS networks could provide end-users with near real-time actionable

information for large urban environments with limited resources. Complete ISR mission

profiles require a UAV to fly in GPS challenging or denied environments such as natural or

urban canyons, at least in a part of a mission.

This dissertation addresses, 1) the development of intelligent sensor framework through the

development of a static ground AAUS capable of machine learning for audio feature classi-

fication and 2) GPS impaired localization through a formal framework for trajectory-based

flight navigation for unmanned aircraft systems (UAS) operating BVLOS in low-altitude ur-

ban airspace. Our AAUS sensor method utilizes monophonic sound event detection in which

the sensor detects, records, and classifies each event utilizing supervised machine learning

techniques [90]. We propose a simulated framework to enhance the performance of localiza-

tion in GPS-denied environments. We do this by using a new representation of 3D geospatial

data using planar features that efficiently capture the amount of information required for

sensor-based GPS navigation in obstacle-rich environments. The results from this disserta-

tion would impact both military and civilian areas of research with the ability to react to

events and navigate in an urban environment.
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(GENERAL AUDIENCE ABSTRACT)

Emergency scenarios such as missing persons or catastrophic events in urban areas require

first responders to gain situational awareness motivating researchers to investigate intelli-

gent sensor frameworks that utilize drones for observation prompting questions such as: How

can responders detect and classify acoustic anomalies using unattended sensors? and How

do they remotely navigate in GPS-denied urban environments using drones to potentially

investigate such an event?

This dissertation addresses the first question through the development of intelligent WSN

systems that can provide time-critical and precise, localized environmental information nec-

essary for decision-making. At Virginia Tech, we have developed a static ground Acoustic

Autonomous Unattended Sensor (AAUS) capable of machine learning for audio feature clas-

sification. The prior arts of intelligent AAUS and network architectures do not account

for network failure, jamming capabilities, or remote scenarios in which cellular data wifi

coverage are unavailable [78, 90]. Lacking a framework for such scenarios illuminates vul-

nerability in operational integrity for proposed solutions in homeland security applications.

We address this through data ferrying, a communication method in which a mobile node,

such as a drone, physically carries data as it moves through the environment to communicate

with other sensor nodes on the ground.

When examining the second question of navigation/investigation, concerns of safety arise in

urban areas regarding drones due to GPS signal loss which is one of the first problems that



can occur when a drone flies into a city (such as New York City). If this happens, potential

crashes, injury and damage to property are imminent because the drone does not know where

it is in space. In these GPS-denied situations traditional methods use point clouds (a set of

data points in space (X,Y,Z) representing a 3D object [107]) constructed from laser radar

scanners (often seen in a Microsoft Xbox Kinect sensor) to find itself. The main drawback

from using methods such as these is the accumulation of error and computational complexity

of large data-sets such as New York City. An advantage of cities is that they are largely flat;

thus, if you can represent a building with a plane instead of 10,000 points, you can greatly

reduce your data and improve algorithm performance.

This dissertation addresses both the needs of an intelligent sensor framework through the

development of a static ground AAUS capable of machine learning for audio feature classifi-

cation as well as GPS-impaired localization through a formal framework for trajectory-based

flight navigation for UAS operating BVLOS in low altitude urban and suburban environ-

ments.
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Chapter 1

Introduction

Mass causality events in urban areas have motivated researchers to develop intelligent sensor

frameworks to aid law enforcement, first responders, and military personnel with situational

awareness. The results from this dissertation impact the law enforcement and civilian areas

of research. Law enforcement solutions provide the ability to react to events and navigate in

an urban environment, whereas civilian solutions could expanded commercial delivery opera-

tions through precise for controlled flight paths for package delivery. The applications in this

dissertation are law enforcement solutions that would would provide analysts information of

anomalous events in real-time (i.e. screams and explosions) in an urban environment with

the ability to investigate using UAVs. Our specific focus illustrates a two part framework

for providing situational awareness by using both acoustic ground sensors and aerial sensing

modalities. We hypothesize that we can reduce the amount data needed for as well as being

able to illustrate a framework for enhanced situational awareness in urban environments

utilizing our two-part framework. Within both ground and aerial modalities the following

research questions are addressed:

1. Acoustic Ground Sensing

(a) How to autonomously detect and classify acoustic anomalies using unattended

sensors?

(b) How to implement solutions in a low-cost manner?

1
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(c) How to securely transfer data in remote locations or even in urban environments?

(d) what is the best method for data collections and task allocation for quadrotor

and dubins vechile?

In the first portion of this dissertation we illustrate the development of low-cost intelligent

AAUS integrating an interchangeable mobile radiation sensor, with the ability to transmit

actionable information to a UAV via data-ferrying. Our method continuously listens for

specific frequencies with the ability to measure radiation counts, implements on-board audio

classification via machine learning methods, and transmits the results requested to UAV

loitering above for secure point-to-point transmission (i.e. Data-ferrying).

2. GPS-Denied Localization

(a) What is the best method to generate navigable 3D maps for localization?

(b) How you use unoccupied navigable free space for localization when GPS is lost?

(c) How to detect and simplify planar features obtained from 3D point cloud for

localization on-board UAS?

(d) How to best apply simplified planar feature data to enhance localization on-board

techniques?

The second portion of this dissertation illustrates simulated improvements on GPS impaired

localization imperative for investigation in an urban environment. We accomplish this

through a new representation of 3D geospatial data using planar features that efficiently

capture the amount of information required for assured sensor-based and GPS navigation in

obstacle-rich environments.
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1.1 Motivation

The ability for sensing platforms to collect data intermittently in various settings has been

explored extensively. However, many existing solutions are not autonomous and cannot be

implemented in real-time. However, the maturation of the use of UAVs in the management

of urban environments in recent years has introduced a myriad viable solutions for civilian

and military applications [12]. The applications in this dissertation focus on first responder

and ISR in urban areas in both navigation and localization of events occurring where event

of interest occurred. Here we discuss the motivations for this dissertation considering both

ground and aerial modalities that must be addressed.

1.1.1 Acoustic Ground Sensing

Unattended acoustic ground sensors are used for various remote sensing capabilities from

environmental to military information efforts.These devices are placed on the ground and

automatically, gather sensor data, interpret, and communicate information back to some

other location. Intelligent static ground AAUS has become apparent for applications such as

anomaly detection, public safety and ISR operations. Distributed AAUS networks could pro-

vide end-users with near real-time actionable information in remote locations, difficult terrain

and low visibility conditions.AED aims to detect temporal boundaries of sound events from

acoustic recordings [124]. The implementation of AED on commercial and low-cost sensing

platforms has been explored extensively in realistic monitoring scenarios [6, 22, 78, 90]. The

investigation of prior arts of intelligent AAUS and network architectures [78, 90] do not

account for network failure, jamming capabilities or remote scenarios in which cellular data

wifi coverage are unavailable. Lacking a framework for such scenarios illuminates vulnera-

bility in operational integrity for proposed solutions in homeland security applications. This
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dissertation addresses the need for a near real-time, low-cost intelligent AAUS integrating

an interchangeable mobile radiation sensor, with the ability to transmit stored information

directly to a base station.

1.1.2 GPS-Denied Localization

When investigating in an urban environment, a UAV needs a map so you know where it’s

going; the most commonly used sensors for UAV navigation is the GPS receiver. GPS is a

satellite-based navigation system used to provide reliable timing and positioning to military

and civilian users. However,GPS navigation is subject to severe degradation and blackout

in urban areas and, a scalable framework is needed in urban UAS airspace for efficient and

reliable performance-based localization and path planning beyond GPS. During low alti-

tude urban operations, a UAS can frequently encounter portions of a flight path in which

GPS precision is significantly limited or GPS service is completely unavailable. In general,

buildings, infrastructures, and vegetation can block, diffract or reflect GNSS signals [10, 66].

This dissertation provides methods, experiments applications and introduces the framework

of a novel approach called 3D Tiles Nav data protocol, which improves the performance of

autonomous navigation in GPS-denied environments. We base our approach on a represen-

tation of 3D geospatial data that efficiently captures the amount of information required

for assured visual sensor-based and GPS navigation in obstacle-rich environments. This 3D

data storage and streaming protocol decomposes the navigable space of the environment into

manageable navigation cells. Using this navigation centric data representation, hyperlocal

values can be specified, and local performance of sensor-based navigation systems can be

simulated, predicted, estimated, and measured.

Thus, site-dependent GNSS effects comprise both of a reduction of available measurements
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and a loss of reliability due to multi-path and refraction phenomena. In some cases, a priori

knowledge of the 3D environment can be used to predict and avoid challenging conditions

at path planning level; however, the large size of the datasets becomes untenable for small

UAS. The use of unreliable GNSS can lead to a dilution of precision (DOP), or even to the

unavailability of positioning information if less than four satellites are visible. In the latter

case, navigation issues are emphasized by the relatively low performance of consumer-grade

MEMS inertial sensors commonly embarked on-board small UAS, leading to fast error growth

in absence of satellite-based position measurements [65]. In these scenarios, autonomous

flight is hindered by navigation issues, leading to significant difficulties in mission execution,

or at least to the necessity of manual control, which strongly limits UAS potential. Thus, it is

imperative that research efforts are being carried out concerning safe autonomous navigation

in these challenging environments.

1.2 Contributions

The main objective of this dissertation is to illustrate the feasibility of a two part framework

for providing situational awareness using both acoustic ground sensors and aerial sensing

modalities in urban environments. From the above discussion, it is clear that the proposed

work can give insight to not only near real-time monitoring but also GPS-denied localization.

The ability for sensing platforms to collect data intermittently in various settings has been

explored extensively. However, many existing solutions are not intelligent and cannot be im-

plemented in real-time. Thus, the need for a near real-time, low-cost intelligent AAUS with

the ability to transmit actionable information to a base station. We address this through dis-

cussion of current technologies, our implementations, and experiments as well as a complete

pipeline for future frameworks. Our method continuously listens for specific frequencies,
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implements onboard audio classification via machine learning methods, and transmits the

results requested. This technique utilizes existing hardware for data management and ma-

chine learning algorithms for classification, such as an inexpensive single board computer, a

Artificial Neural Network (ANN). Our approach performs a real-time Fast Fourier Transform

(FFT) continuously in an environment and calculates whether the frequency is within the

range of interest. If correct, the sound is recorded, and a pre-trained ANN, fine-tuned on

specific data will classify the recorded sound. Depending on the requested information the

node will either transmit radiation counts or the classification of the audio input. However,

the transmission of audio will only occur if the degree of certainty is above a threshold value.

Within both aspects of ground sensing modality described in section 1.1 the contributions

are as follows:

1. Acoustic Ground Sensing

(a) A solution for an acoustic monitoring system that can aid ‘ with allo-

cation of resources.

(b) Greedy data driven online path planning approach for data ferrying in

the event of a low data rate or large data size.

(c) Simulation and experimentation of our approach using real sensor data

to ensure sufficient data collection from all sensors in the least amount

of time and control effort.

Contribution (a) is addressed through discussion of current technologies, our implementa-

tions, experiments, and a complete pipeline for future frameworks. Our method continuously

listens for specific frequencies with the ability to measure radiation counts, implements on-

board audio classification via machine learning methods, and transmits the results requested.

This technique utilizes existing hardware for data management and machine learning al-
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gorithms for classification, such as an inexpensive single board computer, a ANN and a

bgeigie Nano radiation sensor. Our approach performs a real-time FFT continuously in an

environment and calculates whether the frequency is within the range of interest. If cor-

rect,the sound is recorded, and a pre-trained ANN, fine-tuned on specific data will classify

the recorded sound. Depending on the requested information the node will either transmit

radiation counts or the classification of the audio input. However, the transmission of audio

will only occur if the degree of certainty is above a threshold value. The on-board shallow

ANN implementation in this dissertation experiences an overall classification of 64%. Con-

tributions (b) and (c) discuss the maneuverability of a UAV and offer various opportunities

for performance enhancements for low-cost wireless communication using remote sensors in

isolated locations. UAV data-ferrying operations allow for sensor fusion using unattended

ground sensors for applications such as homeland security event control and occluded mon-

itoring. Current trends require offline path planning schemes, expensive aircraft, custom

sensing modules, and time necessary for manual human missions to retrieve data. These

contributions present a data-driven greedy online Dubins curve path planning algorithm

and the integration of two existing low-cost aerial and remote acoustic ground platforms for

data ferrying; a flying wing design (Ecosoar), and an intelligent AAUS [83, 84].

Within both aspects of aerial sensing modality described in section 1.1 the contributions are

as follows:

2. GPS-Denied Localization

(a) New set of algorithms for the extraction of planar features within 3D

point clouds and multi-level of detail models that lead to significant

data reduction for navigation.

(b) New set of algorithms with the simplification of 3D mesh models gen-
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erated from point clouds

(c) Algorithms for bandwidth requirements in urban and free space envi-

ronments

Contributions (a)-(c) introduce a novel approach to efficiently distribute and exploit 3D

maps to avoid precision dilution due to dead-reckoning in GPS-denied conditions. This

protocol has been designed to facilitate bidirectional exchange of the 3D data required

for trajectory-based operations and to increase the efficiency of 3D map-matching and 3D

feature-matching navigation in the low altitude (below 500 ft) urban airspace. This data

protocol uses a navigation-centric packet structure that only retains non-occluded geome-

try. By automatically decomposing the navigable regions of space into hyperlocal navigation

cells (e.g., 2-meter voxels), it conservatively and efficiently captures environmental surfaces

that are potentially visible to sensors from each cell and eliminates the need to transmit

occluded sub-surfaces. This packet structure improves the deliverability and usability of 3D

data, and enables new capabilities in tactical visualization, secure LOS communications, and

intelligent autonomous tactical navigation beyond the penetration and performance limits

of GPS. Our results, experiments, and simulations conclude that this data reorganization

enables 3D map streaming using less bandwidth for systems with limited on-board compute.

1.3 Organization of the Dissertation

• Chapter 2. Here we provide an overview of related work for each contribution pre-

sented.

• Chapter 3 (acoustic ground sensing). The approach for a scalable solution for a acoustic

monitoring system that can aid law enforcement with allocation of resources.
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• Chapter 4 (acoustic ground sensing). Here we discuss UAV data-ferrying operations

for sensor fusion using unattended ground sensors. Presenting our greedy data driven

online path planning approach for data ferrying in the event of a low data rate or large

data size.

• Chapter 5 (GPS-denied localization). In this chapter we discuss planar feature extrac-

tion and simplification as well as present algorithms for automatic generation localiza-

tion view cells

• Chapter 6 (GPS-denied localization). This chapter illustrates a preliminary analysis

for an utilizing planar features for localization in simulated urban environments.

• Chapter 7. In this final chapter we summarize our contributions the discuss future

work and make concluding remarks.



Chapter 2

Review of Literature

2.1 Acoustic Ground Sensing

Wireless Sensor Networks

The development of intelligent Wireless Sensor Networks (WSN) systems that can provide

time-critical and precise, localized environmental information necessary for decision-making.

At Virginia Tech, we have developed a static ground Acoustic Autonomous Unattended

Sensor (AAUS) capable of machine learning for audio feature classification. The prior arts

of intelligent AAUS and network architectures do not account for network failure, jamming

capabilities, or remote scenarios in which cellular data wifi coverage are unavailable [78, 90].

Lacking a framework for such scenarios illuminates vulnerability in operational integrity for

proposed solutions in homeland security applications. We address this through data ferrying,

a communication method in which a mobile node, such as a drone, physically carries data as

it moves through the environment to communicate with other sensor nodes on the ground.

Typical WSN are comprised of two main components: a set of (N) wireless sensor nodes and

a sink or base station. In these conventional systems, sensor nodes collect all sensory data,

upload relevant data via satellite or another medium to a sink for further analysis. As seen in

these works [54, 119, 127, 128], classic implementations of large WSNs involve sensor nodes

and sinks that are stationary which transmit data to the sinks via other nodes. However,

10
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these methods do not provide a solution when nodes are not within communication range of

each other; thus, the use of mobile nodes can be employed to “ferry” data to other nodes or a

sink [41, 63, 133]. A wealth of research has been dedicated to finding cost-effective solutions

regarding communication, energy efficiency, and mobile networking as seen in [24, 82]. The

use of delay tolerant networking schemes (i.e. data ferrying) has proved to be effective within

remote areas utilizing mobile nodes.

As seen in Figure 2.1, Li et al. [74] describes mobile WSNs in two categories: delay tolerant

networks and real-time networks. Delay tolerant networks are WSNs in which the age of

the data retrieved is still relevant hours or days after storage, while in real-time networks,

the value of the data can expire in hours or even minutes. Furthermore, Li et al.indicates

(Figure 2.1) approaches and proposed solutions for data collection by mobile agents in delay

tolerant networks using two branches: direct contact and rendezvous-based methods. The

direct contact method makes direct contact with each node, whereas the rendezvous-based

collection makes contact with the data at some intermediate sink in the network. Some

proposed solutions under the direct contact branch include classic solutions such as the

TSP [95] and the label-covering problem [74]. The rendezvous-based branch includes tree-

based and clustering solution methods. The shown solutions in Figure 2.1 illustrate the

multitude of methods investigated in solving this problem optimally. The choice of the

approach and solution is dependant on the problem, application environment, and type of

mobile node.

We classify the proposed problem as a delay tolerant network and a subproblem of a TSP

for the implementation of event monitoring. Utilizing an UAS as a mobile node, data is

transported similarly to prior works such as [23, 49, 84, 133]. A UAS is ideally suited to

collect data from a widely dispersed delay tolerant WSN that would otherwise be beyond

the communication range of a ground-based, central collection node. This architecture en-



12 CHAPTER 2. REVIEW OF LITERATURE

ables the UAS to address a large number of widely distributed sensors as opposed to static

nodes which address each sensor within a limited communication range and may have power

limitations.

Figure 2.1: Taxonomy of wireless sensor network solutions

Acoustic classification

Utilizing machine learning, significant efforts have been devoted to monophonic and poly-

phonic classification [98, 108], recently Mydlarz et al. [90]. and Maijala et al. [78]. How-

ever, no notable research has explicitly proposed solutions for the vulnerability of these

server-based solutions in the secure transfer of data, thus providing operational integrity for

homeland security applications.

Common approaches of monophonic classification of specific (i.e., clipped ) events are often

based on mel-scale spectral representations of signals for features using gaussian mixture

models (GMM) [7, 104, 120], support vector machines (SVM) [37, 103], hidden Markov

models (HMM) and recently a variety of temporally constrained deep learning methods such

as CNN [93, 108] and long short-term memory (LSTM) [80, 122] in classification. In the

case of polyphonic (i.e., overlapping acoustics events) classification a more complicated vari-
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ant of sound classification in which multi-label recurrent neural networks (RNN) [96] has

shown promise. In this dissertation, we consider monophonic classification that utilizes a

simple shallow two-layer ANN, proposed by Paolocci et al. [94] utilizing concatenated hand-

crafted features (Mel-Frequency Cepstral Coefficients (MFCC), chromagram, tempogram,

mel-spectrogram, spectral contrast, and tonnetz) trained on an offline platform and exported

to a low-cost single-board computer.

To efficiently build both shallow and deep machine learning models a significant amount of

data is needed. However, the number of environmental sound databases are limited due to

the slow annotation process of identifying and isolating of specific sounds. Thus, databases

containing environmental sounds are not easily accessible. Recently datasets such as Au-

dioSet [38] and Urbansound8k [109] have been made publicly available for acoustic classifica-

tion research. The AudioSet database made available by Google is a large-scale dataset tag

for 10-second audio segments within YouTube videos. The Ubransound8k database consists

of 10 acoustic classes of labeled real-world sounds (see Table 3.2 for distribution of data).

