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(ABSTRACT)

The focus of this dissertation is the theory of qualitative response models and its application to
forestry related problems. Qualitative response models constitute a class of regression models used
for predicting the result in one of a discrete number of mutually exclusive outcomes. These models,
also known as discrete regression models, differ from the usual continuous regression models in that
the response variable takes only discrete values. In forestry applications the use of such models has
been largely confined to mortality studies where only the simplest kind of qualitative response
models - a dichotomous (binary) dependent variable model - is applied. FHowever, it is common
in forestry to deal with many variables which are either discrete or recorded discretely and need to
be formulated by more complex models involving polychotomous dependent variables. The esti-
mation of such complex qualitative response models only recently has been made possible by the

development of advanced computer technology.

The first objective of this study was to specify dichotomous and polychotomous response models
that appear to be suitable for forestry applications and present methods of statistical analysis for
these models. The models considered in this study were: the linear probability model, binary logit
and probit, ordered and unordered multinomial logit and probit and McFadden’s conditional logit.
Special attention was paid to the following problems: i) how to motivate a qualitative resbonse
model which is theoretically correct and statistically manageable, ii) how to estimate and draw in-
ferences about the model parameters, iii) what criteria to use when choosing among competing

models and iv) how to detect outlying, high leverage and highly influential observations.



The second objective was to exemplify the utility of the above models by considering two, forestry
related, case studies. Assessing the merchantability of loblolly pine trees growing on plantations in
southern United States and modelling the incidence and spread of fusiform rust on loblolly and
slash pine plantations in east Texas. The results demonstrated the potential of qualitative response
models for meaningful implementation in a variety of forestry applications and also, suggested

topics for future research work.



Acknowledgements

I wish to express my deep and lasting gratitude to my major professor, Dr. Timothy G. Gregoire
for his guidance, constructive criticism and continual encouragement throughout each stage of this
study. I would also like to acknowledge the contribution of the other members of my graduate
committee, Drs. Harold E. Burkhart, Richard G. Oderwald, Marion R. Reynolds, Jr. and John
A. Scrivani. I am especially indebted to Dr. H. E. Burkhart for carefully reviewing parts of this
dissertation and to Dr. J. David Lenhart at Stephen F. Austin State University for his comments
and suggestions. Special thanks go to Dr. Robert E. Adams without whose efforts in securing

funding this dissertation would not have been completed.

Data were provided by the Loblolly Pine Growth and Yield Cooperative at Virginia Tech and by
the East Texas Pine Plantation Research Project at Stephen F. Austin State University. My deep

appreciation is extended to the supporters of the above cooperatives.

During the past three years there have been some difficult moments for me and my wife, Alkmini.
Without her, life would have been so much harder. In addition, two persons have never failed to
support, encourage, listen patiently and understand. So it is to my parents, Athanasios and Irene,

and to my wife, Alkmini Katsada, that I dedicate this dissertation.

Acknowledgements i iv



Table of Contents

Introduction . ... ..o it i i i i i i e i e e i i i i e 1
Binary Choice Models ....... ... 00ttt it iiiennnnnn 6
2.1 Linear Probability Models . ........ ... .. . 10
22 Probitand Logit Models . ... ... ..t i 13
2.2.1 Maximum Likelihood Estimation of the Logit Model ...................... 14
2.2.2 Maximum Likelihood Estimation of the Probit Model .. ................... 17
2.2.3 Newton-Raphson and Method of Scoring Optimization Algorithms ............ 19
2.2.4 Minimum Chi-Square Estimation Method . ............... ... ... ... ..... 20
Multinomial Choice Models ............. .. ittt ittt ennnns 22
3.1 Ordered Multinomial Choice Models . ......... ... i, 22
3.1.1 Maximum Likelihood Estimation for the OMNP Model .................... 24
3.1.2 Maximum Likelihood Estimation for the OMNL Model .................... 27
3.2 Unordered Multinomial Choice Models ........... ... .. ... . . . o i, 29
3.2.1 Unordered Multinomial Logit (UMNL) Model ................ ... .. .... 30
3.2.1.1 Maximum Likelihood Estimation of the UMNL Model ................. KX}

Table of Contents v



3.2.2 The Conditional Logit Model ......... ... ... ... . i 36

3.2.3 The Independence of Irrelevant Alternatives (IIA) Property .................. 37
3.2.4 Unordered Multinomial Probit Models .. ........ ... ... ... ... ... .. ... 39
Inference and Model Selection . ........ ...ttt ittt eeeans 42
4.1 Interpretation of Parameter Estimates .. ... ... ... . .ttt 42
4.2 Tests for the General Linear Hypothesis . ... ....... .. e 44
4.3 Criteria for Model Selection . .......... . it 48
4.3.1 Number of Wrong Predictions (WP) ...... ... ... i, 49
4.3.2 Sum of Squared Residuals (SSR) . .. ... i 50
4.3.3 Weighted Sum of Squared Residuals (WSSR) ... ... ... ... ... ... .. ... . ... 52
4.3.4 Prediction Success Index (PSI) . ... ... . . e 53
4.3.5 Likelihood Ratio Test (LR) ... .. . e 55
4.3.6 Akaike Information Criterion (AIC) . ...... ... ... .. . i 56
4.3.7 Theil’s Information Inaccuracy of the Prediction .......................... 56
4.3.8 DISCUSSION . .ottt ittt et et e e e e e e 59
4.4 Data Splitting and Model Validation . ......... ... ... i, 60
Outlier and Influence Diagnostics .. ..... ... vttt ene it ereeriosnnnnaaenns 63
5.1 Introduction ... ... e 63
5.2 Diagnostics for the detection of outliers . .......... ... ... 65
5.3 Diagnostics for High Leverage and Influence Observations ..................... 66
5.4 Diagnostics for Coefficient Sensitivity . ......... . ... i 68
Merchantability Models for Loblolly Pine ............ ..., 71
6.1 Introduction ........ ... ... e 71
6.2 Data ... ... e e e 75
6.3 Two-Product Logit Model . ... ... ... . ittt 77

Table of Contents vi



6.4 Three-Product Logit Model . ...... ... ... .. . . . . 86

6.5 Concluding Remarks ........ ... . 94
Modeling Fusiform Rust Incidence in Loblolly and Slash Pine Plantations .............. 99
7.1 INtroduction . ... e e 99
0 - - 102
7.3 Models that Predict Fusiform Rust Infection Levels . ........................ 105

7.3.1 Dichotomous Models . ........... ... . . . . e 105

7.3.2 Polychotomous Models . ...... .. . i e e 120

7.3.3 DASCUSSION .ottt e e e e e e 133
7.4 Models that Predict Fusiform Rust Transition Proportions .................... 136

T4l DASCUSSIONI v v vt et e e e et et ettt et e e e e e e e e 138
7.5 Concluding Remarks .. ... ... ...t e 165
Summary - Conclusions .. .....cuvterentenrnenereenrerenenenenns [ 200
Bibliography . .......c ittt i i i e i i i e i e 203
T2 L 212

Table of Contents vii



List of Illustrations

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

7.1

7.2

7.3.

7.4.

7.5.

7.6.

7.7.

7.8.

7.9.

Index plot of se, vs i (a) and of d vs i (b) for the binary logit model fitted to loblolly
PINE A, oo e e e e e e e 112

Index plot of h vsi (a) and ¢! vs i (b) for the binary logit model fitted to loblolly
pIne data. . ... e e 113

Index plot of se, vs i (a) and of d, vs i (b) for the binary logit model fitted to slash
PINE dalA. ..ttt e e e e e 114

Index plot of b vs i (a) and ¢! vs i (b) for the binary logit model fitted to slash
PINe data. ... .. e e e 115

Standardized residuals plotted against age and landform for the binary logit model
fitted to loblolly pine data. . ............ ... 116

Standardized residuals plotted against site index and landform for the binary logit
model fitted to loblolly pine data. .......... ... ... .. oL 117

Standardized residuals plotted against age and landform for the binary logit model
fittedtoslash pinedata. .......... ... . i i 118

Standardized residuals plotted against average height and landform for the binary
logit model fitted to slash pine data. ............ ... ... ... .. ... . .... 119

Standardized residuals plotted against age and landform for the OMNL model
predicting the proportion of healthy loblolly pine trees. ................. 168

Figure 7.10. Standardized residuals plotted against age and landform for the OMNL model

predicting the proportion of branch infected loblolly pine trees. . ........... 169

Figure 7.11. Standardized residuals plotted against age and landform for the OMNL model

predicting the proportion of stem infected loblolly pine trees. . ............ 170

Figure 7.12. Standardized residuals plotted against age and landform for the OMNL model

predicting the proportion of dead loblolly pine trees. . .................. 171

Figure 7.13. Standardized residuals plotted against site index and landform for the OMNL

model predicting the proportion of healthy loblolly pine trees. .. .......... 172

Figure 7.14. Standardized residuals plotted against site index and landform for the OMNL

model predicting the proportion of branch infected loblolly pine trees. ...... 173

List of Illustrations viil



Figure 7.15. Standardized residuals plotted against site index and landform for the OMNL
model predicting the proportion of stem infected loblolly pine trees. ........ 174

Figure 7.16. Standardized residuals plotted against site index and landform for the OMNL
model predicting the proportion of dead loblolly pine trees. .............. 175

Figure 7.17. Standardized residuals plotted against age and landform for the UMNL model
predicting the proportion of healthy loblolly pine trees. ................. 176

Figure 7.18. Standardized residuals plotted against age and landform for the UMNL model
predicting the proportion of branch infected loblolly pine trees. . ........... 177

Figure 7.19. Standardized residuals plotted against age and landform for the UMNL model
predicting the proportion of stem infected loblolly pine trees. ............. 178

Figure 7.20. Standardized residuals plotted against age and landform for the UMNL model
predicting the proportion of dead loblolly pine trees. ................... 179

Figure 7.21. Standardized residuals plotted against site index and landform for the UMNL
model! predicting the proportion of healthy loblolly pine trees. ............ 180

Figure 7.22. Standardized residuals plotted against site index and landform for the UMNL
model predicting the proportion of branch infected loblolly pine trees. ...... 181

Figure 7.23. Standardized residuals plotted against site index and landform for the UMNL
model predicting the proportion of stem infected loblolly pine trees. ........ 182

Figure 7.24. Standardized residuals plotted against site index and landform for the UMNL
model predicting the proportion of dead loblolly pine trees. .............. 183

Figure 7.25. Standardized residuals plotted against age and landform for the OMNL model
predicting the proportion of healthy slash pine trees. . .................. 184

Figure 7.26. Standardized residuals plotted against age and landform for the OMNL model
predicting the proportion of branch infected slash pine trees. .............. 185

Figure 7.27. Standardized residuals plotted against age and landform for the OMNL model
predicting the proportion of stem infected slash pine trees. ............... 186

Figure 7.28. Standardized residuals plotted against age and landform for the OMNL model
predicting the proportion of dead slash pinetrees. . .................... 187

Figure 7.29. Standardized residuals plotted against average height and landform for the OMNL
model predicting the proportion of healthy slash pine trees. .............. 188

Figure 7.30. Standardized residuals plotted against average height and landform for the OMNL
model predicting the proportion of branch infected slash pine trees. . ....... 189

Figure 7.31. Standardized residuals plotted against average height and landform for the OMNL
model predicting the proportion of stem infected slash pine trees. . ......... 190

Figure 7.32. Standardized residuals plotted against average height and landform for the OMNL
model predicting the proportion of dead slash pine trees. ................ 191

Figure 7.33. Standardized residuals plotted against age and landform for the UMNL model
predicting the proportion of healthy slash pine trees. ................... 192

List of Illustrations ix



Figure 7.34. Standardized residuals plotted against age and landform for the UMNL model
predicting the proportion of branch infected slash pine trees. ..............

Figure 7.35. Standardized residuals plotted against age and landform for the UMNL model
predicting the proportion of stem infected slash pine trees. ...............

Figure 7.36. Standardized residuals plotted against age and landform for the UMNL model
predicting the proportion of dead slash pine trees. . ....................

Figure 7.37. Standardized residuals plotted against average height and landform for the
UMNL model predicting the proportion of healthy slash pine trees. ........

Figure 7.38. Standardized residuals plotted against average height and landform for the
UMNL model predicting the proportion of branch infected slash pine trees.

Figure 7.39. Standardized residuals plotted against average height and landform for the
UMNL model predicting the proportion of stem infected slash pine trees.

Figure 7.40. Standardized residuals plotted against average height and landform for the
UMNL model predicting the proportion of dead slash pine trees. ..........

List of Illustrations

193



List of Tables

Table
Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

4.1.
6.1.

6.2.

6.3.

Prediction success table for qualitative response models . .................. 54
Summary statistics for the 173 unthinned, lightly thinned and heavily thinned plots. 78

Maximum likelihood coefficient estimates of the two product logit models fitted to
unthinned, lightly and heavily thinned stands. .......................... 80

Maximum likelihood coefficient estimates of the two-product logit models fitted to
unthinned and thinned data. ........... ... .. .. . .. . i 81

6.3a. Covariance matrix of the coeflicient estimates of the binary logit model fitted to

unthinned data. ... ... .. e 82

6.3b. Covariance matrix of the coefficient estimates of the binary logit model fitted to

6.4.

6.5.

thinned data. . ... i e e 83

Goodness of fit and prediction statistics of the two-product logit models fitted to
unthinned and thinned data. ........... ... . .. .. . .. . . i, 84

Maximum likelihood coefficient estimates of the three-product ordered logit model
fitted to pooled data. . ... ... .. e 88

6.5a. Covariance matrix of the coefficient estimates of the OMNL model displayed on

table 6.5, o e 89

6.6. Maximum likelihood coefficient estimates of the three-product unordered logit

model fitted to pooled data. ......... ... . . ... 90

6.6a. Covariance matrix of the coefficient estimates (sawtimber) of the UMNL model

displayed on table 6.6. ........... .. . . ... 91

6.6b. Covariance matrix of the coefficient estimates (peelers) of the UMNL model dis-

6.7.

6.8.

played ontable 6.6. . ..... ... .. ... 92

Goodness of fit and prediction statistics of the unordered and ordered three product
logit models fitted to pooled data. ............ ... ... . i il 93

Actual and predicted proportions of trees by dbh class and product class for
unthinned stands. . ... ... . 96

List of Tables xi



Table

Table
Table
Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

6.9. Actual and predicted proportions of trees by dbh class and product class for thinned
SANAS. . i e e e e 97
7.1. Distribution of sample plots by speciesandage. ........................ 102
7.2. Classification of survey plots by species and site preparation classes. ......... 103
7.3. Loblolly and slash pine plot summary statistics during the first measurement and
TEMEASUTCITICNE. . . o vttt e ettt e e e e e e ettt e 104
7.4. Maximum likelihood coefficient estimates of the binary logit and probit models
which predict rust infection on loblolly pine. . ........ ... ... ... ... ... 106
7.4a. Covariance matrix of the coefficient estimates of the binary logit model displayed
ontable 7.4, .. e 107
7.5. Maximum likelihood coefficient estimates of the binary logit and probit models
which predict rust infection on slash pine. ................ ... .......... 108
7.5a. Covariance matrix of the coefficient estimates of the binary logit model displayed
ontable 7.5, . e e 109
7.6. Maximum likelihood coefficient estimates of the OMNL and OMNP models fitted
toloblolly pine data. ....... ... .. .. ... 121
7.6a. Covariance matrix of the coefficient estimates of the OMNL model displayed on
table 7.6, . e e 122
7.7. Maximum likelihood coefficient estimates of the UMNL model fitted to loblolly
PINE data. . e e e e 123
7.7a. Covariance matrix of the coefficient estimates (BRANCH) of the UMNL model
displayed on table 7.7. ... ... ... e e e 124
7.7b. Covariance matrix of the coefficient estimates (STEM) of the UMNL model dis-
played ontable 7.7. . ... ... 125
7.7c. Covariance matrix of the coefficient estimates (DEAD) of the UMNL model dis-
played ontable 7.7. ... ... e 126
7.8. Maximum likelihood coefficient estimates of the OMNL and OMNP models fitted
toslashpinedata. ......... ... ... . . . . . ., 127
Table 7.8a. Covariance matrix of the coefficient estimates of the OMNL model displayed on
table 7.8, e e 128
7.9. Maximum likelihood coefficient estimates of the UMNL models fitted to slash pine

Table

Table

Table

Aata. .. e e 129

7.9a. Covariance matrix of the coefficient estimates (BRANCH) of the UMNL model

displayed on table 7.9. . ... .. ... e 130

7.9b. Covariance matrix of the coefficient estimates (STEM) of the UMNL model dis-

played ontable 7.9. ... ... . e 131

List of Tables xii



Table 7.9c. Covariance matrix of the coefficient estimates (DEAD) of the UMNL model dis-
playedontable 7.9. . ... ... . ... 132

Table 7.10. General form of the rust infection plot transition matnix. ................ 137

Table 7.11. Maximum likelihood coefficient estimates of the quatri-nomial ordered logit
model that predicts the transitional proportions of healthy loblolly pine trees. .. 139

Table 7.11a. Covariance matrix of the coefficient estimates of the OMNL model displayed on
table 7.1, Lo 140

Table 7.12. Maximum likelihood coefficient estimates of the quatri-nomial unordered logit
model that predicts transitional proportions of clear loblolly pine trees. ....... 141

Table 7.12a. Covariance matrix of the coefficient estimates (CLR-BRA) of the UMNL model
displayed on table 7.12. .. ... ... .. e 142

Table 7.12b. Covariance matrix of the coefficient estimates (CLR-STEM) of the UMNL
model displayed on table 7.12. .. ... ... .. e e 143

Table 7.12c. Covariance matrix of the coefficient estimates (CLR-DEAD) of the UMNL
model displayed on table 7.12. . ... .. ... . e 144

Table 7.13. Maximum likelihood coefficient estimates of the quatri-nomial ordered logit
model that predicts the transitional proportions of branch infected loblolly pine
13 (51O 145

Table 7.13a. Covariance matrix of the coefficient estimates of the OMNL model displayed on
table 713, e e 146

Table 7.14. Maximum likelihood coefficient estimates of the tri-nomial unordered logit model
which predicts transitional proportions of branch infected loblolly pine trees. .. 147

Table 7.14a. Covariance matrix of the coefficient estimates (BRA-STEM) of the UMNL
model displayed on table 7.14. ... ... ... 148

Table 7.14b. Covariance matrix of the coefficient estimates (BRA-DEAD) of the UMNL
model displayed on table 7.14. . ... ... ... . . e e 149

Table 7.15. Maximum likelihood coefficient estimates of the binomial logit model that predicts
the transitional proportions of stem infected loblolly pine trees. ............ 150

Table 7.15a. Covariance matrix of the coefficient estimates of the binary logit model displayed
ontable 7.15. ... e 151

Table 7.16. Maximum likelihood coefficient estimates of the quatri-nomial ordered logit
model that predicts the transitional proportions of healthy slash pine trees. .... 152

Table 7.16a. Covariance matrix of the coefficient estimates of the OMNL model displayed on
table 7,16, .. e e e e 153

Table 7.17. Maximum likelihood coefficient estimates of the quatri-nomial unordered logit
model that predicts transitional proportions of clear slash pine trees. ......... 154

Table 7.17a. Covariance matrix of the coefficient estimates (CLR-BRA) of the UMNL model
displayed on table 7.17. ... .. . .. 155

List of Tables Xiii



Table 7.17b. Covariance matrix of the coefficient estimates (CLR-STEM) of the UMNL
model displayed ontable 7.17. ... ... ... . L 156

Table 7.17¢c. Covariance matrix of the coefficient estimates (CLR-DEAD) of the UMNL
model displayed on table 7.17. . ........ ... ... . . . 157

Table 7.18. Maximum likelihood coefficient estimates of the tri-nomial ordered logit model
that predicts the transitional proportions of branch infected slash pine trees. ... 158

Table 7.18a. Covariance matrix of the coefficient estimates of the OMNL model displayed on
table 7. 18, .. e e e 159

Table 7.19. Maximum likelihood coefficient estimates of the tri-nomial unordered logit model
which predicts transitional proportions of branch infected slash pine trees. .... 160

Table 7.19a. Covariance matrix of the coefficient estimates (BRA-STEM) of the UMNL
model displayed on table 7.19. . ... ... .. . e 161

Table 7.19b. Covariance matrix of the coefficient estimates (BRA-DEAD) of the UMNL
model displayed on table 7.19. . ... ... .. 162

Table 7.20. Maximum likelihood coefficient estimates of the binomial logit model that predicts
the transitional proportions of stem infected slash pine trees. .............. 163

Table 7.20a. Covariance matrix of the coefficient estimates of the binary logit model displayed
ontable 7.20. . ... ... e e 164

List of Tables Xiv



Chapter I

Introduction

Qualitative response models, also known as quantal, categorical, logistic, qualitative choice or dis-
crete regression models, are regression models in which the dependent variable is categorical, i.e.,
it can assume only a limited number of discrete values. As in classical regression analysis where the
response variable is continuous, these models may be used to i) derive information regarding the
role of each regressor in terms of its influence on the response variable, ii) explain the structure of
the system (process) that generated the data observed by the researcher and iii) estimate (or predict)
the response as a function of current (or future) observations. In qualitative response models
however, the estimated (or predicted) response is actually the estimated probability that the re-
sponse will assume a particular value. This is a fundamental difference between the qualitative and
continuous regression models. As Nerlove and Press (1973) put it, it is not the value of the re-

sponse variable that is important, but the probability that the response takes on a particular value.

Qualitative response models with a single regressor variable seem to have originated in mathemat-
ical psychology where they were being used for more than fifty years before they were either redis-
covered or adapted by biometricians for use in biological assay (see Finney, 1971, sect. 3.1). The

biological assay or bioassay is an experiment for estimating the potency of a substance by means



of the reaction that follows its application to living matter (Finney, 1978, sect. 1.1). Some of the
early work in bioassay was due to Thomson (1919), Gaddum (1933), Bliss (1934a, b; 1935a, b;
1937), Berkson (1944) and Finney (1947).

