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Work Space Analysis and Walking Algorithm Development for
A Radially Symmetric Hexapod Robot

Mark H. Showalter

(ABSTRACT)

The Multi-Appendage Robotic System (MARS) built for this research is
a hexapod robotic platform capable of walking and performing manipulation
tasks. Each of the six limbs of MARS incorporates a three-degree of freedom
(DOF), kinematically spherical proximal joint, similar to a shoulder or hip
joint; and a 1-DOF distal joint, similar to an elbow or knee joint. Designing
walking gaits for such multi-limb robots requires a thorough understanding of
the kinematics of the limbs, including their workspace. The specific abilities
of a walking algorithm dictate the usable workspace for the limbs. Generally
speaking, the more general the walking algorithm is, the less constricted the
workspace becomes. However, the entire limb workspace cannot be used
in a continuous, statically stable, alternating tripedal gait for such a robot;
therefore a subset of the limb workspace is defined for walking algorithms.
This thesis develops MARS limb workspaces in the knee up configuration,
and analyzes its limitations for walking on planar surfaces. The workspaces
range from simple 2D geometry to complex 3D volumes.

While MARS is a hexapedal robot, the tasks of defining the workspace
and walking agorthm for all six limbs can be abstracted to a single limb using
the constraint of a tripedal, statically stable gait. Based on understanding
the behavior of an individual limb, a walking algorithm was developed to
allow MARS to walk on level terrain. The algorithm is adaptive in that it
continously updates based on control inputs. Open Tech developed a similar
algorithm, based on a 2D workspace. This simpler algorithm developed re-
sulted in smooth gait generation, with near-instantaneous response to control
input. This accomplishment demonstrated the feasibility of implementing a
more sophisticated algorithm, allowing for inputs of all six DOF: x and y ve-
locity, z velocity or walking height, yaw, pitch and roll. This latter algorithm
uses a 3D workspace developed to afford near-maximum step length. The
workspace analysis and walking algorithm development in this thesis can be
applied to the further advancement of walking gait generation algorithms.
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Chapter 1

Introduction

This thesis presents the design, construction, workspace analysis, and walk-
ing algorithm development for a mobile robot, MARS (Multi-Appendage
Robotic System) shown in Figure 1.1. MARS is a hexapod mobile robotic
research platform patterned after the LEMUR IIb (Legged Excursion Me-
chanical Utility Rover) [1–4]. The LEMUR IIb, shown in Figure 1.2, is
the latest in a series of hexapedal robots developed at JPL for autonomous
inspection and maintenance tasks on the exterior of space structures and
vehicles in near-zero gravity. The robot performs maintenance tasks by ex-
changing, via a quick connect, a foot for a tool. After positioning with the
remaining limbs, the robot would then perform necessary repairs. These
scenarios evoke many research possibilities including: wrench space analysis,
robot and work object coordination, hull navigation, and walking algorithms.
The main focus of this thesis is to develop limb workspaces and basic walking
algorithms applicable to robots kinematically similar to LEMUR IIb.

The design of LEMUR IIb and MARS differ from biologicaly-inspired
hexapedal robots [5–9] in symmetry. Quinn, Espenchied, et al., have de-
veloped highly mobile hexapedal robots patterned after the stick insect and
cockroach. These robots employ two rows of three bilaterally symmetric
limbs. However, by employing radial symmetry the LEMUR IIb and MARS
platforms do not possess a set front and back, and are therefore capable of
walking in any direction without turning.

1
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Figure 1.1: MARS, developed at RoMeLa. Courtesy Virginia Tech. Photo-
graph taken by Josh Armstrong.

Figure 1.2: LEMUR IIb (Legged Excursion Mechanical Utility Rover) from
NASA JPL. Courtesy NASA\JPL-CalTech



3

1.1 Motivation

This thesis documents the initial work on radially-symmetric hexapods at
RoMeLa (Robotics and Mechanisms Laboratory at Virginia Tech, which be-
gan in collaboration with NASA(National Aeronautics and Space Adminis-
tration) JPL(Jet Propulsion Laboratory). The goals of RoMeLa’s research in
this area are to develop robots of this type, to understand the capabilities and
limitations of the robot, and to develop autonomous and semi-autonomous
control strategies for gait generation and limb manipulation. These goals are
based on the intended use of LEMUR robots for repair and maintenance in
near-zero gravity on the surface of spacecraft. Building MARS, and defining
a few of its workspaces and walking algorithms, laid a foundation for further
research. The construction of the MARS robot lead to the use of innova-
tive techniques in forming composite members and also lead to important
considerations for redesign. The development of a walking algorithm lead to
the discovery of key relationships between the walking algorithm and limb
workspace. An understanding of these relationships will be key in the fu-
ture work of expanding the walking algorithm for 3D terrain as well as limb
manipulation for tool use.

In a broader sense this research serves as an addition to man’s work in
reproducing the limbed conveyance methods found in nature. It has been
shown that on unstructured terrain, legged vehicles are superior to wheeled
vehicles and tracked vehicles for speed, economy, and mobility [10]. For
these reasons humans have made numerous attempts to replicate this natural
mode of transportation. This thesis adds to previous and current work by
developing one type of algorithm for hexapod gaits which are omnidirectional
and statically stable.

1.2 A Survey of Non-Biped Walking Machines

The development of limbed machines for the purpose of walking is by no
means a new endeavor. According to legend, the ancient Chinese inventor
and master carpenter, Lu Ban (circa 507-444 BC), built a “wooden horse
carriage” capable of automatic movement [11]. It is recorded that Lu Ban
built the device, which required no manual intervention, for his aged mother.
When she rode the device it sped away, and did not return. While Lu Ban
was credited with many inventions, most notably a wooden bird which could



4

stay in the sky for three days, documentation of his achievements is limited to
literary records. There are no surviving plans or hardware. Like Lu Ban, the
ancient Chinese military leader Zhu-ge Liang is credited with the invention
of a walking machine during the Era of the Three Kingdoms (AD 220-280).
Liang’s device, named “wooden ox and gliding horse,” was evidently devel-
oped to transport heavy military cargo over rough terrain. Wooden ox and
gliding horse is recorded to not have been powered by wind or water and did
not require man’s physical effort.

While records of ancient walking machines have survived from antiq-
uity, documented designs for limbed devices have been much more abundant
within the last several decades. In 1893 Rygg attained a patent for a design
of a limbed mechanical horse [12]. In the early twentieth century several
patents were attained for walking vehicles for moving load and crossing dif-
ficult terrain [13–15]. Interestingly, in 1945 Wallace patented a one legged
hopping tank [16]. This concept was latter proven on a smaller scale in 1983
by Raibert et al. [17].

In the second half of the twentieth century walking machines became more
reality than novelty. In 1961 the Space General Corporation developed two
multi-legged walking vehicles, one with six legs and one with eight [10]. These
vehicles were intended for lunar exploration. In 1968 the General Electric
General Engineering Laboratory developed a quadruped walking truck [18].
The 1400 kg truck was controlled by the arm and leg movements of a human
rider and actuated using hydraulics. At roughly the same time development
of a load carrying device for the US Army and NASA began [18]. This Iron
Mule Train was envisioned to be a train of legged vehicles which would trail a
human guide. Versions with six and eight cam-controlled legs were developed
which used alternating tripod or tetrapod gaits, respectively.

At this point limbed vehicle development shifted to using primarily com-
puter control. The “Phoney Pony,” developed by Frank and McGhee of the
University of Southern California used computer control for its four electric
motor-activated legs [10]. In 1972 Petternella and associates at the Univer-
sity of Rome built a computer-controlled robot similar to the “Phoney Pony,”
but with six legs [10]. In 1977 Ohio State University (OSU) demonstrated a
computer-controlled hexapod with axial symetry [18]. The limb kinematics
of this machine are similar to MARS in the 2-DOF hip joint and 1-DOF knee
joint; however, the axes of the shoulder joints were slightly offset and did not
intersect.

The 1980’s saw the development of several hexapod robots. Most used ax-
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ial symmetry; however, Odetics Inc. developed a radially symmetric hexapod
which used an onboard computer to play back pre-programmed motions [19].
Using remote human control of the pre-recoded motions, the hexapod could
climb obstacles such as stairs and a pickup truck. In 1983 Raibert and
Southerland developed a hexapod walking machine capable of navigating
rough terrain using different types of gaits [10]. This axi-symmetric machine
used a combination of hydraulic feedback, computer control, and human
control. In the late 1980’s Quinn, et al. began work on biologically-inspired
axi-symmetric hexapods.

The past two decades have seen a flourish in the development of hexapod
robots. Two of the more notable examples are Quinn’s work with robots
based on the cockroach [5–9, 20], and JPL’s work on a utility rover [1–4].
Quinn’s work with biologically-inspired hexapod robots, has been very ex-
tensive from a purely mechanical/kinematic view. The robots developed
by the Case Western University team has ranged from simple kinematics
similar to the OSU hexapod, to a pneumatically-actuated robot with kine-
matics directly modeled after and almost as complex as the Blaberus gi-
gantius cockroach. The teams “abstracted biological” approach lead to the
development of the wheel/leg crossover Whegs, which provides exceptional
maneuverability in hexapod form. JPL’s development of utility rovers be-
gan with axi-symmetric hexapods; however, the recent LEMUR IIb has a
radially-symmetric limb mounting. This arrangement provides for no set
front or back to the robot. This approach has grown in popularity sence the
early 1980’s Odetics robot, and allows for walking algorithms with near-equal
maneuverability in any direction.

1.3 Hexapod Walking Algorithms

Considerable work has been done in generating walking algorithms for hexa-
pod robots. In 1983 Raibert and Southerland developed a hexapedal walk-
ing machine capable of navigating rough terrain using onboard computer-
controlled gaits [10]. A few years later, Brooks, et al. developed distributed
networks which used layered control for robot control as well as for hexapedal
walking algorithm control [21, 22]. Since the late 1980s, Quinn, et al. have
been controlling hexapedal robots using neural networks based on the cock-
roach [5–9]. This method of control uses interconnected neurons which use
excitatory or inhibitory control over each other. The arrangement of these
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neurons produces various predictable gait patterns in the robot legs, de-
pending on the speed required. This neural network control also proved very
robust and was able to produce working gaits even with damage to the robot.

Many walking algorithms have been developed for hexapedal robots with
limbs arranged symmetrically on either side of a longitudinal body axis, sim-
ilar to an insect. Gaits for bodies with limbs arranged axially symmetric,
have been defined by Song and Waldron [10], as:

Periodic

• Wave gait: seeping motions run from the rear to the front and legs on
opposite sides of the body are 180 degrees out of phase

• Equal phase gait: all leg movements are ordered so that power con-
sumption is consistent, like the wave gait motions run from rear to
front

• Backward wave gait: similar to the wave gait except that motions run
from front to rear

• Backward equal phase gait: similar to the equal phase gait except that
motions run from front to rear

• Dexterous periodic gait: a follow the leader gait with the ability to
adjust the placement of the two front feet

• Continuous follow-the-leader gait: feet are placed in the foot print of
the foot ahead

Non-Periodic

• Discontinuous follow-the-leader gait: feet are placed in the foot print
of the foot ahead, only one foot at a time is moved for greater stability

• Large obstacle gait: leg and body motions coordinate to traverse large
obstacles while maintaining stability

• Precision footing gait: the operator either controls an individual leg
with 3 DOF or controls the body with 6 DOF

• Free gait: used for avoidance of areas not suitable for weight bearing
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where periodic gaits are generally preferable because they are easily imple-
mented and can provide smother motion.

Various periodic wave gaits have been used for hexapedal robots, com-
bined with biologically inspired coordination mechanisms found in stick in-
sects [5]. However, MARS limbs are arranged around the body with radial
symmetry, not arranged in rows on either side of the body. This, com-
bined with the kinematic design of the limbs, invites the possibility of omni-
directional motion. For this reason a walking algorithm which builds on the
maximized omni-directional step length described by Schmiedeler [23] was
chosen. This algorithm would be a combination of a tripedal wave gait and
a precision footing gait. That is, the algorithm would be based on an alter-
nating tripod gait, but with the capability of precisely positioning each limb
tip within the workspace.

While many walking algorithms [5, 10] would be suitable for such planar
hexapedal locomotion, developing one sufficiently general enough to handle
all navigable terrain and to utilize the kinematic structure of the robot adds
to the problem complexity. The adaptable gait-planning algorithms under
development are basic in the sense that they are currently only capable of
planar locomotion, but general in that they could be used as the foundations
for a more sophisticated algorithm capable of navigating complex terrain such
as the surface of a spacecraft. It is also desirable that the basic elements of
a walking algorithm be applicable in using the limbs to manipulate tools.
For these reasons, suitable base walking algorithms, while currently only
capable of planer locomotion, must be capable of precise, pre-determined
limb tip positioning. Also, the kinematic structure of the robot allows for
body translation in any 3-space direction, as well as for pitch, yaw, and roll,
while walking. Therefore, in order not to exclude mechanical capabilities,
the base algorithm will be capable of instantaneously and simultaneously
executing any combination of translations and change of orientation of the
body while walking.

1.4 Discussion

This thesis focuses on the development of walking algorithms based on a
defined workspace. While there are other approaches to walking algorithm
development, such as biologically inspired central pattern generators, these
methods were not employed for the walking algorithms presented here. Rather,
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the algorithms are generated within the constraints of the limb kinematics
and desired walking functionality. This approach highlights how walking al-
gorithms effect workspace and provides for precise body and limb positioning;
however, a biologically inspired approach should prove less computationally
intensive and may provide for faster development of more sophisticated walk-
ing algorithms.

The workspace analyses presented in this thesis not only provides the
foundation for the kinematically based walking algorithm development, but
also provides a useful design tool for design of a limbed robot. This analy-
sis has shown how walking algorithm requirements can effect shape of the
workspace while providing a geometric approach for mathematically defining
the workspace. The approach used to define the MARS workspace is applica-
ble to limbs with differing kinematics. Further, understanding workspace
reduction based on pre-defined gait characteristics, such as how constraining
a gait to be continuos reduces the usable workspace, can be used during the
design phase of limbs.



Chapter 2

Robot Design

MARS was designed to be light weight while remaining relatively simple
and inexpensive to build. The design makes use of carbon fiber composite as
well as machined aluminum components and off-the-shelf molded polystyrene
components. The resulting hexapod frame is capable of walking while sup-
porting more than the weight of the actuators and structure. While future
plans include an onboard computer, a battery pack and sensors, at present
the power source and gait generation computer are both external to the
robot–power and actuator commands are transfered umbilically.

2.1 Limb Design

MARS is kinematically and dimensionally similar to the JPL LEMUR IIb
robot [2]. Each of the six limbs has four revolute actuators and therefore four
degrees of freedom. The limb attaches to the body of the robot with a 3DOF
proximal joint. In this joint the axes of three revolute actuators intersect
orthogonally at a single point. The result is a kinematically spherical joint
which can be equated with a ball and socket joint. The remaining 1-DOF
distal joint uses a single revolute actuator located between the inner and
outer limb sections.

As with the LEMUR class robots, the MARS limb design simplifies the
kinematics, resulting in a large workspace [1]. The use of the spherical prox-
imal joint simplifies the limb kinematics.

Carbon-fiber composite, aluminum, and polystyrene were used to form
the structural limb and body components of MARS in order to reduce weight

9
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Figure 2.1: The y-axis of the body coordinate frame points toward the center
of the proximal joint of Limb 1.

and maximize stiffness. This lightweight design allowed for the use of com-
pact Dynamixel DX-117 actuators for all 24 revolute joints. The actuators
provide sufficient torque for the robot to be fully supported by three limbs
in any statically stable position. While these actuators are capable of 300
degrees of rotation, only one of the actuators on each limb is free to use this
range. The other three actuators are physically limited by the structure of
the limb.

the joint rotations are structurally limited for three of the four degrees of
freedom.

2.2 Coordinate Frame Definitions

The workspace analysis covered is based on Schmledeler, Bradley, and Kennedy
[23]. For that reason their coordinate frame definitions will be followed. The
coordinate frame of the body of the robot (x0, y0, z0) is positioned at the
center of the body with the y-axis pointing directly at the center of the Limb
1 proximal joint and the z-axis extending upward away from the body, as
shown in Fig. ??. The revolute joints are then assigned coordinate frames in
accordance with the Denavit-Hartenburg convention, as shown in Fig. 2.2.
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Figure 2.2: Coordinate frames are assigned to each revolute joint on a limb.

2.3 Proximal Joint

The proximal joint was constructed so that Revolute Joints 1, 2, and 3 would
intersect at a single point arranged as shown in Figure 2.3. While a U-
shaped support structure attaching at either side of the actuator was used
for revolute joints two through four, this type of construction was not desired
for Revolute Joint 1 because it would have limited maneuverability. One
of the main concepts of the MARS design is the ability to use limbs for
both walking and selecting tools from the back of the robot. To obtain this
functionality, Revolute Joint 1 was not limited beyond the maximum 300
degrees of rotation of the DX-117 through the use of a U-shaped support.
Rather the shaft-bracket, shown in Figure 2.4 was used. In this design the
shaft-bracket is supported at the edge of the robot body by a bearing and
within the robot body by the actuator shaft. The shaft-bracket and actuator-
1 are held by the limb-support, and the shaft-bracket supports actuator-2.
Revolute Joints 2 and 3 are connected by a single proximal frame. The
proximal frames were laser-cut from sheet aluminum and bent to shape.

2.4 Distal Joint

The single revolute joint of the distal joint is supported by the distal frame
shown in Figure 2.5. The distal frame was manufactured in the same way as
the proximal frame.
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Figure 2.3: In the proximal joint, Revolute Joints 1, 2, and 3 intersect at a
single point.
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Figure 2.4: The proximal joint design utilizes the entire range of the Rev-
olute Joint 1 actuator while providing a well supported framework for all
three revolute joints. Courtesy Virginia Tech. Photograph taken by Josh
Armstrong.

Figure 2.5: The distal joint also provides support on both sides of the ac-
tuator, similar to the revolute joints two and three of the proximal joint.
Courtesy Virginia Tech. Photograph taken by Josh Armstrong.
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Figure 2.6: The proximal limb section, constructed primarily of single layer
carbon fiber and composite/core sandwich end nodes, provides high strength
and rigidity with low weight.

2.5 Proximal Limb Section

The proximal limb section, which serves as the physical link between actua-
tors 3 and 4, was designed to be light weight as well as rigid under compressive
and bending loads. As shown Figures 2.6 and 2.7, this section is made pri-
marily of carbon fiber composite. While the end nodes use a composite-core
sandwich, the use of a core is not necessary on the section wall. This is due
to the complex curvature of the wall, where bending in any area requires
stretching in another. While the thin section wall can easily bend under
load, the carbon fiber greatly resists stretching.

A clam shell process was used to mold the thin section wall. First a glass
tube was crafted into the desired shape of the proximal limb section. This
tube was used to form a clam shell plastic mold. The glass tube, ends plugged
with clay and surface coated with mold release, was set in a lined container.
The container was filled half way with two-part plastic, which solidified to
form one half of the clam shell mold. Once solidified, the exposed surface of
the plastic was coated with mold release and the container was filled with
two-part plastic. Once solidified the resulting clam shell mold was opened and
the glass tube removed. The clam shell was then used to cast the proximal
limb section wall. A plastic bag was inserted into one layer of woven carbon
fiber sleeve. The sleeve was coated with epoxy and inserted into the closed
clam-shell mold. With the mold set vertically, as shown in Figure 2.7, the
plastic bag was packed with salt to press the carbon fiber sleeve outward
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Figure 2.7: A clam-shell mold was used to cast the proximal limb sections.
Granular salt pressed inside a carbon fiber sleeve forces the sleeve to conform
to the inside of the mold.

against the mold. Weights were used to compress the salt, while the epoxy
cured.

2.6 Distal Limb Section

The distal limb section is composed of an outer cone, a reinforcing disk, a
distal motor bracket, a flange, and an aluminum tube. These components are
assembled as shown in Figure 2.8. The outer cone and reinforcing disk form
a foot which attaches with a friction fit to the distal bracket assembly. The
distal bracket assembly–composed of the distal motor bracket, flange, and
aluminum tube–allow for quick conversion between the foot and other pos-
sible distal attachments, such as tools. The outer cone is a thin polystyrene
shell painted black to match the robots other carbon components. The re-
inforcing disk is a carbon fiber sandwich attached with epoxy into the large
end of the cone. The aluminum tube is attached with epoxy inside the flange,
which is in turn fastened with screws to the distal motor bracket. The distal
motor bracket attaches via motor flange and bearing to the distal actuator.

2.7 Body

The body of the robot was designed to be light weight and rigid while pro-
viding space and flexibility for installing batteries and a computer. The body
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Figure 2.8: A friction fit secures the polystyrene and carbon fiber distal limb
section to an aluminum bracket and tube assembly attached to the distal
joint actuator.

design is structurally based on a typical carbon fiber composite core sand-
wich, in which a core is sandwiched between two laminates of carbon fiber as
shown in Figure 2.9. In such a structure, the core prevents change in distance
and orientation between the laminates, while the carbon resists stretching of
the laminates. The combination results in a rigid, high strength, low weight
composite. For the MARS body, however, the limb supports take the place of
the core. Attached to the limb supports with machine screws, the structure
provides a rigidity similar to a traditional core carbon sandwich. Weight is
further reduced by removing the center of the carbon layers.
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Figure 2.9: Two thin carbon-fiber plates, separated by limb supports, forms
the body of the robot.



Chapter 3

Kinematics and Singularity
Analysis

3.1 Forward Kinematics

The forward kinematics for the MARS limbs are found using the Denavit-
Hartenburg convention. In this section the forward kinematics are found
for a limb with all four DOF, as well as for the three DOF situation where
Revolute Joint 1 is fixed. The Denavit-Hartenburg parameters for the full
limb are presented in Table 3.1.

Table 3.1: Denavit-Hartenburg Parameters
Link ai αi di θi

1 0 π
2

0 π
2

+ θ1

2 0 π
2

0 π
2

+ θ2

2 L1 0 0 θ3

4 d2 0 0 θ4

The homogeneous transformations A1 through A4 are given in Equations
3.1, 3.2, 3.3, and 3.4.
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A1 =




Cθ1 −Sθ1 0 0
Sθ1 Cθ1 0 0
0 0 1 0
0 0 0 1







1 0 0 0
0 C π

2
−S π

2
0

0 S π
2

C π
2

0
0 0 0 1




A1 =




Cθ1 −Sθ1 0 0
Sθ1 Cθ1 0 0
0 0 1 0
0 0 0 1







1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1




A1 =




Cθ1 0 Sθ1 0
Sθ1 0 −Cθ1 0
0 1 0 0
0 0 0 1




(3.1)

A2 =




Cθ2 −Sθ2 0 0
Sθ2 Cθ2 0 0
0 0 1 0
0 0 0 1







1 0 0 0
0 C π

2
−S π

2
0

0 S π
2

C π
2

0
0 0 0 1




A2 =




Cθ2 −Sθ2 0 0
Sθ2 Cθ2 0 0
0 0 1 0
0 0 0 1







1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1




A2 =




Cθ2 0 Sθ2 0
Sθ2 0 −Cθ2 0
0 1 0 0
0 0 0 1




(3.2)

A3 =




Cθ3 −Sθ3 0 0
Sθ3 Cθ3 0 0
0 0 1 0
0 0 0 1







1 0 0 d1

0 1 0 0
0 0 1 0
0 0 0 1




A3 =




Cθ3 −Sθ3 0 Cθ3d1

Sθ3 Cθ3 0 Sθ3d1

0 0 1 0
0 0 0 1




(3.3)
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A4 =




Cθ4 −Sθ4 0 0
Sθ4 Cθ4 0 0
0 0 1 0
0 0 0 1







1 0 0 d2

0 1 0 0
0 0 1 0
0 0 0 1




A4 =




Cθ4 −Sθ4 0 Cθ4d2

Sθ4 Cθ4 0 Sθ4d2

0 0 1 0
0 0 0 1




(3.4)

To find the Transformation Matrix T 4
0 , which includes all four degrees of

freedom:

T 4
0 = A1A2A3A4 (3.5)

T 4
0 =




r11 r12 r13 dx

r21 r22 r23 dy

r31 r32 r33 dz

0 0 0 1


 (3.6)

where

r11 = Cθ4 (Cθ1Cθ2Cθ3 + Sθ1Sθ3) + (Cθ3Sθ1 − Cθ1Cθ2Sθ3) Sθ4 (3.7)

r21 = Cθ4 (Cθ2Cθ3Cθ1 − Cθ1Sθ3) + (−Cθ1Sθ3 − Cθ2Sθ1Sθ3) Sθ4 (3.8)

r31 = Cθ3Cθ4Sθ2 − Sθ2Sθ3Sθ4 (3.9)

r12 = Cθ4 (Cθ3Sθ1 − Cθ1Cθ2Sθ3)− (Cθ1Cθ2Cθ3 + Sθ1Sθ3) Sθ4 (3.10)

r22 = Cθ4 (−Cθ1Cθ3 − Cθ2Sθ1Sθ3)− (Cθ2Cθ3Sθ1 − Cθ1Sθ3) Sθ4 (3.11)

r32 = −Cθ4Sθ2Sθ3 − Cθ3Sθ2Sθ4 (3.12)
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r13 = Cθ1Sθ2 (3.13)

r23 = Sθ1Sθ2 (3.14)

r33 = −Cθ2 (3.15)

dx = Cθ1Cθ2Cθ3d1 + Sθ1Sθ3d1+
Cθ4 (Cθ1Cθ2Cθ3 + Sθ1Sθ3) d2+
(Sθ3Sθ1 − Cθ1Cθ2Sθ3) Sθ4d2

(3.16)

dy = Cθ2Cθ3Sθ1d1 − Cθ1Sθ3d1+
Cθ4 (Cθ2Cθ3Sθ1 − Cθ1Sθ3) d2+
(−Cθ1Cθ3 − Cθ2Sθ1Sθ3) Sθ4d2

(3.17)

dz = Cθ3Sθ2d1 + Cθ3Cθ4Sθ2d2 − Sθ2Sθ3Sθ4d2 (3.18)

However, as discussed in Section 4.1, Revolute Joint 1 is not used for walking.
Therefore the transformation matrix T 4

1 is used for the resulting 3DOF limb:

T 4
1 = A2A3A4 (3.19)

T 4
1 =




R11 R12 R13 Dx

R21 R22 R23 Dy

R31 R32 0 Dz

0 0 0 1


 (3.20)

where

R11 = Cθ2Cθ3Cθ4 − Cθ2Sθ3Sθ4 (3.21)

R31 = Cθ3Cθ4Sθ2 − Sθ2Sθ3Sθ4 (3.22)

R31 = Cθ4Sθ3 + Cθ3Sθ4 (3.23)

R12 = −Cθ2Cθ4Sθ3 − Cθ2Cθ3Sθ4 (3.24)
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R22 = −Cθ4Sθ2Sθ3 − Cθ3Sθ2Sθ4 (3.25)

R32 = Cθ3Cθ4 − Sθ3Sθ4 (3.26)

R13 = Sθ2 (3.27)

R23 = −Cθ2 (3.28)

Dx = Cθ2Cθ3d1 + Cθ2Cθ3Cθ4d2 − Cθ2Sθ3Sθ4d2 (3.29)

Dx = Cθ3Sθ2d1 + Cθ3Cθ4Sθ2d2 − Sθ2Sθ3Sθ4d2 (3.30)

Dz = Sθ3d1 + Cθ4Sθ3d2 + Cθ3Sθ4d2 (3.31)

3.2 Inverse Kinematics

The inverse kinematics are derived geometrically for the MARS limb with
Revolute Joint 1 frozen. With this constraint the limb has a total of 3DOF
and a finite number of solutions exist when solving for the joint angles given
only the (x,y,z) limb tip position. Figure 3.1 illustrates this derivation where
the angles θ, φ, and α for Revolute Joints 2, 3, and 4 are given respectively
by Equations 3.32, 3.36, and 3.40:

θ = arctan (y, x) (3.32)

c =
√

x2 + y2 + z2 (3.33)

The assumption is made:

B ≤ π

2
(3.34)

This is a reasonable assumption as the segment lengths and joint limits of
a MARS limb prohibit B greater than π

2
. With this assumption the derivation

continues:



23

B = arccos

(
b2 − a2 + c2

2ac

)
(3.35)

The values a, b, and c are shown in Figure 3.1.

φ = B − arcsin
(z

c

)
(3.36)

x = arcsin B (3.37)

C1 =
π

2
−B (3.38)

C2 = arccos
x

b
(3.39)

α = π − C1 − C2 (3.40)

3.3 Singularity Analysis

Singularities occur whenever one or more DOFs are lost [24]. For the MARS
limbs an elbow singularity [25] exists whenever the proximal limb section is in
line with the distal limb section–when x3 is collinear with x4 and θ4 = 0. This
singularity occurs because in this position the DOF provided by Revolute
Joint 4 is lost. In this position the limb tip reaches the outer boundary of
the workspace. To avoid this singularity, in a walking algorithm, a buffer can
be applied to the boundary of the workspace so that the algorithm will not
position the limb tip beyond the buffer and therefore near the singularity. For
this reason the variable “buffer” is included in the programming presented in
Appendix A, and discussed in Section 5.3. Furthermore, a singularity could
exist when θ4 = π; however, this is not possible on the MARS limbs due to
the physical joint limits.

Another singularity within the MARS limb workspace occurs when the
limb tip intersects the z2-axis [26]. This shoulder singularity [25] occurs
because the DOF provided by Revolute Joint 2 is lost [24]. In this orientation
the limb tip position is independent of θ2. This singularity can be defined
by:
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Figure 3.1: The inverse kinematics can be derived geometrically for the
MARS limb with Revolute Joint 1 frozen.
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while

[
x
y

]
=

[
0
0

]
,




x
y
z


 is independent of θ2 (3.41)

This is significant with relation to the walking algorithm because the algo-
rithm operates in 3-space rather than joint space. Therefore, moving the
limb tip in a line which passes infinitesimally near to the z2-axis requires
Revolute Joint 2 to rotate at near-infinite velocity. For the general walking
algorithm developed in Section 5.2, the limb tip is prevented from nearing
the z2-axis by a buffer cylinder, as discussed in Section 4.6.

There are further singularities which do not come about due to the loss
of a degree of freedom. These singularities, discussed in Section 4.5, occur
when the limb tip is attempting to move continuously from one part of the
workspace to another. These limitations are due to the requirements of the
walking algorithm discussed in Chapter 5.



Chapter 4

Workspace Analysis

Understanding how the MARS limbs can move is key to forming walking
algorithms. Interestingly, the workspace and walking algorithms are interde-
pendent. Setting restrictions on the workspace constrain the possible walking
algorithms and placing requirements on the walking algorithms restrict the
workspace. While many different workspace and walking algorithm combi-
nations are possible, this thesis only covers a few. However, understanding
the workspace is key to understanding the relationship between workspace
and walking algorithm. These relationships will be covered in more depth in
Chapter 5. This chapter defines the workspaces used for the MARS limb in
this thesis.

4.1 The General Workspace

The most inclusive or general workspace presented in this thesis is termed
the “general workspace.” This workspace is the volume containing all points
a limb tip can reach with Revolute Joint 1 fixed at zero degrees–with the x1

axis parallel to the z0 axis. It would be possible to include Revolute Joint
1 unfixed, and use the even broader “total workspace.” However, doing so
would require a walking algorithm which provides more information than just
the next limb tip position. For example, by specifying the limb tip position as
well as the distal limb section orientation in 3-space, positioning the 4-DOF
limb would be possible. However, the assumption was made that it would be
simpler to develop a walking algorithm which need only generate the next
limb tip position. Therefore, Revolute Joint 1 is not used for walking.

26
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Table 4.1: MARS Limb Range of Operation.

