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The diverging and converging field components of the source-free focus wave 
modes are studied within the framework of both the Whittaker and Weyl plane 
wave expansions. It is shown that, in the Weyl picture, the evanescent fields asso- 
ciated with the diverging and converging components of the focus wave mode 
solution cancel each other identically. The source-free focus wave modes are, 
hence, composed solely of backward and forward propagating components of the 
Whittaker type. It will also be shown that no evanescent fields are associated with 
the causal excitation of an aperture by an initial focus wave mode field. The di- 
verging field, however, is composed solely of causal components that propagate 
away from the aperture. With a specific choice of parameters, the field generated by 
the aperture is a very good approximation to the source-free solution. Under the 
same conditions, the original focus wave mode solution is composed predominantly 
of causal forward propagating fields. 0 I995 American Znstitute of Physics. 

1. INTRODUCTION 

A full decade has passed since the focus wave modes (FWM) solution to the Maxwell equa- 
tions has been introduced.’ Similar solutions have been derived for the scalar wave equation, as 
well as for other wave equations.2-8 The FWM is a nonsingular smooth Gaussian pulse-like 
solution that is characterized by having an infinite total energy content. This last property renders 
the FWM field to be physically unrealizable. To circumvent such a difficulty, it has been suggested 
that a superposition of the FWM can produce finite-energy pulses of a large bandwidth that can 
exhibit extended ranges of localization. A large number of such localized wave (LW) solutions 
have been reported recently.2-‘3 The ability of such pulses to display desirable localized transmis- 
sion characteristics has been demonstrated, both theoretically and experimentally. It has also been 
shown that such fields can be excited from finite apertures.14 The resulting fields approximate to a 
great extent the theoretically ‘predicted solutions. Experiments15Y’6 verifying the propagation of 
such localized waves utilized independently addressable, finite-sized arrays. 

It is well known that the aforementioned localized wave solutions are composed of forward 
and backward propagating components. Such a behavior is reminiscent of the original source-free 
FWM solution, which has been criticized for being dominated by backward propagating 
components.17*18 It has also been argued that this causes “grave” problems with causality and the 
possibility of launching such LW solutions. Nonetheless, the analysis adopted in the aforemen- 
tioned study on the causality of the FWM has been restricted to a special case.” In the present 
work, it will be demonstrated that under a different condition (not considered by Ref. 18) the 
FWM solution is composed predominantly of forward propagating components. Furthermore, we 
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shall consider two distinct situations, the original source-free FWM solution and the forward 
illumination of an infinite aperture by an initial FWM field. It will be shown that under special 
conditions, the causal field of the FWM aperture is a very good approximation to the source-free 
FWM. In principle, the same ideas apply directly to other LW solutions. Nevertheless, the math- 
ematics is more involved and will not be carried out here. 

It should be pointed out, however, that an aperture excited by an initial FWM field has a finite 
size for all times except at t= --co and +m; i.e., at its initial and final moments of excitation. The 
effective radius of the aperture decreases from an infinite radius at I= --00 to a finite value at t =0, 
and then the aperture expands to reach once more an infinite size at t=+w. The intensity of the 
field illuminating the FWM aperture decreases to zero at the same rate as that of the expansion of 
its area, as the aperture grows toward an infinite size. These two effects balance each other and the 
power of the field illuminating the aperture remains constant and finite for all times. However, the 
excitation of the FWM aperture utilizes infinite energy only because it needs to be illuminated for 
an infinitely long time. On the other hand, the excitation of the FWM aperture does not need 
infinite power, in contradistinction to other excitation modes of infinite apertures, e.g., the Bessel 
beams and the plane wave illuminations. Thus, as far as we are concerned, there are no problems 
per se with the excitation of the FWM field, except for the need of an infinite time to illuminate 
its aperture. Hence, a FWM aperture excited for a very long but a finite period of time is expected 
to produce a field that is a good approximation to the original FWM solution. Such an idea is out 
of the scope of this paper, and is pursued further in another work. 

It has also been pointed out” that the source-free FWM solution does not contain any eva- 
nescent wave components. Most of the aforementioned LW solutions are, however, finite-energy 
superpositions of the original focus wave modes. One should then expect that the finite-energy LW 
solutions, composed as a superposition of the source-free FWM, have no evanescent waves asso- 
ciated with them. The best mathematical framework to approach such issues of causality and 
evanescent fields is to use the angular spectrum superposition.20 In the various sections of this 
work we shall start with the more familiar Fourier composition and then introduce the angular 
variables for which the analysis becomes more transparent. Traditionally, solutions to the three- 
dimensional scalar wave equation can be derived in two distinct fashions. One is due to 
Whittaker, in which he uses a superposition of homogeneous plane waves propagating in oppo- 
site directions. The other has been used by Wey12* to express the fields outside the source region 
as a combination of propagating homogeneous plane waves, together with the associated inhomo- 
geneous evanescent waves. There have been several attempts to further our understanding of the 
relationship between these two distinct representations.‘4122-24 It has been claimed that the portion 
of the field represented as an expansion of the homogeneous backward propagating plane waves is 
equivalent to that expressed as a superposition of the inhomogeneous evanescent modes.14723 The 
physical meaning of such equivalence and its temporal and spatial domains of validity are not 
fully comprehended. It is our aim in this work to further our understanding of the Whittaker and 
Weyl representations by considering both the source-free FWM solution and the FWM illuminated 
aperture. The FWM field provides a rich example for such an investigation because of its unusual 
forward, backward propagating, and evanescent structure. 

In this work, we try to use both approaches to rederive the FWM solution to the scalar wave 
equation. Most of the calculations will be carried in the angular spectrum representation. It will be 
shown that the source-free FWM does not have any evanescent fields associated with it, because 
the diverging and converging inhomogeneous Weyl components cancel out identically. On the 
other hand, the FWM aperture does not exhibit any evanescent fields for completely different 
reasons. Specifically, the cancellation of the evanescent components follows from a condition 
related to the causal forward illumination of the aperture. 

The plan of this work is to study the angular spectrum representation for the source-free FWM 
in both the Whittaker and the Weyl representations. The annulment of its evanescent field is 
expounded upon and the predominance of the forward propagating components under specific 
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conditions is demonstrated. This shows that, contrary to what has been claimed’” for a specific 
choice of parameters, the source-free FWM can be composed primarily of forward propagating 
fields if a different set of parameters is chosen. Furthermore, it is shown that the outgoing forward 
illumination of the EWM aperture produces a diverging causal field (i.e., a field that does not 
contain any acausal components), which resembles to a great extent the source-free FWM solu- 
tion. We, thus, establish the possibility of exciting fields that approximate the original focus wave 
modes, and we can, consequently, claim that there is nothing “grave” about the causality of the 
LW solutions in general. 