Nevertheless, it was not until econometricians realized the variety of potential applications in be-
havioral sciences that the underlying probability and inference theory began to be fully developed
and generalized to more complex problems (see Goldberger 1964, Zellner and Lee 1965, Theil
1967). Situations where the need for discrete regression models naturally arises are when studying
the factors affecting, for example, a senator’s decision on whether to vote yes or no on a particular
piece of legislation, a consumer’s choice on which among several shopping areas to visit or a cou-
ple’s choice on the number of children. Over the past twenty years there has occured considerable
advancement in methods for modeling discrete choices. These new methods and models have been
applied in economics (see Amemiya 1975, 1981, Manski 1981, McFadden 1981), travel demand (see
Ben-Akiva and Lerman, 1985), transportation (see Domencich and McFadden, 1975), housing (Li,
1977) criminology (Witte, 1980), job location (Duncan, 1980), geography (Wrigley, 1982), and
other fields. ’

In forestry research the use of qualitative response models has been confined to a relatively limited
range of applications among which mortality studies are, by far, the most common (Monserﬁd,
1976, Hamilton and Edwards, 1976, Hamilton, 1984 and 1986). Other applications include esti-
mation of the probability of insect outbreak (Daniels et al., 1979), of insect spot becoming inactive
(Reed et al., 1981), of a tree occurring into specified merchantability classes (Strub et al., 1986),
modeling recreation choices (Stynes and Peterson, 1984), etc. Even though a considerable amount
of data in forestry is naturally or artificially grouped into distinct classes (e.g., d.b.h. class, volume
class, forest type, crown class, site class) the potential for broader application of such models is just
now becoming apparent. Discrete regression models could serve, for example, in estimating the
probability of fire occurrence at a certain forested area given certain climatic, vegetation,
topographic, site and aspect characteristics, modeling the spread of a disease or infestation in a forest

population, determining the factors affecting certain recreational activities in the forest, projecting



forest stand characteristics into the future as a part of an integrated forest yield and growth system,

etc.

The inappropriateness of the classical regression analysis when the response is categorical is sum-
marized in the following section. Situations when qualitative response models are appropriate arise
when the response of an individual (whatever this might be, a person, a tree, an insect) can be
classified into one of several categories. These categories, generally known as “alternatives”, must
be i) finite in number, ii) mutually exclusive and iii) collectively exhaustive. When a situation
cannot be described as “qualitative” either because alternatives are not mutually exclusive or ex-
haustive, it is usually possible to redefine the set of alternatives in such a way that the redefined set
meets the two criteria. The only truly restrictive criterion is the first one, namely, that the number
of alternatives be finite. Typically, the set of alternatives available to the individual is denoted by
a variable; for example, tree dbh is a non-negative number x which can be thought as representing
the tree’s choice. The variable x is obviously continuous in that, within any range, it can take an
infinite number of values. Clearly the first criterion prohibits the use of qualitative modeling for
continuous variables. However, many continuous variables can be represented without much loss
of information by discrete variables. In many forest inventory situations, for example, the dbh
values for the trees are not individually recorded but the tree frequencies are simply tallied by dbh
classes (Avery and Burkhart 1983, Clutter et al. 1983). Since there is always a conceivable maxi-
mum value for these variables, qualitative response models are applicable. Whether or not to utilize
this method, is of course a decision to be made by the researcher which will depend on the objective
of research. Generally, when there is a small number of alternatives, questions such as “how many
trees (will) fall in the 10-inch dbh class” can be fruitfully answered by applying qualitative response

models.

The term “qualitative response models” designates a class of models, members of which are specific
qualitative models such as probit and logit. All models in this class estimate the probability that
an individual will choose a particular alternative from a set of alternatives, given the data observed

by the researcher. The models in the class differ in two ways; first in the functional form that relates



the observed data to the probability (e.g., probit, logit) and second in the class of values assumed

by the response variable. Fienberg(1980) distinguishes among discrete variables whose values are:
1. Dichotomous (e.g., yes or no, dead or alive)

2. Unordered polychotomous (e.g., mode of transport-car, bus or train)

3. Ordered polychotomous (e.g., old, middle aged, young)

Qualitative response models with dichotomous response are known as binary choice models

whereas those with polychotomous response are known as multinomial choice models.

The focus of this dissertation is the theory of qualitative response models and its application to
forestry related problems. In this first chapter the philosophy of qualitative response models has
been introduced along with few brief historical remarks on the evolution of these models over the
past sixty years. Chapter Il presents the three major types of dichotomous response models
namely, the linear probability, binary logit and probit formulations. The motivation and the esti-
mation procedures given in this chapter provide the necessary theoretical background to understand
the more complex polychotomous response models presented in chapter III. These models are the
ordered multinomial logit and probit formulations, unordered multinomial logit and McFadden’s
conditional logit. The advantages and disadvantages of each of these models are also discussed in
this chapter. Chapter IV refers to both dichotomous and polychotomous response models. It il-
lustrates how to interpret and draw inferences about model parameters and also, it presents a variety
of models selection and validation criteria. Chapter V deals with outlier and influence diagnostics
specifically developed for binary logit models. The applicability of qualitative response models in
forestry is illustrated in the following two chapters. In chapter VI, qualitative response models are
employed to estimate the merchantability of loblolly pine trees growing on thinned and unthinned,
site prepared, cut-over blantations throughout the southern United States. In chapter VII, these

models are used to study the incidence and spread of fusiform rust in loblolly and slash pine plan-



tations in east Texas. Finally, chapter VIII summarizes the most important theoretical and em-
pirical aspects of this dissertation and discusses the potential for further implementation of

qualitative response models in forestry.



Chapter 11

Binary Choice Models

The simplest of the qualitative response models are those in which the dependent variable is
dichotomous or binary. For instance, y can be defined as | if a tree is alive and 0 if a tree is dead.
One way to motivate binary choice models is to assume that there is an underlying response vari-

able y; defined by the linear regression relationship

* *
Vi =B'x+¢

where,

X; is the px1 vector of explanatory variables (continuous or discrete) observed at
the i-th individual

B is the px1 vector of unknown regression coefficients

& is the error term for the i-th individual with E(g]) = 0.

In practice y; is unobservable. It can be thought of as a random index for the i-th individual that
defines its propensity to choose an alternative (Judge et al., 1988). What we observe is a Bernoulli

random variable y defined by



p=1 ify >0

»;=0  otherwise

We will assume throughout this study that the random variables y; are independently distributed
except where noted. As mentioned in the introduction, interest lies with the estimation of the

probability that the observed response (p) takes on a particular value. The expectation of y, is

Ep)=1Pp;=1)+0P@y;=0)
=Py=1
= P(y; >0)
= P(B'x;+ & > 0)
= P(s; >— f'x)
=1-F-8'x)

where F is the cumulative distribution function (cdf) of «;.

If the ¢;’s are independent and identically distributed (iid) uniform random variables defined in the

open interval (—L, L) with L >0, then F(—f'x)=01if — f'x, < —L,

. [-Ex —Bg+Ll ,
F<-M=JL fleydey=—S— if ~L<—Bx<L

and F{ - p’'x)=11if — f'x,> L. It now follows that

EQG)=Pi=D=p
=1-H-f'x)
=1 if-p'x<—L [2.1]
=B'x+L)2L=oz if-L<-f'x<L
=0 if—g'x=L



The above formulation is known as the linear probability model, so called because the probability

D: is expressed as a linear combination of the regressors x..

If the cdf of ¢ is the logistic function (Johnson and Kotz, 1970) then we have the logit model.

For this model,

exp(—f'x) 1
1+exp(—B'x) 1+exp(f'x)

F—p'x) =
where — oo < — f'X, < oo, and

Ep)=P@y;=1)=p

=1-F~f'x) [22]

__exp(f'x)
T 1+exp(B'x)

In this case there is a closed-form expression for F, i.e., one that does not involve integrals ex-
plicitly. Not all distributions permit such a closed-form expression. For instance, in the probit

model (also known as normit) we assume that the ¢, are iid N(0, 6?). In this case,

’

—_ é X
F(—p'x)=0(—f'x)= J‘ (2m)™'* exp( — &} [207)d(z0)

—00

A second motivation for binary choice models which is used extensively in the development of
predictive models for human behavior, is based on the hypothesis of utility maximization
(Domencich and McFadden 1975, Amemiya 1981). The theory of utility was developed during the
1930’s and 1940’s to describe an individual’s preference among several alternative courses of action.
The utility function is a decision rule which basically accounts for the internal mechanisms used

by the decision maker to process the information available and to arrive at a unique choice



(DeGroot, 1970). It assumes that the “attractiveness” or utility derived from a particular choice can
be expressed as a linear combination of attribute values which are specific to the individual (Judge
et al., 1985). It is this index of attractiveness which is known as utility, a measure that the decision
maker attempts to maximize through his choice. Depending on the area of application, this deci-
sion rule can be defined more specifically to minimize cost, to maximize profit or yield etc. We
define U, and U, as the utilities associated with the y =0 or | alternatives faced by the i-th indi-
vidual. Then, assuming that each utility is a linear function of the individual’s characteristics and

a random disturbance we have,

Up=yo'x+ &g

Un=y1"%+¢

The basic assumption is that the i-th individual chooses y,=1 if U, > U, and y,=0 otherwise.

Then,

P@y;=1)= P(Uy > Up)
=Py x; + &1 > y0'x; + )
= Plejg — &y < (y1 — y0)'X)

=H-f'x)

where f = (yo—y,)- Thus, from the standpoint of utility, the linear probability, logit or probit

models arise from assuming the uniform, normal or logistic cdf for ¢5 — ¢, respectively.

A third motivation for binary choice models can be found in Finney (1947). It expresses the choice

probabilities directly as a function of a set of explanatory variables, i.e.,
Pyi=1)=p=Fp'x) (23]

The analyst’s task is to select a proper form of F such that the implied constraint



0<p<1

is satisfied and the response curve concords with theoretical and empirical observations. Bliss
(1934a) defined the probit model by selecting the normal cdf, and Berkson (1944, 1951), subse-
quently, noted the similarity between the normal and logistic curve, which enabled him to derive
the logit model. The main difference of this motivation from the two, previously discussed, is that
it makes no explicit as.imption about the model’s error structure. Indeed, the selection of F does
not directly characterize the distribution of the error term, therefore no valid statistical inference can
be made under this motivation. Although somewhat simplistic and not theoretically sound for
subsequent statistical analysis, this kind of motivation is intuitively appealing and as such, it is fre-
quently used by many authors for introducing the theory of qualitative response models to the

reader.

2.1 Linear Probability Models

Recall from [2.1] that the linear probability model is defined
Ep)=Pui=1)=o'g
It is reasonable to write the model in the usual regression framework as
yi=a'zi+¢

with E(e) = 0. The conditional expectation E(y,|z) = a'z, defines the probability that the event
will occur given z. The calculated value of y, from the regression equation, y;, = &'z, will then give
the estimated probability that the event will occur given the particular value of the vector z. An

obvious defect of this formulation is that unless &'z takes values within the interval [0, 1], the esti-
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mated probabilities can have values greater than one or be negative. A way out of this problem is
to use an estimation procedure which automatically ensures these restrictions on y, for observations
used in the fitting data. This can be accomplished by means of quadratic programing (Judge et al.,
1985) or by applying restricted least squares estimation (Nerlove and Press, 1973). However, under
either estimation procedure there is still no guarantee that predictions for values of z; outside the
sample range will fall within the [0, 1] interval (Judge et al., 1985). In addition, restricted least
squares estimators are optimal only asymptotically, i.e., for large sample sizes, and require partic-
ularly complex calculations especially when heteroscedasticity is to be accounted for (Nerlove and

Press, 1973).

Since p, takes only two values, 1 and 0, the residuals ¢, also take two values only:

g=1—-a'zz ify=1

6=a'g ify;=0
As already stated, P(y,= 1) = E(y,|z) = &'z, and P(y;=0) = | — a’z. Since E(g,l2z) =0,

Var(e;1 2) = (1 — '2)X (P = 1)) + (— &'2)*(P(; = 0))
=(1-a'2)'(&'2) + (@21 — «'2)
=a'zg(l - «'2)
= Epilx)(1 — E01 2))

Since E(y,| z) varies with the levels of explanatory variables, the error variance is not homogeneous.
In this case the use of OLS will result in estimated coefficients that will still be unbiased but will
no longer have the minimum variance property among the class of linear unbiased estimators.
Typically, the problem of uhequal error variances can be solved by using weighted least squares
(WLS) method. Goldberger (1964) suggested the following two stage estimation procedure. First

estimate
yi=a'zi+ g
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by OLS. Next, compute y(1 — ) and use WLS; that is, define
W=D - 912

and then regress y,/w, on z/w, . This estimation procedure is generally known as Feasible Gener-
alized Least Squares (FGLS) method (Fomby et al., 1984). Given that w,= j(1 — ) consistently
estimates Var(s,lz) = E(, 1 z)[1 — E(;|2)] (McGillivray, 1970), it can be shown that FGLS esti-
mators are unbiased (Kakwani, 1967), consistent, asymptotically normal and asymptotically more
efficient than OLS estimators (Zellner 1962, Schmidt 1976). Furthermore, in the case of normal
errors, FGLS method yields estimators which are asymptotically equivalent to ML estimators
provided that the ML estimator is used to estimate the Var(s,| z) (Magnus, 1978) as is the case here.
A problem with this procedure is that since OLS does not guarantee that j, will lie between 0 and
1, some of the estimates w, may be negative (Nerlove and Press, 1973). It must also be noted that
this method only corrects for the heteroscedasticity noted above and does not avoid the inherent
weakness of the linear probability models namely, that a’z is not constrained to lie between 0 and
1. In view of the fact that the main use of linear probability models is in preliminary studies,
Amemiya (1981) suggests to use OLS rather than FGLS estimators keeping in mind that the

standard errors of the OLS estimators are biased because of the heteroscedasticity.

Another problem associated with the OLS estimation of linear probability models occurs when the
majority of values of &'z are either small or large, so that a preponderance of observed y; 's are 0
or 1, respectively. This may result in a significant distortion of the estimated relationship from the

true one (Nerlove and Press, 1973).

Finally, because the residuals are not normally distributed, the OLS and, in general, no method of
estimation that is linear in the y,s, is fully efficient. That is, there exist non-linear estimation
methods that are more efficient than the OLS and WLS methods (Cox, 1970). These methods are

discussed next.
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2.2 Probit and Logit Models

As mentioned before, probit and logit models are motivated by assuming that the cdf of & is the
normal and logistic function, respectively. The normality assumption associated with the probit
model is neither stronger nor less strong than in any other branch of statistical inference (Finney,
1978). The true distribution may not be normal but in the absence of evidence favoring a specific
alternative, the fact that the normal distribution accords fairly well with biological observations and
is mathematically tractable (though not expressible in closed-form) makes the hypothesis of
normality appealing. The central limit theorem also provides a major justification for probit anal-
ysis when means of several observations at each setting of the predictor variables are involved. Bliss
(1934a, 1934b) was the first to present the probit model and the maximum likelihood estimation

within the context of bioassay.

Berkson (1944) advocated the logistic function as an alternative to the normal cdf for modeling
quantal response rates on different dose levels. He argued that “the logistic function is very near
to the integrated normal curve, it applies to a wide range of physicochemical phenomena and
therefore may have a better theoretic basis than the integrated normal curve”. The main advantage
of the logistic distribution has been considered, for long, to be the fact that unlike the normal cdf,
a closed form expression is readily available. Today however, given the fast computer hardware and
efficient computing algorithms for evaluating the normal pdf, it is questionable how great this ad-

vantage is.

Because the normal and logistic cdf are very similar to each other except at the tails (Cox, 1970),
one is not likely to obtain very different results using probit or logit analysis unless the sample is
large (so that we have enough observations at the tails). However, as Amemiya (1981) pointed out,
the estimates of § from the two methods are not directly comparable. The reason is that the var-

iance of the standard normal variable is 1 whereas the variance of the standardized logistic distrib-
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ution is 73/3. Thus, the estimates of § obtained by the logit model have to be multiplied by
ﬁ /7 in order to be comparable to the estimates obtained by the probit model. Amemiya (1981)
suggested that the logit estimates be multiplied by 1/1.6=0.625 instead of ﬁ [m saying that this
transformation produces a closer approximation of the logistic distribution to the distribution of the
standard normal. He also showed that the coefficients of the linear probability model, [} 1p and the

coefficients of the logit model, [Ai ;. are related by the relationship:

N N
Brp=0.258; except for the constant term

{?LP o~ 0.252}L + 0.5 for the constant term

Maximum likelihood is the method most commonly used to estimate the vector of regression co-
efficients, . The implementation of this method will be described first for the logit and second for

the probit model.

2.2.1 Maximum Likelihood Estimation of the Logit Model

Recall the definition of the logit model,

E@p)=Pp;=1)=p

=1-F-p'x)

_exp(f'x)
© 14exp(B’x)

where y; was defined as

n=1 i y; >0
[24]
»=0 otherwise
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In this case the observed values y, are realizations of a Bernoulli process with probabilities given

by [2.4] and varying from trial to trial (depending on x;). Hence, the likelthood function is

L= H[F( - =) V1 - (- p'x)Y [2.5]
i=1

which, when F is assumed to be the logistic function,

n

L [ 1 ]1—” exp(B’x;) i
1+ exp(8'x) 1 + exp(8'x)

i=1

CXP(E'ZIM)
=1

[ ot +expgz
i=1

Define {* = En xy; and note that the likelihood function involves y, only through ¢', that is, ¢’ is a
i=1
sufficient statistic for § given the observed vectors x;. To find the maximum likelihood (ML) esti-

mator of § we take the logarithm of L,

n
log L= /_}'f — Zlog[l + exp(f'x;))]
i=1

Hence, S(B) = dlog L/ = 0 gives,



n

exp(f’x;) .
S(B)=— Zm X+t

i=1
These equations are non-linear in f. Hence, in order to find é such that S(f) = 0 is satisfied we
have to rely on some method of non-linear optimization such as the Newton-Raphson method.
A necessary and sufficient condition for any iterative optimization procedure to converge to an
absolute maximum (or minimum) regardless of the choice of initial values of the parameters is the
global concavity (convexity) of the maximum likelihood function. Amemiya (1985, p.270) proves
the global concavity of the maximum likelihood function for both logit and probit models. He also

proves the consistency and asymptotic normality of the ML estimator of § for both models.

Using the definition of the information matrix /(f), we can write

& log L
I(g)= E( _W>

n

_ exp(B'x) ,
=/ Tl +exp(x)] &

i=1

If the final converged ML estimates are denoted by é , then the asymptotic covariance matrix is
consistently estimated by [l(é)]". Under the asymptotic normality of the ML estimator of g, we

can test hypotheses and construct confidence intervals about any one or all of the elements of .

Using ﬁ we can estimate the probability p, that the i-th observation is equal to 1. Denoting these

estimated values by p, we have,
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A
A exp(B'x;)
Pi=—"""
1 +exp(f'x)

From S(f) = 0 we obtain

n n
Zﬁp_@ =D
i=1 =1

This means that if x, includes a constant term, the sum of the estimated probabilities is equal to

iy,. i.e., the number of observations in the sample for which y = 1. Formally stated, the predicted

i=1

frequency equals to the actual frequency.

2.2.2 Maximum Likelihood Estimation of the Probit Model

For the probit model the likelihood function is

L=]| [to(-pg'x)1 71 —o(—gx)Y

=] |01 -oEx] " oE )T

and the log-likelihood is,

log L = ) (1 -y logl1 — ®(E'x)] + ) yilog ®E'x)
i=1 i=1
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Differentiating log L with respect to § yields

n

_ dlogL _ D — ®(f'x)]
SB="75—= Z E Rl - O]

i=1

(B’ x)x;

where ¢(«) is the probability density function of the standard normal distribution defined as

oP(x)

"2 ) = ﬁexp(—%xz)

for —co < x < co. The ML estimator § can be obtained as a solution that satisfies the equations
S(B)=0. Again, these equations are non-linear in §, thus we have to rely on an iterative opti-
mization procedure such as the Newton-Raphson method in order to solve them. The information

matrix is,

9’ log L
1@=E<—ﬁ)

n

_ [T ,
AR 2

i=1

As with the logit analysis, if é is the final converged ML estimate of g, then [I(é)]‘l is the corre-
sponding covariance matrix of é which can be used to conduct any test of significance or construct

confidence intervals about any element of §.
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2.2.3 Newton-Raphson and Method of Scoring Optimization Algorithms

Because of the global concavity of the likelihood function of both logit and probit models, any
non-linear iterative optimization procedure can be used to calculate ML estimators. The two most
commonly used iterative methods are the Newton-Raphson method and the method of scoring.

Given an initial estimate §,, the second round estimate §, in each method is defined as follows:

Newton - Raphson Method

[>>

A azlogL
2= él - aéaér

' ologL |
T4 B B

Method of Scoring

VTN .
= [ZA—'E &&:| Zﬁ x[yi— Fi+ x|
/i Fa-Fy Ea-Fy

= =1

where I?‘, = F(é{;,.), jAf = f(_ﬁ_l';q) and log L as in [2.5]. The third round estimator é, is obtained by
substituting éz for é , in the right hand side of the above expressions. This procedure is to be re-
peated until the sequence of estimated thus obtained converges. Note that the two methods differ

only in that in the method of scoring the expectation is taken of the matrix of second derivatives.

An interesting interpretation of the method of scoring estimate as a non-linear weighted least
squares estimate is due to Walker and Duncan (1967). Writing a binary choice model directly as

a function of the explanatory variables, we obtain

n=Fp'x)+e
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which is a heteroscedastic —non-linear regression model with E(glx)=0 and
Var(e,| x;)) = F(B’x)(1 — F(B’'x)). Expanding F(§’x,) in a Taylor series about g = é , and rearranging

terms, we have

A

L+ BB ) + &

>

=

Thus the second expression of _[Aiz in the method of scoring iteration can be interpreted as the
weighted least squares estimator of f applied to the above model with the Var(e;|x,) estimated by
1:‘,(1 - It"f) . For this reason, Walker and Duncan (1967) called the method of scoring iteration in

the qualitative response models as the non-linear weighted least squares (NLWLS) iteration.