Here we evaluate our approach by using the UrbanSound8K dataset, due to its various SNR

conditions and published evaluated performance model.

To implement near real-time monophonic classification an event segmentation algorithm is

required to isolate the event from a continuous audio stream as input into a pre-trained

learning model. In this dissertation , we constrain algorithm design and experiments to

non-overlapping events for isolation and classification to demonstrate system reliability. The

different approaches used in audio segmentation can be categorized into three classes: model-

based segmentation [6], metric-based segmentation [55], and amplitude frequency-based seg-

mentation [29]. We implement a variation of Foote’s [29], Alkilani’s [6] and Jasonarson’s [55]

methods of FFT based cross-correlation thresholding. Input audio is first parameterized us-

ing standard spectral analysis normalization (e.g., FFT based methods) knowing the specific
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sound frequency of interest, a Hamming window and bandpass filter are used to reduce ambi-

ent noise and find frequencies of interest. We apply a fast cross-correlation of two consecutive

times if the cross-correlation is above an experimentally derived threshold value an anoma-

lous event has occurred. With the event detected a serial buffer is then used to capture a

portion of data before and after the event and send data to the logic control for classification

(section 3.2.2).

Communication Modeling

The communication architecture of a data ferrying WSN requires a traditional client and

server approach, where a UAS acts as a server and each node as a client when a UAS is

in range. We measure the data rate as the quantity of data received over the time interval

[39]. The speed at which this data is transferred is known as data rate which is computed

with the use of a communication model. Communication models can be used to determine

or predict the data rate between a UAS and each sensor node [39]. Additionally, researchers

use communication models to determine the ideal trajectory to each node using a trajectory

optimizer [37].

In practice, the most common models are Shannon-Hartley and empirically-based models.

The well-known Shannon-Hartley model [118] imposes a relationship between SNR, data

rate, and insertion delay to model node communication at different ranges [31]. As seen in

[31, 118], Shannon-Hartley Law states that the channel capacity C, known as the theoretical

maximum rate at which information passes error-free over a channel, this is equivalent to

the equation below where B is the bandwidth of a signal and SNR is the signal to noise ratio

for wave propagation [31].
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C = Blog2

(
1 +

S

N

)
(2.1)

where, C = Capacity (bit/s), B = Bandwidth of channel (HZ)

S = Signal power (W), N = Noise power (W)

Empirically-based models are developed based on real world experimental data. Similar to

Jodeh et al. [59], the empirically-based model implemented in this dissertation mimics the

observed behavior of the communications between the AAUS sensors and a UAS without

modeling the radio hardware to show dynamic simulation for adaptive flight planning.

Communication Protocol Stack

Communication in WSNs consists of a communication protocol stack which is defined as the

combination of different network protocol layers organized in hierarchy to facilitate commu-

nication [5, 24]. The protocol layers include the following: the application layer, transport

layer, network layer, data link layer, and physical layer. Each layer relies on one another and

has its own functionality described as the following: the application layer provides a set of

services and interfaces through software and user interaction; the transport layer maintains

a reliable end-to-end data flow between the sensor node and the UAS; the network layer

routes the packets provided by the transport layer; the data link layer allows for the medium

access control; and physical layer is responsible for frequency and power selection [5, 24].

Due to the proposed application of a low-cost monitoring system, an efficient transfer layer

is necessary for scalable event monitoring utilizing a data-ferrying communication scheme.

Traditionally in remote sensing systems, TCP is often used as a baseline communication
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protocol for current Internet of Things (IoT) applications [117]. The TCP protocol models

communication as a byte stream between sender and receiver and enforces reliability for

the delivery of every single byte. Furthermore, the in-order delivery and re-transmission

mechanism of the TCP protocol also causes head-of-line blocking [48] which introduces an

unnecessary delay which is intolerable for our implementation. As stated in Frewet al. [32],

traditional TCP performs poorly in UAS environments, thus there is a need for delay-tolerant

networks (DTNs) and communication protocols that allow for rapid succession transmission

of data without waiting for an acknowledgement after each packet.

Conventional algorithms used in the transport layer depend on continuous availability of

links which possibly allows for time-out procedures when links are unavailable. This method

is untenable for effective transfer of data from sensor nodes to a UAS. As stated in Ho et

al. [50], it is difficult to find communication protocols that guarantee low packet loss ratio, low

energy consumption, and high frequency of transmitting data. Thus, modifying traditional

algorithms allows for flexibility and availability of good quality connections. We implement

a variation of ZMODEM [30], an asynchronous communication protocol used to handle high

latency or high error rate communications.

Path Planning

In this application, to collect data from all sensor nodes, a UAS must travel to each node

to complete a full data transfer. This routing problem is well-studied and referred to as

the Traveling Salesman Problem (TSP) in which a salesman is given a list of cities and

asked to find the shortest possible route that visits each city exactly once and returns to

the origin city [19, 95]. The TSP is a well-known NP-complete problem which indicates

that no polynomial time solution exists, thus approximation algorithms are used to find

optimal solutions running in polynomial time [19]. However, our routing problem cannot be
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characterized as an exact instance of TSP because the UAS does not need to travel directly

to the node; it simply loiters in a circular path within a communication range. Furthermore,

vehicle dynamics must be considered due to the constraints of a UAS to accurately simulate

paths between nodes.

When using mobile sinks, the type of vehicle chosen for the TSP is an essential constraint

that can create other subproblems. Prior arts of data-ferrying with respect to non-fixed-wing

UAVs ignore vehicle dynamics in sensor-to-sensor paths and pre-calculate all trajectories

[56, 84, 136]. In these works [101, 102], the dynamics of a fixed-wing UAV are taken into

consideration by using the Dubins model when determining the optimal sequence of nodes

to visit. This subproblem of TSP is referred to as Dubins Traveling Salesperson Problem

with Neighborhoods (DTSPN) which minimizes the length of a path through a set of regions

in the plane (corresponding to the sensor communication ranges). As stated in [53], the

constraints of the Dubins’ model institute a maximum possible turning rate at constant

velocity [79, 101, 112]. This architecture allows fixed-wing UAVs to address a large number

of widely distributed sensors as opposed to a fixed-sink addressing each sensor within a

limited communication range. In this dissertation, we utilize a Dubins vehicle as a sink for

low data rate or large data size scenarios.

This section discusses recent works within the field of GPS-denied 3D map localization,

streaming, and navigation. First, specific challenges with streaming massive 3D geospatial

data sets are briefly discussed concerning current methodologies being implemented to solve

this problem. Next, we detail an illustration of the current state of the art and traditional

methods for processing 3D data sets for localization and navigation. l
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2.2 GPS-Denied Localization

Traditional Vs. State-of-the-Art Localization

Concerns of safety arise in urban areas regarding drones due to GPS signal loss which is

one of the first problems that can occur when a drone flies into a city (such as New York

City). If this happens, potential crashes, injury and damage to property are imminent

because the drone does not know where it is in space. In these GPS-denied situations

traditional methods use point clouds (a set of data points in space (X,Y,Z) representing

a 3D object [107]) constructed from laser radar scanners (often seen in a Microsoft Xbox

Kinect sensor) to find itself. The main drawback from using methods such as these is the

accumulation of error and computational complexity of large data-sets such as New York

City. An advantage of cities is that they are largely flat; thus, if you can represent a building

with a plane instead of 10,000 points, you can greatly reduce your data and improve algorithm

performance. Accurate localization and navigation over vast areas require very a large 3D

LiDAR point cloud. For on-board memory optimization, streaming is the solution of choice.

For large 3D geospatial data sets, streaming is traditionally performed either sequentially

[40, 131] or in prefetched mode [4, 45]. In [131], sequential streaming is performed by

the classification of data as it is being acquired, thus eliminating the need for streaming.

Furthermore, the authors in [45] first detect significant surfaces from an initial low-resolution

scan of the scene then acquire high-resolution scans in the areas of interest. However, this

method is limited by computational bottlenecks on mobile platforms needed for tactical UAS

missions. In prefetched streaming such as in [4], pre-localization and mapping are performed

offline and only once to obtain the map of an indoor environment that can be dynamically

updated for navigation and localization. Utilizing the aforementioned streaming methods,

various methods of processing are performed to both localize and navigate within the 3D
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map environment [4, 40, 45, 131].

There are a myriad processing methods for localization and navigation classified either as

state of the art [15, 27, 129], suggesting newer techniques, or traditional techniques [4, 70, 99],

implying methods typically accepted in the scientific community. New techniques proposed

in [15] apply a computer vision approach that integrates range, semantic segmentation, and

trajectory information to localize a UGV in a predetermined aerial map. To localize the UGV

in the aerial map, authors in [15] score similarity between descriptors generated from UGV

data and similar descriptors generated with the UAV data. Recently deep learning is becom-

ing a tool used at the forefront of computational processing in computer vision. Currently,

it has been used as a descriptor processing tool as opposed to manually designing key-point

descriptors for point clouds. In [27], authors apply a deep CNN to create a descriptor de-

scribing the geometric structure of a local subset of points (in the local-map) used to infer

potential matching regions for first-pass efficient course registration and then a second pass

using iterative closest point (ICP) fine tuning. While innovative and unique, [15] and [27]

utilize a standard computer vision technique of constructing descriptors for regions of point

clouds then finding matches for each descriptor. Authors in [129] approach localization in

urban environments using point clouds by finding and matching corresponding linear plane

features extracted from building footprints.

Localization methods discussed in [15, 27, 129] are considered unique regarding LiDAR point

cloud localization because of traditional techniques. Whereas, [4, 99] involve iterative compu-

tationally intensive matching which produces increased matching errors as the environment

changes. Authors in [4] present a localization approach based on a point-cloud matching

method that involves normal distribution transform (NDT) coupled with light detection and

ranging intensity. To cope with matching error associated with a changing environment, [4]

proposes to estimate the matching error beforehand then assign an uncertainty to the scan



20 CHAPTER 2. REVIEW OF LITERATURE

matching. Similarly, [99] employs the classic method of pre-localization and mapping, per-

formed offline and only once. By utilizing a three-step approach, [99] uses a distance matrix

to compute the matching error, Resilient Back-Propagation (RPROP), followed by a second

derivative. As seen in [4, 99], traditional localization methods are used because they provide

best results given the limitations of streaming and efficient LiDAR point clouds matching in

changing environments.

Iterative Closest Point Matching

Self-localization in outdoor environments using range sensors such as LiDAR has been tradi-

tionally implemented using scan matching techniques. The principle is to compute the sen-

sor displacement between two consecutive configurations by maximizing the overlap between

the range measurements obtained at each configuration [11]. In this section we compare two

types of related scan matching methods, point cloud and planar features matching.

The Iterative Closest Point (ICP) algorithm developed by [9] is a traditional approach typi-

cally implemented in point cloud to point cloud scan matching ICP aims to find the trans-

formation between a point cloud and some reference point cloud, by minimizing the square

errors between the corresponding entities [9]. The algorithm searches for pairs of near-

est points in two data sets and estimates the rigid body transformation that aligns them.

Then, a rigid body transformation is applied to the points of one set and the procedure

is iterated until convergence is achieved. The iterative portion of ICP is illustrated in the

correspondences that are reconsidered as the solution comes closer to the error local mini-

mum. Iteratively repeating these two steps typically results in convergence to the desired

transformation. Thus, as mentioned in [81] the goal of the algorithm is to find R and T that
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minimize the objective function:

f =
i=1∑
N

∥∥pi −Rqi
+ T

∥∥2
[81] (2.2)

As describe in [115], Due to the assumption that there is no full overlap, the algorithm creates

a maximum matching threshold. The choice of this threshold accounts for the fact that some

points will not have any correspondence in the second scan while representing a tradeoff

between convergence and accuracy [115]. Where lower values indicate poor convergence

and higher values causes incorrect correspondences error [115]. Further issues include data

storage limits for large maps, since the unprocessed 3D data must be saved for each scan. In

addition, the ICP does not release any surface structure information; therefore, it is sensitive

to noise and outliers.

RANSAC Planar Matching

An important class of algorithms for performing plane detection is RANSAC [28]. RANSAC

is a widely used technique, being reliable even in the presence of a high proportion of outliers.

When used in plane detection, RANSAC randomly choosing three points from the point

cloud, calculating the plane defined by them, and counting how many point cloud lie on this

plane within a tolerance threshold. The number of points found is called score of the plane.

The algorithm stops when it reaches stability, based on a low probability of finding a plane

with higher score than the previous ones. While being robust to noise, RANSAC’s random

nature makes it non-deterministic. Depending on the choice of its parameter values, the

algorithm may detect planes that do not represent the original dataset. [21] describes this

method as inefficient because a large number of hypotheses would have to be generated in

order to obtain a correct hypothesis. [21] further states that at a high probability a sequence
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consisting of a fixed number of randomly selected pairs contains only small surfaces whose

parameters have a high uncertainty, resulting in inaccurate pose estimation. Increasing the

number of pairs per sequence would also increase the computational effort.

Planar matching algorithms segment point clouds into planar surface segments then match

related planar feature reducing data point cloud bottlenecks [68]. These techniques can

roughly be categorized into Hough-based, region growing, or RANSAC-based approaches

[130]. Throughout related literature the common RANSAC [28] approach performs plane

detection by randomly choosing three points from the point cloud, calculating the plane de-

fined by them, and counting how many points lie on this plane within a tolerance threshold

[130]. This approach is typically used in the matching of point clouds, however when imple-

mented in [126] its iterative nature results in increased computation. Thus, we investigate

other planar feature matching methods such as,[21, 68].

In [68] planar surface segments are extracted from raw point clouds, projecting the point

clouds into lower dimensional space before extracting planar surface segments increasing.

This is based on 2D Delaunay triangulation, which requires an appropriate 2D projection of

the input point cloud. Two planar surface segments are matched if they lie on approximately

the same plane and if the difference of the two planar patches average intensity is below a

certain threshold. This process significantly reduces complexity of the global map making it

suitable to represent large-scale environments. [68] considers an example of a vehicle moving

through a corridor, every new state will have one additional wall segment connected with

the previous segments. These segments do not overlap in the environment, but they do lie

on the same plane and should represent one global planar surface, proving the need for a

co-planarity condition is check.

Hierarchical approach demonstrated in [21], first proposed by [35], which produces less frag-

mented surfaces while keeping relevant details. The parameters of the plane supporting a
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surface segment are determined by least-square fitting of a plane to the supporting points

of the segment. Each surface segment is assigned a reference frame with the origin in the

centroid of the supporting point set and z-axis parallel to the supporting plane normal. The

orientations of the x- and y-axes in the supporting plane are defined by the eigenvectors

of the covariance matrix representing the distribution of the supporting points within this

plane. Plane features are matched by pairs and ranked according to a measure of their

usefulness in the pose estimation process. Hypotheses are generated from a relatively small

number of the most ‘useful’ pairs.

3D Map-Matching

3D map-matching approaches use pre-acquired 3D data that has been preprocessed by

loop closure and other registration methods. The intermediate sensor scan, e.g. LiDAR,

is matched to the pre-acquired, corrected 3D map data and enables navigation at near

sensor-precision. Using smaller UAVs, and more precise prior 3D point cloud data, Near

Earth Autonomy achieved sensor-level (sub-meter) precision during waypoint following over

a limited range [66]. Autonomous ground navigation systems incorporating similar, prior

point cloud-based 3D maps have also demonstrated sensor-level, 0.4 m, precision [77].

To improve the efficiency of data delivery, our methods uniquely employ an encoding and

streaming of unoccluded 3D features. Map-matching localization algorithms may use points,

e.g. point clouds, or planar features, e.g. polygons, as the matched data elements or features.

Point matching algorithms include ICP, Hough scan matching (HSM), polar scan match-

ing (PSM), and RANSAC [73]. The standard method for matching 3D range data is to

apply the ICP algorithm for registration of two-point clouds [9]. As discussed in section 2.2,

ICP aims to find the transformation between a point cloud and some reference point cloud by

minimizing the square errors between the corresponding entities. However, ICP match ac-
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curacy suffers when the range values are sparse or noisy. Further issues include data storage

limits for large maps since the unprocessed 3D data must be saved for each scan [11, 115].

RANSAC and HSM are 3D registration methods which employ point clouds as the input

data but generate and use planar features during the scan registration/matching process [73].

There is growing literature showing that methods which extract and match planar features

during point cloud registration can significantly outperform point matching algorithms such

as ICP which do not employ planar features [42]. 3D registration algorithms which extract

planar features [64, 75, 97, 123] also allow data representations that are a more compact data

representation than point clouds. The work of [97] demonstrates that segmentation using

planar features can be used to accurately abstract a large number of laser points into a much

more compact, aggregate 3D map representation. [97] shows that planar feature matching

can provide improved computational efficiency using much less data when compared to point

matching algorithms. Furthermore, [130] states that planar surfaces can semantically provide

a compressive representation of the point clouds with data-compression rates over 90% as

seen in [62]. This planar feature 3D map matching system achieved reliable performance

even in unstructured outdoor environments.

Dense Occlusion in 3D Datasets

The problem of dense occlusion in 3D data sets has primarily been studied in computer

graphics. Various visibility methods have been developed to reduce the impact of occluded

surfaces on rendering performance. Visibility methods broadly fall into two categories, 1) run-

time occlusion culling methods - which cull surfaces occluded from a single viewpoint, and

2) precomputation methods – which remove the surfaces occluded from a region, [18]. Run-

time occlusion culling methods such as occlusion queries and hierarchical z-buffer rendering

must be executed for each image frame that is rendered [43]. These methods consume consid-



2.2. GPS-DENIED LOCALIZATION 25

erable CPU and GPU resources at runtime. In contrast, visibility precomputation methods

determine the set of surfaces potentially visible from an entire 3D region, often called a

navigation cell or viewcell.

From region visibility complete compution on a set of objects which partially visible from

anywhere in the viewcell. In general, from-region visibility preprocessing techniques aim

to compute a conservative overestimate of the exact visible set for a navigation cell. These

from-region potentially visible sets (PVS) can be precomputed and used as a working set at

runtime while the viewpoint is inside the corresponding navigation cell. Existing methods

of from-region visibility precomputation have limitations which have made them poorly

suited to computing visibility at a level of precision and granularity required to precompute

streamable VE packets. These methods are not conservative and, therefore, do not guarantee

that all visible surfaces are found. Failing to identify visible surfaces can lead to significant

visual artifacts for visualization applications and can negatively affect the performance of

3D scan matching algorithms.

Current methods such as volumetric visibility is another method of conservative, from-region

visibility that has been used in game development. Volumetric visibility uses a voxelization

of the inside volume of modeled objects [113]. In this method, only axis-aligned boxes con-

structed by the voxelization can function as occluders. This method requires that all surfaces

are closed, manifold surfaces. Like portal sequence visibility, it does not account for the fusion

of smaller occluders into larger aggregate occluders and, consequently, fails to capture much

of the occlusion in large geospatial data sets. Ray-space factorization is another method of

from-region visibility precomputation [71]. Although this method is conservative, it typically

overestimates the potentially visible set by 400-500% when used on densely occluded urban

models.
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2.2.1 Proposed Navigation Framework using 3D Tiles NAV

GPS position estimation includes a real-time estimate of positional error using the position

dilution of precision (PDOP) metric. PDOP is determined from a real-time analysis of the

position of the usable satellites and provides a metric for the actual navigational performance

(ANP) of GPS. As discussed in the related works, 3D map matching and 3D feature matching

navigation systems should report a reliable real-time estimate of position error. The position

error of 3D map matching and feature matching systems can be a complex function of map

precision and accuracy, sensor precision and accuracy, and the performance of the onboard

computational resources. The global accuracy of the localization result can, of course, be

affected by both navigation system parameters and environmental conditions as well as the

accuracy and precision of the 3D map data (Table 2.1).