II. THE ANGULAR SPECTRUM OF THE SOURCE-FREE FOCUS WAVE MODES 

In this section, we shall deal with the source-free FWM. The diverging, converging, and 
evanescent components of such a solution will be all derived explicitly. For future comparisons 
between the spectral content of such components, we choose to work with the azimuthally sym- 
metric normalized FWM solution to the 3-D scalar wave equation; specifically, 

*dr,t) = 
a1 

47r(al+i(z-ct)) 
e-pp”/(al+i(r-cr))ei~(z+cr) (2.1) 

Such a pulse-like solution has an amplitude equal to 1/(47r) at its center. The source-free 
FWM can be synthesized from a bidirectional representation3 that provides the most suitable basis 
for such a wave solution. A simple transformation links the bidirectional representation to the 
Fourier one. In the Fourier picture, the Fourier superposition leading to the FWM pulse solution3’8 
can be written as 

*$Ar,t)= &z /~d~/~dw/*mdk, g eMa~(k~+(a’c))‘26( (f-) -( 2) -p) 

XXJo(XPk -iQe+iw~S(( w/2c)2- (k,/2)2- (x/2)2). (2.2) 

The above integration may be carried out in two distinct fashions, each leading to a different 
representation. In particular, one can integrate over w first, thus, ending up with a Whittaker type 
of expansion. In contradistinction, an integration over k, first leads to the Weyl superposition over 
homogeneous and inhomogeneous plane waves. Using the former approach, we integrate over w 
first to obtain 

(2.3) 

Here w+ = c xm. The integration over k, can be divided into two components. One is trav- 
eling in the positive z direction, while the other is propagating in the negative z direction. In order 
to separate the forward and backward propagating components, it is more natural to transform the 
above integration to the angular spectrum representation. The angular spectral content is usually 
expressed as a superposition over the spherical angles (Y and p of the propagation vector k.20 The 
Fourier spectrum of the FWM is azimuthally symmetric [cf. Eq. (2.1)], hence, the corresponding 
angular spectrum is independent of p. We introduce the new angular variables, 

X=K sin cw and k,= K cos CY, with W+=KC. 

Such a change of variables transforms the integral in Eq. (2.3) into the following form: 

(2.4) 
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dK K sin a Jo(~p sin a) 

x qK- K cos Ly-2p)e-K~~(~~~ a+lWe-idz ~0s a-cr). (2.5) 

The limits of the integration over a ranges from 0 to V. Notice that cos a takes positive (negative) 
values for O~c~<7rl2 (~/2<a<7i), thus resulting in a superposition over plane waves traveling in 
the positive (negative) z direction. The angular superposition given in Eq. (2.5) can, thus, be split 
into the following forward and backward Whittaker propagating components, 

!PIr,Ar,r)=W+)(r,t)+W-)(r,t). (2.6a) 

The positive and negative traveling components are given explicitly in terms of the integration, 

W(r,t;a,b)= 2 
b 

I I 
da 

a 
omdrc K sin a Jo(~p sin cu) 

X a(~- K cos a-2p)e 
-~o,(cos u+l)/Ze-i~(z cm a-cl) (2.6b) 

where 1Ir(‘)(r,l)=~(r,f;O,rr/2) and ~“-)(r,t)=~(r,t;rr/2,~). The integration over K can be 
carried out to yield 

*(r,t;a,b)= & 
I 

b 

a 
da &)Jo( ~~~c~~~)~-‘2pil.os~-C~)i(l-CoSLI) (2.ya) 

Notice that the integral representations of @+)(r,t) and WC-)(r,t) share the same spectrum, but 
differ only by their limits of integration. The spectral content Jn(cz) is given explicitly as 

pai sin ff 
J@a)= (1 -cos a)2 

&?a,,-zpa, /(l-m a) (2.7b) 

Such a function is graphed in Figs. l(a) and l(b) for different values of pa i. The ranges of u 
contributing to the forward and backward components are specified on the graphs. It will be shown 
in a later section, that to launch the FWM field from an aperture situated at the z =0 plane, only 
the forward components can be causally propagated in the positive z direction. In view of such an 
excitation scheme, the Whittaker forward propagating components are perceived as being causal, 
while the backward traveling fields are considered acausal because they cannot be propagated 
forward in a causal manner. It is clear from Fig. l(a) that the forward spectral components are 
dominant when pa i < 1, and for all practical purposes almost all of the spectrum is found in the 
causal range when pa ,4 1. The opposite is true when ,Ba ,> 1, which is the case considered by 
Heyman.‘* One can see from Fig. l(b) that all the spectral components contribute to the backward 
field when pa ,%l. This supports the conclusions of Ref. 18 under that specific choice of param- 
eters. As for the former case @ui41), which has not been discussed in Ref. 18, the situation is 
completely different. A detailed discussion of the differences between the two cases is deferred to 
the next section. As for now, we need to stress that unlike the Fourier superposition the integration 
over a is of a finite range. We do not have to worry about tails of small amplitudes contributing 
significantly by integrating their values over an infinite domain. For the angular spectrum, the 
forward (causal) and backward (acausal) ranges are equal, subsequently, the portion having larger 
spectral amplitudes contributes more significantly to the total FWM field. 

The forward and backward propagating fields of the Whittaker representation can be cast in 
another form by introducing the new variable X=cot(cu/2), which reduces Eq. (2.7) to 
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FIG. 1. The angular spectral content for the source-free FWM solution when (a) pa , c 1 and (b) pa, > 1 plotted for various 
values of the pa, parameter. 
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Pal b’ 
*(r,t;a’,b’)= G 

I 
., dA XJo(WpX)e -p[a,+i(z-cr)]xZeiP(z+cr) , (2.8a) 

where the forward and backward components are given by 

@+‘(r,r)=~(r,t;l,~) and ?P(-)(r,t)=3’(r,t;O,l). (2.8b) 

Such a representation will be useful when comparing the relative strength of both components in 
the asymptotic analysis of the next section. It also helps in understanding some of the more subtle 
aspects of the Weyl representation and the annulment of the associated evanescent fields. When 
these two integrations are summed up, the integration over the limits from 0 to ~0 can be 
evaluated3 to give the source-free FWM solution given in Eq. (2.1). 