2.2.4 Minimum Chi-Square Estimation Method

In the preceding discussion the maximum likelihood estimation method was presented for both
logit and probit models. This method of estimation is applicable whether repeated observations
are available for each cell or not. A cell is defined to be a particular setting of values of the ex-
planatory (independent) variables. When several (repeated) observations are available for each cell,
one can use an alternative estimation procedure known as the minimum chi-square method
(Berkson, 1944). Its main advantage is that any statistical computer package which includes mul-
tiple linear regression fitting can be used to estimate the regression coefficients for the probit or logit
models. The minimum chi-square method will produce estimates asymptotically equivalent to
maximum likelihood estimates if the number of observations per cell is sufficiently large (at least
30, as a rule of thumb) for the asymptotic theory to be in effect. However, even in the case where
the analyst designs the experiment and therefore controls the values of independent variables, it is
not always possible to generate many observations per cell due to cost and time limitations. For
example, in the case of four independent variables each of which takes four distinct values, the re-
quired total number of observations is at least (4%)(30) = 7680. Moreover, when at least one of the

independent variables is continuous, a case frequently occurring in forestry research, the large
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number of empty cells prohibits the implementation of minimum chi-square method. Grouping
the data into artificially constructed intervals does not guarantee that the number of observations
per cell will be sufficiently large and always results in loss of information. For these reasons the

minimum chi-square method of estimation will not be discussed in this study.
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Chapter 111

Multinomial Choice Models

Multinomial choice models constitute a class of qualitative response models for which the response
is a polychotomous variable, i.e., it can be classified into many categories. As mentioned previ-
ously, we distinguish between ordered and unordered polychotomous variables. Because model
specification and analysis differ according to the type of the response variable involved, the cases

of ordered and unordered responses will be discussed separately.

3.1 Ovrdered Multinomial Choice Models

Models of this type consider individuals who are grouped into m > 2 ordered categories such as, for
example, dead, severely affected, unaffected; old middle age, young; less than high school, high
school and college education. Motivation for such models is provided by considering an ordered

categorical variable as a coarsely measured version of an underlying continuous and unobservable
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random variable p* (McCullagh, 1980). It is then reasonable to assume that the ordered categories

correspond to non-overlapping and exhaustive intervals of the real line.

Suppose that p* for the i-th individual (i=1,2,... n) is expressed as
Vi =fx+y

where x; is the vector of explanatory variables for the i-the individual, g is the vector of the corre-
sponding parameters and ¢; is the residual. Then, assume that the i-th individual belongs to the j-th

(j=1,2,... m) category if
*
where «; = — 00, a,, = 00 and a, < a, < ... < a,, partition the real line into successive intervals.

In practice, y; is not observed. Instead, a Bernoulli random variable, p,, is observed, where

yy=1 if the i-th invidual falls in the j-th category

yy=0  otherwise.

Hence, if p; denotes the probability for the i-th individual to belong to the j-th category,

by = P(Vij= 9]
= P(a;_; <y; <ay) (.11

*
=Ploj_ = f'5<g <a—f'x)

= Flo; = p'x) — Floy_y — %)
where F is the cdf of ¢;. This is the general form of an ordered mutlinomial choice model.

If F is the standard normal cdf, [3.1] defines the ordered multinomial probit (OMNP) model, and
if F is the logistic cdf, it defines the ordered multinomial logit (OMNL) model also known as the
proportional odds model (McCullagh, 1980). The OMNP model was first considered by Aitchison
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and Silvey (1957) and Ashford (1959) in the biological assay context. It has been applied, among
others, by Gurland, Lee and Dahm (1960) to study the response of an insect (dead, moribund,
alive) subject to various dosage levels of an insecticide, David and Legg (1975) to explain the price
of a home by several socioeconomic household characteristics, and McKelvey and Zavoina (1975)
to analyze the determinants of congressional voting (yes, no, abstain) on the 1965 medicare bill.
The OMNL model was introduced by Cox (1970) and has been applied only to a limited number
of studies. Among these studies is that by Deacon and Shapiro (1975) to analyze the voting be-
havior of Californians to two different referrenda and that by Sheffi (1979) to study trip generation
by elderly individuals. McCullagh (1980), Anderson and Philips (1981), Anderson (1984) and
Greenland (1985) provide in-depth theoretical discussions about the properties of unordered

multinomial choice models.

3.1.1 Maximum Likelihood Estimation for the OMNP Model

The likelihood and log-likelihood functions for the OMNP model are given respectively by

n m
L=] [] Jeoy-op-e

i=1 j=1

and

n m
log L= ) > yylog[®;,;— @) ]
i=1 j=1

where
(D,J- = P[s: <o;— B'x]= <D(aj —B'x;) — CD(ocj_l - B'x)
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and @ is the cdf of a standard normal random variable. As usual, the objective is to find the values
of a; and g such that L or logL is maximized. For this, we differentiate with respect to «, (k=1,2,

..m) and § and then set the derivatives equal to zero. Noting that

oD,
B bi%
and
oD,
By, hku

where ¢, is the standard normal pdf evaluated at 7,; = a, — f'x, and {,, = 1 if j = k and 0 otherwise,

we obtain
n m
gL _ SN el A 5=0 63
% ;- Py
and
n m
Oay Z Z @, — O, [&xdiy— &1 xbij—11=0 [3.3]
i=1 j=1

Equations [3.2] and [3.3] are non-linear in the parameters since ®,; and ¢,; are non-linear functions
of «; and f. Thus, we must rely on an iterative optimization algorithm such as the Newton-
Raphson procedure or the method of scoring in order to derive ML estimates of the parameters.
Pratt (1981) showed that the log-likelihood function of the model in [3.1] is globally concave if f,

the derivative of F, is positive and logF is concave, a condition that McCullagh (1980) has shown
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that it is satisfied for both OMNP and OMNL models. Hence, it is certain that the iterative algo-

rithm will converge to the global maximum of the likelihood function.

Given that
ad’u
o8 B =701 %
and
0¢,,

Ba " $ikTijbiy

the second partial derivatives can be written as

dlogL
3popT (‘Du - ¢z,1-1)

=1 j=1

X [(@y) = Oy y) (73 jm1bijm1 — TijP1y) — (B1j—1 — 1)) Tt

PlogL
0pdy (‘Du - (DJJ—I)

i=1 j=1

X [((Dij - ¢i1—1)(71j¢ijfj,k - T;‘J_1¢,'j_1‘f'_1,k) - (¢¢'j_1 - 4’:,/)(4’1',/'5]',1( - ¢1J_1'f‘_1,k)]’—ci

and
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n m
dlogl Iy
Oay 0o (@ — ‘I)i,/-1)2

=1 =
X (@5 = Dy )ty jo1 b jm1 =1 48 j-10 — T1j%1785.6850)

— @ik — bij—1im1 ) PiiS5 0 — bijmr16j—1,0)]

Denoting by &, and é the ML estimates of «; and § respectively, we evaluate the matrix of second
partial derivatives of logL at a; and é . This matrix, with the sign reversed, is the information matrix,
and the inverse of the information matrix gives the estimates of the asymptotic variance-covariance
matrix of the parameter estimates. One can use this matrix to perform any desired tests of signif-

icance or construct confidence intervals about the parameters of interest.

3.1.2 Maximum Likelihood Estimation for the OMNL Model

The procedure for obtaining ML estimates of the parameters of the OMNL model is similar to that

of the OMNP model. Specifically, let L;; denote the logistic cdf of ¢; written as

__exp(e;— f'x)
T 1+exp(e;— f'x)

Lyy=P(s; <ay— B'x)
Notice that
5 =L - Lipx [34]

and
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by =& L1 —L,) [3.5]
oy Sk i

The likelihood function of the OMNL model is

and the log-likelihood function is thus

n m
log L= » yylog(Ly;=Lyy_y)
1

i=1 j=

Using [3.4] and {3.5] we obtain

dlogl <
38 =Z gl =Ly — Ly 1%=0 [3.6]

and

nom
dlogL Yy
2 Z ZLU_—LIJ—I LEjuLif(l = Lij) = & by (1 — Lyy—)] =0 [3.7]

=1 j=1

Equations [3.6] and [3.7] must be solved iteratively because they are non-linear functions of the
parameters. Pratt’s (1981) result guarantees the convergence of the optimization algorithm to the

global maximum of L or logL. The second partial derivatives of logL, can be written as follows:
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OlogL
E Zzyu[Lu(l Ly = Ly (L= Ly )]

i=1 j=1

>
,Jix

dlog L S
aﬁaﬁl =- Z Zvij[cj,kl'i,j(l 1,/) j—l,ksz—l(l l,]—l)]—ix

i=1 j=1

and

8 log L
aakaal (Lu l,/—l)

=1 Jj=l1
X L& alif0 = L) = &8y lipliyoy (V= L)t — &y &y iy (1= L)

+ & kLl j (V= L)V = Ly ) + & i Ll joy (1= Li)(1 = Ly )]

The asymptotic variance-covariance matrix of the ML estimates can now be derived and inferences

about the significance of subsets of the parameters are possible.

3.2 Unordered Multinomial Choice Models

A typical model of this kind considers individuals who must fall into one of m > 2 distinct and
mutually exclusive categories. When m =2, the problem reduces to the specification of a binary
choice model of the type presented in the preceding section. Suppose now that there are m > 2
categories. Unlike binary choice models for which three alternative ways of motivation have been

discussed, utility maximization provides the only meaningful basis for the motivation of
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multinomial choice models, suitable for the definition of both logit and probit formulations. Let
the utility that the i-th (i=1, 2, ... n) individual derives by choosing the j-th (j=1, 2, ... m) alter-

native be expressed as
Uy=B/x+ ¢ [3.8]

where f,'x, is a nonstochastic linear function of explanatory variables and unknown parameters and
¢; is an unobservable random variable, with E(e,) =0. Given that each individual is a utility
maximizer, i.e., it chooses the alternative for which the associated utility is highest, the probability

that the j-th alternative is chosen can be expressed as follows:

pj= P[Ulj = max(Un, UZZ' Uzm)]

= Pl: Mwy> U,k)}

J#k

- P[ﬂ (e — o5 < (B) — Ek’)a_c‘-)il

Jk

[3.9]

for j,k =1,2,... m. This is the general eg&pression of the unordered multinomial choice model, so
called because the observations are assumed to be generated by a multinomial process with proba-
bilities p,; . As is evident from [3.9], the kind of multinomial choice model, logit or probit, depends
on the distribution assumed for the error terms ¢;. Clearly, distributions that produce convenient
distributions under subtraction, are popular candidates for the distribution of the error term (Judge

et al., 1985).

3.2.1 Unordered Multinomial Logit (UMNL) Model
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McFadden (1974) was the first to show that a necessary and sufficient! condition for the UMNL
model to arise from [3.8] is that the ¢, 's are independently and identically distributed (iid) with the
standardized type I extreme value or log-Weibull distribution (Johnson and Kotz, 1972). His proof
was based on a result by Gumbel (1962) that the difference of two independent random variables,
each having the same type I extreme value distribution, is distributed as a logistic random variable.

The cdf of a standardized type I extreme value random variable X is defined as
P[X < x] =exp( — exp(—x))

for — co < x < co. Under McFadden’s proof, the individual choice probabilities in [3.9] can then

be rewritten as

exp(B;'xy)
‘DU ="m
Zem( Bi'x)
J=1
To satisfy iPU =1, we set §, = 0 obtaining
j=1
1
Py = m
1+ Zexp(g‘,')_c‘)
Jj=2
and
exp(8;'x)
py = m
1+ Zexp(ﬁ,’;‘i)
J=2

for j=2,3, ... m. This formulation is known as the unordered multinomial logit model. Mantel

(1966), Bock (1969) and Press (1972) developed in detail the theoretical background of this model.

I The first proof of the necessary part is due to A. Marley as reported in Luce and Suppes (1965).
McFadden rediscovered this and proved the sufficient part.
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It has been used, among others, by Theil (1969) to study choices of transportation modes, by Uhler

and Cragg (1971) to study the structure of asset portfolios of households and by Schmidt and

Strauss (1975) to study the determinants of occupational choice.

A second motivation for the UMNL model which was introduced by Theil (1969) and used ex-

tensively before McFadden’s utility motivation was published, is based on the idea of expressing

individual choice probabilities in binary form, as a direct generalization of the binary logit model.

To illustrate this, let

for j=2,3,... m. It is then implied that

for j=2,3,... m. Since

we can write

and

F(B/'x)

P T I-Hpm UM

L o Py
> 6(/%) = Zﬁ

J= Jj=2
_1-m
Pi
_ 1
Pn= m
1+ G(g/x)
j=2

[3.10]
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G(B/'x)

py= — [3.11]
1+ G(g/x)
Jj=2
for j=2,3,.m. If F is chosen to be the logistic cdf, then
, exp(f;'x;)
= T ep(fim)
therefore,
G(B/'x) = exp(B/'x) [3.12]

By substituting [3.12] into [3.10] and [3.11], the expression of UMNL model is obtained.

3.2.1.1 Maximum Likelihood Estimation of the UMNL Model

Recall the selection probabilities as defined by the UMNL model:

1
Pn= m

L+ ) exp(fz)

Jj=2

and

exp(B;'x;)
Py = m

1+ ) exp(B/x)
j=2

for j=2,3, ... m. Given this formulation, we shall now consider ML estimation of the model pa-
rameters, §;, based on a sample of size n. Each of the n individuals is assumed to fall into one of

the m categories with probabilities p; (j= 1,2, ... m). By defining a set of dummy variables y; as
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yy=1 if the i-th invidual falls in the j-th category

yy=0  otherwise.

we are able to express the likelihood function of the UMNL model in the form

n

m
=TI

=1 j=1

and the logarithm of the likelihood function,

n m
L=erv,-jlogp,-j

i=1 j=1

To maximize logL we differentiate with respect to g, (k= 1,2, ... m) and set the resulting matrix of
derivatives equal to zero. Notice first that 9p,/0f, = — ppux; » O0pul9Bsx = pu(l — pu)x; and
f_‘y,-j = 1. Then,

J=1

— m
dlog L _ Jie 1 ) YiiPiPik
6£k = i Dik p[k( Pir p‘j X;
i=1 J=1
J#k
n
B m
= Z Yike — ViPike — Pik(zyij)}—‘x
—d J=1
i=1 J#k

n
= Z[yik — YiuPik — Pull — yu)1x;

i=1

= ZDik — PielX;

i=1
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Thus, the equations to solve for obtaining the ML estimates for g, are

Z(.Vik — )X =10 [3.13]
i=1

Notice the similarity of the above eqations with those obtained in the case of binary logit model.
The interpetation is similar. For instance, if x; contains a constant term, then the predicted and

actual frequencies are identical for each one of the m categories.

Equations [3.13] are nonlinear in the parameters §,. Consequently, in order to obtain solutions
we will have to employ a non-linear optimization procedure such as the Newton-Raphson or the

method of scoring. Notice that by differentiating [3.13] we obtain

3 log L £
T T ;Pik(l — Pi, [3.14]
and
logl < )
BB mevzfm: [3.15]

i=1

which, interestingly, do not depend on y,. Since p, > 0 by the definition of the UMNL model, the
matrix of second derivatives is negative definite hence, we can conclude that the log-likelihood
function is globally concave and any non-linear optimization algorithm will eventually converge to

the maximum.

The asymptotic variance-covariance matrix of the ML estimates can be obtained by the elements
of the inverse of the information matrix, whose diagonal blocks are given by equation {3.14] and

non-diagonal blocks by equation [3.15], both expressions with signs reversed.
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3.2.2 The Conditional Logit Model

McFadden (1974) suggested a different type of an unordered multinomial logit model which he
called “the conditional logit model”. The individual choice probabilities arising from this formu-

lation are defined as

1

b= m
1+ Zexp(ﬁ':_qj)
j=2
and
exp(p’xy)
1+ Zexp(_ﬁ_’x,-j)
j=2
forj=2,3, ... m.

Recall that under the UMNL formulation the probabilities of different choices for each individual
are expressed as functions of §,'x,, the product of a coefficient vector specific to each alternative and
the vector of explanatory variables featuring individual characteristics. Under McFadden’s condi-
tional logit model, the individual choice probabilities are expressed as functions of §’'x;;, the product
of a coefficient vector common to all alternatives and the vector of explanatory variables which is
specific for each individual and alternative. As McFadden (1974) described it, the main difference
between the conditional logit model and the UMNL model is that the conditional logit model
considers the effects of choice characteristics on the determinants of choice probabilities as well,
whereas the UMNL model considered here makes the choice probabilities dependent on individual

characteristics only.
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The fact that the coefficient vector remains constant across alternatives makes the conditional logit
model useful in predicting the probability of choice for an alternative not considered in the esti-
mation procedure, but for which we are given the vector of characteristics x;. This is considered

as the main advantage of the conditional logit model over the UMNL model.

The specification of the conditional logit model is particularly convenient for applications in human
behavior. Its popularity among sociologists and socio-economists is such that many authors refer
to it as the UMNL model, thus contributing into a great deal of confusion in the literature. On the
other hand, applications of conditional logit model in forest biometry are not expected to be as
widespread as those of the UMNL model. The reason lies with the definition of the conditional
logit model which requires the explanatory variables to vary across alternatives for each individual.
It is easy to specify and acquire such data, when studying the behavior of individuals for which
concepts such as cost, profit, loss can be meaningfully defined, but it is very difficult, if not im-
possible, to obtain when studying the behavior of non-sentient organisms such as trees. For in-
stance, in studying a consumer’s choice of transportation mode, it is sensible to define independent
variables specific to the mode such as time and cost involved for riding a bus, train or driving own
car but it is not clear what independent variables would characterize a tree according to the category
it belongs to, when studying, say, individual tree mortality. The data foresters usually have access
to, with the possible exception of forest economists, varies across individuals (trees) but not across
alternatives, so that for the i-th individual, x;, = x, = ..... = x,, = x; , indicating that the UMNL

specification is more suitable for forestry applications than the conditional logit model.

3.2.3 The Independence of Irrelevant Alternatives (IIA) Property

Despite the fundamental difference in their specification, the UMNL and conditional logit model
have been prefered over other theoretical possibilities because of computational simplicity. The

primary disadvantage of UMNL and conditional logit models is a property termed the “independ-
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ence of irrelevant alternatives” which was first pointed out by Arrow (1951).2 The IIA property
holds that for a specific individual the ratio of choice probabilities of any two alternatives is unaf-
fected by the presence of any other alternative. Consider for example the ratio of choice probabil-

ities for two alternatives, k and / :

P exp(Bi'x)
Pu — exp(B/x)

It is clear that the ratio of probabilities for the two alternatives does not depend on any alternative
other than k and /. This seemingly simple property has some important ramifications. When the
alternatives are not distinct enough, the IIA property may cause the model to produce odd and

erroneous predictions.

As an illustration consider McFadden’s famous example of alternative modes of transportation.
Suppose a population faces the alternatives of traveling by car and by bus, and two-thirds choose
to use car. Suppose now that a distinction is made between blue buses and red buses. As it affects
choice between modes of transportation, the color of the bus is irrelevant. One would expect two
out of three persons to choose car when offered the alternative of a blue bus, and the same when
offered a choice between car and the red bus. Given that color is irrelevant to those who choose
bus (1/2 blue, 1/2 red), then 1/4 of the entire population must prefer blue bus over car in order‘ to
maintain a two-to-one preference for car. In turn, this implies that 1/2 of the entire population
must prefer car over bus regardless of color, which is paradoxical. Consequently, two-thirds of the
population will still choose car and the remainder will split between the bus alternatives. Under the
logit formulation however, only half the population will use car in order for the overall population

proportion to remain two-thirds in favor of the car.

To understand fully the IIA property and its implications one must go back to the original as-

sumptions from which both the UMNL and the conditional logit models are derived. The core

2 As Hausman and Wise (1978) state, this terminology is somewhat misleading. In fact, “independence of
relevant alternatives” or "independence among alternatives” might be more descriptive of the property.
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of the problem is in the assumption that the error terms ¢, are mutually independent (Lerman and
Manski, 1981). This assumption requires that the sources of errors contributing to individual util-
ities must do so in a way such that the overall error terms are independent across individuals and
alternatives. There are many circumstances where the alternatives are defined to be distinct enough
so that this assumption is satisfied reasonably well. There are cases however, such as the red
bus/blue bus paradox, for which this assumption is wholly implausible since the error terms of the

red bus and blue bus are more reasonably assumed to be perfectly correlated.

The IIA property is not uniquely associated with the definition of the UMNL and the conditional
logit models (Ben-Akiva and Lerman, 1985). In fact, althoﬁgh models other than the ones con-
sidered in this study might produce different results, any model based on the assumption of inde-
pendent error terms would necessarily yield counterintuitive results for the red bus/ blue bus

problem.

As mentioned earlier, the IIA property is not a negative factor for the logit formulation when the
alternatives are distinct enough. One sensible way to avoid the unpleasant implications of IIA
property, is to merge alternatives for which there exists profound similarities (Kmenta, 1986).
Hausman and McFadden (1984) proposed a test for the IIA hypothesis in the conditional logit
model which can be used whenever the alternatives are not similar enough so that can be merged
but not so different that the assumptions of independent error terms is questionable. No such test

exists for the UMNL model however.

3.2.4 Unordered Multinomial Probit Models

One form of unordered multinomial probit model can be derived in a manner similar to that of
UMNL model by assuming that the error terms ¢; in [3.1] are iid normal random variables with

mean 0 and constant variance o2. This assumption leads to a probit model known as “the inde-
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pendent probit model” which was first proposed by Aitchison and Bennett (1970). As explained
previously, this model, like any other model which is based on the assumption of iid error terms,
features the IIA property. Computationally, the estimation of parameters is more problematic
under the independent probit than under the UMNL model since the normal cdf cannot be ex-
pressed in closed form and therefore, m-1-tuple integrals® arising from [3.2] must be evaluated at
each step of the iterative procedure employed for the maximization of the likelihood function
(Amemiya, 1985). In addition, because of the well recognized close relationship between the
normal and logistic distributions, parameter estimates derived by the independent probit model are
usually very similar to those derived by the UMNL model. As a result, only a few, very limited

number of applications of the independent probit model appear in the literature.