Table 2.1: Performance Indicators

Performance
Parameter

Navigation System
Parameter

Data Optimization
Parameters

Location Accuracy
Sensor Range, Angular Resolution,
Sample Density,
Noise=f(Weather, Illumination)

3D Map Precision - Level of Detail,
Feature Count, Noise

Computation
Complexity

Sensor Field-of-View, View Direction 3D Map-Accuracy Local Variance
from the ground truth

Sensor Acquisition/Scan Rate Surface Area of Visible Surfaces
Single-Scan Convergence Rate Reflectivity of Visible Surfaces
Aircraft Intended/Actual Velocity Vector Point Feature vs. Planar Feature

Adjuncts: Inertial Navigation, GPS Range of Visible Surfaces from the
navigation cell

Computational performance depends on the ability of the onboard memory and processing

subsystems to handle both the incoming sensor data and the relevant onboard 3D map data.

We propose a framework that utilizes hyperlocal navigation cell voxels to compute variance
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metrics within subsets of the match results. These hyperlocal variance metrics will be used

to identify if the variance is caused by mismatch with a subset of the 3D map/feature data.

If an algorithm detects local variance, then the unmatched 3D map data is labeled, and

the non-corresponding unmatched scan data is stored. The value of hyperlocal mismatch

metrics over consecutive scans will be used to determine the probability of local feature

changes between the stored 3D map and the real-time scans. These metrics will be used as

heuristics to trigger the storage and potential transmission of mismatched feature data to a

server. By locally extracting efficient planar feature representations from the much larger

raw point cloud representations initially output from sensors, bandwidth requirements for

transmitting map-update candidate data is substantially reduced.

The navigation-centric structure of 3D Tiles Nav data facilitates these local comparisons by

identifying the navigation cells from which changed surfaces are visible and only updating

the navigation-centric data associated with affected navigation cells. Using this method, 3D

Tiles Nav data can be used to improve the efficiency of detect and avoid systems as well as

target tracking systems by providing information about the expected visible structure of the

stationary elements in the environment. In this way, onboard 3D Tiles Nav data can be used

to augment a range of navigation and guidance systems required for intelligent autonomous

operation.



Chapter 3

Acoustic Ground Sensing for Rapid

response Applications

3.1 Introduction

In this chapter we present our approach for an AAUS that continuously listens for specific

anomalous frequencies with the ability to measure radiation counts, implements on-board

audio classification via machine learning methods, and transmits the results requested. Our

approach performs a real-time FFT continuously in an environment and calculates whether

the frequency is within the range of interest. If correct, the sound is recorded, and a pre-

trained ANN, fine-tuned on specific data will classify the recorded sound. Depending on the

requested information the node will either transmit radiation counts or the classification of

the audio input. The rest of this chapter is organized as follows: our approach, experiments,

results and discussion, followed by conclusions and future work .

Nightmare scenarios of bombings, shootings, and terrorist threats have motivated researchers

to develop intelligent sensors to aid law enforcement, first responders, and military personnel.

The field of data-driven detection and classification approaches typically rely on computa-

tional expensive inputs such as an image or video-based methods [6, 91]. However, the

information given by an acoustic signal offers several advantages, such as low computational

needs and possible classification of occluded events, such as gunshots or explosions.

28
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Thus, the need for intelligent static ground AAUS has become apparent for applications such

as anomaly detection, public safety and ISR operations. Distributed AAUS networks could

provide end-users with near real-time actionable information in remote locations, difficult

terrain and low visibility conditions. AED aims to detect temporal boundaries of sound

events from acoustic recordings [124]. The implementation of AED on commercial and low-

cost sensing platforms has been explored extensively in realistic monitoring scenarios [6, 22,

78, 90] . Utilizing machine learning techniques authors Mydlarz et al. [90] and Maijala et

al. [78] implement AED on low-cost sensing platforms to detect then classify acoustic events

on an external cloud server.

With the emergence of deep machine learning, researchers approach audio feature classifica-

tion as supervised learning. In supervised learning, audio training samples must be available

for each class during training, validation, and testing stages. Concerning AED and classifi-

cation output classification can be categorized in two ways: monophonic (clip-level predic-

tion) and polyphonic sound event classification (frame-level prediction) [87]. In monophonic

sound event detection an AAUS first detects, records the specific event clip then classifies

the prominent event utilizing supervised machine learning techniques [87]. In polyphonic

sound event classification an AAUS records an entire event sequence allowing temporal axis

prediction for the classification of overlapping sounds [87]. Authors Salamon et al. [108]

and Pizack [98] both utilize feature learning for audio sound classification implementing a

CNN to distinguish environmental sounds on the Urbansound [109]/Urbansound8k[109] and

AudioSet [38] respectively.

The prior arts of intelligent AAUS and network architectures [78, 90] do not account for net-

work failure, jamming capabilities or remote scenarios in which cellular data wifi coverage

are unavailable. Lacking a framework for such scenarios illuminates vulnerability in oper-

ational or integrity for proposed solutions in homeland security applications. This chapter
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addresses the need for a near real-time, low-cost intelligent AAUS integrating an interchange-

able a mobile radiation sensor, with the ability to transmit stored information directly to

a base station. The integration a mobile radiation sensor allows for future pipelines of ra-

dioactive anomaly detection in secure remote areas [76]. Furthermore, we discuss a potential

framework for on-board storage and transmission of information using UAS for data ferrying

in the event of low data rates or secure information transfer.

3.2 Approach

Here we discuss our proposed system architecture, relevant hardware, and proposed data

ferrying framework. We first detail a developed system framework illustrating information

flow in figure 3.1. We then discuss relevant hardware utilized for the aforementioned frame-

work. Furthermore, we detail a potential framework data transfer using UAS capabilities to

provide secure data transfer in remote homeland security operations.

3.2.1 System Overview

The proposed architecture seen in figure 3.1 implements two sensor modalities in one inte-

grated system. Based on the animation a base station module will send a request for either

radiation counts or classified sounds. In figure 3.1, a sound event or a radiation event is

detected based on the user-defined mission. In the case of sound, an acoustic anomaly event

is first detected, isolated the subsequently classified then stored sending classifications to a

base station when requested. In the event of a radiation sensing, the bGeigie Nano radiation

sensor by Safecast first logs GPS tagged radiation counts sending event catalogs to a base

station when requested. We discuss acoustic sensing and radiation sensor modalities in detail
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in section 3.2.2 and 3.2.2 respectively.

Figure 3.1: Prototype AAUS System Overview

3.2.2 Hardware

Acoustic Autonomous Detection

The autonomous audio detection module is comprised of a Teensy 3.2 microcontroller and

its audio adapter board by PJRC. The Teensy 3.2 is a low-cost microcontroller capable

of high-quality low-latency audio and precise timing measurements, with size, price, and

capabilities, summarized in Table 3.1. It supports the Arduino environment which makes it

easy to program it as a measuring device.

As stated in section 2.1 there are several ways to detect and segment specific audio anoma-

lies. The chosen method was adapted from Jasonarson’s [55] work in which input audio is

parameterized using an FFT, assuming we know the particular sound frequency of interest.

A Hamming window and bandpass filter are used to reduce ambient noise and find frequen-
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Table 3.1: AED hardware summarization

Board Size Cost Processing
Teensy 3.2 18 mm× 34.5 mm $20 72 MHz Cortex-M4 processor

Teensy Audio board 35 mm× 37 mm× 2 mm $15 -

cies of interest. We implement a Hamming window as the noise-floor filter to limit the effect

of ambient noise as stated in Maijala et al. [78] for outdoor environmental conditions. Note

that a Hamming was implemented due to previously validated results however other filtering

techniques can experimentally derive to achieve similar or better results other environmen-

tal conditions [55]. We designed the detection module under the assumption that we are

looking for one specific frequency range event to isolate. When an input signal is sampled

by the Teensy module, we implement Hamming window, then take the FFT of the input

signal of bin size 256. Applying a bandpass filter, B = {bi|blow ≤ bi ≤ bhigh}, where bi is a

specific frequency with B such that blow is the minimum and bhigh maximum frequency bound

are determined experimentally of an interesting frequency range. We then use a fast cross-

correlation of two consecutive times steps signals (4s), this is done by transforming x1 and

y1 to the frequency domain (equation 3.1 and 3.2). We subsequently use a Discrete Fourier

Transform (DFT), multiplying the complex conjugate (y∗∗f ) of one of the frequency domain

signals by the other signal (equation 3.3 given by R(xy)f ), then computing the Inverse Dis-

crete Fourier Transform (IDFT) to yield the cross-correlation of x and y (equation 3.4 given

by R(xy)t). If the cross-correlation is above our threshold value an anomalous event as a

occurred and the current input signal is sent via serial communication to the logic classifier

for storage and classification(section 3.2.2).

F{xt} = xf =
N∑
t=1

xt × e
−j2πft

N (3.1)
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F{yt} = yf =
N∑
t=1

yt×
−j2πft

N (3.2)

R(xy)f = xf ⊛ y∗∗f complex conjugate (y∗∗f ) (3.3)

R(xy)t = F−1{R(xy)f} =
1

N

N∑
t=1

R(xy)f ∗ e
j2πft

N (3.4)

Figure 3.2: AAUS Prototyped system inte-
rior.

Figure 3.3: AAUS Prototyped system ex-
terior.

Logic Control

For proof of concept, we utilized a Raspberry Pi 2 Model B (RPI2) for acquiring, storing

and processing segmented audio from the teensy audio module( section 2.1). Its small-form-

factor and low overall cost are ideal for processing utilizing its 900MHz quad-core ARM

Cortec -A7 CPU [78]. We note the RPI2 module has the capabilities for data segmentation,

acquisition and processing however for power consumption constraints the RPI2 current draw

is 500-700mA while a Teensy audio module power draw is 10-27mA. Therefore as shown in

figure 3.2 we detect and segment the audio event using the Teensy module and utilize the

RPI2 module for logic processing seen the prototype module. For redundancy and flexibility,

we develop the option to forgo the use of the Teensy module in the event were power is not
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a constraint on the system. We also use a 3D soundcard seen in figure 3.2 for sampling

at a standard 44.1kHz. In the event of no communication with the Teensy module, the

RPI2 module would use the same microphone. The microphone used in the prototyped

module is a 20-20kHz Electret microphone with built-in Maxim MAX-4466 preamp. For the

amplification, a specialty chip integrated for amplifying Electret microphone in situations

where the loudness of the audio isn’t predictable.

Radiation Sensing

Bgeigie Nano (figure 3.4) by Safecast is a mobile radiation detector that can be used to

measure α, β, and γ radiation. This is done by implementing an LND 7317 radiation

sensor, a pancake style radiation sensor using a Geiger-Muller tube filled with a mixture

of neon and halogen gases.The bGeigie also contains a internal lithium-ion battery allowing

for the proposed AAUS module to rely on two power supplies rather than one common

supply. This sensor incorporates a GPS receiver and can send data wirelessly over Wi-

Fi, Bluetooth, XBee module by Digi Corporation utilized in our experiments [44]. The

proposed architecture implements an XBee module which allows for fast point-to-multipoint

or peer-to-peer network infrastructure that both the bGeigie and audio module can utilize

separately.

Proposed Data Ferrying Framework

As opposed to creating potentially vulnerable large distributed mesh sensor networks, a UAS

can be quickly deployed for unexpected or limited-duration missions. Furthermore, the ma-

neuverability of a UAS offers new opportunities for performance enhancement, through the

dynamic adjustment of UAS state to best suit the communication environment[134]. By ap-
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Figure 3.4: Safecast bGeigie Nano Module

plying adaptive communications schemes, UAS mobility can control to further improve the

communication performance. For example, when loitering a UAS could experience strong

signal connectivity to an AAUS on the ground. To maintain strong connectivity, it could

lower its speed to sustain good wireless connectivity to transmit more data. These bene-

fits make UAS-aided wireless communication a promising integral component data ferrying

for secure data transfer as stated in Zhang et al. [134]. The proposed data ferrying frame-

work as pictured in figure 3.5 illustrates short-range or long-range potentially line-of-sight

(LOS) communication link between a UAS and an AAUS. This proposed framework can be

established in most scenarios in which direct communication links between do the maneu-

verability of a UAS searching for signal strength. In figure 3.6, we illustrate a load, carry

and delivery scenarios. In the load stage, the UAS platform would request the specific data

for unlink from the AAUS and store on-board UAS via a communication protocol such as an

XBee module. The UAS would then carry the uploaded information to the base station and

download stored information, then travel to different AUS modules repeating the process.
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Figure 3.5: UAS Request Framework
Figure 3.6: Data Ferrying
Pipeline

3.2.3 Artificial Neural Network Architecture

As stated in section 2.1 there a several types of ANNs that have been explored concerning au-

dio such as, for speech recognition[22, 51, 96, 124], music and environmental classification[78,

98]. The emergence of many of these ANNs has been classified into two types traditional

and deep learning algorithms, such as multilayer perceptrons (MLP) and CNNs respectively.

The main difference between traditional and deep learning is feature extraction. Features in

machine learning are defined as an individual measurable property of an observed object or

phenomenon. In traditional machine learning, features are extracted manually (i.e. hand-

crafted), however in deep learning, such as a CNN, features are computed and extracted

automatically by the algorithm. Because we utilize a single board computer with limited

RAM and storage methods of deep learning are not applicable.

An MLP has interconnected layers of neurons that represent a nonlinear mapping between

the input vector of features and the output vector. Each connection between two neurons

has a weight and biases factor associated with it. As the input feature propagates through a

specific path of neurons, the output is a function of all of the weighting effects on the feature
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vector along with some activation function that transforms the data at each neuron. In

section we discuss feature extraction ,training method and the dataset used for training and

testing. As stated in section 2.1, we utilize ANN model architecture developed by Paolocci

et. al [94]. This MLP architecture consists of two hidden layers of size 256 units and soft-max

layer.

Figure 3.7: Examples of acoustic features visualized

Feature Extraction

We employ the common method of handcrafted features proposed by Xing et al. [132], ex-

tracting and concatenating the features (chromagram, MFCC, tempogram, mel-spectrogram,

spectral contrast, and tonnetz) of all the provided recordings into with librosa [86]. Pitch

class profiles, or chromagram (chroma), stand alone as the predominant input feature for

harmonic analysis systems. The extracted chromagram feature is defined as the projection

of the pitch helix to fundamental pitch class by discarding height information, as described

in Bartsch et al. [8]. MFCC features are a set of perceptually based spectral features cal-

culated from a similarity matrix, which compares features calculated from different frames
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of audio [29]. The Mel-spectrogram feature consists of widespread features for tagging cal-

culated by Short Time Fourier Transform (STFT), and log-amplitude spectrogram for pre-

processing phase [93]. The tonnetz feature is a harmonic network representation of pitch

intervals in which imposing an equal temperament tuning system. A tempogram feature the

local tempo and beat information is implemented using a mid-level representation of cyclic

tempograms [132]. As in figure 3.7, a visualization of the extracted features are shown in a

concatenated format.

Training Method

In equation 3.5, µ represents a learning pattern that consists of an input features vector, Xzµ,

and a corresponding output vector, Y zµ. The different layers of the network are represented

by m and each layer has n number of neurons. This means that the number of neurons of

the mth layer is represented by nm. To represent the connection between a neuron in the mth

layer to a neuron in the previous layer wm
ji is used where j is the neuron in the mthlayer and i

is the neuron in the mth−1 layer. It can be seen that the output for each neuron is µmµ
i which

takes into account all of the previous neuron outputs and the weight and biases factors plus

the activation function (which in this case is a tanh,sigmoid and sigmoid function for layers

two hidden layers and output layer respectively) represented by F.

µmµ
j = F (φmµ

j ) + bm = F (
nm∑
i=1

wm
jiµi(m− 1)µ) + bm (3.5)

δMµ
j = F (φMµ

j )(yzµj − µMµ
j ) + bM (3.6)

δmµ
j = F (φMµ

j )(

nm+1∑
l=1

w
(m+1)µ
lj ) + bM (3.7)
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Equations 3.6 and 3.7 show the error for the output neurons and hidden neurons respectively

where δ represents the error of the jth neuron for the µthtraining set. In equation 2 the M

specifies that it is for the total number of layers (since it is the output layer). As shown in

equation 3.5 , φ represents the aggregation function activations function.

∆wM
ji = ηµ

(M−1)µ
i δMµ

j (3.8)

∆wm
ji = ηµ

(m−1)µ
i δmµ

j (3.9)

Equations 3.8 and 3.9 show how the change in the weights values are calculated to be

updated. The constant η represents the learning factor. There are a few disadvantages with

the back propagation method, suffering from a slow convergence rate and susceptibility to

becoming trapped in local minima. MLP initialization is usually arbitrary unless significant

knowledge about the data set is known. However, by utilizing transfer learning, we avoid

the arduous task of playing with layer depth and minimization functions.Figure 3.8 is a

generalized illustration of the training and testing processes in which features are extracted

for training and a model is used for testing.

For training we first split the dataset into training(50%) validation(25%) and testing (25%)and

sets. We then extract features (section 3.2.3) from the training and validation set which aug-

menting the size of both sets. We then utilize Tensorflow [2] for implementation of mini-batch

gradient descent optimizer with even shuffled subsequent batches (batch size of 700) with

an exponential decay learning rate function defined by 500 global time steps a decay rate

of .9.We utilize dropout learning in each training iteration in which every hidden unit is

randomly removed with 50% probability. These random perturbations prevent the network

from creating learning dependencies and co-adaptations between hidden units [78, 98].
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Figure 3.8: Training and testing model framework

Dataset

In this chapter, we evaluate our approach on the Urban-Sound8K dataset, which includes

8732 typical urban sounds sampled from freesound.org as stated in [109] . The audio samples

consist of 10 environmental sound classes, seen in Table 3.2, with label of : air conditioner

(AC), car horn (CH),children playing (CP), dog bark (DB), drilling (DR), engine idling (EI),

gun shot (GS), jackhammer (JA), siren (SI) and street music (SM).

Table 3.2: Urbansound8k class distribution per class.

Class AC CP CH DB DR
Amount 1000 429 1000 1000 1000

Class EI GS JA SI SM

Amount 1000 374 1000 929 1000
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3.3 Experiments Results & Discussion

3.3.1 Experiment

To implement the MLP architecture described in section 3, we utilize a software package

called Tensorflow [2] leveraging a previously modeled two-layer MLP [94]. We completed

the experiments for the prototype AAUS module at the Unmanned Systems Lab (USL) at

Virginia tech in controlled lab space by minimizing ambient noise for verification of the clas-

sifier. The experiment consisted of a speaker set 10 meters away from the AAUS playing the

test data, seen in figure 3.9. The speaker cycled through test set that consisted of approx-

imately 25% of the dataset classifying them into 10 different trained classes. This process

was repeated over a 24 hour period with the prediction results averaged. We also prototyped

implementation with the communication with the bGeigie radiation sensor sending similarly

sized packets to a base station at a distance of 10 meters.