Revolute Joint Angle Joint Operable Range in Degrees Axis of Rotation
θ1 -60 to 240 z1

θ2 -10 to 190 z2

θ3 -110 to 0 z3

θ4 -90 to 90 z4

Defining the limb workspace is contingent upon limits placed on the un-
fixed revolute joints. The physical limits of θ1, θ2, θ3, and θ4 are given in
Table 4.1. While the workspace exists as a complex 3D shape, visualization
of the work space is eased by examining the limits of θ3 and θ4 in 2-D. With
Revolute Joint 2 fixed at zero degrees the limb extends away from the robot
body in the y2-z2 plane. Within this plane the limb is simplified to a two link
planar manipulator as only Revolute Joints 3 and 4 are used. Employing the
full range of motion of Revolute Joint 3 and Revolute Joint 4, the limb tip is
capable of any point within the crescent shown in Figure 4.1. Revolving this
2-D shape about the z2-axis through the full range of motion of Revolute Joint
3, from -10 to 190 degrees, results in the full 3D workspace with Revolute
Joint 1 fixed, as shown in Figure 4.2.

4.2 The General Knee Up Workspace

By constraining Revolute Joint 1, only two configurations are available for
a given tip position; “knee-up” and “knee-down.” While it is possible for
the limb tip to touch any point within the general workspace with Revolute
Joint 1 fixed, the entire workspace is not used for walking. This is due to
the limitations of tracing a line through the workspace with the limb tip.
While the limb tip is in contact with the floor it must move in a continuous
line with respect to the robot body. This is equivalent to moving along a
continuous line within the 3D workspace. However, the general workspace
contains regions between which a continuous line cannot be traced, except
in certain situations. These regions are defined by the position of Revolute
Joint 4. The operable range of Revolute Joint 4 is divided into two ranges:
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Figure 4.1: In 2-D Revolute Joints 3 and 4 can sweep out this crescent shape.

• -90 degrees to 0 degrees

• 0 degrees to 90 degrees

Figure 4.3 shows the 2-D and 3D work spaces associated with the two op-
erable ranges or configurations for Revolute Joint 4. Tracing a continuous
line with the limb tip while transitioning from one configuration to the other
requires at least one of the following constraints:

• Fully extending the limb (passing Revolute Joint 4 through 0 degrees)

• Instantaneously rotating Revolute Joint 2 through 180 degrees, or paus-
ing the step motion while Revolute Joint 2 rotates 180 degrees (this
transition only works when the limb tip is directly beneath the center
of the proximal joint on the negative z2 axis).

• Making Revolute Joint 1 unfixed, which would result in infinite solu-
tions to any tip position.
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Figure 4.2: Revolute Joints 2, 3 and 4 can sweep out this 3D volume–the
general workspace.
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Figure 4.3: Of the two possible configurations, the -90 to 0 degrees knee-up
configuration is used for walking.
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Figure 4.4: Knee-down limb configuration requires the limb to extend
through the floor for certain walking heights.

Because the proposed walking algorithm should remain independent of all
these constraints, operation within only one of the two configurations must be
considered. Operation within the 0 to 90 degrees configuration (knee-down)
is excluded and the -90 to 0 degrees configuration (knee-up) is selected. This
is mainly based on the assumption that the walking surface will be located,
for the most part, beneath the robot body. In such an orientation, the
intersection of the walking surface with the workspace will be more likely to
yield a larger 2D workspace for knee-up than for knee-down. Further, the 0
to 90 degrees configuration (knee-down) would result in scenarios where the
limb would have to enter the walking surface for the limb tip to contact the
walking surface. This impossible scenario is shown in Figure 4.4.

4.3 Similarities to Insect Limbs

It is interesting to note that insects also exhibit the knee-up configuration.
The insect limb [27] shown in Figure 4.5 is more complex than a MARS limb;
however, analogies can be made between the two:

• The proximal joint on MARS is analogous to the joints between the
body, coxa, trochaner, and femur sections of an insect.

• The distal joint on MARS is analogous to the joint between the femur
and tibia sections of an insect.

• The remaining tarsomere sections of the insect serve as a foot for which
MARS uses the tip of the outer limb section.

Generally in insects, the tibia section angles downward from the femur sec-
tion. This configuration increases the workspace for walking and generally
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Figure 4.5: An insect limb uses a similar joint configuration to the MARS
limb.

orients the tibia towards the ground, which results in minimizing the torque
needed at the joints. While the emulation of nature was not the main concern
in the design or limb configuration of MARS, insect kinematic similarities
can prove desirable. Biological kinematic similarities allow for more direct
application of often-superior biologically-inspired locomotion techniques [7].

4.4 Geometric Delineation of the General Knee

Up Workspace

For the walking algorithms discussed in this thesis, only the knee-up workspace
is used. The geometry of the general knee-up workspace can be completely
defined mathematically. This mathematical definition of the workspace bound-
ary is necessary for the walking algorithm. The walking algorithm operates in
the space domain rather than the actuator domain. For this reason, defining
the boundaries of the workspace in the space domain is a necessary prelimi-
nary to formulating the walking algorithm.

The 2D workspace is examined in the z2-y2 plane as shown in Figure 4.6.
Sweeping Revolute Joints 3 and 4 through their respective ranges causes the
limb tip to reach all points within the area bounded by curves 1 through 4.
Curves 1 and 2 are the result of sweeping Revolute Joint 3 though its range
while Revolute Joint 4 is at the two extremes of its range. Curves 3 and 4
are the result of sweeping Revolute Joint 4 through its range while Revolute
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Figure 4.6: In the knee-up configuration the 2D workspace in the z2-y2 plane
is the area contained within four curves.

Joint 3 is at the two extremes of its range. Curves 1, 2, 3, and 4 are defined
by Equations 4.1, 4.3, 4.5, and 4.7 respectively.

[
x
y

]
=

[ √
L2

2 cos θ + L1√
L2

2 sin θ

]
(4.1)

where

θ =
−90π

180
...0 (4.2)

[
x
y

]
=

[ √
L2

2 cos θ − L1 sin 20π
280√

L2
2 sin θ − L1 cos 20π

180

]
(4.3)

where

θ =
−200π

180
...
−110π

180
(4.4)

[
x
y

]
=

[ √
L2

1 + L2
2 cos θ√

L2
1 + L2

2 sin θ

]
(4.5)

where

θ =

(−110π

180
− arctan

L2

L1

)
...− arctan

L2

L1

(4.6)
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[
x
y

]
=

[
(L1 + L2) cos θ
(L1 + L2) sin θ

]
(4.7)

where

θ =
−110π

180
...0 (4.8)

Rotating the 2D workspace about the z2 axis through the range of Rev-
olute Joint 2 generates the 3D workspace shown in Figure 4.7. The shells
which comprise the 3D workspace are formed by sweeping the 2D curves
about the z2 axis through the range of Revolute Joint 2. However, as 2D
curves 3 and 4 cross the z2 axis, they are separated into Shells 3a, 3b, 4a,
and 4b. Shells 1 and 2 are torus sections, while Shells 3a, 3b, 4a, and 4b are
of sections of spheres centered at origin 2. Shells 1, 2, 3a, 3b, 4a, and 4b
are mathematically defined in Equations 4.9, 4.11, 4.13, 4.15, 4.17, and 4.19
respectively: 


x
y
z


 =




(L1 + L2 cos v) cos u
(L1 + L2 cos v) sin u

L2 sin v


 (4.9)

where
u = −10π

180
...190π

180
, v = −90π

180
... 0π

180
(4.10)




x
y
z


 =




(
L1 sin

(
20π
180

)
+ L2 cos v

)
cos u(

L1 sin
(

20π
180

)
+ L2 cos v

)
sin u

L2 sin v − L1 cos
(

20π
180

)


 (4.11)

where
u = 190π

180
...350π

180
, v = 20π

180
...−70π

180
(4.12)




x
y
z


 =




√
L2

1 − L2
2 − u2 cos θ√

L2
1 − L2

2 − u2 sin θ
u


 (4.13)

where

θ = −10π
180

...190π
180

, u = L2...−
√

L2
1 − L2

2 (4.14)




x
y
z


 =




√
L2

1 − L2
2 − u2 cos θ√

L2
1 − L2

2 − u2 sin θ
u


 (4.15)
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where

θ = 190π
180

...350π
180

,

u =
√

L1 + L2 cos
(

20π
180

+ arctan L2

L1

)
...−

√
L2

1 − L2
2

(4.16)




x
y
z


 =




√
(L1 − L2)

2 − u2 cos θ√
(L1 − L2)

2 − u2 sin θ

u


 (4.17)

where
θ = −10π

180
...190π

180
, u = 0...− (L1 + L2) (4.18)




x
y
z


 =




√
(L1 − L2)

2 − u2 cos θ√
(L1 − L2)

2 − u2 sin θ

u


 (4.19)

where
θ = 190π

180
...350π

180
,

u = −11 cos
(

20π
180

)
...− (L1 + L2)

(4.20)

However, the shells in Figure 4.7 do not fully contain the workspace. In
addition to these six shells, two planar section also bound the workspace.
These planar sections lie on two planes, both of which contain the z2-axis.
These two planes intersect the x2-y2 plane at -10 degrees and 190 degrees. As
the workspace is symmetric on either side of the y2-z2 plane, the two planar
sections are identical. The form of these sections is shown in Figure 4.8. Each
planar section is formed from two areas bounded by arcs. The equations of
the circles which form the arcs A, B, C, and D are given by Equations 4.21,
4.22, 4.23, and 4.24 respectively:

x2 + y2 = L2
1 + L2

2 (4.21)

(x− L1)
2 + y2 = L2

2 (4.22)

(
x− sin

(
20π

180

)√
L2

1 + L2
2

)2

+

(
y − cos

(
20π

180

)√
L2

1 + L2
2

)2

= L2
2 (4.23)
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Figure 4.7: Six shells form the initial 3D knee-up workspace.

x2 + y2 = (L1 + L2)
2 (4.24)

It should be noted that the equations for the arcs are based on a separate
coordinate system specific to the plane containing each section.

4.5 General Knee Up Workspace Limitations

While the limb tip can reach any point within the workspace in the knee-
up configuration, it is not necessarily possible to travel continuously from
one point in the workspace to another. Figure 4.9 shows a top view of the
workspace. The limb tip can travel continuously within the blue and green
regions or the limb tip can travel continuously within the yellow and green
regions. However, it is not possible for the limb tip to travel continuously
from the blue region to the yellow region. Such a motion would require a
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Figure 4.8: Planar sections which form part of the boundary for the
workspace are encompassed by arc sections of circles.
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rotation of 180 degrees of Revolute Joint 2 in the green region. Due to the
complexity of incorporating this requirement into a continuously updating
walking algorithm, the yellow region was removed from the workspace. As
a result, only Shells 1, 3a, and 4a are used to bound the workspace. The
workspace assumes the form in Figure 4.10, and the planar sections assume
the form in Figure 4.11, where arcs A, B, D, and E are defined by Equations
4.21, 4.22, 4.24, and 4.25:

x = 0 (4.25)

Again, the equations for the arcs are based on a separate coordinate system
specific to the plane containing each section.

4.6 The Buffer Cylinder

While it is possible for the limb tip to reach a range of points on the z2-axis,
it is not necessarily possible for the limb tip to move near the z2-axis. Limb
tip motions near the z2-axis which do not require the movement of Revolute
Joint 2 are possible. For example: by freezing Revolute Joint 2, Revolute
Joints 3 and 4 can still be used to trace a line from the z2-axis radially out.
Limb tip motions near the z2-axis which require the movement of Revolute
Joint 2 may not be possible due to the velocity limit of Revolute Joint 2.
For example: tracing a line, at a finite speed, which passes infinitesimally
close to the z2-axis would require near-infinite rotational velocity of Revolute
Joint 2 as it rotates nearly 180 degrees. The farther this traced line is from
the z2-axis, the slower the required rotational velocity of Revolute Joint 2 for
a given tracing speed. Therefore, for a given walking speed and maximum
rotational velocity of Revolute Joint 2, the required minimum distance a
stride-line must pass from the z2-axis can be calculate by:

rB =
Ut

θ̇2

(4.26)

where rB is the radius of the buffer cylinder and Ut is the component of the
limb tip velocity tangent to the buffer cylinder and orthogonal to the z2-axis.
The rotational velocity θ̇2 is plotted in Figure 4.12 for a limb tip velocity of
1 unit, perpendicular to a radius r given by:

r = L1cosθ3 + L2cos(θ3 + θ4) (4.27)
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Figure 4.9: Movement of the limb tip from the blue region of the workspace
to the yellow region requires an instantaneous 180 degree rotation of Revolute
Joint 2.
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Figure 4.10: The workspace is limited due to constraints on continuous move-
ment of the limb tip.
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Figure 4.11: The workspace is limited due to constraints on continuous move-
ment of the limb tip.
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To deal with the existence of the z2-axis singularity, a cylinder about
the z2-axis with radius rB can be removed from the workspace. Because,
θ̇2 is inversely proportional to rB, the cylinder is of constant radius along
its length. Furthermore, because r is independent of θ2, the cylinder has a
circular cross-section in the x2-y2 plane. This cylinder is referred to as the
“buffer cylinder.” The buffer cylinder changes the workspace, as shown in
Figure 4.13. Also the vertical boundary of the planar sections is moved away
from the y-axis by the radius of the buffer cylinder, such that Equation 4.25
becomes:

x = rB (4.28)

where rB is the radius of the buffer cylinder.

4.7 MARS Specific Workspace Limitations

Limb arrangement on the body determines further limitations on the work
space. Because the walking algorithm requires a limb switch when the first
contact limb reaches its workspace boundary, the work space of the other two
contact limbs is essentially limited by the workspace of the one contact limb.
In other words, for a given stride, the longest stride all three contact limbs
can make is limited to the shortest of the three individual stride-lines. This
concept is illustrated in Figure 4.14. Notice that though Limbs 3 and 5 have
not reached the boundary of their respective workspace, they are cut short
by limb 1, which has reached its workspace boundary. Because all strides
are limited to the shortest stride, the usable workspace of all three contact
limbs is limited. The resulting workspace is found by overlaying the three
contact limb workspaces as shown in Figure 4.15 for 2D. The workspaces
are overlain so that the largest common workspace will result. The largest
common workspace roughly resembles a circle. For ease of programming, the
common workspace was limited to the circle shown in Figure 4.15.

4.8 The 2D Common Workspace

A 2D representation of the workspace is sufficient for walking level. When
the body of MARS is parallel to the walking surface then the walking surface
is parallel to the x2-y2 plane of each limb. While the x2-y2 planes for the
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Figure 4.12: The required rotational velocity of Revolute Joint 2 goes to
infinity as the limb tip path approaches the z2 axis.
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Figure 4.13: The buffer cylinder, about the z2-axis, further limits the
workspace.
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Figure 4.14: All three contact limb stride-lines are limited by the shortest
stride-line.
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Figure 4.15: Overlaying the workspaces of the three contact limbs reveals
the common workspace in the style of a Venn diagram. The circle is a
simplification of the common workspace.
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limbs are parallel to the walking surface, only a 2D slice of the workspace
needs to be considered for the walking algorithm. For this condition the
workspace for each limb will be a circle. The piecewise Equation 4.29 defines
the circle diameters:

D =





D1 if Condition1

D2 if Condition2

D3 if Condition3

(4.29)

where

D1 =
√(

(L1 + L2)
2 − z2

2

)−
(√

L2
2 − z2

2 + L1

)
(4.30)

Condition1 = 0 ≥ z2 > −L2 (4.31)

D2 =
√(

(L1 + L2)
2 − z2

2

)−
√

L2
1 + L2

2 − z2 (4.32)

Condition2 = −L2 ≥ z2 > −
√

L2
1 + L2

2 − rB (4.33)

D3 =
√(

(L1 + L2)
2 − z2

2

)− r2
B (4.34)

Condition3 = −
√

L2
1 + L2

2 − rB ≥ z2 ≥ −
√

(L1 + L2)
2 − r2

B (4.35)

where L1 and L2 are the lengths of the proximal and distal limb sections,
respectively; D is diameter of the circular workspace; and rB is the radius of
the buffer cylinder. The location of the center of the circle is given by the
piecewise Equation 4.36 :

D =





Center1 if Condition1

Center2 if Condition2

Center3 if Condition3

(4.36)

where

Center1 =

√(
(L1 + L2)

2 − z2
2

)
+

(√
L2

2 − z2
2 + L1

)

2
(4.37)

Center2 =

√(
(L1 + L2)

2 − z2
2

)
+

√
L2

1 + L2
2 − z2

2
(4.38)
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Figure 4.16: A 3D volume contains the set of 2D circular workspaces.

Center3 =

√(
(L1 + L2)

2 − z2
2

)
+ r2

B

2
(4.39)

where the center point is located on the y2-z2 plane. The 3D workspace for
each limb, provided the robot is walking parallel to the walking surface, is
shown in Figure 4.16.

At this point it is possible to generate a walking algorithm which uses
this workspace to walk parallel to the walking surface. Due to the limited
size of the workspace, there is no risk of the limbs colliding with each other
while walking. With proximal and distal section lengths of 5 and 6 units,
respectively, the robot can theoretically walk at any height between 0 and
11 units. However, the dimensions of the limbs limit this to roughly 2 to 11
units.
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4.9 3D Common Workspaces

Walking with the robot body not parallel to the walking surface complicates
the use of the 2D common workspace. If 2D slices of the workspace are used,
as with level walking, the slices could be of different shapes and sizes for
each of the three contact limbs. With this approach the three 2D shapes
would need to be calculated for each limb, for each iteration of the walking
algorithm. However, the same results can be achieved by finding points of
intersection of the stride-line with the workspace boundary. This approach
is not examined in this thesis. However, two other approaches are examined:

• Mathematically define the workspace, as with the shell method. These
definitions could then be used to find the intersection points of stride-
lines with the workspace boundary.

• Select a spherical workspace which fits within an overlay of the 3D
workspaces of all three contact limbs.

The 3D volume–composed of 2D circular workspaces shown in Figure 4.16–
can be mathematically defined by dividing it into three sections as specified
by Condition1, Condition2, and Condition3 of Equations 4.31, 4.33, and
4.35. For Condition1 the workspace is defined by Equation 4.40:




x
y
z


 =




DiameterCondition1 + CenterCondition1 cos θ
CenterCondition1 sin θ

u


 (4.40)

where

DiameterCondition1 =




√
(L1 + L2)

2 − u2 +
√

L2
2 − u2 + L1

2


 (4.41)

CenterCondition1 =




√
(L1 + L2)

2 − u2 −
√

L2
2 − u2 + L1

2


 (4.42)

u = −L2...0, θ = 0...2π (4.43)

For Condition2 the workspace is defined by Equation 4.44:
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


x
y
z


 =




DiameterCondition2 + CenterCondition2 cos θ
CenterCondition2 sin θ

u


 (4.44)

where

DiameterCondition2 =




√
(L1 + L2)

2 − u2 +
√

L2
1 + L2

2 − u2 + L1

2


 (4.45)

CenterCondition2 =




√
(L1 + L2)

2 − u2 −
√

L2
1 + L2

2 − u2 + L1

2


 (4.46)

u = −
√

L2
1 + L2

2 − r2
B...− L2, θ = 0...2π (4.47)

For Condition3 the workspace is defined by Equation 4.48:




x
y
z


 =




DiameterCondition3 + CenterCondition3 cos θ
CenterCondition3 sin θ

u


 (4.48)

where

DiameterCondition3 =




√
(L1 + L2)

2 − u2 + rB

2


 (4.49)

CenterCondition3 =




√
(L1 + L2)

2 − u2 − rB

2


 (4.50)

u = −
√

(L1 + L2)
2 − r2

B...−
√

L2
1 + L2

2 − r2
B − L2, θ = 0...2π (4.51)

Using the spherical workspace as the basis for a walking algorithm requires
that the sphere be mathematically defined. The sphere is defined, as shown
in Figure 4.17, as tangent to Shell 3a, Shell 4a, and centered on the y2-z2

plane. These constraints for the spherical workspace define its size, but there
is still a range of locations for the workspace: tangent to Shell 1 (farthest
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Figure 4.17: A spherical workspace simplifies the walking algorithm while
allowing robot body roll and pitch.

possible from the body), tangent to the buffer cylinder (closest to the body),
and on a continuum between these two extremes. The condition, tangent to
the buffer cylinder, was selected to reduce motor torques. A sphere in this
location is mathematically defined by Equation 4.52:

x2
2 + (y2 − (rB + rc))

2 +

(
z2 +

√
((L1 + L2)− rc)

2 − (rB + rc)
2

)2

= r2
c

(4.52)
where

rc =
(L1 + L2)−

√
L2

1 + L2
2

2
(4.53)



Chapter 5

Walking Algorithms

A range of workspaces are possible with MARS limbs. However, for walk-
ing, there is a balance between the size of the workspace and the simplicity
of the adaptive walking algorithm. Specifically, a workspace with very sim-
ple geometry results in a computationally simpler walking algorithm. Con-
versely, a workspace with very complex geometry requires more computation
to define a stride-line across the workspace. Walking algorithms presented
in this thesis use both 2D and 3D workspaces. Generally speaking the larger
workspaces are geometrically complex; however, the larger workspaces can
be geometrically simplified by only using a simple geometry within the large
workspace.

The walking algorithms presented in this paper meet several criteria which
serve to limit the possible ways they could be achieved. These criteria also
define desirable attributes which the developed walking algorithms possess.
The main focus in developing the walking algorithms was to make use of
as much functionality as possible. The MARS limbs are capable of conti-
nous motion within a 3D workspace, therefore the robot should be capable
of walking in any direction, within a range of heights, within a range of
speeds, and within a range of roll, pitch, and yaw. Further, the actuators
are capable of operating at a range of speeds from max to still, therefore
the robot should be able to continuously change its motion in response to
input. Because the development of this algorithm is part of a foundation of
research for MARS, it was decided to limit the algorithm to walking on pla-
nar surfaces for the sake of simplicity. One of the most significant decisions
in the development of these walking algorithms was to have them execute
in an iterative digital fashion. There are several other approaches, such as

52



53

analog control, or a neural network operating either as analog or digitall but
not sinked. However, digital iteration was chosen as a conceptually simple
basis for the algorithm, and also because the approach worked well with the
Dynamixel actuators. These actuators are designed to operate with daisy-
chained control wiring. Each actuator is assigned a specific ID. The position
commands for all actuators are given, each command tied to an ID. Then a
go command is given, and all actuators move to the next position. Wile such
an iterative walking algorithm is not truly continuos, the effect is satisfactory
with high iteration rates. As the iterations cycle the algorithms appear to
provide seamless instantaneous response to changes in direction, speed, and
any other allowed input.

5.1 The Abstracted Walking Algorithm

The complexity of how six limbs move together to form a walking gait can be
reduced by abstracting the problem to one limb. As each limb performs the
same role while walking, namely taking a step, a walking algorithm for any
number of limbs can be constructed by simply applying the same algorithm
to each limb. Walking is achieved by making some of the inputs to such an
algorithm dependent on the limb location. For example: from the standpoint
of the limb coordinate system, the direction that the robot is walking could
be the positive y-direction for one limb and the negative y-direction for a
limb on the opposite side of the body. Also, for statically stable gaits, the
limbs are separated into two groups which act together. One group is in
contact with the walking surface, while the other is not.

This chapter explains the algorithms developed from this abstracted ap-
proach. The two walking algorithms discussed in this chapter use the tripodal
statically-stable gait, much like an insect. Given the two possible walking
limb states of (“contact” and “non-contact”), as well as an even number of
limbs, any limb is in the state different from the limbs next to it.

5.2 The General Walking Algorithm

The general walking algorithm is based on the general workspace. This
algorithem can be used for any robot with six or more limbs kinematically
similar to MARS limbs. The limbs can be attached to the robot body at any
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point and orientation, provided all the limbs can reach the walking surface
simultaneously. The limbs can be dimentionaly dissimilar from each other
and the robot body can be of any shape, provided that a statically-stable
gait is possible. furthermore, this algorithem can except as inputs:

• direction

• speed

• walking height

• roll

• pitch

• yaw

In this algorithm an entire step is not planned at once. Rather, only a
section of the step is planned for each iteration. For each iteration, a limb
tip is moved from its current point in space to a new point along what will
be called the “stride-line.” Over the course of several iterations, the limb tip
moves along the path of the step. Though each stride-line is straight, the
direction of successive stride lines can be continuously adjusted throughout
the step motion, resulting in a curved step path. To do this, the walking
algorithm must compute intersection points of the stride-line with the shells
which make up the workspace boundary. Note that finding the equation of
the stride-line is only necessary in order to solve for intersection points with
the workspace boundary shells. Otherwise, it would only be necessary to
define the next limb tip position by adding the limb tip direction vector to
the current limb tip position. Figure 5.1 shows the stride-lines and limb tip
positions associated with a curved step path through a circular 2D workspace.

5.2.1 Defining the Next Limb Tip Location

The basic components of the general walking algorithm are shown in Fig-
ure 5.2. For each iteration, a new stride-line, dependent on the direction and
orientation of the robot body, must be found. The next limb tip location
will be on this stride-line. However, the method used to find the stride-line
will depend on whether the limb tip is in contact or not. The method for
defining each follows:
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Figure 5.1: Iteratively generated stride-lines can form curved step paths.

Figure 5.2: One iteration of the basic walking algorithm.
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For the contact limb, the stride-line passes through the current limb tip
position and is parallel to the velocity vector of the robot body. The direction
of the velocity vector of the limb tip is opposite the direction of the velocity
vector of the robot body. The next limb tip position is found by adding the
limb tip velocity vector to the current limb tip position.

For non-contact limbs, the process for finding the stride-line is more in-
volved. If the robot were directed to walk with the current velocity, the
stride-lines could be optimized for long strides. This somewhat arbitrary
long stride optimization does not necessarily improve the walking ability,
but does provide for a more evenly timed alternating gate and reduces the
number of contact/non-contact limb switches. Optimization cannot be ef-
fected mid-stride for the contact limbs, because they are fully constrained
by the robot body velocity and their current contact point. However, in this
algorithm both contact and non-contact stride-lines would ideally meet the
form in Figure 5.3. The depicted stride-line is tangent to the buffer cylin-
der. This stride-line situation ensures a long stride-line and reasonable body
stability. Most importantly, however, it is easy to define by the constraints:

• parallel to the body velocity vector

• tangent to the z-axis buffer cylinder at a given height

This walking algorithm is not designed to predict the future robot direc-
tion, speed, height, and orientation specified by the operator. Rather, the
algorithm assumes that the current inputs will remain constant, and the algo-
rithm attempts to optimize for them by moving the non-contact limbs to the
starting point of their future contact stride-lines. In practice, this method
works well because the non-contact limbs position faster than the contact
limbs and because of the high iteration rate of the algorithm. However, for
the non-contact limbs to move to an optimal position in anticipation of the
limbs’ switching, first a “pre-stride-line” and then a stride-line must be found.
The pre-stride-line is essentially the predicted future contact stride-line, ele-
vated from the walking surface to the non-contact height. The pre-stride-line
is defined using the following constraints:

• parallel to the body velocity vector

• tangent to the z-axis buffer cylinder

• a set distance above the walking surface
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Figure 5.3: The Ideal stride-lines make a long path through the workspace,
avoiding the buffer cylinder.
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The immediate purpose of defining the pre-stride-line is to identify the for-
ward point where the pre-stride-line intersects the workspace boundary–the
forward endpoint. Having defined this pre-stride-line, its forward endpoint
is then used to help define the non-contact stride-line–the actual line used to
help specify the next non-contact limb tip position. The geometry of finding
the next non-contact limb tip location is shown in Figure 5.4. A vector, ~a, is
constructed, originating at the current non-contact limb position and point-
ing toward the pre-stride-line forward endpoint. The magnitude of this vector
is twice the magnitude of the body velocity vector. The doubled magnitude
allows the non-contact limbs to reach the pre-stride-line endpoint before a
contact/non-contact limb switch is necessary. However, if the distance from
the current non-contact limb position to the pre-stride-line forward endpoint
is less than ~a, the remaining steps are skipped, and the next non-contact
limb tip position is defined as the pre-stride-line forward endpoint. A second
vector, ~b, is formed, originating at the current non-contact limb tip position
and pointing normal to the walking surface. The magnitude of ~b is equal to
a percentage (e.g. 90%) of the difference between H and h, where:

• H is the length of a vector normal to the walking surface which stretches
from the walking surface to any point on the pre-stride-line

• h is the length of a vector normal to the walking surface which stretches
from the walking surface to the current non-contact limb tip position

The sum of ~a and ~b added to the current non-contact limb tip position
gives the next non-contact limb tip position.

5.2.2 Buffer Cylinder Tangency

As discussed in Section 5.2.1, pre-stride-lines are defined as tangent to the
buffer cylinder. When the limb tip is not in contact with the surface, the
direction of the stride-line and stride height are the only inputs for finding
the stride-line. These constraints are not sufficient to fully define the line.
As the stride-line cannot intersect the z-axis singularity buffer cylinder, it is
set to be tangent to this cylinder at a point, thus sufficiently defining the
line. The point used is the tangent point of intersection between the stride-
line and the z-axis singularity buffer cylinder. If this point is outside the 3D
workspace, the point of orthogonal intersection between the height-line and
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Figure 5.4: The next non-contact limb tip location is selected so as to opti-
mize the gait for the current operator input.

the stride-line is found. Figure 5.5 displays the geometry of the non-contact
stride-line.

We can find the stride-line buffer-cylinder tangent intersection point, p,
given the direction of the stride-line (uxp, uyp, uzp) and the stride-height h.
First we find b:

h2 = r2 + b2 (5.1)

b =
√

h2 − r2 (5.2)

Next we find the angle θ:

θ = arctan
(√

u2
px + u2

py, upz

)
(5.3)

Then the law of sins is used to find zp:

zp =
b

sin θ
(5.4)

This method is demonstrated in a MATLAB m-file in Appendix A.19.
If the point (xp, yp, zp) is outside the 3D workspace, the point where the

height-line orthogonally intersects the stride-line can be used in the algo-
rithm. This point (xq, yq, zq) can be found by:
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Figure 5.5: A point tangent to the buffer cylinder, p, is used to help define
non-contact stride-lines and pre-stride-lines; however, if this point is outside
the workspace, the orthogonal intersection point between the height-line and
stride-line is used.
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~q = ~r +~b (5.5)

where

~r = r

(
upy√−u2
px + u2

py

,
−upy√−u2

px + u2
py

, 0

)
(5.6)

~b =

[
b cos θ

(
−ury√−u2

ry + u2
rx

,
ury√−u2
ry + u2

rx

)
,−b sin θ

]
(5.7)

This method is demonstrated in a MATLAB m-file in Appendix A.20.

5.2.3 Contact/Non-Contact Limb Switch

If any contact limb “nears” the end of its workspace, all limbs switch their
“contact/non-contact state.” In this algorithm, “near” is defined as less
than twice the distance travelled in one iteration. The contact/non-contact
limb-switch requires two iterations:

Iteration 1

• The next point for the non-contact limbs is defined as the forward
endpoint of a contact stride-line passing through the point directly
below the current non-contact limb tip position. (The non-contact
limbs “puts their tips down.”)

• The contact limbs and non-contact limbs are moved to the next point.
At this instant all limbs are in contact.

Iteration 2

• The original contact limbs become non-contact limbs, and their next
limb tip position is found using the non-contact limb tip position algo-
rithm. (The contact limbs “lift their tips.”)

• The original non-contact limbs (now in contact) are moved to their new
contact limb position.



62

5.2.4 Stride-Line Workspace Intersection

As mentioned in earlier, the workspace is constructed of portions of toruses,
spheres, planes, and a cylinder. Thus finding stride-line intersections with
the workspace boundary begins with finding stride-line intersections with
each geometry. Next the algorithm selects the intersection points which lie
on the shell, or boundary, discarding any not on the shell. Finally, the two
intersection points closest to the “given point” (defined below) are designated
as the endpoints of the stride-line (or the pre-stride line). The given point
for contact limbs is the current limb tip position. The given point for non-
contact limb pre-stride-lines is the point tangent to the buffer cylinder. After
the end points are found, the points are screened to determine if they lie on
the section of the base geometry which is used in the knee-up workspace.
If the points pass the screening, their directional relation to the given point
is used to designate the forward and rear endpoints in accordance with the
body direction vector.

While there are many steps to finding the next limb tip position, they
mostly deal with sorting and defining intersection points between the stride-
line and the geometries which form the workspace. therefore the foundation
of the walking algorithm can be viewed as the functions which find these
intersection points. These functions are summarized below.