Next, we consider the Weyl representation by integrating Eq. (2.2) over the k, variable first. 
Since k, can have both positive and negative values, the integration may be split into two parts, 
VlZ., 

W Xi- t)=Wd)(r,t)+WC)(r,t), s 7 (2.9a) 

where ‘PCd’( r,t) and W’“‘( r,t) correspond to waves diverging and converging on an aperture 
situated at z =O. In what follows, we shall be only interested in the Weyl expansion associated with 
the positive z half-space. The two components in Eq. (2.9a) can be written explicitly as 

dZ(r,t) = & 

(2.9b) 

In contradistinction to the Whittaker expansion, the square roots in the integrands can become 
imaginary if x>(wlc). Thus, with a proper choice of the sign of the imaginary square root, the 
corresponding portions of the above integrations become superpositions of exponentially decaying 
evanescent components in the positive z half-space. For xC(wlc), the integration yielding 
Wcd’(r,t) in Eq. (2.9) is comprised of plane waves moving in the positive z direction. Such wave 
components can be viewed ai outgoing from an aperture situated at z =O. In a similar fashion, the 
integration leading to @“)( r,t) represents a superposition of incoming plane waves converging on 
the same aperture. To separate the evanescent portions of the fields represented in Eq. (2.9) from 
their propagating components, it is preferable to transform the integrals into the corresponding 
angular spectral superpositions.20 We start by the diverging component, where the transformation 

X=K sin ff and o/c= K, with Jmz= K cos a, (2.10) 

reduces ZVcd’(r,t) to the following form: 

mdK K sin ~2’ Jo(~p sin c~)e-~~I(‘+~~~~)‘~ 

x atK- K cos a-2p)e-idz cm a-cr). (2.11) 

The contour D+, shown in Fig. 2, is chosen in the complex CY plane to ensure the finiteness of the 
integration in the z>O half-space. From the transformation relationships (2.10), it is clear that (Y is 
real as long as ,+K. Hence, the first portion of Df has cr=aR and al=O, where OCCY~<~/~. The 
corresponding values of cos CY range from 1 to 0. The integration in Eq. (2.11) is, thus, a super- 
position over plane waves propagating away from the aperture into the positive z half-space. In 
general, the angle a is complex with sin( a,+ ia]) =X/K. The second portion of the contour D+ 
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FIG. 2. The D+ contour of integration in the complex a plane of the diverging Weyl component given in Eq. (2.11). 

corresponds to x> K has aR=nf2, for which sin a=sin((n/2)+ial)=cosh cr, and 
cos LT= -i sinh ai. The imaginary part crI has been chosen to take only positive values between 0 
and ~a, such that sinh fff stays positive. Consequently, the exponential dependence in the integrand 
exp( - i Kz cos cr) =exp( - Kz sinh aI) decays to 0 as z ---*co. These exponential functions do not 
represent propagating wave components, but inhomogeneous evanescent modes. The integration 
in Eq. (2.11) can now be split into two parts, one corresponding to a superposition of outgoing 
propagating waves and the other is an expansion in terms of the associated evanescent modes. 
Specifically, we have 

9?(d)(r,t)=PI/(P)(r,t)+*$d)(r t) 9 I (2.12a) 

where, after carrying out the integration over K, 

I 

d2 sin aR 
0 daR (1 -cos CQ) 

z Jo( ~~~c~~~~))e-~~,(,+~~a aR),(l-cos aR) 

x e-i2pz cm OR/( 1 --cm a~)~+iZpctl(l-cos a~) (2.12b) 

and 

iPal m 
Tid’(r,t) = 2a 

I 

cash crl 

0 da’ (lfi sinh a1)2Jo 
2pp cash czr 

(l+i sinh a,) e 
-&,(1-i sinb a[)/(l+i sinh a,) 

x e - 2pz sinh a, I( 1 + i sinh o,)~ + i2pct/( 1 + i sinb a,) (2.12c) 

The first component given in Eq. (2.12b) is identical to #+)(r,t) of the Whittaker representation 
[cf. Eq. (2.7)]. Th e second component given in Eq. (2.12~) is the evanesceht fields associated with 
the diverging components. As for the Weyl converging component, we evaluate the integration in 
Eq. (2.9) leading to @‘)(r,t). The change of variables, 

X= K sin (Y and o/c= K, with I/-~= -K cos a, (2.13) 

transforms @“(r, t) in Eq. (2.9) to the following form: 
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aI i I I I ?$!: 
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FIG. 3. The C+ contour of integration in the complex a plane of the converging Weyl component given in Eq. (2.14). 

mdK K sin Ly Jo( KP sin cr)e-Knl(‘+cos aV2 

(2.14) 

Here, the contour Cf shown in Fig. 3 corresponds to a superposition of incoming or converging 
waves from the z>O half-space on an aperture situated at z=O. It should be noted that the 
integrand in Eq. (2.14) resembles that in Eq. (2.1 l), except for being negative and having the 
contour C’ instead of D+. The choice of the former contour is dictated by the need that cos (Y be 
negative when K>X. So, as x changes from 0 to K, the real part of the angle LY goes between rr and 
n-/2. The value of sin LY stays positive, while cos cr becomes negative, with values ranging from 
- 1 to 0. The integration in Eq. (2.14) is, thus, a superposition over plane waves propagating 
toward the aperture from the positive z half-space. When X>K, the angle a becomes complex with 
sin( CUR+ iaI) =X/K. For the second portion of the contour C’, one has aR=rr/2, hence, 
sin a=sin((?r/2)+ia,)=cosh aI and cos (Y= -i sinh ai. The imaginary part CX{ has been chosen to 
take only positive values between 0 and m, such that sinh aI stays positive. As in the case of the 
Weyl diverging components, that specific choice of the contour ensures that the exponential 
dependence in the integrand exp(-ilcz cos a)=exp(-Kz sinh CZ,) decays to 0 as z--tm. The nega- 
tive sign preceding the integration in Eq. (2.14) can be incorporated in reversing the signs of the 
contour integration. Using the results of the earlier calculations, we can split the Weyl converging 
field solution into two terms, specifically, 

W"'(r,t)=*\Ir',"'(r,r)+T~'(r t) 9 t (2.15) 

where the first term corresponds to the integration over cr=aR, taking values between g and n/2. 
This yields 

4 
T~)(r,t)=?P(-)(r,t). (2.16) 

The integration over the rest of the contour can be calculated, as in the case of the Weyl diverging 
component, to give 

*r'(r,t)= -*r)(r I) , . (2.17) 
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FIG. 4. The D+ contour, together with the reversed C+ contour, in the complex a plane. 

As such, the Weyl diverging and converging components add up resulting in the source-free 
solution, 

(2.18) 

Thus, the source-free FWM modes do not have any evanescent field components associated 
with them. The total evanescent field is given specifically by the summation 

Tz(r,t)=Tid)(r t)+Pf)(r,t)=O. 9 (2.19) 

This means that the total evanescent field associated with the source-free FWM is equal to zero. 
This point can be better understood if we refer back to the contours D+ and C+ in the complex (Y 
plane. Such contours have been used to evaluate Tcd’(r,t) and @“(r,t) given in Eqs. (2.11) and 
(2.14). The integrands in the aforementioned expressions differ only by a negative sign. The 
difference in the sign can be accommodated into the reversal of the sense of the contour integra- 
tion over C”. With the two contours plotted together, it can be seen from Fig. 4 that the contour 
integrations contributing to the evanescent components cancel each other. The integrations over 
a,, thus, subtract from each other, and we are left with the integrations over LYE ranging from 
0-n. This leads to the Whittaker superposition of forward and backward propagating compo- 
nents. Hence, the diverging field of the Weyl expansion cannot be interpreted as the field generated 
by an aperture situated at z=O and propagating into the positive z half-space. This is the case, 
because the integration over the S function in the spectrum [cf. Eq. (2.9)] transforms the evanes- 
cent fields into propagating ones, thus depriving the Weyl representation of its physical meaning 
and mathematical form. Similar results has been obtained in Ref. 24 in connection to spherical 
waves and their representations in the Whittaker and the Weyl expansions. To generate the FWM 
in a completely causal sense, we have to consider an initial FWM excitation of an aperture, as will 
be done in Sec. IV. The resulting causal field, propagating in the z>O half-space, will be a very 
good approximation of the source-free FWM, under the condition that j3a 1-=S 1. Nevertheless, we 
need to study first the causality of the FWM solution and to derive an estimate for the relative 
strength of its forward versus its backward traveling components for the various limits of the 
parameter pa, . 