Figure 3.9: Experimental setup

3.3.2 Evaluation Metrics

For model evaluation, we utilize common evaluation tools such as a confusion matrix, overall

accuracy, precision, recall, and F1. A confusion matrix is a popular evaluation method used
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to summarize for of classification algorithms [87, 98, 120]. We define a confusion matrix C

of size NxN, where N is the total number of audio classes, and rows and columns referred

to the ground truth and predicted class labels of the dataset (Urbansound8K [109]), respec-

tively. Table 3.3 illustrates the confusion matrix for the defined experiment in section 3.3.1

in which each element, C(i, j), stands for the number of samples of class i assigned to class

j by using the MLP architecture defined in section 3.3.1. The diagonal of the confusion

matrix demonstrates the correct classification decisions. The confusion matrix in Table 3.3

is normalized row-wise as shown in equation 3.10. We determine overall accuracy of our

model as the fraction of samples of the dataset that has been correctly classified as seen in

equation 3.11. Furthermore, we define recall (R(i)), another performance metric, as the pro-

portion of data with true class label i correctly assigned to that class, seen in equation 3.12.

While precision, equation 3.13, is defined as the ratio of samples that were correctly classified

to class i to the total number of samples classified to that class. Lastly, the F1-score is also

computed (Table 3.4), which is the harmonic mean of the precision and recall values, shown

in equation 3.14 [120].

Cn(i, j) =
C(i, j)∑N
n=1C(i, n)

(3.10)

Overall Accuracy =

∑N
m=1C(m,m)∑N

m=1

∑N
n=1C(m,n)

(3.11)

R(i) =
C(i, i)∑N

n=1C(i,m)
(3.12)

P (i) =
C(i, i)∑N

n=1 C(m, i)
(3.13)

F1(i) =
2R(i)P (i)

R(i) + P (i)
(3.14)
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3.3.3 Results

Table 3.3 and 3.4 below show the confusion matrix, precision, recall and F1-score for each

audio class. The formulation of these tabulated results stem from the results from experi-

mentation completed in section 3.3.1.

Table 3.3: Row-wise normalized confusion matrix for testing experiment overall accuracy:
64%.

Confusion Matrix %
True Label AC CP CH DB DR EI GS JA SI SM

AC 73.0 0.0 5.8 1.7 2.7 3.2 0.0 4.4 2.0 7.3
CP 2.4 0.0 18.8 4.7 27.9 1.8 0.0 4.7 10.7 28.9
CH 6.4 0.0 55.2 0.3 3.8 6.4 0.0 2.7 9.7 15.4
DB 7.0 0.0 0.7 53.2 4.5 3.8 0.0 0.9 14.8 15.1
DR 1.4 0.0 5.6 0.8 78.4 1.1 0.0 5.8 2.3 4.5
EI 4.1 0.0 7.9 2.4 1.2 67.6 0.0 7.1 4.6 5.1
GS 3.0 0.0 21.1 5.8 10.3 9.3 0.0 4.6 20.4 25.5
JA 3.4 0.0 0.9 0.5 10.8 .9 0.0 79.2 0.5 3.8
SI 2.0 0.0 8.3 3.5 0.9 1.9 0.0 2.0 78.3 3.2
SM 6.0 0.0 14.8 2.3 4.4 4.2 0.0 4.6 6.0 57.7

Table 3.4: Row-wise Recall Precision and F1 metrics

Performance Metrics per class %
Class AC CP CH DB DR EI GS JA SI SM

Precision 71.0 0 51.3 75.4 65.8 75.6 0 71.7 63.8 48.1
Recall 73.0 0 55.2 53.2 78.4 67.6 0 79.2 78.3 57.7

F1-Score 72.0 0 53.2 62.4 71.6 71.3 0 75.2 70.3 52.5
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3.3.4 Discussion

The results presented in Tables 3.3 and 3.4 illustrate the defined performance metrics in

section 3.3.2. The overall prediction accuracy for the experiment was 64% with the best

prediction accuracy of JA at 79.2% and 75.2% respectively. Seen in Table 3.3, the classes

CP & GS are predicted poorly at 0%. We hypothesize three contributions for the expected

poor performance, feature extraction, model-depth, low number training samples. A possible

source of the severe misclassification is that the handcrafted features utilized rely heavily on

the spectral energy representation of input signal. We observe that class types of CP and

GS are largely misclassified into other classes with large amounts of spectral power such as

DR for CP and CH for GS. Another source of misclassification is model-layer depth, authors

in Salamon et al. [108] leverage both a deeply layered CNN reporting better overall accuracy

with the same dataset. The current flexibility of shallow model procedure implemented

allows for testing on small single-board computers such as a Raspberry Pi as opposed to

deep layer implementation as describe in Piczack [98] and Salamon et.al [108]. Deep layer

implementations such as PiczakCNN [98], SalamonCNN [108], show similarl overall accuracy

of 68%,71% respectively for the same dataset. Thus, we note that our result compare to

similarly to deep learning approaches implemented on a Raspberry Pi.

3.4 Conclusion and Future work

In this chapter we successfully implemented monophonic urban sound classification through

sound segmentation on a low-cost platform, illustrating a framework for secure transfer

through data ferrying. Furthermore, we propose the addition of Bgeigie radiation sensor for

further situational awareness and data collection. Acoustic segmentation was completed with

a Teensy 3.2 while a Raspberry Pi, was used for sound classification. utilizing a pre-modeled



3.4. CONCLUSION AND FUTURE WORK 45

ANN [94] trained Urbansound8K [109] dataset with with concatenated features: MFCC,

chromagram, tempogram, mel-spectrogram, spectral contrast, and tonnetz. We found that

the overall accuracy of our model was 64%. We hypothesize that this low classification

accuracy due to the type of handcrafted features that were extracted.

Future work includes an examination of directional information for localization of a sin-

gle source, followed by an implementation of our proposed data ferrying platform in which

strong signal strength is maintained through mobility control schemes. We could also use

recurring urban sounds for purposes of GPS-denied localization in which we add to localiza-

tion descriptors or use acoustic beam-forming to localize on specific area. Furthermore, an

investigation and comparison of various shallow ANN architectures as well as shallow CNN

implementations with different datasets such as Google’s Audioset [38] for low-cost single

board computing alternatives. Another point of further study will be an investigation of

multiple sensing modalities concerning computer vision, acoustics, and radiation.



Chapter 4

Adaptive Path-planning and Data

Ferrying for Acoustic Events

In this chapter we present our approach for sensor fusion using unattended ground sensors

for homeland security and civilian applications. Current trends require offline path planning

schemes, expensive aircraft, custom sensing modules, and time necessary for manual human

missions to retrieve data in remote areas. This chapter presents a data-driven greedy online

Dubins curve path planning algorithm and the integration of two existing low-cost aerial

and remote acoustic ground platforms for data ferrying developed by the authors; a flying

wing design (Ecosoar), and an intelligent AAUS [83, 84]. UAVs can provide real-time, high-

resolution images and do not need skilled operators due to autonomous waypoint integration.

Furthermore, if it is possible to deploy multiple in-situ static ground sensors that can com-

municate with UAV systems (e.g. acoustic signals), then this could offer several advantages

such as sound classification or localization of occluded events using WSN that implement

machine learning and time-of-arrival (TOA) techniques.

4.1 Introduction

Intelligent WSN systems can provide time-critical and precise, localized environmental infor-

mation necessary for decision-making. At Virginia Tech, we have developed a static ground

46
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AAUS capable of machine learning for audio feature classification. Our method utilizes

monophonic sound event detection in which the AAUS detects, records, and classifies each

event utilizing supervised machine learning techniques [90]. The need for data ferrying arises

in order to retrieve data in sparse WSNs for a rapid response. Data ferrying is a communi-

cation method in which a mobile node, such as a UAV, physically carries data as it moves

through the environment to communicate with other sensor nodes on the ground. Thus, in

sparse and delay-tolerant networks, this provides guaranteed delivery of data to end-users.

Data ferrying shows promise in reducing the cost of the overall system by commanding a

UAV to periodically fly over the sensor and collect data via wireless uplink. This concept also

allows many sensor systems to be queried economically, whereas a satellite uplink system

for a cluster of sensors is prohibitively expensive.

This chapter is an extension of our previous work completed in chapter 3 in which we

retrieve both the recorded audio and classification files in remote location. Here we propose

to use Ecosoar, a low-cost flying wing design, designed to be built with low-cost materials

available in any country, making it a feasible solution for operation in low-income countries.

Manufacturing requires a 3D printer, poster board, hot glue, a utility knife, and an electronics

kit. As demonstrated in our previous work [84], when the Ecosoar aircraft is in range of the

AAUS, data transfer will begin utilizing a ZMODEM-based communication structure [30].

We propose a novel approach for a greedy online active path planning algorithm for an

implemented data-ferrying system. In the event of a low data rate or large data size, the

Ecosoar aircraft will loiter within the communication radius of the AAUS until all data is

received. Once the data is received during the loiter path, the aircraft will re-plan a new path

from the egress point of its circular loiter path (determined by the communication range)

to the closest ground sensor using the length of the Dubins curve. This method utilizes

our flying wing design as a Dubins vehicle and assumes known locations of each AAUS; the



48 CHAPTER 4. ADAPTIVE PATH-PLANNING AND DATA FERRYING FOR ACOUSTIC EVENTS

cost to each node is the length of the Dubins path to each node. We assume the amount of

data and data rate of each AAUS sensor is unknown apriori, thus adaptive data collection

is needed while loitering above a sensor node for larger amounts of data to allow for all data

to be collected.

Our contributions to the existing body of knowledge stem from investigating a low-cost,

scalable approach for event monitoring through the use of commercially available sensing

and custom aerial platforms for data ferrying collection. Specifically we propose:

1. Greedy data driven online path planning approach for data ferrying in the event of a

low data rate or large data size.

2. Simulation and experimentation of our approach using real sensor data to ensure suf-

ficient data collection from all sensors in the least amount of time and control effort.

3. A scalable for an event monitoring system that can aid law enforcement with allocation

of resources

This chapter is organized as follows: We will describe materials and methods used detailing

each component of a data ferrying framework for an urban event monitoring. Next, we will

detail completed relevant hardware and simulated experimentation, and subsequently, we will

show results from experimentation. Lastly, we will analyze results and discuss implications.

4.2 Approach

Event monitoring systems must monitor high-risk regions persistently for activity. As a

result, data must be continuously sampled, recorded, and classified. With the emergence

of machine learning, researchers approach audio feature classification as supervised learning
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under the assumption the anomaly is known [83]. Developed at Virginia Tech, an intelligent

AAUS utilizes supervised machine learning techniques to first record the specific event clip

then classify the prominent event. Our method as seen in chapter 3 continuously listens for

specific frequencies, implements on-board audio classification via machine learning methods,

and transmits the results requested. This technique utilizes existing hardware for data

management and machine learning algorithms for classification such as an inexpensive single

board computer and an Artificial Neural Network (ANN). Each AAUS will store the acoustic

signature along with its classification as a text file and GPS receiver-derived time-stamp.

Figure 4.1 shows an overall schematic of the data-ferrying concept. This figure illustrates

an AAUS node placed by authorities with a placed in speafic location so that the node can

detect sounds within the region of interest. The sensor persistently monitor sounds at low

power, and when a signature of interest is detected, the sound is recorded and classified. In

order to collect data, Ecosoar will navigate to each sensor and will loiter above for varying

lengths of time dependant on the amount data required and/or data rate constraints. When

data collection has finished above a specific node, Ecosoar will then preform a data-driven,

greedy Dubins solution from the egress point of the circular loiter path in the communication

radius, selecting the minimum cost (length of the Dubins path) as the next node to collect

from. We prove that for applications of event monitoring in which the amount of data and

data rate is unknown, it is necessary to compute a new path from each egress point after

collection of data from each node to reduce complexity of the flight and flight time.

4.2.1 Ecosoar Aerial Wing

In order to retrieve both the recorded audio and classification files in urban locations, we

propose to use Ecosoar, a low-cost flying wing [121]. This UAV was designed to be built
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Figure 4.1: A sound event is first detected, isolated, classified with an ANN model, and then
stored. Classifications are transmitted to a UAS when requested

with low-cost materials available in almost any country, allowing for a feasible solution for

operation in low-income countries. Data-ferrying shows promise in reducing the cost of the

overall system by commanding a UAV to periodically fly over the sensor and collect data via

wireless uplink. This concept also allows many sensor systems to be queried economically,

whereas a satellite uplink system for a cluster of sensors would be prohibitively expensive.

UAS operations in less-developed countries have been slow in adoption due to overall cost,

expertise, and complexity of repair [121]. Using technology designed for competitive markets

is too expensive in less-developed economies where it is common to find start-up company

employees who earn one USD ($1) per day. With this economic factor in mind, EcoSoar

(Figure 4.2-A) was designed to be a feasible solution as it utilizes low-cost materials for

UAS operations in countries that lack the monetary needs and highly skilled expertise for
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Figure 4.2: A. 3D Model of Ecosoar showing spars through the Fuselage, Airfoil shaped
ribs, and leading edge supports in 1-3 as well as Servo Rib and Wiglet connector in 4-5.
B. Ecosoar airframe exterior. C. Interior of fuselage showing avionics such as a Pixhawk
controller, battery, and telemetry modules.[84]

operations and repair of more expensive UAVs [121]. With a cost of less than $400, this

aircraft is ideal for use in low-income countries with operations simple enough for someone

with minimal-to-no UAV experience. Complete manufacturing requires a 3D printer, poster

board, hot glue, templates, and a utility knife which makes the aircraft simple to fabricate

with limited resources.

The use of 30”x20” poster board as material for the wing provides manufacturers and op-

erators with an accessible and replaceable material often-called foam board, consisting of a

lightweight foam filling with a paper skin. For simplicity of production, the complete 2D

layout of the aerial wing (top, bottom, and control surface) was constructed with one piece

of poster board. The size of the fuselage was designed to fit a 3”x2” Pixhawk flight con-

troller and a 6”x2” battery, among other electronics needed for autonomous flight detailed

in Table 4.1 (seen in Figure 4.2-C). Once the 2D wings are cut out, folded, and attached to

the fuselage, the total span of the aircraft becomes 56.52”.
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For takeoff operations, a bungee system is used, comprised of 25 ft. of thick synthetic latex

tubing that can stretch up to four times its length, maxing out with a compression force

of 15 lbs. Furthermore, the production of Ecosoar has been simplified with guides and

tools developed such that someone with no UAV experience can fabricate and operate the

aircraft. In addition, operating procedures have been minimized to reduce human error.

The current platform has been refined by flight-testing over 10 aircrafts, with over 50 hours

of airtime. This aircraft consists of 3D printed components integrated for purposes such as

modularity and repeatability of builds. For control experiments, autonomous flight missions

were implemented for fine-tuning aircraft behavior using flight data and comparing different

builds to validate design changes.

For the implementation of our data-ferrying approach, we utilized a ground station with

navigation software, Mission Planner, that either has an internet connection or pre-fetched

map data. Mission way-points were programmed in Mission Planner’s “Flight Plan” and were

sent to the UAV over a telemetry connection. Utilizing such software minimizes risk, keeps

missions within possible performance levels, and allows a novice user to interact comfortably

with the software.

4.2.2 Communication Protocols

We implement a variation of the asynchronous communication protocol, ZMODEM, devel-

oped by Chuck Forsberg in the late 1980s to handle high latency or high error rate commu-

nications [30]. Implementing a sliding window and packet sequence numbers suggests that

multiple packets can be sent consecutively. Utilizing this technique, a rapid succession of

data are sent to the receiver by not waiting for a positive acknowledgment after each data

packet is sent. By using variable length data blocks and CRC error correction, ZMODEM
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Table 4.1: Selected electronics and cost table for EcoSoar [121]

Electronics Cost

Pixhawk+Accessories (Buzzer, Switch, Power Module) $99.99
915mHz 3DR Radio Telemetry $46.49
FrSky X4R Receiver (2.4gHz) $25.40

Multistar High Capacity 3S 5200mAh Multi-Rotor Lipo Pack $31.79
Electronic Speed Controller (ESC)+ Motors $31.30

Airspeed Senseors+ servos $34.88
3DR GPS Module $19.99

Raspberry Pi Zero+ Camera $34.95
Total: $323.91

first sends the file name, date, and size before sending the data [30]. The receiver node con-

tinuously sends back the starting location of the next part of the file. This is required for the

implementation of crash recovery if the transmission fails in the middle of the transfer [30].

However, in testing with the serial radios, ZMODEM did not show reliability and would

frequently delay in transfers. Thus, we developed a simpler protocol designed to handle the

low-reliability link based on the principles of ZMODEM.

The implemented protocol addresses the unreliability of communication links and the latency

plagued by communication protocols. We use automatic repeat query (ARQ) and packet

sequence numbers so multiple packets can be sent without an immediate acknowledgment.

When the AAUS is ready to send a file, it is divided into chunks of a specified size (256

bytes) and added to a circular buffer. The AAUS then iterates through the buffer sending

them to the Ecosoar aircraft. When the aircraft receives a acceptable packet, it sends an

acknowledgment to the payload with the sequence number for the packet. When the payload

receives the acknowledgment, it removes that chunk from the buffer. This is repeated until

the buffer is empty indicating the file was sent successfully.



54 CHAPTER 4. ADAPTIVE PATH-PLANNING AND DATA FERRYING FOR ACOUSTIC EVENTS

Figure 4.3: Data-Ferrying Algorithm Flowchart for UAV and AAUS: The UAV pings all of
the payloads looking for a response. If a response is received, it transitions into a receiving
state. After saving all files, it transitions back to the idle state. The payload checks if it
received a ping from the aircraft. Once it receives a ping, it sends a message to the aircraft
in acknowledgment and waits for the aircraft to send a start message. Once all of the files
have been sent, it transitions back to an idle state.

The packets sent for this protocol are based on the Xbee API frames and use a two-byte

delimiter, a two-byte packet length, a one-byte message identifier, the packet data, and a

one-byte checksum. The bytes of a packet are shown in Table 4.2.

Table 4.2: Protocol Packet Structure [84]

Start Delimiter Length Message Type Data Checksum
1 2 3 4 5 6 7 ... n n+1

There are six different types of messages used in the protocol. All of the message types are
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listed in Table 4.3. Most are used for the higher level control such as pinging the payloads

and start and end messages. The data and sequence acknowledgments are sent using the

Send_Data and Send_Acks messages, respectfully.

The higher level architecture of the system is a state machine for both the aircraft and the

AAUS. The overall architecture can be seen in a flow chart in (Figure 4.3). The aircraft has

an idle state of pinging all of the payloads looking for a response. If a response is received,

it transitions into a receiving state. From there it follows the protocol discussed above by

acknowledging all acceptable packets with its sequence number until all of the packets have

been received. After saving all files, it transitions back to the idle state looking for more

payloads. The payload has an idle state of checking if it received a ping from the aircraft.

Once it gets a ping, it sends a message to the aircraft acknowledging that it received the

ping and waits for the aircraft to send a start message. Once started, the payload follows

the protocol described above. Once all of the files have been sent, it transitions back to an

idle state. Both the aircraft and payload have timeouts in case the aircraft goes out of range

and the transfer fails.

The low power-usage of the commercially available Xbee pro-S2 ZigBee module from Digi

Xbee module allows for simple integration of communication protocols in the AAUS system.

This dissertation utilize commercially available Xbee pro-S2 ZigBee module from Digi [26].