Lerman and Manski (1981) proposed a probit analogue of McFadden'’s conditional logit model that
does not exhibit the IIA property. This model is known as the “dependent probit model” because
it assumes that the error terms in [3.1] are independent across individuals (i) but not across alter-
natives (j) following a multivariate normal distribution with mx1 vector of means, 0 and a mxm
variance-covariance matrix X. Lerman and Manski applied this model to explain modal choice
among driving a car, sharing rides and riding a bus, for 557 workers in the area of Washington, D.C.
A conditional logit model was also fitted to the data for comparison. The conclusions were that
1) probit and logit estimates did not differ by much, ii) the asymptotic variance-covariance matrix
of the estimated coefficients could not be accurately derived, iii) based on the Akaike information
criterion, an increase in the log-likelihood function in the probit model as compared to the logit
was not large enough to compensate for the loss in degrees of freedom due to the estimation of =
and iv) the probit estimation took 1400 percent more CPU time per iteration that the logit esti-

mation. ~

Hausman and Wise (1978) considered a slightly less general model than that of Lerman and Manski

by imposing certain zero specification to the error variance-covariance matrix . They then applied

3 Taking advantage of the independent error terms, the evaluation of m-1-tuple integrals is substantially
simplified to the evaluation of one integral at a time, a simple task by today’s computing standards.
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their model to the same data that Lerman and Manski used and compared the results with those
of a conditional logit and independent conditional® logit models. The conclusions from their study
were that 1) conditional logit and independent conditional probit gave similar results, ii) the de-
pendent conditional probit differed significantly from the other two models and iii) the dependent

conditional probit model fitted best.

Amemiya (1985) interpreted the apparent discrepancy between the conclusions of Hausman and
Wise and those of Lerman and Manski as an indication of the crucial role that the specification of
the error variance-covariance matrix may play in multinomial probit formulations. Despite the
different conclusions however, both studies recognized that the dependent conditional probit model
can be applied only for small number of alternatives (at most three or four) because the computa-
tions involve the evaluation of multiple integrals at each step of the iterative method used for esti-
mation. Other works by Dutt (1976), Daganzo, Bouthelier and Sheffi (1977) and Daganzo (1979)
have contributed in resolving some of the computational problems. However, only a very small
number of applications appeared in the literature and there is still no evidence to suggest in which
situations the greater generality of the dependent conditional probit model is worth the additional

computational problems resulting from its use (Ben-Akiva and Lerman, 1985).

In forestry, all versions of the multinomial probit model presented here, are of very limited use.
The independent probit because it yields estimates similar to the UMNL model with added com-
putational difficulty and the conditional probit, independent or dependent, because the availability
of explanatory variables specific to individuals and altematives is very limited in forestry. Given this
circumstance, unordered multinomial probit models will be excluded from further consideration in

the remamder of this study.

4 The independent conditional logit model is the direct probit analogue of the conditional logit model, ex-
hibiting the IIA property.
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Chapter IV

Inference and Model Selection

4.1 Interpretation of Parameter Estimates

An important difference between classical regression models and qualitative response models lies
with the interpretation of the influence which the explanatory variables exert upon the response
variable. Unlike linear regression analysis, the coefficients in qualitative response models do not
indicate the change in the response given a unit increase in the corresponding independent variable.
Rather, these coefficients reflect the impact of a change in an independent variable on F-!(p,), where
F indicates the kind of model considered, i.e., linear probability, probit or logit model. Consider
first a dichotomous response. Recall that the probability that an event will occur is generally de-

fined by

pi=Py=1)
= F(p'x)
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for the i-th (1= 1,2,...n) individual. Taking the partial derivative of p, with respect to a particular

independent variable x,;, we obtain

oD,
o= ') B

ax,-j
where f{ + ) is the pdf corresponding to F{ ).

It is now clear that although the sign of the corresponding coefficient indicates the direction of
change in the probability, the magnitude of this change is a function not only of the magnitude of
the coefficient §;, but also, of the values of all the independent variables and associated coefficients.
Since f{f’x,) is defined to be the derivative of F(f'x), it is reasonable to think of this measure as
representing the steepness of the cdf F. Naturally, the steeper the cdf, the greater the effect of a

change in the value of an explanatory variable (Fomby et al., 1984).

Steinberg (1987) considered the interpretation of coefficient estimates in UMNL models. He noted
that each set of coefficient estimates may be viewed as representing the outcome of a binary logit
model in which a two choice problem has been analyzed; in each case the pair of choices consists
of the “reference” choice and one of the remaining choices. Under this viewpoint, it becomes clear
that results are dependent upon the coding of the dependent variable. Thus, like in linear regression
models with dummy variables, the coefficient estimates represent shifts in the probability outcome
relative to the “reference” choice. Given that the analyst defines the “reference” choice to be the
one for which inference is most important, the dependency of the UMNL coefficient estimates on
the coding of the dependent variable is usually beneficial. There are situations however, where in-
formation concerning a contrast between any two non-reference choices is needed. To avoid re-
coding and re-fitting the UMNL model, Steinberg suggested the construction of a table of
derivatives which provides information about the change in probability of each choice with respect
to each regressor variable, independently of the code assigned to the dependent variable. More
specifically, he expressed the partial derivative of the probability that the i-th individual will select

the j-th alternative with respect to the k-th regressor variable as follows:
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. J—1
ij
B =sz(5jk - E I,leﬁ/k)-

=1

From the above expression, the reader can verify that the influence of the k-th regressor can be
decomposed into two parts. The first is a direct effect which is given by the coefficient §; and is
proportional to the probability of the j-th choice. The second part is the negative of a weighted
average of the coefficients §, of x, corresponding to the other choices. Therefore, even though the
direct effect B, might be positive, the overall impact might be positive or negative depending on the
magnitude of the impact this regressor exerts on the remaining choices. A convenient way to
present this information is a table having as rows the regressor variables and as columns the alter-
natives considered by the problem at hand. The entries in this table are the derivative values av-

eraged over all individuals.

4.2 Tests for the General Linear Hypothesis

Individual or joint hypothesis tests about coefficients can be conducted by relying on the

asymptotic normality of ML estimators. A general linear hypothesis is defined by
Hy: Q'f=c

where Q is a pxq matrix of known constants and ¢ is a ¢g-vector of known constants, each appro-
priately determined by the research objectives. It is implicitly assumed that p < ¢ and Q is a full

row rank matrix.
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Two asymptotic tests, not specifically designed for qualitative response models, are most commonly
used to test the general linear hypothesis, Wald’s test and the likelihood ratio test. Both tests as-

sume that the alternative hypothesis specifies
Hi: QB #c.

Let § be a ML estimator and let V(B) be a consistent estimator of its asymptotic variance-

covariance matrix. Then, Wald’s test of the hypothesis

Hy: O'B=c s
Hy: OB #c

is based on the test statistic W, known as Wald statistic (Wald, 1943) and defined by
‘/\ , , AN -1 '/\
W=(Q'8—o[QWPBNCT (28 —9)

Under the null hypothesis, W is asymptotically distributed as a chi-square random variable with ¢

degrees of freedom (x2). The decision rule at the « level of significance is

Reject Hy if W> 1(21(1

—a)

Accept H; otherwise

For the special case ¢ = 1, Wald statistic is reduced to the form

\/W= Q'E_Q

Jowpe

which, under the null hypothesis, is asymptotically distributed as a standard normal random vari-
able. This form is to be preferred since it allows for one sided alternative hypotheses such as,
Q'B>cor Q'f<c. Amemiya (1981) reports that some authors prefer to assume that (/W is

asymptotically distributed as a central t random variable with n — p degrees of freedom (¢,_,), instead

-p
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of standard normal. He argues however, that when n— p is reasonably large, it does not make

much practical difference.
The likelihood ratio test statistic is defined by

LR = 2[10gL(EF) - [OgL(éR)]

where é z denotes the constrained (reduced model) ML estimator obtained by maximizing the log-
likelihood function with respect to § subject to the constraint Q' = ¢ and é  is the unconstrained
(full model) ML estimator of §. Like the Wald statistic, LR is asymptotically distributed as x2 under

H,. The decision rule for the « level of significance specifies

Reject Hy if LR> xlq

—a)

Accept H; otherwise.

A definite advantage of Wald’s test over the likelihood ratio test, especially due to the iterative na-
ture of maximum likelihood estimation, is that it requires fitting the model only under the alternd-
tive hypothesis (in contrast to the likelihood ratio test, which requires fitting the model twice).
However, as Rao (1965) points out, little is known about the comparative power functions of the
two tests. Hauck and Donner (1977) found Wald’s test to behave in an aberrant manner for testing
hypotheses regarding a single parameter in a binary logit model. In particular, the authors found
that 1) for any sample size, Wald’s test statistic decreases to zero as the distance between the pa-
rameter estimate and null value increases and ii) the power of Wald’s test based on its asymptotic
distribution decreases to the significance level for alternatives far from the null value. Consequently,
the analyst has no way of knowing whether a small value of W indicates that the actual value of
the parameter is near or very far from the null value. Based on their findings, the authors recom-
mended the use of likelihood ratio test instead. Jennings (1986) showed that the poor performance
of Wald’s test may be due to inadequately defined observed information matrices. More specif-
ically, he argued that since inference based on the observed information matrix (e.g. Wald's test)

can be viewed as a quadratic approximation of the likelihood surface, this approximation may not
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be satisfactory in some instances. By examining the cubic term of the Taylor expansion of the
log-likelihood, the author developed a measure to judge the adequacy of the infecerence obtained
from the observed information matrix. He also suggested one approach for transforming the pa-

rameters when poor inference is detected.

Large sample approximations for confidence intervals for predicted probabilities can be computed

!

using the fact that the linear estimate é, x; follows assymptotically the normal distribution with
mean f;'x; and variance x;'Var()x, Then, one can first compute upper and lower confidence limits
for the parameter §/x, and then transform them using the inverse logistic function. More specif-

ically, if y, = B/x, is the estimated response for alternative j at a given vector x,, the predicted

probability for the jth alternative is given by

A exp(}’)\j)
=" A"
/ 1+ exp(}/z\j)

Also, because p; is a one-to-one monotonically increasing function of ﬁj and

P =5 2i_apn] X' (VB0

and

=5+ 21\ %' (VB )Zo

are respectively the (1 — «/2)100 percent lower and upper confidence limits for y;, the corresponding

limits for the probability of the jth alternative p, are:

exp(;0)
1+ exp(}/)\ju) ‘

A exp(r)

Al
JL 1+exp(f;\ﬂ) v
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4.3 Criteria for Model Selection

The problem of choosing a model among several alternatives is often solved by means of goodness
of fit criteria. These criteria are summary statistics, like R? in the familiar regression analysis, which
indicate the accuracy by which a model approximates the observed data (Myers, 1986). In the case
of qualitative response models, accuracy can be judged either in terms of the fit between estimated
and observed frequencies (if such information is available) or in terms of the model’s ability to
forecast observed responses. It should be emphasized at this point that expressing a model’s
goodness of fit by a single norm is not an easy problem to solve. In fact, it is more complicated
in the case of qualitative response models than it is in regression analysis. This is because com-
paring the values between a continuous and a discrete variable (e.g. the estimated choice probabil-
ities vs. the actual choices in QR models) is generally more difficult than comparing the values
between two continuous variables (e.g. the estimated and observed responses in regression models).
It is the difference in the scale of measurement of the two variables which led Hensher and Johnson
(1981) to argue that it does not make sense to use “residuals” (i.e., the difference between the actual
choice and the estimated choice probability for all individuals) in the calculation of a measure of

fit analogous to R2.

Amemiya (1981) lists several goodness of fit criteria which have been proposed over the past fifteen
years. The most frequently encountered criteria in econometric and biometric research are pre-

sented below.
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4.3.1 Number of Wrong Predictions (WP)

This criterion is defined by

WP = Z Z@y—yﬁ-jﬁ

=1 j=1
where y,, is the estimated analogue of y, namely,

=1 if py =max(;’7\,-j) G=12..m)

ﬁik =0 otherwise

for k=1,2, ... m and p, is the estimate of p,, i.e., the probability that the i-th individual belongs to
the j-th category. WP gives the number of wrong predictions since (y; — »,)? =1 if and only if

Vi #F );1,'-

For the dichotomous case where j=0 or 1, WP has the form

n
WP= Z(n -
i=1

where

yi= otherwise.

This criterion is typically used in discriminant analysis where an individual must be classified as
belonging to one of several groups according to its observed characteristics. A problem with WP

is that events with zero or near zero probability of occurrence are treated the same as events with
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much higher but not maximum probability of occurrence. Thus, when an event y, = 1 takes place,
a person who estimated its probability to be 0.49 and a person who estimated it to be 0 are equally
penalized. A major disadvantage is that if we are dealing with an event which happens with high

probability or a low probability, most models will do weli by this criterion.

4.3.2 Sum of Squared Residuals (SSR)

SSR is defined for multinomial choice models as

n m

i=1 j=1

and for binary choice models as

n

SSR= Z(yi - p)?

i=1

This is a criterion corresponding to the residual sum of squares in linear regression analysis from
which R? is derived. In fact, Lave (1970) used SSR to define an analogue of R? for the case of a

dichotomous response variable as
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where y = n713y, . He also suggested the use of a related statistic, R?,, defined as

i=1

RE =1-L2P iy

where R? has been defined previously and p is the number of parameters estimated. This criterion
is directly analogous to the “adjusted R? ” used in linear regression analysis (see Draper and Smith,
1981). It measures the percent varability explained by the model, corrected for the degrees of

freedom (Goldberger, 1973).

Morrison (1972) argued that the low R} values which have been frequently obtained by many au-
thors need not imply that the model is not good. He derived an upper bound on R} (which was
less than 1) based on the assumption that the response variable (p in our case) followed a beta
distribution. Goldberger (1973) disagreed with Morrison by pointing out that RZ as a measure of
the proportion of the variance explained by the binary choice model should only be bounded by 0
and 1. Apart from this controversy however, both authors failed to realize a major deficiency as-
sociated with the use of SSR as a goodness of fit criterion. This deficiency stems from the fact that
the use of of SSR ignores the heteroscedastic nature of qualitative response models.

Even though the binary model is estimated by methods that account for its error heterogeneity by
assigning weights to individuals inversely proportional to their estimated variance (see the inter-
pretation of the method of scoring iteraﬁon above), SSR weighs equally all individuals entering the

model. The following criterion is specifically defined to overcome this defficiency of SSR.
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4.3.3 Weighted Sum of Squared Residuals (WSSR)

WSSR is defined as

n m A2
Pij

i=1 j=1

for multinomial choice models and as

n

— A’ 2
WSSR = z AOI (ki )‘C’)A)
F(B'x)(1 — F(B'x))

i=1

for binary response models.

WSSR is a natural and intuitively appealing criterion, given the error heterogeneity of qualitative
response models. Its objective is to attach a higher cost to the error made in predicting a random
variable with a smaller variance since such a random variable should be easier to predict than the
one with a larger variance (Amemiya, 1981). Because the variance of the residuals is unknown, an
estimate used instead. Thus, WSSR assigns each residual a weight which is inversely proportional

to its estimated variance.

Although it is obvious how the error variance is incorporated in the expression of WSSR for binary
models, the expression of WSSR for multinomial models may not be as clear. For this reason, the

derivation of WSSR, as provided by Amemiya (1981), is presented below.
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Define first the m-1 vectors Y, = (Vg Va» -+ Vim)’ a0d 2= Dy, P3, - » Pim)’- Also define D, as an
(m-1)x(m-1) diagonal matrix whose j-th diagonal element is p;. Then, the error variance-covariance

matrix is by definition
Vy= E(Y,— B)(Y;— B = Di— P/

with inverse (see Maddala 1977, p. 446, eq. A-16)

1_ -1 L '
Vi =D to e

where : is an m-vector of ones. The weighted sum of squared residuals is now defined as

- 0y—py)’
E Y- BYIVT I~ B) = > Z%

if
i=1

=1 j=1

and WSSR is obtained by substituting p, for p; in the above expression.

4.3.4 Prediction Success Index (PSI)

McFadden et al. (1977) looked at the proportion of successful predictions of the choices made by
all individuals and derived a measure for assessing a model’s predictive ability which they called

“prediction success index” and expressed as
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where N, N, and N_are given by the prediction success table (Table 4.1) below. In this table, N;
refers to the number of individuals who chose alternative i but had been predicted to choose alter-

native j. N, refers to the number of correct predictions for alternative 1.

Table 4.1. Prediction success table for qualitative response models

Predicted Choice

Observed
1 2 m Count

Observed 1 Ny N, Nip N,
Choice 2 Ny N, Nop N,

;3 31 N32 oo N3m NS.

m N, N, Nom N,.
Predicted
Count N, N, N, N

This index is non-negative with a maximum value of

and can be normalized so as to have a maximum value of one.

The rationale behind the expression of PSI is as follows: N,/N_is the proportion of sample indi-
viduals predicted to choose alternative i. N,/N, is the proportion of predictions for alternative i that
were correct. For the i-th category, McFadden et al. expressed the success index PSI, as
Ni N
PSL; = NN
The expression of PSI is then the weighted average of PSI; with weights N, /N . Clearly, the higher

the value of PSI, the greater the predictive capability of the model.
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4.3.5 Likelihood Ratio Test (LR)

This criterion, defined earlier as a procedure for testing the general linear hypothesis in binary choice
models, is especially suitable for comparison among nested models, i.e., models for which its vari-
ables is a subset of the variables of the another. Based on this test, McFadden (1974) suggested a

R? -like norm called Pseudo - R? and defined as

B log L(EML)

Pseudo — R* = 1 n
log L(B,)

where log L([_} o) 1s the value of the log-likelihood function evaluated at ém, the ML estimator of
B and log L(éo) is the value of the log-likelihood function evaluated under the constraint that all
coefficients except the constant term are zero. This measure is 1 when the model is a perfect pre-
dictor, i.e., p, = | when y,= 1 and p, = 0 when y, = 0 and is 0 when log L(ém) = log L(é,,). Between
these limits the value of Pseudo- R? has no obvious intuitive meaning. Using concepts from in-
formation theory, Hauser (1978) interpreted Pseudo- R? as the percent of “uncertainty” in the data
explained by the empirical results. His derivation however is not valid, since x; was treated as a
random vector following a probability distribution p(x,). Clearly, this is a violation of the basic
assumption of qualitative response models theory which calls for x; to be a fixed vector of obser-

vations taken on the i-th individual.

Hensher and Johnson (1981) noted that values of Pseudo- R? between 0.2 and 0.4 should be con-
sidered as extremely good fits so that the analyst should not be looking for values in excess of 0.9
as is often the case when using R? in ordinary regression. They also proposed a measure similar to
Pseudo- R? adjusted for the model’s degrees of freedom which, they claim, improves Pseudo- R?

as a model selection criterion. The adjusted Pseudo- R? is given by

_ log LEam)i(m— )~ k
log L(EO)/m -1

Adj. Pseudo- R*=1
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where m refers to the number of alternatives faced by the individuals and k is the total number of

parameters in the model.

4.3.6 Akaike Information Criterion (AIC)

AIC = —1log L(B py) + p

Akaike (1973) proposed this criterion to aid model selection. It is simple to calculate and most
important, it accounts for the degrees of freedom available to the model. One is to select the model
for which AIC is smallest. Amemiya (1980) suggests the use of AIC whenever the competing

models are not nested and therefore, the likelihood ratio test does not apply.

4.3.7 Theil’s Information Inaccuracy of the Prediction

Theil (1967, 1970 and 1971) derived a measure of lack of fit which he called “the information in-
accuracy of the forecast”, using concepts from information theory. The basic ideas of this theory

that are necessary to understand the reasoning of this criterion are summarized as follows.’

Let p be the probability that some event E will take place. Suppose that at some point of time a
message comes which states that the event actually took place. The information content of this

message as defined in information theory is equal to

1) = log( 5 ) =~ loglp).

5 This discussion is based on Theil, 1967 and Gallagher, 1968.
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This is a monotonically decreasing function of p, declining from oo (p=0) to zero (p=1). The
decreasing character is motivated by the consideration that the message is more informative when
the event was less probable before the message comes in. The logarithmic form is useful because
of the additive property of stochastically independent events: The information content of the
message which states that the two independent events both occured is equal to the sum of the in-
formation contents of the two separate messages, one dealing with the first event and the other with

the second.

Consider a set of m events, E, (j= 1,2, ... m) with associated probabilities of occurence p,. It is said
that these events form a complete system if it is certain that exactly one of them will occur, i.e.,
ilpj = 1. When we receive a definite message stating that £, has occured, the information content
/=

of the message is, as before, I(p) = —log(p;). Before the message is received we do not know, of
course, how large this information content will be, since it may be any one of the numbers /(p)) for

j= 12, .. m. However, an expected information content, also known as entropy of the information

system, can be calculated before the message comes in, as

H=>plp)=— ) plogn)
= =

It is obvious that H cannot be negative since all individual terms of the summation are non-
negative. Using Lagrangian optimization, it can be shown (Theil, 1967) that H is maximized when
all events are equally likely to occur, i.e., p,, p3, ... , Pn = 1/m. This is a natural result because when
all events are equiprobable, the message which states what actually happened is expected to contain
more information than in any situation where it is known that some events are more probable that
others. Or equivalently, there is a maximum of uncertainty when all m possibilities are equal to
1/m; and the more uncertainty there is prior to the message the more information is expected to

be delivered by the message. It is under this logic that uncertainty and expected information are
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regarded as dual concepts by some authors (Shannon 1948, Shannon and Weaver 1949, Goldman

1953, Attneave 1959 and Theil 1967). Thus, it has been established that

0<H<logm.