III. THE CAUSALITY OF THE FOCUS WAVE MODES 

The causality of the FWM has been dealt with in earlier works,‘7*‘8 where it has been shown 
that under the specific condition of pa, P 1, the acausal components are dominant. Such a condi- 
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tioned conclusion could be reached by referring directly to Fig. l(b), where it is shown that almost 
all the spectral content of the FWM lies in the acausal portion of the spectrum. It has been 
concluded,18 however, that the predominance of the acausal components (under the /?a 1% 1 con- 
dition) over the causal ones poses serious problems for the realization of any physical FWM fields. 
In the aforementioned work, the other limiting case of pa,-%1 has not been considered. Further- 
more, since a large number of the LW solutions are superpositions of the source-free FWM, they 
were deemedI unlaunchable, because of their dilemma with causality. We believe, however, that 
such a conclusion has been reached for a specific case, and it is incorrect to pass the same 
judgement for all other LW solutions. In this section, we show that the source-free FWM itself is 
predominantly causal when /Ia ,d 1. Other LW solutions become essentially causal under a similar 
choice of parameters. In the following section we use the same results to show that a completely 
causal FWM excitation of an aperture will produce a field that approximates to a great extent the 
source-free FWM. This alludes to fact that the behavior of the experimentally generated LW15.16 
agrees very well with the theoretical predictions. 

The analysis of the angular spectral content reflected in Figs. l(a) and l(b), shows that the 
causal (acausal) components are dominant when /3a t+ 1 (pa ,B 1). The same conclusion has been 
reached3*14 earlier by comparing the Fourier spectrum content of the forward and the backward 
traveling components of the source-free FWM. However, a rigorous quantitative estimate for the 
relative strength of such components has not been derived. In this section, we derive an asymptotic 
estimate of the relative strength of the forward versus the backward components of the source-free 
FWM, under the two extreme conditions of ,Ba t% 1 and pa t-=G 1. The central portion of the FWM 
pulse for which z-ct<al, and p < &@ is the part of the field that has the highest intensity 
values. Hence, we shall concentrate our attention on the z=ct central portion of the pulse. 

Starting with the pa ,P 1 limit, which has been considered by Heyman and Felsen, we can 
rewrite the forward propagating component in Eq. (2.8) as 

w+)(p,Z=ct)= - dX XJo(2~pX)e-~~‘A2ei2~c’. (3.1) 

For /3a ,*l, the leading-order term in an asymptotic expansion of the Laplace-type integration 
given in Eq. (3.1) can be evaluated using the procedure, resulting in Eq. (6.4.19a) in Ref. 25. For 
the integration (3.1), the Laplace variable m(X)= -X2 is maximum at the end point X= 1. Hence, 
it follows that25 

e-Pal 
*“+‘(p,z=ct)- - 4n Ju( 2pp)Pc’. 

To determine the relative contribution of the Yr(-) component, we start with 

PaI 1 W)(p,z=ct)= - 
s 27f 0 

dA XJo(2ppX)e-palX2ei*P~r. 

The new variable s=h* transforms Eq. (3.3) into 

PaI qqp z=Ct)’ - ewc~ 
I 

I 
4Tr 

ds e-SPalJ0(2pp&). 
0 

(3.2) 

(3.3) 

(3.4) 

Most of the contribution to this Laplace-type integral comes from around s =O. Thus, it is possible 
to asymptotically expand the upper limit of the integration to 00, and using the series expansion of 
the Bessel function, we get 
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Integrating over s reduces Eq. (3.5) to 

m (-1)k pp2 k W)(p,z=ct)- 2 .i2pc’k~o T(k+l) y--- . 
( 1 1 

(3.5) 

(3.6) 

The series definition of the exponential function gives the following expression for the backward 
field component of the source-free FWM, namely, 

From Eqs. (3.2) and (3.7), we obtain the relative magnitude of the positive to the negative going 
components, viz., 

W’+‘(p,z=ct) e-h 
W)(p,z=ct) -,-p&a, Jo(2pp). 

Around p=O, we have Jo(2pp)-0(l) and e-pp2’ar - o(l), hence 

@+‘(p,z = Cl) 
W)(p,z=ct) --e 

-Bal 

(3.8) 

(3.9) 

This shows that, under the condition pa ,%l, the causal outgoing component is exponentially 
small. However, such a component can become dominant for all values of 
Jo(2~p>exp(-&ri)>exp(-~~2/u1). This occurs far away from the center of the pulse when p 
> Q i % m. The same conclusions have been reached in Ref. 18, in which the other possi- 
bility of pal41 has not been considered. Next, we demonstrate that in the latter case, the causal 
outgoing field is dominant. 

In the other limit, with flu i+ 1, one can follow a similar procedure to determine the relative 
magnitude of the positive and negative going components. Starting with Eq. (3. l), we rewrite it as 
follows: 

Pal m e+)(p,Z=Ct)= - I 29.r 0 dX XJo(2pph)e-~Ql~2,i2Pcr-YI(-)(P,Z=Cf) 

1 E-e 
4lr 

--pP2/a,e’2gcf-~(-)(P,Z=Ct), (3.10) 

where *\I”-‘(p,z = ct) is given in Eq. (3.3). An estimate for the acausal negative going component 
of the FWM can be calculated by imposing the condition pat< 1, for which exp( -pa ih2)- 1, in 
the range O<X=Gl. Specifically, the integration in Eq. (3.3) may be approximated by 

Pal * WC-)(p,z=ct)= - I ?r 0 dX hJ0(2~pX)e’2pc’. 