The Xbee module operates on IEEE 802.15.4, employing a ZIGBEE standard module that

provides network security and application support services for a proof-of-concept design. The

low cost enables the deployment of this standard in wireless control applications. However,

to exploit advanced features of the ZigBee module, the aforementioned file transfer protocol

is needed to limit data packet loss and corruption from the UAV and sensor node.
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Table 4.3: Protocol Message Types [84]

Message ID Data Function

Start_Transfer 0x01 Aircraft Identifier Tell payload to start sending data
Send_Data 0x02 Seq_Num, Seq_length, file_chunk How data is sent

End_Transfer 0x04 Payload ID Tell aircraft all files have been sent
Ping_Payloads 0x05 Aircraft Identifier Tell payloads aircraft is in range
Send_Acks 0x06 Sequence Numbers Acknowledge correctly received chunks
Ack_Ping 0x07 Payload ID Tell aircraft this payload is in range

4.3 Hardware Experimentation

Our hardware experiments consist of two primary implementations used for real-time event

monitoring operations. In a real-time scenario, a UAV loitering above a sensor for an ex-

tended period would draw unwanted attention of perpetrators causing them to flee an af-

fected area. Thus, a single pass or fly-by over a static AAUS sensor node is needed to collect

as much data as possible before moving to another sensor node. In order to test the limi-

tations of this proof-of-concept data ferrying event monitoring system, we conducted fly-by

experiments in the open field and occluded environments. To simplify the experiment in

order to test a data ferrying data acquisition communication scheme, we made the assump-

tion that all sound classifications had occurred and data was stored on the AAUS. In the

open field experiment, an AAUS sensor was placed in an open area with no visual obstruc-

tions as seen in figure4.4 denoted by ground node-1. While in an occluded experiment, the

AAUS sensor was placed in a densely wooded area denoted as ground node-2 to determine

an attenuation a product of a realistic occluded area.

During open field experiments, the UAV flew a direct path over ground node-1 where the

average acquisition of signal (AOS) occurred at location AOS-1 (approximately 430 m up

range). The loss of signal (LOS) as shown in figure 4.4 occurred at approximately 470 m down



4.3. HARDWARE EXPERIMENTATION 57

range. In order to determine an approximate AOS/LOS location, we performed loitering

operations at various distances to determine realistic range locations. As seen in figure 4.4

from the location denoted as AOS-1, we created a simulated occluded environment by placing

the AAUS sensor in a densely wooded area. In both experiments, the AAUS was located on

the ground in order to realistically simulate situations within occluded/beyond visual line-of-

sight (BVLOS) environments. We acknowledge that an eastern deciduous forest in Virginia,

USA is not an equivalent urban occluded environment; however, this experimentation still

yielded valuable information on realistic UAV-assisted communication BLOVS environments.

AAUS sound classifications by the ANN model are typically 1 kb in size and in ASCII

format which can easily be decreased by using binary type formats, if needed. The data

used for transmission for this experiment consisted of two file sizes of ASCII data to test

the resiliency of transmission with both large (20 kb) and small (1 kb) files. The results for

each experiment were conducted 15 times over a three week period to ensure the consistency

of the data acquired. To ensure stability and avoid stalling at a fixed altitude of 110 m, an

airspeed of 15 m/s was chosen for the aircraft for both experiments.

Figure 4.4: Illustration of experiment: Data ferrying fly-by for open field and occluded
senarios. The UAV flew a direct path over ground node-1 where the average acquisition of
signal (AOS) occurred at location AOS-1 (approximately 430m up range) while the loss of
signal (LOS) occurred at approximately 470m down range.
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4.3.1 Hardware Performance metrics

Seen in Piyare et al. [100], the performance of wireless sensor networks are evaluated with

several metrics such as energy consumption, received signal strength indicator (RSSI), com-

munication range, and sensor throughput. We evaluated the performance of our data ferrying

platform through the metrics of communication range, sensor throughput, and feasibility of

implementation for the event monitoring system (i.e. scalability). The metrics of energy

consumption and RSSI are not considered because our proof-of-concept design has a sep-

arately dedicated power supply. RSSI measurements are only used to select AAUS nodes

that are seen in the same flight path. The chosen metric of communication range is evalu-

ated by observing average AOS and LOS locations along a flyby mission seen in figure 4.4.

Throughput is calculated as the total packet size divided by the total transmission time

seen in equation 4.1. where total transmission time is described as the elapsed time starting

immediately before sending the packet and ending when the entire packet has been received.

Throughput = 8 ∗ number of bytes received
Total transmission time (sec) (4.1)

4.3.2 Hardware Experimental Data Acquisition

A commercially available Dell M3800 labtop with 3.2 Ghz Intel I7 computer processing unit

(CPU) and 16 GB memory was used as the main ground station computer. As described in

section 4.2.1, we utilized Mission Planner, an open source software that provides a graphical

user interface (GUI) to manage and monitor the navigation of the aircraft [125]. This allowed

for repeatable experiments over several weeks and real-time status updates of navigation

plans, locations, and environmental noise. Each experimental flight was pre-programmed

and prepared as seen in an example flight path in figure 4.5. In addition to Mission Planar
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software, the code source for the testbed platform was developed using the Python program-

ming language. The power source for each experiment was a 10,000 mAh USB power supply

as the DC power supply of the RPI is 5V. Utilizing the communication protocol detailed

in section 4.2.2, data such as received signal strength, GPS locations, transferred data files,

and throughput were stored on an SD card by the aircraft and also viewed in real time by

operators.

Figure 4.5: Example of Programmed Flight in Mission Planner Software [121]

4.3.3 Hardware Experimentation Discussion

Here we display tabulated results in Table 4.4 and figure 4.6 that illustrate selected averaged

results for both experiments detailed in section 4.3. In Table 4.4, we show the averages of

total data transferred, percent of total data transferred, data rate, and communication range

while figure 4.6 illustrates a comparison of average throughput for a fly-by mission in open

field and occluded experiments.

In Table 4.4, we observe the averages of total data transferred, percent of total data trans-

ferred, data rate, and communication ranges. From tabulated values, we can observe an

approximate 20-30% decrease in successful packet transmission which can be attributed to
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three factors: packet transmission as a function of distance, signal attenuation in densely

wooded locations, and signal acquisition or loss of time along the flight path.

Table 4.4: Tabulation of selected data for open field and occluded experimentation

Total Data Transfer (kb) % of total Data Transferred Avg. Data Rate (kb/s) Communication Range (km)
File Size: 1kb

Location: Open Field 30 100 6.11 856
Location: Open Field 30 100 6.15 922
Location: Occluded 22 73.3 6.35 635
Location: Occluded 25 83.3 6.38 668

File Size: 20kb
Location: Open Field 74.8 93.5 15.14 933
Location: Open Field 80 100 15.29 868
Location: Occluded 66.4 83.3 14.91 822
Location: Occluded 72.8 91.8 14.21 823

Degradation of data rate as a function of distance is a common factor that affects LOS

communication seen in these works [46, 57, 135]. This impact is prevalent in figure 4.6

where we observe a drop in throughput for both open field and experiments at the end

of the flight path seen by distance (km) and time (sec). Seen in a occluded environment,

there is a significant decrease in throughput in comparison to the open field environment.

We propose that this occurs due to a combination of lack of line of sight and loss of signal

observed earlier (approximately 35 secs) in the fly-by mission in comparison to the open field

experiment. Furthermore, signal attenuation in wooded areas can be observed in Table 4.4

where as much as a 35% decrease in communication range occurs from open field to occluded

experiments. This decrease illustrates the delay in acquisition of a signal in the flight path

in a wooded area as expected in RF signal propagation expanded upon in [46]. As proved in

Harvanova et al. [46], the presence of wood and foliage in the path of the communications

link results in a degradation of signal quality in a dense occluded [47]. Despite the observed

signal attenuation using the implemented ZMODEM-based protocol, we observed as much

as 72kb of classification data (80 kb total) transmitted from the AAUS to the aircraft as

seen in Table 4.4.
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As suggested in [20, 48], decentralized communication schemes (i.e., individual sensor nodes)

provide easier scalability of networks compared to centralized approach (i.e., master-slave

networks). In our decentralized approach, we observe the amount of data transferred in a

single fly-by is significant for actionable decisions to be made. The endurance of this pro-

posed framework was shown by flying a combined 200 km during experimentation. Further

iterations of this framework could be segmented and serviced using different UAVs to reduce

battery swapping for faster data collections increasing the feasibility of this solution.

Figure 4.6: Data Rate During Pass for Open Field and Occluded locations : Comparison
of throughput as a function of distance and time into fly-by pass for both open field and
Occluded environments.
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4.3.4 Path Planning

In order to accurately represent experiments and simulations for the designed Ecosoar air-

craft, we consider mathematical models defined upon the kinematic and dynamic constraints

based on a fixed-wing aircraft model with Dubins trajectories that loiter above known sensor

positions. A Dubins curve path is the shortest path between two vectors in a plane that

meets the minimum bound of a turning radius providing the shortest path for a forward

moving Dubins vehicle (see Figure 4.7). As seen in Figure 4.7 the blue curved arc path

provides the constant turning radius which satisfies the maximum curvature constraint for

the UAV.

The Dubins path is a composite path formed by either two circular arcs connected by a

common tangent or three consecutive tangential circular arcs, or a subset of either of these

two. The first path is CSC path, the second one is CCC path, and the last one is either a

CS, SC or CC, where C represents the circular segment and S stands for the straight line

segment. Combining these two curves forms the shortest path between two poses. In this

work, we focus on CSC and CS type paths.

The aim of the works presented in this section is to generate optimal dynamic Dubins

trajectories from loitering positions above various sensors nodes. Due storage capacity and

data rates, sensor nodes require different lengths of loitering times to collect data. Utilizing

fixed-wing aircraft increases flight time; however,this strategy also increases the complexity

of the loitering path above various targets compared to a quadroter which flies linear paths

and loiters in a single spot. When collecting data using a fixed-wing, we consider a circular

path when planning egress routes to the next available node. The heading and egress point

of the aircraft at the loitering position above the sensor changes the cost to the next available

node based on when data has finished collecting.
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4.3.5 Task Valuation and Cost

In many TSP problems, the concept is centered around a cost or profit function in order to

determine an appropriate order in which to visit ”cities” or in this case sensor nodes. In our

system, the cost to perform available data collections is determined internally by the Ecosoar

aircraft using known positions of each sensor node. The exact formulation for the cost values

varies by specific missions Ecosoar is tasked to complete. However, the estimation of task

value generally includes two factors:

• The expected quality of task execution determined by the amount of data and time

needed to complete a mission objective.

• The expected amount of resources to be expended given the requirements of the task.

For example, the expected amount of power consumed or distance traveled to pursue

a task.

As such, a given robot ri can compute a non-negative utility measure, Urt, for the execution

of task tj from the quality, Qrt, and cost, Crt expected to result from the execution of the

task as follows:

Urt =


Qrt − Crt if r can execute task t and Qrt > Crt

0 Otherwise
(4.2)

Additionally, each robots’ utility estimate will be inexact due to sensor noise and changes

in the environmental state. These uncertainties will limit the efficiency of coordination that

can be achieved but are an unavoidable characteristic of the robotic domain.
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Figure 4.7: Dubins vehicle example, where x represents pose, u angular velocity, v constant
velocity, and ρ minimum turning radius.

4.3.6 Algorithm

In this section, we briefly discuss the algorithm that was used for data-ferrying and dynamic

task allocation. The high level objective of the algorithm is to find the optimal assignment

of tasks when the costs associated with the tasks vary. The algorithm makes the following

contributions:

• The algorithm analyzes the cost structure for a given assignment. It finds the optimal
assignment to obtain the minimum task assignment based on current heading and
position of the UAV.

• The algorithm addresses the problem of deciding whether it is beneficial to continue
with the current assignment even if the cost changes mean that it is no longer optimal.
The algorithm computes the worst-case cost if the robot retains its current assignment.
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Algorithm 1 Main loop structure
1: while Targets not reached do
2: Traj=traj_gen(uav_positions,node_postions)
3: C=cost_Function(Traj)
4: X=Assignment(C)
5: ordered_Tasks=arrange(X)
6: advance_uav(ordered_Tasks,Traj)
7: end while

Algorithm Description

Our task allocation problem can be summarized in the following way: given a robot and

m number of prioritized (i.e. weighted) single-robot tasks, assign tasks to maximize overall

expected performance. However, because the problem of task allocation is a dynamic decision

problem that varies in time with phenomena including environmental changes, we cannot

be content with this static assignment. Thus, we complete our reduction by iteratively

solving the static assignment problem over time. There is the question of how many tasks

are considered for assignment at each iteration. In order to create and maintain an optimal

allocation, the assignment algorithm must consider (and potentially reassign) every task in

the system.

With this purpose, we have used the Hungarian Algorithm as described in [89]. In this

algorithm, the input is a cost table established according to the cost needed for completing

different tasks, and the output is an equivalent cost table in which the array of zero needed for

a complete assignment constitutes an optimal assignment. The main idea of the algorithm is

to modify the cost table’s columns and rows until there is at least one zero in every column

or row so as to find a complete assignment scheme according to the zeroes. This scheme is

an optimal assignment when it is applied to the cost matrix for the total cost in this scheme
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is the least, and the algorithm can always converge on an optimal solution in finite steps.

Algorithm Development

Development of the algorithm took place in modular blocks. The base program was set

up in a way such that individual functions could be developed separately and then im-

plemented within the base program. Algorithm 1 illustrates the modular functions used.

Trajectory generation creates two types of trajectories for a quadrotor or a fixed-wing model

(i.e. ”traj_gen”). The cost function keeps track of the current cost to travel to a new node

(i.e. ”cost_function”), and the re-assignment function dynamically allocates a new sensor

node position based on the cost (i.e. ”assignment”). We detail each function here as follows:

1. Trajectory Generators

(A) Linear trajectories for point robot model: This function takes in the set of posi-

tions of the robot and targets along with the current assignment and generates

a straight line and constant velocity trajectories from the robot to its assigned

targets. This offers the most straightforward solution for a robot to travel to its

target. It also allows us to test other features of the algorithm and use this as a

baseline for comparison.

(B) Dubins curve trajectory generator: The Dubins curve trajectories consist of mo-

tion primitives such as ”go straight,””turn left,” and ”turn right” to take the robot

from its original positions to its final positions. In this case, the robot’s head-

ing also comes into play. It also allows us to introduce more dynamics into the

trajectory generator via turning radius and velocity limitations. Graphically, the

algorithm starts by drawing two maximum curvature circles that are tangential to

the initial state vector and two maximum curvature circles that are tangential to
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the terminal state vector. The result indicates that the optimal trajectory selects

an arc on one of the two initial circles and connects tangentially to an arc on one

of the two terminal circles. If the separation between the initial and end points

is sufficient, this can only be accomplished by a line segment.

2. Cost Function

The cost function in Algorithm 1 receives an input of all trajectories to each sensor

node. We assume that we are given a 1×n matrix of costs C, each entry of which, cj ∈

R≥0, quantifies the expected amount of resources the Ecosoar aircraft must expend to

perform the jth task. Where cj represents the euclidean distance between the Ecosoar

aircraft to the jth sensor node location. Seen in equations (4.3)-(4.7), let xj ∈ X be

a binary variable, where X is a 1 ×m assignment matrix with precisely one nonzero

element, and xj = 1 indicates that a task has been assigned to the jth sensor node.

Otherwise, xj = 0. We want to find an assignment X such that the objective function

expressed in equation (4.3) is minimized.

min
n∑

j=1

m∑
j=1

xjcj (4.3)

subject to
n∑

j=1

xj = 1, ∀j, (4.4)

and
m∑
j=1

xj = 1, ∀j, (4.5)

0 ≤ xj ≤ 1. ∀{j} (4.6)

xj ∈ Z+. ∀{j} (4.7)
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3. Assignment

The assignment function implements a type of dynamic task allocation in which the

assignment of the Ecosoar aircraft to sensor nodes can be considered a dynamic process

continuously adjusted in response to changes in heading and location of the egress

points during different data collections. As the egress point changes so does the cost to

various nodes, thus precalculated models are insufficient. We solve this by altering the

assignment of sensor nodes given new constraints imposed by the updated information.

As such, the dynamic task allocation methodology is not bound to function by its

initial constraints and knowledge base. It allows for the robot to visit a number of

tasks over time while maintaining a level of optimal performance. The reactive nature

of dynamic task allocation techniques is what allows the system employing it to cope

with an uncertain work context.

As shown in equations (4.3)-(4.7), the assignment matrix, X, selects the active costs

from the cost matrix, C, which are then summed to obtain the current total cost,

which we must minimize. While this problem formulation can be solved with a lin-

ear programming algorithm such as the simplex method, this an optimal assignment

problem (OAP).

4.4 Simulation Experimentation

Simulations are the next logical step to verify optimal trajectory solutions. Simulation

experiments were conducted at both randomly placed and known locations within a 600 ×

600m2 area at the KEAS laboratory (figure 4.8). We simulate our solution with two main

experiments with two different aircraft models representing Dubins (fixed-wing) and point-

point models (quadrotor). Each AAUS unit is modeled as a point location in this area with a
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circular sensing radius using an empirical communication model (determined experimentally

in section 4.3). Both quadrotor and fixed-wing experiments are modeled as a point robot

with an airspeed of 15m/s for both experiments along with acceleration/deceleration taken

into account. The number of sensor nodes are constant and defined at the beginning of the

simulation. All the experiments have been simulated using Matlab and were executed on a

macOS with an Intel Core i7 3.16 GHz CPU and 16GB of RAM.

Figure 4.8: Kentland Experimental Aerial Systems (KEAS) Laboratory located at Virginia
Tech. This testing facility consists of a 300ft. by 70ft. asphalt airstrip located at the center
of a 3,200-acre College Farm

Simulation Procedure

In our Dubins model experiments, a solution similar to DTSPN (described in section 2.1)

was simulated along with the algorithm discussed for dynamic loiter, collecting data from

five different sensor nodes of varying averages of data rate (5kbits/s, 7kbits, 15kbit/s and
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20kbit/s). To begin, the simulated Ecosoar aircraft flew from a ”start” position and loitered

above different nodes employing our methodology of Algorithm 1 until all data was collected.

This Dubins model shown in Algorithm 1 was compared against three traditional routing

methods. They included: a greedy sensor selection, randomly ordered sensor selection still

utilizing Dubins paths, and a point-to-point linear TSP solution for a quadrotor.

In the greedy solution, seen in Figure 4.9b, the Ecosoar aircraft first visits the target to which

it is assigned (i.e. the sensor node with the smallest euclidean distance). Then, assuming

that the next sensor node is not already visited, the process is repeated; that is, the aircraft

will find the next trajectory of minimum cost (i.e. euclidean distance) of all others and so

on. Using the random order solution, Ecosoar visits sensor nodes in a random order sampled

from using a uniform distribution, visiting all sensor nodes then returning home. For the

point-to-point model, seen in both Figure 4.9a and 4.9b, a quadrotor flew in a linear path and

loitered above each node collecting data. Similarly to Riehl’s [105] work, we measured the

completion time of the entire mission, time of completion per sensor node, and compared

traditional methods to the solution presented in our work. An example of the simulated

flight path for both the greedy solution and dynamic data driven flights path are shown in

Figure 4.9. In each simulation, a fixed altitude of 110m and velocity of 15m/s were used to

match real flight conditions.

4.4.1 Simulation Results and Discussion

Our adaptive egress point algorithm presented in this work was initially tested in MATLAB.