Stride-Line Sphere Intersection

The intersection of the stride-line with Shells 3a, 4a, and 4b require finding
the points of intersection of a line and a sphere, as shown in Figure 5.6. This
algorithm [28], specific to this situation, is given bellow:

First find the magnitude of the line OC given the
∣∣∣ ~OC

∣∣∣, as shown in

Equation 5.9:




xOC

yOC

zOC


 =




xC

yC

zC


−




xR

yR

zR


 (5.8)

∣∣∣ ~OC
∣∣∣ =

√
x2

OC + y2
OC + z2

OC (5.9)

where the subscript OC denotes the vector ~OC, the subscript C denotes the
center point of the sphere, and the subscript R denotes the point position
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of the limb tip. Assuming that the point R0 is inside the sphere, that is∣∣∣ ~OC
∣∣∣ > r is false, intersection points are found as follows:

L = ~OC · [ux, uy, uz] (5.10)

D2 =
∣∣∣ ~OC

∣∣∣
2

= L2 (5.11)

HC2 = r2
s −D2 (5.12)

ti = L + HC (5.13)

where L is the perpendicular distance from the limb tip to the center of
the sphere, the vector u is the direction of the stride-line, D is the shortest
distance from the center of the sphere to the stride-line, HC is the distance
from an intersection point to the center of the sphere projected along the
stride-line, rs is the radius of the sphere, and ti is the distance from the limb
tip to an intersection point. Because the square root of HC yields both a
positive and negative value, ti yields two values, one for each intersection
point. These intersection points can then be found as shown in Equation
5.14:

(xi, yi, zi) = R0 + tiRd (5.14)

However, if the point R0 is outside the sphere, the line may not intersect
the sphere at all. If HC2 < 0, the line does not intersect the sphere at any
point. If HC2 = 0 the line is tangent to the sphere and therefore intersects
at one point. For this situation ti is simply equal to L.

This function can be found as a MATLAB m-file in Appendix A.28.

Stride-Line Torus Intersection

The method used to find the points of intersection of a line with a torus
shell is as follows: The parametric equation for a torus was algebraically
manipulated using trigonometric identities to form an expression in terms of
x, y, z, r, and α [29]. The parametric equation for a line was substituted
into this expression to form a polynomial in terms of t. The roots of this
polynomial are then used to find the points of intersection. The method of
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Figure 5.6: The intersection points of a stride-line with spherical Shells 3a,
4a, and 4b are found using this geometric approach.

manipulating and combining the equations for the line and torus to find the
roots of t follows:

Parametric equation of a torus:

x = (r + α cos v) cos u
y = (r + α cos v) sin u
z = α sin v

(5.15)

where r is the radius from the center of the hole to the center of the torus
tube, and α is the radius of the tube.

Parametric equation of a line:

x = x1 + tux

y = y1 + tuy

z = z1 + tuz

(5.16)

where (x1, y1, z1) are a point on the line, t is any real number, and (ux, uy, uz)
is the unit vector direction of the line.

By squaring the x and y terms of the parametric equation of the torus
we have:

x2 = (r + α cos v)2 cos2 u (5.17)

y2 = (r + α cos v)2 sin2 u (5.18)

Adding these squared terms gives:
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x2 + y2 = (r + α cos v)2 (
cos2 u + sin2 u

)
(5.19)

x2 + y2 = (r + α cos v)2 (5.20)

Including the squared z term:

z2 = (α sin v)2 = α2 sin2 v (5.21)

gives:

x2 + y2 + z2 = (r + α cos v)2 + α2 sin2 v (5.22)

x2 + y2 + z2 = r2 + 2rα cos v + α2 cos2 v + α2 sin2 v (5.23)

x2 + y2 + z2 = r2 + 2rα cos v + α2
(
cos2 v + sin2 v

)
(5.24)

x2 + y2 + z2 = r2 + 2rα cos v + α2 (5.25)

By subtracting r2 and α2 from both sides and then dividing both sides by
2rα the cos term is isolated:

x2 + y2 + z2 − r2 − α2 = 2rα cos v (5.26)

x2 + y2 + z2 − r2 − α2

2rα
= cos v (5.27)

From the z term for the parametric equation of a torus we have:

z = α sin v (5.28)

sinv =
z

α
(5.29)

Using this relation the cos term can be eliminated:

(
x2 + y2 + z2 = r2 − α2

2rα

)2

= cos2 v (5.30)

(
x2 + y2 + z2 = r2 − α2

2rα

)2

+ sin2 v = cos2 v + sin2 v (5.31)

(
x2 + y2 + z2 = r2 − α2

2rα

)2

+ sin2 v = 1 (5.32)
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(
x2 + y2 + z2 = r2 − α2

2rα

)2

+
z

α
= 1 (5.33)

Mathematica was then used to substitute in the (x, y, z) terms from the
parametric equation for a line and re-order the expression as a polynomial
in terms of t. This Mathematica script can be found in Appendix B. This
can be rewritten as:

t4
a

4f
+ t3

b

f
+ t2

c

2f
+ t

d

f
+

e

4f
= o (5.34)

where:

a =
(
u2

x + u2
y + u2

z

)2
(5.35)

b =
(
u2

x + u2
y + u2

z

)
(uxx1 + uyy1 + uzz1) (5.36)

c = 4uyuzy1z1 + 4uxx1 (uyy1 + uzz1) +
u2

x (−x2 − α2 + 3x2
1 + y2

1 + z2
1) +

u2
y (−x2 − α2 + x2

1 + 3y2
1 + z2

1) +
u2

z (x2 − α2 + x2
1 + y2

1 + 3z2
1)

(5.37)

d = uxx1 (−x2 − α2 + x2
1 + y2

1 + z2
1) +

uyy1 (−x2 − α2 + x2
1 + y2

1 + z2
1) +

uzz1 (x2 − alpha2 + x2
1 + y2

1 + z2
1) +

(5.38)

e = x4
1 + y4

1 − 2y2
1 (x2 + α2 − z2

1)−
u2x

2
1 (x2 + α2 − y2

1 − z2
1) + (x2 − α2 + z2

1)
2 (5.39)

f = x2α2 (5.40)

Once the roots are found, they are plugged back into the parametric equation
for the line to solve for the points of intersection.

This function can be found as a MATLAB m-file in Appendix A.27.

Stride-Line Plane Intersection

The intersection point, between the stride-line and the sections of planes that
partially bound the general workspace, is found using a special case of line-
plane intersection. The plane will always contain the z2-axis and therefore
also the point (0, 0, 0). The point of intersection is found by first finding the
value t as shown in Equation 5.41:
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t =
− (xa + yb + zc)

[
a b c

]



ux

uy

uz




(5.41)

where (x, y, z) is a point on the line, (ux, uy, uz) is the direction vector of
the line, and (a, b, c) is a vector perpendicular to the plane. The value of
t is then plugged back into the parametric equation for the line to find the
intersection point (xint, yint, zint):

xint = x + uxt
yint = y + uyt
zint = z + uzt

(5.42)

This method is demonstrated as a MATLAB m-file in Appendix A.29.

Stride-Line Buffer-Cylinder Intersection

The workspace is further bounded by a cylinder which surounds the z-axis.
Due to the singularity along the z-axis, a buffer-cylinder is required to ensure
that the motor velocities can be achieved. The points of intersection of the
stride-line with this cylinder are found by first finding the intersection of
the stride-line and a circle in 2D. Looking at the stride-line and the buffer
cylinder in the x-y plane, intersection points are found between the line and
the circle. These points are then used in the x and y components of the
parametric equation of the line to find the value of t. The z value can then
be found using t. Given a point on the line (x, y, z) and the direction vector
of the line (ux, uy, uz), some terms are defined:

dr =
√

u2
x + u2

y (5.43)

D = x (y + uy)− y (x + ux) (5.44)

Points of intersection are given by:

xint =
Ddy ± sgn (uy) ux

√
r2d2

r −D2

d2
r

(5.45)

yint =
−Ddy ± |uy|

√
r2d2

r −D2

d2
r

(5.46)
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where (xint, yint) is an intersection point, and sgn is defined as:

sgn (x) =

{ −1 for x < 0
1 otherwise.

(5.47)

Now, by solving the x or y component of the parametric equation of the
line for t:

t =
xint − x

ux

(5.48)

the z intersection points are found:

zint = z + uzt (5.49)

This method for finding the points of intersection of the stride-line and
buffer cylinder is demonstrated as a MATLAB m-file in Appendix A.18.

5.3 Attempted Implementation of the Gen-

eral Walking Algorithm

A set of functions was generated to demonstrate the feasibility of the general
walking algorithm. This was implemented using a combination of LabVIEW
and MATLAB to generate joint angles. A Mathematica script was then
used to generate a simulation of MARS walking. These MATLAB m-files,
Mathematica script, as well as a brief description of the LabVIEW virtual
instrument (VI) are found in Appendix A.

Unfortunately this set of functions never produced satisfactory results.
The set of MATLAB m-files combined with LabVIEW VI, was capable of
generating sets of joint angles. However, when these angles were animated
using the Mathematica script, the simulation would make a short step-like
motion and then the limbs would quickly extend beyond the physical limits
of MARS and make quick repetitive motions physically impossible for the
robot. A description of the function set is included for the following reasons:
while the complete program was never shown to produce satisfactory results;
the Mathematica simulator as well as all but the top level m-files were shown
to work fine; an understanding of how the algorithm was implemented may
be useful for those continuing work on MARS; and the function set is the
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most thorough recorded explanation of how the general walking algorithm
could work.

The basic architecture of the general walking algorithm is shown in Ap-
pendix A. A LabVIEW VI is used to collect user control input and output
joint angles. A VI was chosen instead of an m-file because of the ease of us-
ing input devices with LabVIEW as well as the fact that LabVIEW VI’s had
already been developed in RoMeLa for communicating with the Dynamixel
actuators.

The VI runs two embedded MATLAB m-files within a timed loop. The
first m-file, named Function Call in Figure A.1, serves to call a set of MAT-
LAB functions which output the next limb positions. It should be noted that
limbCONTROL could be used directly in place of Function Call. Function
Call is used instead because limbCONTROL is a lengthy file which is difficult
to change in the VI interface. In the event that a limb switch is necessary,
Function Call outputs the next two sets of limb tip positions from limbCON-
TROL. If two sets of limb tip positions are called, the VI stores the second
set. During the next iteration of the loop, the second set is used instead of
running Function Call again. For each iteration of the VI loop, the imbed-
ded m-file Inverse Kinematics converts the limb tip position for each limb
to joint angles. The VI then saves the joint angles in a text file which can
be read by Mathematica for the test simulation. If the test simulations had
ever proved successful, the joint angles would then have been used as input
to the existing VI used to control the Dynamixel motors. A more detailed
description of the VI can be found in Appendix A.2. The m-file Function
Call can be found in Appendix A.3. The m-file Inverse Kinematics can be
found in Appendix A.4.

The m-file limbCONTROL simply calls a series of m-files which, given
the end points of a stride-line, find the next limb tip position for each limb.
These m-files are called in order, one after the other. The m-file names and
functional description follow:

• totalTIPtranslation: This function finds the limb tip translation due
to body rotation and translation.

• limbFRAMEdirection: This function translates the body cordinate di-
rection vector (ux, uy, uz) to each limb cordinate frame.

• findSTRIDEline: This function calls the functions MARScontactLINE
and MARSnoncontactLINE to find the endponts of stride-lines.
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Figure 5.7: The basic architecture of the general walking algorithm consists
of a LabVIEW VI which calls a set of MATLAB m-files.
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• directionSTRIDEline: This function aranges the points which describe
a stride-line so that the first point is in the forward direction of the
limb tip motion.

• directionCHECK: Because “forward” is in opposite directions for con-
tact and not-contact limbs, this function ensures that the forward end-
point is corrected where necessary.

• nonContactSTRIDEline: This function ensures that the non-contact
stride-line includes the current limb tip position and is not just the
pre-strideline.

• noncontactSTEPvector: This function finds the non-contact directional
vector and multiplies it by the step size.

• nextTIPpos: This function finds the next limb tip position by adding
the step vector to the current tip position.

• limbSWITCHtest: This function tests to see if a limb switch in neces-
sary, based on how close the next limb tip position is to the workspace
boundary.

• tipPOSoutput: This function outputs the next limb tip positions. If a
limb switch is necessary, this function outputs two sets of limb tip po-
sitions, instead of one. To find the second set of limb tip positions, this
function calls noncontactLINE. It does not call contactLINE because
the noncontactLINE function is used to find the stride-line for non-
contact limbs which are switching to contact limbs, as well as contact
limbs which are switching to non-contact limbs.

These m-files can be found in Appendix A.6 through Appendix A.15.
The next level of functions find the endpoints of the stride-line. Two

separate functions are used: contactLINE is used for limbs in contact with
walking surface, and noncontactLINE is used for limbs which are not in
contact with the walking surface. Each function calls the shell and plane
functions in order to find all possible intersection points. However, if an
intersection point is closer to the current limb tip position, in either direction
along the stride-line, the stored point is replaced. In this manner these
functions find the two closest intersection points to the current limb tip
position. The m-file contactLINE checks for intersections on Shells 1 through
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4 as well as the two bounding planar sections, by calling the appropriate
functions. The m-file noncontactLINE calls all the same functions except
for Shell3Int. This is because it is impossible for the non-contact line to
intersect Shell 3, unless the walking height of the robot is less than the radius
of Shell 3. However, as the walking height of the robot is kept between the
radius of Shell 3 and the radius of Shell 4, this cannot happen. The m-
file contactLINE also checks for intersection points with the buffer cylinder
by calling the CylInt function. The m-file noncontactLINE calls the m-file
tanpoint or tanpointALT in order to use a point other than the current limb
tip position to find the closest pre-strideline endpoints. This is done because
the current limb tip position is not necessarily on the pre-stride-line. The
m-file tanpoint is used to find a point of tangent to the buffer cylinder on a
line parallel to the robot body velocity. If the point returned by tanpoint is
outside the general workspace, tanpointALT is used to find the orthogonal
intersection point between the height-line and stride-line.

Each shell or plane which bounds the general workspace has a corre-
sponding m-file. These m-files find all the points of intersection between
the stride-line and the given surface. Intersection points with torus sections
(Shells 1 and 2) are found by Shell1Int and Shell2Int, respectively. These
functions each call the Roots m-file, which returns the values of t or roots to
the polynomial, which represents the equating of the equation of a torus and
the equation of a line. The m-files Shell1Int and Shell2Int then substitute
these t values into the parametric equation of the stride-line or pre-stride-line
to find the points of intersection. The points of intersection are screened so
that points which do not lie on the section of the torus which bounds the
general workspace are excluded.

Points of intersection with the two spherical shells, Shell 3 and Shell 4 are
output by m-file Shell3Int and Shell4Int, respectively. Each of these functions
call the CircLineInt m-file, which outputs points of intersection between a
line and a circle. These points are then screened by Shell3Int and Shell4Int
to ensure that they lie on the section of the sphere which bounds the general
workspace.

Similarly, the points of intersection with the two planar sections are out-
put by the m-files Plane1Int and Plane2Int. These functions call the m-
file PlaneInt, which finds the points of intersection of a line and a plane
which contains the z2-axis. The points are then screened by Plane1Int and
Plane2Int to ensure that they lie on the section of the plane which bounds
the general workspace. The m-file Plane1Int finds points of intersection on
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the plane which intersects the x2-y2 plane at -10 degrees, while Plane2Int
finds point of intersection on the plane which intersects the x2-y2 plane at
190 degrees.

5.4 Implemented Walking Algorithm

A simplified version of the general walking algorithm was developed and
implemented on MARS by Open Tech Inc. This adaptive iterative walking
algorithm uses the 2D circular workspace. Therefore this walking algorithm
is not fully capable of changing robot body roll and pitch while walking.
However, the algorithm is computationally less intensive. Currently Open
Tech’s algorithm operates on a MACBook Pro laptop at 10 to 60 Hz.

There are two inputs to this algorithm:

• The translational vector in 3-space

• the angular velocity about the z0-axis

The inputs are translated from body coordinates to limb coordinates. This
translation allows for the limbs to be attached to the body at any position and
orientation. The next limb tip position is found, and the inverse kinematics
are used to generate the actuator positions. The contact limb tips move with
each iteration within the circular workspace. However, if the next limb tip
position is found to be outside the workspace, the limbs switch. The non-
contact limb tips move at a height above the walking surface. The height of
the non-contact limb tips is specified by Equation 5.50:

Height =
√

1− (rT − rc) (5.50)

where rT is the distance from the limb tip to the center of the circular
workspace, and rc is the radius of the circular workspace. The non-contact
limb tips must move in the opposite direction of the contact limb tips in order
to reach the forward edge of the workspace before the limb switch. Further
the non-contact limbs must move at a greater velocity than the contact limbs
as the algorithm inputs may change in the middle of a stride. If the non-
contact limb tips did not move faster than the contact limb tips, constant
change in direction could result in a situation where the limbs would need to
continuously switch and not be able to achieve the required velocity of the
robot body.



Chapter 6

Future Work

The robot design, workspace analysis, and gait generation algorithms pre-
sented in this thesis for MARS are only the beginning of a body of research
which could be explored on this project. In this chapter the most probable
next steps are briefly discussed.

6.1 New Approach to Replace Inverse Kine-

matics

Revolute Joint 1 was not used for walking in the algorithms of this the-
sis. However, it is possible to use all four degrees of freedom of the limbs
for walking. During the time frame of the work on this thesis, Open Tech
developed an independent algorithm for positioning any multi-DOF robotic
system. This algorithm is based on a lookup table and neural net combina-
tion which determines the optimal forward kinematics for a future position,
given the current position. This algorithm is kinematics-independent in that
it learns the kinematics for the device from device position and orientation
feedback. This code could easily be used in the walking algorithms defined in
this thesis in place of the inverse kinematics, thus allowing for the use of all
four degrees of freedom while walking. However, such an application would
require further workspace analysis, as the workspace has not been analyzed
for the use of all four DOF.

74
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6.2 Workspace Analysis Using Spherical Co-

ordinates

Rectilinear coordinates were used in this thesis for workspace analysis. How-
ever, the analysis could be simplified with the use of spherical coordinates.
Advantages to spherical coordinates include: a more direct relationship be-
tween actuator position and kinematic equations, simplification of the ex-
pressions defining the workspace, reduction in computational time due to
the elimination of trigonometric functions.

6.3 Kinematics Redesign

The MARS limbs were designed to be kinematically similar to the JPL
LEMUR IIb robot. While this design provides for the desirable character-
istics of a kinematically-spherical proximal joint and a 1-DOF distal joint,
other configurations can provide the same characteristics. One of the main
challenges for the design of MARS was developing a rigid structure around
the proximal joint. This was challenging primarily because of the location of
Revolute Joint 1. Redesign of the proximal joint could provide a much stiffer
structure and still have the three axes of rotation intersect at a single point.
Aspects to consider in redesign include: how the workspace is effected, how
the inverse kinematics is effected, how the Jacobian and therefore singulari-
ties are effected, and how the torque and stresses of the both the motors and
structure are effected.

6.4 Alternative Walking Algorithms

This thesis presents only one of many possible walking algorithms for the
MARS platform. This section discusses other algorithms which warrant con-
sideration.

Insect-based walking algorithms have been studied and implemented over
the past several years. These algorithms use reactionary gate formation, dis-
tributed control, or a combination of the two. The implementation platforms
are primarily patterned after cockroaches or stick insects, with three legs in
a row on either side of the body. However, such algorithms could also be im-
plemented on the MARS platform. By segregating the MARS limbs into two
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groups on either side of an arbitrary bisection line, the platform can function–
in a limited capacity–similar to an insect with a fixed forward direction. By
assigning a single stride to each limb, the limbs can function similarly to
those used with insect-based algorithms. These two limitations produce a
platform with functionality equal to platforms used for insect-based algo-
rithm demonstration. The further expansion to full MARS capabilities with
the use of insect-based control algorithms is a worthy candidate for future
research.

Instead of using a continuously adaptive walking algorithm, one which
adapts at the completion of each step could be used. Such an algorithm could
operate similarly to the algorithm of this thesis, except that new stride-lines
would be found at the completion of a full step rather than iteratively during
a step.

6.5 Walking Algorithm Additions

Many useful functions already employed with other hexapoidal research plat-
forms could be implemented on the MARS platform without the implemen-
tation of additional sensors. Such functions requiring force feedback could
make use of the current/force feedback utility of the Dynamixel actuators.
Autonomous navigation of rough terrain could be greatly enhanced by the
use of searching algorithms and an elevator reflex. If a leg does not encounter
a solid foothold, it searches in progressively higher and farther reaching mo-
tions until one is found. Similarly if a step motion is blocked by an obstacle,
an elevator reflex causes the leg to step higher to avoid the obstacle. Load
balancing, via actuator force feedback, could be employed to reduce body
tilt and improve stability while traversing rough terrain.



Appendix A

Programming Developed for
the General Walking Algorithm

A LabVIEW VI and a set of MATLAB m-files were developed to demonstrate
the general workspace walking algorithm. A Mathematica script was used
to simulate the walking gait of MARS using the output from the LabVIEW
VI. These functions, program, and script are presented in this appendix.

The VI and m-files for finding a stride-line in the general workspace are
architecturally arranged as shown in Figure A.1. It should be noted that for
each iteration, stride-line intersections with all shells, planes, and the buffer
cylinder are checked.

The programing presented in this appendix are ordered as follows:

• The Mathematica script used to simulate the MARS gait

• A description of the LabVIEW VI

• The MATLAB m-files arranged in accordance with Figure A.1: top to
bottom, left to right

A.1 Mathematica Gait Simulation Script

Introduction

The purpose of this Mathematica notebook is to generate animations for
visualizing the motion of the LEMUR IIa robot. It first defines a set of

77
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Figure A.1: A set of hierarchically-arranged MATLAB functions were devel-
oped to demonstrate the feasibility of using a computer to find the stride-line
through the general workspace.
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graphics functions for initializing the geometry and defines the configuration
routine for the LEMUR IIa model. Then it reads in a data file (text file)
and produces a series of figures to generate the animation (it can export a
QuickTime movie file on a Macintosh system) The code is flexible and easy
to modify to include many features. It can be used for checking the joint
motion data before testing on real hardware and to explore new types of
motion, or to generate animation movie files and figures for presentations,
reports, or proposals. Our next task is to include a general gait planner,
collision detection, static force & stability analysis code (with gravity and/or
sticky feet), camera vision models which will produce movies with views from
the camera which can be very helpful.
All work will be shared with the good people at JPL.

Turn off spelling error warnings
Off[General::spelll]Off[General::spelll]Off[General::spelll]
Off[General::spell]Off[General::spell]Off[General::spell]

Spatial Kinematics Functions

D-H Matrices

Define the D-H Matrix using Craig’s notation (x then z)
DH[a , α , d , θ ]:=DH[a , α , d , θ ]:=DH[a , α , d , θ ]:=
{{Cos[θ],−Sin[θ], 0, a}, {Cos[α]Sin[θ], Cos[α]Cos[θ],−Sin[α],−dSin[α]},{{Cos[θ],−Sin[θ], 0, a}, {Cos[α]Sin[θ], Cos[α]Cos[θ],−Sin[α],−dSin[α]},{{Cos[θ],−Sin[θ], 0, a}, {Cos[α]Sin[θ], Cos[α]Cos[θ],−Sin[α],−dSin[α]},
{Sin[α]Sin[θ], Cos[θ]Sin[α],Cos[α], dCos[α]}, {0, 0, 0, 1}}{Sin[α]Sin[θ],Cos[θ]Sin[α], Cos[α], dCos[α]}, {0, 0, 0, 1}}{Sin[α]Sin[θ], Cos[θ]Sin[α], Cos[α], dCos[α]}, {0, 0, 0, 1}}

Extract the rotation matrix/displacement vector from the D-H Matrix
GetR[H ]:={{H[[1, 1]],H[[1, 2]],H[[1, 3]]}, {H[[2, 1]],H[[2, 2]],H[[2, 3]]},GetR[H ]:={{H[[1, 1]],H[[1, 2]],H[[1, 3]]}, {H[[2, 1]],H[[2, 2]],H[[2, 3]]},GetR[H ]:={{H[[1, 1]], H[[1, 2]], H[[1, 3]]}, {H[[2, 1]],H[[2, 2]],H[[2, 3]]},
{H[[3, 1]], H[[3, 2]], H[[3, 3]]}}{H[[3, 1]],H[[3, 2]],H[[3, 3]]}}{H[[3, 1]],H[[3, 2]],H[[3, 3]]}}
Getd[H ]:={H[[1, 4]],H[[2, 4]],H[[3, 4]]}Getd[H ]:={H[[1, 4]],H[[2, 4]],H[[3, 4]]}Getd[H ]:={H[[1, 4]],H[[2, 4]],H[[3, 4]]}

Graphics Functions

Rotation & Translation Matrices

These commands set up the Rotation matrices and use the matrices to set up more
complex rotations and translations
<< Graphics̀Shapes̀<< Graphics̀Shapes̀<< Graphics̀Shapes̀
General::obspkg : Graphics̀Shapes̀ is now obsolete. The legacy version being loaded may conflict with current Mathematica functionality. See the Compatibility Guide for updating information.
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Rotz[t ]:={{Cos[t],−Sin[t], 0}, {Sin[t], Cos[t], 0}, {0, 0, 1}}Rotz[t ]:={{Cos[t],−Sin[t], 0}, {Sin[t],Cos[t], 0}, {0, 0, 1}}Rotz[t ]:={{Cos[t],−Sin[t], 0}, {Sin[t], Cos[t], 0}, {0, 0, 1}}
Rotx[t ]:={{1, 0, 0}, {0, Cos[t],Sin[t]}, {0,−Sin[t], Cos[t]}}Rotx[t ]:={{1, 0, 0}, {0, Cos[t], Sin[t]}, {0,−Sin[t], Cos[t]}}Rotx[t ]:={{1, 0, 0}, {0,Cos[t], Sin[t]}, {0,−Sin[t], Cos[t]}}
Roty[t ]:={{Cos[t], 0,Sin[t]}, {0, 1, 0}, {−Sin[t], 0,Cos[t]}}Roty[t ]:={{Cos[t], 0, Sin[t]}, {0, 1, 0}, {−Sin[t], 0, Cos[t]}}Roty[t ]:={{Cos[t], 0, Sin[t]}, {0, 1, 0}, {−Sin[t], 0, Cos[t]}}
Rotz2[t ]:={{Cos[t],−Sin[t], 0, 0}, {Sin[t],Cos[t], 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}Rotz2[t ]:={{Cos[t],−Sin[t], 0, 0}, {Sin[t], Cos[t], 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}Rotz2[t ]:={{Cos[t],−Sin[t], 0, 0}, {Sin[t], Cos[t], 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}
Rotx2[t ]:={{1, 0, 0, 0}, {0, Cos[t], Sin[t], 0}, {0,−Sin[t], Cos[t], 0}, {0, 0, 0, 1}}Rotx2[t ]:={{1, 0, 0, 0}, {0,Cos[t], Sin[t], 0}, {0,−Sin[t],Cos[t], 0}, {0, 0, 0, 1}}Rotx2[t ]:={{1, 0, 0, 0}, {0, Cos[t],Sin[t], 0}, {0,−Sin[t],Cos[t], 0}, {0, 0, 0, 1}}
Roty2[t ]:={{Cos[t], 0, Sin[t], 0}, {0, 1, 0, 0}, {−Sin[t], 0, Cos[t], 0}, {0, 0, 0, 1}}Roty2[t ]:={{Cos[t], 0, Sin[t], 0}, {0, 1, 0, 0}, {−Sin[t], 0, Cos[t], 0}, {0, 0, 0, 1}}Roty2[t ]:={{Cos[t], 0,Sin[t], 0}, {0, 1, 0, 0}, {−Sin[t], 0, Cos[t], 0}, {0, 0, 0, 1}}
TranzX[d ]:={{1, 0, 0, d}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}TranzX[d ]:={{1, 0, 0, d}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}TranzX[d ]:={{1, 0, 0, d}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}
TranzY[d ]:={{1, 0, 0, 0}, {0, 1, 0, d}, {0, 0, 1, 0}, {0, 0, 0, 1}}TranzY[d ]:={{1, 0, 0, 0}, {0, 1, 0, d}, {0, 0, 1, 0}, {0, 0, 0, 1}}TranzY[d ]:={{1, 0, 0, 0}, {0, 1, 0, d}, {0, 0, 1, 0}, {0, 0, 0, 1}}
TranzZ[d ]:={{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, d}, {0, 0, 0, 1}}TranzZ[d ]:={{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, d}, {0, 0, 0, 1}}TranzZ[d ]:={{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, d}, {0, 0, 0, 1}}
RotationMatrix3D[tx , ty , tz ]:=Rotx[tx].Roty[ty].Rotz[tz]RotationMatrix3D[tx , ty , tz ]:=Rotx[tx].Roty[ty].Rotz[tz]RotationMatrix3D[tx , ty , tz ]:=Rotx[tx].Roty[ty].Rotz[tz]
RotationMatrix3D2[tx , ty , tz , dx , dy dz ]:=RotationMatrix3D2[tx , ty , tz ,dx ,dy dz ]:=RotationMatrix3D2[tx , ty , tz , dx ,dy dz ]:=
Rotx2[tx].Roty2[ty].Rotz2[tz].TranzX[dx].TranzY[dy].TranzZ[dz]Rotx2[tx].Roty2[ty].Rotz2[tz].TranzX[dx].TranzY[dy].TranzZ[dz]Rotx2[tx].Roty2[ty].Rotz2[tz].TranzX[dx].TranzY[dy].TranzZ[dz]
RotateShapeR[shape , R ]:=RotateShapeR[shape , R ]:=RotateShapeR[shape , R ]:=
Block[{rotmat = R},Block[{rotmat = R},Block[{rotmat = R},
shape/.{poly : Polygon[ ] :→ Map[(rotmat.#)&, poly, {2}],shape/.{poly : Polygon[ ] :→ Map[(rotmat.#)&, poly, {2}],shape/.{poly : Polygon[ ] :→ Map[(rotmat.#)&, poly, {2}],
line : Line[ ] :→ Map[(rotmat.#)&, line, {2}],line : Line[ ] :→ Map[(rotmat.#)&, line, {2}],line : Line[ ] :→ Map[(rotmat.#)&, line, {2}],
point : Point[ ] :→ Map[(rotmat.#)&,point, {1}]}]point : Point[ ] :→ Map[(rotmat.#)&, point, {1}]}]point : Point[ ] :→ Map[(rotmat.#)&, point, {1}]}]
TransformShape[shape ,R ,d ]:=TranslateShape[RotateShapeR[shape, R], d]TransformShape[shape , R , d ]:=TranslateShape[RotateShapeR[shape, R], d]TransformShape[shape , R , d ]:=TranslateShape[RotateShapeR[shape, R], d]

Redering Options

ShowOptions sets up the rendering characteristics. Modify this to change carema
view angles, lighting conditions, etc.
ShowOptions = {PlotRange → All, ViewPoint → {3, 1, 1},BoxRatios → {22, 20, 6}};ShowOptions = {PlotRange → All,ViewPoint → {3, 1, 1}, BoxRatios → {22, 20, 6}};ShowOptions = {PlotRange → All, ViewPoint → {3, 1, 1}, BoxRatios → {22, 20, 6}};