Integrating over X and combining Eqs. (3.10) and (3.11), we obtain 

(3.11) 
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w’+‘(p z=ct) 
w’-y p:z= ct) - I 

p ,-Pf% 
G- JICWP~ 

-1 . I (3.12) 

For the central portion of the FWM pulse, we have p G 2 m. Inside such a focused waist, the 
focused FWM field has its highest intensity and the Bessel function Ji( 2/3p) G Ji(4 &). The 
condition ,&zi~l, thus, yields the small argument asymptotic estimate J,(2fip)--&~. Conse- 
quently, Eq. (3.12) may be rewritten as 

*(+)(p z=ct) 
W’(p’z=ct) - i 

1 
pale 

-&a,- 1 . 
7 1 (3.13) 

If /ia, is chosen such that pa, Ge -4< 1, then the second term on the right-hand side may be 
dropped for p G 2 a. Thus, the forward propagating component is algebraically larger than the 
backward traveling one. This shows that the forward going component is predominant within the 
central portion of the FWM field. Such a behavior is crucial in determining the shape of the causal 
FWM pulse generated by an aperture (cf. Sec. IV). In the next section, it will be demonstrated that 
the radiated FWM pulse closely resembles the source-free field; especially in the high-intensity 
portion surrounding its centroid. Subsequently, the form of the two pulses differs only in the tails 
of their fields, characterized by having much smaller amplitudes. Furthermore, for the narrower 
waist p G 2 m, the ratio Eq. (3.13) acquires the following form: 

*‘+Vp,z = ct) 1 

*%,z= ct) 
-__ 

pa, . (3.14) 

Thus, it is established that, under the condition @,41, the causal positive going component is 
dominant around the centroid of the pulse. The relative magnitude of the acausal component is 
algebraically smaller than the causal one. In contradistinction, Eq. (3.9), which is valid for pai P 1, 
indicates that the causal component is exponentially small relative to the acausal one. Such a 
difference in behavior between the two extreme cases is a consequence of the sharp rising edges 
of the spectra shown in Figs. l(a) and l(b), in contrast with their extended tails that vanish at 
LX= T. For example, when /3a i = 10, there are almost no spectral components in the causal domain, 
while for pa, =O. 1 there is still a significant portion of the spectrum in the acausal range. How- 
ever, for &r,=O.Ol the acausal components are reduced significantly. One should also note that 
the latter value of /?a, barely satisfies the stricter condition discussed in the paragraph following 
Eq. (3.13). Obviously, the condition /3ai eee4 enforces the predominance of the forward going 
causal components of the FWM field. Having established that for pa ie 1 the acausal components 
around the center of the FWM pulse are insignificant, we proceed further to demonstrate the 
possibility of causally radiating good approximations to such a solution from a flat aperture. 

IV. THE CAUSAL EXCITATION OF THE FWM APERTURE 

In a previous work by the authors,i4 it has been shown that a Huygens construction of a Bessel 
beam” generated from an infinite aperture cancels out all acausal incoming components, and the 
Bessel beam is propagated invariantly away from the aperture. The FWM can be considered as a 
superposition of Bessel beams.3 Thus, the same approach could be applied to the FWM to show 
that no acausal incoming fields are generated. In fact, it will be demonstrated that a good approxi- 
mation to the source-free FWM can be generated from an aperture that shrinks from an infinite 
size to an effective minimum radius of 2 &@, which, henceforth, expands once more to infinity. 
Such a time varying aperture requires an infinite time of illumination. This is the main reason for 
the need of an infinite amount of energy to generate such a field. Nevertheless, the generated 
FWM field does not need infinite power to illuminate its aperture. 
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We start by defining the initial FWM field on an aperture situated at the z=O. The field is the 
real part of the azimuthally symmetric complex FWM pulse; specifically, 

*J&t) = a1 
4rr(ai-ict) 

,-pp2/(al-ict),iPct 

Because of the first exponential term on the right-hand side, the field exists mainly inside the 
radius, 

I4 
R(t)=2 Jpa,, for @-al. 

It is clear that such a time varying radius becomes infinite when ct = 2~. On the other hand, the 
radius R(r) - 2 m when t approaches the value of zero. Furthermore, it can be deduced from 
Eq. (4.1) that the field amplitude varies as llct as ct-+@~. Subsequently, the intensity of the 
illuminating field is reduced as (l/~t)~ and becomes equal to zero at f = 2~. This means that as 
cl-+a, the power of the field illuminating the aperture (=the intensityxthe area of the aperture) 
remains constant and finite. This behavior should be compared to the illumination of infinite 
apertures by plane waves or Bessel beams. In these two cases, we need infinite power to illuminate 
the corresponding apertures. From Eq. (4.2), it can be seen that the parameter pai controls the 
speed of the shrinking and expanding of the aperture, where 

%p=g9 for ct+ai. (4.3) 

For the case of /3a i < 1, the FWM aperture expands effectively at a speed u ,>c. This is achieved 
by composing the aperture from separately excitable elements. This has been the case for the 
arrays used in experiments performed to establish the launchability of the LW solutions.‘5”6 

The Fourier spectrum of the illumination of the FWM aperture is calculated by finding the 
Fourier transform of Eq. (4.1), viz., 

(4.4) 

The integrations over t and p, when carried out, yield 

*“,(X,W)= -$ 6(w-[(X2/4P)+P]c)e-(X2’4P)“1. 

Notice that the spectrum given in Eq. (4.5) differs from the corresponding spectrum of the diverg- 
ing and converging Weyl spectra used in Eqs. (2.9). The roots of the Sfunctions in both cases are 
the same. Nevertheless, each spectrum corresponds to a distinct physical situation. One is associ- 
ated with a source-free pulse and the other with an aperture generated field. 

To define the normal derivative of the field illuminating the aperture, we can use the source- 
free Whittaker representation given in Eq. (2.6). The differentiation of the field with respect to z is 
evaluated, and then we set z =O. According to the analysis presented in Appendix B of Ref. 14, the 
negative goin 
component 1I’ $ 

(acausal) component T (-) is filtered out, and only the positive going (causal) 
+) is propagated in the positive z direction. If we use the full wave representation 

(2.6) of the FWM to define the initial field and its normal derivative, it is straightforward to show 
that the generated field 1Ir( r,t) is free from any evanescent modes. Such a conclusion follows from 
the fact that the initial field illuminating the aperture does not have any evanescent fields associ- 
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ated with it [cf. Sec. II], hence the radiated field W( r, t) is also free from such field components. 
The same conclusion might not be obvious if the normal derivative of the field illuminating the 
aperture is defined in a slightly different manner. We choose to define the initial field on the 
aperture [cf. Eq. (4.1)] as a superposition of Bessel beams at z=O; specifically, 

@ap(x,m)e-i~zeiw2 . (4.6) 
z=o 

The normal derivative on the aperture is now defined as the differentiation of the above expression 
with respect to z before setting z=O. This representation differs from (2.6) by restricting 
dw to positive values only. Such a condition ensures the forward illumination of the 
aperture, i.e., all the spectral components are propagated away from the aperture in a causal 
manner. In contradistinction, if the representation (2.6) is used, the PC-) Whittaker component is 
never launched out of the aperture into the positive z half-space. Under the condition, pa 1G 1, the 
radiated field is approximately the same in both excitation schemes, because the magnitude of the 
causally generated field components equivalent to the Whittaker WC-) field is negligible in com- 
parison to Yr(+). This fact will be made clear from the details of our analysis. Notice, also, that w 
is restricted to positive values if J? is positive. This follows from the roots of the S function in the 
spectrum given in Q. (4.5). 