A prototype algorithm was created to simulate a collection scenario with 5, 10, and 20

sensor nodes at a variety of distances in a 600m2 region. All agents start from the same

initial position, move at a constant speed of 15m/s. The results of 200 simulation trials are
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(a) Dynamic data driven solution (b) Greedy Solution

Figure 4.9: Examples of simulated experiments for various path routing protocols using
Dubins and linear path models

shown in Table 4.5 for our adaptive egress point algorithm for a full data collection from 5,

10, and 20 sensor nodes. Seen in Table 4.5 when regarding lines 2 and 3, the completion

time requires 3.5 times longer. We observe that as the number of sensors increases, our data

driven method fails to complete the tour in a time-efficient manner. We attribute this to the

complexity of the necessary paths to complete. Thus, the need for a multi-vehicle solution

with task allocation or another path planning solution would be needed. In Table 4.6,

we observe a comparison of the performance in our data-driven algorithm with previous

proposed solutions such as a greedy [105] or a randomized solution. In Table 4.6, we observe

that for a complex path planning (20 sensors), a greedy TSP solution is favorable compared

to our method; however, our method illustrates promise for simple paths (5 sensors). Our

results are encouraging as they show that the data-driven algorithm compares favorably with

established greedy methods. In contrast, we find that our algorithm lacks performance in

complex data retrieval collects.
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Table 4.5: Average Tour Completion time for 200 Runs - Data Driven Method

# of Sensors Average Tour (s)
5 628
10 1664.2
20 5628.964

Table 4.6: Algorithm Performance Comparison for 200 Runs

Solution Method Avg Tour (s) -5 sensors Avg Tour (s)-20 sensors

Greedy TSP Tour 751.2 5541.9
Data Driven Loitering Tour 628 6628.9
Random selection Tour 920.3 8121.1

4.5 Conclusion and Future Work

In this chapter we detailed an approach for a greedy online active path planning algorithm

for an implemented data-ferrying system. In the event of a low data rate or large data size,

the Ecosoar aircraft will loiter within the communication radius of the AAUS until all data

is received. This method utilizes our flying wing design as a Dubins vehicle and assumes

known locations of each AAUS. We observed that as the number of sensors increases, our

data driven method fails to complete the tour in a time efficient manner. However, we

observed that our method illustrates promise when completing simpler paths. For complex

path planning (i.e. 20 sensors), a greedy TSP solution is more favorable compared to our

method. Our contributions to the existing body of knowledge stem from investigating a

low-cost scalable approach for event monitoring through the use of commercially available

sensing and custom aerial platforms for data ferrying collection. Specifically we propose:

1. Greedy data driven online path planning approach for data-ferrying in the event of a
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low data rate or large data size.

2. Simulation and experimentation of our approach using real sensor data to ensure suf-

ficient data collection from all sensors in the least amount of time and control effort.

3. A scalable solution for a event monitoring system that can aid with allocation of

resources in specific areas.

In the future, we will implement these results on a real-world system and introduce multiple

vehicles to improve results.



Chapter 5

Efficient streaming of 3D maps and

LiDAR Data reduction for unmanned

navigation

Ground operations in urban environments present a considerable risk to dismounted and mo-

bile tactical teams. Special operations, counterterrorism, and other missions require forces

to operate in complex, densely occluded urban environments. In these situations, an ad-

versary can often exploit in-depth local knowledge of the 3D structure of the environment

to establish optimal cover, maintain concealed firing positions, and channelize the attacking

force into exposed ingress routes. Small UAS operating at low altitude and indoors could

potentially provide real-time situational awareness in these conditions but are constrained

by the limited availability of GPS in these environments and by a lack of detailed 3D map

data required for precision sensor-based navigation in complex environments.

In this chapter we introduce the ability of a UAS to travel into a GPS-denied enviroment.

First responder and militaristic applications for an open-source framework for the rapid pro-

cessing, exploitation, and dissemination of 3D mapping and navigational data at the tactical

edge of the network. The proposed protocol is called 3D Tiles Nav which includes certain

navigation cell and visibility metadata in order to improve navigational performance and

autonomy in complex environments. The navigation cell data structures organizes the low

74
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airspace (below 400ft) in which 3D Tiles NAV data is embedded. The resulting data orga-

nization supports efficient data delivery, especially in densely occluded (e.g. low altitude

and ground level) use cases. In addition, the resulting metadata fuses information about

the visible and navigable structure of the operating environment to provide a unique infor-

mational framework for planning and conducting missions in densely occluded, high-threat

environments. We demonstrate through experiments the extraction of planar features from

point cloud data and illustrate through simulations the reduction network, compute, storage,

and sensor requirements made possible using our approach.

5.1 Introduction

A UAS provides first responders and military ground operations in urban environments

with mission-critical situational awareness. Special operations, counter-terrorism, and other

mission forces are increasingly required to operate in densely occluded urban environments

known as urban canyons. Currently, UAS navigation in urban environments utilizes GNSS

as a primary sensor that limits the accuracy and integrity due to weak signal strength

that is often partially or completely occluded within urban canyons caused by signal mul-

tipath effects and non-line-of sight (NLOS) reception. Sensors systems such as LiDAR and

photogrammetry can acquire large amounts of detailed 3D data. This data can be used

to counter adversary’s inherent advantage in urban operations by providing advanced 3D

situational awareness to personnel and autonomous systems operating in densely occluded

environments.

In principle, 3D acquisition systems deployed using quadrotors and other small, agile plat-

forms could rapidly acquire and use detailed 3D data in ways that could offset an adversary’s

superior local knowledge and associated tactical advantages. For example, such data can be
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used to enhance analysis, mission planning, and mission rehearsal. Moreover, this 3D data

could be used to drive enhanced 3D map-matching algorithms, enabling agile autonomous

navigation deep into buildings within the urban canyon beyond the penetration and precision

limits of GPS.

This chapter introduces the framework of a novel approach called 3D Tiles Nav data protocol

which improves the performance of autonomous navigation in GPS-denied environments [85].

3D Tiles Nav is based on a new representation of 3D geospatial data that efficiently captures

the amount of information required for assured sensor-based and GPS navigation in obstacle-

rich environments. This 3D data storage and streaming protocol decomposes the navigable

space of the environment into manageable navigation cells. Using this navigation-centric

data representation, hyperlocal values can be specified, and local performance of sensor-

based navigation systems can be simulated, predicted, estimated, and measured.

Using this developed method, the ability to quickly and conservatively encode visibility

directly from a region enables an expanded approach to viewshed analysis. In this approach,

the view regions themselves are used to represent the intrinsic positional uncertainty that

is often encountered in tactical situations. Rather than depending on the knowledge of the

exact position of a mobile adversary, the navigation cell can encode an adversary’s position

with a specified degree of uncertainty. This allows a rapid and conservative analysis of the

evolving mutual visibility between mobile-friendly and adversarial assets.

Furthermore, simulation results demonstrated reduce the amount of data to be transmitted

(by more the 5x) when moving along a path that contains many occluded surfaces such

as in urban canyons. The results presented illustrate our method of encoding visibility

is both much faster and more accurate than the conventional methods of from-point shed

analysis. Past methods have depended on ray tracing from many individual viewpoints,

which has a high computational cost, and which does not guarantee that all visible surfaces
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will be conservatively identified. We demonstrate through experiments the extraction of

planar features from point cloud data and illustrate through simulations the reduction of

onboard compute storage, and sensor requirements made possible by using our approach

for GPS-denied navigation in urban environments. As shown in Figure 5.1,the developed

protocol is designed to support a continuous, cooperative remapping of the navigated space

by efficiently detecting and transmitting only the relevant changed data required to update

the cloud-based 3D map representation.

Figure 5.1: Overall operational overview for efficient streaming.



78
CHAPTER 5. EFFICIENT STREAMING OF 3D MAPS AND LIDAR DATA REDUCTION FOR UNMANNED

NAVIGATION

5.2 Approach

5.2.1 System Level Overview

The 3D Tiles Nav methodology detailed within this dissertation converts 3D data in stan-

dard, open geospatial formats to navigation-centric 3D map data optimized for rapid delivery

for urban 3D data-matching navigation systems. The proposed protocol is titled 3D Tiles

Nav and includes certain navigation cell and visibility metadata in order to improve nav-

igational performzance and autonomy in complex environments. The navigation cell data

structures organize the low airspace, i.e., below 500 ft, in which 3D Tiles Nav data is embed-

ded. The resulting data organization supports efficient data delivery, especially in densely

occluded use cases, e.g., low altitude and ground level. In densely occluded environments,

this can be achieved through the use of from-region encoding of specific navigation cells.

By pre-encoding and simplifying/reducing visibility metadata from specific cell regions, the

computational cost of solving these visibility problems is greatly reduced, i.e., data delivery.

In addition, the resulting metadata fuses information about the visible and navigable struc-

ture of the operating environment to provide a unique informational framework for planning

and conducting missions in densely occluded environments.

In Figure 5.2, we illustrate a high-level overview of 3D Tiles Nav protocol. In this, the central

utility of the VE protocol facilitates efficient delivery of 3D data needed by onboard sensor-

based 3D data-matching systems to precisely track the assigned trajectory in GPS-degraded

regions. 3D Tiles Nav data returned to the server also reports the aircraft’s position and

actual navigation performance (ANP). Our method allows 3D data to be machine-readable

by onboard 3D map matching and feature-matching navigation providing an alternative to

GPS for high precision navigation in the low altitude urban airspace.
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Figure 5.2: A common protocol for 3D data delivery supporting trajectory-based operations
and performance-based navigation in the low altitude urban airspace.

5.2.2 Data Collection

In this section, we first discuss our data collection methods as well as the hardware used for

collection. Then, we discuss the process to convert the collected raw point cloud data into 3D

Tiles Nav data by finding planar mesh triangle features from a point cloud showing methods

of simplification. Next, we detail a 3D navigation framework by decomposing a ground

truth into navigation cells to conservatively compute regions of visibility for each navigation

cell. Lastly, we introduce a developed algorithm to select a LOD based on distance and

sensor-angle.
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(a) (b)

Figure 5.3: Images of data collection hardware: (a) Image of unmanned aerial vechile (UAV),
3DR Iris quadrotor, on ground before takeoff [52]. (b) Image of unmanned ground vehi-
cle,Jackal by Clearpath robotics.

Procedure

The data used for the chapter was collected at Fort Indiantown Gap Combined Arms Collec-

tive Training Facility in Fort Indiantown Gap, Pennsylvania (FTIG). We utilized a 3DR Iris

quadrotor and a Jackal UGV (a small ground robot produced by Clear Path Robotics [106]),

seen in Figure 5.3. The Iris was equipped with a flight controller that used Arducopter

firmware and a visual camera. The Jackal was equipped with an integrated magnetometer

and IMU combined with wheel odometry for orientation estimation, while GPS position

fixes are combined with wheel odometry for position estimation in an extended Kalman

filter (EKF). A Velodyne puck LiDAR (VLP-16) sensor and a visual camera from the Iris

were used to collect LiDAR point clouds of the entire urban mount site. Once collected,

multiple point cloud data sets were registered and aligned using commercially available Ag-

isoft Photoscan [3] and the open source Meshlab software [17]. A model was created in

Agisoft Photoscan, where the texture was turned off and the lights were moved to highlight

different areas to asses the quality of the scans. The reason Photoscan was chosen is that

it allows for the workflow, Structure from Motion (SfM) and multi-view reconstruction, to
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be processed offline and the user to change the settings for various reconstructions. Next,

we imported the created point cloud models from the Jackel and Iris into Meshlab, which

is an opensource software developed at the Visual Computing Lab of the ISTI-CNR [25].

Meshlab allowed the authors to visualize 3D models created elsewhere as well as point clouds

created by laser scanners. We proceeded to use Meshlab which allows the user to edit and

clean then use an ICP-based range map registration tool to align point clouds into the same

reference space [16]. In this process the pairs of corresponding points are identified in the

area of overlap of two range scans. Then an optimization procedure computes a rigid trans-

formation that reduces the distance between the two sets of points. The process is iterated

until some convergence criterion is satisfied [9].

The use of detailed, fully registered point clouds is essential to urban navigation. The 3D

Tiles Nav protocol relies on the development of 3D meshes that model 3D maps with very

high accuracy while only requiring a reduced amount of storage. Data capture as seen in

Figure 5.4a illustrates collected imagery resulting in a data point cloud with 4.4 million points

that was stored in a 238 Mb .ply file in Figure 5.4b. This map covers an area of roughly

10,000 m2. The scannable surfaces, i.e., walls, roofs, ground, can be roughly estimated to be

20,000 m2. The corresponding point cloud with a pitch of 5 cm could be estimated to have

180 million points. For urban maps that contain many man-made features such as buildings

or roads, the authors developed and tested algorithms that convert point clouds into 3D

meshes with planar features. This method simplifies meshes with planar features to reduce

the number of faces and vertices, thus resulting in a reduction in the amount of required

bandwidth for planned trajectory.
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(a) (b)

Figure 5.4: (a) Visual image of FTIG from view angle of unmanned aircraft. (b) Created
point cloud of FTIG with over 1000 detected planar features. Each planar feature is high-
lighted with a different color. The 4.4 million element point cloud was processed using a
C++ implementation of the RANSAC algorithm in under 8 min.

5.2.3 Detection of Planar Features

To convert 3D point clouds to accurate 3D meshes with a small number of faces, the authors

developed, implemented, and tested a RANSAC algorithm to capture the planar features

that are present in urban canyons. Our methodology for the selection of this algorithm

was due to the speed, scalability, generality, and robustness to outliers that the algorithm

provides. Compared to other methods described in [60], the accuracy, speed, quality, and

completeness of the shape detection was necessary for our implementation.

The RANSAC method was designed to estimate the sets of points that fit planes. This

iterative algorithm randomly selects three points from the dataset to form a candidate plane.

The candidate plane is labelled as a valid planar feature when the number of points from

that entire dataset that are close to the candidate plane is large enough; otherwise, it is

rejected. The process is repeated until most of the points in the cloud are assigned to a

plane.
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In order to test the developed RANSAC algorithm, a selected section of the FTIG point

cloud was used which consisted of 3200 points that correspond to a building without a roof.

The extracted planar features had typically ≈ 500 points. The corresponding rectangular

features require a plane equation and two 3D points corresponding to the extent. The

extracted information is less than 4 points. These elements can thus be compressed by

95%. We confirmed the robustness of the RANSAC algorithm by running it more than 100

times over the entire point cloud. When applied to the whole FTIG point cloud, this method

detected over 1000 planar features with a typical runtime under 8 min. Shown in Figure 5.5c,

the extracted meshes were overly redundant as the algorithm focuses on assigning vertices

(points) to meshes; therefore, it is necessary to reduce the number of mesh triangles for

transmission.

(a) (b)

(c) (d)

Figure 5.5: (a) FTIG Map showing extracted building point cloud. (b) 3D point cloud of
building manually extracted from the FTIG point cloud. (c) Extracted planar features of
builiding from FTIG. (d) Example of planar region that was automatically detected and
that was simplified to reduce the number of triangles.
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5.2.4 3D Mesh Simplification

There are many established methods on mesh model simplification such as coplanar facet

merging, energy function optimization, and geometric element decimation described in these

works [14, 72, 110, 111]. These authors implement geometric decimation which simplifies an

original mesh model through geometry removing. When simplifying a triangulated mesh,

as shown in Figure 5.5d, the importance of each vertex in the mesh is first evaluated. Our

algorithm selects the most suitable edge for the contraction, i.e., simplification or removal,

by searching and removing an edge in the entire mesh; the one that removes the most area

is marked as the most important vertex. Achieved through linear programming to choose

a suitable edge for contraction, we select one that does not cause the mesh to fold over

itself (i.e., non-manifold) while maintaining constraints.

To accurately and automatically simplify meshes into planar features, it is essential to esti-

mate the maximum difference that is allowed between normals, i.e., normal vectors of planes

created by 3 points. We estimated the 3D probability density function of planar normals on

many areas of the FTIG point cloud that were manually labelled as planar features. Shown

in Figure 5.6a, 3D histograms of the difference between the average plane normal and the

local triangle plane normals show a Gaussian behavior along the directions that are orthog-

onal to the average planar normal. Both Figure 5.6a,b illustrate the probability density of

the normal vectors of planar extracted meshes in the transverse (Y normal) and vertical

directions (Z normal) used to complete mesh simplification based on the normal vectors.

For all selected regions, the standard deviations were consistent and estimated to be 0.05 m.

A conservative threshold of four times the standard deviation was established as stop con-

dition in the region growing algorithm used to determine the extent of each planar feature.

Figure 5.5d shows an example of the performance of the algorithm when the threshold is set

to 0.2 m. On the detected planar region, a mesh simplification was applied to reduce the
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number of triangles without loss of information.

(a) (b)

(c)

Figure 5.6: Histograms of the normal distribution for planes extracted from the FTIG Map.
Both (a) and (b) illustrate the probability density of the normal vectors of planar extracted
meshes in the transverse (Y normal) and vertical directions (Z normal) used to complete mesh
simplification based on the normal vectors. Error distributions in the orthogonal directions
to the average normal. The distributions have a standard deviation of 0.05 m. (c) Visual
representation of mesh vertices and faces.

For similar resolution, simulated meshes would only require 30,000 vertices and 70,000 faces.

Without any loss of information for positional purposes, the number of vertices and faces

may be reduced by at least an order of magnitude by using a mesh simplification of each

planar feature. In Table 5.1, values strongly indicate that using a mesh with planar features
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will lead to orders of magnitude reduction in map storage and processing. This is seen in

the differences from course to fine simplification in the number of faces and vertices.

Table 5.1: Summary of point cloud vs. mesh storage requirements.

Description Values

Map Extent 20,000 m2

Point Cloud -Resolution 5 cm
Point Cloud -Points 180× 106

# Vertices- Mesh Fine Details 30× 103

# Faces- Mesh Fine Details 70× 103

Mesh Fine Details File Size 183 KB
# Vertices- Mesh Coarse Details 1.8× 103

# Faces- Mesh Coarse Details 3× 103

Mesh Coarse Details File Size 4 KB

5.2.5 Automatic 3D Navigation Cell Placement

In order to verify the performance of the planar feature extraction and point cloud conversion

algorithms, a simulated version of FTIG was generated in UE4 (Figure 5.7), a game engine

developed by Epic Games [33]. Each building contains at least two independent meshes.

Each mesh has three levels of details with nearly 1000 faces or greater for the fine LOD,

between 50 and 250 faces for the median level, and less than 50 faces for the coarsest level.

Within the simulated map, we automatically generated 3D navigation cells and visibility

cell structures within the data. This metadata creates a navigation-centric restructuring of

the data which enables more efficient data delivery over bandwidth-constrained networks.

Within the simulated map, we automatically generated 3D navigation cells to map potential

flight path locations. For each navigation cell, fully or partially visible mesh faces were

captured while the occluded ones were culled. This navigation-centric restructuring of maps

enables optimal data delivery over bandwidth-constrained networks as irrelevant geometry
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is not transmitted.

This fast and greedy algorithm first splits the open and occupied spaces into axis-aligned

parent tiles. Each tile is projected onto a predefined axis-aligned plane, e.g., z = 0. In the

2D plane, the optimal top and bottom cuts are computed to create a line-based convex hull.