Link Primitives

These commands set up the shapes of which the limbs (or any objects) are com-
posed.
RJoint[r , h ]:={Cylinder[r, h/2, 12], TranslateShape[Cone[r, 0, 12], {0, 0, h/2}],RJoint[r , h ]:={Cylinder[r, h/2, 12], TranslateShape[Cone[r, 0, 12], {0, 0, h/2}],RJoint[r , h ]:={Cylinder[r, h/2, 12], TranslateShape[Cone[r, 0, 12], {0, 0, h/2}],
TranslateShape[Cone[r, 0, 12], {0, 0,−h/2}]}TranslateShape[Cone[r, 0, 12], {0, 0,−h/2}]}TranslateShape[Cone[r, 0, 12], {0, 0,−h/2}]}
XBox[w , h ]:=XBox[w , h ]:=XBox[w ,h ]:=
{Polygon[{{0, w/2, w/2}, {0,−w/2, w/2}, {0,−w/2,−w/2}, {0, w/2,−w/2},{Polygon[{{0, w/2, w/2}, {0,−w/2, w/2}, {0,−w/2,−w/2}, {0, w/2,−w/2},{Polygon[{{0, w/2, w/2}, {0,−w/2, w/2}, {0,−w/2,−w/2}, {0, w/2,−w/2},
{0, w/2, w/2}}],{0, w/2, w/2}}],{0, w/2, w/2}}],
Polygon[{{h,w/2, w/2}, {h,−w/2, w/2}, {h,−w/2,−w/2}, {h,w/2,−w/2},Polygon[{{h,w/2, w/2}, {h,−w/2, w/2}, {h,−w/2,−w/2}, {h, w/2,−w/2},Polygon[{{h,w/2, w/2}, {h,−w/2, w/2}, {h,−w/2,−w/2}, {h,w/2,−w/2},
{h,w/2, w/2}}],{h, w/2, w/2}}],{h,w/2, w/2}}],
Polygon[{{0, w/2, w/2}, {0,−w/2, w/2}, {h,−w/2, w/2}, {h,w/2, w/2},Polygon[{{0, w/2, w/2}, {0,−w/2, w/2}, {h,−w/2, w/2}, {h,w/2, w/2},Polygon[{{0, w/2, w/2}, {0,−w/2, w/2}, {h,−w/2, w/2}, {h,w/2, w/2},
{0, w/2, w/2}}],{0, w/2, w/2}}],{0, w/2, w/2}}],
Polygon[{{0,−w/2, w/2}, {0,−w/2,−w/2}, {h,−w/2,−w/2}, {h,−w/2, w/2},Polygon[{{0,−w/2, w/2}, {0,−w/2,−w/2}, {h,−w/2,−w/2}, {h,−w/2, w/2},Polygon[{{0,−w/2, w/2}, {0,−w/2,−w/2}, {h,−w/2,−w/2}, {h,−w/2, w/2},
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{0,−w/2, w/2}}],{0,−w/2, w/2}}],{0,−w/2, w/2}}],
Polygon[{{0,−w/2,−w/2}, {0, w/2,−w/2}, {h,w/2,−w/2}, {h,−w/2,−w/2},Polygon[{{0,−w/2,−w/2}, {0, w/2,−w/2}, {h,w/2,−w/2}, {h,−w/2,−w/2},Polygon[{{0,−w/2,−w/2}, {0, w/2,−w/2}, {h,w/2,−w/2}, {h,−w/2,−w/2},
{0,−w/2,−w/2}}],{0,−w/2,−w/2}}],{0,−w/2,−w/2}}],
Polygon[{{0, w/2,−w/2}, {0, w/2, w/2}, {h,w/2, w/2}, {h,w/2,−w/2},Polygon[{{0, w/2,−w/2}, {0, w/2, w/2}, {h,w/2, w/2}, {h,w/2,−w/2},Polygon[{{0, w/2,−w/2}, {0, w/2, w/2}, {h,w/2, w/2}, {h,w/2,−w/2},
{0, w/2,−w/2}}]}{0, w/2,−w/2}}]}{0, w/2,−w/2}}]}
ZBox[w ,h ]:=RotateShape[XBox[w, h], 0,−90Degree, 0]ZBox[w , h ]:=RotateShape[XBox[w, h], 0,−90Degree, 0]ZBox[w , h ]:=RotateShape[XBox[w, h], 0,−90Degree, 0]
LinkX[r ,h , l ]:={RJoint[r, h],XBox[1.2r, l]}LinkX[r , h , l ]:={RJoint[r, h],XBox[1.2r, l]}LinkX[r , h , l ]:={RJoint[r, h], XBox[1.2r, l]}
LinkZ[r , h , l ]:={RJoint[r, h], ZBox[1.2r, l]}LinkZ[r , h , l ]:={RJoint[r, h], ZBox[1.2r, l]}LinkZ[r ,h , l ]:={RJoint[r, h],ZBox[1.2r, l]}

LEMUR IIa

Kinematic Definition

The DefineLEMUR command is used before plotting to dimension the LEMUR
DefineLEMUR[l0 , l1 , l2 , r , h ]:=(DefineLEMUR[l0 , l1 , l2 , r , h ]:=(DefineLEMUR[l0 , l1 , l2 , r , h ]:=(
Sides = Cylinder[188.340, 30, 6];Sides = Cylinder[188.340, 30, 6];Sides = Cylinder[188.340, 30, 6];
Link0 = LinkX[r, h, l0];Link0 = LinkX[r, h, l0];Link0 = LinkX[r, h, l0];
Link1 = LinkX[r, h, 0];Link1 = LinkX[r, h, 0];Link1 = LinkX[r, h, 0];
Link2 = LinkX[r, h, 0];Link2 = LinkX[r, h, 0];Link2 = LinkX[r, h, 0];
Link3 = LinkX[r, h, l1];Link3 = LinkX[r, h, l1];Link3 = LinkX[r, h, l1];
Link4 = LinkX[r, h, l2];Link4 = LinkX[r, h, l2];Link4 = LinkX[r, h, l2];
Link6 = LinkX[1, 1, 5];Link6 = LinkX[1, 1, 5];Link6 = LinkX[1, 1, 5];
H0[t0 ]:=DH[0, 0, 0, t0];H0[t0 ]:=DH[0, 0, 0, t0];H0[t0 ]:=DH[0, 0, 0, t0];
H1[t1 ]:=DH[l0, 0, 0, t1];H1[t1 ]:=DH[l0, 0, 0, t1];H1[t1 ]:=DH[l0, 0, 0, t1];
H2[t2 ]:=DH[0, 90Degree, 0, t2];H2[t2 ]:=DH[0, 90Degree, 0, t2];H2[t2 ]:=DH[0, 90Degree, 0, t2];
H3[t3 ]:=DH[0,−90Degree + t3, 0, 0];H3[t3 ]:=DH[0,−90Degree + t3, 0, 0];H3[t3 ]:=DH[0,−90Degree + t3, 0, 0];
H4[t4 ]:=DH[l1,−90Degree, 0, t4]; )H4[t4 ]:=DH[l1,−90Degree, 0, t4]; )H4[t4 ]:=DH[l1,−90Degree, 0, t4]; )

The ConfigureLEMUR command is used during plotting to orient each limb
individually
ConfigureLEMUR[t0 , t1 , t2 , t3 , t4 , t10 , t11 , t12 , d1 , d2 , d3 ]:=(ConfigureLEMUR[t0 , t1 , t2 , t3 , t4 , t10 , t11 , t12 ,d1 , d2 ,d3 ]:=(ConfigureLEMUR[t0 , t1 , t2 , t3 , t4 , t10 , t11 , t12 ,d1 , d2 , d3 ]:=(
Htemp = TranzX[d1].TranzY[d2].TranzZ[d3].Rotz2[t10].Rotx2[t11].Roty2[t12].H0[t0];Htemp = TranzX[d1].TranzY[d2].TranzZ[d3].Rotz2[t10].Rotx2[t11].Roty2[t12].H0[t0];Htemp = TranzX[d1].TranzY[d2].TranzZ[d3].Rotz2[t10].Rotx2[t11].Roty2[t12].H0[t0];
Rin = GetR[Htemp];Rin = GetR[Htemp];Rin = GetR[Htemp];
din = Getd[Htemp];din = Getd[Htemp];din = Getd[Htemp];
L0 = TransformShape[Link0, Rin, din];L0 = TransformShape[Link0, Rin,din];L0 = TransformShape[Link0,Rin, din];
Htemp = TranzX[d1].TranzY[d2].TranzZ[d3].Rotz2[t10].Rotx2[t11].Roty2[t12].H0[t0].H1[t1];Htemp = TranzX[d1].TranzY[d2].TranzZ[d3].Rotz2[t10].Rotx2[t11].Roty2[t12].H0[t0].H1[t1];Htemp = TranzX[d1].TranzY[d2].TranzZ[d3].Rotz2[t10].Rotx2[t11].Roty2[t12].H0[t0].H1[t1];
Rin = GetR[Htemp];Rin = GetR[Htemp];Rin = GetR[Htemp];
din = Getd[Htemp];din = Getd[Htemp];din = Getd[Htemp];
L1 = TransformShape[Link1, Rin, din];L1 = TransformShape[Link1, Rin,din];L1 = TransformShape[Link1,Rin, din];
Htemp = TranzX[d1].TranzY[d2].TranzZ[d3].Rotz2[t10].Rotx2[t11].Roty2[t12].Htemp = TranzX[d1].TranzY[d2].TranzZ[d3].Rotz2[t10].Rotx2[t11].Roty2[t12].Htemp = TranzX[d1].TranzY[d2].TranzZ[d3].Rotz2[t10].Rotx2[t11].Roty2[t12].
H0[t0].H1[t1].H2[t2];H0[t0].H1[t1].H2[t2];H0[t0].H1[t1].H2[t2];
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Rin = GetR[Htemp];Rin = GetR[Htemp];Rin = GetR[Htemp];
din = Getd[Htemp];din = Getd[Htemp];din = Getd[Htemp];
L2 = TransformShape[Link2, Rin, din];L2 = TransformShape[Link2, Rin,din];L2 = TransformShape[Link2,Rin, din];
Htemp = TranzX[d1].TranzY[d2].TranzZ[d3].Rotz2[t10].Rotx2[t11].Roty2[t12].Htemp = TranzX[d1].TranzY[d2].TranzZ[d3].Rotz2[t10].Rotx2[t11].Roty2[t12].Htemp = TranzX[d1].TranzY[d2].TranzZ[d3].Rotz2[t10].Rotx2[t11].Roty2[t12].
H0[t0].H1[t1].H2[t2].H3[t3];H0[t0].H1[t1].H2[t2].H3[t3];H0[t0].H1[t1].H2[t2].H3[t3];
Rin = GetR[Htemp];Rin = GetR[Htemp];Rin = GetR[Htemp];
din = Getd[Htemp];din = Getd[Htemp];din = Getd[Htemp];
L3 = TransformShape[Link3, Rin, din];L3 = TransformShape[Link3, Rin,din];L3 = TransformShape[Link3,Rin, din];
Htemp = TranzX[d1].TranzY[d2].TranzZ[d3].Rotz2[t10].Rotx2[t11].Roty2[t12].Htemp = TranzX[d1].TranzY[d2].TranzZ[d3].Rotz2[t10].Rotx2[t11].Roty2[t12].Htemp = TranzX[d1].TranzY[d2].TranzZ[d3].Rotz2[t10].Rotx2[t11].Roty2[t12].
H0[t0].H1[t1].H2[t2].H3[t3].H4[t4];H0[t0].H1[t1].H2[t2].H3[t3].H4[t4];H0[t0].H1[t1].H2[t2].H3[t3].H4[t4];
Rin = GetR[Htemp];Rin = GetR[Htemp];Rin = GetR[Htemp];
din = Getd[Htemp];din = Getd[Htemp];din = Getd[Htemp];
L4 = TransformShape[Link4, Rin, din];L4 = TransformShape[Link4, Rin,din];L4 = TransformShape[Link4,Rin, din];
Return[{L1,L2, L3, L4}]; )Return[{L1, L2,L3, L4}]; )Return[{L1, L2,L3, L4}]; )

The ConfigureLEMURBODY command is used during plotting to orient the
LEMUR body
ConfigureLEMURBODY[t10 , t11 , t12 , d1 ,d2 , d3 ]:=(ConfigureLEMURBODY[t10 , t11 , t12 , d1 ,d2 , d3 ]:=(ConfigureLEMURBODY[t10 , t11 , t12 , d1 , d2 ,d3 ]:=(
Htemp = TranzX[d1].TranzY[d2].TranzZ[d3].Rotz2[t10].Rotx2[t11].Roty2[t12];Htemp = TranzX[d1].TranzY[d2].TranzZ[d3].Rotz2[t10].Rotx2[t11].Roty2[t12];Htemp = TranzX[d1].TranzY[d2].TranzZ[d3].Rotz2[t10].Rotx2[t11].Roty2[t12];
Rin = GetR[Htemp];Rin = GetR[Htemp];Rin = GetR[Htemp];
din = Getd[Htemp];din = Getd[Htemp];din = Getd[Htemp];
Body = TransformShape[Sides, Rin, din];Body = TransformShape[Sides, Rin,din];Body = TransformShape[Sides,Rin, din];
Return[{Body}]; )Return[{Body}]; )Return[{Body}]; )

Read Data File

Data File Format & Definition

This section imports the movement data used to configure LEMUR with each
plotting iteration. Table 1 shows the first ten rows of a sample table and the
designation of each column. The first column is simply an iteration count which
can be used for defining time steps. The next group of colums defines the
LEMUR’s position. This is followed by the rotation column group. The last 6
column groups defines the LEMUR’s limb joints. The joint designation for each
limb as well as the direction for positive rotaion is depicted in Figure 1. Note that
with all joint angles et to zero, the limbs point straight out.

Table 1
Figure 1: The arows indicate the positive rotation direction for each joint
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Read in the Data File

Note that you may need to define the directory for the location of the data file
first such as:
(*SetDirectory["Motion Data"]; *)(*SetDirectory["Motion Data"]; *)(*SetDirectory["Motion Data"]; *)

These commands import the data file which includes the table of lengths and
angles which define the movement of the LEMUR. The table is stored as MoDat
for Movement Data.The value n, the number of rows in the table, is stored for use
later in plotting LEMUR positions.
MoDat = Import["LEMUR Motion.txt", "Table"];MoDat = Import["LEMUR Motion.txt", "Table"];MoDat = Import["LEMUR Motion.txt", "Table"];
n = Length[MoDat]n = Length[MoDat]n = Length[MoDat]
168

Define the Enviornment

LEMURenvirnoment sets up the objects in the environment and the plane about
which the LEMUR moves.Modify this to include obstacles, terrain, etc.
XYZ = Graphics3D[{AbsoluteThickness[2],Line[{{0, 0, 0}, {100, 0, 0}}],XYZ = Graphics3D[{AbsoluteThickness[2], Line[{{0, 0, 0}, {100, 0, 0}}],XYZ = Graphics3D[{AbsoluteThickness[2], Line[{{0, 0, 0}, {100, 0, 0}}],
Line[{{0, 0, 0}, {0, 100, 0}}], Line[{{0, 0, 0}, {0, 0, 100}}], Text["X", {1, 0, 0}, {1, 0}],Line[{{0, 0, 0}, {0, 100, 0}}], Line[{{0, 0, 0}, {0, 0, 100}}],Text["X", {1, 0, 0}, {1, 0}],Line[{{0, 0, 0}, {0, 100, 0}}], Line[{{0, 0, 0}, {0, 0, 100}}], Text["X", {1, 0, 0}, {1, 0}],
Text["Y", {0, 1, 0}, {−1, 0}],Text["Z", {0, 0, 1}, {−1,−1}]}];Text["Y", {0, 1, 0}, {−1, 0}], Text["Z", {0, 0, 1}, {−1,−1}]}];Text["Y", {0, 1, 0}, {−1, 0}], Text["Z", {0, 0, 1}, {−1,−1}]}];
FloorTile = Graphics3D[Cuboid[{−600,−1200, 0}, {1400, 800, 0}]];FloorTile = Graphics3D[Cuboid[{−600,−1200, 0}, {1400, 800, 0}]];FloorTile = Graphics3D[Cuboid[{−600,−1200, 0}, {1400, 800, 0}]];
Obstacle1 = Graphics3D[Cuboid[{500, 50, 0}, {550, 300, 400}]];Obstacle1 = Graphics3D[Cuboid[{500, 50, 0}, {550, 300, 400}]];Obstacle1 = Graphics3D[Cuboid[{500, 50, 0}, {550, 300, 400}]];
Obstacle2 = TranslateShape[Graphics3D[Cylinder["188.34", 100, 8]], {1000,−800, 100}];Obstacle2 = TranslateShape[Graphics3D[Cylinder["188.34", 100, 8]], {1000,−800, 100}];Obstacle2 = TranslateShape[Graphics3D[Cylinder["188.34", 100, 8]], {1000,−800, 100}];
LEMURenvironment = {FloorTile, Obstacle1,Obstacle2};LEMURenvironment = {FloorTile,Obstacle1,Obstacle2};LEMURenvironment = {FloorTile, Obstacle1, Obstacle2};

Animation

This section defines the LEMUR, then uses a do loop to plot each
subsequent LEMUR position from the MoDat table

DefineLEMUR[188.34, 126.97, 152.40, 15, 30]DefineLEMUR[188.34, 126.97, 152.40, 15, 30]DefineLEMUR[188.34, 126.97, 152.40, 15, 30]

Body = ConfigureLEMURBODY[0, 0, 0, 0, 0, 100];Body = ConfigureLEMURBODY[0, 0, 0, 0, 0, 100];Body = ConfigureLEMURBODY[0, 0, 0, 0, 0, 100];
limb1 = ConfigureLEMUR[30Degree, 0Degree, 45Degree, 0Degree, 100Degree, 0, 0, 0, 0, 0, 100];limb1 = ConfigureLEMUR[30Degree, 0Degree, 45Degree, 0Degree, 100Degree, 0, 0, 0, 0, 0, 100];limb1 = ConfigureLEMUR[30Degree, 0Degree, 45Degree, 0Degree, 100Degree, 0, 0, 0, 0, 0, 100];
limb2 = ConfigureLEMUR[90Degree, 0Degree, 50Degree, 10Degree, 120Degree, 0, 0, 0, 0, 0, 100];limb2 = ConfigureLEMUR[90Degree, 0Degree, 50Degree, 10Degree, 120Degree, 0, 0, 0, 0, 0, 100];limb2 = ConfigureLEMUR[90Degree, 0Degree, 50Degree, 10Degree, 120Degree, 0, 0, 0, 0, 0, 100];
limb3 = ConfigureLEMUR[150Degree, 0Degree, 80Degree, 0Degree, 100Degree, 0, 0, 0, 0, 0, 100];limb3 = ConfigureLEMUR[150Degree, 0Degree, 80Degree, 0Degree, 100Degree, 0, 0, 0, 0, 0, 100];limb3 = ConfigureLEMUR[150Degree, 0Degree, 80Degree, 0Degree, 100Degree, 0, 0, 0, 0, 0, 100];
limb4 = ConfigureLEMUR[210Degree, 10Degree, 70Degree,−10Degree, 70Degree, 0, 0,limb4 = ConfigureLEMUR[210Degree, 10Degree, 70Degree,−10Degree, 70Degree, 0, 0,limb4 = ConfigureLEMUR[210Degree, 10Degree, 70Degree,−10Degree, 70Degree, 0, 0,
0, 0, 0, 100];0, 0, 0, 100];0, 0, 0, 100];
limb5 = ConfigureLEMUR[270Degree, 20Degree, 20Degree,−5Degree, 20Degree, 0, 0, 0, 0, 0, 100];limb5 = ConfigureLEMUR[270Degree, 20Degree, 20Degree,−5Degree, 20Degree, 0, 0, 0, 0, 0, 100];limb5 = ConfigureLEMUR[270Degree, 20Degree, 20Degree,−5Degree, 20Degree, 0, 0, 0, 0, 0, 100];
limb6 = ConfigureLEMUR[330Degree, 5Degree, 50Degree, 10Degree, 90Degree, 0, 0, 0, 0, 0, 100];limb6 = ConfigureLEMUR[330Degree, 5Degree, 50Degree, 10Degree, 90Degree, 0, 0, 0, 0, 0, 100];limb6 = ConfigureLEMUR[330Degree, 5Degree, 50Degree, 10Degree, 90Degree, 0, 0, 0, 0, 0, 100];
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Show[Graphics3D[{Body, limb1, limb2, limb3, limb4, limb5, limb6}]]Show[Graphics3D[{Body, limb1, limb2, limb3, limb4, limb5, limb6}]]Show[Graphics3D[{Body, limb1, limb2, limb3, limb4, limb5, limb6}]]

Do[Body = ConfigureLEMURBODY[MoDat[[i, 7]],MoDat[[i, 5]],MoDat[[i, 6]], MoDat[[i, 2]],Do[Body = ConfigureLEMURBODY[MoDat[[i, 7]], MoDat[[i, 5]],MoDat[[i, 6]],MoDat[[i, 2]],Do[Body = ConfigureLEMURBODY[MoDat[[i, 7]], MoDat[[i, 5]], MoDat[[i, 6]],MoDat[[i, 2]],
MoDat[[i, 3]], MoDat[[i, 4]]];MoDat[[i, 3]], MoDat[[i, 4]]];MoDat[[i, 3]], MoDat[[i, 4]]];
limb1 = ConfigureLEMUR[30Degree, MoDat[[i, 8]], MoDat[[i, 9]],MoDat[[i, 10]],limb1 = ConfigureLEMUR[30Degree, MoDat[[i, 8]], MoDat[[i, 9]], MoDat[[i, 10]],limb1 = ConfigureLEMUR[30Degree,MoDat[[i, 8]], MoDat[[i, 9]], MoDat[[i, 10]],
MoDat[[i, 11]], MoDat[[i, 7]], MoDat[[i, 5]], MoDat[[i, 6]],MoDat[[i, 2]],MoDat[[i, 11]],MoDat[[i, 7]], MoDat[[i, 5]], MoDat[[i, 6]], MoDat[[i, 2]],MoDat[[i, 11]],MoDat[[i, 7]],MoDat[[i, 5]], MoDat[[i, 6]], MoDat[[i, 2]],
MoDat[[i, 3]], MoDat[[i, 4]]];MoDat[[i, 3]], MoDat[[i, 4]]];MoDat[[i, 3]], MoDat[[i, 4]]];
limb2 = ConfigureLEMUR[90Degree, MoDat[[i, 12]], MoDat[[i, 13]], MoDat[[i, 14]],limb2 = ConfigureLEMUR[90Degree, MoDat[[i, 12]], MoDat[[i, 13]],MoDat[[i, 14]],limb2 = ConfigureLEMUR[90Degree,MoDat[[i, 12]],MoDat[[i, 13]],MoDat[[i, 14]],
MoDat[[i, 15]], MoDat[[i, 7]], MoDat[[i, 5]], MoDat[[i, 6]],MoDat[[i, 2]],MoDat[[i, 15]],MoDat[[i, 7]], MoDat[[i, 5]], MoDat[[i, 6]], MoDat[[i, 2]],MoDat[[i, 15]],MoDat[[i, 7]],MoDat[[i, 5]], MoDat[[i, 6]], MoDat[[i, 2]],
MoDat[[i, 3]], MoDat[[i, 4]]];MoDat[[i, 3]], MoDat[[i, 4]]];MoDat[[i, 3]], MoDat[[i, 4]]];
limb3 = ConfigureLEMUR[150Degree, MoDat[[i, 16]], MoDat[[i, 17]],MoDat[[i, 18]],limb3 = ConfigureLEMUR[150Degree,MoDat[[i, 16]],MoDat[[i, 17]], MoDat[[i, 18]],limb3 = ConfigureLEMUR[150Degree, MoDat[[i, 16]], MoDat[[i, 17]], MoDat[[i, 18]],
MoDat[[i, 19]], MoDat[[i, 7]], MoDat[[i, 5]], MoDat[[i, 6]],MoDat[[i, 2]],MoDat[[i, 19]],MoDat[[i, 7]], MoDat[[i, 5]], MoDat[[i, 6]], MoDat[[i, 2]],MoDat[[i, 19]],MoDat[[i, 7]],MoDat[[i, 5]], MoDat[[i, 6]], MoDat[[i, 2]],
MoDat[[i, 3]], MoDat[[i, 4]]];MoDat[[i, 3]], MoDat[[i, 4]]];MoDat[[i, 3]], MoDat[[i, 4]]];
limb4 = ConfigureLEMUR[210Degree, MoDat[[i, 20]], MoDat[[i, 21]],MoDat[[i, 22]],limb4 = ConfigureLEMUR[210Degree,MoDat[[i, 20]],MoDat[[i, 21]], MoDat[[i, 22]],limb4 = ConfigureLEMUR[210Degree, MoDat[[i, 20]], MoDat[[i, 21]], MoDat[[i, 22]],
MoDat[[i, 23]], MoDat[[i, 7]], MoDat[[i, 5]], MoDat[[i, 6]],MoDat[[i, 2]],MoDat[[i, 23]],MoDat[[i, 7]], MoDat[[i, 5]], MoDat[[i, 6]], MoDat[[i, 2]],MoDat[[i, 23]],MoDat[[i, 7]],MoDat[[i, 5]], MoDat[[i, 6]], MoDat[[i, 2]],
MoDat[[i, 3]], MoDat[[i, 4]]];MoDat[[i, 3]], MoDat[[i, 4]]];MoDat[[i, 3]], MoDat[[i, 4]]];
limb5 = ConfigureLEMUR[270Degree, MoDat[[i, 24]], MoDat[[i, 25]],MoDat[[i, 26]],limb5 = ConfigureLEMUR[270Degree,MoDat[[i, 24]],MoDat[[i, 25]], MoDat[[i, 26]],limb5 = ConfigureLEMUR[270Degree, MoDat[[i, 24]], MoDat[[i, 25]], MoDat[[i, 26]],
MoDat[[i, 27]], MoDat[[i, 7]], MoDat[[i, 5]], MoDat[[i, 6]],MoDat[[i, 2]],MoDat[[i, 27]],MoDat[[i, 7]], MoDat[[i, 5]], MoDat[[i, 6]], MoDat[[i, 2]],MoDat[[i, 27]],MoDat[[i, 7]],MoDat[[i, 5]], MoDat[[i, 6]], MoDat[[i, 2]],
MoDat[[i, 3]], MoDat[[i, 4]]];MoDat[[i, 3]], MoDat[[i, 4]]];MoDat[[i, 3]], MoDat[[i, 4]]];
limb6 = ConfigureLEMUR[330Degree, MoDat[[i, 28]], MoDat[[i, 29]],MoDat[[i, 30]],limb6 = ConfigureLEMUR[330Degree,MoDat[[i, 28]],MoDat[[i, 29]], MoDat[[i, 30]],limb6 = ConfigureLEMUR[330Degree, MoDat[[i, 28]], MoDat[[i, 29]], MoDat[[i, 30]],
MoDat[[i, 31]], MoDat[[i, 7]], MoDat[[i, 5]], MoDat[[i, 6]],MoDat[[i, 2]],MoDat[[i, 31]],MoDat[[i, 7]], MoDat[[i, 5]], MoDat[[i, 6]], MoDat[[i, 2]],MoDat[[i, 31]],MoDat[[i, 7]],MoDat[[i, 5]], MoDat[[i, 6]], MoDat[[i, 2]],
MoDat[[i, 3]], MoDat[[i, 4]]];MoDat[[i, 3]], MoDat[[i, 4]]];MoDat[[i, 3]], MoDat[[i, 4]]];
Print[Graphics3D[{Body, limb1, limb2, limb3, limb4, limb5, limb6}]], {i, n}]Print[Graphics3D[{Body, limb1, limb2, limb3, limb4, limb5, limb6}]], {i, n}]Print[Graphics3D[{Body, limb1, limb2, limb3, limb4, limb5, limb6}]], {i, n}]

A.2 LabVIEW VI

In this section details of the LabVIEW VI with embedded MATLAB code is de-
scribed. The most noteable feature of the VI is that the MATLAB script node
containing the Function Run m-file is within a true/false case structure. The set-
ting of the structure is controlled by the “switchtest” output of the Function Run
m-file. Within the same timed loop as the true/false case structure is a seperate
MATLAB script node containing the Inverse Kinematics m-file. The inputs and
outputs of both MATLAB script nodes are as follows:

Inputs for Function Run

• ux: body direction vector component along the x axis

• uy: body direction vector component along the y axis
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• uz: body direction vector component along the z axis

• rx: body rotation about the x axis

• ry: body rotation about the y axis

• rz: body rotation about the z axis

• x1: x-axis position of the tip of Limb 1

• y1: y-axis position of the tip of Limb 1

• z1: z-axis position of the tip of Limb 1

• x2: x-axis position of the tip of Limb 2

• y2: y-axis position of the tip of Limb 2

• z2: z-axis position of the tip of Limb 2

• x3: x-axis position of the tip of Limb 3

• y3: y-axis position of the tip of Limb 3

• z3: z-axis position of the tip of Limb 3

• x4: x-axis position of the tip of Limb 4

• y4: y-axis position of the tip of Limb 4

• z4: z-axis position of the tip of Limb 4

• x5: x-axis position of the tip of Limb 5

• y5: y-axis position of the tip of Limb 5

• z5: z-axis position of the tip of Limb 5

• x6: x-axis position of the tip of Limb 6

• y6: y-axis position of the tip of Limb 6

• z6: z-axis position of the tip of Limb 6

• contact: a value, 1 or 2, which determines whether even or odd numbered
limbs are in contact

Inputs for Function Run
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• Oddx1: the next x-axis position of Limb 1

• Oddy1: the next y-axis position of Limb 1

• Oddz1: the next z-axis position of Limb 1

• Oddx3: the next x-axis position of Limb 3

• Oddy3: the next y-axis position of Limb 3

• Oddz3: the next z-axis position of Limb 3

• Oddx5: the next x-axis position of Limb 5

• Oddy5: the next y-axis position of Limb 5

• Oddz5: the next z-axis position of Limb 5

• Odd2x1: the second next x-axis position of Limb 1 (used for limb switching)

• Odd2y1: the second next y-axis position of Limb 1 (used for limb switching)

• Odd2z1: the second next z-axis position of Limb 1 (used for limb switching)

• Odd2x3: the second next x-axis position of Limb 3 (used for limb switching)

• Odd2y3: the second next y-axis position of Limb 3 (used for limb switching)

• Odd2z3: the second next z-axis position of Limb 3 (used for limb switching)

• Odd2x5: the second next x-axis position of Limb 5 (used for limb switching)

• Odd2y5: the second next y-axis position of Limb 5 (used for limb switching)

• Odd2z5: the second next z-axis position of Limb 5 (used for limb switching)

• Evenx2: the next x-axis position of Limb 2

• Eveny2: the next y-axis position of Limb 2

• Evenz2: the next z-axis position of Limb 2

• Evenx4: the next x-axis position of Limb 4

• Eveny4: the next y-axis position of Limb 4

• Evenz4: the next z-axis position of Limb 4

• Evenx6: the next x-axis position of Limb 6
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• Eveny6: the next y-axis position of Limb 6

• Evenz6: the next z-axis position of Limb 6

• Even2x2: the second next x-axis position of Limb 2 (used for limb switching)

• Even2y2: the second next y-axis position of Limb 2 (used for limb switching)

• Even2z2: the second next z-axis position of Limb 2 (used for limb switching)

• Even2x4: the second next x-axis position of Limb 4 (used for limb switching)

• Even2y4: the second next y-axis position of Limb 4 (used for limb switching)

• Even2z4: the second next z-axis position of Limb 4 (used for limb switching)

• Even2x6: the second next x-axis position of Limb 6 (used for limb switching)

• Even2y6: the second next y-axis position of Limb 6 (used for limb switching)

• Even2z6: the second next z-axis position of Limb 6 (used for limb switching)

• contact: a value, 1 or 2, which determines whether even or odd numbered
limbs are in contact

• switchtest: a value, which if 1 and not zero, requires that a limb switch takes
place

Inputs for Inverse Kinematics

• x1: x-axis position of the tip of Limb 1

• y1: y-axis position of the tip of Limb 1

• z1: z-axis position of the tip of Limb 1

• x2: x-axis position of the tip of Limb 2

• y2: y-axis position of the tip of Limb 2

• z2: z-axis position of the tip of Limb 2

• x3: x-axis position of the tip of Limb 3

• y3: y-axis position of the tip of Limb 3

• z3: z-axis position of the tip of Limb 3
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• x4: x-axis position of the tip of Limb 4

• y4: y-axis position of the tip of Limb 4

• z4: z-axis position of the tip of Limb 4

• x5: x-axis position of the tip of Limb 5

• y5: y-axis position of the tip of Limb 5

• z5: z-axis position of the tip of Limb 5

• x6: x-axis position of the tip of Limb 6

• y6: y-axis position of the tip of Limb 6

• z6: z-axis position of the tip of Limb 6

Outputs for Inverse Kinematics

• t21: the joint angle for Revolute Joint 1 on Limb 1

• t31: the joint angle for Revolute Joint 3 on Limb 1

• t41: the joint angle for Revolute Joint 4 on Limb 1

• t22: the joint angle for Revolute Joint 1 on Limb 2

• t32: the joint angle for Revolute Joint 3 on Limb 2

• t42: the joint angle for Revolute Joint 4 on Limb 2

• t23: the joint angle for Revolute Joint 1 on Limb 3

• t33: the joint angle for Revolute Joint 3 on Limb 3

• t43: the joint angle for Revolute Joint 4 on Limb 3

• t24: the joint angle for Revolute Joint 1 on Limb 4

• t34: the joint angle for Revolute Joint 3 on Limb 4

• t44: the joint angle for Revolute Joint 4 on Limb 4

• t25: the joint angle for Revolute Joint 1 on Limb 5

• t35: the joint angle for Revolute Joint 3 on Limb 5

• t45: the joint angle for Revolute Joint 4 on Limb 5
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• t26: the joint angle for Revolute Joint 1 on Limb 6

• t36: the joint angle for Revolute Joint 3 on Limb 6

• t46: the joint angle for Revolute Joint 4 on Limb 6

A.3 Function Call
%function[Odd,Odd2,Even,Even2,contact] = MARStipPOS(ux,uy,uz,rx,ry,rz,h,

contact,evenold,oddold)

switchtest = 0;

evenold = [x2,y2,z2;x4,y4,z4;x6,y6,z6];

oddold = [x1,y1,z1;x3,y3,z3;x5,y5,z5];

% ####################################################################

%

% This function finds the tip positions for the MARS limbs

%

% Inputs: (ux,uy,uz) The direction vector of the robot. This is not

% necesarily a unit vector.