Suppose now that instead of receiving a definite message stating what event actually occured, a

message is received which implies that the event probabilities have changed so that some events

become more probable and some less probable. That is, the message transforms the prior proba-

bilities p; into the posterior probabilities ¢; where, again, ilqj = 1. Considering one particular event,
-

E; with prior and posterior probabilities p, and ¢, respectively, the information content of the mes-

sage is defined as the difference
9
g; p) = 1(p) — I(qp) = 108( 7])

However, such an indirect message is not restricted to one event E; but it states that each E; (j=1,2,
... m) has its own posterior probability ¢, Taking the expectation over the separate information

contents we find that

m

q
Ellgip)= qu 10g( 7j. )

J=1

is the expccted information content of the indirect message. Theil (1967) shows that El(g; p) is al-
ways positive except when ¢; = p, for all j, in which case the value of El(q; p) is zero. This is not
surprising considering that the expected information content of an indirect message vanishes when
it leaves all prior probabilities unchanged. Notice also, that El(g; p) may be infinitely large when
g;>p,= 0 for some j. The prior probability then specifies that E; has zero probability of occurence,

but this is raised to a positive value by the message. Theil (1967) interprets this as an increase in
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the prior probability by a factor of “infinity” and that the analyst would be also “infinitely surprised”

by the message.

Theil (1967, 1971) used the concept of expected information of an indirect message to derive a
“natural” index for comparing the observed sample proportion of each alternative with the corre-
sponding predicted share. More specifically, he assumed that the model predictions p,, p;, ... , Pn
are available before the realizations ¢, ¢, ... , ¢,, are available, so that he could reasonably argue
that p; are the prior probabilities which the message transforms into the observed (posterior) prob-
abilities ¢ When the message has zero expected information, then ¢; = p; and hence predicts per-
fectly. When its expected information is very small, the predictions are accurate although not
perfect. When the expected information is large enough so that at least some of the p,s differ
substantially from the corresponding ¢;’s, the predictions as a whole are very inaccurate. Therefore,

he called

m

q,
El(g;p)= Zqz 1°8< Tj )

=

the information inaccuracy of the forecasts p; with respect to the observed ¢; and regarded it as a

measure of the model’s lack of fit.

4.3.8 Discussion

A number of scalar model selection criteria have been presented above with brief comments on
each. It should be emphasized that a blind reliance on any one of these criteria is, of course, ill-
advised. During the process of model selection, there are numerous theoretic and statistical factors

that must be taken under consideration and certainly, no scalar criterion can accomodate all of
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them. Every criterion is optimal in its own merits, i.e., it evaluates only a limited aspect of a
model’s performance. Thus, there are criteria such as SSR, WSSR and Theil’s information inac-
curacy of the prediction, which focus on the model’s quality of fit, others like WP and PSI which
evaluate the predictive ability of the model and finally, there are also criteria like LR and AIC which
are related to a test of the hypothesis that one or more of the regression coefficients are zero. Di-
rectly related to the latter criteria is Pseudo-R? which attempts to assess the proportion of the var-

iance of the dependent variable explained by the independent variables.

One should not expect a single criterion to be optimal for every occasion. It is our suggestion that
the analyst should select three or four criteria and then compare the results. Our preference lies
with criteria such as WSSR, AIC, PSI and Theil’s information inaccuracy of the prediction because
they are based on a sound theoretical justification and, together, they consider all aspects of a

model’s performance.

4.4 Data Splitting and Model Validation

The model selection criteria discussed in the previous section, although they are meaningful meas-
ures of a model’s goodness of fit, they do not assess the model’s actual predictive ability. An es-
tablished practice in regression analysis is to combine the notion of “selection of best model” with
model va:ﬁdation. The latter suggests a search for a type of model checking against independent
data, i.e., evaluation of each candidate model by predicting response values that are independent
of the data which built the model. The concept of model validation is discussed in detail by Snee
(1977) and Montgomery and Peck (1982). Stone (1974) gives a brief history of the development

of model validation ideas.
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Data splitting is a model validation method. It refers to the partitioning of the original data set into
two subsets, a fitting or estimation data set and a validation or prediction data set. The former is
used for estimating the model and the latter to apply the fitted model in order to derive response
values which can then be meaningfully compared to the true values. Then, norms such as WP,
PSI or Theil’s information inaccuracy of the prediction can be used to determine the best predicting
model. Once a model is selected, it must be fitted again, using the original, full, data set making

use of all available information.

Even though data splitting is motivated by a great deal of common sense, the actual methodology
for subdividing the data deserves special attention. In general, any procedure that determines how
the data set is to be partitioned, should be designed according to the particular application (Myers,
1986). In some cases, the criterion for data splitting is obvious. For example, if data are collected
sequentially in time, it seems reasonable to pick a point in time to divide the data into two subsets.
Normally, the most recent observations are assigned to the validation data set so that valuable in-
formation regarding the model’s forecasting ability is obtained. There are many circumstances
however, where no obvious variables, such as time, exist to serve as a basis to split the data. For
situations of this type, Snee (1977) recommends the use of the DUPLEX algorithm, developed by
R. W. Kennard. The objective of this algorithm is to divide the data into two sets which cover
approximately the same region and exhibit similar statistical properties. Snee developed a rule to
determine whether the two subsets are similar, which is based on the determinant of the P'P matrix,
| P'P|, where P is the design or data matrix of the explanatory variables, with its columns stand-
ardized and orthonormalized. According to Kennard and Stone (1969) and Weisberg (1985),
|P'P| is directly related to the volume of the smallest ellipsoid that contains all data points and

also, it is a useful scalar measure of the statistical properties of the corresponding data set.

Using | P'P|, Snee considered the quantity

| P'P| for the estimation data set |y,
| P'P| for the validation data set
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where p is the number of variables in the data matrix, as a measure of the relative statistical prop-

erties and the region covered by the estimation and validation data sets.
The DUPLEX algorithm, as applied by Snee, consists of the following steps:

Step 1 All data points are standardized and orthonormalized. A nxn triangular matrix having
as elements the Euclidean distances between the row and column data points is con-

structed.
Step 2 The two data points which are farthest apart are assigned to the estimation data set.

Step 3 The two of the remaining data points which are farthest apart are assigned to the vali-

dation data set.

Step 4 The point with the largest distance from the points of step 2 is assigned to the esti-

mation data set.

Step 5 The point with largest distance from the points of step 3 is assigned to the validation

data set.
Steps 4 and 5 are repeated until all data points are assigned to one of the two data sets.

A half and half partition appears to be the most popular data splitting strategy. However, Snee
(1977) recommends that one not to try to split a data set in half unless n (total sample size) is
greater that 2p + 25 in order to provide an adequate number of degrees of freedom for model esti-

mation.
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Chapter V

Outlier and Influence Diagnostics

5.1 Introduction

The maximum likelihood method of fitting qualitative response models exhibits certain optimality
properties if all pertinent model assumptions hold true. When however some of the assumptions
are violated, the maximum likelihood fit may be badly affected (Hoaglin, Mosteller and Tukey,
1983). The lack of resistance of the maximum likelihood fit to violations of assumptions is most
effectively mirrored by its sensitivity to outlying responses and, also, to data points that are extreme
in the design space (high leverage observations) (Pregibon, 1981). Consequently, it is of vital im-
portanceto the analyst to be able to detect and assess the degree of discrepancy between the model

assumed and the data observed.

In classical linear regression analysis this task is usually accomplished by computing measures,
known as diagnostics, which aid in highlighting data points that may reflect violation of assump-

tions (outliers), exert undue influence on regression statistics (high leverage observations) or do both
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of the above (high influence observations). The related literature is extensive (see, for example,
Belsley, Kuh and Welsch, 1980, Draper and Smith, 1981, Cook and Weisberg, 1982 and Myers,
1986) and most of the standard regression computer packages output diagnostic information about

both the identification and assessment of the extent of influence for each data point.

On the contrary, there is very little in the literature with respect to diagnostic measures for qual-
itative response models mainly due to the following two reasons. First, the area of qualitative re-
sponse models has not yet been fully covered and most of the research effort is still directed toward
improved model specifications and error structures rather than diagnostic development. Second,
qualitative response models only recently have been applied to to data obtained in observational
studies. In contrast to controlled experimentation, data from observational studies are much more
likely to include outlying responses and/or extreme data points, thus, the need for diagnostic de-

velopment emerged much later than the initial applications of qualitative response models.

As a result of the above, only a limited number of studies on qualitative response model diagnostics
appear in the literature and most of them consider the case of dichotomous logistic regression
analysis. The two most important contributions to this matter are due to Pregibon (1981) and
Cook and Weisberg (1982). Both studies are based on Walker and Duncan (1960) iterative
weighted least squares (NLWLS, see section 2.2.3) interpretation of the method of scoring algo-
rithm for maximum likelihood estimation. The proposed diagnostics are simple extensions of ex-
isting linear regression diagnostics with minor modifications in order to accomodate the
heteroscedastic nature of binary choice models and the iterative fashion of the NLWLS procedure.
Perhaps, the absence of diagnostic tools for multinomial choice models (ordered or unordered) may
be in parf due to the fact that no straightforward least squares analogy similar to NLWLS exists for

such models.

In the following sections a number of diagnostics for the detection of outliers, high leverage points
and high influence points are described as they have been proposed by Pregibon (1981) and Cook
and Weisberg (1982).
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5.2 Diagnostics for the detection of outliers

In most applications of regression analysis (linear or non-linear), residual analysis is customary in
order to shed light on possible violations of assumptions. In particular, the outlier analysis is a
methodology specifically designed to highlight data points that appear not to follow the proposed
model fit to the balance of the data (Myers, 1986). The conditions detected by outlier diagnostics
are errors in the y-direction, i.e., model shifts that produce anomalies in the measured response.

The symptom is a residual which is larger than would realistically be produced by chance.

The influence of outlying observations in the least squares fit of linear regression models is mean-
ingfully described by Myers (1986) as “the “fallout” that results from the regression being pulled
toward the errant measured response”. This same type of influence, maybe stronger, occurs also
to models fitted by the maximum likelihood method. Pregibon (1981) and Cook and Weisberg

(1982) suggest that the two most useful expressions of residuals are:
e  the standardized residuals

A
Ji— Vi

=5

Note the se? are the individual components of WSSR (see section 4.3.3), i.e., WSSR= En:se,? .

i=1

5 =

e the individual components ( square root ) of —2/ogL,

di=— 2 /B~ 1o8l1 + exp(x))

Note that d, is defined for all values of y, and also, -2logL, = idf .
i=]

65



Since both WSSR and -2logL are measures of the goodness of fit of the model, large se; and 4, in-
dicate observations poorly accounted for by the model. Suspect points are ordinarily set aside for
further checking in order to determine whether these observations were mistakenly recorded during
the data taking process. The concern is that an erroneous observation will exert an undue amount
of influence on the regression results, influence which is counterproductive. On the other hand, if
the data point does reveal a model deficiency, then it is quite likely that it has arisen from an unu-

sual combination of circumstances which may be of great interest.

5.3 Diagnostics for High Leverage and Influence

Observations

The fact that an observation provides an outlier does not necessarily mean that the observation is
influential in fitting the chosen model. Indeed, not all high influence observations are due to errors
in the y-direction. Influence can also occur when a single observation is extreme in the x-direction,
i.e., it lies at a disproportionate distance from the data center, even though it is a proper observation
and does not necessarily represent evidence of model fallacy. Such data points, which are extreme
in the x-direction or design space are frequently known as high leverage observations. High leverage
observations do not always have a negative impact on the fitted model. For example, if a data point
lies far apart from the body of the data but it follows the trend suggested by the majority of ob-
servations, then this remote data point actually reinforces the fitted model and enhances its per-

formance.

In linear regression, the diagnostic that provides information regarding what data points exert high

leverage is the diagonal element of the HAT matrix which is defined as

H=XxXxXx"'x
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where X is the data or design matrix. The HAT diagonals are the quadratic forms
b= 500

where x; is the vector of measurements in the independent variables at the ith data point. Large
values of 4, indicate observations that are extreme in the design space (x-direction) and thus, they
have the potential for exerting undue influence on at least one regression coefficient (Hoaglin and

Welsch, 1978).

In order to account for the heteroscedastic error structure of binary logistic regression models,
Pregibon (1981) employed the generalized least squares version of the HAT matrix, H' (Pregibon,

1980) which can be expressed as
H =w'xxwxy ' xw!l?

where W is the variance-covariance matrix of the error terms in the model. In binary logstic re-
gression models, W is a diagonal matrix with elements w, = (1 — ), corrsponding to the ith ob-
servation (see also the discussion on NLWLS procedure, section 2.2.3). Large values of A;, the

diagonal elements of H°, are useful in detecting high leverage observations.

Draper and Smith (1982) view the influence of a data point as the offspring of a collaboration be-
tween the leverage and the nature of the fit of the model to the point in question (residual). In this
context, the combination that produces the greatest influence is a data point that contains a large
HAT diagonal accompanied by a relatively large residual. Consequently, the joint examination of
se,, d., and A; will call attention to observations that i) are not well explained by the model and/or
i) are dominating some aspect of the fit. Pregibon (1981) suggests that index plots of these quan-

tities, i.e., plots of se, vs i, d; vs i and A;, vs i, are most useful for identifying these observations.
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5.4 Diagnostics for Coefficient Sensitivity

The se, d; and h; reveal which individual observations have potential for exerting excessive influ-
ence. The quantities however, do not allow easy diagnosis of which model components are influ-
enced and to what degree. In linear regression analysis, this type of information is provided by
diagnostics that measure the changes that would occur in the coefficients if each observation were
deleted from the data set but without actually removing it from the data. The development of these
diagnostics is described in detail by Belsley, Kuh and Welsch (1980). Pregibon (1981) extended this
methodology to the case of binary logistic regression models. In particular, he re-expressed the
log-likelihood function of the binary logit model by including an indicator variable v, which takes
the values 1 or 0 according to the presence or absence of the i-th observation in the estimation data

set. The augmented log-likelihood function, logL’ is written as

n

* N 1 f\'
logL" = ') vixy,~ ) v log[1+exp(§'x)]
i=1
i=1

The maximum likelihood estimator of § will now be a function of v, and can be obtained by max-
imizing logl'. Although this approach for model perturbation is intuitively reasonable, it is also
computationally timely and costly to carry out since for each observation considered, a new maxi-
mum likelihood estimate must be derived. Pregibon (1981) explains that the analyst’s main concern
lies with the detection of strong individual effects with a minimal effort. Small changes in the co-
efficients are not important whereas for large changes it is usually sufficient to know their direction
and relative magnitude with respect to other observations’” changes. Therefore, the derivation of
highly precise estimators may be unnecessary. Under this logic, Pregibon (1981) suggested the use

of Chamber’s (1973) one-step estimator for § which is, simply, the estimator of § obtained by ter-
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minating the maximum likelihood estimation procedure after the first iteration. Cook and Weisberg

(1982) express the one-step estimator as

Mo XYW -5)
Bo==6- :
1= Ay
where,
é},, is the one-step estimator obtained by excluding the i-th observation from the
estimation data set and
é is the full data set maximum likelihood (fully iterated) estimator of § .

The diagnostic for individual coefficient sensitivity is then,

ap = KW 501~ )
‘ 1—hy

Pregibon (1981) discussed the accuracy of this one-step approximation and concluded that although
it tends to underestimate the fully iterated value, it still clearly highlights influential observations.
He also found that index plots of A,./Ai}/s.e.(é,) are generally useful in detecting observations that are

causing instability.

The role of A,ﬁ‘ is to ascertain which observations influence specific regression coefficient estimates.
However, it is possible for changes in some coefficients to be offset by changes in other coefficients
in such a way that the fitted values change very little. In addition, when a large number of ex-
planatory variables are included in the model, it becomes difficult to determine if an observation is
unduly influencing the fit by examining sensitivity plots for each element of the parameter vector.
Thus, it is useful to consider a single, overall measure of the influence that each data point exerts
on the set of coefficients. Pregibon (1981) adapted Cook’s D, an overall influence measure for
linear regression models due to Cook (1977). More specifically, he expressed the boundary of an

asymptotic confidence region for the parameter vector f as
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—2[logL(B'x;, y) — logL(B"x;, )] =

and replaced g by B,, the maximum likelihood estimator of § obtained by deleting the i-th obser-
vation from the estimation data set. The resulting scalar, ¢, , is then a measure of the influence of
the i-th data point on the estimated coefficient vector . Using the one-step approximation to g,

Bl c: becomes

2 *

o) = se; hy
i = *9
1—hy

a quantity which is very easy to calculate. Again, index plots of ¢! are strongly recommended.
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Chapter VI

Merchantability Models for Loblolly Pine

6.1 Introduction

In this section we illustrate the applicability of qualitative response models to forestry by focusing
on the problem of modeling the merchantability of loblolly pine trees growing in thinned and
unthinned, cutover, site-prepared plantations. Models of this type, generally known as
merchantability models, are used to i) determine stand and tree characteristics that greatly influence
tree merchantability, i.e., tree quality as judged by the class of wood product the tree produces and
i) predict the probability that an individual tree will produce a certain product (e.g. pulpwood,

sawtimber or peelers) given certain stand and tree characteristics.

The information obtained by merchantability models, especially when they are incorporated into
individual tree growth and yield simulation systems or into diameter distribution based yield pre-
diction systems, is considered to be extremely valuable in management decision making. To better

appreciate the utility of such models, recall, for example, that a diameter distribution system pre-
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dicts the number of surviving trees per unit area by dbh class and these data are then used in con-
junction with an individual tree volume equation to estimate the yield per unit area by dbh class.
Because the tree volume equation is normally constructed by measurements taken from sampled
trees of merchantable size throughout the study area, it is implicitly assumed that the predicted tree
frequencies by dbh class refer to merchantable trees and so does the predicted yield. Even though
this assumption is considered to be sufficient for many purposes, the yield per unit area is clearly
overestimated since not all surviving trees are merchantable, a fact which is especially true for
smaller dbh classes. Evidently, such optimistic yield predictions may seriously impact management
decisions. However, the yield over-prediction can be corrected, to a certain degree, by the use of
a merchantability model which will predict the probability of a tree being merchantable. In this
way, the number of merchantable trees per acre will be a fraction of the initially predicted number

of surviving trees per acre and managers will be furnished with more realistic information.

Merchantability models can prove very useful in assessing the effect of thinning operations in terms
of the quality of end-products produced by the stand. For instance, decisions about thinning op-
erations are currently based on growth and yield estimates that account for the effect of thinning
on the stand diameter distribution only, and not on the quality of end products produced by the
stand. However, it is precisely this type of information which, combined with information on stand
diameter distribution, will greatly contribute to more realistic economic analysis about thinning

necessity and intensity.

Strub et al. (1986) considered a non-linear discrete regression model (other than logit or probit) to
classify loblolly pine trees according to suitability for sawtimber. Using graphical techniques the
authors identified tree dbh and average height of dominant and codominant trees as important
predictor variables in the presence of which, stand age and number of surviving trees per acre were
found to be non-significant. Their data base, consisting of measurements taken on old-field plan-
tation loblolly pine trees from the states of Virginia, Delaware, Maryland and North Carolina
contained only observations from unthinned stands; therefore, no thinning effect could be assessed.

In addition, only two product classes were considered, namely pulpwood and sawtimber. Even
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though this type of classification is sufficient for many purposes, for growth and yield prediction
systems a more detailed classification may be in order if meaningful comparisons among alternative

management regimes are to be made.

Burkhart and Bredenkamp (1989) pooled the data from two successive enumerations on unthinned,
lightly thinned and heavily thinned loblolly pine plantations, to develop equations to estimate the
proportions of trees by dbh class that qualify as peelers, sawtimber or pulpwood. After grouping
the data into half-inch dbh classes, the authors fit a modified Chapman-Richards equation, with the
midpoint of each dbh class as the independent variable, to each thinning treatment separately in
order to estimate i) the proportion of solid wood products (peelers and sawtimber) by dbh class and
i) the proportion of peelers by dbh class. The proportion of pulpwood was then obtained as the
complement of the proportion of solid wood products (all proportions sum to one) and the pro-
portion of sawtimber by subtracting the proportion of peelers from that of solid wood products.
They concluded that i) total tree height, stand density and site quality had negligible influence on
the probability of a tree being allocated to a particular product class after the effect of dbh was re-
moved, i1) the proportion of peelers by dbh class increased with thinning but no significant differ-
ence was detected between light and heavy thinning and iii) the proportion of solid wood products
by dbh class remained relatively constant regardless of thinning intensity. Because the estimated
equation for peelers exhibited illogical crossing for thinned and unthinned stands the authors con-
strained the shape parameter of the Chapman-Richards equation to be equal for both thinned and

unthinned stands.

The results derived by this study are somewhat unexpected. If significant thinning effect is present
for the estimation of peelers one would expect the same to be true for the estimation of solid wood
products (peelers and sawtimber). Also, it is implied that the proportion of sawtimber is affected
by thinning in a counter active manner with respect to the effect on the proportion of peelers, so
that the overall solid wood proportion by dbh class remains unaffected by thinning. In addition,
the absence of significant thinning effect for the estimation of the proportion of solid wood products

implies that the estimation of the proportion of pulpwood is also free of thinning effect.
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Grouping the observations into dbh classes always results in a loss of information. Such a loss
may be responsible for small power in testing for significant thinning effects. Another reason may
be that the Chapman-Richards equations are not quite appropriate for modeling the
merchantability of loblolly pine trees. The illogical crossing of peelers equations for thinned and

unthinned stands seems to support such a possibility.

It is believed that qualitative response models theory exhibits certain characteristics that make it
very attractive for modelling tree merchantability. First, it does not require grouping of the obser-
vations into dbh classes thus avoiding any loss of information. Second, the probabilities of all
product classes are estimated simultaneously under the same model and not separately. Third, the
levels of thinning intensities enter the model as dummy variables thus facilitating all pertinent sig-
nificance tests. Finally, variable screening can be performed in a routine manner in order to identify
important stand and tree characteristics that significantly contribute to the estimation of tree

merchantability.

The present study investigates the applicability of qualitative response models as alternative for-
mulations for modelling tree merchantability and assessing the effect of thinning operations to the
quality of end-products of forest stands. More specifically, this study utilized the data Burkhart and
Bredenkamp (1989) used, to i) calculate probit and logit estimates for the probability that a loblolly
pine tree will produce solid wood products, ii) fit a multinomial logit model with an unordered
trichotomous response variable to estimate the probabilities of a tree being classified as peelers,
sawtimber or pulpwood and iii) fit a multinomial logit model with an ordered trichotomous re-
sponse variable by making use of the natural ordering of the three product classes as defined in
terms of minimum dbh requirements. Finally, the results derived by this study were compared with
those derived by Burkhart and Bredenkamp (1989) to see if any discrepancies arise and appropriate

conclusions were drawn.
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6.2 Data

The data used in this study were tree measurements taken on plots from 173 cutover, site-prepared
plantations throughout the Piedmont and Coastal Plain physiographic regions in the southeastern
United States. At each plantation three plots, similar in density and site quality were established.
Then, no thin, light thin (approximately 1/3 of the basal area removed) and heavy thin (approxi-

mately 1/2 of the basal area removed) treatments were randomly assigned to the plots.