The resulting 2D cut is then lifted to 3D. If the split is close to the occupied space, i.e., the

space between the split cells and the occupied space is small, the cut cells are retained as

a navigation cell. Otherwise, if its volume is large enough, the cell is split into two along

a selected axis. The algorithm is recursively applied on each new cell. Upon completion

of the recursive algorithm, each created navigation cell is processed to guarantee that it is

compliant, i.e., it is defined by exactly six planes. Figure 5.7 illustrates the construction of

navigation cells and their associated connectivity for a dismounted and aerial mission over

a test 3D map that simulates a section of FTIG.

(a) (b)

Figure 5.7: This figure provides a visualization of navigation cells that were generated to simulate
the potential locations of a ground vehicle moving along a narrow corridor (a), and the potential
flight path of a small UAS that hovers over above the roofs and corridor (b). These 4000 navigation
cells were automatically generated in less than 1 min using a greedy algorithm.
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5.2.6 Sensor Angle and Level of Details

We define LOD as the number of mesh triangles that are used to visually represent a 3D

scene. The LOD utilized by a UAS during navigation depends not only on its distance from

the acquiring sensor system but also its angular presentation to the sensor system. This

LOD can be described by the relative projected area of interest of a given 3D feature onto

the sensor plane. Relative area is defined by L(ϕ, d) = cos(ϕ)
d

, where d is the distance between

the area of interest and the sensor location, and ϕ is the angle between the line-of-sight to

the area of interest and the local normal of the area of interest. To limit the computation

load when estimating the LOD, the authors developed a conservative computation of L(ϕ, d)

from any navigation cell to all visible triangles. This computation can be performed ahead of

time to reduce the resolution of the mesh needed to describe an object from each navigation

cell. The corresponding LOD level can then be quantized on a log scale to reduce the number

of meshes needed to describe an object.

In Appendix A, we detail a closed formed solution to estimate the minimal level of de-

tail L(ϕ, d) from a point to a mesh triangle. Like a point to triangle distance optimization,

the solution leads to a quadratic equation that can be solved analytically, where the resulting

value depends on the relative position of theprojection of observation point P onto the plane

of the triangle and the triangle itself; the projected point is inside the triangle or near an

edge. The resulting optimization can then be generalized to all points in a navigation cell

and can consider the regions where the distance d and the cos(ϕ) are no longer monotonic

functions.

In this approach, the optimal value of L(ϕ, d) between a mesh triangle and a navigation cell

is estimated based on its samples on all corner vertices and the triangle centroid. Authors

implemented this method on a billboard test map in UE4 with extreme values of distance and
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angle. Figure 5.8 shows a rectangular billboard that is made of approximately 100 triangles

and is being observed from a navigation cell (grey box). Notice that the navigation cell is

very close to the billboard and is small enough to show a large range of values of L(ϕ, d).

The values for each triangle are shown on a log scale colormap where red shows high value

and blue shows low values. This approach may not find the optimal value, but these initial

results show promise even in extreme cases provided that the triangles are “small enough”.

(a) (b)

Figure 5.8: Sample Navigation LOD for a Billboard. (a) A square billboard is made of about
a hundred triangles and is being observed from a sensor (grey box). The values of L(ϕ, d)
are displayed using a log-scale colormap with red representing a high value and dark blue a
very small value. (b) The billboard from a top viewpoint with the pedestal triangles shown
in yellow as cos(ϕ) is close to one.

5.3 Experiments and Results

To test and confirm the algorithm’s robustness, a simulated 3D map of FTIG was created

using UE4. By integrating ROS to simulate point cloud acquisition, real-time simulated

drone flights enabled the evaluation of the planar feature extraction algorithms and their

sensitivity to sensor noise and capture strategies. Furthermore, they provided estimates of

bandwidth requirements for real-time streaming of 3D urban map data.
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5.3.1 Bandwidth Requirement

Instead of relying on fully registered point clouds, the proposed navigation protocol is based

on 3D meshes that model static geometry with very high accuracy while only requiring

a reduced amount of storage by leveraging planar features. Simulations were created to

determine the baseline bandwidth requirements to stream 3D maps when moving along a

path. Multiple scenarios were tested depending on whether the maps use single LOD or at

an LOD based on its distance and orientation from the navigation cell.

For each navigation cell along a path, we compute the 3D Tiles Nav packet that captures

vertices and faces that are potentially visible from any location within such navigation cell

(see Figure 5.9). The bandwidth requirements are calculated by determining the amount of

new information required to update the map when moving to a new navigation cell. This

information contains all new vertices and faces that are potentially visible when entering a

new navigation cell but were not visible in the existing navigation cell.

The plots in Figure 5.9 demonstrate how LOD affect the data requirements for real-time

transmission of a path at roof-top level and a ground level path (Figure 5.7a,b, respectively).

A coarse LOD map (50<faces<250) requires significantly less data to stream than a fine LOD

map, e.g., about 6x less data for the FTIG. For maps with multiple LODs that are streamed

based on distance from the navigation cell, the initial amount of data is significantly less (see

Figure 5.9a). When moving to a new navigation cell, some models must be rendered using a

different LOD. This switch leads to more data to be transmitted cumulatively. However, at

any location along the path, only the necessary LOD is being used for rendering and optimal

map matching. The bandwidth required to transmit the entire visible geometry from start

to end of each path is shown in Figure 5.9b. For a drone flying at a speed of 20 m/s, the

transmission of automatic LOD VE packets require an average bandwidth of at least 51 kB/s
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during flight. The bandwidth requirement is reduced to 24 kB/s for the ground level path

as shown in Figure 5.9b. All of this data is reported with lossless compression such as ZIP

or LZMA. We note that the variations in the plots are caused by movement from navigation

cell to navigation cell and the complexity of the urban environment.

(a) (b)

Figure 5.9: (a) and (b) Cumulative amount of data and bandwidth required to transmit 3D
Tiles Nav shown in Figure 5.7 when moving along a path at a speed of 20 m/s. Once the
initial map has been uploaded, the required mean bandwidth is shown as a dotted line. The
lines correspond to models rendered with fine LOD (green faces<50 ), coarse LOD (blue
50<faces<250), and automatic LOD (red 50<faces>250).

5.4 Discussion

From experimentation we demonstrate the ability to reduce the amount of data to be trans-

mitted when moving along a path that contains many occluded surfaces such as in urban

canyons. Our simulation results demonstrate the potential value of rapid, automatic decom-

position of the navigable space of the environment into an occupancy grid of navigation cells.

Furthermore, results suggest that our method of encoding visibility is both much faster and

more accurate than the conventional methods of from-point viewshed analysis or ray tracing.

As seen in Table 5.2, a course reduction results in up to 85% reduction in comparison to
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prior arts [13, 58]. We note that the ground path has higher reduction due to the increase

in planar features at a lower level of altitude; thus, simplification is increased. Past methods

seen in [67] have depended on ray tracing from many individual viewpoints which has a high

computational cost and does not guarantee that all visible surfaces will be conservatively

identified.

The ability to quickly and conservatively encode visibility directly from a region enables an

expanded approach to viewshed analysis. In this approach, the view region itself is used to

represent the intrinsic positional uncertainty that is often encountered in tactical situations.

Rather than depending on knowledge of the exact position of a mobile adversary, the nav-

igation cell can encode an adversary’s position with a specified degree of uncertainty. This

allows a rapid and conservative analysis of the evolving mutual visibility between mobile

friendly and adversarial assets.

Table 5.2: Data reduction performance for a drone and dismounted mission.

Data Format Data Reduction (%)

UAS Path -Fine Detail 3.3%
Ground Path- Fine Detail 10.0%
UAS Path- Coarse Detail 17.1%

Ground Path- Coarse Detail 85.7%
UAS Path- Automatic Detail 2.9%

Ground Path- Automatic Detail 10%

5.5 Conclusions

The simulation results presented within this chapter demonstrate the potential value of rapid,

automatic decomposition of the navigable space of the environment into an occupancy grid

of navigation cells. The resulting navigation cells fuse data about the visible and navigable
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structure of the operating environment to provide a unique informational framework for

planning and conducting missions in densely occluded, high-threat environments. We provide

methods maintaining geometric shape while using less data which is imperative in creating

global maps for on-board mobile platforms.

Additionally, we illustrate the ability to reduce the amount of data to be transmitted when

moving along a path that contains many occluded surfaces such as in urban canyons. These

results suggest that the method of encoding visibility is both much faster and more accurate

than the conventional methods of from-point shed analysis. The simulation results presented

within demonstrate the potential value of rapid, automatic decomposition of the navigable

space of the environment into an occupancy grid of navigation cells.

5.5.1 Future Work

In the future, we plan to develop and prototype trajectory planning algorithms for UTM

applications. The future framework will use our data delivery protocol detailed in this

chapter will provide small UAS with the 3D Tiles Nav data needed for high performance

trajectory using LiDAR or vision-based sensors. Utilizing registered systems authorized to

operate in a low altitude urban or suburban airspace, this system would request a deconflicted

trajectory to a residential or business address. The system will then ensure that the aircraft

system has all the necessary data to track this trajectory using sensor-based navigation to

the intended destination. The 3D Tiles Nav. protocol provides a framework for defining

and maintaining community-based airspaces and flight corridors which can meet community

needs for privacy, noise mitigation, and enhanced public and commercial services. The

foundations of our developed UTM protocol will be structured to support standards for

required navigational performance as well as standards for 3D navigational data precision,
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accuracy, and timeliness.

Planned algorithms include automatic identification of regions of interest along an intended

navigational route. This data can be used to provide real-time warnings of upcoming,

marginally occluded regions such as obstacles along the planned route. It can also be

used to automatically dispatch small UAS to conduct advanced reconnaissance of relevant,

marginally occluded regions. The utility of this visibility-aware adaptive path planning al-

gorithm will advance urban navigation immensely.



Chapter 6

GPS-denied localization in simulated

urban environments

In this chapter we expand on the work done in chapter 5 by illustrating our framework for

GPS-denied localization using planar feature in a simulated urban environment. Furthermore

we discuss our chosen simulator among other various simulators that can be used with ROS

to implement near real-world experiments for proof of concept systems. We also conduct

simulated experiments and compare against established methods to create a benchmark for

further development.

6.1 Introduction

The use of simulation environments within the field of robotics is a reliable resource that

allows for the development of algorithms utilized in the real-world by providing proof-of-

concept opportunities to be easy transported to hardware. Today’s state-of-the-art simula-

tions programs allow for implementation of many robotic hardware sensors platforms and

software. Given such programs, we can simulate entire cities, create real-world situations,

weather, time of day and variety of other scenarios with hundreds of iterations. Safety con-

cerns, specifically in urban area, allow simulated environments to be used by researchers

to execute complex mission profiles that may be experimental and potentially dangerous in

95
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real-world settings given their infancy. By using virtual worlds errors and bugs in coding

cost nothing compared to the thousand or millions of dollars in hardware and man-hours

a platform could cause crashing out of the sky on accident. In this chapter, we discuss

the development of algorithms for planar feature extraction and develop experiments that if

completed in the real-world, would incur significant sensor noise, weather impacts as well as

significant monetary cost.

In section 6.2 we detail several UAV flight simulators that artificially recreate the flight

dynamics of a UAV and the environment in which it flies. Using simulated navigation

environments in 3D enables a UAV to reliably test the ability to acquire a complete un-

derstanding of the environment, and also navigate an environments complex paths. This is

done by replicating motion equations and through the implementation of control modules

the UAV can react to external factors such as air density, wind , cloud cover, precipitation,

etc. The best simulators such as Unreal Engine or Unity are utilized in video game play

and generally offer a variety of variable conditions and realistic physics to keep it as real-

istic and practical as possible. In this dissertation, we utilize a combination of ROS and

UE4 through a software package called AirSim [116]. AirSim is an open source simulator

developed by Microsoft Research built as a UE4 plugin Engine for supporting cross-platform

functionality for an easy interface to python/C++ and ROS thus providing fast computing

for logging and testing data. The aforementioned software package allows for the use various

platforms such as quadrotors, fixed-wing aircraft, cars, etc. The ability to control vehicles

using this platform provides independent and flexible method to implement computer vision

and reinforcement learning algorithms for autonomous systems.

In the rest of this chapter we detail the utilization of the AirSim simulator to implement

localization using planar feature descriptors. Furthermore, we discuss provided data, our

methodoly, experimental simulations, results and conclusions.
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6.2 Simulators

Within the field of robotics there are various simulators that can be used to emulate an envi-

ronment using a UAV platform such as: ROS’s Gazebo [88], AirSim [116] and Autoware [61]

to name a few. The selection of the proper simulation environment is critical in algorithmic

development because it can provide research with the knowledge of real-world problems and

solutions before hardware implementation. In order to make an adequte selection of our

chosen simulator (i.e. AirSim) we made a comprehensive comparison with the relevant sim-

ulators that could be used before section. The results are listed below for relevant selected

simulators :

1. AirSim (chosen simulator)

– Overview: Utilizes UE4 for physically and visually realistic environment, sup-

ports cross-platform functionality which provides the use of library with support

within ROS. Its development as an Unreal plugin enables it to be dropped into

any Unreal environment and support flight controllers such as PX4 for physically

and visually realistic simulations another major advantage of using AirSim is that

it was initially developed by Microsoft and then open-sourced to the community.

As a result, it has wide adoption across industry and developers thereby ensuring

that long-term support would be easily available. Currently AirSim is available in

Free-Open Source License, such that the source code regularly updated released

when improvements are made.

– Sensing Modalities: LiDAR, Odometry, Visual and Hyperspectral cameras,

IMU, GPS, barometers, other sensors, position, velocity, etc.
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Figure 6.1: Example of AirSim simulator over London using AccuCities dataset [1]

– Dataset: User generated maps, 3D point cloud and 3D mesh models.

– Repository: https://github.com/Microsoft/AirSim

2. Gazebo Hector Quadrotor

– Overview: Gazebo is a popular used simulator used with ROS for computer vision

and object avoidance algorithms. This simulator uses physical engine for illumination,

gravity, inertia, etc. and a provides simulation environment which can integrate differ-

ent features like support for ROS, SITL (Software in the loop) and HITL (Hardware in

the loop) testing. Defined in two parts, server and the client, the server computes all

the physics and world, while the client is the graphical front-end for gazebo. So if you

want to save performance on your computer you could also execute all tests without

the graphical interface.
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Figure 6.2: Example of gazebo simulator

– Sensing Modalities: LiDAR, Odometry, Visual and Hyperspectral cameras, IMU,

GPS, barometers, other sensors, position, velocity, etc.

– Dataset: User generated maps, 2D data,elevation data ,3D point cloud and 3D mesh

models.

– Repository: https://github.com/tu-darmstadt-ros-pkg/hector_quadrotor

3. Autoware

– Overview: Autoware is a popular open-source software project based on ROS that

provides a complete set of self-driving modules, including localization, detection, pre-

diction, planning, and control [61]. Implementations of Autoware have been tested for

autonomous vehicles driven long distances in urban areas. Recently, automotive manu-

facturers and suppliers have begun implementing Autoware as a baseline for prototype

autonomous vehicle [61].
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Figure 6.3: Example of Autoware simulator

– Sensing Modalities: LiDAR, Odometry, Visual and Hyperspectral cameras, IMU,

GPS, barometers, other sensors, position, velocity, etc.

– Dataset: User generated maps, 2D data,elevation data ,3D point cloud and 3D mesh

models.

– Repository: https://github.com/Autoware-AI/autoware.ai

Table 6.1: Simulators’ comparison for selection

Simulator Software
Language

Hardware
Requirements

UE4/Unity
Interface

Problems

ROS-Gazebo Python, C++,
ROS, Java,

Medium No

Medium level complexity,
No UE4 interface for detailed simulations,
no possibility for pre-computed visibility
(provided by PSS-chapter5.2.3 )

AirSim
(selected)

Python, C++,
ROS, Java

Very High Yes
Complex level implementation needed,
high requirements are needed
for complex implementations

Autoware C++ High No Complex level implementation,
No UE4 interface for detailed simulations
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Our work in this dissertation uses AirSim because it’s ability to interface with both ROS and

UE4. We utilize UE4 because of its ability for pre-computation regarding visibility discussed

in chapter 2.2. Table 6.1 illustrates a comparison created with all detailed simulators and

key elements that that are that are significant to the selection process. In Table 6.1 we

detail problems for each simulator explaining their downsides using each simulator providing

more text for our decision in a summarized format. Furthermore, it can be observed that

Airsim is the hardest implementation given complexity and hardware requirements however

it provides the most flexibility and portability for our application with it’s interface to UE4.

In comparison to Gazebo and Autoware for our needs AirSim is the perfect selection because

of its cross-platform support of Windows, Linux, OSX platforms (i.e. portability) as well as

software functionality to Python, C++, ROS and Java. We also have the capability for both

hardware-in-loop (HITL) and software-in-loop (SITL) implementations. AirSim’s physics

engine allows real-time HITL which would allow for a flight controller to be run in as actual

hardware (i.e. Pixhawk) connected to PC via USB port using communication protocols such

as MavLink. STIL uses the simulated firmware as opposed external hardware board.

In figure 6.4(b) we illustrate a workflow diagram of AirSim which consists of environment and

vehicle models, physics engine, sensor models, rendering using UE4, and API layer. In this

diagram we observe that the simulator provides all the sensor data from the environment

(i.e. UE4) to the flight controller which in return outputs the actuation commands. The

commands are passed from the vehicle model as an input to the physics engine which accounts

for additional forces drag, friction, gravity etc. This model is sent to the rendering engine

which requires high computational complexity and computation power when processing data

in real-time generated by the cameras, LiDAR and additional sensors.
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6.3 Approach

Figure 6.4: An overview of our approach.(a) AirSim receives UAV Navigation inputs and
outputs sensor data (i.e. LiDAR data) and state data.(b) Illustrates the workflow the air-
sim node which consists of environment and vehicle models, physics engine, sensor models,
rendering using UE4, and API layer. (c) The LiDAR data is processed on-board and planes
are extracted from point cloud in the local Map and matched to a priori global map. (d)
discussed in chapter 5, offline planes are extracted and a feature descriptor is created.(e)
Matching is completed via plane-to-plane matching using handcrafted feature descriptors
for each plane. Descriptor similarities are found using angle and distance of the two planes.

We propose an approach that integrates global and local planar features to localize a UAV

in an urban environment. We pose the problem as one of finding a match given constraints

between local (online) and global (created offline) descriptors without using GPS. In chap-

ter 5.2.3 we describe how we detect the global planar features. Within this section we discuss

our approach for creating a feature descriptor for detected planes. Furthermore we detail how

we match using a calculated similarity metric each between each descriptor for localization.
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6.3.1 Planar descriptors

Our proposed method to localize our UAV using planar features utilizes descriptors that

include normal vector of the plane, planar distance to the origin and the number of inliers

for each detected plane. As seen in figure 6.4c-d we generate the local and global descriptors

(using the same method) given by Dplane(i) = [n, d, I] where n is the normal vector ([a, b, c])

and d the distance from the origin. The variables n and d satisfy the planar equation

ax+ by + bz = −d given a 3D point p(x, y, z) lying on this plane model.

Before a UAV mission, global features are determined first by extracting the ith most

prominent planar regions, with iterative RANSAC using the Point Cloud Library (PCL).

We can define these global descriptors with a matrix for all detected planes Dglobal =

{Dplane(1), Dplane(2), . . . , Dplane(i)} where Dplane(i) are matrices of N × M size plane de-

scriptors that contain unique planar data to identity each plane. Similarly we define local

descriptors as Dlocal = {Dplane(1), Dplane(2), . . . , Dplane(i)} then subsequently determine sim-

ilarity of a plane given a set of local and global descriptors via constraints and custom

similarity metric.