% (rx,ry,rz) Rotations about the x, y, and z-axis

% h the walking hieght of the robot

% contact = 1 if odd limbs are in contact 2 for even

% even the 3X3 matrix of (x,y,z) limb tip positions (even limbs)

% [x2 y2 z2]

% [x4 y4 z4]

% [x6 y6 z6]

%

% odd the 3X3 matrix of (x,y,z) limb tip positions (odd limbs)

% [x1 y1 z1]

% [x3 y3 z3]

% [x5 y5 z5]

%

% Outputs: Odd the tip positions of the odd numbered limbs

% Even the tip positions of the even numbered limbs

% Odd2 the second set of tip positions for the odd numbered

% limbs used if the limbs switch with regard to contact and

% non-contact

% Even2 the second set of tip positions for the even numbered

% limbs used if the limbs switch with regard to contact and

% non-contact

% contact = 1 if odd limbs are in contact 2 for even

%

% ####################################################################

% Define Variables

r = 0.5; %the radius of the z-axsis singularity buffer cyliner

buffer = 0.5; %the distance the limb tips stay away from the end of the

%stride-lines

steph = 0.5; % the hieght of the steps

% find the length of each step based on (ux,uy,uz), efects speed

step = (sum([ux,uy,uz].^2))^0.5 * 0.1;

% Temporary comment (delete after 3-07) Some adjustement may be necesary
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% for (rx,ry,rz) depending on LabVIEW

[Even, Even2, Odd, Odd2, contact] = MARSlimbCONTROL(evenold, oddold,

ux,uy,uz, r, h, steph, step, rx,ry,rz, contact, buffer);

% switch the contact argument

if ~(isempty(Odd2))

if contact == 1

contact = 2;

elseif contact == 2

contact = 1;

end

end

if isempty(Odd2)

switchtest = 1;

Even2x2 = 0;

Even2x4 = 0;

Even2x6 = 0;

Even2y2 = 0;

Even2y4 = 0;

Even2y6 = 0;

Even2z2 = 0;

Even2z4 = 0;

Even2z6 = 0;

Odd2x1 =0;

Odd2x3 = 0;

Odd2x5 = 0;

Odd2y1 =0;

Odd2y3 = 0;

Odd2y5 = 0;

Odd2z1 =0;

Odd2z3 = 0;

Odd2z5 = 0;

Evenx2 = Even(1,1);

Evenx4 = Even(2,1);

Evenx6 = Even(3,1);

Eveny2 = Even(1,2);

Eveny4 = Even(2,2);

Eveny6 = Even(3,2);

Evenz2 = Even(1,3);

Evenz4 = Even(2,3);

Evenz6 = Even(3,3);

Oddx1 =Odd(1,1);

Oddx3 = Odd(2,1);

Oddx5 = Odd(3,1);

Oddy1 = Odd(1,2);

Oddy3 = Odd(2,2);

Oddy5 = Odd(3,2);

Oddz1 = Odd(1,3);

Oddz3 = Odd(2,3);

Oddz5 = Odd(3,3);

else

Even2x2 = Even2(1,1);

Even2x4 = Even2(2,1);

Even2x6 = Even2(3,1);

Even2y2 = Even2(1,2);
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Even2y4 = Even2(2,2);

Even2y6 = Even2(3,2);

Even2z2 = Even2(1,3);

Even2z4 = Even2(2,3);

Even2z6 = Even2(3,3);

Odd2x1 =Odd2(1,1);

Odd2x3 = Odd2(2,1);

Odd2x5 =Odd2(3,1);

Odd2y1 =Odd2(1,2);

Odd2y3 = Odd2(2,2);

Odd2y5 = Odd2(3,2);

Odd2z1 =Odd2(1,3);

Odd2z3 = Odd2(2,3);

Odd2z5 = Odd2(3,3);

Evenx2 = Even(1,1);

Evenx4 = Even(2,1);

Evenx6 = Even(3,1);

Eveny2 = Even(1,2);

Eveny4 = Even(2,2);

Eveny6 = Even(3,2);

Evenz2 = Even(1,3);

Evenz4 = Even(2,3);

Evenz6 = Even(3,3);

Oddx1 =Odd(1,1);

Oddx3 = Odd(2,1);

Oddx5 = Odd(3,1);

Oddy1 = Odd(1,2);

Oddy3 = Odd(2,2);

Oddy5 = Odd(3,2);

Oddz1 = Odd(1,3);

Oddz3 = Odd(2,3);

Oddz5 = Odd(3,3);

end

A.4 Inverse Kinematics
% ######################################################################

%

% This script performs the inverse kenematics for the MARS limbs

%

% Inputs: (x1,y1,z1)

% (x2,y2,z2)

% (x3,y3,z3)

% (x4,y4,z4)

% (x5,y5,z5)

% (x6,y6,z6) the tip position of each limb in the limb specific

% cordinate frame

%

% Outputs: (t21,t31,t41)

% (t22,t32,t42)

% (t23,t33,t43)

% (t24,t34,t44)

% (t25,t35,t45)

% (t26,t36,t46) the joint angles (t2,t3,t4) for each of the six

% limbs
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%

% ######################################################################

%x1=1;x2=1;x3=2;x4=1;x5=2;x6=2;y1=1;y2=2;y3=1;y4=2;y5=2;y6=2;z1=-8;

%z2=-8;z3=-8;z4=-8;z5=-8;z6=-8;

t21 = atan2(z1,y1);

D1 = (x1^2+y1^2+z1^2-61)/60;

t41 = atan2(-(1-D1^2)^0.5,D1);

t31 = atan2((y1^2+z1^2)^0.5,x1-5) - atan2(5+6*cos(t41),6*sin(t41));

t22 = atan2(z2,y2);

D2 = (x2^2+y2^2+z2^2-61)/60;

t42 = atan2(-(1-D2^2)^0.5,D2);

t32 = atan2((y2^2+z2^2)^0.5,x2-5) - atan2(5+6*cos(t42),6*sin(t42));

t23 = atan2(z3,y3);

D3 = (x3^2+y3^2+z3^2-61)/60;

t43 = atan2(-(1-D3^2)^0.5,D3);

t33 = atan2((y3^2+z3^2)^0.5,x3-5) - atan2(5+6*cos(t43),6*sin(t43));

t24 = atan2(z4,y4);

D4 = (x4^2+y4^2+z4^2-61)/60;

t44 = atan2(-(1-D4^2)^0.5,D4);

t34 = atan2((y4^2+z4^2)^0.5,x4-5) - atan2(5+6*cos(t44),6*sin(t44));

t25 = atan2(z5,y5);

D5 = (x5^2+y5^2+z5^2-61)/60;

t45 = atan2(-(1-D5^2)^0.5,D5);

t35 = atan2((y5^2+z5^2)^0.5,x5-5) - atan2(5+6*cos(t45),6*sin(t45));

t26 = atan2(z6,y6);

D6 = (x6^2+y6^2+z6^2-61)/60;

t46 = atan2(-(1-D6^2)^0.5,D6);

t36 = atan2((y6^2+z6^2)^0.5,x6-5) - atan2(5+6*cos(t46),6*sin(t46));

A.5 MARSlimbCONTROL
function[Even, Even2, Odd, Odd2, contact] = MARSlimbCONTROL(even,

odd, ux,uy,uz, r, h, steph, step, rx,ry,rz, contact, buffer)

% #######################################################################

%

% This function is the overal control of limb tip position and limb

% switching for the gate planing algorythem.

%

% Inputs: even the 3X3 matrix of (x,y,z) limb tip positions (even limbs)

% [x2 y2 z2]

% [x4 y4 z4]

% [x6 y6 z6]

%

% odd the 3X3 matrix of (x,y,z) limb tip positions (odd limbs)

% [x1 y1 z1]

% [x3 y3 z3]

% [x5 y5 z5]

%
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% (ux,uy,uz) the direction of the robot

%

% r the radius of the z-axis sigularity buffer cylinder

%

% h the walking hieght of the robot

%

% steph the steping hieght of the robot

%

% step the distance of travel for one increment

%

% (rx,ry,rz) the rotation velocities (incremented rotation amounts)

% for rotation about the given axes

%

% contact = 1 if odd limbs are in contact 2 for even

%

% buffer = the distance the limb tip must stay away from the

% workspace shell

%

% Outputs: Even the 3X3 matrix of (x,y,z) even limb tip positions

% Odd the 3X3 matrix of (x,y,z) odd limb tip positions

% Even2 the 3X3 matrix of (x,y,z) even limb tip positions

% for use when switching limbs (two movements are

% required)

% Odd2 the 3X3 matrix of (x,y,z) odd limb tip positions

% for use when switching limbs (two movements are

% required)

%

% Note: Even2 and Odd2 are empty when not switching

%

% contact = 1 if odd limbs are in contact, 2 for even

%

% buffer the distance the limb tips must stay away from the

% ends of the stride-lines

%

% #######################################################################

% This finds the total tip translation due to body rotations

% [dUodd2, dUeven2] = MARStotalTIPtranslation(rx,ry,rz, ux,uy,uz, step, odd, even);

[dUodd2, dUeven2] = MARSlimbFRAMEdirection(ux,uy,uz);

% #########################################################################

% Find stride-line for each limb

[ConOdd, ConEven, NonOdd, NonEven]=MARSfindSTRIDEline(contact, odd,even,

dUodd2,dUeven2, r,h,steph);

% #########################################################################

% Arange stride-line so that the (x1,y1,z1) point is in the forward

% direction of the robot

% [ConOdd,ConEven,NonOdd,NonEven]=

%MARSdirectionSTRIDEline(ConOdd,ConEven,NonOdd,NonEven, odd,even);

[ConOdd,NonOdd,ConEven,NonEven]=MARSdirectionCHECK(dUodd2,dUeven2, ConOdd,NonOdd,ConEven,NonEven);

% #########################################################################

% The non-contact limb tip is not necesaraly at a point that lies on the

% optimized non-contact stride-line. For this reason the non-contact stride-line

% must be redefined as the line between the limb tip and the starting point

% of the optimised stride-line. Further, non-contact limbs move in the

% oposite direction of contact limbs
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[NonOdd, NonEven]=MARSnonContactSTRIDEline(contact, NonOdd, odd, NonEven, even);

% #########################################################################

% Now the non-contact directional vector must be found and multiplied by

% the step size

[dUodd, dUeven]=MARSnoncontactSTEPvector(contact, step, NonOdd, NonEven, dUodd2, dUeven2);

% #########################################################################

% Find next limb tip position

[dPodd, dPeven]=MARSnextTIPpos(odd, even, dUodd, dUeven)

% #########################################################################

% Check to see if switch is necesary. If a contact-noncontact limb switch

% in necesary, change=1

[change]=MARSlimbSWITCHtest(dPodd, dPeven, ConOdd, ConEven, contact, buffer);

% #########################################################################

% Output the limb tip positions. If there is no switch only one position

% will be output for each limb. However, if a limb switch is necesary two

% positions will be output for each limb

%[Even, Odd, Even2, Odd2]=MARStipPOSoutput(dPodd, dPeven, change, dUodd2, dUeven2, contact, r, h, steph);

Even=dPeven;

Odd=dPodd;

Even2=[];

Odd2=[];

A.6 MARStotalTIPtranslation
function[dUodd2, dUeven2] = MARStotalTIPtranslation(rx,ry,rz, ux,uy,uz, step, odd, even)

% ######################################################################

%

% This function finds the limb tip translation due to body rotation and

% translation

%

% Inputs:

% (rx,ry,rz) the rotation velocities (incremented rotation

% amounts for rotation about the given axes

%

% (ux,uy,uz) the direction of the robot

%

% steph the steping hieght of the robot

%

% Outputs: dUodd2 and dUeven2 are the change in limb tip translation due to

% body rotation. They are seperated by even and odd

% limbs. They are stored in arrays of the form:

%

% x-direction y-direction z-direction

% limb1 value value value

% limb3 value value value

% limb4 value value value

%

% ######################################################################

dU=[];
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P = [odd(1,:);even(1,:);odd(2,:);even(2,:);odd(3,:);even(3,:)];

% P is a 6X3 array containing all 6 limb tip positions is (x,y,z) rows

for i=1:6

% #####################################################################

% Find Translation in limb cordinates due to body rotations

% find rotation matricies

Rx = [1 0 0 0;

0 cos(rx) sin(rx) 0;

0 -sin(rx) cos(rx) 0;

0 0 0 1];

Ry = [cos(ry) 0 sin(ry) 0;

0 1 0 0;

-sin(ry) 0 cos(ry) 0;

0 0 0 1];

Rz = [cos(rz-(6-i)*(60*pi/180)) -sin(rz-(6-i)*(60*pi/180)) 0 0;

sin(rz-(6-i)*(60*pi/180)) cos(rz-(6-i)*(60*pi/180)) 0 0;

0 0 1 0;

0 0 0 1];

% find translation to center of proximal joint

T = [0,0,0,0;

0,0,0,7.41;

0,0,0,0;

0,0,0,1];

% find location of center of proximal joint based on rotations

H = Rx*Ry*Rz*T;

% find rotation of each limb clockwize

RRz = [cos(-(6-i)*(60*pi/180)) -sin(-(6-i)*(60*pi/180)) 0 0;

sin(-(6-i)*(60*pi/180)) cos(-(6-i)*(60*pi/180)) 0 0;

0 0 1 0;

0 0 0 1];

% find rotation of each limb counter-clockwize

RRz2 = [cos((6-i)*(60*pi/180)) -sin((6-i)*(60*pi/180)) 0 0;

sin((6-i)*(60*pi/180)) cos((6-i)*(60*pi/180)) 0 0;

0 0 1 0;

0 0 0 1];

% find translation for each limb tip

A = [0,0,0,P(i,1);

0,0,0,P(i,2);

0,0,0,P(i,3);

0,0,0,1];

% find limb tip translation due to rotations based on body cordinates

Tt2 = H+RRz*A;

% find limb tip translation before rotations based on body cordinates

Tt1 = RRz*(A+T);

% find displacement vector due to rotation in terms of body cordinates

dtB = Tt2 - Tt1;

% find displacement vector due to rotation in terms of limb cordinates

dtL = RRz2 * dtB;

% #####################################################################

% Find Total limb tip translation in limb cordinates

% find the translation vector due to rotation in terms of the Limb cordinates

uvB = [0,0,0,ux; % unit vector (ux,uy,uz)

0,0,0,uy;

0,0,0,uz;

0,0,0,1];

uvL = RRz * uvB; % unit vector adjusted to limb frame

% TL=the sum of the displacement due to the rotations and the unit
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% vector (ux,uy,uz) times the step size

TL = [dtL(1,4),dtL(2,4),dtL(3,4)] + step*[uvL(1,4),uvL(2,4),uvL(3,4)];

dU = [dU;TL];

end

% Split dU into even and odd limb groups

dUodd2 = [dU(1,:);dU(3,:);dU(5,:)];

dUeven2 = [dU(2,:);dU(4,:);dU(6,:)];

A.7 MARSlimbFRAMEdirection
function[dUodd2, dUeven2] = MARSlimbFRAMEdirection(ux,uy,uz)

% ######################################################################

%

% This function translates the body corditate direction vector (ux,uy,uz)

% to each limb cordinate frame

%

% Inputs: (ux,uy,uz) the direction of the robot

%

% steph the steping hieght of the robot

%

% Outputs: dUodd2 and dUeven2 are the change in limb tip translation due to

% body translation. They are seperated by even and odd

% limbs. They are stored in arrays of the form:

%

% x-direction y-direction z-direction

% limb1 value value value

% limb3 value value value

% limb5 value value value

%

% ######################################################################

% set up the two output matricies

% Note: the z terms will remain zero and no vertical translation will be

% tacken into acount

dUodd2 = zeros(3,3);

dUeven2 = zeros(3,3);

% Fill in the translations for limb-1 which is oriented in the positive

% y-direction and limb-4 which is oriented in the negative y-direction

% limb-1

dUodd2(1,1) = ux;

dUodd2(1,2) = uy;

% limb-4

dUeven2(2,1) = -ux;

dUeven2(2,2) = -uy;

% The limbs are aranged symmetricaly every 60 degrees around the body of the

% robot

% now the respective anle of rotation about the z-axis for each limb is

% specified

t2=30*pi/180 - 90*pi/180;

t3=330*pi/180 - 90*pi/180;

t5=210*pi/180 - 90*pi/180;

t6=150*pi/180 - 90*pi/180;
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% now the ux and uy translations from body frame to limb frame are made for

% limbs 2,3,5,6

% limb 2

v = [ux; uy; 0];

Rz = [cos(t2), -sin(t2), 0;

sin(t2), cos(t2), 0;

0, 0, 0];

new = Rz*v;

dUeven2(1,1) = new(1,1);

dUeven2(1,2) = new(2,1);

% limb 3

Rz = [cos(t3), -sin(t3), 0;

sin(t3), cos(t3), 0;

0, 0, 0];

new = Rz*v;

dUodd2(2,1) = new(1,1);

dUodd2(2,2) = new(2,1);

% limb 5

Rz = [cos(t5), -sin(t5), 0;

sin(t5), cos(t5), 0;

0, 0, 0];

new = Rz*v;

dUodd2(3,1) = new(1,1);

dUodd2(3,2) = new(2,1);

% limb 6

Rz = [cos(t6), -sin(t6), 0;

sin(t6), cos(t6), 0;

0, 0, 0];

new = Rz*v;

dUeven2(3,1) = new(1,1);

dUeven2(3,2) = new(2,1);

% now the direction vectors in the limb frames are made into unit vectors

for i=1:3

if (sum(dUodd2(i,:).^2))^0.5 ~= 0

dUodd2(i,:) = dUodd2(i,:)./(sum(dUodd2(i,:).^2))^0.5;

end

if (sum(dUeven2(i,:).^2))^0.5 ~= 0

dUeven2(i,:) = dUeven2(i,:)./(sum(dUeven2(i,:).^2))^0.5;

end

end

A.8 MARSfindSTRIDEline
function[ConOdd, ConEven, NonOdd, NonEven]=MARSfindSTRIDEline(contact, odd,even,dUodd2,dUeven2, r,h,steph)

% #######################################################################

%

% This function uses the functions MARScontactLINE and MARSnoncontactLINE

% to find the endponts of stride-lines. These stride-line endpoints are

% ouput in arays depending on which limb they corespond to and wheather or

% not the limb they correspond to is in contact or not in contact. The
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% format of these arays in explained bellow in ‘‘Outputs."

%

% Inputs: contact = 1 if odd limbs are in contact, 2 for even

% odd the 3X3 matrix of (x,y,z) limb tip positions (odd limbs)

% [x1 y1 z1]

% [x3 y3 z3]

% [x5 y5 z5]

% even the 3X3 matrix of (x,y,z) limb tip positions (even limbs)

% [x2 y2 z2]

% [x4 y4 z4]

% [x6 y6 z6]

% dUodd2 and dUeven2 are the change in limb tip translation due to

% body rotation. They are seperated by even and odd

% limbs. They are stored in arrays of the form:

%

% x-direction y-direction z-direction

% limb1 value value value

% limb3 value value value

% limb4 value value value

% r the radius of the z-axis sigularity buffer cylinder

% h the walking hieght of the robot

% steph the steping hieght of the robot

%

% Outputs: The outputs of this function are arays of points

% Each row of the aray is six elements long. The first three

% elements are the (x,y,z) position of one point. The last

% three elements are the (x,y,z) position of another point.

% These two points are the end points of a stride-line.

%

% Each limb has two points associated with the limbs stride

% line. If the ‘‘odd’’ limbs are in contact and the ‘‘even"

% limbs are not in contact the outputs will be:

%

% ConOdd = [limb-1 points

% limb-3 points

% limb-5 points]

% ConEven = []

% NonOdd = []

% NonEven = [limb-2 points

% limb-4 points

% limb-6 points]

%

% If the ‘‘even’’ limbs are in contact and the ‘‘odd’’ limbs

% are not in contact the outputs will be:

%

% ConOdd = []

% ConEven = [limb-2 points

% limb-4 points

% limb-6 points]

% NonOdd = [limb-1 points

% limb-3 points

% limb-5 points]

% NonEven = []

%

% #######################################################################

% Find stride-line for each limb
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% initialize

ConOdd=[]; ConEven=[]; NonOdd=[]; NonEven=[];

if contact == 1

for i=1:3

[x1,y1,z1,x2,y2,z2] = MARScontactLINE(odd(i,1),odd(i,2),odd(i,3),dUodd2(i,1),dUodd2(i,2),dUodd2(i,3),r);

ConOdd = [ConOdd; x1,y1,z1,x2,y2,z2];

[x1,y1,z1,x2,y2,z2] = MARSnoncontactLINE(dUeven2(i,1),dUeven2(i,2),dUeven2(i,3),r,h-steph);

NonEven = [NonEven; x1,y1,z1,x2,y2,z2];

end

else

for i=1:3

[x1,y1,z1,x2,y2,z2] = MARScontactLINE(even(i,1),even(i,2),even(i,3),dUeven2(i,1),dUeven2(i,2),dUeven2(i,3),r);

ConEven = [ConEven; x1,y1,z1,x2,y2,z2];

[x1,y1,z1,x2,y2,z2] = MARSnoncontactLINE(dUodd2(i,1),dUodd2(i,2),dUodd2(i,3),r,h-steph);

NonOdd = [NonOdd; x1,y1,z1,x2,y2,z2];

end

end

A.9 MARSdirectionSTRIDEline
function[ConOdd,ConEven,NonOdd,NonEven]=MARSdirectionSTRIDEline(ConOdd,ConEven,NonOdd,NonEven, odd,even)

% ######################################################################

%

% This function aranges the points which describe a stride-line

% so that the first point is in the forward direction of the limb

% tip motion.

%

% Inputs: The inputs of this function are arays of points

% Each row of the aray is six elements long. The first three

% elements are the (x,y,z) position of one point. The last

% three elements are the (x,y,z) position of another point.

% These two points are the end points of a stride-line.

%

% Each limb has two points associated with the limbs stride

% line. If the ‘‘odd’’ limbs are in contact and the ‘‘even"

% limbs are not in contact the outputs will be:

%

% ConOdd = [limb-1 points

% limb-3 points

% limb-5 points]

% ConEven = []

% NonOdd = []

% NonEven = [limb-2 points

% limb-4 points

% limb-6 points]

%

% If the ‘‘even’’ limbs are in contact and the ‘‘odd’’ limbs

% are not in contact the outputs will be:

%

% ConOdd = []

% ConEven = [limb-2 points

% limb-4 points

% limb-6 points]

% NonOdd = [limb-1 points
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% limb-3 points

% limb-5 points]

% NonEven = []

%

%

% even the 3X3 matrix of (x,y,z) limb tip positions (even limbs)

% [x2 y2 z2]

% [x4 y4 z4]

% [x6 y6 z6]

%

% odd the 3X3 matrix of (x,y,z) limb tip positions (odd limbs)

% [x1 y1 z1]

% [x3 y3 z3]

% [x5 y5 z5]

%

% Outputs: ConOdd, ConEven, NonOdd, NonEven--rearanged as necesary

%

% ######################################################################

% Arange stride-line so that the (x1,y1,z1) point is in the forward

% direction of the robot

if ~(isempty(ConOdd)) % test to make sure the array is not empty

for i=1:3 % iterates through the three limbs in the array

if ConOdd(i,2)-odd(i,2) ~= 0 % test if there is displacement in the y-direction

if ConOdd(i,2)-odd(i,2) <= 0 % test if the displacement in the y-direction is negative

store = [ConOdd(i,4:6)];

ConOdd(i,:) = [store,ConOdd(i,1:3)]; % switch the points if displacement is negative

end

elseif ConOdd(i,1)-odd(i,1) <= 0 % otherwise test if the displacement in the x-direction is negative

store = [ConOdd(i,4:6)];

ConOdd(i,:) = [store,ConOdd(i,1:3)]; % switch the points if displacement is negative

end

end

end

if ~(isempty(NonOdd))

for i=1:3

if NonOdd(i,2)-odd(i,2) ~= 0

if NonOdd(i,2)-odd(i,2) <= 0

store = [NonOdd(i,4:6)];

NonOdd(i,:) = [store,NonOdd(i,1:3)];

end

elseif NonOdd(i,1)-odd(i,1) <= 0

store = [NonOdd(i,4:6)];

NonOdd(i,:) = [store,NonOdd(i,1:3)];

end

end

end

if ~(isempty(NonEven))

for i=1:3

if NonEven(i,2)-even(i,2) ~= 0

if NonEven(i,2)-even(i,2) <= 0

store = [NonEven(i,4:6)];

NonEven(i,:) = [store,NonEven(i,1:3)];

end

elseif NonEven(i,1)-even(i,1) <= 0

store = [NonEven(i,4:6)];

NonEven(i,:) = [store,NonEven(i,1:3)];
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end

end

end

if ~(isempty(ConEven))

for i=1:3

if ConEven(i,2)-even(i,2) ~= 0

if ConEven(i,2)-even(i,2) <= 0

store = [ConEven(i,4:6)];

ConEven(i,:) = [store,ConEven(i,1:3)];

end

elseif ConEven(i,1)-even(i,1) <= 0

store = [ConEven(i,4:6)];

ConEven(i,:) = [store,ConEven(i,1:3)];

end

end

end

A.10 MARSdirectionCHECK
function[ConOdd,NonOdd,ConEven,NonEven]=MARSdirectionCHECK(dUodd2,dUeven2, ConOdd,NonOdd,ConEven,NonEven)

% ######################################################################

% becouse the robot walks with an alternating tripedal gate 3 limbs will be

% in contact with the surface and 3 limbs will be in non-contact with the

% surface. Becouse the limbs are brocken in to the even and odd groups

% there are 2 posabilites:

%

% Possability 1: Odd limbs in contact and even limbs in non-contact

%

% Possability 2: Even limbs in contact and odd limbs in non-contact

%

% The limb tip stride-line end-points are stored in the arrays: ConOdd,

% NonOdd, ConEven, and NonEven. Wheather even or odd limbs are in contact

% can be determined by finding if these arays are empty. For example: if

% the odd limbs are in contact than the ConOdd array will hold the stride

% line end-point values and the NonOdd array will be empty.

%

% Inputs: dUodd2 and dUeven2 are the change in limb tip translation

% vectors due to

% body translation. They are seperated by even and odd

% limbs. They are stored in arrays of the form:

%

% x-direction y-direction z-direction

% limb1 value value value

% limb3 value value value

% limb5 value value value

%

% The other inputs of this function are arays of points

% Each row of the aray is six elements long. The first three

% elements are the (x,y,z) position of one point. The last

% three elements are the (x,y,z) position of another point.

% These two points are the end points of a stride-line.

%

% Each limb has two points associated with the limbs stride

% line. If the ‘‘odd’’ limbs are in contact and the ‘‘even"
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% limbs are not in contact the outputs will be:

%

% ConOdd = [limb-1 points

% limb-3 points

% limb-5 points]

% ConEven = []

% NonOdd = []

% NonEven = [limb-2 points

% limb-4 points

% limb-6 points]

%

% If the ‘‘even’’ limbs are in contact and the ‘‘odd’’ limbs

% are not in contact the outputs will be:

%

% ConOdd = []

% ConEven = [limb-2 points

% limb-4 points

% limb-6 points]

% NonOdd = [limb-1 points

% limb-3 points

% limb-5 points]

% NonEven = []

%

% Outputs: The corectly oriented: ConOdd, NonOdd, ConEven, and NonEven

% the output arrays are aranged so that the first 3 values of

% a row represent the end point of the stride-line in the

% forward direction of the body direction

%

% ######################################################################

% check to see in the odd limbs are in contact (the ConOdd aray contains

% values)

if ~(isempty(ConOdd))

% so the odd limbs are in contact. Now we check through the ConOdd and

% NonEven arrays to make sure the strides lines are pointed in the same

% direction as the forward direction of the robot. This direction,

% translated to each limb cordinate frame is given by the dUodd2 and

% dUeven2 arays.

for i=1:3

% Now we test to see if the vectors are pointed in the same

% direction. To do this we test the sign of the dot product. If

% the sign is negative we switch the Con or Non points around.

V1 = [(ConOdd(i,1)-ConOdd(i,4)), (ConOdd(i,2)-ConOdd(i,5)), (ConOdd(i,3)-ConOdd(i,6))];

V2 = dUodd2(i,:);

if sign(dot(V1,V2)) < 0

ConOdd(i,:) = [ConOdd(i,4:6),ConOdd(i,1:3)];

end

V1 = [(NonEven(i,1)-NonEven(i,4)), (NonEven(i,2)-NonEven(i,5)), (NonEven(i,3)-NonEven(i,6))];

V2 = dUeven2(i,:);

if sign(dot(V1,V2)) < 0

NonEven(i,:) = [NonEven(i,4:6),NonEven(i,1:3)];

end

end

end

% and now the same thing for when the even lombs are in contact

if ~(isempty(ConEven))

for i=1:3
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V1 = [(NonOdd(i,1)-NonOdd(i,4)), (NonOdd(i,2)-NonOdd(i,5)), (NonOdd(i,3)-NonOdd(i,6))];

V2 = dUodd2(i,:);

if sign(dot(V1,V2)) < 0

NonOdd(i,:) = [NonOdd(i,4:6),NonOdd(i,1:3)];

end

V1 = [(ConEven(i,1)-ConEven(i,4)), (ConEven(i,2)-ConEven(i,5)), (ConEven(i,3)-ConEven(i,6))];

V2 = dUeven2(i,:);

if sign(dot(V1,V2)) < 0

ConEven(i,:) = [ConEven(i,4:6),ConEven(i,1:3)];

end

end

end

A.11 MARSnonContactSTRIDEline
function[NonOdd, NonEven]=MARSnonContactSTRIDEline(contact, NonOdd, odd, NonEven, even)

% ########################################################################

% The non-contact limb tip is not necesaraly at a point that lies on the

% optimized non-contact stride-line. For this reason the non-contact stride-line

% must be redefined as the line between the limb tip and the starting point

% of the optimised stride-line. Further, non-contact limbs move in the

% oposite direction of contact limbs

%

% Inputs: The inputs of this function are the ‘‘Non’’ arays of points

% Each row of the aray is six elements long. The first three

% elements are the (x,y,z) position of one point. The last

% three elements are the (x,y,z) position of another point.

% These two points are the end points of a stride-line.