To calculate the outgoing field propagating into the z>O half-space, Huygens construction is 
applied to the initial excitation of the aperture. Accordingly, the field at a point R and time I inside 
a wave front surface having a zero field outside such a surface is given by the integration over the 
area of the infinite aperture, 

'Q,btz,d=; j-02wd$rj-omdd ; ( -d,lW(p',z'=O,t')+ $ W(p',z'=O,t') 

+ 2 d,r9(r(p’,z’=0,t’) . 
t’=t-R/c 

(4.7) 

The primed coordinates refer to source points on the aperture, while the unprimed ones refer to the 
observation points in the z>O half-space. Substituting for the spectral expansion given in Eq. 
(4.6), we get 

x( i$&Gpd,( Y)]. 
(4.8) 

Here R = 4~‘~ + p2- 2p’p cos 4’ +g. In Appendix A, we provide the details of the derivation of 
a more tractable form of the radiated field [cf. Eq. (A5)]. Since the square root dm is 
always positive, it forces the bracketed term in Eq. (4.8) to pick up only outgoing waves, and to 
cancel out any waves converging on the aperture. Such a condition is crucial for the evaluation of 
the integration given in Eq. (A5); specifically, one should note that Jw = (x2/4j3) - p 
for x>/3, while dm = - (x2/4p) + p for X-C/~. The integration over the w variable in 
Eq. (A5) leads to 
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I 
mdh h~0(2pph)e-P[a~+“(Z-c’)1X2,iP(z+ctt 
1 

Pal * 
+2n I 

o dh XJo(2pph)e-P[a,-‘(Z+C’)1A2e-‘P(Z-c’). 

Since the spectral content of the two parts of the solution is the same as the source-free FWM, 
then one should deduce that for pa 1e 1, the first term is dominant. In such a limit, Eq. (4.9) can 
be rewritten as 

(4.10) 

For pa ,e 1, the second term on the right-hand side is a small term of order O(/?a l/a) relative to 
the first, and is given explicitly by 

dX XJo(2ppX)e-@lX2 sin[(X2- l)&]e+“(X2f1)@z. (4.11) 

Thus, the causal field excited from an aperture situated at z =0 resembles [within an error of order 
@al/w)] the field of the source-free FWM. 

Notice that the superposition given in Eq. (4.9) does not contain any evanescent field com- 
ponents, and is constituted solely from propagating ones. As discussed earlier, the use of the full 
wave representation (2.6) to define the initial field and its normal derivative leads to an aperture 
radiated field ?(r,t) free from any evanescent modes. Such a conclusion follows from the fact 
that the aperture illumination field does not have any evanescent fields associated with it [cf. Sec. 
II], hence the radiated field Wr,t) is also free from such field components. The same conclusion 
might not be obvious if the normal derivative of the field illuminating the aperture is defined 
alternatively by IQ. (4.6). In Appendix B we give a detailed proof of the annulment of the 
evanescent fields components for the excitation field given in Eq. (4.6). Even though the result of 
Appendix B is same as in the case of the source-free FWM, nevertheless, the underlying physics 
is completely different. In the case of the source-free solution, the evanescent fields associated 
with the Weyl converging components cancel identically those associated with the Weyl diverging 
components. For the FWM aperture it can be shown [cf. Eqs. (B6-B8)] that the annulment of the 
evanescent fields is due to the proper choice of the poles of k, , thus ensuring the causality of the 
generated fields. Nevertheless, the nonexistence of the evanescent fields can be perceived as a 
direct result of the infinite size of the aperture. The infinite time of excitation produces the S 
function in the spectrum (4.5). Such a S function enforces the condition (o/c)>x, while the other 
situation (wlc)<x becomes superfluous and leads to zero evanescent fields. Thus, we expect that 
a FWM aperture expanding for a finite period of time, - T< t < T, should generate evanescent 
fields. The finiteness of the period of excitation removes the S function from the spectrum. If 
s(w-[(?/4P)+Plc) in Eq. (4.5) is replaced by a regular function, then k does not become 
complex, and consequently the poles of k, in Eq. (B5) take only imaginary values. The contour 
integration over D& or Do: picks up one of the two poles of k, given in Eq. (4.23). The evanescent 
fields are, thus, real and are not transformed back into propagating components by the action of the 
S function. 

To qualify our claims, we multiply the initial excitation ‘Pi(p,t) given in Eq. (4.1) by the 
Gaussian time window exp(-t2/4T2), hence limiting the time of expansion of the aperture. In this 
case, the spectrum of the field illuminating the aperture becomes 

c&&~,w)= $ i( co--[ (6) +,L?+;T)~-‘~~‘~~~“. (4.12) 
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where 

i( --[ (3 ++;T) = 5 e-T2~O-[(X2/4p)+83~~2. (4.13) 

In the limit T+m, the expression on the right-hand side of Eq. (4.13) reduces to the Dirac 6 
function of Eq. (4.5). For finite T, the integrand in Eq. (B 1) contains the 2 function instead of the 
Dirac S function. The evanescent field associated with the finite-time FWM aperture is given 
explicitly as 

mda, ~~ sinh (Y[ cash cyle-(K2’4p)al cosh2 *fJo(~p cash a,) 

~2 e-T2(.-(K214/3Nosh2 a,-/?)‘,ilrct,-tc sinh a,~. (4.14) 

There is no way for such integration to cancel out in the same delicate manner that leads to Eq. 
(B8). Furthermore, the exp(- K sinh a,z) term represents real evanescent modes. Thus, a linite- 
time expanding FWM aperture has evanescent field components associated with it. 

V. CONCLUSIONS 

In this work, we have studied the angular spectral content of the FWM solution to the scalar 
wave equation. Such an approach has proven to be a suitable vehicle to address issues, like the 
causality of such solutions, the possibility of generating them from an aperture, and the nature of 
the evanescent fields associated with them. Two distinct cases have been investigated in detail, the 
source-free FWM solution and an aperture excitation by an initial FWM field. Even though the 
two situations are quite different, it has been demonstrated that for an appropriate choice of 
parameters (viz. pa t 4 1) there is a great resemblance between the two fields. 

The source-free FWM solution has been studied using both the Whittaker and the Weyl 
representations. The former uses a superposition of outgoing and incoming plane waves, while the 
latter is composed of plane waves diverging and converging from an aperture, together with the 
associated evanescent components. It has been demonstrated that the diverging and converging 
Weyl components add up in such a way that the evanescent modes cancel out identically. Thus, we 
are left with the propagating components that are equivalent to the Whittaker outgoing and in- 
coming fields. Consequently, there are no evanescent fields associated with the source-free FWM 
solution, the same conclusion has been reached by other authors.‘7”9 On the other hand, any 
finite-energy superposition over the source-free FWM is free of any evanescent fields. Such a 
superposition sums up the evanescent components associated with the Weyl diverging and con- 
verging fields; those cancel out identically, as shown in Sec. II. 