Thinnings, both light and heavy, were from below. Occasionally, entire rows were removed in or-
der to provide access to remaining trees. The maximum permissible row removal was | row in 5.
In selecting trees for removal, a trade-off between quality and spacing was required. Trees that were
forked, leaning, diseased and that would not leave an excessive opening in the canopy if removed,
were to be cut regardless of size. On the other hand, in order to avoid large openings in the canopy,
smaller trees of inferior quality had to remain in the stand. Despite the detailed thinning in-
structions, the definition of thinning is by nature subjective; therefore, it was interpreted differently
by different operators. In some cases, the light thinning by one operator was in fact heavier than

the heavy thinning conducted by another operator.

Four site preparation classes were defined to summarize the wide variety of site preparation treat-

ments:

e  Site _preparation class 1: Tilled; debris moved

e  Site preparation class 2: Tilled; debris not moved
¢  Site preparation class 3: Not tilled; debris moved

¢  Site preparation class 4: Not tilled; debris not moved
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where tilled is either disked or bedded or both.

Plot characteristics recorded were: physiographic region (PR), level of thinning intensity (TI), site
preparation class (SP), age defined as number of years since planting, average height of dominant
and codominant trees (HD) in feet, basal area per acre (BA) in square feet/acre and number of
surviving trees per acre (N). In addition, the quadratic mean diameter (QMD) was computed from
the observations on BA and N and also the site index (SI) according to a model developed by

Amateis and Burkhart (1985),
In(HD) = In(ST) (25/4) %0223 oxp( —2.83285 (47" — 2571))

with base age 25 years.

Each tree in a plot was measured for dbh to the nearest tenth of an inch, total height (TH) to the
nearest foot and height to the base of live crown (HTCR) in feet. The crown ratio (CR) was also
computed as

HTCR

CR=1- TH

Each tree was visually inspected for assessing its stem quality. More specifically, each tree was first
classified as “Single-Stemmed” or “Forked”, then as “Normal Top” or “Broken Top”, and the bole
was inspected and put into one of four categories, “Straight”, “Bole Sweep”, “Butt Sweep” and
“Short Crook”. Each tree was also checked as having “No Disease or Insect Damage” or “Disease

or Insect Damage”. Finally, each tree was classified as peelers, sawtimber or pulpwood according

to the following criteria (Burkhart and Bredenkamp, 1989).

Peelers minimum dbh 10.6 inches with a minimum of two peeler bolts, each 8 feet 7 inches

long with a minimum 8.6 inside bark diameter at small end.
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Sawtimber  chip-n-saw material; not qualified for peelers; minimum dbh 7.6 inches with a mini-
mum of one 16-foot sawlog (including a 4-inch trim allowance) to a minimum 6 inch

inside bark diameter at the small end.
Pulpwood  material not qualified for peelers or sawtimber; minimum dbh 4.6 inches.

In the present study, only trees with dbh greater than or equal to 7.6 inches were used. Additional
details concerning the data can be found in Burkhart et al (1985) and Burkhart (1987). Table 6.1

displays summary statistics for the stand and tree variables considered in this study.

Due to the plethora of available observations, data-splitting is ideal for model validation. The
DUPLEX algorithm (Snee, 1977, see section 4.4) has been applied to partition each of the three
data sets, unthinned, lightly thinned and heavily thinned, into two, equal size data sets, one for

model fitting and one for model validation.

According to the merchantability criteria defined above, trees with dbh between 7.6 and 10.5 inches
produce either pulpwood or sawtimber whereas trees with dbh larger than or equal to 10.6 inches
can produce any one of the three product classes. Consequently, two different types of logistic re-
gression models were considered for modelling the merchantability of loblolly pine trees. One with
a dichotomous response, pulpwood or solid wood (sawtimber or peelers) and one with a

trichotomous response, pulpwood, sawtimber and peelers.

6.3 Two-Product Logit Model

To estimate the probability that a loblolly pine tree produces solid wood products such as
sawtimber or peelers, a binary logit model was fitted separately to the data from the unthinned,

lightly thinned and heavily thinned plots. Starting with all available plot and tree variables, in-
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cluding some transformations and interactions, variable screening was based on the model selection
and validation criteria discussed in Chapter 4. The final models, which were found to perform best

in terms of goodness-of-fit and prediction are presented on Table 6.2.

To test whether thinning treatments have a significant effect on the merchantability of loblolly pine
trees, one thinning indicator variable was added to the model which was then fitted to the pooled
data of all three thinning treatments. Both likelihood ratio and Wald’s tests indicated the presence
of significant thinning effect (p-values were 0.0004 for the LR test and 0.0002 for the Wald’s test).
A similar procedure, testing for significant differences between light and heavy thinning, failed to
reject the null hypothesis (p-values were 0.9333 for LR test and 0.9564 for Wald's test).

Given the above conclusions, the data from lightly thinned and heavily thinned stands were pooled
into one “thinned” data set. Again, variable screening was conducted and the finally selected model
is shown on Table 6.3 together with the model for unthinned stands. Tables 6.3a and 6.3b present
the variance-covariance matrices for the two models and Table 6.4 displays the corresponding
goodness-of-fit and validation statistics. Influence diagnostics computed for both models did not

indicate any particularly strong influential data points.

As seen from Table 6.3 the stand characteristics that appear to play an important role in estimating
the merchantability of loblolly pine trees are: stand age, basal area per acre, number of trees per
acre, type of site preparation and the physiographic region where the stand is located. The absence
of site index as a measure of site quality, although at first surprising, is probably because similar
information, and perhaps more valuable, is provided by individual tree characteristics such as height
to the base of live crown and crown ratio. Note that Burkhart and Bredenkamp (1989) in their

study, also found the site index to be non-significant.

An interesting feature of the models is the presence of three measures of stand density namely, basal
area per acre, number of trees per acre and quadratic mean diameter. Since the latter is a function

of both basal area and number of trees per acre, it would seem that the inclusion to the model of
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Table 6.3. Maximum likelihood coefficient estimates of the two-product logit models fitted to unthinned
and thinned data.

Unthinned Thinned

predictor

variables estimate std. error estimate std. error
INTERCEPT -19.007451 1.997119 -16.474120 1.095629
AGE 0.058014 0.019465 0.084129 0.010239
BA -0.033521 0.006403 -0.031003 0.005519
N 0.007121 0.001847 0.009121 0.001956
QMD 0.904172 0.235186 0.358003 0.124572
SP1 0.583001 0.163212 0.327124 0.078461
PR 0.295111 0.119062 0.192358 0.057530
DBH 0.810298 0.072345 0.811214 0.035527
HTCR 0.069123 0.015561 0.079114 0.008157
CR 6.165042 1.269428 7.149128 0.635875
STRAIGHT 0.429111 0.154404 0.779541 0.083066
BOLE -0.981224 0.164169 -0.877123 0.088134
BUTT -1.928566 0.469714 -0.508158 0.224241
DOM 1.465879 0.305753 0.590224 0.053636
FORK -0.453753 0.219391 -0.539354 0.138457

DISEASE -1.122653 0.141283 -1.028543 0.072267
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Table 6.4. Goodness of fit and prediction statistics of the two-product logit models fitted to unthinned

and thinned data.

Unthinned
logL -1309.29
AIC 1324.29
pseudo- R? 0.24
WPpP! 26.38%
WP? 29.97%
pPSI? 75.91%
PSI? 79.35%
El(q:p)" 17.21
El(q;p)? 9.20
SSR! 243.78
SSR? 433.58
WSSR! 1810.92
WSSR? 3119.37

! Based on the validation data set
2 Based on the full data set

Thinned

-5181.06
5196.06
0.24
28.32%
31.53%
76.85%
80.21%
198.46
154.39
1002.94
1711.90
5972.49
11496.87

percentages refer to the total number of tress in the data set.
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all three measures may lead to overspecification of the model. Instead, we prefer to think of the
quadratic mean diameter as a meaningful expression of the interaction taking place between the
basal area and the number of trees per acre; the interaction which happens to be an important

predictor variable in the model formulations considered here.

An attractive characteristic of the models are the positive and negative signs of the number of trees
and basal area per acre coefficient estimates respectively. Their joint contribution results into a
“balanced” effect of the stand density so that the merchantability of loblolly pine trees is not a

monotonicaly decreasing or increasing function of the stand density.

Site preparation class 1 (tilled; debris moved) appears to significantly improve the merchantability
of loblolly pine. The interpretation, however, of the role of the site preparation treatment must
be treated with caution and in light of the type of data analyzed. More specifically, as Burkhart et
al. (1985) pointed out, site preparation treatments were subjectively chosen, based on methods in
use and conditions on the ground at the time of plantation establishment. As a result, the positive
effect demonstrated by site preparation class 1 may not be exclusively due to this particular method
of site preparation but rather, due to the combined effect of several other factors, known or un-
known, which are confounded with the effect of this method. For example, a closer look at the
data base revealed that almost three times as many plots prepared with method 1 exist in Piedmont
than in Coastal Plain. Considering now that both models show a significant positive effect of the
Piedmont physiographic region, we can conclude that the positive effect of site-preparation class 1
may be, at least in part, due to the larger frequency with which it is encountered in Piedmont. The
above discussion aims in warning the reader about the type of incorrect interpretations that can
occur when the data are obtained from observational studies and not from designed experiments.
Our decision to include the site preparation class 1 effect in the models rests entirely upon the sig-
nificant improvement in the prediction performance of these models when this effect is taken into
account. In particular, the inclusion of this effect resulted into an increase of the number of correct
predictions in the validation set from 68.1 percent to 75.9 percent for unthinned stands and from

68.4 percent to 76.7 percent for thinned stands (Table 6.4).
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The significance of the physiographic region mentioned earlier, agrees, in part, with the conclusions
reached by Burkhart et al. (1985). In their study, the authors considered only unthinned stands and

found that height/age relationships were significantly different for the Coastal Plain and Piedmont.

Important tree characteristics are: tree dbh, height to the base of the live crown, crown ratio, stem
form, insect damage or disease and whether the tree is dominant or codominant. The signs of all
coefficient estimates are logical. Total tree height does not enter the model directly; it is a functional

part of the computation of crown ratio.

The joint significance of all variables in each model was tested by the likelihood ratio and the
Wald's tests. For both models, the tests strongly rejected the null hypotheses at all conventional
significance levels. Finally, as can be judged by the values of WP(validation) and PSI(validation)

statistics in Table 6.4, the two models performed similarly with respect to prediction.

6.4 Three-Product Logit Model

To estimate the probability that a loblolly pine tree will fall into any one of the three product cat-
egories, two different models, an ordered and an unordered trinomial logit model, were considered.
As with the two-product case, the two models were first fitted to the data from each thinning
treatment separately and then two tests were conducted, one for significant thinning effect and one
for significant difference between light and heavy thinning. Because both tests rejected the null
hypotheses, the data from all thinning treatments were pooled together and the two models were
again fitted to the new, pooled data set. Model selection and validation procedures have been ap-
plied at all stages of the analysis. The maximum likelihood coefficient estimates and the corre-

sponding variance-covariance matrices of the finally selected models are shown on Tables 6.5, 6.5a,
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(ordered logit) and 6.6, 6.6a and 6.6b (unordered logit). Table 6.7 displays the corresponding

goodness-of-fit and validation statistics for these models.

The absence of significant thinning effect is an interesting result especially in contrast to the signif-
icant thinning effect which was detected by the two-product logit models of the previous section.
It is probably due to the fact that the effect of thinning is generally more noticeable in smaller dbh
classes or younger plots for even aged stands, than in larger dbh classes or older stands. The role
of thinning, is basically to provide extra growing space to the promising trees in a stand. However,
the effect of thinning diminishes if it is applied to relatively older stands, where the trees have al-
ready achieved their “social” status, i.e., they are dominant, codominant, intermediate or suppressed.
It is therefore not surprising that a significant thinning effect was present for trees with dbh larger
than or equal to 7.6 inches and absent for trees with dbh larger than or equal to 10.6. The above
discussion also explains why the status of a tree in a stand, dominant or codominant, is no longer

considered to be an important factor in estimating the merchantability of loblolly pine trees.

With the exception of the dummy variables indicating if a tree is dominant or codominant and
whether site preparation method 1 was applied, the same explanatory variables as in the two
product models were considered. The discussion of the previous section concerning the interpre-

tation of the role of predictor variables, apply here as well.

In choosing between the ordered and unordered models observe that i) the standard errors are
smaller for the coefficient estimates in the ordered model than those in the unordered model and
i1) all goodness of fit and prediction performance criteria in Table 6.7 are in favor of the unordered
model. The situation is analogous to that of comparing restricted and unrestricted models in the
usual linear regression analysis. In particular, while unrestricted OLS fit minimizes the sum of
squared residuals, its variance-covariance matrix is larger than that of restricted OLS fit of the same
model (Kmenta, 1986). The increase in efficiency of the restricted coefficient estimates is attributed
to the prior information provided by the restrictions. In our case, the restrictions imposed in the

ordered model is that of common slope coefficients for all merchantability product classes. How-
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Table 6.5. Maximum likelihood coeflicient estimates of the three-product ordered logit model fitted to

pooled data.

predictor

variables estimate std. error
INT.1 (SAW) -17.742879 1.847988
INT.2 (PEEL) -20.162521 1.863876
AGE 0.159421 0.023564
BA -0.037521 0.007091
N 0.014803 0.002487
QMD 0.787113 0.160731
PR 0.221674 0.158672
DBH 0.729856 0.076826
HTCR 0.012536 0.017389
CR 1.725884 0.647323
STRAIGHT 1.167995 0.172550
BOLE -0.792632 0.181215
BUTT -0.887452 0.495175
FORK -0.827899 0.280083
DISEASE -1.443220 0.149593
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Table 6.6. Maximum likelihood coefficient estimates of the three-product unordered logit model fitted

to pooled data.

predictor
variables

INTERCEPT
AGE

BA

N

QMD

PR

DBH

HTCR

CR
STRAIGHT
BOLE
BUTT
FORK
DISEASE

Sawtimber Peelers

estimate std. error estimate std. error
-11.584254 3.765320 -25.181478 3.777590
0.108841 0.045352 0.242111 0.045646
-0.025763 0.015564 -0.052143 0.015481
0.010201 0.005864 0.203541 0.005845
0.423551 0.354878 1.018112 0.352625
0.278002 0.113596 0.478152 0.134530
0.031501 0.014965 0.757111 0.145869
0.079845 0.031784 0.054213 0.031793
10.369235 2.879575 7.396224 2.917120
1.253224 0.459600 1.983475 0.516989
-1.478002 0.211826 -1.829445 0.214202
-1.197554 0.604968 -3.856112 1.151613
-0.485323 0.413670 -1.374541 0.455466
-1.486896 0.223265 -2.278520 0.237446
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Table 6.7. Goodness of fit and prediction statistics of the unordered and ordered three product logit
models fitted to pooled data.

Ordered Unordered
logL -1254.20 -956.99
AIC 1267.20 969.99
pseudo- R? 0.22 0.28
WPpP! 26.11% 28.95%
wp? 27.88% 30.11%
PSI} 68.91% 73.42%
PSI? 71.95% 75.88%
El(q;p )? 170.28 114.38
El(q;p )? 110.53 87.59
SSR! 2404.57 1711.90
SSR? 4806.39 3852.83
WSSR! 5118.92 4025.36
WSSR? 9100.61 7438.59

! Based on the validation data set
2 Based on the full data set
percentages refer to the total number of trees in the data set.




ever, if the prior information is not correct, i.e., the true model is unordered having different slope
coefficients for each merchantability class, then the use of an ordered model can result into serious
biasses in the estimation of the corresponding probabilities (Amemiya, 1985). Even though in this
case the ordering of the merchantability product classes does indeed seem to be "natural”, it does
not necessarily imply common slope coefficients for all product classes. As Anderson (1984) put
it, even when the response variable is putatively ordered, there is no guarrantee that an ordered
model is appropriate. In his article, Anderson recommends that the analyst should always begin
with the general (unrestricted) unordered model and use an ordered model only if it shows better
fit than the unordered model. Note that both LR and Wald tests rejected the hypothesis that the
two models are the same at all conventional levels of significance. Amemiya (1985) cautions in the
use of ordered models by pointing out that the cost of using an unordered model when the true
model is ordered is loss of efficiency rather than consistency. Thus, from a conservative point of
view, it is much safer to use the unordered model than the ordered. In light of the above discussion
and the fact that all criteria indicate better prediction performance of the unordered model, we en-

dorse the use of unordered models in modelling the merchantability of loblolly pine trees.

6.5 Concluding Remarks

Two logistic regression models, one dichotomous and one unordered trichotomous were developed
to estimate the merchantability of loblolly pine trees growing on thinned and unthinned stands.
Model selection and validation procedures were employed to highlight important stand and tree
characteristics that influence loblolly pine merchantability. To illustrate the utility of these models,
Tables 6.8 and 6.9 have been constructed showing the actual and predicted proportions of the three
product categories by dbh class for unthinned and thinned plots respectively. The data used for the
derivation of these tables are the validation data sets used for model selection during the analysis.

As the reader can verify by looking at these tables, the predicted proportions follow, in general, the
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trend of the actual proportions even though an over-prediction of sawtimber and peelers is appar-
ent. In any case, the incorporation of these models into individual tree yield simulation systems
or into diameter distribution based growth and yield prediction systems will result into more real-

istic yield per acre estimates which in turn will facilitate management decision making.

One final point must be emphasized. It concerns the basic assumption in logistic regression analysis
that the individual tree observations are independent of each other. Although this is a reasonable
assumption for trees growing on different clusters, its validity is questionable for trees in the same
cluster which, are most likely correlated. The beta-binomial distribution has been used as a model
for correlated binary observations in biomedical applications such as opthalmology and cardiology.
Initially, these models assumed positive intra-cluster correlation and clusters of equal size consisting
of a small number of observations, two or three (Griffiths 1973, Williams 1975 and Paul 1979).
Rosner (1984) proposed a more general model also based on the beta-binomial distribution but
allowing for unequal cluster sizes and including the binary logit model as a special case when the
observations are uncorrelated. However, this model still assumed positive intra-cluster correlation
and the maximum likelihood estimation procedure was becoming computationally intensive for
clusters with size five or more. Qu et al. (1987) generalized Rosner’s model to allow for negative,
zero or positive intra-cluster correlation by using the Polya-Eggenberger distribution instead of the
beta-binomial. They also proposed a derivative free estimation procedure which was shown to be
feasible for clusters of size less than ten. For larger sizes, the required computer time was imprac-
tical. Connolly and Liang (1988) suggested an even more general model which, depending on the
form of an appropriately selected distribution function could result in Qu et al. model as a special
case. The authors also suggested a class of easily computed estimating functions which have high
efficiency compared to the computationally intensive Newton-Raphson methodology. In illustrat-
ing this method however, the authors considered clusters with size no larger than six. With regard
to probit formulations, Ochi and Prentice (1984) described a correlated binary probit model in
which the necessary likelihood derivatives could be reduced to linear combinations of equally cor-

related normal probabilities for which some existing approximations could be applied. Even this
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method, however, was found to be computationally intensive and the approximations were be-

coming poorer as cluster size: ~ere increasing.

Thus, although a considerable body of work exists on correlated binary responses, efficient com-
putational procedures are needed in order for this theory to be applied in forestry applications where
large cluster sizes are frequently encountered. In addition, there is practically nothing in the litera-
ture with regard to the consequences from this violation of the independence assumption. It is only
the analogy to the general linear models theory that allows us to speculate that the coefficient esti-
mates are expected to remain asymptoticaly unbiased but with their estimate of error inflated.
However, it is unknown to what extend this error inflation occurs or what exactly are the conse-
quences to the model’s overall prediction ability. To answer these questions further analytical or
simulation studies are required. Finally, the problem of analyzing correlated polychotomous re-

sponses has not yet been investigated and is a topic of future research efforts.
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Chapter VII
Modeling Fusiform Rust Incidence in Loblolly and

Slash Pine Plantations

7.1 Introduction

Loblolly pine and slash pine are the major pine species in the southern United States with as much
as two million acres planted annually. Fusiform rust, caused by the fungus Cronartium quercuum
(Berk.) Miyable ex Shirai f. sp. fusiforme, is responsible for more damage in these species than any
other pathogen. Annual yield losses in excess of 560 million board feet of saw timber and 200
million cubic feet of total volume have been reported which represent approximately 10 percent of
the annual harvest of these species (Powers et al. 1974). Assessing the incidence and the spread of
this disease is therefore of vital interest to forest managers so that detection, control and prevention

practices can be efficiently deployed.
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Due to the great economic impact of fusiform rust, several attempts have been made to determine
site factors that contribute to rust infection and to predict the occurrence of the disease in loblolly
and slash pine plantations. The modeling approaches taken by these studies, however, suffer to

one degree or another by violations of assumptions most as we discuss below.

Wells and Dinus (1978) developed linear probability models of the type discussed in section 2.1,
using the proportion of stem infected trees at age 5 as predictor, to predict rust associated mortality
at the age of 10 for slash pine and rust ressistant and rust susceptible loblolly seed sources. Schmidt
et al. (1979) also employed linear probability models to predict the proportion of rust infected
loblolly and slash pine trees at ages 6 though 10 as a function of the proportion of rust infected trees
at an earlier age. In both studies, the authors overlooked some of the problems associated with the
application of linear probability models to predict proportions of trees falling into two mutually
exclusive classes. As discussed in section 2.1, the most serious weakness of such models is that the
predicted proportions are not restricted to fall within the [0,1] interval. This deficiency usually be-
comes profound when the models are applied to data other than those used to fit the models. In
addition, because the error variance is not homogeneous, the OLS coefficient estimates are unbiased

but not of minimum variance among the class of linear unbiased estimators.