%

% Each limb has two points associated with the limbs stride

% line. If the ‘‘odd’’ limbs are in contact and the ‘‘even"

% limbs are not in contact the outputs will be:

%

% ConOdd = [limb-1 points

% limb-3 points

% limb-5 points]

% ConEven = []

% NonOdd = []

% NonEven = [limb-2 points

% limb-4 points

% limb-6 points]

%

% If the ‘‘even’’ limbs are in contact and the ‘‘odd’’ limbs

% are not in contact the outputs will be:

%

% ConOdd = []

% ConEven = [limb-2 points

% limb-4 points

% limb-6 points]

% NonOdd = [limb-1 points

% limb-3 points

% limb-5 points]

% NonEven = []

%
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%

% even the 3X3 matrix of (x,y,z) limb tip positions (even limbs)

% [x2 y2 z2]

% [x4 y4 z4]

% [x6 y6 z6]

%

% odd the 3X3 matrix of (x,y,z) limb tip positions (odd limbs)

% [x1 y1 z1]

% [x3 y3 z3]

% [x5 y5 z5]

%

% contact = 1 if odd limbs are in contact 2 for even

%

% Outputs: NonOdd, NonEven

%

% ########################################################################

if contact == 2

if ~(isempty(NonOdd))

for i=1:3

NonOdd(i,:) = [NonOdd(i,4:6),odd(i,1:3)];

end

end

else

if ~(isempty(NonEven))

for i=1:3

NonEven(i,:) = [NonEven(i,4:6),even(i,1:3)];

end

end

end

A.12 MARSnoncontactSTEPvector
function[dUodd, dUeven]=MARSnoncontactSTEPvector(contact, step, NonOdd, NonEven, dUodd2, dUeven2)

% ######################################################################

% Now the non-contact directional vector must be found and multiplied by

% the step size

%

% Inputs: The inputs of this function are the ‘‘Non’’ arays of points

% Each row of the aray is six elements long. The first three

% elements are the (x,y,z) position of one point. The last

% three elements are the (x,y,z) position of another point.

% These two points are the end points of a stride-line.

%

% Each limb has two points associated with the limbs stride

% line. If the ‘‘odd’’ limbs are in contact and the ‘‘even"

% limbs are not in contact the outputs will be:

%

% ConOdd = [limb-1 points

% limb-3 points

% limb-5 points]

% ConEven = []

% NonOdd = []

% NonEven = [limb-2 points
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% limb-4 points

% limb-6 points]

%

% If the ‘‘even’’ limbs are in contact and the ‘‘odd’’ limbs

% are not in contact the outputs will be:

%

% ConOdd = []

% ConEven = [limb-2 points

% limb-4 points

% limb-6 points]

% NonOdd = [limb-1 points

% limb-3 points

% limb-5 points]

% NonEven = []

%

% step the distance of travel for one increment

%

% contact = 1 if odd limbs are in contact 2 for even

%

% dUodd2 and dUeven2 are the change in limb tip

% translation due to body rotation. They are

% seperated by even and odd limbs. They are

% stored in arrays of the form:

%

% x-direction y-direction z-direction

% limb1 value value value

% limb3 value value value

% limb4 value value value

%

% Outputs: dUodd and dUeven are the non-contact directional vectors.

% They are the correct length as specified by the step input.

% They are stored in arrays of the form:

%

% x-direction y-direction z-direction

% limb1 value value value

% limb3 value value value

% limb4 value value value

%

% ########################################################################

dUodd=dUodd2; dUeven=dUeven2;

if contact == 2

for i=1:3

Tn = NonOdd(i,1:3)-NonOdd(i,4:6);

dUodd(i,:) = step*(Tn./(sum(Tn.^2))^0.5);

end

else

for i=1:3

Tn = NonEven(i,1:3)-NonEven(i,4:6);

dUeven(i,:) = step*(Tn./(sum(Tn.^2))^0.5);

end

end
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A.13 MARSnextTIPpos
function[dPodd, dPeven]=MARSnextTIPpos(odd, even, dUodd, dUeven)

% #########################################################################

%

% Find next limb tip position

%

% Inputs: even the 3X3 matrix of (x,y,z) limb tip positions (even limbs)

% [x2 y2 z2]

% [x4 y4 z4]

% [x6 y6 z6]

%

% odd the 3X3 matrix of (x,y,z) limb tip positions (odd limbs)

% [x1 y1 z1]

% [x3 y3 z3]

% [x5 y5 z5]

%

% dUodd and dUeven are the non-contact directional vectors.

% They are the correct length as specified by the step input.

% They are stored in arrays of the form:

%

% x-direction y-direction z-direction

% limb1 value value value

% limb3 value value value

% limb4 value value value

%

% Outputs: dPodd = the next limb tip position for the odd limbs

% dPeven = the next limb tip position fo the even limbs

%

% #########################################################################

% initialize

dPodd=[];dPeven=[];

for i=1:3

dPodd(i,:)=odd(i,:)+dUodd(i,:);

dPeven(i,:)=even(i,:)+dUeven(i,:);

end

A.14 MARSlimbSWITCHtest
function[change]=MARSlimbSWITCHtest(dPodd, dPeven, ConOdd, ConEven, contact, buffer)

% ########################################################################

% Check to see if switch is necesary. If a contact-noncontact limb switch

% in necesary, change=1

%

% Inputs: The inputs of this function are the ‘‘Con’’ arays of points

% Each row of the aray is six elements long. The first three

% elements are the (x,y,z) position of one point. The last

% three elements are the (x,y,z) position of another point.

% These two points are the end points of a stride-line.

%

% Each limb has two points associated with the limbs stride
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% line. If the ‘‘odd’’ limbs are in contact and the ‘‘even"

% limbs are not in contact the outputs will be:

%

% ConOdd = [limb-1 points

% limb-3 points

% limb-5 points]

% ConEven = []

% NonOdd = []

% NonEven = [limb-2 points

% limb-4 points

% limb-6 points]

%

% If the ‘‘even’’ limbs are in contact and the ‘‘odd’’ limbs

% are not in contact the outputs will be:

%

% ConOdd = []

% ConEven = [limb-2 points

% limb-4 points

% limb-6 points]

% NonOdd = [limb-1 points

% limb-3 points

% limb-5 points]

% NonEven = []

%

% dPodd = the next limb tip position for the odd limbs

% dPeven = the next limb tip position fo the even limbs

%

% contact = 1 if odd limbs are in contact 2 for even

%

% buffer = the distance the limb tip must stay away from the

% workspace shell

%

% Outputs: change: ‘‘0’’ signifies that there is not limb switch

% ‘‘1’’ signifies that a limb switch is necesary

%

% ########################################################################

% initialize

change = 0;

if contact == 1

for i=1:3

distV = dPodd(i,:)-ConOdd(i,1:3);

dist = (sum((distV).^2))^0.5;

if dist <= buffer

change = 1;

end

end

else

for i=1:3

distV = dPeven(i,:)-ConEven(i,1:3);

dist = (sum((distV).^2))^0.5;

if dist <= buffer

change = 1;

end

end

end
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A.15 MARStipPOSoutput
function[Even, Odd, Even2, Odd2]=MARStipPOSoutput(dPodd, dPeven, change, dUodd2, dUeven2, contact, r, h, steph)

% #########################################################################

% Output the limb tip positions. If there is no switch only one position

% will be output for each limb. However, if a limb switch is necesary two

% positions will be output for each limb

% Inputs: dPodd = the next limb tip position for the odd limbs

% dPeven = the next limb tip position fo the even limbs

% change: ‘‘0’’ signifies that there is not limb switch

% ‘‘1’’ signifies that a limb switch is necesary

% dUodd2 and dUeven2 are the change in limb tip

% translation due to body rotation. They are

% seperated by even and odd limbs. They are

% stored in arrays of the form:

%

% x-direction y-direction z-direction

% limb1 value value value

% limb3 value value value

% limb4 value value value

%

% contact = 1 if odd limbs are in contact 2 for even

%

% r the radius of the z-axis sigularity buffer cylinder

%

% h the walking hieght of the robot

%

% steph the steping hieght of the robot

%

% Outputs: Even = even limb tip possitions

% Odd = odd limb tip possitions

% Even2 = the next set of even limb tip positions is a switch is

% necesary

% Odd2 = the next set of odd limb tip positions is a switch is

% necesary

%

% #########################################################################

% initialize

Even=[]; Odd=[]; Even2=[]; Odd2=[];

if change == 0

Odd = dPodd

Even = dPeven

elseif change == 1

% switch the change argument

change = 0;

if contact == 2

% position the contact limb to the next point

Even = dPeven

% make the non-contact limb come in contact by finding a

% non-contact line at the contact hieght and moving the limb tip to

% the start of this line

for i=1:3
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[x1,y1,z1,x2,y2,z2] = MARSnoncontactLINE(dUodd2(i,1),dUodd2(i,2),dUodd2(i,3),r,h);

if dUodd2(i,2)==0

if sign(dUodd2(i,1))==sign(x1)

Odd(i,:)=[x1,y1,z1];

else

Odd(i,:)=[x2,y2,z2];

end

else

if sign(dUodd2(i,2))==sign(y1)

Odd(i,:)=[x1,y1,z1];

else

Odd(i,:)=[x2,y2,z2];

end

end

end

% raise the contact limb so it is non-contact

for i=1:3

[x1,y1,z1,x2,y2,z2] = MARSnoncontactLINE(dUeven2(i,1),dUeven2(i,2),dUeven2(i,3),r,h-steph);

if dUeven2(i,2)==0

if sign(dUeven2(i,1))==sign(x1)

Even2(i,:)=[x1,y1,z1];

else

Even2(i,:)=[x2,y2,z2];

end

else

if sign(dUeven2(i,2))==sign(y1)

Even2(i,:)=[x1,y1,z1];

else

Even2(i,:)=[x2,y2,z2];

end

end

end

% move the non-contact limb to new contact position

Odd2 = Odd + dUodd2;

else

% position the contact limb to the next point

Odd = dPodd;

% make the non-contact limb come in contact by finding a

% non-contact line at the contact hieght and moving the limb tip to

% the start of this line

for i=1:3

[x1,y1,z1,x2,y2,z2] = MARSnoncontactLINE(dUeven2(i,1),dUeven2(i,2),dUeven2(i,3),r,h);

if dUeven2(i,2)==0

if sign(dUeven2(i,1))==sign(x1)

Even(i,:)=[x1,y1,z1];

else

Even(i,:)=[x2,y2,z2];

end

else

if sign(dUeven2(i,2))==sign(y1)

Even(i,:)=[x1,y1,z1];

else

Even(i,:)=[x2,y2,z2];

end

end

end

% raise the contact limb so it is non-contact
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for i=1:3

[x1,y1,z1,x2,y2,z2] = MARSnoncontactLINE(dUodd2(i,1),dUodd2(i,2),dUodd2(i,3),r,h-steph);

if dUodd2(i,2)==0

if sign(dUodd2(i,1))==sign(x1)

Odd2(i,:)=[x1,y1,z1];

else

Odd2(i,:)=[x2,y2,z2];

end

else

if sign(dUodd2(i,2))==sign(y1)

Odd2(i,:)=[x1,y1,z1];

else

Odd2(i,:)=[x2,y2,z2];

end

end

end

% move the non-contact limb to new contact position

Even2 = Even + dUeven2;

end

end

A.16 MARSContactLine
function[x1,y1,z1,x2,y2,z2] = MARScontactLINE(X,Y,Z,ux,uy,uz,r)

% ####################################################################

% This function finds the longest suitable stride-line for the

% contact MARS limbs

%

% Inputs: (ux,uy,uz) the direction of the line

% r the radius of the z-axis singularity buffer cylinder

% h the walking hieght of the robot

% (X,Y,Z) the point of contact

%

% Outputs: (x1,y1,z1),(x2,y2,z2) the endpoints of the stride-line segment

%

% ####################################################################

% ensure unit-vector

Ux = ux/(ux^2+uy^2+uz^2)^0.5;

Uy = uy/(ux^2+uy^2+uz^2)^0.5;

Uz = uz/(ux^2+uy^2+uz^2)^0.5;

ux=Ux; uy=Uy; uz=Uz;

x1=-12; y1=-12; z1=-12; x2=12; y2=12; z2=12; % initialize

% next, each 3D workspace boundary shell is tested for intersection

% Note, as long as h>Shel-3 radius, intersection with shell 1 is not

% possible

% 000000000000000000000000000000000000000000000000000000000000000000000

[x,y,z] = MARScylInt(X,Y,Z,ux,uy,uz,r);

% find the distances from point to intersects and specifies the distance as

% positive or negative from the point

if ~(isempty(x))

dD1 = [X,Y,Z] - [x(1),y(1),z(1)];
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D(1) = (dD1(1)^2 + dD1(2)^2 + dD1(3)^2)^0.5;

if uy == 0

if X>dD1(1)

D(1)=-D(1);

end

else

if Y>dD1(2)

D(1)=-D(1);

end

end

if length(x) == 2

dD2 = [X,Y,Z] - [x(2),y(2),z(2)];

D(2) = (dD2(1)^2 + dD2(2)^2 + dD2(3)^2)^0.5;

if uy == 0

if X>dD2(1)

D(2)=-D(2);

end

else

if Y>dD2(2)

D(2)=-D(2);

end

end

end

% determine the closest points

[short, test] = min(abs(D));

if sign(D(test)) == -1

x1 = x(test);

y1 = y(test);

z1 = z(test);

else

x2 = x(test);

y2 = y(test);

z2 = z(test);

end

end

% 111111111111111111111111111111111111111111111111111111111111111111111

[x,y,z] = MARSshell1int(X, Y, Z, ux, uy, uz, 0);

if ~(isempty(x))

for i=1:length(x)

if uy==0

if x(i)<0

if x(i)>x1

x1=x(i);

y1=y(i);

z1=z(i);

end

elseif x(i)>0

if x(i)<x2

x2=x(i);

y2=y(i);

z2=z(i);

end

end

else

if y(i)<0
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if y(i)>y1

x1=x(i);

y1=y(i);

z1=z(i);

end

elseif y(i)>0

if y(i)<y2

x2=x(i);

y2=y(i);

z2=z(i);

end

end

end

end

end

% 22222222222222222222222222222222222222222222222222222222222222222222222

[x,y,z] = MARSshell2int(X, Y, Z, ux, uy, uz, 0);

if ~(isempty(x))

for i=1:length(x)

if uy==0

if x(i)<0

if x(i)>x1

x1=x(i);

y1=y(i);

z1=z(i);

end

elseif x(i)>0

if x(i)<x2

x2=x(i);

y2=y(i);

z2=z(i);

end

end

else

if y(i)<0

if y(i)>y1

x1=x(i);

y1=y(i);

z1=z(i);

end

elseif y(i)>0

if y(i)<y2

x2=x(i);

y2=y(i);

z2=z(i);

end

end

end

end

end

% 333333333333333333333333333333333333333333333333333333333333333333333

[x,y,z] = MARSshell3int(X, Y, Z, ux, uy, uz, 0);

if ~(isempty(x))

for i=1:length(x)

if uy==0

if x(i)<0

if x(i)>x1
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x1=x(i);

y1=y(i);

z1=z(i);

end

elseif x(i)>0

if x(i)<x2

x2=x(i);

y2=y(i);

z2=z(i);

end

end

else

if y(i)<0

if y(i)>y1

x1=x(i);

y1=y(i);

z1=z(i);

end

elseif y(i)>0

if y(i)<y2

x2=x(i);

y2=y(i);

z2=z(i);

end

end

end

end

end

% 444444444444444444444444444444444444444444444444444444444444444444444

[x,y,z] = MARSshell4int(X, Y, Z, ux, uy, uz, 0);

if ~(isempty(x))

for i=1:length(x)

if uy==0

if x(i)<0

if x(i)>x1

x1=x(i);

y1=y(i);

z1=z(i);

end

elseif x(i)>0

if x(i)<x2

x2=x(i);

y2=y(i);

z2=z(i);

end

end

else

if y(i)<0

if y(i)>y1

x1=x(i);

y1=y(i);

z1=z(i);

end

elseif y(i)>0

if y(i)<y2

x2=x(i);

y2=y(i);
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z2=z(i);

end

end

end

end

end

% P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1

[x, y, z] = MARSplane1Int(X, Y, Z, ux, uy, uz);

if ~(isempty(x))

for i=1:length(x)

if uy==0

if x(i)<0

if x(i)>x1

x1=x(i);

y1=y(i);

z1=z(i);

end

elseif x(i)>0

if x(i)<x2

x2=x(i);

y2=y(i);

z2=z(i);

end

end

else

if y(i)<0

if y(i)>y1

x1=x(i);

y1=y(i);

z1=z(i);

end

elseif y(i)>0

if y(i)<y2

x2=x(i);

y2=y(i);

z2=z(i);

end

end

end

end

end

% P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2

[x, y, z] = MARSplane2Int(X, Y, Z, ux, uy, uz);

if ~(isempty(x))

for i=1:length(x)

if uy==0

if x(i)<0

if x(i)>x1

x1=x(i);

y1=y(i);

z1=z(i);

end

elseif x(i)>0

if x(i)<x2

x2=x(i);

y2=y(i);

z2=z(i);
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end

end

else

if y(i)<0

if y(i)>y1

x1=x(i);

y1=y(i);

z1=z(i);

end

elseif y(i)>0

if y(i)<y2

x2=x(i);

y2=y(i);

z2=z(i);

end

end

end

end

end

A.17 MARSNonContactLine
5

function[x1,y1,z1,x2,y2,z2] = MARSnoncontactLINE(ux,uy,uz,r,h)

% ####################################################################

% This function finds the longest suitable stride-line for the

% non-contact MARS limbs

%

% Inputs: (ux,uy,uz) the direction of the line

% r the radius of the z-axis singularity buffer cylinder

% h the walking hieght of the robot

%

% Outputs: (x1,y1,z1),(x2,y2,z2) the endpoints of the stride-line segment

%

% ####################################################################

% ensure unit-vector

Ux = ux/(ux^2+uy^2+uz^2)^0.5;

Uy = uy/(ux^2+uy^2+uz^2)^0.5;

Uz = uz/(ux^2+uy^2+uz^2)^0.5;

ux=Ux; uy=Uy; uz=Uz;

% first the tangent point to the z-axis singularity buffer cylinar is

% found

[X, Y, Z, Ux, Uy, b, theta] = MARStanpoint(ux,uy,uz,r,h);

% is the

if (Z>61^0.5)|(Z<11)

[X, Y, Z] = MARStanpointALT(Ux, Uy, theta, b, r);

end

x1=-12; y1=-12; z1=-12; x2=12; y2=12; z2=12; % initialize

% next, each 3D workspace boundary shell is tested for intersection
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% Note, as long as h>Shel-3 radius, intersection with shell 1 is not

% possible

% 111111111111111111111111111111111111111111111111111111111111111111111

[x,y,z] = MARSshell1int(X, Y, Z, ux, uy, uz, 0);

if ~(isempty(x))

for i=1:length(x)

if uy==0

if x(i)<0

if x(i)>x1

x1=x(i);

y1=y(i);

z1=z(i);

end

elseif x(i)>0

if x(i)<x2

x2=x(i);

y2=y(i);

z2=z(i);

end

end

else

if y(i)<0

if y(i)>y1

x1=x(i);

y1=y(i);

z1=z(i);

end

elseif y(i)>0

if y(i)<y2

x2=x(i);

y2=y(i);

z2=z(i);

end

end

end

end

end

% 22222222222222222222222222222222222222222222222222222222222222222222222

[x,y,z] = MARSshell2int(X, Y, Z, ux, uy, uz, 0);

if ~(isempty(x))

for i=1:length(x)

if uy==0

if x(i)<0

if x(i)>x1

x1=x(i);

y1=y(i);

z1=z(i);

end

elseif x(i)>0

if x(i)<x2

x2=x(i);

y2=y(i);

z2=z(i);

end

end

else

if y(i)<0
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if y(i)>y1

x1=x(i);

y1=y(i);

z1=z(i);

end

elseif y(i)>0

if y(i)<y2

x2=x(i);

y2=y(i);

z2=z(i);

end

end

end

end

end

% 444444444444444444444444444444444444444444444444444444444444444444444

[x,y,z] = MARSshell4int(X, Y, Z, ux, uy, uz, 0);

if ~(isempty(x))

for i=1:length(x)

if uy==0

if x(i)<0

if x(i)>x1

x1=x(i);

y1=y(i);

z1=z(i);

end

elseif x(i)>0

if x(i)<x2

x2=x(i);

y2=y(i);

z2=z(i);

end

end

else

if y(i)<0

if y(i)>y1

x1=x(i);

y1=y(i);

z1=z(i);

end

elseif y(i)>0

if y(i)<y2

x2=x(i);

y2=y(i);

z2=z(i);

end

end

end

end

end

% P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1

[x, y, z] = MARSplane1Int(X, Y, Z, ux, uy, uz);

if ~(isempty(x))

for i=1:length(x)

if uy==0

if x(i)<0

if x(i)>x1
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x1=x(i);

y1=y(i);

z1=z(i);

end

elseif x(i)>0

if x(i)<x2

x2=x(i);

y2=y(i);

z2=z(i);

end

end

else

if y(i)<0

if y(i)>y1

x1=x(i);

y1=y(i);

z1=z(i);

end

elseif y(i)>0

if y(i)<y2

x2=x(i);

y2=y(i);

z2=z(i);

end

end

end

end

end

% P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2P2

[x, y, z] = MARSplane2Int(X, Y, Z, ux, uy, uz);

if ~(isempty(x))

for i=1:length(x)

if uy==0

if x(i)<0

if x(i)>x1

x1=x(i);

y1=y(i);

z1=z(i);

end

elseif x(i)>0

if x(i)<x2

x2=x(i);

y2=y(i);

z2=z(i);

end

end

else

if y(i)<0

if y(i)>y1

x1=x(i);

y1=y(i);

z1=z(i);

end

elseif y(i)>0

if y(i)<y2

x2=x(i);

y2=y(i);
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z2=z(i);

end

end

end

end

end

A.18 MARSCylInt
5

function[X, Y, Z] = MARScylInt(x,y,z,ux,uy,uz,r)

% ####################################################################

%

% this function finds the intersection points of a line and a

% sylindar allong the z-axis

%

% Inputs: (x,y,z) point on the line

% (ux, uy, uz) direction vector of the line

% r radius of sylindar

%

% Outputs: (X,Y,Z) intersection points

%

% ####################################################################

% First the line-circle intersect is found in the x-y perspective

% defining terms

ur = (ux^2 + uy^2)^0.5;

x2 = x+ux;

y2 = y+uy;

D = x*y2 - x2*y;

test = r^2*ur^2-D^2;

sgn = 1;

X=[]; Y=[]; Z=[];

% find out if line intersects

if test>0

% find sign

if uy < 0

sgn = -1;

end

% find X and Y

X(1) = (D*uy + sgn*ux*(test)^0.5)/ur^2;

X(2) = (D*uy - sgn*ux*(test)^0.5)/ur^2;

Y(1) = (-D*ux + abs(uy)*(test)^0.5)/ur^2;

Y(2) = (-D*ux - abs(uy)*(test)^0.5)/ur^2;

% find value of ‘‘t"

if ux ~= 0

t1 = (X(1)-x)/ux;

t2 = (X(2)-x)/ux;

% find Z

Z(1) = z + uz*t1;

Z(2) = z + uz*t2;

elseif uy ~= 0
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t1 = (Y(1)-y)/uy;

t2 = (Y(2)-y)/uy;

% find Z

Z(1) = z + uz*t1;

Z(2) = z + uz*t2;

end % in any other case the line is vertical and Z=z

end

A.19 MARSTanPoint
5

function[X, Y, Z, Ux, Uy, b, theta] = MARStanpoint(ux,uy,uz,r,h)

% ########################################################################

%

% This function finds a suitable tangent point for the cylander which

% buffers the singularity z-axis

%

% Inputs: r the radius of the cylander

% [ux,uy,uz] the direction vector of the line

% h the minimum distance from the line to the origin

%

% Outputs: [X,Y,Z] the tangent point

%

% ########################################################################

% the angle between the stride-line and the z-axis is found

theta = atan2((ux^2 + uy^2)^0.5, uz);

if theta == 0

Z = -h;

else

% find the length of the third side of the right triange with other

% sides r and h

b = (h^2 - r^2)^0.5;

% find Z

Z = b/sin(theta);

end

% make ux, uy a unit vector in the x-y plane

if (ux == 0) & (uy == 0)

Ux = ux;

Uy = uy;

else

Ux = ux/(ux^2+uy^2)^0.5;

Uy = uy/(ux^2+uy^2)^0.5;

end

% find X and Y

XY = r.*[(Uy),(-Ux)];

X=XY(1); Y=XY(2);
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A.20 MARSTanPointAlt
5

function[X, Y, Z] = MARStanpointALT(Ux, Uy, theta, b, r)

% ####################################################################

%

% This function finds the orthagonal intersection point between

% the stride-line and the height-line

%

% Inputs: (Ux, Uy) the 2d x-y-plane unite vector for the stide-line

% b the length of the line from the tip of r to q

% theta the angel between the r-tip, p, and q

%

% Outputs: (X, Y, Z) the point coordinates

%

% ####################################################################

% find the R vector

Uxr = Uy/(Ux^2+Uy^2)^0.5;

Uyr = -Ux/(Ux^2+Uy^2)^0.5;

R = r*[Uxr, Uyr, 0];

% find the B vector

B = [b*cos(theta)*[ -Uyr/(Uyr^2+Uxr^2)^0.5, Uxr/(Uyr^2+Uxr^2)^0.5],-b*sin(theta)];

% add the R and B vectors to find the point

Q = R+B;

X=Q(1); Y=Q(2); Z=Q(3);

A.21 MARSShell1Int
5

function[X,Y,Z] = MARSshell1int(x1, y1, z1, Ux, Uy, Uz, buffer)

% % DEFINING LIMB DIMENTIONS

% L1=5; % upper limb length

% L2=6; % lower limb length

% DEFINING THE LINE

% x1=0; y1=0; z1=-0.2; % point on line

% Ux=1; Uy=0; Uz=0; % Direction of line

ux=Ux/(Ux^2+Uy^2+Uz^2); %Change to unit vector

uy=Uy/(Ux^2+Uy^2+Uz^2); %Change to unit vector

uz=Uz/(Ux^2+Uy^2+Uz^2); %Change to unit vector

% DEFINING THE TORUS SECTION

r=5; % radius from senter of torus to senter of tube

q=6-buffer; % radius from center of tube to torus shell

thetamin=-10*pi/180; %minimum azimuth

thetamax=190*pi/180; %maximum azimuth

% phimin=-90*pi/180; %minimum polar
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% phimax=0*pi/180; %maximum polar

% FINDING AND VALIDATING POINTS OF INTERSECTION BETWEEN THE LINE AND THE

% SHELL

R=MARSroots(r,q,x1,y1,z1,ux,uy,uz); %substitutes parametric equation of

% line into equation of torus and finds roots for paramater ‘‘t"

a = angle(R); %exclude imaginary roots

root=[]; %exclude imaginary roots

for i=1:length(R) %exclude imaginary roots

if a(i) == 0 | a(i) == pi %exclude imaginary roots

root=[root,R(i)]; %exclude imaginary roots

end %exclude imaginary roots

end %exclude imaginary roots

R=root; %exclude imaginary roots

x = x1 + R.*ux; % find coordinates from roots

y = y1 + R.*uy; % find coordinates from roots

z = z1 + R.*uz; % find coordinates from roots

X=[]; Y=[]; Z=[]; % initialize data sets

for i=1:length(R) % remove points that dont lie on shell

if z(i) < 0

if x(i)^2+y(i)^2 > r^2

theta = atan2(y(i),x(i));

if theta < -pi/2

theta = theta + 2*pi;

end

if (thetamin < theta) & (theta < thetamax)

X=[X,x(i)]; % update points

Y=[Y,y(i)]; % update points

Z=[Z,z(i)]; % update points

end

end

end

end

A.22 MARSShell2Int
5

function[X,Y,Z] = MARSshell2int(x1, y1, z1, Ux, Uy, Uz, buffer)

% DEFINING LIMB DIMENTIONS

% L1=5; % upper limb length

% L2=6; % lower limb length

% DEFINING THE LINE

% x1=0; y1=0; z1=-0.2; % point on line

% Ux=1; Uy=0; Uz=0; % Direction of line

ux=Ux/(Ux^2+Uy^2+Uz^2); %Change to unit vector

uy=Uy/(Ux^2+Uy^2+Uz^2); %Change to unit vector

uz=Uz/(Ux^2+Uy^2+Uz^2); %Change to unit vector

% DEFINING THE TORUS SECTION

r=-5*sin(20*pi/180); % radius from senter of torus to center of tube

q=6-buffer; % radius from center of tube to torus shell

ztorus=-5*cos(20*pi/180); % location of center of torus on the z-axis
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thetamin=-170*pi/180; %minimum azimuth

thetamax=-10*pi/180; %maximum azimuth

% phimin=-90*pi/180; %minimum polar

% phimax=0*pi/180; %maximum polar

% ADJUSTING THE POINT ON THE LINE TO COMPENSATE FOR THE TORUS CENTER

% LOCATION

z1=z1-ztorus;

% FINDING AND VALIDATING POINTS OF INTERSECTION BETWEEN THE LINE AND THE

% SHELL

R=MARSroots(r,q,x1,y1,z1,ux,uy,uz); %substitutes parametric equation of

% line into equation of torus and finds roots for paramater ‘‘t"

a = angle(R); %exclude imaginary roots

root=[]; %exclude imaginary roots

for i=1:length(R) %exclude imaginary roots

if a(i) == 0 | a(i) == pi %exclude imaginary roots

root=[root,R(i)]; %exclude imaginary roots

end %exclude imaginary roots

end %exclude imaginary roots

R=root; %exclude imaginary roots

x = x1 + R.*ux; % find coordinates from roots

y = y1 + R.*uy; % find coordinates from roots

z = z1 + R.*uz + ztorus; % find coordinates from roots

X=[]; Y=[]; Z=[]; % initialize data sets

% remove non-floating point errors

x = double(x); y = double(y); z = double(z);

% set up variables

xcenter=5*sin(20*pi/180);

ycenter=-5*cos(20*pi/180);

centradius=q+buffer;

for i=1:length(R) % remove points that dont lie on shell

if z(i) < -5*cos(20*pi/180) + 6*sin(20*pi/180)

if z(i) > -11*cos(20*pi/180)

xyradius=(x(i)^2+y(i)^2)^0.5;

test1=(xyradius-xcenter)^2+(z(i)-ycenter)^2;

test2=centradius^2+buffer;

if test1 >= test2-0.1

theta = atan2(y(i),x(i));

if (thetamin < theta) & (theta < thetamax)

X=[X,x(i)]; % update points

Y=[Y,y(i)]; % update points

Z=[Z,z(i)]; % update points

end

end

end

end

end % remove points that dont lie on shell
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A.23 MARSShell3Int
5

function[X,Y,Z] = MARSshell3int(x1, y1, z1, ux, uy, uz, buffer)

% ################################################################

%

% This function determines where a line intersects shell 3

% The function calls function MARScircLineInt.m to find the

% points where the line intersects the sphere

% The function then eliminates points which do not fall on the

% shell section of the sphere

%

% Inputs: (x1, y1, z1) a point on the line

% (Ux, Uy, Uz) the unit vector of the line

% buffer a margine to eliminate error

%

% Outputs: X the set of x cordinates

% Y the set of y cordinates

% Z the set of z cordinates

%

% ################################################################

% set up sphere parameters

r = (25 + 36)^0.5;

xs = 0;

ys = 0;

zs = 0;

% find intersection points

[P, test]=MARScircLineInt(x1, y1, z1, ux, uy, uz, xs, ys, zs, r, buffer);

% Initialize outputs

X=[]; Y=[]; Z=[];

% find intersection

if test == 0

% iterate through the number of intersection points

for i = 1:min(size(P))

x = P(1,i);

y = P(2,i);

z = P(3,i);

angle = atan2(y,x);

if angle < -pi/2

angle = angle + 2*pi;

end

if angle > -10*pi/180 & angle < 190*pi/180

if z < -6

X=[X,x];

Y=[Y,y];

Z=[Z,z];

end

else

if z < -5*cos(20*pi/180) + 6*sin(20*pi/180)

X=[X,x];

Y=[Y,y];

Z=[Z,z];
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end

end

end

end

A.24 MARSShell4Int
5

function[X,Y,Z] = MARSshell4int(x1, y1, z1, ux, uy, uz, buffer)