6.4 Descriptor matching and similarity metric

For our descriptor matching process we assume we have been given a local descriptor (Dplane(i))

from the UAV and we have extracted a set of global descriptors (Dglobal) such that local de-

scriptor is within the set, Dplane(i) ∈ Dglobal. We first search for the closest Dplane(i) ∈ Dglobal

with a our developed similarity measure then additional compare plane models to ensure the

angle between planes does not exceed a threshold value of 5 ◦ and the distance between

plans is limited to between 3 cm . To determine if the hyper planes intersect and within the



104 CHAPTER 6. GPS-DENIED LOCALIZATION IN SIMULATED URBAN ENVIRONMENTS

threshold distance and number of inliers. We use binary vectors to represent the element-

wise similarity between a new planes in local extraction (Dplane(i)) and plane located in set

Dglobal, where we define elements of similarity as intersections, distance and inliers as

σintersection,i =

1, if min
(∥∥∥n′

local
− n′

global,i

∥∥∥ , ∥∥∥n′
local

+ n′
global,i

∥∥∥) = 0

0, otherwise

 (6.1)

σdistance,i =

1, if σintersection,i = 1 ∧ |dlocal−d
global,i |√

a2+b2+c2
< dthreshold

0, otherwise

 ,

where n = [a, b, c]

(6.2)

σinliers,i =

1, if σintersection,i = 1 ∧
∣∣I

local
− I

global,i

∣∣ < Ithreshold

0, otherwise

 (6.3)

In equation 6.1 we determine if the given planes are parallel by determining if they have the

same normal vector (i.e. there difference is zero). We apply this to every plane in the set

Dglobal, if the planes are parallel a binary value of 1 is assigned otherwise 0. Our similarity

measure takes into account that if the angle between nlocal,i and nglobal,i is larger than 180

degrees using the minimum, in which case the planes might actually coincide or be very close,

but the vectors nlocal,i and nglobal,i will have opposite signs. Equation 6.2 assigns a binary

value of 1 if the planes are parallel and the distance between the plans less the a threshold

value (dthreshold) of 3cm. Furthermore, we preform an additional similarity measure by taking

difference inliers on the plane and setting them to a percentage of Ithreshold (40%) which is

the max number of inliers determined empirically for the given map.
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Figure 6.5: Illustrates a flowchart overview our descriptor matching and similarity metric
process as well a redunany check that ensure that the planes do not intersect

The similarity between the descriptors may be calculated as

s(Dplane,i, Dglobal) =
n∑
i

(σintersection,i + σdistance,i + σinliers,i) (6.4)

where we denote s as the similarity metric between a given plane with a descriptor Dplane(i)

and the the global set Dglobal. Equation 6.4 determines a numerical score value between the

given local plane and the each global value to determine similarity. We than take the max

value score and its corresponding plane as a match. A final redundancy check is completed

by determining if the angle between the two planes is equal to zero. If found to be zero than
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the planes are indeed parallel and pass a our similarity score metric. This binary process

was developed to implement a light weight method for matching that does not require high

computational resources. Figure 6.5 further illustrates this process through a flow chart

where we can visually observe an overview our descriptor matching, similarity metric process

as well a redundancy check that ensure that the planes do not intersect.

We map this similarity to colors to not only show planar extraction but also visually illus-

trate the descriptor. In figure 6.6a is an example of the planar descriptors mapped colors

furthermore, we show a visual camera views as context in figure 6.6b. We found that this is

the best method to both illustrate our matching process while showing extracted planes.

(a) (b)

Figure 6.6: (a)Descriptor similarity visualization, where the various matches show vari-
ous.(b)visual camera representation of the area to provide context of the scene.

6.5 Experiment and Results

To test and confirm the robustness of our approach, a simulated 3D map of Jacksonville

Florida was used provided by General Electric (GE) Research [36]. By integrating ROS to

simulate point cloud acquisition, real-time simulated drone flights and descriptor matching
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for localization while comparing to previous researched methods.

6.5.1 Data

Figure 6.7: From satellite images and image-derived point clouds, CORE3D models buildings
(grey), and terrain before texturing from the imagery we then convert this model into a
format that UE4 can read

The data used within this chapter was a 3D map of Jacksonville Florida provided by GE

Research [36] was generated for the USSOCOMUrban 3D Challenge in 2018 (figure 6.7). The

GE Research developed technology aptly named CORE3D automatically generates accurate

3D object models with real physical properties from multiple data sources. Data sources

used in the development of the model included commercial satellite panchromatic and multi-

spectral imagery for global coverage, as well as airborne imagery and Geographic Information

System (GIS) vector data. Furthermore, CORE3D utilizes publicly released commercial

products for photogrammetrically derived orthorectified color images, digital surface models
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(DSM) and bare earth digital terrain models (DTM) for three U. S. cities – Jacksonville, FL;

Tampa, FL; and Richmond, VA [69]. Figure illustrates the developed data from CORE3D

Jacksonville.

The generated 3D model was then converted into a format that UE4 can read so that

Airsim and ROS could be used in simulation. UE4 has the ability to import, visualize, edit

and interact with point clouds acquired from laser scans, as well as support for working

with multiple point cloud segments without decreases in performance [33]. Updates to the

rendering capabilities include support for large data sets with on-demand streaming of data

from files and GPU. With the use of UE4 uploaded 3D models can cast and receive dynamic

shadows useful for sun and lighting studies. Furthermore, a dynamic level of detail system

keeps performance high, while preserving visual results by prioritizing points in the center

of the viewport [85].

6.6 Simulations and Results

As previously stated we perform experiments on an urban dataset (downtown Jacksonville

Florida) which contains buildings, vegetation,roads and brides. Figure 6.8 illustrates the

experiment pathway flown to obtain our presented results which consists of takeoff on a

bridge and flight down an urban canyon landing on a building. The total trip was approx-

imately 1 mile flight flown at 10m/s. Furthermore, we simulate GPS data from the UAV

and to approximate accuracy of our estimated position. The simulated GPS used in AirSim

simulates latency, slow update rates as well as horizontal and vertical position error. The

decay rate is modeled using first order low pass filter for horizontal and vertical fix [116].

We present real-time results obtained on a Linux-based Dell Precision 7530 Mobile Work-

station with an Intel Core i7-8850H CPU at 4.60 GHz. To obtain our results we calculate
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Figure 6.8: Google Maps view of experimental trajectory for UAV take off and landing using
provided Jacksonville Florida data flying 1 mile flight at 10m/s. We show an image of the
UAV flight through the our simulated environment as well as the local point cloud generated
and the creation planar descriptors.

the average differences to GPS of the full pipeline run for 50 iterations, where on every

iteration we calculate the average difference to our simulated GPS over all positions. For

further comparison we use a trajectory similarity function called the Hausdorff Distance

(equation 6.5) which provides a quantitative measure between the differences two subsets A

and B (i.e. trajectories) in the same space, where A and B are defined as two non-empty

subsets [92]. This is defined as:

Dhaus(A,B) = max

{
sup
a∈A

inf
b∈B

d(a,B), sup
a∈A

inf
b∈B

d(A, b)
}

(6.5)
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Figure 6.9: An overlay of our outputs for one iteration on top of our 3D model compared
against RGB-D keypoint planar matching [34], our approach as well as ground truth (green).
The circle labeled A,B and C show the divergence from our ground truth GPS in the our
implementation (blue) and the RGB-D SLAM approach (yellow)

.

x = R + E,

where d(a,B) is the distance from point a ∈ X to be the subset B ⊑ X.

Similarly to [97] we use ground truth trajectory vectors to compare our estimated output

of the position using the current data at that instant to measure accuracy of localization in

real-time to observe drift in position accuracy. In figure 6.9 our results are best observed

visually to view drift in the localization. Figure 6.9 we show an overlay of our outputs for

one iteration on top of our dataset along with ground truth trajectory vectors. Furthermore,

illustrate our implementation compared against an RGB-D keypoint planar matching [34]

approach as well as simulated GPS provided by AirSim. The circles labeled A,B and C show

the divergence from our ground truth trajectory (green), our implementation (blue), RGB-D

keypoint planar approach (yellow) and simulated GPS points (red). Our approach shows
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significant initial divergence due to the limited amount of planar featurse at the starting

location (yellow triangle) finding an little viable descriptor matches for localization. As

the number of planes increase moving towards downtown we see the difference between the

ground truth decrease through the urban canyon in circle labeled B and C. Furthermore, we

compare our approach to a planar RGB-D keypoint implementation as seen in [34], typically

applied indoor scenarios to increase keypoint matches and at slower platform speeds. As seen

in [34] a plane is detected then keypoint features (SIFT,FAST,SURF and other features) are

found on the planar region and used for matching. When applying this approach keypoints

are not easily found and incorrect matches are made leading to large ground truth divergence

seen in the circle labeled B and C. We consider that this may be due to the distance of

the starting location not containing viable keypoints initially. Once in the urban canyon

keypoints and the error is decreased as seen in circle C as more keypoints are found.

To measure overall accuracy we compare our estimated positions over the complete trajectory

and observe of the average difference in the ground truth trajectory. In Table 6.2 we observe

that overall our approach preforms better in an urban canyon compared to planar an RGB-

D keypoint but worse to simulated GPS. We believe our approach out performs the planar

RGB-D keypoint methods because of the speed at which the UAV is flying is too fast to

provide reasonable matches to descriptors designed for indoor purposes. Furthermore, we

observe that our approach while not as accurate to simulated GPS our solution provides a

better performance with respect to risk, which can be seen in circle B in figure 6.9 where

GPS collides with a building. We note that our contribution also preforms better inside

an urban canyon due to better planar matches and worse outside the urban canyon which

negatively affects the overall accuracy.

Utilizing our discussed function calculation (equation 6.5) above, Table 6.3 represents a

comparison of Hausdorff distances to our trajectory ground truth illustrates the similarity.
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Table 6.2: Average difference compared to ground truth in meters using standard error

RGB-D Planar SLAM (m) [34] Our Contribution (m) GPS-Simulated (m)

5.925±0.0574 3.925±0.441 1.925±0.0574

Table 6.3: Comparison of Hausdorff distances to our path plan

RGB-D Planar SLAM [34] Our Contribution GPS-Simulated

5.854 4.079 2.399

Table 6.3 is comprised of non-negative values (i.e. distance), if two are identical, the distance

is zero while large distances indicate dissimilarity. In this table we observe the most similar to

ground truth values the simulated GPS values followed by our method. This close similarity

of GPS is accompanied by the cost of finding values position values are unsafe to fly (i.e. into

buildings).

6.7 SLAM Framework

Our localization approach utilizes a priori knowledge of the environment (i.e. a global map

is given) in our system architecture. However, problems occur when the global map and the

starting location are unknown, this type localization is called simultaneous localization and

mapping or SLAM. The idea here is when you are given an unknown area then asked to

simultaneous map and understand where you are inside that map by incrementally creating

a map using the same map to compute your pose. In other words it would like being

blindfolded, picked up and dropped in the middle of Kansas, then when the blindfold is

removed trying to create a map of the area and figure out where you were located in the

map. When applying planar localization within a SLAM implementation we propose to an

Extended Kalman Filter-SLAM algorithm presented in [126]. The Iterative EKF-SLAM is
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Figure 6.10: Proposed future framework for Simultaneous localization and mapping (SLAM)
using planes: LiDAR or RGB-D images could be used as inputs for the SLAM system. The
feature tracking completed by extracting and using matched planes.Map estimation would
create and update a map descriptors and planes

.

used to update the map, which includes the robot pose and feature locations along with

their uncertainties and inter-dependencies, integrating new measurements one at a time

[126]. The algorithm repeats two cycles of prediction using the odometry and the correction

data from the LiDAR scanner. The relative displacement between two intermediate points

of the robot trajectory is represented by an uncertain location with the estimated relative

displacement vector , the error vector with associated full-rank covariance matrix. Matching

corresponding features (i.e. planar features) depends on magnitude of error, unique of feature

and on the metric used to compare the features (i.e. similarity metric). Furthermore, another

method of map update that can be used are RANSAC-based methods. Results from these

methods could determine whether a measurement in the local map is associated with an

existing match (inlier) or it generates a new plane (outlier). As seen in figure 6.10 as with

typical SLAM approaches we divide this approach in two parts feature tracking and map

estimation. This approach would extract planar features and match new ones estimating

pose by minimizing the error from the tracked features in the map. Map estimation could
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be completed by landmark optimization in the simulated environment.

6.8 Conclusions and Future Work

In this chapter we detail several UAV flight simulators that artificially recreate the flight

dynamics of a UAV and the environment in which it flies. Using simulated navigation

environments in 3D enables a UAV to reliably test the ability to acquire a complete under-

standing of the environment. Our approach is able to correctly match planar features with

our descriptor matching processes for localization in an urban environment. When compar-

ing to GPS our overall accuracy is approximately 3m less the 2m in inside the urban canyon

itself. We also conduct simulated experiments and compare against established methods to

create a benchmark for further development. We conclude that for a complete framework

our method must be coupled with others in order to accomplish GPS-denied flight because

if there are not planar features our method breaks due to lack of planar matches.

In conjunction with our sponsor Primal Space Systems (PSS) for future work our next

actionable step would be to move from our first-gen test with simple trajectories to more

sophisticated route planning using a new environment description. Furthermore we would

like to involve the development of a path planning algorithms that compute optimal paths

between a starting and final location based on different scenarios such as shortest path, path

that require the least amount of data and safest paths to minimize risk due limited planar

descriptors. During this task, this method will select between planning algorithms such as

A* or Dijkstra algorithms for each scenario. We would then be able to calculate safety of

flight trajectory based on the risk of the number of planar surfaces in the specified path.



Chapter 7

Conclusions and Future Work

This dissertation has developed the methodology and feasibility of a two part framework

for providing situational awareness using both acoustic ground sensors and aerial sensing

modalities in urban environments. From discussions in chapters 1-6 it is clear that the

proposed work provides insight into not only near real-time monitoring but also GPS-denied

localization. This chapter summarizes the contributions of this dissertation, discusses future

directions for our work and makes final conclusions.

7.1 Summary of Contributions

7.1.1 Acoustic Ground Sensing

Within the field of acoustic ground sensing we make three notable contributions; scalable

solution for a acoustic monitoring, greedy data driven online path planning approach for

data ferrying, and simulation and experimentation of our approach using real sensor data.

Our first contribution is addressed through discussion of current technologies, our implemen-

tations, and experiments as well as a complete pipeline for future frameworks for an acoustic

monitoring. Our method continuously listens for specific frequencies with the ability to mea-

sure radiation counts, implements onboard audio classification via machine learning methods,

and transmits the results requested. This technique utilizes existing hardware for data man-

115
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agement and machine learning algorithms for classification, such as an inexpensive single

board computer, a ANN and a bgeigie Nano radiation sensor. This contribution impacts

the field of acoustic ground sensing through the use of a low-cost commercially available

implementation for easy maintenance

Our second and third contributions discuss the maneuverability that a UAV provides for

performance enhancements for low-cost wireless communication using remote sensors. We

present a data-driven greedy online Dubins curve path planning algorithm and the integration

of two existing low-cost aerial and remote acoustic ground platforms for data ferrying; a flying

wing design (Ecosoar), and an intelligent AAUS [83, 84].

7.1.2 GPS-Denied Localization

Within the field of GPS-denied localization sensing we also make three notable contributions;

new set of algorithms for the extraction of planar features, new set of algorithms for simplifi-

cation of 3D mesh models, and a simulated planar localization framework that can be used in

conjunction with SLAM methods to improve localization in urban environments.These con-

tributions introduce our novel protocol for managing low altitude 3D aeronautical chart data

to address the unique navigational challenges and collision risks associated with populated

urban environments. Furthermore, we illustrate how our methods could support trajectory-

based operations and performance-based navigation in the urban canyon using planar feature

descriptor matching.
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7.2 Future Work

When regarding future work the ultimate goal would be the implementation of all chapters

of this dissertation into a singular working platform. Within the modality of acoustic ground

sensing we would like to examine and further study directional information for localization

of a single source using our low-cost approach. Furthermore, the modification of our AAUS

to be able to be dropped from the air would drastically improve coverage efforts for long

term implementations. This enhancement would allow our proposed data ferrying platform

approach as well as further test our collection approach.

When regarding GPS-denied localization we would like to implement the identification of

local map-scan variances to improve the detection of moving targets that are occluding

otherwise valid 3D map data. This information can be used over consecutive scans to verify

occlusion/disocclusion events which indicate the presence and direction vector of a moving

object. The implementation of navigational system error for 3D map-matching navigation

systems and further classification of performance for integrity during a flight. Furthermore,

trajectory planning using our method could to used to enable predictions of navigational

system error along hyperlocal regions of the planned trajectory, based on the geometric

structure and reflectively of surfaces that will be visible to the sensor from navigation cells

along the trajectory.

7.3 Concluding Statement

This dissertation addresses both the needs of an intelligent sensor framework through the

development of a static ground AAUS capable of machine learning for audio feature classifi-

cation as well as GPS impaired localization through a formal framework for trajectory-based
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flight localization for a UAS operating in low altitude urban airspace using planar features.

While there are many directions for this work to continue we have layed significant ground

work both aspect of our work to further discussion of research and aid in advancement our

field.
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Appendix A

Optimal Solution for LOD between a

Triangle and a Point

For a triangle with vertices (V0, V1, V2) each point x must satisfy the following equation:

x = B + se⃗0 + te⃗1, where 0 ≤ s ≤ 1, 0 ≤ t ≤ 1, s+ t ≤ 1 (A.1)

with B = V0, e⃗0 = V1 − V0, e⃗1 = V2 − V0 (A.2)

For the observation point P , the distance between a point of the triangle x, d = x−P which

can be rewritten as:

d2 = a s2 + 2b st+ c t2 + 2d s+ 2e t+ f (A.3)

a = e⃗0 · e⃗0, b = e⃗1 · e⃗0, c = e⃗1 · e⃗1, (A.4)

d = e⃗0 · (B − P ) , e = −e⃗1 · (B − P ), f = (B − P ) · (B − P ) (A.5)

The optimal LOD is estimated using cosϕ
d

= n⃗(x−P )
d2
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The numerator n⃗ (x− P ) = g s + h t + i

With g = n⃗ · e⃗0, h = n⃗ · e⃗1, i = n⃗. (B − P ) , and n⃗ =
e⃗0 · e⃗1

∥e0∥ ∥e1∥
(A.6)

The partial derivatives:

∂ n⃗ (x− P )

∂s
= g (A.7)

∂ n⃗ (x− P )

∂s
= h (A.8)

∂d2

∂s
= 2 (a s+ b t+ d) (A.9)

∂d2

∂t
= 2 (b s+ c t+ e) (A.10)

∂
( cos ϕ

d

)
∂s

=
1

d4
.
[
g.
(
a s2 + 2b st+ c t2 + 2d s+ 2e t+ f

)
− (g s + h t + i) ∗ 2 (a s+ b t+ d)

] (A.11)

=
1

d4
.
[
−ag s2 − 2 ha st+ (cg − 2 gh)

)
t2 + ai s+ 2 (eg − hd− bi) t+ (fg − 2id)] (A.12)

∂
( cos ϕ

d

)
∂t

=
1

d4
[
(ha− 2gb) s2 − 2gc st− hc t2 + 2 (dh− ge− bi) s + 2 (eh− ci− he) t+ (fh− 2ei)

] (A.13)

The optimal s and t can be found as a generic quadratic equation [114].
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