Borders and Bailey (1986) applied OLS methodology to regress the logit of the proportion of trees
per acre with one or more fusiform rust galls on stand age, site index and geographic location. The
logit transformation, while ensuring that the predicted values will lie between 0 and 1, does not
however eliminate the unequal variances of the error terms. Thus, as mentioned previously, the
OLS coefficient estimates are unbiased but not fully efficient. It is worth mentioning that most
computer software packages performing logit or probit analysis, use these OLS estimators as start-

ing values for the iterative search for maximum likelihood estimators.

Nance et al. (1981) employed a Markov model, suggested by Arvanitis and Amateis (1978), to as-
sess the effect of fusiform rust on slash pine mortality. Using this model, the authors predicted the

number of surviving trees at any age (both infected and uninfected) based on the number of trees
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present at age 3 and rust associated mortality also at age 3. Subsequently, the same model was
applied to lobloly pine plantations (Shoulders and Nance, 1987). It is generally known that Markov
process based models produce valid estimates only if the transition probabilities between two spe-
cific states remain stationary over time. In regard to mortality associated with fusiform rust, this
assumption implies that the probability of a healthy tree dying during a fixed period of time must
remain the same regardless of stand conditions. In view of the ever-changing stand and disease
dynamics and the myriad of interacting factors present in a forest stand, it may be very difficuilt to

adopt such an asumption.

Thus, even though some progress has been made in modeling fusiform rust incidence, the models
employed have one or more of their basic assumptions violated and, with the exception of the
Markov formulation, cannot handle multinomial situations where trees are classified into more than
two categories according to the severity of rust infection. It is the purpose of this study to illustrate
the applicability of qualitative response models as alternative formulations in modelling fusiform
rust occurrence. In the first part of the study, dichotomous and polychotomous, logit and probit
models were applied to permanent plot data from loblolly and slash pine plantations in East Texas
to predict the proportion of trees per acre with various levels of rust infection at a given age. In the
second part, the same data were used to fit qualitative response models that predict transitional

proportions, i.e., proportions of trees moving from one level of rust infection to another.

It is believed that the models suggested in this study are useful from several standpoints. They
identify sites with a high probability of fusiform rust incidence, making it possible for forest man-
agers to allocate usage and/or manage approprately on a short term basis. Perhaps more impor-
tantly, the development of such models will help determine factors which contribute to rust
occurrence and spread, and provide specific long range direction for alleviating or managing these

factors.
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7.2 Data

Data were provided by the East Texas Pine Plantation Research Project consisting of 256 site-
prepared loblolly and slash pine plantations. The survey design has been documented by Lenhart
et al. (1985). During the dormant seasons of 1982-1984, 178 plots were permanently established in
loblolly pine plantations and 78 in slash pine plantations. Because the general practice in evaluating
the effect of fusiform rust is to base its impact on the percentage of infected stems by age 5 (Wells
and Dinus 1978, Schmidt et al. 1979, Schmidt and Klapproth 1982) plantations of age less than 5
years were excluded from the study leaving 70 plots for loblolly pine and 38 plots for slash pine.

Table 7.1 displays the age distribution of sample plots at the time of establishment.

Table 7.1. Distribution of sample plots by species and age.

plantation age (years)

species S 6 7 8 9 10 Il 12 13 14 15 16 17 total
loblolly 11 4 11 9 3 ¢ 8 7 2 1 2 2 1 70
slash 3 9 8 4 2 1 4 1 1 4 0 1 0 38

The various site preparation treatments applied to the plantations were summarized in the following

classes:

KGSNW K G bladed/sheared not windrowed
KGSW KG bladed/sheared not windrowed
KGSBD KG bladed/sheared bedded
KGSBN KG bladed/sheared burned

MISC various other treatments
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Table 7.2 shows the distribution of site preparation classes in the sample plots of both species.

Table 7.2. Classification of survey plots by species and site preparation classes.

loblolly slash
KGSWBD 4 2
KGSBN 8 8
KGSNW 0 2
KGSW 53 25
MISC 5 1
TOTAL 70 38

Plot characteristics recorded were age, average height of dominant | and codominant trees
(HEIGHT) in feet, site index (SINDEX) at base age 25 in feet, number of trees per acre (N) and
basal area per acre (BA) in squared feet per acre (Table 7.3). The quadratic mean diameter (QMD)
was computed from observations of N and BA. An additional measure of stand density, known

as spacing index or relative spacing (Clutter et al. 1983), was also computed as

/43560/number of trees per acre
~ average height of dominant and codominant trees

Each pine tree in a plot was visually inspected for rust infection and classified into one of the fol-

lowing three categories:

CLEAR the tree is healthy, free of rust infection

BRANCH  galls exist on a live or dead branch at a distance of more than 12 inches from the stem

STEM ~  galls exist on stem or on a live branch within 12 inches from the stem

Three years after the first measurement the plots were revisited and measurements were taken on
the same plot variables (Table 7.3). Each tree in a plot was again checked for rust infection and
classified as CLEAR, BRANCH, STEM or DEAD if the tree was found dead as a result of rust

infection.
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Table 7.3. Loblolly and slash pine plot summary statistics during the first measurement and remeas-

urement.

LOBLOLLY
first measurement remeasurement

plot
variables min. mean max. min. mean max.
HEIGHT 7.00 29.41 53.00 20.00 39.39 67.00
SINDEX 29.00 68.91 100.00 32.00 72.07 101.00
N 139.00 444.04 749.00 139.00 436.19 740.00
BA 0.00 49.86 116.00 10.00 77.39 140.00
QMD 0.00 4.12 7.09 2.39 5.60 8.10
RS 0.09 0.30 0.48 0.08 0.25 0.31

SLASH
HEIGHT 8.00 28.29 54.00 17.00 38.52 60.00
SINDEX 27.00 66.11 99.00 37.00 68.64 84.00
N 133.00 345.00 1002.00 112.00 151.50 989.00
BA 0.00 35.39 107.00 5.00 52.58 129.00
QMD 0.00 3.99 7.72 1.96 5.37 7.57
RS 0.08 0.36 0.49 0.07 0.29 0.35
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7.3 Models that Predict Fusiform Rust Infection Levels

7.3.1 Dichotomous Models

As a first step in this study, it was decided to develop models that predict the proportion of rust

infected and dead trees at a given age for loblolly and slash pine plantations. The remeasurement

data were classified into two categories; one containing healthy trees and one containing branch

infected, stem infected and dead trees. Two binary choice models, a logit and a probit, were con-

sidered and the finally selected models along with the corresponding goodness of fit statistics are

shown on Tables 7.4 and 7.5 for loblolly and slash pine respectively. Tables 7.4a and 7.5b display

the variance-covariance matrices for the coefficient estimates of the two logit models.

The predictor variables used by these models are described below:

NORTH:

KGSW:

KGSNW:

KGSBN:

KGSBD:

SLOPE:

FLAT:

1 if plantation is located in North-East Texas, i.e., in Cass, Harrison, Marion, Panola,

Red River or Rusk Counties; 0 otherwise

1 if site preparation class is KGSW; 0 otherwise

1 if site preparation class is KGSNW; 0 otherwise

1 if site preparation class is KGSBN; 0 otherwise

1 if site preparation class is KGSBD; 0 otherwise

1 if plantation lies on slope terrain; 0 otherwise

1 if plantation lies on flat terrain; 0 otherwise
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Table 7.4. Maximum likelihood coefficient estimates of the binary logit and probit models which predict
rust infection on loblolly pine.

predictor
variables

INTERCEPT
NORTH
KGSW
KGSBN
KGSBD
SLOPE
FLAT
AGE
SINDEX
QMD

RS
CLEARO
INFECTO

LOGIT PROBIT
estimate std. error estimate std. error
3.988322 0.534601 2.067210 0.298115
-0.381866 0.051186 -0.21192 0.027775
0.191307 0.071649 0.099893 0.039108
0.299342 0.083436 0.154439 0.045889
0.615450 0.100303 0.331718 0.054959
0.199984 0.047273 0.466000 0.035055
-0.098114 0.014730 -0.118291 . 0.026582
-0.014638 0.002133 -0.053595 0.008215
-0.014638 0.002133 -0.007810 0.001207
-0.097964 0.035891 -0.053664 -0.019982
-0.778364 0.105695 -0.420165 0.058534
-0.004954 0.000325 -0.002709 0.000181
0.004673 0.000356 0.002864 0.000205

logL = -14108.86
AIC = 14120.86

pseudo-R?

0.243

SSR = 0.352847
WSSR = 2.393087

logL = -14111.02
AIC = 14123.02
pseudo-R? = 0.240
SSR = 0.353758
WSSR = 2.383570
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Table 7.5. Maximum likelihood coefficient estimates of the binary logit and probit models which predict
rust infection on slash pine.

predictor
variables

INTERCEPT
KGSW
KGSBN
KGSBD
KGSNW
SLOPE
FLAT

QMD
INFECTO

LOGIT PROBIT
estimate std. error estimate std. error
-0.356198 0.154162 -0.194749 0.090714
-0.914583 0.150005 -0.562631 0.089390
-0.832987 0.167654 -0.519618 0.099227
-1.565833 0.154702 -0.964353 0.091953
-0.867938 0.177564 -0.538487 0.106308
0.543587 0.169851 0.306855 0.094091
-0.485316 0.095910 -0.297962 0.056909
0.103497 0.016174 0.060431 0.009480
-0.033378 0.011936 -0.019063 0.007139
-0.021554 0.003110 -0.013244 0.001876
0.487000 0.046947 0.292044 0.002769
0.003679 0.000290 0.002265 0.000175

logl = -7770.73 logL, = -7771.71
AIC = 7781.74 AIC = 7788.71

pseudo-R? = (.248
SSR = 0.149110
WSSR = 0.745477

pseudo-R? = (.244
SSR = 0.151193
WSSR = 0.751730
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AGE: age at remeasurement

HEIGHT: average height of dominant and codominant trees during the initial measurement

SINDEX: site index; base age 25 years

BA: basal area per acre
QMD: quadratic mean diameter
RS: relative spacing

CLEARO: initial number of healthy trees per acre
INFECTO: initial number of infected trees per acre (branch and stem infected)

Because the models predict proportions and not individual tree probabilities, model selection cri-
teria that evaluate model performance based on individual correct predictions such as WP, PSI and
Theil’s information inaccuracy of the prediction cannot be meaningfully employed. Comparison
between probit and logit models is meaningful only on the basis of SSR, WSSR and pseudo-R?
statistics, since the log-likelihood functions of the two formulations are not comparable. The valﬁes
of these statistics in Tables 7.4 and 7.5 indicate that logit models fit the data slightly better than
probit models. This improvement, although it does not seem to be significant for practical pur-

poses, influenced our decision to favor the logit model over the probit.

Influence diagnostics were then calculated for the logit models fitted to loblloly and slash pine data.
In particular, for each plot observation the following diagnostics were computed as shown in

Chapter 5:

e the standardized residual, se;, and the corresponding component of -2logl, d, to identify

outlying plot observations (see section 5.1),
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e the diagonal element, A;, of the HAT matrix H°, to identify ligh leverage plot observations (see

section 5.2) and

e the scalar ¢;! to measure the influence which the particular plot observation exerts on the es-

timated coefficient vector (see section 5.3).

Figures 7.1-7.2 and 7.3-7.4 display the index plots of these diagnostics, i.e., plots of se, d,, A; and

¢! vs plot number i, for loblolly and slash pine respectively.

Focusing first on loblolly pine logistic diagnostics, plot number 49 is seen to be an obvious outlier
(Figure 7.1 a and b). However, the leverage of this plot is small as the corresponding 4;; value in-
dicates in Figure 7.2a. The same figure identifies plot observations 13, 47, 52 and 63 as high lev-
erage data points. But again, these plots exhibit only small residual values (Figure 7.1 a and b).
Figure 7.2b shows that plots 35, 52 and 64 are the most influential observations to the estimated

coefficient vector.

Turning now to slash pine logistic diagnostics, plots 14, 19, 35 and 36 were identified as outliers
(Figure 7.3 a and b); plots 2, 9 and 17 as high leverage observations (Figure 7.4a) and plots 3, 13,

30 and 35 as highly influential to the estimated vector of coefficient estimates (Figure 7.4b).

Careful checking on the values of the plot observations which have been reported as outliers, high
leverage or high influence data points showed no evidence of illogical or mistakenly recorded
measurements. Hence, these plots were considered to contain valid observations and no action was

taken against their presence in the estimation data set.

To provide a better insight on how well the models perform, Figures 7.5, 7.6, 7.7 and 7.8 display
plots of the standardized residuals versus age, landform and site index or average height of dominant
and codominant trees for loblolly and slash pine respectively. The landform of each site is also

indicated in these plots. The models appear to perform equally well for both species and no ap-
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parent trend was detected. The observations which were found to be associated with the largest

residuals were checked again but nothing peculiar about them was revealed.

7.3.2 Polychotomous Models

To obtain a better insight on the levels of fusiform rust infection, three types of multinomial choice
models namely, ordered probit (OMNP), ordered logit (OMNL) and unordered logit (UMNL)
were considered for predicting the proportions of trees that are branch infected, stem infected and
dead at a given age. For each of the above models applied to the data of each species, variable
screening was conducted on the basis of criteria such as SSR, WSSR, pseudo- R? , AIC and also,
the maximized value of log-likelihood functions. Tables 7.6-7.7 and 7.8-7.9 show the finally se-
lected forms matrices of OMNP, OMNL and UMNL models, fitted to loblolly and slash pine data
respectively. Tables 7.6a, 7.7(a,b,c), 7.8a and 7.9(a,b,c) display the corresponding estimated

variance-covariance matrices of the logit formulations.

As seen from these tables, the three models fitted to each species contain explanatory variables
which are the same as those used by the binary logit and probit models in Tables 7.4 and 7.5. The
only notable difference is that the initial number of rust infected trees per acre (INFECTO0) used
by the binary models has now been decomposed into its two components, the initial number of
branch infected trees per acre (BRANCHO) and the initial number of stem infected trees per acre

(STEMO).

As the reader can verify, the logit formulations, OMNL and UMNL, outperform OMNP for both
species. In choosing between OMNL and UMNL, all goodness of fit statistics, including AIC,
strongly favor UMNL. The superiority of UMNL was also witnessed in testing the hypothesis that
there is no significant difference between the two logit models. Both LR and Wald tests rejected

this hypothesis at all conventional levels of significance for both species.
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Table 7.6. Maximum likelihood coefficient estimates of the OMNL and OMNP models fitted to loblolly

pine data.
OMNL OMNP
predictor
variables estimate std. error estimate std. error
INT-1 (BRANCH) 4.265233 0.565751 1.655300 0.031707
INT-2 (STEM) 3.870174 0.565622 0.217552 0.000825
INT-3 (DEAD) 1.614921 0.566553 1.274312 0.003011
NORTH -0.383306 0.051175 -0.200879 0.003145
KGSW 0.223195 0.071429 0.104515 0.004298
KGSBN 0.299639 0.083088 0.134831 0.004298
KGSBD 0.401695 0.112184 0.396656 0.005427
SLOPE 0.766370 0.064001 0.359554 0.003197
FLAT -0.153229 0.050131 -0.025384 0.002526
AGE -0.071811 0.014661 -0.025324 0.000835
SINDEX -0.014200 0.002185 -0.006002 0.000122
QMD -0.157199 0.036573 -0.074800 0.001959
RS -0.886945 0.110611 -0.395236 0.006283
CLEARO -0.005216 0.000343 -0.002495 0.000018
BRANCHO 0.007772 0.000985 -0.001604 0.000050
STEMO 0.005893 0.000423 0.003578 0.000022
logL = -19074.46 logl. = -19196.72
AIC = 19087.46 AIC = 19208.72
pseudo-R? = (.246 pseudo-R? = 0.241
SSR = 0.768999 SSR = 0.810976

WSSR = 7.861294 WSSR = 10.698772
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Table 7.8. Maximum likelihood coefficient estimates of the OMNI and OMNP models fitted to slash

pine data.
OMNL OMNP
predictor
variables estimate std. error estirnate std. error
INT-1 (BRANCII) -0.150355 0.131325 -0.033264 0.008399
INT-2 (STEM) -0.440165 0.131365 0.174821 0.000791
INT-3 (DEAD) -3.740128 0.137026 2.072110 0.002520
KGSwW -0.634831 0.130203 -0.378077 0.007949
KGSBN -0.467229 0.144032 -(0.287272 0.008982
KGSBD -1.443341 0.132852 -0.907530 0.008225
KGSNW -().531860 0.158168 -0.347225 0.009508
SLOPE 0.592344 0.134243 0.328183 0.009813
FLAT -0.464763 0.084898 -0.269049 0.005154
AGE 0.079445 0.014797 0.050330 0.001002
HEIGHT -0.042496 0.012738 -0.025871 0.000719
BA -0.013138 0.003495 -0.006847 0.000192
QMD 0.439954 0.042325 0.244994 0.002660
BRANCIHIO -0.000747 0.000696 -0.005781 0.000042
STEMO 0.004624 0.000278 0.002619 0.000015
logl. = -13086.92 logL = -13102.23
AIC = 13098.92 AIC = 13114.23
pseudo-R? = 0.216 pseudo-R? = (.203
SSR = 0.528301 SSR = 0.530849
WSSR = 3.356088 WSSR = 3.9827535
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Figures 7.9-7.24 for loblolly pine and 7.25-7.40 for slash pine at the end of this chapter show the
standardized residuals of the OMNL and UMNL models for each level of rust infection plotted
against age, landform and site index (loblolly) or average height of dominant and codominant trees
(slash). The better goodness-of-fit performance of the UMNL over the OMNL model can be
verified from these graphs. No particular trends with respect to age, site quality and landform of

the plantation were found to be present.

7.3.3 Discussion

The binary models in Tables 7.4 and 7.5 are useful in highlighting important site factors and also,
in describing their role on the occurrence of rust infection and mortality. In addition, the UMNL
models given in Tables 7.7 and 7.9, containing the same predictors as the binary models, can pro-
vide further insight on the disease dynamics by focusing on the effects of predictor variables on each

level of rust infection separately.

The geographic location of loblolly pine plantations was found to significantly affect the occurence
of fusiform rust. In particular, as shown in Tables 7.3 and 7.8, loblolly pine plantations in South-
East Texas seem to be more susceptible to rust infection than plantations located in North-East
Texas. No such geographic trend was found to be significant for slash pine. Note that Wells and
Dinus (1978) also reported geographic variation as an important factor affecting the ressistance of

loblolly pine to fusiform rust.

The effect of site preparation treatments on the incidence of fusiform rust appears to be positive
on loblolly pine (Table 7.4) and negative on slash pine (Table 7.5). More specifically, Table 7.7 for
loblolly pine shows a significant positive effect of KGSW, KGSBN and KGSBD on the proportion

of stem infected trees. On the other hand, Table 7.9 for slash pine shows a significant negative effect
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of KGSW, KGSNW and KGSBN on the proportion of stem infected and dead trees and of

KGSBD on the proportion of branch and stem infected trees.

The negative impact that site preparation treatments seem to exert on rust infection rate on slash
pine contrasts what seems to be a general belief, that increased site preparation intensity usually
results in increased rust incidence (Schmidt et al. 1988, Burton et al. 1985, May et al. 1973, Miller
1972). For loblolly pine, the relationship between rust incidence and site preparation has not been
thoroughtly examined and is not as well defined as for slash pine. However, the increase in rust
infection rate with site preparation noted by this study agrees in general with the conclusions
reached by Zutter et al. (1987) in studying the effects of various weed control treatments on rust
incidence in loblolly pine plantations in Alabama, Georgia and North Carolina. Based on their
findings, the authors concluded that site preparation methods that aim in increased loblolly pine
growth are usually accompanied by increased rust incidence and severity. In any case, the results
obtained in this study should not be faithfuly trusted for meaningful interpretations of the role of
site preparation methods on fusiform rust occurrence. The reason is that site preparation treat-
ments were subjectively assigned to plantations on the basis of equipment availability, previous land
use, vegetation and soil factors. Thus, what the models indicate as significant site preparation effect
may in fact be the combined effects of many other unidentified factors which are confounded with
site preparation treatments. This probably explains the unexpected negative effect of site prepara-

tion methods on rust incidence in slash pine.

Site landscape was also found to be an important factor with similar effect on the occurrence of
fusiform _rust in both species (Tables 7.4, 7.5, 7.7 and 7.9). In particular, SLOPE sites are seen to
be positively related to all levels of rust infection, whereas FLAT sites are negatively related.
Considering that SLOPE sites are better drained than FLAT sites, the above results are in agree-
ment with previous studies reporting lower fusiform rust incidence on poorly drained sites and

higher on well drained sites (Hollis et al. 1975, May et al. 1973, Schmidt et al. 1988).

134



Stand density enters the models of the two species in a different way. For loblolly pine (Tables 7.4
and 7.7) through quadratic mean diameter (QMD) and relative spacing (RS) and in slash pine
through QMD and basal area per acre (BA). As suggested by the opposite signs of the corre-
sponding coefficient estimates, it is very difficult to assign an overall positive or negative role to
stand density, a suggestion which is in agreement with the conclusions of Wakeley (1969) and Miller
(1972) who reported no consistent relationship between the incidence of fusiform rust and spacing

in plantations of slash pine in Georgia.

Site quality, expressed as site index on loblolly pine (Tables 7.4 and 7.7) and average height of
dominant and codominant trees on slash pine (Tables 7.5 and 7.9), was found to be negatively re-
lated to all levels of rust infection except for the positive effect that site index has on the proportion
of dead loblolly pine trees (Table 7.9). This, overall negative relation is in disagreement with results
from previous studies (Borders and Bailey 1986, Nance et al. 1981) and with what is generally ac-
cepted, i.e., that rust incidence is positively related to increased growth (Schmidt et al. 1988, Zutter

et al. 1987). No meaningful explanation for this discrepancy can be offered at this point.

Fusiform rust infection rate at all levels was found to decrease with time in loblolly pine (Tables
7.4 and 7.7) and increase with time in slash pine (Tables 7.5 and 7.9). Similar conclusions were
reached by Hunt and Lenhart (1986) after compiling data from four surveys on loblolly and slash
pine plantations in East Texas between 1969 and 1984, the 1984 survey containing the initial
measurements used in this study. They, too, found rust incidence increasing with time on slash pine

and either decreasing or about constant on loblolly pine.