% ################################################################

%

% This function determines where a line intersects shell 4

% The function calls function MARScircLineInt.m to find the

% points where the line intersects the sphere

% The function then eliminates points which do not fall on the

% shell section of the sphere

%

% Inputs: (x1, y1, z1) a point on the line

% (Ux, Uy, Uz) the unit vector of the line

% buffer a margine to eliminate error

%

% Outputs: X the set of x cordinates

% Y the set of y cordinates

% Z the set of z cordinates

%

% ################################################################

% set up sphere parameters

r = 11;

xs = 0;

ys = 0;

zs = 0;

% find intersection points

[P, test]=MARScircLineInt(x1, y1, z1, ux, uy, uz, xs, ys, zs, r, buffer);

% Initialize outputs

X=[]; Y=[]; Z=[];

% find intersection

if test == 0

% iterate through the number of intersection points

for i = 1:min(size(P))

x = P(1,i);

y = P(2,i);

z = P(3,i);

angle = atan2(y,x);

if angle < -pi/2

angle = angle + 2*pi;

end

if angle > -10*pi/180 & angle < 190*pi/180

if z < 0

X=[X,x];

Y=[Y,y];
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Z=[Z,z];

end

else

if z < -11*cos(20*pi/180)

X=[X,x];

Y=[Y,y];

Z=[Z,z];

end

end

end

end

A.25 MARSPlane1Int
5

function[X, Y, Z] = MARSplane1Int(x, y, z, ux, uy, uz)

% #####################################################################

%

% This function uses MARSplaneInt to find the piont of intersecton

% between and line a plane. The function then tests the point to see

% if it lies on the area where the plane makes up part of the 3D

% workspace shell of the MARS limb

%

% Inputs: (x, y, z) = a point on the line

% (ux, uy, uz) = the unit vector of the line

%

% Outputs: (X, Y, Z) = a valid point of intersection. Empty if

% there is no valid intersection point

%

% #####################################################################

% Define the angle the plane makes with the x-y-plane

theta = 190*pi/180;

% find the intersection point

[X, Y, Z] = MARSplaneInt(x, y, z, ux, uy, uz, theta);

% Eliminate points in the wrong quadrant

if X<=0

X=[];Y=[];Z=[];

end

% establish intersection test criteria

xx = (X^2+(X*sin(10*pi/180))^2)^0.5;

yy = Z;

test1 = (xx - 5)^2 + yy^2;

test2 = (xx - 5*sin(20*pi/180))^2 + (yy + 5*cos(20*pi/180))^2;

test3 = xx^2 + yy^2;

% eliminate points on the z-axis

if X==0 | Y==0

X=[];Y=[];Z=[];

end

% test for no intersection

if X ~([]);

if max(~((yy<0) & (yy>-11*cos(20*pi/180)) & (test1>36) & (test2>36) & (test3<=121)))>0

if max(~((test2<=36) & (test1<=36) & (test3>61)))>0
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X=[];Y=[];Z=[];

end

end

end

% test = 1;

% if X == []

% test = 0;

% else

% % Test intersection bounds

% % set up semipolar cordinates

% xx = (X^2+Y^2)^0.5;

% yy = Z;

% if (xx - 5)^2 + yy^2 <= 36

% if (xx - 5*cos(20*pi/180))^2 + (yy + 6*cos(20*pi/180))^2 <= 36

% if xx^2 + yy^2 > 25+36

% test = 1;

% end

% end

% end

% if test ~= 1

% if xx^2 + yy^2 <= 25+36

% if (xx - 5)^2 + yy^2 > 36

% if (xx - 5*cos(20*pi/180))^2 + (yy + 6*cos(20*pi/180))^2 > 36

% test = 1;

% end

% end

% end

% end

% if test ~= 1

% X=[];Y=[];Z=[];

% end

% end

A.26 MARSPlane2Int
5

function[X, Y, Z] = MARSplane2Int(x, y, z, ux, uy, uz)

% #####################################################################

%

% This function uses MARSplaneInt to find the piont of intersecton

% between and line a plane. The function then tests the point to see

% if it lies on the area where the plane makes up part of the 3D

% workspace shell of the MARS limb

%

% Inputs: (x, y, z) = a point on the line

% (ux, uy, uz) = the unit vector of the line

%

% Outputs: (X, Y, Z) = a valid point of intersection. Empty if

% there is no valid intersection point

%

% #####################################################################
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% Define the angle the plane makes with the x-y-plane

theta = -10*pi/180;

% find the intersection point

[X, Y, Z] = MARSplaneInt(x, y, z, ux, uy, uz, theta);

% Eliminate points in the wrong quadrant

if X>=0

X=[];Y=[];Z=[];

end

% establish intersection test criteria

xx = (X^2+(X*sin(10*pi/180))^2)^0.5;

yy = Z;

test1 = (xx - 5)^2 + yy^2;

test2 = (xx - 5*sin(20*pi/180))^2 + (yy + 5*cos(20*pi/180))^2;

test3 = xx^2 + yy^2;

% eliminate points on the z-axis

if X==0 | Y==0

X=[];Y=[];Z=[];

end

% test for no intersection

if X ~([]);

if max(~((yy<0) & (yy>-11*cos(20*pi/180)) & (test1>36) & (test2>36) & (test3<=121)))>0

if max(~((test2<=36) & (test1<=36) & (test3>61)))>0

X=[];Y=[];Z=[];

end

end

end

% test = 1;

% if X == []

% test = 0;

% else

% % Test intersection bounds

% % set up semipolar cordinates

% xx = (X^2+Y^2)^0.5;

% yy = Z;

% if (xx - 5)^2 + yy^2 <= 36

% if (xx - 5*cos(20*pi/180))^2 + (yy + 6*cos(20*pi/180))^2 <= 36

% if xx^2 + yy^2 > 25+36

% test = 1;

% end

% end

% end

% if test ~= 1

% if xx^2 + yy^2 <= 25+36

% if (xx - 5)^2 + yy^2 > 36

% if (xx - 5*cos(20*pi/180))^2 + (yy + 6*cos(20*pi/180))^2 > 36

% test = 1;

% end

% end

% end

% end

% if test ~= 1

% X=[];Y=[];Z=[];

% end

% end
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A.27 MARSRoots
5

function[R] = MARSroots(r,q,x1,y1,z1,ux,uy,uz)

% #############################################################

%

% This function helps to find the points at which a line

% intersects the shell of a torus. The output roots are the

% values of ‘‘t’’ which when usbstituted into the parametric

% equation of a line give points in space.

%

% Inputs: r radius from senter of torus to senter of tube

% q radius from center of tube to torus shell

% (x1, y1, z1) corrdinates of given point on line

% (ux, uy, uz) unit vector of line direction

%

% Outputs: r1, r2, r3, r4 the roots or values of ‘‘t"

%

% #############################################################

% Set inputs

r2=r^2; r4=r^4;

q2=q^2; q4=q^4; %used for alfa

% Find input powers to save computational time

x12=x1^2; x13=x1^3; x14=x1^4;

y12=y1^2; y13=y1^3; y14=y1^4;

z12=z1^2; z13=z1^3; z14=z1^4;

ux2=ux^2;

uy2=uy^2;

uz2=uz^2;

% Calculate coeficients

a = (ux2+uy2+uz2)^2 / (4*r2*q2);

b = (r2*q^2)^(-1) * ( (ux2+uy2+uz2)*(ux*x1+uy*y1+uz*z1) );

c = (2*r2*q2)^(-1) * (4*uy*uz*y1*z1+4*ux*x1*(uy*y1+uz*z1)+ux2*(-r2-q2+3*x12+y12+z12)+

uy2*(-r2-q2+x12+3*y12+z12)+uz2*(r2-q2+x12+y12+3*z12));

d = (r2*q2)^(-1) * (ux*x1*(-r2-q2+x12+y12+z12)+uy*y1*(-r2-q2+x12+y12+z12)+uz*z1*(r2-q2+x12+y12+z12));

e = (4*r2*q2)^(-1) * (x14+y14-2*y12*(r2+q2-z12)-2*x12*(r2+q2-y12-z12)+(r2-q2+z12)^2);

% Find Roots

[R]=roots([a, b, c, d, e]);

% r1=R(1,1);r2=R(2,1);r3=R(3,1);r4=R(4,1);
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A.28 MARSCircLinInt
5

function[P,test] = MARScircLineInt(xl, yl, zl, ux, uy, uz, xs, ys, zs, r, buffer)

% ################################################################

%

% This function finds the points where a line intersects a sphere

% This function is specialized for lines which originate at a

% point within the sphere

%

% Inputs: (xl, yl, zl) point on line

% (ux, uy, uz) unit vector of line

% (xs, ys, zs) center of sphere

% r radius of sphere

%

% Outputs: P a 3*2 matrix on sphere intersection points

% empty in no intersection

% test if test is 1 not 0 the point is outsie the

% sphere

% buffer: small amount to avoid full extention

% ################################################################

% Test to see in the point on the line is in inside the sphere

OC=[xs; ys; zs] - [xl; yl; zl];

% Initialize

test=0; P=[];

magOC = (OC(1)^2 + OC(2)^2 + OC(3)^2)^0.5;

if magOC > r-buffer

test=1;

end

L = OC’*[ux; uy; uz];

HC2 = (r-buffer)^2-magOC^2+L^2;

if HC2 > 0

t1=L+(HC2)^0.5;

t2=L-(HC2)^0.5;

P=[xl; yl; zl] + t1*[ux; uy; uz];

P=[P, [xl; yl; zl] + t2*[ux; uy; uz] ];

end

A.29 MARSPlaneInt
5

function[X, Y, Z] = MARSplaneInt(x, y, z, ux, uy, uz, theta)

% #######################################################

%

% This function finds the intersection points of a line

% with a plane, assuming the plane passes through the

% point (0,0,0) and contains the z-axis

%



131

% Inputs: theta = the anlge the plane forms in the x-y plane

% (x, y, z) = a point on the line

% (ux, uy, uz) = the unit vector of the line

%

% Outputs: (X, Y, Z) = The point of intersection

% if the line lies in the plane (X, Y, Z)

% are empty

%

% #######################################################

% Find (a, b, c) a vector normal to the plane

a = sin(theta);

b = cos(theta);

c = 0;

% Find t

denominator = [a, b, c]*[ux, uy, uz]’;

if denominator ~= 0

t = -(x*a + y*b + z*c) / denominator;

% Find intersection point

X = x+ux*t;

Y = y+uy*t;

Z = z+uz*t;

else

X=[];Y=[];Z=[];

end

% % Set up three points on the plane

% x1=0;y1=0;z1=0;

% x2=0;y2=0;z2=1;

% x3=cos(theta);

% y3=sin(theta);

% z3=0;

%

% % Set up the numerator

% numerator = [1,1,1,1;x1,x2,x3,x;y1,y2,y3,y;z1,z2,z3,z];

%

% % Set up the denominator

% denominator = [1,1,1,0;x1,x2,x3,ux;y1,y2,y3,uy;z1,z2,z3,uz];

%

% % Find t

% t = det(-(denominator*numerator’));

%

% % Solve for X, Y, Z

% X = x+ux*t;

% Y = y+uy*t;

% Z = z+uz*t;



Appendix B

Mathematica script used to
find the polynomial terms for
stride-line torus intersection
roots

Once the parametric equation for a torus was expressed in terms of x, y, z,
r, and α, the Mathematica script presented below was used to substitute the
parametric equation of a line into the expression.

x [t , x1 , ux ] = x1 + t ∗ ux;x [t , x1 , ux ] = x1 + t ∗ ux;x [t , x1 , ux ] = x1 + t ∗ ux;
y [t , y1 , ux ] = y1 + t ∗ uy;y [t , y1 , ux ] = y1 + t ∗ uy;y [t , y1 , ux ] = y1 + t ∗ uy;
z [t , z1 , ux ] = z1 + t ∗ uz;z [t , z1 , ux ] = z1 + t ∗ uz;z [t , z1 , ux ] = z1 + t ∗ uz;

f [t , r , α , x1 , y1 , z1 , ux , uy , uz ] =f [t , r , α , x1 , y1 , z1 , ux , uy , uz ] =f [t , r , α , x1 , y1 , z1 , ux , uy , uz ] =(
(x1+t∗ux)2+(y1+t∗uy)2+(z1+t∗uz)2−r2−α2

2∗r∗α

)
2 +

(
(z1+t∗uz)

α

)
2 − 1;

(
(x1+t∗ux)2+(y1+t∗uy)2+(z1+t∗uz)2−r2−α2

2∗r∗α

)
2 +

(
(z1+t∗uz)

α

)
2 − 1;

(
(x1+t∗ux)2+(y1+t∗uy)2+(z1+t∗uz)2−r2−α2

2∗r∗α

)
2 +

(
(z1+t∗uz)

α

)
2 − 1;

ExpandAll[%];ExpandAll[%];ExpandAll[%];
Apart[%, t];Apart[%, t];Apart[%, t];
f [t ] = Collect[%, t];f [t ] = Collect[%, t];f [t ] = Collect[%, t];
{e, d, c, b, a} = Simplify[CoefficientList[%, ]]{e, d, c, b, a} = Simplify[CoefficientList[%, ]]{e, d, c, b, a} = Simplify[CoefficientList[%, ]]
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


a
b
c
d
e




//MatrixForm;




a
b
c
d
e




//MatrixForm;




a
b
c
d
e




//MatrixForm;

g[t ] = t4 ∗ a + t3 ∗ b + t2 ∗ c + t ∗ d + e;g[t ] = t4 ∗ a + t3 ∗ b + t2 ∗ c + t ∗ d + e;g[t ] = t4 ∗ a + t3 ∗ b + t2 ∗ c + t ∗ d + e;
Roots [t4 ∗ a + t3 ∗ b + t2 ∗ c + t ∗ d + e == 0, t] ;Roots [t4 ∗ a + t3 ∗ b + t2 ∗ c + t ∗ d + e == 0, t] ;Roots [t4 ∗ a + t3 ∗ b + t2 ∗ c + t ∗ d + e == 0, t] ;



Appendix C

Walking Algorithm Code
Developed by Open Tech

Dan Larimer of Open Tech Inc. developed a set of code for generating walk-
ing gates for MARS sing the simplified or circular 2D general workspace.
Dan also developed a graphical user interface (GUI) to run the code, a 3D
visualizer which renders a model of the robot while walking, and code to
communicate with the Dynamixel actuators.

While only the walking algorithm code is presented in this appendix, the
GUI and visualizer are available upon request and the code for communi-
cating with the actuators may be available for purchase upon request. Dan
Larimer can be reached at: dlarimer@opentechinc.com

A note from Dan Larimer about the code included in this appendix as
well as the section of his code pertaining to the walking algorithm follow:

/**

The code below implements the walking algorithm for the MARS robot. It

depends upon the following 3rd-Party Libraries:

- Qt 4.1.x http://www.troltech.com

- Open Scene Graph http://www.openscenegraph.org/

- Dynamixel Library see: dlarimer@opentechinc.com

The code is implemented as two classes, Robot and Arm. The majority

of the kinematics code is found in the Arm.cpp implementation. The

Robot class serves to aggregate the arms on the body and synchronize

their movement according to a desired linear and angular velocity for

the center of the MARS robot’s body.

The code as given does not compile because it is just an excerpt of

the critical components. Those skilled in software development should

have no trouble using the code provided below to replicate the walking

algorithm.
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*/

//===========================================================================

/// @file Robot.h

//===========================================================================

#ifndef _ROBOT_H_

#define _ROBOT_H_

#include <QObject>

#include ‘‘Arm.h"

#include <vector>

#include <osg/Vec3>

#include ‘‘HeightMap.h"

#include <dynamixel/SerialBus.h>

#include <dynamixel/SerialPort.h>

#include <dynamixel/DX116.h>

#include <dynamixel/Console.h>

#include <dynamixel/macros.h>

#include <dynamixel/DX116.h>

class Robot : public QObject

{

Q_OBJECT

public:

Robot();

std::vector<Arm*>& getArms() { return m_arms; }

void setBus( SerialBus* b );

int step( int delta_time_ms = 10, osg::Vec3* delta_pos = NULL);

void setBodyPosition( const osg::Vec3& xyz );

void setBodyNormal( const osg::Vec3& norm );

void setBodyRotation( float rot );

void setBodyVelocity( const osg::Vec3& vel );

void setBodyNormalVelocity( const osg::Vec3& vec );

void setBodyRotateVelocity( float rotate_vel );

bool setHandPosition( int hand, const osg::Vec3& world_xyz );

osg::Vec3 getBodyPosition()const { return m_body_pos; }

osg::Vec3 getBodyNormal()const { return m_body_normal; }

float getBodyRotation()const { return m_body_rot; }

osg::Vec3 getBodyVelocity()const { return m_body_vel; }

osg::Vec3 getBodyNormalVelocity()const { return m_body_normal_vel; }

float getBodyRotationVelocity()const { return m_body_rot_vel; }

osg::Vec3 armToRobot( Arm* a, const osg::Vec3& point,

bool direction_only = false )const;

osg::Vec3 robotToArm( Arm* a, const osg::Vec3& point,

bool direction_only = false )const;

osg::Vec3 robotToWorld( const osg::Vec3& point,

bool direction_only = false )const;

osg::Vec3 worldToRobot( const osg::Vec3& point,
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bool direction_only = false )const;

osg::Vec3 armToWorld( Arm* a, const osg::Vec3& point,

bool is_vec = false )const;

osg::Vec3 worldToArm( Arm* a, const osg::Vec3& point,

bool is_vec = false )const;

osg::Vec3 getGroundPoint( float x, float y )const;

float getHeightAboveGround( const osg::Vec3& pt )const;

public slots:

void readArms();

void printArms();

void configureArms();

void disableArms();

void enableArms();

void updateActuators();

void calibrateZero();

private:

float simToActuator( int id, float angle );

SerialBus* m_bus;

bool m_configured;

osg::Vec3 calculateNextLiftArmPosition( Arm* arm, const osg::Vec3& new_world_tip,

const osg::Vec3& tip_vel, float delta_time_s );

float calculateStridePercent( Arm* a, const osg::Vec3& world_tip_pos );

std::vector<Arm*> m_arms;

osg::Vec3 m_body_pos;

osg::Vec3 m_body_normal;

float m_body_rot;

osg::Vec3 m_body_vel;

osg::Vec3 m_body_normal_vel;

float m_body_rot_vel;

float m_step_height;

HeightMap* m_ground;

bool m_set;

QTime m_time;

float m_cal[65][3];

float m_last_goals[65];

};

#endif

//===========================================================================

/// @file Robot.cpp
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//===========================================================================

#include ‘‘Robot.h"

#include <osg/Matrix>

#include <osg/Vec3>

#define SQ(X) (X*X)

Robot::Robot()

{

m_configured = false;

m_arms.push_back( new Arm() );

m_arms.push_back( new Arm() );

m_arms.push_back( new Arm() );

m_arms.push_back( new Arm() );

m_arms.push_back( new Arm() );

m_arms.push_back( new Arm() );

m_bus = NULL;

m_set = true;

m_ground = new HeightMap( 1024 );

m_body_pos = osg::Vec3( 1024/200, 1024/200, .22);

m_body_normal = osg::Vec3( 0, 0, 1 );

m_body_normal.normalize();

m_body_rot = 0; //M_PI/4;

m_body_vel = osg::Vec3(0,0,0);

m_body_normal_vel = osg::Vec3( 0, 0, 1 );

m_body_rot_vel = 0;

m_step_height = .05;

osg::Matrix rotate = osg::Matrix::rotate( M_PI/3, 0, 0, 1 );

osg::Vec3 shoulder_pos(0,.1778,0); // 7 inches

float angle = 0;

printf( ‘‘0) shoulder_pos: %f, %f, %f\n", shoulder_pos[0], shoulder_pos[1], shoulder_pos[2] );

m_arms[0]->setShoulderPosition( shoulder_pos );

m_arms[0]->setShoulderOrientation( osg::Vec3( -angle, 0, 0 ) );

m_arms[0]->setState( Arm::SUPPORT );

assert( setHandPosition( 0, getGroundPoint( m_body_pos.x() + shoulder_pos.x()*1.5, m_body_pos.y() +

shoulder_pos.y()*1.5 ) ) );

shoulder_pos = rotate * shoulder_pos;

angle += M_PI/3;

printf( ‘‘1) shoulder_pos: %f, %f, %f\n", shoulder_pos[0], shoulder_pos[1], shoulder_pos[2] );

m_arms[1]->setShoulderPosition( shoulder_pos );

m_arms[1]->setShoulderOrientation( osg::Vec3( -angle, 0, 0 ) );

m_arms[1]->setState( Arm::LIFT );

assert( setHandPosition( 1, getGroundPoint( m_body_pos.x() + shoulder_pos.x()*1.5, m_body_pos.y() +

shoulder_pos.y()*1.5 ) ) );
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shoulder_pos = rotate * shoulder_pos;

angle += M_PI/3;

printf( ‘‘2) shoulder_pos: %f, %f, %f\n", shoulder_pos[0], shoulder_pos[1], shoulder_pos[2] );

m_arms[2]->setShoulderPosition( shoulder_pos );

m_arms[2]->setShoulderOrientation( osg::Vec3( -angle, 0, 0 ) );

m_arms[2]->setState( Arm::SUPPORT );

assert( setHandPosition( 2, getGroundPoint( m_body_pos.x() + shoulder_pos.x()*1.5, m_body_pos.y() +

shoulder_pos.y()*1.5 ) ) );

shoulder_pos = rotate * shoulder_pos;

angle += M_PI/3;

printf( ‘‘3) shoulder_pos: %f, %f, %f\n", shoulder_pos[0], shoulder_pos[1], shoulder_pos[2] );

m_arms[3]->setShoulderPosition( shoulder_pos );

m_arms[3]->setShoulderOrientation( osg::Vec3( -angle, 0, 0 ) );

m_arms[3]->setState( Arm::LIFT );

assert( setHandPosition( 3, getGroundPoint( m_body_pos.x() + shoulder_pos.x()*1.5, m_body_pos.y() +

shoulder_pos.y()*1.5 ) ) );

shoulder_pos = rotate * shoulder_pos;

angle += M_PI/3;

printf( ‘‘4) shoulder_pos: %f, %f, %f\n", shoulder_pos[0], shoulder_pos[1], shoulder_pos[2] );

m_arms[4]->setShoulderPosition( shoulder_pos );

m_arms[4]->setShoulderOrientation( osg::Vec3( -angle, 0, 0 ) );

m_arms[4]->setState( Arm::SUPPORT );

assert( setHandPosition( 4, getGroundPoint( m_body_pos.x() + shoulder_pos.x()*1.5, m_body_pos.y() +

shoulder_pos.y()*1.5 ) ) );

shoulder_pos = rotate * shoulder_pos;

angle += M_PI/3;

printf( ‘‘5) shoulder_pos: %f, %f, %f\n", shoulder_pos[0], shoulder_pos[1], shoulder_pos[2] );

m_arms[5]->setShoulderPosition( shoulder_pos );

m_arms[5]->setShoulderOrientation( osg::Vec3( -angle, 0, 0 ) );

m_arms[5]->setState( Arm::LIFT );

assert( setHandPosition( 5, getGroundPoint( m_body_pos.x() + shoulder_pos.x()*1.5, m_body_pos.y() +

shoulder_pos.y()*1.5 ) ) );

QTimer* act_update = new QTimer(this);

assert_connect( act_update, SIGNAL(timeout()), this, SLOT(updateActuators()) );

act_update->start(1000/20);

}

void Robot::setBus( SerialBus* b )

{

m_bus = b;

}

osg::Vec3 Robot::getGroundPoint( float x, float y )const

{

// printf( ‘‘getGroundPoint( %f, %f )\n", x, y );

return m_ground->getPoint( x * 100, y * 100 ) * 0.01;

}

void Robot::setBodyPosition( const osg::Vec3& xyz )

{

m_body_pos = xyz;
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}

void Robot::setBodyNormal( const osg::Vec3& norm )

{

m_body_normal = norm;

}

void Robot::setBodyRotation( float rot_rad )

{

m_body_rot = rot_rad;

}

bool Robot::setHandPosition( int arm, const osg::Vec3& world_coord )

{

assert( arm < 6 && arm >= 0 );

printf( ‘‘setHandPosition( %f, %f, %f ) world coord \n", world_coord.x(), world_coord.y(), world_coord.z() );

osg::Vec3 arm_coord = worldToArm( m_arms[arm], world_coord );

printf( ‘‘setHandPosition( %f, %f, %f ) arm coord \n", arm_coord.x(), arm_coord.y(), arm_coord.z() );

return m_arms[arm]->setTipPosition( arm_coord ) == Arm::NONE;

}

void Robot::setBodyVelocity( const osg::Vec3& vel )

{

m_body_vel = vel;

}

void Robot::setBodyRotateVelocity( float rot_z )

{

m_body_rot_vel = rot_z;

}

void Robot::setBodyNormalVelocity( const osg::Vec3& vec )

{

m_body_normal_vel = vec;

}

int Robot::step( int delta_time_ms, osg::Vec3* )

{

float delta_time_s = delta_time_ms / 1000.0;

// save the current state incase of error

osg::Vec3 current_body_pos = m_body_pos;

float current_body_rot = m_body_rot;

osg::Vec3 current_body_normal = m_body_normal;

// calculate the new state

osg::Vec3 next_body_pos = m_body_pos + m_body_vel * delta_time_s;

float next_body_rot = m_body_rot + m_body_rot_vel * delta_time_s;

while( next_body_rot > 2*M_PI ) next_body_rot -= 2*M_PI;

while( next_body_rot < -2*M_PI ) next_body_rot += 2*M_PI;

osg::Vec3 next_body_normal =

m_body_normal + m_body_normal_vel * delta_time_s;

next_body_normal.normalize();

// get the current tip positions

std::vector<osg::Vec3> current_world_tips;

for( unsigned int i = 0; i < m_arms.size(); i++ )
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{

osg::Vec3 tip = armToWorld(m_arms[i], m_arms[i]->getTipPosition());

current_world_tips.push_back( tip );

}

// update the body position so that coordinate conversions work

// with the assumption of the new position

m_body_pos = next_body_pos;

m_body_rot = next_body_rot;

m_body_normal = next_body_normal;

// get the new tip positions

std::vector<osg::Vec3> new_world_tips;

for( unsigned int i = 0; i < m_arms.size(); i++ )

{

osg::Vec3 tip = armToWorld(m_arms[i], m_arms[i]->getTipPosition());

new_world_tips.push_back( tip );

}

// calculate the velocity of the tips in world coordinates

std::vector<osg::Vec3> world_tip_velocity;

for( unsigned int i = 0; i < new_world_tips.size(); i++ )

{

world_tip_velocity.push_back(

new_world_tips[i] - current_world_tips[i] );

}

// transform the world velocities into arm velocities

std::vector<osg::Vec3> arm_tip_velocity;

for( unsigned int i = 0; i < new_world_tips.size(); i++ )

{

arm_tip_velocity.push_back(

worldToArm( m_arms[i], world_tip_velocity[i], true ) );

}

// a place to store the new tip positions and angular velocities

std::vector<osg::Vec3> new_tip_pos;

new_tip_pos.resize(6);

std::vector<osg::Vec4> arm_ang_vel;

arm_ang_vel.resize(6);

Arm::ERROR err = Arm::NONE;

bool swap_legs = false;

float min_height = .00;

float max_stride_percent = 0;

// keep the arm tips in the same position in world coordinates

for( unsigned int i = 0; i < m_arms.size(); i++ )

{

int state = m_arms[i]->getState();

if( state == Arm::SUPPORT )

{

// the support arms must stay at the same position in

// world coodinates, so therefore we must move them

// in the opposite direction than the body movement

// generated
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err =

m_arms[i]->testArmMove( arm_tip_velocity[i] * -1, delta_time_s,

&arm_ang_vel[i] );

// test failed

if( err != Arm::NONE )

{

if( err == Arm::OUT_OF_WORKSPACE )

{

swap_legs = true;

}

// break;

}

new_tip_pos[i] =

m_arms[i]->getTipPosition() - arm_tip_velocity[i];

float stride_percent = calculateStridePercent( m_arms[i], new_world_tips[i] );

if( stride_percent > max_stride_percent )

max_stride_percent = stride_percent;

// printf( ‘‘stride percent: %f\n", stride_percent );

/*

if( .01 * (1-stride_percent) < min_height )

{

min_height = 3*.03 * (1-stride_percent);

m_step_height = min_height;

}

*/

}

}

//print_debug( ‘‘max_stride_percent: %f", max_stride_percent);

if( max_stride_percent >= .95 )

{

max_stride_percent = 1;

swap_legs = true;

}

if( max_stride_percent >= .90 )

{

max_stride_percent = 1;

}

for( unsigned int i = 0; i < m_arms.size(); i++ )

{

int state = m_arms[i]->getState();

if( state != Arm::SUPPORT )

{

//m_step_height = 0.1 * sqrtf(sqrtf(1-max_stride_percent));

m_step_height = 0.1 * (1-max_stride_percent*max_stride_percent*max_stride_percent);

new_tip_pos[i] = calculateNextLiftArmPosition( m_arms[i], new_world_tips[i],

world_tip_velocity[i], delta_time_s );

}

}

if( swap_legs )
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{

m_step_height = 0;

for( unsigned int i = 0; i < m_arms.size(); i++ )

{

int state = m_arms[i]->getState();

if( state != Arm::SUPPORT )

new_tip_pos[i] = calculateNextLiftArmPosition( m_arms[i], new_world_tips[i],

world_tip_velocity[i], delta_time_s );

}

printf( ‘‘swap\n’’ );

for( unsigned int i = 0; i < m_arms.size(); i++ )

{

if( m_arms[i]->getState() == Arm::SUPPORT )

m_arms[i]->setState( Arm::LIFT );

else

m_arms[i]->setState( Arm::SUPPORT );

}

}

// don’t move

if( err != Arm::NONE )

{

m_body_pos = current_body_pos;

m_body_rot = current_body_rot;

m_body_normal = current_body_normal;

return err;

}

// no errors, update the positions

for( unsigned int i = 0; i < m_arms.size(); i++ )

{

m_arms[i]->setTipPosition( new_tip_pos[i] );

}

return Arm::NONE;

}

float Robot::getHeightAboveGround( const osg::Vec3& pt )const

{

return pt.z() - getGroundPoint( pt.x(), pt.y() ).z();

}

float Robot::calculateStridePercent( Arm* arm, const osg::Vec3& world_tip_pos )

{

osg::Vec3 shoulder_world = armToWorld( arm, osg::Vec3(0,0,0) );

float h = shoulder_world.z() - getHeightAboveGround( shoulder_world );

float a = arm->getArmLength();

assert( SQ(a) - SQ(h) > 0 );

float d = sqrt( SQ(a) - SQ(h) );

osg::Vec3 robot_ground_pos = robotToWorld( osg::Vec3(0,0,0 ) );

robot_ground_pos[2] = shoulder_world[2];

osg::Vec3 dir_to_center = shoulder_world - robot_ground_pos;//

armToWorld( arm, osg::Vec3( 0, -1, 0 ), true );
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osg::Vec3 dxy_to_center = dir_to_center;

/*

( dir_to_center * osg::Vec3( 1, 0, 0 ),

dir_to_center * osg::Vec3( 0, 1, 0 ), 0 );

*/

dxy_to_center.normalize();

dxy_to_center *= d/2;

d *= .95; // safty margin

osg::Vec3 shoulder_ground = shoulder_world;

shoulder_ground[2] -= h;

osg::Vec3 center = shoulder_ground + dxy_to_center;

osg::Vec3 distance_vec = world_tip_pos - center;

distance_vec[2] = 0;

return distance_vec.length() / (d/2.0);

}

osg::Vec3 Robot::calculateNextLiftArmPosition( Arm* arm, const osg::Vec3& world_tip_pos,

const osg::Vec3& world_tip_vel, float delta_time_s )

{

osg::Vec3 shoulder_world = armToWorld( arm, osg::Vec3(0,0,0) );

float h = getHeightAboveGround( shoulder_world );

float a = arm->getArmLength();

float d = 0;

if( SQ(a) - SQ(h) > 0 )

d = sqrt( SQ(a) - SQ(h) );

osg::Vec3 robot_ground_pos = robotToWorld( osg::Vec3(0,0,0 ) );

robot_ground_pos[2] = shoulder_world[2];

osg::Vec3 dir_to_center = shoulder_world - robot_ground_pos;//

armToWorld( arm, osg::Vec3( 0, -1, 0 ), true );

osg::Vec3 dxy_to_center = dir_to_center;

/*

( dir_to_center * osg::Vec3( 1, 0, 0 ),

dir_to_center * osg::Vec3( 0, 1, 0 ), 0 );

*/

dxy_to_center.normalize();

dxy_to_center *= d/2;

d *= .75; // safty margin

osg::Vec3 shoulder_ground = shoulder_world;

shoulder_ground[2] -= h;

osg::Vec3 w_tip_vel = world_tip_vel;

w_tip_vel[2] = 0;

w_tip_vel.normalize();

w_tip_vel *= d/2;
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osg::Vec3 goal = shoulder_ground + dxy_to_center + w_tip_vel;

goal = osg::Vec3( goal.x(), goal.y(), getHeightAboveGround( goal ) + m_step_height );

osg::Vec3 tip_to_goal = goal - world_tip_pos; //armToWorld( arm, arm->getTipPosition() );

osg::Vec3 tip_to_goal_delta = tip_to_goal;

tip_to_goal[2] *= 2; // weigh things in favor of height

tip_to_goal.normalize();

tip_to_goal[0] *= world_tip_vel.length() * 1.25; // go 50% faster than the ground legs

tip_to_goal[1] *= world_tip_vel.length() * 1.25; // go 50% faster than the ground legs

tip_to_goal[2] *= world_tip_vel.length() * 5; // go 50% faster than the ground legs

if( fabs(tip_to_goal[0]) > fabs(tip_to_goal_delta[0]) )

tip_to_goal[0] = tip_to_goal_delta[0];

if( fabs(tip_to_goal[1]) > fabs(tip_to_goal_delta[1]) )

tip_to_goal[1] = tip_to_goal_delta[1];

if( fabs(tip_to_goal[2]) > fabs(tip_to_goal_delta[2]) )

tip_to_goal[2] = tip_to_goal_delta[2];

osg::Vec3 arm_tip_to_goal = worldToArm( arm, tip_to_goal, true );

osg::Vec4 ang_vel;

Arm::ERROR err = arm->testArmMove( arm_tip_to_goal, delta_time_s, &ang_vel );

if( err != Arm::NONE )

{

if( err == Arm::OUT_OF_WORKSPACE )

{

printf( ‘‘Error moving lift arm’’ );

return arm->getTipPosition();

}

if( err >= Arm::EXCEEDED_MAXIMUM_SH_ANGULAR_VELOCITY && err <=

Arm::EXCEEDED_MAXIMUM_ANGULAR_VELOCITY )

{

#define MAX_ANG_VEL ((114./60.)*2.*M_PI) // 114 RPM -> 11.7286 rad/sec

printf( ‘‘Error moving lift arm, scaling speed to max’’ );

ang_vel.normalize();

ang_vel *= MAX_ANG_VEL;

osg::Vec4 new_ang = arm->getArmAngles() + ang_vel;

return arm->calculateTipPosition( new_ang );

}

printf( ‘‘Error moving lift arm, couldn’t move\n’’ );

return arm->getTipPosition();

}

return worldToArm( arm, world_tip_pos ) + arm_tip_to_goal;

}

/**

Converts ’point’ in arm coordinates to a point in robot coordinates.