An asymptotic estimation of the relative strength of the Whittaker forward and backward 
traveling components has been carried out. It has been established that in the limit pa ,4 1, the 
forward propagating (causal) components are dominant over the backward traveling (acausal) 
ones. In fact, the acausal field around the center of the pulse, where the field is strongest, is 
algebraically small, in comparison to the causal one. Such a limit for ,Oa i has not been considered 
in an earlier study of the causality of the source-free FWM solution.‘8 In confirmation to the 
results of Heyman,‘* we have shown that the Whittaker forward propagating components are 
exponentially small for the other extreme; namely, for the choice of parameters giving ,&I, % 1. 
Such conclusions have been made more transparent by considering the angular spectral content as 
a function of the angle a. Unlike the Fourier synthesis, the ranges of (Y contributing to the forward 
and backward traveling fields are finite and equal. Consequently, the choice of parameters pro- 
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ducing fields having stronger spectral components in the forward range results in source-free 
solutions that are primarily moving in the positive z direction. As such, it has been shown in Fig. 
l(a) that the source-free FWM solution has almost all its spectral components in the forward 
(causal) range, when j3a ,<O.Ol. 

In general, using the procedure presented in this paper, we can always identify the Weyl 
diverging and evanescent field components of any finite-energy localized wave solution. Such field 
components are the ones that could be realized by physical apertures. Nevertheless, the FWM is an 
exception because of its highly singular spectrum containing a Dirac S function. Such a function 
transforms the diverging Weyl inhomogeneous evanescent fields into propagating ones. Thus, 
using the Weyl diverging components alone to represent the field generated from a physical 
aperture is not possible. 

As an alternative, we have considered the case of an aperture illuminated by an initial FWM 
field. Such an aperture has a size that varies with time, where its radius shrinks from infinity at 
t= ---co to 2 &-@ at f =O, and then expands once more to an infinite size as ?-+a. Such an 
aperture does not need infinite power to illuminate it, instead it needs infinite energy only because 
it is excited for an infinitely long time. Such an infinite time of illumination is the reason for 
having a Dirac S function in the spectrum. The causal field generated by such an aperture has been 
calculated using Huygens construction. It has been shown that such a field does not contain any 
acausal components. Furthermore, we have demonstrated that the FWM aperture field is a very 
good approximation of the source-free FWM solution when pa i+ 1. Thus, one can conclude that 
as far as causality is concerned, there are no “grave” problems with the generation of the FWM 
field, or of a very good approximation of it. 

The evanescent fields associated with the FWM aperture has been found to be equal to zero. 
This follows from the condition of the forward initial illumination of the aperture. It can also be 
considered as a consequence of the infinite size of the FWM aperture. If the period of expansion 
is limited to the finite range - T< t< T, then the Dirac S function in the spectrum becomes a 
regular function, the evanescent field components become real, and there is no way for them to 
cancel out identically. The finite-time (or finite-energy) FWM aperture is a physically realizable 
source, which is very efficient in generating very narrow beams from much larger extended 
apertures. A detailed study of such a system is deferred for future work. However, the idea of 
using a finite-time dynamic Gaussian aperture to generate fields that approximate the source-free 
FWM can be considered as a physically realizable scheme to launch LW pulses. Such an approach 
should be compared to other suggested methods to launch approximations to the FWM field, like 
generating acoustic pulses from sources moving close to the speed of sound.27 In another attempt, 
it has been suggested that an approximate FWM pulse can be generated using infinite line 
sources,28 such a scheme has been based on a Green’s function approach. In contradistinction, the 
method described in this paper depends on the specification of the initial conditions of the field, 
illuminating a dynamic Gaussian aperture. 
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APPENDIX A: THE CAUSAL GENERATION OF THE FWM PULSE 

In this appendix, we demonstrate, from first principles, that the Huygens construction (4.7) 
leads to the generation of a fully causal FWM pulse. We start with the identity 

e -iwRlc 
-=- 

R 

e - ik,z 

dk, iJo kf-[(dc)2-X2]’ (Al) 
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Complex 
lg- Plane 

- 

FIG. 5. The contour of integration r in the complex k, plane used to evaluate the integration in E!q. (Al). 

to evaluate the bracketed term in Eq. (4.8). Here p* = ~/p”+p~-2p’p cos c$‘, and we use the 
contour of integration in the complex k, plane shown in Fig. 5. For (&)>A, the contour of 
integration is closed in the lower half-plane to ensure the integrability of Eq. (Al) for z>O. For 
(o/c&h, the analysis becomes more complicated, because the Sfunction in the spectrum given in 
Eq. (4.5) forces o to become complex. Such a situation will be dealt with in Appendix B. Upon 
carrying out the contour integration over the k, variable and evaluating the partial derivative with 
respect to z, we get 

From the a priori knowledge of the appearance of 4X-x) [cf. Eq. (A4) below], the bracketed 
term in Eq. (4.8) becomes 

[ iJ~~-Jz($E))=2/~d~ XJo(Xp*)e-‘Wz. (A3) 

If dw is allowed to take negative values, the bracketed quantity on the left-hand side is 
equal to zero [cf. Appendix B in Ref. 141. Thus, any acausal components converging on the 
aperture are filtered out. For the specific choice of Eq. (4.6), all the spectral components are 
launched out of the aperture. This is a direct consequence of the forward illumination of the FWM 
aperture; viz., restricting dw in Eq. (4.8) to positive values only. Hence, one expects that 
in case w becomes complex, only poles of k, having positive real and negative imaginary parts 
contribute to the integration (4.8). This is an issue that will be addressed in Appendix B, where we 
consider the case of (o/c)<x usually associated with the evanescent fields. 

Following the same procedure as in Ref. 14, we can use the addition theorem of the Bessel 
function,26 together with Eq. (A3), to rewrite Eq. (4.8) as follows: 

I 

co 

X dX XJo(Xp)Jo(Xpr)e-iJ. 
0 

644) 
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FIG. 6. The D& and the D& contours of integration in the complex a plane used to evaluate the integration in Fq. (B4). 

The integration over p’ can be evaluated using the orthogonality of the Bessel function, yielding 
a ~3(X--x) term. Thus, upon integrating over p’ and X, Eq. (A4) is reduced to 

‘%,(wJ) = & 
I 

Omdx xJo(x~) f;dm a( @-[ ($) +P]c)e-(x”da).,e’.‘e-~~z. 

(A9 

Although Eq. (A5) resembles the Weyl expansion of the source-free FWM given in Eq. (2.9), 
nevertheless, each expression leads to a significantly distinct physical situation. The superposition 
in Eq. (2.9) yields the source-free solution, while the result given in Eq. (A5) is a causal FWM 
field radiated from an aperture situated at z =0 into the z >O half-space. 