The initial number of healthy trees (CLEARDO) is seen to be a significant predictor variable, nega-
tively related to all levels of rust infected loblolly pine trees (Tables 7.4 and 7.7). Given the de-
clining rust infection rate over time on loblolly pine, this is an expected result. The larger the initial
number of healthy trees, the smaller the proportions of branch infected, stem infected or dead trees
are expected. For slash pine, where rust infection is increasing with time, the effect of CLEARO

was found to be positive but not significant.
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The two components of INFECTO0 namely, the initial number of branch infected (BRANCHO0) and
stern infected (STEMO) trees are required by the UMNL models of both species (Tables 7.7 and
7.9). BRANCHO is positively related to the proportion of branch infected loblolly and slash pine
trees. STEMO is negatively related to the proportion of branch infected trees and positively related
to the proportions of stem infected and dead trees of both species. Clearly, the larger the initial
number of stem infected trees the higher are expected to be the proportions of stem infected and
dead trees. The positive effect of BRANCHO on the proportion of branch infected trees is alo
meaningful given the negative effects of CLEARO (in loblolly only, Table 7.7) and STEMO vari-

ables for this level of infection.

7.4 Models that Predict Fusiform Rust Transition

Proportions

To further understand the dynamics of fusiform rust incidence in loblolly and slash pine plantations,
more detailed information than that provided by the models developed in the previous section is
often needed. For instance, knowledge of the proportion of trees which were initially classified as
healthy and subsequently became infected or died as a result of rust infection, and of the effects that
site factors have on these proportions would provide a better insight on the potential damage this
disease ca_ln cause and, also, could suggest alternative management practices for limiting the spread
of the disease. Similarly, information about the proportion of branch infected trees moving to a
higher level of infection is regarded to be extremely useful to direct management actions to prevent
further devaluation of such, lightly infected trees. Throughout this study, the proportions of trees

moving from one level of rust infection to another will be called transitional proportions.
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Using the permanent plot data from loblolly and slash pine plantations in East Texas, the transi-
tional proportions of each plot were summarized in a transition matrix of the form given in Table

7.10.

Table 7.10. General form of the rust infection plot transition matrix.

initial
measurement first remeasurement

CLEAR BRANCH STEM DEAD
CLEAR CLR-CLR CLR-BRA CLR-STEM CLR-DEAD
BRANCH - BRA-BRA BRA-STEM BRA DEAD
STEM - - STEM-STEM STEM-DEAD

The rows of this matrix correspond to the initial levels of rust infection and the columns to the
levels of rust infection at the time of the first remeasurement. The ij-th element in this matrix is
the proportion of trees, initially classified as falling into the i-th level of rust infection (CLEAR,
BRANCH or STEM), which three years later were classified as falling into the j-th level of rust
infection (CLEAR, BRANCH, STEM or DEAD). For example, BRA-DEAD is the proportion
of branch infected trees that died. Note that because a tree cannot move from a higher level of
infection to a lower, the elements of the lower triangular part of the transition matrix are not de-
fined. Also, the elements of each row of the transition matrix must sum to one since they are

proportions of the number of trees having a common initial level of rust infection.

The objective of this part of the study was to develop qualitative response models that predict the
transitional proportions at each row of the transition matrix. The models finally selected for their
goodness of fit performance among a variety of logit and probit, unordered and ordered models

were:

e quatri-nomial ordered and unordered logit for the first row of the transition matrix
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e  tri-nomial ordered and unordered logit for the second row of the transition matrix and

®  a binomial logit for the third row of the transition matrix.

These models are shown fitted in Tables 7.11-7.15 for loblolly pine and in Tables 7.16-7.20 for slash

pine.

7.4.1 Discussion

The transition of healthy and branch infected loblolly pine trees to higher levels of infection (i.e.,
CLR=BRA, CLR-STEM, BRA-STEM in Tables 7.11-7.14) is seen to increase as we move to-

wards South-East Texas. No such geographic effect was found to be significant on slash pine.

As before, no meaningful conclusions concerning the effect of site preparation classes on transi-
tional proportions could be drawn due to the subjective manner with which site preparation treat-

ments were assigned to plantations of both species.

Transition to higher levels of rust infection was found to be positively related to SLOPE sites and
negatively related to FLAT sites for all models fitted to the data of both species. Here again, soil

drainage is considered to be the driving factor for these relations.

For loblolly pine, the proportion of clear trees becoming branch infected and stem infected
(CLR-BRA and CLR-STEM, Table 7.12) and of stem infected trees that died (STEM-DEAD,
Table 7.15) is decreasing over time. On the other hand, the proportion of branch infected trees
moving to higher levels of rust infection (BRA-STEM and BRA-DEAD, Table 7.14) is increasing
with time. For slash pine the effect of age is reversed. The proportions of clear and stem infected

trees moving to higher infection levels (CLR-BRA, CLR-STEM, CLR-DEAD in Table 7.17 and
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Table 7.11. Maximum likelihood coefficient estimates of the quatri-nomial ordered logit model that

predicts the transitional proportions of healthy loblolly pine trees.

predictor
variables

INT.1 (CLR-BRA)
INT.2 (CLR-STEM)
INT.3 (CLR-DEAD)
NORTH

estimate std. error
6.102617 0.602737
5.590692 0.602516
3.832865 0.603644
-0.548252 0.069522
0.288359 0.084850
0.418701 0.099696
0.666601 0.121588
0.942497 0.074243
-0.163629 0.060837
-0.205122 0.028366
0.043460 0.009567
-0.026131 0.003401
-0.315349 0.046082
-1.061606 0.091540
-0.005378 0.000302

logL= -13252.09
AIC= 13264.09
pseudo-R?*= (.209
SSR = 0.617542
WSSR = 8.071242
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Table 7.13. Maximum likelihood coefficient estimates of the quatri-nomial ordered logit model that
predicts the transitional proportions of branch infected loblolly pine trees.

predictor
variables estimate std. error

INT.1 (BRA-STEM) -7.610186 2.139148
INT.2 (BRA-DEAD) -11.854576 2.180963

NORTH -0.903714 0.352658
SLOPE 1.074169 0.207306
FLAT -1.025874 0.185241
AGE 1.049363 0.161902
HEIGHT -0.419189 0.061349 .
SINDEX 0.133388 0.021584
QMD 0.528343 0.216072
RS -1.216635 0.356701
STEMO -0.004693 0.001529
logL = -459.28

AIC= 468.28

pseudo-R?*= 0.199
SSR = 10.031994
WSSR = 98.793379
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Table 7.14. Maximum likelihood coefficient estimates of the tri-nomial unordered logit model which
predicts transitional proportions of branch infected loblolly pine trees.

BRA-STEM BRA-DEAD

predictor

variables estimate std. error estimate std. error
INTERCEPT -8.533462 2.358365 -28.612847 12.215820
NORTH -0.913029 0.366794 -0.965512 0.256234
SLOPE 1.074169 0.207306 0.594602 0.040722
FLAT -1.241152 0.230190 -0.998191 0.620590
AGE 1.276880 0.179165 1.140251 0.697792
HEIGHT -0.516187 0.068704 -0.401486 0.255759
SINDEX 0.162534 0.024594 0.234079 0.114268
QMD 0.545386 0.136716 1.699430 0.402358
RS -1.644194 0.394803 0.540369 1.462532
STEMO -0.005155 0.001649 -0.012172 0.007742
logl. = -420.63

AIC = 438.63

pseudo-R? = 0.214
SSR = 5.351839
WSSR = 34.948338
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Table 7.15. Maximum likelihood coefficient estimates of the binomial logit model that predicts the
transitional proportions of stem infected loblolly pine trees.

STEM-DEAD
predictor
variables estimate std. error
INTERCEPT 10.144089 2.367079
AGE -0.329695 0.104875
SINDEX -0.034081 0.014906
QMD 0.271324 0.104667
RS -4.293221 0.667400
STEMO -0.005733 0.001660
logL = -399.65
AIC= 404.65

pseudo-R?*= (.268
SSR = 0.860859
WSSR = 15.043567
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Table 7.16. Maximum likelihood coefficient estimates of the quatri-nomial ordered logit model that
predicts the transitional proportions of healthy slash pine trees.

predictor

variables estimate std. error
INT.1 (CLR-BRA) 0.808099 0.226399
INT.2 (CLR-STEM) -1.232745 0.226694
INT.3 (CLR-DEAD) -4.362624 0.246543
KGSW 0.024262 0.006479
KGSBD -0.470318 0.156412
SLOPE 0.590624 0.113353 -
FLAT -0.495984 0.142231
AGE 0.126856 0.025901
HEIGHT -0.149834 0.019540
BA 0.016889 0.004865
QMD 0.698453 0.079777
CLEARO -0.007971 0.001090
BRANCHO -0.004905 0.001090
STEMO -0.001172 0.000412
logL. = -5244.01

AIC= 5255.01

pseudo-R?= 0.198
SSR = 1.285955
WSSR = 7.055818
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Table 7.18. Maximum likelihood coefficient estimates of the tri-nomial ordered logit model that predicts
the transitional proportions of branch infected slash pine trees.

predictor
variables estimate std. error

INT.1 (BRA-STEM) 4.366378 0.426427

INT.2 (BRA-DEAD)  -1.608412 0.404897
KGSW -0.702556 0.186926
SLOPE 0.753012 0.449421
FLAT -0.781718 0.237119
AGE -0.536261 0.058478
HEIGHT 0.321517 0.050710
BA -0.508301 0.010207
QMD -0.641535 0.168070
logl.= -672.49

AIC= 680.49

pseudo-R?= (.204
SSR = 1.451386
WSSR = 8.815158
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Table 7.19. Maximum likelihood coefficient estimates of the tri-nomial unordered logit model which
predicts transitional proportions of branch infected slash pine trees.

BRA-STEM BRA-DEAD

predictor

variables estimate std. error estimate std. error
INTERCEPT 5413192 0.565512 3.266681 1.218662
NORTH -0.913029 0.366794 -0.965512 0.256234
KGSwW -1.207113 0.246908 -1.011320 0.478076
SLOPE 0.758685 0.199004 0.292145 0.065847
FLAT -0.385959 0.306286 -3.012251 0.836844
AGE -0.545872 0.075677 -1.322820 0.194627
HEIGHT 0.379607 0.071287 0.752104 0.116575
BA -0.066517 0.013515 -0.093241 0.023635
QMSD -1.023071 0.232075 -1.599621 0.433272
logl = -644.22

AIC = 660.22

pseudo-R? = 0.225
SSR = 1.166012
WSSR = 4.407802
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Table 7.20.

Maximum likelihood coefficient estimates of the binomial logit model that predicts the
transitional proportions of stem infected slash pine trees.

STEM-DEAD

predictor

variables estimate std. error
INTERCEPT -1.122129 0.325029
SLOPE 0.854689 0.143496
FLAT -0.443695 0.216910
AGE 0.090650 0.031460
HEIGHT -0.068326 0.024471
BA 0.023910 0.009005
CLEARO -0.002129 0.000532
BRANCHO -0.005316 0.001570
logL.= -290.62

AIC= 297.62

pseudo-R?= 0.209
SSR = 0.223809
WSSR = 2.030853
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STEM-DEAD in Table 7.20) are increasing over time whereas, the proportions of branch infected

trees (BRA-STEM, BRA-DEAD in Table 7.19) are decreasing over time.

Site index had a significant effect on loblolly pine transitional proportions but not on those of slash
pine. More specifically, site index was found to be negatively related to CLR-BRA, CLR-STEM
(Table 7.12) and STEM-DEAD (Table 7.15) proportions and positively related to BRA-STEM
and BRA-DEAD (Table 7.14) proportions. Once again, we remain skeptical about the negative
relation of site quality with the infection rates of clear loblolly pine trees. There is enough evidence
in the literature to convince us for the opposite. Further examination of the data failed to reveal

any patterns that perhaps could explain this unexpected result.

The average height of dominant and codominant loblolly pine trees was found to be positively re-
lated to CLR-STEM and CLR-DEAD (Table 7.12) and negatively related to BRA-STEM and
BRA-DEAD (Table 7.14) proportions. In slash pine, it had a negative effect on CLR-BRA,
CLR-STEM (Table 7.17) and STEM-DEAD (Table 7.20) and a positive effect on BRA-STEM
and BRA-DEAD (Table 7.19) proportions. Overall, it seems that healthy large loblolly pine trees

are more susceptible to fusiform rust than similar slash pine trees.

Finally, the specific effect of stand density although significant it was very difficult to evaluate in a
meaningful manner. As mentioned previously, there seems to be no consistent relationship between

stand denstity and transitional proportions on both loblolly and slash pine.

7.5 Concluding Remarks

The primary goal in this chapter was to exemplify the applicability of qualitative response models

in studying the incidence and spread of fusiform rust in loblolly and slash pine plantations in East
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Texas. In the first part of the study, these models were used to predict the proportion of trees per
acre at three levels of rust infection (branch infected, stem infected and dead) at a given age. In the
second part, the transitional proportions at each row of the transition matrix were modeled. In all
cases, logit formulations fit the data better than probit. Among multinomial logit models, the un-
ordered performed better than the ordered with regard to goodness of fit criteria, but the estimates
in the ordered models have smaller standard errors. Our feelings against the use of ordered models
remain the same as those expressed in section 6.4 in modeling the merchantability of loblolly pine
trees. Perhaps in the present study they are more justifiable because, intuitively, one would not
expect site factors to affect in the same way the behavior of the disease at vé.xious stages of infection

as the ordered models imply.

All models indicated that fusiform rust infection rates were decreasing with time on loblolly pine
and increasing on slash pine. Loblolly pine plantations in South-East Texas appeared to be more
susceptible to fusiform rust than plantations in North-East Texas. Rust incidence was found to
increase on well-drained soils and decrease on moderately and on poorly drained soils. Site quality
was, to our surprise, negatively related to rust incidence. No meaningful explanation can be given

on this matter.

Obviously, rust infection levels are highly variable from stand to stand and the usual survey vari-
ables used in the models above, explain at best, only a portion of this variation. Apparently, other
more directly associated factors are influencing rust incidence and spread. For instance, it has been
reported (Froelich and Snow 1986, Hollis et al. 1975) that the presence of large numbers of oaks
(Quercus spp.) scattered among the planted pines is usually associated with a high incidence of
fusiform rust infection. Thus, it is possible that variables sush as associated oak volume or oak leaf
area would explain additional variation in modelling rust incidence. However, these variables are
not, and probably will never be, incorporated into forest inventories because of time and money
limitations (Borders and Bailey 1986). Consequently, the use of models that include such explan-
atory variables as the above mentioned, would be limited due to lack of appropriate, readily avail-

able data.
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It is our belief that rust prediction models such as those developed in this study provide valuable
insights into site-rust hazard relations and management. Perhaps more importantly, these models
can easily be incorporated into existing growth and yield prediction systems or even to more so-
phisticated decision guideline models such as forest stand simulators to provide realistic estimates
for expected value calculations of the volumetric or financial impact of fusiform rust in loblolly and

slash pine plantations.
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Figure 7.9. Standardized residuals plotted against age and landform for the OMNL model predicting

the proportion of healthy loblolly pine trees.
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Figure 7.10. Standardized residuals plotted against age and landform for the OMNL model predicting
the proportion of branch infected loblolly pine trees.
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Figure 7.11. Standardized residuals plotted against age and landform for the OMNL model predicting
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Figure 7.12. Standardized residuals plotted against age and landform for the OMNL model predicting
the proportion of dead loblolly pine trees.
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Figure 7.13. Standardized residuals plotted against site index and landform for the OMNL model pre-
dicting the proportion of healthy loblolly pine trees.
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Figure 7.14. Standardized residuals plotted against site index and landform for the OVINL model pre-
dicting the proportion of branch infected loblolly pine trees.
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Figure 7.15. Standardized residuals plotted against site index and landform for the OMNL model pre-
dicting the proportion of stem infected loblolly pine trees.
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Figure 7.16. Standardized residuals plotted against site index and landform for the OMNL model pre-
dicting the proportion of dead loblolly pine trees.
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Figure 7.18. Standardized residuals plotted against age and landform for the UMNL model predicting
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Figure 7.19. Standardized residuals plotted against age and landform for the UVMINL model predicting
the proportion of stem infected loblolly pine trees.
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Figure 7.20. Standardized residuals plotted against age and landform for the UMNL model predicting
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Standardized residuals plotted against site index and landform for the UMNL model pre-

dicting the proportion of healthy loblolly pine trees.
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Figure 7.22. Standardized residuals plotted against site index and landform for the UMNL model pre-

dicting the proportion of branch infected loblolly pine trees.
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Figure 7.23. Standardized residuals plotted against site index and landform for the UMNL model pre-
dicting the proportion of stem infected lobloily pine trees.
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Figure 7.24. Standardized residuals plotted against site index and landform for the UMNL model pre-
dicting the proportion of dead loblolly pine trees.
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Figure 7.25. Standardized residuals plotted against age and landform for the OMNL model predicting
the proportion of healthy slash pine trees.
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Figure 7.26. Standardized residuals plotted against age and landform for the OMNL model predicting

the proportion of branch infected slash pine trees.
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Figure 7.27. Standardized residuals plotted against age and landform for the OMNL model predicting

the proportion of stem infected slash pine trees.
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Figure 7.28. Standardized residuals plotted against age and landform for the OMNL model predicting
the proportion of dead slash pine trees.
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Figure 7.29. Standardized residuals plotted against average height and landform for the OMNL model

predicting the proportion of healthy slash pine trees.
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Figure 7.30. Standardized residuals plotted against average height and landform for the OMNL model

predicting the proportion of branch infected slash pine trees.
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Figure 7.31. Standardized residuals plotted against average height and landform for the OMNL model
predicting the proportion of stem infected slash pine trees.
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Figure 7.32. Standardized residuals plotted against average height and landform for the OMNL model

predicting the proportion of dead slash pine trces.
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Figure 7.33. Standardized residuals plotted against age and landform for the UMNL model predicting

the proportion of healthy slash pine trees.
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Figure 7.34. Standardized residuals plotted against age and landform for the UMNL model predicting

the proportion of branch infected slash pine trees.
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Figure 7.35. Standardized residuals plotted against age and landform for the UMNL model predicting

the proportion of stem infected slash pine trees.
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Figure 7.36. Standardized residuals plotted against age and landform for the UMNL model predicting

the proportion of dead slash pine trees.
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Figure 7.37. Standardized residuals plotted against average height and landform for the UMNL model

predicting the proportion of healthy slash pine trees.
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Figure 7.38. Standardized residuals plotted against average height and landform for the UMNL model

predicting the proportion of branch infected slash pine trees.
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Figure 7.39. Standardized residuals plotted against average height and landform for the UMNL model
predicting the proportion of stem infected slash pine trees.
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Figure 7.40. Standardized residuals plotted against average height and landform for the UMNL model
predicting the proportion of dead slash pine trees.
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Chapter VIII

Summary - Conclusions

The first objective of this study was to introduce the philosophy of qualitative response models and
to present certain dichotomous and polychotomous formulations that appear to be suitable for
forestry applications. A substantial part of this study is devoted to the discussion of dichotomous
models not only because these models are important on their own, but also because this discussion
provides a necessary introduction to the subsequent discussion of multi-response models. In pre-
senting this theory, special attention was paid to the following problems: i) how to motivate a
qualitative response model which is theoretically correct and statistically manageable, ii) how to
estimate and draw inferences about the parameters of interest, iii) what criteria to use when
choosing among competing models and iv) how to identify observations which may have the po-
tential for seriously distorting the fit of a model (outliers, high leverage and high influence obser-

vations).

The second objective was to illustrate the use of qualitative response models by considering two,
forestry related, case studies. First, to assess the merchantability of loblolly pine trees growing on
plantations in southern United States and second, to model the incidence and spread of fusiform

rust on loblolly and slash pine plantations in east Texas. In both studies a variety of model forms
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have been examined and important factors affecting the responses have been identified. The specific
conclusions are discussed in detail at the end of chapters six and seven. From the overall
discussion-application of qualitative response models conducted in this study the following con-

clusions can been drawn:

1) The theory of qualitative response models can be successfully applied in a variety of forestry
problems mainly because of the fact that many important variable in forestry are discrete or re-
corded in a discrete manner. Of particular importance is that these models can can be easily in-
corporated into existing forest growth and yield prediction systems to enhance their performance.
Also, this theory may prove usefullin the development of new prediction systems. In particular,
we have in mind a diameter distribution growth and yield prediction system based on the type I
extreme value distribution rather than the Weibull distribution which is commonly used. The
theory of multinomial choice models as presented in chapter 1II provides the theoretical justification
for such a system which may be preferable to current systems using the Weibull distribution on

empirical only basis.

2) For dichotomous responses, both logit and probit formulations produce similar results. The
linear probability formulation is not recommended because of serious weaknesses associated with
the specification of this model the most serious of which is that the predicted probabilities or pro-
portions are not restricted to fall within the [0,1] interval especially when data other than those used

to fit the models are used.

3) For polychotomous responses, the use of the unordered multinomial logit (UMNL) model is
recommended even when the analyst has substantial evidence that the response variable is ordered.
If such is the case then, a well specified unordered model will reveal the suspected ordering through
hypothesis testing. The IIA property associated the UMNL model is not a negative factor as long

as the alternatives are distinct enough.
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4) Further research is required on outlier and influence diagnostics in qualitative response models.
Although considerable contributions to this matter have been made by Pregibon (1981) and Cook
and Weisberg (1982), these apply only to binary logit models. No such theory has been developed

yet for polychotomous response models.

5) The need to develop qualitative response models that account for the correlation among clustered
observations is perhaps more immense in forestry than in any other science because the vast ma-
jority of forestry data bases consist of clustered data with large cluster sizes. Of particular impor-
tance is the investigation of the consequences from the violation of the independence assumption
and also the development of efficient computational procedures to estimate the parameters when
large clusters of observations are involved. Finally, future research efforts must be devoted to the

analysis of correlated polychotomous observations with an emphasis on large cluster sizes.
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