*/

osg::Vec3 Robot::armToRobot( Arm* arm, const osg::Vec3& point, bool is_vec )const

{

osg::Vec3 sp = arm->getShoulderPosition();

osg::Vec3 so = arm->getShoulderOrientation();

osg::Matrix rot_h = osg::Matrix::rotate( so[0], 0, 0, 1 );
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osg::Matrix rot_p = osg::Matrix::rotate( so[1], 1, 0, 0 );

osg::Matrix rot_r = osg::Matrix::rotate( so[2], 0, 1, 0 );

osg::Matrix rot = rot_r * rot_p * rot_h;

osg::Matrix inv_rot = osg::Matrix::inverse(rot);

osg::Vec3 rot_point = rot * point;

if( !is_vec )

return rot_point + sp;

else

return rot_point;

}

/**

Converts ’point’ in robot coordinates to a point in ’arm’ coordinates.

*/

osg::Vec3 Robot::robotToArm( Arm* arm, const osg::Vec3& point, bool is_vec )const

{

osg::Vec3 sp = arm->getShoulderPosition();

osg::Vec3 so = arm->getShoulderOrientation();

osg::Matrix rot_h = osg::Matrix::rotate( so[0], 0, 0, 1 );

osg::Matrix rot_p = osg::Matrix::rotate( so[1], 1, 0, 0 );

osg::Matrix rot_r = osg::Matrix::rotate( so[2], 0, 1, 0 );

osg::Matrix rot = rot_r * rot_p * rot_h;

osg::Matrix inv_rot = osg::Matrix::inverse(rot);

osg::Vec3 rtn;

if( !is_vec )

rtn = point - sp;

else

rtn = point;

osg::Vec3 rot_point = inv_rot * rtn;

osg::Vec3 check = armToRobot( arm, rot_point, is_vec );

osg::Vec3 error = check - point;

if( (check - point).length2() > .001 )

{

printf( ‘‘error robotToArm( %f, %f, %f ) -> %f, %f, %f -> check: %f, %f, %f error: %f, %f, %f \n",

point.x(), point.y(), point.z(),

rot_point.x(), rot_point.y(), rot_point.z(),

check.x(), check.y(), check.z(),

error.x(), error.y(), error.z()

);

}

return rot_point;

}

osg::Vec3 Robot::worldToRobot( const osg::Vec3& point, bool is_vec )const

{

osg::Vec3 up(0,0,1);

float ang = acos( up * m_body_normal );

osg::Vec3 rot_axis = up ^ m_body_normal;

rot_axis.normalize();



146

osg::Matrix body_rot = osg::Matrix::rotate( m_body_rot, 0, 0, 1 );

osg::Matrix norm_rot = osg::Matrix::rotate( ang, rot_axis.x(),

rot_axis.y(),

rot_axis.z() );

//osg::Matrix rot = body_rot * norm_rot;

osg::Matrix rot = norm_rot * body_rot;

osg::Matrix inv_rot = osg::Matrix::inverse(rot);

osg::Vec3 rtn;

// subtract translate

if( !is_vec )

rtn = point - m_body_pos;

else

rtn = point;

// inverse rotate

osg::Vec3 robot_pt = inv_rot * rtn;

/*

printf( ‘‘worldToRobot( %f, %f, %f ) -> %f, %f, %f \n",

point.x(), point.y(), point.z(),

robot_pt.x(), robot_pt.y(), robot_pt.z() );

*/

return robot_pt;

}

osg::Vec3 Robot::robotToWorld( const osg::Vec3& point, bool is_vec )const

{

osg::Vec3 up(0,0,1);

float ang = acos( up * m_body_normal );

osg::Vec3 rot_axis = up ^ m_body_normal;

rot_axis.normalize();

osg::Matrix body_rot = osg::Matrix::rotate( m_body_rot, 0, 0, 1 );

osg::Matrix norm_rot = osg::Matrix::rotate( ang, rot_axis.x(),

rot_axis.y(),

rot_axis.z() );

osg::Matrix rot = norm_rot * body_rot;

osg::Vec3 robot_pt = rot * point;

if( !is_vec )

return robot_pt + m_body_pos;

else

return robot_pt;

}

osg::Vec3 Robot::armToWorld( Arm* a, const osg::Vec3& point, bool is_vec )const

{

return robotToWorld( armToRobot( a, point, is_vec ), is_vec );

}
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osg::Vec3 Robot::worldToArm( Arm* a, const osg::Vec3& point, bool is_vec )const

{

return robotToArm( a, worldToRobot( point, is_vec ), is_vec );

}

void Robot::readArms()

{

m_bus->setReturnLevel( 0xFE, 1 ); // on read only

for( int id = 1; id <= 18; id++ )

{

DX116* act = m_bus->getActuator(id);

if( act == NULL )

{

print_error( ‘‘Warning, Actuator: %d was not found on the bus", id );

act = new DX116( id, m_bus );

m_bus->addActuator( act );

}

act->setReturnLevel( DX116::ON_READ_INSTRUCTIONS );

act->requestStatusUpdate();

usleep(1000);

}

}

void Robot::printArms()

{

for( int i = 1; i <= 18; i++ )

{

char id = i;

DX116* act = m_bus->getActuator(id);

if( act == NULL )

{

print_error( ‘‘Warning, Actuator: %d was not found on the bus", id );

act = new DX116( id, m_bus );

m_bus->addActuator( act );

}

print_debug( ‘‘id: %d angle: %f", id, act->getCurrentPosition() );

}

/*

for( int leg = 1; leg <= 6; leg++ )

{

for( int motor = 1; motor <= 4; motor++ )

{

char id = 10 * leg + motor;

DX116* act = m_bus->getActuator(id);

if( act == NULL )

{

print_error( ‘‘Warning, Actuator: %d was not found on the bus", id );

act = new DX116( id, m_bus );

m_bus->addActuator( act );

}

print_debug( ‘‘id: %d angle: %f", id, act->getCurrentPosition() );

}

}

*/

}
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void Robot::configureArms()

{

if( !m_bus )

return;

memset( &m_cal, 0, 18*3*sizeof(float) );

/*

m_cal[1][0] = 168;

m_cal[2][0] = 164;

m_cal[3][0] = 191;

m_cal[4][0] = 187;

m_cal[5][0] = 194;

m_cal[6][0] = 169;

m_cal[7][0] = 191;

m_cal[8][0] = 171;

m_cal[9][0] = 168;

m_cal[10][0] = 191;

m_cal[11][0] = 172;

m_cal[12][0] = 168;

m_cal[13][0] = 167;

m_cal[14][0] = 189;

m_cal[15][0] = 166;

m_cal[16][0] = 193;

m_cal[17][0] = 187;

m_cal[18][0] = 192;

*/

m_cal[1][0] = 156.598240;

m_cal[2][0] = 157.771261;

m_cal[3][0] = 167.155425;

m_cal[4][0] = 157.478006;

m_cal[5][0] = 165.689150;

m_cal[6][0] = 136.950147;

m_cal[7][0] = 138.123167;

m_cal[8][0] = 159.530792;

m_cal[9][0] = 144.868035;

m_cal[10][0] = 160.703812;

m_cal[11][0] = 154.252199;

m_cal[12][0] = 163.049853;

m_cal[13][0] = 157.184751;

m_cal[14][0] = 156.598240;

m_cal[15][0] = 153.958944;

m_cal[16][0] = 157.478006;

m_cal[17][0] = 157.771261;

m_cal[18][0] = 159.530792;

for( int i = 0; i <= 18; i++ )

{

m_cal[i][0] += 28;

}

/*

m_cal[1][0] = 180;

m_cal[2][0] = 180;

m_cal[3][0] = 180;

m_cal[4][0] = 180;

m_cal[5][0] = 180;

m_cal[6][0] = 180;

m_cal[7][0] = 180;

m_cal[8][0] = 180;
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m_cal[9][0] = 180;

m_cal[10][0] = 180;

m_cal[11][0] = 180;

m_cal[12][0] = 180;

m_cal[13][0] = 180;

m_cal[14][0] = 180;

m_cal[15][0] = 180;

m_cal[16][0] = 180;

m_cal[17][0] = 180;

m_cal[18][0] = 180;

*/

/*

for( int l = 1; l <= 6; l++ )

{

m_cal[10*l+1][1] = 65;

m_cal[10*l+1][2] = 80;

}

*/

for( int l = 0; l < 6; l++ )

{

m_cal[3*l+1][1] = 70;

m_cal[3*l+1][2] = 270;

}

for( int l = 1; l <= 6; l++ )

{

m_cal[3*l+2][1] = 55; // min

m_cal[3*l+2][2] = 280; // max

}

for( int l = 1; l <= 6; l++ )

{

m_cal[3*l+3][1] = 90;

m_cal[3*l+3][2] = 280;

}

// set the return status level for all motors

m_bus->setReturnLevel( 0xFE, 1 ); // on read only

m_bus->setReturnDelayTime( 0xFE, 25 );

m_bus->setPunch( 0XFE, 2 );

m_bus->setCompliance( 0XFE, 16, 0, 16, 0 );

m_bus->setTorque( 0XFE, .95 );

m_bus->setTorqueEnabled( 0XFE, true );

for( int id = 1; id <= 18; id++ )

{

DX116* act = m_bus->getActuator(id);

if( act == NULL )

{

print_error( ‘‘Warning, Actuator: %d was not found on the bus", id );

act = new DX116( id, m_bus );

m_bus->addActuator( act );

exit(1);

}

act->setReturnLevel( DX116::ON_READ_INSTRUCTIONS );

act->setComplianceMarginAndSlope( 32, 1, 32, 1 , 35);
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act->setTorqueEnabled(true);

act->setCurrentTorqueLimit( .99 );

act->setOperatingAngleLimits(10,290);

act->setGoalSpeed( 40 );

act->setGoalPosition( m_cal[id][0] ); //m_cal[3*leg+motor+1][0] );

//simToActuator( 3*leg+motor, 0 ) );

act->writeCommand();

}

/*

for( int leg = 0; leg < 6; leg++ )

{

for( int motor = 0; motor < 3; motor++ )

{

char id = 3 * (leg) + motor + 1;

DX116* act = m_bus->getActuator(id);

if( act == NULL )

{

print_error( ‘‘Warning, Actuator: %d was not found on the bus", id );

act = new DX116( id, m_bus );

m_bus->addActuator( act );

exit(1);

}

print_debug( ‘‘id: %d", id );

//m_bus->setTorque( id, 1 );

act->setReturnLevel( DX116::ON_READ_INSTRUCTIONS );

m_bus->setReturnDelayTime( 0xFE, 25 );

//m_bus->setCompliance( id, 30, 3, 30, 3 );

act->setComplianceMarginAndSlope( 30, 3, 30, 3 , 35);

//m_bus->setTorque( id, .75 );

act->setTorqueEnabled(true);

act->setCurrentTorqueLimit( .75 );

//act->setPunch( 35 );

act->setGoalSpeed( 10 );

print_error( ‘‘setGoalPos( m_cal[%d][0] = %f )", id, m_cal[3*leg+motor+1][0] );

act->setGoalPosition( 180 ); //m_cal[3*leg+motor+1][0] ); //simToActuator( 3*leg+motor, 0 ) );

act->setOperatingAngleLimits(m_cal[3*leg + motor][1], m_cal[3*leg+motor][2]);

m_bus->setAngleLimits(3*leg+motor,

m_cal[3*leg + motor][1],

m_cal[3*leg + motor][2]);

act->writeCommand();

}

}

*/

m_configured = true;

}

void Robot::disableArms()

{

if( !m_bus )

return;

m_bus->setTorqueEnabled( 0xFE, false );
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m_bus->setTorque( 0xFE, 0 );

}

void Robot::enableArms()

{

if( !m_bus )

return;

m_bus->setTorqueEnabled( 0xFE, true );

m_bus->setTorque( 0xFE, 0 );

}

/**

Angle in degrees with 0 being no change to the coordinate system

id is used to correct for errors in different

@return 0 -> 150 deg in actuator coordinates

*/

float Robot::simToActuator( int id, float angle )

{

float a = angle;

if( (id - 1) % 3 == 1 )

a = m_cal[id][0] - angle;

if( (id - 1) % 3 == 2 )

a = m_cal[id][0] + angle;

if( id % 3 == 2 )

a -= 95;

// heading

if( (id - 1) % 3 == 0 )

{

int leg = (id-1) / 3 + 1;

switch( leg )

{

case 1:

a = m_cal[id][0] - angle;

break;

case 2:

if( angle > 90 )

angle -= 360;

a = m_cal[id][0] - angle - 120;

break;

case 3:

a = m_cal[id][0] - angle + 120;

break;

case 4:

a = m_cal[id][0] - angle;

break;

case 5:

a = m_cal[id][0] - angle - 120;

break;

case 6:

a = m_cal[id][0] - angle + 120;

break;

}

}
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print_error( ‘‘id: %d angle: %f out: %f ‘‘, id, angle, a );

return a;

/*

if( id % 3 == 2 )

a = m_cal[id][0] - angle;

else if( id % 3 == 2 )

{

int leg = (id / 3) + 1;

switch (leg)

{

case 1:

a = m_cal[id][0] - angle;

break;

case 2:

if( angle > 90 )

angle -= 360;

a = m_cal[id][0] - angle - 120;

break;

case 3:

a = m_cal[id][0] - angle + 120;

break;

case 4:

a = m_cal[id][0] - angle;

break;

case 5:

a = m_cal[id][0] - angle - 120;

break;

case 6:

a = m_cal[id][0] - angle + 120;

break;

}

}

else

a = angle + m_cal[id][0];

if( a > m_cal[id][2] )

a = m_cal[id][2];

else if ( a < m_cal[id][1] )

a = m_cal[id][1];

return a;

*/

}

/**

This simulator has angles in heading / pitch / roll of shoulder

The robot is configured with roll / heading / pitch

*/

osg::Vec4 simAnglesToActAngles( const osg::Vec4& ang )

{

osg::Vec3 fa(0,1,0);

/*

osg::Matrix rotate_h = osg::Matrix::rotate( ang[0], 0, 0, 1 );

osg::Matrix rotate_p = osg::Matrix::rotate( ang[0], 1, 0, 0 );

osg::Matrix rotate_r = osg::Matrix::rotate( ang[0], 0, 1, 0 );
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fa = rotate_r * rotate_p * rotate_h * fa;

*/

// roll = 0

osg::Vec4 rtn;

rtn[0] = ang[2];

rtn[1] = ang[0];

rtn[2] = ang[1];

rtn[3] = ang[3];

return rtn;

}

/**

Sets the 0 position on all of the motors

*/

void Robot::calibrateZero()

{

for( unsigned int i = 0; i < m_arms.size(); i++ )

{

int id = i * 10;

for( int j = 0; j < 4; j++ )

{

id = i * 10 + j + 1;

// todo read motor position

}

}

}

void Robot::updateActuators()

{

if( !m_configured )

return;

int elapsed = m_time.restart();

float elapsed_s = elapsed / 1000.0;

for( int id = 1; id <= 18; id++ )

{

int arm_num = (id-1)/3;

Arm* a = m_arms[arm_num];

// convert HPRE to HPE

osg::Vec4 angles = a->getArmAngles();

int ang_num = (id - 1) % 3;

if( ang_num == 2 ) ang_num = 3;

angles[ang_num] = RAD2DEG( angles[ang_num] );

float goal = simToActuator( id, angles[ang_num] );

float speed = fabs((goal - m_last_goals[id])/elapsed_s);

m_last_goals[id] = goal;

DX116* act = m_bus->getActuator(id);

if( act )
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{

//print_debug( ‘‘id: %d input-goal: %f motor-goal: %f speed: %f", id,

angles[j], goal, speed );

//if( id % 10 <= 2 )

//if( id / 10 == 4 )

act->setGoal( goal, speed );

}

else

{

print_error( ‘‘No such act: %d", id );

exit(1);

}

}

/*

for( unsigned int i = 1; i <= m_arms.size(); i++ )

{

Arm* a = m_arms[i-1];

int id = (i-1) * 3 + 1;

osg::Vec4 angles = simAnglesToActAngles( a->getArmAngles() );

for( int j = 0; j < 3; j++ )

{

id = i * 3 + j;

angles[j] = RAD2DEG( angles[j] );

float goal = simToActuator( id, angles[j] );

float speed = fabs((goal - m_last_goals[id])/elapsed_s);

// if( goal - m_last_goals[id] == 0 )

// continue;

m_last_goals[id] = goal;

DX116* act = m_bus->getActuator(id);

if( act )

{

//print_debug( ‘‘id: %d input-goal: %f motor-goal: %f speed: %f", id,

angles[j], goal, speed );

//if( id % 10 <= 2 )

//if( id / 10 == 4 )

act->setGoal( goal, speed );

}

}

}

*/

}

//===========================================================================

/// @file Arm.h

//===========================================================================

#ifndef _ARM_H_

#define _ARM_H_

#include <math.h>

#include <osg/Vec4>

#include <osg/Vec3>

class Robot;
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/**

@class Arm

@breif Performs calculations for a robotic arm

*/

class Arm

{

public:

enum STATE {

SUPPORT = 0,

LIFT = 1

};

enum ERROR {

NONE = 0,

REACHED_RANGE_LIMIT = 1,

EXCEEDED_MAXIMUM_SH_ANGULAR_VELOCITY = 2,

EXCEEDED_MAXIMUM_SP_ANGULAR_VELOCITY = 3,

EXCEEDED_MAXIMUM_SR_ANGULAR_VELOCITY = 4,

EXCEEDED_MAXIMUM_EP_ANGULAR_VELOCITY = 5,

EXCEEDED_MAXIMUM_ANGULAR_VELOCITY = 6,

HIT_STRIDE_LIMIT = 7,

EXCEEDED_MAXIMUM_ROT_SPEED = 8,

OUT_OF_WORKSPACE = 9 // it is not possible to meet the constraints

};

Arm( double fa_len = .1524, double ua_len = .127,

double sh = 0, double sp = 0, double sr = 0, double ep = -M_PI/2 ); //-M_PI/2*1.5);

ERROR testArmMove( const osg::Vec3& delta_xyz, float delta_sec,

osg::Vec4* ang_vel = 0 )const;

osg::Vec3 getShoulderPosition()const;

void setShoulderPosition( const osg::Vec3& xyz );

osg::Vec3 getShoulderOrientation()const;

void setShoulderOrientation( const osg::Vec3& hpr );

void setArmLength( double s_to_e, double e_to_t );

double getUpperArmLength()const;

double getLowerArmLength()const;

double getArmLength()const { return getUpperArmLength() + getLowerArmLength(); };

ERROR setTipPosition( const osg::Vec3& txyz );

osg::Vec3 getTipPosition()const;

void setArmAngles( const osg::Vec4& angles );

osg::Vec4 getArmAngles()const;

void calculateTipPosition();

ERROR calculateArmAngles();

void setState( int s );

int getState()const { return m_state; }
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osg::Vec3 calculateTipPosition( const osg::Vec4& ang )const;

private:

osg::Vec4 calculateArmAngles( const osg::Vec3&, int* error = 0)const;

int m_state;

double m_fa_length;

double m_ua_length;

osg::Vec3 m_tip;

osg::Vec3 m_shoulder_xyz;

osg::Vec3 m_shoulder_hpr;

double m_sh; // shoulder heading

double m_sp; // shoulder pitch

double m_sr; // shoulder roll

double m_ep; // elbo pitch

};

#endif

//===========================================================================

/// @file Arm.cpp

//===========================================================================

#include ‘‘Arm.h"

#include <osg/Matrix>

#include <osg/Vec3>

#define RAD2DEG(X) (X/M_PI*180.0)

#define SQ(X) (X*X)

#define MAX_ANG_VEL ((114./60.)*2.*M_PI) // 114 RPM -> 11.7286 rad/sec

Arm::Arm( double fa_len, double ua_len,

double sh, double sp, double sr, double ep )

{

m_fa_length = fa_len;

m_ua_length = ua_len;

m_sh = sh;

m_sp = sp;

m_sr = sr;

m_ep = ep;

m_state = LIFT;

calculateTipPosition();

}

void Arm::setState( int s )

{

m_state = s;

}

/**
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This method will test to see if it is possible to move the arm

tip by the delta_xyz in arm coordinates.

*/

Arm::ERROR Arm::testArmMove( const osg::Vec3& delta_xyz, float delta_sec,

osg::Vec4* ang_vel )const

{

osg::Vec4 current_angles(m_sh, m_sp, m_sr, m_ep);

int err = Arm::NONE;

osg::Vec4 new_angles = calculateArmAngles( m_tip + delta_xyz, &err );

if( err != Arm::NONE )

{

return (Arm::ERROR)err;

}

osg::Vec4 avel = new_angles - current_angles;

for( int i = 0; i < 4; i++ )

{

if( avel[i] > M_PI )

avel[i] -= 2*M_PI;

else if( avel[i] < -M_PI )

avel[i] += 2*M_PI;

if( fabs(avel[i]) > MAX_ANG_VEL * delta_sec )

{

if( ang_vel )

*ang_vel = avel;

// printf( ‘‘ang vel[%d] = %f MAX == %f\n", i, avel[i], MAX_ANG_VEL * delta_sec );

return (Arm::ERROR)(EXCEEDED_MAXIMUM_SH_ANGULAR_VELOCITY+i);

}

}

if( ang_vel )

*ang_vel = avel;

return Arm::NONE;

}

/**

@param ua - upper arm length

@param fa - fore arm length

*/

void Arm::setArmLength( double ua, double fa )

{

m_fa_length = fa;

m_ua_length = ua;

}

double Arm::getUpperArmLength()const

{

return m_ua_length;

}

double Arm::getLowerArmLength()const

{

return m_fa_length;

}

Arm::ERROR Arm::setTipPosition( const osg::Vec3& pos )
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{

m_tip = pos;

return calculateArmAngles();

}

osg::Vec3 Arm::getTipPosition()const

{

return m_tip;

}

osg::Vec4 Arm::getArmAngles()const

{

return osg::Vec4( m_sh, m_sp, m_sr, m_ep );

}

void Arm::setArmAngles( const osg::Vec4& hpr_ep )

{

m_sh = hpr_ep[0];

m_sp = hpr_ep[1];

m_sr = hpr_ep[2];

m_ep = hpr_ep[3];

calculateTipPosition();

}

osg::Vec3 Arm::calculateTipPosition( const osg::Vec4& angles )const

{

osg::Matrix rotate_h = osg::Matrix::rotate( angles[0], 0, 0, 1 );

osg::Matrix rotate_p = osg::Matrix::rotate( angles[1], 1, 0, 0 );

osg::Matrix rotate_r = osg::Matrix::rotate( angles[2], 0, 1, 0 );

osg::Matrix translate_ua = osg::Matrix::translate( 0, m_ua_length, 0 );

osg::Matrix rotate_ep = osg::Matrix::rotate( angles[3], 1, 0, 0 );

osg::Matrix translate_fa = osg::Matrix::translate( 0, m_fa_length, 0 );

osg::Matrix transform = translate_fa * rotate_ep *

translate_ua * rotate_r * rotate_p * rotate_h;

osg::Vec3 point(0,0,0);

return point * transform;

}

/**

Determines the position of the tip relative to the

base based upon the arm angles

*/

void Arm::calculateTipPosition()

{

/*

printf( ‘‘source angles( sh: %f, sp: %f, sr: %f, ep: %f, ua: %f fa: %f )\n", RAD2DEG(m_sh),

RAD2DEG(m_sp),

RAD2DEG(m_sr),

RAD2DEG(m_ep), m_ua_length, m_fa_length );

*/

osg::Matrix rotate_h = osg::Matrix::rotate( m_sh, 0, 0, 1 );

osg::Matrix rotate_p = osg::Matrix::rotate( m_sp, 1, 0, 0 );

osg::Matrix rotate_r = osg::Matrix::rotate( m_sr, 0, 1, 0 );

osg::Matrix translate_ua = osg::Matrix::translate( 0, m_ua_length, 0 );

osg::Matrix rotate_ep = osg::Matrix::rotate( m_ep, 1, 0, 0 );
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osg::Matrix translate_fa = osg::Matrix::translate( 0, m_fa_length, 0 );

osg::Matrix transform = translate_fa * rotate_ep *

translate_ua * rotate_r * rotate_p * rotate_h;

osg::Vec3 point(0,0,0);

m_tip = point * transform;

// printf( ‘‘calculated tip( %f, %f, %f )\n", m_tip.x(), m_tip.y(), m_tip.z() );

// osg::Vec4 ang = calculateArmAngles( m_tip );

/*

printf( ‘‘rev_calc angles: sh: %f, sp: %f, sr: %f ep: %f\n", RAD2DEG(ang[0]), RAD2DEG(ang[1]),

RAD2DEG(ang[2]), RAD2DEG(ang[3]) );

*/

}

/**

Calculates the angles in the arm based upon the position of the tip

*/

osg::Vec4 Arm::calculateArmAngles( const osg::Vec3& tip, int* error )const

{

//return calculateArmAngles2( tip, error );

//return calculateArmAngles3( tip, error );

// printf( ‘‘source tip( %f, %f, %f )\n", tip.x(), tip.y(), tip.z() );

if( tip.length2() < 0.0001 )

{

printf( ‘‘OUT_OF_WORKSPACE tip (%f, %f, %f)\n", tip.x(), tip.y(), tip.z() );

if( error )

{

*error = OUT_OF_WORKSPACE;

printf( ‘‘*error = %d\n", *error );

}

return osg::Vec4( 0, 0, 0, 0 );

}

double A2 = SQ(tip.x()) + SQ(tip.y()) + SQ(tip.z());

double A = sqrt(A2);

double U = m_ua_length;

double U2 = SQ(U);

double F = m_fa_length;

double F2 = SQ(F);

//printf( ‘‘x: %f y: %f z: %f\n", tip.x(), tip.y(), tip.z() );

//printf( ‘‘f = (F2 - U2 - A2) / (-2 * A * U )\n %f = (%f - %f - %f) / (-2*%f*%f )\n",

// (F2 - U2 - A2) / (-2 * A * U ),

// F2, U2, A2, A, U );

double ang = (F2 - U2 - A2) / (-2 * A * U );

if( fabs(ang) > 1 )

{

printf( ‘‘OUT_OF_WORKSPACE tip (%f, %f, %f), ang == %f\n", tip.x(), tip.y(), tip.z(), ang );

if( error )

*error = OUT_OF_WORKSPACE;
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return osg::Vec4( 0, 0, 0, 0 );

}

double f = acos( ang );

// printf( ‘‘f: %f\n", RAD2DEG(f) );

// printf( ‘‘f-Ps: %f\n", RAD2DEG( atan2( m_tz, sqrt( SQ(m_tx) + SQ(m_ty) ) ) ) );

double d = atan2( tip.z(), sqrt( SQ(tip.x()) + SQ(tip.y()) ) );

double Ps = 0;

if( f > d )

Ps = f + d;

else

Ps = f - d;

double a = acos( (A2 - F2 - U2)/ (-2*F*U) );

// printf( ‘‘a: %f\n", RAD2DEG(a) );

double Pe = a - M_PI;

double Hs = atan2( -tip.x(), tip.y() );

return osg::Vec4( Hs, Ps, 0, Pe );

/*

printf( ‘‘calculated angles( sh: %f, sp: %f, sr: %f, ep: %f )\n", RAD2DEG(m_sh),

RAD2DEG(m_sp),

RAD2DEG(m_sr),

RAD2DEG(m_ep) );

*/

}

/**

Calculates the angles in the arm based upon the position

*/

Arm::ERROR Arm::calculateArmAngles()

{

// printf( ‘‘source tip( %f, %f, %f )\n", m_tip.x(), m_tip.y(), m_tip.z() );

int err = NONE;

osg::Vec4 angles = calculateArmAngles( m_tip, &err );

if( err != NONE )

return ERROR(err);

m_sh = angles[0];

m_sp = angles[1];

m_sr = angles[2];

m_ep = angles[3];

return (ERROR)err;

/*

printf( ‘‘calculated angles( sh: %f, sp: %f, sr: %f, ep: %f )\n", RAD2DEG(m_sh),

RAD2DEG(m_sp),

RAD2DEG(m_sr),

RAD2DEG(m_ep) );

*/

}
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/**

@returns the vector from the center of the robot to the

shoulder joint in robot coordinates

*/

osg::Vec3 Arm::getShoulderPosition()const

{

return m_shoulder_xyz;

}

/**

@param xyz - the vector from the center of the robot to the

shoulder joint in robot coordinates

*/

void Arm::setShoulderPosition( const osg::Vec3& xyz )

{

m_shoulder_xyz = xyz;

}

/**

@returns the heading/pitch/roll of the shoulder coordinate space

*/

osg::Vec3 Arm::getShoulderOrientation()const

{

return m_shoulder_hpr;

}

/**

@param hpr - the heading/pitch/roll of the shoulder

coordinate space

*/

void Arm::setShoulderOrientation( const osg::Vec3& hpr )

{

m_shoulder_hpr = hpr;

}
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