APPENDIX B: THE ANNULMENT OF THE EVANESCENT FIELD COMPONENTS 

In order to provide the necessary comparisons with the source-free case, the integrations in 
Eq. (A5) shall be carried out using the angular spectrum superposition. Such an approach enhances 
our understanding of the evanescent fields associated with the FWM aperture. The introduction of 
the a variable, through the transformation given in Eq. (2.10), reduces Eq. (A5) to the following 
form: 

‘&&p,z,t)= & 
cos ff - sin ae-(K2/4P)a sin2 “Jo( KP sin m) 

lcos CYyI 

X 
2P 

K- (l-cos a) 
ei’tcte-iK cm a z 031) 

The contour of integration acquires one of the two forms shown in Fig. 6. Both contours share the 
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same 0: part. The choice between D& and Dz2 depends on the complex roots of the S function 
when (w/c)<x. These are directly related to the complex roots of k, = dw, as in Eq. 
(Al). In this case, the bracketed term in Eq. (4.8) should pick up only the outgoing wave com- 
ponents in a fashion similar to that leading to Eq. (A3). 

The field generated by the aperture given in Eq. (B 1) can be expressed as a summation of two 
components, 

lIr,,tr,r)=W,tr,r)+~otr,r), 

where the aperture radiated field W,( r,r) and the evanescent component W,( r,r) are 

@W 

*A(r,r)=*ap(r,r;D,+) and Wo(r,r)=W,(r,r;D~). Wb) 

Here W,(r,r;Dl) is given by Eq. (Bl), but with D+ replaced by DAf, while Tap(r,r;D,f) has the 
Dl contour instead of D+. Integrating over K in Eq. (B2), the field radiated from the aperture 
becomes 

*‘A(r,r)=*(+)(r,r)+q(-)(P,-z,r). (B3) 

The first term on the right-hand side is the Whittaker field component W’+‘( r,r) given in Eq. (2.7). 
The second term is just the WC-)(r,r) Whittaker component of the source-free FWM, but with z 
replaced by -z. Such a result asserts that all the wave components are traveling away from the 
aperture in a causal sense. Furthermore, it should be noted that the radiated field given in Eq. (B3) 
is exactly equal to qJr,r) derived in Eq. (4.9). 

From the preceding analysis, it follows that q.+( r,r) = q,.,(r,r), hence one expects that 
qo( r, r) , which represents the evanescent field components, is identically equal to zero. We shall 
go, however, through the details of such a proof to highlight the differences with the case of the 
source-free field. For the source-free FWM, it has been shown in Sec. II that the Weyl converging 
and diverging evanescent fields cancel each other identically. In contradistinction, the FWM ap- 
erture generates only fields that are causally diverging from the aperture. In fact, the condition of 
the forward illumination of such an aperture is responsible for the annulment of the evanescent 
fields. For the contour D,f , a=(r/2)+ia,, cos LY= -i sinh a1 and sin Lu=cosh cr, . Substituting in 
Eq. W, 

da, ~~ cash LYE e -(K2/4P)ai cash’ a, ~~~~~ cosh Ly,)eiKct 

xettcsinhalz { 6(~-2pp(sech~ al-i sech (Y~ tanh LY[)) 

+S(~-2p(sech~ al+i sech LY~ tanh a,))}. (B4) 

The choice between the contours D& and Dz2 
=dm=t-‘( /)‘h 

depends on the choice of the sign of k, 
z w c sm cu,, for (w/c)<x. One should be careful because k, becomes com- 

plex as a consequence of (o/c)=K being complex. The above integration has a form typical of a 
superposition over evanescent field components. The positive (negative) sign in the argument of 
the term exp(+~ sinh L~IZ) is chosen when the integration is carried out over the D~2(D~1) con- 
tour. Since the arguments of the S functions have become complex, an analytical continuation into 
the complex K plane is needed. For the specific choice of the sign of the argument of exp(ilcct), 
the roots of the analytical continuation of the S functions should have a positive imaginary part. 
The first S function has the required sign of the imaginary part if a1 is negative; i.e., when the 
integration is carried out over the Di2 contour. In contradistinction, the second 6 function has a 
positive imaginary part when the integration is performed over the D& contour. The same argu- 
ment can become more transparent if we return to the expansion 
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I 
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FIG. 7. The complex poles of k, given in Eq. (B6) for the positive and negative values of a. 

e -iKR 

-=- 
R 

e 
- ik,z 

dk, XJo(Xp*) 
kz+ ~~ sinh2 ar’ OW 

which is the counterpart of Eq. (Al) if a becomes complex. The poles of k, are k,, = in sinh aI 
and kz2 = - iK sinh cu, . One should notice, however, that the two S functions in Eq. (B4) lead to 
complex values of K. If this fact is taken into consideration, we end up with four poles; specifically 

ki:)=2fi tanh aI(tanh a,+i sech (Y[), k$)= -2p tanh crI(tanh aI+ i sech a,), 

$)=-2P tanh “[(tanh al-i sech a[) and k$,)=2/? tanh cuI(tanh al--i sech ~y[). 
@6) 

The first two poles correspond to the roots of the first 6 function in Eq. (B4), while the other two 
correspond to the second one. The positions of such poles in the complex k, plane are shown in 
Fig. 7 for the two cases, when cy~ is positive (the contour D& is used) and cu, is negative (the 
contour Dz2 is used). The poles in the upper half of the k, plane do not contribute to the integra- 
tion over k, in Eq. (B5). Furthermore, the causality condition enforced by the bracketed term in 
Eqs. (4.8) and (A3) leads solely to the contribution of the poles having a positive real part. Thus, 
the first 6 function in Eq. (B4) contributes to the integration only if Dt2 is used. The second S 
function needs aI to be positive to contribute to the integration, i.e., the D& contour has to be 
used. The former picks up the pole ki:), while the latter selects kiz). With such points taken into 
consideration, the integration in Eq. (B4) is carried out over K to give 
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Complex 
T-Plane 

PIG. 8. The r contour of integration in the complex Y plane used in Eq. (B8). 

iPal -m 
*0ro(r,r) = - x 

I 
dmI sech LyI( sech cr,- i tmh ctl)2e-@l(swh a~-i mh a~)2 

0 

XJ0(2/3p(sech al-i tanh cu,))e i2/3ct(sech a,-itanh a,)sech are+2@(sech q-i tab a,)tmb a, 

ipa, OD 
-- 

I 27.r 0 
da1 sech a,( sech a,+ i tanh Lyl)2e-@l(sech Vi tanh a~)2 

xJo(2pp(sech Q,+ i g& al))ei2B4~ch q+i tmh albech ar,-2Bz(sech q+i tanh albh a/. 

037) 

Next, we introduce the new complex variable Y =sech ajt i tanh cu, , where the upper sign is used 
for the first integration, while the lower sign corresponds to the second one. This change of 
variables reduces Eq. (B7) to 

Both integrations are carried out in the complex Y plane, and they share the same contour of 
integration shown in Fig. 8. Consequently, the field W,(r,t) that results from superimposing the 
evanescent components is identically equal to zero. 
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